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Preface

The field of graph mining has seen a rapid explosion in recent years because
of new applications in computational biology, software bug localization, and
social and communication networking. This book is designed for studying var-
ious applications in the context of managing and mining graphs. Graph mining
has been studied by the theoretical community extensively in the context of
numerous problems such as graph partitioning, node clustering, matching, and
connectivity analysis. However the traditional work in the theoretical commu-
nity cannot be directly used in practical applications because of the following
reasons:

The definitions of problems such as graph partitioning, matching and di-
mensionality reduction are too “clean” to be used with real applications.
In real applications, the problem may have different variations such as
a disk-resident case, a multi-graph case, or other constraints associated
with the graphs. In many cases, problems such as frequent sub-graph
mining and dense graph mining may have a variety of different flavors
for different scenarios.

The size of the applications in real scenarios are often very large. In such
cases, the graphs may not be stored in main memory, but may be avail-
able only on disk. A classic example of this is the case of web and social
network graphs, which may contain millions of nodes. As a result, it is
often necessary to design specialized algorithms which are sensitive to
disk access efficiency constraints. In some cases, the entire graph may
not be available at one time, but may be available in the form of a con-
tinuous stream. This is the case in many applications such as social and
telecommunication networks in which edges are received continuously.

The book will study the problem of managing and mining graphs from an ap-
plied point of view. It is assumed that the underlying graphs are massive and
cannot be held in main memory. This change in assumption has a critical
impact on the algorithms which are required to process such graphs. The prob-
lems studied in the book include algorithms for frequent pattern mining, graph
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matching, indexing, classification, clustering, and dense graph mining.In many
cases, the problem of graph management and mining has been studied from the
perspective of structured and XML data. Where possible, we have clarified the
connections with the methods and algorithms designed by the XML data man-
agement community. We also provide a detailed discussion of the application
of graph mining algorithms in a number of recent applications such as graph
privacy, web and social networks.

Many of the graph algorithms are sensitive to the application scenario in
which they are encountered. Therefore, we will study the usage of many of
these techniques in real scenarios such as the web, social networks, and bio-
logical data. This provides a better understanding of how the algorithms in the
book apply to different scenarios. Thus, the book provides a comprehensive
summary both from an algorithmic and applied perspective.



Chapter 1

AN INTRODUCTION TO GRAPH DATA

Charu C. Aggarwal
IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Haixun Wang
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Beijing, China 100190

haixunw@microsoft.com

Abstract Graph mining and management has become an important topic of research re-
cently because of numerous applications to a wide variety of data mining prob-
lems in computational biology, chemical data analysis, drug discovery and com-
munication networking. Traditional data mining and management algorithms
such as clustering, classification, frequent pattern mining and indexing have now
been extended to the graph scenario. This book contains a number of chapters
which are carefully chosen in order to discuss the broad research issues in graph
management and mining. In addition, a number of important applications of
graph mining are also covered in the book. The purpose of this chapter is to
provide an overview of the different kinds of graph processing and mining tech-
niques, and the coverage of these topics in this book.

Keywords: Graph Mining, Graph Management

1. Introduction

This chapter will provide an introduction of the topic of graph management
and mining, and its relationship to the different chapters in the book. The
problem of graph management finds numerous applications in a wide variety
of application domains such as chemical data analysis, computational biology,
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2 MANAGING AND MINING GRAPH DATA

social networking, web link analysis, and computer networks. Different appli-
cations result in different kinds of graphs, and the corresponding challenges are
also quite different. For example, chemical data graphs are relatively small but
the labels on different nodes (which are drawn from a limited set of elements)
may be repeated many times in a single molecule (graph). This results in issues
involving graph isomorphism in mining and management applications. On the
other hand, in many large scale domains [12, 21, 22] such as the web, com-
puter networks, and social networks, the node labels (eg. URLs) are distinct,
but there are a very large number of them. Such graphs are also challenging
because the degree distributions of these graphs are highly skewed [10], and
this leads to difficulty in characterizing such graphs succinctly. The massive
size of computer network graphs is a considerable challenge for mining algo-
rithms. In some cases, the graphs may be dynamic and time-evolving. This
means that the structure of the graph may change rapidly over time. In such
cases, the temporal aspect of network analysis is extremely interesting.

A closely related field is that of XML data. Complex and semi-structured
data is often represented in the form of XML documents because of its nat-
ural expressive power. XML data is naturally represented in graphical form,
in which the attributes along with their values are expressed as nodes, and the
relationships among them are expressed as edges. The expressive power of
graphs and XML data comes at a cost, since it is much more difficult to design
mining and management operations for structured data. The design of manage-
ment and mining algorithms for XML data also helps in the design of methods
for graph data, since the two fields are closely related to one another.

The book is designed to survey different aspects of graph mining and man-
agement, and provide a compendium for other researchers in the field. The
broad thrust of this book is divided into three areas:

Managing Graph Data: Since graphs form a complex and expressive
data type, we need methods for representing graphs in databases, ma-
nipulating and querying them. We study the problem of designing query
languages for graphs [14], and show how to use such languages in order
to retrieve structures from the underlying graphs [26]. We also explore
the design of indexing and retrieval structures for graph data. In addition,
a number of specialized queries such as matching, keyword search and
reachability queries [4–7, 24] are studied in the book. We will see that
the design of the index is much more sensitive to the underlying applica-
tion in the case of structured data than in the case of multi-dimensional
data. The problem of managing graph data is related to the widely stud-
ied field of managing XML data. Where possible, we will draw on the
field of XML data, and show how some of these techniques may be used
in order to manage graphs in different domains. We will also present
some of the recently designed techniques for graph data.
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Mining Graph Data: As in the case of other data types such as multi-
dimensional or text data, we can design mining problems for graph data.
This includes techniques such as frequent pattern mining, clustering and
classification [1, 11, 16, 18, 23, 25, 26, 28]. We note that these meth-
ods are much more challenging in the graph domain, because the struc-
tural nature of the data makes the intermediate representation and in-
terpretability of the mining results much more challenging. This is of
course related to the cost of the greater expressive power associated with
graphs.

Graph Applications: Many of the techniques discussed above are for
the case of generic graphs under a number of specific assumptions. How-
ever, graph domains are extremely diverse, and this may result in a large
number of differences in the algorithms which are designed for such
cases. For example, the algorithms which are designed for the web or
social networks need to be constructed for graphs with very large size,
but with distinct node labels. On the other hand, the algorithms which
are designed for chemical data need to take into account repetitions in
node labels. Similarly many graphs may have additional information
associated with nodes and edges. Such variations make different appli-
cations much more challenging. Furthermore, the generic techniques
discussed above may need to be applied differently for different applica-
tion domains. Therefore, we have included different chapters to handle
these different cases. We will study applications relating to the web, so-
cial networks, software bug localization, chemical and biological data.

One of the goals of this book is to provide the reader with a comprehensive
compendium of material in the area of graph management and mining. The
book provides a number of introductory chapters in the beginning, and then
discusses a variety of graph mining algorithms in more detail.

2. Graph Management and Mining Applications

In this section, we will discuss the organization of the different chapters in
the book. We will discuss the different applications, and the chapters in which
they are discussed. In the first two chapters, we provide an introduction to the
area of graph mining an a general survey. This chapter (Chapter 1) provides a
brief introduction to the area of graph mining and the organization of this book.
Chapter 2 is a general survey which discusses the key problems and algorithms
in each area. The aim of the first two chapters is to provide the reader with a
general overview of the field without getting into too much detail. Subsequent
chapters expand on the various areas of graph mining. We discuss these below.
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Natural Properties of Real Graphs and Generators. In order to under-
stand the various management and mining techniques discussed in the book,
it is important to get a feel of what real graphs look like in practice. Graphs
which arise in many large scale applications such as the web and social net-
works satisfy many properties such as the power law distribution [10], sparsity,
and small diameters [19]. These properties play a key role in the design of ef-
fective management and mining algorithms for graphs. Therefore, we discuss
these properties at an early stage of the book. Furthermore, the evolution of
dynamic graphs such as social networks shows a number of interesting proper-
ties such as densification, and shrinking diameters [19]. Furthermore, since the
study of graph mining algorithms requires the design of effective graph gen-
erators, it is useful to study methods for constructing realistic generators [3].
Clearly, the understanding that we obtain from the study of the natural prop-
erties of graphs in real domains can be leveraged in order to design models
for effective generators. Chapter 3 studies the laws of real large-scale network
graphs and a number of techniques for synthetic generation of graphs.

Query Languages and Indexing for Graphs. In order to effectively han-
dle graph management applications, we need query languages which allow ex-
pressivity for management and manipulation of structural data. Furthermore,
such query languages also need to be efficiently implementable. In chapter 4,
a variety of query languages for graphs are presented.

A second issue is that of efficient access of the underlying information in
order to resolve the queries. Therefore, it is useful to study the design of index
structures for graphs. General techniques for efficiently indexing graphs are
presented in chapter 5. While chapter 5 is focussed exclusively on the graph
domain, we note that many of the indexing techniques for the XML domain can
also be useful for graphs. Chapter 2 explores some of the connections between
XML indexing and graph indexing. In addition to general queries such as
similarity search, which are typically designed on multi-graph data sets, graph
structures are naturally suited to the design of a number of different other kinds
of queries for a single massive graph. In such cases, we may have a single
graph, but we wish to determine important intra-node characteristics in the
graph. Such queries often arise in the context of social networks and the web.
Examples of such queries include reachability and distance based queries [2,
4–7, 24]. Such queries are based on the intra-node distance behavior in a large
network structure, and are often extremely challenging because the underlying
graph may be disk-resident. In chapter 6, the literature for reachability query
processing is reviewed.

Graph Matching. Graph matching is a critical problem which arises in the
context of a number of different kinds of applications such as schema match-
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ing, graph embedding and other business applications [9]. In the problem of
graph matching, we have a pair of graphs, and we attempt to determine a map-
ping of nodes between the two graphs such that edge and/or label correspon-
dence is preserved. Graph matching has traditionally been studied in the theo-
retical literature in the context of the graph isomorphism problem. However, in
the context of practical applications, precise matching between two graphs may
not be possible. Furthermore, many practical variations of the problem allow
for partial knowledge about the matching between different nodes. Therefore,
we also need to study inexact matching techniques which allow edits on the
nodes and edges during the matching process. Chapter 7 studies exact and
inexact matching techniques for graphs.

Keyword Search in Graphs. In the problem of keyword search, we would
like to determine small groups of link-connected nodes which are related to a
particular keyword [15]. For example, a web graph or a social network may be
considered a massive graph [21, 22], in which each node may contain a large
amount of text data. Even though keyword search is defined with respect to
the text inside the nodes, we note that the linkage structure also plays an im-
portant role in determining the appropriate set of nodes. The information in
the text and linkage structure re-enforce each other, and this leads to higher
quality results. Keyword search provides a simple but user-friendly interface
for information retrieval on the web. It also proves to be an effective method
for searching data of complex structures. Since many real life data sets are
structured as tables, trees and graphs, keyword search over such data has be-
come increasingly important and has attracted much research interest in both
the database and the IR communities. It is important to design keyword search
techniques which maintain query semantics, ranking accuracy, and query effi-
ciency. Chapter 8 provides an exhaustive survey of keyword search techniques
in graphs.

Graph Clustering and Dense Subgraph Extraction. The problem of
graph clustering arises in two different contexts:

In the first case, we wish to determine dense node clusters in a single
large graph. This problem arises in the context of a number of appli-
cations such as graph-partitioning and the minimum cut problem. The
determination of dense regions in the graph is a critical problem from the
perspective of a number of different applications in social networks, web
graph clustering and summarization. In particular, most forms of graph
summarization require the determination of dense regions in the under-
lying graphs. A number of techniques [11, 12, 23] have been designed
in the literature for dense graph clustering.
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In the second case, we have multiple graphs, each of which may possibly
be of modest size. In this case, we wish to cluster graphs as objects.
The distance between graphs is defined based on a structural similarity
function such as the edit distance. Alternatively, it may be based on other
aggregate characteristics such as the membership of frequent patterns in
graphs. Such techniques are particularly useful for graphs in the XML
domain, which are naturally expressed as objects. A method for XML
data clustering is discussed in [1].

In chapter 9, both the above methods for clustering graphs have been studied.
A particularly closely related problem to clustering is of dense subgraph ex-
traction. Whereas the problem of clustering is traditionally defined as a strict
partitioning of the nodes, the problem of dense subgraph extraction is a relaxed
variation of this problem in which dense subgraphs may have overlaps. Fur-
thermore, many nodes may not be included in any dense component. The dense
subgraph problem is often studied in the context of frequent pattern mining of
multi-graph data sets. Other variations include the issue of repeated presence
of subgraphs in a single graph or in multiple graphs. These problems are stud-
ied in chapter 10. The topics discussed in chapters 9 and 10 are closely related,
and provide a good overview of the area.

Graph Classification. As in the case of graph clustering, the problem of
graph classification arises in two different contexts. The first context is that of
vertex classification in which we attempt to label the nodes of a single graph
based on training data. Such problems are based on that of determining desired
properties of nodes with the use of training data. Examples of such methods
may be found in [16, 18]. The second context is one in which we attempt
to label entire graphs as objects. The first case arise in the context of mas-
sive graphs such as social networks, whereas the second case arises in many
different contexts such as chemical or biological compound classification, or
XML data [28]. Chapter 11 studies a number of different algorithms for graph
classification.

Frequent Pattern Mining in Graphs. The problem of frequent pattern
mining is much more challenging in the case of graphs than in the case of
standard transaction data. This is because not all frequent patterns are equally
relevant in the case of graphs. In particular, patterns which are highly con-
nected are much more relevant. As in the case of transactional data, a number
of different measures may be defined in order to determine which graphs are
the most significant. In the case of graphs, the structural constraints make the
problem even more interesting. As in the case of the transactional data, many
variations of graph pattern mining such as that of determining closed patterns
or significant patterns [25, 26], provide different kinds of insights to the field.
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The frequent pattern mining problem is particularly important for the graph
domain, because the end-results of the algorithms provide an overview of the
important structures in the underlying data set, which may be used for other
applications such as indexing [27]. Chapter 12 provides an exhaustive survey
of the different algorithms for frequent pattern mining in graphs.

Streaming Algorithms for Graphs. Many graph applications such as
those in telecommunications and social networks create continuous streams
of edges. Such applications create unique challenges, because the entire graph
cannot be held either in main memory or on disk. This creates tremendous con-
straints for the underlying algorithms, since the standard one-pass constraint
of streaming algorithms applies to this case. Furthermore, it is extremely diffi-
cult to explore the structural characteristics of the underlying graph, because a
global view of the graph is hard to construct in the streaming case. Chapter 13
discusses a number of streaming applications for such edge streams. The chap-
ter discusses how graph streams can be summarized in an application-specific
way, so that important structural characteristics of the graph can be explored.

Privacy-Preserving Data Mining of Graphs. In many applications such
as social networks, it is critical to preserve the privacy of the nodes in the
underlying network. Simple de-identification of the nodes during the release
of a network structure is not sufficient, because an adversary may use back-
ground information about known nodes in order to re-identify the other nodes
[17]. Graph privacy is especially challenging, because background information
about many structural characteristics such as the node degrees or structural dis-
tances can be used in order to mount identity-attacks on the nodes [17, 13]. A
number of techniques have recently been proposed in the literature, which use
node addition, deletion, or swapping in order to hide such structural character-
istics for privacy-preservation purposes [20, 29]. The key in these techniques
is to hide identifying structural characteristics, without losing the overall struc-
tural utility of the graph. Chapter 14 discusses the challenges of graph privacy,
and a variety of algorithms which can be used for private processing of such
graphs.

Web Applications. Since the web is naturally structured as a graph, nu-
merous such applications require graph mining and management algorithms.
A classic example is the case of social networks in which the linkage struc-
ture is defined in the form of a graph. Typical social networking applications
require the determination of interesting regions in the graph such as the dense
communities. Community detection is a direct application of the problem of
clustering, since it requires the determination of dense regions of the underly-
ing graph. Many other applications such as blog analysis, web graph analysis,
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and page rank analysis for search require the use of graph mining algorithms.
Chapter 15 provides a comprehensive overview of graph mining techniques for
web applications. Since social networking is an important area, which cannot
be easily covered within the context of the single chapter on web applications,
we devote a special chapter on social networking. Graph mining applications
for social networking are discussed in chapter 16.

Software Bug Localization. Software programs can be represented as
graphs, in which the control flow is represented in the form of a graph. In
many cases, the software bugs arise as a result of “typical” distortions in the
underlying control flow. Such distortions can also be understood in the con-
text of the graphical structure which represents this control flow. Therefore,
software bug localization is a natural application is graph mining algorithms in
which the structure of the control flow graph is studied in order to determine
and isolate bugs in the underlying program. Chapter 17 provides a comprehen-
sive survey of techniques for software bug localization.

Chemical and Biological Data. Chemical compounds can be represented
as graph structures in which the atoms represent the nodes, and the bonds repre-
sents the links. If desired, a higher level of representation can be used in which
sub-units of the molecules represent the nodes and the bonds between them
represent the links. For example, in the case of biological data, the amino-acids
are represented as nodes, and the bonds between them are the links. Chemical
and biological data are inherently different in the sense that the graphs corre-
sponding to biological data are much larger and require different techniques
which are more suitable to massive graphs. Therefore, we have devoted two
separate chapters to the topic. In chapter 18, methods for mining biological
compounds are presented. Techniques for mining chemical compounds are
presented in chapter 19.

3. Summary

This book provides an introduction to the problem of managing and mining
graph data. We will present the key techniques for both management and min-
ing of graph data sets. We will show that these techniques can be very useful in
a wide variety of applications such as the web, social networks, biological data,
chemical data and software bug localization. . The book also presents some of
the latest trends for mining massive graphs and their applicability across differ-
ent domains. A number of trends in graph mining are fertile areas of research
for future applications:

Scalability is the new frontier in graph mining applications. Applica-
tions such as the web and social networks are defined on massive graphs
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in which it is impossible to explicitly store the underlying edges in main
memory and sometimes even on disk. While graph-theoretic algorithms
have been studied extensively in the literature, these techniques implic-
itly assume that the graphs can be held in main memory and are therefore
not very useful for the case of disk-resident. This is because disk access
may result in random access to the underlying edges which is extremely
inefficient in practice. This also leads to a lack of scalability of the un-
derlying algorithms.

Many communication and social networking applications create large
sets of edges which arrive continuously over time. Such dynamic ap-
plications require quick responses to queries to a number of traditional
applications such as the shortest path problem or connectivity queries.
Such queries are an enormous challenge, since it is impossible to pre-
store the massive volume of the data for future analysis. Therefore, ef-
fective techniques need to be designed to compress and store the graph-
ical structures for future analysis.

A number of recent data mining applications and advances such as privacy-
preserving data mining and uncertain data need to be studied in the con-
text of the graph domain. For example, social networks are structured as
graphs, and privacy applications are particularly important in this con-
text. Such applications are also very challenging since they are defined
on a massive domain of nodes.

This book studies a number of important problems in the graph domain in the
context of important graph and networking applications. We also introduce
some of the recent trends for massive graph mining applications.
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Abstract Graph mining and management has become a popular area of research in re-
cent years because of its numerous applications in a wide variety of practical
fields, including computational biology, software bug localization and computer
networking. Different applications result in graphs of different sizes and com-
plexities. Correspondingly, the applications have different requirements for the
underlying mining algorithms. In this chapter, we will provide a survey of dif-
ferent kinds of graph mining and management algorithms. We will also discuss
a number of applications, which are dependent upon graph representations. We
will discuss how the different graph mining algorithms can be adapted for differ-
ent applications. Finally, we will discuss important avenues of future research
in the area.

Keywords: Graph Mining, Graph Management

1. Introduction

Graph mining has been a popular area of research in recent years because
of numerous applications in computational biology, software bug localization
and computer networking. In addition, many new kinds of data such as semi-

© Springer Science+Business Media, LLC 2010 

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data, 13
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_2, 



14 MANAGING AND MINING GRAPH DATA

structured data and XML [8] can typically be represented as graphs. A detailed
discussion of various kinds of graph mining algorithms may be found in [58].

In the graph domain, the requirement of different applications is not very
uniform. Thus, graph mining algorithms which work well in one domain may
not work well in another. For example, let us consider the following domains
of data:

Chemical Data: Chemical data is often represented as graphs in which
the nodes correspond to atoms, and the links correspond to bonds be-
tween the atoms. In some cases, substructures of the data may also
be used as individual nodes. In this case, the individual graphs are
quite small, though there are significant repetitions among the differ-
ent nodes. This leads to isomorphism challenges in applications such as
graph matching. The isomorphism challenge is that the nodes in a given
pair of graphs may match in a variety of ways. The number of possible
matches may be exponential in terms of the number of the nodes. In
general, the problem of isomorphism is an issue in many applications
such as frequent pattern mining, graph matching, and classification.

Biological Data: Biological data is modeled in a similar way as chemi-
cal data. However, the individual graphs are typically much larger. Fur-
thermore, the nodes are typically carefully designed portions of the bio-
logical models. A typical example of a node in a DNA application could
be an amino-acid. A single biological network could easily contain thou-
sands of nodes. The sizes of the overall database are also large enough
for the underlying graphs to be disk-resident. The disk-resident nature
of the data set often leads to unique issues which are not encountered
in other scenarios. For example, the access order of the edges in the
graph becomes much more critical in this case. Any algorithm which is
designed to access the edges in random order will not work very effec-
tively in this case.

Computer Networked and Web Data: In the case of computer net-
works and the web, the number of nodes in the underlying graph may be
massive. Since the number of nodes is massive, this can lead to a very
large number of distinct edges. This is also referred to as the massive
domain issue in networked data. In such cases, the number of distinct
edges may be so large, that they may be hard to hold in the available stor-
age space. Thus, techniques need to be designed to summarize and work
with condensed representations of the graph data sets. In some of these
applications, the edges in the underlying graph may arrive in the form of
a data stream. In such cases, a second challenge arises from the fact that
it may not be possible to store the incoming edges for future analysis.
Therefore, the summarization techniques are especially essential for this
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case. The stream summaries may be leveraged for future processing of
the underlying graphs.

XML data: XML data is a natural form of graph data which is fairly
general. We note that mining and management algorithms for XML
data are also quite useful for graphs, since XML data can be viewed as
labeled graphs. In addition, the attribute-value combinations associated
with the nodes makes the problem much more challenging. However,
the research in the field of XML data has often been quite independent
of the research in the graph mining field. Therefore, we will make an
attempt in this chapter to discuss the XML mining algorithms along with
the graph mining and management algorithms. It is hoped that this will
provide a more integrated view of the field.

It is clear that the design of a particular mining algorithm depends upon the ap-
plication domain at hand. For example, a disk-resident data set requires careful
algorithmic design in which the edges in the graph are not accessed randomly.
Similarly, massive-domain networks require careful summarization of the un-
derlying graphs in order to facilitate processing. On the other hand, a chemical
molecule which contains a lot of repetitions of node-labels poses unique chal-
lenges to a variety of applications in the form of graph isomorphism.

In this chapter, we will discuss different kinds of graph management and
mining applications, along with the corresponding applications. We note that
the boundary between graph mining and management algorithms is often not
very clear, since many kinds of algorithms can often be classified as both. The
topics in this chapter can primarily be divided into three categories. These
categories discuss the following:

Graph Management Algorithms: This refers to the algorithms for
managing and indexing large volumes of the graph data. We will present
algorithms for indexing of graphs, as well as processing of graph queries.
We will study other kinds of queries such as reachability queries as well.
We will study algorithms for matching graphs and their applications.

Graph Mining Algorithms: This refers to algorithms used to extract
patterns, trends, classes, and clusters from graphs. In some cases, the
algorithms may need to be applied to large collections of graphs on the
disk. We will discuss methods for clustering, classification, and frequent
pattern mining. We will also provide a detailed discussion of these algo-
rithms in the literature.

Applications of Graph Data Management and Mining: We will study
various application domains in which graph data management and min-
ing algorithms are required. This includes web data, social and computer
networking, biological and chemical data, and software bug localization.
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This chapter is organized as follows. In the next section, we will discuss a
variety of graph data management algorithms. In section 3, we will discuss
algorithms for mining graph data. A variety of application domains in which
these algorithms are used is discussed in section 4. Section 5 discusses the
conclusions and summary. Future research directions are discussed in the same
section.

2. Graph Data Management Algorithms

Data management of graphs has turned out to be much more challenging
than that for multi-dimensional data. The structural representation of graphs
has greater expressive power, but it comes at a cost. This cost is in terms of
the complexity of data representation, access, and processing, because inter-
mediate operations such as similarity computations, averaging, and distance
computations cannot be naturally defined for structural data in as intuitive a
way as is the case for multidimensional data. Furthermore, traditional rela-
tional databases can be efficiently accessed with the use of block read-writes;
this is not as natural for structural data in which the edges may be accessed in
arbitrary order. However, recent advances have been able to alleviate some of
these concerns at least partially. In this section, we will provide a review of
many of the recent graph management algorithms and applications.

2.1 Indexing and Query Processing Techniques

Existing database models and query languages, including the relational model
and SQL, lack native support for advanced data structures such as trees and
graphs. Recently, due to the wide adoption of XML as the de facto data ex-
change format, a number of new data models and query languages for tree-like
structures have been proposed. More recently, a new wave of applications
across various domains including web, ontology management, bioinformatics,
etc., call for new data models, languages and systems for graph structured data.

Generally speaking, the task can be simple put as the following: For a query
pattern (a tree or a graph), find graphs or trees in the database that contain or are
similar to the query pattern. To accomplish this task elegantly and efficiently,
we need to address several important issues: i) how to model the data and the
query; ii) how to store the data; and iii) how to index the data for efficient query
processing.

Query Processing of Tree Structured Data. Much research has been
done on XML query processing. On a high level, there are two approaches
for modeling XML data. One approach is to leverage the existing relational
model after mapping tree structured data into relational schema [169]. The
other approach is to build a native XML database from scratch [106]. For
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instance, some works starts with creating a tree algebra and calculus for XML
data [107]. The proposed tree algebra extends the relational algebra by defining
new operators, such as node deletion and insertion, for tree structured data.

SQL is the standard access method for relational data. Much efforts have
been made to design SQL’s counterpart for tree structured data. The criteria
are, first expressive power, which allows users the flexibility to express queries
over tree structured data, and second declarativeness, which allows the system
to optimize query processing. The wide adoption of XML has spurred stan-
dards body groups to expand the SQL specification to include XML processing
functions. XQuery [26] extends XPath [52] by using a FLWOR1 structure to ex-
press a query. The FLWOR structure is similar to SQL’s SELECT-FROM-WHERE
structure, with additional support for iteration and intermediary variable bind-
ing. With path expressions and the FLWOR construct, XQuery brings SQL-like
query power to tree structured data, and has been recommended by the World
Wide Web Consortium (W3C) as the query language for XML documents.

For XML data, the core of query processing lies in efficient tree pattern
matching. Many XML indexing techniques have been proposed [85, 141, 132,
59, 51, 115] to support this operation. DataGuide [85], for example, pro-
vides a concise summary of the path structure in a tree-structured database.
T-index [141], on the other hand, indexes a specific set of path expressions.
Index Fabric [59] is conceptually similar to DataGuide in that it keeps all la-
bel paths starting from the root element. Index Fabric encodes each label path
to each XML element with a data value as a string and inserts the encoded
label path and data value into an index for strings such as the Patricia tree.
APEX [51] uses data mining algorithms to find paths that appear frequently in
query workload. While most techniques focused on simple path expressions,
the F+B Index [115] emphasizes on branching path expressions (twigs). Nev-
ertheless, since a tree query is decomposed into node, path, or twig queries,
joining intermediary results together has become a time consuming operation.
Sequence-based XML indexing [185, 159, 186] makes tree patterns a first
class citizen in XML query processing. It converts XML documents as well as
queries to sequences and performs tree query processing by (non-contiguous)
subsequence matching.

Query Processing of Graph Structured Data. One of the common char-
acteristics of a wide range of nascent applications including social networking,
ontology management, biological network/pathways, etc., is that the data they
are concerned with is all graph structured. As the data increases in size and
complexity, it becomes important that it is managed by a database system.

There are several approaches to managing graphs in a database. One pos-
sibility is to extend a commercial RDBMS engine to support graph structured
data. Another possibility is to use general purpose relational tables to store
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graphs. When these approaches fail to deliver needed performance, recent re-
search has also embraced the challenges of designing a special purpose graph
database. Oracle is currently the only commercial DBMS that provides internal
support for graph data. Its new 10g database includes the Oracle Spatial net-
work data model [3], which enables users to model and manipulate graph data.
The network model contains logical information such as connectivity among
nodes and links, directions of links, costs of nodes and links, etc. The logical
model is mainly realized by two tables: a node table and a link table, which
store the connectivity information of a graph. Still, many are concerned that the
relational model is fundamentally inadequate for supporting graph structured
data, for even the most basic operations, such as graph traversal, are costly to
implement on relational DBMSs, especially when the graphs are large. Recent
interest in Semantic Web has spurred increased attention to the Resource De-
scription Framework (RDF) [139]. A triplestore is a special purpose database
for the storage and retrieval of RDF data. Unlike a relational database, a triple-
store is optimized for the storage and retrieval of a large number of short state-
ments in the form of subject-predicate-object, which are called triples. Much
work has been done to support efficient data access on the triplestore [14, 15,
19, 33, 91, 152, 182, 195, 38, 92, 194, 193]. Recently, the semantic web com-
munity has announced the billion triple challenge [4], which further highlights
the need and urgency to support inferencing over massive RDF data.

A number of graph query languages have been proposed since early 1990s.
For example, GraphLog [56], which has its roots in Datalog, performs infer-
encing on rules (possibly with negation) about graph paths represented by reg-
ular expressions. GOOD [89], which has its roots in object-oriented databases,
defines a transformation language that contains five basic operations on graphs.
GraphDB [88], another object-oriented data model and query language for
graphs, performs queries in four steps, each carrying out operations on sub-
graphs specified by regular expressions. Unlike previous graph query lan-
guages that operate on nodes, edges, or paths, GraphQL [97] operates directly
on graphs. In other words, graphs are used as the operand and return type of all
operations. GraphQL extends the relational algebraic operators, including se-
lection, Cartesian product, and set operations, to graph structures. For instance,
the selection operator is generalized to graph pattern matching. GraphQL is re-
lationally complete and the nonrecursive version of GraphQL is equivalent to
the relational algebra. A detailed description of GraphQL and a comparison of
GraphQL with other graph query languages can be found in [96].

With the rise of Semantic Web applications, the need to efficiently query
RDF data has been propelled into the spotlight. The SPARQL query lan-
guage [154] is designed for this purpose. As we mentioned before, a graph
in the RDF format is described by a set of triples, each corresponding to an
edge between two nodes. A SPARQL query, which is also SQL-like, may con-
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sist of triple patterns, conjunctions, disjunctions, and optional patterns. A triple
pattern is syntactically close to an RDF triple except that each of the subject,
predicate and object may be a variable. The SPARQL query processor will
search for sets of triples that match the triple patterns, binding the variables in
the query to the corresponding parts of each triple [154].

Another line of work in graph indexing uses important structural charac-
teristics of the underlying graph in order to facilitate indexing and query pro-
cessing. Such structural characteristics can be in the form of paths or frequent
patterns in the underlying graphs. These can be used as pre-processing filters,
which remove irrelevant graphs from the underlying data at an early stage. For
example, the GraphGrep technique [83] uses the enumerated paths as index
features which can be used in order to filter unmatched graphs. Similarly, the
GIndex technique [201] uses discriminative frequent fragments as index fea-
tures. A closely related technique [202] leverages on the substructures in the
underlying graphs in order to facilitate indexing. Another way of indexing
graphs is to use the tree structures [208] in the underlying graph in order to
facilitate search and indexing.

The topic of query processing on graph data has been studied for many
years, still, many challenges remain. On the one hand, data is becoming in-
creasingly large. One possibility of handling such large data is through paral-
lel processing, by using for example, the Map/Reduce framework. However,
it is well known that many graph algorithms are very difficult to be paral-
lelized. On the other hand, graph queries are becoming increasingly compli-
cated. For example, queries against a complex ontology are often lengthy,
no matter what graph query language is used to express the queries. Further-
more, when querying a complex graph (such as a complex ontology), users
often have only a vague notion, rather than a clear understanding and defini-
tion, of what they query for. These call for alternative methods of expressing
and processing graph queries. In other words, instead of explicitly express-
ing a query in the most exact terms, we might want to use keyword search to
simplify queries [183], or using data mining methods to semi-automate query
formation [134].

2.2 Reachability Queries

Graph reachability queries test whether there is a path from a node v to
another node u in a large directed graph. Querying for reachability is a very
basic operation that is important to many applications, including applications
in semantic web, biology networks, XML query processing, etc.

Reachability queries can be answered by two obvious methods. In the first
method, we traverse the graph starting from node v using breath- or depth-first
search to see whether we can ever reach node u. The query time is O(n+m),
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where n is the number of nodes and m is the number of edges in the graph.
At the other extreme, we compute and store the edge transitive closure of the
graph. With the transitive closure, which requires O(n2) storage, a reachability
query can be answered in O(1) time by simply checking whether (u, v) is in
the transitive closure. However, for large graphs, neither of the two methods is
feasible: the first method is too expensive at query time, and the second takes
too much space.

Research in this area focuses on finding the best compromise between the
O(n +m) query time and the O(n2) storage cost. Intuitively, it tries to com-
press the reachability information in the transitive closure and answer queries
using the compressed data.

Spanning tree based approaches. Many approaches, for example [47,
176, 184], decompose a graph into two parts: i) a spanning tree, and ii) edges
not on the spanning tree (non-tree edges). If there is a path on the spanning
tree between u and v, reachability between u and v can be decidedly easily.
This is done by assigning each node u an interval code (ustart, uend), such that
v is reachable from u if and only if ustart ≤ vstart ≤ uend. The entire tree can
be encoded by performing a simple depth-first traversal of the tree. With the
encoding, reachability check can be done in O(1) time.

If the two nodes are not connected by any path on the spanning tree, we
need to check if there is a path that involves non-tree edges connecting the
two nodes. In order to do this, we need to build index structures in addition
to the interval code to speed up the reachability check. Chen et al. [47] and
Trißl et al. [176] proposed index structures for this purpose, and both of their
approaches achieve O(m − n) query time. For instance, Chen et al.’s SSPI
(Surrogate & Surplus Predecessor Index) maintains a predecessor list PL(u)
for each node u, which, together with the interval code, enables efficient reach-
ability check. Wang et al. [184] made an observation that many large graphs
in real applications are sparse, which means the number of non-tree edges is
small. The algorithm proposed based on this assumption answers reachability
queries in O(1) time using a O(n + t2) size index structure, where t is the
number of non-tree edges, and t≪ n.

Set covering based approaches. Some approaches propose to use simpler
data structures (e.g., trees, paths, etc) to “cover” the reachability information
embodied by a graph structure. For example, if v can reach u, then v can
reach any node in a tree rooted at u. Thus, if we include the tree in the index,
we cover a large set of reachability in the graph. We then use multiple trees
to cover an entire graph. Agrawal et al. [10]’s optimal tree cover achieves
O(log n) query time, where n is the number of nodes in the graph. Instead of
using trees, Jagadish et al. [105] proposes to decompose a graph into pairwise
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disjoint chains, and then use chains to cover the graph. The intuition of using
a chain is similar to using a tree: if v can reach u on a chain, then v can reach
any node that comes after u on that chain. The chain-cover approach achieves
O(nk) query time, where k is the number of chains in the graph. Cohen et al.
[54] proposed a 2-hop cover for reachability queries. A node u is labeled by
two sets of nodes, called Lin(u) and Lout(u), where Lin(u) are the nodes that
can reach u and Lout(u) are the ones that u can reach. The 2-hop approach
assigns the Lin and Lout labels to each node such that u can reach v if and
only if Lout(u)∩Lin(v) ∕= ∅. The optimal 2-hop cover problem of finding the
minimum size 2-hop cover is NP-hard. A greedy algorithm finds a 2-hop cover
iteratively. In each iteration, it picks the node w that maximizes the value of
S(Aw,w,Dw)∩TC′

∣Aw∣+∣Dw∣ , where S(Aw, w,Dw) ∩ TC ′ represents the new (uncovered)

reachability that a 2-hop cluster centered at w can cover, and ∣Aw∣ + ∣Dw∣ is
the cost (size) of the 2-hop cluster centered at w. Several algorithms have been
proposed to compute high quality 2-hop covers [54, 168, 49, 48] in a more
efficient manner. Many extensions to existing set covering based approaches
have been proposed. For example, Jin et al. [112] introduces a 3-hop cover
approach that combines the chain cover and the 2-hop cover.

Extensions to the reachability problem. Reachability queries are one
of the most basic building blocks for many advanced graph operations, and
some are directly related to reachability queries. One interesting problem is
in the domain of labeled graphs. In many applications, edges are labeled to
denote the relationships between the two nodes they connect. A new type
of reachability query asks whether two nodes are connected by a path whose
edges are constrained by a given set of labels [111]. In some other applications,
we want to find the shortest path between two nodes. Similar to the simple
reachability problem, the shortest path problem can be solved by brute force
methods such as Dijkstra’s algorithm, but such methods are not appropriate
for online queries in large graphs. Cohen et al extended the 2-hop covering
approach for this problem [54].

A detailed description of the strengths and weaknesses of various reacha-
bility approaches and a comparison of their query time, index size, and index
construction time can be found in [204].

2.3 Graph Matching

The problem of graph matching is that of finding either an approximate or
a one-to-one correspondence among the nodes of the two graphs. This corre-
spondence is based on one or more of the following structural characteristics
of the graph: (1) The labels on the nodes in the two graphs should be the same.
(2) The existence of edges between corresponding nodes in the two graphs
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should match each other. (3) The labels on the edges in the two graphs should
match each other.

These three characteristics may be used to define a matching between two
graphs such that there is a one-to-one correspondence in the structures of the
two graphs. Such problems often arise in the context of a number of different
database applications such as schema matching, query matching, and vector
space embedding. A detailed description of these different applications may
be found in [161]. In exact graph matching, we attempt to determine a one-
to-one correspondence between two graphs. Thus, if an edge exists between
a pair of nodes in one graph, then that edge must also exist between the cor-
responding pair in the other graph. This may not be very practical in real
applications in which approximate matches may exist, but an exact matching
may not be feasible. Therefore, in many applications, it is possible to define an
objective function which determines the similarity in the mapping between the
two graphs. Fault tolerant mapping is a much more significant application in
the graph domain, because common representations of graphs may have many
missing nodes and edges. This problem is also referred to as inexact graph
matching. Most variants of the graph matching problem are well known to be
NP-hard. The most common method for graph matching is that of tree-based
search techniques. In this technique, we start with a seed set of nodes which
are matched, and iteratively expand the neighborhood defined by that set. It-
erative expansion can be performed by adding nodes to the current node set,
as long as no edge constraints are violated. If it turns out that the current node
set cannot be expanded, then we initiate a backtracking procedure in which we
undo the last set of matches. A number of algorithms which are based upon this
broad idea are discussed in [60, 125, 180]. A survey of many of the classical
algorithms for graph matching may be found in [57].

The problem of exact graph matching is closely related to that of graph iso-
morphism. In the case of the graph isomorphism problem, we attempt to find
an exact one-to-one matching between nodes and edges of the two graphs. A
generalization of this problem is that of finding the maximal common sub-
graph in which we attempt to match the maximum number of nodes between
the two graphs. Note that the solution to the maximal common subgraph prob-
lem will also provide a solution to the problem of exact matching between two
subgraphs, if such a solution exists. A number of similarity measures can be
derived on the basis of the mapping behavior between two graphs. If the two
graphs share a large number of nodes in common, then the similarity is more
significant. A number of models and algorithms for quantifying and determin-
ing the common subgraphs between two graphs may be found in [34–37]. The
broad idea in many of these methods is to define a distance metric based on the
nature of the matching between the two graphs, and use this distance metric in
order to guide the algorithms towards an effective solution.
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Inexact graph matching is a much more practical model, because it accounts
for the natural errors which may occur during the matching process. Clearly, a
method is required in order to quantify these errors and the closeness between
the different graphs. A common technique which may be used to quantify these
errors is the use of a function such as the graph edit distance. The graph edit
distance determines the distance between two graphs by measuring the cost of
the edits required to transform one graph to the other. These edits may be node
or edge insertions, deletions or substitutions. An inexact graph matching is
one which allows for a matching between two graphs after a sequence of such
edits. The quality of the matching is defined by the cost of the corresponding
edits. We note that the concept of graph edit distance is closely related to that
of finding a maximum common subgraph [34]. This is because it is possible to
direct an edit-distance based algorithm to find the maximum common subgraph
by defining an appropriate edit distance.

A particular variant of the problem is when we account for the values of
the labels on the nodes and edges during the matching process. In this case,
we need to compute the distance between the labels of the nodes and edges
in order to define the cost of a label substitution. Clearly, the cost of the la-
bel substitution is application-dependent. In the case of numerical labels, it
may be natural to define the distances based on numerical distance functions
between the two graphs. In general, the cost of the edits is also application
dependent, since different applications may use different notions of similar-
ity. Thus, domain-specific techniques are often used in order to define the edit
costs. In some cases, the edit costs may even be learned with the use of sam-
ple graphs [143, 144]. When we have cases in which the sample graphs have
naturally defined distances between them, the edit costs may be determined as
values for which the corresponding distances are as close to the sample values
as possible.

The typical algorithms for inexact graph matching use combinatorial search
over the space of possible edits in order to determine the optimal matching
[35, 145]. The algorithm in [35] is relatively exhaustive in its approach, and
can therefore be computationally intensive in practice. In order to solve this
issue, the algorithms discussed in [145] explores local regions of the graph in
order to define more focussed edits. In particular, the work in [145] proposes
an important class of methods which are referred to as kernel functions. Such
methods are extremely robust to structural errors, and are therefore a useful
construct for solving graph matching problems. The broad idea is to incorpo-
rate the key ideas of the graph edit distance into kernel functions. Since kernel
machines are known to be extremely powerful techniques for pattern recogni-
tion, it follows that these techniques can then be leveraged to the problem of
graph matching. A variety of other kernel techniques for graph matching may
be found in [94, 81, 119]. The key kernel methods include convolution kernels
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[94], random walk kernels [81] and diffusion kernels [119]. In random walk
kernels [81], we attempt to determine the number of random walks between
the two graphs which have some labels in common. Diffusion kernels [119]
can be considered a generalization of the standard gaussian kernel in Euclidian
space.

The technique of relaxation labeling is another broad class of methods which
is often used for graph matching. Note that in the case of the matching prob-
lem, we are really trying to assign labels to the nodes in a graph. The specific
label for a node is drawn out of a discrete set of possibilities. This discrete
set of possibilities correspond to the matching nodes in the other graph. The
probability of matching is defined by Gaussian probability distributions. We
start off with an initial labeling based on the structural characteristics of the un-
derlying graph, and then successively improve the solution based on additional
exploration of structural information. Detailed descriptions of techniques for
relaxation labeling may be found in [76].

2.4 Keyword Search

In the problem of keyword search, we would like to determine small groups
of link-connected nodes which are related to a particular keyword. For exam-
ple, a web graph or a social network may be considered a massive graph, in
which each node may contain a large amount of text data. Even though key-
word search is defined with respect to the text inside the nodes, we note that
the linkage structure also plays an important role in determining the appropri-
ate set of nodes. It is well known the text in linked entities such as the web are
related, when the corresponding objects are linked. Thus, by finding groups
of closely connected nodes which share keywords, it is generally possible to
determine the qualitatively effective nodes. Keyword search provides a simple
but user-friendly interface for information retrieval on the Web. It also proves
to be an effective method for accessing structured data. Since many real life
data sets are structured as tables, trees and graphs, keyword search over such
data has become increasingly important and has attracted much research inter-
est in both the database and the IR communities.

Graph is a general structure and it can be used to model a variety of complex
data, including relational data and XML data. Because the underlying data
assumes a graph structure, keyword search becomes much more complex than
traditional keyword search over documents. The challenges lie in three aspects:

Query semantics. Keyword search over a set of text documents has very
clear semantics: A document satisfies a keyword query if it contains ev-
ery keyword in the query. In our case, the entire dataset is often consid-
ered as a single graph, so the algorithms must work on a finer granularity
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and return subgraphs as answers. We must decide what subgraphs are
qualified as answers.

Ranking strategy: For a given keyword query, it is likely that many
subgraphs will satisfy the query, based on the query semantics in use.
However, each subgraph has its own underlying graph structure, with
subtle semantics that makes it different from other subgraphs that sat-
isfy the query. Thus, we must take the graph structure into consideration
and design ranking strategies that find most meaningful and relevant an-
swers.

Query efficiency: Many real life graphs are extremely large. A major
challenge for keyword search over graph data is query efficiency, which,
to a large extent, hinges on the semantics of the query and the ranking
strategy.

Current approaches for keyword search can be classified into three cate-
gories based on the underlying structure of the data. In each category, we
briefly discuss query semantics, ranking strategies, and representative algo-
rithms.

Keyword search over XML data. XML data is mostly tree structured,
where each node only has a single incoming path. This property has signifi-
cant impact on query semantics and answer ranking, and it also provides great
optimization opportunities in algorithm design [197].

Given a query, which contains a set of keywords, the search algorithm re-
turns snippets of an XML document that are most relevant to the keywords.
The interpretation of relevant varies, but the most common practice is to find
smallest subtrees that contain the keywords.

It is straightforward to find subtrees that contain all the keywords. Let Li be
the set of nodes in the XML document that contain keyword ki. If we pick one
node ni from each Li, and form a subtree from these nodes, then the subtree
will contain all the keywords. Thus, an answer to the query can be represented
by lca(n1, ⋅ ⋅ ⋅ , nn), the lowest common ancestor of nodes n1, ⋅ ⋅ ⋅ , nn in the
tree, where ni ∈ Li.

Most query semantics are only interested in smallest answers. There are dif-
ferent ways to interpret the notion of smallest. Several algorithms [197, 102,
196] are based on the SLCA (smallest lowest common ancestor) semantics,
which requires that an answer (a least common ancestor of nodes that con-
tain all the keywords) does not have any descendent that is also an answer.
XRank [86] adopts a different query semantics for keyword search. In XRank,
answers consist of substrees that contain at least one occurrence of all of the
query keywords, after excluding the sub-nodes that already contain all of the



26 MANAGING AND MINING GRAPH DATA

query keywords. Thus, the set of answers based on the SLCA semantics is a
subset of answers qualified for XRank.

A keyword query may find a large number of answers, but they are not
all equal due to the differences in the way they are embedded in the nested
XML structure. Many approaches for keyword search on XML data, including
XRank [86] and XSEarch [55], present a ranking method. A ranking mech-
anism takes into consideration several factors. For instance, more specific
answers should be ranked higher than less specific answers. Both SLCA and
the semantics adopted by XRank signify this consideration. Furthermore, key-
words in an answer should appear close to each other, and closeness is inter-
preted as the the semantic distance defined over the XML embedded structure.

Keyword search over relational data. SQL is the de-facto query language
for accessing relational data. However, to use SQL, one must have knowledge
about the schema of the relational data. This has become a hindrance for po-
tential users to access tremendous amount of relational data.

Keyword search is a good alternative due to its ease of use. The challenges
of applying keyword search on relational data come from the fact that in a
relational database, information about a single entity is usually divided among
several tables. This is resulted from the normalization principle, which is the
design methodology of relational database schema.

Thus, to find entities that are relevant to a keyword query, the search al-
gorithm has to join data from multiple tables. If we represent each table as a
node, and each foreign key relationship as an edge between two nodes, then we
obtain a graph, which allows us to convert the current problem to the problem
of keyword search over graphs. However, there is the possibility of self-joins:
that is, a table may contain a foreign key that references itself. More generally,
there might be cycles in the graph, which means the size of the join is only
limited by the size of the data. To avoid this problem, the search algorithm
may adopt an upper bound to restrict the number of joins [103].

Two most well-known keyword search algorithm for relational data are DBX-
plorer [12] and DISCOVER [103]. They adopted new physical database de-
sign (including sophisticated indexing methods) to speed up keyword search
over relational databases. Qin et al [155], instead, introduced a method that
takes full advantage of the power of RDBMS and uses SQL to perform key-
word search on relational data.

Keyword search over graph data. Keyword search over large, schema-
free graphs faces the challenge of how to efficiently explore the graph structure
and find subgraphs that contain all the keywords in the query. To measure the
“goodness” of an answer, most approaches score each edge and node, and then
aggregate the scores over the subgraph as a goodness measure [24, 113, 99].
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Usually, an edge is scored by the strength of the connection, and a node is
scored by its importance based on a PageRank like mechanism.

Graph keyword search algorithms can be classified into two categories.
Algorithms in the first category finds matching subgraphs by exploring the
graph link by link, without using any index of the graph. Representative al-
gorithms in this category include BANKS [24] and the bidirectional search
algorithm [113]. One drawback of these approaches is that they explore the
graph blindly as they do not have a global picture of the graph structure, nor
do they know the keyword distribution in the graph. Algorithms in the other
category are index-based [99], and the index is used to control guide the graph
exploration, and support forward-jumps in the search.

2.5 Synopsis Construction of Massive Graphs

A key challenge which arises in many of the applications discussed below
is that the graphs they deal with are very large scale in nature. As a result,
the graph may be available only on disk. Most of the traditional graph mining
applications assume that the data is available in main memory. However, when
the graph is available on disk, applications which access the edges in random
order may be extremely expensive. For example, the problem of finding the
minimum-cut between two nodes is extremely efficient with the use of memory
resident algorithms, but it is extraordinarily expensive when the underlying
graphs are available on disk [7]. As a result algorithms need to be carefully
designed in order to reduce the disk-access costs. A typical technique which
may often be used is to design a synopsis construction technique [7, 46, 142],
which summarizes the graph in a much smaller space, but retains sufficient
information in order to effectively respond to queries.

The synopsis construction is typically defined through either node or edge
contractions. The key is to define a synopsis which retains the relevant struc-
tural property of the underlying graph. In [7], the algorithm in [177] is used in
order to collapse the dense regions of the graph, and represent the summarized
graph in terms of sparse regions. The resulting contracted graph still retains
important structural properties such as the connectivity of the graph. In [46],
a randomized summarization technique is used in order to determine frequent
patterns in the underlying graph. A bound has been proposed in [46] for de-
termining the false positives and false negatives with the use of this approach.
Finally, the technique in [142] also compresses graphs by representing sets of
nodes as super-nodes, and separately storing “edge corrections” in order to re-
construct the entire graph. A bound on the error has been proposed in [142]
with the use of this approach.

A closely related problem is that of mining graph streams. In this case,
the edges of the graph are received continuously over time. Such cases arise
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frequently in applications such as social networks, communication networks,
and web log analysis. Graph streams are very challenging to mine, because
the structure of the graph needs to be mined in real time. Therefore, a typical
approach is to construct a synopsis from the graph stream, and leverage it for
the purpose of structural analysis. It has been shown in [73] how to summarize
the graph in such a way that the underlying distances are preserved. Therefore,
this summarization can be used for distance-based applications such as the
shortest path problem. A second application which has been studied in the
context of graph streams is that of graph matching [140]. We note that this is
a different version of the problem from our discussion in an earlier section. In
this case, we attempt to find a set of edges in a single graph such that no two
edges share an end point. We desire to find a maximum weight or maximum
cardinality matching. The main idea in [140] is to always maintain a candidate
matching and update it as new edges come in. When a new edge arrives, the
process of inserting it may displace as many as two edges at its end points. We
allow an incoming edge to displace the edges at its endpoints, if the weight
of the incoming edge is a factor (1 + ) of the outgoing edges. It has been
shown in [140] that this matching is within a factor (3+ 2 ⋅

√
2) of the optimal

matching.
Recently, a number of techniques have also been designed to create syn-

opses which can be used to estimate the aggregate structural properties of the
underlying graphs. A technique has been proposed in [61] for estimating the
statistics of the degrees in the underlying graph stream. The techniques pro-
posed in [61] use a variety of techniques such as sketches, sampling, hashing
and distinct counting. Methods have been proposed for determining the mo-
ments of the degrees, determining heavy hitter degrees, and determining range
sums of degrees. In addition, techniques have been proposed in [18] to perform
space-efficient reductions in data streams. This reduction has been used in or-
der to count triangles in the data stream. A particularly useful application in
graph streams is that of the problem of PageRank. In this problem, we attempt
to determine significant pages in a collection with the use of the linkage struc-
ture of the underlying documents. Clearly, documents which are linked to by
a larger number of documents are more significant [151]. In fact, the concept
of page rank can be modeled as the probability that a node is visited by a ran-
dom surfer on the world wide web. The algorithms designed in [151] are for
static graphs. The problem becomes much more challenging when the graphs
are dynamic, as is the case of social networks. A natural synopsis technique
which can be used for such cases is the method of sampling. In [166], it has
been shown how to use a sampling technique in order to estimate page rank for
graph streams. The idea is to sample the nodes in the graph independently and
perform random walks starting from these nodes. These random walks can be
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used in order to estimate the probability of the presence of a random surfer at
a given node. This is essentially equal to the page rank.

3. Graph Mining Algorithms

Many of the traditional mining applications also apply to the case of graphs.
As in the case of management applications, the mining applications are far
more challenging to implement because of the additional constraints which
arise from the structural nature of the underlying graph. In spite of these chal-
lenges, a number of techniques have been developed for traditional mining
problems such as frequent pattern mining, clustering, and classification. In
this section, we will provide a survey of many of the structural algorithms for
graph mining.

3.1 Pattern Mining in Graphs

The problem of frequent pattern mining has been widely studied in the con-
text of mining transactional data [11, 90]. Recently, the techniques for frequent
pattern mining have also been extended to the case of graph data. The main
difference in the case of graphs is that the process of determining support is
quite different. The problem can be defined in different ways depending upon
the application domain:

In the first case, we have a group of graphs, and we wish to determine
all patterns which support a fraction of the corresponding graphs [104,
123, 181].

In the second case, we have a single large graph, and we wish to deter-
mine all patterns which are supported at least a certain number of times
in this large graph [31, 75, 123].

In both cases, we need to account for the isomorphism issue in determining
whether one graph is supported by another. However, the problem of defin-
ing the support is much more challenging, if overlaps are allowed between
different embeddings. This is because if we allow such overlaps, then the anti-
monotonicity property of most frequent pattern mining algorithms is violated.

For the first case, where we have a data set containing multiple graphs, most
of the well known techniques for frequent pattern mining with transactional
data can be easily extended. For example, Apriori-style algorithms can be
extended to the case of graph data, by using a similar level-wise strategy of
generating (k + 1)-candidates from k-patterns. The main difference is that
we need to define the join process a little differently. Two graphs of size k
can be joined, if they have a structure of size (k − 1) in common. The size
of this structure could be defined in terms of either nodes or edges. In the
case of the AGM algorithm [104], this common structure is defined in terms of
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the number of common vertices. Thus, two graphs with k vertices are joined,
only if they have a common subgraph with at least (k − 1) vertices. A second
way of performing the mining is to join two graphs which have a subgraph
containing at least (k − 1) edges in common. The FSG algorithm proposed in
[123] can be used in order to perform edge-based joins. It is also possible to
define the joins in terms of arbitrary structures. For example, it is possible to
express the graphs in terms of edge-disjoint paths. In such cases, subgraphs
with (k+1)-edge disjoint paths can be generated from two graphs which have
k edge disjoint paths, of which (k − 1) must be common. An algorithm along
these lines is proposed in [181]. Another strategy which is often used is that
of pattern growth techniques, in which frequent graph patterns are extended
with the use of additional edges [28, 200, 100]. As in the case of frequent
pattern mining problem, we use lexicographic ordering among edges in order
to structure the search process, so that a given pattern is encountered only once.

For the second case in which we have a single large graph, a number of
different techniques may be used in order to define the support in presence of
the overlaps. A common strategy is to use the size of the maximum indepen-
dent set of the overlap graph to define the support. This is also referred to as
the maximum independent set support. In [124], two algorithms HSIGRAM
and VSIGRAM are proposed for determining the frequent subgraphs within a
single large graph. In the former case, a breadth-first search approach is used
in order to determine the frequent subgraphs, whereas a depth-first approach is
used in the latter case. In [75], it has been shown that the maximum indepen-
dent set measure continues to satisfy the anti-monotonicity property. The main
problem with this measure is that it is extremely expensive to compute. There-
fore, the technique in [31] defines a different measure in order to compute the
support of a pattern. The idea is to compute a minimum image based support of
a given pattern. For this case, we compute the number of unique nodes of the
graph to which a node of the given pattern is mapped. This measure continues
to satisfy the anti-monotonicity property, and can therefore be used in order to
determine the underlying frequent patterns. An efficient algorithm with the use
of this measure has been proposed in [31].

As in the case of standard frequent pattern mining, a number of variations
are possible for the case of finding graph patterns, such as determining maxi-
mal patterns [100], closed patterns [198], or significant patterns [98, 157, 198].
We note that significant graph patterns can be defined in different ways de-
pending upon the application. In [157], significant graphs are defined by trans-
forming regions of the graphs into features and measuring the corresponding
importance in terms of p-values. In [198], significant patterns are defined in
terms of arbitrary objective functions. A meta-framework has been proposed
in [198] to determine the significant patterns based on arbitrary objective func-
tions. One interesting approach to discover significant patterns is to build a
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model-based search tree or MbT[71]. The idea is to use divide and conquer
to mine the most significant patterns in a subspace of examples. It builds a
decision tree that partitions the data onto different nodes. Then at each node,
it directly discovers a discriminative pattern to further divide its examples into
purer subsets. Since the number of examples towards leaf level is relatively
small, this approach is able to examine patterns with extremely low global
support that could not be enumerated on the whole data set. For some graph
data sets which occur in drug discovery applications[71], it could mine signif-
icant graph patterns, which is very difficult for most other solutions. Since it
uses the divide and conquer paradigm, the algorithm is almost linearly scalable
with 1 −MinSupport and the number of examples[71]. The MbT technique
is not limited to graphs, but also applicable to item sets and sequences, and
mine pattern set is both small and significant.

One of the key challenges which arises in the context of all frequent pat-
tern mining algorithms is the massive number of patterns which can be mined
from the underlying database. This problem is particularly acute in the case
of graphs since the size of the output can be extremely large. One solution for
reducing the number of representative patterns is to report frequent patterns in
terms of orthogonality. A model called ORIGAMI has been proposed in [93]
which reports frequent graph patterns only if the similarity is below a threshold
�. Such patterns are also referred to as �-orthogonal patterns. A pattern set P
is said to be �-representative, if for every non-reported pattern g, at least one
pattern can be found in P for which the underlying similarity to g is at least
a threshold �. These two constraints address different aspects of the struc-
tural patterns. The method in [93] determines the set of all �-orthogonal and
�-representative patterns. An efficient algorithm has been proposed in [93] in
order to mine such patterns. The idea here is to reduce the redundancy in the
underlying pattern set so as to provide a better understanding of the reported
patterns.

Some particularly challenging variations of the problem arise in the context
of either very large data sets or very large data graphs. Recently, a technique
was proposed by [46], which uses randomized summarization in order to re-
duce the data set to a much smaller size. This summarization is then leveraged
in order to determine the frequent subgraph patterns from the data. Bounds are
derived in [46] on the false positives and false negatives with the use of such
an approach. Another challenging variation is when the frequent patterns are
overlaid on a very large graph, as a result of which patterns may themselves be
very large subgraphs. An algorithm called TSMiner was proposed in [110] to
determine frequent structures in very large scale graphs.

Graph pattern mining has numerous applications for a variety of applica-
tions. For example, in the case of labeled data, such pattern mining techniques
can be used in order to determine structural classification rules. For example,
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the technique in [205] uses this approach for the purpose of XML data classi-
fication. In this case, we have a data set consisting of multiple (XML) graphs,
each of which is associated with a class label. The method in [205] determines
the rules in which the left hand side is a structure and the right hand side is a
class label. This is used for the purposes of classification. Another application
of frequent pattern mining is studied in [121], in which these patterns are used
in order to create gBoost, which is a classifier designed as an application of
boosting. Frequent pattern mining has been found to be particularly useful in
the chemical and biological domain [28, 65, 101, 120]. Frequent pattern min-
ing techniques have been used to perform important functions in this domain
such as classification or determination of metabolic pathways.

Frequent graph pattern mining is also useful for the purpose of creating
graph indexes. In [201], the frequent structures in a graph collection are mined,
so that they can be used as features for an indexing process. The similarity of
frequent pattern membership behavior across graphs is used to define a rough
similarity function for the purpose of filtering. An inverted representation is
constructed on this feature based representation in order to filter out irrele-
vant graphs for the similarity search process. The technique of [201] is much
more efficient than other competitive techniques because of its feature based
approach. In general, frequent pattern mining algorithms are useful for any
application which can be defined effectively on the basis of aggregate charac-
teristics. In general graph pattern mining techniques have the same range of
applicability as they do for the case of vanilla frequent pattern mining.

3.2 Clustering Algorithms for Graph Data

In this section, we will discuss a variety of algorithms for clustering graph
data. This includes both classical graph clustering algorithms as well as algo-
rithms for clustering XML data. Clustering algorithms have significant appli-
cations in a variety of graph scenarios such as congestion detection, facility
location, and XML data integration [126]. Within the context of graph algo-
rithms, the clustering can be of two types:

Node Clustering Algorithms: In this case, we have one large graph,
and we attempt to cluster the underlying nodes with the use of a distance
(or similarity) value on the edges. In this case, the edges of the graph are
labeled with numerical distance values. These numerical distance values
are used in order to create clusters of nodes. A particular case is one in
which the presence of an edge refers to a similarity value of 1, whereas
the absence of an edge refers to a similarity value of 0. We note that the
problem of minimizing the inter-cluster similarity for a fixed number of
clusters essentially reduces to the problem of graph partitioning or the
minimum multi-way cut problem. This is also referred to as the prob-
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lem of mining dense graphs and pseudo-cliques. Recently, the problem
has also been studied in the database literature as that of quasi-clique
determination. In this problem, we determine groups of nodes which
are “almost cliques”. In other words, an edge exists between any pair of
nodes in the set with high probability. We will study the different classes
of node clustering algorithms in a different section.

Graph Clustering Algorithms: In this case, we have a (possibly large)
number of graphs which need to be clustered based on their underlying
structural behavior. This problem is challenging because of the need to
match the structures of the underlying graphs, and use these structures
for clustering purposes. Such algorithms are discussed both in the con-
text of classical graph data sets as well as semi-structured data. There-
fore, we will discuss both of these variations.

In the following subsections, we will discuss each of the above kinds of graph
clustering algorithms.

Node Clustering Algorithms. A number of algorithms for graph node
clustering are discussed in [78]. In [78], the graph clustering problem is re-
lated to the minimum cut and graph partitioning problems. In this case, it is
assumed that the underlying graphs have weights on the edges. It is desired to
partition the graph in such a way so as to minimize the weights of the edges
across the partitions. The simplest case is the 2-way minimum cut problem,
in which we wish to partition the graph into two clusters, so as to minimize
the weight of the edges across the partitions. This version of the problem is
efficiently solvable, and can be resolved by repeated applications of the maxi-
mum flow problem [13]. This is because the maximum flow between source s
and sink t determines the minimum s-t cut. By using different source and sink
combinations, it is also possible to find the global minimum cut. A second way
of determining a minimum cut is by using a contraction-based edge-sampling
approach. This is a probabilistic technique in which we successively sample
edges in order to collapse nodes into larger sets of nodes. By successively sam-
pling different sequences of edges and picking the optimum value [177], it is
possible to determine a global minimum cut. Both of the above techniques are
quite efficient and the time-complexity is polynomial in terms of the number
of nodes and edges. An interesting discussion of this problem may be found in
[78].

The multi-way graph partitioning problem is significantly more difficult,
and is NP-hard [80]. In this case, we wish to partition a graph into k > 2
components, so that the total weight of the edges whose ends lie in different
partitions is minimized. A well known technique for graph partitioning is the
Kerninghan-Lin algorithm [116]. This classical algorithm is based on a hill-
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climbing (or more generally neighborhood-search technique) for determining
the optimal graph partitioning. Initially, we start off with a random cut of the
graph. In each iteration, we exchange a pair of vertices in two partitions, to see
if the overall cut value is reduced. In the event that the cut value is reduced,
then the interchange is performed. Otherwise, we pick another pair of vertices
in order to perform the interchange. This process is repeated until we converge
to a optimal solution. We note that this optimum may not be a global optimum,
but may only be a local optimum of the underlying data. The main variation in
different versions of the Kerninghan-Lin algorithm is the policy which is used
for performing the interchanges on the vertices. We note that the use of more
sophisticated strategies allows a better improvement in the objective function
for each interchange, but also requires more time for each interchange. This is
a natural tradeoff which may work out differently depending upon the nature
of the application at hand. We note that the problem of graph partitioning is
studied widely in the literature. A detailed survey may be found in [77].

A closely related problem is that of dense subgraph determination in mas-
sive graphs. This problem is frequently encountered in large graph data sets.
For example, the problem of determining large subgraphs of web graphs was
studied in [82]. In this paper, a min-hash approach was used to determine the
shingles which represent dense subgraphs. The broad idea is to represent the
outlinks of a particular node as sets. Two nodes are considered similar, if they
share many outlinks. Thus, consider a node A with an outlink set SA and a
node B with outlink set SB . Then the similarity between the two nodes is
defined by the Jaccard coefficient, which is defined as SA∩SB

SA∪SB
. We note that

explicit enumeration of all the edges in order to compute this can be compu-
tationally inefficient. Rather, a min-hash approach is used in order to perform
the estimation. This min-hash approach is as follows. We sort the universe of
nodes in a random order. For any set of nodes in random sorted order, we deter-
mine the first node First(A) for which an outlink exists from A to First(A).
We also determine the first node First(B) for which an outlink exists from B
to First(B). It can be shown that the Jaccard coefficient is an unbiased esti-
mate of the probability that First(A) and First(B) are the same node. By
repeating this process over different permutations over the universe of nodes,
it is possible to accurately estimate the Jaccard Coefficient. This is done by
using a constant number of permutations c of the node order. Thus, for each
node, a fingerprint of size c can be constructed. By comparing the fingerprints
of two nodes, the Jaccard coefficient can be estimated. This approach can be
further generalized with the use of every s element set contained entirely with
SA and SB . By using different values of s and c, it is possible to design an al-
gorithm which distinguishes between two sets that are above or below a certain
threshold of similarity.
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The overall technique in [82] first generates a set of c shingles of size s
for each node. The process of generating the c shingles is extremely straight-
forward. Each node is processed independently. We use the min-wise hash
function approach in order to generate subsets of size s from the outlinks at
each node. This results in c subsets for each node. Thus, for each node, we
have a set of c shingles. Thus, if the graph contains a total of n nodes, the total
size of this shingle fingerprint is n× c× sp, where sp is the space required for
each shingle. Typically sp will be O(s), since each shingle contains s nodes.
For each distinct shingle thus created, we can create a list of nodes which
contain it. In general, we would like to determine groups of shingles which
contain a large number of common nodes. In order to do so, the method in
[82] performs a second-order shingling in which the meta-shingles are created
from the shingles. Thus, this further compresses the graph in a data structure
of size c × c. This is essentially a constant size data structure. We note that
this group of meta-shingles has the the property that they contain a large num-
ber of common nodes. The dense subgraphs can then be extracted from these
meta-shingles. More details on this approach may be found in [82].

A related problem is that of determining quasi-cliques in the underlying
data. Quasi-cliques are essentially relaxations on the concept of cliques. In the
case of a clique, the subgraph induced on a set of nodes is complete. On the
other hand, in the case of a -quasi-clique, each vertex in that subset of nodes
has a degree of at least  ⋅k, where  is a fraction, and k is the number of nodes
in that set. The first work on determining -quasi-cliques was discussed in [5],
in which a randomized algorithm is used in order to determine a quasi-clique
with the largest size. A closely related problem is that of finding frequently
occurring cliques in multiple data sets. In other words, when multiple graphs
are obtained from different data sets, some dense subgraphs occur frequently
together in the different data sets. Such graphs help in determining impor-
tant dense patterns of behavior in different data sources. Such techniques find
applicability in mining important patterns in graphical representations of cus-
tomers. The techniques are also helpful in mining cross-graph quasi-cliques in
gene expression data. A description of the application of the technique to the
problem of gene-expression data may be found in [153]. An efficient algorithm
for determining cross graph quasi-cliques was proposed in [148].

Classical Algorithms for Clustering XML and Graph Data. In this sec-
tion, we will discuss a variety of algorithms for clustering XML and graph data.
We note that XML data is quite similar to graph data in terms of how the data
is organized structurally. In has been shown in [8, 63, 126, 133] that the use of
this structural behavior is more critical for effective processing. There are two
main techniques used for clustering of XML documents. These techniques are
as follows:
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Structural Distance-based Approach: This approach computes struc-
tural distances between documents and uses them in order to compute
clusters of documents. Such distance-based approaches are quite gen-
eral and effective techniques over a wide variety of non-numerical do-
mains such as categorical and string data. It is therefore natural to ex-
plore this technique in the context of graph data. One of the earliest
work on clustering tree structured data is the XClust algorithm [126],
which was designed to cluster XML schemas for efficient integration of
large numbers of Document Type Definitions (DTDs) of XML sources.
It adopts the agglomerative hierarchical clustering method which starts
with clusters of single DTDs and gradually merges the two most simi-
lar clusters into one larger cluster. The similarity between two DTDs is
based on their element similarity, which can be computed according to
the semantics, structure, and context information of the elements in the
corresponding DTDs. One of the shortcomings of the XClust algorithm
is that it does not make full use of the structure information of the DTDs,
which is quite important in the context of clustering tree-like structures.
The method in [45] computes similarity measures based on the structural
edit-distance between documents. This edit-distance is used in order to
compute the distances between clusters of documents.

Another clustering technique which falls in this general class of meth-
ods is the S-GRACE algorithm. The main idea is to use the element-
subelement relationships in the distance function rather than the sim-
ple use of the tree-edit distance as in [45]. S-GRACE is a hierarchical
clustering algorithm [133]. In [133], an XML document is converted
to a structure graph (or s-graph), and the distance between two XML
documents is defined according to the number of the common element-
subelement relationships, which can capture better structural similarity
relationships than the tree edit distance in some cases [133].

Structural Summary Based Approach: In many cases, it is possible
to create summaries from the underlying documents. These summaries
are used for creating groups of documents which are similar to these
summaries. The first summary-based approach for clustering XML doc-
uments was presented in [63]. In [63], the XML documents are modeled
as rooted ordered labeled trees. A framework for clustering XML docu-
ments by using structural summaries of trees is presented. The aim is to
improve algorithmic efficiency without compromising cluster quality.

A second approach for clustering XML documents is presented in [8],
and is referred to as XProj. This technique is a partition-based algorithm.
The primary idea in this approach is to use frequent-pattern mining algo-
rithms in order to determine the summaries of frequent structures in the
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data. The technique uses a k-means type approach in which each cluster
center comprises a set of frequent patterns which are local to the partition
for that cluster. The frequent patterns are mined using the documents as-
signed to a cluster center in the last iteration. The documents are then
further re-assigned to a cluster center based on the average similarity
between the document and the newly created cluster centers from the lo-
cal frequent patterns. In each iteration the document-assignment and the
mined frequent patterns are iteratively re-assigned, until the cluster cen-
ters and document partitions converge to a final state. It has been shown
in [8] that such a structural summary based approach is significantly su-
perior to a similarity function based approach as presented in [45]. The
method is also superior to the structural approach in [63] because of
its use of more robust representations of the underlying structural sum-
maries.

3.3 Classification Algorithms for Graph Data

Classification is a central task in data mining and machine learning. As
graphs are used to represent entities and their relationships in an increasing
variety of applications, the topic of graph classification has attracted much
attention in both academia and industry. For example, in pharmaceutics and
drug design, we are interested to know the relationship between the activity of
a chemical compound and the structure of the compound, which is represented
by a graph. In social network analysis, we study the relationship between
the health of a community (e.g., whether it is expanding or shrinking) and its
structure, which again is represented by graphs.

Graph classification is concerned with two different but related learning
tasks.

Label Propagation. A subset of nodes in a graph are labeled. The task
is to learn a model from the labeled nodes and use the model to classify
the unlabeled nodes.

Graph classification. A subset of graphs in a graph dataset are labeled.
The task is to learn a model from the labeled graphs and use the model
to classify the unlabeled graphs.

Label Propagation. The concept of label or belief propagation [174, 209,
210] is a fundamental technique which is used in order to leverage graph struc-
ture in the context of classification in a number of relational domains. The
scenario of label propagation [44] occurs in many applications. As an exam-
ple, social network analysis is being used as a mean for targeted marketing.
Retailers track customers who have received promotions from them. Those
customers who respond to the promotion (by making a purchase) are labeled
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as positive nodes in the graph representing the social network, and those who
do not respond are labeled as negative. The goal of target marketing is to
send promotions to customers who are most likely to respond to promotions.
It boils down to learning a model from customers who have received promo-
tions and predicting the responses of other potential customers in the social
network. Intuitively, we want to find out how existing positive and negative
labels propagate in the graph to unlabeled nodes.

Based on the assumption that “similar” nodes should have similar labels,
the core challenge for label propagation lies in devising a distance function
that measures the similarity between two nodes in the graph. One common
approach of defining the distance between two nodes is to count the aver-
age number of steps it takes to reach one node from the other using a ran-
dom walk [119, 178]. However, it has a significant drawback: it takes O(n3)
time to derive the distances and O(n2) space to store the distances between
all pairs. However, many graphs in real life applications are sparse, which
reduces the complexity of computing the distance [211, 210]. For example,
Zhou et al [210] introduces a method whose complexity is nearly linear to the
number of non-zero entries of the sparse coefficient matrix. A survey of label
propagation methods can be found in [179].

Kernel-based Graph Classification Methods. Kernel-based graph classi-
fication employs a graph kernel to measure the similarity between two labeled
graphs. The method is based on random walks. For each graph, we enumerate
its paths, and we derive probabilities for such paths. The graph kernel com-
pares the set of paths and their probabilities between the two graphs. A random
path (represented as a sequence of node and edge labels) is generated via a ran-
dom walk: First, we randomly select a node from the graph. During the next
and each of the subsequent steps, we either stop (the path ends) or randomly
select an adjacent node to continue the random walk. The choices we make
are subject to a given stopping probability and a node transition probability.
By repeating the random walks, we derive a table of paths, each of which is
associated with a probability.

In order to measure the similarity between two graphs, we need to measure
the similarity between nodes, edges, and paths.

Node/Edge kernel. An example of a node/edge kernel is the identity
kernel. If two nodes/edges have the same label, then the kernel returns
1 otherwise 0. If the node/edge labels take real values, then a Gaussian
kernel can be used instead.

Path kernel. A path is a sequence of node and edge labels. If two paths
are of the same length, the path kernel can be constructed as the product
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of node and edge kernels. If two paths are of different lengths, the path
kernel simply returns 0.

Graph kernel. As each path is associated with a probability, we can
define the graph kernel as the expectation of the path kernel over all
possible paths in the two graphs.

The above definition of a graph kernel is straightforward. However, it is
computationally infeasible to enumerate all the paths. In particular, in cyclic
graphs, the length of a path is unbounded, which makes enumeration impos-
sible. Thus, more efficient approaches are needed to compute the kernel. It
turns out that the definition of the kernel can be reformulated to show a nested
structure. In the case of directed acyclic graphs the nodes can be topologi-
cally ordered such that there is no path from node j to i if i < j, the kernel
can be redefined as a recursive function, and dynamic programming can han-
dle this problem in O(∣X ∣ ⋅ ∣X ′∣), where X and X ′ are the set of nodes in the
two graphs. In the case of cyclic graphs, the kernel’s feature space (label se-
quences) is possibly infinite because of loops. The computation of cyclic graph
kernel can still be done with linear system theory and convergence properties
of the kernel.

Boosting-based Graph Classification Methods. While the kernel-based
method provides an elegant solution to graph classification, it does not explic-
itly reveal what graph features (substructures) are relevant for classification.
To address this issue, a new approach of graph classification based on pattern
mining is introduced. The idea is to perform graph classification based on a
graph’s important substructures. We can create a binary feature vector based
on the presence or absence of a certain substructure (subgraph) and apply an
off-the-shelf classifier.

Since the entire set of subgraphs is often very large, we must focus on a
small subset of features that are relevant. The most straightforward approach
for finding interesting features is through frequent pattern mining. However,
frequent patterns are not necessarily relevant patterns. For instance, in chem-
ical graphs, ubiquitous patterns such as C-C or C-C-C are frequent, but have
almost no significance in predicting important characteristics of chemical com-
pounds such as activity, toxicity, etc.

Boosting is used to automatically select a relevant set of subgraphs as fea-
tures for classification. LPBoost (Linear Program Boost) learns a linear dis-
criminant function for feature selection. To obtain an interpretable rule, we
need to obtain a sparse weight vector, where only a few weights are nonzero.
It was shown [162] that graph boosting can achieve better accuracy than graph
kernels, and it has the advantage of discovering key substructures explicitly at
the same time.
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The problem of graph classification is closely related to that of XML clas-
sification. This is because XML data can be considered an instance of rich
graphs, in which nodes and edges have features associated with them. Con-
sequently, many of the methods for XML classification can also be used for
structural graph classification. In [205], a rule-based classifier (called XRules)
was proposed in which we associate structural features on the left-hand side
with class labels on the right-hand side. The structural features on the left-
hand side are determined by computing the structural features in the graph
which are both frequent and discriminative for classification purposes. These
structural features are used in order to construct a prioritized list of rules which
are used for classification purposes. The top-k rules are determined based on
the discriminative behavior and the majority class label on the right hand side
of these k rules is reported as the final result.

Other Related Work. The problem of node classification arises in a num-
ber of different application contexts such as relational data classification, social
network classification, and blog classification. A technique has been proposed
in [138], which uses link-based similarity for node-classification in the context
of relational data. This approach constructs link features from the underlying
structure and uses them in order to create an effective model for classifica-
tion. Recently, this technique has also been used in the context of link-based
classification of blogs [23]. However, all of these techniques use link-based
methods only. Since many of these techniques arise in the context of text data,
it is natural to examine whether such content can be used in order to improve
classification accuracy. A method to perform collective classification of email
speech acts has been proposed in [39]. It has been shown that the analysis
of relational aspects of emails (such as emails in a particular thread) signifi-
cantly improves the classification accuracy. It has also been shown in [206]
that the use of graph structures during categorization improves the classifica-
tion accuracy of web pages. Another work [25] discusses the problem of label
acquisition in the context of collective classification.

3.4 The Dynamics of Time-Evolving Graphs

Many networks in real applications arise in the context of networked enti-
ties such as the web, mobile networks, military networks, and social networks.
In such cases, it is useful to examine various aspects of the evolution dynam-
ics of typical networks, such as the web or social networks. Thus, this line of
research focusses on modeling the general evolution properties of very large
graphs which are typically encountered. Considerable study has been devoted
to that of examining generic evolution properties which hold across massive
networks such as web networks, citation networks and social networks. Some
examples of such properties are as follows:
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Densification: Most real networks such as the web and social networks con-
tinue to become more dense over time [129]. This essentially means that these
networks continue to add more links over time (than are deleted). This is a
natural consequence of the fact that much of the web and social media is a
relatively recent phenomenon for which new applications continue to be found
over time. In fact most real graphs are known to exhibit a densification power
law, which characterizes the variation in densification behavior over time. This
law states that the number of nodes in the network increases superlinearly with
the number of nodes over time, whereas the number of edges increases super-
linearly over time. In other words, if n(t) and e(t) represent the number of
edges and nodes in the network at time t, then we have:

e(t) ∝ n(t)� (2.1)

The value of the exponent � lies between 1 and 2.
Shrinking Diameters: The small world phenomenon of graphs is well known.
For example, it was shown in [130] that the average path length between two
MSN messenger users is 6.6. This can be considered a verification of the
(internet version of the) widely known rule of “six degrees of separation” in
(generic) social networks. It was further shown in [129], that the diameters
of massive networks such as the web continue to shrink over time. This may
seem surprising, because one would expect that the diameter of the network
should grow as more nodes are added. However, it is important to remember
that edges are added more rapidly to the network than nodes (as suggested by
Equation 2.1 above). As more edges are added to the graph it becomes possible
to traverse from one node to another with the use of a fewer number of edges.

While the above observations provide an understanding of some key aspects
of specific aspects of long-term evolution of massive graphs, they do not pro-
vide an idea of how the evolution in social networks can be modeled in a com-
prehensive way. A method which was proposed in [131] uses the maximum
likelihood principle in order to characterize the evolution behavior of massive
social networks. This work uses data-driven strategies in order to model the
online behavior of networks. The work studies the behavior of four different
networks, and uses the observations from these networks in order to create a
model of the underlying evolution. It also shows that edge locality plays an im-
portant role in the evolution of social networks. A complete model of a node’s
behavior during its lifetime in the network is studied in this work.

Another possible line of work in this domain is to study methods for char-
acterizing the evolution of specific graphs. For example, in a social network, it
may be useful to determine the newly forming or decaying communities in the
underlying network [9, 16, 50, 69, 74, 117, 131, 135, 171, 173]. It was shown
in [9] how expanding or contracting communities in a social network may be
characterized by examining the relative behavior of edges, as they are received
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in a dynamic graph stream. The techniques in this paper characterize the struc-
tural behavior of the incremental graph within a given time window, and uses
it in order to determine the birth and death of communities in the graph stream.
This is the first piece of work which studies the problem of evolution in fast
streams of graphs. It is particularly challenging to study the stream case, be-
cause of the inherent combinatorial complexity of graph structural analysis,
which does not lend itself well to the stream scenario.

The work in [69] uses statistical analysis and visualization in order to pro-
vide a better idea of the changing community structure in an evolving social
network. A method in [171] performs parameter-free mining of large time-
evolving graphs. This technique can determine the evolving communities in
the network, as well as the critical change-points in time. A key property of
this method is that it is parameter-free, and this increases the usability of the
method in many scenarios. This is achieved with the use of the MDL principle
in the mining process. A related technique can also perform parameter-free
analysis of evolution in massive networks [74] with the use of the MDL prin-
ciple. The method can determine which communities have shrunk, split, or
emerged over time.

The problem of evolution in graphs is usually studied in the context of clus-
tering, because clusters provide a natural summary for understanding both
the underlying graph and the changes inherent during the evolution process.
The need for such characterization arises in the context of massive networks,
such as interaction graphs [16], community detection in social networks [9,
50, 135, 173], and generic clustering changes in linked information networks
[117]. The work by [16] provides an event based framework, which provides
an understanding of the typical events which occur in real networks, when
new communities may form, evolve, or dissolve. Thus, this method can pro-
vide an easy way of making a quick determination of whether specific kinds
of changes may be occurring in a particular network. A key technique used
by many methods is to analyze the communities in the data over specific time
slices and then determine the change between the slices to diagnose the nature
of the underlying evolution. The method in [135] deviates from this two-step
approach and constructs a unified framework for the determination of commu-
nities with the use of a best fit to a temporal-smoothness model. The work in
[50] presents a spectral method for evolutionary clustering, which is also based
on the temporal-smoothness concept. The method in [173] studies techniques
for evolutionary characterization of networks in multi-modal graphs. Finally, a
recent method proposed in [117] combines the problem of clustering and evo-
lutionary analysis into one framework, and shows how to determine evolving
clusters in a dynamic environment. The method in [117] uses a density-based
characterization in order to construct nano-clusters which are further leveraged
for evolution analysis.
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A different approach is to use association rule-based mining techniques [22].
The algorithm takes a sequence of snapshots of an evolving graph, and then at-
tempts to determine rules which define the changes in the underlying graph.
Frequently occurring sequences of changes in the underlying graph are con-
sidered important indicators for rule determination. Furthermore, the frequent
patterns are decomposed in order to study the confidence that a particular se-
quence of steps in the past will lead to a particular transition. The probability
of such a transition is referred to as confidence. The rules in the underlying
graph are then used in order to characterize the overall network evolution.

Another form of evolution in the networks is in terms of the underlying flow
of communication (or information). Since the flow of communication and in-
formation implicitly defines a graph (stream), the dynamics of this behavior
can be very interesting to study for a number of different applications. Such
behaviors arise often in a variety of information networks such as social net-
works, blogs, or author citation graphs. In many cases, the evolution may take
the form of cascading information through the underlying graphs. The idea
is that information propagates through the social network through contact be-
tween the different entities in the network. The evolution of this information
flow shares a number of similarities with the spread of diseases in networks.
We will discuss more on this issue in a later section of this paper. Such evolu-
tion has been studied in [128], which studies how to characterize the evolution
behavior in blog graphs.

4. Graph Applications

In this section, we will study the application of many of the aforementioned
mining algorithms to a variety of graph applications. Many data domains
such as chemical data, biological data, and the web are naturally structured as
graphs. Therefore, it is natural that many of the mining applications discussed
earlier can be leveraged for these applications. In this section, we will study
the diverse applications that graph mining techniques can support. We will
also see that even though these applications are drawn from different domains,
there are some common threads which can be leveraged in order to improve
the quality of the underlying results.

4.1 Chemical and Biological Applications

Drug discovery is a time consuming and extremely expensive undertak-
ing. Graphs are natural representations for chemical compounds. In chemical
graphs, nodes represent atoms and edges represent bonds between atoms. Bi-
ology graphs are usually on a higher level where nodes represent amino acids
and edges represent connections or contacts among amino acids. An important
assumption, which is known as the structure activity relationship (SAR) princi-
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ple, is that the properties and biological activities of a chemical compound are
related to its structure. Thus, graph mining may help reveal chemical and biol-
ogy characteristics such as activity, toxicity, absorption, metabolism, etc. [30],
and facilitate the process of drug design. For this reason, academia and phar-
maceutical industry have stepped up efforts in chemical and biology graph
mining, in the hope that it will dramatically reduce the time and cost in drug
discovery.

Although graphs are natural representations for chemical and biology struc-
tures, we still need a computationally efficient representation, known as de-
scriptors, that is conducive to operations ranging from similarity search to var-
ious structure driven predictions. Quite a few descriptors have been proposed.
For example, hash fingerprints [2, 1] are a vectorized representation. Given a
chemical graph, we create a a hash fingerprint by enumerating certain types
of basic structures (e.g., cycles and paths) in the graph, and hashing them into
a bit-string. In another line of work, researchers use data mining methods to
find frequent subgraphs [150] in a chemical graph database, and represent each
chemical graph as a vector in the feature space created by the set of frequent
subgraphs. A detailed description and comparison of various descriptors can
be found in [190].

One of the most fundamental operations on chemical compounds is similar-
ity search. Various graph matching algorithms have been employed for i) rank-
retrieval, that is, searching a large database to find chemical compounds that
share the same bioactivity as a query compound; and ii) scaffold-hopping, that
is, finding compounds that have similar bioactivity but different structure from
the query compound. Scaffold-hopping is used to identify compounds that are
good “replacement” for the query compound, which either has some undesir-
able properties (e.g., toxicity), or is from the existing patented chemical space.
Since chemical structure determines bioactivity (the SAR principle), scaffold-
hopping is challenging, as the identified compounds must be structurally sim-
ilar enough to demonstrate similar bioactivity, but different enough to be a
novel chemotype. Current approaches for similarity matching can be classified
into two categories. One category of approaches perform similarity matching
directly on the descriptor space [192, 170, 207]. The other category of ap-
proaches also consider indirect matching: if a chemical compound c is struc-
turally similar to the query compound q, and another chemical compound c′ is
structurally similar to c, then c′ and q are indirect matches. Clearly, indirect
macthing has the potential to indentify compounds that are functionally similar
but structurally different, which is important to scaffold-hopping [189, 191].

Another important application area for chemical and biology graph mining
is structure-driven prediction. The goal is to predict whether a chemical struc-
ture is active or inactive, or whether it has certain properties, for example, toxic
or nontoxic, etc. SVM (Support Vector Machines) based methods have proved
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effective for this task. Various vector space based kernel functions, including
the widely used radial basis function and the Min-Max kernel [172, 192], are
used to measure the similarity between chemical compounds that are repre-
sented by vectors. Instead of working on the vector space, another category
of SVM methods use graph kernels to compare two chemical structures. For
instance, in [160], the size of the maximum common subgraph of two graphs
is used as a similarity measure.

In late 1980’s, the pharmaceutical industry embraced a new drug discovery
paradigm called target-based drug discovery. Its goal is to develop a drug that
selectively modulates the effects of the disease-associated gene or gene product
without affecting other genes or molecular mechanisms in the organism. This
is made possible by the High Throughput Screening (HTS) technique, which
is able to rapidly testing a large number of compounds based on their binding
activity against a given target. However, instead of increasing the productivity
of drug design, HTS slowed it down. One reason is that a large number of
screened candidates may have unsatisfactory phenotypic effects such as toxity
and promiscuity, which may dramatically increase the validation cost in later
stage drug discovery [163]. Target Fishing [109] tackles the above issues by
employing computational techniques to directly screen molecules for desirable
phenotype effects. In [190], we offer a detailed description of various such
methods, including multi-category Bayesian models [149], SVM rank [188],
Cascade SVM [188, 84], and Ranking Perceptron [62, 188].

4.2 Web Applications

The world wide web is naturally structured in the form of a graph in which
the web pages are the nodes and the links are the edges. The linkage structure
of the web holds a wealth of information which can be exploited for a variety
of data mining purposes. The most famous application which exploits the link-
age structure of the web is the PageRank algorithm [29, 151]. This algorithm
has been one of the key secrets to the success of the well known Google search
engine. The basic idea behind the page rank algorithm is that the importance
of a page on the web can be gauged from the number and importance of the
hyperlinks pointing to it. The intuitive idea is to model a random surfer who
follows the links on the pages with equal likelihood. Then, it is evident that
the surfer will arrive more frequently at web pages which have a large num-
ber of paths leading to them. The intuitive interpretation of page rank is the
probability that a random surfer arrives at a given web page during a random
walk. Thus, the page rank essentially forms a probability distribution over web
pages, so that the sum of the page rank over all the web pages sums to 1. In
addition, we sometimes add teleportation, in which we can transition any web
page in the collection uniformly at random.
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Let A be the set of edges in the graph. Let �i denote the steady state proba-
bility of node i in a random walk, and let P = [pij ] denote the transition matrix
for the random-walk process. Let � denote the teleportation probability at a
given step, and let qi be the ith value of a probability vector defined over all the
nodes which defines the probability that the teleportation takes place to node
i at any given step (conditional on the fact that teleportation does take place).
For the time-being, we assume that each value of qi is the same, and is equal
to 1/n, where n is the total number of nodes. Then, for a given node i, we can
derive the following steady-state relationship:

�i =
∑

j:(j,i)∈A
�j ⋅ pji ⋅ (1− �) + � ⋅ qi (2.2)

Note that we can derive such an equation for each node; this will result in a
linear system of equations on the transition probabilities. The solutions to this
system provides the page rank vector �. This linear system has n variables,
and n different constraints, and can therefore be expressed in n2 space in the
worst-case. The solution to such a linear systems requires matrix operations
which are at least quadratic (and at most cubic) in the total number of nodes.
This can be quite expensive in practice. Of course, since the page rank needs
to be computed only once in a while in batch phase, it is possible to implement
it reasonably well with the use of a few carefully designed matrix techniques.
The PageRank algorithm [29, 151] uses an iterative approach which computes
the principal eigenvectors of the normalized link matrix of the web. A descrip-
tion of the page rank algorithm may be found in [151].

We note that the page-rank algorithm only looks at the link structure during
the ranking process, and does not include any information about the content of
the underlying web pages. A closely related concept is that of topic-sensitive
page rank [95], in which we use the topics of the web pages during the ranking
process. The key idea in such methods is to allow for personalized teleporta-
tion (or jumps) during the random-walk process. At each step of the random
walk, we allow a transition (with probability �) to a sample set S of pages
which are related to the topic of the search. Otherwise, the random walk con-
tinues in its standard way with probability (1−�). This can be easily achieved
by modifying the vector q = (q1 . . . qn), so that we set the appropriate com-
ponents in this vector to 1, and others to 0. The final steady-state probabilities
with this modified random-walk defines the topic-sensitive page rank. The
greater the probability �, the more the process biases the final ranking towards
the sample set S. Since each topic-sensitive personalization vector requires
the storage of a very large page rank vector, it is possible to pre-compute it in
advance only in a limited way, with the use of some representative or authori-
tative pages. The idea is that we use a limited number of such personalization
vectors q and determine the corresponding personalized page rank vectors �
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for these authoritative pages. A judicious combination of these different per-
sonalized page rank vectors (for the authoritative pages) is used in order to
define the response for a given query set. Some examples of such approaches
are discussed in [95, 108]. Of course, such an approach has limitations in terms
of the level of granularity in which it can perform personalization. It has been
shown in [79] that fully personalized page rank, in which we can precisely bias
the random walk towards an arbitrary set of web pages will always require at
least quadratic space in the worst-case. Therefore, the approach in [79] ob-
serves that the use of Monte-Carlo sampling can greatly reduce the space re-
quirements without sufficiently affecting quality. The work in [79] pre-stores
Monte-Carlo samples of node-specific random walks, which are also referred
to as fingerprints. It has been shown in [79] that a very high level of accuracy
can be achieved in limited space with the use of such fingerprints. Subsequent
recent work [42, 87, 175, 21] has built on this idea in a variety of scenarios,
and shown how such dynamic personalized page rank techniques can be made
even more efficient and effective. Detailed surveys on different techniques for
page rank computation may be found in [20].

Other relevant approaches include the use of measures such as the hitting
time in order to determine and rank the context sensitive proximity of nodes.
The hitting time between node i to j is defined as the expected number of hops
that a random surfer would require to reach node j from node i. Clearly, the
hitting time is a function of not just the length of the shortest paths, but also the
number of possible paths which exist from node i to node j. Therefore, in order
to determine similarity among linked objects, the hitting time is a much better
measurement of proximity as compared to the use of shortest-path distances. A
truncated version of the hitting time defines the objective function by restrict-
ing only to the instances in which the hitting time is below a given threshold.
When the hitting time is larger than a given threshold, the contribution is sim-
ply set at the threshold value. Fast algorithms for computing a truncated variant
of the hitting time are discussed in [164]. The issue of scalability in random-
walk algorithms is critical because such graphs are large and dynamic, and we
would like to have the ability to rank quickly for particular kinds of queries. A
method in [165] proposes a fast dynamic re-ranking method, when user feed-
back is incorporated. A related problem is that of investigating the behavior of
random walks of fixed length. The work in [203] investigates the problem of
neighborhood aggregation queries. The aggregation query can be considered
an “inverse version” of the hitting time, where we are fixing the number of
hops and attempting to determine the number of hits, rather than the number of
hops to hit. One advantage of this definition is that it automatically considers
only truncated random walks in which the length of the walk is below a given
threshold ℎ; it is also a cleaner definition than the truncated hitting time by
treating different walks in a uniform way. The work in [203] determines nodes
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that have the top-k highest aggregate values over their ℎ-hop neighbors with
the use of a Local Neighborhood Aggregation framework called LONA. The
framework exploits locality properties in network space to create an efficient
index for this query.

Another related idea on determining authoritative ranking is that of the hub-
authority model [118]. The page-rank technique determines authority by using
linkage behavior as indicative of authority. The work in [118] proposes that
web pages are one of two kinds:

Hubs are pages which link to authoritative pages.

Authorities are pages which are linked to by good hubs.

A score is associated with both hubs and authorities corresponding to their
goodness for being hubs and authorities respectively. The hubs scores affect
the authority scores and vice-versa. An iterative approach is used in order to
compute both the hub and authority scores. The HITS algorithm proposed in
[118] uses these two scores in order to compute the hubs and authorities in the
web graph.

Many of these applications arise in the context of dynamic graphs in which
the nodes and edges of the graph are received over time. For example, in the
context of a social network in which new links are being continuously created,
the estimation of page rank is inherently a dynamic problem. Since the page
rank algorithm is critically dependent upon the behavior of random walks, the
streaming page rank algorithm [166] samples nodes independently in order to
create short random walks from each node. This walks can then be merged to
create longer random walks. By running several such random walks, the page
rank can be effectively estimated. This is because the page rank is simply the
probability of visiting a node in a random walk, and the sampling algorithm
simulates this process well. The key challenge for the algorithm is that it is
possible to get stuck during the process of random walks. This is because the
sampling process picks both nodes and edges in the sample, and it is possible
to traverse an edge such that the end point of that edge is not present in the node
sample. Furthermore, we do not allow repeated traversal of nodes in order to
preserve randomness. Such stuck nodes can be handled by keeping track of the
set S of sampled nodes whose walks have already been used for extending the
random walk. New edges are sampled out of both the stuck node and the nodes
in S. These are used in order to extend the walk further as much as possible. If
the new end-point is a sampled node whose walk is not in S, then we continue
the merging process. Otherwise, we repeat the process of sampling edges out
of S and all the stuck nodes visited since the last walk was used.

Another application commonly encountered in the context of graph mining
is the analysis of query flow logs. We note that a common way for many users
to navigate on the web is to use search engines to discover web pages and then
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click some of the hyperlinks in the search results. The behavior of the resulting
graphs can be used to determine the topic distributions of interest, and semantic
relationships between different topics.

In many web applications, it is useful to determine clusters of web pages
or blogs. For this purpose, it is helpful to leverage the linkage structure of the
web. A common technique which is often used for web document clustering
is that of shingling [32, 82]. In this case, the min-hash approach is used in
order to determine densely connected regions of the web. In addition, any of
a number of quasi-clique generation techniques [5, 148, 153] can be used for
the purpose of determination of dense regions of the graph.

Social Networking. Social networks are very large graphs which are de-
fined by people who appear as nodes, and links which correspond to communi-
cations or relationships between these different people. The links in the social
network can be used to determine relevant communities, members with partic-
ular expertise sets, and the flow of information in the social network. We will
discuss these applications one by one.

The problem of community detection in social networks is related to the
problem of node clustering of very large graphs. In this case, we wish to
determine dense clusters of nodes based on the underlying linkage structure
[158]. Social networks are a specially challenging case for the clustering prob-
lem because of the typically massive size of the underlying graph. As in the
case of web graphs, any of the well known shingling or quasi-clique gener-
ation methods [5, 32, 82, 148, 153] can be used in order to determine rele-
vant communities in the network. A technique has been proposed in [167]
to use stochastic flow simulations for determining the clusters in the underly-
ing graphs. A method for determining the clustering structure with the use of
the eigen-structure of the linkage matrix in order to determine the community
structure is proposed in [146]. An important characteristic of large networks is
that they can often be characterized by the nature of the underlying subgraphs.
In [27], a technique has been proposed for counting the number of subgraphs
of a particular type in a large network. It has been shown that this charac-
terization is very useful for clustering large networks. Such precision cannot
be achieved with the use of other topological properties. Therefore, this ap-
proach can also be used for community detection in massive networks. The
problem of community detection is particularly interesting in the context of
dynamic analysis of evolving networks in which we try to determine how the
communities in the graph may change over time. For example, we may wish
to determine newly forming communities, decaying communities, or evolving
communities. Some recent methods for such problems may be found in [9,
16, 50, 69, 74, 117, 131, 135, 171, 173]. The work in [9] also examines this
problem in the context of evolving graph streams. Many of these techniques
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examine the problem of community detection and change detection in a single
framework. This provides the ability to present the changes in the underlying
network in a summarized way.

Node clustering algorithms are closely related to the concept of centrality
analysis in networks. For example, the technique discussed in [158] uses a
k-medoids approach which yields k central points of the network. This kind
of approach is very useful in different kinds of networks, though in different
contexts. In the case of social networks, these central points are typically key
members in the network which are well connected to other members of the
community. Centrality analysis can also be used in order to determine the
central points in information flows. Thus, it is clear that the same kind of
structural analysis algorithm can lead to different kinds of insights in different
networks.

Centrality detection is closely related to the problem of information flow
spread in social networks. It was observed that many recently developed viral
flow analysis techniques [40, 127, 147] can be used in the context of a variety
of other social networking information flow related applications. This is be-
cause information flow applications can be understood with similar behavior
models as viral spread. These applications are: (1) We would like to determine
the most influential members of the social network; i.e. members who cause
the most flow of information outwards. (2) Information in the social behavior
often cascades through it in the same way as an epidemic. We would like to
measure the information cascade rate through the social network, and deter-
mine the effect of different sources of information. The idea is that monitoring
promotes the early detection of information flows, and is beneficial to the per-
son who can detect it. The cascading behavior is particularly visible in the
case of blog graphs, in which the cascading behavior is reflected in the form of
added links over time. Since it is not possible to monitor all blogs simultane-
ously, it is desirable to minimize the monitoring cost over the different blogs,
by assuming a fixed monitoring cost per node. This problem is NP-hard [127],
since the vertex-cover problem can be reduced to it. The main idea in [128]
is to use an approximation heuristic in order to minimize the monitoring cost.
Such an approach is not restricted to the blog scenario, but it is also applica-
ble to other scenarios such as monitoring information exchange in social net-
works, and monitoring outages in communication networks. (3) We would like
to determine the conditions which lead to the critical mass necessary for un-
controlled information transmission. Some techniques for characterizing these
conditions are discussed in [40, 187]. The work in [187] relates the structure of
the adjacency matrix to the transmissibility rate in order to measure the thresh-
old for an epidemic. Thus, the connectivity structure of the underlying graph
is critical in measuring the rate of information dissemination in the underlying
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network. It has been shown in [187] that the eigenstructure of the adjacency
matrix can be directly related to the threshold for an epidemic.

Other Computer Network Applications. Many of these techniques can
also be used for other kinds of networks such as communication networks.
Structural analysis and robustness of communication networks is highly de-
pendent upon the design of the underlying network graph. Careful design of
the underlying graph can help avoid network failures, congestions, or other
weaknesses in the overall network. For example, centrality analysis [158] can
be used in the context of a communication network in order to determine criti-
cal points of failure. Similarly, the techniques for flow dissemination in social
networks can be used to model viral transmission in communication networks
as well. The main difference is that we model viral infection probability along
an edge in a communication network instead of the information flow probabil-
ity along an edge in a social network.

Many reachability techniques [10, 48, 49, 53, 54, 184] can be used to de-
termine optimal routing decisions in computer networks. This is also related
to the problem of determining pairwise node-connectivity [7] in computer net-
works. The technique in [7] uses a compression-based synopsis to create an
effective connectivity index for massive disk-resident graphs. This is useful in
communication networks in which we need to determine the minimum number
of edges to be deleted in order to disconnect a particular pair of nodes from one
another.

4.3 Software Bug Localization

A natural application of graph mining algorithms is that of software bug
localization. Software bug localization is an important application from the
perspective of software reliability and testing. The control flow of programs
can be modeled in the form of call-graphs. The goal of software bug localiza-
tion techniques is to mine such call graphs in order to determine the bugs in
the underlying programs. Call graphs are of two types:

Static call graphs can be inferred from the source code of a given pro-
gram. All the methods, procedures and functions in the program are
nodes, and the relationships between the different methods are defined
as edges. It is also possible to define nodes for data elements and model
relationships between different data elements and edges. In the case of
static call graphs, it is often possible to use typical examples of the struc-
ture of the program in order to determine portions of the software where
atypical anamolies may occur.

Dynamic call graphs are created during program execution, and they
represent the invocation structure. For example, a call from one pro-
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cedure to another creates an edge which represents the invocation re-
lationship between the two procedures. Such call graphs can be ex-
tremely large in massive software programs, since such programs may
contain thousands of invocations between the different procedures. In
such cases, the difference in structural, frequency or sequence behav-
ior of successful and failing invocations can be used to localize soft-
ware bugs. Such call graphs can be particularly useful in localizing bugs
which are occasional in nature and may occur in some invocations and
not others.

We further note that bug localization is not exhaustive in terms of the kinds
of errors it can catch. For example, logical errors in a program which are
not a result of the program structure, and which do not affect the sequence or
structure of execution of the different methods cannot be localized with such
techniques. Furthermore software bug localization is not an exact science.
Rather, it can be used in order to provide software testing experts with possible
bugs, and they can use this in order to make relevant corrections.

An interesting case is one in which different program executions lead to
different structure, sequence and frequency of executions which are specific
to failures and successes of the final program execution. These failures and
successes may be a result of logical errors, which lead to changes in structure
and frequency of method calls. In such cases, the software bug-localization
can be modeled as a classification problem. The first step is to create call
graphs from the executions. This is achieved by tracing the program executions
during the testing process. We note that such call graphs may be huge and
unwieldy for use with graph mining algorithms. The large sizes of call-graphs
creates a challenge for graph mining procedures. This is because graph mining
algorithms are often designed for relatively small graphs, whereas such call
graphs may be huge. Therefore, a natural solution is to reduce the size of the
call graph with the use of a compression based approach. This naturally results
in loss of information, and in some cases, it also results in an inability to use
the localization approach effectively when the loss of information is extensive.

The next step is to use frequent subgraph mining techniques on the train-
ing data in order to determine those patterns which occur more frequently in
faulty executions. We note that this is somewhat similar to the technique often
utilized in rule-based classifiers which attempt to link particular patterns and
conditions to specific class labels. Such patterns are then associated with the
different methods and are used in order to provide a ranking of the methods and
functions in the program which may possibly contain bugs. This also provides
a causality and understanding of the bugs in the underlying programs.

We note that the compression process is critical in providing the ability to
efficiently process the underlying graphs. One natural method for reducing the
size of the corresponding graphs is to map multiple nodes in the call graph
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into a single node. For example, in total reduction, we map every node in
the call node which corresponds to the same method onto one node in the
compressed graph. Thus, the total number of nodes in the graph is at most
equal to the number of methods. Such a technique has been used in [136] in
order to reduce the size of the call graph. A second method which may be used
is to compress the iteratively executed structures such as loops into a single
node. This is a natural approach, since an iteratively executed structure is one
of the most commonly occurring blocks in call graphs. Another technique is
to reduce subtrees into single nodes. A variety of localization strategies with
the use of such reduction techniques are discussed in [67, 68, 72].

Finally, the reduced graphs are mined in order to determine discriminative
structures for bug localization. The method in [72] is based on determining dis-
criminative subtrees from the data. Specifically, the method finds all subtrees
which are frequent to failing executions, but are not frequent in correct execu-
tions. These are then used in order to construct rules which may be used for
specific instances of classification of program runs. More importantly, such
rules provide an understanding of the causality of the bugs, and this under-
standing can be used in order to support the correction of the underlying errors.

The above technique is designed for finding structural characteristics of the
execution which can be used for isolating software bugs. However, in many
cases the structural characteristics may not be the only features which may
be relevant to localization of bugs. For example, an important feature which
may be used in order to determine the presence of bugs is the relative fre-
quency of the invocation of different methods. For example, invocations which
have bugs may call a particular method more frequently than others. A natural
way to learn this is to associate edge weights with the call graph. These edge
weights correspond to the frequency of invocation. Then, we use these edge
weights in order to analyze the calls which are most relevant to discriminating
between correct and failing executions. A number of methods for this class of
techniques is discussed in [67, 68].

We note that both structure and frequency are different aspects of the data
which can be leveraged in order to perform the localization. Therefore, it
makes sense to combine these approaches in order to improve the localization
process. The techniques in [67, 68] create a score for both the structure-based
and frequency-based features. A combination of these scores is then used for
the bug localization process. It has been shown [67, 68] that such an approach
is more effective than the use of either of the two features.

Another important characteristic which can be explored in future work is to
analyze the sequence of program calls, rather than simply analyzing the dy-
namic call structure or the frequency of calls of the different methods. Some
initial work [64] in this direction shows that sequence mining encodes excel-
lent information for bug localization even with the use of simple methods.
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However, this technique does not use sophisticated graph mining techniques
in order to further leverage this sequence information. Therefore, it can be a
fruitful avenue for future research to incorporate sequential information into
the graph mining techniques which are currently available.

Another line of analysis is the analysis of static source code rather than the
dynamic call graphs. In such cases, it makes more sense to look particular
classes of bugs, rather than try to isolate the source of the execution error.
For example, neglected conditions in software programs [43] can create fail-
ing conditions. For example, a case statement in a software program with a
missing condition is a commonly occurring bug. In such cases, it makes sense
to design domain-specific techniques for localizing the bug. For this purpose,
techniques based on static program-dependence graphs are used. These are
distinguished from the dynamic call graphs discussed above, in the sense that
the latter requires execution of the program to create the graphs, whereas in this
case the graphs are constructed in a static fashion. Program dependence graphs
essentially create a graphical representation of the relationships between the
different methods and data elements of a program. Different kinds of edges
are used to denote control and data dependencies. The first step is to determine
conditional rules [43] in a program which illustrates the program dependen-
cies which are frequently occurring in a project. Then we search for (static)
instantiations within the project which violate these rules. In many cases, such
instantiations could correspond to neglected conditions in the software pro-
gram.

The field of software bug localization faces a number of key challenges.
One of the main challenges is that the work in the field has mostly focussed on
smaller software projects. Larger programs are a challenge, because the corre-
sponding call graphs may be huge and the process of graph compression may
lose too much information. While some of these challenges may be alleviated
with the development of more efficient mining techniques for larger graphs,
some advantages may also be obtained with the use of better representations at
the modeling level. For example, the nodes in the graph can be represented at a
coarser level of granularity at the modeling phase. Since the modeling process
is done with a better level of understanding of the possibilities for the bugs (as
compared to an automated compression process), it is assumed that such an
approach would lose much less information for bug localization purposes. A
second direction is to combine the graph-based techniques with other effective
statistical techniques [137] in order to create more robust classifiers. In future
research, it should be reasonable to expect that larger software projects can be
analyzed only with the use of such combined techniques which can make use
of different characteristics of the underlying data.
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5. Conclusions and Future Research

In this chapter, we presented a survey of graph mining and management
applications. We also provide a survey of the common applications which
arise in the context of graph mining applications. Much of the work in recent
years has focussed on small and memory-resident graphs. Much of the fu-
ture challenges arise in the context of very large disk-resident graphs. Other
important applications are designed in the context of massive graphs streams.
Graph streams arise in the context of a number of applications such as social
networking, in which the communications between large groups of users are
captured in the form of a graph. Such applications are very challenging, since
the entire data cannot be localized on disk for the purpose of structural analysis.
Therefore, new techniques are required to summarize the structural behavior
of graph streams, and use them for a variety of analytical scenarios. We expect
that future research will focus on the large-scale and stream-based scenarios
for graph mining.

Notes
1. FLWOR is an acronym for FOR-LET-WHERE-ORDER BY-RETURN.
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Abstract How does the Web look? How could we tell an “abnormal” social network
from a “normal” one? These and similar questions are important in many fields
where the data can intuitively be cast as a graph; examples range from computer
networks, to sociology, to biology, and many more. Indeed, any M : N relation
in database terminology can be represented as a graph. Many of these ques-
tions boil down to the following: “How can we generate synthetic but realistic
graphs?” To answer this, we must first understand what patterns are common in
real-world graphs, and can thus be considered a mark of normality/realism. This
survey gives an overview of the incredible variety of work that has been done
on these problems. One of our main contributions is the integration of points of
view from physics, mathematics, sociology and computer science.
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1. Introduction

Informally, a graph is set of nodes, pairs of which might be connected by
edges. In a wide array of disciplines, data can be intuitively cast into this for-
mat. For example, computer networks consist of routers/computers (nodes)
and the links (edges) between them. Social networks consist of individuals
and their interconnections (business relationships, kinship, trust, etc.) Pro-
tein interaction networks link proteins which must work together to perform
some particular biological function. Ecological food webs link species with
predator-prey relationships. In these and many other fields, graphs are seem-
ingly ubiquitous.

The problems of detecting abnormalities (“outliers”) in a given graph, and of
generating synthetic but realistic graphs, have received considerable attention
recently. Both are tightly coupled to the problem of finding the distinguishing
characteristics of real-world graphs, that is, the “patterns” that show up fre-
quently in such graphs and can thus be considered as marks of “realism.” A
good generator will create graphs which match these patterns. Patterns and
generators are important for many applications:

Detection of abnormal subgraphs/edges/nodes: Abnormalities should
deviate from the “normal” patterns, so understanding the patterns of nat-
urally occurring graphs is a prerequisite for detection of such outliers.

Simulation studies: Algorithms meant for large real-world graphs can
be tested on synthetic graphs which “look like” the original graphs. For
example, in order to test the next-generation Internet protocol, we would
like to simulate it on a graph that is “similar” to what the Internet will
look like a few years into the future.

Realism of samples: We might want to build a small sample graph that
is similar to a given large graph. This smaller graph needs to match the
“patterns” of the large graph to be realistic.

Graph compression: Graph patterns represent regularities in the data.
Such regularities can be used to better compress the data.

Thus, we need to detect patterns in graphs, and then generate synthetic graphs
matching such patterns automatically.

This is a hard problem. What patterns should we look for? What do such
patterns mean? How can we generate them? Due to the ubiquity and wide
applicability of graphs, a lot of research ink has been spent on this problem, not
only by computer scientists but also physicists, mathematicians, sociologists
and others. However, there is little interaction among these fields, with the
result that they often use different terminology and do not benefit from each
other’s advances. In this survey, we attempt to give an overview of the main
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Symbol Description

N Number of nodes in the graph
E Number of edges in the graph
k Degree for some node

< k > Average degree of nodes in the graph
CC Clustering coefficient of the graph

CC(k) Clustering coefficient of degree-k nodes

 Power law exponent: y(x) ∝ x−

t Time/iterations since the start of an algorithm

Table 3.1. Table of symbols

ideas. Our focus is on combining sources from all the different fields, to gain
a coherent picture of the current state-of-the-art. The interested reader is also
referred to some excellent and entertaining books on the topic [12, 81, 35].

The organization of this chapter is as follows. In section 2, we discuss graph
patterns that appear to be common in real-world graphs. Then, in section 3, we
describe some graph generators which try to match one or more of these pat-
terns. Typically, we only provide the main ideas and approaches; the interested
reader can read the relevant references for details. In all of these, we attempt to
collate information from several fields of research. Table 3.1 lists the symbols
we will use.

2. Graph Patterns

What are the distinguishing characteristics of graphs? What “rules” and
“patterns” hold for them? When can we say that two different graphs are simi-
lar to each other? In order to come up with models to generate graphs, we need
some way of comparing a natural graph to a synthetically generated one; the
better the match, the better the model. However, to answer these questions, we
need to have some basic set of graph attributes; these would be our vocabulary
in which we can discuss different graph types. Finding such attributes will be
the focus of this section.

What is a “good” pattern? One that can help distinguish between an actual
real-world graph and any fake one. However, we immediately run into several
problems. First, given the plethora of different natural and man-made phe-
nomena which give rise to graphs, can we expect all such graphs to follow any
particular patterns? Second, is there any single pattern which can help differ-
entiate between all real and fake graphs? A third problem (more of a constraint
than a problem) is that we want to find patterns which can be computed effi-
ciently; the graphs we are looking at typically have at least around 105 nodes
and 106 edges. A pattern which takes O(N3) or O(N2) time in the number of
nodes N might easily become impractical for such graphs.
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The best answer we can give today is that while there are many differ-
ences between graphs, some patterns show up regularly. Work has focused
on finding several such patterns, which together characterize naturally occur-
ring graphs. A large portion of the literature focuses on two major properties:
power laws and small diameters. Our discussion will address both of these
properties. For each pattern, we also give the computational requirements for
finding/computing the pattern, and some real-world examples of that pattern.
Definitions are provided for key ideas which are used repeatedly. Next, we
will discuss other patterns of interest, both in static snapshots of graphs and
in evolving graphs. Finally, we discuss patterns specific to some well-known
graphs, like the Internet and the WWW.

2.1 Power Laws and Heavy-Tailed Distributions

While the Gaussian distribution is common in nature, there are many cases
where the probability of events far to the right of the mean is significantly
higher than in Gaussians. In the Internet, for example, most routers have a
very low degree (perhaps “home” routers), while a few routers have extremely
high degree (perhaps the “core” routers of the Internet backbone) [43]. Power-
law distributions attempt to model this.

We will divide the following discussion into two parts. First, we will dis-
cuss “traditional” power laws: their definition, how to compute them, and real-
world examples of their presence. Then, we will discuss deviations from pure
power laws, and some common methods to model these.

“Traditional” Power Laws.

Definition 3.1 (Power Law). Two variables x and y are related by a power
law when:

y(x) = Ax− (3.1)

where A and  are positive constants. The constant  is often called the power
law exponent.

Definition 3.2 (Power Law Distribution). A random variable is distributed
according to a power law when the probability density function (pdf) is given
by:

p(x) = Ax− ,  > 1, x ≥ xmin (3.2)

The extra  > 1 requirement ensures that p(x) can be normalized. Power laws
with  < 1 rarely occur in nature, if ever [66].

Skewed distributions, such as power laws, occur very often. In the Internet
graph, the degree distribution follows such a power law [43]; that is, the count
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Figure 3.1. Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of 75, 888 people
and 508, 960 edges [34]). Both follow power-laws. In contrast, plot (c) shows the out-degree
distribution of a Clickstream graph (a bipartite graph of users and the websites they surf [63]),
which deviates from the power-law pattern.

ck of nodes with degree k, versus the degree k, is a line on a log-log scale. The
eigenvalues of the adjacency matrix of the Internet graph also show a similar
behavior: when eigenvalues are plotted versus their rank on a log-log scale
(called the scree plot), the result is a straight line. A possible explanation of
this is provided by Mihail and Papadimitriou [61]. The World Wide Web graph
also obeys power laws [51]: the in-degree and out-degree distributions both
follow power-laws, as well as the number of the so-called “bipartite cores”
(≈ communities, which we will see later) and the distribution of PageRank
values [23, 73]. Redner [76] shows that the citation graph of scientific literature
follows a power law with exponent 3. Figures 3.1(a) and 3.1(b) show two
examples of power laws.

The significance of a power law distribution p(x) lies in the fact that it decay
only polynomially quickly as x → ∞, instead of exponential decay for the
Gaussian distribution. Thus, a power law degree distribution would be much
more likely to have nodes with a very high degree (much larger than the mean)
than the Gaussian distribution. Graphs exhibiting such degree distributions are
called scale-free graphs, because the form of y(x) in Equation 3.1 remains
unchanged to within a multiplicative factor when the variable x is multiplied
by a scaling factor (in other words, y(ax) = by(x)). Thus, there is no special
“characteristic scale” for the variables; the functional form of the relationship
remains the same for all scales.

Computation issues:. The process of finding a power law pattern can be
divided into three parts: creating the scatter plot, computing the power law
exponent, and checking for goodness of fit. We discuss these issues below,
using the detection of power laws in degree distributions as an example.

Creating the scatter plot (for the degree distribution): The algorithm for cal-
culating the degree distributions (irrespective of whether they are power laws
or not) can be expressed concisely in SQL. Assuming that the graph is repre-
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sented as a table with the schema Graph(fromnode, tonode), the code for
calculating in-degree and out-degree is given below. The case for weighted
graphs, with the schema Graph(fromnode, tonode, weight), is a simple
extension of this.

SELECT outdegree, count(*)

FROM

(SELECT count(*) AS outdegree

FROM Graph

GROUP BY fromnode)

GROUP BY outdegree

SELECT indegree, count(*)

FROM

(SELECT count(*) AS indegree

FROM Graph

GROUP BY tonode)

GROUP BY indegree

Computing the power law exponent This is no simple task: the power law
could be only in the tail of the distribution and not over the entire distribution,
estimators of the power law exponent could be biased, some required assump-
tions may not hold, and so on. Several methods are currently employed, though
there is no clear “winner” at present.

1 Linear regression on the log-log scale: We could plot the data on a log-
log scale, then optionally “bin” them into equal-sized buckets, and fi-
nally find the slope of the linear fit. However, there are at least three
problems: (i) this can lead to biased estimates [45], (ii) sometimes the
power law is only in the tail of the distribution, and the point where the
tail begins needs to be hand-picked, and (iii) the right end of the distri-
bution is very noisy [66]. However, this is the simplest technique, and
seems to be the most popular one.

2 Linear regression after logarithmic binning: This is the same as above,
but the bin widths increase exponentially as we go towards the tail. In
other words, the number of data points in each bin is counted, and then
the height of each bin is then divided by its width to normalize. Plotting
the histogram on a log-log scale would make the bin sizes equal, and the
power-law can be fitted to the heights of the bins. This reduces the noise
in the tail buckets, fixing problem (iii). However, binning leads to loss of
information; all that we retain in a bin is its average. In addition, issues
(i) and (ii) still exist.

3 Regression on the cumulative distribution: We convert the pdf p(x) (that
is, the scatter plot) into a cumulative distribution F (x):

F (x) = P (X ≥ x) =
∞∑

z=x

p(z) =

∞∑

z=x

Az− (3.3)
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The approach avoids the loss of data due to averaging inside a histogram
bin. To see how the plot of F (x) versus x will look like, we can bound
F (x):

∫ ∞

x
Az−dz < F (x) < Ax− +

∫ ∞

x
Az−dz

⇒ A

 − 1
x−(−1) < F (x) < Ax− +

A

 − 1
x−(−1)

⇒ F (x) sim x−(−1) (3.4)

Thus, the cumulative distribution follows a power law with exponent
( − 1). However, successive points on the cumulative distribution plot
are not mutually independent, and this can cause problems in fitting the
data.

4 Maximum-Likelihood Estimator (MLE): This chooses a value of the power
law exponent  such that the likelihood that the data came from the cor-
responding power law distribution is maximized. Goldstein et al [45]
find that it gives good unbiased estimates of .

5 The Hill statistic: Hill [48] gives an easily computable estimator, that
seems to give reliable results [66]. However, it also needs to be told
where the tail of the distribution begins.

6 Fitting only to extreme-value data: Feuerverger and Hall [44] propose
another estimator which is claimed to reduce bias compared to the Hill
statistic without significantly increasing variance. Again, the user must
provide an estimate of where the tail begins, but the authors claim that
their method is robust against different choices for this value.

7 Non-parametric estimators: Crovella and Taqqu [31] propose a non-
parametric method for estimating the power law exponent without re-
quiring an estimate of the beginning of the power law tail. While there
are no theoretical results on the variance or bias of this estimator, the
authors empirically find that accuracy increases with increasing dataset
size, and that it is comparable to the Hill statistic.

Checking for goodness of fit The correlation coefficient has typically been used
as an informal measure of the goodness of fit of the degree distribution to a
power law. Recently, there has been some work on developing statistical “hy-
pothesis testing” methods to do this more formally. Beirlant et al. [15] derive
a bias-corrected Jackson statistic for measuring goodness of fit of the data to
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a generalized Pareto distribution. Goldstein et al. [45] propose a Kolmogorov-
Smirnov test to determine the fit. Such measures need to be used more often in
the empirical studies of graph datasets.

Examples of power laws in the real world. Examples of power law degree
distributions include the Internet AS1 graph with exponent 2.1 − 2.2 [43], the
Internet router graph with exponent sim 2.48 [43, 46], the in-degree and out-
degree distributions of subsets of the WWW with exponents 2.1 and 2.38−2.72
respectively [13, 54, 24], the in-degree distribution of the African web graph
with exponent 1.92 [19], a citation graph with exponent 3 [76], distributions
of website sizes and traffic [2], and many others. Newman [66] provides a
comprehensive list of such work.

Deviations from Power Laws.

Informal description. While power laws appear in a large number of
graphs, deviations from a pure power law are sometimes observed. We discuss
these below.

Detailed description. Pennock et al. [75] and others have observed devia-
tions from a pure power law distribution in several datasets. Two of the more
common deviations are exponential cutoffs and lognormals.

Exponential cutoffs Sometimes, the distribution looks like a power law over
the lower range of values along the x-axis, but decays very fast for higher val-
ues. Often, this decay is exponential, and this is usually called an exponential
cutoff:

y(x = k) ∝ e−k/�k− (3.5)

where e−k/� is the exponential cutoff term and k− is the power law term.
Amaral et al. [10] find such behaviors in the electric power-grid graph of South-
ern California and the network of airports, the vertices being airports and the
links being non-stop connections between them. They offer two possible ex-
planations for the existence of such cutoffs. One, high-degree nodes might
have taken a long time to acquire all their edges and now might be “aged”,
and this might lead them to attract fewer new edges (for example, older actors
might act in fewer movies). Two, high-degree nodes might end up reaching
their “capacity” to handle new edges; this might be the case for airports where
airlines prefer a small number of high-degree hubs for economic reasons, but
are constrained by limited airport capacity.

Lognormals or the “DGX” distribution Pennock et al. [75] recently found
while the whole WWW does exhibit power law degree distributions, subsets of
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the WWW (such as university homepages and newspaper homepages) deviate
significantly. They observed unimodal distributions on the log-log scale. Sim-
ilar distributions were studied by Bi et al. [17], who found that a discrete trun-
cated lognormal (called the Discrete Gaussian Exponential or “DGX” by the
authors) gives a very good fit. A lognormal is a distribution whose logarithm
is a Gaussian; it looks like a truncated parabola in log-log scales. The DGX
distribution extends the lognormal to discrete distributions (which is what we
get in degree distributions), and can be expressed by the formula:

y(x = k) =
A(�, �)

k
exp

[
−(ln k − �)2

2�2

]
k = 1, 2, . . . (3.6)

where � and � are parameters andA(�, �) is a constant (used for normalization
if y(x) is a probability distribution). The DGX distribution has been used to fit
the degree distribution of a bipartite “clickstream” graph linking websites and
users (Figure 3.1(c)), telecommunications and other data.

Examples of deviations from power laws in the real world Several data sets
have shown deviations from a pure power law [10, 75, 17, 62]: examples in-
clude the electric power-grid of Southern California, the network of airports,
several topic-based subsets of the WWW, Web “clickstream” data, sales data
in retail chains, file size distributions, and phone usage data.

2.2 Small Diameters

Informal description:. Travers and Milgram [80] conducted a famous ex-
periment where participants were asked to reach a randomly assigned target
individual by sending a chain letter. They found that for all the chains that
completed, the average length of such chains was six, which is a very small
number considering the large population the participants and targets were cho-
sen from. This leads us to believe in the concept of “six degrees of separation”:
the diameter of a graph is an attempt to capture exactly this.

Detailed description. Several (often related) terms have been used to
describe the idea of the “diameter” of a graph:

Expansion and the “hop-plot”: Tangmunarunkit et al. [78] use a well-
known metric from theoretical computer science called “expansion,”
which measures the rate of increase of neighborhood with increasing
ℎ. This has been called the “hop-plot” elsewhere [43].

Definition 3.3 (Hop-plot). Starting from a node u in the graph, we find
the number of nodes Nℎ(u) in a neighborhood of ℎ hops. We repeat this
starting from each node in the graph, and sum the results to find the total
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Figure 3.2. Hop-plot and effective diameter This is the hop-plot of the Epinions graph [34, 28]. We
see that the number of reachable pairs of nodes flattens out at around 6 hops; thus the effective
diameter of this graph is 6.

neighborhood size Nℎ for ℎ hops (Nℎ =
∑

uNℎ(u)). The hop-plot is
just the plot of Nℎ versus ℎ.

Effective diameter or Eccentricity: The hop-plot can be used to calculate
the effective diameter (also called the eccentricity) of the graph.

Definition 3.4 (Effective diameter). This is the minimum number of
hops in which some fraction (say, 90%) of all connected pairs of nodes
can reach each other [79].

Figure 3.2 shows the hop-plot and effective diameter of an example
graph.

Characteristic path length: For each node in the graph, consider the
shortest paths from it to every other node in the graph. Take the average
length of all these paths. Now, consider the average path lengths for all
possible starting nodes, and take their median. This is the characteristic
path length [25].

Average diameter: This is calculated in the same way as the characteris-
tic path length, except that we take the mean of the average shortest path
lengths over all nodes, instead of the median.

While the use of “expansion” as a metric is somewhat vague2, most of the
other metrics are quite similar. The advantage of eccentricity is that its defini-
tion works, as is, even for disconnected graphs, whereas we must consider only
the largest component for the characteristic and average diameters. Character-
istic path length and eccentricity are less vulnerable to outliers than average
diameter, but average diameter might be the better if we want worst case anal-
ysis.

A concept related to the hop-plot is that of the hop-exponent:
Faloutsos et al. [43] conjecture that for many graphs, the neighborhood sizeNℎ
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grows exponentially with the number of hops ℎ. In other words, Nℎ = cℎℋ

for ℎ much less than the diameter of the graph. They call the constant ℋ the
hop-exponent. However, the diameter is so small for many graphs that there
are too few points in the hop-plot for this premise to be verified and to calculate
the hop-exponent with any accuracy.

Computational issues. One major problem with finding the diameter is
the computational cost: all the definitions essentially require computing the
“neighborhood size” of each node in the graph. One approach is to use re-
peated matrix multiplications on the adjacency matrix of the graph; however,
this takes asymptotically O(N2.88) time and O(N2) memory space. Another
technique is to do breadth-first searches from each node of the graph. This
takes O(N +E) space but requires O(NE) time. Another issue with breadth-
first search is that edges are not accessed sequentially, which can lead to terrible
performance on disk-resident graphs. Palmer et al. [71] find that randomized
breadth-first search algorithms are also ill-suited for large graphs, and they pro-
vide a randomized algorithm for finding the hop-plot which takesO((N+E)d)
time and O(N) space (apart from the storage for the graph itself), where N is
the number of nodes, E the number of edges and d the diameter of the graph
(typically very small). Their algorithm offers provable bounds on the quality
of the approximated result, and requires only sequential scans over the data.
They find the technique to be far faster than exact computation, and providing
much better estimates than other schemes like sampling.

Examples in the real world. The diameters of several naturally occur-
ring graphs have been calculated, and in almost all cases they are very small
compared to the graph size. Faloutsos et al. [43] find an effective diameter of
around 4 for the Internet AS level graph and around 12 for the Router level
graph. Govindan and Tangmunarunkit [46] find a 97%-effective diameter of
around 15 for the Internet Router graph. Broder et al. [24] find that the av-
erage path length in the WWW (when a path exists at all) is about 16 if we
consider the directions of links, and around 7 if all edges are considered to be
undirected. Albert et al. [8] find the average diameter of the webpages in the
nd.edu domain to be 11.2. Watts and Strogatz [83] find the average diameters
of the power grid and the network of actors to be 18.7 and 3.65 respectively.
Many other such examples can be found in the literature; Tables 1 and 2 of [7]
and table 3.1 of [65] list some such work.

2.3 Other Static Graph Patterns

Apart from power laws and small diameters, some other patterns have been
observed in large real-world graphs. These include the resilience of such



80 MANAGING AND MINING GRAPH DATA

graphs to random failures, and correlations found in the joint degree distri-
butions of the graphs. Additionally, we observe structural patterns in the edge
weights in static snapshots of graphs. We will explore these topics below.

Resilience.

Informal description. The resilience of a graph is a measure of its ro-
bustness to node or edge failures. Many real-world graphs are resilient against
random failures but vulnerable to targeted attacks.

Detailed description. There are at least two definitions of resilience:

Tangmunarunkit et al. [78] define resilience as a function of the number
of nodes n: the resilience R(n) is the “minimum cut-set” size within
an n-node ball around any node in the graph (a ball around a node
X refers to a group of nodes within some fixed number of hops from
node X). The “minimum cut-set” is the minimum number of edges that
need to be cut to get two disconnected components of roughly equal
size; intuitively, if this value is large, then it is hard to disconnect the
graph and disrupt communications between its nodes, implying higher
resilience. For example, a 2D grid graph has R(n) ∝ √n while a tree
has R(n) = 1; thus, a tree is less resilient than a grid.

Resilience can be related to the graph diameter: a graph whose diam-
eter does not increase much on node or edge removal has higher re-
silience [71, 9].

Computation issues. Calculating the “minimum cut-set” size is NP-hard,
but approximate algorithms exist [49]. Computing the graph diameter is also
costly, but fast randomized algorithms exist [71].

Examples in the real world. In general, most real-world networks appear
to be resilient against random node/edge removals, but are susceptible to tar-
geted attacks: examples include the Internet Router-level and AS-level graphs,
as well as the WWW [71, 9, 78].

Patterns in weighted graphs.

Informal description. Edges in a graph often have edge weights. For
instance, the size of packets transferred in a computer network, or length of
phone calls (in seconds) in a phone-call network. These edge weights often
follow patterns, as described in [59] and [5].
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Detailed description. The first pattern we observe is the Weight Power
Law (WPL). Let E(t), W (t) be the number of edges and total weight of a
graph, at time t. They, they follow a power law

W (t) = E(t)w

where w is the weight exponent.
The weight exponent w ranges from 1.01 to 1.5 for the real graphs studied

in [59], which included blog graphs, computer network graphs, and political
campaign donation graphs, suggesting that this pattern is universal to real so-
cial network-like graphs.

In other words, the more edges that are added to the graph, superlinearly
more weight is added to the graph. This is counterintuitive, as one would
expect the average weight-per-edge to remain constant or to increase linearly.

We find the same pattern for each node. If a node i has out-degree outi, its
out-weight outwi exhibits a “fortification effect”– there will be a power-law
relationship between its degree and weight. We call this the Snapshot Power
Law (SPL), and it applies to both in- and out- degrees.

Specifically, at a given point in time, we plot the scatterplot of the in/out
weight versus the in/out degree, for all the nodes in the graph, at a given time
snapshot. Here, every point represents a node and the x and y coordinates are
its degree and total weight, respectively. To achieve a good fit, we bucketize
the x axis with logarithmic binning [64], and, for each bin, we compute the
median y.

Examples in the real world. We find these patterns apply in several real
graphs, including network traffic, blogs, and even political campaign dona-
tions. A plot of WPL and SPL may be found in Figure 3.3.

Several other weighted power laws, such as the relationship between the
eigenvalues of the graph and the weights of the edges, may be found in [5].

Other metrics of measurement. We have discussed a number of patterns
found in graphs, many more can be found in the literature. While most of the
focus regarding node degrees has fallen on the in-degree and the out-degree
distributions, there are “higher-order” statistics that could also be considered.
We combine all these statistics under the term joint distributions, differentiat-
ing them from the degree-distributions which are the marginal distributions.
Some of these statistics include:

In and out degree correlation The in and out degrees might be indepen-
dent, or they could be (anti)correlated. Newman et al. [67] find a positive
correlation in email networks, that is, the email addresses of individuals
with large address books appear in the address books of many others.
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However, it is hard to measure this with good accuracy. Calculating this
well would require a lot of data, and it might be still be inaccurate for
high-degree nodes (which, due to power law degree distributions, are
quite rare).

Average neighbor degree We can measure the average degree dav(i)
of the neighbors of node i, and plot it against its degree k(i). Pastor-
Satorras et al. [74] find that for the Internet AS level graph, this gives a
power law with exponent 0.5 (that is, dav(i) ∝ k(i)−0.5).

Neighbor degree correlation We could calculate the joint degree distri-
butions of adjacent nodes; however this is again hard to measure accu-
rately.

2.4 Patterns in Evolving Graphs

The search for graph patterns has focused primarily on static patterns, which
can be extracted from one snapshot of the graph at some time instant. Many
graphs, however, evolve over time (such as the Internet and the WWW) and
only recently have researchers started looking for the patterns of graph evolu-
tion. Some key patterns have emerged:

Densification Power Law: Leskovec et al. [58] found that several real
graphs grow over time according to a power law: the number of nodes
N(t) at time t is related to the number of edges E(t) by the equation:

E(t) ∝ N(t)� 1 ≤ � ≤ 2 (3.7)

where the parameter � is called the Densification Power Law exponent,
and remains stable over time. They also find that this “law” exists for
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Figure 3.4. The Densification Power Law The number of edges E(t) is plotted against the number
of nodes N(t) on log-log scales for (a) the arXiv citation graph, (b) the patents citation graph, and
(c) the Internet Autonomous Systems graph. All of these grow over time, and the growth follows a
power law in all three cases [58].

several different graphs, such as paper citations, patent citations, and the
Internet AS graph. This quantifies earlier empirical observations that the
average degree of a graph increases over time [14]. It also agrees with
theoretical results showing that only a law like Equation 3.7 can maintain
the power-law degree distribution of a graph as more nodes and edges
get added over time [37]. Figure 3.4 demonstrates the densification law
for several real-world networks.

Shrinking Diameters: Leskovec et al. [58] also find that the effective di-
ameters (definition 3.4) of graphs are actually shrinking over time, even
though the graphs themselves are growing. This can be observed after
the gelling point– before a certain point a graph is still building to nor-
mal properties. This is illustrated in Figure 3.5(a)– for the first few time
steps the diameter grows, but it quickly peaks and begins shrinking.

Component Size Laws As a graph evolves, a giant connected component
forms: that is, most nodes are reachable to each other through some
path. This phenomenon is present both in random and real graphs. What
is also found, however, is that once the largest component gels and edges
continue to be added, the sizes of the next-largest connected components
remain constant or oscillating. This phenomenon is shown in Figure 3.5,
and discussed in [59].

Patterns in Timings: There are also several interesting patterns regarding
the timestamps of edge additions. We find that edge weight additions to
a graph are bursty: over time, edges are not added to the overall graph
uniformly over time, but are uneven yet self-similar [59]. We illustrate
this in Figure 3.6. However, in the case of many graphs, timeliness of
a particular node is important in its edge additions. As shown in [56],
incoming edges to a blog post decay with a surprising power-law expo-
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nent of -1.5, rather than exponentially or linearly as one might expect.
This is shown in Figure 3.6.

These surprising patterns are probably just the tip of the iceberg, and there may
be many other patterns hidden in the dynamics of graph growth.

2.5 The Structure of Specific Graphs

While most graphs found naturally share many features (such as the small-
world phenomenon), there are some specifics associated with each. These
might reflect properties or constraints of the domain to which the graph be-
longs. We will discuss some well-known graphs and their specific features
below.

The Internet. The networking community has studied the structure of
the Internet for a long time. In general, it can be viewed as a collection of
interconnected routing domains; each domain is a group of nodes (such routers,
switches etc.) under a single technical administration [26]. These domains can
be considered as either a stub domain (which only carries traffic originating or
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Hanging nodes

Figure 3.7. The Internet as a “Jellyfish” The Internet AS-level graph can be thought of as a core,
surrounded by concentric layers around the core. There are many one-degree nodes that hang
off the core and each of the layers.

terminating in one of its members) or a transit domain (which can carry any
traffic). Example stubs include campus networks, or small interconnections of
Local Area Networks (LANs). An example transit domain would be a set of
backbone nodes over a large area, such as a wide-area network (WAN).

The basic idea is that stubs connect nodes locally, while transit domains
interconnect the stubs, thus allowing the flow of traffic between nodes from
different stubs (usually distant nodes). This imposes a hierarchy in the In-
ternet structure, with transit domains at the top, each connecting several stub
domains, each of which connects several LANs.

Apart from hierarchy, another feature of the Internet topology is its apparent
Jellyfish structure at the AS level (Figure 3.7), found by Tauro et al. [79]. This
consists of:

A core, consisting of the highest-degree node and the clique it belongs
to; this usually has 8–13 nodes.

Layers around the core. These are organized as concentric circles around
the core; layers further from the core have lower importance.

Hanging nodes, representing one-degree nodes linked to nodes in the
core or the outer layers. The authors find such nodes to be a large per-
centage (about 40–45%) of the graph.

The World Wide Web (WWW). Broder et al. [24] find that the Web graph
is described well by a “bowtie” structure (Figure 3.8(a)). They find that the
Web can be broken in 4 approximately equal-sized pieces. The core of the
bowtie is the Strongly Connected Component (SCC) of the graph: each node
in the SCC has a directed path to any other node in the SCC. Then, there is
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the IN component: each node in the IN component has a directed path to all
the nodes in the SCC. Similarly, there is an OUT component, where each node
can be reached by directed paths from the SCC. Apart from these, there are
webpages which can reach some pages in OUT and can be reached from pages
in IN without going through the SCC; these are the TENDRILS. Occasionally,
a tendril can connect nodes in IN and OUT; the tendril is called a TUBE in this
case. The remainder of the webpages fall in disconnected components. A
similar study focused on only the Chilean part of the Web graph found that
the disconnected component is actually very large (nearly 50% of the graph
size) [11].

Dill et al. [33] extend this view of the Web by considering subgraphs of the
WWW at different scales (Figure 3.8(b)). These subgraphs are groups of web-
pages sharing some common trait, such as content or geographical location.
They have several remarkable findings:

1 Recursive bowtie structure: Each of these subgraphs forms a bowtie of
its own. Thus, the Web graph can be thought of as a hierarchy of bowties,
each representing a specific subgraph.

2 Ease of navigation: The SCC components of all these bowties are tightly
connected together via the SCC of the whole Web graph. This provides
a navigational backbone for the Web: starting from a webpage in one
bowtie, we can click to its SCC, then go via the SCC of the entire Web to
the destination bowtie.

3 Resilience: The union of a random collection of subgraphs of the Web
has a large SCC component, meaning that the SCCs of the individual
subgraphs have strong connections to other SCCs. Thus, the Web graph
is very resilient to node deletions and does not depend on the existence
of large taxonomies such as yahoo.com; there are several alternate paths
between nodes in the SCC.

We have discussed several patterns occurring in real graphs, and given some
examples. Next, we would like to know, how can we re-create these patterns?
What sort of mechanisms can help explain real-world behaviors? To answer
these questions we turn to graph generators.

3. Graph Generators

Graph generators allow us to create synthetic graphs, which can then be
used for, say, simulation studies. But when is such a generated graph “realis-
tic?” This happens when the synthetic graph matches all (or at least several) of
the patterns mentioned in the previous section. Graph generators can provide
insight into graph creation, by telling us which processes can (or cannot) lead
to the development of certain patterns.
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Graph models and generators can be broadly classified into five categories:

1 Random graph models: The graphs are generated by a random process.
The basic random graph model has attracted a lot of research interest
due to its phase transition properties.

2 Preferential attachment models: In these models, the “rich” get “richer”
as the network grows, leading to power law effects. Some of today’s
most popular models belong to this class.

3 Optimization-based models: Here, power laws are shown to evolve when
risks are minimized using limited resources. This may be particularly
relevant in the case of real-world networks that are constrained by geog-
raphy. Together with the preferential attachment models, optimization-
based models try to provide mechanisms that automatically lead to power
laws.

4 Tensor-based models: Because many patterns in real graphs are self-
similar, one can generate realistic graphs by using self-similar mecha-
nisms through tensor multiplication.

5 Internet-specific models As the Internet is one of the most important
graphs in computer science, special-purpose generators have been de-
veloped to model its special features. These are often hybrids, using
ideas from the other categories and melding them with Internet-specific
requirements.

We will discuss graph generators from each of these categories in this sec-
tion. This is not a complete list, but we believe it includes most of the key ideas
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Figure 3.9. The Erd-os-R«enyi model The black circles represent the nodes of the graph. Every
possible edge occurs with equal probability.

from the current literature. For each group of generators, we will try to provide
the specific problem they aim to solve, followed by a brief description of the
generator itself and its properties, and any open questions. We will also note
variants on each major generator and briefly address their properties. While we
will not discuss in detail all generators, we provide citations and a summary.

3.1 Random Graph Models

Random graphs are generated by picking nodes under some random prob-
ability distribution and then connecting them by edges. We first look at the
basic Erd-os-R«enyi model, which was the first to be studied thoroughly [40],
and then we discuss modern variants of the model.

The Erd-os-R«enyi Random Graph Model.

Problem being solved. Graph theory owes much of its origins to the
pioneering work of Erd-os and R«enyi in the 1960s [40, 41]. Their random graph
model was the first and the simplest model for generating a graph.

Description and Properties. We start with N nodes, and for every pair of
nodes, an edge is added between them with probability p (as in Figure 3.9).
This defines a set of graphs GN,p, all of which have the same parameters
(N, p).

Degree Distribution The probability of a vertex having degree k is

pk =

(
N

k

)
pk(1− p)N−k ≈ zke−z

k!
with z = p(N − 1) (3.8)
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For this reason, this model is often called the “Poisson” model.

Size of the largest component Many properties of this model can be solved ex-
actly in the limit of largeN . A property is defined to hold for parameters (N, p)
if the probability that the property holds on every graph in GN,p approaches 1
as N →∞. One of the most noted properties concerns the size of the largest
component (subgraph) of the graph. For a low value of p, the graphs in GN,p

have low density with few edges and all the components are small, having an
exponential size distribution and finite mean size. However, with a high value
of p, the graphs have a giant component with O(N) of the nodes in the graph
belonging to this component. The rest of the components again have an ex-
ponential size distribution with finite mean size. The changeover (called the
phase transition) between these two regimes occurs at p = 1

N . A heuristic
argument for this is given below, and can be skipped by the reader.

Finding the phase transition point Let the fraction of nodes not belonging to
the giant component be u. Thus, the probability of random node not belonging
to the giant component is also u. But the neighbors of this node also do not
belong to the giant component. If there are k neighbors, then the probability
of this happening is uk. Considering all degrees k, we get

u =

∞∑

k=0

pku
k

= e−z
∞∑

k=0

(uz)k

k!
(using Eq 3.8)

= e−zeuz = ez(u−1) (3.9)

Thus, the fraction of nodes in the giant component is

S = 1− u = 1− e−zS (3.10)

Equation 3.10 has no closed-form solutions, but we can see that when z < 1,
the only solution is S = 0 (because e−x > 1− x for x ∈ (0, 1)). When z > 1,
we can have a solution for S, and this is the size of the giant component. The
phase transition occurs at z = p(N−1) = 1. Thus, a giant component appears
only when p scales faster than N−1 as N increases.

1P (k) ∝ k−2.255/ ln k; [18] study a special case, but other values of the exponent  may be possible with
similar models.
2Inet-3.0 matches the Internet AS graph very well, but formal results on the degree-distribution are not
available.
3 = 1 + 1

�
as k → ∞ (Eq. 3.16)
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Tree-shaped subgraphs Similar results hold for the appearance of trees of dif-
ferent sizes in the graph. The critical probability at which almost every graph
contains a subgraph of k nodes and l edges is achieved when p scales as N z

where z = −k
l [20]. Thus, for z < −3

2 , almost all graphs consist of isolated

nodes and edges; when z passes through −3
2 , trees of order 3 suddenly appear,

and so on.

Diameter Random graphs have a diameter concentrated around logN/ log z,
where z is the average degree of the nodes in the graph. Thus, the diameter
grows slowly as the number of nodes increases.

Clustering coefficient The probability that any two neighbors of a node are

themselves connected is the connection probability p = <k>
N , where < k > is

the average node degree. Therefore, the clustering coefficient is:

CCrandom = p =
< k >

N
(3.11)

Open questions and discussion. It is hard to exaggerate the importance
of the Erd-os-R«enyi model in the development of modern graph theory. Even
a simple graph generation method has been shown to exhibit phase transitions
and criticality. Many mathematical techniques for the analysis of graph prop-
erties were first developed for the random graph model.

However, even though random graphs exhibit such interesting phenomena,
they do not match real-world graphs particularly well. Their degree distribu-
tion is Poisson (as shown by Equation 3.8), which has a very different shape
from power-laws or lognormals. There are no correlations between the de-
grees of adjacent nodes, nor does it show any form of “community” structure
(which often shows up in real graphs like the WWW). Also, according to Equa-
tion 3.11, CCrandom

<k> = 1
N ; but for many real-world graphs, CC

<k> is independent
of N (See figure 9 from [7]).

Thus, even though the Erd-os-R«enyi random graph model has proven to be
very useful in the early development of this field, it is not used in most of
the recent work on modeling real graphs. To address some of these issues, re-
searchers have extended the model to the so-called Generalized Random Graph
Models, where the degree distribution can be set by the user (typically, set to
be a power law).

Analytic techniques for studying random graphs involve generating func-
tions. A good reference is by Wilf [85].

Generalized Random Graph Models. Erd-os-R«enyi graphs result in a
Poisson degree distribution, which often conflicts with the degree distributions
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of many real-world graphs. Generalized random graph models extend the basic
random graph model to allow arbitrary degree distributions.

Given a degree distribution, we can randomly assign a degree to each node
of the graph so as to match the given distribution. Edges are formed by ran-
domly linking two nodes till no node has extra degrees left. We describe
two different models below: the PLRG model and the Exponential Cutoffs
model. These differ only in the degree distributions used; the rest of the graph-
generation process remains the same. The graphs thus created can, in gen-
eral, include self-graphs and multigraphs (having multiple edges between two
nodes).

The PLRG model One of the obvious modifications to the Erd-os-R«enyi model
is to change the degree distribution from Poisson to power-law. One such
model is the Power-Law Random Graph (PLRG) model of Aiello et al. [3]
(a similar model is the Power Law Out Degree (PLOD) model of Palmer and
Steffan [72]). There are two parameters: � and �. The number of nodes of
degree k is given by e�/k� .

By construction, the degree distribution is specifically a power law:

pk ∝ k−� (3.12)

where � is the power-law exponent.
The authors show that graphs generated by this model can have several pos-

sible properties, based only on the value of �. When � < 1, the graph is al-
most surely connected. For 1 < � < 2, a giant component exists, and smaller
components are of size O(1). For 2 < � < �0 sim 3.48, the giant component
exists and the smaller components are of size O(logN). At � = �0, the
smaller components are of size O(logN/ log logN). For � > �0, no giant
component exists. Thus, for the giant component, we have a phase transition
at � = �0 = 3.48; there is also a change in the size of the smaller components
at � = 2.

The Exponential cutoffs model Another generalized random graph model is
due to Newman et al. [69]. Here, the probability that a node has k edges is
given by

pk = Ck−e−k/� (3.13)

where C,  and � are constants.
This model has a power law (the k− term) augmented by an exponential

cutoff (the e−k/� term). The exponential cutoff, which is believed to be present
in some social and biological networks, reduces the heavy-tail behavior of a
pure power-law degree distribution. The results of this model agree with those
of [3] when �→∞.
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Analytic expressions are known for the average path length of this model,
but this typically tends to be somewhat less than that in real-world graphs [7].

Apart from PLRG and the exponential cutoffs model, some other related
models have also been proposed, a notable model generalization being dot-
product models [70]. Another important model is that of Aiello et al. [4], who
assign weights to nodes and then form edges probabilistically based on the
product of the weights of their end-points. The exact mechanics are, however,
close to preferential attachment, and we will discuss later.

Similar models have also been proposed for generating directed and bipartite
random graphs. Recent work has provided analytical results for the sizes of the
strongly connected components and cycles in such graphs [30, 37]. We do not
discuss these any further; the interested reader is referred to [69].

Open questions and discussion. Generalized random graph models retain
the simplicity and ease of analysis of the Erd-os-R«enyi model, while removing
one of its weaknesses: the unrealistic Poisson degree distribution. However,
most such models only attempt to match the degree distribution of real graphs,
and no other patterns. For example, in most random graph models, the proba-
bility that two neighbors of a node are themselves connected goes as O(N−1).
This is exactly the clustering coefficient of the graph, and goes to zero for
large N ; but for many real-world graphs, CC

<k> is independent of N (See fig-
ure 9 from [7]). Also, many real world graphs (such as the WWW) exhibit
the existence of communities of nodes, with stronger ties within the commu-
nity than outside; random graphs do not appear to show any such behavior.
Further work is needed to accommodate these patterns into the random graph
generation process.

3.2 Preferential Attachment and Variants

Problem being solved. Generalized random graph models try to model the
power law or other degree distribution of real graphs. However, they do not
make any statement about the processes generating the network. The search for
a mechanism for network generation was a major factor in fueling the growth
of the preferential attachment models, which we discuss below.

Basic Preferential Attachment. In the mid-1950s, Herbert Simon [77]
showed that power law tails arise when “the rich get richer.” Derek Price
applied this idea (which he called cumulative advantage) to the case of net-
works [32], as follows. We grow a network by adding vertices over time. Each
vertex gets a certain out-degree, which may be different for different vertices
but whose mean remains at a constant value m over time. Each outgoing edge
from the new vertex connects to an old vertex with a probability proportional
to the in-degree of the old vertex. This, however, leads to a problem since all
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Figure 3.10. The Barab«asi-Albert model New nodes are added; each new node prefers to connect
to existing nodes of high degree. The dashed lines show some possible edges for the new node,
with thicker lines implying higher probability.

nodes initially start off with in-degree zero. Price corrected this by adding a
constant to the current in-degree of a node in the probability term, to get

P (edge to existing vertex v) =
k(v) + k0∑
i(k(i) + k0)

where k(i) represents the current in-degree of an existing node i, and k0 is a
constant.

A similar model was proposed by Barab«asi and Albert [13]. It has been a
very influential model, and formed the basis for a large body of further work.
Hence, we will look at the Barab«asi-Albert model (henceforth called the BA
model) in detail.

Description of the BA model. The BA model proposes that structure
emerges in network topologies as the result of two processes:

1 Growth: Contrary to several other existing models (such as random
graph models) which keep a fixed number of nodes during the process
of network formation, the BA model starts off with a small set of nodes
and grows the network as nodes and edges are added over time.

2 Preferential Attachment: This is the same as the “rich get richer” idea.
The probability of connecting to a node is proportional to the current
degree of that node.

Using these principles, the BA model generates an undirected network as
follows. The network starts with m0 nodes, and grows in stages. In each
stage, one node is added along with m edges which link the new node to m
existing nodes (Figure 3.10). The probability of choosing an existing node as
an endpoint for these edges is given by

P (edge to existing vertex v) =
k(v)∑
i k(i)

(3.14)
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where k(i) is the degree of node i. Note that since the generated network is
undirected, we do not need to distinguish between out-degrees and in-degrees.
The effect of this equation is that nodes which already have more edges con-
necting to them, get even more edges. This represents the “rich get richer”
scenario.

There are a few differences from Price’s model. One is that the number of
edges per new node is fixed at m (a positive integer); in Price’s model only
the mean number of added edges needed to be m. However, the major differ-
ence is that while Price’s model generates a directed network, the BA model
is undirected. This avoids the problem of the initial in-degree of nodes being
zero; however, many real graphs are directed, and the BA model fails to model
this important feature.

Properties of the BA model. We will now discuss some of the known
properties of the BA model. These include the degree distribution, diameter,
and correlations hidden in the model.

Degree distribution The degree distribution of the BA model [36] is given by:

pk ≈ k−3

for large k. In other words, the degree distribution has a power law “tail” with
exponent 3, independent of the value of m.

Diameter Bollob«as and Riordan [22] show that for largeN , the diameter grows
as O(logN) for m = 1, and as O(logN/ log logN) for m ≥ 2. Thus, this
model displays the small-world effect: the distance between two nodes is, on
average, far less than the total number of nodes in the graph.

Correlations between variables Krapivsky and Redner [52] find two corre-
lations in the BA model. First, they find that degree and age are positively
correlated: older nodes have higher mean degree. The second correlation is in
the degrees of neighboring nodes, so that nodes with similar degree are more
likely to be connected. However, this asymptotically goes to 0 as N →∞.

Open questions and discussion. The twin ideas of growth and preferential
attachment are definitely an immense contribution to the understanding of net-
work generation processes. However, the BA model attempts to explain graph
structure using only these two factors; most real-world graphs are probably
generated by a slew of different factors. The price for this is some inflexibility
in graph properties of the BA model.

The power-law exponent of the degree distribution is fixed at  = 3, and
many real-world graphs deviate from this value.
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The BA model generates undirected graphs only; this prevents the model
from being used for the many naturally occurring directed graphs.

While Krapivsky and Redner show that the BA model should have cor-
relations between node degree and node age (discussed above), Adamic
and Huberman [1] apparently find no such correlations in the WWW.

The generated graphs have exactly one connected component. How-
ever, many real graphs have several isolated components. For example,
websites for companies often have private set of webpages for employ-
ees/projects only. These are a part of the WWW, but there are no paths
to those webpages from outside the set. Military routers in the Internet
router topology are another example.

The BA model has a constant average degree of m; however, the average
degree of some graphs (such as citation networks) actually increases over
time according to a Densification Power Law [14, 58, 37]

The diameter of the BA model increases as N increases; however, many
graphs exhibit shrinking diameters.

Also, further work is needed to confirm the existence or absence of a commu-
nity structure in the generated graphs.

While the basic BA model does have these limitations, its simplicity and
power make it an excellent base on which to build extended models. In fact,
the bulk of graph generators in use today can probably trace their lineage back
to this model. In the next few sections, we will look at some of these extensions
and variations; as we will see, most of these are aimed at removing one or the
other of the aforementioned limitations.

Variants on Preferential Attachment.

Initial attractiveness. While the BA model generates graphs with a power
law degree distribution, the power law exponent is stuck at  = 3. Dorogovt-
sev et al. [36, 35] propose a simple one-parameter extension of the basic model
which allows  ∈ [2,∞). Other methods, such as the AB model described
later, also do this, but they require more parameters. In initial attractiveness,
an extra “initial attractiveness” parameter is added which governs the proba-
bility of “young” sites gaining new edges. Adjusting this parameter will vary
the degree distribution, adding significant flexibility to the BA model.

Internal edges and Rewiring. Albert and Barab«asi [6] proposed another
method to add flexibility in the power law exponent. In the original BA model,
one node and m edges are added to the graph every iteration. Albert and
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Figure 3.11. The edge copying model New nodes can choose to copy the edges of an existing
node. This models the copying of links from other peoples’ websites to create a new website.

Barab«asi decouple this addition of nodes and edges, and also extend the model
by introducing the concept of edge rewiring. Starting with a small set of m0

nodes, the resulting model (henceforth called the AB model) combines 3 pro-
cesses: adding internal edges, removing/reconnecting (“rewiring”) edges, and
adding new nodes with some edges. This model exhibits either a power-law or
exponential degree distribution, depending on the parameters used.

Edge Copying Models. Several graphs show community behavior, such as
topic-based communities of websites on the WWW. Kleinberg et al. [51] and
Kumar et al. [54] try to model this by using the intuition that most webpage
creators will be familiar with webpages on topics of interest to them, and so
when they create new webpages, they will link to some of these existing topical
webpages. Thus, most new webpages will enhance the “topical community”
effect of the WWW.

The Kleinberg [51] generator creates a directed graph. In this generator,
nodes are independently created and deleted in each distribution, and edges
incident on deleted nodes are also removed. Also, edges may be added to or
deleted from existing nodes. Then, there is the key edge copying mechanism,
where a node may copy edges from another node. An illustration is shown
in Figure 3.11. This is similar to preferential attachment because the pages
with high-degree will be linked to by many other pages, and so have a greater
chance of getting copied.

Kumar et al. [54] propose a very similar model. However, there are some
important differences. Whenever a new node is added, only one new edge is
added. The copying process takes place when head or tail of some existing
edge gets chosen as the endpoint of the new edge. This model may serve to
create “communities” as there may be important nodes on each “topic”.

This and similar models by analyzed by Kumar et al. [53]. In-degree distri-
bution of Kleinberg’s model follows a power law, and both in-and out-degree
of Kumar et al.’s model follow power laws.

The Kleinberg model [51] generates a tree; no “back-edges” are formed
from the old nodes to the new nodes. Also, in the model of Kumar et al. [54],
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a fixed fraction of the nodes have zero in-degree or zero out-degree; this might
not be the case for all real-world graphs (see Aiello et al. [4] for related issues).
However, the simple idea of copying edges can clearly lead to both power
laws as well as community effects. “Edge copying” models are, thus, a very
promising direction for future research.

Modifying the preferential attachment equation. Chen et al. [29] had
found the AB model somewhat lacking in modeling the Web. Specifically, they
found that the preference for connecting to high-degree nodes is stronger than
that predicted by linear preferential attachment. Bu and Towsley [25] attempt
to address this issue.

The AB model [6] is changed by removing the edge rewiring process, and
modifying the linear preferential attachment equation of the AB model to show
higher preference for nodes with high degrees (as in [29]). This is called the
GLP (Generalized Linear Preference) model. The degree distribution follows
a power law. Also, they also find empirically that the clustering coefficient
for a GLP graph is much closer to that of the Internet than the BA, AB and
Power-Law Random Graph (PLRG [3]) models.

Others such as Krapivsky and Redner [52] have studied non-linear prefer-
ential attachment, finding this tended to produce degree decay faster than a
power law.

Modeling increasing average degree. The average degree of several real-
world graphs (such as citation graphs) increases over time [37, 14, 58], accord-
ing to a Densification Power Law. Barab«asi et al. [14] attempt to modify the
basic BA model to accommodate this effect. In the model, a new edge chooses
both its endpoints by preferential attachment. The number of internal nodes
added per iteration is proportional to the the current number of nodes in the
graph. Thus, it leads to the phenomenon of accelerated growth: the average
degree of the graph increases linearly over time.

However, the analysis of this model shows that it has two power-law
regimes. The power law exponent is  = 2 for low degrees, and  = 3 for
high degrees. In fact, over a long period of time, the exponent converges to
 = 2.

Node fitness measures. The preferential attachment models noted above
tend to have a correlation between the age of a node and its degree: higher
the age, more the degree [52]. However, Adamic and Huberman find that this
does not hold for the WWW [1]. There are websites which were created late
but still have far higher in-degree than many older websites. Bianconi and
Barab«asi [18] try to model this. Their model attaches a fitness parameter to
each node, which does not change over time. The idea is that even a node
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which is added late could overtake older nodes in terms of degree, if the newer
node has a much higher fitness value.

The authors analyze the case when the fitness parameters are drawn ran-
domly from a uniform [0, 1] distribution. The resulting degree distribution is
a power law with an extra inverse logarithmic factor. For the case where all
fitness values are the same, this model becomes the simple BA model.

Having a node’s popularity depend on its “fitness” intuitively makes a lot of
sense. Further research is needed to determine the distribution of node fitness
values in real-world graphs.

Generalizing preferential attachment. The BA model is undirected. A
simple adaptation to the directed case is: new edges are created to point from
the new nodes to existing nodes chosen preferentially according to their in-
degree. However, the out-degree distribution of this model would not be a
power law. Aiello et al. [4] propose a very general model for generating di-
rected graphs which give power laws for both in-degree and out-degree distri-
butions. A similar model was also proposed by Bollob«as et al. [21]. The work
shows that even a very general version of preferential attachment can lead to
power law degree distributions. Further research is needed to test for all the
other graph patterns, such as diameter, community effects and so on.

PageRank-based preferential attachment. Pandurangan et al. [73] found
that the PageRank [23] values for a snapshot of the Web graph follow a power
law. They propose a model that tries to match this PageRank distribution of
real-world graphs, in addition to the degree distributions. They modify the
basic preferential attachment mechanism by adding a PageRank-based pref-
erential attachment component– not only do edges preferentially connect to
high degree nodes, but also high PageRank nodes. They empirically show that
this model can match both the degree distributions as well as the PageRank
distribution of the Web graph. However, closed-form formulas for the degree
distributions are not provided for this model. The authors also found that the
plain edge-copying model of Kumar et al. [54] could also match the PageR-
ank distribution (in addition to the degree distributions) without specifically
attempting to do so. Thus, this work might be taken to be another alternative
model of the Web.

The Forest Fire model. Leskovec et al. [58] develop a preferential-
attachment based model which matches the Densification Power Law and the
shrinking diameter patterns of graph evolution, in addition to the power law de-
gree distribution. A node chooses an ambassador node uniformly at random,
and then links recursively to the ambassador node’s neighbors.



Graph Mining: Laws and Generators 99

This creates preferential linking without explicitly assigning such probabil-
ity. This method is similar to the edge copying model discussed earlier because
existing links are “copied” to the new node v as the fire spreads. This leads to
a community of nodes, which share similar edges.

The Butterfly model. Most preferential-attachment based models will
form a single connected component, when, in real graphs, there are many
smaller components that evolve and occasionally join with each other. Mc-
Glohon et al. [59] develop a model that addresses this. Like in the Forest Fire
model, there is an ambassador mechanism. However, there is no guarantee of
linkage, so a node may become isolated and form its own new component for
other nodes to join to. Additionally, instead of a single ambassador, a node may
choose multiple ambassadors. This will allow components to join together.

The Butterfly model empirically produces power laws for both in- and out-
degree, as well as reproducing the Densification Power Law and shrinking
diameter. Furthermore, it reproduces oscillating patterns of the next-largest
connected components mentioned earlier.

Deviations from power laws.

Problem being solved. Pennock et al. [75] find that while the WWW
as a whole might exhibit power-law degree distributions, subgraphs of web-
pages belonging to specific categories or topics often show significant devia-
tions from a power law. They attempt to model this deviation from power-law
behavior.

Description and properties. Their model is similar to the BA model,
except for two differences:

Internal edges The m new edges added in each iteration need not be
incident on the new node being added that iteration. Thus, the new edges
could be internal edges.

Combining random and preferential attachment Instead of pure prefer-
ential attachment, the endpoints of new edges are chosen according to
a linear combination of preferential attachment and uniform random at-
tachment. The probability of a node v being chosen as one endpoint of
an edge is given by:

p(v) = �
k(v)

2mt
+ (1− �) 1

m0 + t
(3.15)

Here, k(v) represents the current degree of node v, 2mt is the total num-
ber of edges at time t, (m0 + t) is the current number of nodes at time
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t, and � ∈ [0, 1] is a free parameter. To rephrase the equation, in order
to choose a node as an endpoint for a new edge, we either do prefer-
ential attachment with probability �, or we pick a node at random with
probability (1− �).

One point of interest is that even if a node is added with degree 0, there is
always a chance for it to gain new edges via the uniform random attachment
process. The preferential attachment and uniform attachment parts of Equa-
tion 3.15 represent two different behaviors of webpage creators (according to
the authors):

The preferential attachment term represents adding links which the cre-
ator became aware of because they were popular.

The uniform attachment term represents the case when the author adds a
link because it is relevant to him, and this is irrespective of the popularity
of the linked page. This allows even the poorer sites to gain some edges.

Degree distribution The authors derive a degree distribution function for this
model:

P (k) ∝ (k + c)−1− 1
� (3.16)

where c is a function ofm and �. This gives a power-law of exponent (1+1/�)
in the tail. However, for low degrees, it deviates from the power-law, as the
authors wanted.

Power-law degree distributions have shown up in many real-world graphs.
However, it is clear that deviations in this do show up in practice. This is
one of the few models we are aware of that specifically attempt to model such
deviations, and as such, is a step in the right direction.

Open questions and discussion. This model can match deviations from
power laws in degree distributions. However, further work is needed to test for
other graph patterns, like diameter, community structure and such.

Implementation issues. Here, we will briefly discuss certain implementa-
tion aspects. Consider the BA model. In each iteration, we must choose edge
endpoints according to the linear preferential attachment equation. Naively,
each time we need to add a new edge, we could go over all the existing nodes
and find the probability of choosing each node as an endpoint, based on its cur-
rent degree. However, this would take O(N) time each iteration, and O(N2)
time to generate the entire graph. A better approach [65] is to keep an array:
whenever a new edge is added, its endpoints are appended to the array. Thus,
each node appears in the array as many times as its degree. Whenever we must
choose a node according to preferential attachment, we can choose any cell of
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the array uniformly at random, and the node stored in that cell can be consid-
ered to have been chosen under preferential attachment. This requires O(1)
time for each iteration, and O(N) time to generate the entire graph; however,
it needs extra space to store the edge list.

This technique can be easily extended to the case when the preferential at-
tachment equation involves a constant �, such as P (v) ∝ (k(v) − �) for the
GLP model. If the constant � is a negative integer (say, � = −1 as in the AB
model), we can handle this easily by adding ∣�∣ entries for every existing node
into the array. However, if this is not the case, the method needs to be modified
slightly: with some probability �, the node is chosen according to the sim-
ple preferential attachment equation (like in the BA model). With probability
(1 − �), it is chosen uniformly at random from the set of existing nodes. For
each iteration, the value of � can be chosen so that the final effect is that of
choosing nodes according to the modified preferential attachment equation.

Summary of Preferential Attachment Models. All preferential attach-
ment models use the idea that the “rich get richer”: high-degree nodes attract
more edges, or high-PageRank nodes attract more edges, and so on. This sim-
ple process, along with the idea of network growth over time, automatically
leads to the power-law degree distributions seen in many real-world graphs.
As such, these models made a very important contribution to the field of graph
mining. Still, most of these models appear to suffer from some limitations:
for example, they do not seem to generate any “community” structure in the
graphs they generate. Also, apart from the work of Pennock et al. [75], little
effort has gone into finding reasons for deviations from power-law behaviors
for some graphs. It appears that we need to consider additional processes to
understand and model such characteristics.

3.3 Optimization-based generators

Most of the methods described above have approached power-law de-
gree distributions from the preferential-attachment viewpoint: if the “rich get
richer”, power-laws might result. However, another point of view is that power
laws can result from resource optimizations. There may be a number of con-
straints applied to the models– cost of connections, geographical distance, etc.
We will discuss some models based on optimization of resources next.

The Highly Optimized Tolerance model.

Problem being solved:. Carlson and Doyle [27, 38] have proposed an
optimization-based reason for the existence of power laws in graphs. They say
that power laws may arise in systems due to tradeoffs between yield (or profit),
resources (to prevent a risk from causing damage) and tolerance to risks.
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Description and properties:. As an example, suppose we have a for-
est which is prone to forest fires. Each portion of the forest has a different
chance of starting the fire (say, the dryer parts of the forest are more likely to
catch fire). We wish to minimize the damage by assigning resources such as
firebreaks at different positions in the forest. However, the total available re-
sources are limited. The problem is to place the firebreaks so that the expected
cost of forest fires is minimized.

In this model, called the Highly Optimized Tolerance (HOT) model, we have
n possible events (starting position of a forest fire), each with an associated
probability pi(1 ≤ i ≤ n) (dryer areas have higher probability). Each event
can lead to some loss li, which is a function of the resources ri allocated for
that event: li = f(ri). Also, the total resources are limited:

∑
i ri ≤ R for

some given R. The aim is to minimize the expected cost

J =

{∑

i

pili ∣ li = f(ri),
∑

i

ri ≤ R
}

(3.17)

Degree distribution: The authors show that if we assume that cost and resource

usage are related by a power law li ∝ r�i , then, under certain assumptions
on the probability distribution pi, resources are spent on places having higher
probability of costly events. In fact, resource placement is related to the prob-
ability distribution pi by a power law. Also, the probability of events which
cause a loss greater than some value k is related to k by a power law.

The salient points of this model are:

high efficiency, performance and robustness to designed-for uncertain-
ties

hypersensitivity to design flaws and unanticipated perturbations

nongeneric, specialized, structured configurations, and

power laws.

Resilience under attack: This concurs with other research regarding the vul-
nerability of the Internet to attacks. Several researchers have found that while
a large number of randomly chosen nodes and edges can be removed from the
Internet graph without appreciable disruption in service, attacks targeting im-
portant nodes can disrupt the network very quickly and dramatically [71, 9].
The HOT model also predicts a similar behavior: since routers and links are
expected to be down occasionally, it is a “designed-for” uncertainty and the
Internet is impervious to it. However, a targeted attack is not designed for, and
can be devastating.



Graph Mining: Laws and Generators 103

Figure 3.12. The Heuristically Optimized Tradeoffs model A new node prefers to link to existing
nodes which are both close in distance and occupy a “central” position in the network.

Newman et al. [68] modify HOT using a utility function which can be used
to incorporate “risk aversion.” Their model (called Constrained Optimization
with Limited Deviations or COLD) truncates the tails of the power laws, low-
ering the probability of disastrous events.

HOT has been used to model the sizes of files found on the WWW. The
idea is that dividing a single file into several smaller files leads to faster load
times, but increases the cost of navigating through the links. They show good
matches with this dataset.

Open questions and discussion. The HOT model offers a completely
new recipe for generating power laws; power laws can result as a by-product
of resource optimizations. However, this model requires that the resources be
spread in an globally-optimal fashion, which does not appear to be true for
several large graphs (such as the WWW). This led to an alternative model by
Fabrikant et al. [42], which we discuss next.

Modification: The Heuristically Optimized Tradeoffs model. Fab-
rikant et al. [42] propose an alternative model in which the graph grows as
a result of trade-offs made heuristically and locally (as opposed to optimally,
for the HOT model).

The model assumes that nodes are spread out over a geographical area. One
new node is added in every iteration, and is connected to the rest of the net-
work with one link. The other endpoint of this link is chosen to optimize
between two conflicting goals: (1) minimizing the “last-mile” distance, that is,
the geographical length of wire needed to connect a new node to a pre-existing
graph (like the Internet), and, (2) minimizing the transmission delays based on
number of hops, or, the distance along the network to reach other nodes. The
authors try to optimize a linear combination of the two (Figure 3.12). Thus, a
new node i should be connected to an existing node j chosen to minimize

�.dij + ℎj (j < i) (3.18)
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where dij is the distance between nodes i and j, ℎj is some measure of the
“centrality” of node j, and � is a constant that controls the relative importance
of the two.

The authors find that the characteristics of the network depend greatly on the
value of �, and may be a single hub or have an exponential degree distribution,
but for a range of values power-law degree distribution results.

As in the Highly Optimized Tolerance model described before (Subsec-
tion 3.3.0), power laws are seen to fall off as a by-product of resource op-
timizations. However, only local optimizations are now needed, instead of
global optimizations. This makes the Heuristically Optimized Tradeoffs model
very appealing.

Other research in this direction is the recent work of Berger et al. [16], who
generalize the Heuristically Optimized Tradeoffs model, and show that it is
equivalent to a form of preferential attachment; thus, competition between op-
posing forces can give rise to preferential attachment, and we already know
that preferential attachment can, in turn, lead to power laws and exponential
cutoffs.

Incorporating Geographical Information. Both the random graph
and preferential attachment models have neglected one attribute of many real
graphs: the constraints of geography. For example, it is easier (cheaper) to
link two routers which are physically close to each other; most of our social
contacts are people we meet often, and who consequently probably live close
to us (say, in the same town or city), and so on. In the following paragraphs,
we discuss some important models which try to incorporate this information.

The Small-World Model.

Problem being solved. The small-world model is motivated by the ob-
servation that most real-world graphs seem to have low average distance be-
tween nodes (a global property), but have high clustering coefficients (a local
property). Two experiments from the field of sociology shed light on this phe-
nomenon.

Travers and Milgram [80] conducted an experiment where participants had
to reach randomly chosen individuals in the U.S.A. using a chain letter be-
tween close acquaintances. Their surprising find was that, for the chains that
completed, the average length of the chain was only six, in spite of the large
population of individuals in the “social network.” While only around 29% of
the chains were completed, the idea of small paths in large graphs was still a
landmark find.

The reason behind the short paths was discovered by Mark Granovetter [47],
who tried to find out how people found jobs. The expectation was that the job
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Figure 3.13. The small-world model Nodes are arranged in a ring lattice; each node has links to
its immediate neighbors (solid lines) and some long-range connections (dashed lines).

seeker and his eventual employer would be linked by long paths; however, the
actual paths were empirically found to be very short, usually of length one or
two. This corresponds to the low average path length mentioned above. Also,
when asked whether a friend had told them about their current job, a frequent
answer of the respondents was “Not a friend, an acquaintance”. Thus, this
low average path length was being caused by acquaintances, with whom the
subjects only shared weak ties. Each acquaintance belonged to a different so-
cial circle and had access to different information. Thus, while the social graph
has high clustering coefficient (i.e., is “clique-ish”), the low diameter is caused
by weak ties joining faraway cliques.

Description and properties. Watts and Strogatz [83] independently came
up with a model with these characteristics: it has high clustering coefficient
but low diameter . Their model (Figure 3.13), which has only one parameter
p, consists of the following: begin with a ring lattice where each node has a set
of “close friendships”. Then rewire: for each node, each edge is rewired with
probability p to a new random destination– these are the “weak ties”.

Distance between nodes, and Clustering coefficient For p = 0 the graph re-
mains a ring lattice, where both clustering coefficient and average distance
between nodes are high. For p = 1, both values are very low. For a range
of values in between, the average distance is low while clustering coefficient
is high– as one would expect in real graphs. The reason for this is that the
introduction of a few long-range edges (which are exactly the weak ties of
Granovetter) leads to a highly nonlinear effect on the average distance L. Dis-
tance is contracted not only between the endpoints of the edge, but also their
immediate neighborhoods (circles of friends). However, these few edges lead
to a very small change in the clustering coefficient. Thus, we get a broad range
of p for which the small-world phenomenon coexists with a high clustering
coefficient.
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Figure 3.14. The Waxman model New nodes prefer to connect to existing nodes which are closer
in distance.

Degree distribution All nodes start off with degree k, and the only changes to
their degrees are due to rewiring. The shape of the degree distribution is similar
to that of a random graph, with a strong peak at k, and it decays exponentially
for large k.

Open questions and discussion. The small-world model is very successful
in combining two important graph patterns: small diameters and high cluster-
ing coefficients. However, the degree distribution decays exponentially, and
does not match the power-law distributions of many real-world graphs. Ex-
tension of the basic model to power law distributions is a promising research
direction.

Other geographical models.

The Waxman Model. While the Small World model begins by constrain-
ing nodes to a local neighborhood, the Waxman model [84] explicitly builds
the graph based on optimizing geographical constraints, to model the Internet
graph.

The model is illustrated in Figure 3.14. Nodes (representing routers) are
placed randomly in Cartesian 2-D space. An edge (u, v) is placed between
two points u and v with probability

P (u, v) = � exp
−d(u, v)
L�

(3.19)

Here, � and � are parameters in the range (0, 1), d(u, v) is the Euclidean dis-
tance between points u and v, and L is the maximum Euclidean distance be-
tween points. The parameters � and � control the geographical constraints.
The value of � affects the edge density: larger values of � result in graphs with
higher edge densities. The value of � relates the short edges to longer ones: a
small value of � increases the density of short edges relative to longer edges.
While it does not yield a power-law degree distribution, it has been popular in
the networking community.
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The BRITE generator. Medina et al. [60] try to combine the geographical
properties of the Waxman generator with the incremental growth and prefer-
ential attachment techniques of the BA model. Their graph generator, called
BRITE, has been extensively used in the networking community for simulating
the structure of the Internet.

Nodes are placed on a square grid, with some m links per node. Growth
occurs either all at once (as in Waxman) or incrementally (as in BA). Edges
are wired randomly, preferentially, or combined preferential and geographical
constraints as follows: Suppose that we want to add an edge to node u. The
probability of the other endpoint of the edge being node v is a weighted pref-
erential attachment equation, with the weights being the the probability of that
edge existing in the pure Waxman model (Equation 3.19)

P (u, v) =
w(u, v)k(v)∑
iw(u, i)k(i)

(3.20)

where w(u, v) = � exp
−d(u, v)
L�

as in Eq. 3.19

The emphasis of BRITE is on creating a system that can be used to generate
different kinds of topologies. This allows the user a lot of flexibility, and is one
reason behind the widespread use of BRITE in the networking community.
However, one limitation is that there has been little discussion of parameter
fitting, an area for future research.

Yook et al. Model. Yook et al. [87] find two interesting linkages between
geography and networks (specifically the Internet): First, the geographical dis-
tribution of Internet routers and Autonomous Systems (AS) is a fractal, and
is strongly correlated with population density. Second, the probability of an
edge occurring is inversely proportional to the Euclidean distance between the
endpoints of the edge, likely due to cost of physical wire (which dominates
over administrative cost for long links). However, in the Waxman and BRITE
models, this probability decays exponentially with length (Equation 3.19).

To remedy the first problem, they suggest using a self-similar geographical
distribution of nodes. For the second problem, they propose a modified version
of the BA model. Each new node u is placed on the map using the self-similar
distribution, and adds edges to m existing nodes. For each of these edges, the
probability of choosing node v as the endpoint is given by a modified prefer-
ential attachment equation:

P (node u links to existing node v) ∝ k(v)�

d(u, v)�
(3.21)

where k(v) is the current degree of node v and d(u, v) is the Euclidean distance
between the two nodes. The values � and � are parameters, with � = � = 1
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giving the best fits to the Internet. They show that varying the values of � and
� can lead to significant differences in the topology of the generated graph.

Similar geographical constraints may hold for social networks as well: in-
dividuals are more likely to have friends in the same city as compared to other
cities, in the same state as compared to other states, and so on recursively.
Watts et al. [82] and (independently) Kleinberg [50] propose a hierarchical
model to explain this phenomenon.

PaC - utility based. Du et al. proposed an agent-based model “Pay and
Call” or PaC, where agents make decisions about forming edges based on a
perceived “profit” of an interaction. Each agent has a “friendliness” parameter.
Calls are made with some “emotional dollars” cost, and agents may derive
some benefit from each call. If two “friendly” agents interact, there is a higher
benefit than if one or both agents are “unfriendly”. The specific procedures
are detailed in [39]. PaC generates degree, weight, and clique distributions as
found in most real graphs.

3.4 Tensor-based

The R-MAT (Recursive MATrix) graph generator. We have seen that
most of the current graph generators focus on only one graph pattern – typically
the degree distribution – and give low importance to all the others. There is also
the question of how to fit model parameters to match a given graph. What we
would like is a tradeoff between parsimony (few model parameters), realism
(matching most graph patterns, if not all), and efficiency (in parameter fitting
and graph generation speed). In this section, we present the R-MAT generator,
which attempts to address all of these concerns.

Problem being solved. The R-MAT [28] generator tries to meet several
desiderata:

The generated graph should match several graph patterns, including but
not limited to power-law degree distributions (such as hop-plots and
eigenvalue plots).

It should be able to generate graphs exhibiting deviations from power-
laws, as observed in some real-world graphs [75].

It should exhibit a strong “community” effect.

It should be able to generate directed, undirected, bipartite or weighted
graphs with the same methodology.

It should use as few parameters as possible.

There should be a fast parameter-fitting algorithm.
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Figure 3.15. The R-MAT model The adjacency matrix is broken into four equal-sized partitions,
and one of those four is chosen according to a (possibly non-uniform) probability distribution. This
partition is then split recursively till we reach a single cell, where an edge is placed. Multiple such
edge placements are used to generate the full synthetic graph.

The generation algorithm should be efficient and scalable.

Description and properties. The R-MAT generator creates directed
graphs with 2n nodes and E edges, where both values are provided by the
user. We start with an empty adjacency matrix, and divide it into four equal-
sized partitions. One of the four partitions is chosen with probabilities a, b, c, d
respectively (a + b + c + d = 1), as in Figure 3.15. The chosen partition
is again subdivided into four smaller partitions, and the procedure is repeated
until we reach a simple cell (=1 × 1 partition). The nodes (that is, row and
column) corresponding to this cell are linked by an edge in the graph. This
process is repeated E times to generate the full graph. There is a subtle point
here: we may have duplicate edges (i.e., edges which fall into the same cell in
the adjacency matrix), but we only keep one of them when generating an un-
weighted graph. To smooth out fluctuations in the degree distributions, some
noise is added to the (a, b, c, d) values at each stage of the recursion, followed
by renormalization (so that a+ b+ c+ d = 1). Typically, a ≥ b, a ≥ c, a ≥ d.

Degree distribution There are only 3 parameters (the partition probabilities a,
b, and c; d = 1 − a − b − c). The skew in these parameters (a ≥ d) leads
to lognormals and the DGX [17] distribution, which can successfully model
both power-law and “unimodal” distributions [75] under different parameter
settings.

Communities Intuitively, this technique is generating “communities” in the
graph:

The partitions a and d represent separate groups of nodes which corre-
spond to communities (say, “Linux” and “Windows” users).

The partitions b and c are the cross-links between these two groups;
edges there would denote friends with separate preferences.
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The recursive nature of the partitions means that we automatically
get sub-communities within existing communities (say, “RedHat” and
“Mandrake” enthusiasts within the “Linux” group).

Diameter, singular values and other properties We show experimentally that
graphs generated by R-MAT have small diameter and match several other cri-
teria as well.

Extensions to undirected, bipartite and weighted graphs The basic model
generates directed graphs; all the other types of graphs can be easily gener-
ated by minor modifications of the model. For undirected graphs, a directed
graph is generated and then made symmetric. For bipartite graphs, the same
approach is used; the only difference is that the adjacency matrix is now rect-
angular instead of square. For weighted graphs, the number of duplicate edges
in each cell of the adjacency matrix is taken to be the weight of that edge. More
details may be found in [28].

Parameter fitting algorithm Given some input graph, it is necessary to fit the
R-MAT model parameters so that the generated graph matches the input graph
in terms of graph patterns.

We can calculate the expected degree distribution: the probability pk of a
node having outdegree k is given by

pk =
1

2n

(
E

k

) n∑

i=0

(
n

i

)[
�n−i(1− �)i

]k [
1− �n−i(1− �)i

]E−k

where 2n is the number of nodes in the R-MAT graph, E is the number of
edges, and � = a + b. Fitting this to the outdegree distribution of the input
graph provides an estimate for � = a+ b. Similarly, the indegree distribution
of the input graph gives us the value of b + c. Conjecturing that the a : b and
a : c ratios are approximately 75 : 25 (as seen in many real world scenarios),
we can calculate the parameters (a, b, c, d).

Chakrabarti et al. showed experimentally that R-MAT can match both
power-law distributions as well as deviations from power-laws [28], using
a number of real graphs. The patterns matched by R-MAT include both in- and
out-degree distributions, “hop-plot” and “effective diameter”, singular value
vs. rank plots, “Network value” vs. rank plots, and “stress” distribution. Au-
thors also compared R-MAT fits to those achieved by AB, GLP, and PG mod-
els.

Open questions and discussion. While the R-MAT model shows promise,
there has not been any thorough analytical study of this model. Also, it seems
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that only 3 parameters might not provide enough “degrees of freedom” to
match all varieties of graphs; extensions of this model should be investigated.
A step in this direction is the Kronecker graph generator [57], which general-
izes the R-MAT model and can match several interesting patterns such as the
Densification Power Law and the shrinking diameters effect in addition to all
the patterns that R-MAT matches.

Graph Generation by Kronecker Multiplication. The R-MAT genera-
tor described in the previous paragraphs achieves its power mainly via a form
of recursion: the adjacency matrix is recursively split into equal-sized quad-
rants over which edges are distributed unequally. One way to generalize this
idea is via Kronecker matrix multiplication, wherein one small initial matrix is
recursively “multiplied” with itself to yield large graph topologies. Unlike R-
MAT, this generator has simple closed-form expressions for several measures
of interest, such as degree distributions and diameters, thus enabling ease of
analysis and parameter-fitting.

Description and properties. We first recall the definition of the Kronecker
product.

Definition 3.5 (Kronecker product of matrices). Given two matrices
A = [ai,j] and ℬ of sizes n × m and n′ × m′ respectively, the Kronecker
product matrix C of dimensions (n ∗ n′)× (m ∗m′) is given by

C = A⊗ ℬ .
=

⎛
⎜⎜⎜⎝

a1,1ℬ a1,2ℬ . . . a1,mℬ
a2,1ℬ a2,2ℬ . . . a2,mℬ

...
...

. . .
...

an,1ℬ an,2ℬ . . . an,mℬ

⎞
⎟⎟⎟⎠ (3.22)

In other words, for any nodes Xi and Xj in A and Xk and Xℓ in ℬ, we have
nodes Xi,k and Xj,ℓ in the Kronecker product C, and an edge connects them iff
the edges (Xi,Xj) and (Xk,Xℓ) exist in A and ℬ. The Kronecker product of
two graphs is the Kronecker product of their adjacency matrices.

Let us consider an example. Figure 3.16(a–c) shows the recursive con-
struction of G ⊗ H , when G = H is a 3-node path. Consider node X1,2

in Figure 3.16(c): It belongs to the H graph that replaced node X1 (see Fig-
ure 3.16(b)), and in fact is the X2 node (i.e., the center) within this small H-
graph. Thus, the graph H is recursively embedded “inside” graph G.

The Kronecker graph generator simply applies the Kronecker product mul-
tiple times over. Starting with a binary initiator graph, successively larger
graphs are produced by repeated Kronecker multiplication. The properties of
the generated graph thereby depend on those of the initiator graph.

There are several interesting properties of the Kronecker generator which
are discussed in detail in [55]. Kronecker graphs have multinomial degree dis-
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(a) Graph G1 (b) Intermediate stage (c) Graph G2 = G1 ⊗G1
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of G1 of G2 = G1 ⊗G1

Figure 3.16. Example of Kronecker multiplication Top: a “3-chain” and its Kronecker product with
itself; each of the Xi nodes gets expanded into 3 nodes, which are then linked together. Bottom
row: the corresponding adjacency matrices, along with matrix for the fourth Kronecker power G4.

tributions, static diameter/effective diameter (if nodes have self-loops), multi-
nomial distributions of eigenvalues, and community structure. Additionally, it
provably follows the Densification Power Law.

Thanks to its simple mathematical structure, Kronecker graph generation al-
lows the derivation of closed-form formulas for several important patterns. Of
particular importance are the “temporal” patterns regarding changes in proper-
ties as the graph grows over time: both the constant diameter and the densifica-
tion power law patterns are similar to those observed in real-world graphs [58],
and are not matched by most graph generators.

While Kronecker multiplication allows several patterns to be computed an-
alytically, its discrete nature leads to “staircase effects” in the degree and spec-
tral distributions. A modification of the aforementioned generator avoids these
effects: instead of a 0/1 matrix, the initiator graph adjacency matrix is chosen
to have probabilities associated with edges. The edges are then chosen based
on these probabilities.

RTM: Recursive generator for weighted, evolving graphs. Akoglu et al.
[5] extend the Kronecker model to allow for multi-edges, or weighted edges.
To the initial adjacency matrix, another dimension, or mode, is added to repre-
sent time. Then, in each iteration the Kronecker tensor product of the graph is
taken. This will produce a growing graph that is self-similar in structure.

Since it shares many properties of the Kronecker generator, all static prop-
erties as well as densification are followed. Additionally, the weight additions
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over time will also be self-similar, as shown in real graphs in [59]. It was also
shown to mimic other patterns for weighted graphs, such as the Weight Power
Law and Snapshot Power Laws, as discussed in the previous section.

3.5 Generators for specific graphs

Generators for the Internet Topology. While the generators described
above are applicable to any graphs, some special-purpose generators have been
proposed to specifically model the Internet topology. Structural generators ex-
ploit the hierarchical structure of the Internet, while the Inet generator modifies
the basic preferential attachment model to better fit the Internet topology. We
look at both of these below.

Structural Generators.

Problem being solved. Work done in the networking community on the
structure of the Internet has led to the discovery of hierarchies in the topology.
At the lowest level are the Local Area Networks (LANs); a group of LANs
are connected by stub domains, and a set of transit domains connect the stubs
and allow the flow of traffic between nodes from different stubs. However, the
previous models do not explicitly enforce such hierarchies on the generated
graphs.

Description and properties. Calvert et al. [26] propose a graph gen-
eration algorithm which specifically models this hierarchical structure. The
general topology of a graph is specified by six parameters, which are the num-
bers of transit domains, stub domains and LANs, and the number of nodes
in each. More parameters are needed to model the connectivities within and
across these hierarchies. To generate a graph, points in a plane are used to rep-
resent the locations of the centers of the transit domains. The nodes for each
of these domains are spread out around these centers, and are connected by
edges. Now, the stub domains are placed on the plane and are connected to the
corresponding transit node. The process is repeated with nodes representing
LANs.

The authors provide two implementations of this idea. The first, called
Transit-Stub, does not model LANs. Also, the method of generating connected
subgraphs is to keep generating graphs till we get one that is connected. The
second, called Tiers, allows multiple stubs and LANs, but allows only one
transit domain. The graph is made connected by connecting nodes using a
minimum spanning tree algorithm.

Open questions and discussion. These models can specifically match
the hierarchical nature of the Internet, but they make no attempt to match any
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other graph pattern. For example, the degree distributions of the generated
graphs need not be power laws. Also, the models use many parameters but
provide only limited flexibility: what if we want a hierarchy with more than 3
levels? Hence, while these models have been widely used in the networking
community, the need modifications to be as useful in other settings.

Tangmunarunkit et al. [78] compare such structural generators against gen-
erators which focus only on power-law distributions. They find that even
though power-law generators do not explicitly model hierarchies, the graphs
generated by them have a substantial level of hierarchy, though not as strict
as with the generators described above. Thus, the hierarchical nature of the
structural generators can also be mimicked by other generators.

The Inet topology generator.

Problem being solved. Winick and Jamin [86] developed the Inet gen-
erator to model only the Internet Autonomous System (AS) topology, and to
match features specific to it.

Description and properties. Inet-2.2 generates the graph by the following
steps:

Each node is assigned a degree from a power-law distribution with an
exponential cutoff (as in Equation 3.13).

A spanning tree is formed from all nodes with degree greater than 1.

All nodes with degree one are attached to his spanning tree using linear
preferential attachment.

All nodes in the spanning tree get extra edges using linear preferential
attachment till they reach their assigned degree.

The main advantage of this technique is in ensuring that the final graph remains
connected.

However, they find that under this scheme, too many of the low degree nodes
get attached to other low-degree nodes. For example, in the Inet-2.2 topology,
35% of degree 2 nodes have adjacent nodes with degree 3 or less; for the
Internet, this happens only for 5% of the degree-2 nodes. Also, the highest
degree nodes in Inet-2.2 do not connect to as many low-degree nodes as the
Internet. To correct this, Winick and Jamin come up with the Inet-3 generator,
with a modified preferential attachment system.

The preferential attachment equation now has a weighting factor which uses
the degrees of the nodes on both ends of some edge. The probability of a degree



Graph Mining: Laws and Generators 115

i node connecting to a degree j node is

P (degree i node connects to degree j node) ∝ wj
i .j (3.23)

where wj
i =MAX

⎛
⎝1,

√(
log

i

j

)2

+

(
log

f(i)

f(j)

)2
⎞
⎠ (3.24)

Here, f(i) and f(j) are the number of nodes with degrees i and j respectively,
and can be easily obtained from the degree distribution equation. Intuitively,
what this weighting scheme is doing is the following: when the degrees i and j
are close, the preferential attachment equation remains linear. However, when
there is a large difference in degrees, the weight is the Euclidean distance be-
tween the points on the log-log plot of the degree distribution corresponding
to degrees i and j, and this distance increases with increasing difference in
degrees. Thus, edges connecting nodes with a big difference in degrees are
preferred.

Open questions and discussion. Inet has been extensively used in the
networking literature. However, the fact that it is so specific to the Internet AS
topology makes it somewhat unsuitable for any other topologies.

3.6 Graph Generators: A summary

We have seen many graph generators in the preceding pages. Is any gener-
ator the “best?” Which one should we use? The answer seems to depend on
the application area: the Inet generator is specific to the Internet and can match
its properties very well, the BRITE generator allows geographical considera-
tions to be taken into account, “edge copying” models provide a good intuitive
mechanism for modeling the growth of the Web along with matching degree
distributions and community effects, and so on. However, the final word has
not yet been spoken on this topic. Almost all graph generators focus on only
one or two patterns, typically the degree distribution; there is a need for gen-
erators which can combine many of the ideas presented in this subsection, so
that they can match most, if not all, of the graph patterns. R-MAT is a step in
this direction.

4. Conclusions

Naturally occurring graphs, perhaps collected from a variety of different
sources, still tend to possess several common patterns. The most common of
these are:

Power laws, in degree distributions, in PageRank distributions, in
eigenvalue-versus-rank plots and many others,
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Small diameters, such as the “six degrees of separation” for the US social
network, 4 for the Internet AS level graph, and 12 for the Router level
graph, and

“Community” structure, as shown by high clustering coefficients, large
numbers of bipartite cores, etc.

Graph generators attempt to create synthetic but “realistic” graphs, which
can mimic these patterns found in real-world graphs. Recent research has
shown that generators based on some very simple ideas can match some of
the patterns:

Preferential attachment Existing nodes with high degree tend to attract
more edges to themselves. This basic idea can lead to power-law degree
distributions and small diameter.

“Copying” models Popular nodes get “copied” by new nodes, and this
leads to power law degree distributions as well as a community structure.

Constrained optimization Power laws can also result from optimizations
of resource allocation under constraints.

Small-world models Each node connects to all of its “close” neighbors
and a few “far-off” acquaintances. This can yield low diameters and
high clustering coefficients.

These are only some of the models; there are many other models which add
new ideas, or combine existing models in novel ways. We have looked at
many of these, and discussed their strengths and weaknesses. In addition, we
discussed the recently proposed R-MAT model, which can match most of the
graph patterns for several real-world graphs.

While a lot of progress has been made on answering these questions, a lot
still needs to be done. More patterns need to be found; though there is prob-
ably a point of “diminishing returns” where extra patterns do not add much
information, we do not think that point has yet been reached. Also, typical
generators try to match only one or two patterns; more emphasis needs to be
placed on matching the entire gamut of patterns. This cycle between finding
more patterns and better generators which match these new patterns should
eventually help us gain a deep insight into the formation and properties of real-
world graphs.

Notes
1. Autonomous System, typically consisting of many routers administered by the same entity.

2. Tangmunarunkit et al. [78] use it only to differentiate between exponential and sub-exponential
growth
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1. Introduction

Data in multiple domains can be naturally modeled as graphs. Examples
include the Semantic Web [32], GIS, images [3], videos [24], social networks,
Bioinformatics and Cheminformatics. Semantic Web standardizes informa-
tion on the web as a graph with a set of entities and explicit relationships. In
Bioinformatics, graphs represent several kinds of information: a protein struc-
ture can be modeled as a set of residues (nodes) and their spatial proximity
(edges); a protein interaction network can be similarly modeled by a set of
genes/proteins (nodes) and physical interactions (edges). In Cheminformatics,
graphs are used to represent atoms and bonds in chemical compounds.

The growing heterogeneity and size of the above data has spurred interest
in diverse applications that are centered on graph data. Existing data mod-
els, query languages, and database systems do not offer adequate support for
the modeling, management, and querying of this data. There are a number of
reasons for developing native graph-based data management systems. Con-
sidering expressiveness of queries: we need query languages that manipulate
graphs in their full generality. This means the ability to define constraints
(graph-structural and value) on nodes and edges not in an iterative one-node-
at-a-time manner but simultaneously on the entire object of interest. This also
means the ability to return a graph (or a set of graphs) as the result and not just
a set of nodes. Another need for native graph databases is prompted by effi-
ciency considerations. There are heuristics and indexing techniques that can
be applied only if we operate in the domain of graphs.

1.1 Graphs-at-a-time Queries

Generally, a graph query takes a graph pattern as input, retrieves graphs from
the database which contain (or are similar to) the query pattern, and returns the
retrieved graphs or new graphs composed from the retrieved graphs. Examples
of graph queries can be found in various domains:

Find all heterocyclic chemical compounds that contain a given aromatic
ring and a side chain. Both the ring and the side chain are specified as
graphs with atoms as nodes and bonds as edges.

Find all protein structures that contain the �-�-barrel motif [5]. This
motif is specified as a cycle of � strands embraced by another cycle of �
helices.
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Given a query protein complex from one species, is it functionally con-
served in another species? The protein complex may be specified as a
graph with nodes (proteins) labeled by Gene Ontology [14] terms.

Find all instances from an RDF (Resource Description Framework [26])
graph where two departments of a company share the same shipping
company. The query graph (of three nodes and two edges) has the con-
straints that nodes share the same company attribute and the edges are
labeled by a “shipping” attribute. Report the result as a single graph with
departments as nodes and edges between nodes that share a shipper.

Find all co-authors from the DBLP dataset (a collection of papers rep-
resented as small graphs) in a specified set of conference proceedings.
Report the results as a co-authorship graph.

As illustrated above, there is an increasing need for a language to query and
manipulate graphs with heterogeneous attributes and structures. The language
should be native to graphs, general enough to meet the heterogeneous nature of
real world data, declarative, and yet implementable. Most importantly, a graph
query language needs to support the following feature.

Graphs should be the basic unit of information. The language should
explicitly address graphs and queries should be graphs-at-a-time, taking
one or more collections of graphs as input and producing a collection of
graphs as output.

1.2 Graph Specific Optimizations

A graph query language is useful only if it can be efficiently implemented.
This is especially important since one encounters the usual bottlenecks of sub-
graph isomorphism. As graphs are special cases of relations, graph queries
can still be reduced to the relational model. However, the general-purpose re-
lational model allows little opportunity for graph specific optimizations since
it breaks down the graph structures into individual relations. Let us consider
a simple example as follows. Figure 4.1 shows a graph query and a graph
where each node has a single label as its attribute (nodes with the same label
are distinguished by subscripts).

Consider an SQL-based approach to the sample graph query. The graph in
the database can be modeled in two tables. Table V(vid, label) stores the set
of nodes1 where vid is the node identifier. Table E(vid1, vid2) stores the set of
edges where vid1 and vid2 are end points of each edge. The graph query can
then be expressed as an SQL query with multiple joins:

1For convenience, the terms “vertex” and “node” are used interchangeably in this chapter.
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Figure 4.1. A sample graph query and a graph in the database

SELECT V1.vid, V2.vid, V3.vid

FROM V AS V1, V AS V2, V AS V3,

E AS E1, E AS E2, E AS E3

WHERE V1.label = ’A’ AND V2.label = ’B’ AND V3.label = ’C’

AND V1.vid = E1.vid1 AND V1.vid = E3.vid1

AND V2.vid = E1.vid2 AND V2.vid = E2.vid1

AND V3.vid = E2.vid2 AND V3.vid = E3.vid2

AND V1.vid <> V2.vid AND V1.vid <> V3.vid

AND V2.vid <> V3.vid;

A

B C

V1

V2 V3

E1

E2

E3

Join on
V1.vid = E1.vid1

Figure 4.2. SQL-based implementation

As can be seen in the above example, although the graph query can be ex-
pressed by an SQL query, the global view of graph structures is lost. This pre-
vents pruning of the search space that utilizes local or global graph structural
information. For instance, nodes A2 and C1 in G can be safely pruned since
they have only one neighbor. Node B2 can also be pruned after A2 is pruned.
Furthermore, the SQL query involves many join operations. Traditional query
optimization techniques such as dynamic programming do not scale well with
the number of joins. This makes SQL-based implementations inefficient.

1.3 GraphQL

This chapter presents GraphQL, a graph query language in which graphs are
the basic unit of information from the ground up. GraphQL uses a graph pat-
tern as the main building block of a query. A graph pattern consists of a graph
structure and a predicate on attributes of the graph. Graph pattern matching
is defined by combining subgraph isomorphism and predicate evaluation. The
core of GraphQL is a bulk graph algebra extended from the relational algebra
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in which the selection operator is generalized to graph pattern matching and a
composition operator is introduced for rewriting matched graphs. In terms of
expressive power, GraphQL is relationally complete and is contained in Data-
log [28]. The nonrecursive version of GraphQL is equivalent to the relational
algebra.

The chapter then describes efficient processing of the selection operator
over large graph databases (either a single large graph or a large collection
of graphs). We first present a basic graph pattern matching algorithm, and then
apply three graph specific optimization techniques to the basic algorithm. The
first technique prunes the search space locally using neighborhood subgraphs
or their profiles. The second technique performs global pruning using an ap-
proximation algorithm called pseudo subgraph isomorphism [17]. The third
technique optimizes the search order based on a cost model for graphs. Exper-
imental study shows that the combination of these three techniques allows us
to scale to both large queries and large graphs.

GraphQL has a number of distinct features:

1 Graph structures and structural operations are described by the notion
of formal languages for graphs. This notion is useful for manipulating
graphs and is the basis of the query language (Section 2).

2 A graph algebra is defined along the line of the relational algebra. Each
graph algebraic operator manipulates graphs or sets of graphs. The
graph algebra generalizes the selection operator to graph pattern match-
ing and introduces a composition operator for rewriting matched graphs.
In terms of expressive power, the graph algebra is relationally complete
and is contained in Datalog (Section 3.3).

3 An efficient implementation of the selection operator over large graphs is
presented. Experimental results on large real and synthetic graphs show
that graph specific optimizations outperform an SQL-based implemen-
tation by orders of magnitude (Sections 4 and 5).

2. Operations on Graph Structures

In order to define graph patterns and operations on graph structures, we need
a formal way to describe graph structures and how they can be combined into
new graph structures. As such we extend the notion of formal languages [20]
from the string domain to the graph domain. The notion deals with graph
structures only. Description of attributes on graphs will be discussed in the
next section.

In existing formal languages (e.g., regular expressions, context-free lan-
guages), a formal grammar consists of a finite set of terminals and nonter-
minals, and a finite set of production rules. A production rule consists of a
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nonterminal on the left hand side and a sequence of terminals and nontermi-
nals on the right hand side. The production rules are used to derive strings of
characters. Strings are the basic units of information.

In a formal language for graphs, the basic units are graph structures instead
of strings. The nonterminals, called graph motifs, are either simple graphs or
composed of other graph motifs by means of concatenation, disjunction, or
repetition. A graph grammar is a finite set of graph motifs. The language of
a graph grammar is the set of all graphs derivable from graph motifs of that
grammar.

A simple graph motif represents a graph with constant structure. It consists
of a set of nodes and a set of edges. Each node, edge, or graph is identified by
a variable if it needs to be referenced elsewhere. Figure 4.3 shows a simple
graph motif and its graphical representation.

e1

e2

e3

v1

v3v2

graph G1 {
node v1, v2, v3;
edge e1 (v1, v2);
edge e2 (v2, v3);
edge e3 (v3, v1);

}

Figure 4.3. A simple graph motif

A complex graph motif consists of one or more graph motifs by concatena-
tion, disjunction, or repetition. In the string domain, a string connects to other
strings implicitly through its head and tail. In the graph domain, a graph may
connect to other graphs in a structural way. These interconnections need to be
explicitly specified.

2.1 Concatenation

A graph motif can be composed of two or more graph motifs. The con-
stituent motifs are either left unconnected or concatenated in one of two ways.
One way is to connect nodes in each motif by new edges. Figure 4.4(a) shows
an example of concatenation by edges. Graph motif G2 is composed of two
motifs G1 of Figure 4.3. The two motifs are connected by two edges. To avoid
name conflicts, alias names of G1 are used.

The other way of concatenation is to unify nodes in each motif. Two edges
are unified automatically if their respective end nodes are unified. Figure 4.4(b)
shows an example of concatenation by unification.

Concatenation is useful for defining Cartesian product and join operations
on graphs.
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2.2 Disjunction

A graph motif can be defined as a disjunction of two or more graph motifs.
Figure 4.5 shows an example of disjunction. In graph motif G4, two anony-
mous graph motifs are declared (comprising of node v3 or nodes v3 and v4).
Only one of them is selected and connected to the rest ofG4. In disjunction, all
the constituent graph motifs should have the same “interface” to the outside.

2.3 Repetition

A graph motif may be defined by itself to derive recursive graph structures.
Figure 4.6(a) shows the construction of a path and a cycle. In the base case,
the path has two nodes and one edge. In the recurrence step, the path contains
itself as a member, adds a new node v1 which connects to v1 of the nested
path, and exports the nested v2 so that the new path has the same “interface.”
The keyword “export” is equivalent to declaring a new node and unifying it
with the nested node. Graph motif Cycle is composed of motif Patℎ with an
additional edge that connects the end nodes of the Patℎ.

Recursions in the graph domain are not limited to paths and cycles. Fig-
ure 4.6(b) illustrates an example where the repetition unit is a graph motif.
Motif G5 contains an arbitrary number of motif G1 and a root node v0. The

e4

e5

e1

e2

e3

v1

v3

v2

graph G2 {
graph G1 as X;
graph G1 as Y;
edge e4 (X.v1, Y.v1);
edge e5 (X.v3, Y.v2);

}

e1

e2

e3

v1

v3

v2

e2

e3e1

e2

e3(e1)v2

graph G3 {
graph G1 as X;
graph G1 as Y;
unify X.v1, Y.v1;
unify X.v3, Y.v2;

}

v3

v1(v1)

v3 (v2)

(a) (b)

Figure 4.4. (a) Concatenation by edges, (b) Concatenation by unification

graph G4 {
node v1, v2;
edge e1 (v1, v2);

   {
node v3;
edge e2 (v1, v3);
edge e3 (v2, v3);

   } | {
node v3, v4;
edge e2 (v1, v3);
edge e3 (v2, v4);
edge e4 (v3, v4);

   };
}

e1
e3

e2

v1

v3

v2

e2

e3

e1

v1

v2

e4

v3

v4

or

Figure 4.5. Disjunction
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declaration recursively contains G5 itself and a new G1, with G1.v1 connected
to v0, where v0 is exported from the nested G5. The first resulting graph con-
sists of node v0 alone, the second consists of node v0 connected to G1 through
edge e1, the third consists of node v0 connected to two instances of G1 through
edge e1, and so on.

e1 G1

graph Path {
graph Path;
node v1;
edge e1 (v1, Path.v1);
export Path.v2 as v2;

} | {
node v1, v2;
edge e1 (v1, v2);

}

e1 e1

graph G5 {
graph G5;

   graph G1;
   export G5.v0 as v0;
   edge e1 (v0, G1.v1);
} | { node v0 }

v0

… ...
e1

e2

e3

v1

v3v2

e1

e2

e3

v1

v3v2

(a) (b)

graph Cycle {
   graph Path;

edge e1 (Path.v1, 
    Path.v2);

}

e1 v2v1v1

Path

Figure 4.6. (a) Path and cycle, (b) Repetition of motif G1

3. Graph Query Language

This section presents the GraphQL query language. We first describe the
data model. Next, we define graph patterns and graph pattern matching. We
then present a graph algebra and its bulk operators which is the core of the
graph query language. Finally, we illustrate the syntax of the graph query
language through an example.

3.1 Data Model

Graphs in the real world contain not only graph structural information, but
also attributes on nodes and edges. In GraphQL, we use a tuple, a list of name
and value pairs, to represent the attributes of each node, edge, or graph. A tuple
may have an optional tag that denotes the tuple type. Tuples are annotated to
the graph structures so that the representations of attributes and structures are
clearly separate. Figure 4.7 shows a sample graph that represents a paper (the
graph has no edges). Node v1 has two attributes “title” and “year”. Nodes v2
and v3 have a tag “author” and an attribute “name”.

graph G <inproceedings> {
node v1 <title=”Title1”, year=2006>;
node v2 <author name=”A”>;
node v3 <author name=”B”>; 

};

Figure 4.7. A sample graph with attributes

In the relational model, tuples are the basic unit of information. Each alge-
braic operator manipulates collections of tuples. A relational query is always
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equivalent to an algebraic expression which is a combination of the operators.
A relational database consists of one or more tables (relations) of tuples.

In GraphQL, graphs are the basic unit of information. Each operator takes
one or more collections of graphs as input and generates a collection of graphs
as output. A graph database consists of one or more collections of graphs.
Unlike the relational model, graphs in a collection do not necessarily have
identical structures and attributes. However, they can still be processed in a
uniform way by binding to a graph pattern.

The GraphQL data model is similar to the TAX model [22] as for XML. In
TAX, trees are the basic unit and the operators work on collections of trees.
Trees in a collection have similar but not identical structures and attributes.
This is captured by a pattern tree.

3.2 Graph Patterns

A graph pattern is the main building block of a graph query. Essentially,
it consists of a graph motif and a predicate on attributes of the motif. The
graph motif specifies constraints on graph structures and the predicate specifies
constraints on attributes. A graph pattern is used to select graphs of interest.

Definition 4.1. (Graph Pattern) A graph pattern is a pair P = (ℳ,ℱ), where
ℳ is a graph motif and ℱ is a predicate on the attributes of the motif.

The predicate ℱ is a combination of boolean or arithmetic comparison ex-
pressions. Figure 4.8 shows a sample graph pattern. The predicate can be
broken down to predicates on individual nodes or edges, as shown on the right
side of the figure.

graph P {
node v1;
node v2;

} where v1.name=”A”
and v2.year>2000;

or

graph P {
node v1 where name=”A”;
node v2 where year>2000;

};

Figure 4.8. A sample graph pattern

Next, we define the notion of graph pattern matching which generalizes
subgraph isomorphism with evaluation of the predicate.

Definition 4.2. (Graph Pattern Matching) A graph pattern P(ℳ,ℱ) is
matched with a graph G if there exists an injective mapping �: V (ℳ) →
V (G) such that i) For ∀ e(u, v) ∈ E(ℳ), (�(u), �(v)) is an edge in G, and
ii) predicate ℱ�(G) holds.

A graph pattern is recursive if its motif is recursive (see Section 2.3). A
recursive graph pattern is matched with a graph if one of its derived motifs is
matched with the graph.
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Mapping Φ:
Φ(P.v1) → G.v2
Φ(P.v2) → G.v1

Figure 4.9. A mapping between the graph pattern in Figure 4.8 and the graph in Figure 4.7

Figure 4.9 shows an example of graph pattern matching between the pattern
in Figure 4.8 and the graph in Figure 4.7.

If a graph pattern is matched to a graph, the binding between them can be
used to access the graph (either graph structural information or attributes on
the graph). As a graph pattern can match many graphs, this allows us to access
a collection of graphs uniformly even though the graphs may have heteroge-
nous structures and attributes. We use a matched graph to denote the binding
between a graph pattern and a graph.

Definition 4.3. (Matched Graph) Given an injective mapping � between a pat-
tern P and a graph G, a matched graph is a triple ⟨�,P, G⟩ and is denoted by
�P(G).

Although a matched graph is formally defined by a triple, it has all charac-
teristics of a graph. Thus, all terms and conditions that apply to a graph also
apply to a matched graph. For example, a collection of matched graphs is also
a collection of graphs. As such it can match another graph pattern, resulting in
another collection of matched graphs (two levels of bindings).

A graph pattern can match a graph in multiple places, resulting in multiple
bindings (matched graphs). This is considered further when we discuss the
selection operator in Section 3.3.0.

3.3 Graph Algebra

We define a graph algebra along the lines of the relational algebra. This al-
lows us to inherit the solid foundation and experience of the relational model.
All relational operators have their counterparts or alternatives in the graph al-
gebra. These operators are defined directly on graphs since graphs are now the
basic units of information. In particular, the selection operator is generalized
to graph pattern matching; a composition operator is introduced to generate
new graphs from matched graphs.

Selection (�). A selection operator � takes a graph pattern P and a collec-
tion of graphs C as arguments, and produces a collection of matched graphs as
output. The result is denoted by �P(C):

�P(C) = {�P(G) ∣ G ∈ C}
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A graph database may consist of a single large graph, e.g., a social network.
A single large graph and a collection of graphs are treated in the same way. A
collection of graphs is a special case of a single large graph, whereas a single
large graph is considered as many inter-connected or overlapping small graphs.
These small graphs are captured by the graph pattern of the selection operator.

A graph pattern can match a graph many times. Thus, a selection could
return many instances for each graph in the input collection. We use an option
“exhaustive” to specify whether it should return one or all possible mappings
between the graph pattern and the graph. Whether one or all mappings are
required depends on the application.

Cartesian Product (×) and Join (⊳⊲). A Cartesian product operator takes
two collections of graphs C andD as input, and produces a collection of graphs
as output. Each graph in the output collection is composed of a graph from C
and another from D. The constituent graphs are unconnected:

C × D = { graph { graph G1, G2; } ∣ G1 ∈ C, G2 ∈ D}

As in the relational algebra, the join operator in the graph algebra can be
defined by a Cartesian product followed by a selection:

C ⊳⊲P D = �P(C × D)

In a valued join, the join condition is a predicate on attributes of the con-
stituent graphs. The constituent graphs are unconnected in the resultant graph.
No new graph structures are generated. Figure 4.10 shows an example of val-
ued join.

graph {
graph G1, G2;

} where G1.id = G2.id;

Figure 4.10. An example of valued join

In a structural join, the constituent graphs can be concatenated by edges or
unification. New graph structures are generated in the resultant graph. This is
specified through a composition operator which is described next.

Composition (!). Composition operators are used to generate new graphs
from existing (matched) graphs. In order to specify the composition operators,
we introduce the concept of graph templates.

Definition 4.4. (Graph Template) A graph template T consists of a list of for-
mal parameters which are graph patterns, and a template body which is defined
by referring to the graph patterns.
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Once actual parameters (matched graphs) are given, a graph template is in-
stantiated to a real graph. This is similar to invoking a function: the template
body is the function body; the graph patterns are the formal parameters; the
matched graphs are the actual parameters. The resulting graph can be denoted
by TP1..Pk

(G1, ..., Gk).

TP = graph {
node v1 <label=P.v1.name>;
node v2 <label=P.v2.title>;
edge e1 (v1, v2);

   }

TP (G) = graph {
node v1 <label=”A”>;
node v2 <label=”Title1”>;
edge e1 (v1, v2);

      }

(a) (b)

Figure 4.11. (a) A graph template with a single parameter P , (b) A graph instantiated from the
graph template. P and G are shown in Figure 4.8 and Figure 4.7.

Figure 4.11 shows a sample graph template and a graph instantiated from
the graph template. P is the formal parameter of the template. The template
body consists of two nodes constructed from P and an edge between them.
Given the actual parameter G, the template is instantiated to a graph.

Now we can define the composition operator. A primitive composition op-
erator ! takes a graph template TP with a single parameter, and a collection of
matched graphs C as input. It produces a collection of instantiated graphs as
output:

!TP (C) = {TP(G) ∣ G ∈ C}

Generally, a composition operator allows two or more collections of graphs
as input. This can be expressed by a primitive composition operator and a
Cartesian product operator, the latter of which combines multiple collections
of graphs into one:

!TP1,P2
(C1, C2) = !TP (C1 × C2),

where P = graph { graph P1, P2; }.

Other operators. Projection and Renaming, two other operators of the re-
lational algebra, can be expressed using the composition operator. The set op-
erators (union, difference, intersection) can also be defined easily. In terms of
expressive power, the five basic operators (selection, Cartesian product, primi-
tive composition, union, and difference) are complete. Other operators and any
algebraic expressions can be expressed as combinations of these five operators.

Algebraic laws are important for query optimization as they provide equiv-
alent transformations of query plans. Since the graph algebra is defined along
the lines of the relational algebra, laws of relational algebra carry over.
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3.4 FLWR Expressions

We adopt the FLWR (For, Let, Where, and Return) expressions in
XQuery [4] as the syntax of our graph query language. The query syntax is
shown in Appendix 4.A. We illustrate the syntax through an example.

graph P {
node v1 <author>;
node v2 <author>;

} where P.booktitle=”SIGMOD”;
C:= graph {}; 
for P exhaustive in doc(“DBLP”) 
let C:= graph {

graph C;
node P.v1, P.v2;

    edge e1 (P.v1, P.v2);
unify P.v1, C.v1 where P.v1.name=C.v1.name;
unify P.v2, C.v2 where P.v2.name=C.v2.name;

}

Figure 4.12. A graph query that generates a co-authorship graph from the DBLP dataset

Figure 4.12 shows an example that generates a co-authorship graph C from
a collection of papers. The query states that any pair of authors in a paper
should appear in the co-authorship graph with an edge between them. The
graph pattern P matches a pair of authors in a paper. The for clause selects
all such pairs from the data source. The let clause places each pair in the
co-authorship graph and adds an edge between them. The unifications ensure
that each author appears only once. Again, two edges are unified automatically
if their end nodes are unified.

Figure 4.13 shows a running example of the query. The DBLP collection
consists of two graphs G1 and G2. The pair of author nodes (A, B) is first
chosen and an edge is inserted between them. The pair (C, D) is chosen next
and the (C, D) subgraph is inserted. When the third pair (A, C) is chosen,
unification ensures that the old nodes are reused and an edge is added between
existing A and C. The processing of the fourth pair adds one more edge and
completes the execution.

The query can be translated into a recursive algebraic expression:

C = �J(!�
P,C

(�P (“DBLP”), {C}))

where �P (“DBLP”) corresponds to the for clause, �
P,C

is the graph tem-
plate in the let clause, and J is a graph pattern for the join condition:
P.v1.name = C.v1.name & P.v2.name = C.v2.name. The algebraic ex-
pression turns out to be a structural join that consists of three primitive opera-
tors: Cartesian product, primitive composition, and selection.
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A B1

Iteration Mapping Co-authorship 
graph C

3

4

2

Φ(P.v1) → G1.v1
Φ(P.v2) → G1.v2

A BΦ(P.v1) → G2.v1
Φ(P.v2) → G2.v2

Φ(P.v1) → G2.v1
Φ(P.v2) → G2.v3

Φ(P.v1) → G2.v2
Φ(P.v2) → G2.v3

DBLP:graph G1 {   node v1 <author name=”A”>;   node v2 <author name=”B”>;};
graph G2 {   node v1 <author name=”C”>;   node v2 <author name=”D”>;   node v3 <author name=”A”>;};

C D

A B

C D

A B

C D

Figure 4.13. A possible execution of the Figure 4.12 query

3.5 Expressive Power

We now discuss the expressive power of GraphQL. We first show that the
relational algebra (RA) is contained in GraphQL.

Theorem 4.5. (RA ⊆ GraphQL) For any RA expression, there exists an equiv-
alent GraphQL algebra expression.

Proof: We can represent a relation (tuple) in GraphQL using a graph that has a
single node with attributes as the tuple. The primitive operations of RA (selec-
tion, projection, Cartesian product, union, difference) can then be expressed in
GraphQL. The selection operator can be simulated using a graph pattern with
the given predicate as the selection condition. For projection, one rewrites
the projected attributes to a new node using the composition operator. Other
operations (product, union, difference) are straightforward as well. □

Next, we show that GraphQL is contained in Datalog. This is proved by
translating graphs, graph patterns, and graph templates into facts and rules of
Datalog.
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Theorem 4.6. (GraphQL ⊆ Datalog) For any GraphQL algebra expression,
there exists an equivalent Datalog program.

Proof: We first translate all graphs of the database into facts of Datalog. Fig-
ure 4.14 shows an example of the translation. Essentially, we rewrite each
variable of the graph as a unique constant string, and then establish a con-
nection between the graph and each node and edge. Note that for undirected
graphs, we need to write an edge twice to permute its end nodes.

graph G <attr1=value1> {
node v1, v2, v3;
edge e1(v1, v2);

};

graph(‘G’).
node(‘G’, ‘G.v1’).
node(‘G’, ‘G.v2’).
node(‘G’, ‘G.v3’).
edge(‘G’, ‘G.e1’, ‘G.v1’, ‘G.v2’).
edge(‘G’, ‘G.e1’, ‘G.v2’, ‘G.v1’).
attribute(‘G’, ‘attr1’, value1).

Figure 4.14. The translation of a graph into facts of Datalog

For each graph pattern, we translate it into a rule of Datalog. Figure 4.15
gives an example of such translation. The body of the rule is a conjunction
of the constituent elements of the graph pattern. The predicate of the graph
pattern is written naturally. It can then be shown that a graph pattern matches a
graph if and only if the corresponding rule matches the facts that represent the
graph.

Subsequently, one can translate the graph algebraic operations into Datalog
in a way similar to translating RA into Datalog. Thus, we can translate any
GraphQL algebra expression into an equivalent Datalog program. □

graph P {
node v2, v3;
edge e1(v3, v2);

} where P.attr1 > value1;

Pattern(P, V2, V3, E1):-
   graph(P),
   node(P, V2),
   node(P, V3),
   edge(P, E1, V3, V2),
   attribute(P, ‘attr1’, Temp),
   Temp > value1.

Figure 4.15. The translation of a graph pattern into a rule of Datalog

It is well known that nonrecursive Datalog (nr-Datalog) is equivalent to
RA. Consequently, the nonrecursive version of GraphQL (nr-GraphQL) is also
equivalent to RA.

Corollary 4.7. nr-GraphQL ≡ RA.
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4. Implementation of the Selection Operator

We now discuss efficient implementation of the selection operator. Other
graph algebraic operators can find their counterpart implementations in rela-
tional databases, and future research opportunities are open for graph specific
optimizations.

Generally, graph databases can be classified into two categories. One cat-
egory is a large collection of small graphs, e.g., chemical compounds. The
selection operator returns a subset of the collection as answers. The main chal-
lenge in this category is to reduce the number of pairwise graph pattern match-
ings. A number of graph indexing techniques have been proposed to address
this challenge [17, 34, 40]. Graph indexing plays a similar role for graph data-
bases as B-trees for relational databases: only a small number of graphs need
to be accessed. Scanning of the whole collection of graphs is not necessary.

In the second category, the graph database consists of one or a few very large
graphs, e.g., protein interaction networks, Web information, social networks.
Graphs in the answer set are not readily present in the database and need to be
constructed from the single large graph. The challenge here is to accelerate the
graph pattern matching itself. In this chapter, we focus on the second category.

We first describe the basic graph pattern matching algorithm in Section 4.1,
and then discuss accelerations to the basic algorithm in Sections 4.2, 4.3, and
4.4. We restrict our attention to nonrecursive graph patterns and in-memory
processing. Recursive graph pattern matching and disk-based access methods
remain as future research directions.

4.1 Graph Pattern Matching

Graph pattern matching is essentially an extension of subgraph isomorphism
with predication evaluation (Definition 4.2). Algorithm 4.1 outlines the basic
graph pattern matching algorithm.

The predicate of graph pattern P is rewritten as predicates on individual
nodes ℱu’s and edges ℱe’s. Predicates that cannot be pushed down, e.g.,
“u1.label = u2.label”, remain in the graph-wide predicate ℱ . For each node
u in pattern P, there is a set of candidate matched nodes in G with respect to
ℱu. These nodes are called feasible mates of node u and is denoted by Φ(u):

Definition 4.8. (Feasible Mates) The feasible mates Φ(u) of node u is the set
of nodes in graph G that satisfies predicate Fu:

Φ(u) = {v∣v ∈ V (G),ℱu(v) = true}.

The feasible mates of all nodes in the pattern define the search space of
graph pattern matching:
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Definition 4.9. (Search Space) The search space of a graph pattern matching
is defined as the product of feasible mates for each node of the graph pattern:

Φ(u1)× ..× Φ(uk),

where k is the number of nodes in the graph pattern.

Algorithm 4.1: Graph Pattern Matching

Input: Graph Pattern P, Graph G
Output: One or all feasible mappings �P(G)

foreach node u ∈ V (P) do1

Φ(u)← {v∣v ∈ V (G),ℱu(v) = true}2

// Local pruning and retrieval of Φ(u) (Section 4.2)3

end4

// Reduce Φ(u1)× ..× Φ(uk) globally (Section 4.3)5

// Optimize search order of u1, .., uk (Section 4.4)6

Search(1);7

void Search(i)8

begin9

foreach v ∈ Φ(ui), v is free do10

if not Check(ui, v) then continue;11

�(ui)← v;12

if i < ∣V (P)∣ then Search(i + 1);13

else if ℱ�(G) then14

Report � ;15

if not exhaustive then stop;16

end17

end18

boolean Check(ui, v)19

begin20

foreach edge e(ui, uj) ∈ E(P), j < i do21

if edge e′(v, �(uj)) ∕∈ E(G) or not ℱe(e
′) then22

return false;23

end24

return true;25

end26

Algorithm 4.1 consists of two phases. The first phase (lines 1–4) retrieves
the feasible mates for each node u in the pattern. The second phase (Lines
7–26) searches over the product Φ(u1) × .. × Φ(uk) in a depth-first manner
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for subgraph isomorphism. Procedure Search(i) iterates on the itℎ node to
find feasible mappings for that node. Procedure Check(ui, v) examines if ui
can be mapped to v by considering their edges. Line 12 maps ui to v. Lines
13–16 continue to search for the next node or if it is the last node, evaluate the
graph-wide predicate. If it is true, then a feasible mapping � : V (P)→ V (G)
has been found and is reported (line 15). Line 16 stops searching immediately
if only one mapping is required.

The graph pattern and the graph are represented as a vertex set and an edge
set, respectively. In addition, adjacency lists of the graph pattern are used to
support line 21. For line 22, edges of graph G can be represented in a hashtable
where keys are pairs of the end points. To avoid repeated evaluation of edge
predicates (line 22), another hashtable can be used to store evaluated pairs of
edges.

The worst-case time complexity of Algorithm 4.1 is O(nk) where n and k
are the sizes of graph G and graph pattern P , respectively. This complexity
is a consequence of subgraph isomorphism that is known to be NP-hard. In
practice, the running time depends on the size of the search space.

We now consider possible ways to accelerate Algorithm 4.1:

1 How to reduce the size of Φ(ui) for each node ui? How to efficiently
retrieve Φ(ui)?

2 How to reduce the overall search space Φ(u1)× ..× Φ(uk)?

3 How to optimize the search order?

We present three techniques that respectively address the above questions.
The first technique prunes each Φ(ui) individually and retrieves it efficiently
through indexing. The second technique prunes the overall search space by
considering all nodes in the pattern simultaneously. The third technique applies
ideas from traditional query optimization to find the right search order.

4.2 Local Pruning and Retrieval of Feasible Mates

Node attributes can be indexed directly using traditional index structures
such as B-trees. This allows for fast retrieval of feasible mates and avoids a
full scan of all nodes. To reduce the size of feasible mates Φ(ui)’s even further,
we can go beyond nodes and consider neighborhood subgraphs of the nodes.
The neighborhood information can be exploited to prune infeasible mates at an
early stage.

Definition 4.10. (Neighborhood Subgraph) Given graph G, node v and radius
r, the neighborhood subgraph of node v consists of all nodes within distance
r (number of hops) from v and all edges between the nodes.
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Node v is a feasible mate of node ui only if the neighborhood subgraph of
ui is sub-isomorphic to that of v (with ui mapped to v). Note that if the radius
is 0, then the neighborhood subgraphs degenerate to nodes.

Although neighborhood subgraphs have high pruning power, they incur a
large computation overhead. This overhead can be reduced by representing
neighborhood subgraphs by their light-weight profiles. For instance, one can
define the profile as a sequence of the node labels in lexicographic order. The
pruning condition then becomes whether a profile is a subsequence of the other.

P

A

B

A1

B1C1 B2

G

C C2

A2

Figure 4.16. A sample graph pattern and graph
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Figure 4.17. Feasible mates using neighborhood subgraphs and profiles. The resulting search
spaces are also shown for different pruning techniques.

Figure 4.16 shows the sample graph pattern P and the database graph G
again for convenience. Figure 4.17 shows the neighborhood subgraphs of ra-
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dius 1 and their profiles for nodes ofG. If the feasible mates are retrieved using
node attributes, then the search space is {A1, A2} × {B1, B2} × {C1, C2}. If
the feasible mates are retrieved using neighborhood subgraphs, then the search
space is {A1}×{B1}×{C2}. Finally, if the feasible mates are retrieved using
profiles, then the search space is {A1} × {B1, B2} × {C2}. These are shown
in the right side of Figure 4.17.

If the node attributes are selective, e.g., many unique attribute values, then
one can index the node attributes using a B-tree or hashtable, and store the
neighborhood subgraphs or profiles as well. Retrieval is done by indexed ac-
cess to the node attributes, followed by pruning using neighborhood subgraphs
or profiles. Otherwise, if the node attributes are not selective, one may have
to index the neighborhood subgraphs or profiles. Recent graph indexing tech-
niques [9, 17, 23, 34, 36, 39–42] or multi-dimensional indexing methods such
as R-trees can be used for this purpose.

4.3 Joint Reduction of Search Space

We reduce the overall search space iteratively by an approximation algo-
rithm called Pseudo Subgraph Isomorphism [17]. This prunes the search space
by considering the whole pattern and the space Φ(u1)× ..×Φ(uk) simultane-
ously. Essentially, this technique checks for each node u in pattern P and its
feasible mate v in graph G whether the adjacent subtree of u is sub-isomorphic
to that of v. The check can be defined recursively on the depth of the adjacent
subtrees: the level l subtree of u is sub-isomorphic to that of v only if the level
l − 1 subtrees of u’s neighbors can all be matched to those of v’s neighbors.
To avoid subtree isomorphism tests, a bipartite graph ℬu,v is defined between
neighbors of u and v. If the bipartite graph has a semi-perfect matching, i.e.,
all neighbors of u are matched, then u is level l sub-isomorphic to v. In the
bipartite graph, an edge is present between two nodes u′ and v′ only if the level
l − 1 subtree of u′ is sub-isomorphic to that of v′, or equivalently the bipar-
tite graph ℬu′,v′ at level l − 1 has a semi-perfect matching. A more detailed
description can be found in [17].

Algorithm 4.2 outlines the refinement procedure. At each iteration (lines
3–20), a bipartite graph ℬu,v is constructed for each u and its feasible mate
v (lines 5–9). If ℬu,v has no semi-perfect matching, then v is removed from
Φ(u), thus reducing the search space (line 13).

The algorithm has two implementation improvements on the refinement pro-
cedure discussed in [17]. First, it avoids unnecessary bipartite matchings. A
pair ⟨u, v⟩ is marked if it needs to be checked for semi-perfect matching (lines
2, 4). If the semi-perfect matching exists, then the pair is unmarked (lines
10–11). Otherwise, the removal of v from Φ(u) (line 13) may affect the exis-
tence of semi-perfect matchings of the neighboring ⟨u′, v′⟩ pairs. As a result,
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Algorithm 4.2: Refine Search Space

Input: Graph Pattern P, Graph G, Search space Φ(u1)× ..× Φ(uk),
level l

Output: Reduced search space Φ′(u1)× ..× Φ′(uk)

begin1

foreach u ∈ P, v ∈ Φ(u) do Mark ⟨u, v⟩;2

for i← 1 to l do3

foreach u ∈ P, v ∈ Φ(u), ⟨u, v⟩ is marked do4

//Construct bipartite graph ℬu,v5

NP(u), NG(v): neighbors of u, v;6

foreach u′ ∈ NP(u), v′ ∈ NG(v) do7

ℬu,v(u′, v′)←
{

1 if v′ ∈ Φ(u′);
0 otherwise.8

end9

if ℬu,v has a semi-perfect matching then10

Unmark ⟨u, v⟩;11

else12

Remove v from Φ(u);13

foreach u′ ∈ NP(u), v′ ∈ NG(v), v
′ ∈ Φ(u′) do14

Mark ⟨u′, v′⟩;15

end16

end17

end18

if there is no marked ⟨u, v⟩ then break;19

end20

end21

these pairs are marked and checked again (line 14). Second, the ⟨u, v⟩ pairs
are stored and manipulated using a hashtable instead of a matrix. This reduces
the space and time complexity from O(k ⋅n) to O(

∑k
i=1 ∣Φ(ui)∣). The overall

time complexity is O(l ⋅∑k
i=1 ∣Φ(ui)∣ ⋅ (d1d2 + M(d1, d2))) where l is the

refinement level, d1 and d2 are maximum degrees of P and G respectively,
and M() is the time complexity of maximum bipartite matching (O(n2.5) for
Hopcroft and Karp’s algorithm [19]).

Figure 4.18 shows an execution of Algorithm 4.2 on the example in Fig-
ure 4.16. At level 1, A2 and C1 are removed from Φ(A) and Φ(C), respec-
tively. At level 2, B2 is removed from Φ(B) since the bipartite graph ℬB,B2

has no semi-perfect matching (note that A2 was already removed from Φ(A)).
Whereas the neighborhood subgraphs discussed in Section 4.2 prune in-

feasible mates by using local information, the refinement procedure in Algo-
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Figure 4.18. Refinement of the search space

rithm 4.2 prunes the search space globally. The global pruning has a larger
overhead and is dependent on the output of the local pruning. Therefore, both
pruning methods are indispensable and should be used together.

4.4 Optimization of Search Order

Next, we consider the search order of Algorithm 4.1. The goal here is to find
a good search order for the nodes. Since the search procedure is equivalent to
multiple joins, it is similar to a typical query optimization problem [7]. Two
principal issues need to be considered. One is the cost model for a given search
order. The other is the algorithm for finding a good search order. The cost
model is used as the objective function of the search algorithm. Since the
search algorithm is relatively standard (e.g., dynamic programming, greedy
algorithm), we focus on the cost model and illustrate that it can be customized
in the domain of graphs.

Cost Model. A search order (a.k.a. a query plan) can be represented as a
rooted binary tree whose leaves are nodes of the graph pattern and each internal
node is a join operation. Figure 4.19 shows two examples of search orders.

We estimate the cost of a join (a node in the query plan tree) as the product
of cardinalities of the collections to be joined. The cardinality of a leaf node
is the number of feasible mates. The cardinality of an internal node can be
estimated as the product of cardinalities of collections reduced by a factor .
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A B C

(a) (b)

A C B

Figure 4.19. Two examples of search orders

Definition 4.11. (Result size of a join) The result size of join i is estimated by

Size(i) = Size(i.left)× Size(i.rigℎt) × (i)

where i.left and i.rigℎt are the left and right child nodes of i respectively,
and (i) is the reduction factor.

A simple way to estimate the reduction factor (i) is to approximate it by a
constant. A more elaborate way is to consider the probabilities of edges in the
join: Let ℰ(i) be the set of edges involved in join i, then

(i) =
∏

e(u,v)∈ℰ(i)
P (e(u, v))

where P (e(u, v)) is the probability of edge e(u, v) conditioned on u and v.
This probability can be estimated as

P (e(u, v)) =
freq(e(u, v))

freq(u) ⋅ freq(v)

where freq() denotes the frequency of the edge or node in the large graph.

Definition 4.12. (Cost of a join) The cost of join i is estimated by

Cost(i) = Size(i.left) × Size(i.rigℎt)

Definition 4.13. (Cost of a search order) The total cost of a search order Γ is
estimated by

Cost(Γ) =
∑

i∈Γ
Cost(i)

For example, let the input search space be {A1} × {B1, B2} × {C2}. If
we use a constant reduction factor , then Cost(A ⊳⊲ B) = 1 × 2 = 2,
Size(A ⊳⊲ B) = 2, Cost((A ⊳⊲ B) ⊳⊲ C) = 2 × 1 = 2. The total cost is
2 + 2. Similarly, the total cost of (A ⊳⊲ C) ⊳⊲ B is 1 + 2. Thus, the search
order (A ⊳⊲ C) ⊳⊲ B is better than (A ⊳⊲ B) ⊳⊲ C .
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Search Order. The number of all possible search orders is exponential in
the number of nodes. It is expensive to enumerate all of them. As in many
query optimization techniques, we consider only left-deep query plans, i.e.,
the outer node of each join is always a leaf node. The traditional dynamic
programming would take an O(2k) time complexity for a graph pattern of
size k. This is not scalable to large graph patterns. Therefore, we adopt a
simple greedy approach in our implementation: at join i, choose a leaf node
that minimizes the estimated cost of the join.

5. Experimental Study

In this section, we evaluate the performance of the presented graph pattern
matching algorithms on large real and synthetic graphs. The graph specific
optimizations are compared with an SQL-based implementation as described
in Figure 4.2. MySQL server 5.0.45 is used and configured as: storage en-
gine=MyISAM (non-transactional), key buffer size = 256M. Other parameters
are set as default. For each large graph, two tables V(vid, label) and E(vid1,
vid2) are created as in Figure 4.2. B-tree indices are built for each field of the
tables.

The presented graph pattern matching algorithms were written in Java and
compiled with Sun JDK 1.6. All the experiments were run on an AMD Athlon
64 X2 4200+ 2.2GHz machine with 2GB memory running MS Win XP Pro.

5.1 Biological Network

the real dataset is a yeast protein interaction network [2]. This graph consists
of 3112 nodes and 12519 edges. Each node represents a unique protein and
each edge represents an interaction between proteins.

To allow for meaningful queries, we add Gene Ontology (GO) [14] terms
to the proteins. The Gene Ontology is a hierarchy of categories that describes
cellular components, biological processes, and molecular functions of genes
and their products (proteins). Each GO term is a node in the hierarchy and
has one or more parent GO Terms. Each protein has one or more GO terms.
We use high level GO terms as labels of the proteins (183 distinct labels in
total). We index the node labels using a hashtable, and store the neighborhood
subgraphs and profiles with radius 1 as well.

Clique Queries. The clique queries are generated with sizes (number
of nodes) between 2 and 7 (sizes greater than 7 have no answers). For each
size, a complete graph is generated with each node assigned a random label.
The random label is selected from the top 40 most frequent labels. A total of
1000 clique queries are generated and the results are averaged. The queries
are divided into two groups according to the number of answers returned: low
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hits (less than 100 answers) and high hits (more than 100 answers). Queries
having no answers are not counted in the statistics. Queries having too many
hits (more than 1000) are terminated immediately and counted in the group of
high hits.

To evaluate the pruning power of the local pruning (Section 4.2) and the
global pruning (Section 4.3), we define the reduction ratio of search space as

(Φ,Φ0) =
∣Φ(u1)∣ × ..× ∣Φ(uk)∣
∣Φ0(u0)∣ × ..× ∣Φ0(uk)∣

where Φ0 refers to the baseline search space.
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Figure 4.20. Search space for clique queries
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Figure 4.21. Running time for clique queries (low hits)

Figure 4.20 shows the reduction ratios of search space by different methods.
“Retrieve by profiles” finds feasible mates by checking profiles and “Retrieve
by subgraphs” finds feasible mates by checking neighborhood subgraphs (Sec-
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tion 4.2). “Refined search space” refers to the global pruning discussed in Sec-
tion 4.3 where the input search space is generated by “Retrieve by profiles”.
The maximum refinement level ℓ is set as the size of the query. As can be seen
from the figure, the refinement procedure always reduces the search space re-
trieved by profiles. Retrieval by subgraphs results in the smallest search space.
This is due to the fact that neighborhood subgraphs for a clique query is actu-
ally the entire clique.

Figure 4.21(a) shows the average processing time for individual steps under
varying clique sizes. The individual steps include retrieval by profiles, retrieval
by subgraphs, refinement, search with the optimized order (Section 4.4), and
search without the optimized order. The time for finding the optimized order is
negligible since we take a greedy approach in our implementation. As shown
in the figure, retrieval by subgraphs has a large overhead although it produces
a smaller search space than retrieval by profiles. Another observation is that
the optimized order improves upon the search time.

Figure 4.21(b) shows the average total query processing time in comparison
to the SQL-based approach on low hits queries. The “Optimized” processing
consists of retrieval by profiles, refinement, optimization of search order, and
search with the optimized order. The “Baseline” processing consists of re-
trieval by node attributes and search without the optimized order on the base-
line space. The query processing time in the “Optimized" case is improved
greatly due to the reduced search space.

The SQL-based approach takes much longer time and does not scale to large
clique queries. This is due to the unpruned search space and the large number
of joins involved. Whereas our graph pattern matching algorithm (Section 4.1)
is exponential in the number of nodes, the SQL-based approach is exponential
in the number of edges. For instance, a clique of size 5 has 10 edges. This
requires 20 joins between nodes and edges (as illustrated in Figure 4.2).

5.2 Synthetic Graphs

The synthetic graphs are generated using a simple Erdős-R«enyi [13] ran-
dom graph model: generate n nodes, and then generate m edges by randomly
choosing two end nodes. Each node is assigned a label (100 distinct labels in
total). The distribution of the labels follows Zipf’s law, i.e., probability of the
xtℎ label p(x) is proportional to x−1. The queries are generated by randomly
extracting a connected subgraph from the synthetic graph.

We first fix the size of synthetic graphs n as 10K, m = 5n, and vary the
query size between 4 and 20. Figure 4.22 shows the search space and pro-
cessing time for individual steps. Unlike clique queries, the global pruning
produces the smallest search space, which outperforms the local pruning by
full neighborhood subgraphs.
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(b) Time for individual steps

Figure 4.22. Search space and running time for individual steps (synthetic graphs, low hits)
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(b) Varying graph sizes (query size: 4)

Figure 4.23. Running time (synthetic graphs, low hits)

Figure 4.23 shows the total time with varying query sizes and graph sizes.
As can be seen, The SQL-based approach is not scalable to large queries,
though it scales to large graphs with small queries. In either case, the “Op-
timized” processing produces the smallest running time.

To summarize the experimental results, retrieval by profiles has much less
overhead than that of retrieval by subgraphs. The refinement step (Section 4.3)
greatly reduces the search space. The overhead of the search step is well com-
pensated by the extensive reduction of search space. A practical combination
would be retrieval by profiles, followed by refinement, and then search with
an optimized order. This combination scales well with various query sizes and
graph sizes. SQL-based processing is not scalable to large queries. Overall, the
optimized processing performs orders of magnitude better than the SQL-based
approach. While small improvements in SQL-based implementations can be
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achieved by careful tuning and other optimizations, the results show that query
processing in the graph domain has clear advantages.

6. Related Work

6.1 Graph Query Languages

A number of graph query languages have been historically available for
representing and manipulating graphs. GraphLog [12] represents both data and
queries graphically. Nodes and edges are labeled with one or more attributes.
Edges in the queries are matched to either edges or paths in the data graphs.
The paths can be regular expressions with possibly negation. A query graph
is a graph with a distinguished edge. The distinguished edge introduces a
new relation for nodes. The query graph can be naturally translated into a
Datalog program where the distinguished edge corresponds to a new predicate
(relation). A graphical query consists of one or more query graphs, each of
which can use predicates defined in other query graphs. The predicates among
them thus form a dependence graph of the graphical query. GraphLog queries
are graphical queries in which the dependence graph must be acyclic. In terms
of expressive power, GraphLog was shown to be equivalent to stratified linear
Datalog [28]. GraphLog does not provide any algebraic operations on graphs,
which is important for practical evaluation of queries.

In the category of object-oriented databases, GOOD [16] is a graph-oriented
object data model. GOOD models an object database instance by a directed la-
beled graph, where objects in the database and attributes on the objects are
both represented as nodes of the graph. GOOD does not distinguish between
atomic, composed and set objects. There are only printable nodes and non-
printable nodes. The printable nodes are used for graphical interfaces. As for
edges, there are only functional edges and non-functional edges. The func-
tional edges point to unique nodes in the graph. Both nodes and edges can
have labels, which are defined by an object database scheme. GOOD defines
a transformation language that contains five basic operations on graphs: node
addition and deletion, edge addition and deletion, and abstraction that groups
common nodes. These operations are defined using the notion of a pattern that
describes subgraphs embedded in the object database instance. The transfor-
mation language is used for both querying and updates. In terms of expressive
power, the transformation language can express operations on sets and recur-
sive functions.

GraphDB [15] is another object-oriented data model and query language
for graphs. In the GraphDB data model, the whole database is viewed as a
single graph. Objects in the database are strong-typed and the object types
support inheritance. Each object is associated with an object type and an ob-
ject identity. The object can have data attributes or reference attributes to other
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objects. There are three kinds of object classes: simple classes, linked classes,
and path classes. Objects of simple classes are nodes of the graph. Objects of
link classes are edges and have two additional references to source and target
simple objects. Objects of path classes have a list of references to node and
edge objects in the graph. A query consists of several steps, each of which cre-
ates or manipulates a uniform sequence of objects, a heterogeneous sequence
of objects, a single object, or a value of a data type. The uniform sequence
of objects have a common tuple type, whereas the heterogenous sequence may
belong to different object classes and tuple types. Queries are constructed in
four fundamental ways: derive, rewrite, union, and custom graph operations.
The derive statement is similar to the usual select...from...where statement, and
can be used to specify a subgraph pattern, which is formulated as a list of node
objects, edge objects, or either of them occurring in a path object. The rewrite
operation transforms a heterogenous sequence of objects into a new sequence.
The union operation transforms a heterogenous sequence into a uniform one
by taking the least common tuple type. The graph operations are user-defined,
e.g., shortest path search.

GOQL [35] also uses an object-oriented graph data model and is extended
from OQL. Similar to GraphDB, GOQL defines object types for nodes, edges,
paths, and graphs. As in OQL, GOQL uses the usual select...from...where
statement to specify queries. In addition, it uses temporal operators next, un-
til and connected to define path formulas. The path formulas can be used as
predicates on sequences and paths in the queries. For query processing, GOQL
translates queries into an object algebra (O-Algebra) with the extended tempo-
ral operators. PQL [25] is a pathway query language for biological networks.
The language extends SQL with path expressions and is implemented on top
of an RDBMS. In all these languages, the basic objects are nodes and edges
as in the object-oriented data model, and paths as extended by the respective
languages. Querying on graph structures are explicitly constructed from the
basic objects.

More recently, XML databases have been studied intensively for tree-based
data models and semistructured data. XML databases can be generally im-
plemented in two approaches: mapping to relational database systems [33] or
native XML implementations [21]. In the second approach, TAX [22] is a
tree algebra for XML that operates natively on trees. TAX uses a pattern tree
to match interesting nodes. The pattern tree consists of a tree structure and
a predicate on nodes of the tree. Tree pattern matching thus plays an impor-
tant role in XML query processing [1, 6]. GraphQL generalizes the idea of
tree patterns to graph patterns. Graph patterns is the main building block of
a graph query and graph pattern matching is an important part of graph query
processing. Both GraphQL and TAX generalize the relational algebraic opera-
tors, including selection, product, set operations. TAX has additional operators
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such as copy-and-paste, value updates, node deletion and insertion. GraphQL
can express these operations by the composition operator.

Some of the recent interest in Semantic Web has spurred Resource De-
scription Framework (RDF) [26] and the accompanying SPARQL query lan-
guage [27]. This model describes a graph by a set of triples, each of which
describes an (attribute, value) pair or an interconnection between two nodes.
The SPARQL query language works primarily through a pattern which is a
constraint on a single node. All possible matchings of the pattern are returned
from the graph database. A general graph query language could be more pow-
erful by providing primitives for expressing constraints on the entire result
graph simultaneously.

Table 4.1. Comparison of different query languages

Language Basic unit Query style Semi-
structured

GraphQL graphs set-oriented yes

SQL tuples set-oriented no

TAX trees set-oriented yes

GraphLog nodes/edges logic pro. -

OODB (GOOD, nodes/edges navigational no
GraphDB, GOQL)

Table 4.1 outlines the comparison between GraphQL and other query lan-
guages. GraphQL is different from other query languages in that graphs are
chosen as the basic unit of information. This means graphs or sets of graphs are
used as the operands and return types in all graph operations. Graph structures
are thus preserved and carried over atomically. This is useful not only from a
user’s perspective but also for query optimizations that rely on graph structural
information. In comparison to SQL, GraphQL has a similar algebraic system,
but the algebraic operators are defined directly on graphs. In comparison to
OODB, GraphQL queries are declarative and set-oriented, whereas OODB ac-
cesses single objects in a navigational manner (i.e., using references to access
objects one after another in the object graph). With regard to data model and
representation, GraphQL is semistructured and does not cast strict and pre-
defined data types or schemas on nodes, edges, and graphs. In contrast, SQL
presumes a strict schema in order to store data. OODB requires objects (nodes
and edges) to be strong-typed. In comparison to XML databases, the main
difference lies in the underlying data model. GraphQL deals with the graph
(networked) data model, whereas XML databases deal with the hierarchical
data model.
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Graph grammars have been used previously for modeling visual languages
and graph transformations in various domains [30, 29]. Our work is different in
that our emphasis has been on a query language and database implementations.

6.2 Graph Indexing

Graph indexing is useful for graph pattern matching over a large collection
of small graphs. GraphGrep [34] uses enumerated paths as index features to
filter unmatched graphs. GIndex [40] uses discriminative frequent fragments
as index features to improve filtering rates and reduce index sizes. Closure-
tree [17] organizes graphs into a tree-based index structure using graph clo-
sures as the bounding boxes. GString [23] converts graph querying to sub-
sequence matching. TreePi [41] uses frequent subtrees as index features.
Williams et al. [39] decompose graphs and hash the canonical forms of the
resulting subgraphs. SAGA [36] enumerates fragments of graphs and answers
are generated by assembling hits of the query fragments. FG-index [9] uses
frequent subgraphs as index features. Frequent graph queries are answered
without verification and infrequent queries require only a small number of ver-
ifications. Zhao et al. [42] show that frequent tree-features plus a small num-
ber of discriminative graphs are better than frequent graph-features. While the
above techniques can be used as access methods for the case of a large collec-
tion of small graphs, this chapter addresses graph pattern matching for the case
of a single large graph.

Another line of graph indexing addresses reachability queries in large di-
rected graphs [8, 10, 11, 31, 37, 38]. In a reachability query, two nodes are
given and the answer is whether there exists a path between the two nodes.
Reachability queries correspond to recursive graph patterns which are paths
(Figure 4.6(a)). Indexing and processing of reachability queries are gener-
ally based on spanning trees with pre/post-order labeling [8, 37, 38] or 2-hop-
cover [10, 11, 31]. These techniques can be incorporated into access methods
for recursive graph pattern queries.

7. Future Research Directions

Physical Storage of Graph Data. Graphs in the real world are heteroge-
neous in both the structures and the underlying attributes. It is challenging to
store graphs on disks for efficient storage and fast retrieval. What is the ap-
propriate storage unit, nodes, edges, or graphs? In the category of a large col-
lection of small graphs, how to store graphs with various sizes to fixed-length
pages on disks? In the category of a single large graph, how to decompose
the large graph into small chunks and preserve locality? Traditional storage
techniques need to be re-considered, and new graph-specific heuristics might
be devised to address these questions.
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Implementation of Other Graph Operators. This chapter only addresses
implementation of the selection operator. Other operators, such as joins on two
collections of graphs, might be a challenge if the inter-graph join conditions
are not trivial. In addition, operators such as ordering (ranking), aggregation
(OLAP processing), are interesting research directions on their own.

Scalability to Very Large Graph Databases. The presented techniques
consider graphs with millions of nodes and edges, or millions of small graphs.
Graphs in some domains, such as Internet, social networks, are in the scale of
tera-bytes or even larger. Graphs at this scale cannot be processed by single
machines. Large-scale parallel and distributed schemes are needed for graph
storage and query processing.

8. Conclusion

We have presented GraphQL, a query language for graphs with arbitrary
attributes and sizes. GraphQL has a number of appealing features. Graphs are
the basic unit and graph structures are composable using the notion of formal
languages for graphs. We developed efficient access methods for the selection
operator using the idea of neighborhood subgraphs and profiles, refinement of
the overall search space, and optimization of the search order. Experimental
studies on real and synthetic graphs validated the access methods.

In summary, graphs are prevalent in multiple domains. This chapter has
demonstrated the benefits of working with native graphs for queries and
database implementations. Translations of graphs into relations are unnatu-
ral and cannot take advantage of graph-specific heuristics. The coupling of
graph-based querying and native graph-based databases produces interesting
possibilities from the point of view of expressiveness and implementation tech-
niques. We have barely scratched the surface and much more needs to be done
in matching characteristics of queries and databases to appropriate heuristics.
The results of this chapter are an important first step in this regard.
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Appendix: Query Syntax of GraphQL
Start ::= ( GraphPattern ";" | FLWRExpr ";" )* <EOF>

GraphPattern ::= "graph" [<ID>] [Tuple] "{"

MemberDecl *

"}" ["where" Expr]

MemberDecl ::= "node" NodeDecl ("," NodeDecl)* ";"
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| "edge" EdgeDecl ("," EdgeDecl)* ";"

| "graph" <ID> ( "," <ID> )* ";"

| "unify" Names "," Names ("," Names)* ";"

NodeDecl ::= [<ID>][Tuple] ["where" Expr]

EdgeDecl ::= [<ID>]"(" Names "," Names")" [Tuple] ["where" Expr]

Tuple ::= "<"[<ID>] (<ID>"="Literal)* ">"

FLWRExpr ::= "for" ( <ID> | GraphPattern )

["exhaustive"] "in" "doc" "(" string ")"

["where" Expr]

( "return" GraphTemplate |

"let" <ID> "=" GraphTemplate )

GraphTemplate ::= "graph" [<ID>] [TupleTemplate] "{"

TMemberDecl *

"}" | <ID>

TMemberDecl ::= "node" TNodeDecl ("," TNodeDecl)* ";"

| "edge" TEdgeDecl ("," TEdgeDecl)* ";"

| "graph" <ID> ( "," <ID> )* ";"

| "unify" Names "," Names ("," Names)* ["where" Expr] ";"

TNodeDecl ::= [<ID>][TupleTemplate]

TEdgeDecl ::= [<ID>]"("Names "," Names")"[TupleTemplate]

TupleTemplate ::= "<"[<ID>] (<ID>"="Expr)* ">"

Expr ::= Term ( Op Expr )*

Op ::= "|" | "&" | "+" | "-" | "*" | "/" |

"==" | "!=" | ">" | ">=" | "<" |"<="

Term ::= "(" Expr ")" | Literal | Names

Names ::= <ID> ("." <ID>)*

Literal ::= int | float | string
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Abstract Advanced database systems face a great challenge arising from the emergence
of massive, complex structural data in bioinformatics, chem-informatics, busi-
ness processes, etc. One of the most important functions needed in these areas
is efficient search of complex graph data. Given a graph query, it is desirable
to retrieve relevant graphs quickly from a large database via efficient graph in-
dices. This chapter gives an introduction to graph substructure search, approx-
imate substructure search and their related graph indexing techniques, particu-
larly feature-based graph indexing.

Keywords: Frequent pattern, graph index, graph query, similarity search

1. Introduction

Development of scalable methods for analyzing large graph data sets, in-
cluding graphs built from chemical structures and biological networks, poses
great challenges. At the core of many graph analysis applications, lies a com-
mon and critical problem: how to efficiently search graphs.

Given a graph database D = {G1, G2, . . . , Gn} and a graph query Q, graph
search returns a query answer set DQ = {G∣M(Q,G) = 1, G ∈ D}, where
M is a boolean function. M could be a function testing graph isomorphism
(full structure search), subgraph isomorphism (substructure search), approxi-
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mate match (full structure similarity search), and subgraph approximate match
(substructure similarity search). It is inefficient to perform a sequential scan
on a graph database and check each graph to find answers to a query graph.
Sequential scan is costly because one has to not only access the whole graph
database but also check (sub)graph isomorphism. It is known that subgraph
isomorphism is an NP-complete problem [8]. Therefore, high performance
graph indexing is needed to quickly prune graphs that obviously violate the
query requirement.

The problem of graph search has been addressed in different domains since
it is a critical problem for many applications. In content-based image retrieval,
Petrakis and Faloutsos [25] represented each graph as a vector of features and
indexed graphs in a high dimensional space using R-trees. Shokoufandeh et
al. [29] indexed graphs by a signature computed from the eigenvalues of adja-
cency matrices. Instead of casting a graph to a vector form, Berretti et al. [2]
proposed a metric indexing scheme which organizes graphs hierarchically ac-
cording to their mutual distances. The SUBDUE system developed by Holder
et al. [17] uses minimum description length to discover substructures that com-
press graph data and represent structural concepts in the data. In 3D protein
structure search, algorithms using hierarchical alignments on secondary struc-
ture elements [21], or geometric hashing [35], have already been developed.
There are other literatures related to graph retrieval that we are not going to
enumerate here.

In semistructured/XML databases, query languages built on path expres-
sions become popular. Efficient indexing techniques for path expression were
initially introduced in DataGuide [13] and 1-index [23]. A(k)-index [20] pro-
poses k-bisimilarity to exploit local similarity existing in semistructured data-
bases. APEX [7] and D(k)-index [5] consider the adaptivity of index structure
to fit the query load. Index Fabric [9] represents every path in a tree as a string
and stores it in a Patricia trie. For more complicated graph queries, Shasha
et al. [28] extended the path-based technique to do full scale graph retrieval,
which is also used in the Daylight system [18]. Srinivasa et al. [30] built in-
dices based on multiple vector spaces with different abstract levels of graphs.

This chapter introduces feature-based graph indexing techniques that facili-
tate graph substructure search in graph databases with thousands of instances.
Nevertheless, similar techniques can also be applied to indexing single massive
graphs.

2. Feature-Based Graph Index

Definition 5.1 (Substructure Search). Given a graph database D =
{G1, G2, . . . , Gn} and a query graph Q, substructure search is to find all the
graphs that contain Q.
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Substructure search is one kind of basic graph queries, observed in many
graph-related applications. Feature-based graph indexing is designed to an-
swer substructure search queries, which consists of the following two major
steps:

Index construction: It precomputes features from a graph database and
builds indices based on these features. There are various kinds of features
that could be used, including node/edge labels, paths, trees, and subgraphs.
Let F be a feature set for a given graph database D. For any feature f ∈ F ,
Df is the set of graphs containing f , Df = {G∣f ⊆ G,G ∈ D}. We define
a null feature, f∅, which is contained by any graph. An inverted index is built
between F and D: Df could be the ids of graphs containing f , which is similar
to inverted index in document retrieval [1].

Query processing: It has three substeps: (1) Search, which enumerates all
the features in a query graph, Q, to compute the candidate query answer set,
CQ =

∩
f Df (f ⊆ Q and f ∈ F ); each graph in CQ contains all of Q’s

features. Therefore, DQ is a subset of CQ. (2) Fetching, which retrieves the
graphs in the candidate answer set from disks. (3) Verification, which checks
the graphs in the candidate answer set to verify if they really satisfy the query.
The candidate answer set is verified to prune false positives.

The Query Response Time of the above search framework is formulated as
follows,

Tsearcℎ + ∣CQ∣ ∗ (Tio + Tiso test), (5.1)

where Tsearcℎ is the time spent in the search step, Tio is the average I/O time
of fetching a candidate graph from the disk, and Tiso test is the average time
of checking a subgraph isomorphism, which is conducted over query Q and
graphs in the candidate answer set.

The candidate graphs are usually scattered around the entire disk. Thus, Tio
is the I/O time of fetching a block on a disk (assume a graph can be accom-
modated in one disk block). The value of Tiso test does not change much for
a given query. Therefore, the key to improve the query response time is to
minimize the size of the candidate answer set as much as possible. When a
database is so large that the index cannot be held in main memory, Tsearcℎ will
affect the query response time.

Since all the features in the index contained by a query are enumerated, it is
important to maintain a compact feature set in the memory. Otherwise, the cost
of accessing the index may be even greater than that of accessing the database
itself.

2.1 Paths

One solution to substructure search is to take paths as features to index
graphs: Enumerate all the existing paths in a database up to amaxL length and



164 MANAGING AND MINING GRAPH DATA

use them as features to index, where a path is a vertex sequence, v1, v2, . . . , vk ,
s.t., ∀1 ≤ i ≤ k − 1, (vi, vi+1) is an edge. It uses the index to identify graphs
that contain all the paths (up to the maxL length) in the query graph.

This approach has been widely adopted in XML query processing. XML
query is one kind of graph query, which is usually built around path expres-
sions. Various indexing methods [13; 23; 9; 20; 7; 28; 5] have been developed
to process XML queries. These methods are optimized for path expressions
and tree-structured data. In order to answer arbitrary graph queries, Graph-
Grep and Daylight systems were proposed in [28; 18]. All of these methods
take path as the basic indexing unit; we categorize them as path-based in-
dexing. The path-based approach has two advantages: (1) Paths are easier to
manipulate than trees and graphs, and (2) The index space is predefined: All
the paths up to themaxL length are selected. In order to answer tree- or graph-
structured queries, a path-based approach has to break query graphs into paths,
search each path separately for the graphs containing the path, and join the
results. Since the structural information could be lost when query graphs are
decomposed to paths, likely many false positive candidates will be returned.
In addition, a graph database may contain millions of different paths if it is
large and diverse. These disadvantages motivate the search of new indexing
features.

2.2 Frequent Structures

A straightforward approach of extending paths is to involve more compli-
cated features, e.g., all of substructures extracted from a graph database. Un-
fortunately, the number of substructures could be even more than the number
of paths, leaving an exponential index structure in practice. One solution is to
set a threshold of substructures’ frequency and only index those frequent ones.

Definition 5.2 (Frequent Structures). Given a graph database D =
{G1, G2, . . . , Gn} and a graph structure f , the support of f is defined as
sup(f) = ∣Df ∣, whereas Df is referred as f ’s supporting graphs. With a
predefined threshold min sup, f is said to be frequent if sup(f) ≥ min sup.

Frequent structures could be used as features to index graphs. Given a query
graph Q, if Q is frequent, the graphs containing Q can be retrieved directly
since Q is indexed. Otherwise, we sort all Q’s subgraphs in the support de-
creasing order: f1, f2, . . . , fn. There must exist a boundary between fi and
fi+1 where ∣Dfi ∣ ≥ min sup and ∣Dfi+1

∣ < min sup. Since all the frequent
structures with minimum support min sup are indexed, one can compute the
candidate answer set CQ by

∩
1≤j≤iDfj , whose size is at most ∣Dfi ∣. For

many queries, ∣Dfi ∣ is close to min sup. Therefore, the cost of verifying CQ is
minimal when min sup is low.
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Unfortunately, for low support queries (i.e., queries whose answer set is
small), the size of candidate answer set CQ is related to the setting of min sup.
If min sup is set too high, CQ might be very large. If min sup is set too low, it
could be difficult to generate all the frequent structures due to the exponential
pattern space.

Should a uniform min sup be enforced for all the frequent structures? In
order to reduce the overall index size, it is appropriate to have a low minimum
support on small structures (for effectiveness) and a high minimum support on
large structures (for compactness). This criterion of selecting frequent struc-
tures for effective indexing is called size-increasing support constraint.

Definition 5.3 (Size-increasing Support). Given a monotonically nonde-
creasing function,  (l), structure f is frequent under the size-increasing sup-
port constraint if and only if ∣Df ∣ ≥  (size(f)), and  (l) is a size-increasing
support function.
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Figure 5.1. Size-increasing Support Functions

Figure 5.1 shows two size-increasing support functions: exponential and
piecewise-linear. One could select size-1 structures with a minimum support
� and larger structures with a higher support until we exhaust structures up to
the size of maxL with a minimum support Θ.

The size-increasing support constraint will select and index small structures
with low minimum supports and large structures with high minimum supports.
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This method has two advantages: (1) the number of frequent structures so
obtained is much smaller than that using a low uniform support, and (2) low-
support large structures could be well indexed by their smaller subgraphs. The
first advantage also shortens the mining process when graphs have big struc-
tures in common.

2.3 Discriminative Structures

Among similar structures with the same support, it is often sufficient to
index only the smallest common substructures since more query graphs may
contain these structures (higher coverage). That is to say, if f ′, a supergraph of
f , has the same support as f , it will not be able to provide more information
than f if both are selected as indexing features. That is, f ′ is not more discrim-
inative than f . This concept can be extended to a collection of subgraphs.

Definition 5.4 (Redundant Structure). Structure x is redundant with respect
to a feature set F if Dx is close to

∩
f∈F∧f⊆xDf .

Each graph in
∩

f∈F∧f⊆xDf contains all x’s subgraphs in the feature set

F . If Dx is close to
∩

f∈F∧f⊆xDf , it implies that the presence of structure
x in a graph can be predicted well by the presence of its subgraphs. Thus,
x should not be used as an indexing feature since it does not provide new
benefits to pruning if its subgraphs are being indexed. In such case, x is a
redundant structure. In contrast, there are structures that are not redundant,
called discriminative structures.

Let f1, f2, . . . , and fn be the indexing structures. Given a new structure x,
the discriminative power of x can be measured by

Pr(x∣f'1 , . . . , f'm), f'i ⊆ x, 1 ≤ 'i ≤ n. (5.2)

Eq. (5.2) shows the probability of observing x in a graph given the presence
of f'1 , . . . , and f'm . Discriminative ratio, , is defined as 1/Pr(x∣f'1 , . . . ,
f'm), which could be calculated by the following formula:

 =
∣∩iDf'i

∣
∣Dx∣

, (5.3)

whereDx is the set of graphs containing x and
∩

iDf'i
is the set of graphs con-

taining the features belonging to x. In order to mine discriminative structures, a
minimum discriminative ratio min is selected; those structures whose discrim-
inative ratio is at least min are retained as indexing features. The structures
are mined in a level-wise manner, from small size to large size. The concept of
indexing discriminative frequent structures, called gIndex, was first introduced
by Yan et al. [36]. gIndex is able to achieve better performance in comparison
with path-based methods.



Graph Indexing 167

For a feature x ⊆ Q, the operation, CQ = CQ ∩ Dx could reduce the
candidate answer set by intersecting the id lists of CQ and Dx. One inter-
esting question is how to reduce the number of intersection operations. In-
tuitively, if a query Q has two structures, fx ⊂ fy, then CQ

∩
Dfx

∩
Dfy

= CQ
∩
Dfy . Thus, it is not necessary to intersect CQ with Dfx . Let

F (Q) be the set of discriminative structures contained in the query graph
Q, i.e., F (Q) = {fx∣fx ⊆ Q ∧ fx ∈ F}. Let Fm(Q) be the set of
structures in F (Q) that are not contained by other structures in F (Q), i.e.,
Fm(Q) = {fx∣fx ∈ F (Q),∄fy, s.t., fx ⊂ fy ∧ fy ∈ F (Q)}. The structures in
Fm(Q) are called maximal discriminative structures. In order to calculate CQ,
one only needs to perform intersection operations on the id lists of maximal
discriminative structures.

2.4 Closed Frequent Structures

Graph query processing that applies feature-based graph indices often re-
quires a post verification step that finds true answers from a candidate answer
set. If the candidate answer set is large, the verification step might take a long
time to finish. Fortunately, a query graph having a large answer set is likely
a frequent graph, which can be very efficiently processed using the frequent
structure based index without any post verification. If the query graph is not a
frequent structure, the candidate answer set obtained from the frequent struc-
ture based index is likely small; hence the number of candidate verifications
should be minimal. Based on this observation, Cheng et al. [6] investigated the
issue arising from frequent structure based indexing. As discussed before, the
number of frequent structures could be exponential, indicating a huge index,
which might not fit into main memory. In this case, the query performance
will be degraded, since graph query processing has to access disks frequently.
Cheng et al. [6] proposed using �-Tolerance Closed Frequent Subgraphs (�-
TCFGs) to compress the set of frequent structures. Each �-TCFG can be re-
garded as a representative supergraph of a set of frequent structures. An outer
inverted-index is built on the set of �-TCFGs, which is resident in main mem-
ory. Then, an inner inverted-index is built on the cluster of frequent structures
of each �-TCFG, which is resident in disk. Using this two-level index structure,
many graph queries could be processed directly without verification.

2.5 Trees

Zhao et al. [38] analyzed the effectiveness and efficiency of paths, trees, and
graphs as indexing features from three aspects: feature size, feature selection
cost, and pruning power. Like paths and graphs, tree features can be effectively
and efficiently used as indexing features for graph databases. It was observed
that the majority of frequent graph patterns discovered in many applications
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are tree structures. Furthermore, if the distribution of frequent trees and graphs
is similar, likely they will share similar pruning power.

Since tree mining can be performed much more efficiently than graph min-
ing, Zhao et al. [38] proposed a new graph indexing mechanism, called
Tree+Δ, which first mines and indexes frequent trees, and then on-demand
selects a small number of discriminative graph structures from a query, which
might prune graphs more effectively than tree features. The selection of dis-
criminative graph structures is done on-the-fly for a given query. In order to
do so, the pruning power of a graph structure is estimated approximately by its
subtree features with upper/lower bounds. Given a query, Tree+Δ enumerates
all the frequent subtrees of Q up to the maximum size maxL. Based on the
obtained frequent subtree feature set ofQ, T (Q), it computes the candidate an-
swer set, CQ, by intersecting the supporting graph set of t, for all t ∈ T (Q). If
Q is a non-tree cyclic graph, it obtains a set of discriminative non-tree features,
F . These non-tree features, f , may be cached already in previous search. If
not, Tree+Δ will scan the graph database and build an inverted index between
f and graphs in D. Then it intersects CQ with the supporting graph set Df .

GCoding [39] is another tree-based graph indexing approach. For each node
u, it extracts a level-n path tree, which consists of all n-step simple pathes from
u in a graph. The node is then encoded with eigenvalues derived from this local
tree structure. If a query graph Q is a subgraph of a graph G, for each vertex
u in Q, there must exist a corresponding vertex u′ in G such that the local
structure around u in Q should be preserved around u′ in G. There is a partial
order relationship between the eigenvalues of these two local structures. Based
on this property, GCoding could quickly prune graphs that violate the order.

GString [19] combines three basic structures together: path, star, and cycle
for graph search. It first extracts all of cycles in a graph database and then finds
the star and path structures in the remaining dataset. The indexing methodol-
ogy of GString is different from the feature-based approach. It transforms
graphs into string representations and treats the substructure search problem as
a substring match problem. GString relies on suffix tree to perform indexing
and search.

2.6 Hierarchical Indexing

Besides the feature-based indexing methodology, it is also possible to or-
ganize graphs in a hierarchical structure to facilitate graph search. Close-tree
[15] and GDIndex [34] are two examples of hierarchical graph indexing.

Closure-tree organizes graphs hierarchically where each node in the hierar-
chical structure contains summary information about its descendants. Given
two graphs and an isomorphism mapping between them, one can take an ele-
mentwise union of the two graphs and obtain a new graph where the attribute
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of vertices and edges is a union of their corresponding attribute values in the
two graphs. This union graph summarizes the structural information of both
graphs, and serves as their bounding box [15], akin to a Minimum Bounding
Rectangle (MBR) in traditional index structures. There are two steps to process
a graph query Q using the closure-tree index: (1) Traverse the closure tree and
prune nodes (graphs) based on a pseudo subgraph isomorphism; (2) Verify the
remaining graphs to find the real answers. The pseudo subgraph isomorphism
performs approximate subgraph isomorphism testing with high accuracy and
low cost.

GDIndex [34] proposes indexing the complete set of the induced subgraphs
in a graph database. It organizes the induced subgraphs in a DAG structure
and builds a hash table to cross-index the nodes in the DAG structure. Given a
query graph, GDIndex first identifies the nodes in the DAG structure that share
the same hash code with the query graph, and then their canonical codes are
compared to find the right answers. Unfortunately, the index size of GDIn-
dex could be exponential due to a large number of induced subgraphs. It was
suggested to place a limit on the size of indexed subgraphs.

3. Structure Similarity Search

A common problem in graph search is: what if there is no match or very few
matches for a given query graph? In this situation, a subsequent query refine-
ment process has to be taken in order to find the structures of interest. Unfor-
tunately, it is often too time-consuming for a user to manually refine the query.
One solution is to ask the system to find graphs that approximately contain the
query graph. This structure similarity search problem has been studied in var-
ious fields. Willett et al. [33] summarized the techniques of fingerprint-based
and graph-based similarity search in chemical compound databases. Raymond
et al. [27] proposed a three tier algorithm for full structure similarity search.
Nilsson[24] presented an algorithm for the pairwise approximate substructure
matching. The matching is greedily performed to minimize a distance func-
tion for two graphs. Hagadone [14] recognized the importance of substructure
similarity search in a large set of graphs. He used atom and edge labels to do
screening. Messmer and Bunke [22] studied the reverse substructure similarity
search problem in computer vision and pattern recognition. In [28], Shasha et
al. also extended their substructure search algorithm to support queries with
wildcards, i.e. don’t care nodes and edges. In the following discussion, we
will introduce feature-based graph indexing for substructure similarity search.

Definition 5.5 (Substructure Similarity Search). Given a graph database
D = {G1, G2, . . . , Gn} and a query graph Q, substructure similarity search
is to discover all the graphs that approximately contain Q.
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Definition 5.6 (Substructure Similarity). Given two graphs G and Q, if P is
the maximum common subgraph of G and Q, then the substructure similarity
between G and Q is defined by ∣E(P )∣

∣E(Q)∣ , and � = 1− ∣E(P )∣
∣E(Q)∣ is called relaxation

ratio.

Besides the common subgraph similarity measure, graph edit distance could
also be used to measure the similarity between two graphs. It calculates
the minimum number of edit operations (insertion, deletion, and substitution)
needed to transform one graph into another [3].

3.1 Feature-Based Structural Filtering

Given a relaxed query graph, there is a connection between structure-
based similarity and feature-based similarity, which could be used to leverage
feature-based graph indexing techniques for similarity search.

e1

e2 e3

(a) A Query

(a) fa (b) fb (c) fc

(b) A Set of Features

Figure 5.2. Query and Features

Figure 5.2(a) shows a query graph and Figure 5.2(b) depicts three structural
fragments. Assume that these fragments are indexed as features in a graph
database. Suppose there is no match for this query graph in a graph database.
Then a user may relax one edge, e.g., e1, e2, or e3, through a deletion oper-
ation. No matter which edge is relaxed, the relaxed query graph should have
at least three embeddings of these features. That is, the relaxed query graph
may miss at most four embeddings of these features in comparison with the
seven embeddings in the original query graph: one fa, two fb’s, and four fc’s.
According to this constraint, graphs that do not contain at least three embed-
dings of these features could be safely pruned. This filtering concept is called
feature-based structural filtering. In order to facilitate feature-based filtering,
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an index structure is developed, referred to feature-graph matrix [12; 28]. Each
column of the feature-graph matrix corresponds to a target graph in the graph
database, while each row corresponds to a feature being indexed. Each entry
records the number of the embeddings of a specific feature in a target graph.

3.2 Feature Miss Estimation

fa fb(1) fb(2) fc(1) fc(2) fc(3) fc(4)

e1 0 1 1 1 0 0 0

e2 1 1 0 0 1 0 1

e3 1 0 1 0 0 1 1

Figure 5.3. Edge-Feature Matrix

In order to calculate the maximum feature misses for a given relaxation
ratio, we introduce edge-feature matrix that builds a map between edges and
features for a query graph. In this matrix, each row represents an edge while
each column represents an embedding of a feature. Figure 5.3 shows the matrix
built for the query graph in Figure 5.2(a) and the features shown in Figure
5.2(b). All of the embeddings are recorded. For example, the second and the
third columns are two embeddings of feature fb in the query graph. The first
embedding of fb covers edges e1 and e2 while the second covers edges e1 and
e3. The middle edge does not appear in the edge-feature matrix if a user prefers
retaining it. We say that an edge ei hits a feature fj if fj covers ei.

The feature miss estimation problem is formulated as follows: Given a
query graph Q and a set of features contained in Q, if the relaxation ratio
is �, what is the maximum number of features that can be missed? In fact,
it is the maximum number of columns that can be hit by k rows in the edge-
feature matrix, where k = ⌊� ⋅ ∣G∣⌋. This is a classic maximum coverage (or
set k-cover) problem, which has been proved NP-complete. The optimal so-
lution that finds the maximal number of feature misses can be approximated
by a greedy algorithm [16]. The greedy algorithm first selects a row that hits
the largest number of columns and then removes this row and the columns
covering it. This selection and deletion operation is repeated until k rows are
removed. The number of columns removed by this greedy algorithm provides
a way to estimate the upper bound of feature misses. Although the bound de-
rived by the greedy algorithm cannot be improved asymptotically, it is possible
to improve the greedy algorithm in practice by exhaustively searching the most
selective features [37].
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3.3 Frequency Difference

Once the upper bound of feature misses is obtained, it could be used to prune
graphs. Let f1, f2, . . . , fn be the indexing features. Given a target graph G
and a query graph Q, let u = [u1, u2, . . . , un]

T and v = [v1, v2, . . . , vn]
T be

their corresponding feature vectors, where ui and vi are the frequencies (i.e.,
the number of embeddings) of feature fi in graphs G and Q. Figure 5.4 shows
the two feature vectors u and v. As mentioned before, for any feature set,
the corresponding feature vector of a target graph can be obtained from the
feature-graph matrix directly without scanning the graph database.

Target Graph G

Query Graph Q

u1

u2

u3

u4

u5

v1

v2

v3
v4

v5

f1 f2 f3 f4 f5

Figure 5.4. Frequency Difference

Eq. (5.4) calculates frequency difference of fi between the query graph and
the target graph,

r(ui, vi) =

{
0, if ui ≥ vi,
vi − ui, otℎerwise.

(5.4)

For the feature vectors shown in Figure 5.4, r(u1, v1) = 0; the extra embed-
dings from the target graph are not taken into account. The summed frequency
difference of each feature in G and Q is written as d(G,Q). Eq. (5.5) sums up
all the frequency differences,

d(G,Q) =

n∑

i=1

r(ui, vi). (5.5)

Suppose the query can be relaxed with k edges and the upper bound of allowed
feature misses is then estimated using the greedy algorithm mentioned before.
If d(G,Q) is greater than that bound, it can be concluded that G does not con-
tain Q within k edge relaxations. For this case, it is not necessary to perform
any complicated structure comparison between G and Q. Since all the com-
putations are done on the preprocessed information in the indices, the filtering
process is fast.
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3.4 Feature Set Selection

Though a bit counter-intuitive, using all the features together will not nec-
essarily give the optimal solution; in some cases, it even deteriorates the
performance rather than improving it. Given a query graph Q, let F =
{f1, f2, . . . , fm} be the set of features included in Q, and dkF the maximal
number of features missed in F after Q is relaxed (either relabeled or deleted)
with k edges. Relabeling and deleting an edge e in Q have the same ef-
fect: the features containing e are broken. Let u = [u1, u2, . . . , um]T and
v = [v1, v2, . . . , vm]T be the feature vectors built from a target graph G in
the graph database and a query graph Q based on a chosen feature set F . Let
ΓF = {G∣d(G,Q) > dkF}, which is the set of graphs pruned from the database
by the feature set F . It is obvious that, for any feature set F , the greater the
cardinality of ΓF , the better.

In general, a candidate graph G passing a filter should satisfy the following
inequality,

r(u1, v1) + r(u2, v2) + . . .+ r(un, vn) ≤ dkF . (5.6)

Let P be the maximum common subgraph of G and Q. Vector u′ =
[u′1, u

′
2, . . . , u

′
n]

T is its feature vector. If G contains Q within the relaxation
ratio, P should contain Q within the relaxation ratio as well, i.e.,

r(u′1, v1) + r(u′2, v2) + . . .+ r(u′n, vn) ≤ dkF . (5.7)

Since for any feature fi, ui ≥ u′i, we have

r(ui, vi) ≤ r(u′i, vi),
n∑

i=1

r(ui, vi) ≤
n∑

i=1

r(u′i, vi).

Inequality (5.7) is stronger than Inequality (5.6). Assume that Inequality (5.7)
does not hold for graph P , and there exists a feature fi such that its frequency
in P is too small to keep Inequality (5.7) true. However, Inequality (5.6) could
still hold for graph G, if the misses of fi is compensated by more occurrences
of other features inG. This phenomenon is called feature conjugation. Feature
conjugation likely takes place since the filtering does not distinguish the misses
of individual features, but a collection of features. Due to feature conjuga-
tion, some graphs might not be pruned by the feature-based structural filtering
method.

Definition 5.7 (Selectivity). Given a graph database D, a query graphQ, and
a feature f , the selectivity of f is defined by its average frequency difference
within D and Q, written as �f (D,Q). �f (D,Q) is equal to the average of
r(u, v), where u is a variable denoting the frequency of f in a graph belonging
to D, v is the frequency of f in Q, and r is defined in Eq. (5.4).
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There are three general feature set selection principles. The first principle
is to select a large number of features. If only a small number of features
are selected, the maximum allowed feature misses may become very close to∑n

i=1 vi. In that case, the filtering algorithm loses its pruning power. The sec-
ond one is to make sure features cover the entire query graph. If most of the
features cover several common edges, the relaxation of these edges will make
the maximum allowed feature misses too big. The third one is to separate fea-
tures with different selectivity. Low selective features deteriorate the potential
filtering power from high selective ones due to frequency conjugation.

The above three criteria are not consistent with each other. For example, if
all the features in a query graph are used, the second and the third principles
will be violated since features often are concentrated in the center of a graph.
On the other hand, one cannot use the most selective features alone because
a query graph might not have enough highly selective features. The task of
feature set selection is to make a trade-off among these principles. In practice,
using a single filter with all the features included is not expected to perform
well. Yan et al. [37] introduced a multi-filter strategy: Multiple filters are
constructed and applied sequentially, where each filter uses a subset of features.
This strategy was demonstrated to outperform a single filter based approach.

3.5 Structures with Gaps

The graph indexing methods introduced so far only consider connected sub-
graphs in a graph database. SAGA [31] proposes using fragments that do not
always correspond to connected subgraphs and allows gaps in the indexing
fragments.

The indexing unit in SAGA is a set of k nodes from the graphs in a database,
where k is a user specified parameter, and is usually a small number. However,
it could be expensive to enumerate all possible k-node sets in a large graph
database. SAGA puts a limit on the diameter of each k-node set. If any pair of
nodes in a k-node set are too far apart, this fragment does not correspond to a
meaningful substructure, thus is not worth indexing. For a k-node set {v1, v2,
. . ., vk}, if any two nodes vi and vj satisfy d(vi, vj) ≤ dmax, where dmax is a
diameter limit, SAGA connects the two nodes by a pseudo edge. Only those
fragments that form a connected graph with the original edges or the newly
introduced pseudo edges are indexed. Because of the pseudo edges, SAGA
could index fragments with gaps.

The matching process of SAGA has three steps. The first step is to find
small hits. In this step, the query graph is broken into small fragments and the
graph index is probed to find database fragments that are similar to the query
fragments. The second step is to assemble small hits retrieved in the first step
to formulate larger matches. In this step, the small hits are first grouped by



Graph Indexing 175

the database graph IDs and two neighbor hits are connected with each other
to formulate a hit-compatible graph. This graph will tell which hits could be
merged together to form a potential large match for the given query graph. The
third step examines each candidate match and produces a set of real matches.
SAGA allows users to specify a threshold to control the percentage of gap
nodes in the subgraph match.

Different from Grafil [37] and SAGA [31], TALE [32] employs a new
graph indexing method, called NH-Index (Neighborhood Index) for approx-
imate subgraph matching of large query graphs efficiently. Instead of indexing
various kinds of subgraphs in a graph database, NH-Index only considers the
neighborhood structure of each node in a graph. Therefore, the number of in-
dexing structures in NH-Index is equal to the number of nodes in the database,
which is much smaller than the number of features used in many feature-based
indexing methods. TALE also has an innovative matching paradigm for query-
ing large graphs. Unlike the existing graph matching tools that treat every
node in a graph equally, TALE distinguishes nodes by their importance in a
graph structure. The algorithm first probes the NH-Index to match the impor-
tant nodes in a query graph, and then progressively extends the matches by
enclosing satisfiable nearby nodes of the matched nodes. TALE was applied to
two real biological datasets and was able to produce meaningful results in both
cases [32].

4. Reverse Substructure Search

In contrast to substructure search (Definition 5.1) which finds all graphs
that contain a query graph, reverse substructure search finds all graphs that are
contained by a query graph. Reverse substructure search finds applications in
chem-informatics, pattern recognition [11] (visual surveillance, face recogni-
tion), cyber security (virus signature detection [10]), information management
(user-interest mapping [26]), etc. For example, in chemistry, a descriptor is
a set of atoms with designated bonds that has certain properties of chemical
reactions. Given a new molecule, identifying “descriptor" structures can help
researchers to understand its possible properties. In computer vision, attributed
relational graphs (ARG) [11] are used to model images by transforming them
into spatial entities such as points, lines, and shapes. ARG also connects these
spatial entities (nodes) together with their mutual relationships (edges) such
as distances, using a graph representation. The graph models of basic objects
such as humans, animals, cars, airplanes, are built first. A recognition sys-
tem could then query these models to identify objects, or perform large-scale
video search for specific models if the key frames of videos are represented by
ARGs. Such a system can also be used to automatically recognize and classify
objects in technical drawings.
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Definition 5.8 (Reverse Substructure Search). Given a graph
database D = {G1, G2, . . . , Gn} and a graph query Q, find all graphs Gi in
D, s.t., Q ⊇ Gi.

Reverse substructure search has its unique characteristics. The pruning strat-
egy employed in substructure search has inclusion logic: Given a query graph
Q and a database graph G ∈ D, if a feature f ⊆ Q and f ∕⊆ G, then Q ∕⊆ G.
That is, if feature f is in Q then the graphs not having f are pruned. The in-
clusion logic prunes graphs using features contained in the query graph. On
the contrary, reverse substructure search has an exclusion logic: If a feature
f ⊈ Q and f ⊆ G, then Q ⊉ G. That is, if feature f is not in Q then the
graphs having f are pruned.

According to the exclusion logic, given a graph database D, the best index-
ing features are those subgraphs contained by lots of graphs in D, but unlikely
contained by a query graph. This kind of subgraph features are called con-
trast features. There is a connection between contrast subgraphs and their
frequency: Both infrequent and very frequent subgraphs are likely not con-
trastive, and thus not useful for indexing. Therefore, one can apply frequent
graph pattern mining and select those contrast subgraphs. The number of con-
trast subgraphs could be huge; most of them are very similar to each other.
Since the index performance is determined by a set of indexing features, rather
than individual ones, it is important to find a set of contrast subgraphs that col-
lectively perform well. Chen et al. [4] developed a redundancy-aware selection
mechanism, cIndex, to sort out a set of distinctive contrast subgraphs that can
maximize the pruning performance for a set of query graphs. cIndex has a
flat index structure, where each feature is tested sequentially against queries.
Based on cIndex, cIndex-BottomUp and cIndex-TopDown were developed to
support hierarchical indexing models that could further improve the pruning
capability.

The bottom-up hierarchical index builds indices layer by layer starting from
the bottom-level original graphs in a database. Figure 5.5(a) shows a bottom-
up hierarchical index where the itℎ-level index ℐi is built by applying cIndex
to features in the (i− 1)tℎ-level index ℐi−1. For example, the first-level index
ℐ1 is built on the original graph database by cIndex. Once this is done, the
features in ℐ1 can be regarded as another graph database, where cIndex can
be executed again to form a second-level index ℐ2. Following this manner,
one can continue building higher-level indices until the pruning gain becomes
zero. This method is called cIndex-BottomUp. Note that in a bottom-up index,
features on the itℎ-level must be subgraphs of features on the (i−1)tℎ-level. In
Figure 5.5(a), subgraph relationships are shown as edges. For example, f1 is a
subgraph of f2, which is in turn a subgraph of f3. Given a query graph Q, if
f1 ∕⊆ Q, then the tree covered by f1 need not be examined due to the exclusion
logic. Since the index on each level will save some isomorphism tests for the
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Figure 5.5. cIndex

graphs it indexes, it is obvious that cIndex-BottomUp should outperform the
flat index of cIndex.

The top-down hierarchical index first puts f1, the feature with the highest
pruning power, at the top of the hierarchy (Figure 5.5(b)). Given a query graph
Q, if f1 is contained by Q, f2 is further tested against Q; if f1 is not contained
by Q, all the graphs indexed by f1 are pruned, and then the second feature f ′2
is tested for the remaining graphs. In a flat index built by cIndex, f2 and f ′2 are
forced to be the same: No matter whether f1 is contained byQ or not, the same
second feature will be examined next. However, in a top-down index, they can
be different. As shown in [4], cIndex-TopDown achieved the best performance
due to its differentiating index structure.

5. Conclusions

Graph indexing is one of the emerging important tasks in graph database
management and graph data mining. It is fundamental to many graph related
applications, especially when an application involves large scale graph data-
bases. In this chapter, we introduced the concepts of substructure search, ap-
proximate substructure search, and feature-based graph indexing methods that
mine and index a compact set of discriminative and selective structure features
for fast graph retrieval. These methods are going to significantly improve the
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performance of advanced graph applications such as graph classification and
clustering.
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Abstract There are numerous applications that need to deal with a large graph, including
bioinformatics, social science, link analysis, citation analysis, and collaborative
networks. A fundamental query is to query whether a node is reachable from
another node in a large graph, which is called a reachability query. In this sur-
vey, we discuss several existing approaches to process reachability queries. In
addition, we will discuss how to answer reachability queries with the shortest
distance, and graph pattern matching over a large graph.

Keywords: Graph, Reachability, Coding, Graph Pattern Matching.

1. Introduction

Graph structured data is enjoying an increasing popularity as web technol-
ogy and archiving techniques advance. Numerous emerging applications need
to work with graph-like data due to its expressive power to handle complex re-
lationships among objects. Instances include navigation behavior analysis for
web usage mining [3], web site analysis [22], and biological network analysis
for life science [33]. In addition, RDF allows users to explicitly describe se-
mantic resources in graphs [6]. Querying and analyzing graph structured data
becomes important. As a major standard for representing data on the World-
Wide-Web, XML provides facilities for users to view data as graphs with two
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different links, the parent-child links (document-internal links) and reference
links (cross-document links), where the cross-document links are supported
by value matching using ID/IDREF in XML. XLink (XML Linking Language)
[19] and XPointer (XML Pointer Language) [20] provide more facilities for
users to manage their complex data as graphs and integrate data effectively.
The dominance of graphs in real-world applications demands new graph data
management so that users can access graph data effectively and efficiently.

Graph reachability (or simply reachability) queries, to test whether there is
a path from a node v to another node u in a large directed graph, have being
studied [1, 24, 17, 28–30, 23, 13, 34, 32, 9, 14, 5, 26, 25, 10] and are deemed
to be a very basic type of graph queries for many applications. Consider a se-
mantic network that represents people as nodes in the graph and relationships
among people as edges in the graph. There are needs to understand whether
two people are related for security reasons [2]. On biological networks, where
nodes are either molecules, or reactions, or physical interactions of living cells,
and edges are interactions among them, there is an important question to “find
all genes whose expressions are directly or indirectly influenced by a given
molecule” [33]. All those questions can be mapped into reachability queries.
The needs of such a reachability query can be also found in XML when two
types of links (document-internal links and cross-document links) are treated
the same. Recently, [8, 12, 35] studied graph matching problem on large
graph data, where nodes in a match are connected by reachability relation-
ships. Reachability queries are so common that fast processing is mandatory.

Reachability Queries: Let G = (V,E) be a large directed graph that has n
nodes and m edges. A reachability queries is denoted as u ↝ v, where u and
v are two nodes in G. Here, u ↝ v returns true if and only if there is a di-
rected path in the directed graph G from u to v. In other words, let TC be the
edge transitive closure of graph G, u ↝ v is true if and only if (u, v) ∈ TC .
We call such a pair (u, v) a connection. Note: TC can be very large for a
large and dense graph G. A reachability query over a directed graph G can be
answered over a corresponding directed acyclic graph (DAG) of the graph G
based on strongly connected components. Two nodes, u and v, are said to be
in a strongly connected component, if and only if both u ↝ v and v ↝ u are
true. And in a strongly connected component, for every two nodes, u and v,
u ↝ v and v ↝ u are true. Given a directed graph G(V,E), its strongly con-
nected components, C1, C2, ⋅ ⋅ ⋅ , can be efficiently identified in O(n+m) time
[18]. A DAG of the graph G, denoted G′, can be constructed as follows. First,
a strongly connected component Ci in G is replaced by a representative node
v in G′. Second, all the edges between the nodes in the strongly connected
component Ci are removed while all incoming edges and outgoing edges of Ci

will be represented as incoming edges and outgoing edges of the representative
node v in G′. A reachability query, u ↝ v, over G can be processed over the
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Table 6.1. The Time/Space Complexity of Different Approaches [25]

Query Time Index Construction Time Index size

Transitive Closure [31] O(1) O(nm) O(n2)
Tree+SSPI [8] O(m− n) O(n+m) O(n+m)
GRIPP [32] O(m− n) O(n+m) O(n+m)
Dual-Labeling [34] O(1) O(n+m+ t3) O(n+ t2)
Tree Cover [1] O(log n) O(nm) O(n2)
Chain Cover [9] O(log k) O(n2 + kn

√
k) O(nk)

Path-Tree Cover [26] O(log2 k′) O(mk′) or O(nm) O(nk′)
2-Hop Cover [17] O(m1/2) O(n3 ⋅ ∣TC∣) O(nm1/2)
3-Hop Cover [25] O(log n+ k) O(kn2 ⋅ ∣Con(G)∣) O(nk)

DAG G′ by checking whether the corresponding strongly connected compo-
nent, where v resides, is reachable from the corresponding strongly connected
components, where u resides. In the following, without otherwise specified,
we assume G is a DAG.

There are two possible approaches to process a reachability query, u ↝ v,
in a graph G. It can be processed as to traverse from u to v using breadth- or
depth-first search over the graph G on demand, when a reachability query is
issued. It incurs high cost as O(n + m) time. On the other hand, it can be
processed as to check whether (u, v) exists in the edge transitive closure of the
graphG, TC , by precomputing and maintaining the edge transitive closure TC
on disk. It results in high storage consumption in O(n2). The two approaches
are infeasible. The former requires too much time in querying and the latter
requires too much space.

In the literature, many approaches have been proposed to reduce the space
consumption, and at the same time answer reachability queries efficiently. Re-
call that by precomputing and maintaining the edge transitive closure TC of
G, it can answer a reachability query in O(1) time at the expense of O(n2)
space. Here, the edge transitive closure TC servers as an index to be used to
answer reachability queries. The existing approaches attempt to increase the
query processing time marginally in the range of O(1) and O(n +m), where
O(1) is the query time using the edge transitive closure TC and O(n +m) is
the query time using breadth- or depth-first search, by constructing an index
that can significantly reduce the space consumption. For example, some ap-
proaches construct an index based on a spanning tree of the graph G plus some
additional information to maintain reachability information over the graph G,
and some construct an index that compresses the edge transitive closure TC .
On this direction, the time of spending on constructing an index becomes an
important issue too.

Table 6.1 shows a summary on the time/space complexity of different ap-
proaches [25]. Given a graph G(V,E). Let n = ∣V ∣ and m = ∣E∣. Simon
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proposes an algorithm to compute the edge transitive closure for a DAG, G, in
O(nm) time [31]. In other words, the time to construct an index based on the
edge transitive closure of G is in O(nm) time, and the index size is in O(n2)
space, in the worst case. With the edge transitive closure constructed, the query
time is constant O(1).

In [8], Chen et al. propose an index by utilizing a spanning tree of the graph
G. It takes O(n+m) time to construct an index in O(n+m) size. Given two
nodes u and v in G, it can answer u ↝ v in O(1) time if there is a path from
u to v in the spanning tree, using a simple predicate, denoted P(, ), between
the codes (or labels) assigned to nodes over the spanning tree. We will discuss
different encoding schema that assign codes (or labels) to nodes in G later in
detail in this survey, and use codes and labels interchangeably. Let the codes
for u and v be code(u) and code(v). If the predicate P(code(u), code(v)) is
true, then u ↝ v is true. However, because the codes are assigned based on
the connections over the spanning tree of the graph G, it does not mean that
u ↝ v is false if P(code(u), code(v)) is false. There are edges in G that do
not appear in the spanning tree. Chen et al. use an additional data structure
called SSPI (Surrogate&Surplus Predecessor Index) to answer a reachability
query in run time, which takes O(m− n) time in the worst case. We call this
approach Tree+SSPI. Like [8], a spanning tree of a graph G is also used in
[32]. In [32], Trißl and Leser build an index, called GRIPP (GRaph Indexing
based on Pre- and Postorder numbering), using a spanning tree of the graph
G. Trißl and Leser discuss traversal strategies using the proposed GRIPP. The
time and space complexities are the same to Tree+SSPI.

Wang et al. propose a dual-labeling approach in [34] for sparse graphs based
on the observation that the majority of large graphs in real applications are
sparse. It implies that the number of edges in the graph G that do not appear
in a spanning tree of G is small. Let tree edges denote the edges that appear
in the spanning tree, and non-tree edges denote the edges that do not appear in
the spanning tree but appear in G. Let t be the number of such non-tree edges.
Wang et al. consider to use a tree coding scheme (also called labeling) for
tree edges and a graph coding (also called graph labeling) scheme for non-tree
edges for sparse graphs where t ≪ n. It handles the edge transitive closure
over non-tree edges. The dual-labeling approach achieves O(1) query time
with an index of size O(n+ t2) that is constructed in O(n+m+ t3) time.

Agrawal et al. in [1] study a tree cover approach to assign labels to nodes
in a DAG. In brief, if a node u can reach a node v, then u can reach any nodes
in the subtree rooted at v. Agrawal et al. propose an optimal tree cover that
maximally compresses the edge transitive closure. The index size is O(n2) in
the worst case, but in practice, it can compress edge transitive closure which
results in an even better compression rate than a chain cover [24, 9] which we
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will discuss next. The time complexity for index construction isO(nm). It can
construct an index for a large graph efficiently. The query time is O(log n).

Jagadish in [24] proposes a chain cover approach. The chain cover is to
decompose a graph G into pairwise disjoint chains. A chain is more general
than a path. Consider a path a→ b→ c→ d in G, where x→ y represents a
directed edge in G. The path can be considered as a chain itself, a↝ b↝ c↝
d, where x↝ y represents y is reachable from x. The path can be decomposed
into two pairwise disjoint chains, a ↝ c and b ↝ d. Both a ↝ c and b ↝ d
are not paths. Like the tree cover, if a node u can reach a node v, then u
can reach any nodes in the chain from the position of the node v. Jagadish
proposes an algorithm in O(n3) to find the minimal number of chains, in G.
The number of chains for G is called the width of G, denoted by k. Based on
the chain cover, an index in O(nk) size can be constructed. The query time
is O(log k). In [9], Chen and Chen propose a new approach that can further
reduce the time complexity of constructing the index based on the chain over
to O(n2 + kn

√
k).

Jin et al. propose path-tree cover in [26] along the line of tree cover [1]. Jin
et al. decompose G into pairwise disjoint paths and build a tree over the paths
by treading a decomposed path as a node in the tree. Let k′ be the number of
pairwise disjoint paths in G. Two algorithms are proposed, namely, PTree-1
and PTree-2. Both construct an index in O(nk′) space. PTree-1 constructs
the index in O(nm) time, whereas PTree-2 constructs it in O(mk′) time. The
query time is in O(log2 k′).

Cohen et al. in [17] propose an index called 2-hop cover. A node, u, in a
graph G is assigned two sets of nodes, as its label, called Lin(u) and Lout(u).
Lin(u) contains a set of nodes that can reach u and Lout(u) contains a set of
nodes that u can reach. The labels assigned to nodes are done in a way to
ensure u ↝ v to be true if and only if Lout(u) ∩ Lin(v) ∕= ∅. It turns out
to be a set cover problem. Cohen et al. propose an approximate algorithm to
construct an index in O(nm1/2) space. The time complexity for constructing
such an index remains open. In [26], the conjecture isO(n3 ⋅∣TC∣) where ∣TC∣
is the size of the edge transitive closure of G. Several efficient algorithms are
proposed to compute 2-hop cover [29, 13, 14]. The 2-hop cover maintenance
is studied in [30, 5]. Jin et al. in [25] further study a new approach, called 3-
hop, that combines chain cover and 2-hop cover. The index construction time
is O(kn2.∣Con(G)∣. Here k is the number of pairwise disjoint paths in G, and
Con(G) is transitive closure contour of G defined in [25].

All the above are about how to answer reachability queries. Cohen et al. in
[17] and Schenkel et al. in [30] address the distance-aware 2-hop cover which
is to answer reachability queries with the shortest distance. Cheng and Yu in
[10] propose efficient algorithms to fast compute distance-aware 2-hop cover.
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The main difficult of computing distance-aware 2-hop cover is that it cannot
condense a general directed graph into a DAG.

Before we discuss different graph coding schema, we explain a tree coding
scheme for a tree. We call it single interval tree coding scheme in this survey.
Many graph coding schema make use of the similar ideas used in the single
interval tree coding scheme.

Single Interval Tree Coding Scheme: Let GS(V,E) be a tree. The single
interval tree coding scheme (or simply SIT coding scheme) assigns a node
u ∈ GS a code which is an interval, denoted sitcode(u) = [ustart, uend],
where ustart and uend are two numbers such that ustart < uend. The reach-
ability, u ↝ v, between two nodes, u and v, can be answered using the two
corresponding codes, sitcode(u) and sitcode(v), in constant time O(1). We
denote it as a predicate Psit(, )

Psit(sitcode(u), sitcode(v)) = ustart < vstart ∧ vend < uend

Then, u ↝ v is true if and only if Psit(sitcode(u), sitcode(v)) is true. The
codes can be assigned by traversing the tree GS . Here, for a node, u, the
ustart and uend are the preorder and postorder values in a depth-first traversal
of the tree. A counter is used with an initial value 0, and the counter value will
increase by 1 before it visits another node in the traversal. In the tree traversal,
a node will be visited twice. The ustart and uend of a node u are assigned to be
the counter values before and after all descendants of u have been traversed.

2. Traversal Approaches

In this section, we introduce two approaches, namely, Tree+SSPI [8] and
GRIPP [32]. Both approaches use the SIT coding scheme to assign codes to
nodes in a spanning tree of a graph G, and attempt to reduce the query pro-
cessing time in traversal using either additional data structures or processing
strategies. It is worth noting that Tree+SSPI [8] is proposed for pattern match-
ing in a general context, and can be used to answer reachability queries.

Let TS(VS , ES) be a spanning tree of a graph G(V,E). Here VS and ES

are sets of nodes and edges of the spanning tree TS . Note that VS = V and
ES ⊆ E. We use ES to denote the set of tree edges of the graph G, and
ER = E − ES to denote the set of non-tree edges of the graph G that do
not appear in ES . In addition, below in discussions of Tree+SSPI and GRIPP,
we assume that every node in G is assigned a code based on the SIT coding
scheme. Given a reachability query u↝ v, Tree+SSPI and GRIPP first check
whether the predicate Psit(sitcode(u), sitcode(v)) is true or not. If it is true,
then u ↝ v is true. Otherwise, Tree+SSPI and GRIPP need to take additional
actions to further check the reachability u↝ v, because u can reach v through
a combination of tree edges and non-tree edges. Below, we discuss the cases
that u↝ v cannot be answered simply using the SIT coding scheme.
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r

B C D

A

E F G H

Node Start End Type

r 0 21 tree
A 1 20 tree
B 2 7 tree
E 3 4 tree
F 5 6 tree
C 8 9 tree
D 10 19 tree
G 11 14 tree
B′ 12 13 non-tree
H 15 18 tree
A′ 16 17 non-tree

Figure 6.1. A Simple Graph G (left) and Its Index (right) (Figure 1 in [32])

2.1 Tree+SSPI

In [8], in addition to the SIT codes assigned to nodes, Chen et al. use an-
other “space-economic” index, known as SSPI (Surrogate&Surplus Predeces-
sor Index), to maintain information that needs to be used at run time to check
reachability. The SSPI keeps a predecessor list for a node v in G, denoted as
PL(u). There are two types of predecessors. One is called surrogate, and the
other is called immediate surplus predecessor. The two types of predecessors
are explained in terms of the involvement of non-tree edges. Consider u ↝ v
that must visit some non-tree edges on the path from u to v. Assume that
(vx, vy) is the last non-tree edge on the path from u to v, then vy is a surrogate
predecessor of v if vy ∕= v and vx is an immediate surplus predecessor of v if
vy = v. SSPI can be constructed in a traversal of the spanning tree TS of the
graph G starting from the tree root. When a node v is visited, all its immedi-
ate surplus predecessors are added into PL(v). Also, all nodes in PL(u) are
added into PL(v), where u is the parent node of v in the spanning tree. It is
sufficient to answer reachability queries using both SIT coding scheme and the
SSPI.

To process a reachability query u ↝ v, assuming that the SIT codes used
return false when checking ustart < vstart ∧ vend < uend, Chen et al. design
a TwigStackD algorithm. The TwigStackD algorithm checks the reachability
via tree edges using run time stacks in traversing the spanning tree, and checks
reachability via possible non-tree edges, using a partial solution pool that main-
tains some popped nodes from run time stacks temporally. The SSPI is used to
answer which nodes can possibly reach a node v via non-tree edges.

2.2 GRIPP

Trißl and Leser in [32] use the SIT coding scheme in a different way. Instead
of using SSPI and run time stacks, Trißl and Leser focus on how to traverse the
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graph using the SIT codes. The graph dealt in [32] is a directed graph. We
explain it using the same example used in [32]. Figure 6.1 shows a simple
directed graph G on the left side and the GRIPP index table on the right side.
The solid arrows indicate tree edges in G, and dotted arrows indicate non-tree
edges in G. As shown in the GRIPP index table, a node in G is assigned with
one or more than one SIT codes depending on the number of incoming edges to
the node. The type in the GRIPP index table indicates the type of the incoming
edge based on which the node is assigned a SIT code. The nodes with a type
of non-tree in GRIPP index table are also called hop-nodes. Consider the node
A, its SIT code, sitcode(A) = [Astart, Aend] = [1, 20], is assigned when A is
traversed from/to r via the tree edge (r,A), and the duplication of A, a hop-
node, denoted A′, has a different SIT code [16, 17], which is assigned when
A is traversed from/to H via the non-tree edge (H,A). It can be understood
that a directed graph G is represented as a tree with node duplications. In other
words, all the hop-nodes, such as A′ and B′ in the GRIPP index table, are node
duplications and become the leaf nodes in such a tree.

Trißl and Leser in [32] study how to reduce the traversing time when pro-
cessing a reachability query. Consider D ↝ r. Based on SIT codes given in
the GRIPP index table, D can reach the nodes, G,H ,A′, and B′, whereA′ and
B′ are two hop-nodes, because, sitcode(D) = [10, 19], sitcode(G) = [11, 14],
sitcode(H) = [15, 18], sitcode(A′) = [16, 17], and sitcode(B′) = [12, 13].
It implies that via the two hop-nodes, A′ and B′, there exists possibility that
D ↝ r is true. Intuitively, it needs to hop to A and B to further traverse the
graph G. Suppose it traverses A via the hop-node A′ followed by traversing
B via the hop-node B′. First, when it picks up A to traverse, it can traverse
to A itself again, because A can reach H and then traverse to A via the hop-
node A′. In this case, it does not need to traverse to A second time, because it
cannot find any new possible reachability. Second, when it picks up B to tra-
verse, it cannot find any new possible reachability, because A can reach B via
tree edges and it has already explored all possible reachability via A that must
include all the possible reachability via B. Based on the idea behind, Trißl
and Leser study traversing order, pruning strategies, and and stop conditions.
Because finding the optimal traversing order is NP-complete, Trißl and Leser
propose some heuristics. For example, it attempts to traverse the giant strongly
connected component first.

3. Dual-Labeling

Wang et al. in [34] investigate a dual-labeling coding scheme for a graph
G. They use a SIT coding scheme to encode nodes that can be reached via tree
edges over a spanning tree of the graph G, and a new coding scheme to encode
nodes that can be possibly reached via non-tree edges. The codes assigned to



Graph Reachability Queries: A Survey 189

x

y

[0,11)

[1,5)

[2,5)

[5,11)

[6,9)

[9,11)

[3,4) [4,5) [7,8) [8,9) [10,11)

u

vw

Figure 6.2. Tree Codes Used in Dual-Labeling (Figure 2 in [34])

nodes based on the tree edges over a spanning tree are slightly different from
the SIT coding scheme used in GRIPP as seen in Figure 6.1. We also use the
same example used in [34] to explain the main ideas.

Wang et al. assign modified SIT codes to nodes over a spanning tree of the
graph G. We call it dual-tree code and denote it as dtcode(u) for u ∈ G, in
the form of [ustart, uend). An example is shown in Figure 6.2, where the solid
arrows form a spanning tree and the dotted arrows are non-tree edges inG. The
reachability u ↝ v over the spanning tree can be answered using dtcode(u)
and dtcode(v) if vstart ∈ dtcode(u) is true. We give a predicate Pdt(, ) to test
whether u↝ v is true over the spanning tree.

Pdt(dtcode(u), dtcode(v)) = vstart ∈ dtcode(u)

Note: it does not mean that u cannot reach v if Pdt(dtcode(u), dtcode(v)) is
false, because there exist other non-tree edges via which u can possibly reach
v. In [34], a non-tree edge (u′, v′) is represented as u′star → [v′start, v

′
end)

in a link table. Consider Figure 6.2, there are two non-tree edges, such that
9→ [6, 9) and 7→ [1, 5). The link table maintains the edge transitive closure
over the non-tree edges and therefore is also called a transitive link table. For
example, the existence of the two non-tree edges, 9 → [6, 9) and 7 → [1, 5),
in the transitive link table implies that 9 → [1, 5) exists in the transitive link
table. It is because the node with the dtcode [7, 8) can be reached from the
node with the dtcode [6, 9) and therefore the node with dtcode [9, 11) can
reach the node with dtcode [1, 5). Let t be the number of non-tree edges, the
transitive link table is in O(t2) space. A reachability query, u ↝ v, can be
answered using the transitive link table. Let dtcode(u) = [ustart, uend) and
dtcode(v) = [vstart, vend). Then, u ↝ v is true if it can find an entry, i →
[j, k), in the transitive link table such as i ∈ [ustart, uend) and vstart ∈ [j, k).
The former implies that u can reach the non-tree edge and the latter implies
that from the non-tree edge v can be reached.
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Figure 6.3. Tree Cover (based on Figure 3.1 in [1])

In other to achieve O(1) time, Wang et. al propose a transitive link count
function (short for TLC function). As defined in Definition 1 in [34], the pro-
posed TLC function N(x, y) computes the number of links i → [j, k) in the
transitive link table that satisfy i ≥ x and y ∈ [j, k). Given two nodes, u
and v, where dtcode(u) = [ustart, uend) and dtcode(u) = [ustart, uend). As-
sume that Pdt(dtcode(u), dtcode(t)) is false. The following predicate Pdg(, )
is defined over the graph via possible non-tree edges.

Pdg(dtcode(u), dtcode(v)) = N(ustart, vstart)−N(uend, vstart) > 0

u ↝ v is true over the possible non-tree edges if and only if the predicate
Pdg(dtcode(u), dtcode(v)) is true. Therefore, u ↝ v is true if and only if
Pdt(dtcode(u), dtcode(v)) ∨ Pdg(dtcode(u), dtcode(v)) is true.

Intuitively, it requires to maintain the TLC function N(, ) for every possible
node pairs in G, which results in O(n2) space. In order to reduce it to O(t2)
space, Wang et al. propose gridding and snapping techniques in [34]. Some
techniques to trade off time for space are also discussed in [34].

4. Tree Cover

As an early work, in 1989, Agrawal et al. proposed a tree cover code. It uses
multiple intervals to encode every node in a graph G. Consider a tree shown
in Figure 6.3(a). A node u is assigned an interval [ustart, uend], where uend is
the postorder in traversing the tree, and ustart is the smallest postorder in the
descendants of the subtree rooted at the node u. Like the other tree coding,
u↝ v is true over the tree, if and only if vend ∈ [ustart, uend] is true. Agrawal
et al. consider how to assign codes to nodes in DAG by inheriting codes from
a node v to another node u if there is a non-tree edge (u, v) in the graph G.
Consider the DAG shown in Figure 6.3(b). There are two additional non-tree
edges (d, b) and (d, e). The node d will inherit [1, 4] and [1, 3] from the nodes
b and e respectively. Because [1, 3] ⊆ [1, 4], d only needs to have an additional
interval [1, 4]. Therefore, the code for a node u in G, denoted as tccode(u) =
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Algorithm 1 Find-Tree-Cover(G)

1: let G′ be a graph with an additional virtual root, , that links to all nodes
in G that do not have any predecessors;

2: let L be the list of nodes in G′ following a topological order;
3: pred()← ∅;
4: for each node v on L do
5: for each pair of incoming edges (u, v) and (u′, v) do
6: if ∣pred(u)∣ > ∣pred(u′)∣ then
7: delete the edge (u′, v);
8: else
9: delete the edge (u, v);

10: end if
11: end for
12: pred(v)← {u} ∪ prev(u) for every incoming edge (u, v);
13: end for

{[ustart1 , uend1 ], [ustart2 , uend2 ], ⋅ ⋅ ⋅ }, where uend1 is the postorder when it
traverses the spanning tree. In other words, [ustart1 , uend1 ] is assigned to node
uwhen traversing the spanning tree of the graph G, and the others are inherited
from other nodes. Given the tree cover codes, u ↝ v is tree if and only if the
postorder of v (vend1) is in an interval of the node u. The predicate Ptc(, ) is
given below.

Ptc(tccode(u), tccode(v)) =
⋁

i

(vend1 ∈ [ustarti , uendi ])

The total number of intervals for all codes in G becomes a factor to mea-
sure the quality of the tree cover. The total number varies depending on the
selection of a spanning tree, known as tree cover, over the graph G. In [1],
Agrawal et al. propose an algorithm to find the optimal tree cover. As shown
in Algorithm 1, in order to achieve the optimal tree cover, for a node v, it re-
tains the edge from the immediate predecessor of v with the maximum number
of predecessors in the original DAG G, and delete the edges from the other
immediate predecessors of v.

In [1], the storage issues and the tree-cover maintenance issue when a graph
is updated are also discussed.

5. Chain Cover

Jagadish [24] proposes a chain cover coding scheme to answer a reachability
query on a DAG G. A chain cover of G is a set of pairwise disjoint chains,
C1, C2, ⋅ ⋅ ⋅ , Ck. Here, a chain Ci = vi1 ↝ vi2 ↝ ⋅ ⋅ ⋅ ↝ vik where vij is
a node in G and vij+1 is reachable from vij in G. The union of the nodes in
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Algorithm 2 Compute-Chain-Cover(G, {C1, C2, ⋅ ⋅ ⋅ , Ck})
Input: The DAG G, and a chain cover {C1, ⋅ ⋅ ⋅ , Ck}
Output: The chain cover code for every node in G

1: sort all nodes in G in topological order;
2: let every node vi in G unmarked;
3: while there are unmarked node vi in G that do not have unmarked imme-

diate successors do
4: chaincode(vi)← {(1,∞), (2,∞), ⋅ ⋅ ⋅ , (k,∞)};
5: let Li,x denote the x-th pair in chaincode(vi);
6: let suc(vi) denote the immediate successors of vi in G;
7: for every vj ∈ suc(vi) do
8: for l = 1 to k do
9: (l, pj,l)← Lj,l;

10: (l, pi,l)← Li,l;
11: if pj,1 ≤ pi,l then
12: Li,l ← (l, pj,l);
13: end if
14: end for
15: end for
16: mark vi;
17: end while
18: return the set of chaincode(vi) for every vi ∈ G;

all chains is the entire set of nodes in G, and the intersection of nodes in any
two chains is empty. The optimal chain cover of G is a chain cover of G that
contains the least number of chains among all possible chain covers of G.

Suppose the chain cover contains k chains, to answer the reachability
queries, each node vi ∈ G is assigned a code, denote chaincode(vi), which
is a list of pairs, {(1, pi,1), (2, pi,2), ⋅ ⋅ ⋅ , (k, pi,k)}. Each pair (j, pi,j) means
that the node vi can reach any nodes from the position pi,j in the j-th chain. If
vi cannot reach any node in the j-th chain, then pi,j = +∞. The chain cover
index contains chaincode(vi) for every node vi in G.

A reachability query va ↝ vd can be answered using a predicate Pc(, ) such
that va ↝ vd is true if and only if va appears at the pa,j position in a chain Cj

and pd,j ≤ pa,j . In other words, va can reach vd in a chain Cj . All pairs in the
chain cover index for G can be indexed and stored using a B+-tree. Answering
a reachability query needs O(log(n)) time with O(n ⋅ k) space.

Given a chain cover C1, C2, ⋅ ⋅ ⋅ , Ck of a DAG G, Algorithm 2 shows how
to compute chaincode(vi) for every vi ∈ G. It visits every node in G in the
reverse of topological order (line 3). For each node visited, its chaincode(vi) is
updated using its immediate successors if the corresponding position in the l-th
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chain, Cl, of an immediate successor is smaller than the current position vi has
in Cl. Let di be the out degree of node vi (the number of immediate successors
of vi). The time complexity of Algorithm 2 is O(

∑n
i=1(di ⋅ k)) = O(mk),

where m is the number of edges in G. It becomes important to make k as
small as possible. Below, we introduce two approaches that aim at computing
the optimal chain cover with the minimal k.

5.1 Computing the Optimal Chain Cover

Jagadish in [24] proposes a min-flow approach to compute the optimal chain
cover of a DAGG. The main idea is as follows. It constructs another graph H .
For every node vi ∈ G, it adds two nodes, xi and yi, in H and a directed edge
(xi, yi) in H . In other words, a node in G is represented as an edge in H . For
each edge (vi, vj) in G, it adds an edge (yi, xj) in H . A source node is added
into H that links to every node with in-degree 0 in H , and a sink node is added
that is linked by every node with out-degree 0 in H . Then, Jagadish proposes
to find the min-flow from the source node to the sink node such that every edge
(xi, yi) has a positive flow. It can be solved in time O(n3). Here, each flow
corresponds to a chain in G. In such a way, it can get the chain cover of G. If
a node may appear in several chains, it keeps one occurrence in any chain and
removes the other occurrences.

Chen and Chen in [9] propose an approach using bipartite matching. All
nodes in the DAGG are decomposed into several layers, V1, V2, ⋅ ⋅ ⋅ , Vℎ, where
ℎ is the length of the longest path in G. The layers can be constructed as
follows. V1 is the set of nodes with out-degree 0 in G, and Vi is the set of
nodes with out-degree 0 when the nodes in Vk, for 1 ≤ k < i are removed
from G. This can be done in O(m) time.

Algorithm 3 shows how to find the optimal chain cover based on the layers.
The main idea of Algorithm 3 is as follows. In each successive layers, it finds
the maximum matching for the bipartite graph induced by the nodes in the two
layers (line 1-4). For some unmatched node v, it adds a virtual node v′ in the
top of the two successive layer, in order to be further matched by nodes in the
unseen upper layers (line 5-9). A potential edge (u, v′) for some u ∈ Vi+2 is
added, if and only if there is an edge from u to a node x ∈ Vi+1 and there
is an alternating path from x to v′. A path is alternating with respect to Mi

if and only if its edges alternately appear in Ei ∖ Mi and Mi, where Mi is
the maximum matching of the bipartite graph and Ei is the bipartite graph in
the i-th iteration. Then, in line 10-13, each virtual node is resolved using the
alternating paths by removing the virtual nodes, transferring the edges in the
alternating paths, and adding the new edge from u to x as discussed above. An
example for resolving a virtual node v′ by an alternating path is illustrated in
Figure 6.4. The optimal chain cover can be computed in time O(n2 + kn

√
k)
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Algorithm 3 Optimal-Chain-Cover(G, {V1, V2, ⋅ ⋅ ⋅ , Vℎ})
Input: a DAG G, and the layers V1, ⋅ ⋅ ⋅ , Vℎ
Output: The optimal chain cover C1, ⋅ ⋅ ⋅ , Ck

1: V ′
1 ← V1;

2: for i = 1 to ℎ− 1 do
3: V ′

i+1 ← Vi+1;
4: Mi ← maximum matching of the bipartite graph induced by V ′

i and
V ′
i+1;

5: for all unmatched node v ∈ V ′
i in Mi do

6: create a virtual node v′ in G;
7: V ′

i+1 ← V ′
i+1 ∪ {v′};

8: Mi ←Mi ∪ (v′, v);
9: create potential edges (u, v′) for some u ∈ Vi+2;

10: end for
11: end for
12: CH ←M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mℎ;
13: for i = 1 to ℎ− 1 do
14: for all virtual node v′ ∈ V ′

i do
15: resolve v′ from CH using alternating paths in Mi;
16: end for
17: end for
18: return CH;
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Figure 6.4. Resolving a virtual node

where n is the number of nodes in G and k is the number of chains in the
optimal chain cover (known as the width of G).

6. Path-Tree Cover

Jin et al. in [26] propose a path-tree cover coding scheme to answer a reach-
ability query on a DAG G(V,E).

First, the graph G(V,E) is decomposed into a set of pairwise disjoint paths,
P1, P2, ⋅ ⋅ ⋅ , Pk′ . Here, a path Pi = vi1 → vi2 → ⋅ ⋅ ⋅ → vik where vij → vij+1

is an edge in G. A path cover consists of k′ paths such that (a) the union of
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the nodes in all the paths is the entire set of nodes in G and (b) the intersection
of two paths is empty. The optimal path cover of G is a path cover of G that
contains the least number of paths among all possible path covers of G. Such
optimal path cover can be obtained using Simon’s algorithm in [31].

Second, let Pi and Pj be two paths computed in the path cover. There may
exist edges from some nodes in Pi to some nodes in Pj , denoted as EPi→Pj ,
which is a subset of the edges in G. Some edges in EPi→Pj can be eliminated
losslessly. For example, suppose Pi = w and Pj = u → v, and assume
EPi→Pj consists of two edges from Pi to Pj , {w → u,w → v}. Then w → v
can be eliminated, because there is a path w → u → v that can answer the
reachability query w ↝ v. The similar can be done if there are edges from Pj

to Pi in reverse order. The edge elimination in this way is lossless because it
does not lose any reachability information. Let E′

Pi→Pj
be a subset of EPi→Pj

after edge elimination. Jin et al. show that all edges in E′
Pi→Pj

are in parallel.

Furthermore, Jin et al. use a single weighted edge from Pi to Pj , in order to
represent how many nodes in Pi can reach a node in Pj . Based on the weighted
edges from Pi to Pj , a weighted path-graph GP (V,E) is constructed. Here,
V is a set of nodes representing paths, P1, P2, ⋅ ⋅ ⋅ , Pk′ , computed in the path
cover, and E is a set of edges (Pi, Pj) with a weight, if E′

Pi→Pj
∕= ∅.

Third, based on the path-graph GP (V,E), Jin et al. construct a spanning
tree TP (V,E), called path-tree, with two criteria: MaxEdgeCover and Min-
PathIndex. The former means to cover as many edges in G as possible, and
the latter means to reduce the size of a resulting path-tree cover as much as
possible. The path tree is computed using the algorithm presented in [16, 21].

Finally, a path-tree cover code, ptcode(u), is assigned to node u ∈ G based
on the path-tree TP . The ptcode(u) = ((ustart, uend), (ux, uy)) consists of
two pairs. The first pair is the interval [ustart, uend], like SIT code, assigned
to the path Pi where u resides uniquely, because a node represents a path in
TP . The second pair (ux, uy) is used to record the position of the node u in the
path Pi. A reachability query, u ↝ v is answered to be true, if the predicate
Ppt(ptcode(u), ptcode(v)) is true, such as [vstartvend] ⊂ [ustart, uend]∧ux <
vx ∧ uy < uy . It is important to note that it does not mean u ↝ v is false if
Ppt(ptcode(u), ptcode(v)) is false, because the path-tree cover code and the
predicate are both defined over the path-tree TP . There may exist edges that
cannot be fully covered by the path-tree.

The path-tree cover coding scheme is different from the tree cover [1] and
the chain cover [24, 9]. Both tree cover and chain cover coding schema answer
reachability queries only using the predicates, Ptc(, ) and Pc(, ), respectively.
On the other hand, the path-tree cover coding scheme cannot answer reachabil-
ity queries only using the predicate Ppt(, ). The path-tree cover coding scheme
shares similarity with the dual-labeling [34], and aims at covering as many
non-tree edges as possible. Jin et al. in [26] show that the path-tree cover is
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superior over the optimal tree cover [1] and optimal chain cover [24] in terms
of the compression ability.

7. 2-HOP Cover

Cohen et al. propose a 2-hop cover in [17] for a graph G. In a 2-hop cover,
a node in G is assigned to a 2-hop code, 2hopcode(u) = (Lin(v), Lout(v)),
where Lin(v) and Lout(v) are subsets of the nodes in G. Based on the 2-
hop cover, a reachability query u ↝ v is to be answered true if and only if
P2ℎop(2hopcode(u), 2hopcode(v)) is true.

P2ℎop(2hopcode(u), 2hopcode(v)) = Lout(u) ∩ Lin(v) ∕= ∅

The main idea behind 2-hop cover coding scheme is to compress the edge
transitive closure of G. Let TC(G) be the edge transitive closure of G. A
pair (u, v) in TC(G) indicates that u ↝ v is true in G. Consider a node w
in G as a center. All the ancestors of w, denoted as ancs(w), can reach w,
and w can reach any of its descendants, denoted as desc(w). In other words,
ancs(w) is the set of nodes {u} if (u,w) ∈ TC(G) and desc(w) is the set
of nodes {v} if (w, v) ∈ TC(G). Let Aw ⊆ ancs(w) ∪ {w} and Dw ⊆
desc(w) ∪ {w}. A complete bipartite graph, called a 2-hop cluster, is denoted
S(Aw, w,Dw), with the center w. A 2-hop cluster S(Aw, w,Dw) indicates
that every node, u in Aw can reach any node v in Dw, or u ↝ v is true for
every u ∈ Aw and v ∈ Dw. Given a cluster S(Aw, w,Dw), it implies that if
w is added into Lout(u) for every u ∈ Aw and is added into Lin(v) for every
v ∈ Dw, the reachability information presented by the complete bipartite graph
S(Aw, w,Dw) is completely preserved, because u ↝ v is true if and only if
Lout(u)∩Lin(v) ∕= ∅. A S(Aw, w,Dw) compactly represents ∣Aw∣ ⋅ ∣Dw∣ − 1
pairs in TC(G) in total with a space cost of ∣Aw∣ + ∣Dw∣. A 2-hop cover is a
set of 2-hop clusters that completely covers the edge transitive closure TC(G).

The optimal 2-hop cover problem is to find the minimum size 2-hop cover,
which is proved to be NP-hard [17]. Based on the greedy algorithm for mini-
mum set cover problem [27], Cohen et al. give an approximation algorithm to
get a nearly optimal 2-hop cover which is larger than the optimal one at most
O(log n).

Algorithm 4 illustrates the ideas [17]. It computes the edge transitive closure
TC(G) (line 1). Let TC ′ be TC(G) (line 2). In every iteration, it finds a
2-hop cluster S(Aw, w,Dw) that has the maximum ratio, (∣S(Aw, w,Dw) ∩
TC ′∣)/(∣Aw ∣+ ∣Dw∣), among all possible 2-hop clusters. Here, TC ′ is used to
indicate the set of pairs in TC(G) that are not covered by any 2-hop clusters
computed yet. After identifying the S(Aw, w,Dw) with the maximum ratio in
the current iteration, it removes all the pairs (u, v) from TC ′ if u ∈ Aw and
v ∈ Dw (line 5). In line 6-7, it updates 2-hop cover codes.
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Algorithm 4 2Hop-Cover(G)

1: compute the edge transitive closure TC(G) of G;
2: TC ′ ← TC(G);
3: while TC ′ ∕= ∅ do
4: find the max S(Aw, w,Dw);
5: remove all the pairs in TC ′ that are covered by S(Aw, w,Dw);
6: add w into Lout(u) if u ∈ Aw;
7: add w into Lin(v) if v ∈ Dw;
8: end while
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Figure 6.5. A Directed Graph, and its Two DAGs, G↓ and G↑ (Figure 2 in [13])

The computational cost is high as can be seen in Algorithm 4. First, it needs
to compute the edge transitive closure. Second, it needs to rank all 2-hop
clusters S(Aw, w,Dw) based on (∣S(Aw, w,Dw) ∩ TC ′∣)/(∣Aw ∣ + ∣Dw∣) in
every iteration. Third, it is difficult to compute 2-hop cover for a large graph.

7.1 A Heuristic Ranking

Schenkel et al. in [29] propose a heuristic ranking to avoid to recom-
pute and rank all (∣S(Aw, w,Dw) ∩ TC ′∣)/(∣Aw ∣ + ∣Dw∣) for all possible
centers S(Aw, w,Dw) in every iteration. The idea is as follows. It com-
putes all ∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw ∣ + ∣Dw∣), for all nodes in G. Initially,
TC ′ = TC(G). Let dw denote ∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw∣ + ∣Dw∣). It
initially maintains all the pairs of (w, dw) in a priority queue. The first is with
the max ratio dw value. In every iteration, it picks up the first (w, dw) and
recomputes d′w = ∣S(Aw, w,Dw)∩TC ′∣/(∣Aw∣+ ∣Dw∣), if dw > d′w, the pair
(w, d′w) is enqueued into the priority queue. It repeats until it picks a node w
such that dw = d′w. In practice, Schenkel et al. find that it only needs to repeat
2-3 times in every iteration on average.
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Figure 6.6. Reachability Map

w tccode(w) for w ∈ G↓ tccode(w) forw ∈ G↑

po↓(w) I↓(w) po↑(w) I↑(w)

0 9 [1,9] 4 [4,4]

1 1 [1,1],[3,3] 3 [1,5]

3 6 [1,6] 5 [4,5]

4 2 [2,2] 9 [4,5],[9,9]

5 5 [3,5] 6 [4,6]

8 7 [1,1],[3,3],[7,7] 1 [1,1],[4,4]

9 4 [3,4] 7 [4,7]

11 3 [3,3] 8 [1,8]

12 8 [1,1],[3,3],[8,8] 2 [2,2],[4,4]

Table 6.2. A Reachability Table for G↓ and G↑

7.2 A Geometrical-Based Approach

Cheng et al. in [13] propose a geometrical-based approach that does not
need to compute the edge transitive closure of TC(G) directly, and speeds up
the computing of max ratio of the 2-hop clusters using an R-tree, in particular
for a large dense graph G.

First, instead of computing the edge transitive closure TC(G), Cheng et al.
compute tree cover [1], because in practice the tree cover algorithm in [1] is
very fast. The tree cover codes are used to compute 2-hop cover. Consider
Figure 6.5(a) which shows a DAG G↓(V↓, E↓). Suppose it needs to assign
2-hop codes to the graph shown in Figure 6.5(a). Cheng et al. compute the
tree cover codes for G↓(V↓, E↓), and compute the tree cover codes for another
corresponding graph G↑(V↑, E↑), which is a graph that by changing every edge
(u, v) ∈ G↓ to (v, u). The Table 6.2 shows the tccode(w) for the node w in
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G↓ and G↑. In particular, po↓(w) and po↑(w) indicate the postorder of w, and
I↓(w) and I↑(w) indicate the intervals of w, in G↓ and G↑, respectively.

Second, based on the tree cover codes, Cheng et al. construct a 2-
dimensional reachability map, a node w is mapped onto the (xw, yw) posi-
tion in the reachability map as (po↓(w), po↑(w)). The reachability information
u ↝ v is mapped onto 2-dimensional reachability map, (xv, yu). If u ↝ v is
true, then (xv, yu) = 1, otherwise (xv , yu) = 0. Therefore, the same reachabil-
ity information, that a 2-hop cluster S(Aw, w,Dw) represents, is represented
as a number of rectangles in the 2-dimensional reachability map.

With the assistance of the 2-dimensional reachability map, Cheng et al. find
the max S(Aw, w,Dw) in line 4 of Algorithm 4 as to find the max cover-
age of rectangles, which can be done using an R-tree. It is important to note
that Cheng et al. in [13] try to maximize ∣S(Aw, w,Dw) ∩ TC ′∣ instead of
∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw∣+ ∣Dw∣). Both are set cover problems.

7.3 Graph Partitioning Approaches

In this section, we discuss three graph partitioning approaches used in com-
puting a 2-hop cover for a large graph G.

A Flat Partitioning Approach. Schenkel et al. propose a flat partitioning
approach in [29] to compute 2-hop cover in three steps. First, it partitions the
graph G into k subgraphs G1, G2, ⋅ ⋅ ⋅ , Gk depending on the available mem-
ory M . Second, it computes the edge transitive closure and the 2-hop cover for
each subgraph Gi, for 1 ≤ i ≤ k, using Algorithm 4 with the heuristic rank-
ing discussed in the previous subsection. Third, it merges the k 2-hop covers
computed for the k subgraphs, G1, G2, ⋅ ⋅ ⋅ , Gk , by dealing with the edges that
cross subgraphs. It is called a cover joining step, and the cover joining yields
a 2-hop cover for the entire graph G. The cover joining is done as follows.
Suppose the 2-hop covers for all k subgraphs are computed. Let (u, v) be a
cross-partition edge where u ∈ Gi and v ∈ Gj and Gi ∕= Gj . Schenkel
et al. compute the 2-hop cover for G by encoding all reachability via (u, v)
according to the following two operations.

For all a ∈ ancs(u), Lout(a)← Lout(a) ∪ {u}, and

For all d ∈ desc(v) ∪ {v}, Lin(d)← Lin(d) ∪ {u}.

It means that, 2-hop clusters, (ancs(u), u, desc(u)), for all cross-partition
edges (u, v), are covered mandatorily to encode G. The compression rate of
TC(G) using the flat partitioning decreases. As reported in [29, 30], the cover
joining becomes the bottleneck of the whole processing. Schenkel et al. in [30]
propose an effective and efficient approach for the third step of cover joining,
using a skeleton graph (SG).
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Figure 6.7. Balanced/Unbalanced S(Aw, w,Dw)

A skeleton graph is constructed at the partition-level. Suppose a graph
G(V,E) is partitioned into k subgraphs G1(V1, E1), G2(V2, E2), ⋅ ⋅ ⋅ ,
Gk(Vk, Ek). Here, V = ∪ki=1Vi and Vi∩Vj = ∅ if i ∕= j. E = EC ∪ (∪ki=1Ei)
where Ei ∩ Ej = ∅ if i ∕= j and EC is the set of cross-partition edges
E∖(∪ki=1Ei). The skeleton graph GS(VS , ES) is constructed as follows. Here,
VS is a set of nodes u if u appears in a cross-partition edge in EC . ES contains
all the cross-partition edges EC , and in addition contains edges that explicitly
indicate whether two cross-partition edges are connected via some paths in a
subgraph. Consider a subgraph Gi, and let (vi, vj) and (vk, vl) be any two
cross-partition edges such that vj and vk as nodes appear in Gi. There will
be an edge (vj , vk) in ES if vj ↝ vk is true in Gi. Schenkel et al. compute
a 2-hop cover for GS using Algorithm 4 with the heuristic ranking. At this
stage, for a node u ∈ G that does not appear in any cross-partition edges,
u has a 2hopcode(u) which is computed in Gi where u resides. For a node
u ∈ G that appears in cross-partition edges, it has two 2-hop cover codes. One
is computed because it appears in a subgraph Gi, 2hopcode(u). The other
is the one computed in the skeleton graph GS , denoted 2hopcode′(u). Let
2hopcode(u) = (Lin(u), Lout(u)) and 2hopcode′(u) = (L′

in(u), L
′
out(u)).

The final 2-hop cover code is computed by augmenting the 2-hop cover
code computed for Gi using the 2-hop cover code computed over the skeleton
graph. Let (u, v) be a cross-partition edge, where u ∈ Gi and v ∈ Gj , and let
V (Gi) and V (Gj) denote the sets of nodes in Gi and Gj . It is done using the
following two operations.

For all a ∈ ancs(u) ∩ V (Gi), Lout(a)← Lout(a) ∪ L′
out(u), and

For all d ∈ desc(v) ∩ V (Gj), Lin(d)← Lin(d) ∪ L′
in(v).

The skeleton graph gives a global picture over the 2-hop cover and can com-
press the edge transitive closure effectively.

A Hierarchical Partitioning Approach. Cheng et al. in [14] consider the
quality of the partitioning. The partitioning divides a large graph into smaller
graphs and computes the 2-hop cover code for the large graph by augmenting
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Figure 6.8. Bisect G into GA and GD (Figure 6 in [14])

the 2-hop cover codes for smaller graphs. The main issue in the flat partition-
ing [29, 30] is to find a way to compute 2-hop cover codes for a large graph
with the limited memory. Because it is not easy to find an optimal partition-
ing of graphs, Schenkel et al. take a simple approach. For a DAG graph G,
it can start from the top or the bottom (refer to G↓ in Figure 6.5) to extract a
subgraph that can be held in memory, and repeats it until the entire graph is
decomposed into a set of smaller graphs. Consider a node w appearing in a
cross-partition edge. The node w has potential power to compress the edge
transitive closure effectively, because many nodes in one subgraph may con-
nect to many nodes in another subgraph via the node w. However, there are two
cases as illustrated in Figure 6.7. The flat partitioning may result a partitioning
that result in many unbalanced 2-hop clusters S(Aw, w,Dw) (Figure 6.7(a)).
Cheng et al. attempt to partition a graph that results in balanced 2-hop clusters
S(Aw, w,Dw) (Figure 6.7(b)). Recall S(Aw, w,Dw) uses ∣Aw∣+ ∣Dw∣ space
to compress ∣Aw∣ ⋅ ∣Dw∣ − 1 entries in the edge transitive closure. Cheng et al.
show that the compression rate (∣Aw∣ ⋅ ∣Dw∣ − 1)/(∣Aw ∣+ ∣Dw∣) is maximum
when ∣Aw∣ = ∣Dw∣.

Cheng et al. in [14] propose a hierarchical partitioning approach to partition
a large graph G into two subgraphs, GA and GD , repeatedly in a top-down
fashion. It repeats if a subgraph cannot be held in memory in such a manner.

The key idea presented in [14] is to select a set of centers, Vw =
{w1, w2, ⋅ ⋅ ⋅ }, as a cut to partition a graph G. Note that the set of centers
implies a set of 2-hop clusters, S(Aw1 , w1,Dw1), S(Aw2 , w2,Dw2), ⋅ ⋅ ⋅ . Sup-
pose that G is partitioned into GA and GD . There exist a set of edges (u, v)
where u ∈ GA and v ∈ GD. Let EC denote such a set of edges. Cheng et al.
propose a node-oriented and an edge-oriented approach to identify Vw where
wi ∈ Vw is selected from the set of nodes appearing in EC . As illustrated in
Figure 6.8(a), in the node-oriented approach, it selects a set of nodes in EC

as Vw. As illustrated in Figure 6.8(b), in the edge-oriented approach, it treats
edges as virtual nodes and identify Vw. The set of Vw is computed as to find the
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minimum 2-hop cover to cover reachability cross GA and GD from the nodes
appearing in EC . It is important to note that reachability between the two sub-
graphs, GA and GD, are completely covered by the set of 2-hop clusters using
the set of nodes Vw. Based on Vw, Cheng et al. extract an induced subgraph
of GA, denoted G⊤, which does not include any nodes in Vw, and extract an
induced subgraph of GD , denoted G⊥, which does not include any nodes in
Vw. Both G⊤ and G⊥ are treated as G in the next steps to bisect.

7.4 2-Hop Cover Maintenance

A 2-hop cover is hard to compute. Schenkel et al. in [30] and Bramandia
et al. in [5] study the 2-hop cover maintenance problem to minimize the effort
of updating the 2-hop cover when updates occur, and avoid computing a 2-
hop cover from the beginning. There are four operations, insertion/deletion of
nodes/edges. It is straightforward to deal with insertions. Consider an insertion
of a new edge between an existing node and a new node v to G. A simple
solution is to insert S(ancs(v), v, desc(v)) into the 2-hop cover, i.e., inserting
v to the Lin and Lout of all nodes in desc(v) and ancs(v), respectively. The
deletion of nodes/edges becomes non-trivial, because a deletion of a node w
may affect the reachability u↝ v if w ∈ Lout(u) and w ∈ Lin(v). Removing
w from Lout(u) and Lin(v) may make u ↝ v to be wrongly answered as
false, because there may be other paths from u to v. The existing work focus
on deletion operations. In this article, we mainly discuss their approaches to
handle the deletion of an existing node. The similar idea can be applied to
handling the deletion of an existing edge.

Re-labeling a subgraph. When there is a deletion of an existing node,
Schenkel et al. in [30] compute a 2-hop cover L̂ of a subgraph Grel of G,
in order to reflect all the affected connections in G, due to the deletion of an
existing node v. The existing 2-hop cover L for the graph G, before updating,
will be updated to reflect all the affected connections by incorporating L̂. The
graph Grel(Vrel, Erel) is constructed as an induced graph of G, denoted as
G[Vrel]. The set of nodes, Vrel is computed as follows. First, it includes all
nodes in ancs(v) in Vrel, which is shown as the striped region in Figure 6.9a.
Second, it includes all nodes in desc(u) into Vrel if u ∈ ancs(v), which is
shown as the gray region in Figure 6.9a. Note that Grel represents all the
affected connections.

The 2-hop cover L̂ computed for Grel is used to update the 2-hop cover L
for the entire graph G as follows. It is obvious that all the connections (a, d),
that exist in G, need to be updated if a ∈ Vrel. Note that d ∈ Vrel in this case.
All Lout(a) for a ∈ Vrel are updated as to be L̂out(a). On the other hand, for a
connection (a, d) that exists in G where d ∈ Vrel, the node a may or may not
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exist in Vrel. If a ∈ Vrel, L̂in(d) are used to reflect all (a, d), because a and
d are both in Grel. For the latter case, it keeps Lin(d) ∖ Vrel, because such
(a, d) are not affected by the deletion of v and are encoded by previous 2-hop

clusters. Hence, Lin(d) is updated as (Lin(d) ∖ Vrel) ∪ L̂in(d).
A drawback of this approach is high maintenance cost, because Grel can

be as large as G itself. It means that the maintenance for the current 2-hop
cover degrades into the re-computation of a new 2-hop cover for the entire
graph. Bramandia et al. [4] show the 2-hop cover code maintenance using the
geometrical-based approach [13].

Reserving all alternative paths. Bramandia et al. in [5] propose u2-hop
that can work on a smaller set of affected connections online at the expense of
a large space. It considers all connections (a, d), where a ∈ ancs(v) and d ∈
desc(v), and modifies Lout(a) and Lin(d) by removing (i) v, (ii) nodes that are
on longer reachable from a or nodes that can not reach d any longer, due to the
deletion of the node v. The operation (i) is to exclude S(Av , v,Dv) from the
current 2-hop cover. The operation (ii) is to maintain S(Aw, w,Dw), where
w ∈ ancs(v) or w ∈ desc(v), by removing those nodes in Aw and Dw which
no longer connect to w. In order to maintain the 2-hop cover, it is important
to note that the succinct maintaining operations of [5] require redundancy in
the 2-hop cover. Such redundancy comes from the requirement that for any
connection (a, d) in G, it repeatedly encodes it with multiple 2-hop clusters
for all different alternative paths from a to d, as illustrated by Figure 6.9b.
The example shows that two alternative paths from a to d exist in G, and v
and v′ are contained in the two paths respectively. So both S(Av, v,Dv) and
S(Av′ , v

′,Dv′) need to be maintain to cover (a, d).
In details, in encoding (a, d) for all alternative paths from a to d, a set of

nodes W is used such that the removal of W disconnect all paths from a to d.
It constructs 2-hop clusters based on w ∈ W and any nodes that connect via
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w are included in Aw and Dw. And all w ∈ W are added into Lout(a) and
Lin(d). Upon the deletion of a node w, it can safely remove w from all Lout(a)
and Lin(d). It is because that if there is another path from a to d , there must
be another w′ ∈ W such that Lout(a) and Lin(d) both contain w′. Note that
the 2-hop cover compression ratio is in a relatively low priority in this regard.

8. 3-Hop Cover

Jin et al. in [25] propose a 3-Hop approach. Consider a transitive closure
matrix for a DAGG (Figure 6.10). Suppose there exists a chain cover ofGwith
k chains. Jin et al. show that the transitive closure matrix for G is a matrix of
k × k blocks where each block is a Pseudo-upper triangular matrix. It can be
done by ordering the nodes using their chain identifiers and then their positions
in the chains. Jin et al. use Con(G) to denote the set of pseudo-diagonal cells
for all the blocks in the transitive closure matrix (the circled cells shown in
Figure 6.10). It is easy to see that Con(G) is enough to derive the transitive
closure. Con(G) can be easily calculated using Algorithm 2.
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Figure 6.10. Transitive Closure Matrix

Con(G) is already enough to answer a reachability query. But, the cost is
high, because the number of nodes in Con(G) can be large. Jin et al. encode
Con(G) using 3-hop cover codes. It is similar to the 2-hop cover codes. For
every node u, there is a list of “entry points” Lin(u) and a list of “exit points”
Lout(u). The difference between 2-hop and 3-hop is as follows. In a 2-hop
cover code, u can reach v if any only if Lout(u) ∩ Lin(v) ∕= ∅. But in a 3-hop
cover code, it allows a point in Lout(u) reach another point in Lin(v) via a
chain. Suppose that there is a chain ⋅ ⋅ ⋅ ↝ vi ↝ ⋅ ⋅ ⋅ ↝ vj ↝ ⋅ ⋅ ⋅ . Then,
u ↝ v is true if u can reach vi (1st hop), vi can reach vj (2nd hop), and
vj can reach v (3rd hop). The algorithm to compute the 3-hop cover codes is
similar to the algorithm to compute the 2-hop cover codes. The only difference
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is that it needs to consider the set of pairs that can be encoded by each chain
rather than each node. The time complexity for the 3-hop cover construction
is O(k ⋅ n2 ⋅ ∣Con(G)∣).

Given a 3-hop cover coding scheme encoding for Con(G), it can answer
a reachability query u ↝ v as follows: In the first step, it collects a set of
entry points Lout(u) can reach on the intermediate chains. In the second step,
it collects a set of exit points which can reach v on the intermediate chains.
Finally, it checks whether an entry point can reach an exit point using the chain
ids and positions for nodes in the chain. The time complexity is O(log n+ k)
where n is the number of nodes in the graph G and k is the number of chains.

9. Distance-Aware 2-Hop Cover

The 2-hop cover coding schema discussed in the previous section can be
used to answer reachability queries, u ↝ v, but cannot be used to answer

distance queries, u
�
↝ v. A distance query u

�
↝ v is a reachability query

u ↝ v with the shortest distance �. In other words, it queries the shortest
distance from u to v if it is reachable. Cohen et al. in [17] address this problem.

Consider an edge-weighted directed graph G(E,V ), where !(u, v) repre-
sents the distance over the edge (u, v) ∈ E. Let �(u, v) be the shortest distance
from a node u to a node v. A 2-hop cover code of u is a pair of Lin(u) and
Lout(u). Here, Lin(u) is a set of pairs {(u1, �(u1, u)), (u2, �(u2, u)), ⋅ ⋅ ⋅ },
and Lout(u) is a set of pairs {(v1, �(u, v1)), (v2, �(u, v2)), ⋅ ⋅ ⋅ }. A distance

query u
�
↝ v is answered as

min{�(u,w) + �(w, v)∣(w, �(u,w)) ∈ Lout(u) ∧ (w, �(w, v)) ∈ Lin(v)}

It is worth nothing that the distance-aware 2-hop cover needs to maintain the
additional shortest distance information.

Schenkel et al. in [30] discuss the distance-aware 2-hop cover. The algo-
rithms in [30] can be used to compute the distance-aware 2-hop cover. How-
ever, in addition to the bottleneck in the third step, it needs high overhead to
compute the shortest paths, and the resulting 2-hop cover can be unnecessar-
ily large. Consider Figure 6.11. There is a subgraph Gi in which the node
a is an ancestor of the nodes x1, x2, ⋅ ⋅ ⋅ , xd in the subgraph Gi that appear
in the cross-partition edges. As a result, all nodes, x1, x2, ⋅ ⋅ ⋅ , xd, appear in
the skeleton graph. Assume that there is a 2-hop cluster, S(Aw, w,Dw), in
the skeleton graph, that contains all x1, x2, ⋅ ⋅ ⋅ , xd in Aw. In computing the
distance-aware 2-hop cover for G by augmenting the distance-aware 2-hop
cover computed for the skeleton graph, it needs to identify the shortest path
from a to w (Figure 6.11). There may exist many unnecessary pairs in the
resulting distance-aware 2-hop cover such that �(a, x) + �(x,w) > �(a,w).
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Figure 6.11. The 2-hop Distance Aware Cover (Figure 2 in [10])

Cheng and Yu in [10] discuss a new DAG-based approach and focus on two
main issues.

Issue-1: It cannot obtain a DAG G′ for a directed graph G first, and
compute the distance-aware 2-hop cover for G based on the distance-
aware 2-hop cover computed for G′. In other words, it cannot represent
a strongly connected component (SCC) in G as representative node in
G′. It is because that a node w in a SCC on the shortest path from u to v
does not necessarily mean that every node in the SCC is on the shortest
path from u to v.

Issue-2: The cost of dynamically selecting the best 2-hop cluster, in an
iteration of the 2-hop cover program, cannot be reduced using the tree
cover codes and R-tree as discussed in [13], because such techniques
cannot handle distance information.

Cheng and Yu observe that if a 2-hop cluster, S(Aw, w,Dw), is computed to
cover all shortest paths containing the center node w, it can remove w from the
underneath graph G, because there is no need to consider again any shortest
paths via w any more.

Based on the observation, to deal with Issue-1, Cheng and Yu in [10] col-
lapse every SCC into DAG by removing a small number of nodes from the SCC
repeatedly until it obtains a DAG graph. To deal with Issue-2, when construct-
ing 2-hop clusters, Cheng and Yu propose a new technique to reduce the 2-hop
clusters by taking the already identified 2-hop clusters into consideration, to
avoid storing unnecessary all-pairs of shortest paths.

Cheng and Yu propose a two-step solution. In the first phase, it attempts to
obtain a DAG G↓ for a given graph G by removing a small number of nodes,

V̂Ci , from every SCC, Ci(VCi , ECi). In computing a SCC Ci(VCi , ECi), every

node, w ∈ V̂Ci is taken as a center, and S(Aw, w,Dw) is computed to cover

shortest paths for the graph G. Then, all nodes in V̂Ci will be removed, and
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a modified graph is constructed as an induced subgraph of G(V,E), denoted

as G[V ∖ V̂Ci ], with the set of nodes V ∖ V̂Ci . Figure 6.12(a) shows a graph
G with several SCCs. Figure 6.12(b)-(d) illustrate the main idea of collapsing
SCCs while computing 2-hop clusters. At the end, the original directed graph
G is represented as a DAG G′ plus a set of 2-hop clusters, S(Aw, w,Dw),

computed for every node, w ∈ V̂Ci . All shortest paths covered are the union of
the shortest paths covered by all 2-hop clusters, S(Aw, w,Dw), for every node,

w ∈ V̂Ci , and the modified DAG G′. In the second phase, for the obtained
DAG G↓, Cheng and Yu take the top-down partitioning approach to partition
the DAG G↓, based on the early work in [14]. Figure 6.12(d)-(e) show that the
graph can be partitioned hierarchically.

10. Graph Pattern Matching

In this section, we discuss several approaches to find graph patterns in
a large data graph. A data graph is a directed node-labeled graph GD =
(V,E,Σ, �). Here, V is a set of nodes, E is a set of edges (ordered pairs),
Σ is a set of node labels, and � is a mapping function which assigns each node,
vi ∈ V , a label lj ∈ Σ. Below, we use label(vi) to denote the label of node
vi. Given a label l ∈ Σ, the extent of l, denoted ext(l), is a set of nodes in
GD whose label is l. A graph pattern is a connected directed labeled graph
Gq = (Vq, Eq), where Vq is a subset of labels (Σ), and Eq is a set of edges
(ordered pairs) between two nodes in Vq. There are two types of edges. Let
A,D ∈ Vq. An edge (A,D) ∈ E(Gq) represents a parent/child condition,
denoted as A 7→ D, which identifies all pairs of nodes, vi and vj , such that
(vi, vj) ∈ GD , label(vi) = A, and label(vj) = D. An edge (A,D) ∈ E(Gq)
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represents a reachability condition, denoted as A↪→D, that identifies all pairs
of nodes, vi and vj , such that vi ↝ vj is true in GD , for label(vi) = A, and
label(vj) = D. A match in GD matches the graph pattern Gq if it satisfies all
the parent/child and reachability conditions conjunctively specified in Gq . A
graph pattern matching query is to find all matches for a query graph. In this
article, we focus on the reachability conditions, A↪→D, and omit the discus-
sions on parent/child conditions, A 7→ D. We assume that a query graph Gp

only consists of reachability conditions.

10.1 A Special Case: A↪→D

In this section, we introduce three approaches to processA↪→D over a graph
GD.

Sort-Merge Join. Wang et al. propose a sort-merge join algorithm in [36]
to process A↪→D over a directed graph using the tree cover codes [1]. Recall
that for a given node u, tccode(u) = {[ustart1 , uend1 ], [ustart2 , uend2 ], ⋅ ⋅ ⋅ },
where uend1 is the postorder when it traverses the spanning tree. We use
post(u) to denote the postorder of node u.

Let Alist and Dlist be two lists of ext(A) and ext(D), respectively. In
Alist, every node vi keeps all its intervals in the tccode(vi). In Dlist, every
node vj keeps its unique postorder post(v). Also, Alist is sorted on the inter-
vals [s, e] by the ascending order of s and then the descending order of e, and
Dlist is sorted by the postorder number in ascending order. The sort-merge
join algorithm evaluates A↪→D over GD by a single scan on Alist and Dlist
using the predicate Ptc(, ). Wang et al. [36] propose a naive GMJ algorithm
and an IGMJ algorithm which uses a range search tree to improve the perfor-
mance of the GMJ algorithm.

Hash Join. Wang et al. also propose a hash join algorithm in [35] to process
A↪→D over a directed graph using the tree cover codes. Unlike the sort-merge
join algorithm, Alist is a list of pairs (val(u), post(u)) for all u ∈ ext(A).
Here, post(u) is the unique postorder of u, and val(u) is either a start or an
end of the intervals. Consider the node d in Figure 6.3(b), post(d) = 7, and
there are two intervals, [6, 7] and [1, 4]. In Alist, it keeps four pairs: (6, 7),
(7, 7), (1, 7), and (4, 7). Like the sort-merge join algorithm, Dlist keeps a list
of postorders post(v) for all v ∈ ext(D). Alist is sorted in ascending order of
val(a) values, and Dlist is sorted in ascending order of post(d) values. The
Hash Join algorithm, called HGJoin, is outline in Algorithm 5.

Join Index. Cheng et al. in [15] study a join index approach to process
A↪→D using a join index built on top of GD . The join index is built based on
the 2-hop cover codes. We explain it using the same example given in [15].
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Algorithm 5 HGJoin(Alist, Dlist)

1: H ← ∅;
2: Output← ∅;
3: a← Alist.f irst;
4: d← Dlist.f irst;
5: while a ∕= Alist.last ∧ d ∕= Dlist.last do
6: if val(a) ≤ post(d) then
7: if post(a) /∈ H then
8: hash post(a) into H;
9: a← a.next;

10: else if val(a) < post(d) then
11: delete post(a) from H;
12: a← a.next;
13: else
14: for all post(a) in H do
15: append (post(a), post(d)) to Output;
16: end for
17: d← d.next;
18: end if
19: else
20: for all post(a) in H do
21: append (post(a), post(d)) to Output;
22: end for
23: d← d.next;
24: end if
25: end while
26: return Output;
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Figure 6.13. Data Graph (Figure 1(a) in [12])
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Figure 6.14. A Graph Database for GD (Figure 2 in [12])
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Consider a graph GD (Figure 6.13). The 2-hop cover codes for all nodes in
GD are shown in Figure 6.14(a). It is a compressed 2-hop cover code which
removes v ↝ v from the 2-hop cover code computed. The predicate P2ℎop(, )
is slightly modified using the compressed 2-hop cover codes as follows.

P2ℎop(2hopcode(u), 2hopcode(v)) = Lout(u) ∩ Lin(v) ∕= ∅ ∨ u ∈ Lin(v) ∨ v ∈ Lout(u)

A cluster-based join index for a data graph GD based on the 2-hop cover
computed,ℋ = {Sw1 , Sw2 , ⋅ ⋅ ⋅ }, where Swi = S(Awi , wi,Dwi) and all wi are
centers. It is a B+-tree in which its non-leaf blocks are used for finding a given
center wi. In the leaf nodes, for each center wi, its Awi and Dwi , denoted F-
cluster and T-cluster, are maintained. Awi’s F-cluster and T-cluster are further
divided into labeled F-subclusters/T-subclusters where every node, ai, in anA-
labeled F-subcluster can reach every node dj in a D-labeled T-subcluster, via
wi. Together with the cluster-based join index, it designs a W -table in which,
an entryW (X,Y ) is a set of centers. A center wi will be included inW (A,B),
if wi has a non-empty A-labeled F-subcluster and a non-empty D-labeled T-
subcluster. It helps to find the centers, wi, in the cluster-based join index, that
have an A-labeled F-subcluster and a D-labeled T-subcluster. For the cluster-
based join index for GD (Figure 6.13) is shown in Figure 6.14(c), and the
W -table is shown in Figure 6.14(b). Consider A↪→B. The entry W (A,B)
keeps {a0}, which suggests that the answers can be only found in the clusters
at the center a0. As shown in Figure 6.14(c), the center a0 has an A-labeled F-
subcluster {a0}, and a B-labeled T-subcluster {b2, b3, b4, b5, b6}. The answer
is the Cartesian product between these two labeled subclusters. It can process
A↪→D queries efficiently.

Cheng et al in. [11] discuss performance issues between the sort-merge join
approach and the index approach.

10.2 The General Cases

Chen et al. in [8] propose a holistic based approach for graph pattern match-
ing. But, a query graph, Gq, is restricted to be a tree, which we introduce in
brief in Section 2. Their TwigStackD algorithm process a tree-shaped Gq in
two steps. In the first step, it uses Twig-Join algorithm in [7] to find all patterns
in the spanning tree of GD. In the second step, for each node popped out from
the stacks used in Twig-Join algorithm, TwigStackD buffers all nodes which
at least match a reachability condition in a bottom-up fashion, and maintains
all the corresponding links among those nodes. When a top-most node that
matches a reachability condition, TwigStackD enumerates the buffer pool and
outputs all fully matched patterns. TwigStackD performs well for very sparse
data graphs. But, its performance degrades noticeably when the GD becomes
dense, due to the high overhead of accessing edge transitive closures.
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Cheng et al. in [11, 12] consider A↪→D as a R-join (like �-join), and process
a graph pattern matching as a sequence of R-joins. The issue is how to select
join order. They propose a dynamic programming algorithm to determine the
R-join order in [11]. They also propose an R-join/R-semijoin approach in [12].
The basic idea is to divide the join-index based approach into two steps namely
filter and fetch. The filter steps shares the similarity with semijoin, and the
fetch step is to join. Cheng et al. study how to select R-join/R-semijoin order
by interleaving R-joins with R-semijoins, using dynamic programming in [12].

Wang et al. in [35] propose a query graph Gq based on the hash join
approach, and consider how to share the processing cost when it needs to
process several Alist and Dlist simultaneously. Wang et al. propose three
basic join operators, namely, IT-HGJoin, T-HGJoin, and Bi-HGJoin. The
IT-HGJoin processes a subgraph of a query with one descendant and multi-
ple ancestors, for example, A↪→D ∧ B↪→D. The T-HGJoin process a sub-
graph of a query with one ancestor and multiple descendants, for example,
A↪→C ∧ A↪→D. The Bi-HGJoin processes a complete bipartite subgraph
of a query with multiple ancestors and multiple descendants, for example
A↪→C∧A↪→D∧B↪→C∧B↪→D. A general query graph Gq will be processed
by a set of subgraph queries using IT-HGJoin, T-HGJoin, and Bi-HGJoin.

11. Conclusions and Summary

In this chapter, we presented a survey on reachability queries. We dis-
cussed several coding-based approaches using traversal, dual-labeling, tree
cover, chain cover, path-tree cover, 2-hop cover, and 3-hop cover approaches.
We also addressed how to support distance-aware queries such as to find the
shortest distance between two nodes in a large directed graph using the 2-hop
cover, and how to support graph pattern matching using the existing graph-
based coding schema. As future work, it becomes important how to use the
graph-based coding schema to support more real large graph-based applica-
tions.
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1. Introduction

After many years of research, the fields of pattern recognition, machine
learning and data mining have reached a high level of maturity [4]. Power-
ful methods for classification, clustering, information retrieval, and other tasks
have become available. However, the vast majority of these approaches rely
on object representations given in terms of feature vectors. Such object repre-
sentations have a number of useful properties. For instance, the dissimilarity,
or distance, of two objects can be easily computed by means of the Euclidean
distance. Moreover, a large number of well-established methods for data min-
ing, information retrieval, and related tasks in intelligent information process-
ing are available. Recently, however, a growing interest in graph-based object
representation can be observed [16]. Graphs are powerful and universal data
structures able to explicitly model networks of relationships between substruc-
tures of a given object. Thereby, the size as well as the complexity of a graph
can be adopted to the size and complexity of a particular object (in contrast to
vectorial approaches where the number of features has to be fixed beforehand).

Yet, after the initial enthusiasm induced by the “smartness” and flexibility of
graph representations in the late seventies, a number of problems became evi-
dent. First, working with graphs is unequally more challenging than working
with feature vectors, as even basic mathematic operations cannot be defined
in a standard way, but must be provided depending on the specific applica-
tion. Hence, almost none of the common methods for data mining, machine
learning, or pattern recognition can be applied to graphs without significant
modifications.

Second, graphs suffer from of their own flexibility. For instance, computing
the distances of a pair of objects, which is an important task in many areas,
is linear in the number of data items in the case where vectors are employed.
The same task for graphs, however, is much more complex, since one cannot
simply compare the sets of nodes and edges, which are generally unordered
and of different size. More formally, when computing graph dissimilarity or
similarity one has to identify common parts of the graphs by considering all of
their subgraphs. Regarding that there are O(2n) subgraphs of a graph with n
nodes, the inherent difficulty of graph comparisons becomes obvious.

Despite adverse mathematical and computational conditions in the graph
domain, various procedures for evaluating proximity, i.e. similarity or dissimi-
larity, of graphs have been proposed in the literature [15]. The process of evalu-
ating the similarity of two graphs is commonly referred to as graph matching.
The overall aim of graph matching is to find a correspondence between the
nodes and edges of two graphs that satisfies some, more or less, stringent con-
straints. That is, by means of the graph matching process similar substructures
in one graph are mapped to similar substructures in the other graph. Based on
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this matching, a dissimilarity or similarity score can eventually be computed
indicating the proximity of two graphs.

Graph matching has been the topic of numerous studies in computer sci-
ence over the last decades. Roughly speaking, there are two categories of tasks
in graph matching, viz. exact matching and inexact matching. In the former
case, for a matching to be successful, it is required that a strict correspondence
is found between the two graphs being matched, or at least among their sub-
parts. In the latter approach this requirement is substantially relaxed, since also
matchings between completely non-identical graphs are possible. That is, in-
exact matching algorithms are endowed with a certain tolerance to errors and
noise, enabling them to detect similarities in a more general way than the exact
matching approach. Therefore, inexact graph matching is also referred to as
error-tolerant graph matching.

For an extensive review of graph matching methods and applications, the
reader is referred to [15]. In this chapter, basic notations and definitions are in-
troduced (Sect. 2) and an overview of standard techniques for exact as well as
error-tolerant graph matching is given (Sect. 3 and 4). In Sect. 3, dissimilarity
models derived from graph isomorphism, subgraph isomorphism, and maxi-
mum common subgraph are discussed for exact graph matching. In Sect. 4,
inexact graph matching and in particular the paradigm of edit distance applied
to graphs is discussed. Finally, two recent applications of graph matching are
reviewed. First, in Sect. 5 an algorithmic framework for information retrieval
based on graph matching is described. This approach is based on both exact
and inexact graph matching procedures and aims at querying large database
graphs. Secondly, a graph embedding procedure based on graph matching is
reviewed in Sect. 6. This framework aims at an explicit embedding of graphs in
real vector spaces, which establishes access to the rich repository of algorith-
mic tools for classification, clustering, regression, and other tasks, originally
developed for vectorial representations.

2. Basic Notations

Various definitions for graphs can be found in the literature, depending upon
the considered application. It turns out that the definition given below is suffi-
ciently flexible for a large variety of tasks.

Definition 7.1 (Graph). Let LV and LE be a finite or infinite label alphabet
for nodes and edges, respectively. A graph g is a four-tuple g = (V,E, �, �),
where

V is the finite set of nodes,

E ⊆ V × V is the set of edges,

� : V → LV is the node labeling function, and
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(a) (b) (c)
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Figure 7.1. Different kinds of graphs: (a) undirected and unlabeled, (b) directed and unlabeled,
(c) undirected with labeled nodes (different shades of gray refer to different labels), (d) directed
with labeled nodes and edges.

� : E → LE is the edge labeling function.

The number of nodes of a graph g is denoted by ∣g∣, while G represents the
set of all graphs over the label alphabets LV and LE .

Definition 7.1 allows us to handle arbitrarily structured graphs with uncon-
strained labeling functions. For example, the labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = ℝn,
or a set of symbolic labels L = {�, �, , . . .}. Given that the nodes and/or
the edges are labeled, the graphs are referred to as labeled graphs. Unlabeled
graphs are obtained as a special case by assigning the same label " to all nodes
and edges, i.e. LV = LE = {"}.

Edges are given by pairs of nodes (u, v), where u ∈ V denotes the source
node and v ∈ V the target node of a directed edge. Commonly, the two nodes
u and v connected by an edge (u, v) are referred to as adjacent. A graph is
termed complete if all pairs of nodes are adjacent. Directed graphs directly cor-
respond to the definition above. In addition, the class of undirected graphs can
be modeled by inserting a reverse edge (v, u) ∈ E for each edge (u, v) ∈ E
with identical labels, i.e. �(u, v) = �(v, u). In Fig. 7.1 some graphs (di-
rected/undirected, labeled/unlabeled) are shown.

Definition 7.2 (Subgraph). Let g1 = (V1, E1, �1, �1) and g2 =
(V2, E2, �2, �2) be graphs. Graph g1 is a subgraph of g2, denoted by
g1 ⊆ g2, if

(1) V1 ⊆ V2,

(2) E1 ⊆ E2,

(3) �1(u) = �2(u) for all u ∈ V1, and

(4) �1(e) = �2(e) for all e ∈ E1.

By replacing condition (2) in Definition 7.2 by the more stringent condition

(2’) E1 = E2 ∩ V1 × V1,

g1 becomes an induced subgraph of g2. If g2 is a subgraph of g1, graph g1 is
called a supergraph of g2.
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(a) (b) (c)

Figure 7.2. Graph (b) is an induced subgraph of (a), and graph (c) is a non-induced subgraph of
(a).

Obviously, a subgraph g1 is obtained from a graph g2 by removing some
nodes and their incident, as well as possibly some additional, edges from
g2. For g1 to be an induced subgraph of g2, some nodes and only their in-
cident edges are removed from g2, i.e. no additional edge removal is allowed.
Fig. 7.2(b) and 7.2(c) show an induced and a non-induced subgraph of the
graph in Fig. 7.2(a), respectively.

3. Exact Graph Matching

The aim in exact graph matching is to determine whether two graphs, or at
least part of them, are identical in terms of structure and labels. A common
approach to describe the structure of a graph is to define the adjacency matrix
A = (aij)n×n of graph g = (V,E, �, �) (∣g∣ = n). In this matrix the entry aij
is equal to 1 if there is an edge (vi, vj) ∈ E connecting the i-th node vi ∈ V
with the j − tℎ node vj ∈ V , and 0 otherwise.

Generally, for the nodes (and also the edges) of a graph there is no unique
canonical order. Thus, for a single graph with n nodes, n! different adjacency
matrices exist, since there are n! possibilities to order the nodes of g. Con-
sequently, for checking two graphs for structural identity, we cannot simply
compare their adjacency matrices. The identity of two graphs g1 and g2 is
commonly established by defining a function, termed graph isomorphism, that
maps g1 to g2.

Definition 7.3 (Graph Isomorphism). Let us consider two graphs denoted by
g1 = (V1, E1, �1, �1) and g2 = (V2, E2, �2, �2) respectively. A graph isomor-
phism is a bijective function f : V1 → V2 satisfying

(1) �1(u) = �2(f(u)) for all nodes u ∈ V1
(2) for each edge e1 = (u, v) ∈ E1, there exists an edge

e2 = (f(u), f(v)) ∈ E2

such that �1(e1) = �2(e2)

(3) for each edge e2 = (u, v) ∈ E2, there exists an edge

e1 = (f−1(u), f−1(v)) ∈ E1
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(a) (b) (c)

Figure 7.3. Graph (b) is isomorphic to (a), and graph (c) is isomorphic to a subgraph of (a). Node
attributes are indicated by different shades of gray.

such that �1(e1) = �2(e2)

Two graphs are called isomorphic if there exists an isomorphism between them.

Obviously, isomorphic graphs are identical in both structure and labels. That
is, a one-to-one correspondence between each node of the first graph and each
node of the second graph has to be found such that the edge structure is pre-
served and node and edge labels are consistent.

Unfortunately, no polynomial runtime algorithm is known for the problem
of graph isomorphism [25]. That is, in the worst case, the computational com-
plexity of any of the available algorithms for graph isomorphism is exponential
in the number of nodes of the two graphs. However, since most scenarios en-
countered in practice are often different from the worst case, and furthermore,
the labels of both nodes and edges very often help to substantially reduce the
complexity of the search, the actual computation time can still be manageable.
Polynomial algorithms for graph isomorphism have been developed for spe-
cial kinds of graphs, such as trees [1], ordered graphs [38], planar graphs [34],
bounded-valence graphs [45], and graphs with unique node labels [18].

Standard procedures for testing graphs for isomorphism are based on tree
search techniques with backtracking. The basic idea is that a partial node
matching, which assigns nodes from the two graphs to each other, is itera-
tively expanded by adding new node-to-node correspondences. This expan-
sion is repeated until either the edge structure constraint is violated or node
or edge labels are inconsistent. In this case a backtracking procedure is ini-
tiated, i.e. the last node mappings are iteratively undone until a partial node
mapping is found for which an alternative extension is possible. Obviously, if
there is no further possibility for expanding the partial node matching without
violating the constraints, the algorithm terminates indicating that there is no
isomorphism between the considered graphs. Conversely, finding a complete
node-to-node correspondence without violating any of the structure or label
constraints proves that the investigated graphs are isomorphic. In Fig. 7.3 (a)
and (b) two isomorphic graphs are shown.

A well known, and despite its age still very popular, algorithm implementing
the idea of a tree search with backtracking for graph isomorphism is described
in [89]. A more recent algorithm for graph isomorphism, also based on the
idea of tree search, is the VF algorithm and its successor VF2 [17]. Here the
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basic tree search algorithm is endowed with an efficiently computable heuris-
tic which substantially reduces the search time. In [43] the tree search method
for isomorphism is sped up by means of another heuristic derived from Con-
straint Satisfaction. Other algorithms for exact graph matching, which are not
based on tree search techniques, are Nauty [50], and decision tree based tech-
niques [51], to name just two examples. The reader is referred to [15] for an
exhaustive list of exact graph matching algorithms developed since 1973.

Closely related to graph isomorphism is subgraph isomorphism, which can
be seen as a concept describing subgraph equality. A subgraph isomorphism
is a weaker form of matching in terms of requiring only that an isomorphism
holds between a graph g1 and a subgraph of g2. Intuitively, subgraph isomor-
phism is the problem to detect if a smaller graph is identically present in a
larger graph. In Fig. 7.3 (a) and (c), an example of subgraph isomorphism is
given.

Definition 7.4 (Subgraph Isomorphism). Let g1 = (V1, E1, �1, �1) and
g2 = (V2, E2, �2, �2) be graphs. An injective function f : V1 → V2 from
g1 to g2 is a subgraph isomorphism if there exists a subgraph g ⊆ g2 such that
f is a graph isomorphism between g1 and g.

The tree search based algorithms for graph isomorphism [17, 43, 89], as well
as the decision tree based techniques [51], can also be applied to the subgraph
isomorphism problem. In contrast with the problem of graph isomorphism,
subgraph isomorphism is known to be NP-complete [25]. As a matter of fact,
subgraph isomorphism is a harder problem than graph isomorphism as one has
not only to check whether a permutation of g1 is identical to g2, but we have to
decide whether g1 is isomorphic to any of the subgraphs of g2 with equal size
as g1.

The process of graph matching primarily aims at identifying corresponding
substructures in the two graphs under consideration. Through the graph match-
ing procedure an associated similarity or dissimilarity score can be easily in-
ferred. In view of this, graph isomorphism as well as subgraph isomorphism
provide us with a basic similarity measure, which is 1 (maximum similarity)
for (sub)graph isomorphic, and 0 (minimum similarity) for non-isomorphic
graphs. Hence, two graphs must be completely identical, or the smaller graph
must be identically contained in the other graph, to be deemed similar. Con-
sequently, the applicability of this graph similarity measure is rather limited.
Consider a case where most, but not all, nodes and edges in two graphs are
identical. The rigid concept of (sub)graph isomorphism fails in such a situa-
tion in the sense of considering the two graphs to be totally dissimilar. Due to
this observation, the formal concept of the largest common part of two graphs
is established.
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(a) (b) (c)

Figure 7.4. Graph (c) is a maximum common subgraph of graph (a) and (b).

Definition 7.5 (Maximum common subgraph). Let g1 = (V1, E1, �1, �1)
and g2 = (V2, E2, �2, �2) be graphs. A common subgraph of g1 and g2,
cs(g1, g2), is a graph g = (V,E, �, �) such that there exist subgraph isomor-
phisms from g to g1 and from g to g2. We call g a maximum common subgraph
of g1 and g2, mcs(g1, g2), if there exists no other common subgraph of g1 and
g2 that has more nodes than g.

A maximum common subgraph of two graphs represents the maximal part
of both graphs that is identical in terms of structure and labels. In Fig. 7.4(c)
the maximum common subgraph is shown for the two graphs in Fig. 7.4(a)
and (b). Note that, in general, the maximum common subgraph is not uniquely
defined, that is, there may be more than one common subgraph with a maxi-
mal number of nodes. A standard approach to computing maximum common
subgraphs is based on solving the maximum clique problem in an association
graph [44, 49]. The association graph of two graphs represents the whole set
of possible node-to-node mappings that preserve the edge structure and labels
of both graphs. Finding a maximum clique in the association graph, that is, a
fully connected maximal subgraph, is equivalent to finding a maximum com-
mon subgraph. In [10] the reader can find an experimental comparison of algo-
rithms for maximum common subgraph computation on randomly connected
graphs.

Graph dissimilarity measures can be derived from the maximum common
subgraph of two graphs. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. For instance,
in [12] such a distance measure is introduced, defined by

dMCS (g1, g2) = 1− ∣mcs(g1 , g2 )∣
max{∣g1∣, ∣g2∣}

(7.1)

Note that, whereas the maximum common subgraph of two graphs is not
uniquely defined, the dMCS distance is. If two graphs are isomorphic, their
dMCS distance is 0; on the other hand, if two graphs have no part in common,
their dMCS distance is 1. It has been shown that dMCS is a metric and produces
a value in [0, 1].

A second distance measure which has been proposed in [94], based on the
idea of graph union, is



Exact and Inexact Graph Matching: Methodology and Applications 225

(a) (b) (c)

Figure 7.5. Graph (a) is a minimum common supergraph of graph (b) and (c).

dWGU (g1, g2) = 1− ∣mcs(g1 , g2 )∣
∣g1∣+ ∣g2∣ − ∣mcs(g1, g2)∣

By “graph union” it is meant that the denominator represents the size of
the union of the two graphs in the set-theoretic sense. This distance measure
behaves similarly to dMCS . The motivation of using graph union in the denom-
inator is to allow for changes in the smaller graph to exert some influence on
the distance measure, which does not happen with dMCS . This measure was
also demonstrated to be a metric and creates distance values in [0, 1].

A similar distance measure [7] which is not normalized to the interval [0, 1]
is:

dUGU (g1, g2) = ∣g1∣+ ∣g2∣ − 2 ⋅ ∣mcs(g1, g2)∣
Fernandez and Valiente [21] have proposed a distance measure based on

both the maximum common subgraph and the minimum common supergraph

dMMCS (g1, g2) = ∣MCS(g1, g2)∣ − ∣mcs(g1, g2)∣
where MCS(g1, g2) is the minimum common supergraph of graphs g1 and g2,
which is the complimentary concept of minimum common subgraph.

Definition 7.6 (Minimum common supergraph). Let g1 = (V1, E1, �1, �1)
and g2 = (V2, E2, �2, �2) be graphs. A common supergraph of g1 and g2,
CS(g1, g2), is a graph g = (V,E, �, �) such that there exist subgraph isomor-
phisms from g1 to g and from g2 to g. We call g a minimum common supergraph
of g1 and g2, MCS(g1, g2), if there exists no other common supergraph of g1
and g2 that has less nodes than g.

In Fig. 7.5(a) the minimum common supergraph of the graphs in Fig. 7.5(b)
and (c) is given. The computation of the minimum common supergraph can be
reduced to the problem of computing a maximum common subgraph [11].

The concept that drives the distance measure above is that the maximum
common subgraph provides a “lower bound” on the similarity of two graphs,
while the minimum supergraph is an “upper bound”. If two graphs are identi-
cal, then both their maximum common subgraph and minimum common super-
graph are the same as the original graphs and ∣g1∣ = ∣g2∣ = ∣MCS(g1, g2)∣ =
∣mcs(g1, g2)∣, which leads to dMMCS (g1, g2) = 0. As the graphs become
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more dissimilar, the size of the maximum common subgraph decreases, while
the size of the minimum supergraph increases. This in turn leads to increasing
values of dMMCS (g1, g2). For two graphs with an empty maximum common
subgraph, the distance will become ∣MCS(g1, g2)∣ = ∣g1∣+ ∣g2∣. The distance
dMMCS (g1, g2) has also been shown to be a metric, but it does not produce val-
ues normalized to the interval [0, 1], unlike dMCS or dWGU . We can also create
a version of this distance measure which is normalized to [0, 1] as follows:

dMMCSN (g1, g2) = 1− ∣mcs(g1, g2)∣∣MCS(g1, g2)∣

Note that, because of ∣MCS(g1, g2)∣ = ∣g1∣ + ∣g2∣ − ∣mcs(g1, g2)∣, dUGU

and dMMCS are identical. The same is true for dWGU and dMMCSN .
The main advantage of exact graph matching methods is their stringent def-

inition and solid mathematical foundation. This advantage may turn into a dis-
advantage, however, because in exact graph matching for finding two graphs
g1 and g2 to be similar, it is required that a significant part of the topology
together with the corresponding node and edge labels in g1 and g2 have to be
identical. In fact, this constraint is too rigid in some applications. For this rea-
son, a large number of error-tolerant, or inexact, graph matching methods have
been proposed, dealing with a more general graph matching problem than the
one of (sub)graph isomorphism.

4. Inexact Graph Matching

Due to the intrinsic variability of the patterns under consideration and the
noise resulting from the graph extraction process, it cannot be expected that
two graphs representing the same class of objects are completely, or at least to
a large part, identical in their structure. Moreover, if the node or edge label al-
phabet L is used to describe non-discrete properties of the underlying patterns,
e.g. L ⊆ ℝn, it is most probable that the actual graphs differ somewhat from
their ideal model. Obviously, such noise crucially hampers the applicability
of exact graph matching techniques, and consequently exact graph matching is
rarely used in real-world applications.

In order to overcome this drawback, it is advisable to endow the graph
matching framework with a certain tolerance to errors. That is, the match-
ing process must be able to accommodate the differences of the graphs by
relaxing –to some extent– the underlying constraints. In the first part of this
section the concept of graph edit distance is introduced to exemplarily illus-
trate the paradigm of inexact graph matching. In the second part, several other
approaches to inexact graph matching are briefly discussed.
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g1 g2

Figure 7.6. A possible edit path between graph g1 and graph g2 (node labels are represented by
different shades of gray).

4.1 Graph Edit Distance

Graph edit distance [8, 71] offers an intuitive way to integrate error-
tolerance into the graph matching process and is applicable to virtually all types
of graphs. Originally, edit distance has been developed for string matching [93]
and a considerable amount of variants and extensions to the edit distance have
been proposed for strings and graphs. The key idea is to model structural vari-
ation by edit operations reflecting modifications in structure and labeling. A
standard set of edit operations is given by insertions, deletions, and substitu-
tions of both nodes and edges. Note that other edit operations, such as merging
and splitting of nodes [2], can be useful in certain applications. Given two
graphs, the source graph g1 and the target graph g2, the idea of graph edit dis-
tance is to delete some nodes and edges from g1, relabel (substitute) some of
the remaining nodes and edges, and insert some nodes and edges in g2, such
that g1 is finally transformed into g2. A sequence of edit operations e1, . . . , ek
that transform g1 into g2 is called an edit path between g1 and g2. In Fig. 7.6
an example of an edit path between two graphs g1 and g2 is given. This edit
path consists of three edge deletions, one node deletion, one node insertion,
two edge insertions, and two node substitutions.

Let Υ(g1, g2) denote the set of all possible edit paths between two graphs
g1 and g2. Clearly, every edit path between two graphs g1 and g2 is a model
describing the correspondences found between the graphs’ substructures. That
is, the nodes of g1 are either deleted or uniquely substituted with a node in g2,
and analogously, the nodes in g2 are either inserted or matched with a unique
node in g1. The same applies for the edges. In [58] the idea of fuzzy edit paths
was reported where both nodes and edges can be simultaneously mapped to
several nodes and edges. The optimal fuzzy edit path is then determined by
means of quadratic programming.

To find the most suitable edit path out of Υ(g1, g2), one introduces a cost
for each edit operation, measuring the strength of the corresponding operation.
The idea of such a cost is to define whether or not an edit operation represents
a strong modification of the graph. Clearly, between two similar graphs, there
should exist an inexpensive edit path, representing low cost operations, while
for dissimilar graphs an edit path with high costs is needed. Consequently, the
edit distance of two graphs is defined by the minimum cost edit path between
two graphs.
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Definition 7.7 (Graph Edit Distance). Let g1 = (V1, E1, �1, �1) be the
source and g2 = (V2, E2, �2, �2) the target graph. The graph edit distance
between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑

i=1

c(ei),

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and c
denotes the cost function measuring the strength c(e) of edit operation e.

The definition of adequate and application-specific cost functions is a key
task in edit distance based graph matching. Prior knowledge of the graphs’ la-
bels is often inevitable for graph edit distance to be a suitable proximity mea-
sure. This fact is often considered as one of the major drawbacks of graph
edit distance. Yet, contrariwise, the possibility to parametrize graph edit dis-
tance by means of the cost function crucially amounts for the versatility of this
dissimilarity model. That is, by means of graph edit distance it is possible to
integrate domain specific knowledge about object similarity, if available, when
defining the costs of the elementary edit operations. Furthermore, if in a partic-
ular case prior knowledge about the labels and their meaning is not available,
automatic procedures for learning the edit costs from a set of sample graphs
are available as well [55, 56].

The overall aim of the cost function is to favor weak distortions over strong
modifications of the graph. Hence, the cost is defined with respect to the un-
derlying node or edge labels, i.e. the cost c(e) is a function depending on the
edit operation e. Typically, for numerical node and edge labels the Euclidean
distance can be used to model the cost of a particular substitution operation on
the graphs. For deletions and insertions of both nodes and edges, often a con-
stant cost �node/�edge is assigned. We refer to this cost function as Euclidean
Cost Function.

The Euclidean cost function defines substitution costs proportional to the
Euclidean distance of two respective labels. The basic intuition behind this
approach is that the further away two labels are, the stronger is the distortion
associated with the corresponding substitution. Note that any node substitution
having a higher cost than 2 ⋅ �node will be replaced by a composition of a dele-
tion and an insertion of the involved nodes (the same accounts for the edges).
This behavior reflects the basic intuition that substitutions should be favored
over deletions and insertions to a certain degree.

Optimal algorithms for computing the edit distance of graphs g1 and g2 are
typically based on combinatorial search procedures that explore the space of
all possible mappings of the nodes and edges of g1 to the nodes and edges
of g2 [8]. A major drawback of those procedures is their computational com-
plexity, which is exponential in the number of nodes of the involved graphs.
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Consequently, the application of optimal algorithms for edit distance compu-
tations is limited to graphs of rather small size in practice.

To render graph edit distance computation less computationally demanding,
a number of suboptimal methods have been proposed. In some approaches, the
basic idea is to perform a local search to solve the graph matching problem, that
is, to optimize local criteria instead of global, or optimal ones [57, 80]. In [40],
a linear programming method for computing the edit distance of graphs with
unlabeled edges is proposed. The method can be used to derive lower and
upper edit distance bounds in polynomial time. Two fast but suboptimal al-
gorithms for graph edit distance computation are proposed in [59]. The au-
thors propose simple variants of a standard edit distance algorithm that make
the computation substantially faster. In [20] another suboptimal method has
been proposed. The basic idea is to decompose graphs into sets of subgraphs.
These subgraphs consist of a node and its adjacent nodes and edges. The graph
matching problem is then reduced to the problem of finding a match between
the sets of subgraphs. In [67] a method somewhat similar to the method de-
scribed in [20] is proposed. However, while the optimal correspondence be-
tween local substructures is found by dynamic programming in [20], a bipartite
matching procedure [53] is employed in [67].

4.2 Other Inexact Graph Matching Techniques

Several other important classes of error-tolerant graph matching algorithms
have been proposed. Among others, algorithms based on Artificial Neural
Networks, Relaxation Labeling, Spectral Decompositions, and Graph Kernels
have been reported.

Artificial Neural Networks. One class of error-tolerant graph matching
methods employs artificial neural networks. In two seminal papers [24, 81] it
is shown that neural networks can be used to classify directed acyclic graphs.
The algorithms are based on an energy minimization framework, and use some
kind of Hopfield network [84]. Hopfield networks consist of a set of neurons
connected by synapses such that, upon activation of the network, the neuron
output is fed back into the network. By means of an iterative learning pro-
cedure the given energy criterion is minimized. Similar to the approach of
relaxation labeling (see below), compatibility coefficients are used to evaluate
whether two nodes or edges constitute a successful match.

In [83] the optimization procedure is stabilized by means of a Potts MFT
network. In [85] a self-organizing Hopfield network is introduced that learns
most of the network parameters and eliminates the need for specifying them a
priori. In [52, 72] the graph neural network is crucially extended such that also
undirected and acyclic graphs can be processed. The general idea is to repre-
sent the nodes of a graph in an encoding network. In this encoding network
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local transition functions and local output functions are employed, expressing
the dependency of a node on its neighborhood and describing how the output
is produced, respectively. As both functions are implemented by feedforward
neural networks, the encoding network can be interpreted as a recurrent neural
network.

Further examples of graph matching based on artificial neural networks can
be found in [37, 73, 101]

Relaxation Labeling. Another class of error-tolerant graph matching
methods employs relaxation labeling techniques. The basic idea of this partic-
ular approach is to formulate the graph matching problem as a labeling prob-
lem. Each node of one graph is to be assigned to one label out of a discrete
set of possible labels, specifying a matching node of the other graph. Dur-
ing the matching process, Gaussian probability distributions are used to model
compatibility coefficients measuring how suitable each candidate label is. The
initial labeling, which is based on the node attributes, node connectivity, and
other information available, is then refined in an iterative procedure until a suf-
ficiently accurate labeling, i.e. a matching of two graphs, is found. Based on
the pioneering work presented in [22], the idea of relaxation labeling has been
refined in several contributions. In [30, 41] the probabilistic framework for
relaxation labeling is endowed with a theoretical foundation. The main draw-
back of the initial formulation of this technique, viz. the fact that node and
edge labels are used only in the initialization of the matching process, is over-
come in [14]. A significant extension of the framework is introduced in [97]
where a Bayesian consistency measure is adapted to derive a graph distance.
In [35] this method is further improved by taking also edge labels into account
in the evaluation of the consistency measure. The concept of Bayesian graph
edit distance, which in fact builds up on the idea of probabilistic relaxation, is
presented in [54]. The concept has also been successfully applied to special
kinds of graphs, such as trees [87].

Spectral Methods. Spectral methods build a further class of graph match-
ing procedures [13, 47, 70, 78, 90, 98]. The general idea of this approach is
based on the following observation. The eigenvalues and the eigenvectors of
the adjacency or Laplacian matrix of a graph are invariant with respect to node
permutation. Hence, if two graphs are isomorphic, their structural matrices
will have the same eigendecomposition. The converse, i.e. deducing from the
equality of eigendecompositions to graph isomorphism, is not true in general.
However, by representing the underlying graphs by means of the eigendecom-
position of their structural matrix, the matching process of the graphs can be
conducted on some features derived from their eigendecomposition. The main
problem of spectral methods is that they are rather sensitive towards structural
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errors, such as missing or spurious nodes. Moreover, most of these methods
are purely structural, in the sense that they are only applicable to unlabeled
graphs, or they allow only severely constrained label alphabets.

Graph Kernel. Kernel methods were originally developed for vectorial
representations, but the kernel framework can be extended to graphs in a very
natural way. A number of graph kernels have been designed for graph match-
ing [26, 57]. A seminal contribution is the work on convolution kernels, which
provides a general framework for dealing with complex objects that consist
of simpler parts [32, 95]. Convolution kernels infer the similarity of complex
objects from the similarity of their parts.

A second class of graph kernels is based on the analysis of random walks in
graphs. These kernels measure the similarity of two graphs by the number of
random walks in both graphs that have all or some labels in common [5, 27].
In [27] an important result is reported. It is shown that the number of matching
walks in two graphs can be computed by means of the product graph of two
graphs, without the need to explicitly enumerate the walks. In order to han-
dle continuous labels the random walk kernel has been extended in [5]. This
extension allows one to also take non-identically labeled walks into account.

A third class of graph kernels is given by diffusion kernels. The kernels of
this class are defined with respect to a base similarity measure which is used to
construct a valid kernel matrix [42, 79, 92]. This base similarity measure only
needs to satisfy the condition of symmetry and can be defined for any kind of
objects.

Miscellaneous Methods. Several other error-tolerant graph matching
methods have been proposed in the literature, for instance, graph matching
based on the Expectation Maximization algorithm [46], on replicator equa-
tions [61], and on graduated assignment [28]. Random walks in graphs [29,
69], approximate least-squares and interpolation theory algorithms [91], and
random graphs [99] have also been employed for error-tolerant graph match-
ing.

5. Graph Matching for Data Mining and Information
Retrieval

The use of graphs and graph matching has become a promising approach in
data mining and related areas [16]. In fact, querying graph databases has a long
tradition and dates back to the time when the first algorithms for subgraph iso-
morphism detection became available. Yet, the use of conventional subgraph
isomorphism in graph based data mining implicates severe limitations. First
of all, the underlying database graph often includes a rather large number of
attributes, some of which might be irrelevant for a particular query. The second
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Figure 7.7. Query and database graphs.

restriction arises from the limited answer format provided by conventional sub-
graph isomorphism which is only able to check whether or not a query graph
is embedded in a larger database graph. Thirdly, subgraph isomorphism in its
original mode does not allow constraints that may be imposed on the attributes
of a query to model restrictions or dependencies.

The generalized subgraph isomorphism retrieval procedure described in [6]
overcomes these three restrictions. First, the approach offers the possibility to
mask out attributes in queries. To this end, don’t care values are introduced for
attributes that are irrelevant. Secondly, to make the retrieval of more specific
information from the database graph possible than just a binary decision yes
or no, variables are used. By means of these variables, one is able to retrieve
values of specific attributes from the database graph. Thirdly, the concept of
constrained variables, for example, variables that can assume only values from
a certain interval, allows one to define more specific queries.

The approach to knowledge mining and information retrieval proposed
in [6] is based on the idea of specifying a query by means of a query graph,
which can be used to extract information from a large database graph. In con-
trast with Definition 7.1, the graphs employed are defined in a more general
way. Rather than using just a single label, each node in a graph is labeled by
a type and some attributes. The same accounts for the edges. In Fig. 7.7 (a)
an example of a query graph is shown. In this illustration nodes are of the
type person and labeled with the person’s first and second name, and e-mail
address. Edges are of the type e-mail and labeled with the e-mail’s subject, the
date, and the size. Note that in general there may occur nodes as well as edges
of different type in the same graph.
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Query graphs are more general than common graphs in the sense that don’t
care symbol and variables may occur as the values of attributes on the nodes
and edges. The purpose of the variables is to define those attributes whose
values are to be returned as an answer to a query (we will come back to this
point later). In Fig. 7.7 (b) an example of a query graph with variables (X,Y )
and don’t care symbols (−) is given. According to this query, we are partic-
ularly interested in the subject (X) and the date (Y ) of an e-mail sent from
John Arnold to Ina Rangel. As we do not care about the size of the e-mail and
we do not know the e-mail address of Ina Rangel, two don’t care symbols are
used. Variables may also occur in a query because they may be used to express
constraints on one or several attribute values. A constraint on a set of variables
occurring in a query graph is a condition on one or several variables that eval-
uates to true or false if we assign a concrete attribute value to each variable.
For instance, the query in Fig. 7.7 (b) can be augmented by the constraint that
the e-mail in question was sent between October 1 and October 3 (formally
9/31/00 < Y < 10/4/00).

Once the query graph has been constructed by the user, it is matched against
a database graph. The process of matching a query graph to a database graph
essentially means that we want to find out whether there exists a subgraph
isomorphism from the query to the database graph. Obviously, as the query
graph may include don’t care symbols and variables, we need a more general
notion of subgraph isomorphism than the one provided in Definition 7.4. Such
a generalized subgraph isomorphism between a query and a database graph is
referred to as a match, i.e., if a query graph q matches a database graph G, we
call the injective function f a match between q and G. Note that for given q
and G and a given set of constraints over the variables in q, there can be zero,
one, or more than one matches.

For a match we require each edge of the query graph being included in the
database graph. A node, u, can be mapped, via injective function f , only
to a node of the same type. If the (type, attribute)-pair of a node u of the
query graph includes an attribute value xi, then it is required that the same
value occur at the corresponding position in the (type, attribute)-pair of the
node f(u) in the database graph. Don’t care symbols occurring in the (type,
attribute)-pair of a node u will match any attribute value at the corresponding
position in the (type, attribute)-pair of node f(u). Similarly, unconstrained
variables match any attribute value at their corresponding position in f(u). In
case there exist constraints on a variable in the query graph, the attribute values
at the corresponding positions in f(u) must satisfy these constraints.

By means of variables we indicate which attribute values are to be returned
by our knowledge mining system as an answer to a query. Therefore, the an-
swer to a query can be no, if there is no such structure as the query graph
contained as a substructure in the database graph, or yes if the query graph
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exists (at least once) as a substructure in the database graph and the query
graph does not contain any answer variables. In the case where answer vari-
ables are defined in the query graph and one or several matches are found an
individual answer is generated for each match fj . An answer is of the form
X1 = x′1, . . . ,Xn = x′n where X1, . . . ,Xn are the answer variables occurring
in the query and x′i are the values of the attributes in the database graph that
correspond to the variables Xi under match fj . Obviously, there is a match
between the query graph in Fig. 7.7 (b) and the database graph in Fig. 7.7 (c).
Hence, the variables are linked by X = Slides and Y = 10/4/00.

The proposed system described so far does not return any information from
the database graph whenever no match is found. However, in some cases this
behavior may be undesirable. Let us consider, for instance, a query graph that
contains spurious attribute values or edges which do not occur in the underly-
ing database graph. The graph matching framework presented so far merely
returns the answer no as it finds no match in the database graph. However,
we can easily endow the graph isomorphism framework with a certain toler-
ance to errors. To this end one can use graph edit distance. In cases when no
perfect match of the query graph to the database graph is possible, the query
is minimally modified such that a match becomes possible. The well-founded
possibility of augmenting the data mining framework with some tolerance to
errors definitely accounts for the power of this particular procedure based on
graph matching.

In [6] an algorithmic procedure is described for finding matches between a
query q and a database graph G. This procedure checks two given graphs, q
and G, whether there exists a match from q to G by constructing all possible
mappings f : V1 → V2. This matching algorithm is of exponential complexity.
However, as the underlying query graphs are typically limited in size and due
to the fact that the attributes and constraints limit the potential search space for
a match significantly, the computational complexity of this algorithm is usually
still manageable, as shown in the experiments reported in [6].

For applications where large query graphs occur a novel approximate ap-
proach for querying graph databases has been introduced in [86]. This algo-
rithm proceeds as follows. First, a number of important nodes from the query
graph are selected. The importance of the nodes can be measured, for in-
stance, by their degree. Using the label, the degree, and information about a
node’s local neighborhood, the most important nodes are matched against the
database graph nodes. Clearly, by means of this procedure each node from the
query graph may be mapped to several database nodes and vice versa. Given a
quality criterion for the individual node mappings, a bipartite optimization pro-
cedure can be applied resulting in a one-to-one correspondence between query
nodes and database nodes. The node pairs returned by the bipartite matching
procedure serve us as anchor points of the complete matching. Based on these
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anchor points, the initial graph match is iteratively extended. For each node
that has already been mapped to a database node, its nearby nodes (nodes that
are at most two hops away) are tried to be mapped to database nodes. This
extension is repeated until no more nodes can be added to the match. Clearly,
in contrast with the method described in [6] this procedure is suboptimal in
the sense of finding subgraphs in the database graph that are similar, but not
necessarily equal, to the query graph. In exchange, a graph matching frame-
work applicable to very large query graphs (hundreds to thousands of nodes
and edges) is established.

6. Vector Space Embeddings of Graphs via Graph
Matching

Classification and clustering of objects are common tasks in intelligent in-
formation processing. Classification refers to the process of assigning an un-
known input object to one out of a given set of classes, while clustering refers
to the process of dividing a set of given objects into homogeneous groups.
A vast number of algorithms for classification [19] and clustering [100] have
been proposed in the literature. Almost all of these algorithms have been de-
signed for object representations given in terms of feature vectors. This means
that there exists a severe lack of algorithmic tools for graph classification and
clustering. This lack is mainly due to the fact that some of the basic opera-
tions needed in classification as well as clustering are not available for graphs.
In other words, while it is possible to define graph dissimilarity measures via
specific graph matching procedures, this is often not sufficient for standard al-
gorithms in intelligent information processing. In fact, graph distance based
pattern recognition is basically limited to nearest-neighbor classification and
k-medians clustering [57].

A promising direction to overcome this severe limitation is graph embed-
ding into vector spaces. Basically, such an embedding of graphs establishes
access to the rich repository of algorithmic tools developed for vectorial repre-
sentations. In [47], for instance, features derived from the eigendecomposition
of graphs are studied. Another idea deals with string edit distance applied to
the eigensystem of graphs [96]. This procedure results in distances between
graphs which are used to embed the graphs into a vector space by means of
multidimensional scaling. In [98] the authors turn to the spectral decomposi-
tion of the Laplacian matrix of a graph. They show how the elements of the
spectral matrix of the Laplacian can be used to construct symmetric polyno-
mials. In order to encode graphs as vectors, the coefficients of these polyno-
mials are used as graph features. Another approach for graph embedding has
been proposed in [70]. The authors use the relationship between the Laplace-



236 MANAGING AND MINING GRAPH DATA

Beltrami operator and the graph Laplacian to embed a graph in a Riemannian
manifold.

The present section considers a new class of graph embedding procedures
which are based on dissimilarity representation and graph matching. Originally
the idea was proposed in [60] in order to map feature vectors into dissimilar-
ity spaces. Later it was generalized to string based object representation [82]
and to the domain of graphs [62]. Graphs from a given problem domain are
mapped to vector spaces by computing the distance to some predefined proto-
type graphs. The resulting distances can be used as a vectorial representation
of the considered graph.

Formally, assume we have a set of sample graphs, T = {g, . . . , gN} from
some graph domain G and an arbitrary graph dissimilarity measure d : G ×
G → ℝ. Note that T can be any kind of graph set. However, for the sake of
convenience we define T as a training set of given graphs. After selecting a set
of prototypical graphs P ⊆ T , we compute the dissimilarity of a given input
graph g to each prototype graph pi ∈ P. Note that g can be an element of
T or any other graph set S . Given n prototypes, i.e. P = {p1, . . . , pn}, this
procedure leads to n dissimilarities, d1 = d(g, p1), . . . , dn = d(g, pn), which
can be arranged in an n-dimensional vector (d1, . . . , dn).

Definition 7.8 (Graph Embedding). Let us assume a graph domain G is
given. If T = {g, . . . , gN} ⊆ G is a training set with N graphs and
P = {p1, . . . , pn} ⊆ T is a prototype set with n graphs, the mapping

'P
n : G → ℝn

is defined as the function

'P
n (g) = (d(g, p1), . . . , d(g, pn)),

where d(g, pi) is any graph dissimilarity measure between graph g and the i-th
prototype graph.

Obviously, by means of this definition we obtain a vector space where each
axis corresponds to a prototype graph pi ∈ P and the coordinate values of an
embedded graph g are the distances of g to the elements in P . In this way
we can transform any graph g from the training set T as well as any other
graph set S (for instance a validation or a test set of a classification problem),
into a vector of real numbers. In [65] this procedure is further generalized
towards Lipschitz embeddings [33]. Rather than singleton reference sets (i.e.
prototypes p1, . . . , pn), sets of prototypes P1, . . . ,Pn are used for embedding
the graphs via dissimilarities.

The embedding procedure proposed in [62] makes use of graph edit dis-
tance. Note, however, that any other graph dissimilarity measure can be used
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as well. Yet, using graph edit distance allows us to deal with a large class
of graphs (directed, undirected, unlabeled, node and/or edge labels from any
finite or infinite domain). Furthermore, a high degree of robustness against
various graph distortions can be expected. Hence, in contrast with other graph
embedding techniques, where sometimes restrictions on the type of underly-
ing graph are imposed (e.g. [47, 70, 98]), this approach is distinguished by
a high degree of flexibility in the graph definition. Since the computation of
graph edit distance is exponential in the number of nodes for general graphs,
the complexity of this graph embedding is exponential as well. However, as
mentioned in Sect. 4, there exist efficient approximation algorithms for graph
edit distance computation with cubic time complexity (e.g. the procedure de-
scribed in [67]). Consequently, given n predefined prototypes the embedding
of one particular graph is established by means of n distance computations
with polynomial time.

Dissimilarity embeddings are closely related to kernel methods [75, 77]. In
the kernel approach objects are described by means of pairwise kernel func-
tions, while in the dissimilarity approach they are described by pairwise dis-
similarities. However, there is one fundamental difference between kernels and
dissimilarity embeddings. In the former method, the kernel values are inter-
preted as dot products in some implicitly existing feature space. By means of
kernel machines, the underlying algorithm is eventually carried out in this ker-
nel feature space. In the latter approach, the set of dissimilarities is interpreted
as a novel vectorial description of the object under consideration. Hence, no
implicit feature space, but an explicit dissimilarity space is obtained.

Obviously, the embedding paradigm established by mapping 'P
n : G → ℝn

constitutes a foundation for a novel class of graph kernels. One can define a
valid graph kernel � based on the graph embedding by computing the standard
dot product of two graph maps in the resulting vector space. Formally,

�⟨⟩(g1, g2) = ⟨'P
n (g1), '

P
n (g2)⟩ .

Note that this approach is very similar to the empirical kernel map described
in [88] where general similarity measures are turned into kernel functions. Of
course, not only the standard dot product can be used but any valid kernel
function defined for vectors. For instance an RBF kernel function

�RBF (g1, g2) = exp
(
−∣∣'P

n (g1)− 'P
n (g2)∣∣2

)

with  > 0 can thus be applied to graph maps.
The selection of the n prototypes P = {p1, . . . , pn} is a critical issue since

not only the prototypes pi ∈ P themselves but also their number n affect the
resulting graph mapping 'P

n (⋅) and thus the performance of the corresponding
pattern recognition algorithm. A good selection of n prototypes seems to be
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crucial to succeed with the classification or clustering algorithm in the embed-
ding vector space. A first and very simple idea might be to use all available
training graphs from T as prototypes. Yet, two severe shortcomings arise with
such a plain approach. First, the dimensionality of the resulting vector space
is equal to the size N of the training set T . Consequently, if the training set
is large, the dimensionality of the feature vectors will be high, which possibly
leads to overfitting effects and compromises computational efficiency. Sec-
ondly, the presence of similar prototypes as well as outlier graphs in the train-
ing set T is most likely. Therefore, redundant, noisy, or irrelevant information
will be captured in the graph maps which in turn may harm the performance of
the underlying algorithms.

The selection of prototypes for graph embedding has been addressed in var-
ious papers [62, 64, 66, 68]. In [62], for instance, a number of prototype
selection methods are discussed. These selection strategies use some heuris-
tics based on the underlying dissimilarities in the original graph domain. The
basic idea of these approaches is to select prototypes from T that reflect the
distribution of the training set T or cover a predefined region of T in the best
possible way.

A severe shortcoming of such heuristic prototype selection strategies is that
the dimensionality of the embedding space has to be determined by the user.
In other words, the number of prototypes to be selected by a certain prototype
selection algorithm has to be experimentally defined by means of the target
algorithm on a validation set. In order to overcome this limitation, in [68],
various prototype reduction schemes [3] are adopted for the task of graph em-
bedding. In contrast with the heuristic prototype selection strategies, with these
procedures the number of prototypes n, i.e. the resulting dimensionality of the
vector space, is defined by an algorithmic procedure.

Another solution to the problem of noisy and redundant vectors with too
high dimensionality is offered by the following procedure. Rather than select-
ing the prototypes beforehand, the embedding is carried out first and then the
problem of prototype selection is reduced to a feature subset selection prob-
lem. That is, for graph embedding all available elements from the training set
are used as prototypes, i.e. we define P = T . Next, a huge number of differ-
ent feature selection strategies [23, 36, 39] can be applied to the resulting large
scale vectors eliminating redundancies and noise, finding good features, and
reducing the dimensionality. In [66], for instance, principal component analy-
sis (PCA) [39] and Fisher linear discriminant analysis (LDA) [23] are applied
to the vector space embedded graphs. Rather than traditional PCA, in [64],
kernel PCA [76] is used for feature transformation.

Regardless of the strategy actually employed for the task of prototype se-
lection, it has been experimentally shown that the general graph embedding
procedure proposed in [62] has great potential. Its performance in various
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graph classification and clustering problems was evaluated and compared to
alternative methods, including various graph kernels [62–66]. The data sets
used in the experimental evaluation are publicly available1.

7. Conclusions

Due to the ability of graphs to represent properties of entities and binary
relations at the same time, a growing interest in graph-based object repre-
sentation in intelligent information processing can be observed. In the fields
of bioinformatics and chemoinformatics, for instance, graph based represen-
tations have been intensively used [5, 48]. Another field of research where
graphs have been studied with emerging interest is that of web content min-
ing [74]. Image classification is a further area of research where graph based
representation draws the attention [31]. Finally, we like to mention computer
network analysis, where graphs have been used to detect network anomalies
and predict abnormal events [9].

The concept of similarity or dissimilarity is an important issue in many
application domains. In case where graphs are employed as representation
formalism, various procedures for evaluating proximity, i.e. similarity or dis-
similarity, of graphs have been proposed [15]. The process of evaluating the
similarity of two graphs is commonly referred to as graph matching. Graph
matching has successfully been applied to various problems in pattern recog-
nition, computer vision, machine learning, data mining, and related fields.

In the case of exact graph matching, the graph extraction process is assumed
to be structurally flawless, i.e. the conversion of the underlying data into graphs
always proceeds without errors. Otherwise, if distortions are present, graph
and subgraph isomorphism detection are rather unsuitable, which seriously re-
stricts the applicability of exact graph matching algorithms.

Inexact methods, sometimes also referred to as error-tolerant methods, are
characterized by their ability to cope with errors, or non-corresponding parts,
in terms of structure and labels of graphs. Hence, in order for two graphs to
be positively matched, they need not be identical at all, but only similar. The
notion of graph similarity depends on the error-tolerant matching method that
is to be applied.

In this chapter we have given an overview of both exact and inexact graph
matching. The emphasis has been on the fundamental concepts and on two
recent applications. In the first application, it is shown how the concept of
subgraph isomorphism can be extended, such that a powerful and flexible in-
formation retrieval framework is established. This framework can be used to
retrieve information from large database graphs by means of query graphs. In

1(www.iam.unibe.ch/fki/databases/iam-graph-database)
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a further application it is shown how graphs can be embedded in vector spaces
by means of dissimilarities derived from graph edit distance or some other dis-
similarity measure. The crucial benefit of such a graph embedding is that it
instantly makes available all algorithmic tools originally developed for vecto-
rial object descriptions.
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Abstract In this chapter, we survey methods that perform keyword search on graph data.
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1. Introduction

Keyword search is the de facto information retrieval mechanism for data on
the World Wide Web. It also proves to be an effective mechanism for querying
semi-structured and structured data, because of its user-friendly query inter-
face. In this survey, we focus on keyword search problems for XML documents
(semi-structured data), relational databases (structured data), and all kinds of
schema-free graph data.

Recently, query processing over graph-structured data has attracted increas-
ing attention, as myriads of applications are driven by and producing graph-
structured data [14]. For example, in semantic web, two major W3C standards,
RDF and OWL, conform to node-labeled and edge-labeled graph models. In
bioinformatics, many well-known projects, e.g., BioCyc (http://biocyc.org),
build graph-structured databases. In social network analysis, much inter-
est centers around all kinds of personal interconnections. In other applica-
tions, raw data might not be graph-structured at the first glance, but there are
many implicit connections among data items; restoring these connections of-
ten allows more effective and intuitive querying. For example, a number of
projects [1, 18, 3, 26, 8] enable keyword search over relational databases.
In personal information management (PIM) systems [10, 5], objects such as
emails, documents, and photos are interwoven into a graph using manually or
automatically established connections among them. The list of examples of
graph-structured data goes on.

For data with relational and XML schema, specific query languages, such
as SQL and XQuery, have been developed for information retrieval. In or-
der to query such data, the user must master a complex query language and
understand the underlying data schema. In relational databases, information
about an object is often scattered in multiple tables due to normalization con-
siderations, and in XML datasets, the schema are often complicated and em-
bedded XML structures often create a lot of difficulty to express queries that
are forced to traverse tree structures. Furthermore, many applications work on
graph-structured data with no obvious, well-structured schema, so the option
of information retrieval based on query languages is not applicable.

Both relational databases and XML databases can be viewed as graphs.
Specifically, XML datasets can be regarded as graphs when IDREF/ID links
are taken into consideration, and a relational database can be regarded as a data
graph that has tuples and keywords as nodes. In the data graph, for example,
two tuples are connected by an edge if they can be joined using a foreign key;
a tuple and a keyword are connected if the tuple contains the keyword. Thus,
traditional graph search algorithms, which extract features (e.g., paths [27],
frequent-patterns [30], sequences [20]) from graph data, and convert queries
into searches over feature spaces, can be used for such data.
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However, traditional graph search methods usually focus more on the struc-
ture of the graph rather than the semantic content of the graph. In XML and re-
lational data graphs, nodes contain keywords, and sometimes nodes and edges
are labeled. The problem of keyword search requires us to determine a group
of densely linked nodes in the graph, which may satisfy a particular keyword-
based query. Thus, the keyword search problem makes use of both the content
and the linkage structure. These two sources of information actually re-enforce
each other, and improve the overall quality of the results. This makes keyword
search a more preferred information retrieval method. Keyword search allows
users to query the databases quickly, with no need to know the schema of
the respective databases. In addition, keyword search can help discover unex-
pected answers that are often difficult to obtain via rigid-format SQL queries.
It is for these reasons that keyword search over tree- and graph-structured data
has attracted much attention [1, 18, 3, 6, 13, 16, 2, 28, 21, 26, 24, 8].

Keyword search over graph data presents many challenges. The first ques-
tion we must answer is that, what constitutes an answer to a keyword. For
information retrieval on the Web, answers are simply Web documents that
contain the keywords. In our case, the entire dataset is considered as a sin-
gle graph, so the algorithms must work on a finer granularity and decide what
subgraphs are qualified as answers. Furthermore, since many subgraphs may
satisfy a query, we must design ranking strategies to find top answers. The
definition of answers and the design of their ranking strategies must satisfy
users’ intention. For example, several papers [16, 2, 12, 26] adopt IR-style
answer-tree ranking strategies to enhance semantics of answers. Finally, a ma-
jor challenge for keyword search over graph data is query efficiency, which to a
large extent hinges on the semantics of the query and the ranking strategy. For
instance, some ranking strategies score an answer by the sum of edge weights.
In this case, finding the top-ranked answer is equivalent to the group Steiner
tree problem [9], which is NP-hard. Thus, finding the exact top k answers
is inherently difficult. To improve search efficiency, many systems, such as
BANKS [3], propose ways to reduce the search space. As another example,
BLINKS [14] avoids the inherent difficulty of the group Steiner tree problem
by proposing an alternative scoring mechanism, which lowers complexity and
enables effective indexing and pruning.

Before we delve into the details of various keyword search problems for
graph data, we briefly summarize the scope of this survey chapter. We classify
algorithms we survey into three categories based on the schema constraints in
the underlying graph data.

Keyword Search on XML Data:

Keyword search on XML data [11, 6, 13, 23, 25] is a simpler prob-
lem than on schema-free graphs. They are basically constrained to tree
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structures, where each node only has a single incoming path. This prop-
erty provides great optimization opportunities [28]. Connectivity infor-
mation can also be efficiently encoded and indexed. For example, in
XRank [13], the Dewey inverted list is used to index paths so that a key-
word query can be evaluated without tree traversal.

Keyword Search over Relational Databases:

Keyword search on relational databases [1, 3, 18, 16, 26] has attracted
much interest. Conceptually, a database is viewed as a labeled graph
where tuples in different tables are treated as nodes connected via
foreign-key relationships. Note that a graph constructed this way usu-
ally has a regular structure because schema restricts node connections.
Different from the graph-search approach in BANKS [3], DBXplorer [1]
and DISCOVER [18] construct join expressions and evaluate them, re-
lying heavily on the database schema and query processing techniques
in RDBMS.

Keyword Search on Graphs: A great deal of work on keyword query-
ing of structured and semi-structured data has been proposed in re-
cent years. Well known algorithms includes the backward expanding
search [3], bidirectional search [21], dynamic programming techniques
DPBF [8], and BLINKS [14]. Recently, work that extend keyword
search to graphs on external memory has been proposed [7].

This rest of the chapter is organized as follows. We first discuss keyword
search methods for schema graphs. In Section 2 we focus on keyword search
for XML data, and in Section 3, we focus on keyword search for relational
data. In Section 4, we introduce several algorithms for keyword search on
schema-free graphs. Section 5 contains a discussion of future directions and
the conclusion.

2. Keyword Search on XML Data

Sophisticated query languages such as XQuery have been developed for
querying XML documents. Although XQuery can express many queries pre-
cisely and effectively, it is by no means a user-friendly interface for accessing
XML data: users must master a complex query language, and in order to use
it, they must have a full understanding of the schema of the underlying XML
data. Keyword search, on the other hand, offers a simple and user-friendly in-
terface. Furthermore, the tree structure of XML data gives nice semantics to
the query and enables efficient query processing.
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2.1 Query Semantics

In the most basic form, as in XRank [13] and many other systems, a keyword
search query consists of n keywords: Q = {k1, ⋅ ⋅ ⋅ , kn}. XSEarch [6] extends
the syntax to allow users to specify which keywords must appear in a satisfying
document, and which may or may not appear (although the appearance of such
keywords is desirable, as indicated by the ranking function).

Syntax aside, one important question is, what qualifies as an answer to a
keyword search query? In information retrieval, we simply return documents
that contain all the keywords. For keyword search on an XML document, we
want to return meaningful snippets of the document that contains the keywords.
One interpretation of meaningful is to find the smallest subtrees that contain all
the keywords.

A

B C D

x yx y

e x c l u s i v e  L C A  n o d e

m i n i m a l  L C A  n o d e

Figure 8.1. Query Semantics for Keyword Search Q = {x, y} on XML Data

Specifically, for each keyword ki, let Li be the list of nodes in the XML
document that contain keyword ki. Clearly, subtrees formed by at least one
node from each Li, i = 1, ⋅ ⋅ ⋅ , n contain all the keywords. Thus, an answer to
the query can be represented by lca(n1, ⋅ ⋅ ⋅ , nn), the lowest common ancestor
(LCA) of nodes n1, ⋅ ⋅ ⋅ , nn where ni ∈ Li. In other words, answering the
query is equivalent to finding:

LCA(k1, ⋅ ⋅ ⋅ , kn) = {lca(n1, ⋅ ⋅ ⋅ , nn)∣n1 ∈ L1, ⋅ ⋅ ⋅ , nn ∈ Ln}

Moreover, we are only interested in the “smallest” answer, that is,

SLCA(k1, ⋅ ⋅ ⋅ , kn) = {v ∣ v ∈ LCA(k1, ⋅ ⋅ ⋅ , kn) ∧
∀v′ ∈ LCA(k1, ⋅ ⋅ ⋅ , kn), v ⊀ v′} (8.1)

where ≺ denotes the ancestor relationship between two nodes in an XML
document. As an example, in Figure 8.1, we assume the keyword query
is Q = {x, y}. We have C ∈ SLCA(x, y) while A ∈ LCA(x, y) but
A ∕∈ SLCA(x, y).

Several algorithms including [28, 17, 29] are based on the SLCA semantics.
However, SLCA is by no means the only meaningful semantics for keyword
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search on XML documents. Consider Figure 8.1 again. If we remove node C
and the two keyword nodes under C, the remaining tree is still an answer to the
query. Clearly, this answer is independent of the answer C ∈ SLCA(x, y),
yet it is not represented by the SLCA semantics.

XRank [13], for example, adopts different query semantics for keyword
search. The set of answers to a query Q = {k1, ⋅ ⋅ ⋅ , kn} is defined as:

ELCA(k1, ⋅ ⋅ ⋅ , kn) = {v ∣ ∀ki ∃c c is a child node of v ∧
∕ ∃c′ ∈ LCA(k1, ⋅ ⋅ ⋅ , kn) and c ≺ c′∧
c contains ki directly or indirectly}

(8.2)

ELCA(k1, ⋅ ⋅ ⋅ , kn) contains the set of nodes that contain at least one oc-
currence of all of the query keywords, after excluding the sub-nodes that al-
ready contain all of the query keywords. Clearly, in Figure 8.1, we have
A ∈ ELCA(k1, ⋅ ⋅ ⋅ , kn). More generally, we have

SLCA(k1, ⋅ ⋅ ⋅ , kn) ⊆ ELCA(k1, ⋅ ⋅ ⋅ , kn) ⊆ LCA(k1, ⋅ ⋅ ⋅ , kn)
Query semantics has a direct impact on the complexity of query process-

ing. For example, answering a keyword query according to the ELCA query
semantics is more computationally challenging than according to the SLCA
query semantics. In the latter, the moment we know a node l has a child c that
contains all the keywords, we can immediately determine that node l is not an
SLCA node. However, we cannot determine that l is not an ELCA node be-
cause l may contain keyword instances that are not under c and are not under
any node that contains all keywords [28, 29].

2.2 Answer Ranking

It is clear that according to the lowest common ancestor (LCA) query se-
mantics, potentially many answers will be returned for a keyword query. It is
also easy to see that, due to the difference of the nested XML structure where
the keywords are embedded, not all answers are equal. Thus, it is important to
devise a mechanism to rank the answers based on their relevance to the query.
In other words, for every given answer tree T containing all the keywords, we
want to assign a numerical score to T . Many approaches for keyword search on
XML data, including XRank [13] and XSEarch [6], present a ranking method.

To decide which answer is more desirable for a keyword query, we note
several properties that we would like a ranking mechanism to take into consid-
eration:

1 Result specificity. More specific answers should be ranked higher than
less specific answers. The SLCA and ELCA semantics already exclude
certain answers based on result specificity. Still, this criterion can be
further used to rank satisfying answers in both semantics.
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2 Semantic-based keyword proximity. Keywords in an answer should ap-
pear close to each other. Furthermore, such closeness must reflect the
semantic distance as prescribed by the XML embedded structure. Ex-
ample 8.1 demonstrates this need.

3 Hyperlink Awareness. LCA-based semantics largely ignore the hyper-
links in XML documents. The ranking mechanism should take hyper-
links into consideration when computing nodes’ authority or prestige as
well as keyword proximity.

The ranking mechanism used by XRank [13] is based on an adaptation of
PageRank [4]. For each element v in the XML document, XRank defines
ElemRank(v) as v’s objective importance, and ElemRank(v) is computed
using the underlying embedded structure in a way similar to PageRank. The
difference is that ElemRank is defined at node granularity, while PageRank
at document granularity. Furthermore, ElemRank looks into the nested struc-
ture of XML, which offers richer semantics than the hyperlinks among docu-
ments do.

Given a path in an XML document v0, v1, ⋅ ⋅ ⋅ , vt, vt+1, where vt+1 directly
contains a keyword k, and vi+1 is a child node of vi, for i = 0, ⋅ ⋅ ⋅ , t, XRank
defines the rank of vi as:

r(vi, k) = ElemRank(vt)× decayt−i

where decay is a value in the range of 0 to 1. Intuitively, the rank of vi with
respect to a keyword k is ElemRank(vt) scaled appropriately to account for
the specificity of the result, where vt is the parent element of the value node
vt+1 that directly contains the keyword k. By scaling down ElemRank(vt),
XRank ensures that less specific results get lower ranks. Furthermore, from
node vi, there may exist multiple paths leading to multiple occurrences of key-
word k. Thus, the rank of vi with respect to k should be a combination of the
ranks for all occurrences. XRank uses r̂(v, k) to denote the rank of node v with
respect to keyword k:

r̂(v, k) = f(r1, r2, ⋅ ⋅ ⋅ , rm)

where r1, ⋅ ⋅ ⋅ , rm are the ranks computed for each occurrence of k (using the
above formula), and f is a combination function (e.g., sum or max). Finally,
the overall ranking of a node v with respect to a query Q which contains n
keywords k1, ⋅ ⋅ ⋅ , kn is defined as:

R(v,Q) =

⎛
⎝ ∑

1≤i≤n

r̂(v, ki)

⎞
⎠× p(v, k1, k2, ⋅ ⋅ ⋅ , kn) (8.3)
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Here, the overall ranking R(v,Q) is the sum of the ranks with re-
spect to keywords in Q, multiplied by a measure of keyword proximity
p(v, k1, k2, ⋅ ⋅ ⋅ , kn), which ranges from 0 (keywords are very far apart) to 1
(keywords occur right next to each other). A simple proximity function is the
one that is inversely proportional to the size of the smallest text window that
contains occurrences of all keywords k1, k2, ⋅ ⋅ ⋅ , kn. Clearly, such a proximity
function may not be optimal as it ignores the structure where the keywords are
embedded, or in other words, it is not a semantic-based proximity measure.

Eq 8.3 depends on function ElemRank(), which measures the importance
of XML elements bases on the underlying hyperlinked structure. ElemRank
is a global measure and is not related to specific queries. XRank [13] defines
ElemRank() by adapting PageRank:

PageRank(v) =
1− d
N

+ d×
∑

(u,v)∈E

PageRank(u)

Nu
(8.4)

where N is the total number of documents, and Nu is the number of out-going
hyperlinks from document u. Clearly, PageRank(v) is a combination of two
probabilities: i) 1

N , which is the probability of reaching v by a random walk on

the entire web, and ii) PageRank(u)
Nu

, which is the probability of reaching v by
following a link on web page u.

Clearly, a link from page u to page v propagates “importance” from u to
v. To adapt PageRank for our purpose, we must first decide what constitutes a
“link” among elements in XML documents. Unlike HTML documents on the
Web, there are three types of links within an XML document: importance can
propagate through a hyperlink from one element to the element it points to; it
can propagate from an element to its sub-element (containment relationship);
and it can also propagate from a sub-element to its parent element. XRank [13]
models each of the three relationships in defining ElemRank():

ElemRank(v) =
1− d1 − d2 − d3

Ne
+

d1 ×
∑

(u,v)∈HE

ElemRank(u)

Nℎ(u)
+

d2 ×
∑

(u,v)∈CE

ElemRank(u)

Nc(u)
+

d3 ×
∑

(u,v)∈CE−1

ElemRank(u)

(8.5)

where Ne is the total number of XML elements, Nc(u) is the number of sub-
elements of u, and E = HE ∪CE ∪CE−1 are edges in the XML document,
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where HE is the set of hyperlink edges, CE the set of containment edges, and
CE−1 the set of reverse containment edges.

As we have mentioned, the notion of keyword proximity in XRank is quite
primitive. The proximity measure p(v, k1, ⋅ ⋅ ⋅ , kn) in Eq 8.3 is defined to be
inversely proportional to the size of the smallest text window that contains all
the keywords. However, this does not guarantee that such an answer is always
the most meaningful.

Example 8.1. Semantic-based keyword proximity

<proceedings>

<inproceedings>

<author>Moshe Y. Vardi</author>

<title>Querying Logical Databases</title>

</inproceedings>

<inproceedings>

<author>Victor Vianu</author>

<title>A Web Odyssey: From Codd to XML</title>

</inproceedings>

</proceedings>

For instance, given a keyword query “Logical Databases Vianu”, the above
XML snippet [6] will be regarded as a good answer by XRank, since all key-
words occur in a small text window. But it is easy to see that the keywords
do not appear in the same context: “Logical Databases” appears in one paper’s
title and “Vianu” is part of the name of another paper’s author. This can hardly
be an ideal response to the query. To address this problem, XSEarch [6] pro-
poses a semantic-based keyword proximity measure that takes into account the
nested structure of XML documents.

XSEarch defines an interconnected relationship. Let n and n′ be two nodes
in a tree structure T . Let ∣n, n′ denote the tree consisting of the paths from the
lowerest common ancestor of n and n′ to n and n′. The nodes n and n′ are
interconnected if one of the following conditions holds:

T∣n,n′ does not contain two distinct nodes with the same label, or

the only two distinct nodes in T∣n,n′ with the same label are n and n′.

As we can see, the element that matches keywords “Logical Databases”
and the element that matches keyword “Vianu” in the previous example are
not interconnected, because the answer tree contains two distinct nodes with
the same label “inproceedings”. XSEarch requires that all pairs of matched
elements in the answer set are interconnected, and XSEarch proposes an all-
pairs index to efficiently check the connectivity between the nodes.
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In addition to using a more sophisticated keyword proximity measure,
XSEarch [6] also adopts a tfidf based ranking mechanism. Unlike standard
information retrieval techniques that compute tfidf at document level, XSEarch
computes the weight of keywords at a lower granularity, i.e., at the level of the
leaf nodes of a document. The term frequency of keyword k in a leaf node nl
is defined as:

tf(k, nl) =
occ(k, nl)

max{occ(k′, nl)∣k′ ∈ words(nl)}

where occ(k, nl) denotes the number of occurrences of k in nl. Similar to the
standard tf formula, it gives a larger weight to frequent keywords in sparse
nodes. XSEarch also defines the inverse leaf frequency (ilf ):

ilf(k) = log

(
1 +

∣N ∣
∣{n′ ∈ N ∣k ∈ words(n′)∣}

)

where N is the set of all leaf nodes in the corpus. Intuitively, ilf(k) is the
logarithm of the inverse leaf frequency of k, i.e., the number of leaves in the
corpus over the number of leaves that contain k. The weight of each keyword
w(k, nl) is a normalized version of the value tf ilf(k, nl), which is defined as
tf(k, nl)× ilf(k).

With the tf ilf measure, XSEarch uses the standard vector space model
to determine how well an answer satisfies a query. The measure of similarity
between a queryQ and an answerN is the sum of the cosine distances between
the vectors associated with the nodes in N and the vectors associated with the
terms that they match in Q [6].

2.3 Algorithms for LCA-based Keyword Search

Search engines endeavor to speed up the query: find the documents where
word X occurs. A word level inverted list is used for this purpose. For each
word X, the inverted list stores the id of the documents that contain the word
X. Keyword search over XML documents operates at a finer granularity, but
still we can use an inverted list based approach: For each keyword, we store all
the elements that either directly contain the keyword, or contain the keyword
through their descendents. Then, given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, we find
common elements in all of the n inverted lists corresponding to k1 through kn.
These common elements are potential root nodes of the answer trees.

This na-“ve approach, however, may incur significant cost of time and space
as it ignores the ancestor-descendant relationships among elements in the XML
document. Clearly, for each smallest LCA that satisfies the query, the algo-
rithm will produce all of its ancestors, which may likely be pruned according
to the query semantics. Furthermore, the na-“ve approach also incurs signifi-
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cant storage overhead, as each inverted list not only contains the XML element
that directly contains the keyword, but also all of its ancestors [13].

Several algorithms have been proposed to improve the na-“ve approach.
Most systems for keyword search over XML documents [13, 25, 28, 19, 17,
29] are based on the notion of lowest common ancestors (LCAs) or its varia-
tions. XRank [13], for example, uses the ELCA semantics. XRank proposes
two core algorithms, DIL (Dewey Inverted List) and RDIL (Ranked Dewey
Inverted List). As RDIL is basically DIL integrated with ranking, due to space
considerations, we focus on DIL in this section.

The DIL algorithm encodes ancestor-descendant relationships into the el-
ement IDs stored in the inverted list. Consider the tree representation of an
XML document, where the root of the XML tree is assigned number 0, and
sibling nodes are assigned sequential numbers 0, 1, 2, ⋅ ⋅ ⋅ , i. The Dewey ID
of a node n is the concatenation of the numbers assigned to the nodes on the
path from the root to n. Unlike the na-“ve algorithm, in XRank, the inverted
list for a keyword k contains only the Dewey IDs of nodes that directly contain
k. This reduces much of the space overhead of the na-“ve approach. From their
Dewey IDs, we can easily figure out the ancestor-descendant relationships be-
tween two nodes: node A is an ancestor of node B iff the Dewey ID of node A
is a prefix of that of node B.

Given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, the DIL algorithm makes a single pass
over the n inverted lists corresponding to k1 through kn. The goal is to sort-
merge the n inverted lists to find the ELCA answers of the query. However,
since only nodes that directly contain the keywords are stored in the inverted
lists, the standard sort-merge algorithm cannot be used. Nevertheless, the
ancestor-descendant relationships have been encoded in the Dewey ID, which
enables the DIL algorithm to derive the common ancestors from the Dewey
IDs of nodes in the lists. More specifically, as each prefix of a node’s Dewey
ID is the Dewey ID of the node’s ancestor, computing the longest common
prefix will compute the ID of the lowest ancestor that contains the query key-
words. In XRank, the inverted lists are sorted on the Dewey ID, which means
all the common ancestors are clustered together. Hence, this computation can
be done in a single pass over the n inverted lists. The complexity of the DIL
algorithm is thus O(nd∣S∣) where ∣S∣ is the size of the largest inverted list for
keyword k1, ⋅ ⋅ ⋅ , kn and d is the depth of the tree.

More recent approaches seek to further improve the performance of
XRank [13]. Both the DIL and the RDIL algorithms in XRank need to per-
form a full scan of the inverted lists for every keyword in the query. However,
certain keywords may be very frequent in the underlying XML documents.
These keywords correspond to long inverted lists that become the bottleneck
in query processing. XKSearch [28], which adopts the SLCA semantics for
keyword search, is proposed to address the problem. XKSearch makes an ob-
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servation that, in contrast to the general LCA semantics, the number of SLCAs
is bounded by the length of the inverted list that corresponds to the least fre-
quent keyword. The key intuition of XKSearch is that, given two keywords
w1 and w2 and a node v that contains keyword w1, there is no need to inspect
the whole inverted list of keyword w2 in order to find all possible answers.
Instead, we only have to find the left match and the right match of the list of
w2, where the left (right) match is the node with the greatest (least) id that is
smaller (greater) than or equal to the id of v. Thus, instead of scanning the
inverted lists, XKSearch performs an indexed search on the lists. This enables
XKSearch to reduce the number of disk accesses to O(n∣Smin∣), where n is
the number of the keywords in the query, and Smin is the length of the inverted
list that corresponds to the least frequent keyword in the query (XKSearch as-
sumes a B-tree disk-based structure where non-leaf nodes of the B-Tree are
cached in memory). Clearly, this approach is meaningful only if at least one of
the query keywords has very low frequency.

3. Keyword Search on Relational Data

A tremendous amount of data resides in relational databases but is reachable
via SQL only. To provide the data to users and applications that do not have
the knowledge of the schema, much recent work has explored the possibility
of using keyword search to access relational databases [1, 18, 3, 16, 21, 2]. In
this section, we discuss the challenges and methods of implementing this new
query interface.

3.1 Query Semantics

Enabling keyword search in relational databases without requiring the
knowledge of the schema is a challenging task. Keyword search in traditional
information retrieval (IR) is on the document level. Specifically, given a query
Q = {k1, ⋅ ⋅ ⋅ , kn}, we employ techniques such as the inverted lists to find
documents that contain the keywords. Then, our question is, what is relational
database’s counterpart of IR’s notion of “documents”?

It turns out that there is no straightforward mapping. In a relational schema
designed according to the normalization principle, a logical unit of information
is often disassembled into a set of entities and relationships. Thus, a relational
database’s notion of “document” can only be obtained by joining multiple ta-
bles.

Naturally, the next question is, can we enumerate all possible joins in a
database? In Figure 8.2, as an example (borrowed from [1]), we show all po-
tential joins among database tables {T1, T2, ⋅ ⋅ ⋅ , T5}. Here, a node represents
a table. If a foreign key in table Ti references table Tj , an edge is created
between Ti and Tj . Thus, any connected subgraph represents a potential join.
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T 1 T 2 T 3

T 4

T 5

Figure 8.2. Schema Graph

Given a query Q = {k1, ⋅ ⋅ ⋅ , kn}, a possible query semantics is to check all
potential joins (subgraphs) and see if there exists a row in the join results that
contains all the keywords in Q.

a 1 a 2 a 3 a 9 8 a 9 9 a 1 0 0

b 1 b 2 b 9 8 b 9 9

Figure 8.3. The size of the join tree is only bounded by the data Size

However, Figure 8.2 does not show the possibility of self-joins, i.e., a table
may contain a foreign key that references the table itself. More generally, the
schema graph may contain a cycle, which involves one or more tables. In this
case, the size of the join is only bounded by the data size [18]. We demon-
strates this issue with a self-join in Figure 8.3, where the self-join is on a table
containing tuples (ai, bj), and the tuple (a1, b1) can be connected with tuple
(a100, b99) by repeated self-joins. Thus, the join tree in Figure 8.3 satisfies
keyword query Q = {a1, a100}. Clearly, the size of the join is only bounded
by the number of tuples in the table. Such query semantics is hard to imple-
ment in practice. To mitigate this vulnerability, we change the semantics by
introducing a parameter K to limit the size of the join we search for answers.
In the above example, the result of (a1, a100) is only returned if K is as large
as 100.

3.2 DBXplorer and DISCOVER

DBXplorer [1] and DISCOVER [18] are the most well known systems that
support keyword search in relational databases. While implementing the query
semantics discussed before, these approaches also focus on how to leverage the
physical database design (e.g., the availability of indexes on various database
columns) for building compact data structures critical for efficient keyword
search over relational databases.
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T 1 T 2 T 3

T 4

T 5

{ k 1 , k 2 , k 3 }
{ k 2 }

{ k 3 }

( a )

(b )

T 2 T 3

T 4

T 5

T 2

T 2 T 3

T 5

T 2 T 3

T 4

Figure 8.4. Keyword matching and join trees enumeration

Traditional information retrieval techniques use inverted lists to efficiently
identify documents that contain the keywords in the query. In the same spirit,
DBXplorer maintains a symbol table, which identifies columns in database ta-
bles that contain the keywords. Assuming index is available on the column,
then given the keyword, we can efficiently find the rows that contain the key-
word. If index is not available on a column, then the symbol table needs to
map keywords to rows in the database tables directly.

Figure 8.4 shows an example. Assume the query contains three keywords
Q = {k1, k2, k3}. From the symbol table, we find tables/columns that contain
one or more keywords in the query, and these tables are represented by black
nodes in the Figure: k1, k2, k3 all occur in T2 (in different columns), k2 occurs
in T4, and k3 occurs in T5. Then, DBXplorer enumerates the four possible
join trees, which are shown in Figure 8.4(b). Each join tree is then mapped
to a single SQL statement that joins the tables as specified in the tree, and
selects those rows that contain all the keywords. Note that DBXplorer does
not consider solutions that include two tuples from the same relation, or the
query semantics required for problems shown in Figure 8.3.

DISCOVER [18] is similar to DBXplorer in the sense that it also finds all
join trees (called candidate networks in DISCOVER) by constructing join ex-
pressions. For each candidate join tree, an SQL statement is generated. The
trees may have many common components, that is, the generated SQL state-
ments have many common join structures. An optimal execution plan seeks to
maximize the reuse of common subexpressions. DISCOVER shows that the
task of finding the optimal execution plan is NP-complete. DISCOVER intro-
duces a greedy algorithm that provides near-optimal plan execution time cost.
Given a set of join trees, in each step, it chooses the join m between two base
tables or intermediate results that maximizes the quantity frequencya

logb(size)
, where

frequency is the number of occurences of m in the join trees, size is the es-
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timated number of tuples of m and a, b are constants. The frequencya term
of the quantity maximizes the reusability of the intermediate results, while the
logb(size) minimizes the size of the intermediate results that are computed
first.

DBXplorer and DISCOVER use very simple ranking strategy: the answers
are ranked in ascending order of the number of joins involved in the tuple trees;
the reasoning being that joins involving many tables are harder to comprehend.
Thus, all tuple trees consisting of a single tuple are ranked ahead of all tuples
trees with joins. Furthermore, when two tuple trees have the same number of
joins, their ranks are determined arbitrarily. BANKS [3] (see Section 4) com-
bines two types of information in a tuple tree to compute a score for ranking:
a weight (similar to PageRank for web pages) of each tuple, and a weight of
each edge in the tuple tree that measures how related the two tuples are. Hris-
tidis et al. [16] propose a strategy that applies IR-style ranking methods into
the computation of ranking scores in a straightforward manner.

4. Keyword Search on Schema-Free Graphs

Graphs formed by relational and XML data are confined by their schemas,
which not only limit the search space of keyword query, but also help shape
the query semantics. For instance, many keyword search algorithms for XML
data are based on the lowest common ancestor (LCA) semantics, which is only
meaningful for tree structures. Challenges for keyword search on graph data
are two-fold: what is the appropriate query semantics, and how to design effi-
cient algorithms to find the solutions.

4.1 Query Semantics and Answer Ranking

Let the query consist of n keywords Q = {k1, k2, ⋅ ⋅ ⋅ , kn}. For each key-
word ki in the query, let Si be the set of nodes that match the keyword ki. The
goal is to define what is a qualified answer to Q, and the score of the answer.

As we know, the semantics of keyword search over XML data is largely de-
fined by the tree structure, as most approaches are based on the lowest common
ancestor (LCA) semantics. Many algorithms for keyword search over graphs
try to use similar semantics. But in order to do that, the answer must first
form trees embedded in the graph. In many graph search algorithms, including
BANKS [3], the bidirectional algorithm [21], and BLINKS [14], a response
or an answer to a keyword query is a minimal rooted tree T embedded in the
graph that contains at least one node from each Si.

We need a measure for the “goodness” of each answer. An answer tree T is
good if it is meaningful to the query, and the meaning of T lies in the tree struc-
ture, or more specifically, how the keyword nodes are connected through paths
in T . In [3, 21], their goodness measure tries to decompose T into edges and
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nodes, score the edges and nodes separately, and combine the scores. Specif-
ically, each edge has a pre-defined weight, and default to 1. Given an an-
swer tree T , for each keyword ki, we use s(T, ki) to represent the sum of
the edge weights on the path from the root of T to the leaf containing key-
word ki. Thus, the aggregated edge score is E =

∑n
i s(T, ki). The nodes,

on the other hand, are scored by their global importance or prestige, which is
usually based on PageRank [4] random walk. Let N denote the aggregated
score of nodes that contain keywords. The combined score of an answer tree is
given by s(T ) = EN� where � helps adjust the importance of edge and node
scores [3, 21].

Query semantics and ranking strategies used in BLINKS [14] are similar to
those of BANKS [14] and the bidirectional search [21]. But instead of using a
measure such as S(T ) = EN� to find top-K answers, BLINKS requires that
each of the top-K answer has a different root node, or in other words, for all
answer trees rooted at the same node, only the one with the highest score is
considered for top-K. This semantics guards against the case where a “hub”
pointing to many nodes containing query keywords becomes the root for a
huge number of answers. These answers overlap and each carries very little
additional information from the rest. Given an answer (which is the best, or
one of the best, at its root), users can always choose to further examine other
answers with this root [14].

Unlike most keyword search on graph data approaches [3, 21, 14], Objec-
tRank [2] does not return answer trees or subgraphs containing keywords in
the query, instead, for ObjectRank, an answer is simply a node that has high
authority on the keywords in the query. Hence, a node that does not even con-
tain a particular keyword in the query may still qualify as an answer as long
as enough authority on that keyword has flown into that node (Imagine a node
that represents a paper which does not contain keyword OLAP, but many im-
portant papers that contain keyword OLAP reference that paper, which makes
it an authority on the topic of OLAP). To control the flow of authority in the
graph, ObjectRank models labeled graphs: Each node u has a label �(u) and
contains a set of keywords, and each edge e from u to v has a label �(e) that
represents a relationship between u and v. For example, a node may be labeled
as a paper, or a movie, and it contains keywords that describe the paper or the
movie; a directed edge from a paper node to another paper node may have a
label cites, etc. A keyword that a node contains directly gives the node cer-
tain authority on that keyword, and the authority flows to other nodes through
edges connecting them. The amount or the rate of the outflow of authority from
keyword nodes to other nodes is determined by the types of the edges which
represent different semantic connections.
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4.2 Graph Exploration by Backward Search

Many keyword search algorithms try to find trees embedded in the graph so
that similar query semantics for keyword search over XML data can be used.
Thus, the problem is how to construct an embedded tree from keyword nodes
in the graph. In the absence of any index that can provide graph connectiv-
ity information beyond a single hop, BANKS [3] answers a keyword query
by exploring the graph starting from the nodes containing at least one query
keyword – such nodes can be identified easily through an inverted-list index.
This approach naturally leads to a backward search algorithm, which works as
follows.

1 At any point during the backward search, let Ei denote the set of nodes
that we know can reach query keyword ki; we call Ei the cluster for ki.

2 Initially, Ei starts out as the set of nodes Oi that directly contain ki;
we call this initial set the cluster origin and its member nodes keyword
nodes.

3 In each search step, we choose an incoming edge to one of previously
visited nodes (say v), and then follow that edge backward to visit its
source node (say u); any Ei containing v now expands to include u as
well. Once a node is visited, all its incoming edges become known to
the search and available for choice by a future step.

4 We have discovered an answer root x if, for each cluster Ei, either x ∈
Ei or x has an edge to some node in Ei.

BANKS uses the following two strategies for choosing what nodes to visit
next. For convenience, we define the distance from a node n to a set of nodes
N to be the shortest distance from n to any node in N .

1 Equi-distance expansion in each cluster: This strategy decides which
node to visit for expanding a keyword. Intuitively, the algorithm expands
a cluster by visiting nodes in order of increasing distance from the cluster
origin. Formally, the node u to visit next for cluster Ei (by following
edge u → v backward, for some v ∈ Ei) is the node with the shortest
distance (among all nodes not in Ei) to Oi.

2 Distance-balanced expansion across clusters: This strategy decides the
frontier of which keyword will be expanded. Intuitively, the algorithm
attempts to balance the distance between each cluster’s origin to its fron-
tier across all clusters. Specifically, let (u,Ei) be the node-cluster pair
such that u ∕∈ Ei and the distance from u to Oi is the shortest possible.
The cluster to expand next is Ei.
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He et al. [14] investigated the optimality of the above two strategies introduced
by BANKS [3]. They proved the following result with regard to the first strat-
egy, equi-distance expansion of each cluster (the complete proof can be found
in [15]):

Theorem 8.2. An optimal backward search algorithm must follow the strategy
of equi-distance expansion in each cluster.

However, the investigation [14] also showed that the second strategy,
distance-balanced expansion across clusters, is not optimal and may lead to
poor performance on certain graphs. Figure 8.5 shows one such example. Sup-
pose that {k1} and {k2} are the two cluster origins. There are many nodes that
can reach k1 through edges with a small weight (1), but only one edge into k2
with a large weight (100). With distance-balanced expansion across clusters,
we would not expand the k2 cluster along this edge until we have visited all
nodes within distance 100 to k1. It would have been unnecessary to visit many
of these nodes had the algorithm chosen to expand the k2 cluster earlier.

k1

1

1 k2

50

1001

1 u1

Figure 8.5. Distance-balanced expansion across clusters may perform poorly.

4.3 Graph Exploration by Bidirectional Search

To address the problem shown in Figure 8.5, Kacholia et al. [21] proposed
a bidirectional search algorithm, which has the option of exploring the graph
by following forward edges as well. The rationale is that, for example, in
Figure 8.5, if the algorithm is allowed to explore forward from node u towards
k2, we can identify u as an answer root much faster.

To control the order of expansion, the bidirectional search algorithm prior-
itizes nodes by heuristic activation factors (roughly speaking, PageRank with
decay), which intuitively estimate how likely nodes can be roots of answer
trees. In the bidirectional search algorithm, nodes matching keywords are
added to the iterator with an initial activation factor computed as:

au,i =
nodePrestige(u)

∣Si∣
,∀u ∈ Si (8.6)

where Si is the set of nodes that match keyword i. Thus, nodes of high prestige
will have a higher priority for expansion. But if a keyword matches a large
number of nodes, the nodes will have a lower priority. The activation factor is
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spreaded from keyword nodes to other nodes. Each node v spreads a fraction
� of the received activation to its neighbours, and retains the remaining 1− �
fraction.

As a result, keyword search in Figure 8.5 can be performed more efficiently.
The bidirectional search will start from the keyword nodes (dark solid nodes).
Since keyword node k1 has a large fanout, all the nodes pointing to k1 (includ-
ing node u) will receive a small amount of activation. On the other hand, the
node pointing to k2 will receive most of the activation of k2, which then spreads
to node u. Thus, node u becomes the most activated node, which happens to
be the root of the answer tree.

While this strategy is shown to perform well in multiple scenarios, it is dif-
ficult to provide any worst-case performance guarantee. The reason is that
activation factors are heuristic measures derived from general graph topology
and parts of the graph already visited. They do not accurately reflect the like-
lihood of reaching keyword nodes through an unexplored region of the graph
within a reasonable distance. In other words, without additional connectivity
information, forward expansion may be just as aimless as backward expan-
sion [14].

4.4 Index-based Graph Exploration – the BLINKS
Algorithm

The effectiveness of forward and backward expansions hinges on the struc-
ture of the graph and the distribution of keywords in the graph. However, both
forward and backward expansions explore the graph link by link, which means
the search algorithms do not have knowledge of either the structure of the graph
nor the distribution of keywords in the graph. If we create an index structure
to store the keyword reachability information in advance, we can avoid aim-
less exploration on the graph and improve the performance of keyword search.
BLINKS [14] is designed based on this intuition.

BLINKS makes two contributions: First, it proposes a new, cost-balanced
strategy for controlling expansion across clusters, with a provable bound on its
worst-case performance. Second, it uses indexing to support forward jumps
in search. Indexing enables it to determine whether a node can reach a key-
word and what the shortest distance is, thereby eliminating the uncertainty and
inefficiency of step-by-step forward expansion.

Cost-balanced expansion across clusters. Intuitively, BLINKS attempts to
balance the number of accessed nodes (i.e., the search cost) for expanding each
cluster. Formally, the cluster Ei to expand next is the cluster with the smallest
cardinality.
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This strategy is intended to be combined with the equi-distance strategy
for expansion within clusters: First, BLINKS chooses the smallest cluster to
expand, then it chooses the node with the shortest distance to this cluster’s
origin to expand.

To establish the optimality of an algorithm A employing these two expan-
sion strategies, let us consider an optimal “oracle” backward search algorithm
P . As shown in Theorem 8.2, P must also do equi-distance expansion within
each cluster. The additional assumption here is that P “magically” knows
the right amount of expansion for each cluster such that the total number of
nodes visited by P is minimized. Obviously, P is better than the best practical
backward search algorithm we can hope for. Although A does not have the
advantage of the oracle algorithm, BLINKS gives the following theorem (the
complete proof can be found in [15]) which shows that A is m-optimal, where
m is the number of query keywords. Since most queries in practice contain
very few keywords, the cost of A is usually within a constant factor of the
optimal algorithm.

Theorem 8.3. The number of nodes accessed by A is no more than m times
the number of nodes accessed by P , wherem is the number of query keywords.

Index-based Forward Jump. The BLINKS algorithm [14] leverages the
new search strategy (equi-distance plus cost-balanced expansions) as well as
indexing to achieve good query performance. The index structure consists of
two parts.

Keyword-node lists LKN . BLINKS pre-computes, for each keyword,
the shortest distances from every node to the keyword (or, more pre-
cisely, to any node containing this keyword) in the data graph. For a
keyword w, LKN (w) denotes the list of nodes that can reach keyword
w, and these nodes are ordered by their distances to w. In addition to
other information used for reconstructing the answer, each entry in the
list has two fields (dist, node), where dist is the shortest distance be-
tween node and a node containing w.

Node-keywordmap MNK . BLINKS pre-computes, for each node u,
the shortest graph distance from u to every keyword, and organize
this information in a hash table. Given a node u and a keyword w,
MNK(u,w) returns the shortest distance from u to w, or ∞ if u can-
not reach any node that contains w. In fact, the information in MNK can
be derived from LKN . The purpose of introducing MNK is to reduce
the linear time search over LKN for the shortest distance between u and
w to O(1) time search over MNK .
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The search algorithm can be regarded as index-assisted backward and for-
ward expansion. Given a keyword query Q = {k1, ⋅ ⋅ ⋅ , kn}, for backward ex-
pansion, BLINKS uses a cursor to traverse each keyword-node list LKN(ki).
By construction, the list gives the equi-distance expansion order in each cluster.
Across clusters, BLINKS picks a cursor to expand next in a round-robin man-
ner, which implements cost-balanced expansion among clusters. These two
together ensure optimal backward search. For forward expansion, BLINKS
uses the node-keyword map MNK in a direct fashion. Whenever BLINKS vis-
its a node, it looks up its distance to other keywords. Using this information, it
can immediately determine if the root of an answer is found.

The index LKN and MNK are defined over the entire graph. Each of them
contains as many as N ×K entries, where N is the number of nodes, and K
is the number of distinct keywords in the graph. In many applications, K is on
the same scale as the number of nodes, so the space complexity of the index
comes to O(N2), which is clearly infeasible for large graphs. To solve this
problem, BLINKS partitions the graph into multiple blocks, and the LKN and
MNK index for each block, as well as an additional index structure to assist
graph exploration across blocks.

4.5 The ObjectRank Algorithm

Instead of returning sub-graphs that contain all the keywords, Objec-
tRank [2] applies authority-based ranking to keyword search on labeled graphs,
and returns nodes having high authority with respect to all keywords. To cer-
tain extent, ObjectRank is similar to BLINKS [14], whose query semantics
prescribes that all top-K answer trees have different root nodes. Still, BLINKS
returns sub-graphs as answers.

Recall that the bidirectional search algorithm [21] assigns activation factors
to nodes in the graph to guide keyword search. Activation factors originate at
nodes containing the keywords and propagate to other nodes. For each key-
word node u, its activation factor is weighted by nodePrestige(u) (Eq. 8.6),
which reflects the importance or authority of node u. Kacholia et al. [21] did
not elaborate on how to derive nodePrestige(u). Furthermore, since graph
edges in [21] are all the same, to spread the activation factor from a node u, it
simply divides u’s activation factor by u’s fanout.

Similar to the activation factor, in ObjectRank [2], authority originates at
nodes containing the keywords and flows to other nodes. Furthermore, nodes
and edges in the graphs are labeled, giving graph connections semantics that
controls the amount or the rate of the authority flow between two nodes.

Specifically, ObjectRank assumes a labeled graphG is associated with some
predetermined schema information. The schema information decides the rate
of authority transfer from a node labeled uG, through an edge labeled eG, and
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to a node labeled vG. For example, authority transfers at a fixed rate from
a person to a paper through an edge labeled authoring, and at another fixed
rate from a paper to a person through an edge labeled authoring. The two
rates are potentially different, indicating that authority may flow at a different
rate backward and forward. The schema information, or the rate of authority
transfer, is determined by domain experts, or by a trial and error process.

To compute node authority with regard to every keyword, ObjectRank com-
putes the following:

Rates of authority transfer through graph edges. For every edge
e = (u → v), ObjectRank creates a forward authority transfer edge
ef = (u → v) and a backward authority transfer edge eb = (v → u).
Specifically, the authority transfer edges ef and eb are annotated with
rates �(ef ) and �(eb):

�(ef ) =
{ �(efG)

OutDeg(u,efG)
if OutDeg(u, efG) > 0

0 if OutDeg(u, efG) = 0
(8.7)

where �(efG) denotes the fixed authority transfer rate given by the

schema, and OutDeg(u, efG) denotes the number of outgoing nodes

from u, of type efG. The authority transfer rate �(eb) is defined simi-
larly.

Node authorities. ObjectRank can be regarded as an extension to
PageRank [4]. For each node v, ObjectRank assigns a global authority
ObjectRankG(v) that is independent of the keyword query. The global
ObjectRankG is calculated using the random surfer model, which is
similar to PageRank. In addition, for each keyword w and each node v,
ObjectRank integrates authority transfer rates in Eq 8.7 with PageRank
to calculate a keyword-specific ranking ObjectRankw(v):

ObjectRankw(v) = d×
∑

e=(u→v)or(v→u)

�(e) ×ObjectRankw(u)+

+
1− d
∣S(w)∣

(8.8)

where S(w) is s the set of nodes that contain the keyword w, and
d is the damping factor that determines the portion of ObjectRank
that a node transfers to its neighbours as opposed to keeping to it-
self [4]. The final ranking of a node v is the combination combination
of ObjectRankG(v) and ObjectRankw(v).
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5. Conclusions and Future Research

The work surveyed in this chapter include various approaches for keyword
search for XML data, relational databases, and schema-free graphs. Because
of the underlying graph structure, keyword search over graph data is much
more complex than keyword search over documents. The challenges have three
aspects, namely, how to define intuitive query semantics for keyword search
over graphs, how to design meaningful ranking strategies for answers, and how
to devise efficient algorithms that implement the semantics and the ranking
strategies.

There are many remaining challenges in the area of keyword search over
graphs. One area that is of particular importance is how to provide a semantic
search engine for graph data. The graph is the best representation we have for
complex information such as human knowledge, social and cultural dynamics,
etc. Currently, keyword-oriented search merely provides best-effort heuristics
to find relevant “needles” in this humongous “haystack”. Some recent work,
for example, NAGA [22], has looked into the possibility of creating a semantic
search engine. However, NAGA is not keyword-based, which introduces com-
plexity for posing a query. Another important challenge is that the size of the
graph is often significantly larger than memory. Many graph keyword search
algorithms [3, 21, 14] are memory-based, which means they cannot handle
graphs such as the English Wikipedia that has over 30 million edges. Some
reacent work, such as [7], organizes graphs into different levels of granularity,
and supports keyword search on disk-based graphs.
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Abstract In this chapter, we will provide a survey of clustering algorithms for graph data.
We will discuss the different categories of clustering algorithms and recent ef-
forts to design clustering methods for various kinds of graphical data. Clustering
algorithms are typically of two types. The first type consists of node clustering
algorithms in which we attempt to determine dense regions of the graph based
on edge behavior. The second type consists of structural clustering algorithms,
in which we attempt to cluster the different graphs based on overall structural
behavior. We will also discuss the applicability of the approach to other kinds of
data such as semi-structured data, and the utility of graph mining algorithms to
such representations.

Keywords: Graph Clustering, Dense Subgraph Discovery

1. Introduction

Graph mining has been a popular area of research in recent years because
of numerous applications in computational biology, software bug localization
and computer networking. In addition, many new kinds of data such as semi-
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structured data and XML [2] can typically be represented as graphs. In partic-
ular, XML data is a popular representation of different kinds of data sets. Since
core graph-mining algorithms can be extended to this scenario, it follows that
the extension of mining algorithms to graphs has tremendous applicability of a
wide variety of data sets which are represented as semi-structured data. Many
traditional algorithms such as clustering, classification, and frequent-pattern
mining have been extended to the graph scenario. A detailed discussion of
various kinds of graph mining algorithms may be found in [15].

In this chapter, we will study the clustering problem for the graph domain.
The problem of clustering is defined as follows: For a given set of objects, we
would like to divide it into groups of similar objects. The similarity between
objects is typically defined with the use of a mathematical objective function.
This problem is useful in a number of practical applications such as marketing,
customer-segmentation, and data summarization. The problem of clustering
is extremely important in a number of important data domains. A detailed
description of clustering algorithms may be found in [24].

Clustering algorithms have significant applications in a variety of graph sce-
narios such as congestion detection, facility location, and XML data integration
[28]. The graph clustering problems are typically defined into two categories:

Node Clustering Algorithms: Node-clustering algorithms are gener-
alizations of multi-dimensional clustering algorithms in which we use
functions of the multi-dimensional data points in order to define the dis-
tances. In the case of graph clustering algorithms, we associate numer-
ical values with the edges. These numerical values need not satisfy tra-
ditional properties of distance functions such as the triangle inequality.
We use these distance values in order to create clusters of nodes. We
note that the numerical value associated with a given node may either
be a distance value or a similarity value. Correspondingly, the objec-
tive function associated with the partitioning may either be minimized
or maximized respectively. We note that the problem of minimizing
the inter-cluster similarity for a fixed number of clusters essentially re-
duces to the problem of graph partitioning or the minimum multi-way
cut problem. This is also referred to the problem of mining dense graphs
and pseudo-cliques. Recently, the problem has also been studied in the
database literature as that of quasi-clique determination. In this prob-
lem, we determine groups of nodes which are “almost cliques”. In other
words, an edge exists between any pair of nodes in the set with high
probability. A closely related problem is that of determining shingles
[5, 22]. Shingles are defined as those sub-graphs which have a large
number of common links. This is particularly useful for massive graphs
which contain a large number of nodes. In such cases, a min-hash ap-
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proach [5] can be used in order to summarize the structural behavior of
the underlying graph.

Graph Clustering Algorithms: In this case, we have a (possibly large)
number of graphs which need to be clustered based on their underlying
structural behavior. This problem is challenging because of the need to
match the structures of the underlying graphs, and use these structures
for clustering purposes. Such algorithms are discussed both in the con-
text of classical graph data sets as well as semi-structured data. In the
case of semi-structured data, the problem arises in the context of a large
number of documents which need to be clustered on the basis of the un-
derlying structure and attributes. It has been shown in [2] that the use of
the underlying document structure leads to significantly more effective
algorithms.

This chapter is organized as follows. In the next section, we will discuss a
variety of node clustering algorithms. Methods for clustering multiple graphs
and XML records are discussed in section 3. Section 4 discusses numerous
applications of graph clustering algorithms. Section 5 contains the conclusions
and summary.

2. Node Clustering Algorithms

A number of algorithms for graph node clustering are discussed in [19]. In
[19], the graph clustering problem is related to the minimum cut and graph
partitioning problems. In this case, it is assumed that the underlying graphs
have weights on the edges. It is desired to partition the graph in such a way
so as to minimize the weights of the edges across the partitions. In general,
we would like to partition the graph into k groups of nodes. However, since
the special case k = 2 is efficiently solvable, we would like to first provide a
special discussion for this case. This version is polynomially solvable, since it
is the mathematical dual of the maximum flow problem. This problem is also
referred to as the minimum-cut problem.

2.1 The Minimum Cut Problem

The simplest case is the 2-way minimum cut problem, in which we wish to
partition the graph into two clusters, so as to minimize the weight of the edges
across the partitions. This version of the problem is efficiently solvable, and
can be resolved by use of the maximum flow problem [4].

The minimum-cut problem is defined as follows. Consider a graph G =
(N,A) with node set N and edge set A. The node set N contains the source
s and sink t. Each edge (i, j) ∈ A has a weight associated with it which is
denoted by uij . We note that the edges may be either undirected or directed,
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though the undirected case is often much more relevant for connectivity ap-
plications. We would like to partition the node set N into two groups S and
N −S. The set of edges such that one end lies in S and the other lies in N −S
is denoted by C(S,N − S). We would like to partition the node set N into
two sets S and N − S, such that the sum of the weights in C(S,N − S) is
minimized. In other words, we would like to minimize

∑
(i,j)∈C(S,N−S) uij .

This is the unrestricted version of the minimum-cut problem. We will examine
two variations of the minimum-cut problem:

We wish to determine the global minimum s-t cut with no restrictions
on the membership of nodes to different partitions.

We wish to determine the minimum s-t cut, in which one partition con-
tains the source node s and the other partition contains the sink node
t.

It is easy to see that the former problem can be solved by using repeated ap-
plications of the latter algorithm. By fixing s and choosing different values
of the sink t, it can be shown that the global minimum-cut may be effectively
determined.

It turns out that the maximum flow problem is the mathematical dual of the
minimum cut problem. In the maximum-flow problem, we assume that the
weight uij is a capacity of the edge (i, j). Each edge is allowed to have a
flow xij which is at most equal to the capacity uij . Each node other than the
source s and sink t is assumed to satisfy the flow conservation property. In
other words, for each node i ∈ N we have:

∑

j:(i,j)∈A
xij =

∑

j:(j,i)∈A
xji (9.1)

We would like to maximize the total flow originating from the source and
reaching the sink t, subject to the above constraints. The maximum flow prob-
lem is solved with the use of a variety of augmenting-path and preflow push
algorithms [4]. In augmenting-path methods, we pick a path from s to t which
has current unused capacity, and increase the flow on this path, such that at least
one edge on this path is filled to capacity. We repeat this process, until no path
with unfilled capacity exists from source s to sink t. Many different variations
of this technique exist in terms of the choice of path used in order to augment
the flow from source s to the sink t. Example, include the shortest-paths or
maximum-capacity augmenting paths. Different choices of augmenting-paths
will typically lead to different trade-offs in running time. These trade-offs are
discussed in [4]. In general, the two-way cut problem can be solved quite effi-
ciently in polynomial time with these different methods. It can be shown that
the minimum-cut may be determined by determining all nodes S which are
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reachable from s by some path of unfilled capacity. We note that S will not
contain the sink node t at maximum flow, since the sink is not reachable from
the source with the use of a path of unfilled capacity. The set C(S,N − S)
is the minimum s-t cut. Every edge in this set is saturated, and the total flow
across the cut is essentially equal to the s-t maximum flow. We can then deter-
mine the global minimum cut by fixing the source s, and varying the sink node
t. The minimum cut over all these different possibilities will provide us with
the global minimum-cut value. A particularly important variant of this method
is the shortest augmenting-path approach. In this approach we always augment
the maximum amount of flow from the source to sink along the corresponding
shortest path. It can be shown that for a network containing n nodes, and m
edges, the shortest path is guaranteed to increase by at least one after O(m)
augmentations. Since the shortest path cannot be larger than n, it follows that
the maximum number of augmentations isO(n⋅m). It is possible to implement
each augmentation in O(log(n)) time with the use of dynamic data structures.
This implies that the overall technique requires at most O(n ⋅m ⋅ log(n)) time.

A second class of algorithms which are often used in order to solve the
maximum flow problem are preflow push algorithms, which do not maintain
the flow conservation constraints in their intermediate solutions. Rather, an
excess flow is maintained at each node, and we try to push as much of this
flow as possible along any edge on the shortest path from the source to sink.
A detailed discussion of preflow push methods is beyond the scope of this
chapter, and may be found in [4]. Most maximum flow methods require at
least Ω(n ⋅m) time, where n is the number of nodes, and m is the number of
edges.

A closely related problem to the minimum s-t cur problem is that of deter-
mining a global minimum cut in an undirected graph. This particular case is
more efficient than that of finding the s-t minimum cut. One way of determin-
ing a minimum cut is by using a contraction-based edge-sampling approach.
While the previous technique is applicable to both the directed and undirected
version of the problem, the contraction-based approach is applicable only to
the undirected version of the problem. Furthermore, the contraction-based ap-
proach is applicable only for the case in which the weight of each edge is
uij = 1. While the method can easily be extended to the weighted version by
varying the edge-sampling probability, the polynomial running time bounds
discussed in [37] do not apply to this case. The contraction approach is a prob-
abilistic technique in which we successively sample edges in order to collapse
nodes into larger sets of nodes. By successively sampling different sequences
of edges and picking the optimum value [37], it is possible to determine a
global minimum cut. The broad idea of the contraction-based approach is as
follows. We pick an edge randomly in the graph, and contract its two end points
into a single node. We remove all self-loops which are created as a result of



280 MANAGING AND MINING GRAPH DATA

the contraction. We may also create some parallel edges, which are allowed
to remain, since they influence the sampling probability1 of contractions. The
process of contraction is repeated until we are left with two nodes. We note that
each of this pair of “super-nodes” corresponds to a set of nodes in the original
data. These two sets of nodes provide us with the final minimum cut. We note
that the minimum cut will survive in this approach, if none of the edges in the
minimum cut are sampled during the contraction. An immediate observation
is that cuts with smaller number of edges are more likely to survive using this
approach. This is because the edges in cuts which contain a large number of
edges are much more likely to be sampled. One of the key observations in [37]
is the following:

Lemma 9.1. When a graph containing n nodes is contracted to t nodes, the
probability that the minimum-cut survives during the contraction is given by
O(t2/n2).

Proof: Let the minimum-cut have k edges. Then, each vertex must have de-
gree at least k, and therefore the graph must contain at least n⋅k/2 edges. Then,
the probability that the minimum cut survives the first contraction is given by
1 − k/(#Edges) ≥ 1 − 2/n. This relationship is derived by substituting the
lower bound of n ⋅k/2 for the number of edges. Similarly, in the second round
of contractions, the probability of survival is given by 1−2/(n−1). Therefore,
the overall probability ps of survival is given by:

ps = Πn−t−1
i=0 (1− 2/(n − i)) = t ⋅ (t− 1)

n ⋅ (n− 1)
(9.2)

This provides the result. □

Thus, if we contract to two nodes, the probability of the survival of the mini-
mum cut is 2/(n ⋅ (n − 1)). By repeating the process n ⋅ (n − 1)/2 times, we
can show that the probability that the minimum-cut survives is given by at least
1−1/e. If we further scale up by a constant factor C > 1, we can show that the
probability of survival is given by 1 − (1/e)C . By picking C = log(1/�), we
can assure that the cut survives with probability at least 1− �, where � << 1.
The logarithmic relationship assures that we can determine minimum cuts with
very high probability at a small additional cost. An additional implication of
Lemma 9.1 is that the total number of distinct minimum cuts is bounded above
by n ⋅ (n− 1)/2. This is because the probability of the survival of any particu-
lar minimum cut is at least 2/(n ⋅ (n − 1)), and the probability of the survival
of any minimum cut cannot be greater than 1.

1Alternatively, we may replace parallel edges by a single edge of weight which is equal to the number of
parallel edges. We use this weight in order to bias the sampling process.



A Survey of Clustering Algorithms for Graph Data 281

Another observation is that the probability of survival of the minimum cut
in the first iteration is the largest, and it reduces in successive iterations. For
example, in the first iteration, the probability of survival is 1 − (2/n), but
the probability of survival in the last iteration is only 1/3. Thus, most of the
errors are caused in the last few iterations. This is particularly reflected in the
cumulative error across many iterations, since the probability of maintaining
the correct cut on contracting down to t nodes is t2/n2, whereas the probability
of maintaining the correct cut in the remaining contractions is 1/t2.

Therefore, a natural solution is to use a two-phase approach. In the first
phase, we do not contract down to 2 nodes, but we contract down to t nodes.
The probability of maintaining the correct cut by the use of this approach is
at least Ω(t2/n2). Therefore, O(n2/t2) contractions are required in order to
reduce the graph to t nodes. Since each contraction requires O(n) time, the
running time of the first phase is given by O(n3/t2). In the second phase, we
use a standard maximum flow based method in order to determine the mini-
mum cut. This maximum flow problem needs to be repeated t times for a fixed
source and different sinks. However, the base graph on which this is performed
is much smaller, and contains only O(t) nodes. Each maximum flow problem
requires O(t3) time by using the method discussed in [8], and therefore the to-
tal time for all t problems is given by O(t4). Therefore, the total running time
is given by O(n3/t2 + t4). By picking t =

√
n, we can obtain a running time

of O(n2). Thus, by using a two-phase approach, it is possible to obtain a much
better running time, than by using a single-phase contraction approach. The
key idea behind this improvement is that since most of the error probability is
concentrated in the last contractions, it is better to stop the contraction process
when the the underlying graph is “small enough”, and then use conventional
algorithms in order to determine the minimum cut. This combination approach
is theoretically more efficient than any other known algorithm.

2.2 Multi-way Graph Partitioning

The multi-way graph partitioning problem is significantly more difficult,
and is NP-hard [21]. In this case, we wish to partition a graph into k > 2
components, so that the total weight of the edges whose ends lie in different
partitions is minimized. A well known technique for graph partitioning is the
Kerninghan-Lin algorithm [26]. This classical algorithm is based on a hill-
climbing (or more generally neighborhood-search technique) for determining
the optimal graph partitioning. Initially, we start off with a random cut of the
graph. In each iteration, we exchange a pair of vertices in two partitions, to see
if the overall cut value is reduced. In the event that the cut value is reduced,
then the interchange is performed. Otherwise, we pick another pair of vertices
in order to perform the interchange. This process is repeated until we converge
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to a optimal solution. We note that this optimum may not be a global optimum,
but may only be a local optimum of the underlying data. The main variation in
different versions of the Kerninghan-Lin algorithm is the policy which is used
for performing the interchanges on the vertices. Some examples of strategies
which may be used in order to perform the interchange are as follows:

We randomly pick a pair of vertices and perform the interchange, if it
improves the underlying solution quality.

We test all possible vertex-pair interchanges (or a sample of possible
interchanges), and pick the interchange which improves the solution by
the greatest amount.

A k-interchange is one in which a sequence of k interchanges are per-
formed at one time. We can test any k-interchange and perform it, if it
improves the underlying solution quality.

We can pick the optimal k-interchange from a sample of possibilities.

We note that the use of more sophisticated strategies allows a better improve-
ment in the objective function for each interchange, but also requires more
time for each interchange. For example, the determination of an optimal k-
interchange requires much more time than a straightforward interchange. This
is a natural tradeoff which may work out differently depending upon the nature
of the application at hand. Furthermore, the choice of the policy also affects
the likelihood of getting stuck at a local optimum. For example, the use of k-
interchange techniques are far less likely to result in local optimum for larger
values of k. In fact, by choosing the best interchange across all possible values
of k, it is possible to ensure that a global optimum is always reached. On the
other hand, it because increasingly difficult to implement the algorithm effi-
ciently with increasing value of k. This is because the time-complexity of the
interchange increases exponentially with the value of k. A detailed survey on
different methods for optimal graph partitioning may be found in [18].

2.3 Conventional Generalizations and Network Structure
Indices

Two well known (and related) techniques for clustering in the context of
multi-dimensional data [24] are the k-medoid and k-means algorithms. In the
k-medoid algorithm (for multi-dimensional data), we sample a small number
of points from the original data as seeds and assign every other data point from
the clusters to the closest of these seeds. The closeness may be defined based
on a user-defined objective function. The objective function for the cluster-
ing is defined as the sum of the corresponding distances of data points to the
corresponding seeds. In the next iteration, the algorithm interchanges one of
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the seeds for another randomly selected seed from the data, and checks if the
quality of the objective function improves upon performing the interchange.
If this is indeed the case, then the interchange is accepted. Otherwise, we do
not accept the interchange and try another sample interchange. This process
is repeated, until the objective function does not improve over a pre-defined
number of interchanges. A closely related method is the k-means method. The
main difference with the k-medoid method is that we do not use representa-
tive points from the original data after the first iteration of picking the original
seeds. In subsequent iterations, we use the centroid of each cluster as the seed
set for the next iteration. This process is repeated until the cluster membership
stabilizes.

A method has been proposed in [35], which uses characteristics of both2

the k-means and k-medoids algorithms. As in the case of the conventional
partitioning algorithms, it picks k graph nodes as seeds. The main differences
from the conventional algorithms are in terms of computation of distances (for
assignment purposes), and in determination of subsequent seeds. A natural
distance function for graphs is the geodesic distance, or the smallest number
of hops between a pair of nodes. In order to determine the seed set for the next
iteration, we compute the local closeness centrality [20] for each cluster, and
use the corresponding node as the sample seed. Thus, while this algorithm con-
tinues to use seeds from the original data set (as in the k-medoids algorithm),
it uses intuitive ideas from the k-means algorithms in order to determine the
identity of these seeds.

There are some subtle challenges in the use of the graphical versions of dis-
tance based clustering algorithms. One challenge is that since distances are
integers, it is possible for data points to be equidistant to several seeds. While
ties can be resolved by randomly selecting one of the best assignments, this
may result in clusterings which do not converge. In order to handle this insta-
bility, a more relaxed threshold is imposed on the number of medoids which
may change from iteration to iteration. Specifically, a clustering is considered
stable, when the change between iterations is below a certain threshold (say 1
to 3%).

Another challenge is that the computation of geodesic distances can be very
challenging. The computational complexity of the all-pairs shortest paths al-
gorithm can be O(n3), where n is the number of nodes. Even pre-storage of
all-pairs shortest paths can require O(n2) time. This is computationally not
feasible in most practical scenarios, especially when the underlying graphs are
large. Even the space-requirement can be infeasible for very large graphs may

2In [35], the method has been proposed as a generalization of the k-medoid algorithm. However, it actu-
ally uses characteristics of both the k-means and k-medoid algorithms, since it uses centrality notions in
determination of subsequent seeds.



284 MANAGING AND MINING GRAPH DATA

not be practical. In order to handle such cases, the method in [36] uses the
concept of network-structure indices, which can summarize the behavior of
the network by using randomized division into zones.

In this case, the graph is divided into multiple zones. The set of zones
form a connected, mutually exclusive and exhaustive partitioning of the graph.
The partitioning of the graph into zones is accomplished with the use of a
competitive flooding algorithm. In this algorithm, we start off with randomly
selected seeds which are labeled by zone identification, and randomly select
some unlabeled neighbor of a currently labeled node, and add a label which
is matching with its current value. This approach is repeated until all nodes
have been labeled. We note that while this approach is extremely fast, it may
sometimes result in zones which do not reflect locality well. In order to deal
with this situation, we use multiple sets of randomly selected partitions. Each
of these partitions is considered a dimension. Note that when we use multiple
such random partitions, each node becomes distinguishable from other nodes
by virtue of its membership.

The distance between a node i and a zone containing node j is denoted as
ZoneDistance(i, zone(j)), and is defined as the shortest path between node
i and any node in zone j. The distance between i and j along a particular zone
partitioning (or dimension) is approximated as ZoneDistance(i, zone(j)) +
ZoneDistance(j, zone(i)). This value is then averaged over all the sets of
randomized partitions in order to provide better robustness. It has been shown
in [36] that this approach seems to approximate pairwise distances quite well.
The key observation is that the value of ZoneDistance(i, zone(j)) can be
pre-computed in n⋅q space, where q is the number of zones. For a small number
of zones, this is quite efficient. Upon using r different sets of partitions, the
overall space requirement is n ⋅ q ⋅ r, which is much smaller than the Ω(n2)
space-requirement of all-pairs computation, for typical values of q and r as
suggested in [35].

2.4 The Girvan-Newman Algorithm

The Girvan-Newman algorithm [23] is a divisive clustering algorithm,
which is based on the concept of edge betweenness centrality. Betweenness
centrality attempts to identify edges which form critical bridges between dif-
ferent connected components, and delete them, until a natural set of clusters
remains. Formally, betweenness centrality is defined as the proportion of short-
est paths between nodes which pass through a certain edge. Therefore, for a
given edge e, we define the betweenness centrality B(e) as follows:

B(e) =
NumConstrainedPatℎs(e, i, j)

NumSℎortPatℎs(i, j)
(9.3)
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Here NumConstrainedPatℎs(e, i, j) refers to the number of (global) short-
est paths between i and j which pass through e, and NumSℎortPatℎs(i, j)
refers to the number of shortest paths between i and j. Note that the value
of NumConstrainedPatℎs)(e, i, j) may be 0 if none of the shortest paths
between i and j contain e. The algorithm ranks the edges by order of their
betweenness, and and deletes the edge with the highest score. The between-
ness coefficients are recomputed, and the process is repeated. The set of con-
nected components after repeated deletion form the natural clusters. A variety
of termination-criteria (eg. fixing the number of connected components) can
be used in conjunction with the algorithm.

A key issue is the efficient determination of edge-betweenness centrality.
The number of paths between any pair of nodes can be exponentially large,
and it would seem that the computation of the betweenness measure would be
a key bottleneck. It has been shown in [36], that the network structure index
can also be used in order to estimate edge-betweenness centrality effectively
by pairwise node sampling.

2.5 The Spectral Clustering Method

Eigenvector techniques are often used in multi-dimensional data in order
to determine the underlying correlation structure in the data. It is natural to
question as to whether such techniques can also be used for the more general
case of graph data. It turns out that this is indeed possible with the use of a
method called spectral clustering.

In the spectral clustering method, we make use of the node-node adjacency
matrix of the graph. For a graph containing n nodes, let us assume that we have
a n×n adjacency matrix, in which the entry (i, j) correspond to the weight of
the edge between the nodes i and j. This essentially corresponds to the similar-
ity between nodes i and j. This entry is denoted by wij , and the corresponding
matrix is denoted by W . This matrix is assumed to be symmetric, since we
are working with undirected graphs. Therefore, we assume that wij = wji for
any pair (i, j). All diagonal entries of the matrix W are assumed to be 0. As
discussed earlier, the aim of any node partitioning algorithm is minimize (a
function of) the weights across the partitions. The spectral clustering method
constructs this minimization function in terms of the matrix structure of the
adjacency matrix, and another matrix which is referred to as the degree matrix.

Thedegree matrix D is simply a diagonal matrix, in which all entries are
zero except for the diagonal values. The diagonal entry dii is equal to the sum
of the weights of the incident edges. In other words, the entry dij is defined as
follows:

dij =
∑n

j=1wij i = j

0 i ∕= j
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We formally define the Laplacian Matrix as follows:

Definition 9.2. (Laplacian Matrix) The Laplacian Matrix L is defined by
subtracting the weighted adjacency matrix from the degree matrix. In other
words, we have:

L = D −W (9.4)

This matrix encodes the structural behavior of the graph effectively and its
eigenvector behavior can be used in order to determine the important clusters
in the underlying graph structure. We can be shown that the Laplacian matrixL
is positive semi-definite i.e., for any n-dimensional row vector f = [f1 . . . fn]
we have f ⋅ L ⋅ fT ≥ 0. This can be easily shown by expressing L in terms of
its constituent entries which are a function of the corresponding weights wij .
Upon expansion, it can be shown that:

f ⋅ L ⋅ fT = (1/2) ⋅
n∑

i=1

n∑

j=1

wij ⋅ (fi − fj)2 (9.5)

We summarize as follows.

Lemma 9.3. The Laplacian matrix L is positive semi-definite. Specifically, for
any n-dimensional row vector f = [f1 . . . fn], we have:

f ⋅ L ⋅ fT = (1/2) ⋅
n∑

i=1

n∑

j=1

wij ⋅ (fi − fj)2

At this point, let us examine some interpretations of the vector f in terms
of the underlying graph partitioning. Let us consider the case in which each
fi is drawn from the set {0, 1}, and this determines a two-way partition by
labeling each node either 0 or 1. The particular partition to which the node
i belongs is defined by the corresponding label. Note that the expansion of
the expression f ⋅ L ⋅ fT from Lemma 9.3 simply represents the sum of the
weights of the edges across the partition defined by f . Thus, the determination
of an appropriate value of f for which the function f ⋅ L ⋅ fT is minimized
also provides us with a good node partitioning. Unfortunately, it is not easy to
determine the discrete values of f which determine this optimum partitioning.
Nevertheless, we will see later in this section that even when we restrict f to
real values, this provides us with the intuition necessary to create an effective
partitioning.

An immediate observation is that the indicator vector f = [1 . . . 1] is an
eigenvector with a corresponding eigenvalue of 0. We note that f = [1 . . . 1]
must be an eigenvector, since L is positive semi-definite and f ⋅L ⋅fT can be 0
only for eigenvectors with 0 eigenvalues. This observation can be generalized
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further in order to determine the number of connected components in the graph.
We make the following observation.

Lemma 9.4. The number of (linearly independent) eigenvectors with zero
eigenvalues for the Laplacian matrix L is equal to the number of connected
components in the underlying graph.

Proof: Without loss of generality, we can order the vertices corresponding
to the particular connected component that they belong to. In this case, the
Laplacian matrix takes on the following block form, which is illustrated below
for the case of three connected components.

L = L1 0 0
0 L2 0
0 0 L3

Each of the blocks L1, L2 and L3 is a Laplacian itself of the corresponding
component. Therefore, the corresponding indicator vector for that component
is an eigenvector with corresponding eigenvalue 0. The result follows. □

We observe that connected components are the most obvious examples of
clusters in the graph. Therefore, the determination of eigenvectors correspond-
ing to zero eigenvalues provides us information about this (relatively rudimen-
tary set) of clusters. Broadly speaking, it may not be possible to glean such
clean membership behavior from the other eigenvectors. One of the problems
is that other than this particular rudimentary set of eigenvectors (which corre-
spond to the connected components), the vector components of the other eigen-
vectors are drawn from the real domain rather than the discrete {0, 1} domain.
Nevertheless, because of the nature of the natural interpretation of f ⋅L ⋅ fT in
terms of the weights of the edges across nodes with very differing values of fi,
it is natural to cluster together nodes for which the values of fi are as similar
as possible across any particular eigenvector on the average. This provides us
with the intuition necessary to define an effective spectral clustering algorithm,
which partitions the data set into k clusters for any arbitrary value of k. The
algorithm is as follows:

Determine the k eigenvectors with the smallest eigenvalues. Note that
each eigenvector has as many components as the number of nodes. Let
the component of the jth eigenvector for the ith node be denoted by pij .

Create a new data set with as many records as the number of nodes. The
ith record in this data set corresponds to the ith node, and has k com-
ponents. The record for this node is simply the eigenvector components
for that node, which are denoted by pi1 . . . pik.
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Since we would like to cluster nodes with similar eigenvector compo-
nents, we use any conventional clustering algorithm (e.g. k-means) in or-
der to create k clusters from this data set. Note that the main focus of the
approach was to create a transformation of a structural clustering algo-
rithm into a more conventional multi-dimensional clustering algorithm,
which is easy to solve. The particular choice of the multi-dimensional
clustering algorithm is orthogonal to the broad spectral approach.

The above algorithm provides a broad framework for the spectral clustering al-
gorithm. The input parameter for the above algorithm is the number of clusters
k. In practice, a number of variations are possible in order to tune the quality
of the clusters which are found. Some examples are as follows:

It is not necessary to use the same number of eigenvectors as the input
parameter for the number of clusters. In general, one should use at least
as many eigenvectors as the number of clusters to be created. However,
the exact number of eigenvectors to be used in order to get the optimum
results may vary with the particular data set. This can be known only
with experimentation.

There are other ways of creating normalized Laplacian matrices which
can provide more effective results in some situations. Some classic ex-
amples of such Laplacian matrices in terms of the adjacency matrix W ,
degree matrix D and the identity matrix I are defined as follows:

LA = I −D−(1/2) ⋅W ⋅D−(1/2)

LB = I −D−1 ⋅W

More details on the different methods which can be used for effective spectral
graph clustering may be found in [9].

2.6 Determining Quasi-Cliques

A different way of determining massive graphs in the underlying data is
that of determining quasi-cliques. This technique is different from many other
partitioning algorithms, in that it focuses on definitions which maximize edge
densities within a partition, rather than minimizing edge densities across par-
titions. A clique is a graph in which every pair of nodes are connected by an
edge. A quasi-clique is a relaxation on this concept, and is defined by im-
posing a lower bound on the degree of each vertex in the given set of nodes.
Specifically, we define a -quasiclique is as follows:

Definition 9.5. A k-graph (k ≥ 1) G is a -quasiclique if the degree of each
node in the corresponding sub-graph of vertices is at least  ⋅ k.
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The value of  always lies in the range (0, 1]. We note that by choosing  = 1,
this definition reverts to that of standard cliques. Choosing lower values of 
allows for the relaxations which are more true in the case of real applications.
This is because we rarely encounter complete cliques in real applications, and
at least some edges within a dense subgraph would always be missing. A vertex
is said to be critical, if its degree in the corresponding subgraph is the smallest
integer which is at least equal to  ⋅ k.

The earliest piece of work on this problem is from [1] The work in [1] uses
a greedy randomized adaptive search algorithm GRASP, to find a quasi-clique
with the maximum size. A closely related problem is that of finding find-
ing frequently occurring cliques in multiple data sets. In other words, when
multiple graphs are obtained from different data sets, some dense subgraphs
occur frequently together in the different data sets. Such graphs help in deter-
mining important dense patterns of behavior in different data sources. Such
techniques find applicability in mining important patterns in graphical repre-
sentations of customers. The techniques are also helpful in mining cross-graph
quasi-cliques in gene expression data. A description of the application of the
technique to the problem of gene-expression data may be found in [33]. An
efficient algorithm for determining cross graph quasi-cliques was proposed in
[32]. The main restriction of the work proposed in [32] is that the support
threshold for the algorithms is assumed to be 100%. This restriction has been
relaxed in subsequent work [43]. The work in [43] examines the problem of
mining frequent closed quasi-cliques from a graph database with arbitrary sup-
port thresholds. In [31] a multi-graph version of the quasi-clique problem was
explored. However, instead of finding the complete set of quasi-cliques in the
graph, they proposed an approximation algorithm to cover all the vertices in
the graph with a minimum number of p-quasi-complete subgraphs. Thus, this
technique is more suited for summarization of the overall graph with a smaller
number of densely connected subgraphs.

2.7 The Case of Massive Graphs

A closely related problem is that of dense subgraph determination in mas-
sive graphs. This problem is frequently encountered in large graph data sets.
For example, the problem of determining large subgraphs of web graphs was
studied in [5, 22]. A min-hash approach was first used in [5] in order to deter-
mine syntactically related clusters. This paper also introduces the advantages
of using a min-hash approach in the context of graph clustering. Subsequently,
the approach was generalized to the case of large dense graphs with the use of
recursive application of the basic min-hash algorithm.

The broad idea in the min-hash approach is to represent the outlinks of a
particular node as sets. Two nodes are considered similar, if they share many
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outlinks. Thus, consider a node A with an outlink set SA and a node B with
outlink set SB. Then the similarity between the two nodes is defined by the
Jaccard coefficient, which is defined as SA∩SB

SA∪SB
. We note that explicit enumera-

tion of all the edges in order to compute this can be computationally inefficient.
Rather, a min-hash approach is used in order to perform the estimation. This
min-hash approach is as follows. We sort the universe of nodes in a random
order. For any set of nodes in random sorted order, we determine the first node
First(A) for which an outlink exists from A to First(A). We also determine
the first node First(B) for which an outlink exists fromB to First(B). It can
be shown that the Jaccard coefficient is an unbiased estimate of the probability
that First(A) and First(B) are the same node. By repeating this process over
different permutations over the universe of nodes, it is possible to accurately
estimate the Jaccard coefficient. This is done by using a constant number of
permutations c of the node order. The actual permutations are implemented
by associated c different randomized hash values with each node. This cre-
ates c sets of hash values of size n. The sort-order for any particular set of
hash-values defines the corresponding permutation order. For each such per-
mutation, we store the minimum node index of the outlink set. Thus, for each
node, there are c such minimum indices. This means that, for each node, a
fingerprint of size c can be constructed. By comparing the fingerprints of two
nodes, the Jaccard coefficient can be estimated. This approach can be further
generalized with the use of every s element set contained entirely with SA and
SB. Thus, the above description is the special case when s is set to 1. By
using different values of s and c, it is possible to design an algorithm which
distinguishes between two sets that are above or below a certain threshold of
similarity.

The overall technique in [22] first generates a set of c shingles of size s
for each node. The process of generating the c shingles is extremely straight-
forward. Each node is processed independently. We use the min-wise hash
function approach in order to generate subsets of size s from the outlinks at
each node. This results in c subsets for each node. Thus, for each node, we
have a set of c shingles. Thus, if the graph contains a total of n nodes, the total
size of this shingle fingerprint is n× c× sp, where sp is the space required for
each shingle. Typically sp will be O(s), since each shingle contains s nodes.
For each distinct shingle thus created, we can create a list of nodes which
contain it. In general, we would like to determine groups of shingles which
contain a large number of common nodes. In order to do so, the method in
[22] performs a second-order shingling in which the meta-shingles are created
from the shingles. Thus, this further compresses the graph in a data structure
of size c× c. This is essentially a constant size data structure. We note that this
group of meta-shingles have the the property that they contain a large num-
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ber of common nodes. The dense subgraphs can then be extracted from these
meta-shingles. More details on this approach may be found in [22].

The min-hash approach is frequently used for graphs which are extremely
large and cannot be easily processed by conventional quasi-clique mining algo-
rithms. Since the min-hash approach summarizes the massive graph in a small
amount of space, it is particularly useful in leveraging the small space represen-
tation for a variety of query-processing techniques. Examples of such applica-
tions include the web graph and social networks. In the case of web graphs, we
desire to determine closely connected clusters of web pages with similar con-
tent. The related problem in social networks is that of finding closely related
communities. The min-hash approach discussed in [5, 22] precisely helps us
achieve this goal, because we can process the summarized min-hash structure
in a variety of ways in order to extract the important communities from the
summarized structure. More details of this approach may be found in [5, 22].

3. Clustering Graphs as Objects

In this section, we will discuss the problem of clustering entire graphs in
a multi-graph database, rather than examining the node clustering problem
within a single graph. Such situations are often encountered in the context of
XML data, since each XML document can be regarded as a structural record,
and it may be necessary to create clusters from a large number of such objects.
We note that XML data is quite similar to graph data in terms of how the data
is organized structurally. The attribute values can be treated as graph labels
and the corresponding semi-structural relationships as the edges. In has been
shown in [2, 10, 28, 29] that this structural behavior can be leveraged in order
to create effective clusters.

3.1 Extending Classical Algorithms to Structural Data

Since we are examining entre graphs in this version of the clustering prob-
lem, the problem simply boils down to that of clustering arbitrary objects,
where the objects in this case have structural characteristics. Many of the
conventional algorithms discussed in [24] (such as k-means type partitional
algorithms and hierarchical algorithms can be extended to the case of graph
data. The main changes required in order to extend these algorithms are as
follows:

Most of the underlying classical algorithms typically use some form of
distance function in order to measure similarity. Therefore, we need
appropriate measures in order to define similarity (or distances) between
structural objects.
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Many of the classical algorithms (such as k-means) use representative
objects such as centroids in critical intermediate steps. While this is
straightforward in the case of multi-dimensional objects, it is much more
challenging in the case of graph objects. Therefore, appropriate meth-
ods need to be designed in order to create representative objects. Fur-
thermore, in some cases it may be difficult to create representatives in
terms of single objects. We will see is that it is often more robust to use
representative summaries of the underlying objects.

There are two main classes of conventional techniques, which have been
extended to the case of structural objects. These techniques are as follows:

Structural Distance-based Approach: This approach computes struc-
tural distances between documents and uses them in order to compute
clusters of documents. One of the earliest work on clustering tree struc-
tured data is the XClust algorithm [28], which was designed to cluster
XML schemas in order for efficient integration of large numbers of Doc-
ument Type Definitions (DTDs) of XML sources. It adopts the agglom-
erative hierarchical clustering method which starts with clusters of single
DTDs and gradually merges the two most similar clusters into one larger
cluster. The similarity between two DTDs is based on their element sim-
ilarity, which can be computed according to the semantics, structure, and
context information of the elements in the corresponding DTDs. One of
the shortcomings of the XClust algorithm is that it does not make full
use of the structure information of the DTDs, which is quite important
in the context of clustering tree-like structures. The method in [7] com-
putes similarity measures based on the structural edit-distance between
documents. This edit-distance is used in order to compute the distances
between clusters of documents.

S-GRACE is hierarchical clustering algorithm [29]. In [29], an XML
document is converted to a structure graph (or s-graph), and the distance
between two XML documents is defined according to the number of
the common element-subelement relationships, which can capture bet-
ter structural similarity relationships than the tree edit distance in some
cases [29].

Structural Summary Based Approach: In many cases, it is possible
to create summaries from the underlying documents. These summaries
are used for creating groups of documents which are similar to these
summaries. The first summary-based approach for clustering XML doc-
uments was presented in [10]. In [10], the XML documents are modeled
as rooted ordered labeled trees. A framework for clustering XML docu-
ments by using structural summaries of trees is presented. The aim is to
improve algorithmic efficiency without compromising cluster quality.
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A second approach for clustering XML documents is presented in [2].
This technique is a partition-based algorithm. The primary idea in this
approach is to use frequent-pattern mining algorithms in order to deter-
mine the summaries of frequent structures in the data. The technique
uses a k-means type approach in which each cluster center comprises
a set of frequent patterns which are local to the partition for that clus-
ter. The frequent patterns are mined using the documents assigned to a
cluster center in the last iteration. The documents are then further re-
assigned to a cluster center based on the average similarity between the
document and the newly created cluster centers from the local frequent
patterns. In each iteration the document-assignment and the mined fre-
quent patterns are iteratively re-assigned, until the cluster centers and
document partitions converge to a final state. It has been shown in [2]
that such a structural summary based approach is significantly superior
to a similarity function based approach as presented in [7]. The method
of also superior to the structural approach in [10] because of its use of
more robust representations of the underlying structural summaries.

Since the most recent algorithm is the structural summary method discussed in
[2], we will discuss this in more detail in the next section.

3.2 The XProj Approach

In this section, we will present XProj, which is a summary-based approach
for clustering of XML documents. The pseudo-code for clustering of XML
documents is illustrated in Figure 9.1. The primary approach is to use a sub-
structural modification of a partition based approach in which the clusters of
documents are built around groups of representative sub-structures. Thus, in-
stead of a single representative of a partition-based algorithm, we use a sub-
structural set representative for the structural clustering algorithm. Initially,
the document set D is randomly divided into k partitions with equal size, and
the sets of sub-structure representatives are generated by mining frequent sub-
structures of size l from these partitions. In each iteration, the sub-structural
representatives (of a particular size, and a particular support level) of a given
partition are the frequent structures from that partition. These structural rep-
resentatives are used to partition the document collection and vice-versa. We
note that this can be a potentially expensive operation because of the deter-
mination of frequent substructures; in the next section, we will illustrate an
interesting way to speed it up. In order to actually partition the document col-
lection, we calculate the number of nodes in a document which are covered
by each sub-structural set representative. A larger coverage corresponds to
a greater level of similarity. The aim of this approach is that the algorithm
will determine the most important localized sub-structures over time. This
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Algorithm XProj(Document Set: D, Minimum Support:
min sup, Structural Size: l, NumClusters: k )
begin
Initialize representative sets S1 . . .Sk;
while (convergencecriterion =false)
begin
Assign each document D ∈ D to one of the sets in
{S1 . . .Sk} using coverage based similarity criterion;
/* Let the corresponding document partitions be

denoted byℳ1 . . .ℳk; */
Compute the freq. substructures of size l from each

setℳi using sequential transformation paradigm;
if (∣ℳi∣ ×min sup) ≥ 1

set Si to frequent substructures of size l fromℳi;
/* If (∣ℳi∣ ×min sup) < 1, Si remains unchanged; */

end;
end

Figure 9.1. The Sub-structural Clustering Algorithm (High Level Description)

is analogous to the projected clustering approach which determines the most
important localized projections over time. Once the partitions have been com-
puted, we use them to re-compute the representative sets. These re-computed
representative sets are defined as the frequent sub-structures of size l from
each partition. Thus, the representative set Si is defined as the substructural
set from the partition ℳi which has size l, and which has absolute support
no less than (∣ℳi∣ × min sup). Thus, the newly defined representative set
Si also corresponds to the local structures which are defined from the parti-
tionℳi. Note that if the partition ℳi contains too few documents such that
(∣ℳi∣ ×min sup) < 1, the representative set Si remains unchanged.

Another interesting observation is that the similarity function between a
document and a given representative set is defined by the number of nodes
in the document which are covered by that set. This makes the similarity func-
tion more sensitive to the underlying projections in the document structures.
This leads to more robust similarity calculations in most circumstances.

In order to ensure termination, we need to design a convergence criterion.
One useful criterion is based on the increase of the average sub-structural
self-similarity over the k partitions of documents. Let the partitions of doc-
uments with respect to the current iteration be ℳ1 . . .ℳk, and their corre-
sponding frequent sub-structures of size l be S1 . . .Sk respectively. Then,
the average sub-structural self-similarity at the end of the current iteration
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is Φ =
∑k

i=1 Δ(ℳi,Si)/k. Similarly, let the average sub-structural self-

similarity at the end of the the previous iteration be Φ
′

. In the beginning of
the next iteration, the algorithm computes the increase of the average sub-
structural self-similarity, Φ−Φ′

, and checks if it is smaller than a user-specified
threshold �. If not, the algorithm proceeds with another iteration. Otherwise,
the algorithm terminates. In addition, an upper bound on the number of it-
erations is imposed. This is done in order to effectively handle situations in
which the threshold � is chosen to be too small. Two further issues need to be
implemented in order to effectively use the underlying algorithm:

We need to determine effective methods for determining the similarity
between a given document, and a group of other documents. Techniques
for computing the similarity are discussed in [2].

We need to determine frequent structural patterns in the underlying doc-
uments. This can be a huge challenge in many applications, especially
since structural data is far more challenging to mine than transactional
data. It has been shown in [2], how sequential pattern mining algorithms
can be adapted to the case of structural data. The broad idea is to flat-
ten out the tree structure into a sequential pattern by using a pre-order
traversal. Then the clustering is performed on the resulting sequential
patterns. It has been shown [2] that such an approach is able to retain
most of the structural information in the data, while introducing some
spurious relations. The overall approach has been shown in [2] to be
experimentally quite effective.

It has been shown in [2], that this method is far more effective than competing
techniques such as those discussed in [10, 29].

4. Applications of Graph Clustering Algorithms

Graph clustering algorithms find numerous applications in the literature.
As discussed in this chapter, graph mining algorithms fall into the categories
of node clustering and more generally object-based clustering algorithms.
Object-based clustering algorithms are similar to general clustering algorithms
in the literature, except that we use the underlying graphs as records rather than
standard multi-dimensional attributes. Such algorithms are useful in a number
of data domains such as molecular biology, chemical graphs, and XML data. In
general, any data domain which can represent the underlying records in terms
of compact graphs can benefit from such algorithms.

Node clustering algorithms can be used for a variety of real applications
such as facility location. These algorithms can also be used for clustering
with arbitrary distance functions between groups of objects. These algorithms
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are more general than those used for clustering records with the use of multi-
dimensional distance functions.

Node clustering algorithms are closely related to the problem of graph par-
titioning. These methods are particularly useful for applications which need to
determine dense regions of the graphs. The determination of dense regions of
the graph is closely related to the problem of graph summarization and dimen-
sionality reduction. The process of dimensionality reduction on graphs can be
used in order to represent them in a small space, so that they can be used effec-
tively for indexing and retrieval. Furthermore, compressed graphs can be used
in a variety of applications in which it is desirable to use the summary behav-
ior in order to estimate the approximate structural properties of the network.
These estimates can then be subsequently refined for more exact results at a
later stage. Some specific applications for which clustering algorithms may be
leveraged are as follows:

4.1 Community Detection in Web Applications and Social
Networks

Many web applications and social networks can be typically represented as
massive graphs. For example, the structure of the web is itself a graph [22, 30,
34], in which nodes represent web pages, and hyperlinks represent the edges
of this graph. Similarly social networks are graphs in which nodes represent
the members of the social network, and the friendship relationship between
members represent the corresponding links. Node clustering algorithms are a
natural fit for community detection in massive graphs. The communities have
natural interpretations in the context of a variety of web applications:

For the case of web applications such as web sites, communities typi-
cally refer to communities of closely linked pages. Such communities
are typically linked because of common material in terms of topic, or
similar interests in terms of readership.

For the case of social networks, communities refer to groups of members
who may know each other very well, and may therefore be closely linked
with one another. This is useful in determining important associations in
the underlying social network.

Blogging communities often behave like social networks, and contain
links between related blogs. The techniques discussed in this chapter
are also useful for determining the closely related blogs with the use of
community detection methods.

Many of the node clustering applications discussed in this chapter are used in
the context of social networks [22, 30, 34]. The min-hash approach [5, 22]
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is commonly used when the underlying graph is massive in nature, such as
that in the case of the web. This is because the min-hash approach is able to
summarize the graph in a very small amount of space. This is very useful for
practical applications in which it may be possible to represent the entire graph
on disk. For example, the size of the web graph is so large, that it may not
even be possible to store it on disk without the use of add-ons onto standard
desktop hardware. Such situations lead to further constraints during the mining
process, which are handled quite well by min-hash style approaches. This is
because the min-hash summary is of extremely small size compared to the size
of the graph itself. This compressed representation can even be maintained
in main memory and used to determine the underlying communities in the
network directly. It has been shown in [5, 22], that such an approach is able to
determine communities of very high quality.

4.2 Telecommunication Networks

Large telecommunication companies may have millions of customers who
may make billions of phone calls to one another over a period of time. In this
case, the individual phone numbers may be represented as node, and phone
calls may be represented as edges. In such cases, it may be desirable to de-
termine groups of customers who call each other frequently. This information
can be very useful for target marketing purposes. Furthermore, we note that
the graphs in a tele-communication network are represented in the form of
edge streams, since the edges may be received continuously over time. These
result in even greater challenges from the point of view of analysis, since the
edges cannot be explicitly stored on disk. The methods discussed in [22] are
particularly useful in such scenarios.

4.3 Email Analysis

An interesting application in the context of the Enron crisis was to determine
important email interactions between groups of Enron employees. In this case,
the individuals are represented as nodes, and the emails sent between them are
represented as edges. Node clustering algorithms are very useful in order to
isolate dense email interactions between different groups of customers. This
approach can be used for a variety of intelligence applications such as that of
determining suspicious communities in groups of interactions.

5. Conclusions and Future Research

In this chapter, we presented a review of the commonly known algorithms
for clustering graph data. The problem of clustering graphs has been widely
studied in the literature, because of its application to a variety of data mining
and data management problems. Graph clustering algorithms are of two types:
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Node Clustering Algorithms: In this case, we attempt to partition the
graph into groups of clusters, so that each cluster contains groups of
nodes which are densely connected. These densely connected groups of
nodes may often provide significant information about how the entities
in the underlying graph are inter-connected with one another.

Graph Clustering Algorithms: In this case, we have complete graphs
available, and we wish to determine the clusters with the use of the struc-
tural information in the underlying graphs. Such cases are often encoun-
tered in the case of XML data, which are commonly encountered in
many real domains.

We provided an overview of the different clustering algorithms available, and
the tradeoffs with the use of different methods. The major challenges that
remain in the area of graph clustering are as follows:

Clustering Massive Data Sets: In some cases, the data sets containing
the graphs may be so large that they may be held only on disk. For ex-
ample, if we have a dense graph containing 107 nodes, then the number
of edges may be as high as 1013. In such cases, it may not even be pos-
sible to store the graph effectively on disk. In cases in which the graph
can be stored on disk, it is critical that the algorithm should be designed
in order to take the disk-resident behavior of the underlying data into
account. This is especially challenging in the case of graph data sets,
because the structural behavior of the graph interferes with our ability to
process the edges sequentially for many applications. In cases in which
the graph is too large to store on disk, it is essential to design summary
structures which can effectively store the underlying structural behavior
of the graph. This stored summary can then be used effectively for graph
clustering algorithms.

Clustering Graph Streams: In this case, we have large graphs which
are received as edge streams. Such graphs are more challenging, since a
given edge cannot be processed more than once during the computation
process. In such cases, summary structures need to be designed in order
to facilitate an effective clustering process. These summary structures
may be utilized in order to determine effective clusters in the underlying
data. This approach is similar to the case discussed above in which the
size of the graph is too large to store on disk.

In addition, techniques need to be designed for interfacing clustering algo-
rithms with traditional database management techniques. In order to achieve
this goal, effective representations and query languages need to be designed for
graph data. This is a new and emerging area of research, and can be leveraged
upon in order to further improve the effectiveness of graph algorithms.
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Abstract In this chapter, we present a survey of algorithms for dense subgraph discovery.
The problem of dense subgraph discovery is closely related to clustering though
the two problems also have a number of differences. For example, the problem
of clustering is largely concerned with that of finding a fixed partition in the data,
whereas the problem of dense subgraph discovery defines these dense compo-
nents in a much more flexible way. The problem of dense subgraph discovery
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may wither be defined over single or multiple graphs. We explore both cases. In
the latter case, the problem is also closely related to the problem of the frequent
subgraph discovery. This chapter will discuss and organize the literature on this
topic effectively in order to make it much more accessible to the reader.

Keywords: Dense subgraph discovery, graph clustering

1. Introduction

In almost any network, density is an indication of importance. Just as some-
one reading a road map is interesting in knowing the location of the larger
cities and towns, investigators who seek information from abstract graphs are
often interested in the dense components of the graph. Depending on what
properties are being modeled by the graph’s vertices and edges, dense regions
may indicate high degrees of interaction, mutual similarity and hence collec-
tive characteristics, attractive forces, favorable environments, or critical mass.

From a theoretical perspective, dense regions have many interesting prop-
erties. Dense components naturally have small diameters (worst case shortest
path between any two members). Routing within these components is rapid.
A simple strategy also exists for global routing. If most vertices belong to
a dense component, only a few selected inter-hub links are needed to have a
short average distance between any two arbitrary vertices in the entire network.
Commercial airlines employ this hub-based routing scheme. Dense regions are
also robust, in the sense that many connections can be broken without splitting
the component. A less well-known but equally important property of dense
subgraphs comes from percolation theory. If a graph is sufficiently dense, or
equivalently, if messages are forwarded from one node to its neighbors with
higher than a certain probability, then there is very high probability of propa-
gating a message across the diameter of the graph [20]. This fact is useful in
everything from epidemiology to marketing.

Not all graphs have dense components, however. A sparse graph may have
few or none. In order to understand this issue, we first need to define a formal
notion of the words ‘dense’ and ‘sparse’. We will address this issue shortly.
A uniform graph is either entirely dense or not dense at all. Uniform graphs,
however, are rare, usually limited to either small or artificially created ones.
Due to the usefulness of dense components, it is generally accepted that their
existence is the rule rather than the exception in nature and in human-planned
networks [39].

Dense components have been identified in and have enhanced understanding
of many types of networks; among the best-known are social networks [53, 44],
the World Wide Web [30, 17, 11], financial markets [5], and biological sys-
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tems [26]. Much of the early motivation, research, and nomenclature regarding
dense components was in the field of social network analysis. Even before the
advent of computers, sociologists turned to graph theory to formulate models
for the concept of social cohesion. Clique, K-core, K-plex, and K-club are
metrics originally devised to measure social cohesiveness [53]. It is not sur-
prising that we also see dense components in the World Wide Web. In many
ways, the Web is simply a virtual implementation of traditional direct human-
human social networks.

Today, the natural sciences, the social sciences, and technological fields are
all using network and graph analysis methods to better understand complex
systems. Dense component discovery and analysis is one important aspect
of network analysis. Therefore, readers from many different backgrounds will
benefit from understanding more about the characteristics of dense components
and some of the methods used to uncover them.

In the next section, we outline the graph terminology and define the fun-
damental measures of density to be used in the rest of the chapter. Section 3
categorizes the algorithmic approaches and presents representative implemen-
tations in more detail. Section 4 expands the topic to consider frequently-
occurring dense components in a set of graphs. Section 5 provides examples
of how these techniques have been applied in various scientific fields. Section 6
concludes the chapter with a look to the future.

2. Types of Dense Components

Different applications find different definitions of dense component to be
useful. In this section, we outline the many ways to define a dense component,
categorizing them by their important features. Understanding these features
of the various types of components are valuable for deciding which type of
component to pursue.

2.1 Absolute vs. Relative Density

We can divide density definitions into two classes, absolute density and rel-
ative density. An absolute density measure establishes rules and parameter
values for what constitutes a dense component, independent of what is out-
side the component. For example, we could say that we are only interested
in cliques, fully-connected subgraphs of maximum density. Absolute density
measures take the form of relaxations of the pure clique measure.

On the other hand, a relative density measure has no preset level for what is
sufficiently dense. It compares the density of one region to another, with the
goal of finding the densest regions. To establish the boundaries of components,
a metric typically looks to maximize the difference between intra-component
connectedness and inter-component connectedness. Often but not necessarily,



306 MANAGING AND MINING GRAPH DATA

relative density techniques look for a user-defined number k densest regions.
The alert reader may have noticed that relative density discovery is closely
related to clustering and in fact shares many features with it.

Since this book contains another chapter dedicated to graph clustering, we
will focus our attention on absolute density measures. However, we will have
more so say about the relationship between clustering and density at the end of
this section.

2.2 Graph Terminology

Let G(V,E) be a graph with ∣V ∣ vertices and ∣E∣ edges. If the edges are
weighted, then w(u) is the weight of edge u. We treat unweighted graphs
as the special case where all weights are equal to 1. Let S and T be sub-
sets of V . For an undirected graph, E(S) is the set of induced edges on
S: E(S) = {(u, v) ∈ E ∣u, v ∈ S}. Then, HS is the induced subgraph
(S,E(S)). Similarly, E(S, T ) designates the set of edges from S to T . HS,T

is the induced subgraph (S, T,E(S, T )). Note that S and T are not necessarily
disjoint from each other. If S ∩ T = ∅, HS,T is a bipartite graph. If S and T
are not disjoint (possibly S = T = V ), this notation can be used to represent a
directed graph.

A dense component is a maximal induced subgraph which also satisfies
some density constraint. A component HS is maximal if no other subgraph
of G which is a superset of HS would satisfy the density constraints. Table
10.1 defines some basic graph concepts and measures that we will use to de-
fine density metrics.

Table 10.1. Graph Terminology

Symbol Description

G(V,E) graph with vertex set V and edge set E
HS subgraph with vertex set S and edge set E(S)
HS,T subgraph with vertex set S ∪ T and edge set E(S, T )
w(u) weight of edge u

NG(u) neighbor set of vertex u in G: {v∣ (u, v) ∈ E}
NS(u) only those neighbors of vertex u that are in S: {v∣ (u, v) ∈ S}

�G(u) (weighted) degree of u in G :
∑

v∈NG(u) w(v)

�S(u) (weighted) degree of u in S :
∑

v∈NS(u) w(v)

dG(u, v) shortest (weighted) path from u to v traversing any edges in G
dS(u, v) shortest (weighted) path from u to v traversing only edges in E(S)

We now formally define the density of S, den(S), as the ratio of the total
weight of edges in E(S) to the number of possible edges among ∣S∣ vertices.
If the graph is unweighted, then the numerator is simply the number of actual
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edges, and the maximum possible density is 1. If the graph is weighted, the
maximum density is unbounded. The number of possible edges in an undi-
rected graph of size n is

(
n
2

)
= n(n − 1)/2. We give the formulas for an

undirected graph; the formulas for a directed graph lack the factor of 2.

den(S) =
2∣E(S)∣
∣S∣(∣S∣ − 1)

denW (S) =
2
∑

u,v∈S w(u, v)

∣S∣(∣S∣ − 1)

Some authors define density as the ratio of the number of edges to the number

of vertices: ∣E∣
∣V ∣ . We will refer to this as average degree of S.

Another important metric is the diameter of S, diam(S). Since we have
given two different distance measures, dS and dG, we accordingly offer two
different diameter measures. The first is the standard one, in which we consider
only paths within S. The second permits paths to stray outside S, if it offers a
shorter path.

diam(S) = max{dS(u, v)∣ u, v ∈ S}
diamG(S) = max{dG(u, v)∣ u, v ∈ S}

2.3 Definitions of Dense Components

We now present a collection of measures that have been used to define dense
components in the literature (Table 10.2). To focus on the fundamentals, we
assume unweighted graphs. In a sense, all dense components are either cliques,
which represent the ideal, or some relaxation of the ideal. There relaxations
fall into three categories: density, degree, and distance. Each relaxation can be
quantified as either a percentage factor or a subtractive amount. While most of
there definitions are widely-recognized standards, the name quasi-clique has
been applied to any relaxation, with different authors giving different formal
definitions. Abello [1] defined the term in terms of overall edge density, with-
out any constraint on individual vertices. This offers considerable flexibility
in the component topology. Several other authors [36, 32, 33] have opted to
define quasi-clique in terms of minimum degree of each vertex. Li et al. [32]
provide a brief overview and comparison of quasi-cliques. In our table, when
the authorship of a specific metric can be traced, it is given. Our list is not
exhaustive; however, the majority of definitions can be reduced to some com-
bination of density, degree, and diameter.

Note that in unweighted graphs, cliques have a density of 1. Density-based
quasi-cliques are only defined for unweighted graphs. We use the term Kd-
clique instead of Mokken’s original name K-clique, because K-clique is al-
ready defined in the mathematics and computer science communities to mean
a clique with k vertices.
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Table 10.2. Types of Dense Components

Component Reference Formal definition Description

Clique ∃(i, j), i ∕= j ∈ S Every vertex connects to every other
vertex in S.

Quasi-Clique
(density-based)

[1] den(S) ≥  S has at least ∣S∣(∣S∣ − 1)/2 edges.
Density may be imbalanced within S.

Quasi-Clique
(degree-based)

[36] �S(u) ≥  ∗ (k − 1) Each vertex has  percent of the possi-
ble connections to other vertices. Local
degree satisfies a minimum. Compare to
K-core and K-plex.

K-core [45] �S(u) ≥ k Every vertex connects to at least k other
vertices in S. A clique is a (k-1)-core.

K-plex [46] �S(u) ≥ ∣S∣ − k Each vertex is missing no more than k−
1 edges to its neighbors. A clique is a
1-plex.

Kd-clique [34] diamG(S) ≤ k The shortest path from any vertex to any
other vertex is not more than k. An or-
dinary clique is a 1d-clique. Paths may
go outside S.

K-club [37] diam(S) ≤ k The shortest path from any vertex to any
other vertex is not more than k. Paths
may not go outside S. Therefore, every
K-club is a K-clique.

Figure 10.1, a superset of an illustration from Wasserman and Faust [53],
demonstrates each of the dense components that we have defined above.

Cliques: {1,2,3} and {2,3,4}
0.8-Quasi-clique: {1,2,3,4} (includes 5/6 > 0.83 of possible edges)

2-Core: {1,2,3,4,5,6,7}
3-Core: none

2-Plex: {1,2,3,4} (vertices 1 and 3 are missing one edge each)

2d-Cliques: {1,2,3,4,5,6} and {2,3,4,5,6,7} (In the first component,
5 connects to 6 via 7, which need not be a member of the component)

2-Clubs: {1,2,3,4,5}, {1,2,3,4,6}, and {2,3,5,6,7}

2.4 Dense Component Selection

When mining for dense components in a graph, a few additional questions
must be addressed:
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Figure 10.1. Example Graph to Illustrate Component Types

1 Minimum size �: What is the minimum number of vertices in a dense
component S? I.e., ∣S∣ ≥ �.

2 All or top-N?: One of the following criteria should be applied.

Select all components which meet the size, density, degree, and
distance constraints.

Select the N highest ranking components that meet the minimum
constraints. A ranking function must be established. This can be
as simple as one of the same metrics used for minimum constraints
(size, density, degree, distance, etc.) or a linear combination of
them.

Select the N highest ranking components, with no minimum con-
straints.

3 Overlap: May two components share vertices?

2.5 Relationship between Clusters and Dense
Components

The measures described above set an absolute standard for what constitutes
a dense component. Another approach is to find the most dense components on
a relative basis. This is the domain of clustering. It may seem that clustering,
a thoroughly-studied topic in data mining with many excellent methodologies,
would provide a solution to dense component discovery. However, clustering
is a very broad term. Readers interested in a survey on clustering may wish to
consult either Jain, Murty, and Flynn [24] or Berkhin [8]. In the data mining
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community, clustering refers to the task of assigning similar or nearby items
to the same group while assigning dissimilar/distant items to different groups.
In most clustering algorithms, similarity is a relative concept; therefore it is
potentially suitable for relative density measures. However, not all clustering
algorithms are based on density, and not all types of dense components can be
discovered with clustering algorithms.

Partitioning refers to one class of clustering problem, where the objective
is to assign every item to exactly one group. A k-partitioning requires the
result to have k groups. K-partitioning is not a good approach for identifying
absolute dense components, because the objectives are at odds. Consider the
well-known k-Means algorithm applied to a uniform graph. It will generate k
partitions, because it must. However, the partitioning is arbitrary, changing as
the seed centroids change.

In hierarchical clustering, we construct a tree of clusters. Conceptually, as
well as in actual implementation, this can be either agglomerative (bottom-up),
where the closest clusters are merged together to form a parent cluster, or di-
visive (top-down), where a cluster is subdivided into relatively distant child
clusters. In basic greedy agglomerative clustering, the process starts by group-
ing together the two closest items. The pair are now treated as a single item,
and the process is repeated. Here, pairwise distance is the density measure,
and the algorithm seeks to group together the densest pair. If we use divisive
clustering, we can choose to stop subdividing after finding k leaf clusters. A
drawback of both hierarchical clustering and partitioning is that they do not
allow for a separate "non-dense" partition. Even sparse regions are forced to
belong to some cluster, so they are lumped together with their closest denser
cores.

Spectral clustering describes a graph as a adjacency matrix W , from which
is derived the Laplacian matrix L = D − W (unnormalized) or L = I −
D1/2WD−1/2(normalized), whereD is the diagonal matrix featuring each ver-
tex’s degree. The eigenvectors of L can be used as cluster centroids, with the
corresponding eigenvalues giving an indication of the cut size between clus-
ters. Since we want minimum cut size, the smallest eigenvalues are chosen
first. This ranking of clusters is an appealing feature for dense component
discovery.

None of these clustering methods, however, are suited for an absolute den-
sity criterion. Nor can they handle overlapping clusters. Therefore, some
but not all clustering criteria are dense component criteria. Most clustering
methods are suitable for relative dense component discovery, excluding k-
partitioning methods.
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3. Algorithms for Detecting Dense Components in a
Single Graph

In this section, we explore algorithmic approaches for finding dense com-
ponents. First we look at basic exact algorithms for finding cliques and quasi-
cliques and comment on their time complexity. Because the clique problem is
NP-hard, we then consider some more time efficient solutions. The algorithms
can be categorized as follows: Exact enumeration (Section 3.1), Fast Heuristic
Enumeration (Section 3.2), and Bounded Approximation Algorithms (Section
3.3). We review some recent works related to dense component discovery,
concentrating on the details of several well-received algorithms.

The following table (Table 10.3) gives an overview of the major algorithmic
approaches and lists the representative examples we consider in this chapter.

Table 10.3. Overview of Dense Component Algorithms

Algorithm Type Component Type Example Comments

Enumeration Clique [12]
Biclique [35]
Quasi-clique [33] min. degree for each vertex
Quasi-biclique [47]
k-core [7]

Fast Heuristic
Enumeration

Maximal biclique [30] nonoverlapping

Quasi-clique/biclique [13] spectral analysis
Relative density [18] shingling
Maximal quasi-biclique [32] balanced noise tolerance
Quasi-clique, k-core [52] pruned search; visual results with

upper-bounded estimates

Bounded Max. average degree [14] undirected graph: 2-approx.
Approximation directed graph: 2+�-approx.

Densest subgraph,
n ≥ k [4] 1/3-approx.
Subgraph of known
density � [3] finds subgraph with density

Ω(�/ logΔ)

3.1 Exact Enumeration Approach

The most natural way to discover dense components in a graph is to enu-
merate all possible subsets of vertices and to check if some of them satisfy the
definition of dense components. In the following, we investigate some algo-
rithms for discovering dense components by explicit enumeration.
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Enumeration Approach. Finding maximal cliques in a graph may be
straightforward, but it is time-consuming. The clique decision problem, decid-
ing whether a graph of size n has a clique of size at least k, is one of Karp’s
21 NP-Complete problems [28]. It is easy to show that the clique optimization
problem, finding a largest clique in a graph, is also NP-Complete, because the
optimization and decision problems each can be reduced in polynomial time
to the other. Our goal is to enumerate all cliques. Moon and Moser showed
that a graph may contain up to 3n/3 maximal cliques [38]. Therefore, even for
modest-sized graphs, it is important to find the most effective algorithm.

One well-known enumeration algorithm for generating cliques was pro-
posed by Bron and Kerbosch [12]. This algorithm utilizes the branch-and-
bound technique in order to prune branches which are unable to generate a
clique. The basic idea is to extend a subset of vertices, until the clique is max-
imal, by adding a vertex from a candidate set but not in a exclusion set. Let C
be the set of vertices which already form a clique, Cand be the set of vertices
which may potentially be used for extending C , and NCand be the set of ver-
tices which are not allowed to be candidates for C . N(v) are the neighbors of
vertex v. Initially, C and NCand are empty, and Cand contains all vertices
in the graph. Given C , Cand and NCand, we describe the Bron-Kerbosch
algorithm below. The authors experimentally observed O(3.14n), but did not
prove their theoretical performance.

Algorithm 6 CliqueEnumeration(C ,Cand,NCand)

if Cand = ∅ and NCand = ∅ then
output the clique induced by vertices C;

else
for all vi ∈ Cand do
Cand← Cand ∖ {vi};
callCliqueEnumeration(C∪{vi}, Cand∩N(vi), NCand∩N(vi));
NCand← NCand ∪ {vi};

end for
end if

Makino et al. [35] proposed new algorithms making full use of efficient
matrix multiplication to enumerate all maximal cliques in a general graph or
bicliques in a bipartite graph. They developed different algorithms for different
types of graphs (general graph, bipartite, dense, and sparse). In particular, for
a sparse graph such that the degree of each vertex is bounded by Δ ≪ ∣V ∣,
an algorithm with O(∣V ∣∣E∣) preprocessing time, O(Δ4) time delay (i.e, the
bound of running time between two consecutive outputs) and O(∣V ∣ + ∣E∣)
space is developed to enumerate all maximal cliques. Experimental results
demonstrate good performance for sparse graphs.
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Quasi-clique Enumeration. Compared to exact cliques, quasi-cliques
provide both more flexibility of the components being sought as well as more
opportunities for pruning the search space. However, the time complexity gen-
erally remains NP-complete. The Quick algorithm, introduced in [33], pro-
vided an illustrative example. The authors studied the problem of mining max-
imal degree-based quasi-cliques with size at least min size and degree of each
vertex at least ⌈(∣V ∣−1)⌉. The Quick algorithm integrates some novel prun-
ing techniques based on degree of vertices with a traditional depth-first search
framework to prune the unqualified vertices as soon as possible. Those pruning
techniques also can be combined with other existing algorithms to achieve the
goal of mining maximal quasi-cliques.

They employ these established pruning techniques based on diameter, min-
imum size threshold, and vertex degree. Let NG

k (v) = {u∣distG(u, v) ≤ k}
be the set of vertices that are within a distance of k from vertex v, indegX(u)
denotes the number of vertices inX that are adjacent to u, and exdegX (u) rep-
resents the number of vertices in cand exts(X) that are adjacent to u. All ver-
tices are sorted in lexicographic order, then cand exts(X) is the set of vertices
after the last vertex in X which can be used to extend X. For the pruning tech-
nique based on graph diameter, the vertices which are not in ∩v∈XNG

k (v) can
be removed from cand exts(X). Considering the minimum size threshold,
the vertices whose degree is less than ⌈(min size− 1)⌉ should be removed.

In addition, they introduce five new pruning techniques. The first two tech-
niques consider the lower and upper bound of the number of vertices that can
be used to extend current X. The first pruning technique is based on the upper
bound of the number of vertices that can be added to X concurrently to form a
-quasi-clique. In other words, given a vertex set X, the maximum number of
vertices in cand exts(X) that can be added into X is bounded by the minimal
degree of the vertices in X; The second one is based on the lower bound of
the number of vertices that can be added to X concurrently to form a -quasi-
clique. The third technique is based on critical vertices. If we can find some
critical vertices ofX, then all vertices in cand exts(X) and adjacent to critical
vertices are added into X. Technique 4 is based on cover vertex u which maxi-
mizes the size of CX(u) = cand exts(X)∩NG(u)∩ (∩v∈X∧(u,v)∋EN

G(v)).

Lemma 10.1. [33] Let X be a vertex set and u be a vertex in cand exts(X)
such that indegX (u) ≥ ⌈ × ∣X∣⌉. If for any vertex v ∈ X such that
(u, v) ∈ E, we have indegX(v) ≥ ⌈ × ∣X∣⌉, then for any vertex set Y
such that G(Y ) is a -quasi-clique and Y ⊆ (X ∪ (cand exts(X)∩NG(u)∩
(∩v∈X∧(u,v)∋EN

G(v)))), G(Y ) cannot be a maximal -quasi-clique.

From the above lemma, we can prune the CX(u) of cover vertex u from
cand exts(X) to reduce the search space. The last technique, the so-called
lookahead technique, is to check if X ∪ cand exts(X) is -quasi-clique. If
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so, we do not need to extend X anymore and reduce some computational cost.
See Algorithm Quick above.

Algorithm 7 Quick(X, cand exts(X), ,min size)

find the cover vertex u of X and sort vertices in cand exts(X);
for all v ∈ cand exts(X)− CX(u) do

apply minimum size constraint on ∣X∣+ ∣cand exts(X)∣;
apply lookahead technique (technique 5) to prune search space;
remove the vertices that are not in NG

k (v);
Y ← X ∪ {u};
calculate the upper bound and lower bound of the number vertices to be
added to Y in order to form -quasi-clique;
recursively prune unqualified vertices (techniques 1,2);
identify critical vertices of Y and apply pruning (technique 3);
apply existing pruning techniques to further reduce the search space;

end for
return -quasi-cliques;

K-Core Enumeration. For k-cores, we are happily able to escape
NP -complete time complexity; greedy algorithms with polynomial time exist.
Batagelj et al. [7] developed a efficient algorithm running in O(m) time, based
on the following observation: given a graph G = (V,E), if we recursively
eliminate the vertices with degree less than k and their incident edges, the re-
sulting graph is a k-core. The algorithm is quite simple and can be considered
as a variant of [29]. This algorithm attempts to assign each vertex with a core
number to which it belongs. At the beginning, the algorithm places all vertices
in a priority queue based on minimim degree. For each iteration, we eliminate
the first vertex v (i.e, the vertex with lowest degree) from the queue. After then,
we assign the degree of v as its core number. Considering v’s neighbors whose
degrees are greater than that of v, we decrease their degrees by one and reorder
the remaining vertices in the queue. We repeat such procedure until the queue
is empty. Finally, we output the k-cores based on their assigned core numbers.

3.2 Heuristic Approach

As mentioned before, it is impractical to exactly enumerate all maximal
cliques, especially for some real applications like protein-protein interaction
networks which have a very large number of vertices. In this case, fast heuris-
tic methods are available to address this problem. These methods are able to
efficiently identify some dense components, but they cannot guarantee to dis-
cover all dense components.
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Shingling Technique. Gibson et al. [18] propose an new algorithm based
on shingling for discovering large dense bipartite subgraphs in massive graphs.
In this paper, a dense bipartite subgraph is considered a cohesive group of
vertices which share many common neighbors. Since this algorithm utilizes
the shingling technique to convert each dense component with arbitrary size
into shingles with constant size, it is very efficient and practical for single large
graphs and can be easily extended for streaming graph data.

We first provide some basic knowledge related to the shingling technique.
Shingling was firstly introduced in [11] and has been widely used to esti-
mate the similarity of web pages, as defined by a particular feature extraction
scheme. In this work, shingling is applied to generate two constant-size finger-
prints for two different subsets A andB from set S of a universe U of elements,
such that the similarity of A and B can be computed easily by comparing fin-
gerprints of A and B, respectively. Assuming � is a random permutation of
the elements in the ordered universe U which contains A and B, the probabil-
ity that the smallest element of A and B is the same, is equal to the Jaccard
coefficient. That is,

Pr[�−1(mina∈A{�(a)}) = �−1(minb∈B{�(b)})] =
∣A ∩B∣
∣A ∪B∣

Given a constant number c of permutations �1, ⋅ ⋅ ⋅ , �c of U , we generate a
fingerprinting vector whose i-th element is mina∈A�i(a). The similarity be-
tween A and B is estimated by the number of positions which have the same
element with respect to their corresponding fingerprint vectors. Furthermore,
we can generalize this approach by considering every s-element subset of en-
tire set instead of the subset with only one element. Then the similarity of
two sets A and B can be measured by the fraction of these s-element subsets
that appear in both. This actually is an agreement measure used in information
retrieval. We say each s-element subset is a shingle. Thus this feature extrac-
tion approach is named the (s, c) shingling algorithm. Given a n-element set
A = {ai, 0 ≤ i ≤ n} where each element ai is a string, the (s, c) shingling
algorithm tries to extract c shingles such that the length of each shingle is exact
s. We start from converting each string ai into a integer xi by a hashing func-
tion. Following that, given two random integer vectors R,S with size c, we
generate a n-element temporary set Y = {yi, 0 ≤ i ≤ n} where each element
yi = Rj × xi + Sj . Then the s smallest elements of Y are selected and con-
catenated together to form a new string y. Finally, we apply a hash function
on string y to get one shingle. We repeat such procedure c times in order to
generate c shingles.

Remember that our goal is to discover dense bipartite subgraphs such that
vertices in one side share some common neighbors in another side. Figure
10.2 illustrates a simple scenario in a web community where each web page
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Figure 10.2. Simple example of web graph

Figure 10.3. Illustrative example of shingles

in the upper part links to some other web pages in the lower part. We can de-
scribe each upper web page (vertex) by the list of lower web pages to which it
links. In order to put some vertices into the same group, we have to measure
the similarity of the vertices which denotes to what extent they share common
neighbors. With the help of shingling, for each vertex in the upper part, we can
generate constant-size shingles to describe its outlinks (i.e, its neighbors in the
lower part). As shown in Figure 10.3, the outlinks to the lower part are con-
verted to shingles s1, s2, s3, s4. Since the size of shingles can be significantly
smaller than the original data, much computational cost can be saved in terms
of time and space.

In the paper, Gibson et al. repeatedly employ the shingling algorithm for
converting dense component into constant-size shingles. The algorithm is a
two-step procedure. Step 1 is recursive shingling, where the goal is to exact
some subsets of vertices where the vertices in each subset share many com-
mon neighbors. Figure 10.4 illustrates the recursive shingling process for a
graph (Γ(V ) is the outlinks of vertices V ). After the first shingling process,
for each vertex v ∈ V , its outlinks Γ(v) are converted into a constant size of
first-level shingles v′. Then we can transpose the mapping relation E0 to E1 so
that each shingle in v′ corresponds to a set of vertices which share this shingle.
In other words, a new bipartite graph is constructed where each vertex in one
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Figure 10.4. Recursive Shingling Step

part represents one shingle, and each vertex in another part is the original ver-
tex. If there is a edge from shingle v′ to vertex v, v′ is one of the shingles for
v’s outlinks generated by shingling. From now on, V is considered as Γ(V ′).
Following the same procedure, we apply shingling on V ′ and Γ(V ′). After
the second shingling process, V is converted into a constant-size V

′′

, so-called
second-level shingles. Similar to the transposition in the first shingling pro-
cess, we transpose E1 to E2 and obtain many pairs < v′′,Γ(v′′) > where v′′

is second-level shingles and Γ(v′′) are all the first-level shingles that share a
second-level shingle. Step 2 is clustering, where the aim is to merge first-level
shingles which share some second-level shingles. Essentially, merges a num-
ber of biclique subsets into one dense component. Specifically, given all pairs
< v′′,Γ(v′′) >, a traditional algorithm, namely UnionFind, is used to merge
some first-level shingles in Γ(V ′′) such that any two first-level shingles at least
share one second-level shingle. To the end, we map the clustering results back
to the vertices of the original graph and generate one dense bipartite subgraph
for each cluster. The entire algorithm is presented in Algorithm DiscoverDens-
eSubgraph.

GRASP Algorithm. As mentioned in Table 10.2, Abello et al. [1] were
one of the first to formally define quasi-dense components, namely -cliques,
and to investigate their discovery. They utilize a existing framework known
as a Greedy Randomized Adaptive Search Procedure (GRASP). Their paper
makes two major contributions. First, they propose a novel evaluation measure
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Algorithm 8 DiscoverDenseSubgraph(c1 , s1, c2, s2)

apply recursive shingling algorithms to obtain first- and second-level shin-
gles;
let S =< s,Γ(s) > be first-level shingles;
let T =< t,Γ(t) > be second-level shingles;
apply clustering approach to get the clustering result C in terms of first-level
shingles;
for all C ∈ C do

output ∪s∈CΓ(s) as a dense subgraph;
end for

on potential improvement of adding a new vertex to a current quasi-clique.
This measure enables the construction of quasi-cliques incrementally. Second,
a semi-external memory algorithm incorporating edge pruning and external
breath first search traversal is introduced to handle very large graphs. The basic
idea is to decompose a large graph into several small components, then process
each of them using GRASP. In the following, we concentrate our efforts on
discussing the first point and its usage in GRASP. Interested readers can refer
to [1] for the details of the second algorithm.

GRASP is a multi-start iterative process, with two steps per iteration, ini-
tial construction and local optimization. The initial construction step aims to
produce a feasible solution for subsequent processing. For local optimization,
we examine the neighborhood of the current solution in terms of the solution
space, and try to find a better local solution. A comprehensive survey of the
GRASP approach can be found in [41]. In this paper, Abello et al. proposed a
incremental algorithm to build a maximal -clique, which serves as the initial
feasible solution in GRASP. Before we move to the algorithm, we first define
the potential of a vertex set R as

�(R) = ∣E(R)∣ − 
(
∣R∣
2

)

and the potential of R with respect to a disjoint vertices set S to be

�S(R) = �(S ∪R)
Furthermore, considering a graph G = (V,E) and a -clique induced by ver-
tices set S ⊂ V , we call a vertex x ∈ (V ∖S) a �-vertex with respect to S if and
only if the graph induced by S ∪ {x} is a -clique. Then, the set of -vertices
with respect to S is denoted as N(S). Given this, the incremental algorithm
tries to add a good vertex in N(S) into S. To facilitate our discussion, a
potential difference of a vertex y ∈ N(S) ∖ {x} is defined to be

�S,x(y) = �S∪{x}({y}) − �S({y})
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The above equation can also expressed as

�S,x(y) = deg(x)∣S + deg(y)∣{x} − (∣S∣+ 1)

where deg(x)∣S is the degree of x in the graph induced by vertex set S. This
equation implies that the potential of y which is a -neighbor of x does not
decrease when x is included in S. Here the -neighbors of vertex x are the
neighbors of x with deg(x)∣S greater than ∣S∣. The total effect caused by
adding vertex x to current -clique S is

ΔS,x =
∑

y∈N(S)∖{x}
�S,x(y) = ∣N({x})∣ + ∣N(S)∣(deg(x)∣S − (∣S∣+ 1))

We see that the vertices with a large number of -neighbors and high degree
with respect to S are preferred to be selected. A greedy algorithm to build
a maximal -clique is outlined in Algorithm DiscoverMaximalQuasi-Clique.
The time complexity of this algorithm is O(∣S∣∣V ∣2), where S the vertex set
used to induce a maximal -clique.

Algorithm 9 DiscoverMaximalQuasi-clique(V,E, )

∗ ← 1, S∗ ← ∅;
select a vertex x ∈ V and add into S∗;
while ∗ ≥  do
S ← S∗;
if N∗(S) ∕= ∅ then

select x ∈ N∗(S);
else

if N (S) ∖ S = ∅ then
return S;

end if
select x ∈ N (S) ∖ S;

end if
S∗ ← S ∪ {x};
∗ ← 2∣E(S∗)∣/(∣S∗∣(∣S∗∣ − 1));

end while
return S;

Then applying GRASP, a local search procedure tries to improve the gen-
erated maximal -clique. Generally speaking, given current -clique induced
by vertex set S, this procedure attempts to substitute two vertices within S
with one vertex outside S in order to improve aforementioned ΔS,x. GRASP
guarantees to obtain a local optimum.
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Visualization of Dense Components. Wang et al. [52] combine theoret-
ical bounds, a greedy heuristic for graph traversal, and visual cues to develop
a mining technique for clique, quasi-clique, and k-core components. Their ap-
proach is named CSV for Cohesive Subgraph Visualization. Figure 10.5 shows
a representative plot and how it is interpreted.

Traversal Order
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w

Figure 10.5. Example of CSV Plot

A key measure in CSV is co-cluster size CC(v, x), meaning the (estimated)
size of the largest clique containing both vertices v and x. Then, C(v) =
max{CC(v, x),∀x ∈ N(v)}.

At the top level of abstraction, the algorithm is not difficult. We maintain a
priority queue of vertices observed so far, sorted by C(v) value. We traverse
the graph and draw a density plot by iterating the following steps:

1 Remove the top vertex from the queue, making this the current vertex v.

2 Plot v.

3 Add v’s neighbors to the priority queue.

Now for some details. If this is the i-th iteration, plot the point (i, Cseen(vi)),
where Cseen(vi) is the largest value of C(vi) observed so far. We say "seen so
far" because we may not have observed all of v neighbors yet, and even when
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we have, we are only estimating clique sizes. Next, some neighbors of v may
already be in the queue. In this case, update their C values and reprioritize.
Due to the estimation method described below, the new estimate is no worse
that the previous one.

Since an exact determination of CC(v, x) is computationally expensive,
CSV takes several steps to efficiently find a good estimate of the actual clique
size. First, to reduce the clique search space, the graph’s vertices and edges are
pre-processed to map them to a multi-dimensional space. A certain number of
vertices are selected as pivot points. Then each vertex is mapped to a vector:
v →M(v) = {d(v, p1), ⋅ ⋅ ⋅ , d(v, pp)}, where d(v, pi) is the shortest distance
in the graph from v to pivot pi. The authors prove that all the vertices of a
clique map to the same unit cell, so we can search for cliques by searching
individual cells.

Second, CSV further prunes the vertices within each occupied cell. Do the
following for each vertex v in each occupied cell: For each neighbor x of v,
identify the set of vertices Y which connect to both v and x. Construct the
induced subgraph S(v, x, Y ). If there is a clique, it must be a subgraph of S.
Sort Y by decreasing order of degree in S. To be in a k-clique, a vertex must
have degree ≥ k − 1. Consequently, we step through the sorted Y list and
eliminate the remainder when the threshold �S(yi) < i − 1 is reached. The
size of the remaining list is an upper bound estimate for C(v) and CC(v, x).
With relatively minor modification, the same general approach can be used for
quasi-cliques and k-cores.

The slowest step in CSV is searching the cells for pseudo-cliques, with over-
all time complexity O(∣V ∣2log∣V ∣2d). This becomes exponential when the
graph is a single large clique. However, when tested on two real-life datasets,
DBLP co-authorship and SMD stock market networks, d << ∣V ∣, so perfor-
mance is polynomial.

Other Heuristic Approaches. We give a brief overview of three addi-
tional heuristic approaches. Li et al. [32] studied the problem of discovering
dense bipartite subgraphs with so-called balanced noise tolerance, meaning
that each vertex in one part is allowed no more than a certain number or a cer-
tain percentage of missing edges to the other part. This definition can avoid
the density skew found within density-based quasi-cliques. Li et al. observed
that their type of maximal quasi-biclique cannot be trivially expanded from
traditional maximal bicliques. Some useful properties such as bounded clo-
sure and the fixed point property are utilized to develop an efficient algorithm,
� − CompleteQB, for discovering maximal quasi-bicliques with balanced
noise tolerance. Given a bipartite graph, the algorithm looks for maximal
quasi-bicliques where the number of vertices in each part exceeds a specified
value ms ≥ �. Two cases are considered. If ms ≥ 2�, the problem is con-
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verted into the problem to find exact maximal �-quasi bicliques that has been
well discussed in [47]. On the other hand, if ms < 2�, a depth-first search for
�-tolerance maximal quasi-bicliques whose vertex size is between ms and 2�
is conducted to achieve the goal.

A spectral analysis method [13] is used to uncover the functionality of a
certain dense component. To begin, the similarity matrix for a protein-protein
interaction network is defined, and the corresponding eigenvalues and eigen-
vectors are calculated. In particular, each eigenvector with positive eigenvalue
is identified as a quasi-clique, while each eigenvector with negative eigenvalue
is considered a quasi-biclique. Given these dense components, a statistical
test based on p-value is applied to measure whether a dense component is en-
riched with proteins from a particular category more than would be expected
by chance. Simply speaking, the statistical test ensures that the existence of
each dense component is significant with respect to a specific protein category.
If so, that dense component annotated with the corresponding protein function-
ality.

Kumar et al. [30] focus on enumerating emerging communities which have
little or no representation in newsgroups or commercial web directories. They
define an (i, j) biclique, where the number of vertices in each part are i and j,
respectively, to be the core of interested communities. Therefore, this paper
aims to extract a non-overlapping maximal set of cores for interested com-
munities. A stream-based algorithm combining a set of pruning techniques
is presented to process huge raw web data and eventually generate the appro-
priate cores. Some open problems like how to automatically extract semantic
information and organize them into a useful structure are also discussed.

3.3 Exact and Approximation Algorithms for Discovering
Densest Components

In this section, we focus on the problem of finding the densest components,
i.e., the quasi-cliques with the highest values of gamma. We first look at
exact solutions, utilizing max-flow/min-cut related algorithms. To reach faster
performance, we then consider several greedy approximation algorithms that
guarantee. These bounded-approximation algorithms are able to efficiently
handle the large graphs and obtain guaranteed reasonable results.

Exact Solution for Discovering Densest Subgraph. We first consider
density of a graph defined as its average degree. Using this definition, Gold-
berg [19] showed that the problem of finding the densest subgraph can be ex-
actly reduced to a sequence of max-flow/min-cut problems. Given a value g,
algorithm constructs a network and finds a min-cut on it. The resulting sizes
tell us whether there is a subgraph with density at least g. Given a graph G
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with n vertices and m edges, the construction of its corresponding cut network
are as follows:

1 Add two vertices source s and sink t to undirected G;

2 Replace each undirected edge with two directed edges with capacity 1
such that each endpoint is the source and target of those two edges, re-
spectively;

3 Add directed edges with capacity m from s to all vertices in G, and add
directed edges with capacity m + 2g − di from all vertices in G to t,
where di is the degree of vertex vi in the original graph.

We apply the max-flow/min-cut algorithm to decompose the vertices of the
new network into two non-overlapping sets S and T , such that s ∈ S and
t ∈ T . Let Vs = S ∖ {s}. Goldberg proved that there exists a subgraph with
density at least g if Vs ∕= ∅. The following theorem formally presents this
result:

Theorem 10.2. Given S and T which are generated by the algorithm for max-
flow min-cut problem, if Vs ∕= ∅, then there is no subgraph with density D such
that g ≤ D. If Vs = ∅, then there exists a subgraph with density D such that
g ≥ D.

The remaining issue is to enumerate all possible values of density and apply
the max-flow/min-cut algorithm for each value. Goldberg observed that the
difference between any two subgraphs is no more than 1

n(n−1) . Combined

with binary search, this observation provides a effective stop criteria to reduce
the search space. The sketch of the entire algorithm is outlined in Algorithm
FindDensestSubgraph.

Greedy Approximation Algorithm with Bound. In [14], Charikar
describes exact and greedy approximation algorithms to discover subgraphs
which can maximize two different notions of density, one for undirected graphs
and one for directed graphs. The density notion utilized for undirected graphs
is the average degree of the subgraph, such that density f(S) of the subset S

is ∣E(S)∣
∣S∣ . For directed graphs, the criteria first proposed by Kannan and Vinay

[27] is applied. That is, given two subsets of vertices S ⊆ V and T ⊆ V , the

density of subgraph HS,T is defined as d(S, T ) = ∣E(S,T )∣√
∣S∣∣T ∣

. Here, S and T are

not necessarily disjoint. This paper studies the optimization problem of dis-
covering a subgraph Hs induced by a subset S with maximum f(S) or HS,T

induced by two subsets S and T with maximum d(S, T ), respectively.
The author shows that finding a subgraph HS in undirected graph with max-

imum f(S) is equivalent to solving the following linear programming (LP)
problem:
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Algorithm 10 FindDensestSubgraph(G)

mind← 0;maxd← m;
Vs ← ∅;
while maxd−mind ≥ 1

n(n−1) do

g ← maxd+mind
2 ;

Construct new network as we have mentioned;
Generate S and T utilizing max-flow min-cut algorithm;
if S = {s} then
maxd← g;

else
mind← g;
Vs ← S − {s};

end if
end while
return subgraph induced by Vs;

(1) max
∑

ij xij
(2) ∀ij ∈ E xij ≤ yi
(3) ∀ij ∈ E xij ≤ yj
(4)

∑
i yi ≤ 1

(5) xij , yi ≥ 0
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From a graph viewpoint, we assign each vertex vi with weight
∑

j xij , and

min(yi, yj) is the threshold for the weight of all edges (vi, vj) incident to
vertex vi. Then xij can be considered as the weight of edge (vi, vj) which
vertex vi distributes. Weights are normalized so that the sum of threshold for
edges incident to vertex vi,

∑
i yi, is bounded by 1. In this sense, finding

the optimal solution of
∑

ij xij is equivalent to finding a set of edges such that
the weights of their incident vertices mostly distribute to them. Charikar shows
that the optimality of the above LP problem is exactly equivalent to discovering
the densest subgraph in a undirected graph.

Intuitively, the complexity of this LP problem depends highly on the num-
ber of edges and vertices in the graph (i.e., the number of inequality con-
straints in LP). It is impractical for large graphs. Therefore, Charikar pro-
poses an efficient greedy algorithm and proves that this algorithm produces a
2-approximation for f(G). This greedy algorithm is a simple variant of [29].
Let S is a subset of V and HS is its induced subgraph with density f(HS).
Given this, we outline this greedy algorithm as follows:

1 Let S be the subset of vertices, initialized as V ;

2 Let HS be the subgraph induced by vertices S;

3 For each iteration, eliminate the vertex with lowest degree in HS from S
and recompute its density;

4 For each iteration, measure the density ofHS and record it as a candidate
for densest component

Similar techniques are also applied to finding the densest subgraph in a di-
rected graph. The greedy algorithm for directed graphs takes O(m+ n) time.
According to the analysis, Charikar claims that we have to run the greedy al-
gorithm for O( logn� ) values of c in order to get a 2 + � approximation, where
c = ∣S∣/∣T ∣ and S, T are two subset of vertices in the graph.

A variant of this approach is presented in [25]. Jin et al. developed an
approximation algorithm for discovering the densest subgraph by introducing
a new notion of rank subgraph. The rank subgraph can be defined as follows:

Definition 10.3. (Rank Subgraph) [25]. Given an undirected graph G =
(V,E) and a positive integer d, we remove all vertices with degree less than d
and their incident edges from G. Repeat this procedure until no vertex can be
eliminated and form a new graph Gd. Each vertex in Gd is adjacent to at least
d vertices in Gd. If Gd has no vertices, it is denoted G∅. Given this, construct
a subgraph sequence G ⊇ G1 ⊇ G2 ⋅ ⋅ ⋅ ⊇ Gl ⊃ Gl+1 = G∅, where Gl ∕= G∅
and contains at least l + 1 vertices. Define l as the rank of the graph G, and
Gl as the rank subgraph of G.
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Lemma 10.4. Given an undirected graph G, let Gs be the densest subgraph
of G with density d(Gs) and Gl be its rank subgraph with density d(Gl). Then,
the density of Gl is no less than half of the density of Gs:

d(Gl) ≥
d(Gs)

2

The above lemma implies that we can use the rank subgraph Gl with highest
rank ofG to approximate its densest subgraph. This technique is utilized to de-
rive a efficient search algorithm for finding densest subgraphs from a sequence
of bipartite graphs. The interested reader can refer to [25] for details.

Other Approximation Algorithms. Anderson et al. [4] consider the prob-
lem of discovering dense subgraphs with lower bound or upper bound of size.
Three problems including dalks, damks and dks are formulated. In detail,
dalks is the abbreviation for Densest-At-Least-K subgraph problem aiming at
extracting an induced subgraph with highest average degree among all sub-
graphs with at least k vertices. Similarly, damks looks for the Densest At-
Most-K subgraph and dks seeks the densest subgraph with exactly k vertices.
Clearly, both dalks and damks are relaxed versions of dks. Anderson et al.
show that daks is approximately as hard as dks which has been proven to
be NP-Complete. More importantly, an effective 1/3-approximation algorithm
based on core decomposition of a graph is proposed for dalks. This algorithm
runs in O(m + n) and O(m + n log n) time for unweighted and weighted
graphs, respectively.

We describe the algorithm for dalks as follows. Given a graph G = (V,E)
with n vertices and a lower bound of size k, let Hi be the subgraph induced by
i vertices. At the beginning, i is initialized with n and Hi is the original graph
G. Then, we remove the vertex vi with minimum weighted degree from Hi

to form Hi−1. Next, we update its corresponding total weight W (Hi−1) and
density d(Hi−1). We repeat this procedure and get a sequence of subgraphs
Hn,Hn−1, ⋅ ⋅ ⋅ ,H1. Finally, we choose the subgraph Hk with maximal density
d(Hk) as the resulting dense component.

Anderson [3] develops a local search algorithm to find a dense bipartite
subgraph near a specified starting vertex in a bipartite graph. Specifically, for
any bipartite subgraph with K vertices and density � (the definition of density
is identical to the definition in [27]), the proposed algorithm guarantees to
generate a subgraph with density Ω(�/ log Δ) near any starting vertex v where
Δ is the maximum degree in the graph. The time complexity of this algorithm
is O(ΔK2) which is independent of the size of graph, and thus has potential
to be scaled for large graphs.
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4. Frequent Dense Components

The dense component discovery problem can be extended to consider a
dataset consisting of a set of graphs D = {G1, ⋅ ⋅ ⋅ , Gn}. In this case, we
have two criteria for components: they must be dense and they must occur
frequently. The density requirement can be any of our earlier criteria. The
frequency requirement says that a component satisfies a minumum support
threshold; that is, it appears in at least a certain number of graphs. Obviously,
if we say that we find the same component in different graphs, there must be
a correspondence of vertices from one graph to another. If the graphs have
exactly the same vertex sets, then we call this a relation graph set.

Many authors have considered the broader problem of frequent pattern min-
ing in graphs [50, 23, 31]; however, not until recently has there been a clear
focus on patterns defined and restricting by density. Several recent papers have
looked into discovery methods for frequent dense subgraphs. We take a more
detailed look at some of these papers.

4.1 Frequent Patterns with Density Constraints

One approach is to impose a density constraint on the patterns discovered
by frequent pattern mining. In [55], Yan et al. use the minumum cut clustering
criterion: a component must have an edge cut less than or equal to k. Note
that this is equivalent to a k-core criterion. Furthermore, each frequent pattern
must be closed, meaning it does not have any supergraph with the same support
level. They develop two approaches, pattern growth and pattern reduction. In
pattern growth, begin with a small subgraph (possibly a single vertex) that
satisfies both the frequency and density requirements but may not be closed.
The algorithm incrementally adds adjacent edges until the pattern is closed. In
pattern reduction, initialize the working set P1 to be the first graph G1. Update
the working set by intersecting its edge set with the edges of the next graph:

Pi = Pi−1 ∩GI = (V,E(Pi−1) ∩ E(GI))

This removes any edges that do not appear in both input graphs. Decompose
Pi into k-core subgraphs. Recursively call pattern reduction for each dense
subgraph. Record the dense subgraphs that survive enough intersections to be
considered frequent.

The greedy removal of edges at each iteration quickly reduces the working
set size, leading to fast execution time. The trade-off is that we prune away
edges that might have contributed to a frequent dense component. The con-
sequence of edge intersection is that we only find components whose edges
happen to appear in the first min support graphs. Therefore, a useful heuris-
tic would be to order the graphs by decreasing overall density. In [55], they
find that pattern reduction works better when targeting high connectivity but a



328 MANAGING AND MINING GRAPH DATA

low support threshold. Conversely, pattern growth works better when targeting
high support but only modest connectivity.

4.2 Dense Components with Frequency Constraint

Hu et al. [22] take a different perspective, providing a simple meta-algorithm
on top of an existing dense component algorithm. From the input graphs,
which must be a relation graph set, they derive two new graphs, the Sum-
mary Graph and the Second-Order Graph. The Summary Graph is Ĝ =
(V, Ê), where an edge exists if it appears in at least k graphs in D. For
the Second-Order Graph, we transform each edge in D into a vertex, giving
us F = (V × V,EF ). An edge joins two vertices in F (equivalent to two
edges in G) if they have similar support patterns in D. An edge’s support
pattern is represented as the n-dimensional vector of weights in each graph:
w(e) = {wG1(e), ⋅ ⋅ ⋅ , wGn(e)}. Then, a similarity measure such as Eu-
clidean distance can be used to determine whether two vertices in F should
be connected.

Given these two secondary graphs, the problem is quite simple to state: find
coherent dense subgraphs, where a subgraph S qualifies if its vertices form a
dense component in Ĝ and if its edges form a dense component in F . Density
in Ĝmeans that the component’s edges occur frequently, when considering the
whole relation graph set D. Density in F ensures that these frequent edges are
coherent, that is, they tend to appear in the same graphs.

To efficiently find dense subgraphs, Hu uses a modified version of Hartuv
and Shamir’s HCS mincut algorithm [21]. Because Hu’s approach converts
any n graphs into only 2 graphs, it scales well with the number of graphs. A
drawback, however, is the potentially large size of the second-order graph. The
worst case would occur when all n graphs are identical. Since all edge support
vectors would be identical, the second order graph would become a clique of
size ∣E∣ with O(∣E∣2) edges.

4.3 Enumerating Cross-Graph Quasi-Cliques

Pei et al. [40] consider the problem of finding so-called cross-graph quasi-
cliques, CGQC for short. They use the balanced quasi-clique definition. Given
a set of graphs D = {G1, ⋅ ⋅ ⋅ , Gn} on the same set of vertices U , correspond-
ing parameters 1, ⋅ ⋅ ⋅ , n for the completeness of vertex connectivity, and a
minimum component size minS , they seek to find all subsets of vertices of
cardinality ≥ minS such that when each subset is induced upon graph Gi, it
will form a maximal i-quasi-clique.

A complete enumeration is #P -Complete. Therefore, they derive sev-
eral graph-theoretical pruning methods that will typically reduce the execution
time. They employ a set enumeration tree [43] to list all possible subsets of
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{ }

{ x } { y } { z }

{ xy } { xz } { yz }

{ xyz }

Figure 10.6. The Set Enumeration Tree for {x,y,z}

vertices, while taking advantage of some tree-based concepts, such as depth-
first search and sub-tree pruning. An example of a set enumeration tree is
shown in Figure 10.6. Below is a brief listing of some of the graph and tree
properties they utilize to prune the set of candidate components, followed by
the main algorithm, called Crochet.

1 Given  and graph size n, there exist upper bounds on the graph diameter
diam(G). For example, diam(G) ≤ n− 1 if  > 1

n−1 .

2 Define Nk(u) = vertices within a distance k of u.

3 Reducing vertices: If �(u) < i(minS − 1) or ∣Nk(u)∣ < (minS − 1),
then u cannot be in a CGQC.

4 Candidate projection: when traversing the tree, a child cannot be in a
CGQC if it does not satisfy its parent’s neighbor distance bounds Nki

Gi
.

5 Subtree pruning: apply various rules on minS , redundancy, monotonic-
ity.

5. Applications of Dense Component Analysis

In financial and economic analysis, dense components represent entities that
are highly correlated. For example, Boginski et al. define a market graph,
where each vertex is a financial instrument, and two vertices are connected
if their behaviors (say, price change over time) are highly correlated [9, 10].
A dense component then indicates a set of instruments whose members are
well-correlated to one another. This information is valuable both for under-
standing market dynamics and for predicting the behavior of individual instru-
ments. Density can also indicate strength and robustness. Du et al. [15] iden-
tify cliques in a financial grid space to assist in discovering price-value motifs.
Some researchers have employed bipartite and multipartite networks. Sim et
al. [47] correlates stocks to financial ratios using quasi-bicliques. Alkemade
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Algorithm 11 Crochet(G1, G2, 1, 2,mins)

1: for all graph Gi do
2: construct set enumeration tree for all possible vertex subsets of Gi;
3: ki ← upper bound diameter of complete i-quasi-complete graph inGi;
4: end for
5: apply Vertex and Edge Reduction to G1 and G2;
6: for all v ∈ V (G1), using DFS and highest-degree-child-first order do
7: recursive-mine ({v}, G1, G2);
8: end for
9:

10: Function recursive-mine(X,G1 , G2); {returns TRUE if still seeking
quasi-cliques in this branch}

11: Gi ← Gi(P ), P = {u∣u ∈ ∩v∈X,i=1,2N
ki
Gi
(v)} {Candidate Projection}

12: Gi ← Gi(P (X));
13: apply Vertex Reduction;
14: if a Subtree Pruning condition applies then return FALSE;
15: continue← FALSE;
16: for all v ∈ P (X)∖X, using DFS and highest-degree-child-first order do
17: continue← continue ∨ recursive-mine (X ∪ {v}, G1, G2);
18: end for
19: if (not continue) ∧ (Gi(X) is a i-quasi-complete graph) then
20: output X;
21: return TRUE;
22: else
23: return continue;
24: end if

et al. [2] finds edge density in a tripartite graph of producers, consumers, and
intermediaries to be an important factor in the dynamics of commerce.

In the first decade of the 21st century, the field that perhaps has shown
the greatest interest and benefitted the most from dense component analysis
is biology. Molecular and systems biologists have formulated many types of
networks: signal transduction and gene regulation networks, protein interac-
tion networks, metabolic networks, phylogenetic networks, and ecological net-
works. [26].

Proteins are so numerous that even simple organisms such as Saccha-
romyces cerevisiae, a budding yeast, are believed to have over 6000 [51]. Un-
derstanding the function and interrelationships of each one is a daunting task.
Fortunately, there is some organization among the proteins. Dense components
in protein-protein interaction networks have been shown to correlate to func-
tional units [49, 42, 54, 13, 6]. Finding these modules and complexes helps
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to explain metabolic processes and to annotate proteins whose functions are as
yet unknown.

Gene expression faces similar challenges. Microarray experiments can
record which of the thousands of genes in a genome are expressed under a
set of test conditions and over time. By compiling the expression results from
several trials and experiments, a network can be constructed. Clustering the
genes into dense groups can be used to identify not only healthy functional
classes, but also the expression pattern for genetic diseases [48].

Proteins interact with genes by activating and regulating gene transcription
and translation. Density in a protein-gene bipartite graph suggests which pro-
tein groups or complexes operate on which genes. Everett et al. [16] have
extended this to a tripartite protein-gene-tissue graph.

Other biological systems are also being modeled as networks. Ecological
networks, famous for food chains and food webs, are receiving new attention
as more data becomes available for analysis and as the effects of climate change
become more apparent.

Today, the natural sciences, the social sciences, and technological fields are
all using network and graph analysis methods to better understand complex
systems. Dense component discovery and analysis is one important aspect
of network analysis. Therefore, readers from many different backgrounds will
benefit from understanding more about the characteristics of dense components
and some of the methods used to uncover them.

6. Conclusions and Future Research

In this chapter, we presented a survey of algorithms for dense subgraph dis-
covery. This problem has been studied in the classical literature in the context
of the problem of graph partitioning. Subsequently, a number of techniques
have been designed for quasi-clique detection, as well as shingling approaches
for dense subgraph discovery. Many of the recent applications are designed
in the contexts of the web, social, communication and biological networks.
These networks have a number of properties, in that they are massive and often
dynamic in nature. This leads to a number of interesting problems for future
research:

In many large scale applications, the data is often disk-resident. This
leads to issues involving efficient processing of the underlying network.
This is because it is not possible to perform random access of the edges
in a disk-resident networks.

In applications such as the web and social networks, the domain of the
underlying graph may be massive. In many web, telecommunication,
biological and social networks, we may have millions of nodes in the
underlying graph. Consequently, the number of edges may range in the
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trillions. This may lead to storage issues, since the number of distinct
edges may not even be possible to store effectively on many desktop
machines.

A number of recent applications may lead to the streaming scenario in
which the edges in the graph are received incrementally over time at a
fast speed. This is the case in many large telecommunication and social
networks. In such cases, it may be extremely challenging to analyze the
underlying graph in real time to determine dense patterns.

The area of dense graph mining in massive graphs is still relatively unexplored
and represents a fertile area of future research for a number of different appli-
cations.
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Abstract Supervised learning on graphs is a central subject in graph data processing. In
graph classification and regression, we assume that the target values of a certain
number of graphs or a certain part of a graph are available as a training dataset,
and our goal is to derive the target values of other graphs or the remaining part
of the graph. In drug discovery applications, for example, a graph and its target
value correspond to a chemical compound and its chemical activity. In this chap-
ter, we review state-of-the-art methods of graph classification. In particular, we
focus on two representative methods, graph kernels and graph boosting, and we
present other methods in relation to the two methods. We describe the strengths
and weaknesses of different graph classification methods and recent efforts to
overcome the challenges.

Keywords: graph classification, graph mining, graph kernels, graph boosting

1. Introduction

Graphs are general and powerful data structures that can be used to repre-
sent diverse kinds of objects. Much of the real world data is represented not
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Figure 11.1. Graph classification and label propagation.

as vectors, but as graphs (including sequences and trees, which are specialized
graphs). Examples include biological sequences, semi-structured texts such
as HTML and XML, chemical compounds, RNA secondary structures, API
call graphs, etc. The topic of graph data processing is not new. Over the last
three decades, there have been continuous efforts in developing new methods
for processing graph data. Recently we have seen a surge of interest in this
topic, fueled partly by new technical advances, for example, development of
graph kernels [21] and graph mining [52] techniques, and partly by demands
from new applications, for example, chemical informatics. In fact, chemical
informatics is one of the most prominent fields that deal with large reposito-
ries of graph data. For example, NCBI’s PubChem has millions of chemical
compounds that are naturally represented as molecular graphs. Also, many
different kinds of chemical activity data are available, which provides a huge
test-bed for graph classification methods.

This chapter aims at giving an overview of existing graph classification
methods. The term “graph classification” can mean two different tasks. The
first task is to build a model to predict the class label of a whole graph (Fig-
ure 11.1, left). The second task is to predict the class labels of nodes in a
large graph (Figure 11.1, right). For clarity, we used the term to represent the
first task, and we call the second task “label propagation”[6]. This chapter
mainly deals with graph classification, but we will provide a short review of
label propagation in Section 5.

Graph classification tasks can either be unsupervised or supervised. Un-
supervised methods classify graphs into a certain number of categories by
similarity [47, 46]. In supervised classification, a classification model is con-
structed by learning from training data. In the training data, each graph (e.g., a
chemical compound) has a target value or a class label (e.g., biochemical activ-
ity). Supervised methods are more fundamental from a technical point of view,
because unsupervised learning problems can be solved by supervised methods
via probabilistic modeling of latent class labels [46]. In this chapter, we focus
on two supervised methods for graph classification: graph kernels and graph
boosting [40], which are similarity- and feature-based respectively. The two
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Figure 11.2. Prediction rules of kernel methods.

methods differ in many aspects, and a characterization of the difference of
these two methods would be helpful in characterizing other methods.

Kernel methods, such as support vector machines, construct a prediction
rule based on a similarity function between two objects [42]. Similarity func-
tions which satisfy a mathematical condition called positive definiteness are
called kernel functions. For example, in Figure 11.2, the similarity between
two objects is represented by a kernel function K(x, x′). The prediction func-
tion f(x) is a linear combination of x’s similarities to each training example
K(x, xi), i = 1, . . . , n. In order to apply kernel methods to graph data, it is
necessary to define a kernel function for graphs that can measure the similarity
between two graphs. It is natural to use the number of shared substructures in
two graphs as a similarity measure. However, the enumeration of subgraphs of
a given graph is NP-hard [12]. Therefore, one needs to use simpler substruc-
tures such as paths and trees. Graph kernels [21] are based on the weighted
counts of common paths. A clever recursive algorithm is employed to com-
pute the similarity without total enumeration of substructures.

One obvious drawback of graph kernels is that it is not clear which substruc-
tures have the biggest contribution to classification. For a new graph classified
by similarity, it is not always possible to know which part of the compound is
essential in classification. In many chemical applications, the users are inter-
ested not only in accurate prediction of biochemical activities, but also in the
mechanism creating the activities. This interpretation problem motivates us to
reexamine the approach of subgraph enumeration. Recently, frequent subgraph
enumeration algorithms such as AGM [18], Gaston [33] and gSpan [52] have
been proposed. They can enumerate all the subgraph patterns that appear more
than m times in a graph database. The threshold m is called minimum sup-
port. Frequent subgraph patterns are determined by branch-and-bound search
in a tree shaped search space (Figure 11.7). The computational time crucially
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depends on the minimum support parameter. For larger values of the support
parameter, the search tree can be pruned earlier. For chemical compound data-
sets, it is easy to mine tens of thousands of graphs on a commodity desktop
computer, if the minimum support is reasonably high (e.g., 10% of the num-
ber of graphs). However, it is known that, to achieve the best accuracy, the
minimum support has to be set to a small value (e.g., smaller than 1%) [51,
23, 16]. In such a setting, the graph mining becomes prohibitively inefficient,
because the algorithm creates millions of patterns. This also makes subsequent
processing very expensive. Graph boosting [40] progressively constructs the
prediction rule in an iterative fashion, and in each iteration only a few infor-
mative subgraphs are discovered. In comparison to the na-“ve method of using
frequent mining and support vector machines, the graph mining routine has to
be invoked multiple times. However, an additional search tree pruning con-
dition can speed up each call, and the overall time is shorter than the na-“ve
method.

The rest of this chapter is organized as follows. In Section 2, we will ex-
plain graph kernels, and review its recent extensions for graph classification.
In Section 3, we will discuss graph boosting and other methods based on ex-
plicit substructure mining. Applications of graph classification methods are
reviewed in Section 4. Section 5 briefly presents the label propagation tech-
niques. We conclude the chapter in Section 6.

2. Graph Kernels

We consider a graph kernel as a similarity measure for two graphs whose
nodes and edges are labeled (Figure 11.3). In this section, we present the
most fundamental kernel called the marginalized graph kernel [21], which is
based on graph paths. Recently, different versions of graph kernels have been
proposed using different substructures. Examples include cyclic paths [17] and
trees [29].

The proposed graph kernel is based on the idea of random walking. For the
labeled graph shown in Figure 11.3a, a label sequence is produced by travers-
ing the graph. A representative example is as follows:

(A, c,C, b,A, a,B), (2.1)

The vertex labels A,B,C,D and the edge labels a, b, c, d appear alternately.
By repeating random walks with random initial and end points, it is possible
to obtain the probabilities for all possible walks (Figure 11.3b). The essential
idea of the graph kernel is to derive a similarity measure of two graphs by
comparing their probability tables. It is computationally infeasible to perform
all possible random walks. Therefore, we employ a recursive algorithm which
can estimate the underlying probabilities. The node and edge labels are either
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C A
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b

c

b
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a

a

Figure 11.3. (a) An example of labeled graphs. Vertices and edges are labeled by uppercase
and lowercase letters, respectively. By traversing along the bold edges, the label sequence (2.1)
is produced. (b) By repeating random walks, one can construct a list of probabilities.

discrete symbols or vectors. In the latter case, it is necessary to define node
kernels and edge kernels to specify the similarity of vectors.

Before describing technical details, we formally define a labeled graph. Let
ΣV denote the set of vertex labels, and ΣE the set of edge labels. Let X be
a finite nonempty set of vertices, v be a function v : X → ΣV . Let ℒ be
a set of vertex pairs that denote edges, and e be a function e : ℒ → ΣE .
(We assume that there are no multiple edges from one vertex to another.) Then
G = (X , v,ℒ, e) is a labeled graph with directed edges. Our task is to construct
a kernel function k(G,G′) between two labeled graphs G and G′.

2.1 Random Walks on Graphs

We extract features (labeled sequences) from a graph G by performing ran-
dom walks. At the first step, we sample a node x1 ∈ X from an initial proba-
bility distribution ps(x1). Subsequently, at the ith step, the next vertex xi ∈ X
is sampled subject to a transition probability pt(xi∣xi−1), or the random walk
ends at node xi−1 with probability pq(xi−1). In other words, at the ith step, we
have:

∣X ∣∑

k=1

pt(xk∣xi−1) + pq(xi−1) = 1 (2.2)

that is, at each step, the probabilities of transitions and termination sum to 1.
When we do not have any prior knowledge, we can set the initial probability

distribution ps to be the uniform distribution, the transition probability pt to be
a uniform distribution over the vertices adjacent to the current vertex, and the
termination probability pq to be a small constant probability.

From the random walk, we obtain a sequence of vertices called a path:

x = (x1, x2, . . . , xℓ), (2.3)

where ℓ is the length of x (possibly infinite). The final probability of obtaining
path x is the product of the probabilities that the path starts with x1, transits
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from xi−1 to xi for each i, and finally terminates with xl:

p(x∣G) = ps(x1)

ℓ∏

i=2

pt(xi∣xi−1)pq(xℓ).

Let us define a label sequence as sequence of alternating vertex labels and edge
labels:

h = (ℎ1, ℎ2, . . . , ℎ2ℓ−1) ∈ (ΣV ΣE)
ℓ−1ΣV .

Associated with a path x, we obtain a label sequence

hx = (vx1 , ex1,x2 , vx2 , ex2,x3 , . . . , vxℓ
).

which is a sequence of alternating vertex and edge labels. Since multiple ver-
tices (edges) may have the same label, multiple paths may map to one label
sequence. The probability of obtaining a label sequence h is thus the sum of
the probabilities of each path that emits h. This can be expressed as

p(h∣G) =
∑

x

�(h = hx) ⋅
(
ps(x1)

ℓ∏

i=2

pt(xi∣xi−1)pq(xℓ)

)
,

where � is a function that returns 1 if its argument holds, 0 otherwise.

2.2 Label Sequence Kernel

We now define a kernel kz between two label sequences h and h′. The
sequence kernel is defined based on kernels for vertex labels and edge labels.

We assume two kernel functions, kv(v, v
′) and ke(e, e

′), are readily defined
between vertex labels and edge labels. We constrain both kernels to be non-
negative1. An example of a vertex label kernel is the identity kernel, that is, the
kernel return 1 if the two labels are the same, 0 otherwise. It can be expressed
as:

kv(v, v
′) = �(v = v′) (2.4)

where �(⋅) is a function that returns 1 if its argument holds, and 0 otherwise.
The above kernel (2.4) is for labels of discrete values. If the labels are defined
in ℝ, then the Gaussian kernel can be used as a natural choice [42]:

kv(v, v
′) = exp(− ∥ v − v′ ∥2 /2�2), (2.5)

Edge kernels can be defined in the same way as in (2.4) and (2.5).
Based on the vertex label and the edge label kernels, we defome the kernel

for label sequences. If two sequences h and h′ are of the same length, or

1This constraint will play an important role in proving the convergence of our kernel.
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ℓ(h) = ℓ(h′), then the sequence kernel is defined as the product of the label
kernels:

kz(h,h
′) = kv(ℎ1, ℎ

′
1)

ℓ∏

i=2

ke(ℎ2i−2, ℎ
′
2i−2)kv(ℎ2i−1, ℎ

′
2i−1). (2.6)

If the two sequences are of different length, or ℓ(h) ∕= ℓ(h′), then the sequence
kernel returns 0, that is, kz(h,h

′) = 0.
Finally, our label sequence kernel is defined as the expectation of kz over

all possible h ∈ G and h′ ∈ G′.

k(G,G′) =
∑

h

∑

h′

kz(h,h
′)p(h∣G)p(h′∣G′). (2.7)

Here, p(h∣G)p(h′∣G′) is the probabilty that h and h′ occur in G and G′,
respectively, and kz(h,h

′) is their similarity. This kernel is valid, as it is de-
scribed as an inner product of two vectors p(h∣G) and p(h′∣G′).

2.3 Efficient Computation of Label Sequence Kernels

The label sequence kernel (2.7) defined above can be expanded as follows:

k(G,G′) =
∑∞

ℓ=1

∑
h

∑
h′ kv(ℎ1, ℎ

′
1)×(∏ℓ

i=2 ke(ℎ2i−2, ℎ
′
2i−2)kv(ℎ2i−1, ℎ

′
2i−1)

)
×

(∑
x
�(h = hx) ⋅

(
ps(x1)

∏ℓ
i=2 pt(xi∣xi−1)pq(xℓ)

))
×

(∑
x′ �(h = hx′) ⋅

(
ps(x

′
1)
∏ℓ

i=2 pt(x
′
i∣x′i−1)pq(x

′
ℓ)
))

.

The straightforward enumeration of all terms to compute the sum has a pro-
hibitive computational cost. In particular, for cyclic graphs, it is infeasible to
perform this computation in an enumerative way, because the possible length of
a sequence spans from 1 to infinity. Nevertheless, there is an efficient method
to compute this kernel as shown below. The method is based on the observation
that the kernel has the following nested structure.
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k(G,G′) = lim
L→∞

L∑

ℓ=1

(2.8)

∑

x1,x′
1

s(x1, x
′
1)×

⎛
⎝∑

x2,x′
2

t(x2, x
′
2, x1, x

′
1)×

⎛
⎝∑

x3,x′
3

t(x3, x
′
3, x2, x

′
2)×

⋅ ⋅ ⋅ ×
∑

xℓ,x
′
ℓ

t(xℓ, x
′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)

⎞
⎠ ⋅ ⋅ ⋅

⎞
⎠

where

s(x1, x
′
1) = ps(x1)p

′
s(x

′
1)kv(vx1 , v

′
x′
1
),

q(xℓ, x
′
ℓ) = pq(xℓ)p

′
q(x

′
ℓ)

t(xi, x
′
i, xi−1, x

′
i−1) = pt(xi∣xi−1)p

′
t(x

′
i∣x′i−1)kv(vxi , v

′
x′
i
)ke(exi−1xi , ex′

i−1x
′
i
)

Intuitively, (2.8) computes the expectation of the kernel function over all
possible pairs of paths of the same length l. Consider one of such pairs:
(x1, ⋅ ⋅ ⋅ , xℓ) in G and (x′1, ⋅ ⋅ ⋅ , x′ℓ) in G′. Here, ps, pt, and pq denote the
initial, transition, and termination probability of nodes in graph G, and p′s, p′t,
and p′q denote the initial, transition, and termination probability of nodes in
graph G′. Thus, s(x1, x

′
1) is the probability-weighted similarity of the first

elements in the two paths, q(xℓ, x
′
ℓ) is the probability that the two paths end

with xℓ and x′ℓ, and t(xi, x
′
i, xi−1, x

′
i−1) is the probability-weighted similarity

of the ith node pair and edge pair in the two paths.

Acyclic Graphs. Let us first consider the case of acyclic graphs. In an
acyclic graph, if there is a directed path from vertex x1 to x2, then there is
no directed path from vertex x2 to x1. It is well known that vertices of a
directed, acyclic graph can be numbered in a topological order2 such that every
edge from a vertex numbered i to a vertex numbered j satisfies i < j (see
Figure 11.4).

Since there are no directed paths from vertex j to vertex i if i < j, we can
employ dynamic programming to achieve our goal. Given that both G and G′

2Topological sorting of graph G can be done in O(∣X ∣+ ∣ℒ∣) [7].
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are directed acyclic graphs, we can rewrite (2.8) into the following:

k(G,G′) =
∑

x1.x′
1
s(x1, x

′
1)q(x1, x

′
1) + limL→∞

∑L
ℓ=2

∑
x1,x′

1
s(x1, x

′
1)×(∑

x2>x1,x′
2>x′

1
t(x2, x

′
2, x1, x

′
1)
(∑

x3>x2,x′
3>x′

2
t(x3, x

′
3, x2, x

′
2)×(

⋅ ⋅ ⋅
(∑

xℓ>xℓ−1,x
′
ℓ>x′

ℓ−1
t(xℓ, x

′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)
))
⋅ ⋅ ⋅
)
.

(2.9)
The first term corresponds to paths of length 1, and the second term corre-
sponds to paths longer than 1. We define r(⋅, ⋅) as follows:

r(x1, x
′
1) := q(x1, x

′
1) + limL→∞

∑L
ℓ=2

(∑
x2>x1,x′

2>x′
1
t(x2, x

′
2, x1, x

′
1)×(

⋅ ⋅ ⋅
(∑

xℓ>xℓ−1,x
′
ℓ>x′

ℓ−1
t(xℓ, x

′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)
))
⋅ ⋅ ⋅
)
,

(2.10)
We can rewrite (2.9) as the follows:

k(G,G′) =
∑

x1,x′
1

s(x1, x
′
1)r(x1, x

′
1).

The merit of defining (2.10) is that we can exploit the following recursive equa-
tion.

r(x1, x
′
1) = q(x1, x

′
1) +

∑

j>x1,j′>x′
1

t(j, j′, x1, x′1)r(j, j
′). (2.11)

Since all vertices are topologically ordered, r(x1, x
′
1) can be efficiently com-

puted by dynamic programming (Figure 11.5) for all x1 and x′1. The worst-case
time complexity of computing k(G,G′) is O(c ⋅ c′ ⋅ ∣X ∣ ⋅ ∣X ′∣) where c and c′

are the maximum out-degree of G and G′, respectively.
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Figure 11.4. A topologically sorted directed acyclic graph. The label sequence kernel can be
efficiently computed by dynamic programming running from right to left.

Figure 11.5. Recursion for computing r(x1, x′
1) using recursive equation (2.11). r(x1, x′

1) can be
computed based on the precomputed values of r(x2, x′

2), x2 > x1, x′
2 > x′

1.

General Directed Graphs. For cyclic graphs, nodes cannot be topologi-
cally sorted. This means that we cannot employ a one-pass dynamic program-
ming algorithm for acyclic graphs. However, we can obtain a recursive form
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of the kernel like (2.11), and reduce the problem to solving a system of simul-
taneous linear equations.

Let us rewrite (2.8) as

k(G,G′) = lim
L→∞

L∑

ℓ=1

∑

x1,x′
1

s(x1, x
′
1)rℓ(x1, x

′
1), (2.12)

where

r1(x1, x
′
1) := q(x1, x

′
1)

and

rℓ(x1, x
′
1) :=

⎛
⎝∑

x2,x′
2

t(x2, x
′
2, x1, x

′
1)

⎛
⎝∑

x3,x′
3

t(x3, x
′
3, x2, x

′
2)×

⎛
⎝⋅ ⋅ ⋅

⎛
⎝∑

xℓ,x
′
ℓ

t(xℓ, x
′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)

⎞
⎠
⎞
⎠ ⋅ ⋅ ⋅

⎞
⎠

for ℓ ≥ 2

Replacing the order of summation in (2.12), we have the following:

k(G,G′) =
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞

L∑

ℓ=1

rℓ(x1, x
′
1)

=
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞
RL(x1, x

′
1), (2.13)

where

RL(x1, x
′
1) :=

L∑

ℓ=1

rℓ(x1, x
′
1).

Thus we need to compute R∞(x1, x
′
1) to obtain k(G,G′).

Now let us restate this problem in terms of linear system theory [38]. The
following recursive relationship holds between rk and rk−1 (k ≥ 2):

rk(x1, x
′
1) =

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j). (2.14)
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Using (2.14), the recursive relationship for RL also holds as follows:

RL(x1, x
′
1) = r1(x1, x

′
1) +

L∑

k=2

rk(x1, x
′
1)

= r1(x1, x
′
1) +

L∑

k=2

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j)

= r1(x1, x
′
1) +

∑

i,j

t(i, j, x1, x
′
1)RL−1(i, j). (2.15)

Thus,RL can be perceived as a discrete-time linear system [38] evolving as the
time L increases. Assuming that RL converges (see [21] for the convergence
condition), we have the following equilibrium equation:

R∞(x1, x
′
1) = r1(x1, x

′
1) +

∑

i,j

t(i, j, x1, x
′
1)R∞(i, j). (2.16)

Therefore, the computation of the kernel finally requires solving simultaneous
linear equations (2.16) and substituting the solutions into (2.13).

Now let us restate the above discussion in the language of matrices. Let s,
r1, and r∞ be ∣X ∣ ⋅ ∣X ′∣ dimensional vectors such that

s = (⋅ ⋅ ⋅ , s(i, j), ⋅ ⋅ ⋅ )⊤
r1 = (⋅ ⋅ ⋅ , r1(i, j), ⋅ ⋅ ⋅ )⊤
r∞ = (⋅ ⋅ ⋅ , R∞(i, j), ⋅ ⋅ ⋅ )⊤

Let the transition probability matrix T be a ∣X ∣∣X ′∣ × ∣X ∣∣X ′∣ matrix,

[T ](i,j),(k,l) = t(i, j, k, l).

Equation (2.13) can be rewritten as

k(G,G′) = rT∞s (2.17)

Similarly, the recursive equation (2.16) is rewritten as

r∞ = r1 + T r∞.

The solution of this equation is

r∞ = (I − T )−1r1.

Finally, the matrix form of the kernel is

k(G,G′) = (I − T )−1r1s. (2.18)
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Computing the kernel requires solving a linear equation or inverting a matrix
with ∣X ∣∣X ′∣ × ∣X ∣∣X ′∣ coefficients. However, the matrix I − T is actually
sparse because the number of non-zero elements of T is less than c⋅c′ ⋅∣X ∣⋅∣X ′∣
where c and c′ are the maximum out degree of G and G′, respectively. There-
fore, we can employ efficient numerical algorithms that exploit sparsity [3]. In
our implementation, we employed a simple iterative method that updates RL

by using (2.15) until convergence starting from R1(x1, x
′
1) = r1(x1, x

′
1).

2.4 Extensions

Vishwanathan et al. [50] proposed a fast way to compute the graph kernel
based on the Sylvestor equation. Let AX , AY and B denote M ×M , N ×N
and M × N matrices, respectively. They have used the following equation to
speed up the computation.

(AX ⊗AY )vec(B) = vec(AXBAY )

where ⊗ corresponds to the Kronecker product (tensor product) and vec is the
vectorization operator. The left hand side requires O(M2N2) time, while the
right hand side requires only O(MN(M + N)) time. Notice that this trick
(“vec-trick”) has recently been used in link prediction tasks as well [20].

A random walk can trace the same edge back and forth many times (“tot-
tering”), which could be harmful for similarity measurement. Mahe et al. [28]
presented an extension of the kernel without tottering and applied it success-
fully to chemical informatics data.

3. Graph Boosting

Frequent pattern mining techniques are important tools in data mining [14].
Its simplest form is the classic problem of itemset mining [1], where frequent
subsets are enumerated from a series of sets. The original work on this topic is
for transactional data, and since then, researchers have applied frequent pattern
mining to other structured data such as sequences [35] and trees [2]. Every pat-
tern mining method uses a search tree to systematically organize the patterns.
For general graphs, there are technical difficulties about duplication: it is possi-
ble to generate the same graph with different paths of the search tree. Methods
such as AGM [18] and gspan [52] solve this duplication problem by pruning
the search nodes whenever duplicates are found.

The simplest way to apply such pattern mining techniques to graph classi-
fication is to build a binary feature vector based on the presence or absence
of frequent patterns and apply an off-the-shelf classifier. Such methods are
employed in a few chemical informatics papers [16, 23]. However, they are
obviously suboptimal because frequent patterns are not necessarily useful for



350 MANAGING AND MINING GRAPH DATA

(-1,...,-1,1,-1,...,-1,1,-1,...)
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Figure 11.6. Feature space based on subgraph patterns. The feature vector consists of binary
pattern indicators.

classification. In chemical data, patterns such as C-C or C-C-C are frequent,
but have almost no significance.

To discuss pattern mining strategies for graph classification, let us first
define the binary classification problem. The task is to learn a prediction
rule from training examples {(Gi, yi)}ni=1, where Gi is a training graph and
yi ∈ {+1,−1} is its associated class label. Let P be the set of all patterns, i.e.,
the set of all subgraphs included in at least one training graph, and d := ∣P∣.
Then, each graph Gi is encoded as a d-dimensional vector

xi,p =

{
1 if p ⊆ Gi,
−1 otherwise,

This feature space is illustrated in Figure 11.6.
Since the whole feature space is intractably large, we need to obtain a set

of informative patterns without enumerating all patterns (i.e., discriminative
pattern mining). This problem is close to feature selection in machine learn-
ing. The difference is that it is not allowed to scan all features. As in feature
selection, we can consider the following three categories in discriminative pat-
tern mining methods: filter, wrapper and embedded [24]. In filter methods,
discriminative patterns are collected by a mining call before the learning algo-
rithm is started. They employ a simple statistical criterion such as information
gain [31]. In wrapper and embedded methods, the learning algorithm chooses
features via minimization of a sparsity-inducing objective function. Typically,
they have a high dimensional weight vector and most of these weights coverage
to zero after optimization. In most cases, the sparsity is induced by L1-norm
regularization [40]. The difference between wrapper and embedded methods
are subtle, but wrapper methods tend to be based on heuristic ideas by reducing
the features recursively (recursive feature elimination)[13]. Graph boosting is
an embedded method, but to deal with graphs, we need to combine L1-norm
regularization with graph mining.
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3.1 Formulation of Graph Boosting

The name ‘boosting’ comes from the fact that linear program boosting (LP-
Boost) is used as a fundamental computational framework. In chemical infor-
matics experiments [40], it was shown that the accuracy of graph boosting is
better than graph kernels. At the same time, key substructures are explicitly
discovered.

Our prediction rule is a convex combination of binary indicators xi,j , and
has the form

f(xi) =
∑

p∈P
�pxi,p, (3.1)

where � is a ∣P∣-dimensional column vector such that
∑

p∈P �p = 1 and
�p ≥ 0.

This is a linear discriminant function in an intractably large dimensional
space. To obtain an interpretable rule, we need to obtain a sparse weight vec-
tor �, where only a few weights are nonzero. In the following, we will present
a linear programming approach for efficiently capturing such patterns. Our
formulation is based on that of LPBoost [8], and the learning problem is rep-
resented as

min
�

∥�∥1 + �

n∑

i=1

[1− yif(xi)]+ , (3.2)

where ∥x∥1 =
∑n

i=1 ∣xi∣ denotes the ℓ1 norm of x, � is a regularization param-
eter, and the subscript “+” indicates positive part. A soft-margin formulation
of the above problem exists [8], and can be written as follows:

min
�,�,�

−�+ �

n∑

i=1

�i (3.3)

s.t. y⊤X� + �i ≥ �, �i ≥ 0, i = 1, . . . , n (3.4)∑

p∈P
�p = 1, �p ≥ 0,

where � are slack variables, � is the margin separating negative examples from
positives, � = 1

�n , � ∈ (0, 1) is a parameter controlling the cost of misclassifi-
cation which has to be found using model selection techniques, such as cross-
validation. It is known that the optimal solution has the following �-property:

Theorem 11.1 ([36]). Assume that the solution of (3.3) satisfies � ≥ 0. The
following statements hold:

1 � is an upper-bound of the fraction of margin errors, i.e., the examples
with

y⊤X� < �.
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2 � is a lower-bound of the fraction of the examples such that

y⊤X� < �.

Directly solving this optimization problem is intractable due to the large
number of variables in �. So we solve the following equivalent dual problem
instead.

min
u,v

v (3.5)

s.t.

n∑

i=1

uiyixi,p ≤ v, ∀p ∈ P (3.6)

n∑

i=1

ui = 1, 0 ≤ ui ≤ �, i = 1, . . . , n.

After solving the dual problem, the primal solution � is obtained from the La-
grange multipliers [8]. The dual problem has a limited number of variables, but
a huge number of constraints. Such a linear program can be solved by the col-
umn generation technique [27]: Starting with an empty pattern set, the pattern
whose corresponding constraint is violated the most is identified and added
iteratively. Each time a pattern is added, the optimal solution is updated by
solving the restricted dual problem. Denote by u(k), v(k) the optimal solution
of the restricted problem at iteration k = 0, 1, . . ., and denote by X̂(k) ⊆ P
the set at iteration k. Initially, X̂(0) is empty and u

(0)
i = 1/n. The restricted

problem is defined by replacing the set of constraints (3.6) with

n∑

i=1

u
(k)
i yixi,p ≤ v, ∀p ∈ X̂(k).

The left hand side of the inequality is called as gain in boosting literature. After
solving the problem, X̂(k) is updated to X̂(k+1) by adding a column. Several
criteria have been proposed to select the new columns [10], but we adopt the
most simple rule that is amenable to graph mining: We select the constraint
with the largest gain.

p∗ = argmax
p∈P

n∑

i=1

u
(k)
i yixi,p. (3.7)

The solution set is updated as X̂(k+1) ← X̂(k) ∪Xj∗ . In the next section, we
discuss how to efficiently find the largest gain in detail.

One of the big advantages of our method is that we have a stopping criterion
that guarantees that the optimal solution is found: If there is no p ∈ P such
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Figure 11.7. Schematic figure of the tree-shaped search space of graph patterns (i.e., the DFS
code tree). To find the optimal pattern efficiently, the tree is systematically expanded by rightmost
extensions.

that
n∑

i=1

u
(k)
i yixi,p > v(k), (3.8)

then the current solution is the optimal dual solution. Empirically, the patterns
found in the last few iterations have negligibly small weights. The number of
iterations can be decreased by relaxing the condition as

n∑

i=1

u
(k)
i yixi,p > v(k) + �, (3.9)

Let us define the primal objective function as V = −�+�∑n
i=1 �i. Due to the

convex duality, we can guarantee that, for the solution obtained from the early
termination (3.9), the objective satisfies V ≤ V ∗ + �, where V ∗ is the optimal
value with the exact termination (3.8) [8]. In our experiments, � = 0.01 is
always used.

3.2 Optimal Pattern Search

Our search strategy is a branch-and-bound algorithm that requires a canon-
ical search space in which a whole set of patterns are enumerated without du-
plication. As the search space, we adopt the DFS (depth first search) code
tree [52]. The basic idea of the DFS code tree is to organize patterns as a tree,
where a child node has a super graph of the parent’s pattern (Figure 11.7). A
pattern is represented as a text string called the DFS code. The patterns are
enumerated by generating the tree from the root to leaves using a recursive
algorithm. To avoid duplications, node generation is systematically done by
rightmost extensions.
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All embeddings of a pattern in the graphs {Gi}ni=1 are maintained in each
node. If a pattern matches a graph in different ways, all such embeddings are
stored. When a new pattern is created by adding an edge, it is not necessary
to perform full isomorphism checks with respect to all graphs in the database.
A new list of embeddings are made by extending the embeddings of the par-
ent [52]. Technically, it is necessary to devise a data structure such that the
embeddings are stored incrementally, because it takes a prohibitive amount of
memory to keep all embeddings independently in each node. As mentioned in
(3.7), our aim is to find the optimal hypothesis that maximizes the gain g(p).

g(p) =
n∑

i=1

u
(k)
i yixi,p. (3.10)

For efficient search, it is important to minimize the size of the actual search
space. To this aim, tree pruning is crucially important: Suppose the search tree
is generated up to the pattern p and denote by g∗ the maximum gain among the
ones observed so far. If it is guaranteed that the gain of any super graph p′ is
not larger than g∗, we can avoid the generation of downstream nodes without
losing the optimal pattern. We employ the following pruning condition.

Theorem 11.2. [30, 26] Let us define

�(p) = 2
∑

{i∣yi=+1,p⊆Gi}
u
(k)
i −

n∑

i=1

yiu
(k)
i .

If the following condition is satisfied,

g∗ > �(p), (3.11)

the inequality g(p′) < g∗ holds for any p′ such that p ⊆ p′.
The gBoost algorithm is summarized in Algorithms 12 and 13.

3.3 Computational Experiments

In [40], it is shown that graph boosting performs better than graph kernels
in classification accuracy in chemical compound datasets. The top 20 dis-
criminative subgraphs for a mutagenicity dataset called CPDB are displayed
in Figure 11.8. We found that the top 3 substructures with positive weights
(0.0672,0.0656, 0.0577) correspond to known toxicophores [23]. They corre-
spond to aromatic amine, aliphatic halide, and three-membered heterocycle,
respectively. In addition, the patterns with weights 0.0431, 0.0412, 0.0411
and 0.0318 seem to be related to polycyclic aromatic systems. Only from this
result, we cannot conclude that graph boosting is better in general data. How-
ever, since important chemical substructures cannot be represented in paths, it
would be reasonable to say that subgraph features are better in chemical data.
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Algorithm 12 gBoost algorithm: main part

1: X̂(0) = ∅, u(0)
i = 1/n, k = 0

2: loop
3: Find the optimal pattern p∗ based on u(k)

4: if termination condition (3.9) holds then
5: break
6: end if
7: X̂ ← X̂ ∪Xj∗

8: Solve the restricted dual problem (3.5) to obtain u(k+1)

9: k = k + 1
10: end loop

Algorithm 13 Finding the Optimal Pattern

1: Procedure Optimal Pattern

2: Global variables: g∗, p∗

3: g∗ = −∞
4: for p ∈ DFS codes with single nodes do
5: project(p)
6: end for
7: return p∗

8: EndProcedure
9:

10: Function project(p)
11: if p is not a minimum DFS code then
12: return
13: end if
14: if pruning condition (3.11) holds then
15: return
16: end if
17: if g(p) > g∗ then
18: g∗ = g(p), p∗ = p
19: end if
20: for p′ ∈ rightmost extensions of p do
21: project(p′)
22: end for
23: EndFunction

3.4 Related Work

Graph algorithms can be designed based on existing statistical frameworks
(i.e., mother algorithms). It allows us to use theoretical results and insights
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Figure 11.8. Top 20 discriminative subgraphs from the CPDB dataset. Each subgraph is shown
with the corresponding weight, and ordered by the absolute value from the top left to the bottom
right. H atom is omitted, and C atom is represented as a dot for simplicity. Aromatic bonds
appeared in an open form are displayed by the combination of dashed and solid lines.

accumulated in the past studies. In graph boosting, we employed LPboost as
a mother algorithm. It is possible to employ other algorithms such as partial
least squares regression (PLS) [39] and least angle regression (LARS) [45].

When applied to ordinary vectorial data, partial least squares regression ex-
tracts a few orthogonal features and perform least squares regression in the
projected space [37]. A PLS feature is a linear combination of original fea-
tures, and it is often the case that correlated features are summarized into a
PLS feature. Sometimes, the subgraph features chosen by graph boosting is
not robust against bootstrapping or other data perturbations, whereas the clas-
sification accuracy is quite stable. It is due to strong correlation among features
corresponding to similar subgraphs. The graph mining version of PLS, gPLS
[39], solves this problem by summarizing similar subgraphs into each feature
(Figure 11.9). Since only one graph mining call is required to construct each
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Figure 11.9. Patterns obtained by gPLS. Each column corresponds to the patterns of a PLS
component.

feature, gPLS can build the classification rule more quickly than graph boost-
ing.

In graph boosting, it is necessary to set the regularization parameter � in
(3.2). Typically it is determined by cross validation, but there is a different
approach called “regularization path tracking”. When � = 0, the weight vector
converges to the origin. As � is increased continuously, the weight vector
draws a piecewise linear path. Because of this property, one can track the
whole path by repeating to jump to the next turning point. We combined the
tracking with graph mining in [45]. In ordinary tracking, a feature is added
or removed at each turning point. In our graph version, a subgraph to add or
remove is found by a customized gSpan search.

The examples shown above were for supervised classification. For unsuper-
vised clustering of graphs, the combinations with the EM algorithm [46] and
the Dirichlet process [47] have been reported.
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4. Applications of Graph Classification

Borgwardt et al. [5] applied the graph kernel method to classify protein 3D
structures. It outperformed classical alignment-based approaches. Karklin et
al. [19] built a classifier for non-coding RNAs employing a graph represen-
tation of RNAs. Outside biology and chemistry, Harchaoui and Bach [15]
applied graph kernels to image classification where each region corresponds to
a node and their positional relationships are represented by edges.

Traditionally, graph mining methods are mainly used for small chemical
compounds [28, 9]. However, new application areas are emerging. In im-
age processing [34], geometric relationships between points are represented as
edges. Software bug detection is an interesting area, where the relationships of
APIs are represented as directed graphs and anomalous patterns are detected to
identify bugs [11]. In natural language processing, the relationships between
words are represented as a graph (e.g., predicate-argument structures) and key
phrases are identified as subgraphs [26].

5. Label Propagation

In the previous discussion, the term graph classification means classifying
an entire graph. In many applications, we are interested in classifying the
nodes. For example, in large-scale network analysis for social networks and
biological networks, it is a central task to classify unlabeled nodes given a
limited number of labeled nodes (Figure 11.1, right). In FaceBook, one can
label people who responded to a certain advertisement as positive nodes, and
people who did not respond as negative nodes. Based on these labeled nodes,
our task is to predict other people’s response to the advertisement.

In earlier studies, diffusion kernels are used in combination with support
vector machines [25, 48]. The basic idea is to compute the closeness between
two nodes in terms of commute time of random walks between the nodes.
Though this approach gained popularity in the machine learning community,
a significant drawback is that the derived kernel matrix is dense. For large
networks, the diffusion kernel is not suitable because it takes O(n3) time and
O(n2) memory. In contrast, label propagation methods use simpler computa-
tional strategies that exploit sparsity of the adjacency matrix [54, 53]. The label
propagation method of Zhou et al.[53] is achieved by solving simultaneous lin-
ear equations with a sparse coefficient matrix. The time complexity is nearly
linear to the number of non-zero entries of the coefficient matrix [49], which is
much more efficient than the diffusion kernels. Due to its efficiency, label prop-
agation is gaining popularity in applications with biological networks, where
web servers should return the propagation result without much delay [32].
However, the classification performance is quite sensitive to methodological
details. For example, Shin et al. pointed out that the introduction of directional
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propagation can increase the performance significantly [43]. Also, Mostafavi
et al. [32] reported that their engineered version has outperformed the vanilla
version [53]. Label propagation is still an active research field. Recent ex-
tensions include automatic combination of multiple networks [49, 22] and the
introduction of probabilistic inference in label propagation [54, 44].

6. Concluding Remarks

We have covered the two different methods for graph classification. Graph
kernel is a similarity measure between two graphs, while graph mining meth-
ods can derive characteristic subgraphs that can be used for any subsequent
machine learning algorithms. We have the impression that so far graph kernels
are more frequently applied. Probably it is due to the fact that graph kernels are
easier to implement and currently used graph datasets are not so large. How-
ever, graph kernels are not suitable for very large data, because it takes O(n2)
time to derive the kernel matrix of n training graphs, which is very hard to
improve. Toward large scale data, graph mining methods seem more promis-
ing because it requires only O(n) time. Nevertheless, there remains much to
be done in graph mining methods. Existing methods such as gSpan enumer-
ate all subgraphs satisfying a certain frequency-based criterion. However, it
is often pointed out that, for graph classification, it is not always necessary
to enumerate all subgraphs. Recently, Boley and Grosskreutz proposed a uni-
form sampling method of frequent itemsets [4]. Such theoretically guaranteed
sampling procedures will certainly contribute to graph classification as well.

One fact that hinders the further popularity of graph mining methods
is that it is not common to make the code public in the machine learn-
ing and data mining community. We have made several easy-to-use code
available: SPIDER (http://www.kyb.tuebingen.mpg.de/bs/people/
spider/) contains codes for graph kernels and the gBoost package con-
tains codes for graph mining and boosting (http://www.kyb.mpg.de/bs/
people/nowozin/gboost/).
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Abstract Graph pattern mining becomes increasingly crucial to applications in a variety
of domains including bioinformatics, cheminformatics, social network analysis,
computer vision and multimedia. In this chapter, we first examine the exist-
ing frequent subgraph mining algorithms and discuss their computational bottle-
neck. Then we introduce recent studies on mining significant and representative
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graph mining techniques: they not only avoid the exponential size of mining
result, but also improve the applicability of graph patterns significantly.
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1. Introduction

Frequent pattern mining has been a focused theme in data mining research
for over a decade. Abundant literature has been dedicated to this research
area and tremendous progress has been made, including efficient and scalable
algorithms for frequent itemset mining, frequent sequential pattern mining,
frequent subgraph mining, as well as their broad applications.

Frequent graph patterns are subgraphs that are found from a collection of
graphs or a single massive graph with a frequency no less than a user-specified
support threshold. Frequent subgraphs are useful at characterizing graph sets,
discriminating different groups of graphs, classifying and clustering graphs,
and building graph indices. Borgelt and Berthold [2] illustrated the discovery
of active chemical structures in an HIV-screening dataset by contrasting the
support of frequent graphs between different classes. Deshpande et al. [7] used
frequent structures as features to classify chemical compounds. Huan et al.
[13] successfully applied the frequent graph mining technique to study protein
structural families. Frequent graph patterns were also used as indexing features
by Yan et al. [35] to perform fast graph search. Their method outperforms the
traditional path-based indexing approach significantly. Koyuturk et al. [18]
proposed a method to detect frequent subgraphs in biological networks, where
considerably large frequent sub-pathways in metabolic networks are observed.

In this chapter, we will first review the existing graph pattern mining meth-
ods and identify the combinatorial explosion problem in these methods – the
graph pattern search space grows exponentially with the pattern size. It causes
two serious problems: (1) the computational bottleneck, i.e., it takes very long,
or even forever, for the algorithms to complete the mining process, and (2) pat-
terns’ applicability, i.e., the huge mining result set hinders the potential usage
of graph patterns in many real-life applications. We will then introduce scal-
able graph pattern mining paradigms which mine significant subgraphs [19,
11, 27, 25, 31, 24] and representative subgraphs [10].

2. Frequent Subgraph Mining

2.1 Problem Definition

The vertex set of a graph g is denoted by V (g) and the edge set by E(g). A
label function, l, maps a vertex or an edge to a label. A graph g is a subgraph of
another graph g′ if there exists a subgraph isomorphism from g to g′, denoted
by g ⊆ g′. g′ is called a supergraph of g.

Definition 12.1 (Subgraph Isomorphism). For two labeled graphs g and g′,
a subgraph isomorphism is an injective function f : V (g) → V (g′), s.t., (1),
∀v ∈ V (g), l(v) = l′(f(v)); and (2), ∀(u, v) ∈ E(g), (f(u),
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f(v)) ∈ E(g′) and l(u, v) = l′(f(u), f(v)), where l and l′ are the labeling
functions of g and g′, respectively. f is called an embedding of g in g′.

Definition 12.2 (Frequent Graph). Given a labeled graph dataset D =
{G1, G2, . . . , Gn} and a subgraph g, the supporting graph set of g is Dg =

{Gi∣g ⊆ Gi, Gi ∈ D}. The support of g is support(g) =
∣Dg∣
∣D∣ . A frequent

graph is a graph whose support is no less than a minimum support threshold,
min sup.

An important property, called anti-monotonicity, is crucial to confine the
search space of frequent subgraph mining.

Definition 12.3 (Anti-Monotonicity). Anti-monotonicity means that a size-k
subgraph is frequent only if all of its subgraphs are frequent.

Many frequent graph pattern mining algorithms [12, 6, 16, 20, 28, 32, 2, 14,
15, 22, 21, 8, 3] have been proposed. Holder et al. [12] developed SUBDUE to
do approximate graph pattern discovery based on minimum description length
and background knowledge. Dehaspe et al. [6] applied inductive logic pro-
gramming to predict chemical carcinogenicity by mining frequent subgraphs.
Besides these studies, there are two basic approaches to the frequent subgraph
mining problem: the Apriori-based approach and the pattern-growth approach.

2.2 Apriori-based Approach

Apriori-based frequent subgraph mining algorithms share similar character-
istics with Apriori-based frequent itemset mining algorithms. The search for
frequent subgraphs starts with small-size subgraphs, and proceeds in a bottom-
up manner. At each iteration, the size of newly discovered frequent subgraphs
is increased by one. These new subgraphs are generated by joining two simi-
lar but slightly different frequent subgraphs that were discovered already. The
frequency of the newly formed graphs is then checked. The framework of
Apriori-based methods is outlined in Algorithm 14.

Typical Apriori-based frequent subgraph mining algorithms include AGM
by Inokuchi et al. [16], FSG by Kuramochi and Karypis [20], and an edge-
disjoint path-join algorithm by Vanetik et al. [28].

The AGM algorithm uses a vertex-based candidate generation method that
increases the subgraph size by one vertex in each iteration. Two size-(k +
1) frequent subgraphs are joined only when the two graphs have the same
size-k subgraph. Here, graph size means the number of vertices in a graph.
The newly formed candidate includes the common size-k subgraph and the
additional two vertices from the two size-(k + 1) patterns. Figure 12.1 depicts
the two subgraphs joined by two chains.
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Algorithm 14 Apriori(D, min sup, Sk)

Input: Graph dataset D, minimum support threshold min sup,
size-k frequent subgraphs Sk

Output: The set of size-(k + 1) frequent subgraphs Sk+1

1: Sk+1 ← ∅;
2: for each frequent subgraph gi ∈ Sk do
3: for each frequent subgraph gj ∈ Sk do
4: for each size-(k + 1) graph g formed by joining gi and gj do
5: if g is frequent in D and g ∕∈ Sk+1 then
6: insert g to Sk+1;
7: if Sk+1 ∕= ∅ then
8: call Apriori(D, min sup, Sk+1);
9: return;

+

Figure 12.1. AGM: Two candidate patterns formed by two chains

The FSG algorithm adopts an edge-based candidate generation strategy
that increases the subgraph size by one edge in each iteration. Two size-(k+1)
patterns are merged if and only if they share the same subgraph having k edges.
In the edge-disjoint path method [28], graphs are classified by the number of
disjoint paths they have, and two paths are edge-disjoint if they do not share
any common edge. A subgraph pattern with k+1 disjoint paths is generated by
joining subgraphs with k disjoint paths.

The Apriori-based algorithms mentioned above have considerable overhead
when two size-k frequent subgraphs are joined to generate size-(k + 1) candi-
date patterns. In order to avoid this kind of overhead, non-Apriori-based algo-
rithms were developed, most of which adopt the pattern-growth methodology,
as discussed below.

2.3 Pattern-Growth Approach

Pattern-growth graph mining algorithms include gSpan by Yan and Han
[32], MoFa by Borgelt and Berthold [2], FFSM by Huan et al. [14], SPIN by
Huan et al. [15], and Gaston by Nijssen and Kok [22]. These algorithms are
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inspired by PrefixSpan [23], TreeMinerV [37], and FREQT [1] in mining
sequences and trees, respectively.

The pattern-growth algorithm extends a frequent graph directly by adding
a new edge, in every possible position. It does not perform expensive join
operations. A potential problem with the edge extension is that the same graph
can be discovered multiple times. The gSpan algorithm helps avoiding the
discovery of duplicates by introducing a right-most extension technique, where
the only extensions take place on the right-most path [32]. A right-most path
for a given graph is the straight path from the starting vertex v0 to the last
vertex vn, according to a depth-first search on the graph.

Besides the frequent subgraph mining algorithms, constraint-based sub-
graph mining algorithms have also been proposed. Mining closed graph pat-
terns was studied by Yan and Han [33]. Mining coherent subgraphs was stud-
ied by Huan et al. [13]. Chi et al. proposed CMTreeMiner to mine closed and
maximal frequent subtrees [5]. For relational graph mining, Yan et al. [36]
developed two algorithms, CloseCut and Splat, to discover exact dense fre-
quent subgraphs in a set of relational graphs. For large-scale graph database
mining, a disk-based frequent graph mining method was introduced by Wang
et al. [29]. Jin et al. [17] proposed an algorithm, TSMiner, for mining frequent
large-scale structures (defined as topological structures) from graph datasets.

For a comprehensive introduction on basic graph pattern mining algorithms
including Apriori-based and pattern-growth approaches, readers are referred to
the survey written by Washio and Motoda [30] and Yan and Han [34].

2.4 Closed and Maximal Subgraphs

A major challenge in mining frequent subgraphs is that the mining process
often generates a huge number of patterns. This is because if a subgraph is fre-
quent, all of its subgraphs are frequent as well. A frequent graph pattern with
n edges can potentially have 2n frequent subgraphs, which is an exponential
number. To overcome this problem, closed subgraph mining and maximal sub-
graph mining algorithms were proposed.

Definition 12.4 (Closed Subgraph). A subgraph g is a closed subgraph in a
graph set D if g is frequent in D and there exists no proper supergraph g′ such
that g ⊂ g′ and g′ has the same support as g in D.

Definition 12.5 (Maximal Subgraph). A subgraph g is a maximal subgraph
in a graph set D if g is frequent, and there exists no supergraph g′ such that
g ⊂ g′ and g′ is frequent in D.

The set of closed frequent subgraphs contains the complete information of
frequent patterns; whereas the set of maximal subgraphs, though more com-
pact, usually does not contain the complete support information regarding to
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its corresponding frequent sub-patterns. Close subgraph mining methods in-
clude CloseGraph [33]. Maximal subgraph mining methods include SPIN
[15] and MARGIN [26].

2.5 Mining Subgraphs in a Single Graph

While most frequent subgraph mining algorithms assume the input graph
data is a set of graphs D = {G1, ..., Gn}, there are some studies [21, 8, 3]
on mining graph patterns from a single large graph. Defining the support of a
subgraph in a set of graphs is straightforward, which is the number of graphs
in the database that contain the subgraph. However, it is much more difficult
to find an appropriate support definition in a single large graph since multiple
embeddings of a subgraph may have overlaps. If arbitrary overlaps between
non-identical embeddings are allowed, the resulting support does not satisfy
the anti-monotonicity property, which is essential for most frequent pattern
mining algorithms. Therefore, [21, 8, 3] investigated appropriate support mea-
sures in a single graph.

Kuramochi and Karypis [21] proposed two efficient algorithms that can find
frequent subgraphs within a large sparse graph. The first algorithm, called
HSIGRAM, follows a horizontal approach and finds frequent subgraphs in a
breadth-first fashion. The second algorithm, called VSIGRAM, follows a ver-
tical approach and finds the frequent subgraphs in a depth-first fashion. For the
support measure defined in [21], all possible occurrences ' of a pattern p in
a graph g are calculated. An overlap-graph is constructed where each occur-
rence ' corresponds to a node and there is an edge between the nodes of ' and
'′ if they overlap. This is called simple overlap as defined below.

Definition 12.6 (Simple Overlap). Given a pattern p = (V (p), E(p)), a sim-
ple overlap of occurrences ' and '′ of pattern p exists if'(E(p))∩'′(E(p)) ∕=
∅.

The support of p is defined as the size of the maximum independent set (MIS)
of the overlap-graph. A later study [8] proved that the MIS-support is anti-
monotone.

Fiedler and Borgelt [8] suggested a definition that relies on the non-
existence of equivalent ancestor embeddings in order to guarantee that the
resulting support is anti-monotone. The support is called harmful overlap sup-
port. The basic idea of this measure is that some of the simple overlaps (in
[21]) can be disregarded without harming the anti-monotonicity of the support
measure. As in [21], an overlap graph is constructed and the support is defined
as the size of the MIS. The major difference is the definition of the overlap.
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Definition 12.7 (Harmful Overlap). Given a pattern p = (V (p), E(p)), a
harmful overlap of occurrences ' and '′ of pattern p exists if ∃v ∈ V (p) :
'(v), '′(v) ∈ '(V (p)) ∩ '′(V (p)).

Bringmann and Nijssen [3] examined the existing studies [21, 8] and identi-
fied the expensive operation of solving the MIS problem. They defined a new
support measure.

Definition 12.8 (Minimum Image based Support). Given a pattern p =
(V (p), E(p)), the minimum image based support of p in g is defined as

�∧(p, g) = min
v∈V (p)

∣{'i(v) : 'i is an occurrence of p in g}∣.

It is based on the number of unique nodes in the graph g to which a node of
the pattern p is mapped. This measure avoids the MIS computation. Therefore
it is computationally less expensive and often closer to intuition than measures
proposed in [21, 8].

By taking the node in pwhich is mapped to the least number of unique nodes
in g, the anti-monotonicity of �∧ can be guaranteed. For the definition of sup-
port, several computational benefits could be identified: (1) instead of O(n2)
potential overlaps, where n is the possibly exponential number of occurrences,
the method only needs to maintain a set of vertices for every node in the pat-
tern, which can be done in O(n); (2) the method does not need to solve an NP
complete MIS problem; and (3) it is not necessary to compute all occurrences:
it is sufficient to determine for every pair of v ∈ V (p) and v′ ∈ V (g) if there
is one occurrence in which '(v) = v′.

2.6 The Computational Bottleneck

Most graph mining methods follow the combinatorial pattern enumeration
paradigm. In real world applications including bioinformatics and social net-
work analysis, the complete enumeration of patterns is practically infeasible.
It often turns out that the mining results, even those for closed graphs [33] or
maximal graphs [15], are explosive in size.

graph dataset exponential pattern space significant patterns

mine select

exploratory task

graph index

graph classification

graph clustering

bottleneck

Figure 12.2. Graph Pattern Application Pipeline
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Figure 12.2 depicts the pipeline of graph applications built on frequent sub-
graphs. In this pipeline, frequent subgraphs are mined first; then significant
patterns are selected based on user-defined objective functions for different ap-
plications. Unfortunately, the potential of graph patterns is hindered by the
limitation of this pipeline, due to a scalability issue. For instance, in order to
find subgraphs with the highest statistical significance, one has to enumerate
all the frequent subgraphs first, and then calculate their p-value one by one.
Obviously, this two-step process is not scalable due to the following two rea-
sons: (1) for many objective functions, the minimum frequency threshold has
to be set very low so that none of significant patterns will be missed—a low-
frequency threshold often means an exponential pattern set and an extremely
slow mining process; and (2) there is a lot of redundancy in frequent subgraphs;
most of them are not worth computing at all. When the complete mining re-
sults are prohibitively large, yet only the significant or representative ones are
of real interest. It is inefficient to wait forever for the mining algorithm to finish
and then apply post-processing to the huge mining result. In order to complete
mining in a limited period of time, a user usually has to sacrifice patterns’ qual-
ity. In short, the frequent subgraph mining step becomes the bottleneck of the
whole pipeline in Figure 12.2.

In the following discussion, we will introduce recent graph pattern mining
methods that overcome the scalability bottleneck. The first series of studies
[19, 11, 27, 31, 25, 24] focus on mining the optimal or significant subgraphs
according to user-specified objective functions in a timely fashion by accessing
only a small subset of promising subgraphs. The second study [10] by Hasan
et al. generates an orthogonal set of graph patterns that are representative. All
these studies avoid generating the complete set of frequent subgraphs while
presenting only a compact set of interesting subgraph patterns, thus solving
the scalability and applicability issues.

3. Mining Significant Graph Patterns

3.1 Problem Definition

Given a graph database D = {G1, ..., Gn} and an objective function F ,
a general problem definition for mining significant graph patterns can be for-
mulated in two different ways: (1) find all subgraphs g such that F (g) ≥ �
where � is a significance threshold; or (2) find a subgraph g∗ such that
g∗ = argmaxgF (g). No matter which formulation or which objective func-
tion is used, an efficient mining algorithm shall find significant patterns di-
rectly without exhaustively generating the whole set of graph patterns. There
are several algorithms [19, 11, 27, 31, 25, 24] proposed with different objective
functions and pruning techniques. We are going to discuss four recent studies:
gboost [19], gPLS [25], LEAP [31] and GraphSig [24].
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3.2 gboost: A Branch-and-Bound Approach

Kudo et al. [19] presented an application of boosting for classifying labeled
graphs, such as chemical compounds, natural language texts, etc. A weak clas-
sifier called decision stump uses a subgraph as a classification feature. Then a
boosting algorithm repeatedly constructs multiple weak classifiers on weighted
training instances. A gain function is designed to evaluate the quality of a
decision stump, i.e., how many weighted training instances can be correctly
classified. Then the problem of finding the optimal decision stump in each it-
eration is formulated as mining an “optimal" subgraph pattern. gboost designs
a branch-and-bound mining approach based on the gain function and integrates
it into gSpan to search for the “optimal" subgraph pattern.

A Boosting Framework. gboost uses a simple classifier, decision stump,
for prediction according to a single feature. The subgraph-based decision
stump is defined as follows.

Definition 12.9 (Decision Stumps for Graphs). Let t and x be labeled
graphs and y ∈ {±1} be a class label. A decision stump classifier for graphs
is given by

ℎ⟨t,y⟩(x) =
{

y, t ⊆ x

−y, otℎerwise .

The decision stumps are trained to find a rule ⟨t̂, ŷ⟩ that minimizes the error
rate for the given training data T = {⟨xi, yi⟩}Li=1,

⟨t̂, ŷ⟩ = arg min
t∈ℱ ,y∈{±1}

1

L

L∑

i=1

I(yi ∕= ℎ⟨t,y⟩(xi))

= arg min
t∈ℱ ,y∈{±1}

1

2L

L∑

i=1

(1− yiℎ⟨t,y⟩(xi)), (3.1)

where ℱ is a set of candidate graphs or a feature set (i.e.,ℱ =
∪L

i=1{t∣t ⊆ xi})
and I(⋅) is the indicator function. The gain function for a rule ⟨t, y⟩ is defined
as

gain(⟨t, y⟩) =
L∑

i=1

yiℎ⟨t,y⟩(xi). (3.2)

Using the gain, the search problem in Eq.(3.1) becomes equivalent to the prob-
lem: ⟨t̂, ŷ⟩ = argmaxt∈ℱ ,y∈{±1} gain(⟨t, y⟩). Then the gain function is used
instead of error rate.

gboost applies AdaBoost [9] by repeatedly calling the decision stumps and
finally produces a hypothesis f , which is a linear combination ofK hypotheses
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produced by the decision stumps f(x) = sgn(
∑K

k=1 �kℎ⟨tk ,yk⟩(x)). In the kth

iteration, a decision stump is built with weights d(k) = (d
(k)
1 , ..., d

(k)
L ) on the

training data, where
∑L

i=1 d
(k)
i = 1, d

(k)
i ≥ 0. The weights are calculated to

concentrate more on hard examples than easy ones. In the boosting framework,
the gain function is redefined as

gain(⟨t, y⟩) =
L∑

i=1

yidiℎ⟨t,y⟩(xi). (3.3)

A Branch-and-Bound Search Approach. According to the gain function
in Eq.(3.3), the problem of finding the optimal rule ⟨t̂, ŷ⟩ from the training
dataset is defined as follows.

Problem 1 [Find Optimal Rule] Let T = {⟨x1, y1, d1⟩, ..., ⟨xL, yL, dL⟩} be
a training data set where xi is a labeled graph, yi ∈ {±1} is a class label

associated with xi and di (
∑L

i=1 di = 1, di ≥ 0) is a normalized weight as-
signed to xi. Given T , find the optimal rule ⟨t̂, ŷ⟩ that maximizes the gain, i.e.,
⟨t̂, ŷ⟩ = argmaxt∈ℱ ,y∈{±1} yidiℎ⟨t,y⟩, where ℱ =

∪L
i=1{t∣t ⊆ xi}.

A naive method is to enumerate all subgraphs ℱ and then calculate the gains
for all subgraphs. However, this method is impractical since the number of sub-
graphs is exponential to their size. To avoid such exhaustive enumeration, the
method to find the optimal rule is modeled as a branch-and-bound algorithm
based on the upper bound of the gain function which is defined as follows.

Lemma 12.10 (Upper bound of the gain). For any t′ ⊇ t and y ∈ {±1}, the
gain of ⟨t′, y⟩ is bounded by �(t) (i.e., gain(⟨t′, y⟩) ≤ �(t)), where �(t) is
given by

�(t) = max(2
∑

{i∣yi=+1,t⊆xi}
di −

L∑

i=1

yi ⋅ di, 2
∑

{i∣yi=−1,t⊆xi}
di +

L∑

i=1

yi ⋅ di).

(3.4)

Figure 12.3 depicts a graph pattern search tree where each node represents
a graph. A graph g′ is a child of another graph g if g′ is a supergraph of g with
one more edge. g′ is also written as g′ = g ⋄ e, where e is the extra edge. In
order to find an optimal rule, the branch-and-bound search estimates the upper
bound of the gain function for all descendants below a node g. If it is smaller
than the value of the best subgraph seen so far, it cuts the search branch of that
node. Under the branch-and-bound search, a tighter upper bound is always
preferred since it means faster pruning.
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...

cut
cut

search stop

...

Figure 12.3. Branch-and-Bound Search

Algorithm 15 outlines the framework of branch-and-bound for searching the
optimal graph pattern. In the initialization, all the subgraphs with one edge are
enumerated first and these seed graphs are then iteratively extended to large
subgraphs. Since the same graph could be grown in different ways, Line 5
checks whether it has been discovered before; if it has, then there is no need
to grow it again. The optimal gain(⟨t̂, ŷ⟩) discovered so far is maintained. If
�(t) ≤ gain(⟨t̂, ŷ⟩), the branch of t can safely be pruned.

Algorithm 15 Branch-and-Bound

Input: Graph dataset D
Output: Optimal rule ⟨t̂, ŷ⟩

1: S = {1-edge graph};
2: ⟨t̂, ŷ⟩ = ∅; gain(⟨t̂, ŷ⟩) = −∞;
3: while S ∕= ∅ do
4: choose t from S, S = S ∖ {t};
5: if t was examined then
6: continue;
7: if gain(⟨t, y⟩) > gain(⟨t̂, ŷ⟩) then
8: ⟨t̂, ŷ⟩ = ⟨t, y⟩;
9: if �(t) ≤ gain(⟨t̂, ŷ⟩) then
10: continue;
11: S = S ∪ {t′∣t′ = t ⋄ e};
12: return ⟨t̂, ŷ⟩;

3.3 gPLS: A Partial Least Squares Regression Approach

Saigo et al. [25] proposed gPLS, an iterative mining method based on par-
tial least squares regression (PLS). To apply PLS to graph data, a sparse version
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of PLS is developed first and then it is combined with a weighted pattern min-
ing algorithm. The mining algorithm is iteratively called with different weight
vectors, creating one latent component per one mining call. Branch-and-bound
search is integrated into graph mining with a designed gain function and a prun-
ing condition. In this sense, gPLS is very similar to the branch-and-bound
mining approach in gboost.

Partial Least Squares Regression. This part is a brief introduction to
partial least squares regression (PLS). Assume there are n training examples
(x1, y1), ..., (xn, yn). The output yi is assumed to be centralized

∑
i yi = 0.

Denote by X the design matrix, where each row corresponds to xTi . The re-
gression function of PLS is

f(x) =
m∑

i=1

�iw
T
i x,

where m is the pre-specified number of components that form a subset of the
original space, and wi are weight vectors that reduce the dimensionality of x,
satisfying the following orthogonality condition,

wT
i X

TXwj =

{
1 (i = j)

0 (i ∕= j)
.

Basically wi are learned in a greedy way first, then the coefficients �i are
obtained by least squares regression without any regularization. The solutions
to �i and wi are

�i =

n∑

k=1

ykw
T
i xk, (3.5)

and

wi = argmax
w

(
∑n

k=1 ykw
Txk)

2

wTw
,

subject to wTXTXw = 1, wTXTXwj = 0, j = 1, ..., i − 1.
Next we present an alternative derivation of PLS called non-deflation sparse

PLS. Define the i-th latent component as ti = Xwi and Ti−1 as the matrix of
latent components obtained so far, Ti−1 = (t1, ..., ti−1). The residual vector is
computed by

ri = (I − Ti−1T
T
i−1)y.

Then multiply it with XT to obtain

v =
1

�
XT (I − Ti−1T

T
i−1)y.

The non-deflation sparse PLS follows this idea.
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In graph mining, it is useful to have sparse weight vectors wi such that only
a limited number of patterns are used for prediction. To this aim, we introduce
the sparseness to the pre-weight vectors vi as

vij = 0, if ∣vij ∣ ≤ �, j = 1, .., d.

Due to the linear relationship between vi and wi, wi becomes sparse as well.
Then we can sort ∣vij ∣ in the descending order, take the top-k elements and set
all the other elements to zero.

It is worthwhile to notice that the residual of regression up to the (i− 1)-th
features,

rik = yk −
i−1∑

j=1

�jw
T
j xk, (3.6)

is equal to the k-th element of ri. It can be verified by substituting the definition
of �j in Eq.(3.5) into Eq.(3.6). So in the non-deflation algorithm, the pre-
weight vector v is obtained as the direction that maximizes the covariance with
residues. This observation highlights the resemblance of PLS and boosting
algorithms.

Graph PLS: Branch-and-Bound Search. In this part, we discuss how to
apply the non-deflation PLS algorithm to graph data. The set of training graphs
is represented as (G1, y1),...,(Gn, yn). Let P be the set of all patterns, then the
feature vector of each graph Gi is encoded as a ∣P∣-dimensional vector xi.
Since ∣P∣ is a huge number, it is infeasible to keep the whole design matrix.
So the method sets X as an empty matrix first, and grows the matrix as the
iteration proceeds. In each iteration, it obtains the set of patterns p whose
pre-weight ∣vip∣ is above the threshold, which can be written as

Pi = {p∣∣
n∑

j=1

rijxjp∣ ≥ �}. (3.7)

Then the design matrix is expanded to include newly introduced patterns. The
pseudo code of gPLS is described in Algorithm 16.

The pattern search problem in Eq.(3.7) is exactly the same as the one solved
in gboost through a branch-and-bound search. In this problem, the gain func-
tion is defined as s(p) = ∣∑n

j=1 rijxjp∣. The pruning condition is described
as follows.

Theorem 12.11. Define ỹi = sgn(ri). For any pattern p′ such that p ⊆ p′,
s(p′) < � holds if

max{s+(p), s−(p)} < �, (3.8)
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where

s+(p) = 2
∑

{i∣ỹi=+1,xi,j=1}
∣ri∣ −

n∑

i=1

ri,

s−(p) = 2
∑

{i∣ỹi=−1,xi,j=1}
∣ri∣+

n∑

i=1

ri.

Algorithm 16 gPLS

Input: Training examples (G1, y1), (G2, y2), ..., (Gn, yn)
Output: Weight vectors wi, i = 1, ...,m

1: r1 = y, X = ∅;
2: for i = 1, ...,m do
3: Pi = {p∣∣

∑n
j=1 rijxjp∣ ≥ �};

4: XPi : design matrix restricted to Pi;
5: X ← X ∪XPi ;
6: vi = XT ri/�;

7: wi = vi −
∑i−1

j=1(w
T
j X

TXvi)wj ;

8: ti = Xwi;
9: ri+1 = ri − (yT ti)ti;

3.4 LEAP: A Structural Leap Search Approach

Yan et al. [31] proposed an efficient algorithm which mines the most signif-
icant subgraph pattern with respect to an objective function. A major contri-
bution of this study is the proposal of a general approach for significant graph
pattern mining with non-monotonic objective functions. The mining strategy,
called LEAP (Descending Leap Mine), explored two new mining concepts: (1)
structural leap search, and (2) frequency-descending mining, both of which are
related to specific properties in pattern search space. The same mining strat-
egy can also be applied to searching other simpler structures such as itemsets,
sequences and trees.

Structural Leap Search. Figure 12.4 shows a search space of subgraph
patterns. If we examine the search structure horizontally, we find that the sub-
graphs along the neighbor branches likely have similar compositions and fre-
quencies, hence similar objective scores. Take the branches A and B as an
example. Suppose A and B split on a common subgraph pattern g. Branch A
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proximity

A B

g

Figure 12.4. Structural Proximity

contains all the supergraphs of g ⋄ e and B contains all the supergraphs of g
except those of g ⋄ e. For a graph g′ in branch B, let g′′ = g′ ⋄ e in branch A.

LEAP assumes each input graph is assigned either a positive or a negative
label (e.g., compounds active or inactive to a virus). One can divide the graph
dataset into two subsets: a positive set D+ and a negative set D−. Let p(g)
and q(g) be the frequency of a graph pattern g in positive graphs and negative
graphs. Many objective functions can be represented as a function of p and q
for a subgraph pattern g, as F (g) = f(p(g), q(g)).

If in a graph dataset, g ⋄ e and g often occur together, then g′′ and g′ might
also occur together. Hence, likely p(g′′) sim p(g′) and q(g′′) sim q(g′), which
means similar objective scores. This is resulted by the structural and embed-
ding similarity between the starting structures g⋄e and g. We call it structural
proximity: Neighbor branches in the pattern search tree exhibit strong similar-
ity not only in pattern composition, but also in their embeddings in the graph
datasets, thus having similar frequencies and objective scores. In summary, a
conceptual claim can be drawn,

g′ sim g′′ ⇒ F (g′) simF (g′′). (3.9)

According to structural proximity, it seems reasonable to skip the whole
search branch once its nearby branch is searched, since the best scores be-
tween neighbor branches are likely similar. Here, we would like to emphasize
“likely” rather than “surely”. Based on this intuition, if the branch A in Figure
12.4 has been searched, B could be “leaped over” if A and B branches satisfy
some similarity criterion. The length of leap can be controlled by the frequency
difference of two graphs g and g ⋄ e. The leap condition is defined as follows.

Let I(G, g, g ⋄ e) be an indicator function of a graph G: I(G, g, g ⋄ e) = 1,
for any supergraph g′ of g, if g′ ⊆ G, ∃g′′ = g′ ⋄e such that g′′ ⊆ G; otherwise
0. When I(G, g, g ⋄ e) = 1, it means if a supergraph g′ of g has an embedding
in G, there must be an embedding of g′ ⋄ e in G. For a positive dataset D+,
let D+(g, g ⋄ e) = {G∣I(G, g, g ⋄ e) = 1, g ⊆ G,G ∈ D+}. In D+(g, g ⋄ e),
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g′ ⊃ g and g′′ = g′⋄e have the same frequency. Define Δ+(g, g⋄e) as follows,

Δ+(g, g ⋄ e) = p(g)− ∣D+(g, g ⋄ e)∣
∣D+∣

.

Δ+(g, g⋄e) is actually the maximum frequency difference that g′ and g′′ could
have in D+. If the difference is smaller than a threshold �, then leap,

2Δ+(g, g ⋄ e)
p(g ⋄ e) + p(g)

≤ � and
2Δ−(g, g ⋄ e)
q(g ⋄ e) + q(g)

≤ �. (3.10)

� controls the leap length. The larger � is, the faster the search is. Structural
leap search will generate an optimal pattern candidate and reduce the need for
thoroughly searching similar branches in the pattern search tree. Its goal is
to help program search significantly distinct branches, and limit the chance of
missing the most significant pattern.

Algorithm 17 Structural Leap Search: sLeap(D, �, g★)

Input: Graph dataset D, difference threshold �
Output: Optimal graph pattern candidate g★

1: S = {1− edge graph};
2: g★ = ∅; F (g★) = −∞;
3: while S ∕= ∅ do
4: S = S ∖ {g};
5: if g was examined then
6: continue;

7: if ∃g ⋄ e, g ⋄ e ≺ g, 2Δ+(g,g⋄e)
p(g⋄e)+p(g) ≤ �, 2Δ−(g,g⋄e)

q(g⋄e)+q(g) ≤ � then
8: continue;
9: if F (g) > F (g★) then
10: g★ = g;

11: if F̂ (g) ≤ F (g★) then
12: continue;
13: S = S ∪ {g′∣g′ = g ⋄ e};
14: return g★;

Algorithm 17 outlines the pseudo code of structural leap search (sLeap).
The leap condition is tested on Lines 7-8. Note that sLeap does not guarantee
the optimality of result.

Frequency Descending Mining. Structural leap search takes advantages of
the correlation between structural similarity and significance similarity. How-
ever, it does not exploit the possible relationship between patterns’ frequency
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and patterns’ objective scores. Existing solutions have to set the frequency
threshold very low so that the optimal pattern will not be missed. Unfortu-
nately, low-frequency threshold could generate a huge set of low-significance
redundant patterns with long mining time.

Although most of objective functions are not correlated with frequency
monotonically or anti-monotonically, they are not independent of each other.
Cheng et al. [4] derived a frequency upper bound of discriminative measures
such as information gain and Fisher score, showing a relationship between fre-
quency and discriminative measures. According to this analytical result, if all
frequent subgraphs are ranked in increasing order of their frequency, significant
subgraph patterns are often in the high-end range, though their real frequency
could vary dramatically across different datasets.
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Figure 12.5. Frequency vs. G-test score

Figure 12.5 illustrates the relationship between frequency and G-test score
for an AIDS Anti-viral dataset [31]. It is a contour plot displaying isolines of
G-test score in two dimensions. The X axis is the frequency of a subgraph g
in the positive dataset, i.e., p(g), while the Y axis is the frequency of the same
subgraph in the negative dataset, q(g). The curves depict G-test score. Left
upper corner and right lower corner have the higher G-test scores. The “circle”
marks the highest G-score subgraph discovered in this dataset. As one can see,
its positive frequency is higher than most of subgraphs.

[Frequency Association]Significant patterns often fall into the high-
quantile of frequency.

To profit from frequency association, an iterative frequency-descending
mining method is proposed in [31]. Rather than performing mining with
very low frequency, the method starts the mining process with high frequency
threshold � = 1.0, calculates an optimal pattern candidate g★ whose frequency
is at least �, and then repeatedly lowers down � to check whether g★ can be
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improved further. Here, the search leaps in the frequency domain, by leveling
down the minimum frequency threshold exponentially.

Algorithm 18 Frequency-Descending Mine: fLeap(D, ", g★)

Input: Graph dataset D, converging threshold "
Output: Optimal graph pattern candidate g★

1: � = 1.0;
2: g = ∅; F (g) = −∞;
3: do
4: g★ = g;
5: g=fpmine(D, �);
6: � = �/2;
7: while (F (g) − F (g★) ≥ ")
8: return g★ = g;

Algorithm 18 (fLeap) outlines the frequency-descending strategy. It starts
with the highest frequency threshold, and then lowers the threshold down till
the objective score of the best graph pattern converges. Line 5 executes a
frequent subgraph mining routine, fpmine, which could be FSG [20], gSpan
[32] etc. fpmine selects the most significant graph pattern g from the frequent
subgraphs it mined. Line 6 implements a simple frequency descending method.

Descending Leap Mine. With structural leap search and frequency-
descending mining, a general mining pipeline is built for mining significant
graph patterns in a complex graph dataset. It consists of three steps as follows.

Step 1. perform structural leap search with threshold � = 1.0, generate an
optimal pattern candidate g★.

Step 2. repeat frequency-descending mining with structural leap search until
the objective score of g★ converges.

Step 3. take the best score discovered so far; perform structural leap search
again (leap length �) without frequency threshold; output the discov-
ered pattern.

3.5 GraphSig: A Feature Representation Approach

Ranu and Singh [24] proposed GraphSig, a scalable method to mine signif-
icant (measured by p-value) subgraphs based on a feature vector representation
of graphs. The first step is to convert each graph into a set of feature vectors
where each vector represents a region within the graph. Prior probabilities of
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features are computed empirically to evaluate statistical significance of pat-
terns in the feature space. Following the analysis in the feature space, only a
small portion of the exponential search space is accessed for further analysis.
This enables the use of existing frequent subgraph mining techniques to mine
significant patterns in a scalable manner even when they are infrequent. The
major steps of GraphSig are described as follows.

Sliding Window across Graphs. As the first step, random walk with
restart (abbr. RWR) is performed on each node in a graph to simulate sliding
a window across the graph. RWR simulates the trajectory of a random walker
that starts from the target node and jumps from one node to a neighbor. Each
neighbor has an equal probability of becoming the new station of the walker.
At each jump, the feature traversed is updated which can either be an edge label
or a node label. A restart probability � brings the walker back to the starting
node within approximately 1

� jumps. The random walk iterates till the feature
distribution converges. As a result, RWR produces a continuous distribution
of features for each node where a feature value lies in the range [0, 1], which is
further discretized into 10 bins. RWR can therefore be visualized as placing a
window at each node of a graph and capturing a feature vector representation of
the subgraph within it. A graph ofm nodes is represented bym feature vectors.
RWR inherently takes proximity of features into account and preserves more
structural information than simply counting occurrence of features inside the
window.

Calculating P-value of A Feature Vector. To calculate p-value of a fea-
ture vector, we model the occurrence of a feature vector x in a feature vector
space formulated by a random graph. The frequency distribution of a vector is
generated using the prior probabilities of features obtained empirically. Given
a feature vector x = [x1, ..., xn], the probability of x occurring in a random
feature vector y = [y1, ..., yn] can be expressed as a joint probability

P (x) = P (y1 ≥ x1, ..., yn ≥ xn). (3.11)

To simplify the calculation, we assume independence of the features. As a
result, Eq.(3.11) can be expressed as a product of the individual probabilities,
where

P (x) =

n∏

i=1

P (yi ≥ xi). (3.12)

Once P (x) is known, the support of x in a database of random feature vectors
can be modeled as a binomial distribution. To illustrate, a random vector can
be viewed as a trial and x occurring in it as “success". A database consisting
m feature vectors will involve m trials for x. The support of x in the database
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is the number of successes. Therefore, the probability of x having a support �
is

P (x;�) = C�
mP (x)

�(1− P (x))m−�. (3.13)

The probability distribution function (abbr. pdf) of x can be generated from
Eq.(3.13) by varying � in the range [0,m]. Therefore, given an observed sup-
port �0 of x, its p-value can be calculated by measuring the area under the pdf
in the range [�0,m], which is

p-value(x, �0) =
m∑

i=�0

P (x; i). (3.14)

Identifying Regions of Interest. With the conversion of graphs into feature
vectors, and a model to evaluate significance of a graph region in the feature
space, the next step is to explore how the feature vectors can be analyzed to
extract the significant regions. Based on the feature vector representation, the
presence of a “common" sub-feature vector among a set of graphs points to a
common subgraph. Similarly, the absence of a “common" sub-feature vector
indicates the non-existence of any common subgraph. Mathematically, the
floor of the feature vectors produces the “common" sub-feature vector.

Definition 12.12 (Floor of vectors). The floor of a set of vectors {v1, ..., vm}
is a vector vf where vfi = min(v1i , ..., vmi) for i = 1, ..., n, n is the number
of dimensions of a vector. Ceiling of a set of vectors is defined analogously.

The next step is to mine common sub-feature vectors that are also signif-
icant. Algorithm 19 presents the FVMine algorithm which explores closed
sub-vectors in a bottom-up, depth-first manner. FVMine explores all possible
common vectors satisfying the significance and support constraints.

With a model to measure the significance of a vector, and an algorithm to
mine closed significant sub-feature vectors, we integrate them to build the sig-
nificant graph mining framework. The idea is to mine significant sub-feature
vectors and use them to locate similar regions which are significant. Algorithm
20 outlines the GraphSig algorithm.

The algorithm first converts each graph into a set of feature vectors and
puts all vectors together in a single set D′ (lines 3-4). D′ is divided into sets,
such that D′

a contains all vectors produced from RWR on a node labeled a.
On each set D′

a, FVMine is performed with a user-specified support and p-
value thresholds to retrieve the set of significant sub-feature vectors (line 7).
Given that each sub-feature vector could describe a particular subgraph, the
algorithm scans the database to identify the regions where the current sub-
feature vector occurs. This involves finding all nodes labeled a and described
by a feature vector such that the vector is a super-vector of the current sub-
feature vector v (line 9). Then the algorithm isolates the subgraph centered
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Algorithm 19 FVMine(x, S, b)

Input: Current sub-feature vector x, supporting set S of x,
current starting position b

Output: The set of all significant sub-feature vectors A

1: if p-value(x) ≤ maxPvalue then
2: A← A+ x;
3: for i = b to m do
4: S′ ← {y∣y ∈ S, yi > xi};
5: if ∣S′∣ < min sup then
6: continue;
7: x′ = floor(S′);
8: if ∃j < i such that x′j > xj then
9: continue;
10: if p-value(ceiling(S′), ∣S′∣) ≥ maxPvalue then
11: continue;
12: FVMine(x′, S′, i);

at each node by using a user-specified radius (line 12). This produces a set
of subgraphs for each significant sub-feature vector. Next, maximal subgraph
mining is performed with a high frequency threshold since it is expected that
all of graphs in the set contain a common subgraph (line 13). The last step
also prunes out false positives where dissimilar subgraphs are grouped into a
set due to the vector representation. For the absence of a common subgraph,
when frequent subgraph mining is performed on the set, no frequent subgraph
will be produced and as a result the set is filtered out.

4. Mining Representative Orthogonal Graphs

In this section we will discuss ORIGAMI, an algorithm proposed by Hasan
et al. [10], which mines a set of �-orthogonal, �-representative graph patterns.
Intuitively, two graph patterns are �-orthogonal if their similarity is bounded
by a threshold �. A graph pattern is a �-representative of another pattern if
their similarity is at least �. The orthogonality constraint ensures that the re-
sulting pattern set has controlled redundancy. For a given �, more than one set
of graph patterns qualify as an �-orthogonal set. Besides redundancy control,
representativeness is another desired property, i.e., for every frequent graph
pattern not reported in the �-orthogonal set, we want to find a representative
of this pattern with a high similarity in the �-orthogonal set.

The set of representative orthogonal graph patterns is a compact summary of
the complete set of frequent subgraphs. Given user specified thresholds �, � ∈
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Algorithm 20 GraphSig(D, min sup, maxPvalue)

Input: Graph dataset D, support threshold min sup,
p-value threshold maxPvalue

Output: The set of all significant sub-feature vectors A

1: D′ ← ∅;
2: A← ∅;
3: for each g ∈ D do
4: D′ ← D′ +RWR(g);
5: for each node label a in D do
6: D′

a ← {v∣v ∈ D′, label(v) = a};
7: S ← FVMine(floor(D′

a),D
′
a, 1);

8: for each vector v ∈ S do
9: V ← {u∣u is a node of label a, v ⊆ vector(u)};
10: E ← ∅;
11: for each node u ∈ V do
12: E ← E + CutGrapℎ(u, radius);
13: A← A+Maximal FSM(E, freq);

[0, 1], the goal is to mine an �-orthogonal, �-representative graph pattern set
that minimizes the set of unrepresented patterns.

4.1 Problem Definition

Given a collection of graphs D and a similarity threshold � ∈ [0, 1], a
subset of graphs ℛ ⊆ D is �-orthogonal with respect to D iff for any
Ga, Gb ∈ ℛ, sim(Ga, Gb) ≤ � and for anyGi ∈ D∖ℛ there exists aGj ∈ ℛ,
sim(Gi, Gj) > �.

Given a collection of graphs D, an �-orthogonal set ℛ ⊆ D and a simi-
larity threshold � ∈ [0, 1], ℛ represents a graph G ∈ D, provided that there
exists some Ga ∈ ℛ, such that sim(Ga, G) ≥ �. Let Υ(ℛ,D) = {G∣G ∈
D s.t. ∃Ga ∈ ℛ, sim(Ga, G) ≥ �}, then ℛ is a �-representative set for
Υ(ℛ,D).

Given D and ℛ, the residue set of ℛ is the set of unrepresented patterns in
D, denoted as△(ℛ,D) = D∖{ℛ ∪Υ(ℛ,D)}.

The problem defined in [10] is to find the �-orthogonal, �-representative set
for the set of all maximal frequent subgraphsℳ which minimizes the residue
set size. The mining problem can be decomposed into two subproblems of
maximal subgraph mining and orthogonal representative set generation, which
are discussed separately. Algorithm 21 shows the algorithm framework of
ORIGAMI.
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Algorithm 21 ORIGAMI(D, min sup, �, �)

Input: Graph dataset D, minimum support min sup, �, �
Output: �-orthogonal, �-representative set ℛ

1: EM=Edge-Map(D);
2: ℱ1=Find-Frequent-Edges(D, min sup);

3: ℳ̂ = �;
4: while stopping condition() ∕= true do
5: M=Random-Maximal-Graph(D, ℱ1, EM , min sup);

6: ℳ̂ = ℳ̂ ∪M ;

7: ℛ=Orthogonal-Representative-Sets(ℳ̂, �, �);
8: return ℛ;

4.2 Randomized Maximal Subgraph Mining

As the first step, ORIGAMI mines a set of maximal subgraphs, on which the
�-orthogonal, �-representative graph pattern set is generated. This is based on
the observation that the number of maximal frequent subgraphs is much fewer
than that of frequent subgraphs, and the maximal subgraphs provide a synopsis
of the frequent ones to some extent. Thus it is reasonable to mine the repre-
sentative orthogonal pattern set based on the maximal subgraphs rather than
the frequent ones. However, even mining all of maximal subgraphs could be
infeasible in some real world applications. To avoid this problem, ORIGAMI
first finds a sample ℳ̂ of the complete set of maximal frequent subgraphsℳ.

The goal is to find a set of maximal subgraphs, ℳ̂, which is as diverse as
possible. To achieve this goal, ORIGAMI avoids using combinatorial enumer-
ation to mine maximal subgraph patterns. Instead, it adopts a random walk
approach to enumerate a diverse set of maximal subgraphs from the positive
border of such maximal patterns. The randomized mining algorithm starts with
an empty pattern and iteratively adds a random edge during each extension, un-
til a maximal subgraph M is generated and no more edges can be added. This
process walks a random chain in the partial order of frequent subgraphs. To
extend an intermediate pattern, Sk ⊆ M , it chooses a random vertex v from
which the extension will be attempted. Then a random edge e incident on v is
selected for extension. If no such edge is found, no extension is possible from
the vertex. When no vertices can have any further extension in Sk, the random
walk terminates and Sk = M is the maximal graph. On the other hand, if a
random edge e is found, the other endpoint v′ of this edge is randomly selected.
By adding the edge e and its endpoint v′, a candidate subgraph pattern Sk+1 is
generated and its support is computed. This random walk process repeats until
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no further extension is possible on any vertex. Then the maximal subgraph M
is returned.

Ideally, the random chain walks would cover different regions of the pattern
space, thus would produce dissimilar maximal patterns. However, in practice,
this may not be the case, since duplicate maximal subgraphs can be generated
in the following ways: (1) multiple iterations following overlapping chains, or
(2) multiple iterations following different chains but leading to the same max-
imal pattern. Let’s consider a maximal subgraph M of size n. Let e1e2...en be
a sequence of random edge extensions, corresponding to a random chain walk
leading from an empty graph � to the maximal graph M . The probability of a
particular edge sequence leading from � to M is given as

P [(e1e2...en)] = P (e1)
n∏

i=2

P (ei∣e1...ei−1). (4.1)

Let ES(M) denote the set of all valid edge sequences for a graph M . The
probability that a graph M is generated in a random walk is proportional to

∑

e1e2...en∈ES(M)

P [(e1e2...en)]. (4.2)

The probability of obtaining a specific maximal pattern depends on the num-
ber of chains or edge sequences leading to that pattern and the size of the pat-
tern. According to Eq.(4.1), as a graph grows larger, the probability of the edge
sequence becomes smaller. So this random walk approach in general favors a
maximal subgraph of smaller size than one of larger size. To avoid generat-
ing duplicate maximal subgraphs, a termination condition is designed based
on an estimate of the collision rate of the generated patterns. Intuitively the
collision rate keeps track of the number of duplicate patterns seen within the
same or across different random walks. As a random walk chain is traversed,
ORIGAMI maintains the signature of the intermediate patterns in a bounded
size hash table. As an intermediate or maximal subgraph is generated, its signa-
ture is added to the hash table and the collision rate is updated. If the collision
rate exceeds a threshold �, the method could (1) abort further extension along
the current path and randomly choose another path; or (2) trigger the termina-
tion condition across different walks, since it implies that the same part of the
search space is being revisited.

4.3 Orthogonal Representative Set Generation

Given a set of maximal subgraphs ℳ̂, the next step is to extract an �-

orthogonal �-representative set from it. We can construct a meta-graph Γ(ℳ̂)

to measure similarity between graph patterns in ℳ̂, in which each node rep-
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resents a maximal subgraph pattern, and an edge exists between two nodes if
their similarity is bounded by �. Then the problem of finding an �-orthogonal
pattern set can be modeled as finding a maximal clique in the similarity graph

Γ(ℳ̂).
For a given �, there could be multiple �-orthogonal pattern sets as feasible

solutions. We could use the size of the residue set to measure the goodness of
an �-orthogonal set. An optimal �-orthogonal �-representative set is the one
which minimizes the size of the residue set. [10] proved that this problem is
NP-hard.

Given the hardness result, ORIGAMI resorts to approximate algorithms to
solve the problem which guarantees local optimality. The algorithm starts with

a random maximal clique in the similarity graph Γ(ℳ̂) and tries to improve
it. At each state transition, another maximal clique which is a local neighbor
of the current maximal clique is chosen. If the new state has a better solution,
the new state is accepted as the current state and the process continues. The
process terminates when all neighbors of the current state have equal or larger
residue sizes. Two maximal cliques of size m and n (assume m ≥ n) are
considered neighbors if they share exactly n − 1 vertices. The state transition
procedure selectively removes one vertex from the maximal clique of the cur-
rent state and then expands it to obtain another maximal clique which satisfies
the neighborhood constraints.

5. Conclusions

Frequent subgraph mining is one of the fundamental tasks in graph data
mining. The inherent complexity in graph data causes the combinatorial ex-
plosion problem. As a result, a mining algorithm may take a long time or even
forever to complete the mining process on some real graph datasets.

In this chapter, we introduced several state-of-the-art methods that mine a
compact set of significant or representative subgraphs without generating the
complete set of graph patterns. The proposed mining and pruning techniques
were discussed in details. These methods greatly reduce the computational
cost, while at the same time, increase the applicability of the generated graph
patterns. These research results have made significant progress on graph min-
ing research with a set of new applications.
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Abstract Streaming is an important paradigm for handling massive graphs that are too
large to fit in the main memory. In the streaming computational model, algo-
rithms are restricted to use much less space than they would need to store the
input. Furthermore, the input is accessed in a sequential fashion, therefore, can
be viewed as a stream of data elements. The restriction limits the model and
yet, algorithms exist for many graph problems in the streaming model. We sur-
vey a set of algorithms that compute graph statistics, matching and distance in
a graph, and random walks. These are basic graph problems and the algorithms
that compute them may be used as building blocks in graph-data management
and mining.

Keywords: Streaming algorithms, Massive graph, matching, graph distance, random walk
on graph

1. Introduction

In recent years, graphs of massive size have emerged in many applications.
For example, in telecommunication networks, the phone numbers that call each
other form a call graphs. On the Internet, the web pages and the links between
them form the web graph. Also in applications such as structured data mining,
the relationships among the data items in the data set are often modeled as
graphs. These graphs are massive and often have a large number of nodes and
connections (edges).

New challenges arise when computing with massive graphs. It is possible
to store a massive graph on a large capacity storage device. However, large
capacity comes with a price: random accesses in these devices are often quite
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slow (comparing to random accesses in the main memory). In some cases, it
is not necessary (or even not possible) to store the graph. Algorithms that deal
with massive graphs have to consider these properties.

In traditional computational models, when calculating the complexity of an
algorithm, all storage devices are treated indifferently and the union of them
(main memory as well as disks) are abstracted as a single memory space. Basic
operations in this memory space, such as access to a random location, take
an equal (constant) amount of time. However, on a real computer, access to
data in main memory takes much less time than access to data on the disk.
Clearly, computational complexities derived using traditional model in these
cases cannot reflect the complexity of the real computation.

To consider the difference between memory and storage types, several new
computational models are proposed. In the external memory model [44] the
memory is divide into two types: internal (main memory) and external (disks).
Accesses to external memory are viewed as one measurement of the algo-
rithm’s complexity. Despite the fact that access to the external memory is
slow and accounts heavily in the algorithm’s complexity measure, an external
algorithm can still store all the input data in the external memory and make
random access to the data.

Compare to the external memory model, the streaming model of computa-
tion takes the difference between the main memory and the storage device to
a new level. The streaming model completely eliminates random access to the
input data. The main memory is viewed as a workspace in the streaming model
where the computation sketches temporary results and performs frequent ran-
dom accesses. The inputs to the computation, however, can only be accessed
in a sequential fashion, i.e., as a stream of data items. (The input may be stored
on some device and accessed sequentially or the input itself may be a stream
of data items. For example, in the Internet routing system, the routers forward
packets at such a high speed that there may not be enough time for them to
store the packets on slow storage devices.) The size of the workspace is much
smaller than the input data. In many cases, it is also expected that the process
of each data item in the stream take small amount of time and therefore the
computation be done in near-linear time (with respect to the size of the input).

Streaming computation model is different from sampling. In the sampling
model, the computation is allowed to perform random accesses to the inputs.
With these accesses, it takes a few samples from the input and then computes
on these samples. In some cases, the computation may not see the whole input.
In the streaming model, the computation is allowed to access the input only in
a sequential fashion but the whole input data can be viewed in this way. A
non-adaptive sampling algorithm can be trivially transformed into a streaming
algorithm. However, an adaptive sampling algorithm that takes advantage of
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the random access allowed by the sampling model cannot be directly adapted
into the streaming model.

The streaming model was formally proposed in [29]. However, before [29],
there were studies [30, 25] that considered similar models, without using the
term stream or streaming. Since [29], there has been a large body of work on
algorithms and complexity in this model ( [3, 24, 31, 27, 26, 37, 32] as a few
examples). Some example problems considered in the streaming model are
computing statistics, norms and histogram constructions. Muthu’s book [37]
gives an excellent elaboration on the topics of general streaming algorithms
and applications.

In this survey, we consider streaming algorithms for graph problems. It is no
surprise that the computation model is limited. Some graph problems therefore
cannot be solved using the model. However, there are still many graph prob-
lems (e.g. graph connectivity [22, 45], spanning tree [22]) for which one can
obtain solutions or approximation algorithms. We will survey approximate al-
gorithms for computing graph statistics, matching and distance in a graph, and
random walk on a graph in the streaming model. We remark that this is not
a comprehensive survey covering all the graph problems that have been con-
sidered in the streaming model. Rather, we will focus on the set of aforemen-
tioned topics. Many papers cited here also give lower bounds for the problems
as well as algorithms. We will focus on the algorithms and omit discussion on
the lower bounds. Finally we remark that although these algorithms are not
direct graph mining algorithms. They compute basic graph-theoretic problems
and may be utilized in massive graph mining and management systems.

2. Streaming Model for Massive Graphs

We give a detailed description of the streaming model in this section.
Streaming is a general computation model and is not just for graphs. However,
since this survey concerns only graph problems and algorithms, we will fo-
cus on graph streaming computation. We consider mainly undirected graphs.
The graphs can be weighted—i.e., there is a weight function w : E → ℝ+

that assigns a non-negative weight to each edge. We denote by G(V,E) a
graph G with vertex (node) set V = {v1, v2, . . . , vn} and edge set E =
{e1, e2, . . . , em}where n is the number of vertices andm the number of edges.

Definition 13.1. A graph stream is a sequence of edges ei1 , ei2 , . . . , eim ,
where eij ∈ E and i1, i2, . . . , im is an arbitrary permutation of [m] =
{1, 2, . . . ,m}.

While an algorithm goes through the stream, the graph is revealed one edge
at a time. The edges may be presented in any order. There are variants of
graph stream in which the adjacency matrix or the adjacency list of the graph
is presented as a stream. In such cases, the edges incident to each vertex are
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grouped together in the stream. (It is sometimes called the incident stream.)
Definition 13.1 is more general and accounts for graphs whose edges may be
generated in an arbitrary order.

We now summarize the definitions of streaming computation in [29, 28, 16,
22] as follows: A streaming algorithm for massive graph is an algorithm that
computes some function for the graph and has the following properties:

1 The input to the streaming algorithm is a graph stream.

2 The streaming algorithm accesses the data elements (edges) in the stream
in a sequential order. The order of the data elements in the stream is not
controlled by the algorithm.

3 The algorithm uses a workspace that is much smaller in size than the
input. It can perform unrestricted random access in the workspace. The
amount of workspace required by the streaming algorithm is an impor-
tant complexity measure of the algorithm.

4 As the input data stream by, the algorithm needs to process each data
element quickly. The time needed by the algorithm to process each data
element in the stream is another important complexity measure of the
algorithm.

5 The algorithms are restricted to access the input stream in a sequential
fashion. However, they may go through the stream in multiple, but a
small number, of passes. The third important complexity measure of the
algorithm is the number of passes required.

These properties characterize the algorithm’s behavior during the time when
it goes through the input data stream. Before this time, the algorithm may
perform certain pre-processing on the workspace (but not on the input stream).
After going through the data stream, the algorithm may undertake some post-
processing on the workspace. The pre and post-processing only concern the
workspace and are essentially computations in the traditional model.

Considering the three complexity measures: the workspace size, the per-
element processing time, and the number of passes that the algorithm needs
to go through the stream, an efficient streaming computation means that the
algorithm’s complexity measures are small. For example, many streaming al-
gorithms use polylog(N ) space (polylog(⋅) means O(logc(⋅)) where c is a con-
stant) when the input size is N . The streaming-clustering algorithm in [28]
uses O(N �) space for a small 0 < � < 1. Many graph streaming algorithms
uses O(n ⋅ polylog(n)) space. Some streaming algorithms process a data el-
ement in O(1) time. Others may need polylog(N) time. Many streaming
algorithms access the input stream in one pass. There are also multiple-pass
algorithms [36, 22, 40].
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Other variants of the streaming model also exist. For example, the W-stream
model [15] allows the algorithm to write to (annotate) the stream during each
pass. These annotations can then be utilized by the algorithm in the successive
passes. Another variant [1] augments the streaming model by adding a sorting
primitive.

3. Statistics and Counting Triangles

In this section, we describe a set of problems that involve graphs but es-
sentially can be reduced to problems whose input is an array presented as
a stream of the array elements (or as a sequence of increments to the el-
ements). For example, the array a = [2, 1, 3] can be given as a stream
{(a[1] + 1), (a[3] + 1), (a[3] + 1), (a[2] + 1), (a[1] + 1), (a[3] + 1)}. As-
suming all the entries of the array take value 0 at the beginning of the stream,
after the operations in the stream, we obtain the array a.

There are many streaming algorithms that computes, for this array, statistics
such as frequency moments [3, 24, 31], heavy hitters [13, 10], and construct
succinct data structures that support queries such as range queries [38]. These
algorithms can be directly applied once the graph problem is reduced to the
corresponding problem of an array.

We consider these problems involving the degree of the graph nodes. For
an undirected graph, the degree of a node is the number of edges incident
to the node. One may view that there is a virtual array D associated with
each graph such that D[i] is the degree of the i-th node. In the streaming
setting, a stream of edges translates to updates to the array D. For example, the
stream {(1, 2), (4, 8), (2, 7) . . .} means the operation sequence: {(D[1] + 1),
(D[2] + 1), (D[4] + 1), (D[8] + 1), (D[2] + 1), (D[7] + 1), . . .}. (The degree
array can be extended to directed graph, where we may have one out-degree
array and one in-degree array.)

The frequency moment problem is to compute the k-th moment fk =∑n
i=1(D[i])k of the node degrees. The heavy hitter problem is to report, after

seeing the graph stream, the nodes having the largest degrees. The range query
requires to construct a succinct representation of the array (one that is much
smaller in size than the array), from which

∑k
i=j D[i], given j and k as query

input, can be calculated.
Cormode and Muthu show [14] that these problems can be solved using cor-

responding streaming algorithms that work for an array. They further provide
algorithms for these problems when the graph is a multigraph, but the degree
of a node is defined to count only the distinct edges. (e.g. if the stream for a
multigraph has edges (1, 2), (2, 5), (1, 2), the degree of the node 1 is 1, not 2
and the degree of the node 2 is 2, not 3.) The details of the algorithms are out
of the scope of this survey. We refer readers to [14] and the aforementioned
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literatures for streaming algorithms that compute statistics and other queries
for an array.

The node degree of a graph is also related to the entropy H of an un-
biased random walk on the graph [9]. In particular, H is defined to be
H = 1

2∣E∣
∑n

i=1D[i] logD[i]. A streaming algorithm that computes the en-

tropy for an array, of which the i-th entry represents the frequency of the i-th
element in a set is given in [9]. The authors showed that the algorithm can be
applied to compute the entropy when the array is the node-degree array D for a
graph, and therefore the entropy of an unbiased random walk can be calculated
for a graph stream. They also extended the algorithm to multigraphs where
only distinct edges are counted for the degree.

Another problem that can be reduced to computing statistics of an array
is the triangle counting problem, i.e., to find the number of triangles in an
undirected graph. We describe here the reduction introduced by Bar-Yossef
et. al [6]. Similar to the earlier problems, there is a virtual array P associated
with the graph. Each entry in the array corresponds to an (unordered) triple
of the graph nodes. e.g., if vi, vj , vk are three nodes in the graph, there is
an entry P [(i, j, k)] in the array corresponds to the triple {vi, vj , vk}. The
value of the entry counts how many of the three pairs {vi, vj}, {vi, vk}, and
{vj , vk} are actual edges in the graph. There are 4 possible values for the
entries. 0, 1, 2, and 3. Let T0, T1, T2, and T3 be the number of entries that take
the corresponding value. Clearly, T3 is exactly the number of triangles in the
graph. (We will abuse the notation and also use Ti to denote the set of triples
whose entry value is i.)

Different from the reduction described earlier, an edge in the graph stream
here maps into updates of multiple entries in the array. If we see an edge
(u, v), it means (P [(u, v, s)] + 1) for all nodes s ∕= u, v. Now consider the
frequency moments of the array fk =

∑
t(P [t])

k . It can be decomposed into
fk = T1 ⋅ 1k + T2 ⋅ 2k + T3 ⋅ 3k because each entry with value 1 contributes
1k to fk, with value 2, 2k and with value 3, 3k. We can have the following
equations:

⎛
⎝

f0
f1
f2

⎞
⎠ =

⎛
⎝

1 1 1
1 2 3
1 4 9

⎞
⎠ ⋅

⎛
⎝

T1
T2
T3

⎞
⎠ .

Using streaming algorithms one can estimate f0, f2. f1 can be easily ob-
tained from the stream. Solving the above equation then gives us the estimate
of T3. (Although the size of the virtual array is larger than the size of the
graph stream, e.g., a stream of m edges corresponds to an array with m(n− 2)
entries, the estimate algorithms often use space logarithmic to the size of the
array. Therefore, the memory space needed is not significantly affected by the
reduction.)
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In [6], Bar-Yossef et al.also proposed improved streaming frequency-
moment estimate algorithms. Using the reduction and their frequency-moment
estimation, they show that for �, � > 0, the number of triangles in a graph can
be estimated within � error (i.e., the estimate is bounded between (1−�)T3 and
(1 + �)T3) with at least 1− � probability. The algorithm uses space

s = O

(
1

�3
⋅ log 1

�
⋅
(
T1 + T2 + T3

T3

)3

⋅ log n
)

and poly(s) process time for each edge. When the stream is an incident stream,
they show that, the number of triangles can be (�, �)-estimated using space

O

(
1

�2
⋅ log 1

�
⋅
(
T3 + T2
T3

)2

⋅ log n+ dmax log n

)
.

where dmax is the maximum degree.
In a follow-up work, Jowhari and Ghodsi [33] introduced several estimators

for the number of triangles. One estimator uses sequences of random numbers
in a way similar to [3]. Let R be an array of uniform, ±1-valued random
numbers, i.e., P (R[i] = 1) = P (R[i] = −1) = 0.5 and E(R[i]) = 0.
The random numbers in the array are 12-wise independent. A family of such
random arrays can be constructed using the BCH code [3] in log-space. While
the edges stream by, one computes Z =

∑
(i,j)∈E R[i]R[j]. X = Z3/6 is

then an estimator for the number of triangles in the graph. This is so because
E(Rk[i]) = 0 for odd k and the numbers in R are 12-wise independent. After
the expansion of X, the expectations of the terms all evaluate to zero except
those in form of 6R2[i]R2[j]R2[k], which correspond to the triangles. Jowhari
and Ghodsi showed that the variance of the estimator can be controlled such
that only O( 1

�2
⋅log 1

� ⋅(m
3+mC4+C6

T 2
3

+1)⋅log n) space and per-edge processing

time is needed for an (�, �)-estimation. (Ck is the number of cycles of length k
in the graph.) Another two sample-based estimators are also proposed in [33].

Buriol et al.also proposed sample-based algorithms for counting triangles
in [8]. We present one of their algorithms in Algorithm 13.1.
� is a {0, 1}-valued random variable whose expectation is 3T3

T1+2T2+3T3
. Be-

cause T1 + 2T2 + 3T3 = m(n − 2), (Consider the triples consist of two end
nodes of an edge plus one node from the other n− 2. There are m(n− 2) such
combinations. On the other hand, this way of counting counts each triple in T1
once, triples in T2 twice and triples in T3 three times. Hence the equality.) T3
can be estimated using a set of samples of �. For making (�, �)-estimation, this
algorithm uses O(( 1

�2 ⋅ log 1
� ⋅ T1+T2+T3

T3
) memory space and constant expected

per-edge process time.
Buriol et al.further showed that Algorithm 13.1 can be modified into a one-

pass algorithm. The uniform sampling of the edges can be done in one pass by
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Algorithm 13.1: Sample Triangle

1st pass: Count the number of edges in the graph.1

2nd pass: Sample an edge (u, v) uniformly. Choose a node w uniformly2

from V ∖ {(u, v)}.
3rd pass:3

if Both (u,w) and (v,w) are actual edges in the stream then4

� = 15

else6

� = 07

end8

return �9

reservoir sampling [43]. One difference here is that edges (u,w) and (v,w)
may arrive before (u, v) in the stream. When (u, v) gets selected as a sample,
we have missed (u,w) and (v,w) and would not detect u, v, w as an triangle.
This happens when (u, v) is not the first edge of the triangle in the stream and
it reduces the expectation of � by a factor of 3. Sample-based algorithms are
also proposed in [8] for incidence streams.

4. Graph Matching

A matching in a graph is a set of edges without common nodes. For an un-
weighted graph, the maximum matching problem is to find a matching having
the largest cardinality (number of edges). For a weighted graph, the problem
is to find a matching whose edges give the largest weight sum. We survey un-
weighted and weighted matching algorithms for graph streams in the following
sections.

4.1 Unweighted Matching

An early algorithm for approximating unweighted bipartite matching in the
streaming model is given in [22]. We describe the algorithm here. It is easy to
see that a maximal matching (A matching no more edge can be added because
every edge outside the match share a vertex with some edge in the matching.)
can be constructed in one pass over the graph stream.

Given a matching M for a bipartite graph G = (L ∪R,E), a length-3 aug-
menting path for an edge e = (u, v) ∈ M , u ∈ L and v ∈ R, is a quadruple
(wl, u, v, wr) such that (u,wl), (wr, v) ∈ E, and wl and wr are free vertices.
We call wl and wr the wing-tips of the augmenting path, (u,wl) the left wing
and (wr, v) the right wing. A set of simultaneously augmentable length-3 aug-
menting paths is a set of length-3 augmenting paths that are vertex disjoint.
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Algorithm 13.2: Find Augmenting Paths

Input: a graph G = (L ∪R,E), a matching M for G and a parameter
0 < � < 1.

while true do1

In one pass, find a maximal set of disjoint left wings. If the number of2

left wings found is ≤ �M , terminate.
In a second pass, for the edges in M with left wings, find a maximal3

set of disjoint right wings.
In a third pass we identify the set of vertices that are4

endpoints of a matched edge that got a left wing, or

the wing tips of a matched edge that got both wings, or

endpoints of a matched edge that is no longer 3 augmentable.

We remember these vertices and in subsequent passes, we ignore any
edge incident on one of these vertices.

end5

Given a bipartite graph and a matching in the graph, the subroutine in Al-
gorithm 13.2 finds a set of simultaneously augmentable length-3 augmenting
paths. It will be used in the main algorithm that computes the matching for a
bipartite graph.

Let X be a maximum-sized set of simultaneously augmentable length-3

augmenting paths for the maximal matching M . Let � = ∣X∣
∣M ∣ . It is shown

in [22] that Algorithm 13.2 finds at least �∣M ∣−2�∣M ∣
3 simultaneously aug-

mentable length-3 augmenting paths in 3/� passes.
The main matching algorithm increases the size of a matching by repeatedly

finding a set of simultaneously augmentable length-3 augmenting paths and
augmenting the matching using these paths.

The for-loop in Algorithm 13.3 runs ⌈ log 6�
log8/9⌉ times. During each run, the

subroutine described in Algorithm 13.2 needs to go through the input graph
stream 3/� passes. Therefore, Algorithm 13.3 in total goes through the stream

O
(
log 1/�

�

)
passes. Each call to the subroutine will find a set of simultane-

ously augmentable length-3 augmenting paths which increases the size of the
matching. The final matching size reaches at least (2/3 − �) of the maximum
matching. The algorithm processes each edge in O(1) time in each pass except
the first pass, in which the bipartition is found. The storage space required by
the algorithm is O(n log n).
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Algorithm 13.3: Unweighted Bipartite Matching

Input: a bipartite graph G = (L ∪R,E) and a parameter 0 < � < 1/3.
In one pass, find a maximal matching M and the bipartition of G.1

for k = 1, 2, . . . , ⌈ log 6�
log8/9⌉ do2

Run Algorithm 13.2 with G, M and � = �
2−3� .3

for each e = (u, v) ∈M for which an augmenting path (wl, u, v, wr)4

is found by algorithm 13.2 do
remove (u, v) from M and add (u,wl) and (wr, v) to M .5

end6

end7

Figure 13.1. Layered Auxiliary Graph. Left, a graph with a matching (solid edges); Right, a layered
auxiliary graph. (An illustration, not constructed from the graph on the left. The solid edges show
potential augmenting paths.)

In [35], McGregor introduced an improved algorithm to find augmenting
paths in an unweighted graph for which a maximal match has been constructed.
Given the original input graph G and a matching M , McGregor constructed an
auxiliary graph GA to help searching for augment paths. Fig 13.1 gives an
example of one auxiliary graph. The auxiliary graph is a layered graph with a
small number, k+2, of layers. It is derived as follows: LetL0, L1, . . . , Lk+1 be
the layers in GA. The free nodes in G, i.e. the nodes that haven’t been covered
by an edge inM , are randomly projected to be nodes in L0 or Lk+1. The edges
in M are projected to be a node in GA and this node is randomly assigned to
be in a layer of L1, L2, . . . , Lk. There is an edge between a node x ∈ Li (that
corresponding to (v1, v2) ∈ M ) and a node y ∈ Li−1 (that corresponding to
(v3, v4) ∈ M ) if (v2, v3) ∈ G. With this construction, an (i + 1)-length path
in GA can be mapped to a (2i+ 1)-length augmenting path for M in G.

Identifying a set of augmenting paths for M in G now is transformed to find
a set of node-disjoint paths in GA. Because one doesn’t have enough space
to store the whole graph G in the streaming model, normally, the auxiliary
graph GA cannot be stored as a whole graph neither. However, the nodes in
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GA can be stored. While the algorithm passes through the input stream of G,
the edges in GA also gets revealed. Hence, the problem boils down to find a
near-maximal set of node-disjoint paths in GA.

A search algorithm was proposed in [35] for this purpose. The algorithm
finds a maximal matching between layers Li−1 and Li. Let Si ∈ Li be the set
of nodes involved in this matching. The algorithm then goes ahead to find a
maximal matching between Si and Li+1. It continues in this fashion to grow a
set of node-disjoint paths. Clearly, the size of Si may decrease while i increases
and may become empty before the last layer is reached. To avoid this, the
path growth process may backtrack if the size of Si becomes too small. The
backtrack is done by marking the nodes in Si as deadends, removing them
from GA and continuing path growth in the remaining of GA.

For a particular GA construction and path growth, the resulting set of paths
may be small. However, the GA construction is random because the nodes cor-
responding to the edges in M are randomly assigned to the layers. A matching
algorithm is given in [35] that is similar to Algorithm 13.3 in structure but uti-
lizes the GA-based augmenting-path search. It is shown that, with high proba-
bility, this algorithm finds a matching in O�(1) (a function of � and a constant
is � is constant) passes whose size is at least 1

1+� of the maximum matching.

4.2 Weighted Matching

The streaming version of the problem was first studied in [22] where a
streaming algorithm (Algorithm 13.4) was proposed. The algorithm uses only
one pass over the stream and manages to find a matching which is at least 1

6 of
the optimal size.

Algorithm 13.4: Weighted Matching

Maintain a matching M at all times.1

while there are edges in the stream do2

Let e be the next edge in the stream and w(e) be the weight of e;3

Let w(C) be the sum of the weights of the edges in4

C = {e′∣e′ ∈M and e′ and e share an end point}. (w(C) = 0 if C is
empty.)
if w(e) > 2w(C) then5

update M ←M ∪ {e} ∖ C .6

else7

ignore e8

end9

end10

The following property of Algorithm 13.4 is shown in [22].
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Theorem 13.2. In 1 pass and O(n log n) storage, Algorithm 13.4 constructs
a weighted matching that is at least 1

6 of the optimal size.

Proof: For any set of edges S, let w(S) =
∑

e∈S w(e). We say that an edge
is selected if it is ever part of M . We say that an edge is dropped if it was
selected early but later replaced from M (step 6 in Algorithm 13.4) by a new
heavier edge. This new edge replaces the dropped edge. We say an edge is a
survivor if it is selected and never dropped. Let the set of survivors be S. The
weight of the matching we find is therefore w(S).

For each survivor e, let the Trail of Drops leading to this edge be T (e) =
C1 ∪ C2 ∪ . . . where C0 = {e}, C1 = {the edges replaced by e}, and
Ci = ∪e′∈Ci−1

{the edges replaced by e′}. We have w(T (e)) ≤ w(e). This
is because for each replacing edge e, w(e) is at least twice the cost of the re-
placed edges, and an edge has at most one replacing edge. Hence, for all i,
w(Ci) ≥ 2w(Ci+1) and

2w(T (e)) =
∑

i≥1

2w(Ci) ≤
∑

i≥0

w(Ci) = w(T (e)) +w(e).

Now consider the optimal solution that includes edges opt = {o1, o2, . . .}.
We are going to charge the costs of the edges in opt to the survivors and their
trail of drops, ∪e∈ST (e) ∪ {e}. We hold an edge e in this set accountable
to o ∈ opt if either e = o or if o wasn’t selected because e was in M when
o arrived. Note that, in the second case, it is possible for two edges to be
accountable to o. If only one edge is accountable for o then we charge w(o) to

e. If two edges e1 and e2 are accountable for o, then we charge w(o)w(e1)
w(e1)+w(e2)

to

e1 and w(o)w(e2)
w(e1)+w(e2)

to e2. In either case, the amount charged by o to any edge

e is at most 2w(e).
We now redistribute these charges as follows: (for distinct u1, u2, u3) if

e = (u1, v) gets charged by o = (u2, v), and e subsequently gets replaced by
e′ = (u3, v), we transfer the charge from e to e′. Note that we maintain the
property that the amount charged by o to any edge e is at most 2w(e) because
w(e′) ≥ w(e). What this redistribution of charges achieves is that now every
edge in a trail of drops is only charged by one edge in opt. Survivors can,
however, be charged by two edges in opt. We charge w(opt) to the survivors
and their trails of drops, and hence

w(opt) ≤
∑

e∈S
(2w(T (e)) + 4w(e)) .

Because w(T (e)) ≤ w(e),
∑

e∈S
(2w(T (e)) + 4w(e)) ≤ 6w(S)



A Survey on Streaming Algorithms for Massive Graphs 405

and the theorem follows. □

The condition on line 5 of Algorithm 13.4 can be generalized to be w(e) >
(1 + )w(C), C = {e′∣e′ ∈ M and e′ and e share an end point}. By setting
 appropriately and repeating Algorithm 13.4 until the improvement yielded
falls below some threshold, a matching can be constructed [35] inO�(1) passes
whose size is at least 1

2+� of the maximum matching.
Another improvement for weighted matching was made recently by

Zelke [46]. Zelke’s algorithm is also based on Algorithm 13.4, but incorpo-
rates some improvements. In particular, the algorithm stores a few edges that
have been in M in the past but were replaced later, to potentially reinsert them
into M in the future. Such edges are called in [46] the “shadow edges." With
shadow edges, when a new edge arrives in the stream, besides the (two) edges
that sharing the endpoints with the new edge, a few other edges (edges in M as
well as the shadow edges) in the vincinity of the new edge can be examined to
find potential augmenting path. This improves the approximation from 1/5.82
(by an algorithm in [35]) to 1/5.58.

5. Graph Distance

We consider the shortest-path distance in a graph. The shortest path between
two vertices in a graph is the path that has the smallest number of edges (for
an unweighted graph) or the smallest sum of the weights of the path edges (for
a weighted graph). There may be more than one such shortest path.

A structure often used in approximating graph distance is the graph span-
ner [39, 11, 18]. An undirected graph G = (V,E) induces a metric space
U in which the vertex set V serves as the set of points, and the shortest-
path distances serve as the distances between the points. The graph spanner
G′ = (V,H),H ⊆ E, is a sparse skeleton of the graph G whose induced
metric space U ′ is a close approximation of the metric space U of the graph
G. That is, the distance between two vertices in G′ is not far from the distance
between the same two vertices in G. For example, a subgraph G′ = (V,H),
H ⊆ E is a (multiplicative) t-spanner of the graph G, if for every pair of ver-
tices u, v ∈ V , distG′(u, v) ≤ t ⋅ distG(u, v) (where distG(u, v) stands for
the distance between the vertices u and v in the graph G). The stretch factor
of a spanner is the parameter(s) that determines how close the spanner approx-
imates the distances in the original graph, e.g., in the case of a t-spanner, the
parameter t.

Clearly, if a spanner can be constructed for a massive graph, one can approx-
imate the node distance in the graph using the spanner. Because the spanner
is much smaller than the original graph, it can often be stored in the main
memory. In fact, an early application of spanners is to maintain a succinct rep-
resentation of the routing information [39, 11]. Instead of the original network
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graph, spanners are passed and stored by the routers for calculating the routing
paths. Besides distances, the diameter of a graph can be approximated using
the spanner diameter.

In [22], Feigenbaum et al.gave a simple streaming algorithm for spanner-
construction by adapting the technique of [4]. It displays a certain connection
between the girth of a graph and the spanner. (The girth of a graph is the length
of the shortest cycle in the graph.) However, in the worst case, the algorithm
needs more than O(n) time to process an edge. Such a processing time is
prohibitively high for the streaming model.

For an unweighted graph, the algorithm of [22] in one pass constructs a
(log n/ log log n)-spanner S: Because a graph whose girth is larger than k
have at most ⌈n1+2/(k−2)⌉ edges [7, 17, 2], the algorithm constructs S by
adding an edge in the stream to S if the edge does not cause a cycle of length
less than log n/ log log n in the S constructed so far. Otherwise, the edge is
ignored. Note that for each ignored edge, there is a path P of length at most
log n/ log log n in S that connects the two endpoints of this edge. Any shortest
path in the original graph that uses this edge can be replaced by a path in S that
uses P . Therefore, S is a log n/ log log n spanner of the original graph.

For a weighted graph, however, the construction in [4] requires sorting the
edges according to their weights, which is difficult in the streaming model.
Instead of sorting, a geometric grouping technique is used in [22] to extend
the spanner construction for unweighted graphs to a construction for weighted
graphs. This technique is similar to the one used in [12]. Let !min be the
minimum weight and !max be the maximum weight. We divide the range
[!min, !max] into intervals of the form [(1 + �)i!min, (1 + �)i+1!min) and
round all the weights in the interval [(1+�)i!min, (1+�)

i+1!min) down to (1+
�)i!min. For each induced graph Gi = (V,Ei), where Ei is the set of edges in
E whose weight is in the interval [(1+�)i!min, (1+�)

i+1!min), a spanner can
be constructed in parallel using the above construction for unweighted graphs.
The union of the spanners for all the Gi, i ∈ {0, 1, . . . , log(1+�)

!max
!min

− 1},
forms a spanner for the graph G. Note that this can be done without prior
knowledge of !min and !max. The goal is to break the range [!min, !max] into
a small number of intervals. Given any value ! ∈ [!min, !max], we can use
the set of intervals of the form [(1 + �)i!, (1 + �)i+1!) and [ !

(1+�)i+1 ,
!

(1+�)i
).

Therefore, we can determine the intervals without the prior knowledge of !min

and !max.

5.1 Distance Approximation using Multiple Passes

Elkin and Zhang gave a multiple-pass streaming spanner construction
in [21]. This algorithm builds an additive spanner. A subgraph G′ = (V,H)
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of the graph G = (V,E) is an (additive) (�, �)-spanner of G if for every pair
of vertices u, v ∈ V , distG′(u, v) ≤ � ⋅ distG(u, v) + �.

We describe the algorithm of [21] and its subroutine in the following fash-
ion. We describe first the distributed version of the algorithm and then its adap-
tation to the streaming model. As observed in [21], leaving space complexity
aside, it is easy to see that many distributed algorithms with time complexity
T translate directly into streaming algorithms that use T passes. For example,
a straightforward streaming adaptation of a synchronous distributed algorithm
for constructing a BFS tree would be the following: in each pass over the input
stream, the BFS tree grows one more level. An exploration of d levels would
result in d passes over the input stream. On the other hand, there are cases in
which the running time of a synchronous algorithm may not translate directly
to the number of passes of the streaming adaptation. In the example of the
BFS tree, if two BFS trees are being constructed in parallel, some edges may
be explored by both constructions, resulting in congestion that may increase
the running time of the distributed algorithm. But for a streaming algorithm,
both explorations of the same edge can be done using only one pass over the
stream.

We follow the notations used in [21]. Let diam(G) denote the diameter of
the graph G, i.e., diam(G) = maxu,v∈V distG(u, v). Given a subset V ′ ⊆
V , denote by EG(V

′) the set of edges in G induced by V ′, i.e., EG(V
′) =

{(u,w) ∣ (u,w) ∈ E and u,w ∈ V ′}. Let G(V ′) = (V ′, EG(V
′)). Denote by

Γk(v, V
′) the k-neighborhood of vertex v in the graphG(V ′), i.e., Γk(v, V

′) =
{u ∣ u ∈ V ′ and dist(V ′,EG(V ′))(u, v) ≤ k}. The diameter of a subset V ′ ⊆ V ,
denoted by diam(V ′), is the maximum pairwise distance in G between a pair
of vertices from V ′. For a collection ℱ of subsets V ′ ⊆ V , let diam(ℱ) =
maxV ′∈ℱ{diam(V ′)}.

The spanner construction utilizes graph covers. For a graph G = (V,E)
and two integers �,W > 0, a (�,W )-cover [5, 11, 18] C is a collection of
not necessarily disjoint subsets (or clusters) C ⊆ V that satisfy the following
conditions. (1)

∪
C∈C

C = V . (2) diam(C ) = O(�W ). (3) The size of

the cover s(C ) =
∑

C∈C
∣C∣ is O(n1+1/�), and furthermore, every vertex

belongs to polylog(n) ⋅ n1/� clusters. (4) For every pair of vertices u, v ∈ V
that are at distance at most W from one another, there exists a cluster C ∈ C

that contains both vertices, along with the shortest path between them. Note
that many constructions of (�,W )-cover will also build one BFS tree for each
cluster in the cover as a by-product. The BFS tree spans the whole cluster and
is rooted at one vertex in the cluster.

Algorithm 13.5 shows the construction [11, 19, 21] of (�,W )-covers. It
will be used as a subroutine in the spanner construction. Algorithm 13.5 builds
a (�,W )-cover in � phases. A vertex v in graph G is called covered if there
is a cluster C ∈ C such that ΓW (v, V ) ⊆ C . Let Ui be the set of uncovered
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Algorithm 13.5: Cover

Input: a graph G = (V,E) and two positive integer parameters � and W .
U1 ← V .1

for i = 1, 2, . . . , � do2

Include each vertex v ∈ Ui independently at random with probability3

pi = min{1, ni/�

n ⋅ log n} in the set Si of phase i.
Each vertex s ∈ Si constructs a cluster by growing a BFS tree of4

depth di−1 = 2((�− i) + 1)W in the graph (Ui, E(Ui)). We call s
the center of the cluster and the set Γ2(�−i)W (s, Ui) the core set of the
cluster Γ2((�−i)+1)W (s, Ui).

Let Ri be the union of the core sets of the clusters constructed in step5

4. Set Ui+1 ← Ui ∖Ri.
end6

vertices at phase i. At the beginning, U1 = V . At each phase i, a subset of
vertices is covered and removed from Ui.

A streaming version of Algorithm 13.5 is also given in [21]. The streaming
version proceeds in � phases. In each phase i, the algorithm passes through
the input stream di−1 times to build the BFS trees �(v) of depth di−1 for each
selected vertex v ∈ Si. The cluster and its core set can be computed during the
construction of these BFS trees. Note that for any i, di−1 ≤ 2�W . Therefore,
with high probability, the streaming version of Algorithm 13.5 constructs a
(�,W )-cover using at most 2�2W passes over the input stream.

We now describe the distributed algorithm in [21] that constructs the span-
ner. Given a cluster C , let C (C) be the cover constructed for the graph
(C,EG(C)). For a cluster C ′ ∈ C (C), we define Parent(C ′) = C . An
execution of the algorithm can be divided into ℓ stages (levels). The original
graph is viewed as a cluster on level 0. The algorithm starts level 1 by con-
structing a cover for this cluster. Recall that a cover is also a collection of
clusters. The clusters of ∪C (C), where the union is over all the clusters C on
level 0, are called clusters on level 1, and we denote the set of those clusters
by C1. If a cluster C ∈ C1 satisfies ∣C∣ ≥ ∣Parent(C)∣1−� , we say that C
is a large cluster on level 1. Otherwise, we say that C is a small cluster on
level 1. We denote by CH

1 the set of large clusters on level 1 and C L
1 the set

of small clusters on level 1. Note that the cover-construction subroutine (Al-
gorithm 13.5) builds a BFS-spanning tree for each cluster in the cover. The
algorithm includes all the BFS-spanning trees in the spanner and then goes on
to make interconnections between all pairs of clusters in CH

1 that are close to
each other.
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Algorithm 13.6: Additive Spanner Construction

Input: a graph G = (V,E) on n vertices and four parameters �, �,D,
and Δ, where �,D, and Δ are positive integers and 0 < � < 1.

C L
0 ← {V }, CH

0 = �.1

for level i = 1, 2, . . . , ℓ = ⌈log1/(1−�) logΔ n⌉ do2

Cover Construction: For all clusters C ∈ C L
i−1, in parallel, construct3

(�,Dℓ)-covers using Algorithm 13.5. (Invoking Algorithm 13.5 with
parameters � and W = Dℓ.)
Include the edges of the BFS-spanning trees of all the clusters in the4

spanner. Set Ci ←
∪

C∈CL
i−1

C (C),

CH
i ← {C ∈ Ci ∣ ∣C∣ ≥ ∣Parent(C)∣(1−�)}, C L

i ← Ci ∖ CH
i .

Interconnection: For all clusters C ′ ∈ CH
i , in parallel, construct BFS5

trees in G(C), where C = Parent(C ′). For each cluster C ′, the BFS
tree is rooted at the center of the cluster, and the depth of the BFS tree
is 2Dℎ +Dℎ+1, where ℎ = ⌈log1/(1−�) logΔ ∣Parent(C ′)∣⌉.
For all the clusters C ′′ whose center vertex is in the BFS tree, if6

C ′′ ∈ CH
i and Parent(C ′′) = Parent(C ′), add to the spanner the

shortest path between the center of C ′ and the center of C ′′.
end7

Add to the spanner all the edges of the set
∪

C∈Cℓ+1
EG(C).8

After these interconnections are completed, the algorithm enters level 2. For
each cluster in C L

1 , it constructs a cover. We call the clusters in each of these
covers the clusters on level 2. The union of all the level-2 clusters is denoted
by C2. If a cluster C ∈ C2 satisfies ∣C∣ ≥ ∣Parent(C)∣1−� , we say that C
is a large cluster on level 2. Otherwise, we say that C is a small cluster on
level 2. Again, we denote by CH

2 the set of large clusters on level 2 and C L
2

the set of small clusters on level 2. The BFS-spanning trees of all the clusters
in C2 are included into the spanner and all the close pairs of clusters in CH

2 get
interconnected by the algorithm.

The algorithm proceeds in a similar fashion at levels 3 and above. That is,
at level i, the algorithm constructs covers for each small cluster in C L

i−1, and

interconnects all the close pairs of large clusters in CH
i . Similarly, we denote

by Ci the collection of all the clusters in the covers constructed at level i, by
CH
i the set of large clusters of Ci, and C L

i the set of small clusters of Ci. After
level ℓ, each of the small clusters of level ℓ contains very few vertices and the
algorithm can include in the spanner all the edges induced by these clusters. A
description of the detailed algorithm is given in Algorithm 13.6.

See Figure 13.2 for an example of covers and clusters constructed by the
algorithm. The circles in the figure represent the clusters. C1 = {C1, C2, C3},
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Figure 13.2. Example of clusters in covers.

CH
1 = {C1} and C L

1 = {C2, C3}. Note that for each cluster in C L
1 , a

cover is constructed. The union of the clusters in these covers forms C2, i.e.,
C2 = {C4, C5, C6, C7, C8, C9, C10}. The large clusters in C2 form CH

2 =
{C4, C5, C8, C9} and the small clusters in C2 form C L

2 = {C6, C7, C10}. Also
note that a pair of close, large clusters C8 and C9 is interconnected by a shortest
path between them.

The streaming version [21] of Algorithm 13.6 is recursive, and the recursion
has ℓ levels. At level i, a cover is constructed for each of the small clusters in
C L
i−1 using the streaming algorithm for constructing covers described above.

Because the processes of building BFS trees for constructing covers are in-
dependent, they can be carried out in parallel. That is, when the algorithm
encounters an edge in the input stream, it examines its two endpoints. For each
of the clusters in C L

i−1 that contains both endpoints, for each of the BFS-tree
constructions in those clusters that has reached one of the endpoints, the algo-
rithm checks whether the edge would help to extend the BFS tree. If so, the
edge would be added to that BFS tree. After the construction of the covers is
completed, the algorithm makes interconnections between close, large clusters
of each cover. Again, the constructions of the BFS trees that are invoked by
different interconnection subroutines are independent and can be performed in
parallel. It is shown [21] that:

Theorem 13.3. Given an unweighted, undirected graph on n vertices, pre-
sented as a stream of edges, and constants 0 < �, �, � < 1, such that
�/2 + 1/3 > � > �/2, the streaming adaptation of Algorithm 13.6, with high
probability, constructs a (1 + �, �)-spanner of size O(n1+�). The adaptation
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accesses the stream sequentially in O(1) passes, uses O(n1+� ⋅ log n) bits of
space, and processes each edge of the stream in O(n�) time.

The parameters for Algorithm 13.6 are determined as follows: Set Δ =
n�/2, 1

�� = �/2, 1
�� + � = �. This gives � = � − �

2 > 0, � = O(1),

� = 2
(�−�/2)� = O(1), and ℓ = log1/(1−�) logΔ n = log1/(1−�)

2
� = O(1),

satisfying the requirement that �, �, and ℓ are all constants. Also set D =
O(�ℓ� ). Then � = O(�Dℓ) = O(1).

Note that once the spanner is computed, the algorithm is able to compute
all-pairs, almost-shortest paths and distances in the graph by computing the
exactly shortest paths and distances in the spanner using the same space. This
computation of the shortest paths in the spanner requires no additional passes
through the input, and also, no additional space if one does not need to store
the paths found.

5.2 Distance Approximation in One Pass

A one-pass spanner construction is given by Feigenbaum et al.in [23]. The
algorithm is randomized and constructs a multiplicative (2t + 1)-spanner for
an unweighted, undirected graph in one pass. With high probability, it uses
O(t ⋅ n1+1/t log2 n) bits of space and processes each edge in the stream in
O(t2 ⋅n1/t log n) time. It is also shown in [23] that, with O(n1+1/t) space, we
cannot approximate the distance between two vertices better than by a factor
of t. Therefore, this algorithm is close to the optimal.

The algorithm labels the vertices of the graph while going through the
stream of edges. A label l is a positive integer. Given two parameters n and
t, the set of labels L used by the algorithm is generated in the following way.
Initially, we have the labels 1, 2, . . . , n. We denote by L0 this set of labels and
call them the level 0 labels. Independently, and with probability 1

n1/t , each la-

bel l ∈ L0 will be selected for membership in the set S0 and l will be marked
as selected. From each label l in S0, we generate a new label l′ = l + n. We
denote by L1 the set of newly generated labels and call them level 1 labels. We
then apply the above selection and new-label-generation procedure to L1 to get

the set of level 2 labels L2. We continue this until the level ⌊ t2⌋ labels L⌊ t
2
⌋ are

generated. If a level i + 1 label l is generated from a level i label l′, we call l
the successor of l′ and denote this by Succ(l′) = l. The set of labels used in
the algorithm is the union of labels of level 1, 2, . . . , ⌊ t2⌋, i.e., L = ∪Li. Note
that L can be generated before the algorithm sees the edges in the stream. But,
in order to generate the labels, except in the case t = O(log n), the algorithm
needs to know n, the number of vertices in the graph, before seeing the edges
in the input stream. For t = O(log n), a simple modification of the above
method can be used to generate L without knowing n, because the probability
of a label’s being selected can be any constant smaller than 1

2 .
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While going through the stream, the algorithm labels each vertex with labels
chosen from L. Let C(l) be the collection of vertices that are labeled with l.
We call the subgraph induced by the vertices in C(l) a cluster, and we say that
the label of the cluster is l. Each label thus defines a cluster.

The algorithm may label a vertex v with multiple labels; however, v will be
labeled by at most one label from Li, for i = 1, 2, . . . , ⌊ t2⌋. Moreover, if v is
labeled by a label l, and l is selected, the algorithm also labels v with the label
Succ(l).

Denote by li a label of level i, i.e., li ∈ Li. Let L(v) =
{l0, lk1 , lk2 , . . . , lkj}, 0 < k1 < k2 < . . . < kj < t/2 be the collection of
labels that has been assigned to the vertex v. Let Heigℎt(v) = max{j∣lj ∈
L(v)} and Top(v) = lk ∈ L(v) s.t. k = Heigℎt(v).

At the beginning of the algorithm, the set L(vi) contains only the label i ∈
L0. The set C(l) = {vl} for l = 1, 2, . . . , n and is empty for other labels.
L(v) and C(l) grow while the algorithm goes through the stream and labels the
vertices. For each C(l), the algorithm stores a rooted spanning tree Tree(l),
on the vertices of C(l). For l ∈ Li, the depth of the spanning tree is at most i,
i.e., the deepest leaf is at distance i from the root.

We say an edge (u, v) connects C(l) and C(l′) if u is labeled with l and v
is labeled with l′. If there are edges connecting two clusters at level ⌊ t2⌋, the
algorithm stores one such edge for this pair of clusters. We denote by H the
set of these edges stored by the algorithm. Another small set of edges is also
stored for each vertex. We denote byM(v) the edges in the set for the vertex v.
The spanner constructed by the algorithm is the union of the spanning trees for
all the clusters, M(v) for all the vertices, and the setH . The detailed algorithm
is given in Algorithm 13.7.

In a later work [20], Elkin gave an improved algorithm that constructs a
(2t − 1)-spanner in one pass over the stream. The size of the spanner is O(t ⋅
(log n)1−1/t ⋅n1+1/t) with high probability. The algorithm processes each edge
in the stream with O(1) time.

6. Random Walks on Graphs

The Construction of actual random walk on a graph in the streaming model
is considered by Sarma et al.in [40]. The algorithm of [40] that constructs a
random walk from a single starting node is presented in Algorithm 13.8. The
algorithm begins by randomly sampling a set of nodes, each independently
with probability �. Using each sampled node as a starting point, it performs a
short random walk of length w. (w is a parameter that will be set later.) This
can be done in w passes over the stream. It then tries to stitch together the short
random walks one by one to form a long walk and eventually produce a walk
of the required length.
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Algorithm 13.7: One-Pass Spanner Construction

Input: an unweighted, undirected graph G = (V,E), presented as a
stream of edges, and two positive integer parameters n and t.

Generate the set L of labels as described. ∀ vi ∈ V , label vertex vi with1

label i ∈ L0. If i is selected, label vi with Succ(i). Continue until we see
a label that is not selected. Set H ← � and M(vi)← �;
for each edge (u, v) in the stream do2

if L(v) ∩ L(u) = ∅ then3

if Heigℎt(v) = Heigℎt(u) = ⌊ t2⌋, and there is no edge in H that4

connects C(Top(v)) and C(Top(u)) then
set H ← H ∪ {(u, v)};5

else6

Assume, without loss of generality,7

⌊ t2⌋ ≥ Heigℎt(u) ≥ Heigℎt(v). Consider the collection of

labels Lv(u) = {lk1 , lk2 , . . . , lHeigℎt(u)} ⊆ L(u), where
k1 ≥ Heigℎt(v) and k1 < k2 < . . . < Heigℎt(u). Let
l = li ∈ Lv(u) such that li is marked as selected and there is
no lj ∈ Lv(u) with j < i that is marked as selected.
if such a label l exists then8

label the vertex v with the successor l′ = Succ(l) of l, i.e.,9

L(v)← L(v) ∪ {l′}. Incorporate the edge in the spanning
tree Tree(l′). If l′ is selected, label v with l′′ = Succ(l′)
and incorporate the edge in the tree Tree(l′′). Continue
this until we see a label that is not marked as selected;

else10

if There is no edge (u′, v) in M(v) such that u, u′ are11

labeled with the same label l ∈ Lv(u) then
add (u, v) to M(v), i.e., set12

M(v)←M(v) ∪ {(u, v)};
end13

end14

end15

end16

end17

After seeing all the edges in the stream, output the union of the spanning18

trees for all the clusters, M(v) for all the vertices, and the set H as the
spanner.
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The stitch works if the w-length random walk from a node u ends on a node
v such that u and v are both in the set T of sampled nodes and the w-length
random walk from v has not been used previously in the stitch process. If the
random walk from u ends on a node outside of T or on a node in T but whose
random-walk path has already been used, the stitch process gets stuck. This
situation is dealt by the subroutine described in Algorithm 13.9.

Algorithm 13.8: Random Walk

Input: starting node u, walk length l, control parameter 0 < � ≤ 1.
T ← sample each node independently with probaility �.1

In w passes, perform walks of length w from every node in T . Let W [t]2

be the end point of the w-length walk from t ∈ T .
S ← {}.3

Let Lu be the random walk from u to be constructed. Initialize Lu to be4

u. Let x← u.
while ∣Lu∣ < l do5

if x ∈ T and x ∕∈ S then6

Extend Lu by appending the walk W [x]. S ← S ∪ {x}.7

x←W [x].
else8

HanddleStuckNode(x, T, S,Lu , l).9

end10

end11

Algorithm 13.9 first tries to extend the random walk by a length s. (s is an-
other parameter whose value will be determined later.) It does so by randomly
sample (with repetition) s edges for the node on which the stitch process is
currently stuck plus each node in T whose w-length path has been used in the
stitch process up to now. Let O be the set of the nodes for which we sample
edges. (O = S ∪R where S and R are the notations used in Algorithm 13.9.)
The random walk can be extended (as far as possible) using these edges. Let
x be the end node of this extension. If x is one of the nodes in O, we repeat
the sampling and the extension. If x is outside O but in T , and the w-length
random-walk path from x has not be used, we go back to Algorithm 13.8 and
continue the stitch process. Finally, if x falls on a new node that is neither in
T nor in O, we add x to O and perform the sampling and the extension again.

Each stitch extends the random walk by length w. When handling the stuck
situation, either an s-progress is made or the algorithm encounters a node out-
side of O. With probability �, this node is in T (because T is the set of nodes
sampled with probability �) and the algorithm can make a w-progress. There-
fore, after a pass over the stream to sample the edges for the nodes in O, Algo-
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Algorithm 13.9: HandleStuckNode

R← x.1

while ∣Lu∣ < l do2

E ← sample s edges (with repetition) out of each node in S ∪R.3

Extend Lu as far as possible by walking along the edges in E.4

x← new end point of Lu. One of the following arise:5

1 if (x ∈ S ∪R) continue;

2 if (x ∈ T and x ∕∈ S ∪R) return;

3 if (x ∕∈ T and x ∕∈ S ∪R) R← R ∪ {x}.
end6

rithm 13.9 can make a progress whose length is at least min(s, �w) on average.
Sarma et al.showed in [40] that, by setting w =

√
l/� and s =

√
l�, the l-

length random walk from a single start node can be performed in O(
√
l/�)

passes and O(n�+
√
l/�) space for any 0 < � ≤ 1.

This single starting-point random walk is then extended to perform a large
number K of random walks. A naive extension would simply run K copies of
the single random walk in parallel. Sarma et al.introduced an extension that
uses much less space than the naive one. They estimate the probability that the
w-length walk would be used for each node. Based on this probability they
store an appropriate number of w-length walks for each sampled node for K
execution of Algorithm 13.8. In this way, instead ofO(K(n�+

√
l/�)) space,

one needs only Õ(n�+K
√
l/�+Kl�) space. (An alternative algorithm for

running multiple random walks is also given in [40] that uses Õ(n�
√
l� +

K
√
l/�+ l) space. Combining the two, the space requirement for performing

a large number of walks is Õ(min{n�+K
√
l/�+Kl�, n�

√
l�+K

√
l/�+

l}).) Sarma et al.further shows that the algorithms can be used to estimate
probability distributions and to approximate mixing time.

In a later work [41], Sarma et al.modify and apply the above random-walk
algorithms to compute sparse graph cut.

Definition 13.4. The conductance of a cut S is defined as
Φ(S) = E(S,V ∖S)

min{E(S),E(V ∖S)} where E(S, V ∖ S) is the number of edges cross-

ing the cut (S, V ∖ S) and E(S) is the number of edges with at least
one endpoint in S. The conductance of a graph G = (V,E) is de-

fined as Φ = minS:E(S)≤E(V )/2
E(S,V ∖S)

E(S) . For d-regular graphs, Φ =
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minS:∣S∣≤∣V ∣/2
E(S,V ∖S)

d∣S∣ . The sparsity of a d-regular graph is related to the
conductance by a factor d.

It is well known that a sparse cut of a graph can be obtained by performing
random walks [34, 42]. In particular, one can start from a random source and
perform a random walk of length about 1/Φ. The random walk defines a prob-
ability pi for each node i that is the probability of the random walk landing on
node i. One can sort the nodes in decreasing order of pi. Each prefix of this
ordered sequence of nodes gives a cut. Lovasz and Simonovits [34] showed
that one of the n cuts can be sparse. Sarma et al.extended the result to the case
where an estimate p̃i of pi is available. Let �p(i) = pi/di (where di is the
degree of the i-th node). They show in [41] that:

Theorem 13.5. Let p̃i be an estimate for pi where the error ∣p̃i − pi∣ ≤
�(p +

√
p/n + 1/n) for a source s from U , where there is a cut (U, V ∖ U)

of conductance at most Φ (with ∣U ∣ ≤ ∣V ∣/2), and a random walk of length
l. Order the nodes in decreasing order of �p̃(i). Each prefix of this ordered
sequence gives a cut. If the source node s is chosen randomly and l is cho-
sen randomly in the range {1, 2, . . . , O(1/Φ)}, then one of the n cuts S gives
Φ(S) ≤ Õ(

√
Φ) if � ≤ o(Φ), with constant probability.

Following Theorem 13.5 and using a modified version of the random walk
algorithm of [40], Sarma et al.provided an algorithm that finds, with high prob-
ability, a cut of conductance at most Õ(

√
Φ) for any d-regular graph that has

a cut of conductance at most Φ and balance b. The algorithm goes through

the graph stream Õ(
√

1
Φ�) passes and uses space Õ(min{n� + 1

b (
n�
dΦ3 +

n
d
√
�Φ2.5 ), (n� + 1

b
n

d�Φ2 )
√

1
Φ� + 1

Φ}). In [41], they also give algorithms that

computes sparse projected cuts.

7. Conclusions

Massive graphs emerged in recent years that may be too large to fit into main
memory. Streaming is considered as a computation model to handle massive
data sets (including massive graphs). Despite the restriction imposed by the
model, there are algorithms for many graph problems. We surveyed recent al-
gorithms for computing graph statistics, matching and distance in a graph, and
random walks on a graph. Due to the limitation of the model, many algorithms
output an approximate result. Streaming algorithms are a topic of considerable
research interest. Efforts are being made to improve the approximation and to
design more algorithms for problems arising from applications.
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1. Introduction

Graphs and social networks are of significant importance in various appli-
cation domains such as marketing, psychology, epidemiology and homeland
security. The management and analysis of these networks have attracted in-
creasing interests in the sociology, database, data mining and theory commu-
nities. Most previous studies are focused on revealing interesting properties of
networks and discovering efficient and effective analysis methods [24, 37, 39,
5, 25, 7, 27, 14, 38, 6, 15, 23, 40, 36]. This chapter will provide a survey of
methods for privacy-preservation of graphs, with a special emphasis towards
social networks.

Social networks often contain some private attribute information about in-
dividuals as well as their sensitive relationships. Many applications of social
networks such as anonymous Web browsing require identity and/or relation-
ship anonymity due to the sensitive, stigmatizing, or confidential nature of
user identities and their behaviors. The privacy concerns associated with data
analysis over social networks have incurred the recent research. In particular,
privacy disclosure risks arise when the data owner wants to publish or share the
social network data with another party for research or business-related appli-
cations. Privacy-preserving social network publishing techniques are usually
adopted to protect privacy through masking, modifying and/or generalizing
the original data while without sacrificing much data utility. In this chapter, we
provide a detailed survey of the very recent work on this topic in an effort to
allow readers to observe common themes and future directions.

1.1 Privacy in Publishing Social Networks

In a social network, nodes usually correspond to individuals or other social
entities, and an edge corresponds to the relationship between two entities. Each
entity can have a number of attributes, such as age, gender, income, and a
unique identifier. One common practice to protect privacy is to publish a naive
node-anonymized version of the network, e.g., by replacing the identifying
information of the nodes with random IDs. While the naive node-anonymized
network permits useful analysis, as first pointed out in [4, 20], this simple
technique does not guarantee privacy since adversaries may re-identify a target
individual from the anonymized graph by exploiting some known structural
information of his neighborhood.

The privacy breaches in social networks can be grouped to three categories:
identity disclosure, link disclosure, and attribute disclosure. The identity dis-
closure corresponds to the scenario where the identity of an individual who
is associated with a node is revealed. The link disclosure corresponds to the
scenario where the sensitive relationship between two individuals is disclosed.
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The attribute disclosure denotes the sensitive data associated with each node is
compromised. Compared with existing anonymization and perturbation tech-
niques of tabular data, it is more challenging to design effective anonymization
techniques for social network data because of difficulties in modeling back-
ground knowledge and quantifying information loss.

1.2 Background Knowledge

Adversaries usually rely on background knowledge to de-anonymize nodes
and learn the link relations between de-anonymized individuals from the re-
leased anonymized graph. The assumptions of the adversary’s background
knowledge play a critical role in modeling privacy attacks and developing
methods to protect privacy in social network data. In [51], Zhou et al. listed
several types of background knowledge: attributes of vertices, specific link
relationships between some target individuals, vertex degrees, neighborhoods
of some target individuals, embedded subgraphs, and graph metrics (e.g., be-
tweenness, closeness, centrality).

For simple graphs in which nodes are not associated with attributes and links
are unlabeled, adversaries only have structural background knowledge in their
attacks (e.g., vertex degrees, neighborhoods, embedded subgraphs, graph met-
rics). For example, Liu and Terzi [31] considered vertex degrees as background
knowledge of the adversaries to breach the privacy of target individuals, the au-
thors of [20, 50, 19] used neighborhood structural information of some target
individuals, the authors of [4, 52] proposed the use of embedded subgraphs,
and Ying and Wu [47] exploited the topological similarity/distance to breach
the link privacy.

For rich graphs in which nodes are associated with various attributes and
links may have different types of relationships, it is imperative to study the im-
pact on privacy disclosures when adversaries combine attributes and structural
information together in their attacks. Re-identification with attribute knowl-
edge of individuals has been well-studied and resiting techniques have been
developed for tabular data (see, e.g., the survey book [1]). However, applying
those techniques directly on network data erases inherent graph structural prop-
erties. The authors, in [11, 8, 9, 49], investigated anonymization techniques for
different types of rich graphs against complex background knowledge.

As pointed out in two earlier surveys [30, 51], it is very challenging to model
all types of background knowledge of adversaries and quantify their impacts
on privacy breaches in the scenario of publishing social networks with privacy
preservation.
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1.3 Utility Preservation

An important goal of publishing social network data is to permit useful anal-
ysis tasks. Different analysis tasks may expect different utility properties to be
preserved. So far, three types of utility have been considered.

Graph topological properties. One of the most important applications
of social network data is for analyzing graph properties. To understand
and utilize the information in a network, researches have developed var-
ious measures to indicate the structure and characteristics of the network
from different perspectives [12]. Properties including degree sequences,
shortest connecting paths, and clustering coefficients are addressed in
[20, 45, 31, 19, 50, 46].

Graph spectral properties. The spectrum of a graph is usually defined as
the set of eigenvalues of the graph’s adjacency matrix or other derived
matrices. The graph spectrum has close relations with many graph char-
acteristics and can provide global measures for some network properties
[36]. Spectral properties are adopted to preserve utility of randomized
graphs in [45, 46].

Aggregate network queries. An aggregate network query calculates the
aggregate on some paths or subgraphs satisfying some query conditions.
One example is that the average distance from a medical doctor vertex to
a teacher vertex in a network. In [52, 50, 8, 11], the authors considered
the accuracy of answering aggregate network queries as the measure of
utility preservation.

In general, it is very challenging to quantify the information loss in
anonymizing social networks. For tabular data, since each tuple is usu-
ally assumed to be independent, we can measure the information loss of the
anonymized table using the sum of the information loss of each individual tu-
ple. However, for social network data, the information loss due to the graph
structure change should also be taken into account in addition to the informa-
tion loss associated with node attribute changes. In [52], Zou et al. used the
number of modified edges between the original graph and the released one
to quantify information loss due to structure change. The rationale of using
anonymization cost to measure the information loss is that a lower anonymiza-
tion cost indicates that fewer changes have been made to the original graph.

1.4 Anonymization Approaches

Similar to the design of anonymization methods for tabular data, the design
of anonymization methods also need take into account the attacking models
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and the utility of the data. We categorize the state-of-the-art anonymization
methods on simple network data into three categories as follows.

K-anonymity privacy preservation via edge modification. This approach
modifies graph structure via a sequence of edge deletions and additions
such that each node in the modified graph is indistinguishable with at
least K − 1 other nodes in terms of some types of structural patterns.

Edge randomization. This approach modifies graph structure by ran-
domly adding/deleting edges or switching edges. It protects against re-
identification in a probabilistic manner.

Clustering-based generalization. This approach clusters nodes and edges
into groups and anonymizes a subgraph into a super-node. The details
about individuals are hidden.

The above anonymization approaches have been shown as a necessity in ad-
dition to naive anonymization to preserve privacy in publishing social network
data.

In the following, we first focus on simple graphs in Section 2 to 5. Specifi-
cally, we revisit existing attacks on naive anonymized graphs in Section 2, K-
anonymity approaches via edge modification in Section 3, edge randomization
approaches in Section 4, and clustering-based generalization approaches in
Section 5 respectively. We then survey the recent development of anonymiza-
tion techniques for rich graphs in Section 6. Section 7 is dedicated to other pri-
vacy issues in online social networks in addition to those on publishing social
network data. We give conclusions and point out future directions in Section
8.

1.5 Notations

A network G(V,E) is a set of n nodes connected by a set of m links, where
V denotes the set of nodes and E ⊆ V × V is the set of links. The network
considered here is binary, symmetric, and without self-loops. A = (aij)n×n is
the adjacency matrix of G: aij = 1 if node i and j are connected and aij = 0
otherwise. The degree of node i, di, is the number of the nodes connected to
node i, i.e., di =

∑
j aij , and d = {d1, . . . , dn} denotes the degree sequence.

The released graph after perturbation is denoted by G̃(Ṽ , Ẽ). Ã = (ãij)n×n is

the adjacency matrix of G̃, and d̃i and d̃ are the degree and degree sequence of

G̃ respectively.
Note that, for ease of presentation, we use the following pairs of terms inter-

changeably: “graph” and “network”, “node” and “vertex”, “edge” and “link”,
“entity” and “individual”, “attacker” and “adversary”.
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2. Privacy Attacks on Naive Anonymized Networks

The practice of naive anonymization replaces the personally identifying in-
formation associated with each node with a random ID. However, an adversary
can potentially combine external knowledge with the observed graph structure
to compromise privacy, de-anonymize nodes, and learn the existence of sensi-
tive relationships between explicitly de-anonymized individuals.

2.1 Active Attacks and Passive Attacks

In [24], Backstrom et al. presented two different types of attacks on
anonymized social networks.

Active attacks. An adversary chooses an arbitrary set of target individ-
uals, creates a small number of new user accounts with edges to these
target individuals, and establishes a highly distinguishable pattern of
links among the new accounts. The adversary can then efficiently find
these new accounts together with the target individuals in the released
anonymized network.

Passive attacks. An adversary does not create any new nodes or edges.
Instead, he simply constructs a coalition, tries to identify the subgraph
of this coalition in the released network, and compromises the privacy
of neighboring nodes as well as edges among them.

The active attack is based on the uniqueness of small subgraphs embedded
in the network. The constructed subgraph H by the adversary needs to satisfy
the following three properties in order to make the active attack succeed:

There is no other subgraph S in G such that S and H are isomorphic.

H is uniquely and efficiently identifiable regardless of G.

The subgraph H has no non-trivial automorphisms.

It has been shown theoretically that a randomly generated subgraph H
formed by O(

√
log n) nodes can compromise the privacy of arbitrarily target

nodes with high probability for any network. The passive attack is based on
the observation that most nodes in real social network data already belong to a
small uniquely identifiable subgraph. A coalition X of size k is initiated by one
adversary who recruits k − 1 of his neighbors to join the coalition. It assumes
that the users in the coalition know both the edges amongst themselves (i.e., the
internal structure of H) and the names of their neighbors outside X. Since the
structure of H is not randomly generated, there is no guarantee that it can be
uniquely identified. The primary disadvantage of the passive attack in practice,
compared to the active attack, is that it does not allow one to compromise the
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privacy of arbitrary users. The adversaries can adopt a hybrid semi-passive at-
tack: they create no new accounts, but simply create a few additional out-links
to target users before the anonymized network is released. We refer readers
to [24] for more details on theoretical results and empirical evaluations on a
real social network with 4.4 million nodes and 77 million edges extracted from
LiveJoural.com.

2.2 Structural Queries

In [19], Hay et al. studied three types of background knowledge to be used
by adversaries to attack naively-anonymized networks. They modeled adver-
saries’ external information as the access to a source that provides answers
to a restricted knowledge query Q about a single target node in the original
graph. Specifically, background knowledge of adversaries is modeled using
the following three types of queries.

Vertex refinement queries. These queries describe the local structure
of the graph around a node in an iterative refinement way. The weakest
knowledge query, ℋ0(x), simply returns the label of the node x; ℋ1(x)
returns the degree of x; ℋ2(x) returns the multiset of each neighbors’
degree, and ℋi(x) can be recursively defined as:

ℋi(x) = {ℋi−1(z1),ℋi−1(z2), ⋅ ⋅ ⋅ ,ℋi−1(zdx)}

where z1, ⋅ ⋅ ⋅ , zdx are the nodes adjacent to x.

Subgraph queries. These queries can assert the existence of a subgraph
around the target node. The descriptive power of a query is measured by
counting the number of edges in the described subgraph. The adversary
is capable of gathering some fixed number of edges focused around the
target x. By exploring the neighborhood of x, the adversary learns the
existence of a subgraph around x representing partial information about
the structure around x.

Hub fingerprint queries. A hub is a node in a network with high degree
and high betweenness centrality. A hub fingerprint for a target node x,
ℱi(x), is a description of the node’s connections to a set of designated
hubs in the network where the subscript i places a limit on the maximum
distance of observable hub connections.

The above queries represent a range of structural information that may be
available to adversaries, including complete and partial descriptions of node’s
local neighborhoods, and node’s connections to hubs in the network.

Vertex refinement queries provide complete information about node degree
while a subgraph query can never express ℋi knowledge because subgraph
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queries are existential and cannot assert exact degree constraints or the absence
of edges in a graph. The semantics of subgraph queries seem to model realistic
adversary capabilities more accurately. It is usually difficult for an adversary
to acquire the complete detailed structural description of higher-order vertex
refinement queries.

2.3 Other Attacks

In [34], Narayanan and Shmatikov assumed that the adversary has two types
of background knowledge: aggregate auxiliary information and individual aux-
iliary information. The aggregate auxiliary information includes an auxiliary
graph Gaux(Vaux, Eaux) whose members overlap with the anonymized target
graph and a set of probability distributions defined on attributes of nodes and
edges. These distributions represent the adversary’s (imperfect) knowledge of
the corresponding attribute values. The individual auxiliary information is the
detailed information about a very small number of individuals (called seeds) in
both the auxiliary graph and the target graph.

After re-identifying the seeds in target graph, the adversaries immediately
get a set of de-anonymized nodes. Then, by comparing the neighborhoods
of the de-anonymized nodes in the target graph with the auxiliary graph, the
adversary can gradually enlarge the set of de-anonymized nodes. During this
propagation process, known information such as probability distributions and
mappings are updated repeatedly to reduce the error. The authors showed that
even some edge addition and deletion are applied independently to the released
graph and the auxiliary graph, their de-anonymizing algorithm can correctly
re-identify a large number of nodes in the released graph.

To protect against these attacks, researchers have developed many different
privacy models and graph anonymization methods. Next, we will provide a
detailed survey on these techniques.

3. K-Anonymity Privacy Preservation via Edge
Modification

The adversary aims to locate the vertex in the network that corresponds to
the target individual by analyzing topological features of the vertex based on
his background knowledge about the individual. Whether individuals can be
re-identified depends on the descriptive power of the adversary’s background
knowledge and the structural similarity of nodes. To quantify the privacy
breach, Hey et al. [19] proposed a general model for social networks as fol-
lows:

Definition 14.1. K-candidate anonymity. A node x is K-candidate anony-
mous with respect to a structure query Q if there exist at least K − 1 other
nodes in the graph that match query Q. In other words, ∣candQ(x)∣ ≥ K
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where candQ(x) = {y ∈ V ∣Q(y) = Q(x)}. A graph satisfies K-candidate
anonymity with respect to Q if all the nodes are K-candidate anonymous with
respect to Q.

Three types of queries (vertex refinement queries, subgraph queries, and
hub fingerprint queries) were presented and evaluated on the naive anonymized
graphs. In [20], Hay et al. studied an edge randomization technique that modi-
fies the graph via a sequence of random edge deletions followed by edge addi-
tions. In [19] Hay et al. presented a generalization technique that groups nodes
into super-nodes and edges into super-edges to satisfy the K-anonymity. We
will introduce their techniques in Section 4.1 and 5 in details respectively.

Several methods have been investigated to prevent node re-identification
based on the K-anonymity concept. These methods differ in the types of the
structural background knowledge that an adversary may use. In [31], Liu and
Terzi assumed that the adversary knows only the degree of the node of a target
individual. In [50], Zhou and Pei assumed one specific subgraph constructed
by the immediate neighbors of a target node is known. In [52], Zou et al.
considered all possible structural information around the target and proposed
K-automorphism to guarantee privacy under any structural attack.

3.1 K-Degree Generalization

In [31], Liu and Terzi pointed out that the degree sequences of real-world
graphs are highly skewed, and it is usually easy for adversaries to collect the
degree information of a target individual. They investigated how to modify a
graph via a set of edge addition (and/or deletion) operations in order to con-
struct a new K-degree anonymous graph, in which every node has the same
degree with at least K − 1 other nodes. The authors imposed a requirement
that the minimum number of edge-modifications is made in order to preserve
the utility. The K-degree anonymity property prevents the re-identification of
individuals by the adversaries with prior knowledge on the number of social
relationships of certain people (i.e., vertex background knowledge).

Definition 14.2. K-degree anonymity. A graph G(V,E) is K-degree anony-
mous if every node u ∈ V has the same degree with at least K − 1 other
nodes.

Problem 1. Given a graph G(V,E), construct a new graph G̃(Ṽ , Ẽ) via a set
of edge-addition operations such that 1) G̃ isK-degree anonymous; 2)V = Ṽ ;
and 3) Ẽ ∩ E = E.

The proposed algorithm is outlined below.
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1 Starting from the degree sequence d of the original graph G(V,E), con-
struct a new degree sequence d̃ that is K-anonymous and the L1 dis-
tance, ∥d̃ − d∥1 is minimized.

2 Construct a new graph G̃(Ṽ , Ẽ) such that dG̃ = d̃, Ṽ = V , and Ẽ = E

(or Ẽ ∩ E ≈ E in the relaxed version).

The first step is solved by a linear-time dynamic programming algorithm
while the second step is based on a set of graph-construction algorithms given
a degree sequence. The authors also extended their algorithms to allow for si-
multaneous edge additions and deletions. Their empirical evaluations showed
that the proposed algorithms can effectively preserve the graph utility (in terms
of topological features) while satisfying the K-degree anonymity.

3.2 K-Neighborhood Anonymity

In [50], Zhou and Pei assumed that the adversary knows subgraph con-
structed by the immediate neighbors of a target node. The proposed greedy
graph-modification algorithm generalizes node labels and inserts edges until
each neighborhood is indistinguishable to at least K − 1 others.

Definition 14.3. K-neighborhood anonymity. A node u is K-neighborhood
anonymous if there exist at least K − 1 other nodes v1, . . . , vK−1 ∈ V
such that the subgraph constructed by the immediate neighbors of each node
v1, ⋅ ⋅ ⋅ , vK−1 is isomorphic to the subgraph constructed by the immediate
neighbors of u. A graph satisfies K-neighborhood anonymity if all the nodes
are K-neighborhood anonymous.

The definition can be extended from the immediate neighbor to the d-
neighbors (d > 1) of the target vertex, i.e., the vertices within distance d to
the target vertex in the network.

Problem 2. Given a graph G(V,E), construct a new graph G̃(Ṽ , Ẽ) satisfy-
ing the following conditions: 1) G̃ is K-neighborhood anonymous; 2)V = Ṽ ;
3) Ẽ ∩E = E; and 4) G̃ can be used to answer aggregate network queries as
accurately as possible.

The simple case of constructing a K-neighborhood anonymous graph satis-
fying condition 1-3) was shown as NP-hard [50]. The proposed algorithm is
outlined below.

1 Extract the neighborhoods of all vertices in the network. A neighbor-
hood component coding technique, which can represent the neighbor-
hoods in a concise way, is used to facilitate the comparisons among
neighborhoods of different vertices including the isomorphism tests.
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2 Organize vertices into groups and anonymize the neighborhoods of ver-
tices in the same group until the graph satisfies K-anonymity. A heuris-
tic of starting with vertices with high degrees is adopted since these ver-
tices are more likely to be vulnerable to structural attacks.

In [50], Zhou and Pei studied social networks with vertex attributes infor-
mation in addition to the unlabeled network topology. The vertex attributes
form a hierarchy. Hence, there are two ways to anonymize the neighborhoods
of vertices: generalizing vertex labels and adding edges. In terms of utility,
it focuses on using anonymized social networks to answer aggregate network
queries.

3.3 K-Automorphism Anonymity

Zou et al. in [52] adopted a more general assumption: the adversary can
know any subgraph around a certain individual �. If such a subgraph can be
identified in the anonymized graph with high probability, user � has a high

identity disclosure risk. The authors aimed to construct a graph G̃ so that for

any subgraph X ⊂ G, G̃ contains at least K subgraphs isomorphic to X. We
first give some definitions introduced in [52]:

Definition 14.4. Graph isomorphism and automorphism. Given two graphs
G1(V1, E1) and G2(V2, E2), G1 is isomorphic to G2 if there exists a bijective
function f : V1 → V2 such that for any two nodes u, v ∈ V1, (u, v) ∈ E1 if
and only if (f(u), f(v)) ∈ E2. If G1 is isomorphic to itself under function f ,
G1 is an automorphic graph, and f is called an automorphic function of G1.

Definition 14.5. K-automorphic graph. Graph G is a K-automorphic graph
if 1) there exist K − 1 non-trivial automorphic functions of G, f1, . . . , fK−1;
and 2) for any node u, fi(u) ∕= fj(u) (i ∕= j).

If the released graph G̃ is a K-automorphic graph, when the adversary tries
to re-identify node u through a subgraph, he will always get at least K dif-

ferent subgraphs in G̃ that match his subgraph query. With the second con-
dition in Definition 14.5, it is guaranteed that the probability of a successful
re-identification is no more than 1

K . The second condition in Definition 14.5
is necessary to guarantee the privacy safety. If it is violated, the worst case
is that for a certain node u and any i = 1, 2, . . . ,K − 1, fi(u) ≡ u, and the

adversary can then successfully re-identify node u in G̃. For example, consider
a l-asteroid graph in which a central node is connected by l satellite nodes and
the l satellite nodes are not connected to each other. This l-asteroid graph has
at least l automorphic functions. However the central node is always mapped
to itself by any automorphic function. Condition 2 prevents such cases from
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happening in the released graph G̃. The authors then considered the following
problem:

Problem 3. Given the original graph G, construct graph G̃ such that E ⊆ Ẽ
and G̃ is a K-automorphic graph.

The following steps briefly show the framework of their algorithm:

1 Partition graph G into several groups of subgraphs {Ui}, and each group
Ui contains Ki ≥ K subgraphs {Pi1, Pi2, . . . , PiKi} where any two
subgraphs do not share a node or edge.

2 For each Ui, make Pij ∈ Ui isomorphic to each other by adding edges.

Then, there exists function f
(i)
s,t (⋅) under which Pis is isomorphic to Pit.

3 For each edge (u, v) across two subgraphs, i.e. u ∈ Pij and v ∈ Pst

(Pij ∕= Pst), add edge
(
f
(i)
j,�j(r)

(u), f
(s)
t,�t(r)

(v)
)

, where �j(r) = (j + r)

mod K, r = 1, 2, . . . ,K − 1.

After the modification, for any node u, suppose u ∈ Pij , define fr(⋅) as

fr(u) = f
(i)
j,�j(r)

(u), r = 1, . . . ,K − 1. Then, fr(u), r = 1, . . . ,K − 1, are

K − 1 non-trivial automorphic functions of G̃, and for any s ∕= t, fs(u) ∕=
ft(u), which guarantees the K-automorphism.

To better preserve the utility, the authors expected that the above algorithm
introduces the minimal number of fake edges, which implies that subgraphs
within one group Ui should be very similar to each other (so that Step 2 only
introduces a small number of edges), and there are few edges across different
subgraphs (so that Step 3 will not add many edges). This depends on how the
graph is partitioned. If G is partitioned into fewer subgraphs, there are fewer
crossing edges to be added. However, fewer subgraphs imply that the size of
each subgraph is large, and more edges within each subgraph need to be added
in Step 2. The authors proved that to find the optimal solution is NP-complete,
and they proposed a greedy algorithm to achieve the goal.

In addition to proposing the K-automorphism idea to protect the graph un-
der any structural attack, the authors also studied an interesting problem with
respect to privacy protection over dynamic releases of graphs. Specially, the
requirements of social network analysis and mining demand releasing the net-
work data from time to time in order to capture the evolution trends of these
data. The existing privacy-preserving methods only consider the privacy pro-
tection in “one-time” release. The adversary can easily collect the multiple
releases and identify the target through comparing the difference among these
releases. Zou et al. [52] extended the solution of K-automorphism by publish-
ing the vertex ID set instead of single vertex ID for the high risk nodes.
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4. Privacy Preservation via Randomization

Besides K-anonymity approaches, randomization is another widely adopted
strategy for privacy-preserving data analysis. Additive noise based randomiza-
tion approaches have been well investigated in privacy-preserving data mining
for numerical data (e.g., [3, 2]). For social networks, two edge-based random-
ization strategies have been commonly adopted.

Rand Add/Del: randomly add k false edges followed by deleting k true
edges. This strategy preserves the total number of edges in the original
graph.

Rand Switch: randomly switch a pair of existing edges (t, w) and (u, v)
(satisfying edge (t, v) and edge (u,w) do not exist in G) to (t, v) and
(u,w), and repeat this process for k times. This strategy preserves the
degree of each vertex.

The process of randomization and the randomization parameter k are as-
sumed to be published along with the released graph. By using adjacency
matrix, the edge randomization process can be expressed in the matrix form

Ã = A+E, where E is the perturbation matrix: E(i, j) = E(j, i) = 1 if edge
(i, j) is added, E(i, j) = E(j, i) = −1 if edge (i, j) is deleted, and 0 oth-
erwise. Naturally, edge randomization can also be considered as an additive-
noise perturbation. After the randomization, the randomized graph is expected
to be different from the original one. As a result, the node identities as well as
the true sensitive or confidential relationship between two nodes are protected.

In this section, we first discuss why randomized graphs are resilient to struc-
tural attacks and how well randomization approaches can protect node identity
in Section 4.1. Notice that the randomization approaches protect against re-
identification in a probabilistic manner, and hence they cannot guarantee that
the randomized graphs satisfy K-anonymity strictly.

There exist some scenarios that node identities (and even entity attributes)
are not confidential but sensitive links between target individuals are confiden-
tial and should be protected. For example, in a transaction network, an edge
denoting a financial transaction between two individuals is considered confi-
dential while nodes corresponding to individual accounts is non-confidential.
In these cases, data owners can release the edge randomized graph without re-
moving node annotations. We study how well the randomization approaches
protect sensitive links in Section 4.2.

An advantage of randomization is that many features could be accurately
reconstructed from the released randomized graph. However, distribution re-
construction methods (e.g., [3, 2]) designed for numerical data could not be
applied on network data directly since the randomization mechanism in social
networks (based on the positions of randomly chosen edges) is much different
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from the additive noise randomization (based on random values for all entries).
We give an overview of low rank approximation based reconstruction methods
in Section 4.3.

Edge randomization may significantly affect the utility of the released ran-
domized graph. We survey some randomization strategies that can preserve
structural properties in Section 4.4.

4.1 Resilience to Structural Attacks

  attacker−1

  attacker−2

  α

  β

H G

    u

  v

  s

  t

H G̃

(a) The Original Graph (b) The Released Graph

Figure 14.1. Resilient to subgraph attacks

Recall that in both active attacks and passive attacks [4], the adversary needs
to construct a highly distinguishable subgraph H with edges to a set of target
nodes, and then to re-identify the subgraph and consequently the targets in the
released anonymized network. As shown in Figure 14.1(a), attackers form an
subgraph H in the original graphG, and attacker 1 and 2 send links to the target
individuals � and �. After randomization using either Rand Add/Del or Rand
Switch, the structure of subgraph H as wellG is changed. The re-identifiability

of the subgraph H from the randomized released graph G̃ may significantly
decrease when the magnitude of perturbation is medium or large. Even if the
subgraph H can still be distinguished, as shown in Figure 14.1(b), link (u, s)

and (v, t) in G̃ can be false links. Hence node s and t do not correspond to
target individuals � and �. Furthermore, even individuals � and � have been
identified, the observed link between � and � can still be a false link. Hence,
the link privacy can still be protected. In summary, it is more difficult for the
adversary to breach the identity privacy and link privacy.

Similarly for structural queries [20], because of randomization, the adver-
sary cannot simply exclude from those nodes that do not match the structural
properties of the target. Instead, the adversary needs to consider the set of all

possible graphs implied by G̃ and k. Informally, this set contains any graph Gp

that could result in G̃ under k perturbations from Gp, and the size of the set is
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(
m
k

)((n2)−m

k

)
. The candidate set of a target node includes every node y if it is a

candidate in some possible graph. The probability associated with a candidate
y is the probability of choosing a possible graph in which y is a candidate.
The computation is equivalent to compute a query answer over a probabilistic
database and is likely to be intractable.

We would emphasize that it is very challenging to formally quantify identity
disclosure in the presence of complex background knowledge of adversaries
(such as embedded subgraphs or graph metrics). Ying et al. [44] quantified
the risk of identity disclosure (and link disclosure) when adversaries adopt one
specific type of background knowledge (i.e., knowing the degree of target in-
dividuals). The node identification problem is that given the true degree d� of
a target individual �, the adversary aims to discover which node in the ran-

domized graph G̃ corresponds to individual �. However, it is unclear whether
the quantification of disclosure risk can be derived for complex background
knowledge based attacks.

4.2 Link Disclosure Analysis

Note that link disclosure can occur even if each vertex is K-anonymous.
For example, in a K-degree anonymous graph, nodes with the same degree
can form an equivalent class (EC). For two target individuals � and �, if every
node in the EC of individual � has an edge with every node in the EC of �,
the adversary can infer with probability 100% that an edge exists between the
two target individuals, even if the adversary may not be able to identify the
two individuals within their respective ECs. In [48], L. Zhang and W. Zhang
described an attacking method in which the adversary estimates the probability
of existing link (i, j) through the link density between the two equivalence
classes. The authors then proposed a greedy algorithm aiming to reduce the
probabilities of link disclosure to a tolerance threshold � via a minimum series
of edge deletions or switches.

In [45–47], the authors investigated link disclosure of edge-randomized
graphs. They focused on networks where node identities (and even entity at-
tributes) are not confidential but sensitive links between target individuals are
confidential. The problem can be regarded as, compared to not releasing the

graph, to what extent releasing a randomized graph G̃ jeopardizes the link
privacy. They assumed that adversaries are capable of calculating posterior
probabilities.

In [45], Ying and Wu investigated the link privacy under randomization
strategies (Rand Add/Del and Rand Switch). The adversary’s prior belief about
the existence of edge (i, j) (without exploiting the released graph) can be
calculated as P (aij = 1) = 2m

n(n−1) , where n is the number of nodes and

m is the number of edges. For Rand Add/Del, with the released graph and
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perturbation parameter k, the posterior belief when observing ãij = 1 is

P (aij = 1∣ãij = 1) = m−k
m .

An attacking model, which exploits the relationship between the probability
of existence of a link and the similarity measure values of node pairs in the
released randomized graph, was presented in [47]. Proximity measures have
been shown to be effective in the classic link prediction problem [28] (i.e., pre-
dicting the future existence of links among nodes given a snapshot of a current
graph). The authors investigated four proximity measures (common neigh-
bors, Katz measure, Adamic/Adar measure, and commute time) and quantified
how much the posterior belief on the existence of a link can be enhanced by
exploiting those similarity values derived from the released graph which is ran-
domized by the Rand Add/Del strategy. The enhanced posterior belief is given
by

P (aij = 1∣ãij = 1, m̃ij = x) =
(1− p1)�x

(1− p1)�x + p2(1− �x)
where p1 =

k
m denotes the probability of deleting a true edge, p2 =

k

(n2)−m
de-

notes the probability of adding a false edge, m̃ij denotes the similarity measure

between node i and j in G̃, and �x = P (aij = 1∣m̃ij = x) denotes the propor-
tion of true edges in the node pairs with m̃ij = x. The maximum likelihood
estimator (MLE) of �x can be calculated from the randomized graph.

The authors further theoretically studied the relationship among the prior
beliefs, posterior beliefs without exploiting similarity measures, and the en-
hanced posterior beliefs with exploiting similarity measures. One result is
that, for those observed links with high similarity values, the enhanced pos-
terior belief P (aij = 1∣ãij = 1, m̃ij = x) is significantly greater than
P (aij = 1∣ãij = 1) (the posterior belief without exploiting similarity mea-
sures). Another result is that the sum of the enhanced posterior belief (with
exploiting similarity measures) approaches to m, i.e.,

∑

i<j

P (aij = 1∣ãij , m̃ij)→ m as n→∞,

while the sum of the prior beliefs and the sum of posterior beliefs (without
exploiting similarity measures) over all node pairs equal to m. Notice that
it is more desirable to quantify the probability of existing true link (i, j) via

comprehensive information of G̃, i.e., P (aij = 1∣G̃). However, this is very
challenging.

A different attacking model was presented in [46]. It is based on the distri-
bution of the probability of existence of a link across all possible graphs in the
graph space G implied by G and k. If many graphs in G have an edge (i, j), the
original graph is also very likely to have the edge (i, j). Hence the proportion
of graphs with edge (i, j) can be used to denote the posterior probability of
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existence of edge (i, j) in the original graph. More details will be provided in
Section 4.4.0.

4.3 Reconstruction

Recall that the edge randomization process can be written in the matrix form

Ã = A + E, where A (Ã) is the adjacency matrix of the original (random-
ized) graph and E is the perturbation matrix. In the setting of randomizing
numerical data, a data set U with m records of n attributes is perturbed to

Ũ by an additive noise data set V with the same dimensions as U . In other

words, Ũ = U + V . Distributions of U can be approximately reconstructed

from the perturbed data Ũ using distribution reconstruction approaches (e.g.,
[3, 2]) when some a-priori knowledge (e.g., distribution, statistics etc.) about
the noise V is available. Specifically, Agrawal and Aggawal [2] provided
an expectation-maximization (EM) algorithm for reconstructing the distribu-
tion of the original data from perturbed observations. However, it is unclear
whether similar distribution reconstruction methods can be derived for net-
work data. This is because 1) it is hard to define distribution for network data;
and 2) the randomization mechanism for network data is based on the positions
of randomly chosen edges rather than the independent random additive values
for all entries for numerical data.

In [41], Wu et al. investigated the use of low rank approximation methods to
reconstruct structural features from the graph randomized via Rand Add/Del.
Let �i (�̃i) beA’s (Ã’s) i-th largest eigenvalue in magnitude whose eigenvector

is xi (x̃i). Then, the rank l approximations of A and Ã are respectively given
by:

Al =

l∑

i=1

�ixix
T
i and Ãl =

l∑

i=1

�̃ix̃ix̃
T
i .

By choosing a proper l, Wu et al. [41] showed that Ãl can preserve the
major information of the original graph and filter out noises added in the rest
dimensions. This is because real-world data is usually highly correlated in
a low dimensional space while the randomly added noise is distributed (ap-

proximately) equally over all dimensions. In Ãl, those entries close to 1 are
more likely to have true edges while those entries close to 0 are less likely
to have edges. They simply derived the reconstructed graph Â by setting the

2m largest off-diagonal entries in Ãl as 1, and 0 otherwise. Empirical evalua-
tions showed that more accurate features can be reconstructed via the low rank
approximation even when the magnitude of additive noise k equals to 0.8m.

Note that the low rank approximation has been well investigated as a point-
wise reconstruction method in the numerical setting. A spectral filtering based
reconstruction method was first proposed in [22] to reconstruct original data
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values from the perturbed data. Similar methods (e.g., PCA based reconstruc-
tion method [21], SVD based reconstruction method [17]) were also investi-
gated. All methods exploited spectral properties of the correlated data to re-
move the noise from the perturbed one. Preliminary results [41] showed that
the accuracy of the reconstructed individual data (i.e., edge entries of the ad-
jacency matrix) using the low rank approximation is not as good as that of the
reconstructed numerical data.

We would emphasize that reconstruction methods on purely randomized
graphs need further investigations so that more accurate analysis can be con-
ducted on reconstructed graphs while individual privacy can be preserved. It is
our conjecture that it is very hard, if not impossible, to figure out reconstruc-
tion methods on the released data randomized using K-anonymity schemes.
This is because in K-anonymity based modification schemes, modified edge
entries are not randomly chosen. For example, the K-degree scheme examines
the degree sequence of nodes and chooses a subset of nodes (that violates the
K-degree anonymity property) for edge modification.

4.4 Feature Preserving Randomization

Edge randomization may significantly affect the utility of the released ran-
domized graph. To preserve utility, certain aggregate characteristics (a.k.a.,
feature) of the original graph should remain basically unchanged or at least
some properties can be reconstructed from the randomized graph. However,
as shown in [45], many topological features are lost due to randomization. In
this section, we summarize randomization strategies that can preserve struc-
tural properties. We would emphasize that it is very challenging to quantify
disclosures since the process of feature preserving strategies or generalization
strategies is more complicated than that of randomization strategies.

Instead of randomizing the original graph via Add/Del or Switch, researchers
also considered the problem of directly generating synthetic graphs given a
set of features. We refer interested readers to a recent survey [10] and the
references wherein for more details.

Spectrum Preserving Randomization. In [45], Ying and Wu presented a
randomization strategy that can preserve the spectral properties of the graph.
The spectra of graph matrices have close relations with many important topo-
logical properties such as diameter, presence of cohesive clusters, long paths
and bottlenecks, and randomness of the graph [36]. The authors aimed to
preserve the data utility by preserving two important eigenvalues during the
randomization: the largest eigenvalue of the adjacency matrix and the second
smallest eigenvalue of the Laplacian matrix.

The authors showed that pure randomization tends to move the eigenvalues
toward one direction, and the randomized eigenvalues can be significantly dif-
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ferent from the original values. The two proposed algorithms, Spctr Add/Del
and Spctr Switch, selectively pick up those edges that can increase (or decrease)
the target eigenvalue by examining the eigenvector values of the nodes involved
in the randomization, and apply the randomizing operation, which guarantees
the randomized eigenvalues do not move far from the original value. Their em-
pirical evaluations showed that the proposed algorithms can keep the spectral
features as well as many topological features close to the original ones even
when the magnitude of randomization is large.

Although they empirically showed that the spectrum preserving approach
can achieve similar privacy protection as the random perturbation approach,
however, they did not derive the formula of the protection measure for either
Spctr Add/Del or Spctr Switch since the number of false edges in the random-
ization cannot be explicitly expressed.

Markov Chain based Feature Preserving Randomization. The degree
sequence and topological features are of great importance to the graph struc-
ture. One natural idea is that it can better preserve the data utility if the released

graph G̃ preserves the original degree sequence and a certain topological fea-
ture, such as transitivity or average shortest distance. In [46, 18], the authors
investigated switch based randomization algorithms that can preserve various
properties of a real social network in addition to a given degree sequence.

To preserve data utility, data owners may want to preserve some particular
feature S within a precise range in the released graph. All the graphs that
satisfy the degree sequence d and the feature constraint S form a graph space
Gd,S (or Gd if no feature constraint). Starting with the original graph, series of
switches form a Markov chain that can explore the graph space Gd,S . Ying and
Wu [46] proposed an algorithm that can generate any graph in Gd,S with equal
probability, and Hanhijarvi et al. [18] proposed an algorithm that generates a
graph whose feature is close to the original value with high probability.

One concern on the privacy is that the feature constraint may reduce the
graph space and increase the risk of privacy disclosure. In [46], Ying and
Wu also studied how adversaries exploit the released graph as well as feature
constraints to breach link privacy. The adversary can calculate the posterior
probability of existence of a certain link by exploiting the graph space Gd,S . If
many graphs in the graph space have link (i, j), the original graph is also very
likely to have link (i, j), and hence the adversary’s posterior belief about link
(i, j) is given by

P [G(i, j) = 1∣Gd,S] =
1

∣Gd,S∣
∑

Gt∈Gd,S

Gt(i, j).

The attacking model works as follows: knowing the degree sequence d

and the feature constraint S, the adversary generates N samples Gt ∈ Gd,S
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(t = 1, 2, . . . , N ) via the Markov chain that starts with the released graph

G̃ and converges to the uniform stationary distribution over the graph space.
Then, P [G(i, j) = 1∣Gd,S] can be simply estimated by 1

N

∑N
t=1Gt(i, j). The

adversary can take the node pairs with highest posterior beliefs as candidate
links. This attacking model works because the convergence of the Markov
chain does not depend on the initial point. Their evaluations showed that some
feature constraints can significantly enhance the adversary’s attacking accu-
racy and the extent to which a feature constraint jeopardizes link privacy varies
for different graphs.

5. Privacy Preservation via Generalization

To preserve privacy, both K-anonymity and randomization approaches
modify the graph structure by adding/deleting edges and then release the de-
tailed graph. Different from the above two approaches, generalization ap-
proaches can be essentially regarded as grouping nodes and edges into parti-
tions called super-nodes and super-edges. The idea of generalization has been
well adopted in anonymizing tabular data. For social network data, the gen-
eralized graph, which contains the link structures among partitions as well as
the aggregate description of each partition, can still be used to study macro-
properties of the original graph.

In [19], Hay et al. applied structural generalization approaches that groups
nodes into clusters, by which privacy details about individuals can be hid-
den properly. To ensure node anonymity, they proposed to use the size of a
partition as a basic guarantee against re-identification attacks. Their method
obtains a vertex K-anonymous super-graph by aggregating nodes into super-
nodes and edges into super-edges, such that, each super-node represents at least
K nodes and each super-edge represents all the edges between nodes in two
super-nodes. Because only the edge density is published for each partition, it
is impossible for the adversary to distinguish between individuals in partition.
Note that more than one partition may be consistent with a knowledge query
about target individual x. Hence, the size of a partition is used to provide a
conservative guarantee against re-identification and there exists an improved
bound on the size of candidate sets.

To retain utility, the partitions should fit the original network as closely as
possible given the anonymity condition. The proposed method estimates fit-
ness via a maximum likelihood approach. The likelihood is defined as one
over the size of possible worlds implied by the partition. For any generaliza-
tion G, the number of edges in the super-node X is denoted as c(X,X), the
number of edges between X and Y is denoted as c(X,Y ), the set of possible
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worlds that are consistent with G is denoted byW(G) whose size is given by:

∣W(G)∣ =
∏

X∈V

(1
2 ∣X∣(∣X∣ − 1)

c(X,X)

) ∏

X,Y ∈V

( ∣X∣∣Y ∣
c(X,Y )

)

The likelihood for a graph g ∈ W(G) is then 1/∣W(G)∣. The partitioning of
nodes is chosen so that the generalized graph satisfies privacy constraints and
maximizes the utility (1/∣W(G)∣).

Their algorithm searches the approximate optimal partitioning, using sim-
ulated annealing [35]. Starting with a single partition containing all nodes,
the algorithm proposes a change of state by splitting a partition, merging two
partitions, or moving a node to a different partition. The movement from one
partition to next valid partition is always accepted if it increases the likelihood
and accepted with some probability if it decreases the likelihood. Search ter-
minates when it reaches a local maximum.

The authors evaluated the effectiveness of structural queries on real net-
works from various domains and random graphs. Their results showed that
networks are diverse in their resistance to attacks: social and communication
networks tend to be more resistant than some random graph models (Erdos-
Renyi and power-law graphs) would suggest, and hubs cannot be used to re-
identify many of their neighbors.

One problem of this generalization approach is that since the released net-
work only contains a summary of structural information about the original net-
work (e.g., degree distribution, path lengths, and transitivity), users have to
generate some random sample instances of the released network. As a result,
uncertainty may arise in the later analysis since the samples come from a large
number of possible worlds.

6. Anonymizing Rich Graphs

Real social network sources usually contain much richer information in ad-
dition to the simple graph structure. For example, in an online social network,
the main entities in the data are individuals whose profiles can list lots of de-
mographic information, such as age, gender and location, as well as other sen-
sitive personal data, such as political and religious preferences, relationship
status, etc. Between users, there are many different kinds of interactions such
as friendship and email communication. Interactions can also involve more
than two participants, e.g., many users can play a game together. Bhagat et al.
[8] referred to the connections formed in the social networks as rich interaction
graphs. Various queries on the network data are not simply about properties of
the entities in the data, or simply about the pattern of the link structure in the
graph, but rather on their combination. Thus it is important for the anonymiza-
tion to mask the associations between entities and their interactions.
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Notice that for rich social networks, a K-anonymous social network may
still leak privacy. For example, if all nodes in a K-anonymous group are asso-
ciated with some sensitive information, the adversary can derive that sensitive
attribute of target individuals. Mechanism analogous to l-diversity [33] can
be applied here. Several rich graph data models, which may contain labeled
vertices/edges in addition to the structural information associated with the net-
work, have been investigated in the privacy-preserving network analysis.

6.1 Link Protection in Rich Graphs

In [49], Zheleva et al. considered a graph model, in which there are multi-
ple types of edges but only one type of nodes. Edges are classified as either
sensitive or non-sensitive. The problem of link re-identification is defined as
inferring sensitive relationships from non-sensitive ones. The goal is to attain
privacy preservation of the sensitive relationships, while still producing useful
anonymized graph data. They proposed to use the number of removed non-
sensitive edges to measure the utility loss. Several graph anonymization strate-
gies were proposed, including the removal of all sensitive edges and/or some
non-sensitive edges, and the cluster-edge anonymization. In the cluster-edge
anonymization approach, all the anonymized nodes in an equivalence class are
collapsed into a single super-node and a decision is made on which edges to
be included the collapsed graph. One feasible way is to separately publish the
number of edges of each type between two equivalence classes.

The difference between the cluster-edge anonymization approach and the
generalization approach in [19] is that the former aggregates edges by type to
protect link privacy while the latter clusters vertices to protect node identities.

In [9], Campan and Truta considered an undirected graph model, in which
edges are not labeled but vertices are associated with some attributes including
identifier, quasi-identifier, and sensitive attributes. Those identifier attributes
such as name and SSN are removed while the quasi-identifier and the sensitive
attributes as well as the graph structure are released. To protect privacy in net-
work data, they adopted the K-anonymity model for both the quasi-identifier
attributes and the quasi-identifier relationship homogeneity. The goal is that
any two nodes from any cluster are indistinguishable based on either their re-
lationships or their attributes.

For structural anonymization, they proposed an edge generalization based
method that does not insert or remove edges from the network data. They per-
form social network data clustering followed by anonymization through clus-
ter collapsing. Specifically, the method first partitions vertices into clusters
and attaches the structural description (i.e., the number of nodes and the num-
ber of edges) to each cluster. From the privacy standpoint, an original node
within such a cluster is indistinguishable from other nodes. Then all vertices
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in the same cluster are made uniform with respect to the quasi-identifier at-
tributes and the quasi-identifier relationship. This homogenization is achieved
by using generalization, for both the quasi-identifier attributes and the quasi-
identifier relationship. All vertices in the same cluster are collapsed into one
single vertex (labeled by the number of vertices and edges in the cluster) and
edges between two clusters are collapsed into a single edge (labeled with the
number of edges between them). The method takes into account the informa-
tion loss due to both the attribute generalization and the changes of structural
properties. Users can tune the process to balance the tradeoff between preserv-
ing more structural information and preserving more vertex attribute informa-
tion.

6.2 Anonymizing Bipartite Graphs

Cormode et al. [11] studied a particular type of network data that can be
modeled as bipartite graphs – there are two types of entities, and an associ-
ation only exists between two entities of different types. One example is the
pharmacy (customers buy products). The association between two nodes (e.g.,
who bought what products) is considered to be private and needs to be pro-
tected while properties of some entities (e.g., product information or customer
information) are public.

Their anonymization method can preserve the graph structure exactly by
masking the mapping from entities to nodes rather than masking or altering
the graph structure. As a result, analysis principally based on the graph struc-
ture is correct. Privacy is ensured in this approach because given a group of
nodes, there is a secret mapping from these nodes to the corresponding group
of entities. There is no information published that would allow an adversary to
learn, within a group, which node corresponds to which entity.

They evaluated the utility using three types of aggregate queries with in-
creasing complexity for the bipartite graphs:

Type 0 - Graph structure only: compute an aggregate over all neighbors
of nodes in V that satisfy some Pn (i.e., predicates over solely graph
properties of nodes), such as the average number of products bought by
each customer.

Type 1 - Attribute predicate on one side only: compute an aggregate for
nodes in V satisfying Pa (i.e., predicates over attributes of the entities),
such as the average number of products for NJ customers.

Type 2 - Attribute predicate on both sides: compute an aggregate for
nodes in V satisfying Pa and nodes in W satisfying P ′

a, such as the total
number of OTC products bought by NJ customers.
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6.3 Anonymizing Rich Interaction Graphs

In [8], Bhagat et al. adopted a flexible representation of rich interaction
graphs which is capable of encoding multiple types of interactions between
entities. Interactions involving large number of participants are represented by
a hypergraph, denoted by G(V, I,E). V is the node set. Each entity v ∈ V has
a hidden identifier u and a set of properties. Each entity in I is an interaction
between/among a subset of entities in V . E is the set of hyperedges: for v ∈ V
and i ∈ I , an edge (v, i) ∈ E represents node v participates in interaction i.
One simple example of a hypergraph is shown in Figure 14.2(a).

email-1

friend-1

email-2

friend-2

blog-1

u1: 49, F, CA – v1

u2: 35, F, NC – v2

u3: 45, M, FL – v3

u4: 25, F, NY – v4

u5: 33, M, NJ – v5

u6: 48, F, TX – v6

email-1

friend-1

email-2
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blog-1

{u1, u2, u3}

{u1, u2, u3}

{u1, u2, u3}

{u4, u5, u6}

{u4, u5, u6}

{u4, u5, u6}

email-1

friend-1

email-2

friend-2

blog-1

{u1, u2, u3}

{u4, u5, u6}

(a) Original Graph (b) Anonymized Graph (c) Partitioning Approach

Figure 14.2. The interaction graph example and its generalization results

The authors assumed that adversaries know part of the links and nodes in
the graph. They presented two types of anonymization techniques based on the
idea of grouping nodes in V into several classes. The authors pointed out that
merely grouping nodes into several classes can not guarantee the privacy. For
example, consider the case where the nodes within one class form a complete
graph via a certain interaction. Then, once the adversary knows the target is
in the class, he can be sure that the target must participate in the interaction.
The authors provided a safety condition, called class safety to ensure that the
pattern of links between classes does not leak information: each node cannot
have interactions with two (or more) nodes from the same group.

Their algorithm is briefly summarized as follows:

1 Sort the nodes according to attribute values.

2 Group the nodes in V into groups {Ci} that satisfy the class safety prop-
erty and ∣Ci∣ ≥ s.

3 For node v ∈ Cj , replace the true identifier of v by a label list l(v)
containing t ≤ s identifiers, l(v) = {u1, u2, . . . , ut}. l(v) contains the
true identifier of v, and ∀ui ∈ l(v)⇒ ui ∈ Cj .

After modification, graph G and the label lists are released. Figure 14.2(b)
shows a special case where s = t for the label list. In Figure 14.2(b), node v1
has interactions with v3 through an email and the friendship. This is allowed in
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the class safety property, as it allows two nodes to share multiple interactions,
but prohibits a node having multiple friends in the same class. The authors also
showed that the label lists are structured to ensure that the true identity cannot
be inferred. Hence, the above procedures can greatly reduce the probability
that an adversary can learn about other nodes and interactions through known
nodes and interactions.

Note that the released graph contains the full topological structure of the
original graph, some structural attacks such as the active attack and passive
attack [4] can be applied here to de-anonymize the nodes in V . However, the
adversary cannot further obtain the attributes of the target, for the attributes of
those nodes within the same class are mixed together, which is similar to the
anatomy approach [42] for the tabular database.

To prevent identity disclosure, the authors further proposed a solution, called
partitioning approach, which groups edges in the anonymized graph and only
releases the number of interactions between two groups, as illustrated in Figure
14.2(c). This method describes the number of interactions at the level of classes
rather than nodes. The authors proved that this procedure guarantees that the
adversary can correctly guess which nodes participate in the unknown links
with probability at most 1

s .
In term of the utility, the authors focused on the accuracy of aggregate

queries on the graph data. They observed that if the nodes within one class
have the same attribute values, the results of some queries can still be accurate,
for the nodes of the class are either all included or all excluded in the result.
Based on this idea, the proposed algorithms first sort all the nodes according
to their attribute values, and then partition the nodes into classes that satisfy
the class safety property. After partition, nodes within one class may not have
exactly the same attribute values due to the class safety restriction, but they
still have similar attribute values. The authors empirically showed that when
the sorting order is appropriate, the query results based on the modified graph
are not much different from the results based on the original graph.

6.4 Anonymizing Edge-Weighted Graphs

Beyond the ongoing privacy-preserving social network analysis which
mainly focuses on un-weighted social networks, in [32, 13], the authors studied
the situations in which the network edges as well as the corresponding weights
are considered to be private.

In [13], Das et al. considered the problem of anonymizing the weights of
edges in the social network. The authors proposed a framework to re-assign
weights to edges so that a certain linear property of the original graph can
be preserved in the anonymized graph. A linear property is the property that
can be expressed by a specific set of linear inequalities of edge weights. If
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the newly assigned edge weights also satisfy the set of linear inequalities, the
corresponding linear property is also preserved. Then, finding new weight for
each edge is a linear programming problem. The authors discussed two linear
properties in details, single source shortest paths and all pairs shortest paths,
and proposed the algorithms that can efficiently construct the corresponding
linear inequality sets. Their empirical evaluations showed that the proposed
algorithms can considerably improve the edge k-anonymity of the modified
graph, which prevents the adversary to identify an edge by its weight.

In [32], Liu et al. also proposed two randomization strategies aiming to pre-
serve the shortest paths in the weighted social network. The first one, which
is easier to implement, is the Gaussian randomization multiplication strategy.
The algorithm multiplies the original weight of each edge by an i.i.d. Gaussian
random variable with mean 1 and variance �2. In the original graph, if the
total weight of the shortest path between two nodes is much smaller than that
of the second shortest path, the strategy can preserve the original shortest path
with high probability. The authors further proposed the second strategy which
can preserve a set of the target shortest paths or even all the shortest paths in
the graph. The authors pointed out that all edges can be divided into three
categories: the all-visited edge which belongs to all shortest paths, the non-
visited edge which belongs to no shortest path, and the partially-visited edge
which belongs to some but not all shortest paths. In order to preserve the target
shortest paths, one can then reduce the weight of all-visited edges, increase the
weight of non-visited edges, and perturb the weight of partially-visited edges
within a certain range. The weight sum of a target shortest path is changed and
is probably not the same as the original one, but the difference is minimized by
the proposed greedy perturbation algorithm.

In both works of [13] and [32], the authors did not apply addition, deletion
or generalization process to links or nodes. They only adjusted the weights
of each links. However, their algorithms can be incorporated with some other
graph modification algorithms.

7. Other Privacy Issues in Online Social Networks

We have restricted our discussion to the problem of privacy-preserving so-
cial network publishing so far. In this section, we give an overview about
recent studies on other privacy issues in the real online social networks such as
Facebook and MySpace.

7.1 Deriving Link Structure of the Entire Network

In [26], Korolova et al. considered a particular threat in which an adver-
sary subverts user accounts to gain information about local neighborhoods in
the network and pieces them together to build a global information about the
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social graph. It considered the case where no underlying graph is released,
and, in fact, the owner of the network would like to keep the entire structure
of the graph hidden from any one. The goal of the adversary is, rather than to
de-anonymize particular individuals from that graph, to compromise the link
privacy of as many individuals as possible. Specifically, the adversary deter-
mines the link structure of the graph based on the local neighborhood views of
the graph from the perspective of several non-anonymous users.

Analysis showed that the number of users that need to be compromised
in order to cover a constant fraction of the entire network drops exponentially
with increase in the lookahead parameter l provided by the network data owner.
Here a network has a lookahead l if a registered user can see all the links and
nodes incident to him within distance l from him. For example, l = 0 if a user
can see exactly who he links to; l = 1 if a user can see exactly the friends that
he links to as well as the friends that his friends link to.

Each time the adversary gains access to a user account, he immediately cov-
ers all nodes that are at distance no more than the lookahead distance l enabled
by the social network. In other words, he learns about all the edges incident
to these nodes. Thus by gaining access to the account of user u, an adversary
immediately covers all nodes that are within distance l of u. Additionally, he
learns about the existence of all nodes within distance l+1 from u. The authors
studied several attacking strategies shown as below.

Benchmark-Greedy: Among all users in the social network, pick the
next user to bribe as the one whose perspective on the network gives the
largest possible amount of new information. Formally, at each step the
adversary picks the node covering the maximum number of nodes not
yet covered.

Heuristically Greedy: Pick the next user to bribe as the one who can
offer the largest possible amount of new information, according to some
heuristic measure. For example, Degree-Greedy picks the next user to
bribe as the one with the maximum unseen degree, i.e., its degree minus
the number of edges incident to it already known by the adversary.

Highest-Degree: Bribe users in the descending order of their degrees.

Random: Pick the users to bribe at random.

Crawler: Similar to the Heuristically Greedy strategy, but choose the
next node to bribe only from the nodes already seen (within distance
l + 1 of some bribed node). One example is Degree-Greedy-Crawler
that picks, from all users already seen, the next user to bribe as the one
with the maximum unseen degree.
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Experiments on a 572, 949-node friendship graph extracted from Live-
Joural.com indicated that 1) Highest-Degree yields the best performance while
Random performs the worst; 2) in order to obtain 80% coverage of the graph
using lookahead 2, Highest-Degree needs to bribe 6, 308 users while it only
needs to bribe 36 users to obtain the same coverage using lookahead 3. The
authors suggested that as a general rule, the social network owners should re-
frain from permitting a lookahead higher than 2. Data owner may also want
to decrease their vulnerability of the social network by not showing the exact
number of connections that each user has, or by varying the lookahead avail-
able to users based on their trustworthiness.

7.2 Deriving Personal Identifying Information from
Social Networking Sites

Online network users often publish their profiles as well as their connec-
tions that contain vast amounts of personal and sometimes sensitive informa-
tion (e.g., photo, birth date, phone number, current residence, various inter-
ests, and their friends). Acquisti and Gross in [16] studied the privacy risk
associated with these networks. The user’s profile information can be used
to estimate a person’s social security number and exposes his/her to identity
theft. Their studies showed that only a small number of Facebook members
change the default privacy preferences. As a result, users expose themselves to
various physical and cyber risks, and make it extremely easy for third parties
to create digital dossiers of their behavior. Their study quantified patterns of
information revelation and inferred usage of privacy settings from actual field
data.

8. Conclusion and Future Work

We surveyed recent studies on anonymization techniques for privacy-
preserving publishing of social network data. The research and development
of privacy-preserving social network analysis is still in its early stage com-
pared with much better studied privacy-preserving data analysis for tabular
data. We revisited the naive anonymization approach and several structural
attacks which can be exploited on the naive anonymized graphs. We cate-
gorized the state-of-the-art anonymization methods on simple graphs in three
main categories: K-anonymity based privacy preservation via edge modifica-
tion, probabilistic privacy preservation via edge randomization, and privacy
preservation via generalization. We then review anonymization methods on
rich graphs. Since social network data is more complicated than tabular data,
privacy preservation in social networks is much more challenging than privacy
preservation in tabular data. While ideas and methods can be borrowed from
the well studied privacy preservation in tabular data, many serious efforts are
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greatly needed due to new challenges (see Section 1.2 and 1.3) associated with
the network data. We present a set of recommendations for future research in
this emerging area.

Develop privacy models for graphs and networks. Investigate how well
different strategies protect privacy (identity, link privacy, and attribute
privacy) when adversaries exploit various complex background knowl-
edge in their attacks. How to model various background knowledge and
quantify disclosures when complex attacks are used needs to be investi-
gated.

Since how to preserve utility in the released graph is an important issue
in privacy-preserving social network analysis, measures and methodolo-
gies need to be developed to quantify utility and information loss. It
is important to develop workload-aware metrics that adequately quan-
tify levels of information loss of graph data. Furthermore, various
anonymization strategies need to be evaluated in terms of the tradeoff
between privacy and utility.

Existing studies except [52] do not consider dynamic releases. Many ap-
plications of evolutionary networks and dynamic social network analysis
require publishing data periodically to support dynamic analysis. The
“one-time” released network data from existing annonymization meth-
ods cannot guarantee privacy when adversaries collect historical infor-
mation from multiple releases.

Distributed privacy-preserving social network analysis based on secure
multi-party computation [43]. Distributed privacy-preserving data anal-
ysis on tabular data has been well studied (e.g., [29]; refer to the book
[1] for surveys). However, distributed privacy-preserving social network
analysis has not been well reported in literature.

Create a benchmark graph data repository. Researchers can compare and
learn how different approaches work in terms of the privacy-utility trade-
off. The scalability issue needs to be studied and empirical evaluations
need to be conducted on large social networks.
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1. Introduction

Graph mining has been widely used to study relationships among various
types of entities. Real-world graphs are also referred to as networks, and the
interactions between the entities represented in the networks are modeled as
links. The problems of studying the properties of real-world networks, design-
ing algorithms for mining such networks, and developing applications on top
of network data has been of increasing interest in the past few years. This has
led to the birth of a very active area of scientific research, which is known as
analysis of complex networks [7, 16, 55].

One of the most pervasive properties of real-world networks is the emer-
gence of power-law distributions that tend to characterize many of networks
statistical properties [6, 26]. Power laws have intrigued the interest of re-
searchers, who have proposed various models that attempt to explain the pres-
ence of power-law distributions in real graphs. For examples of such models,
see [6, 25, 40].

In this chapter, we deviate from the classical exposition of properties and
generative models for complex networks, and we focus on graph-mining ap-
plications that appear in the context of the web and social-media. Such graphs
include data that model the interaction of users in a social network. For ex-
ample, this may correspond to comments of users in a blog, user activity in a
question-answering portal, or query-log data that summarize the interaction of
users with a search engine. Understanding the structure of such graphs, mod-
eling the complex interactions between entities, and designing algorithms for
leveraging the latent knowledge (also known as the wisdom of the crowds) in
those graphs introduces new challenges in the field of graph mining. One im-
portant difference with networks that have been previously studied, is that in
social-media and web-usage graphs the links represent many different types of
interactions and activities among nodes. For instance in a question-answering
portal, users ask questions, answer questions for other users, vote for favorite
answers, interesting questions, assign answers to categories of a hierarchy, and
much more. Hence graphs from such applications are characterized by having
different types of nodes and high degree of heterogeneity in the types of in-
teractions among nodes. Consequently, algorithms and methodologies widely
applied in the web and other complex networks have to be adapted to this new
multifaceted scenario, which allows for the different meanings that are implic-
itly or explicitly captured by each link.

This chapter is organized as follows. In Section 2 we briefly introduce mea-
sures and algorithms that have been extensively used as basic tools for graph
mining. Then we focus on two different areas of graph mining in the context
of social-media and web applications. In Section 3, we review techniques for
identifying items of high quality in social-media networks. We discuss two
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concrete examples: (1) predicting the number of citations of authors in a bib-
liographic data set, and (2) finding high-quality items in a question answering
system. In both cases, the examples rely on adapting link-mining algorithms
for computing authoritativeness scores in linked environments. In Section 4
we discuss algorithms for mining graph structures that represented information
collected in the query logs of search engines. We first discuss various graph
representations of query logs, and then discuss how to use these representa-
tions in order to perform the task of query recommendation. The conclusions
are presented in Section 5.

2. Preliminaries

An undirected graph G = (V,E) consists of a set of nodes V , also called
vertices, and a set E of pairs of distinct nodes, which are called edges or arcs.
A directed graph, or digraph, is distinguished from the undirected version by
the fact that its edges are ordered pairs of nodes. In an undirected graph, the
degree of a node is the number of edges incident to it. For a directed graph,
we define the in-degree and the out-degree of a node to be the number of in-
coming and out-going edges, respectively.

In an undirected graph G, a set of nodes S forms a connected component
(CC), if for every pair of nodes u, v ∈ S there exists a path from u to v (which
is also a path from v to u). In a directed graph G, a set of nodes S forms
a strongly connected component (SCC), if for every pair of nodes u, v ∈ S,
there exists a (directed) path from u to v, and a path from v to u. A set of
nodes S forms a weakly connected component (WCC), if and only if the set
S is a connected component in the undirected graph Gu that is obtained by
ignoring the directionality of the edges in G.

Power laws and scale-free networks. Power-law distributions ubiquitously
characterize real-world networks. We say that a discrete random variable X
follows a power-law distribution if the probability distribution is defined for
each discrete value k as follows:

Pr[X = k] ∝ k−

The value  is called the exponent of the power-law. We assume that  ≥ 0.
Detailed surveys on power laws may be found in [45] and [46].

If a random variable X follows a power-law distribution, then we know that
the conditional probability Pr[X ≥ k ∣ X ≥ m] is the same as Pr[X ≥ k].
In other words, conditioning on the size does not yield any additional infor-
mation. For this reason, networks that have attributes that follow a power-law
distribution are also called scale-free networks.

Degree and Assortativeness. The degree of the nodes of a graph can be of
great interest in social-media applications. The out-degree of a node might
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provide an indication of its capacity to influence his neighbors. This prop-
erty is called expansiveness [58]. On the other hand, the in-degree is the most
straightforward measure for the popularity of each node in the network. Com-
plex networks exhibit large variance in the values of their degrees: very few
nodes have the capacity of attracting a large fraction of links while the largest
majority of nodes are connected to the network by few in-coming and out-
going links.

Significant insight on the nature of the graph can be obtained by measuring
the correlation between the degrees of adjacent vertexes [47]. This is also re-
ferred to as assortative mixing. Complex networks can be divided into three
types based on the value of their mixing coefficient r: (i) disassortative if
r < 0; (ii) neutral if r ≈ 0; and (iii) assortative if r > 0. An alternative
way to identify assortative or disassortative network is by using the average
degree E[knn(k)] of a neighboring vertex of a vertex with degree k [47]. As
k increases, the expectation E[knn(k)] increases for an assortative network
and decreases for a disassortative one. In particular, a power-law equation
E[knn(k)] ≈ k− is satisfied, where  is negative for an assortative network
and positive for a disassortative one [49]. Social networks such as friendship
networks are mostly assortative mixed, but technological and biological net-
works tend to be disassortative [62]. “Assortative mating” is a well-known so-
cial phenomenon that captures the likelihood that marriage partners will share
common background characteristics, whether it is income, education, or so-
cial status. In online activity networks such as question-answering portals and
newsgroups, the degree correlation provides information about user tendency
to provide help. Such kind of networks are neutral or slightly disassortative:
active users are prone to contribute without considering the expertise or the
involvements of the users searching for help [63, 20].

Centrality and prestige. A key issue in social network analysis is the identi-
fication of the most important or prominent nodes. The measure of centrality
captures whether a node is involved in a high number of ties regardless the di-
rectionality of the edges. Various definitions of centrality have been suggested.
For instance, the closeness centrality is just the degree of a node eventually
normalized by the number of all nodes V in the network. Two alternative mea-
sures of centrality are the distance centrality and the betweenness centrality.
The closeness centrality Dc of a node u is the average distance of u to the rest
of the nodes in the graph:

Dc(u) =
1

∣V ∣ − 1

∑

v ∕=u

d(u, v),

where d(u, v) is the shortest-path distance between u and v. Similarly, the
betweenness centrality ℬc of a node u is the average number of shortest paths
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that pass through u:

ℬc(u) =
∑

s ∕=u ∕=t

�st(u)

�st
,

where �st(u) is the number of shortest paths from the node s to the node t that
pass through node u, and �st is the total number of shortest paths from s to t.

A different concept for identifying important nodes is the measure of pres-
tige, which exclusively considers the capacity of the node to attract incoming
links, and ignores the capacity of initiating any outgoing ties. The basic intu-
ition behind the prestige definition is the idea that a link from node u to node
v denotes endorsement. In its simplest form, the prestige of a node is defined
to be its in-degree, but there are other alternative definitions of prestige [58].
This concept is also at the core of a number of link analysis algorithms, an
issue which we will explore in the next section.

2.1 Link Analysis Ranking Algorithms

PageRank. Although we can view the existence of a link between two
pages as an endorsement of authority from the former to the latter, the in-
degree measure is a rather superficial way to examine page authoritativeness.
This is because such a measure can easily be manipulated by creating spam
pages which point to a particular target page in order to improve its authority. A
smarter method of assigning authority score to a node is by using the PageRank
algorithm [48], which uses the authoritative information of both the source and
target page in an iterative way in order to determine the rank. The PageRank
algorithm models the behavior of a “random surfer” on the Web graph. The
surfer essentially browses the documents by following hyperlinks randomly.
More specifically, the surfer starts from some node arbitrarily. At each step the
surfer proceeds as follows:

With probability � an outgoing hyperlink is selected randomly from the
current document, and the surfer moves to the document pointed by the
hyperlink.

With probability 1 − � the surfer jumps to a random page chosen ac-
cording to some distribution. This distribution is typically chosen to be
the uniform distribution.

The value Rank(i) of a node i (called the PageRank value of node i) is the frac-
tion of time that the surfer spends at node i. Intuitively, Rank(i) is a measure
of the importance of node i.

PageRank is expressed in matrix notation as follows. Let N be the number
of nodes of the graph and let n(j) be the out-degree of node j. We define the
square matrix M as one in which the entry Mij = 1

n(j) if there is a link from
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node j to node i. We define the square matrix
[
1
N

]
of size N × N that has

all entries equal to 1
N . This matrix models the uniform distribution of jumping

to a random node in the graph. The vector Rank stores the PageRank values
that are computed for each node in the graph. A matrix M ′ is then derived
by adding transition edges of probability 1−�

N between every pair of nodes to
include the case of jumping to a random node of the graph.

M ′ = �M + (1− �)
[
1

N

]

Since the PageRank algorithm computes the stationary distribution of the ran-
dom surfer, we have M ′Rank = Rank. In other words, Rank is the princi-
pal eigenvector of the matrix M ′, and thus it can be computed by the power-
iteration method [15].

The notion of PageRank has inspired a large body of research on design-
ing improved algorithms for more efficient computation of PageRank [24,
54, 36, 42], and for providing alternative definitions that can be used to ad-
dress specific issues in search, such as personalization [27], topic-specific
search [12, 32], and spam detection [8, 31].

One disadvantage of the PageRank algorithm is that while it is superior to a
simple indegree measure, it continues to be prone to adversarial manipulation.
For instance, one of the methods that owners of spam pages use to boost the
ranking of their pages is to create a large number of auxiliary pages and hyper-
links among them, called link-farms, which result in boosting the PageRank
score of certain target spam pages [8].

HITS. The main intuition behind PageRank is that authoritative nodes are
linked to by other authoritative nodes. The Hits algorithm, proposed by Jon
Kleinberg [38], introduced a double-tier paradigm for measuring authority. In
the Hits framework, every page can be thought of as having a hub and an
authority identity. There is a mutually reinforcing relationship between the
two: a good hub is a page that points to many good authorities, while a good
authority is a page that is pointed to by many good hubs.

In order to quantify the quality of a page as a hub and as an authority, Klein-
berg associated every page with a hub and an authority score, and he proposed
the following iterative algorithm: Assuming n pages with hyperlinks among
them, let h and a denote n-dimensional hub and authority score vectors. Let
also W be an n × n matrix, whose (i, j)-th entry is 1 if page i points to page
j and 0 otherwise. Initially, all scores are set to 1. The algorithm iteratively
updates the hub and authority scores sequentially one after the other and vice-
versa. For a node i, the authority score of node i is set to be the sum of the hub
scores of the nodes that point to i, while the hub score of node i is the author-
ity score of the nodes pointed by i. In matrix-vector terms this is equivalent
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to setting h = Wa and a = W Th. A normalization step is then applied, so
that the vectors h and a become unit vectors. The vectors a and h converge to
the principal eigenvectors of the matrices W TW and WW T , respectively. The
vectors a and h correspond to the right and left singular vectors of the matrix
W .

Given a user query, the Hits algorithm determines a set of relevant pages
for which it computes the hub and authorities scores. Kleinberg’s approach
obtains such an initial set of pages by submitting the query to a text-based
search engine. The pages returned by the search engine are considered as a
root set, which is consequently expanded by adding other pages that either
point to a page in the root set or are pointed by a page in the root set.

Kleinberg showed that additional information can be obtained by using more
eigenvectors, in addition to the principal ones. Those additional eigenvectors
correspond to clusters or distinct topics associated with the user query. One
important characteristic of the Hits algorithm is that it computes page scores
that depend on the user query: one particular page might be highly authorita-
tive with respect to one query, but not such an important source of information
with respect to another query. On the other hand, it is computationally ex-
pensive to compute eigenvectors for each query. This makes the algorithm
computationally demanding. In contrast, the authority scores computed by the
PageRank algorithm are not query-sensitive, and thus, they can be computed
in a preprocessing stage.

3. Mining High-Quality Items

Online expertise-sharing communities have recently become extremely pop-
ular. The online media that allow the spread of this enormous amount of
knowledge can take many different forms: users are sharing their knowledge
in blogs, newsgroups, newsletters, forums, wikis, and question/answering por-
tals. Those social-media environments can be represented as graphs with nodes
of different types and with various types of relations among nodes. In the rest
of the section we describe particular characteristics of the graphs arising in
social-media environments, and their importance in driving the graph-mining
process.

There are two main factors that differentiate social media from the tradi-
tional Web: (i) content-quality variance and (ii) interaction multiplicity. Dif-
ferently from the traditional Web, in which the content is mediated by pro-
fessional publishers, in social-media environments the content is provided by
users. The massive contribution of users to the system leads to a high variance
in the distribution of the quality of available content. With everyone able to
create content and share any single opinion and thought, Thus the problem of
determining items of high quality in an environment of excessive content is
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(a) Single Item: (b) Double Item: (c) Multiple Items:
Single Relation Model Double Relation Model Multiple Relation Model

Figure 15.1. Relation Models for Single Item, Double Item and Multiple Items

one of the most important issues to be solved. Furthermore, filtering out and
ranking relevant items is more complex than in other domains.

The second aspect that must be considered is the wide variety of types of
nodes, of relations among such nodes, and of interactions among users. For
instance, the PageRank and HITS algorithms considers a simple graph model
with one type of nodes (documents) and one type of edges (hyperlinks), see
Figure 15.1(a).

On the other hand, social media are characterized by much more hetero-
geneous and rich structure, with a wide variety of user-to-document relation
types and user-to-user interactions. In Figure 15.1(b) is shown the structure of
a citation network as CiteSeer [21]. In this case, nodes can be of two types:
author and article. Edges can also be of two types, is-an-author-of be-
tween a node of type author and a node of type article, and cites between
two nodes of type article.

A more complex structure can be found in a question-answering portal, such
as Yahoo! Answers [61], a graphical representation of which is shown in Fig-
ure 15.1(c). The main types of nodes are the following:

user, representing the users registered with the system; they can act as
askers or answerers, and can vote or comment questions and answers
provided by other users,
question, representing the questions asked by the users,
answer, prepresenting the answers provided by the users.

Potential interesting research questions to ask for this type of application are
the following: (i) find items of high-quality, (ii) predict which items will be-
come successful in the future (assuming a dynamic environment), (iii) identify
experts on a particular topic.

As in the case of other social-media applications, the variance of content
quality in Yahoo! Answers is very high. According to Su et al. [56], the number
of correct answers to specific questions varies from 17% to 45%, meanwhile
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the number of questions with at least one good answer is between 65% and
90%.

When a higher number of nodes and relations are involved, the features that
can be exploited for developing successful ranking algorithms become notably
more complex. Algorithms based on single-item models may still be profitably
used, provided that the underlying multi-graphs can be projected on a single
dimension. The results obtained at each projection provide a multifaceted set
of features that can be profitably used for tuning automatic classifiers able to
discern high-quality items, or to identify experts.

In the rest of this chapter we detail a methodology for mining multi-item
multi-relation graphs for two particular study cases. In the first case we de-
scribe the methodology presented in [18] for predicting successful items in a
co-citation network, while in the second case we report the work of Agichtein
et al. [2] for determining high-quality items in a question-answering portal.

3.1 Prediction of Successful Items in a Co-citation
Network

Predicting the impact that a book or an article might have on readers is of
great interest for publishers and editors for the purpose of planning market-
ing campaigns or deciding the number of copies to print. This problem was
addressed in [18], where the authors present a methodology to estimate the
number of citations that an article will receive, which is one measure of impact
in a scientific community. The data was extracted by the large collection of
academic articles made publicly available by CiteSeer [21] through an Open
Archives Initiative (OAI) interface.

The two main objects in bibliometric networks are authors and papers. A
bibliographic network can be modeled by a graph G = (Va ∪ Vp, Ea ∪ Ec),
where (i) Va represents the set of authors, (ii) Vp represents the set of the pa-
pers, (iii) Ea ⊆ Va × Vp represents the edges that express which author has
written which paper, and (iv) Ec ⊆ Vp × Vp represents the edges that ex-
press which paper cites which. To model the dynamics of the citation network,
different snapshots can be considered, with Gt = (Vt,a ∪ Vt,p, Ea,t ∪Et,c) rep-
resenting the snapshot at time t. The set of edges Ea,t and Ec,t can also be
represented by matrices Pa,t and Pc,t respectively.

One way to model the network is by assigning a dual role to each author: in
one role, an author produces original content (i.e., as authorities in the Klein-
berg model. In the other role, an author provides an implicit evaluation of other
authors (i.e., as a hub) with the use of citations. Fujimura and Tanimoto [29]
present an algorithm, called EigenRumor, for ranking object and users when
they act in this dual role. In their framework, the authorship relation Pa,t is
called information provisioning, while the citation relation Pc,t is called infor-
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mation evaluation. One of the main advantages of the EigenRumor algorithm
is that the relations implied by both information provisioning and information
evaluation are used to address the problem of correctly ranking items produced
by sources that have been proven to be authoritative, even if the items them-
selves have not still collected a high number of in-links. The EigenRumor
algorithm has been proposed in order to overcome the problem of algorithms
like PageRank, which tend to favor items that have been present in the network
for a period of time long enough to accumulate many links.

For the task of predicting the number of citations of a paper, Castillo et
al. [18] use supervised learning methods that rely on features extracted from
the co-citation network. In particular, they propose to exploit features that
determine popularity, and then to train a classifier. Three different types of
features are extracted: (1) a priori author-based features, (2) a priori link-
based features, and (3) a posteriori features.

A priori author-based features. These features capture the popularity
of previous papers of the same authors. At time t, the past publication
history of a given author a can be expressed in terms of:

(i) Total number of citations Ct(a) received by the author i from all the
papers published before time t.

(ii) Total number of papers Mt(a) published by the author a before
time t

Mt(a) = ∣ {p∣(a, p) ∈ Ea ∧ time(p) < t} ∣.

(iii) Total number of coauthors At(a) for papers published before time
t

At(a) = ∣
{
a′∣(a′, p) ∈ Ea ∧ (a, p) ∈ Ea ∧ time(p) < t ∧ a′ ∕= a

}
∣

Given that one paper can have multiple authors, the previous three kinds
of features are aggregated. For each, we consider the maximum, the
average and the sum over all the co-authors of each paper.

A priori link-based features. These features are based on the intuition
that mutual reinforcement characterizes the relation between citing and
cited authors: good authors are probably aware of the best previous arti-
cles written in a certain field, and hence they tend to cite the most rele-
vant of them. As mentioned previously, the EigenRumor algorithm [29]
can be used for ranking objects and users.

The reputation score of a paper p is denoted by r(p). The authority and
the hub values of the author a are denoted by at(a) and ht(a) respec-
tively. The EigenRumor algorithm is formalized as follows:
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– r = P T
a,tat expresses the fact that good papers are likely to be

written by good authors,
– r = P T

c,tht expresses the fact that good papers are likely to be cited
by good authors,

– at = Pa,tr expresses the fact that good authors usually write good
papers,

– ht = Pc,tr expresses the fact that good authors usually cite good
papers.

Combining the previous equations with a mixing parameter �, gives the
following formula for the score vector:

r = �P T
a,tat + (1− �)P T

c,tht.

A posteriori features. These features are simply used to count the num-
ber of citations of a paper at the end of a few time intervals that are much
shorter than the target time for the prediction that has to be made.

With respect to the case in which only a posteriori citations are used, a
priori information about the authors helps in predicting the number of citations
it will receive in the future. It is worth noting that a priori information about
authors degrades quickly. When the features describing the reputation of an
author are calculated at a certain time, and re-used without taking into account
the last papers the author has published, the predictions tend to be much less
accurate. These results are even more interesting if the reader considers that
many other factors can be taken into consideration. For instance, the venue
where the paper was published is related to the content of the paper itself.

3.2 Finding High-Quality Content in Question-Answering
Portals

Yahoo! Answer is one of the largest question-answering portals, where users
can issue question and find answers. Questions are the central elements. Each
question has a life cycle. After it is “opened”, it can receive answers. When
the person who has asked the question is satisfied by an answer or after the
expiration of an automatic timer, the question is considered “closed”, and can
not receive any other answers. However, the question and the answers can
be voted on by other users. The question is “resolved” once a best answer is
chosen. Because of its extremely rich set of user-document relations, Yahoo!
Answers has recently been the subject of much research [1, 2, 11]. In [2], the
authors focus on the task of finding high quality items in social networks and
they use Yahoo! Answers as cases of study. The general approach is similar to
the one used in the previous case for predicting successful items in co-citation
networks, i.e., exploiting features that are correlated with quality in social me-
dia and then training a classifier to select and weight features for this task. In
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(a) Features for Inferring Answer Quality

(b) Features for Inferring Question Quality

Figure 15.2. Types of Features Available for Inferring the Quality of Questions and Answers

the remainder of this section, the features for quality classification are consid-
ered. As in the previous case, three different types of features are used: (1)
intrinsic content quality features, (2) link-based (or relation-based) features,
and (3) content usage statistics.

Intrinsic content quality features. For text-based social media the in-
trinsic content quality is mainly related with the text quality. This can be
measured using lexical, syntactic and semantic features.

Lexical features include word length, word and phrase frequencies, and
the average number of syllables in the words.

All the word n-grams up to length 5 that appear in the documents more
than 3 times are used as syntactic features.

Semantic features try to capture (1) the visual quality of the text (i.e., ig-
nored capitalization rules, excessive punctuation, spacing density,etc.),
(2)semantic complexity (i.e., entropy of word length, readability mea-
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sures [30, 43, 37], etc.) and (3) grammaticality (i.e., features that try to
capture the correctness of grammatical forms, etc).

In the QA domain, additional features are required to explicitly model
the relationship between the question and the answer. In [2] such a rela-
tion was modeled using the KL-divergence between the language mod-
els of the two texts, their non-stopword overlap, the ratio between their
lengths, and other similar features.

Link-based features. As mentioned earlier, Yahoo! Answers is charac-
terized by nodes of multiple types (e.g., questions, answers and users)
and interactions with different semantics (e.g., “answers”, “votes for”,
“gives a star to”, “gives a best answer”), that are modeled using a com-
plex multiple-node multiple-relations graph. Traditional link-analysis
algorithms, including HITS and PageRank, are proven to still be use-
ful for quality classification whether applied to the projections obtained
from the graph G considering one type of relation at the time.

Answer features. In Figure 15.2(a), the relationship data related to a
particular answer are shown. These relationships form a tree, in which
the type “Answer” is the root. Two main subtrees start from the answer
being evaluated: one related to the question Q being answered, and the
other related to the user U contributing the answer.

By following paths through the question subtree, it is also possible to
derive features QU about the questioner, or features QA concerning the
other answers to the same question. By following paths through the user
subtree, we can derive features UA from the answers of the user, features
UQ from questions of the user, features UV from the votes of the user, and
features UQA from answers received to the user’s questions.

Question features. Figure 15.2(b) represents user relationships around
a question. Again, there are two subtrees: one related to the asker of
the question, and the other related to the answers received. The types
of features on the answers subtree are: features A directly from the an-
swers received and features AU from the answerers of the question being
answered. The types of features on the user subtree are the same as the
ones above for evaluating answers.

Implicit user-user relations To apply link-analysis algorithms, it is nec-
essary to consider the user-user graph. This is the graph G = (V,E) in
which the set of vertices V is composed of the set of users and the set
E = Ea∪Eb∪Ev∪Es∪E+∪E− represents the relationships between
users as follows:

– Ea represents the answers: (u, v) ∈ Ea if user u has answered at
least one question asked by user v.
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– Eb represents the best answers: (u, v) ∈ Eb if user u has provided
at least one best answer to a question asked by user v.

– Ev represents the votes for best answer: (u, v) ∈ Ev if user u has
voted for best answer at least one answer given by user v.

– Es represents the stars given to questions: (u, v) ∈ Ev if user u
has given a star to at least one question asked by user v.

– E+/E− represents the thumbs up/down: (u, v) ∈ E+/E− if user
u has given a “thumbs up/down” to an answer by user v.

For each graph Gx = (V,Ex), ℎx is the vector of hub scores on the ver-
tices V , ax the vector of authority scores, and px the vector of PageRank
scores. Moreover p′x is the vector of PageRank scores in the transposed
graph.

To classify these features in our framework, PageRank and authority
scores are assumed to be related mostly to in-links, while the hub score
deals mostly with out-links. For instance, let us consider ℎb. It is the hub
score in the “best answer” graph, in which an out-link from u to v means
that u gave a best answer to user v. Then, ℎb represents the answers of
users, and is assigned to the record (UA) of the person answering the
question.

Content usage statistics. Usage statistics such as the number of clicks
on the item and time spent on the item have been shown useful in the
context of identifying high quality web search results. These are com-
plementary to link-analysis based methods. Intuitively, usage statistics
measures are useful for social media content, but require different inter-
pretation from the previously studied settings.

In the QA settings, it is possible to exploit the rich set of metadata avail-
able for each question. This includes temporal statistics, e.g., how long
ago the question was posted, which allows us to give a better interpreta-
tion to the number of views of a question. Also, given that clickthrough
counts on a question are heavily influenced by the topical and genre cate-
gory, we also use derived statistics. These statistics include the expected
number of views for a given category, the deviation from the expected
number of views, and other second-order statistics designed to normal-
ize the values for each item type. For example, one of the features is
computed as the click frequency normalized by subtracting the expected
click frequency for that category, divided by the standard deviation of
click frequency for the category.

The conclusion of Agichtein et al. [2] from analyzing the above features, is
that many of the features are complementary and their combination enhances
the robustness of the classifier. Even though the analysis was based on a par-
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ticular question-answering system, the ideas and the insights are applicable to
other social media settings, and to other emerging domains centered around
user contributed-content.

4. Mining Query Logs

A query log contains information about the interaction of users with search
engines. This information can be characterized in terms of the queries that
users make, the results returned by the search engines, and the documents that
users click in the search results. The wealth of explicit and implicit information
contained in the query logs can be a valuable source of knowledge for a large
number of applications. Examples of such applications include the following:

(i) analyzing the interests of users and their searching behavior,

(ii) finding semantic relations between queries (which terms are similar
to each other or which one is a specialization of another) allowing to
build taxonomies that are much richer than any human-built taxonomy,

(iii) improving the results provided by search engines by analysis of
the documents clicked by users and understanding the user information
needs,

(iv) fixing spelling errors and suggesting related queries,

(v) improving advertising algorithms and helping advertisers select bid-
ding keywords.

As a result of the wide range of applications which work with query-logs,
considerable research has recently been performed in this area. Many of these
papers discuss related problems such as analyzing query logs and on address-
ing various data-mining problems which work off the properties of the query-
logs. On the other hand, query logs contain sensitive information about users
and search-engine companies are not willing to release such data in order to
protect the privacy of their users. Many papers have demonstrated the secu-
rity breaches that may occur as a result of the release of query-log data even
after anonymization operations have been applied and the data appears to be
secure [34, 35, 41]. Nevertheless, some query log data that have been care-
fully anonymized have been released to the research community [22], and
researchers are working actively on the problem of anonymizing query logs
without destroying the utility of the released data. Recent advances on the
anonymization problem are discussed in Korolova et al. [39]. Because of
the wide range of knowledge embedded in query logs, this area is a central
problem for the entire research community, and is not restricted to researchers
working on problems related to search engines. Because of the natural ability
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to construct graph representations of query-log data, the graph mining area is
particularly related to problems associated with query-log mining. In the next
sections, we discuss graph representations of query log data, and consequently
we present techniques for mining and analyzing the resulting graph structures.

4.1 Description of Query Logs

Query log. A typical query log ℒ is a set of records ⟨qi, ui, ti, Vi, Ci⟩, where qi
is the submitted query, ui is an anonymized identifier for the user who submit-
ted the query, ti is a timestamp, Vi is the set of documents returned as results
to the query, and Ci is the set of documents clicked by the user. We denote by
Q, U , and D the set of queries, users, and documents, respectively. Thus, we
have qi ∈ Q, ui ∈ U , and Ci ⊆ Vi ⊆ D.

Sessions. A user query session, or just session, is defined as the sequence of
queries of one particular user within a specific time limit. More formally, if t�
is a timeout threshold, a user query session S is a maximal ordered sequence

S =
〈
⟨qi1 , ui1 , ti1⟩, . . . , ⟨qik , uik , tik⟩

〉
,

where ui1 = ⋅ ⋅ ⋅ = uik = u ∈ U , ti1 ≤ ⋅ ⋅ ⋅ ≤ tik , and tij+1 − tij ≤ t�, for all
j = 1, 2, . . . , k − 1. The typical timeout threshold used for splitting sessions
in query log analysis is t� = 30 minutes [13, 19, 50, 57].

Supersessions. The temporally ordered sequence of all the queries of a user
in the query log is called a supersession. Thus, a supersession is a sequence
of sessions in which consecutive sessions are separated by time periods larger
than t�.

Chains. A chain is a topically coherent sequence of queries of one user.
Radlinski and Joachims [53] defined a chain as “a sequence of queries with a
similar information need”. For instance, a query chain may contain the follow-
ing sequence of queries [33]: “brake pads”; “auto repair”; “auto body

shop”; “batteries”; “car batteries”; “buy car battery online”.
Clearly, all of these queries are closely related to the concept of car-repair.
The concept of chain is also referred to in the literature with the terms mis-
sion [33] and logical session [3]. Unlike the straightforward definition of a
session, chains involve relating queries based on an analysis of the user infor-
mation need. This is a very complex problem, since it is based on an analysis
of the information need, rather than in a crisp way, as in the case of a session.
We do not try to give a formal definition of chains here, since this is beyond
the scope of the chapter.

4.2 Query Log Graphs

Query graphs. In a recent paper about extracting semantic relations from
query logs, Baeza-Yates and Tiberi define a graph structure derived from the
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query log. This takes into account not only the queries of the users, but also the
actions of the users (clicked documents) after submitting their queries [4]. The
analysis of the resulting graph captures different aspects of user behavior and
topic distributions of what people search in the web. The graph representation
introduced in [4] allows us to infer interesting semantic relationships among
queries. This can be used in many applications.

The basic idea in [4] is to start from a weighted query-click bipartite graph,
which is defined as the graph that has all distinct queries and all distinct doc-
uments as two partitions. We define an edge (q, u) between query q and doc-
ument d, if a user who has submitted query q has clicked on document d.
Obviously, d has to be in the result set of query q. The bipartite graph that
has queries and documents as two partitions is also called the click graph [23].
Baeza-Yates and Tiberi define the url cover uc(q) of a query q to be the set of
neighbor documents of q in the click graph. The weight w(q, d) of the edge
(q, d) is defined to be the fraction of the clicks from q to d. Therefore, we have∑

d∈uc(q) w(q, d) = 1. The url cover uc(q) can be viewed as a vector repre-
sentation for the query q, and we can then define the similarity between two
queries q1 and q2 to be the cosine similarity of their corresponding url-cover
vectors. This is denoted by cos(uc(q1),uc(q2)). The next step in [4] is to de-
fine a graph Gq among queries, where the weight between two queries q1 and
q2 is defined by their similarity value cos(uc(q1),uc(q2)).

Using the url cover of the queries, Baeza-Yates and Tiberi define the follow-
ing semantic relationship among queries:

Identical cover: uc(q1) = uc(q2). Those are undirected edges in the
graph Gq, which are denoted as red edges or edges of type I. These
imply that the two queries q1 and q2 are equivalent in practice.

Strict complete cover: uc(q1) ⊂ uc(q2). Those are directed edges,
which are denoted as green edges or edges of type II. These imply that
q1 is more specific than q2.

Partial complete cover: uc(q1) ∩ uc(q2) ∕= ∅ and none of the previous
two conditions are fulfilled. These are denoted as black edges or edges
of type III. They are the most common edges and exist due to multi-topic
documents or related queries, among other reasons.

The authors of [4] also define relaxed versions of the above concepts. In partic-
ular, they define �-red edges and �-green edges, when equality and inclusion
hold with a slackness factor of �.

The resulting graph is very rich and may lead to many interesting applica-
tions. The mining tasks can be guided both by the semantic relationships of the
edges as well as the graph structure. Baeza-Yates and Tiberi demonstrate an
application of finding multi-topic documents. The idea is that edges with low
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weight are most likely caused by multi-topic documents e.g., e-commerce sites
to which many different queries may lead. Thus, low-weight edges are con-
sidered as voters for the documents shared by the two corresponding queries.
Documents are sorted according to the number of votes they received: the more
votes a document gets, the more multitopical it is. Then the multi-topic docu-
ments may be removed from the graph (on a basis of a threshold value) and a
new graph of better quality can be computed.

As Baeza-Yates and Tiberi point out, the analysis described in their paper is
only the tip of the iceberg, and the potential number of applications of query
graphs is huge. For instance, in addition to the graph defined in [4], Baeza-
Yates [3] identifies five different types of graphs whose nodes are queries, and
an edge between two queries implies that: (i) the queries contain the same
word(s) (word graph), (ii) the queries belong to the same session (session
graph), (iii) users clicked on the same urls in the list of their results (url cover
graph), (iv) there is a link between the two clicked urls (url link graph) (v)
there are l common terms in the content of the two urls (link graph).

Random walks on the click graph. The idea of representing the query log
information as a bipartite graph between queries and documents (where the
edges are weighted according to the user clicks) has been extensively used
in the literature. Craswell and Szummer [23] study a random-walk model on
the click graph, and they suggest using the resulting probability distribution
of the model for ranking documents to queries. As mentioned in [23], query-
document pairs can be considered as “soft” (positive) relevance judgments.
These are however are noisy and sparse. The noise is due to the fact that users
judge from short summaries and might not click on relevant documents. The
sparsity problem is due to the fact that the users may not click on relevant
documents. When a large number of documents are relevant, users may click
on only a small fraction of them. The random-walk model can be used to
reduce the amount of noise and it also alleviates the sparseness problem. One
of the main benefits of the approach in [23] is that relevant documents to a
query can be ranked highly even if no previous user has clicked on them for
that query.

The click-graph can be used in many applications. Some of the applications
discussed by Craswell and Szummer in [23] are the following:

Query-to-document search. The problem is to rank relevant documents
for a given ad-hoc query. The click graph is used to find documents of
high quality and relevant documents for a query. Such documents may
not necessarily be easy to determine using pure content-based analysis.

Query-to-query suggestion. Given a query of a user, we want to find
other queries that the user might be interested in. The role of the click-
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graph is determine other relevant queries in the “proximity” of the input
query. Examples of finding such related queries can be found in [9, 59].

Document-to-query annotation. The idea is that a query can be used
as a concise description of the documents that the users click for that
query, and thus queries can be used to represent documents. Studies have
shown that the use of such a representation can improve web search [60].
It can be used for other web mining applications [51].

Document-to-document relevance feedback. For this application, the
task is to find relevant documents for a given target document, and are
also relevant for a user.

The random walk on the click graph models a user who issues queries, clicks
on documents according to the edge weights of the graph. These documents
inspire the user to issue new queries, which in turn lead to new documents and
so on. More formally, we define G = (Q ∪ D,E) is the click graph, with Q
and D being the set of queries and documents. We define E being the set of
edges, the weight Cjk of an edge (j, k) is the number of clicks in the query
log between nodes j and k. The weights are then normalized to represent the
transition probabilities at the t-th step of the walk. The transition probabilities
are defined as follows:

Prt+1∣t[k ∣ j] =
{

(1− s) Cjk∑
i Cji

, if k ∕= j,

s, if k = j.

In other words, a self-loop is added at each node. The random walk is per-
formed by traversing the nodes of the click graph according to the probabilities
Prt+1∣t[k ∣ j].

Let A be the adjacency-matrix of the graph, whose (j, k)-th entry is
Prt+1∣t[k ∣ j]. Then, if qj is a unit vector with an entry equal to 1 at the j-th
position and all other entries equal to 0, the probability of a transition from
node j to node k in t steps is Prt∣0[k ∣ j] = [qjA

t]k. The notation [u]i refers
to the i-th entry of vector u. The random-walk models that are typically used
in the literature, such as PageRank and much more, consider forward walks,
and exploit the property that the resulting vector of visiting probabilities [qAt]
converges to a fixed distribution. This is the stationary distribution of the ran-
dom walk, as t→∞, and is independent of the vector of initial probabilities q.
The value [qAt]k, i.e., the value of the stationary distribution at the k-th node,
is usually interpreted as the importance of node k in the random walk, and it is
used as the score for ranking node k.

Craswell and Szummer consider the idea of running the random walk back-
wards. Essentially the question is which is the probability that the walk
started at node k given that after t steps is at node j. Bayes’ law gives
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Pr0∣t[k ∣ j] ∝ Prt∣0[j ∣ k] Pr0[k], where Pr0[k] is a prior of starting at node
k and it is usually set to the uniform distribution, i.e., Pr0[k] = 1/N . To
see the difference between forward and backward random walk, notice that
since the stationary distribution of the forward walk is independent from the
initial distribution, the limiting distribution of the backward random walk is
uniform. Nevertheless, according to Craswell and Szummer, running the walk
backwards for a small number of steps (before convergence) gives meaningful
differentiation among the nodes in the graph. The experiments in [23] confirm
that for ad-hoc search in image databases, the backward walk gives superior
precision results than the forward random walk.

Random surfer and random querier. While the classic PageRank algorithm
simulates a random surfer on the web, the random-walk on the click graph
simulates the behavior of a random querier: moving between queries and doc-
uments according to the clicks of the query log. Poblete et al. [52] observe that
searching and surfing the web are the two most common actions of web users,
and they suggest building a model that combines these two activities by means
of a random walk on a unified graph: the union of the hyperlink graph with the
click graph.

The random walk on the unified graph is described as follows: At each
step, the user selects to move at a random query or a random document with
probability 1−�. With probability �, the user makes a step, which can be one
of two types:

with probability 1− � the user follows a link in the hyperlink graph,

with probability � the user follows a link in the click graph.

The authors in [52] point out that combining the two graphs is beneficial, be-
cause the two graph structures are complementary and each of them can be
used to alleviate the shortcomings of the other. For example, using clicks is
a way to take into account user feedback, and this improves the robustness
of the hyperlink graph to the degrading effects of link-spam. On the other
hand, considering hyperlinks and browsing patterns increases the density and
the connectivity of the click graph, and the model takes into account pages that
users might visit after issuing particular queries.

The query-flow graph. We will now change the focus of the discussion to a
different type of graphs extracted from query logs. In all our previous discus-
sions, the graphs do not take into account the notion of time. In other words,
the timestamp information from the query logs is completely ignored. How-
ever, if one wants to reason about the querying patterns of users, and the ways
that user submit queries in order to achieve more complex information retrieval
goals, one has to include the temporal aspect in the analysis of query logs.
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In order to capture the querying behavior of users, Boldi et al. [13] define
the concept of the query-flow graph. This is related to the discussion about
sessions and chains at the beginning of this section. The query-flow graph Gqf

is then defined to be directed graph Gqf = (V,E,w) where:

the set of nodes is V = Q∪{s, t}, i.e., the distinct set of queries Q sub-
mitted to the search engine and two special nodes s and t, representing a
starting state and a terminal state. These can be interpreted as the begin
and end of a chain;

E ⊆ V × V is the set of directed edges;

w : E → (0, 1] is a weighting function that assigns to every pair of
queries (q, q′) ∈ E a weight w(q, q′) representing the probability that q
and q′ are part of the same chain.

Boldi et al. suggest a machine learning method for building the query-flow
graph. First, given a query log ℒ, it is assumed that it has been split into a
set of sessions S = {S1, . . . , Sm}. Two queries q, q′ ∈ Q are tentatively con-
nected with an edge if there is at least one session in S in which q and q′ are
consecutive. Then, for the tentative edges, the weights w(q, q′) are learned us-
ing a machine learning algorithm. If the weight of an edge is estimated to be
0, then the edge is removed. The features used to learn the weights w(q, q′)
include textual features (such as the cosine similarity, the Jaccard coefficient,
and size of intersection between the queries q and q′, computed on on sets
of stemmed words and on character-level 3-grams), session features (such as
the number of sessions in which the pair (q, q′) appears, the average session
length, the average number of clicks in the sessions, the average position of
the queries in the sessions, etc.), and time-related features (such as the aver-
age time difference between q and q′ in the sessions in which (q, q′) appears).
Several of those features have been used in the literature for the problem of
segmenting a user session into logical sessions [33]. For learning the weights
w(q, q′), Boldi et al. use a rule-based model and 5 000 labeled pairs of queries
as training data. Boldi et al. argue that the query-flow graph is a useful con-
struct that models user querying patterns and can be used in many applications.
One such application is that of query recommendations.

Another interesting application of the query-flow graph is segmenting and
assembling chains in user sessions. In this particular application, one compli-
cation is that there is not necessarily some timeout constraint in the case of
chains. Therefore, as an example, all the queries of a user who is interested in
planning a trip to a far-away destination and web searches for tickets, hotels,
and other tourist information over a period of several weeks should be grouped
in the same chain. Additionally, for the queries composing a chain, it is not
required to be consecutive. Following the previous example, the user who is
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planning the far-away trip may search for tickets in one day, then make some
other queries related to a newly released movie, and then return to trip planning
the next day by searching for a hotel. Thus, a session may contain queries from
many chains. Conversely, a chain may contain queries from many sessions.

In [13] the problem of finding chains in query logs is modeled as an As-
symetric Traveling Salesman Problem (ATSP) on the query-flow graph. The
formal definition of the chain-finding problem is the following: Let S =
⟨q1, q2, . . . , qk⟩ be the supersession of one particular user. We assume that
a query-flow graph has been built by processing a query log that includes S.
Then, we define a chain cover of S to be a partition of the set {1, . . . , k} into
subsets C1, . . . , Cℎ. Each set Cu = {iu1 < ⋅ ⋅ ⋅ < iuℓu} can be thought of as a
chain Cu = ⟨s, qiu1 , . . . , qiuℓu , t⟩, which is associated with probability

Pr[Cu] = Pr[s, qiu1 ] Pr[qiu1 , qiu2 ] . . .Pr[qiuℓu−1
, qiuℓu

] Pr[qiuℓu
, t],

We would like to find a chain cover maximizing Pr[C1] . . .Pr[Cℎ].
The chain-finding problem is then divided into two subproblems: session

reordering and session breaking. The session reordering problem is to ensure
that all the queries belonging to the same search session are consecutive. Then,
the session breaking problem is much easier as it only needs to deal with non-
intertwined chains.

The session reordering problem is formulated as an instance of the ATSP:
Given the query-flow graph Gqf with edge weights w(q, q′), and given the
session S = ⟨q1, q2, . . . qk⟩, consider the subgraph of Gqf induced by
S. This is defined as the induced subgraph GS = (V,E, ℎ) with nodes
V = {s, q1, . . . , qk, t}, edges E, and edge weights ℎ defined as ℎ(qi, qj) =
− logmax{w(qi, qj), w(qi, t)w(s, qj)}. The maximum of the previous expres-
sion is taken over the options of splitting and not splitting a chain. For more
details about the edge weights of GS , see [13]. An optimal ordering is a per-
mutation � of ⟨1, 2, . . . k⟩ that maximizes the expression

k−1∏

i=1

w(q�(i), q�(i+1)).

This problem is equivalent to that of finding a Hamiltonian path of minimum
weight in this graph.

Session breaking is an easier task, once the session has been re-ordered.
It corresponds to the determination of a series of cut-off points in the re-
ordered session. One way of achieving this is by determining a threshold �
in a validation dataset, and then deciding to break a reordered session when-
ever w(q�(i), q�(i+1)) < �.
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4.3 Query Recommendations

As the next topic of graph mining for web applications and query-log anal-
ysis, we discuss the problem of query recommendations. Even though the
problem statement does not involve graphs, many approaches in the literature
work by exploring the graph structures induced from query logs. Examples of
such graphs were discussed in the previous section.

The application of query recommendation takes place when search engines
offer not only document results but also alternative queries in response to the
queries they receive from their users. The purpose of those query recommen-
dations is to help users locate information more effectively. Indeed, it has been
observed over the past years that users are looking for information for which
they do not have sufficient knowledge [10], and thus they may not be able to
specify their information needs precisely. The recommendations provided by
search engines are typically queries similar to the original one, and they are
obtained by analyzing the query logs.

Many of the algorithms for making query recommendations are based on
defining similarity measures among queries, and then recommending the most
popular queries in the query log among the similar ones to a given query. For
computing query similarity, Wen et al. [59] suggest using distance functions
based on (i) the keywords or phrases of the query, (ii) string matching of
keywords, (iii) the common clicked documents, and (iv) the distance of the
clicked documents in some pre-defined hierarchy. Another similarity measure
based on common clicked documents was proposed by Beeferman et al. [9].
Baeza-Yates et al. [5] argue that the distance measures proposed by the previ-
ous methods have practical limitations, because two related queries may output
different documents in their answer sets. To overcome these limitations, they
propose to represent queries as term-weighted vectors obtained by aggregating
the term-weighted vectors of their clicked documents. Association rule mining
has also been used to discover related queries in [28]. The query log is viewed
as a set of transactions, where each transaction represents a session in which a
single user submits a sequence of related queries in a time interval.

Next we review some of the query recommendation methods that are based
on graph structures.

Hitting time. Mei et al. [44] propose a query recommendation method, which
is based on the proximity of the queries on the click graph. Recall that the click
graph is the bipartite graph that has queries and documents as two partitions,
and the weight of an edge w(q, u) indicates the number of times that document
d has been clicked when query q was submitted. The main idea is based on
the concept of structural proximity of specific nodes. When the user submits
a query, the corresponding node is located in the click graph, and other rec-
ommendations are queries that are located in the proximity of the query node.
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For a meaningful notion of distance between nodes in the click graph, Mei et
al. suggest to use the notion of hitting time. The hitting time from a node u to a
node v in a graph G is the expected number of steps taken when v is visited for
a first time in a random walk starting from u. Hitting time captures not only
nodes that are connected by short paths in the graph but also nodes that are
connected by many paths. Therefore, it is a robust distance measure between
graph nodes.

In addition, Mei et al. [44] propose an adaptation of their method that can
provide personalized query suggestions. The idea is to adjust the weights of
the edges of the click graph so that they can better model the preferences of
the user for whom we want to provide a recommendation. Mei et al. observe
that models for personalized web search provide estimates of a probability that
a user clicks on a certain document. Thus, any personalized algorithm for
web search can be combined with their hitting-time method in order to provide
personalized recommendations.

Topical query decomposition. A different aspect of query recommendation
is addressed by Bonchi et al. [14], who try to overcome a common limitation
of many query recommendation algorithms. This limitation is that many of
the recommendations are very similar to each other. Instead Bonchi et al. for-
mulate a new problem, which they call topical query decomposition. In this
new framework, the goal is to find a set of queries that cover different as-
pects of the original query. The intuition is that such a set of diverse queries
can be more useful in cases when the query is too short (and thus imprecise
and ambiguous), and it is hard to receive good recommendations based on the
query-content only.

The problem statement of topical query decomposition is based again on the
click graph. In particular, let q be a query and D(q) be the result set of q, i.e.,
the neighbor nodes of q in the click graph. We denote with Q(q) the maximal
set of queries pi, where for each pi, the set D(pi) has at least one document in
common with the documents returned by q. In other words, we have

Q(q) = {pi∣⟨pi,D(pi)⟩ ∈ ℒ ∧ D(pi) ∩D(q) ∕= ∅}.
The goal is to compute a cover, i.e., selecting a sub-collection C ⊆ Q(qi) such
that it covers almost all of D(qi). As stated before, the queries in C should
represent coherent, conceptually well-separated set of documents: they should
have small overlap, and they should not cover too many documents outside
D(qi).

Bonchi et al. propose two different algorithms for the problem of topical
query decomposition. The first algorithm is a top-down approach, based on
set covering. Starting from the queries in Q(q), this approach tries to handle
the problem as a special instance of the weighted set covering problem. The
weight of each query in the cover is given by its internal topical coherence, the
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fraction of documents in D(q), the number of documents it retrieves that are
not in D(q), as well as its overlap with other queries in the solution. The sec-
ond algorithm is a bottom-up approach, based on clustering. Starting with the
documents in D(q), this approach tries to build clusters of documents which
are compact in the topics space. Since the resulting clusters are not necessarily
document sets associated with queries existing in the query log, a second phase
is needed. In this phase, the clusters found in the first phase are “matched” to
the sets that correspond to queries in the query log.

Query recommendations based on the query-flow graph. Boldi et al. [13]
investigate the alternative approach of finding query recommendations using
the query-flow graph instead of the click graph. A random walk approach
is used in the this case, as in the approach of Mei et al. [44]. However, in
this case, the recommended queries are selected on the basis of a PageRank
measure instead of hitting time. We also allow teleportation (or jumps) to
specific nodes during the random walks in order to bias the walk towards these
nodes. In particular, given the query q, the method computes the PageRank
values of a random walk on the query-flow graph where the teleportation is
always at the node of the graph that corresponds to query q. In this way, queries
that are close to q in the graph are favored to be selected as recommendations.
The advantage of using the query-flow graph instead of the click graph is that
the method favors as recommendations for q queries q′ that follow q in actual
user sessions. Thus, it is likely that q′ are natural continuations of q in an
information seeking task performed by users.

Boldi et al. [13] explore various alternatives to that of using random walk
on the query-flow graph for the query recommendation problem. One inter-
esting idea is to use normalized PageRank. Here, if sq(q

′) is the PageRank
score for query q′ on a random walk with teleportation to the original query
q, instead of using the pure random-walk score sq(q

′), they consider the ra-
tio ŝq(q

′) = sq(q
′)/r(q′) where r(q′) is the absolute random-walk score of

q′ (i.e., the one computed using a uniform teleportation vector). The intuition
behind this normalization is to avoid recommending very popular queries (like
“ebay”) that may easily get high PageRank scores even though they are not
related with the original query. The experiments in [13] showed that in most
cases ŝq(q

′) produces rankings that are more reasonable, but sometimes tend
to boost by too much the scores with low absolute value r(q′). To use a bigger
denominator, they also tried dividing with

√
r(q′), which corresponds to the

geometric mean between sq(q
′) and ŝq(q

′).
Another interesting variant of the query-recommendation framework of

Boldi et al. is providing recommendations that depend not only on the last
query input by the user, but on some of the last queries in the user’s history.
This approach may help to alleviate the data sparsity problem. This is because
the current query may be rare, but among the previous queries there might be
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queries for which we have enough information in the query flow graph. Basing
the recommendation on the user’s query history may also help to solve ambigu-
ous queries, as we have more informative suggestions based on what the user
is doing during the current session. To take the recent queries of the user into
account, one has to modify the random walk, in order to perform the telepor-
tation into the set of last queries, instead of only the one last query. For more
details on the method and various examples of recommendations see [13].

Using both the click graph and session data. Finally, we discuss the query-
recommendation approach of Cao et al. [17], which uses both the click graph
and session data. As in the previous case of Boldi et al., the algorithm of Cao
et al. has the advantage that it provides recommendations that are based on the
few last queries of the user. The proposed algorithm has two steps. In the first
step, the algorithm uses the click-graph in order to clusters all the queries of the
query log. In particular, two queries are represented by the vector of neighbor
documents in the click graph, and then the queries are clustered based on the
Euclidean distance of their representation vectors. A simple greedy clustering
algorithm is proposed that can scale to very large query-log data. In the second
step, user sessions are processed and each query is represented by the cluster
center that was assigned to during the first clustering step. The intuition of
representing queries by their cluster center is to address the problem that two
queries might have the same search intent. Thus, the authors in [17] prefer to
work with “query concepts” rather than individual queries. Then frequent se-
quential patterns are mined from the user sessions. For each frequent sequence
of query concepts cs = c1 . . . cl, the concept cl is used as a candidate concept
for the sequence c′s = c1 . . . cl−1. A ranked list of candidate concepts c for
c′s is then built based on the occurrences of the concepts c following c′s in the
same session; the more occurrences c has, the higher c is ranked. In practice,
it is only needed to keep the representative queries of the top-k (e.g., k = 5)
candidate concepts. These representative queries are called the candidate rec-
ommendations for the sequence c′s and can be used for query recommendation,
when c′s is observed online.

5. Conclusions

In this chapter we reviewed elements of mining graphs in the context of
web applications. We focused on graphs arising in social networks, social me-
dia, and query logs. We discussed modeling issues and we presented specific
problems in those areas, such as estimating the reputation and the popularity
of items in a network, mining query logs, and performing query recommenda-
tions. Understanding the structure of graphs appearing in those applications,
modeling the complex interactions between entities, and designing algorithms
for leveraging the latent knowledge introduces new challenges in the field of
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graph mining. Classic graph-mining algorithms such as those involving ran-
dom walks can provide a starting point. However, they often need to be ex-
tended and adapted in order to capture the requirements and complexities of
the data models and the applications at hand.
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Abstract The prosperity of Web 2.0 and social media brings about many diverse social
networks of unprecedented scales, which present new challenges for more effec-
tive graph-mining techniques. In this chapter, we present some graph patterns
that are commonly observed in large-scale social networks. As most networks
demonstrate strong community structures, one basic task in social network anal-
ysis is community detection which uncovers the group membership of actors in
a network. We categorize and survey representative graph mining approaches
and evaluation strategies for community detection. We then present and discuss
some research issues for future exploration.

Keywords: Social Network Analysis, Graph Mining, Community Detection,

1. Introduction

Social Network Analysis (SNA) [61] is the study of relations between indi-
viduals including the analysis of social structures, social position, role analysis,
and many others. Normally, the relationship between individuals, e.g., kinship,
friends, neighbors, etc. are presented as a network. Traditional social science
involves the circulation of questionnaires, asking respondents to detail their
interaction with others. Then a network can be constructed based on the re-
sponse, with nodes representing individuals and edges the interaction between
them. This type of data collection confines traditional SNA to a limited scale,
typically at most hundreds of actors in one study.
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With the prosperity of Internet and Web 2.0, many social networking and
social media sites are emerging, and people can easily connect to each other in
the cyber space. This also facilitates SNA to a much larger scale — millions
of actors or even more in a network; Examples include email communication
networks [18], instant messenger networks [33], mobile call networks [39],
friends networks [38]. Other forms of complex network, like coauthorship or
citation networks [56], biological networks, metabolic pathways, genetic regu-
latory networks, food web and neural networks, are also examined and demon-
strate similar patterns [44]. These large scale networks of various entities yield
patterns that are normally not observed in small networks. In addition, they
also pose computational challenges as well as new tasks and problems for the
SNA.

Social network analysis involves a variety of tasks. To name a few, we list
some that are among the most relevant to the data mining field:

Centrality analysis aims to identify the “most important” actors in a so-
cial network. Centrality is a measure to calibrate the “importance” of
an actor. This helps to understand the social influence and power in a
network.

Community detection. Actors in a social network form groups1. This
task identify these communities through the study of network structures
and topology.

Position/Role analysis identifies the role associated with different actors
during network interaction. For instance, what is the role of “husband”?
Who serves as the bridge between two groups?

Network modeling attempts to simulate the real-world network via sim-
ple mechanisms such that the patterns presented in large-scale complex
networks can be captured.

Information diffusion studies how the information propagates in a net-
work. Information diffusion also facilitates the understanding the cul-
tural dynamics, and infection blocking.

Network classification and outlier detection. Some actors are labeled
with certain information. For instance, in a network with some terror-
ists identified, is it possible to infer other people who are likely to be
terrorists by leveraging the social network information?

Viral marketing and link prediction. The modeling of the information
diffusion process, in conjunction with centrality analysis and communi-

1In this chapter, community and group are used interchangeably.
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ties, can help achieve more cost-effective viral marketing. That is, only
a small set of users are selected for marketing. Hopefully, their adoption
can influence other members in the network, so the benefit is maximized.

Normally, a social network is represented as a graph. How to mine the
patterns in the graph for the above tasks becomes a hot topic thanks to the
availability of enormous social network data. In this chapter, we attempt to
present some recent trends of large social networks and discuss graph mining
applications for social network analysis. In particular, we discuss graph mining
applications to community detection, a basic task in SNA to extract meaning-
ful social structures or positions, which also serves as basis for some other
related SNA tasks. Representative approaches for community detection are
summarized. Interesting emerging problems and challenges are also presented
for future exploration.

For convenience, we define some notations used throughout this chapter. A
network is normally represented as a graph G(V,E), where V denotes the ver-
texes (equivalently nodes or actors) and E denotes edges (ties or connections).
The connections are represented via adjacency matrix A, where Aij ∕= 0 de-
notes (vi, vj) ∈ E, while Aij = 0 denotes (vi, vj) /∈ E. The degree of node vi
is di. If the edges between nodes are directed, the in-degree and out-degree are
denoted as d−i and d+i respectively. Number of vertexes and edges of a network
are ∣V ∣ = n, and ∣E∣ = m, respectively. The shortest path between a pair of
nodes vi and vj is called geodesic, and the geodesic distance between the two
is denoted as d(i, j). Gs(Vs, Es) represents a subgraph in G. The neighbors of
a node v are denoted as N(v). In a directed graph, the neighbors connecting to
and from one node v are denoted as N−(v) and N+(v), respectively. Unless
specified explicitly, we assume a network is unweighted and undirected.

2. Graph Patterns in Large-Scale Networks

Most large-scale networks share some common patterns that are not notice-
able in small networks. Among all the patterns, the most well-known charac-
teristics are: scale-free distribution, small world effect, and strong community
structure.

2.1 Scale-Free Networks

Many statistics in real-world have a typical “scale”, a value around which
the sample measurements are centered. For instance, the height of all the peo-
ple in the United States, the speed of vehicles on a highway, etc. But the node
degrees in real-world large scale social networks often follow a power law
distribution (a.k.a. Zipfian distribution, Pareto distribution [41]). A random
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Figure 16.1. Different Distributions. A dashed curve shows the true distribution and a solid
curve is the estimation based on 100 samples generated from the true distribution. (a) Normal
distribution with � = 1, � = 1; (b) Power law distribution with xmin = 1, � = 2.3; (c) Loglog plot,
generated via the toolkit in [17].

variable X follows a power law distribution if

p(x) = Cx−�, x ≥ xmin, � > 1 (2.1)

here � > 1 is to ensure a normalization constant C exists [41]. A power
law distribution is also called scale-free distribution [8] as the shape of the
distribution remains unchanged except for an overall multiplicative constant
when the scale of units is increased by a factor. That is,

p(ax) = bp(x) (2.2)

where a and b are constants. In other words, there is no characteristic scale with
the random variable. The functional form is the same for all the scales. The
network with a scale-free distribution for nodal degrees is also called scale-free
network.

Figures 16.1a and 16.1b demonstrate a normal distribution and a power-
law distribution respectively. While the normal distribution has a “center”,
the power law distribution is highly skewed. For normal distribution, it is ex-
tremely rare for an event to occur that are several deviations away from the
mean. On the contrary, power law distribution allows the tail to be much
longer. That is, it is common that some nodes in a social network have ex-
tremely high degrees while the majority have few connections. The reason
is that the decay of the tail for a power law distribution is polynomial. It is
asymptotically slower than exponential as presented in the decay of normal
distribution, resulting in a heavy-tail (or long-tail [6], fat-tail) phenomenon.

The curve of power law distribution becomes a straight line if we plot the
degree distribution in a log-log scale, since

log p(x) = −� log x+ logC

This is commonly used by practitioners to rigorously verify whether a distribu-
tion follows power law, though some researchers advise more careful statistical
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examination to fit a power law distribution [17]. It can be verified the cumula-
tive distribution function (cdf) can also be written in the following form:

F (X ≥ x) ∝ x−�+1

The samples of rare events (say, extremely high degrees in a network) are
scarce, resulting in an unreliable estimation of the density. A more robust
estimation is to approximate the cdf. One example of the loglog plot of cdf
estimation is shown in Figure 16.1c.

Besides node degrees, some other network statistics are also observed to
follow a power law pattern, for example, the largest eigenvalues of the adja-
cency matrix derived from a network [21], the size of connected components
in a network [31], the information cascading size [36], and the densification
of a growing network [34]. Scale-free distribution seems common rather than
“by chance” for large-scale networks.

2.2 Small-World Effect

Travers and Milgram [58] conducted a famous experiment to examine the
average path length for social networks of people in the United States. In
the experiments, the subjects involved were asked to send a chain letter to
his acquaintances starting from an individual in Omaha, Nebraska or Wichita,
Kansas to the target individual in Boston, Massachusetts. Finally, 64 letters
arrived and the average path length fell around 5.5 or 6, which later led to the
so-called “six degrees of separation”. This result is also confirmed recently in
a planetary-scale instant messaging network of more than 180 million people,
in which the average path length of two messengers is 6.6 [33].

This small world effect is observed in many large scale networks. That is,
two actors in a huge network are actually not too far away. To quantify the
effect, different network measures are used:

Diameter: a shortest path between two nodes is called a geodesic, and
diameter is the length of the longest geodesic between any pair of nodes
in the graph [61]. It might be the case that a network contains more
than one connected component. Thus, no path exists between two nodes
in different components. In this case, practitioners typically examine
the geodesic between nodes of the same component. The diameter is
the minimum number of hops required to reach all the connected nodes
from any node.

Effective Eccentricity: the minimum number of hops required to reach
at least 90% of all connected pairs of nodes in the network [57]. This
measure removes the effect of outliers that are connected through a long
path.



492 MANAGING AND MINING GRAPH DATA

Figure 16.2. A toy example to compute clustering coefficient: C1 = 3/10, C2 = C3 = C4 = 1,
C5 = 2/3, C6 = 3/6, C7 = 1. The global clustering coefficient following Eqs. (2.5) and (2.6) are
0.7810 and 0.5217, respectively.

Characteristic Path Length: the median of the means of the shortest
path lengths connecting each node to all other nodes (excluding unreach-
able ones) [12]. This measure focuses on the average distance between
pairs rather than the maximum one as the diameter.

All the above measures involve the calculation of the shortest path between
all pairs of connected nodes. Two simple approaches to compute the diameter
are:

Repeated matrix multiplication. Let A denotes the adjacency matrix of
a network, then the non-zero entries in Ak denote those pairs that are
connected in k hops. The diameter corresponds to the minimum k so
that all entries of Ak are non-zero. It is evident that this process leads
to denser and denser matrix, which requires O(n2) space and O(n2.88)
time asymptotically for matrix multiplication.

Breadth-first search can be conducted starting from each node until all
or a certain proportion (90% as for effective eccentricity) of the network
nodes are reached. This costs O(n+m) space but O(nm) time.

Evidently, both approaches above become problematic when the network
scales to millions of nodes. One natural solution is to sample the network,
but it often leads to poor approximation. A randomized algorithm achieving
better approximation is presented in [48].

2.3 Community Structures

Social networks demonstrate a strong community effect. That is, a group
of people tend to interact with each other more than those outside the group.
To measure the community effect, one related concept is transitivity. In a
simple form, friends of a friend are likely to be friends as well. Clustering
coefficient is proposed specifically to measure the transitivity, the probability
of connections between one vertex’s neighboring friends.

Definition 2.1 (Clustering Coefficient). Suppose a node vi has di neighbors,
and there are ki edges among these neighbors, then the clustering coefficient
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is

Ci =

{
ki

di×(di−1)/2 di > 1

0 di = 0 or 1
(2.3)

The denominator is essentially the possible number of edges between the
neighbors. Take the network in Figure 16.2 as an example. Node v1 has 5
neighbors v2, v3, v4, v5, and v6. Among these neighbors, there are 3 edges
(dashed lines) (v2, v3), (v4, v6) and (v5, v6). Hence, the clustering coefficient
of v1 is 3/10. Alternatively, clustering coefficient can also be equally defined
as:

Ci =
number of triangles connected to node vi

number of connected triples centered on node vi
(2.4)

where a triple is a tuple (vi, {vj , vk}) such that (vi, vj) ∈ E, (vi, vk) ∈ E,
and the flanking nodes vj and vk are unordered. For instance, (v1, {v3, v6})
and (v1, {v6, v3}) in Figure 16.2 represent the same triple centered on v1 and
there are in total 10 such triples. Triangle denotes an unordered set of three
vertexes such that each two is connected. The triangles connected to node v1
are {v1, v2, v3}, {v1, v4, v6} and {v1, v5, v6}, so C1 = 3/10.

To measure the community structure of a network, two commonly used
global clustering coefficients are defined by extending the definition of
Eqs. (2.3) and (2.4), respectively.

C =

n∑

i=1

Ci/n (2.5)

C =

∑n
i=1 number of triangles connected to node vi∑n

i=1 number of connected triples centered on node vi

=
3× number of triangles in the network

number of connected triples of nodes
(2.6)

Eq. (2.5) yields high variance for nodes with less degrees. E.g., for nodes
with degree 2, Ci is either 0 or 1. It is commonly used for numerical study [62]
whereas Eq. (2.6) is used more for analytical study. In the toy example, the
global clustering coefficients based the two formulas are 0.7810 and 0.5217
respectively.

The computation of global clustering coefficient relies on exact counting of
triangles in the network which can be computationally expensive [5, 51, 30].
One efficient exact counting method without huge memory requirement is the
simple node-iterator (or edge-iterator) algorithm, which essentially traverse all
the nodes (edges) to compute the number of triangles connected to each node
(edge). Some approximation algorithms are proposed, which require one sin-
gle pass [13] or multiple passes [9] of the huge edge file. It can be verified that
the number of triangles is proportional to the sum of the cube of eigenvalues of
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the adjacency matrix [59]. Thus, using the few top eigenvalues to approximate
the number is also viable.

While clustering coefficient and transitivity concentrate on microscopic
view of community effect, communities of macroscopic view also demonstrate
intriguing patterns. In real-world networks, a giant component tends to form
with the remaining being singletons and minor communities [28]. Even within
the giant component, tight but almost trivial communities (connecting to the
rest of the network through one or two edges) at very small scales are of-
ten observed. Most social networks lack well-defined communities in a large
scale [35]. The communities gradually “blend in” the rest of the network as
their size expands.

2.4 Graph Generators

As large scale networks demonstrate similar patterns, one interesting ques-
tion is: what is the innate mechanism of these networks? A variety of graph
and network generators have been proposed such that these patterns can be
reproduced following some simple rules. The classical model is the random
graph model [20], in which the edges connecting nodes are generated proba-
bilistically via flipping a biased coin. It yields beautiful mathematical prop-
erties but does not capture the common patterns discussed above. Recently,
Watts and Strogatz proposed a model mixing the random graph model and
a regular lattice structure, producing small diameter and high clustering ef-
fect [62]; a preferential attachment process is presented in [8] to explain the
power law distribution exhibited in real-world networks. These two pieces of
seminal work stir renewed enthusiasm researching on pursing graph genera-
tors to capture some other network patterns. For instance, the availability of
dynamic network data enables the possibility to study how a network evolves
and how its fundamental network properties vary over time. It is observed that
many growing networks are becoming denser with average degrees increasing.
Meanwhile, the effective diameter shrinks with the growth of a network [34].
These properties cannot be explained by the aforementioned network models.
Thus, a forest-fire model is proposed. While many models focus on global pat-
terns present in networks, the microscopic property of networks is also calling
for alternative explanations [32]. Please refer to surveys [40, 14] for more
detailed discussion.

3. Community Detection

As mentioned above, social networks demonstrate strong community effect.
The actors in a network tend to form groups of closely-knit connections. The
groups are also called communities, clusters, cohesive subgroups or modules
in different context. Roughly speaking, individuals interact more frequently
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within a group than between groups. Detecting cohesive groups in a social
network (also termed as community detection) remains a core problem in social
network analysis. Finding out these groups also helps for other related tasks of
social network analysis. Various definitions and approaches are exploited for
community detection. Briefly, the criteria of groups fall into four categories:
node-centric, group-centric, network-centric, and hierarchy-centric. Below, we
elucidate some representative methods in each category.

3.1 Node-Centric Community Detection

Community detection based on node-centric criteria requires each node in a
group to satisfy certain properties like mutuality, reachability, or degrees.

Groups based on Complete Mutuality. An ideal cohesive group is a
clique. It is a maximal complete subgraph of three or more nodes all of which
are adjacent to each other. For a directed graph, [29] shows that with very
high probability, there should exist a complete bipartite in a community. These
complete bipartites work as a core for a community. The authors propose to
extract an (i, j)-bipartite of which all the i nodes are connected to another j
nodes in the graph.

Unfortunately, it is NP-hard to find out the maximum clique in a network.
Even an approximate solution can be difficult to find. One brute-force approach
to enumerate the cliques is to traverse of all the nodes in the network. For
each node, check whether there is any clique of a specified size that contains
the node. Then the clique is collected and the node is removed from future
consideration. This works for small scale networks, but becomes impractical
for large-scale networks. The main strategy to address this challenge is to
effectively prune those nodes and edges that are unlikely to be contained in a
maximal clique or a complete bipartite.

An algorithm to identify the maximal clique in large social networks is ex-
plored in [1]. Each time, a subset of the network is sampled. Based on this
smaller set, a clique can be found in a greedy-search manner. The maximal
clique found on the subset (say, it contains q nodes) serves as the lower bound
for pruning. That is, the maximal clique should contain at least q members,
so the nodes with degree less than q can be removed. This pruning process
is repeated until the network is reduced to a reasonable size and the maximal
clique can be identified.

A similar strategy can be applied to find complete bipartites. A subtle dif-
ference of the work in [29] is that it aims to find the complete bipartite of a
fixed size, say an (i, j)-bipartite. Iterative pruning is applied to remove those
nodes with their out-degree less than j and their in-degree less than i. After
this initial pruning, an inclusion-exclusion pruning strategy is applied to either
eliminate a node from concentration or discover an (i, j)-bipartite. The authors
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cliques: {v1, v2, v3}
2-cliques: {v1, v2, v3, v4, v5}, {v2, v3, v4, v5, v6}

2-clans: {v2, v3, v4, v5, v6}
2-clubs: {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v2, v3, v4, v5, v6}

Figure 16.3. A toy example (reproduced from [61])

proposed to focus first on nodes that are of out-degree j (or of in-degree i) .
It is easy to check whether a node belongs to an (i, j)-bipartite by examining
whether all its connected nodes have enough connections. So either one node
is purged or an (i, j)-bipartite is identified.

Note that clique (or complete bipartite) is a very strict definition, and rarely
can it be observed in a large size in real-world social networks. This structure
is very unstable as the removal of any edge could break this definition. Prac-
titioners typically use identified maximal cliques (or maximal complete bipar-
tites) as cores or seeds for subsequent expansion for a community [47, 29].
Alternatively, other forms of substructures close to a clique are identified as
communities as discussed next.

Groups based on Reachability. This type of community considers the
reachability between actors. In the extreme case, two nodes can be consid-
ered as belonging to one community if there exists a path between the two
nodes. Thus each component2 is a community. This can be efficiently done in
O(n+m) time. However, in real-world networks, a giant component tends to
form while many others are singletons and minor communities [28]. For those
minorities, it is straightforward to identify them via connected components.
More efforts are required to find communities in the giant component.

Conceptually, there should be a short path between any two nodes in a
group. Several well studied structures in social science are:

k-clique is a maximal subgraph in which the largest geodesic distance
between any two nodes is no greater than k. That is,

d(i, j) ≤ k ∀vi, vj ∈ Vs

2Connected nodes form a component.
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Note that the geodesic distance is defined on the original network. Thus,
the geodesic is not necessarily included in the group structure. So a k-
clique may have a diameter greater than k or even become disconnected.

k-clan is a k-clique in which the geodesic distance d(i, j) between all
nodes in the subgraph is no greater than k for all paths within the sub-
graph. A k-clan must be a k-clique, but it is not so vice versa. For
instance, {v1, v2, v3, v4, v5} in Figure 16.3 is a 2-clique, but not 2-clan
as the geodesic distance of v4 and v5 is 2 in the original network, but 3
in the subgraph.

k-club restricts the geodesic distance within the group to be no greater
than k. It is a maximal substructure of diameter k.

All k-clans are k-cliques, and k-clubs are normally contained within k-cliques.
These substructures are useful in the study of information diffusion and influ-
ence propagation.

Groups based on Nodal Degrees. This requires actors within a group to
be adjacent to a relatively large number of group members. Two commonly
studied substructures are:

k-plex - It is a maximal subgraph containing ns nodes, in which each
node is adjacent to no fewer than ns − k nodes in the subgraph. In other
words, each node may have no ties up to k group members. A k-plex
becomes a clique when k = 1.

k-core - It is a substructure that each node (vi) connects to at least k
members within the group, i.e.,

ds(i) ≥ k ∀vi ∈ Vs
The definitions of k-plex and k-core are actually complementary. A k-plex

with group size equal to ns, is also a (ns − k)-core. The structures above are
normally robust to the removal of edges in the subgraph. Even if we miss one
or two edges, the subgraph is still connected. Solving the k-plex and earlier
k-clan problems requires involved combinatorial optimization [37]. As men-
tioned in the previous section, the nodal degree distribution in a social network
follows power law, i.e., few nodes with many degrees and many others with
few degrees. However, groups based on nodal degrees require all the nodes of
a group to have at least a certain number of degrees, which is not very suitable
for the analysis of large-scale networks where power law is a norm.

Groups based on Within-Outside Ties. This kind of group forces each
node to have more connections to nodes that are within the group than to those
outside the group.
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LS sets: A set of nodes Vs in a social network is an LS set iff any of
its proper subsets has more ties to its complement within Vs than to
those outside Vs. An important property which distinguishes LS sets
from previous cliques, k-cliques and k-plexes, is that any two LS sets
are either disjoint or one LS set contains the other [10]. This implies
that a hierarchical series of LS sets exist in a network. However, due the
strict constraint, large-size LS sets are rarely found in reality, leading to
its limited usage for analysis. An alternative generalization is Lambda
sets.

Lambda sets: The group should be difficult to disconnect by the removal
of edges in the subgraph. Let �(vi, vj) denote the number of edges that
must be removed from the graph in order to disconnect any two nodes vi
and vj . A set is called lambda set if

�(vi, vj) > �(vk, vℓ) ∀vi, vj , vk ∈ Vs, ∀vℓ ∈ V ∖ Vs
It is a maximal subset of actors who have more edge-independent paths
connecting them to each other than to outsiders. The minimum connec-
tivity among the members of a lambda set is denoted as �(Gs).

There are more lambda sets in reality than LS sets, hence it is more practical
to use lambda sets in network analysis. Akin to LS sets, lambda sets are also
disjoint at an edge-connectivity level �. To obtain a hierarchical structure of
lambda sets, one can adopt a two-step algorithm:

Compute the edge connectivity between any pair of nodes in the network
via “maximum-flow, minimum-cut” algorithms.

Starting from the highest edge connectivity, gradually join nodes such
that �(vi, vj) ≥ k.

Since the lambda sets at each level (k) is disjoint, this generates a hierarchical
structure of the nodes. Unfortunately, the first step is computationally pro-
hibitive for large-scale networks as the minimum-cut computation involves
each pair of nodes.

3.2 Group-Centric Community Detection

All of the above group definitions are node centric, i.e. each node in the
group has to satisfy certain properties. Group-centric criteria, instead, consider
the connections inside a group as whole. It is acceptable to have some nodes
in the group to have low connectivity as long as the group overall satisfies
certain requirements. One such example is density-based groups. A subgraph
Gs(Vs, Es) is -dense (also called a quasi-clique [1]) if

Es

Vs(Vs − 1)/2
≥  (3.1)
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Clearly, the quasi-clique becomes a clique when  = 1. Note that this density-
based group typically does not guarantee the nodal degree or reachbility for
each node in the group. It allows the degree of different nodes to vary drasti-
cally, thus seems more suitable for large-scale networks.

In [1], the maximum -dense quasi-cliques are explored. A greedy algo-
rithm is adopted to find a maximal quasi-clique. The quasi-clique is initialized
with a vertex with the largest degree in the network, and then expanded with
nodes that are likely to contribute to a large quasi-clique. This expansion con-
tinues until no nodes can be added to maintain the -density. Evidently, this
greedy search for maximal quasi-clique is not optimal. So a subsequent local
search procedure (GRASP) is applied to find a larger maximal quasi-clique in
the local neighborhood. This procedure is able to detect a close-to-optimal
maximal quasi-clique but requires the whole graph to be in main memory.
To handle large-scale networks, the authors proposed to utilize the procedure
above to find out the lower bound of degrees for pruning. In each iteration, a
subset of edges are sampled from the network, and GRASP is applied to find
a locally maximal quasi-clique. Suppose the quasi-clique is of size k, it is im-
possible to include in the maximal quasi-clique a node with degree less than
k, all of whose neighbors also have their degree less than k. So the node
and its incident edges can be pruned from the graph. This pruning process is
repeated until GRASP can be applied directly to the remaining graph to find
out the maximal quasi-clique.

For a directed graph like the Web, the work in [19] extends the complete-
bipartite core [29] to -dense bipartite. (X,Y ) is a -dense bipartite if

∀x ∈ X, ∣N+(x) ∩ Y ∣ ≥ ∣Y ∣ (3.2)

∀y ∈ Y, ∣N−(y) ∩X∣ ≥ ′∣X∣ (3.3)

where  and ′ are user provided constants. The authors derive a heuristic to
efficiently prune the nodes. Due to the heuristic being used, not all satisfied
communities can be enumerated. But it is able to identify some communities
for a medium range of community size/density, while [29] favors to detect
small communities.

3.3 Network-Centric Community Detection

Network-centric community detection has to consider the connections of the
whole network. It aims to partition the actors into a number of disjoint sets.
A group in this case is not defined independently. Typically, some quantitative
criterion of the network partition is optimized.

Groups based on Vertex Similarity. Vertex similarity is defined in terms
of how similar the actors interact with others. Actors behaving in the same
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v1
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v5 v6 v7 v8 v9

Figure 16.4. Equivalence for Social Position

role during interaction are in the same social position. The position analysis
is to identify the social status and roles associated with different actors. For
instance, what is the role of “wife”? What is the interaction pattern of “vice
president” in a company organization? In position analysis, several concepts
with decreasing strictness are studied to define two actors sharing the same
social position [25]:

Structural Equivalence Actors i and j are structurally equivalent, if for
any actor k that k ∕= i, j, (i, k) ∈ E iff (j, k) ∈ E. In other words, actors
i and j are connecting to exactly the same set of actors in the network.
If the interaction is represented as a matrix, then rows (columns) i and j
are the same except for the diagonal entries. For instance, in Figure 16.4,
v5 and v6 are structurally equivalent. So are v8 and v9.

Automorphic equivalence Structural equivalence requires the connec-
tions of two actors to be exactly the same, yet it is too restrictive. Au-
tomorphic equivalence allows the connections to be isomorphic. Two
actors u and v are automorphically equivalent iff all the actors of G can
be relabeled to form an isomorphic graph. In the diagram, {v2, v4},
{v5, v6, v8, v9} are automorphically equivalent, respectively.

Regular equivalence Two nodes are regularly equivalent if they have
the same profile of ties with other members that are also regularly equiv-
alent. Specifically, u and v are regularly equivalent (denoted as u ≡ v)
iff

(u, a) ∈ E ⇒ ∃b ∈ V, sucℎ tℎat (v, b) ∈ E and a ≡ b (3.4)

In the diagram, the regular equivalence results in three equivalence
classes {v1}, {v2, v3, v4}, and {v5, v6, v7, v8, v9}.

Structural equivalence is too restrictive for practical use, and no effective ap-
proach exists to scale automorphic equivalence or regular equivalence to more
than thousands of actors. In addition, in large networks (say, online friends net-
works), the connection is very noisy. Meaningful equivalence of large scale is
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difficult to detect. So some simplified similarity measures ignoring the social
roles are used in practice, including cosine similarity [27], Jaccard similar-
ity [23], etc. They consider the connections as features for actors, and rely on
the fact that actors sharing similar connections tend to reside within the same
community. Once the similarity measure is determined, classical k-means or
hierarchical clustering algorithm can be applied.

It can be time consuming to compute the similarity between each pair of ac-
tors. Thus, Gibson et al. [23] present an efficient two-level shingling algorithm
for fast computation of web communities. Generally speaking, the shingling
algorithm maps each vector (the connection of actors) into a constant num-
ber of “shingles”. If two actors are similar, they share many shingles; other-
wise, they share few. After initial shingling, each shingle is associated with a
group of actors. In a similar vein, the shingling algorithm can be applied to the
first-level shingles as well. So similar shingles end up sharing the same meta-
shingles. Then all the actors relating to one meta-shingle form one community.
This two-level shingling can be efficiently computed even for large-scale net-
works. Its time complexity is approximately linear to the number of edges. By
contrast, normal similarity-based methods have to compute the similarity for
each pair of nodes, totaling O(n2) time at least.

Groups based on Minimum-Cut. A community is defined as a vertex
subset C ⊂ V , such that ∀v ∈ C , v has at least as many edges connecting
to vertices in C as it does to vertices in V ∖C [22]. Flake et al. show that
the community can be found via s-t minimum cut given a source node s in
the community and a sink node t outside the community as long as both ends
satisfy certain degree requirement. Some variants of minimum cut like nor-
malized cut and ratio cut can be applied to SNA as well. Suppose we have a
partition of k communities � = (V1, V2, ⋅ ⋅ ⋅ , Vk), it follows that

Ratio Cut(�) =
k∑

i=1

cut(Vi, V̄i)

∣Vi∣
(3.5)

Normalized Cut(�) =
k∑

i=1

cut(Vi, V̄i)

vol(Vi)
(3.6)

where vol(Vi) =
∑

vj∈Vi
dj . Both objectives attempt to minimize the number

of edges between communities, yet avoid the bias of trivial-size communities
like singletons. Interestingly, both formulas can be recast as an optimization
problem of the following type:

min
S∈{0,1}n×k

Tr(STLS) (3.7)
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where L is the graph Laplacian (normalized Laplacian) for ratio cut (normal-
ized cut), and S ∈ {0, 1}n×k is a community indicator matrix defined below:

Sij =

{
1 if vertex i belongs to community j
0 otherwise

Due to the discreteness property of S, this problem is still NP-hard. A stan-
dard way is to adopt a spectral relaxation to allow S to be continuous leading
to the following trace minimization problem:

min
S∈Rn×k

Tr(STLS) s.t. STS = I (3.8)

It follows that S corresponds to the eigenvectors of k smallest eigenvalues (ex-
cept 0) of Laplacian L. Note that a graph Laplacian always has an eigenvector
1 corresponding to the eigenvalue 0. This vector indicates all nodes belong
to the same community, which is useless for community partition, thus is re-
moved from consideration. The obtained S is essentially an approximation to
the community structure. In order to obtain a disjoint partition, some local
search strategy needs to be applied. An effective and widely used strategy is to
apply k-means on the matrix S to find the partitions of actors.

The main computational cost with the above spectral clustering is that an
eigenvector problem has to be solved. Since the Laplacian matrix is usually
sparse, the eigenvectors correspond to the smallest eigenvalues can be com-
puted in an efficient way. However, the computational cost is still O(n2),
which can be prohibitive for mega-scale networks.

Groups based on Block Model Approximation. Block modeling assumes
the interaction between two vertices depends only on the communities they
belong to. The actors within the same community are stochastically equivalent
in the sense that the probabilities of the interaction with all other actors are the
same for actors in the same community [46, 4]. Based on this block model, one
can apply classical Bayesian inference methods like EM or Gibbs sampling to
perform maximum likelihood estimation for the probability of interaction as
well as the community membership of each actor.

In a different fashion, one can also use matrix approximation for block mod-
els. That is, the actors in the interaction matrix can be reordered in a form such
that those actors sharing the same community form a dense interaction block.
Based on the stochastic assumption, it follows that the community can be iden-
tified based on interaction matrix A via the following optimization [63]:

min
S,Σ

ℓ(A;STΣS) (3.9)

Ideally, S should be an cluster indicator matrix with entry values being 0 or
1, Σ captures the strength of between-community interaction, and ℓ is the loss
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function. To solve the problem, spectral relaxation of S can to be adopted.
If S is relaxed to be continuous, it is then similar to spectral clustering. If S
is constrained to be non-negative, then it shares the same spirit as stochastic
block models. This matrix approximation often resorts to numerical optimiza-
tion techniques like alternating optimization or gradient methods rather than
Bayesian inference.

Groups based on Modularity. Different from other criteria, modularity is
a measure which considers the degree distribution while calibrating the com-
munity structure. Consider dividing the interaction matrix A of n vertices and
m edges into k non-overlapping communities. Let si denote the community
membership of vertex vi, di represents the degree of vertex i. Modularity is
like a statistical test that the null model is a uniform random graph model, in
which one actor connects to others with uniform probability. For two nodes
with degree di and dj respectively, the expected number of edges between the
two in a uniform random graph model is didj/2m. Modularity measures how
far the interaction is deviated from a uniform random graph. It is defined as:

Q =
1

2m

∑

ij

[
Aij −

didj
2m

]
�(si, sj) (3.10)

where �(si, sj) = 1 if si = sj . A larger modularity indicates denser within-
group interaction. Note thatQ could be negative if the vertices are split into bad
clusters. Q > 0 indicates the clustering captures some degree of community
structure.

In general, one aims to find a community structure such that Q is maxi-
mized. While maximizing the modularity over hard clustering is proved to
be NP hard [11], a spectral relaxation of the problem can be solved effi-
ciently [42]. Let d ∈ Zn

+ be the degree vector of all nodes where Zn
+ is the

set of positive numbers of n dimensionality, S ∈ {0, 1}n×k be a community
indicator matrix, and the modularity matrix defined as

B = A− ddT

2m
(3.11)

The modularity can be reformulated as

Q =
1

2m
Tr(STBS) (3.12)

Relaxing S to be continuous, it can be shown that the optimal S is the top-k
eigenvectors of the modularity matrix B [42].

Groups based on Latent Space Model. Latent space model [26, 50, 24]
maps the actors into a latent space such that those with dense connections are
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likely to occupy the latent positions that are not too far away. They assume
the interaction between actors depends on the positions of individuals in the
latent space. A maximum likelihood estimation can be utilized to estimate the
position.

3.4 Hierarchy-Centric Community Detection

Another line of community detection is to build a hierarchical structure of
communities based on network topology. This facilitates the examination of
communities at different granularity. There are mainly three types of hierar-
chical clustering: divisive, agglomerative, and structure search.

Divisive hierarchical clustering. Divisive clustering first partitions the
actors into several disjoint sets. Then each set is further divided into smaller
ones until the set contains only a small number of actors (say, only 1). The
key here is how to split the network into several parts. Some partition methods
presented in previous section can be applied recursively to divide a community
into smaller sets. One particular divisive clustering proposed for graphs is
based on edge betweeness [45]. It progressively removes edges that are likely
to be bridges between communities. If two communities are joined by only
a few cross-group edges, then all paths through the network from nodes in
one community to the other community have to pass along one of these edges.
Edge betweenness is a measure to count how many shortest paths between pair
of nodes pass along the edge, and this number is expected to be large for those
between-group edges. Hence, progressively removing those edges with high
betweenness can gradually disconnects the communities, which leads naturally
to a hierarchical community structure.

Agglomerative hierarchical clustering. Agglomerative clustering begins
with each node as a separate community and merges them successively into
larger communities. Modularity is used as a criterion [15] to perform hierar-
chical clustering. Basically, a community pair should be merged if doing so
results in the largest increase of overall modularity, and the merge continues
until no merge can be found to improve the modularity. It is noticed that this
algorithm incurs many imbalanced merges (a large community merges with a
tiny community), resulting in high computational cost [60]. Hence, the merge
criterion is modified accordingly to take into consideration the size of commu-
nities. In the new scheme, communities of comparable sizes are joined first,
leading to a more balanced hierarchical structure of communities and to im-
proved efficiency.

Structure Search. Structure search starts from a hierarchy and then
searches for hierarchies that are more likely to generate the network. This idea
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first appears in [55] to maintain a topic taxonomy for group profiling, and then
a similar idea is applied for hierarchical construction of communities in social
networks. [16] defines a random graph model for hierarchies such that two ac-
tors are connected based on the interaction probability of their least common
ancestor node in the hierarchy. The authors generate a sequence of hierarchies
via local changes of the network and accept it proportional to the likelihood.
The final hierarchy is the consensus of a set of comparable hierarchies. The
bottleneck with structure search approach is its huge search space. A challenge
is how to scale it to large networks.

4. Community Structure Evaluation

In the previous section, we describe some representative approaches for
community detection. Part of the reason that there are so many assorted defini-
tions and methods, is that there is no clear ground truth information about the
community structure in a real world network. Therefore, different community
detection methods are developed from various applications of specific needs.
In this section, we depict strategies commonly adopted to evaluate identified
communities in order to facilitate the comparison of different community de-
tection methods.

Depending on network information, different strategies can be taken for
comparison:

Groups with self-consistent definitions. Some groups like cliques, k-
cliques, k-clans, k-plexes and k-cores can be examined immediately
once a community is identified. If the goal of community detection is
to enumerate all the desirable substructures of this sort, the total number
of retrieved communities can be compared for evaluation.

Networks with ground truth. That is, the community membership for
each actor is known. This is an ideal case. This scenario hardly presents
itself in real-world large-scale networks. It usually occurs for evalua-
tion on synthetic networks (generated based on predefined community
structures) [56] or a tiny network [42]. To compare the ground truth
with identified community structures, visualization can be intuitive and
straightforward [42]. If the number of communities is small (say 2 or 3
communities), it is easy to determine a one-to-one mapping between the
identified communities and the ground truth. So conventional classifi-
cation measures such as error-rate, F1-measure can be used. However,
when there are a plurality of communities, it may not be clear what a
correct mapping is. Instead, normalized mutual information (NMI) [52]
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can be adopted to measure the difference of two partitions:

NMI(�a, �b) =

∑k(a)

ℎ=1

∑k(b)

ℓ=1 nℎ,ℓ log

(
n⋅nℎ,l

n
(a)
ℎ ⋅n(b)

ℓ

)

√(∑k(a)

ℎ=1 n
(a)
ℎ log

na
ℎ
n

)(∑k(b)

ℓ=1 n
(b)
ℓ log

nb
ℓ
n

) (4.1)

where �a, �b denotes two different partitions of communities. nℎ,ℓ, n
a
ℎ,

nbℓ are, respectively, the number of actors simultaneously belonging to
the ℎ-th community of �a and ℓ-th community of �b, the number of
actors in the ℎ-th community of partition �a, and the number of actors
in the ℓ-th community of partition �b. NMI is a measure between 0 and
1 and equals to 1 when �a and �b are the same.

Networks with semantics. Some networks come with semantic or at-
tribute information of the nodes and connections. In this case, the iden-
tified communities can be verified by human subjects to check whether
it is consistent with the semantics. For instance, whether the community
identified in the Web is coherent to a shared topic [22, 15], whether the
clustering of coauthorship network captures the research interests of in-
dividuals. This evaluation approach is applicable when the community
is reasonably small. Otherwise, selecting the top-ranking actors as rep-
resentatives of a community is commonly used. This approach is quali-
tative and hardly can it be applied to all communities in a large network,
but it is quite helpful for understanding and interpretation of community
patterns.

Networks without ground truth or semantic information. This is the most
common situation, yet it requires objective evaluation most. Normally,
one resorts to some quantitative measures for evaluation. One common
measure being used is modularity [43]. Once we have a partition, we
can compute its modularity. The method with higher modularity wins.
Another comparable approach is to use the identified community as a
base for link prediction, i.e., two actors are connected if they belong to
the same community. Then, the predicted network is compared with the
true network, and the deviation is used to calibrate the community struc-
ture. Since social network demonstrates strong community effect, a bet-
ter community structure should predict the connections between actors
more accurately. This is essentially checking how far the true network
deviates from a block model based on the identified communities.



Graph Mining Applications to Social Network Analysis 507

5. Research Issues

We have now described some graph mining techniques for community de-
tection, a basic task in social network analysis. It is evident that community
detection, though it has been studied for many years, is still in pressing need
for effective graph mining techniques for large-scale complex networks. We
present some key problems for further research:

Scalability. One major bottleneck with community detection is scalabil-
ity. Most existing approaches require a combinatorial optimization for-
mulation for graph mining or eigenvalue problem of the network. Some
alternative techniques are being developed to overcome the barrier, in-
cluding local clustering [49] and multi-level methods [2]. How to find
out meaningful communities efficiently and develop scalable methods
for mega-scale networks remains a big challenge.

Community evolution. Most networks tend to evolve over time. How
to effectively capture the community evolution in dynamic social net-
works [56]? Can we find the members which act like the backbone of
communities? How does this relate to the influence of an actor? What
are the determining factors that result in community evolution [7]? How
to profile the characteristics of evolving communities[55]?

Usage of communities. How to utilize these communities for further
social network analysis needs more exploration, especially for those
emerging tasks in social media like classification [53], ranking, finding
influential actors [3], viral marketing, link prediction, etc. Community
structures of a social network can be exploited to accomplish these tasks.

Utility of patterns. As we have introduced, large-scale social networks
demonstrate some distinct patterns that are not usually observable in
small networks. However, most existing community detection methods
do not take advantage of the patterns in their detection process. How
to utilize these patterns with various community detection methods re-
mains unclear. More research should be encouraged in this direction.

Heterogeneous networks. In reality, multiple relationships can exist be-
tween individuals. Two persons can be friends and colleagues at the
same time. In online social media, people interact with each other in a
variety of forms resulting in a multi-relational (multi-dimensional) net-
work [54]. Some systems also involve multiple types of entities to in-
teract with each other, leading to multi-mode networks [56]. Analysis
of these heterogeneous networks involving heterogeneous actors or rela-
tions demands further investigation.
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The prosperity of social media and emergence of large-scale complex net-
works poses many challenges and opportunities to graph mining and social
network analysis. The development of graph mining techniques can facilitate
the analysis of networks in a much larger scale, and help understand human so-
cial behaviors. Meanwhile, the common patterns and emerging tasks in social
network analysis continually surprise us and stimulate advanced graph mining
techniques. In this chapter, we point out the converging trend of the two fields
and expect its healthy acceleration in the near future.
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Abstract In the recent past, a number of frequent subgraph mining algorithms has been
proposed They allow for analyses in domains where data is naturally graph-
structured. However, caused by scalability problems when dealing with large
graphs, the application of graph mining has been limited to only a few domains.
In software engineering, debugging is an important issue. It is most challenging
to localize bugs automatically, as this is expensive to be done manually. Several
approaches have been investigated, some of which analyze traces of repeated
program executions. These traces can be represented as call graphs. Such graphs
describe the invocations of methods during an execution. This chapter is a sur-
vey of graph mining approaches for bug localization based on the analysis of
dynamic call graphs. In particular, this chapter first introduces the subproblem
of reducing the size of call graphs, before the different approaches to localize
bugs based on such reduced graphs are discussed. Finally, we compare selected
techniques experimentally and provide an outlook on future issues.
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1. Introduction

Software quality is a huge concern in industry. Almost any software con-
tains at least some minor bugs after being released. In order to avoid bugs,
which incur significant costs, it is important to find and fix them before the re-
lease. In general, this results in devoting more resources to quality assurance.
Software developers usually try to find and fix bugs by means of in-depth code
reviews, along with testing and classical debugging. Locating bugs is consid-
ered to be the most time consuming and challenging activity in this context [6,
20, 24, 26] where the resources available are limited. Therefore, there is a need
for semi-automated techniques guiding the debugging process [34]. If a devel-
oper obtains some hints where bugs might be localized, debugging becomes
more efficient.

Research in the field of software reliability has been extensive, and various
techniques have been developed addressing the identification of defect-prone
parts of software. This interest is not limited to software-engineering research.
In the machine-learning community, automated debugging is considered to be
one of the ten most challenging problems for the next years [11]. So far, no bug
localization technique is perfect in the sense that it is capable of discovering
any kind of bug. In this chapter, we look at a relatively new class of bug local-
ization techniques, the analysis of call graphs with graph-mining techniques.
It can be seen as an approach orthogonal to and complementing existing tech-
niques.

Graph mining, or more specifically frequent subgraph mining, is a rela-
tively young discipline in data mining. As described in the other chapters of
this book, there are many different techniques as well as numerous applications
for graph mining. Probably the most prominent application is the analysis of
chemical molecules. As the NP-complete problem of subgraph isomorphism
[16] is an inherent part of frequent subgraph mining algorithms, the analysis of
molecules benefits from the relatively small size of most of them. Compared
to the analysis of molecular data, software-engineering artifacts are typically
mapped to graphs that are much larger. Consequently, common graph-mining
algorithms do not scale for these graphs. In order to make use of call graphs
which reflect the invocation structure of specific program executions, it is key
to deploy a suitable call-graph-reduction technique. Such techniques help to
alleviate the scalability problems to some extent and allow to make use of
graph-mining algorithms in a number of cases. As we will demonstrate, such
approaches work well in certain cases, but some challenges remain. Besides
scalability issues that are still unsolved, some call-graph-reduction techniques
lead to another challenge: They introduce edge weights representing call fre-
quencies. As graph-mining research has concentrated on structural and cat-
egorical domains, rather than on quantitative weights, we are not aware of
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any algorithm specialized in mining weighted graphs. Though this chapter
presents a technique to analyze graphs with weighted edges, the technique is a
composition of established algorithms rather than a universal weighted graph
mining algorithm. Thus, besides mining large graphs, weighted graph mining
is a further challenge for graph-mining research driven by the field of software
engineering.

The remainder of this chapter is structured as follows: Section 2 introduces
some basic principles of call graphs, bugs, graph mining and bug localization
with such graphs. Section 3 gives an overview of related work in software
engineering employing data-analysis techniques. Section 4 discusses different
call-graph-reduction techniques. The different bug-localization approaches are
presented and compared in Section 5 and Section 6 concludes.

2. Basics of Call Graph Based Bug Localization

This section introduces the concept of dynamic call graphs in Subsec-
tion 2.1. It presents some classes of bugs in Subsection 2.2 and Subsection 2.3
explains how bug localization with call graphs works in principle. A brief
overview of key aspects of graph and tree mining in the context of this chapter
is given in Subsection 2.4.

2.1 Dynamic Call Graphs

Call graphs are either static or dynamic [17]. A static call graph [1] can
be obtained from the source code. It represents all methods1 of a program as
nodes and all possible method invocations as edges. Dynamic call graphs are
of importance in this chapter. They represent an execution of a particular pro-
gram and reflect the actual invocation structure of the execution. Without any
further treatment, a call graph is a rooted ordered tree. The main-method of a
program usually is the root, and the methods invoked directly are its children.
Figure 17.1a is an abstract example of such a call graph where the root Node a
represents the main-method.

Unreduced call graphs typically become very large. The reason is that, in
modern software development, dedicated methods typically encapsulate every
single functionality. These methods call each other frequently. Furthermore,
iterative programming is very common, and methods calling other methods
occur within loops, executed thousands of times. Therefore, the execution of
even a small program lasting some seconds often results in call graphs consist-
ing of millions of edges.

The size of call graphs prohibits a straightforward mining with state-of-
the-art graph-mining algorithms. Hence, a reduction of the graphs which com-

1In this chapter, we use method interchangeably with function.
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presses the graphs significantly but keeps the essential properties of an individ-
ual execution is necessary. Section 4 describes different reduction techniques.

2.2 Bugs in Software

In the software-engineering literature, there is a number of different defi-
nitions of bugs, defects, errors, failures, faults and the like. For the purpose
of this chapter, we do not differentiate between them. It is enough to know
that a bug in a program execution manifests itself by producing some other
results than specified or by leading to some unexpected runtime behavior such
as crashes or non-terminating runs. In the following, we introduce some types
of bugs which are particularly interesting in the context of call graph based bug
localization.

a

b c

b b b

(a)

a

b c

b b b

(b)

a

b c

b b ... b

(c)

Figure 17.1. An unreduced call graph, a call graph with a structure affecting bug, and a call graph
with a frequency affecting bug.

Crashing and non-crashing bugs: Crashing bugs lead to an unex-
pected termination of the program. Prominent examples include null
pointer exceptions and divisions by zero. In many cases, e.g., depending
on the programming language, such bugs are not hard to find: A stack
trace is usually shown which gives hints where the bug occurred. Harder
to cope with are non-crashing bugs, i.e., failures which lead to faulty re-
sults without any hint that something went wrong during the execution.
As non-crashing bugs are hard to find, all approaches to discover bugs
with call-graph mining focus on them and leave aside crashing bugs.

Occasional and non-occasional bugs: Occasional bugs are bugs which
occur with some but not with any input data. Finding occasional bugs
is particularly difficult, as they are harder to reproduce, and more test
cases are necessary for debugging. Furthermore, they occur more fre-
quently, as non-occasional bugs are usually detected early, and occa-
sional bugs might only be found by means of extensive testing. As all
bug-localization techniques presented in this chapter rely on comparing
call graphs of failing and correct program executions, they deal with oc-
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casional bugs only. In other words, besides examples of failing program
executions, there needs to be a certain number of correct executions.

Structure and call frequency affecting bugs: This distinction is par-
ticularly useful when designing call graph based bug-localization tech-
niques. Structure affecting bugs are bugs resulting in different shapes
of the call graph where some parts are missing or occur additionally
in faulty executions. An example is presented in Figure 17.1b, where
Node b called from a is missing, compared to the original graph in Fig-
ure 17.1a. In this example, a faulty if-condition in Node a could have
caused the bug. In contrast, call frequency affecting bugs are bugs which
lead to a change in the number of calls of a certain subtree in faulty ex-
ecutions, rather than to completely missing or new substructures. In the
example in Figure 17.1c, a faulty loop condition or a faulty if-condition
inside a loop in Method c are typical causes for the increased number of
calls of Method b.

As probably any bug-localization technique, call graph based bug localiza-
tion is certainly not able to find all kinds of software bugs. For example, it
is possible that bugs do not affect the call graph at all. For instance, if some
mathematical expression calculates faulty results, this does not necessarily af-
fect subsequent method calls and call graph mining can not detect this. There-
fore, call graph based bug localization should be seen as a technique which
complements other techniques, as the ones we will describe in Section 3. In
this chapter we concentrate on deterministic bugs of single-threaded programs
and leave aside bugs which are specific for such situations. However, the tech-
niques described in the following might locate such bugs as well.

2.3 Bug Localization with Call Graphs

So far, several approaches have been proposed to localize bugs by means
of call-graph mining [9, 13, 14, 25]. We will present them in detail in the
following sections. In a nutshell, the approaches consist of three steps:

1 Deduction of call graphs from program executions,
assignment of labels correct or failing.

2 Reduction of call graphs.

3 Mining of call graphs,
analysis of the resulting frequent subgraphs.

Step 1: Deriving call graphs is relatively simple. They can be obtained by
tracing program executions while testing, which is assumed to be done anyway.
Furthermore, a classification of program executions as correct or failing is
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needed to find discriminative patterns in the last step. Obtaining the necessary
information can be done easily, as quality assurance widely uses test suites
which provide the correct results [18].

Step 2: Call-graph reduction is necessary to overcome the huge sizes of call
graphs. This is much more challenging. It involves the decision how much
information lost is tolerable when compressing the graphs. However, even if
reduction techniques can facilitate mining in many cases, they currently do not
allow for mining of arbitrary software projects. Details on call-graph reduction
are presented in Section 4.

Step 3: This step includes frequent subgraph mining and the analysis of
the resulting frequent subgraphs. The intuition is to search for patterns typical
for faulty executions. This often results in a ranking of methods suspected
to contain a bug. The rationale is that such a ranking is given to a software
developer who can do a code review of the suspicious methods. The specifics
of this step vary widely and highly depend on the graph-reduction scheme used.
Section 5 discusses the different approaches in detail.

2.4 Graph and Tree Mining

Frequent subgraph mining has been introduced in earlier chapters of this
book. As such techniques are of importance in this chapter, we briefly reca-
pitulate those which are used in the context of bug localization based on call
graph mining:

Frequent subgraph mining: Frequent subgraph mining searches for
the complete set of subgraphs which are frequent within a database of
graphs, with respect to a user defined minimum support. Respective
algorithms can mine connected graphs containing labeled nodes and
edges. Most implementations also handle directed graphs and pseudo
graphs which might contain self-loops and multiple edges. In general,
the graphs analyzed can contain cycles. A prominent mining algorithm
is gSpan [32].

Closed frequent subgraph mining: Closed mining algorithms differ
from regular frequent subgraph mining in the sense that only closed sub-
graphs are contained in the result set. A subgraph sg is called closed if
no other graph is contained in the result set which is a supergraph of sg
and has exactly the same support. Closed mining algorithms therefore
produce more concise result sets and benefit from pruning opportunities
which may speed up the algorithms. In the context of this chapter, the
CloseGraph algorithm [33] is used, as closed subgraphs proved to be
well suited for bug localization [13, 14, 25].
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Rooted ordered tree mining: Tree mining algorithms (a survey with
more details can be found in [5]) work on databases of trees and ex-
ploit their characteristics. Rooted ordered tree mining algorithms work
on rooted ordered trees, which have the following characteristics: In
contrast to free trees, rooted trees have a dedicated root node, the main-
method in call trees. Ordered trees preserve the order of outgoing edges
of a node, which is not encoded in arbitrary graphs. Thus, call trees can
keep the information that a certain node is called before another one from
the same parent. Rooted ordered tree mining algorithms produce result
sets of rooted ordered trees. They can be embedded in the trees from the
original tree database, preserving the order. Such algorithms have the
advantage that they benefit from the order, which speeds up mining sig-
nificantly. Techniques in the context of bug localization sometimes use
the FREQT rooted ordered tree mining algorithm [2]. Obviously, this
can only be done when call trees are not reduced to graphs containing
cycles.

3. Related Work

This chapter of the book surveys bug localization based on graph mining
and dynamic call graphs. As many approaches orthogonal to call-graph mining
have been proposed, this section on related work provides an overview of such
approaches.

The most important distinction for bug localization techniques is if they
are static or dynamic. Dynamic techniques rely on the analysis of program
runs while static techniques do not require any execution. An example for a
static technique is source code analysis which can be based on code metrics or
different graphs representing the source code, e.g., static call graphs, control-
flow graphs or program-dependence graphs. Dynamic techniques usually trace
some information during a program execution which is then analyzed. This
can be information on the values of variables, branches taken during execution
or code segments executed.

In the remainder of this section we briefly discuss the different static and
dynamic bug localization techniques. At the end of this section we present
recent work in mining of static program-dependence graphs in a little more
detail, as this approach makes use of graph mining. However, it is static in
nature as it does not involve any program executions. It is therefore not similar
to the mining schemes based on dynamic call graphs described in the remainder
of this chapter.

Mining of Source Code. Software-complexity metrics are measures de-
rived from the source code describing the complexity of a program or its
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methods. In many cases, complexity metrics correlate with defects in soft-
ware [26, 34]. A standard technique in the field of ‘mining software reposi-
tories’ is to map post-release failures from a bug database to defects in static
source code. Such a mapping is done in [26]. The authors derive standard
complexity metrics from source code and build regression models based on
them and the information if the software entities considered contain bugs. The
regression models can then predict post-release failures for new pieces of soft-
ware. A similar study uses decision trees to predict failure probabilities [21].
The approach in [30] uses regression techniques to predict the likelihood of
bugs based on static usage relationships between software components. All
approaches mentioned require a large collection of bugs and version history.

Dynamic Program Slicing. Dynamic program slicing [22] can be very
useful for debugging although it is not exactly a bug localization technique.
It helps searching for the exact cause of a bug if the programmer already has
some clue or knows where the bug appears, e.g., if a stack trace is available.
Program slicing gives hints which parts of a program might have contributed to
a faulty execution. This is done by exploring data dependencies and revealing
which statements might have affected the data used at the location where the
bug appeared.

Statistical Bug Localization. Statistical bug localization is a family of dy-
namic, mostly data focused analysis techniques. It is based on instrumentation
of the source code, which allows to capture the values of variables during an
execution, so that patterns can be detected among the variable values. In [15],
this approach is used to discover program invariants. The authors claim that
bugs can be detected when unexpected invariants appear in failing executions
or when expected invariants do not appear. In [23], variable values gained by
instrumentation are used as features describing a program execution. These
are then analyzed with regression techniques, which leads to potentially faulty
pieces of code. A similar approach, but with a focus on the control flow, is [24].
It instruments variables in condition statements. It then calculates a ranking
which yields high values when the evaluation of these statements differs sig-
nificantly in correct and failing executions.

The instrumentation-based approaches mentioned either have a large mem-
ory footprint [6] or do not capture all bugs. The latter is caused by the usual
practice not to instrument every part of a program and therefore not to watch
every value, but to instrument sampled parts only. [23] overcomes this prob-
lem by collecting small sampled parts of information from productive code on
large numbers of machines via the Internet. However, this does not facilitate
the discovery of bugs before the software is shipped.
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Analysis of Execution Traces. A technique using tracing and visualization
is presented in [20]. It relies on a ranking of program components based on
the information which components are executed more often in failing program
executions. Though this technique is rather simple, it produces good bug-
localization results. In [6], the authors go a step further and analyze sequences
of method calls. They demonstrate that the temporal order of calls is more
promising to analyze than considering frequencies only. Both techniques can
be seen as a basis for the more sophisticated call graph based techniques this
chapter focuses on. The usage of call sequences instead of call frequencies
is a generalization which takes more structural information into account. Call
graph based techniques then generalize from sequence-based techniques. They
do so by using more complex structural information encoded in the graphs.

Mining of Static Program-Dependence Graphs. Recent work of Chang
et al. [4] focuses on discovering neglected conditions, which are also known as
missing paths, missing conditions and missing cases. They are a class of bugs
which are in many cases non-crashing occasional bugs (cf. Subsection 2.2) –
dynamic call graph based techniques target such bugs as well. An example of
a neglected condition is a forgotten case in a switch-statement. This could
lead to wrong behavior, faulty results in some occasions and is in general non-
crashing.

Chang et al. work with static program-dependence graphs (PDGs) [28] and
utilize graph-mining techniques. PDGs are graphs describing both control and
data dependencies (edges) between elements (nodes) of a method or of an en-
tire program. Figure 17.2a provides an example PDG representing the method
add(a, b) which returns the sum of its two parameters. Control dependencies
are displayed by solid lines, data dependencies by dashed lines. As PDGs are
static, only the number of instructions and dependencies within a method limit
their size. Therefore, they are usually smaller than dynamic call graphs (see
Sections 2 and 4). However, they typically become quite large as well, as meth-
ods often contain many dependencies. This is the reason why they cannot be
mined directly with standard graph-mining algorithms. PDGs can be derived
from source code. Therefore, like other static techniques, PDG analysis does
not involve any execution of a program.

The idea behind [4] is to first determine conditional rules in a software
project. These are rules (derived from PDGs, as we will see) occurring fre-
quently within a project, representing fault-free patterns. Then, rule violations
are searched, which are considered to be neglected conditions. This is based on
the assumption that the more a certain pattern is used, the more likely it is to be
a valid rule. The conditional rules are generated from PDGs by deriving (topo-
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Figure 17.2. An example PDG, a subgraph and a topological graph minor.

logical) graph minors2. Such graph minors represent transitive intraprocedural
dependencies. They can be seen – like subgraphs – as a set of smaller graphs
describing the characteristics of a PDG. The PDG minors are obtained by em-
ploying a heuristic maximal frequent subgraph-mining algorithm developed by
the authors. Then, an expert has to confirm and possibly edit the graph minors
(also called programming rules) found by the algorithm. Finally, a heuristic
graph-matching algorithm, which is developed by the authors as well, searches
the PDGs to find the rule violations in question.

From a technical point of view, besides the PDG representation, the ap-
proach relies on the two new heuristic algorithms for maximal frequent sub-
graph mining and graph matching. Both techniques are not investigated from
a graph theoretic point of view nor evaluated with standard data sets for graph
mining. Most importantly, there are no guarantees for the heuristic algorithms:
It remains unclear in which cases graphs are not found by the algorithms. Fur-
thermore, the approach requires an expert to examine the rules, typically hun-
dreds, by hand. However, the algorithms do work well in the evaluation of the
authors.

The evaluation on four open source programs demonstrates that the ap-
proach finds most neglected conditions in real software projects. More pre-
cisely, 82% of all rules are found, compared to a manual investigation. A
drawback of the approach is the relatively high false-positive rate which leads
to a bug-detection precision of 27% on average.

Though graph-mining techniques similar to dynamic call graph mining (as
presented in the following) are used in [4], the approaches are not related. The
work of Chang et al. relies on static PDGs. They do not require any program
execution, as dynamic call graphs do.

2A graph minor is a graph obtained by repeated deletions and edge contractions from a graph [10]. For
topological graph minors as used in [4], in addition, paths between two nodes can be replaced with edges
between both nodes. Figure 17.2 provides (a) an example PDG along with (b) a subgraph and (c) a topo-
logical graph minor. The latter is a minor of both, the PDG and the subgraph. Note that in general any
subgraph of a graph is a minor as well.
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4. Call-Graph Reduction

As motivated earlier, reduction techniques are essential for call graph based
bug localization: Call graphs are usually very large, and graph-mining algo-
rithms do not scale for such sizes. Call-graph reduction is usually done by a
lossy compression of the graphs. Therefore, it involves the tradeoff between
keeping as much information as possible and a strong compression. As some
bug localization techniques rely on the temporal order of method executions,
the corresponding reduction techniques encode this information in the reduced
graphs.

In Subsection 4.1 we describe the possibly easiest reduction technique,
which we call total reduction. In Subsection 4.2 we introduce various tech-
niques for the reduction of iteratively executed structures. As some techniques
make use of the temporal order of method calls during reduction, we describe
these aspects in Subsection 4.3. We provide some ideas on the reduction of
recursion in Subsection 4.4 and conclude the section with a brief comparison
in Subsection 4.5.

4.1 Total Reduction

The total reduction technique is probably the easiest technique and yields
good compression. In the following, we introduce two variants:

Total reduction (Rtotal). Total reduction maps every node representing
the same method in the call graph to a single node in the reduced graph.
This may give way to the existence of loops (i.e., the output is a reg-
ular graph, not a tree), and it limits the size of the graph (in terms of
nodes) to the number of methods of the program. In bug localization,
[25] has introduced this technique, along with a temporal extension (see
Subsection 4.3).

Total reduction with edge weights (Rtotal w). [14] has extended the
plain total reduction scheme (Rtotal) to include call frequencies: Every
edge in the graph representing a method call is annotated with an edge
weight. It represents the total number of calls of the callee method from
the caller method in the original graph. These weights allow for more
detailed analyses.

Figure 17.3 contains examples of the total reduction techniques: (a) is an
unreduced call graph, (b) its total reduction (Rtotal) and (c) its total reduction
with edge weights (Rtotal w).

In general, total reduction (Rtotal and Rtotal w) reduces the graphs quite sig-
nificantly. Therefore, it allows graph mining based bug localization with soft-
ware projects larger than other reduction techniques. On the other hand, much
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Figure 17.3. Total reduction techniques.

information on the program execution is lost. This concerns frequencies of the
executions of methods (Rtotal only) as well as information on different struc-
tural patterns within the graphs (Rtotal and Rtotal w). In particular, the infor-
mation is lost in which context (at which position within a graph) a certain
substructure is executed.

4.2 Iterations

Next to total reduction, reduction based on the compression of iteratively
executed structures (i.e., caused by loops) is promising. This is due to the
frequent usage of iterations in today’s software. In the following, we introduce
two variants:

Unordered zero-one-many reduction (R01m unord). This reduction
technique omits equal substructures of executions which are invoked
more than twice from the same node. This ensures that many equal
substructures called within a loop do not lead to call graphs of an ex-
treme size. In contrast, the information that some substructure is exe-
cuted several times is still encoded in the graph structure, but without
exact numbers. This is done by doubling substructures within the call
graph. Compared to total reduction (Rtotal), more information on a pro-
gram execution is kept. The downside is that the call graph generally is
much larger.

This reduction technique is inspired by Di Fatta et al. [9] (cf. R01m ord

in Subsection 4.3), but does not take the temporal order of the method
executions into account. [13, 14] have used it for comparisons with other
techniques which do not make use of temporal information.

Subtree reduction (Rsubtree). This reduction technique, proposed
in [13, 14], reduces subtrees executed iteratively by deleting all but
the first subtree and inserting the call frequencies as edge weights. In
general, it therefore leads to smaller graphs than R01m unord. The edge
weights allow for a detailed analysis; they serve as the basis of the analy-
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sis technique described in Subsection 5.2. Details of the reduction tech-
nique are given in the remainder of this subsection.

Note that with Rtotal, and with R01m unord in most cases as well, the
graphs of a correct and a failing execution with a call frequency affect-
ing bug (cf. Subsection 2.2) are reduced to exactly the same graph. With
Rsubtree (and with Rtotal w as well), the edge weights would be differ-
ent when call frequency affecting bugs occur. Analysis techniques can
discover this (cf. Subsection 5.2).
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Figure 17.4. Reduction techniques based on iterations.

Figure 17.4 illustrates the two iteration-based reduction techniques: (a) is an
unreduced call graph, (b) its zero-one-many reduction without temporal order
(R01m unord) and (c) its subtree reduction (Rsubtree). Note that the four calls of b
from c are reduced to two calls with R01m unord and to one edge with weight 4
with Rsubtree. Further, the graph resulting from Rsubtree has one node more than
the one obtained from Rtotal w in Figure 17.3c, but the same number of edges.
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Figure 17.5. A raw call tree, its first and second transformation step.

For the subtree reduction (Rsubtree), [14] organizes the call tree into n hor-
izontal levels. The root node is at level 1. All other nodes are in levels num-
bered with the distance to the root. A na-“ve approach to reduce the example
call tree in Figure 17.5a would be to start at level 1 with Node a. There, one
would find two child subtrees with a different structure – one could not merge
anything. Therefore, one proceeds level by level, starting from level n− 1, as
described in Algorithm 22. In the example in Figure 17.5a, one starts in level 2.
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The left Node b has two different children. Thus, nothing can be merged there.
In the right b, the two children c are merged by adding the edge weights of the
merged edges, yielding the tree in Figure 17.5b. In the next level, level 1, one
processes the root Node a. Here, the structure of the two successor subtrees is
the same. Therefore, they are merged, resulting in the tree in Figure 17.5c.

Algorithm 22 Subtree reduction algorithm.

1: Input: a call tree organized in n levels
2: for level = n− 1 to 1 do
3: for each node in level do
4: merge all isomorph child-subtrees of node,

sum up corresponding edge weights
5: end for
6: end for

4.3 Temporal Order

So far, the call graphs described just represent the occurrence of method
calls. Even though, say, Figures 17.3a and 17.4a might suggest that b is called
before c in the root Node a, this information is not encoded in the graphs. As
this might be relevant for discriminating faulty and correct program executions,
the bug-localization techniques proposed in [9, 25] take the temporal order of
method calls within one call graph into account. In Figure 17.6a, increasing
integers attached to the nodes represent the order. In the following, we present
the corresponding reduction techniques:

Total reduction with temporal edges (Rtotal tmp). In addition to the to-
tal reduction (Rtotal), [25] uses so called temporal edges. The authors in-
sert them between all methods which are executed consecutively and are
invoked from the same method. They call the resulting graphs software-
behavior graphs. This reduction technique includes the temporal order
from the raw ordered call trees in the reduced graph representations.
Technically, temporal edges are directed edges with another label, e.g.,
‘temporal’, compared to other edges which are labeled, say, ‘call’.

As the graph-mining algorithms used for further analysis can handle
edges labeled differently, the analysis of such graphs does not give way
to any special challenges, except for an increased number of edges.
In consequence, the totally reduced graphs loose their main advantage,
their small size. However, taking the temporal order into account might
help discovering certain bugs.



Software-Bug Localization with Graph Mining 529

Ordered zero-one-many reduction (R01m ord). This reduction tech-
nique proposed by Di Fatta et al. [9] makes use of the temporal or-
der. This is done by representing the graph as a rooted ordered tree,
which can be analyzed with an order aware mining algorithm. To in-
clude the temporal order, the reduction technique is changed as follows:
While R01m unord omits any equal substructure which is invoked more
than twice from the same node, here only substructures are removed
which are executed more than twice in direct sequence. This facilitates
that all temporal relationships are retained. E.g., in the reduction of the
sequence b, b, b, d, b (see Figure 17.6) only the third b is removed, and it
is still encoded that b is called after d once.

Depending on the actual execution, this technique might lead to extreme
sizes of call trees. For example, if within a loop a Method a is called
followed by two calls of b, the reduction leads to the repeated sequence
a, b, b, which is not reduced at all. The rooted ordered tree miner in [9]
partly compensates the additional effort for mining algorithms caused
by such sizes, which are huge compared to R01m unord. Rooted ordered
tree mining algorithms scale significantly better than usual graph mining
algorithms [5], as they make use of the order.
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Figure 17.6. Temporal information in call graph reductions.

Figure 17.6 illustrates the two graph reductions which are aware of the tem-
poral order. (The integers attached to the nodes represent the invocation or-
der.) (a) is an unreduced call graph, (b) its total reduction with temporal edges
(dashed, Rtotal tmp) and (c) its ordered zero-one-many reduction (R01m ord).
Note that, compared to R01m unord, R01m ord keeps a third Node b called from c,
as the direct sequence of nodes labeled b is interrupted.

4.4 Recursion

Another challenge with the potential to reduce the size of call graphs is re-
cursion. The total reductions (Rtotal, Rtotal w and Rtotal tmp) implicitly handle
recursion as they reduce both iteration and recursion. E.g., when every method
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is collapsed to a single node, (self-)loops implicitly represent recursion. Be-
sides that, recursion has not been investigated much in the context of call-graph
reduction and in particular not as a starting point for reductions in addition to
iterations. The reason for that is, as we will see in the following, that the re-
duction of recursion is less obvious than reducing iterations and might finally
result in the same graphs as with a total reduction. Furthermore, in compute-
intensive applications, programmers frequently replace recursions with itera-
tions, as this avoids costly method calls. Nevertheless, we have investigated
recursion-based reduction of call graphs to a certain extent and present some
approaches in the following. Two types of recursion can be distinguished:

Direct recursion. When a method calls itself directly, such a method
call is called a direct recursion. An example is given in Figure 17.7a
where Method b calls itself. Figure 17.7b presents a possible reduction
represented with a self-loop at Node b. In Figure 17.7b, edge weights as
in Rsubtree represent both frequencies of iterations and the depth of direct
recursion.

Indirect recursion. It may happen that some method calls another
method which in turn calls the first one again. This leads to a chain
of method calls as in the example in Figure 17.7c where b calls c which
again calls b etc. Such chains can be of arbitrary length. Obviously, such
indirect recursions can be reduced as shown in Figures 17.7c–(d). This
leads to the existence of loops.

a

b

b c

(a)

a

b

 1

 1

c

 1

(b)

a

b

c

b

c

(c)

a

b

 1

c

2  1

(d)

a

a b

c a

a d

(e)

a  3

b

1

c

 1

d

1

(f)

Figure 17.7. Examples for reduction based on recursion.

Both types of recursion are challenging when it comes to reduction. Fig-
ures 17.7e–(f) illustrate one way of reducing direct recursions. While the sub-
sequent reflexive calls of a are merged into a single node with a weighted
self-loop, b, c and d become siblings. As with total reductions, this leads to
new structures which do not occur in the original graph. In bug localization,
one might want to avoid such artifacts. E.g., d called from exactly the same
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method as b could be a structure-affecting bug which is not found when such
artifacts occur. The problem with indirect recursion is that it can be hard to
detect and becomes expensive to detect all occurrences of long-chained recur-
sion. To conclude, when reducing recursions, one has to be aware that, as with
total reduction, some artifacts may occur.

4.5 Comparison

To compare reduction techniques, we must look at the level of compression
they achieve on call graphs. Table 17.1 contains the sizes of the resulting
graphs (increasing in the number of edges) when different reduction techniques
are applied to the same call graph. The call graph used here is obtained from an
execution of the Java diff tool taken from [8] used in the evaluation in [13, 14].
Clearly, the effect of the reduction techniques varies extremely depending on
the kind of program and the data processed. However, the small program used
illustrates the effect of the various techniques. Furthermore it can be expected
that the differences in call-graph compressions become more significant with
increasing call graph sizes. This is because larger graphs tend to offer more
possibilities for reductions.

Reduction Nodes Edges

Rtotal, Rtotal w 22 30
Rsubtree 36 35
Rtotal tmp 22 47
R01m unord 62 61
R01m ord 117 116

unreduced 2199 2198

Table 17.1. Examples for the effect of call graph reduction techniques.

Obviously, the total reduction (Rtotal and Rtotal w) achieves the strongest
compression and yields a reduction by two orders of magnitude. As 22 nodes
remain, the program has executed exactly this number of different methods.
The subtree reduction (Rsubtree) has significantly more nodes but only five more
edges. As – roughly speaking – graph-mining algorithms scale with the num-
ber of edges, this seems to be tolerable. We expect the small increase in the
number of edges to be compensated by the increase in structural information
encoded. The unordered zero-one-many reduction technique (R01m unord) again
yields somewhat larger graphs. This is because repetitions are represented as
doubled substructures instead of edge weights. With the total reduction with
temporal edges (Rtotal tmp), the number of edges increases by roughly 50%
due to the temporal information, while the ordered zero-one-many reduction
(R01m ord) almost doubles this number. Subsection 5.4 assesses the effective-
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ness of bug localization with the different reduction techniques along with the
localization methods.

Clearly, some call graph reduction techniques also are expensive in terms of
runtime. However, we do not compare the runtimes, as the subsequent graph
mining step usually is significantly more expensive.

To summarize, different authors have proposed different reduction tech-
niques, each one together with a localization technique (cf. Section 5): the
total reduction (Rtotal tmp) in [25], the zero-one-many reduction (R01m ord) in
[9] and the subtree reduction (Rsubtree) in [13, 14]. Some of the reductions can
be used or at least be varied in order to work together with a bug localiza-
tion technique different from the original one. In Subsection 5.4, we present
original and varied combinations.

5. Call Graph Based Bug Localization

This section focuses on the third and last step of the generic bug-localization
process from Subsection 2.3, namely frequent subgraph mining and bug lo-
calization based on the mining results. In this chapter, we distinguish be-
tween structural approaches [9, 25] and the frequency-based approach used
in [13, 14].

In Subsections 5.1 and 5.2 we describe the two kinds of approaches. In Sub-
section 5.3 we introduce several techniques to integrate the results of structural
and frequency-based approaches. We present some comparisons in Subsec-
tion 5.4.

5.1 Structural Approaches

Structural approaches for bug localization can locate structure affecting
bugs (cf. Subsection 2.2) in particular. Approaches following this idea do so
either in isolation or as a complement to a frequency-based approach. In most
cases, a likelihood P (m) that Method m contains a bug is calculated, for every
method. This likelihood is then used to rank the methods. In the following,
we refer to it as score. In the remainder of this subsection, we introduce and
discuss the different structural scoring approaches.

The Approach by Di Fatta et al. In [9], the R01m ord call-graph reduction
is used (cf. Section 4), and the rooted ordered tree miner FREQT [2] is em-
ployed to find frequent subtrees. The call trees analyzed are large and lead to
scalability problems. Hence, the authors limit the size of the subtrees searched
to a maximum of four nodes. Based on the results of frequent subtree min-
ing, they define the specific neighborhood (SN ). It is the set of all subgraphs
contained in all call graphs of failing executions which are not frequent in call
graphs of correct executions:
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SN := {sg ∣ (supp(sg ,Dfail) = 100%) ∧ ¬(supp(sg ,Dcorr) ≥ minSup)}

where supp(g,D) denotes the support of a graph g, i.e., the fraction of graphs
in a graph database D containing g. Dfail and Dcorr denote the sets of call
graphs of failing and correct executions. [9] uses a minimum support minSup

of 85%.
Based on the specific neighborhood, a structural score PSN is defined:

PSN(m) :=
supp(gm,SN )

supp(gm,SN ) + supp(gm,Dcorr)

where gm denotes all graphs containing Method m. Note that PSN assigns the
value 0 to methods which do not occur within SN and the value 1 to methods
which occur in SN but not in correct program executions Dcorr.

The Approach by Eichinger et al. The notion of specific neighbor-
hood (SN ) has the problem that no support can be calculated when the SN is
empty.3 Furthermore, experiments of ours have revealed that the PSN-scoring
only works well if a significant number of graphs is contained in SN . This de-
pends on the graph reduction and mining techniques and has not always been
the case in the experiments. Thus, to complement the frequency-based scoring
(cf. Subsection 5.2), another structural score is defined in [14]. It is based on
the set of frequent subgraphs which occur in failing executions only, SGfail.
The structural score Pfail is calculated as the support of m in SGfail:

Pfail(m) := supp(gm,SGfail)

Further Support-based Approaches. Both the PSN-score [9] and the
Pfail-score [14] have their weaknesses. Both approaches consider structure af-
fecting bugs which lead to additional substructures in call graphs correspond-
ing to failing executions. In the SN , only substructures occurring in all failing
executions (Dfail) are considered – they are ignored if a single failing execu-
tion does not contain the structure. The Pfail-score concentrates on subgraphs
occurring in failing executions only (SGfail), although they do not need to be
contained in all failing executions. Therefore, both approaches might not find
structure affecting bugs leading not to additional structures but to fewer struc-
tures. The weaknesses mentioned have not been a problem so far, as they have
rarely affected the respective evaluation, or the combination with another rank-
ing method has compensated it.

3[9] uses a simplistic fall-back approach to deal with this effect.
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One possible solution for a broader structural score is to define a score based
on two support values: The support of every subgraph sg in the set of call
graphs of correct executions supp(sg ,Dcorr) and the respective support in the
set of failing executions supp(sg ,Dfail). As we are interested in the support of
methods and not of subgraphs, the maximum support values of all subgraphs
sg in the set of subgraphs SG containing a certain Method m can be derived:

sfail(m) := max
{sg ∣ sg∈SG, m∈sg}

supp(sg ,Dfail)

scorr(m) := max
{sg ∣ sg∈SG, m∈sg}

supp(sg ,Dcorr)

Example 17.1. Think of Method a, called from the main-method and contain-
ing a bug. Let us assume there is a subgraph main → a (where ‘→’ de-
notes an edge between two nodes) which has a support of 100% in failing
executions and 40% in correct ones. At the same time there is the subgraph
main → a → b where a calls b afterwards. Let us say that the bug occurs
exactly in this constellation. In this situation, main→ a→ b has a support of
0% in Dcorr while it has a support of 100% in Dfail. Let us further assume that
there also is a much larger subgraph sg which contains a and occurs in 10%
of all failing executions. The value sfail(a) therefore is 100%, the maximum of
100% (based on subgraph main → a), 100% (based on main → a → b) and
10% (based on sg).

With the two relative support values scorr and sfail as a basis, new structural
scores can be defined. One possibility would be the absolute difference of sfail

and scorr:

Pfail-corr(m) = ∣sfail(m)− scorr(m)∣

Example 17.2. To continue Example 17.1, Pfail-corr(a) is 60%, the absolute
difference of 40% (scorr(a)) and 100% (sfail(a)). We do not achieve a higher
value than 60%, as Method a also occurs in bug-free subgraphs.

The intuition behind Pfail-corr is that both kinds of structure affecting bugs
are covered: (1) those which lead to additional structures (high sfail and low to
moderate scorr values like in Example 17.2) and (2) those leading to missing
structures (low sfail and moderate to high scorr). In cases where the support
in both sets is equal, e.g., both are 100% for the main-method, Pfail-corr is
zero. We have not yet evaluated Pfail-corr with real data. It might turn out that
different but similar scoring methods are better.

The Approach by Liu et al. Although [25] is the first study which applies
graph mining techniques to dynamic call graphs to localize non-crashing bugs,
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this work is not directly compatible to the other approaches described so far.
In [25], bug localization is achieved by a rather complex classification process,
and it does not generate a ranking of methods suspected to contain a bug, but
a set of such methods.

The work is based on the Rtotal tmp reduction technique and works with total
reduced graphs with temporal edges (cf. Section 4). The call graphs are mined
with a variant of the CloseGraph algorithm [33]. This step results in frequent
subgraphs which are turned into binary features characterizing a program exe-
cution: A boolean feature vector represents every execution. In this vector, ev-
ery element indicates if a certain subgraph is included in the corresponding call
graph. Using those feature vectors, a support-vector machine (SVM) is learned
which decides if a program execution is correct or failing. More precisely, for
every method, two classifiers are learned: one based on call graphs including
the respective method, one based on graphs without this method. If the preci-
sion rises significantly when adding graphs containing a certain method, this
method is deemed more likely to contain a bug. Such methods are added to
the so-called bug-relevant function set. Its functions usually line up in a form
similar to a stack trace which is presented to a user when a program crashes.
Therefore, the bug-relevant function set serves as the output of the whole ap-
proach. This set is given to a software developer who can use it to locate bugs
more easily.

5.2 Frequency-based Approach

The frequency-based approach for bug localization by Eichinger et al.
[13, 14] is in particular suited to locate frequency affecting bugs (cf. Subsec-
tion 2.2), in contrast to the structural approaches. It calculates a score as well,
i.e., the likelihood to contain a bug, for every method.

After having performed frequent subgraph mining with the CloseGraph al-
gorithm [33] on call graphs reduced with the Rsubtree technique, Eichinger et al.
analyze the edge weights. As an example, a call-frequency affecting bug in-
creases the frequency of a certain method invocation and therefore the weight
of the corresponding edge. To find the bug, one has to search for edge weights
which are increased in failing executions. To do so, they focus on frequent
subgraphs which occur in both correct and failing executions. The goal is to
develop an approach which automatically discovers which edge weights of call
graphs from a program are most significant to discriminate between correct
and failing. To do so, one possibility is to consider different edge types, e.g.,
edges having the same calling Method ms (start) and the same method called
me (end). However, edges of one type can appear more than once within one
subgraph and, of course, in several different subgraphs. Therefore, the authors
analyze every edge in every such location, which is referred to as a context. To
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specify the exact location of an edge in its context within a certain subgraph,
they do not use the method names, as they may occur more than once. In-
stead, they use a unique id for the calling node (ids) and another one for the
method called (ide). All ids are valid within their subgraph. To sum up, edges
in its context in a certain subgraph sg are referenced with the following tuple:
(sg , ids, ide). A certain bug does not affect all method calls (edges) of the same
type, but method calls of the same type in the same context. Therefore, the au-
thors assemble a feature table with every edge in every context as columns and
all program executions in the rows. The table cells contain the respective edge
weights. Table 17.2 serves as an example.

a → b a → b a → b a → c ⋅ ⋅ ⋅ Class
(sg1 , id1 , id2 ) (sg1 , id1 , id3 ) (sg2 , id1 , id2 ) (sg2 , id1 , id3 )

g1 0 0 13 6513 ⋅ ⋅ ⋅ correct

g2 512 41 8 12479 ⋅ ⋅ ⋅ failing

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Table 17.2. Example table used as input for feature-selection algorithms.

The first column contains a reference to the program execution or, more
precisely, to its reduced call graph gi ∈ G. The second column corresponds to
the first subgraph (sg1 ) and the edge from id1 (Method a) to id2 (Method b).
The third column corresponds to the same subgraph (sg1 ) but to the edge from
id1 to id3 . Note that both id2 and id3 represent Method b. The fourth column
represents an edge from id1 to id2 in the second subgraph (sg2 ). The fifth
column represents another edge in sg2 . Note that ids have different meanings
in different subgraphs. The last column contains the class correct or failing .
If a certain subgraph is not contained in a call graph, the corresponding cells
have value 0, like g1 , which does not contain sg1 . Graphs (rows) can contain a
certain subgraph not just once, but several times at different locations. In this
case, averages are used in the corresponding cells of the table.

The table structure described allows for a detailed analysis of edge weights
in different contexts within a subgraph. Algorithm 23 describes all subsequent
steps in this subsection. After putting together the table, Eichinger et al. de-
ploy a standard feature-selection algorithm to score the columns of the table
and thus the different edges. They use an entropy-based algorithm from the
Weka data-mining suite [31]. It calculates the information gain InfoGain [29]
(with respect to the class of the executions, correct or failing) for every col-
umn (Line 23 in Algorithm 23). The information gain is a value between 0
and 1, interpreted as a likelihood of being responsible for bugs. Columns with
an information gain of 0, i.e., the edges always have the same weights in both
classes, are discarded immediately (Line 23 in Algorithm 23).

Call graphs of failing executions frequently contain bug-like patterns which
are caused by a preceding bug. Eichinger et al. call such artifacts follow-up



Software-Bug Localization with Graph Mining 537

a

b

1

d

 2

c

 1

e

 2

f

6

(a)

a

b

1

d

 20

c

 1

e

 20

f

60

(b)

Figure 17.8. Follow-up bugs.

bugs. Figure 17.8 illustrates a follow-up bug: (a) represents a bug free version,
(b) contains a call frequency affecting bug in Method a which affects the invo-
cations of d. Here, this method is called 20 times instead of twice. Following
the Rsubtree reduction, this leads to a proportional increase in the number of
calls in Method d. [14] contains more details how follow-up bugs are detected
and removed from the set of edges E (Line 23 of Algorithm 23).

Algorithm 23 Procedure to calculate Pfreq(ms,me) and Pfreq(m).

1: Input: a set of edges e ∈ E, e = (sg , ids, ide)
2: assign every e ∈ E its information gain InfoGain

3: E = E ∖ {e ∣ e.InfoGain = 0}
4: remove follow-up bugs from E
5: E(ms,me) = {e ∣ e ∈ E ∧ e.ids.label = ms ∧ e.ide.label = me}
6: Pfreq(ms,me) = max

e∈E(ms,me)

(e.InfoGain)

7: Em = {e ∣ e ∈ E ∧ e.ids.label = m}
8: Pfreq(m) = max

e∈Em

(e.InfoGain)

At this point, Eichinger et al. calculate likelihoods of method invocations
containing a bug, for every invocation (described by a calling Method ms and
a method called me). They call this score Pfreq(ms,me), as it is based on the
call frequencies. To do the calculation, they first determine sets E(ms,me) of
edges e ∈ E for every method invocation in Line 23 of Algorithm 23. In
Line 23, they use the max() function to calculate Pfreq(ms,me), the maximum
InfoGain of all edges (method invocations) in E. In general, there are many
edges in E with the same method invocation, as an invocation can occur in dif-
ferent contexts. With the max() function, the authors assign every invocation
the score from the context ranked highest.

Example 17.3. An edge from a to b is contained in two subgraphs. In one
subgraph, this edge a→ b has a low InfoGain value of 0.1. In the other sub-
graph, and therefore in another context, the same edge has a high InfoGain
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value of 0.8, i.e., a bug is relatively likely. As one is interested in these cases,
lower scores for the same invocation are less important, and only the maximum
is considered.

At the moment, the ranking does not only provide the score for a method
invocation, Pfreq(ms,me), but also the subgraphs where it occurs and the exact
embeddings. This information might be important for a software developer.
The authors report this information additionally. To ease comparison with
other approaches not providing this information, they also calculate Pfreq(m)
for every calling Method m in Lines 23 and 23 of Algorithm 23. The expla-
nation is analogous to the one of the calculation of Pfreq(ms,me) in Lines 23
and 23.

5.3 Combined Approaches

As discussed before, structural approaches are well-suited to locate struc-
ture affecting bugs, while frequency-based approaches focus on call frequency
affecting bugs. Therefore, it seems to be promising to combine both ap-
proaches. [13] and [14] have investigated such strategies.

In [13], Eichinger et al. have combined the frequency-based approach with
the PSN-score [9]. In order to calculate the resulting score, the authors use the
approach by Di Fatta et al. [9] without temporal order: They use the R01m unord

reduction with a general graph miner, gSpan [32], in order to calculate the
structural PSN-score. They derived the frequency-based Pfreq-score as de-
scribed before after mining the same call graphs but with the Rsubtree reduction
and the CloseGraph algorithm [33] and different mining parameters. In order
to combine the two scores derived from the results of two graph mining runs,
they calculated the arithmetic mean of the normalized scores:

Pcomb[13](m) =
Pfreq(m)

2 max
n∈sg∈D

(Pfreq(n))
+

PSN(m)

2 max
n∈sg∈D

(PSN(n))

where n is a method in a subgraph sg in the database of all call graphs D.
As the combined approach in [13] leads to good results but requires two

costly graph-mining executions, the authors have developed a technique in
[14] which requires only one graph-mining execution: They combine the
frequency-based score with the simple structural score Pfail, both based on the
results from one CloseGraph [33] execution. They combine the results with
the arithmetic mean, as before:

Pcomb[14](m) =
Pfreq(m)

2 max
n∈sg∈D

(Pfreq(n))
+

Pfail(m)

2 max
n∈sg∈D

(Pfail(n))
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5.4 Comparison

We now present the results of our experimental comparison of the bug lo-
calization and reduction techniques introduced in this chapter. The results are
based on the (slightly revised) experiments in [13, 14].

Most bug localization techniques as described in this chapter produce or-
dered lists of methods. Someone doing a code review would start with the first
method in such a list. The maximum number of methods to be checked to find
the bug therefore is the position of the faulty method in the list. This position is
our measure of result accuracy. Under the assumption that all methods have the
same size and that the same effort is needed to locate a bug within a method,
this measure linearly quantifies the intellectual effort to find a bug. Sometimes
two or more subsequent positions have the same score. As the intuition is to
count the maximum number of methods to be checked, all positions with the
same score have the number of the last position with this score. If the first
bug is, say, reported at the third position, this is a fairly good result, depending
on the total number of methods. A software developer only has to do a code
review of maximally three methods of the target program.

Our experiments feature a well known Java diff tool taken from [8], consist-
ing of 25 methods. We instrumented this program with fourteen different bugs
which are artificial, but mimic bugs which occur in reality and are similar to
the bugs used in related work. Each version contains one – and in two cases
two – bugs. See [14] for more details on these bugs. We have executed each
version of the program 100 times with different input data. Then we have clas-
sified the executions as correct or failing with a test oracle based on a bug free
reference program.

The experiments are designed to answer the following questions:

1 How do frequency-based approaches perform compared to structural
ones? How can combined approaches improve the results?

2 In Subsection 4.5 we have compared reduction techniques based on the
compression ratio achieved. How do the different reduction techniques
perform in terms of bug localization precision?

3 Some approaches make use of the temporal order of method calls. The
call graph representations tend to be much larger than without. Do such
graph representations improve precision?



540 MANAGING AND MINING GRAPH DATA

In concrete terms, we compare the following five alternatives:

E01m: The structural PSN-scoring approach similar to [9] (cf. Subsec-
tion 5.1), but based on the unordered R01m unord reduction.

Esubtree: The frequency-based Pfreq-scoring approach as in [13, 14]
(cf. Subsection 5.2) based on the Rsubtree reduction.

Ecomb[13]: The combined approach from [13] (cf. Subsection 5.3) based
on the R01m unord and Rsubtree reductions.

Ecomb[14]: The combined approach from [14] (cf. Subsection 5.3) based
on the Rsubtree reduction.

Etotal: The combined approach as in [14] (cf. Subsection 5.3) but with
the Rtotal w reduction like in [25] (but with weights and without temporal
edges, cf. Subsection 5.1).

We present the results (the number of the first position in which a bug is
found) of the five experiments for all fourteen bugs in Table 17.3. We represent
a bug which is not discovered with the respective approach with ‘25’, the total
number of methods of the program. Note that with the frequency-based and the
combined method rankings, there usually is information available where a bug
is located within a method, and in the context of which subgraph it appears.
The following comparisons leave aside this additional information.

Exp.∖Bug 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E01m 25 3 1 3 2 4 3 1 1 6 4 4 25 4
Esubtree 3 3 1 1 1 3 3 1 25 2 3 3 3 3
Ecomb[13] 1 3 1 2 2 1 2 1 3 1 2 4 8 5
Ecomb[14] 3 2 1 1 1 2 2 1 18 2 2 3 3 3
Etotal 1 5 1 4 3 5 5 2 25 2 5 4 6 3

Table 17.3. Experimental results.

Structural, Frequency-Based and Combined Approaches. Comparing
the results from E01m and Esubtree, the frequency-based approach (Esubtree) per-
forms almost always as good or better than the structural one (E01m). This
demonstrates that analyzing numerical call frequencies is adequate to locate
bugs. Bugs 1, 9 and 13 illustrate that both approaches alone cannot find certain
bugs. Bug 9 cannot be found by comparing call frequencies (Esubtree). This
is because Bug 9 is a modified condition which always leads to the invocation
of a certain method. In consequence, the call frequency is always the same.
Bugs 1 and 13 are not found with the purely structural approach (E01m). Both
are typical call frequency affecting bugs: Bug 1 is in an if-condition inside a



Software-Bug Localization with Graph Mining 541

loop and leads to more invocations of a certain method. In Bug 13, a modified
for-condition slightly changes the call frequency of a method inside the loop.
With the R01m unord reduction technique used in E01m, Bug 2 and 13 have the
same graph structure both with correct and with failing executions. Thus, it is
difficult to impossible to identify structural differences.

The combined approaches in Ecomb[13] and Ecomb[14] are intended to take
structural information into account as well to improve the results from Esubtree.
We do achieve this goal: When comparing Esubtree and Ecomb[14], we retain the
already good results from Esubtree in nine cases and improve them in five.

When looking at the two combination strategies, it is hard to say which one
is better. Ecomb[13] turns out to be better in four cases while Ecomb[14] is better in
six ones. Thus, the technique in Ecomb[14] is slightly better, but not with every
bug. Furthermore, the technique in Ecomb[13] is less efficient as it requires two
graph-mining runs.

Reduction Techniques. Looking at the call-graph-reduction techniques,
the results from the experiments discussed so far reveal that the subtree-
reduction technique with edge weights (Rsubtree) used in Esubtree as well as
in both combined approaches is superior to the zero-one-many reduction
(R01m unord). Besides the increased precision of the localization techniques
based on the reduction, Rsubtree also produces smaller graphs than R01m unord

(cf. Subsection 4.5).
Etotal evaluates the total reduction technique. We use Rtotal w as an instance

of the total reduction family. The rationale is that this one can be used with
Ecomb[14]. In most cases, the total reduction (Etotal) performs worse than the
subtree reduction (Ecomb[14]). This confirms that the subtree-reduction tech-
nique is reasonable, and that it is worth to keep more structural information
than the total reduction does. However, in cases where the subtree reduction
produces graphs which are too large for efficient mining, and the total reduc-
tion produces sufficiently small graphs, Rtotal w can be an alternative to Rsubtree.

Temporal Order. The experimental results listed in Table 17.3 do not shed
any light on the influence of the temporal order. When applied to the buggy
programs used in our comparisons, the total reduction with temporal edges
(Rtotal tmp) produces graphs of a size which cannot be mined in a reasonable
time. This already shows that the representation of the temporal order with
additional edges might lead to graphs whose size is not manageable any more.
In preliminary experiments of ours, we have repeated E01m with the R01m ord

reduction and the FREQT [2] rooted ordered tree miner in order to evaluate the
usefulness of the temporal order. Although we systematically varied the differ-
ent mining parameters, the results of these experiments in general are not better
than those in E01m. Only in two of the 14 bugs the temporal-aware approach
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has performed better than E01m, in the other cases it has performed worse.
In a comparison with the Rsubtree reduction and the gSpan algorithm [32], the
R01m ord reduction with the ordered tree miner displayed a significantly in-
creased runtime by a factor of 4.8 on average.4 Therefore, our preliminary
result is that the incorporation of the temporal order does not increase the pre-
cision of bug localizations. This is based on the bugs considered so far, and
more comprehensive experiments would be needed for a more reliable state-
ment.

Threats to Validity. The experiments carried out in this subsection, as well
as in the respective publications [9, 13, 14, 25], illustrate the ability to locate
bugs based on dynamic call graphs using graph mining techniques. From a
software engineering point of view, three issues remain for further evaluations:
(1) All experiments are based on artificially seeded bugs. Although these bugs
mimic typical bugs as they occur in reality, a further investigation with real
bugs, e.g., from a real software project, would prove the validity of the pro-
posed techniques. (2) All experiments feature rather small programs contain-
ing the bugs. The programs rarely consist of more than one class and represent
situations where bugs could be found relatively easy by a manual investigation
as well. When solutions for the current scalability issues are found, localiza-
tion techniques should be validated with larger software projects. (3) None
of the techniques considered has been directly compared to other techniques
such as those discussed in Section 3. Such a comparison, based on a large
number of bugs, would reveal the advantages and disadvantages of the differ-
ent techniques. The iBUGS project [7] provides real bug datasets from large
software projects such as AspectJ. It might serve as a basis to tackle the issues
mentioned.

6. Conclusions and Future Directions

This chapter has dealt with the problem of localizing software bugs, as a
use case of graph mining. This localization is important as bugs are hard to
detect manually. Graph mining based techniques identify structural patterns
in trace data which are typical for failing executions but rare in correct. They
serve as hints for bug localization. Respective techniques based on call graph
mining first need to solve the subproblem of call graph reduction. In this chap-
ter we have discussed both reduction techniques for dynamic call graphs and
approaches analyzing such graphs. Experiments have demonstrated the use-
fulness of our techniques and have compared different approaches.

4In this comparison, FREQT was restricted as in [9] to find subtrees of a maximum size of four nodes. Such
a restriction was not set in gSpan. Furthermore, we expect a further significant speedup when CloseGraph
[33] is used instead of gSpan.
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All techniques surveyed in this chapter work well when applied to relatively
small software projects. Due to the NP-hard problem of subgraph isomorphism
inherent to frequent subgraph mining, none of the techniques presented is di-
rectly applicable to large projects. One future challenge is to overcome this
problem, be it with more sophisticated graph-mining algorithms, e.g., scalable
approximate mining or discriminative techniques, or smarter bug-localization
frameworks, e.g., different graph representations or constraint based mining.
One starting point could be the granularity of call graphs. So far, call graphs
represent method invocations. One can think of smaller graphs representing
interactions at a coarser level, i.e., classes or packages. [12] presents encour-
aging results regarding the localization of bugs based on class-level call graphs.
As future research, we will investigate how to turn these results into a scalable
framework for locating bugs. Such a framework would first do bug localiza-
tion on a coarse level before ‘zooming in’ and investigating more detailed call
graphs.

Call graph reduction techniques introducing edge weights trigger another
challenge for graph mining: weighted graphs. We have shown that the analysis
of such weights is crucial to detect certain bugs. Graph-mining research has
focused on structural issues so far, and we are not aware of any algorithm
for explicit mining of weighted graphs. Next to reduced call graphs, such
algorithms could mine other real world graphs as well [3], e.g., in logistics
[19] and image analysis [27].
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Abstract
Mining structured information has been the source of much research in the

data mining community over the last decade. The field of bioinformatics has
emerged as important application area in this context. Examples abound ranging
from the analysis of protein interaction networks to the analysis of phylogenetic
data. In this article we survey the principal results in the field examining them
both from the algorithmic contributions and applicability in the domain in ques-
tion. We conclude this article with a discussion of the key results and identify
some interesting directions for future research.
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1. Introduction

Advances in data collection and storage technology have led to a prolifera-
tion of structured information available to organizations and individuals. This
information is often also available to the user in a myriad of formats and across
multiple media. This is especially true in the vibrant field of bioinformatics
where an increasing large number of problems are represented in structured
or semi-structured format. Examples abound ranging from protein interaction
networks (graphs) to phylogenetic datasets (trees), and from XML repositories
of proteomic data (trees) to regulatory networks (graphs). The size and number
of such data stores is growing rapidly.

Such data may arise directly out of experimental observations (e.g. PPI net-
work complexes from mass spectrometry) or may be a convenient abstraction
for housing relational information (e.g. Protein Data Bank). Other examples
include mRNA measurements from microarray studies can be used to infer
pairwise gene relations that imply co-expression of two genes. Regulatory re-
lations between DNA binding proteins and genes can also be identified via
various experimental technologies such as ChIP-chip, ChIP-seq, or DamID.
Learning a biological network structure from experimental data that reflects
the real world relations is a challenge in itself. Where data mining, in par-
ticular graph mining, can help is in the analysis of such structure data for the
discovery of useful information. such as identification of common or useful
substructures and detecting anomalous or unusual structures.

In this article we survey the use of graph mining for bioinformatics prob-
lems. This topic has been heavily researched over the last decade and we
review the relevant material. We take a broad view of the term graph mining
here. Since trees are simply connected acyclic graphs we include approaches
that leverage tree mining algorithms as well. Additionally within the domain
of graph mining there are approaches that focus on harvesting patterns from a
single large graph or network and those that focus on extracting patterns from
multiple graphs. We also cover other variants of graphs in our discussion in-
cluding different tree variants, directed and bi-partite graphs.

The rest of this article is broadly divided into four sections. Section 2 dis-
cusses the use of tree mining algorithms for bioinformatics problems. For
example, RNA secondary structures can be represented in the form of a tree.
A forest of such RNA structure trees can be employed to characterize a newly
sequenced novel RNA structure by identification of common topological pat-
terns [93]. In particular we survey the role played by frequent tree mining
algorithms, tree alignment, and statistical methods in this context.

In Section 3 we discuss algorithms that target the identification of frequent
sub-patterns across multiple networks. For example in a recent study [53] it
was shown how 39 co-expression networks of Budding Yeast can be analyzed
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for coherent dense subgraphs across many of these networks. The discovered
subgraphs then used to predict functionality of unknown genes. In particu-
lar we survey the role played by frequent graph mining algorithms and motif
discovery algorithms in this context.

In Section 4 we discuss approaches that mine single and large biological
networks for the identification of important subnetwork structures, such as
identification of densely interacting communities from PPI networks or gene
co-expression networks. In particular we discuss the role played by commu-
nity discovery and graph clustering algorithms in the presence of uncertainty
and noise in this context.

Finally in Section 5 we conclude this survey with a discussion of some open
problems in the field.

2. Mining Trees

Trees are widely used to represent various biological structures like glycans,
RNAs, and phylogenies.

Glycans are carbohydrate sugar chains attached to some lipids or proteins,
and they are considered the third class of information-encoding biological
macromolecules subsequent to DNA and proteins. The field of characteriz-
ing and studying is known as glycomics, akin to genomics and proteomics.
Glycans play a critical role in many biological processes including embryonic
development, cell to cell communication, coordination of immune functions,
tumor progression, and protein regulations and interactions. Glycans are com-
posed of monosaccharides (sugars) that are linked by glycosidic bonds. Unlike
DNA and proteins which are simple strings of nucleotides and amino acids,
monosaccharides may be linked to one or more other sugars, thereby forming
a branched tree structure – they are often represented as rooted ordered la-
beled trees. In some cases, though rare, glycans may contain cycles due to rare
cyclization of carbohydrate structures (e.g., cyclodextrins) [48]. There exist a
number of representation schemes (KCF [5], LINUCS [13], GLYDE [87], Gly-
coCT [48], and GLYDE-II [83]) and database systems (CarbBank 1, SWEET-
DB [75], KEGG/GLYCAN [45], EuroCarbDB 2, GlycoSuiteDB [26]) to store
glycan data.

Ribonucleic acid (RNA) is a type of molecule that consists of a long chain of
nucleotide units. RNA molecules play an important role in several key func-
tionalities which include translation, splicing, gene regulation, and synthesis
of proteins. As with all biomolecules, the function of RNAs is intimately
related to their structure. The secondary structure of RNAs is a list of base

1http://bssv01.lancs.ac.uk/gig/pages/gag/carbbank.htm
2http://www.eurocarbdb.org/
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pairs satisfying certain constraints. It is formed by folding the single-stranded
RNA molecule back onto itself, and it provides a scaffold for the tertiary struc-
ture [82, 107]. The secondary structure is often modeled (with some approxi-
mations) as trees [11, 34, 35, 74, 93]. Since the exact experimental determina-
tion of RNA structure is difficult [33], scientists often employ computational
methods for predicting the structure of various biological molecules. These
methods provide a deeper understanding of RNAs structural repertoire, and
thereby help in identifying new functional RNAs.

In Phylogenetics, trees are used as a fundamental data structure to represent
and study evolutionary connections among different organisms as understood
by ancestor–descendant relationships. The Tree of Life 3 is an example of such
a tree illustrating the phylogeny of life on Earth that is based on the collective
evidence from many different fields of biology and bioscience. The organisms
over which a phylogenetic tree is induced are referred to as taxa, and they
form the leaf nodes in the tree. The internal nodes denote the speciation and
duplication events which result in orthologs and paralogs, respectively. Spe-
ciation is the origin of a new species capable of making a living in a new way
from the species from which it arose. Paralogs are genes related by duplica-
tion within a genome. While traditional Phylogenetics relied on morphological
data obtained by measuring and quantifying the phenotypic properties of rep-
resentative organisms, more recent studies use gene or amino acid sequences
encoding encoding proteins as the basis for classification. There exist a num-
ber of different approaches to construct these trees from input data 4 – distance
matrix based methods, maximum parsimony, maximum likelihood, Bayesian
inference etc. The trees produced by these methods can either be rooted or
unrooted. Sometimes it is possible to force them to produce rooted trees by
supplying an outgroup, which is an organism that is clearly less related to rest
of the organisms. Such an outgroup is likely to be present near the root node.
We now describe different techniques to analyze such tree structured biological
data.

2.1 Frequent Subtree Mining

Frequent pattern mining is one of the fundamental data mining task that asks
for a set of all substructures which appear more than a (user specified) thresh-
old number of times in a given database. The subtree patterns obtained from
tree databases are extremely useful in a variety of tasks such as structure pre-
diction, identification of functional modules, consensus substructure discovery
etc. We briefly describe some of these applications below.

3http://www.tolweb.org/tree/
4http://evolution.gs.washington.edu/phylip/software.html
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The common techniques that are used to infer the phylogenies such as max-
imum parsimony [32] usually produce multiple trees for a given set of input
sequences or genes. When the number of these output trees is too large to
suggest meaningful evolutionary relations, Biologists use consensus trees or
supertrees in order to summarize the output trees [77, 101]. One may also use
such trees to infer common relations among trees produced from multiple dif-
ferent tree induction methods. Shasha and Zhang have studied the quality of
consensus trees by extracting frequent cousin pairs from a set of phylogenetic
trees modeled as rooted unordered trees [95]. A cousin pair defined as a pair
of nodes which share the same ancestor node. The kinship in a cousin pair is
captured via a distance measure that is measured using the depth of involved
nodes. Given two parameters d and �, their algorithm extracts all cousin pairs
whose distance is at most d and whose frequency is at least �. The discovered
frequent pairs are also shown to be useful in discovering co-occurring patterns
in multiple phylogenies, in evaluating the quality of consensus trees, and in
finding kernel trees from a group of phylogenies.

The idea of frequent cousin pairs can be extended to more complex substruc-
tures, and they can be discovered by using traditional frequent subtree mining
algorithms [117, 120]. From a biological standpoint, these agreement subtrees
identify the set of species that are evolutionarily related according to a majority
of trees under inspection. Zhang and Wang showed that these subtrees capture
more important relationships when compared to consensus trees [120]. Hadzic
et al. have applied similar methods on the ‘Prions’ database that describes
protein instances stored for human Prion proteins [42].

Due to common evolutionary origins, there are often common substructures
among multiple structurally similar RNAs. For instance, the occurrence of
smaller snoRNA motifs within the larger hTR RNA structure, indicating a
functional relation between these RNAs [79]. Uncovering such structural sim-
ilarities is believed to help in discovering novel functional and evolutionary
relationships among RNAs, which are not easily achieved by methods like
sequence alignment [34]. Algorithms to extract common RNA substructures
have been applied for the purpose of predicting RNA folding [69] and in func-
tional studies of RNA processing mechanisms [93].

More recently, frequent subtree mining have been applied on glycan data-
bases. Hashimoto et al. have developed an �-closed frequent subtree mining
algorithm [46]. A frequent subtree S is considered �-closed unless support(S′)
≥ max( � ⋅ support(T), minsup) for any supertree S′ of S, where 0 ≤ � ≤ 1
and minsup is the user defined support threshold. It mines maximal subtrees
when � is set to 0 and closed subtrees when � = 1. Instead of ranking the
resulting subtrees based on their frequency, they rank them based on statistical
hypothesis testing. This is because the frequencies of subtrees are easily biased
by the frequencies of constituent monosaccharides. Based on their statistical
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ranking method, they developed a glycan classification method that is simi-
lar to a well known linear soft margin SVMs [90]. Such a method essentially
makes use of frequent subtrees obtained from a class of glycans in predicting
whether or not a new glycan belongs to the given class.

2.2 Tree Alignment and Comparison

Comparison of two or more tree structures is a fundamental problem in
many fields including RNA secondary structures comparison, syntactic pat-
tern recognition, image clustering, genetics, chemical structure analysis, and
Glycan structure analysis. The comparison among RNA secondary structures
are known to be useful in identifying conserved structural motifs in folding
process [93] and in constructing taxonomy trees [69]. The unordered tree com-
parisons can help in morphological problems arising in genetics – for example,
in determining genetic diseases based on ancestry tree patterns [97].

Early research has focused on extending sequence matching algorithms to
tree structures. The concepts related to longest common subsequence, shortest
common supersequence, and string edit distance have been extended to largest
common subtree (LCT) [1, 64, 118], smallest common supertree (SCS) [37,
41, 88, 110], and tree edit distance (TED) [12, 104, 119], respectively. In Phy-
logenetics, the longest common subtree problem is commonly referred to as
Maximum Agreement Subtree (MAST) problem [36]. Biologists use MASTs
to reconcile different evolutionary trees built over same taxa, and thereby to
discover compatible relationships among those trees [63]. A number of effi-
cient algorithms have been proposed for this purpose [31, 41, 64]. Aoki et al.
studied the application of these techniques to index and query carbohydrate
databases like KEGG [4].

Supertrees, on the other hand, can not only retain all or most of the informa-
tion from the source trees but they can also find novel relationships which do
not co-occur on any one source tree [88]. Supertrees in Phylogenetics can be
built over source trees which share some but not necessarily all taxa. There are
primarily two ways to build these supertrees. The first class of methods con-
vert the topology of each source tree into a data matrix [85]. These matrices
are then combined into a single large matrix, which is then used to construct
the most parsimonious tree. When the given source trees are compatible, more
direct methods can be used [25, 37]. In such a case, a backbone tree made
up of taxa that common to given taxa is first constructed. By analyzing and
thereby projecting each branch in backbone tree onto source trees, a combined
supertree is constructed. The resulting supertrees are often referred to as strict
since they do not conflict with any phylogenetic relationships in any source
tree.
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The tree edit distance between two trees refers to the number of minimum
number of basic edit operations (relabel, insert, and delete) required to trans-
form one tree into the other. This notion was first explored by Selkow [92],
which was later generalized by Tai [104]. This conventional definition of edit
distance has been extended to include more complex operations such as subtree
insertions, subtree moves etc. [18, 17]. There has been a tremendous amount
of work being done in developing fast algorithms to compute tree edit dis-
tance for both ordered and unordered trees. Most of the algorithms, similar
to methods which compute string edit distance, follow dynamic programming
based approaches. Bille has recently surveys several important algorithms that
solve this problem [12]. These concepts have further been extended to RNA
structures by taking their primary, secondary, and tertiary structures into ac-
count [40, 57].

Jiang et al. introduced the idea of tree alignment [58], which is in spirit
similar to sequence alignment. An alignment between two trees is obtained
by first inserting special nodes (labeled with spaces) into both trees such that
the resulting trees have same structure. A cost model is defined over the set
of opposing labels. The problem then is to find an optimal alignment which
minimizes the sum of the costs of all opposing pairs [112]. Hochsmann et
al designed a method for computing multiple alignments of RNA secondary
structures, which was then used used to cluster RNA molecules purely based
on their structure [50]. Bafna and Muthukrishnan presented a method to align
a given RNA sequence with some unknown secondary structure to one with
known sequence and structure. Such a method helps in RNA structure predic-
tion in the case when the structure of a closely related sequence is known [9].

Glycan structure alignment techniques have been proposed by using tradi-
tional tree alignment algorithms and glycosidic linkage score matrices. These
alignment techniques, just like popular sequence alignment methods, are use-
ful when analyzing newly discovered glycans. Aoki et al. have proposed
KCaM [5], an extension of popular Smith-Waterman sequence alignment tech-
nique [98], to perform exact and approximate glycan alignment. The approxi-
mate algorithm aligns monosaccharides while allowing gaps in the alignment,
and the exact matching algorithm aligns linkages while disallowing any gaps,
thus resulting in a stricter criterion for alignments. In a similar spirit, Aoki et
al. have developed a glycan substitution matrix [2] to measure the similarity
between monosaccharides, as in amino acid similarity represented by amino
acid substitution matrices like BLOSUM [47]. Such a matrix can be used to
discover those links that are positioned similarly, and thus potentially denote
similar functionality. Thus, it is can be used to improve the alignment algo-
rithms like KCaM to produce more biologically meaningful results. Kawano
et al. have developed techniques to predict glycan structures from incomplete
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or noisy data such as DNA microarray data by making use of knowledge about
known glycan structures from KEGG GLYCAN database [62].

There is also an interesting notion of tree alignment, when the problem is
discussed with respect to phylogenetic trees. While the traditional tree in-
duction methods act upon sequence data to estimate the tree structure, tree
alignment methods operate in reverse direction. More precisely, given a set of
sequences from different species and a phylogenetic tree depicting the ances-
tral relationship among these species, compute an optimal alignment of the se-
quences by the means of constructing a minimum-cost evolutionary tree. Such
methods are useful in determining the possible ancestral molecular sequences
(which correspond to internal nodes in the tree) that gave rise to the extant
sequences through a series of mutational events [56, 113].

2.3 Statistical Models

While analyzing glycan structures, unlike in phylogenies and RNA struc-
tures, it is often important to capture dependencies that are not bounded simply
by the edges of the tree structure. In order to learn such patterns, a tree struc-
tured probabilistic model called as the Probabilistic Sibling-dependent Tree
Markov Model (PSTMM) was developed [3, 108, 109]. It incorporates not
only the dependency between a node and its its parent but also between a node
and its eldest sibling. EM based learning algorithms were also proposed to
learn parameters of the model. Hashimoto et al. have improved this for com-
putational complexity by proposing ordered tree Markov model (OTMM) [44].
Instead of incorporating dependencies to both elder sibling and parent from
each node, it uses only one dependency – where the eldest sibling depended
only on the parent, and each younger sibling only depended on its older sibling.
These methods have been applied to align multiple glycan trees, and thereby to
detect biologically significant common subtrees in these alignments, where the
trees are automatically classified into subtypes already known in glycobiology.

Ohtsubo and Marth showed that many motifs are involved in a variety of
diseases including cancer i.e., these motifs act as biomarkers [81]. They also
showed that the methods to predict characteristic glycan substructures (motifs)
from a set of known glycans may be useful in predicting biomarkers of interest.
Several research works have developed kernel methods for glycan biomarker
classification and prediction. Hizukuri et al. developed a similarity measure
known as trimer kernel for comparing glycan structures that takes the biolog-
ical properties of involved glycans into account [49]. They have subsequently
used this method in the framework of Support Vector Machines (SVMs) to ex-
tract characteristic functional units (motifs) specific to leukemia. This method
was further extended by Koboyama et al. who developed a kernel that mea-
sures the similarity between two between two labeled trees by counting the
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number of common q-length substrings known as tree q-grams [68]. Recently,
Yamanishi et al. have developed a class of kernel functions which can be
used for classifying glycans and detecting discriminative glycan motifs with
SVMs [114]. The hierarchical model that they proposed handles the issue of
large number of features required by the q-gram kernel. A kernel for each q
was first developed, upon which another kernel was trained to extract the best
feature from the best kernel.

3. Mining Graphs for the Discovery of Frequent
Substructures

Graphs are important tools to model complex structures from various do-
mains. Further characterization of these complex structures can be accom-
plished through the discovery of basic substructures that are frequently oc-
curring. Identification of such repeating patterns might be useful for diverse
biological applications such as classification of protein structural families, in-
vestigation of large and frequent sub-pathways in metabolic networks, and de-
composition of Protein Protein Interaction (PPI) graphs into motifs. In this sec-
tion, we focus on mining frequent subgraphs from biological networks. First,
we look at various methods to identify subgraphs that occur frequently in a
large collection of graphs. Next, we discuss substructures that occur signifi-
cantly more often than expected by chance in a single and large graph, which
are known as motifs. We cover different strategies for identification of such
structures and their applications on diverse biological networks.

3.1 Frequent Subgraph Mining

Frequent subgraph mining (FSM) aims to find all (connected) frequent sub-
graphs from a graph database. More formally, given a set of graphs G, and a
support threshold minSup, FSM finds all subgraphs (sG) such that fraction of
graphs in G of which sG is a subgraph is greater than the minSup. There are
two major challenges that are associated with FSM analysis: subgraph isomor-
phism and efficient enumeration of all frequent subgraphs. Subgraph isomor-
phism problem, which is an NP-complete problem, detects whether two given
networks have the same structure. Therefore, time and space requirements for
the existing FSM algorithms increase exponentially with the increasing pattern
size and number of graphs. To design algorithms that scale to large biological
graphs, techniques that simplify the problem by alternative graph modeling or
graph summarization have been proposed. These algorithms are successfully
utilized on diverse biological graphs for various purposes, including the iden-
tification of recurrently co-expressed gene groups and detection of frequently
occurring subgraphs in a collection of metabolic pathways.



556 MANAGING AND MINING GRAPH DATA

Koyuturk et al. developed a scalable algorithm for mining pathway
substructures that are frequently encountered over different metabolic path-
ways [66]. A metabolic pathway is defined as a collection of metabolites M ,
enzymes Z , and reactions R. Each reaction r ∈ R, is associated with a set of
enzymes (Z(r) ∈ Z) and a set of substrates and products which are metabo-
lites. The algorithm aims to discover common motifs of enzyme interactions.
Therefore, they re-model the metabolic pathways as directed graphs which em-
phasize enzyme interactions. In their representation, nodes represent enzymes,
and a directed edge from an enzyme to another implies that the product of the
first enzyme is consumed by a reaction catalyzed by the second. After con-
structing a collection of these graphs, they mine this collection to identify the
maximal connected subgraphs that are contained in at least a pre-defined num-
ber of these graphs, where this number is determined by the support threshold.
This model enforces unique node labeling to eliminate the subgraph isomor-
phism problem. This enforcement also enables the use of frequent itemset min-
ing algorithms for the problem at hand by specifying edge-sets as the itemsets.
In frequent itemset mining problem, each transaction is a collection of items,
and the problem is to identify all frequent sets of items that occur in more than
a specified number of these transactions. Koyuturk et al, reduced their problem
into a frequent itemset mining problem by enforcing a connectivity constraint
on edge-sets. They proposed an extension to a previously suggested frequent-
itemset mining algorithm based on backtracking [38] which grows candidate
subgraphs by only considering edges from a candidate edge set. Using their al-
gorithm pathway graphs of 155 organisms collected from the KEGG database
have been analyzed. They extracted considerably large sub-pathways that are
frequent across these organism-specific pathway graphs. An example discov-
ered sub-pathway of glutamate includes 4 nodes and 6 edges and it occurs in
45 of the 155 organisms. In a latter work, You et al applied SUBDUE system
to obtain meaningful patterns from metabolic pathways [116]. SUBDUE is a
system that identifies interesting and repetitive substructures based on graph
compression and the minimum description length principles [51]. The best
graphical pattern S that minimize the description length (MDL) of itself and
that of the original input graph G when it is compressed with pattern S is
identified with this system. First they identify the best pattern in G, which
minimizes the MDL based criteria. Next, S is included into a hierarchy, where
G is compressed with S. All such patterns in the input graph G are obtained,
until no more compression is possible. The SUBDUE system is successfully
applied on metabolic pathways to find unique and common patterns among a
collection of pathways [116].

Another major application of FSM in biological domain is the identifica-
tion of recurrent patterns from many gene co-expression networks. Gene co-
expression networks are built on the basis of mRNA abundance measured by
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microarray technologies. In a gene co-expression network, nodes represent
genes, and two nodes are linked if the corresponding genes have significantly
similar expression patterns over different microarray samples. Similarity be-
tween two genes is typically measured by the absolute value of the correlation
coefficient between their expression profiles [52]. Next, based on a thresh-
olding procedure, co-expression similarities are transformed into a measure of
interaction strength. Different gene association networks can be constructed
using different thresholding principles, i.e., hard or soft thresholding [52]. Al-
though a gene co-expression network derived from a single microarray study
can include many spurious edges, a recent study pointed out that genes co-
expressed across multiple studies are more likely to be real and to correspond
to functional groups [70]. Therefore, mining frequent gene groups across many
gene co-expression networks has drawn recent attention. However, extant FSM
algorithms do not scale to large gene co-expression graphs. In addition, as
pointed by Hu et al., frequency concept may not be enough to capture biolog-
ically interesting substructures. For this purpose, they proposed an algorithm,
named CODENSE [53], that identifies frequent, coherent, and dense subgraphs
across large collection of co-expression networks. According to their defini-
tion, all edges of a coherent subgraph frequently co-occur (and not co-occur) in
the whole set of graphs. On the other hand, in a dense subgraph, the number of
edges is close to the maximal possible number. Thus, coherent and dense struc-
tures better represent biological modules. Their algorithm starts with building
a summary graph by eliminating infrequent edges from the input graphs. An-
other algorithm developed by the same group, MODES algorithm, is employed
to extract dense subgraphs of the summary graph. For each of these dense
summary subgraphs, edge occurrence profiles which is a binary matrix that in-
dicates occurrence of dense summary graph edges in the original set of graphs
are constructed. Using these profiles, a second-order graph is built to indicate
the co-occurrence of edges across all graphs. In this representation, each edge
is transformed into a node, and two nodes are connected if their correspond-
ing edge occurrence profiles show high similarity. They shoved that coherent
graphs across input graphs will be dense in the second-order graph. Therefore,
at the final step of the CODENSE, dense subgraphs of the second-order graph
are identified. CODENSE algorithm is scalable as it operates on two meta-
graphs, namely summary graph and second order graph, instead of operating
on individual networks. Dense patterns of these meta structures are identified,
instead of patterns from individual graphs. It is also adjustable for exact or
approximate pattern matching. CODENSE is applied on 39 co-expression net-
works of Budding Yeast organism to obtain functionally homogeneous gene
clusters. These clusters are further employed in order to predict functionality
of 169 unknown yeast genes. They showed that a significant portion of their
predictions are supported by the literature [53].
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CODENSE assumes that frequent subgraphs will be coherent across all
graphs, on the other hand, it is possible to have subgraphs that are coherent only
in a subset of these graphs. In order to take this fact into consideration, Huang
et al. proposed an algorithm based on biclustering [55]. They start by identi-
fying bi-cluster seeds from edge occurrence profiles. First, sub-matrices that
are all 1s are identified from the edge co-occurrence matrix. Then, based on a
Simulated Annealing methodology these initial structures are expanded. Con-
nected components among these expanded seeds are identified and returned
by their algorithm as recurring frequent subgraphs. They employed their al-
gorithm on 65 co-expression datasets obtained from 65 different microarray
studies. In a follow-up work conducted to identify frequently occurring gene
subgraphs across many co-expression graphs, Yan et al. [115] studied a step-
wise algorithm which constructs a neighbor association summary graph by
clustering co-expression networks into groups. A neighbor association sum-
mary graph measures the association of two vertices based on their connec-
tions with their neighbors across input graphs. Two vertices that co-occur in
many small frequent dense vertex sets have a high weight in the neighbor as-
sociation graph. Once they build the neighbor association graph, they decom-
pose it into (overlapping) dense subgraphs and then eliminate discovered dense
subgraphs if their corresponding vertex-sets are not frequently dense enough.
They named their algorithm NeMo for Network Module Mining. NeMo is ap-
plied on 105 human microarray datasets and recurrent co-expression clusters
are identified. Functional homogeneity of these clusters are validated based on
ChIP-chip data and conserved motif data [115].

For the automatic identification of common motifs in most any scientific
molecular dataset, MotifMiner, a general and scalable toolkit has been pro-
posed [23]. MotifMiner represents the information between a pair of nodes
(atoms), Ai and Aj , as a mining bond. The mining bond M(Ai, Aj) is a triplet
of < type(Ai), type(Aj), attr(Ai, Aj) > form. The information contained in
attr(Ai, Aj) vary depending on the resolution of the structure. As an exam-
ple, if the structure is at the atomic level, attr(Ai, Aj) can contain the distances
between atoms Ai and Aj . This enables the flexibility to analyze several dis-
parate domains, including protein, drug, and MD simulation datasets. Using
mining bond definition, a k size structure is defined as strk = S,A1, ..., Ak ,
where Ai is the itℎ atom and S is the set of mining bonds describing this struc-
ture. MotifMiner employs a Range pruning methodology to limit the search
for viable strongly connected sub-structures and a Candidate pruning method-
ology to prune the search space of possible frequent structures. In addition,
Recursive Fuzzy Hashing is used for rapid matching of structures while deter-
mining the frequency of occurrence. Distance Binning and Resolution prin-
ciple is also proposed to work in conjunction with Recursive Fuzzy Hashing
to handle noise in the input data. MotifMiner has been evaluated on various
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datasets, including pharmaceutical data, tRNA data, protein data, molecular
dynamics simulations [24]. In a follow-up study, Li et al. proposed several ex-
tensions, i.e., sliding resolution, handling boundary conditions, and enforcing
local structure linkage, to the MotifMiner algorithm [72] in order to improve
both the running time and the quality of the results. They also incorporated
the domain constraints into the original MotifMiner algorithm for mining and
aligning protein 3D structures. To evaluate the efficacy of the revised algo-
rithm they used it to align the proteins Rad53 and Chk2, both of which contain
FHA domain. FHA domains have very few conserved residues, which limits
the use of sequence alignment algorithms for their alignment. The aligned re-
sult (depicted in Figure 18.1) is similar to structure-aided sequence alignment
done manually [29], particularly at structurally similar regions. In a more re-
cent work, a parallel implementation of this toolkit has been proposed [111].
The parallelized version demonstrate good speedup on real-world datasets.

Figure 18.1. Structural alignment of two FHA domains. FHA1 of Rad53 (left) and FHA of Chk2
(right)

Jin et al. generalized the problem of frequent subgraph mining to mine fre-
quent large-scale structures from graphs [59]. They developed a framework,
Topological Structure Miner (TSMiner), that is based on a well-established
mathematical concept known as topological minor. A topological minor of a
given graph can be obtained by contracting the independent paths of one of its
subgraphs into edges. Topological structures of a graph are derived from topo-
logical minors. Frequent subgraphs of a graph can be mined as a special case
of frequent topological structures, but their framework is able to capture struc-
tures missed by standard algorithms. They proposed a scalable incremental
algorithm to enumerate frequent topological structures. The concept of occur-
rence lists in order to efficiently count the support of a potential frequent topo-
logical structure is introduced. They employed this tool to search for potential
protein-lipid binding sites in membrane proteins. Six membrane proteins, that
are known to bind with cardiolipins (CL), are first represented in the form of
graphs. In these graphs, amino acids represent nodes (20 different labels) and
links exist between nodes if two amino acids are close enough to each other.
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Two of the topological structures discovered with their toolkit are depicted in
Figure 18.2. Such large structures cannot be obtained by using standard motif
mining algorithms. As noted by the authors, the identified topological struc-
tures are mainly composed of polar (N, T, S), charged (K), and aromatic (W)
residues, which is in agreement with biophysics literature.

Figure 18.2. Frequent Topological Structures Discovered by TSMiner

3.2 Motif Discovery in Biological Networks

In addition to subgraphs that are frequent across many networks, substruc-
tures that are repeated frequently within a single and large network can be use-
ful for knowledge discovery. A motif of a graph refers to a substructure, which
is repeated considerably inside the graph. There are two main approaches,
frequency-based and statistical, to determine the significance of this repetition.
The frequency-based approach considers a subgraph as a motif if it is occurring
more than a threshold number of times. On the other hand, statistical approach
labels a subgraph as motif if it is occurring more than the expected number of
times with respect to random networks. Network motifs can be particularly
effective in understanding the modularity and the global structure of biological
networks. For example in the case of PPI networks, motifs can be useful for the
identification of protein complexes and other protein groupings that are related
to the mechanics of the living organism. In the case of regulatory networks,
motifs enable understanding gene regulation mechanisms and it also enables
researchers to develop models and experiments to understand these mechanics.

Milo et al. is the first to define network motifs and find them in networks
from biochemistry, neurobiology, ecology, and engineering [78]. They de-
fined network motifs as patterns of interconnections occurring in complex
networks at numbers that are significantly higher than those in randomized
networks. Their analysis revealed some common (and diverse) motifs across
fields. As an example, they shoved that the directed triangle motif, known as
the feed-forward loop, exists in both transcription-regulatory and neural net-
works, whereas four-node feedback loops only emerge in electric circuits but
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not in biological systems. To identify such motifs, Milo et al. exhaustively
enumerated all subgraphs of n nodes in the studied networks, where n is lim-
ited to 3 and 4. They then generated random networks while keeping the num-
ber of nodes, links and the degree distribution unchanged. Subgraphs of these
random networks are counted and these counts are used to determine motifs.
As an alternative to exact counting, in a follow-up work they proposed a sam-
pling method for subgraph counting [61]. Instead of enumerating subgraphs
exhaustively, subgraphs are sampled to estimate their relative frequency. The
method starts by picking a random edge from the network and then expanding
the corresponding subgraph iteratively by picking random neighboring edges.
At each iteration, a list of all candidate edges are generated for the next random
pick. The subgraph is expanded until it reaches a pre-defined size. Although
being an extension over the exhaustive search, this algorithm is also limited
to finding small-size motifs. In the transcription network of E. coli, subgraph
samples of sizes 3 to 8 have been reported. Higher order motifs composed of
five and six nodes in this network are tabulated in their study [61].

Protein-protein interaction networks accumulate pairwise or group-wise
physical interactions of proteins into a network structure. Motifs of these net-
works can be utilized to characterize and better understand the group-level
relations. For identification of large size motifs in Protein-Protein Interaction
(PPI) networks, a scalable algorithm, NEtwork MOtif FINDER [19] has been
proposed as an extension to subgraph mining algorithms. This algorithm is
based on formation of frequent trees of varying size from 2 to k, which are then
used to partition the graph into a set of graphs such that each graph embeds a
size-k tree. In the next step, frequent size-k graphs are generated by perform-
ing graph join operations. Frequency of these size-k graphs can be counted
in randomized networks. NEMOFINDER describes frequent subgraphs that
are also unique as Network Motifs. Uniqueness of a subgraph is determined
by the number of times a subgraph is more frequent in the real graph than
randomized graphs. Existing Apriori-based algorithm are not able to capture
interesting network motifs that are repeated and unique. Uniqueness of these
size-k graphs are calculated based on their number of occurrences in real input
graph and the randomized graphs. They build their algorithm as an exten-
sion to the SPIN [54] algorithm with the possibility of overlapping subgraphs.
The input to the NEMOFINDER algorithm is a PPI network, and user defined
thresholds for frequency, uniqueness, and maximal network size. The algo-
rithm outputs Network Motifs that are frequent and unique with respect to the
defined thresholds. Employing their algorithm on the PPI network of budding
yeast, they discovered motifs up to size 12. They later proposed an extension
to the NEMOFINDER, named LaMoFinder, which takes into consideration
labels of nodes [20]. While applying LaMoFinder to discover PPI network
motifs, they used Gene Ontology terms as node labels [20]. They first mine
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an unannotated network for motifs. Next, motifs are labeled with Gene On-
tology functions. Their analysis showed that by incorporating labels they are
not able to capture only the topological shapes but also biological context of
motifs. Labeled motifs extracted from a real world PPI network are employed
for protein function prediction.

In a more recent work, Grochow and Kellis [39] proposed an algorithm to
avoid the limitations of exact counting and subgraph sampling based motif
mining algorithms. Their algorithm works by exhaustively searching for in-
stances of a single query graph in a network. They proposed a motif-centric
alternative to existing methods which is based on an improved isomorphism
test, i.e., symmetry breaking. The algorithm identifies all instances of a query
graph H , given a target network G. They extended isomorphism test based
on the most constrained neighbor concept. They defined the most constrained
neighbor of the already-mapped nodes which is the least possible nodes to
be mapped to. They also introduced and enforced several symmetry-braking
conditions, to make sure that there is a unique map from the query graph H
to each instance of H in G. They utilized their algorithm to find motifs in
two biological networks: PPI network of S. cerevisiae and Transcriptional net-
work of S. cerevisiae. The former is composed of 1379 nodes and 2473 edges,
where motifs of 15 and 20 nodes can be identified with the proposed algorithm.
From the latter one, which has 685 nodes and 1052 edges, a 29-node motif that
corresponds to the cellular transcription machinery has been identified. In ad-
dition to being scalable for finding larger motifs, this algorithm also enables
exploring motif clustering and querying a particular subgraph. Moreover, the
algorithm is very easy to parallelize by counting each subgraph on a separate
processor.

4. Mining Graphs for the Discovery of Modules

Different forms of real-life associations between biological entities have
been detected by various technologies and these associations have been ac-
cumulated in the public databases in the form of complex networks. Under-
standing these complex structures often require breaking them into small com-
ponents and identifying the interactions between these components. These
components are composed of nodes which are more relevant to each other than
with outsiders and they are commonly referred as communities or modules.
Decomposition of a given graph into its modules can also be very effective in
the analysis of biological networks. Some biological networks are naturally
decomposed into such components, which are commonly referred as modular
networks. Some examples of biological modules are transcriptional modules,
protein complexes, gene functional groups, and signaling pathways.
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The most well-known biological modular networks is the Protein-Protein
Interaction(PPI) Network. The number and coverage of public databases
that collect experimental data on protein physical bindings of diverse organ-
isms have been increasing with the advancements in high-throughput tech-
niques. Although there is no established standard database of PPIs today, there
have been efforts to integrate existing interactions in publicly available data-
bases. As of today, Human Protein Reference Database (HPRD) footnotehttp:
//www.hprd.org) includes 34,624 Protein-protein interactions between Human pro-
teins that are derived from a number of platforms such as Mass Spectro-
metric Analysis, Yeast two-hybrid based protein-protein interaction, and Co-
immunoprecipitation and mass spectrometry-based protein-protein interac-
tion. Similarly, another freely accessible database BIOGRID [100] includes
more than 238,634 raw interactions from various organisms including Sac-
charomyces cerevisiae, Caenorhabditis elegans, Drosophil melanogaster and
Homo sapiens. These large collections of protein interactions are naturally
represented in the form of networks to facilitate the process of knowledge dis-
covery. Modular nature of these networks has been investigated by different
algorithms and the identified modules have been utilized for a better character-
ization of the unknown proteins.

Gene co-expression networks are another example of biological networks
that exhibit modular structure [15, 102]. In these network structures, nodes
represent genes and edges between nodes refer to genes that are expressed
similarly over studied conditions. Gene groups that indicate a similar expres-
sion pattern can be defined as a gene module, where a functionality between
the elements of this module is likely to be shared [91, 102]. Another mod-
ular biological network that have been excessively studied is the Regulatory
networks. They model activation (or suppression) of a gene by specific DNA
binding proteins in the form of a directed graph. Modules that can be deduced
from regulatory networks correspond to a set of co-regulated genes as well as
their common regulators. Given all these application areas, effective identifi-
cation of modules from diverse biological networks has great potential for a
better understanding of studied organisms.

In this section we discuss different methodologies that are proposed for the
detection of network modules or communities in biological graphs. Here, a
community can be defined as a densely connected group of nodes, where only
a few connections exist between different communities [80]. First, we look at
algorithms that extract community structures from networks. Next, we discuss
clustering algorithms that have been proposed to decompose the whole struc-
ture into subgroups, where similarity within group elements is maximized, and
between groups is minimized.



564 MANAGING AND MINING GRAPH DATA

4.1 Extracting Communities

In the analysis of PPI networks, of particular interest to many scientists is to
study protein interaction networks to isolate densely interacting regions, also
known as communities, since they are presumed to be protein complexes or
functional modules. A protein complex can be defined as a set of proteins that
bind to each other in order to accomplish a cellular level task. Identification of
these structures is useful to understand cell functioning, to predict functionality
of unknown proteins. The interest in their identification is motivated by the
fact that proteins heavily interacting within themselves, usually participate into
the same biological processes. Thus, discovery of dense subgraphs from PPI
networks is recognized as an important task for the identification of protein
complexes. Based on this underlying principle, a set of algorithms that employ
local dense regions of PPI networks to discover putative complexes have been
proposed.

Bader et al [8] proposed a three-step algorithm; Molecular COmplex DE-
tection (MCODE) to identify clusters of proteins that are heavily interacting.
MCODE starts with weighting each node of the network based on the density
of its local neighborhood. Next, nodes with high weights are assigned as seeds
and starting from these seed nodes initial clusters are obtained by iteratively
including neighboring nodes to the cluster. Finally an optional third step is
proposed to filter proteins according to a connectivity criteria. They evalu-
ated MCODE on an integrated dataset of Budding Yeast that is composed of
9088 protein-protein interactions among 4379 proteins from the MIPS, YPD,
and PreBIND databases. They predicted 166 complexes from this network.
52 of these complexes matched with known protein complexes in the MIPS
database. MCODE bases on the observation that proteins share functions with
their immediate neighbors. In a more recent work, Chua et al utilized another
observation based on level-2 interactions in PPI networks [22]. They derived a
topological weighting schema, namely the Functional Similarity Weight (FS-
Weight) that enables weighting both direct and indirect (i.e., ‘level-2’) inter-
actions. FS-Weight makes use of estimated reliability of each interaction to
reduce the impact of noise. The reliability of each experimental source is esti-
mated by the fraction of unique interactions in which at least one level-4 Gene
Ontology term is shared. FS-Weight also favors two proteins that share many
common neighbors from a reliable source. Number of non-common neighbors
are also included into the calculation in order to reduce potential false posi-
tive inferences. Based on FS-weights, the studied PPI network is expanded
with ‘level-2’ interactions and filtered by eliminating interactions with small
FS-weights. After this preprocessing step, they identify cliques in the modi-
fied PPI network and iteratively merged cliques to form larger subgraphs that
are still dense. More recently, Li et al [73] proposed an algorithm named DE-
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CAFF (Dense Neighborhood Extraction using Connectivity and conFidence
measures) which employs the Hub Removals algorithm [86]. DECAFF ini-
tially identifies local dense neighborhoods of each protein by iteratively re-
moving nodes with low degrees from the local neighborhoods. These local
cliques are merged with the dense subgraphs detected by the Hub Removal al-
gorithm [86] based on a Neighborhood Affinity criteria. Neighborhood Affin-
ity of two subgraphs is calculated based on their size and the number of their
common neighbors. Finally DECAFF improves the quality of final clusters by
removing subgraphs with low reliability scores. The reliability of a subgraph is
defined as the average reliability of all interactions of that subgraph, where in-
teraction reliability is deduced from functional relevance of its two interacting
proteins.

In addition to PPI networks, scientists are also interested in identifying com-
munity structures from gene co-expression networks. Expression profiles ob-
tained through microarray studies can be transformed into gene co-expression
networks, where nodes represent genes and two nodes are linked if the cor-
responding genes behave significantly similar across different samples (i.e.,
co-expression). Scientists are particularly interested in the problem of iden-
tifying gene subnetworks that have similar expression patterns under differ-
ent conditions [103] since they have been theorized to have the same cellu-
lar function [30]. To find gene groups that have similar expression patterns,
Hartuv and Shamir proposed an algorithm that recursively splits the weighted
co-expression graph into its highly connected components [43]. A highly
connected component is defined as a subnetwork which includes at least two
nodes, i.e., n > 1, and which can only be disconnected after the removal of
more than n/2 edges. Their algorithm, namely the Highly Connected Sub-
graphs(HCS), at each iteration splits the network into subgraphs until a highly
connected component is identified. Shamir and Sharan [94] proposed an exten-
sion of the HCS algorithm, CLICK - CLuster Identification via Connectivity
Kernels. In each step of their algorithm, a minimum cut of the input graph
is computed, which outputs two subgraphs. Subgraphs which satisfied certain
criterion are labeled as kernels. Each kernel is attributed with a fingerprint sim-
ilarity that is calculated based on its elements. After all the kernels are identi-
fied, nodes that are not part of any kernels are further analyzed and the ones that
are similar to any of the kernels are included into the kernel and the kernel’s
fingerprint is re-calculated - adoption step in the algorithm. Next, kernels that
are similar enough are merged and the adoption operation is repeated. Adop-
tion and kernel merging steps are repeated until there are no more changes in
the kernel structures. Final kernels are outputted as gene clusters obtained by
the CLICK algorithm. They have shown that their algorithm outperform ex-
isting clustering algorithms when applied on various gene expression datasets,
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originating from various studies, such as the yeast cell cycle dataset, or the
response of human fibroblasts to serum.

Regulatory modules can be inferred from diverse datasets including ChIP-
chip, motif, and gene expression datasets. A regulatory module is composed
of a set of genes that are co-regulated by a common set of regulators. In order
to identify such modules from ChIP-chip data and gene expression profiles,
GRAM algorithm is proposed [10]. A set of genes that are bind with the same
regulator set is obtained from the ChIP-chip binding p-values with an exhaus-
tive search. Subsequently, a subset of this set that are similarly expressed is se-
lected to serve as a seed. Then, the algorithm identifies genes that are similarly
expressed with the seed genes and that are connected to the same set of tran-
scription factors based on a relaxed binding criteria. Lemmens et al. improved
the GRAM algorithm by incorporating motif data as an additional source [71].
In the seed discovery step, they discover seeds composed of genes that are
co-expressed (deduced from mRNA measurements), that bind to the same reg-
ulators (deduced from ChIP-chip data), and that have the same motifs in their
intergenic regions (deduced from Motif data). they employed an Apriori-like
algorithm in order to identify such seeds. And a p-value is assigned to asses
the quality of each seed. In the second seed extension step, gene content of the
seeds are extended. For this purpose, each gene is ranked according to their
correlation with the mean expression profile of the seed genes, and the ones
that are similar enough (according to a cut-off) are included into the module.
They employed their algorithm for the discovery of Budding Yeast regulatory
modules by integrating ChIP-chip, motif, and gene expression datasets.

4.2 Clustering

Clustering algorithms can also be effective in identifying the modules of bi-
ological networks. In contrast to community discovery approaches, clustering
(or graph partitioning) decompose the whole network structure into groups. A
clustering algorithm locates every node of the graph into a community or a
module.

To elucidate gene functions at a global scale, clustering of gene co-
expression networks have been investigated. Since genes that are on the same
pathways or belong to the same functional complexes are often co-regulated,
they often exhibit similar expression patterns under diverse conditions. Thus,
identifying and studying groups of highly-interacting genes in co-expression
networks is an important step towards characterizing genes at a global scale.
For this purpose, a variety of existing graph partitioning algorithms can be
leveraged. Spectral methods that target weighted cuts [96] form an important
class of such algorithms. Multi-level graph partitioning algorithms such as
Metis [60] and Graclus[27] are well known to scale well for large networks.
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Divisive/agglomerative approaches have also been popular in network analy-
sis [80], but they are expensive and do not scale well [16]. Markov Clustering
(MCL) [28], a graph clustering algorithm based on (stochastic) flow simula-
tion, has proved to be highly effective at clustering biological networks [14].
A variant of this algorithm known as MLR-MCL [89] have been proposed re-
cently to address the scalability of MCL algorithm.

In addition to these diverse graph partitioning algorithms, other classical
clustering algorithms have also been employed – e.g., the hierarchical cluster-
ing [99], the k-means clustering [76], and the self-organizing maps [65]. Be-
sides the application of standard clustering algorithms, clustering algorithms
that are more suitable for the specific task have been studied. Among these
are the biclustering algorithms which identify a group of genes that behave
similarly only for a subset of all conditions. Given a gene expression matrix
of samples and genes, biclustering algorithms perform clustering in two di-
mensions simultaneously [21]. Statistically significant sub-matrices of a sub-
set of genes and a subset of samples are the identified biclusters. Cheng and
Church proposed a greedy approach in order to find maximal sized biclusters
that satisfy a certain condition on the residue scores [21]. Their algorithm
identifies each biclusters separately by iteratively removing rows and columns
until the mean squared residue score for the sub-matrix (an assessment for
the quality of bi-cluster) is smaller than a threshold and by iteratively adding
rows and columns while the quality assessment score does not exceed thresh-
old. Each run of the algorithm identifies a sub-matrix (bi-cluster) separately,
and the next bi-cluster is identified after the found sub-matrix is masked by
randomization. using this algorithm, they identified biclusters from gene ex-
pression datasets of Human and Yeast. Later, Koyuturk et al proposed a work
which associates statistical significance to the extracted biclusters. To discover
binary biclusters from a quantized gene expression matrix, they formulate this
problem as an optimization problem based on the statistical significance ob-
jective. Fast heuristics are proposed so solve this optimization problem in a
scalable manner. The algorithm is tested on quantized breast tumor gene ex-
pression matrix [67]. Tanay et al. converted bi-clustering problem into a graph
theory problem using bi-partite modeling [106]. Initially the expression data
is converted into a bi-partite of genes and samples. More formally a graph
G(V, S,E) is constructed where V is set of genes, S is set of conditions, and
there exists and edge between v and s, (v, s) ∈ E if, g is expressionally re-
sponsive in sample s. This modeling reduces the biclustering problem into
the problem of finding the densest subgraphs in G. Since the identification
of heaviest bi-clique is an NP-complete problem, authors restricted the search
space by assuming a degree bound on one side of the bipartite graph. Later
Tanay applied SAMBA algorithm on the gene expression dataset of 96 human
tissue samples [105]. In that work, they compared their work against, Cheng
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Figure 18.3. Benefits of Ensemble Strategy for Community Discovery in PPI networks in compar-
ison to community detection algorithm MCODE and clustering algorithm MCL. The Y-axis repre-
sents -log(p-value).

and Church’s algorithm [21] and observed that biclusters from SAMBA are
better in terms of their statistical significance.

An ensemble clustering algorithm is also studied on biological networks
to generate a more robust clustering compared to individual clustering algo-
rithms [6]. Cluster ensembles can be defined as a mapping from a set of clus-
terings generated by a variety of sources into a single consensus clustering
arrangement. Asur et al. proposed an ensemble clustering for the PPI decom-
position problem. First different topological weighting schemes are proposed
to generate different views of the unweighted PPI network. Next, these differ-
ent views are clustered with different algorithms to obtain a set of base clus-
terings of the network. These clusterings are integrated into a Cluster Mem-
bership Matrix which is reduced in size to eliminate redundancy and to scale
the consensus determination problem based on PCA. Subsequently standard
hierarchical clustering algorithms are utilized for computing the consensus
clustering (recursive bisections (PCA-rbr) and agglomerative clustering (PCA-
agglo)). When compared with existing community detection and clustering
algorithms, they observed that their algorithm is able to produce topologically
and biologically more significant clusters (as shown in Figure 18.3). The Y-
axis represents distribution of Gene Ontology enrichment p-values. Smaller
p-values represent more significantly enriched groups with a particular Gene
Ontology term.

In addition to biclustering and ensemble clustering strategies, scientists also
studied soft clustering algorithms for biological networks, which enables as-
signing multiple-cluster membership to multi-faceted biological entities. To
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enable multiple cluster membership for proteins while identifying PPI clus-
ters, Asur et al [6] proposed a soft ensemble clustering technique that is a step
further from their PCA based consensus clustering. This adapted algorithm, af-
ter obtaining the initial consensus clustering, iteratively calculates the strength
of each protein’s membership to each consensus cluster based on shortest path
distances. Proteins that have high propensity towards multiple membership
are then assigned to their alternate clusters. To test the efficacy of this soft
clustering algorithm, the compared their algorithm with the original ensemble
clustering. As can be seen in Figure 18.4, they observed that, allowing multi-
ple membership to proteins, improves the overall accuracy of the clustering, as
evident from the smaller p-values of GO enrichment analysis.
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Figure 18.4. Soft Ensemble Clustering improves the
quality of extracted clusters. The Y-axis represents
-log(p-value).

A soft bi-clustering algorithm
(MF-PINCoC), an extension to
the algorithm PINCoC, has been
proposed to identify overlapping
dense subgraphs by using a lo-
cal search technique has been pro-
posed recently [84]. The PINCoC
algorithm applies a greedy search
strategy in order to find the local
optimal sub-matrices in terms of
a quality function. More recently,
Avogadri et al. proposed an en-
semble fuzzy clustering for decom-
posing gene expression datasets
into its overlapping clusters [7].
They first generate multiple views

of the data by using random projections. A random projection maps data from
a high-dimensional space to a lower dimensional space. On these views, they
applied fuzzy k-means algorithm and these fuzzy clustering arrangements are
combined into a similarity matrix. They again employed fuzzy k-means on this
similarity matrix to identify fuzzy consensus clustering [7]. This algorithm is
applied on four different microarray datasets and compared against different
ensemble strategies.

5. Discussion

In this article we surveyed the principal results in the field of graph mining
that relate to the application domain of bioinformatics. We examined these
results along three directions: i) from the perspective of mining tree-structured
data; ii) from the perspective of mining multiple graphs or networks; and iii)
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from the perspective mining of mining a single (large) network in the presence
of noise and uncertainty.

Both data mining and the field of bioinformatics are young and vibrant and
thus there are ample opportunities for interesting lines of future research at
their intersection. Sticking to the theme of this article – graph mining in
bioinformatics – below we list several such opportunities. This list is by no
means a comprehensive list but highlight some of the potential opportunities
researchers may avail of.

Scalable algorithms for analyzing time varying networks: A large ma-
jority of the work to date in this field has focused on the analysis of static
networks. While there have been some recent efforts to analyze dynamic
biological networks, research in this arena is at its infancy. With antici-
pated advances in technology where much more temporal data is likely
to become available temporal analysis of such networks is likely to be an
important arena of future research. Underpinning this effort, given the
size and dynamics of the data involved are the need to develop scalable
algorithms for processing and analyzing such data.

Discovering anomalous structures in graph data: Again while most of
the work to date has focused on the discovery of frequent or modular
structure within such data – the discovery of anomalous substructures
often has a crucial role to play in such domains. Defining what con-
stitutes an anomaly, how to compute it efficiently while leveraging the
ambient knowledge in the domain in question are some of the challenges
to be addressed.

Integrating data from multiple, possibly conflicting sources: A funda-
mental challenge in bioinformatics in general is that of data integration.
Data is available in many formats and often times are in conflict. For ex-
ample protein interaction data produced by various experimental meth-
ods (mass spectrometry, Yeast2Hybrid, in-silico) are often in conflict.
Research into methods that are capable of resolving such conflicts while
still discovering useful patterns are needed.

Incorporating domain information: It has been our observation that often
we as data mining researchers tend to under-utilize available domain
information. This may arise out of ignorance (the field of bioinformatics
is very vast) or simply omitted from the training phase as a means to
confirm the utility of the proposed methods (to maintain the sanctity
of the validation procedure). We believe a fresh look at how domain
knowledge can be embedded in existing approaches and better validation
methodologies in close conjunction with domain experts must be looked
into.
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Uncertainty-aware and noise-tolerant methods: While this has certainly
been an active area of research in the bioinformatics community in gen-
eral, and in the field of graph mining in bioinformatics in particular,
there are still many open problems here. Incorporating uncertainty is
necessarily a domain-dependent issue and probabilistic approaches of-
fer exciting possibilities. Additionally leveraging topological, relational
and other semantic characteristics of the data effectively is an interesting
topic for future research. A related challenge here is to model trust and
provenance related information.

Ranking and summarizing patterns harvested: While ranking and sum-
marizing patterns has been the subject of much research in the data min-
ing and network science community the role of such methods in bioin-
formatics has been much less researched. We expect this to be a very
important and active area of research especially since often times evalu-
ating and validating patterns discovered can be an expensive and time
consuming process. In this context research into ranking algorithms
for bioinformatics that leverage domain knowledge and mechanisms for
summarizing patterns harvested is an exciting opportunity for future re-
search.
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Abstract
Mining chemical compounds in silico has drawn increasing attention from both
academia and pharmaceutical industry due to its effectiveness in aiding the drug
discovery process. Since graphs are the natural representation for chemical com-
pounds, most of the mining algorithms focus on mining chemical graphs. Chem-
ical graph mining approaches have many applications in the drug discovery pro-
cess that include structure-activity-relationship (SAR) model construction and
bioactivity classification, similar compound search and retrieval from chemical
compound database, target identification from phenotypic assays, etc. Solving
such problems in silico through studying and mining chemical graphs can pro-
vide novel perspective to medicinal chemists, biologist and toxicologist. More-
over, since the large scale chemical graph mining is usually employed at the early
stages of drug discovery, it has the potential to speed up the entire drug discov-
ery process. In this chapter, we discuss various problems and algorithms related
to mining chemical graphs and describe some of the state-of-the-art chemical
graph mining methodologies and their applications.
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1. Introduction

Labeled graphs (either topological or geometric) have been a promising ab-
straction to capture the characteristics of datasets arising in many fields such as
the world wide web, social networks, biology, and chemistry ([9], [13], [30],
[49]). The vertices of these graphs correspond to the entities in the objects and
the edges correspond to the relations between them. This graph-based repre-
sentation can directly capture many of the sequential, topological, geometric,
and other relational characteristics of such datasets. For example, in the do-
main of the world wide web and social networks the entire set of objects and
their relations are represented via a single large graph ([13]). In biology, ob-
jects to be mined are represented either as a single large graph (e.g., metabolic
and signaling pathways) or via separate graphs (e.g., protein structures) ([65],
[30], [33]). In chemistry, each object to be mined is represented via a separate
graph (e.g., molecular graphs) ([49]).

Graph mining over the above representations has found applications in the
domain of web data analysis such as the analysis of XML documents and we-
blogs, web searches, web document analysis etc([9]). Graph mining is also
being used in social sciences for the analysis of social networks that help un-
derstand social phenomenon and group behavior([13]). In the domain of tradi-
tional sciences like biology and chemistry, graph mining has found numerous
important applications. For example, in biology graphs can be used to directly
model the key topological and geometric characteristics of protein molecules.
Vertices in these graphs will correspond to different amino acids. The edges
will correspond to the connections of amino acids in the protein’s backbone or
the non-covalent bonds(i.e., contact points) in the 3D structure. Mining these
graph patterns provides important insights into protein structure and function (
[22], [3]).

In chemistry, graphs can be used to directly model the key topological and
geometric characteristics of chemical structures. Vertices in these graphs cor-
respond to different atoms and the edges correspond to bonds that connect
atoms ([29]). Mining on a set of chemical compounds or molecules helps in
understanding the key characteristics of a set molecules for a given process
(such as toxicity and biological activity) and has become the primary applica-
tion area of chemical graph mining ([49], [40]). The typical applications per-
formed on chemical structures include mining sub-structures in a given set of
ligands ([40]), mining databases to retrieve other relevant compounds, cluster-
ing of chemical compounds based on common sub-structures, and predicting
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compound bioactivity by classification, regression and ranking techniques ([2],
[28]).

Most of the mining algorithms operate on the assumption that the proper-
ties and biological activity of a chemical compound are related to its structure
([2], [28]). This assumption is widely referred to as the structure-activity-
relationship principle or simply SAR. Hansch ([17]) demonstrated that the bi-
ological activity of a chemical compound can be mathematically expressed
as a function of its physiochemical properties, which led to the development
of quantitative methods for modeling structure-activity relationships (QSAR).
Since that work, many different approaches have been developed for building
such structure-activity-relationship (SAR) models. All of these models are de-
rived using some notion of structural similarity between chemical compounds.
The similarity is determined using a similarity function over a descriptor-space
representation, and the descriptor-space is most commonly generated from
chemical graphs. These models have become an essential tool for predicting
biological activity from the structural properties of a molecule.

The rest of this chapter will review some of the current trends in chemical
graph mining and modeling. It will highlight some of the techniques that exist
and that were recently developed for representing chemical compounds, build-
ing classification models, retrieving compounds from databases, and identify-
ing the proteins that the compounds will bind to. The chapter concludes by
outlining some of the future research directions in this field.

2. Topological Descriptors for Chemical Compounds

Descriptor-based representations of chemical compounds are used exten-
sively in cheminformatics, as they represent a convenient and computationally
efficient way to capture key characteristics of the compounds’ structures ([2],
[28]). Such representations have extensive applications to similarity search
and various structure-driven prediction problems for activity, toxicity, absorp-
tion, distribution, metabolism and excretion ([2]). Many of these descriptors
are derived by mining structural patterns from a set of molecular graphs of the
chemical compounds. Such descriptors include topological descriptors derived
directly from the topology of molecular graphs and 2D/3D pharmacophore de-
scriptors that describe the critical atoms/atom groups that are highly likely to
be involved in protein-ligand binding ([7], [32], [55], [28]). In the rest of this
section we review some of the topological descriptors that are used extensively
to represent chemical compounds and analyze their different properties. This
includes both a set of time-tested descriptors as well as recently developed
descriptors that have shown promising results.
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2.1 Hashed Fingerprints (FP)

Hash fingerprints are generally used to encode the 2D structural characteris-
tics of a chemical compound into a fixed bit vector and are used extensively for
various tasks in chemical informatics. These fingerprints are typically gener-
ated by enumerating all cycles and linear paths up to a given number of bonds
and hashing each of these cycles and paths into a fixed bit-string ([7], [4], [51],
[20]). The specific bit-string that is generated depends on the number of bonds,
the number of bits that are set, the hashing function, and the length of the bit-
string. The key property of these fingerprint descriptors is that they encode
a very large number of sub-structures into a compact representation. Many
variants of these fingerprints exist, some use predefined structural fragments in
conjunction with the fingerprints, for example, Unity fingerprints ([51]), oth-
ers count the number of times a bit position is set, for example, hologram (
[20]). However, a recent study has shown that the performance of most of
these fingerprints is comparable ([26]).

2.2 Maccs Keys (MK)

Molecular Design Limited (MDL) has created the key based fingerprints
Maccs Keys ([32]) based on pattern matching of a chemical compound struc-
ture to a pre-defined set of structural fragments. These fragments have been
identified by domain experts ([10]) to be important for bioactivity of chemical
compounds. The original set of descriptors consists of 166 structural frag-
ments and each such fragment becomes a key and occupies a fixed position in
the descriptor space. This approach relies on pre-defined rules to encapsulate
the essential molecular descriptors a-priori and does not learn them from the
chemical dataset. This descriptor space is notably different from fingerprint
based descriptor space. Unlike fingerprints, no folding (hashing) is performed
on the sub-structures.

2.3 Extended Connectivity Fingerprints (ECFP)

Molecular descriptors and fingerprints based on the extended connectivity
concept have been described by several authors ([42], [19]). The earliest con-
cept of such a descriptor-space was described in [59]. Recently, these finger-
prints have been popularized by their implementation within Pipeline Pilot (
[11]). These fingerprints are generated by first assigning some initial label to
each atom and then applying a Morgan type algorithm ([34]) to generate the
fingerprints. Morgan’s algorithm consists of l iterations. In each iteration, a
new label is generated and assigned to each atom by combining the current
labels of the neighboring atoms (i.e, connected via a bond). The union of
the labels assigned to all the atoms over all the l iterations are used as the
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descriptors to represent each compound. The key idea behind this descriptor
generation algorithm is to capture the topology around each atom in the form
of shells whose radius ranges from 1 to l. Thus, these descriptors can capture
rather complex topologies. The value for l is a user supplied parameter and
typically ranges from two to six.

2.4 Frequent Subgraphs (FS)

A number of methods have been proposed in recent years to mine frequently
occurring subgraphs (sub-structures) in a chemical graph database ([37], [61],
[27]). Frequent subgraphs of a chemical graph database D are defined as
all subgraphs that are present in at least � (� ≤ ∣D∣) of compounds of the
database, where � is the absolute minimum frequency requirement (also called
absolute minimum support constraint). These frequent subgraphs can be used
as descriptors for the compounds in that database. A descriptor space formed
out of frequently occurring subgraphs depends on the value of �. Therefore,
the descriptor space can change for a particular problem instance if the value
of � is changed. An advantage of such a descriptor space is that it can create
descriptors suitable for a given dataset. Moreover, the substructures mined con-
sist of arbitrary sizes and topologies. A potential disadvantage of this method
is that it is unclear how to select a suitable value of � for a given problem. A
very high value will fail to discover important subgraphs whereas a very low
value will result in combinatorial explosion of frequent subgraphs.

2.5 Bounded-Size Graph Fragments (GF)

Recently, a new descriptor space, Graph Fragments (GF), has been devel-
oped consisting of sub-structures or fragments that exist in a compound library
([55]). Graph Fragments of a chemical graph database D are defined as all con-
nected subgraphs present in every chemical graph of D that has a size of less
than or equal to the user supplied parameter l. Therefore, GF descriptor space
is a subset of the FS descriptor space generated using a absolute minimum sup-
port threshold of 1. However, instead of the minimum support threshold used
in generating FS, the user supplied parameter l is used to control the combina-
torial complexity of the fragment generation process for GF and put an upper
bound on the size of fragments generated. An efficient algorithm to generate
the GF descriptors for a library of compounds is described in [55].

2.6 Comparison of Descriptors

A careful analysis of the descriptor spaces described in the previous sec-
tion illustrate four dimensions along which these schemes compare with each
other and represent some of the choices that have been explored in designing
fragment-based or fragment-derived descriptors for chemical compounds. Ta-
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Table 19.1. Design choices made by the descriptor spaces.

Previously developed descriptors

Generation Topological Complexity Precise Complete Coverage

FP dynamic Low No Yes
MK static Low to High Yes Maybe
ECFP dynamic Low to High Maybe Yes
FS dynamic Low to High Yes Maybe
GF dynamic Low to High Yes Yes

FP refers to the hashed fingerprints, MK to Maccs keys, ECFP to extended connectivity fingerprints, FS to
frequent subgraphs, and GF to graph fragments.

ble 19.1 summarizes the characteristics of these descriptor spaces along the
four dimensions. The first dimension is associated with whether the frag-
ments are determined directly from the dataset at hand or they have been pre-
identified by domain experts. The fragments of Maccs keys have been deter-
mined a priori whereas all other descriptors are determined directly from the
dataset. The advantage of a priori approach is that it can capture domain knowl-
edge. However, due to the fixed set of fragments identified a priori it might not
adapt to the characteristics for a particular dataset. The second dimension is
associated with the topological complexity of the actual fragments. Schemes
like fingerprints use simple topologies consisting of paths and cycles. Descrip-
tors such as extended connectivity fingerprints, frequent subgraphs and graph
fragments allow topologies with arbitrary complexity. Topologically complex
fragments along with simple ones might enrich the descriptor space. The third
dimension is associated with whether or not the fragments are being precisely
represented in the descriptor space. Most schemes generate descriptors that are
precise in the sense that there is a one-to-one mapping between the fragments
and the dimensions of the descriptor space. In contrast, due to the hashing ap-
proach, descriptors such as fingerprints and extended connectivity fingerprints
lead to imprecise representations (i.e., many fragments can map to the same
dimension of the descriptor space). Depending on the number of these many-
to-one mappings, these descriptors can lead to representations with varying
degree of information loss. Finally, the fourth dimension is associated with the
ability of the descriptor space to cover all or nearly all of the dataset. Descriptor
spaces created from fingerprints, extended connectivity fingerprints, and graph
fragments are guaranteed to contain fragments or hashed fragments from each
one of the compounds. On the other hand, descriptor spaces corresponding to
Maccs keys and frequent sub-structures may lead to a descriptor-based repre-
sentation of the dataset in which some of the compounds have no or a very
small number of descriptors. A descriptor space that covers all the compounds
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Table 19.2. SAR performance of different descriptors.

Datasets fp ECFP MK FS GF

NCI1 0.30 0.32 0.29 0.27 0.33
NCI109 0.27 0.32 0.24 0.26 0.32
NCI123 0.25 0.27 0.24 0.23 0.27
NCI145 0.30 0.35 0.28 0.30 0.37
NCI167 0.06 0.06 0.04 0.06 0.07
NCI220 0.33 0.28 0.26 0.21 0.29
NCI33 0.26 0.31 0.26 0.25 0.33
NCI330 0.34 0.36 0.31 0.24 0.36
NCI41 0.25 0.36 0.28 0.30 0.36
NCI47 0.26 0.31 0.26 0.24 0.31
NCI81 0.27 0.28 0.25 0.24 0.28
NCI83 0.26 0.31 0.26 0.25 0.31

The numbers correspond to the ROC50 values of SVM-based SAR models for
twelve screening assays obtained from NCI. The ROC50 value is the area under
the receiver operating characteristic curve (ROC) up to the first 50 false positives.
These values were computed using a 5-fold cross-validation approach. The de-
scriptors being evaluated are: graph fragments (GF) ([55]), extended connectivity
fingerprints (ECFP) ([28]), Chemaxon’s fingerprints (fp) (Chemaxon Inc.) ([4]),
Maccs keys (MK) (MDL Information Systems Inc.) ([32]), and frequent subgraphs
(FS) ([8]).

of a dataset has the advantage of encoding some amount of information for
every compound.

The qualitative comparison of the descriptors along the lines discussed
above is shown in Table 19.1. This table shows that unlike other descriptors,
GF descriptors satisfy all the key properties described earlier such as dynamic
generation, complex topology, precise representation, and complete cover-
age. For example, unlike path-based structural descriptors (fp) and extended-
connectivity fingerprints, they are guaranteed to have a one-to-one mapping
between a fragment and a dimension in the descriptor space. Moreover, unlike
fingerprints, they impose no limit on the complexity of the descriptor’s struc-
tures ([55]) and unlike Maccs Keys, the descriptors are dynamically generated
from the dataset at hand. Lastly, unlike FS, which may suffer from partial cov-
erage, this descriptor space is ensured to have 100% coverage by eliminating
the minimum support criterion and generating all fragments. Therefore, GF
descriptors allow for better representation of the underlying compounds and
they are expected to show better performance in the context of SAR based
classification and retrieval approaches.

A quantitative comparison in Table 19.2 shows classification results from a
recent study ([55]) using the NCI datasets obtained from the PubChem Project
([39]). These results empirically show that the GF descriptor space achieves
a performance that is either better or comparable to that achieved by currently
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used descriptors, indicating that the above mentioned properties are important
to capture the compounds’ structural characteristics.

3. Classification Algorithms for Chemical Compounds

Numerous approaches have been developed for building classifying mod-
els for various classes of interest (e.g., active/inactive, toxic/non-toxic, etc).
Depending on the class of interest, these models are often called structure-
activity-relationship (SAR) or structure-property-relationship (SPR) models.
Over the years, these approaches have evolved from the initial regression-based
techniques used by Hansch ([17]), to methods that utilize complex statisti-
cal model estimation procedures ([24], [28], [42], [2]). Among them, meth-
ods based on Support Vector Machines (SVM) ([52]) have recently become
very popular as they have been shown to produce highly accurate SAR and
SPR models for a wide-range of problems ([14], [57], [25], [24], [55], [15]).
Two broad classes of SVM-based methods have been developed. The first
operate on the descriptor-space representation of the chemical compounds,
whereas the second use various graph kernels that operate directly on the com-
pounds’ molecular graphs. However, despite their differences, the absolute
performance achieved by these methods is often comparable, and no winning
methodology has emerged.

3.1 Approaches based on Descriptors

The descriptor-space based approaches first represent each chemical com-
pound as a high-dimensional (frequency) vector based on the set of descrip-
tors that they contain (e.g., hashed fingerprints, graph fragments, etc) and then
utilize various vector-space-based kernel functions to determine the similarity
between the various compounds ([8], [49], [55], [57], [14]). Such functions in-
clude linear, radial basis function, Tanimoto coefficient, and Min-Max kernel
([49], [55]). The performance of these kernels has been extensively evaluated
with each other and the results have showed that the Tanimoto coefficient (also
known as the extended Jacquard similarity) and the Min-Max kernels are often
among the best performing schemes ([49], [55]). The Tanimoto coefficient is
defined as

KTC(X,Y ) =

M∑
i=1

xiyi

M∑
i=1

(x2i + y2i − xiyi)
, (3.1)
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and the Min-Max kernel is defined as

KMM (X,Y ) =

M∑
i=1

min(xi, yi)

M∑
i=1

max(xi, yi)

, (3.2)

where the terms xi and yi are the values along the itℎ dimension of the M
dimensional X and Y vectors, respectively.

A number of variations of these descriptor-based approaches have also been
developed. One of them, which is applicable when the descriptor spaces con-
tain a very large number of dimensions, involves the use of various feature se-
lection techniques to reduce the effective dimensionality of the descriptor space
by retaining only those descriptors that are over-represented in some classes (
[8], [31], [58]). Another variation, which is designed for descriptor spaces that
contain descriptors of different sizes, calculates a different similarity value for
the descriptors belonging to each of the different sizes and then combines them
to yield a single similarity value ([55]). This approach ensures that each indi-
vidual size contributes equally to the overall similarity score and that the score
is not unnecessarily dominated by the large-size descriptors, which are often
more abundant.

3.2 Approaches based on Graph Kernels

The approaches based on graph kernels determine the similarity of two
chemical compounds by directly comparing their molecular graphs without
having to generate an intermediate descriptor-based representation ([47], [49],
[40], [33]). A number of graph kernels have been developed and used in the
context of building SAR and SPR models. This includes approaches that mea-
sure the similarity between two molecular graphs as the size of their maximum
common subgraph ([41]), by using powers of adjacency matrices ([40]), by cal-
culating Markov random walks on the underlying graphs ([40]), and by using
weighted substructure matching between two graphs ([33]). For instance, the
kernels based on powers of adjacency matrices count shared labelled sequences
(paths) between two chemical graphs. Markov random walk kernels also com-
pute the matches generated by walks (paths) on the two chemical compounds.
However, as the name suggests, the match is derived by markov random walks
on the two graphs. Note that the above two kernels are similar in flavor to
path-based descriptor-space similarity described earlier. Weighted substruc-
ture matching kernel assigns weights based on the number of embeddings of
a common substructure found in the two chemical graphs. In this approach,
a substructure of size l is centered around an atom and consists of all atoms
and bonds that can be reached by a path of length l via this atom. This kernel
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is similar in flavor to the extended connectivity fingerprints (ECFP) described
earlier. However, in the case of this kernel function, no explicit descriptor-
space is generated.

4. Searching Compound Libraries

Searching large databases of chemical compounds, often referred to as com-
pound libraries, in order to identify compounds that share the same bioac-
tivity (i.e., they bind to the same protein or class of proteins) with a certain
query compound is arguably the most widely used operation involving chem-
ical compounds and an essential step towards the iterative optimization of a
compound’s binding affinity, selectivity, and other pharmaceutically relevant
properties. This search is usually performed against different libraries (e.g.,
corporate library, libraries of commercially available compounds, libraries of
patented compounds, etc) and provide key information that can be used to iden-
tify other more potent compounds and to guide the synthesis of small-scale
libraries around the initial query compounds.

Depending on the initial properties of the query compound and the goal of
the iterative optimization process, there are two distinct types of operations
that the database search mechanisms needs to support. The first is the standard
rank-retrieval operation whose goal is to identify compounds that are similar
to the query in terms of their bioactivity. The second is the scaffold-hopping
operation whose goal is to identify compounds that are similar to the query
in terms of their bioactivity but their structures are different from that of the
query (different scaffolds). This latter operation is used when the query com-
pound has some undesirable properties such as toxicity, bad ADME (absorp-
tion, distribution, metabolism and excretion), or may be promiscuous ([18],
[45]). Since these properties are often shared by the compounds that have very
similar structures, it is important to identify as many chemical compounds as
possible that not only show the desired activity for the biomolecular target but
also have different structures (come from diverse chemical classes or chemo-
types) ([64], [18], [48]). Furthermore, scaffold-hopping is also important from
the point of view of un-patented chemical space. Many important lead com-
pounds and drug candidates have already been patented. In order to find new
therapies and offer alternative treatments it is important for a pharmaceuti-
cal company to discover novel leads significantly different from the existing
patented chemical space.

The solution to the ranked-retrieval operation relies on the well known fact
that the chemical structure of a compound relates to its activity (SAR). As such,
effective solutions can be devised that rank the compounds in the database
based on how structurally similar they are to the query. However, for scaffold-
hopping, the compounds retrieved must be structurally sufficiently similar to
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possess similar bioactivity but at the same time must be structurally dissimilar
enough to be a novel chemotype. This is a much harder operation than simple
ranked-retrieval as it has the additional constraint of maximizing dissimilarity
that runs counter to the relationship between the structure of a compound and
its activity.

The rest of this section describes two sets of techniques for performing
the ranked-retrieval and scaffold-hopping operations. The first are inspired
by advances in automatic relevance feedback mechanism and use techniques
such as the automatic query expansion to identify structurally different com-
pounds from the query. The second measure the similarity between the query
and a compound by taking into account additional information beyond their
structure-based similarities. This indirect way of measuring similarity en-
ables the retrieval of compounds that are structurally different from the query
but at the same time possess the desired bioactivity. The indirect similarities
are derived by analyzing the similarity network formed by the query and the
database compounds. These indirect similarity based techniques operate on
the descriptor-space representation of the compounds and are independent of
the selected descriptor-space.

4.1 Methods Based on Direct Similarity

Many methods have been proposed for ranked-retrieval and scaffold-
hopping that directly operate on the underlying descriptor space representa-
tion. These direct similarity based methods can be divided into two groups.
The first contains methods that rely on better designed descriptor-space rep-
resentations, whereas the second contains methods that are not specific to any
descriptor-space representation but utilize different retrieval strategies to im-
prove the overall performance.

Among the first set of methods, 2D descriptors described in Section 2 such
as path-based fingerprints (fp), dictionary based keys (MACCS) and more re-
cently Extended Connectivity fingerprints (ECFP) as well as Graph Fragments
(GF) have all been successfully applied for the retrieval problem([55]). How-
ever, for scaffold-hopping, pharmacophore based descriptors such as ErG (
[48]) have been shown to outperform 2D topology based descriptors ([48],
[64]). Lastly, descriptors based on 3D structure or conformations of the
molecule have also been applied successfully for scaffold-hopping ([64], [45]).

The second set of methods include the turbo search based schemes ([18])
which utilize ideas from automatic relevance feedback mechanism ([1]). The
turbo search techniques operate as follows. Given a query q, they start by
retrieving the top-k compounds from the database. Let A be the (k + 1)-size
set that contains q and the top-k compounds. For each compound c ∈ A, all
the compounds in the database are ranked in decreasing order based on their
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similarity to c, leading to k+1 ranked lists. These lists are combined to obtain
the final similarity of each compound with respect to the initial query. Similar
methods based on consensus scoring, rank averaging, and voting have also
been investigated ([64]).

4.2 Methods Based on Indirect Similarity

Recently, a set of techniques to improve the scaffold-hopping performance
have been introduced that are based on measuring the similarity between the
query and a compound by taking into account additional information beyond
their descriptor-space-based representation ([54], [56]). These methods are
motivated by the observation that if a query compound q is structurally similar
to a database compound ci and ci is structurally similar to another database
compound cj , then q and cj could be considered as being similar or related
even though they may have zero or very low direct similarity. This indirect
way of measuring similarity can enable the retrieval of compounds that are
structurally different from the query but at the same time, due to associativity,
possess the same bioactivity properties with the query.

The set of techniques developed to capture such indirect similarities are
inspired by research in the fields of information retrieval and social network
analysis. These techniques derive the indirect similarities by analyzing the net-
work formed by a k-nearest-neighbor graph representation of the query and the
database compounds. The network linking the database compounds with each
other and with the query is determined by using a k-nearest-neighbor (NG) and
a k-mutual-nearest-neighbor (MG) graph. Both of these graphs contain a node
for each of the compounds as well as a node for the query. However, they differ
on the set of edges that they contain. In the k-nearest-neighbor graph there is
an edge between a pair of nodes corresponding to compounds ci and cj , if ci
is in the k-nearest-neighbor list of cj or vice-versa. In the k-mutual-nearest-
neighbor graph, an edge exists only when ci is in the k-nearest-neighbor list
of cj and cj is in the k-nearest-neighbor list of ci. As a result of these defini-
tions, each node in NG will be connected to at least k other nodes (assuming
that each compound has a non-zero similarity to at least k other compounds),
whereas in MG, each node will be connected to at most k other nodes.

Since the neighbors of each compound in these graphs correspond to some
of its most structurally similar compounds and due to the relation between
structure and activity (SAR), each pair of adjacent compounds will tend to have
similar activity. Thus, these graphs can be considered as network structures for
capturing bioactivity relations.

A number of different approaches have been developed for determining the
similarity between nodes in social networks that take into account various topo-
logical characteristics of the underlying graphs ([50], [13]).For the problem of
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scaffold-hopping, the similarity between a pair of nodes is determined as a
function of the intersection of their adjacency lists ([54], [56]), which takes
into account all two-edge paths connecting these nodes. Specifically, the simi-
larity between ci and cj with respect to graph G is given by

isimG(ci, cj) =
adjG(ci) ∩ adjG(cj)

adjG(ci) ∪ adjG(cj)
, (4.1)

where adjG(ci) and adjG(cj) are the adjacency lists of ci and cj in G, respec-
tively.

This measure assigns a high similarity value to a pair of compounds if both
are very similar to a large set of common compounds. Thus, compounds that
are part of reasonably tight clusters (i.e., a set of compounds whose struc-
tural similarity is high) will tend to have high indirect similarities as they will
most likely have a large number of common neighbors. In such cases, the indi-
rect similarity measure re-enforces the existing high direct similarities between
compounds. However, the indirect similarity between a pair of compounds ci
and cj can also be high even if their direct similarity is low. This can hap-
pen when the compounds in adjG(ci) ∩ adjG(cj) match different structural
descriptors of ci and cj . In such cases, the indirect similarity measure is capa-
ble of identifying relatively weak structural similarities, making it possible to
identify scaffold-hopping compounds.

Given the above graph-based indirect similarity measures, various strategies
can be employed to retrieve compounds from the database. Three such strate-
gies are discussed below. The first corresponds to that used by the standard
ranked-retrieval method, whereas the other two are inspired by information re-
trieval methods used for automatic relevance feedback ([1]) and are specifically
designed to improve the scaffold-hopping performance.

Best-Sim Retrieval Strategy. This is the most widely used retrieval strat-
egy and it simply returns the compounds that are the most similar to the query.
Specifically, if A is the set of compounds that have been retrieved thus far, then
the next compound cnext that is selected is given by

cnext = argmax
ci∈D−A

{isim(ci, q)}. (4.2)

This compound is added to A, removed from the database, and the overall
process is repeated until the desired number of compounds has been retrieved
([56]).

Best-Sum Retrieval Strategy. This retrieval strategy incorporates addi-
tional information from the set of compounds retrieved thus far (set A). Specif-
ically, the compound selected, cnext, is the one that has the highest average
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similarity to the set A ∪ {q}. That is,

cnext = argmax
ci∈D−A

{isim(ci, A ∪ {q})}. (4.3)

The motivation behind this approach is that due to SAR, the set A will con-
tain a relatively large number of active compounds. Thus, by modifying the
similarity between q and a compound c to also include how similar c is to the
compounds in the set A, a similarity measure that is re-enforced by A’s active
compounds is obtained ([56]). This enables the retrieval of active compounds
that are similar to the compounds present in A even if their similarity to the
query is not very high; thus, enabling scaffold-hopping.

Best-Max Retrieval Strategy. A key characteristic of the retrieval strategy
described above is that the final ranking of each compound is computed by tak-
ing into account all the similarities between the compound and the compounds
in the set A. Since the compounds in A will tend to be structurally similar
to the query compound, this approach is rather conservative in its attempt to
identify active compounds that are structurally different from the query (i.e.,
scaffold-hops).

To overcome this problem, a retrieval strategy was developed ([56]) that is
based on the best-sum approach but instead of selecting the next compound
based on its average similarity to the set A ∪ {q}, it selects the compound that
is the most similar to one of the compounds in A ∪ {q}. That is, the next
compound is given by

cnext = argmax
ci∈D−A

{ max
cj∈A∪{q}

isim(ci, cj)}. (4.4)

In this approach, if a compound cj other than q has the highest similarity
to some compound ci in the database, ci is chosen as cnext and added to A
irrespective of its similarity to q. Thus, the query-to-compound similarity is
not necessarily included in every iteration as in the other schemes, allowing this
strategy to identify compounds that are structurally different from the query.

4.3 Performance of Indirect Similarity Methods

The performance of indirect similarity-based retrieval strategies based on
the NG as well as MG graph was compared to direct similarity based on
Tanimoto coefficient ([56]). The compounds were represented using differ-
ent descriptor-spaces (GF, ECFP, and ErG). The quantitative results showed
that indirect similarity is consistently, and in many cases substantially, bet-
ter than direct similarity. Figure 19.1 shows a part of the results in [56] which
compare MG based indirect similarity to direct Tanimoto coefficient (TM) sim-
ilarity searching using ECFP descriptors. It can be observed from the figure
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Figure 19.1. Performance of indirect similarity measures (MG) as compared to similarity search-
ing using the Tanimoto coefficient (TM).

Tanimoto indicates the performance of similarity searching using the Tanimoto coefficient with extended
connectivity descriptors; MG indicates the performance of similarity searching using the indirect similarity
approach on the mutual neighbors graph formed using extended connectivity fingerprints.

that indirect similarity outperforms direct similarity for scaffold-hopping ac-
tive retrieval in all of six datasets that were tested. It can also be observed that
indirect similarity outperforms direct similarity for active compound retrieval
in all datasets except MAO. Moreover, the relative gains achieved by indirect
similarity for the task of identifying active compounds with different scaffolds
is much higher, indicating that it performs well in identifying compounds that
have similar biomolecule activity even when their direct similarity is low.

5. Identifying Potential Targets for Compounds

Target-based drug discovery, which involves selection of an appropriate tar-
get (typically a single protein) implicated in a disease state as the first step, has
become the primary approach of drug discovery in pharmaceutical industry (
[2], [46]). This was made possible by the advent of High Throughput Screen-
ing (HTS) technology in the late 1980s that enabled rapid experimental testing
of a large number of chemical compounds against the target of interest. HTS
is now routinely utilized to identify the most promising compounds (hits) that
show desired binding/activity against a given target. Some of these compounds
then go through the long and expensive process of optimization, and eventu-
ally one of them may go to clinical trials. If clinical trails are successful then
the compound becomes a drug. HTS technology ushered in a new era of drug
discovery by reducing the time and money taken to find hits that will have a
high chance of eventually becoming a drug.

However, the increased number of candidate hits from HTS did not increase
the number of actual drugs coming out of the drug discovery pipeline. One of
the principal reasons for this failure is that the above approach only focuses on
the target of interest, taking a very narrow view of the disease. As such, it may
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lead to unsatisfactory phenotypic effects such as toxicity, promiscuity, and low
efficacy in the later stages of drug discovery ([46]). More recently, research
focus is shifting to directly screen molecules to identify desirable phenotypic
effects using cell-based assays. This screening evaluates properties such as tox-
icity, promiscuity and efficacy from the onset rather than in later stages of drug
discovery ([23], [46]). Moreover, toxicity and off-target effects are also a focus
of early stages of conventional target-based drug discovery ([5]). But from the
drug discovery perspective, target identification and subsequent validation has
become the rate limiting step in order to tackle the above issues ([12]). Targets
must be identified for the hits in phenotypic assay experiments and for sec-
ondary pharmacology as the activity of hits against all of its potential targets
sheds light on the toxicity and promiscuity of these hits ([5]). Therefore, the
identification of all likely targets for a given chemical compound, also called
Target Fishing ([23]), has become an important problem in drug discovery.

Computational techniques are becoming increasingly popular for target fish-
ing due to large amounts of data from high-throughput screening (HTS), mi-
croarrays, and other experiments ([23]). Given a compound, these techniques
initially assign a score to each potential target based on some measure of like-
lihood that the compound binds to the target. These techniques then select
as the compound’s targets either those targets whose score is above a cer-
tain cut-off or a small number of the highest scoring targets. Some of the
early target fishing methods utilized approaches based on reverse docking (
[5]) and nearest-neighbor classification ([35]). Reverse docking approaches
dock a compound against all the targets of interest and identify as the most
likely targets those that achieve the best binding affinity score. Note that these
approaches are applicable only for proteins with resolved 3D structure and as
such their applicability is somewhat limited. The nearest-neighbor approaches
rely on the structure-activity-relationship (SAR) principle and identify as the
most likely targets for a compound the targets whose nearest neighbors show
activity against. In these approaches the solution to the target fishing problem
only depends on the underlying descriptor-space representation, the similar-
ity function employed, and the definition of nearest neighbors. However, the
performance of these approaches has been recently surpassed by a new set
of model-based methods that solve the target fishing problem using various
machine-learning approaches to learn models for each one of the potential tar-
gets based on their known ligands ([36], [25], [53]). These methods are further
discussed in the subsequent sections.

5.1 Model-based Methods For Target Fishing

Two different approaches have been employed to build models suitable for
target fishing. In the first approach, a separate SAR model is built for every
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target. For a given test compound, these models are used to obtain a score for
each target against this compound. The highest scoring targets are then con-
sidered as the most likely targets that this compound will bind to ([36], [53],
[23]). This approach is similar to the reverse docking approach described ear-
lier. However, the target scores for a compound are obtained from the models
built for each target instead of the docking procedure. The second approach
treats target fishing problem as an instance of the multilabel prediction prob-
lem and uses category ranking algorithms([6]) to solve this problem ([53]).

Bayesian Models for Target Fishing (Bayesian). This approach utilizes
multi-category bayesian models ([36]) wherein a model is built for every target
in the database using SAR data available for each target. Compounds that show
activity against a target are used as positives for that target and the rest of the
compounds are treated as negatives. The input to the algorithm is a training
set consisting of a set of chemical compounds and a set of targets. A model
is learned for every target given a descriptor-space representation of training
chemical compounds ([36]). For a new chemical compound whose targets have
to be predicted, an estimator score is computed for each target reflecting the
likelihood of activity against this target using the learned models. The target
can be ranked according to their estimator scores and the targets that get high
scores can be considered as the most likely targets for this compound.

SVM-based Method (SVM rank). This approach for solving the ranking
problem builds for each target a one-versus-rest binary SVM classifier ([53]).
Given a test chemical compound c, the classifier for each target will then be
applied to obtain a prediction score. The ranking of the targets will be obtained
by simply sorting the targets based on their prediction scores. If there are N
targets in the set of targets T and fi(c) is the score obtained for the itℎ target,
then the final ranking T ∗ is obtained by

T ∗ = argsort
�i∈T

{fi(c)} , (5.1)

where argsort returns an ordering of the targets in decreasing order of their
prediction scores fi(c). Note that this approach assumes that the prediction
scores obtained from the N binary classifiers are directly comparable, which
may not necessarily be valid. This is because different classes may be of differ-
ent sizes and/or less separable from the rest of the dataset, indirectly affecting
the nature of the binary model that was learned, and consequently its prediction
scores. This SVM-based sorting method is similar to the approach proposed
by Kawai and co-workers ([25]).

Cascaded SVM-based Method (Cascade SVM). A limitation of the pre-
vious approach is that by building a series of one-vs-rest binary classifiers,
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it does not explicitly couple the information on the multiple categories that
each compound belongs to during model training. As such it cannot capture
dependencies that might exist between the different categories. A promising
approach that has been explored to capture such dependencies is to formulate
it as a cascaded learning problem ([53], [16]). In these approaches, two sets of
binary one-vs-rest classification models for each category, referred to as L1 and
L2, are connected together in a cascaded fashion. The L1 models are trained
on the initial inputs and their outputs are used as input, either by themselves
or in conjunction with the initial inputs, to train the L2 models. This cascaded
process is illustrated in Figure 19.2. During prediction time, the L1 models are
first used to obtain predictions which are used as input to the L2 models which
produces the final predictions. Since the L2 models incorporate information
about the predictions produced by the L1 models, they can potentially capture
inter-category dependencies.

A two level SVM based method inspired by the above approach is described
in [53]. In this method, both the L1 and L2 models consist of N binary one-
vs-rest SVM classifiers, one for each target in the set of targets T . The L1

models correspond exactly to the set of models built by the one-vs-rest method
discussed in the previous approach. The representation of each compound in
the training set for the L2 models consists of its descriptor-space based repre-
sentation and its output from each of the N L1 models. Thus, each compound
c corresponds to an n +N dimensional vector, where n is the dimensionality
of the descriptor space. The final ranking T ∗ of the targets for a test compound
will be obtained by sorting the targets based on their prediction scores from the
L2 models (fL2

i (c)). That is,

T ∗ = argsort
�i∈T

{
fL2
i (c)

}
, (5.2)

Ranking Perceptron Based Method (RP). This approach is based on the
online version of the ranking perceptron algorithm proposed to learn a ranking
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Figure 19.3. Precision and Recall results

function on a set of categories developed by Crammer and Singer ([6], [53]).
This algorithm takes as input a set of objects and the categories that they be-
long to and learns a function that for a given object c it ranks the different
categories based on the likelihood that c binds to the corresponding targets.
During the learning phase, the distinction between categories is made only via
a binary decision function that takes into account whether a category is part
of the object’s categories (relevant set) or not (non-relevant set). As a result,
even though the output of this algorithm is a total ordering of the categories,
the learning is only dependent on the partial orderings induced by the set of
relevant and non-relevant categories.

The algorithm employed for target fishing extends the work of Crammer and
Singer by introducing margin based updates and extending the online version
to a batch setting([53]). It learns a linear model W that corresponds to a N ×
n matrix, where N is the number of targets and n is the dimensionality of
the descriptor space. Thus, the above method can be directly applied on the
descriptor-space representation of the training set of chemical compounds.

Finally, the prediction score for compound ci and target �j is given by
⟨Wj, ci⟩, where Wj is the jth row of W , ci is the descriptor-space represen-
tation of the compound, and ⟨⋅, ⋅⟩ denotes a dot-product operation. Therefore,
the predicted ranking for a test chemical compound c is given by

T ∗ = argsort
�j∈T

{⟨Wj , c⟩}. (5.3)

SVM+Ranking Perceptron-based Method (SVM+RP). A limitation of
the above ranking perceptron method over the SVM-based methods is that it
is a weaker learner as (i) it learns a linear model, and (ii) it does not provide
any guarantees that it will converge to a good solution when the dataset is not
linearly separable. In order to partially overcome these limitations a scheme
that is similar in nature to the cascaded SVM-based approach previously de-
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scribed was developed in which the L2 models are replaced by a ranking per-
ceptron ([53]). Specifically, N binary one-vs-rest SVM models are trained,
which form the set of L1 models. Similar to the cascade SVM method, the
representation of each compound in the training set for the L2 models con-
sists of its descriptor-space based representation and its output from each of
the N L1 models. Finally, a ranking model W learned using the ranking per-
ceptron described in the previous section. Since the L2 model is based on the
descriptor-space based representation and the outputs of the L1 models, the
size of W is N × (n+N).

5.2 Performance of Target Fishing Strategies

An extensive evaluation of the different Target Fishing methods was per-
formed recently ([53]) which primarily used the PubChem ([39]) database
to extract target-specific dose-response confirmatory assays. Specifically, the
ability of the five methods to identify relevant categories in the top-k ranked
categories was assessed in this work. The results were analyzed along this
direction because this directly corresponds to the use case scenario where a
user may want to look at top-k predicted targets for a test compound and fur-
ther study or analyze them for toxicity, promiscuity, off-target effects, path-
way analysis etc([53]). The comparisons utilized precision and recall metric
in top-k for each of the five schemes. as shown in Figures 19.3a) and 19.3b).
These figures show the actual precision and recall values in top-k by varying k
from one to fifteen.

These figures indicate that for identifying one of the correct categories or tar-
gets in the top 1 predictions, cascade SVM outperforms all the other schemes
in terms of both precision and recall. However, as k increases from one to fif-
teen, the precision and recall results indicate that the best performing scheme
is the SVM+Ranking Perceptron and it outperforms all other schemes for both
precision as well as recall. Moreover, these values in figure 19.3b) show that
as k increases from one to fifteen, both the ranking perceptron based schemes
(RP and SVM+RP) start performing consistently better that others in identify-
ing all the correct categories. The two ranking perceptron based schemes also
achieve average precision values that are better than other schemes in the top
fifteen (Figure 19.3a)).

6. Future Research Directions

Mining and retrieving chemical data for a single biomolecular target and
building SAR models on it has been traditionally used to predict as well as
analyze the bioactivity and other properties of chemical compounds and plays
a key role in drug discovery. However, in recent years the wide-spread use
of High-Throughput Screening (HTS) technologies by the pharmaceutical in-
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dustry has generated a wealth of protein-ligand activity data for large com-
pound libraries against many biomolecular targets. The data has been system-
atically collected and stored in centralized databases ([38]). At the same time,
the completion of the human genome sequencing project has provided a large
number of “druggable” protein targets ([44]) that can be used for therapeutic
purposes. Additionally, a large fraction of the protein targets that have or are
currently been investigated for therapeutic purposes are confirmed to belong
to a small number of gene families ([62]). The combination of these three
factors has led to the development of methods that utilize information that
goes beyond the traditional single biomolecular target’s chemical data analy-
sis. In recent years, the trend has been to integrate chemical data with protein
and genetic data (bioinformatics data) and analyze the problem over multiple
proteins or different protein families. Consequently, Chemogenomics ([43]),
Poly-Pharmacology ([38])and Target Fishing ([23]) have emerged as important
problems in drug discovery.

Another new direction that utilizes graph mining is network pharmacology.
A fundamental assumption in drug discovery that has been applied widely in
the past decades is the “one gene, one drug, on disease” assumption. How-
ever, the increasing failure in translating drug candidates into effective ther-
apies raises the challenges to this assumption. Recent studies show that the
modulating or effecting an individual gene or gene product has little effects on
disease network. For example, under laboratory conditions, many single-gene
knockouts by themselves exhibit little or no effects on phenotype and only
19% of genes were found to be essential across a number of model organisms
([63]). This robustness of phenotype can be understood in terms of redundant
functions and alternative compensatory signalling routes. In addition, large
scale functional genomics studies reveal the importance of polypharmacology,
which suggests that is, instead of focusing on drugs that are maximally selec-
tive against a single drug target, the focus should be to select the drug can-
didates that interact with multiple proteins that are essential in the biological
network. This new paradigm is refereed to as network pharmacology ([21]).

Graph mining has also been utilized to study the drug-target interaction net-
work. Such networks provide topological information between drug and tar-
get interactions that once explored may suggest novel perspective in terms of
drug discovery that is not possible by looking at drugs and targets in isolation.
Learning from drug-target interaction networks has been focused on predicting
drugs for targets that are novel, or that have only a few drugs known (Target
Hopping). These methods tend to leverage the knowledge of both targets and
the drug simultaneously to obtain characteristics of drug-target interaction net-
works. Many of the learning methods utilize Support Vector Machine (SVM).
In this approach, novel kernels have been developed that relate drugs and tar-
gets explicitly. For example, Yamanish et al.([60]), developed profiles to repre-
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sent interactions between drugs and targets, and then used kernel regression to
the relationship among the interactions. Their framework enables predictions
of unknown drug-target interactions.

With the improvement in high throughput technologies in chemistry, ge-
nomics, proteomics, and chemical genetics, graph mining is set to play an
important role in the understanding of human disease and pursuit of novel ther-
apies for these diseases.
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