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Preface

1 Audience

Students seeking master’s degrees in applied statistics in the late 1960s and 1970s
typically took a year-long sequence in statistical methods. Popular choices of the
course textbook in that period prior to the availability of high-speed computing and
graphics capability were those authored by Snedecor and Cochran (1980) and Steel
and Torrie (1960).

By 1980, the topical coverage in these classics failed to include a great many
new and important elementary techniques in the data analyst’s toolkit. In order to
teach the statistical methods sequence with adequate coverage of topics, it became
necessary to draw material from each of four or five text sources. Obviously, such a
situation makes life difficult for both students and instructors. In addition, statistics
students need to become proficient with at least one high-quality statistical software
package.

This book Statistical Analysis and Data Display can serve as a standalone text
for a contemporary year-long course in statistical methods at a level appropriate for
statistics majors at the master’s level and for other quantitatively oriented disciplines
at the doctoral level. The topics include concepts and techniques developed many
years ago and also a variety of newer tools.

This text requires some previous studies of mathematics and statistics. We sug-
gest some basic understanding of calculus including maximization or minimization
of functions of one or two variables, and the ability to undertake definite integra-
tions of elementary functions. We recommend acquired knowledge from an earlier
statistics course, including a basic understanding of statistical measures, probability
distributions, interval estimation, hypothesis testing, and simple linear regression.

vii
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2 Motivation

The Second Edition in 2015 has four major changes since the First Edition in 2004
Heiberger and Holland (2004). The changes are summarized here and described in
detail in Section 5.

• The computation for the Second Edition is entirely in R (R Core Team, 2015).
R is a free open-source publicly licensed software environment for statistical
computing and graphics. The computation for the First Edition is mostly in S-
Plus, with some R and some SAS. R uses a dialect of the S language developed
at Bell Labs. The R dialect is closely related to the dialect of S used by S-Plus.
R is much more powerful now than it was when the First Edition was written.

• All graphs from the First Edition have been redrawn in color. There are many
additional graphs new to the Second Edition. The graphs are easier to specify
because they are built with the much more powerful graphical primitives that
exist now and didn’t exist 12 years ago. Most graphs are constructed with lattice,
the R implementation of trellis graphics pioneered by S-Plus. Some, particularly
in Chapter 15, are drawn using mosaic and related functions in the vcd package.
Functions for the graphic displays designed for this book are included in the HH
package available at CRAN (Heiberger, 2015).

• Most chapters in the Second Edition are similar in content to the chapters in
the First Edition. There are several revised and expanded chapters and several
additional appendices.

• The new appendices respond to shifts in the software landscape and/or in the
assumed knowledge of computing by the intended audience since 2004.

3 Structure

The book is organized around statistical topics. Each chapter introduces concepts
and terminology, develops the rationale for its methods, presents the mathemat-
ics and calculations for its methods, and gives examples supported by graphics
and computer output, culminating in a writeup of conclusions. Some chapters have
greater detail of presentation than others, based on our personal interests and exper-
tise.

Our emphasis on graphical display of data is a distinguishing characteristic of
this book. Many of our graphical displays appeared here for the first time. We show
graphs, how to construct and interpret them, and how they relate to the tabular out-
puts that appear automatically when a statistical program “analyzes” a data set. The
graphs are not automatic and so must be requested. Gaining an understanding of
a data set is always more easily accomplished by looking at appropriately drawn
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graphs than by examining tabular summaries. In our opinion, graphs are the heart of
most statistical analyses; the corresponding tabular results are formal confirmations
of our visual impressions.

We believe that a firm control of the language gives the analyst the tools to think
about the ideal way to detect and display the information in the data. We focus our
presentation on the written command languages, the most flexible descriptors of
the statistical techniques. The written languages provide the opportunity for growth
and understanding of the underlying techniques. The point-and-click technology of
icons and menus is sometimes convenient for routine tasks. However, many interest-
ing data analyses are not routine and therefore cannot be accomplished by pointing
and clicking the icons provided by the program developers.

4 Computation

In the First Edition, and again in the Second Edition, the code and data for all ex-
amples and figures in the book is available for download.

For the Second Edition, the datasets and R code will be distributed as the R
package HH through CRAN (Heiberger, 2015).

For the First Edition, the download containing S-Plus, R, and SAS code was
initially (in 2004) available from my web site. In 2007, the R code was placed on
CRAN (the Comprehensive R Archive Network) as the R package HH. In 2009, the
S-Plus code was placed on CSAN (the Comprehensive S Archive Network) as the
S-Plus package HH (Heiberger, 2009).

All datasets in the HH package are documented in the book.

4.1 R

R (R Core Team, 2015) is free, publicly licensed, extensible, open-source software.
The R language is a dialect of the S language (Becker et al., 1988), similar to that
used by S-Plus (Insightful Corp., 2002; TIBCO Software Inc., 2010). Much code
(both functions and examples) written for one will also work in the other. R has been
increasing its reach—within academia, industry, government, and internationally.
Please see Appendix A for information on downloading and using R.

The S language was originally developed at Bell Labs in the 1970s. The Asso-
ciation for Computing Machinery (ACM) awarded John M. Chambers of Bell Labs
the 1998 Software System Award for developing the S system.
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The R language is an exceptionally well-developed tool for statistical research
and analysis, that is for exploring and designing new techniques of analysis, as well
as for analysis. The trellis graphics implementation in R’s lattice package is espe-
cially strong for statistical graphics, the output of data analysis through which both
the raw data and the results are displayed for the analyst and the client.

R is available by download. The developers are The R Development Core Team,
an international group that includes John Chambers and other former Bell Labs
researchers.

4.2 The HH Package in R

An important feature of this book is its graphical displays of statistical analyses. For
the Second Edition, the HH functions for graphing have been rewritten using the
more powerful graphing infrastructure that is now available in the lattice package
in R. The package version number has been changed from the HH 2.3.x series to
the HH 3.1-x series to reflect the redesign. The First Edition had black-and-white
figures in print, even though the software at that time produced color figures. In the
Second Edition all figures, both in print and in the eBook edition, are in color.

Please see Appendix B for information on working with the HH package.

R graphics have much improved since the time of the First Edition. The lattice
graphics package for plotting coordinated sets of displays was in its infancy when
we wrote the First Edition, not yet as capable as the equivalent trellis graphics sys-
tem in S-Plus, and specifically not capable of all the figures in the book. Now
lattice is much more powerful than trellis, and can be even further extended with
the capabilities since encoded in the latticeExtra package (Sarkar and Andrews,
2013).

The R package system was also not as extensive at that time, and the S-Plus
package system did not yet exist. The code and examples for the First Edition of the
book were distributed as a zip file on my website and accessible through the Springer
website. The code and examples were revised and distributed as an R package HH
beginning in 2007, and as an S-Plus package in 2009, when S-Plus created their
package system. I have continually maintained and extended the software.

4.3 S-Plus, now called S+

S+ is still available, but less commonly used. TIBCO, the owner of S+ is now dis-
tributing a Developer’s Edition of R called TERR (TIBCO Enterprise Runtime for
R) based on their new enterprise-grade, high-performance statistical engine (TIBCO
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Software Inc., 2014). The design goal of TERR is to be able to install all R pack-
ages. As of July 2014, TERR had not yet implemented their graphics system. Once
their graphics system is implemented, HH 3.1-x will work with TERR.

The older version of HH (Heiberger, 2009), designed for the First Edition of this
book, continues to work with S+.

4.4 SAS

SAS is an important statistical computing system in industry. All the code from
our First Edition still works. My own personal work has become more highly R-
focused. I have chosen to drop most of the SAS discussion and examples from the
body of the Second Edition.

Some SAS material is still in the body of the Second Edition. Now-standard
terminology introduced by SAS, primarily the notation for “Types” of Sums of
Squares described in Section 13.6, is referenced and described. The notation of the
SAS MODEL statement is similar to the notation of the R model formula. Compar-
isons of the two notations are in Sections 9.4.1, 12.13.1, 12.15, 12.A, 13.4, and 13.5.

All datasets in the Second Edition can be used with SAS. See Appendix H for
details.

5 Chapters in the Second Edition

5.1 Revised Chapters

All graphs from the First Edition have been redrawn in color and with the use of
much more powerful graphical primitives that didn’t exist 12 years ago.

There are many additional graphs new to the Second Edition.

Chapters 3 and 5 have many new figures, most built with the NTplot function.
The graphs, showing significance and power of hypothesis tests for the normal and
t distributions, produced by this single function cover most of the standard first
semester introductory Statistics course.

Chapter 11 “Multiple Regression—Regression Diagnostics” has a new sec-
tion 11.3.7 “Residuals vs Leverage” to discuss one of the panels produced by R’s
plot.lm function that was not in the similar S-Plus function.
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Chapter 15 “Bivariate Statistics—Discrete Data” has undergone major revision.
The examples are now centered on mosaic graphics, using the vcd package that
was not available when the First Edition was written.

Section 15.8 “Example—Adverse Experiences” is new. The discussion focuses
on the Adverse Effects dotplot, and shows how multi-panel plots graphical displays
can replace pages of tabular data. The discussion is based on the work in which I
participated while at research leave at GSK (Amit et al., 2008).

Section 15.9 “Likert Scale Data” is new. This section is based on my recent work
with Naomi Robbins (Heiberger and Robbins, 2014). Rating scales, such as Likert
scales and semantic differential scales, are very common in marketing research, cus-
tomer satisfaction studies, psychometrics, opinion surveys, population studies, and
numerous other fields. We recommend diverging stacked bar charts as the primary
graphical display technique for Likert and related scales. We discuss the perceptual
issues in constructing the graphs. Many examples of plots of Likert scales are given.

5.2 Revised Appendices

We have made major changes to the Appendices. There are more appendices now
and the previous appendices have been restructured and expanded. The description
of the Second Edition appendices is in Section 1.3.5.

6 Exercises

Learning requires that the student work a fair selection of the exercises provided,
using, where appropriate, one of the statistical software packages we discuss.
Beginning with the exercises in Chapter 5, even when not specifically asked to do
so, the student should routinely plot the data in a way that illuminates its structure,
and state all assumptions made and discuss their reasonableness.
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Chapter 1

Introduction and Motivation

Statistics is the science and art of making decisions based on quantitative evidence.
This introductory chapter motivates the study of statistics by describing where and
how it is used in all endeavors. It gives examples of applications, a little history
of the subject, and a brief overview of the structure and content of the remaining
chapters.

Almost all fields of study (including but not limited to physical science, social
science, business, and economics) collect and interpret numerical data. Statistical
techniques are the standard ways of summarizing and presenting the data, of turn-
ing data from an accumulation of numbers into usable information. Not all numbers
are the same. No group of people are all the same height, no group has an identical
income, not all cars get the same gas mileage, not all manufactured parts are abso-
lutely identical. How much do they differ? Variability is the key concept that statis-
tics offers. It is possible to measure how much things are not alike. We use standard
deviation, variance, range, interquartile range, and MAD (median absolute devia-
tion from the median) as measures of not-the-sameness. When we compare groups
we compare their variability as well as their range.

Statistics uses many mathematical tools. The primary tools—algebra, calculus,
matrix algebra, analytic geometry—are reviewed in Appendix I. Statistics is not
purely mathematics. Mathematics problems are usually well specified and have a
single correct answer on which all can agree. Data interpretation problems calling
for statistics are not yet well specified. Part of the data analyst’s task is to specify the
problem clearly enough that a mathematical tool may be used. Different answers to
the same initial decision problem may be valid because a statistical analysis requires
assumptions about the data and its manner of collection, and analysts can reasonably
disagree about the plausibility of such assumptions.

Statistics uses many computational tools. In this book, we use R (R Core
Team, 2015) as our primary tool for statistical analysis. R is an exceptionally
well-developed tool for statistical research and analysis, that is for exploring and
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designing new techniques of analysis, as well as for analysis. We discuss installation
and use of R in Appendix A.

We make liberal use of graphs in our presentations. Data analysts are responsible
for the display of data with graphs and tables that summarize and represent the data
and the analysis. Graphs are often the output of data analysis that provide the best
means of communication between the data analyst and the client. We study a variety
of display techniques.

While producing this book, we designed many innovative graphical displays of
data and analyses. We introduce our displays in Section 1.3.4. We discuss the dis-
plays throughout the book in the context of their associated statistical techniques.
These discussions are indexed under the term graphical design. In the appendix to
Chapter 4, we summarize the large class of newly created graphs that are based on
Cartesian products.

The R code for all the graphs and tables in this book is included in the HH pack-
age for R (Heiberger, 2015). See Appendix B for a summary of the HH package.
We consider the HH package to be an integral part of the book.

Statistics is an art. Skilled use of the mathematical tools is necessary but not
sufficient. The data analyst must also know the subject area under study (or must
work closely with a specialist in the subject area) to ensure an appropriate choice
of statistical techniques for solving a problem. Experience, good judgment, and
considerable creativity on the part of the statistical analyst are frequently needed.

Statistics is “the science of doing science” and is perhaps the only discipline that
interfaces with all other sciences. Most statisticians have training or considerable
knowledge in one or more areas other than statistics. The statistical analyst needs to
communicate successfully both orally and in writing with the client for the analysis.

Statistics uses many communications skills, both written and oral. Results
must be presented to the client and to the client’s management. We discuss some of
the mechanics of writing programs and technical reports in Appendices K, L, M, N,
and O.

A common statistical problem is to discover the characteristics of an unob-
servable population by examining the corresponding characteristics of a sample
randomly selected from the population and then (inductively) inferring the pop-
ulation characteristics (parameters) from the corresponding sample characteristics
(statistics). The task of selecting a random sample is not trivial. The discipline of
statistics has developed a vast array of techniques for inferring from samples to
populations, and for using probabilities to quantify the quality of such inferences.

Most statistical problems involve simultaneous consideration of several related
measurements. Part of the statistician’s task is to determine the interdependence
among such measures, and then to account for it in the analysis.

The word “statistics” derives from the political science collections of
numerical data describing demographics, business, politics that are useful for
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management of the “state”. The development of statistics as a scientific discipline
dates from the end of the 19th century with the design and analysis of agricultural
experiments aimed at finding the best combination of fertilization, irrigation, and
variety to maximize crop yield. Early in the 20th century, these ideas began to take
hold in industry, with experiments designed to maximize output or minimize cost.
Techniques for statistical analysis are developed in response to the needs of specific
subject areas. Most of the techniques developed in one subject field can be applied
unchanged to other subjects.

1.1 Statistics in Context

We write as if the statistician and the client are two separate people. In reality they
are two separate roles and the same person often plays both roles. The client has
a problem associated with the collection and interpretation of numerical data. The
statistician is the expert in designing the data collection procedures and in calculat-
ing and displaying the results of statistical analyses.

The statistician’s contribution to a research project typically includes the follow-
ing steps:

1. Help the client phrase the question(s) to be answered in a manner that leads to
sensible data collection and that is amenable to statistical analysis.

2. Design the experiment, survey, or other plan to approach the problem.

3. Gather the data.

4. Analyze the data.

5. Communicate the results.

In most statistics courses, including the one for which this book is designed,
much of the time is spent learning how to perform step 4, the science of statistics.
However, step 2, the art of statistics, is very important. If step 2 is poorly executed,
the end results in step 5 will be misleading, disappointing, or useless. On the other
hand, if step 4 is performed poorly following an excellent plan from step 2 and a
correct execution of step 3, a reanalysis of the data (a new step 4) can “save the
day”.

Today (2015) there are more than 18,000 statisticians practicing in the United
States. Most fields in the biological, physical, and social sciences require training
in statistics as educational background. Over 100 U.S. universities offer graduate
degrees in statistics. Most firms of any size and most government agencies employ
statisticians to assist in decision making. The profession of statistician is highly
placed in the Jobs Rated Almanac Krantz (1999). A shortage of qualified statisti-
cians to fill open positions is expected to persist for some time American Statistical
Association (2015).
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1.2 Examples of Uses of Statistics

Below are a few examples of the countless situations and problems for which statis-
tics plays an important part in the solution.

1.2.1 Investigation of Salary Discrimination

When a group of workers believes that their employer is illegally discriminating
against the group, legal remedies are often available. Usually such groups are mi-
norities consisting of a racial, ethnic, gender, or age group. The discrimination may
deal with salary, benefits, an aspect of working conditions, mandatory retirement,
etc. The statistical evidence is often crucial to the development of the legal case.

To illustrate the statistician’s approach, we consider the case of claimed salary
discrimination against female employees. The legal team and statistician begin by
developing a defensible list of criteria that the defendant may legally use to deter-
mine a worker’s salary. Suppose such a list includes years of experience (yrsexp),
years of education (yrsed), a measure of current job responsibility or complexity
(respon), and a measure of the worker’s current productivity (product). The statis-
tician then obtains from a sample of employees, possibly following a subpoena by
the legal team, data on these four criteria and a fifth criterion that distinguishes be-
tween male and female employees (gender) . Using regression analysis techniques
we introduce in Chapter 9, the statistician considers two statistical models, one that
explains salary as a function of the four stipulated permissible criteria, and an-
other that explains salary as a function of these four criteria plus gender. If the
model containing the predictor gender predicts salary appreciably better than does
the model excluding gender and if, according to the model with gender included,
females receive significantly less salary than males, then this may be regarded as
statistical evidence of discrimination against females. Tables and graphs based on
techniques discussed in Chapters 15, 17, and 4 (and other chapters) are often used
in legal proceedings.

In the previous section it is pointed out that two statisticians can provide different
analyses because of different assumptions made at the outset. In this discrimination
context, the two legal teams may disagree over the completeness or relevance of the
list of permissible salary determinants. For example, the defense team may claim
that females are “less ambitious” than males, or that women who take maternity or
child care leaves have less continuous or current experience than men. If the court
accepts such arguments, this will undermine the plaintiff statistician’s finding of the
superiority of the model with the extra predictor.
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1.2.2 Measuring Body Fat

In Chapters 8, 9, and 13 we discuss an experiment designed to develop a way to
estimate the percentage of fat in a human body based only on body measurements
that can be made with a simple tape measure. The motivation for this investigation
is that measurement of body fat is difficult and expensive (it requires an underwater
weighing technique), but tape measurements are easy and inexpensive to obtain. At
the outset of this investigation, the client offered data consisting of 15 inexpensive
measurements and the expensive body fat measurement on each of 252 males of
various shapes and sizes. Our analysis in Chapter 9 demonstrates that essentially all
of the body fat information in the 15 other measurements can be captured by just
three of these other measurements. We develop a regression model of body fat as a
function of these three measurements, and then we examine how closely these three
inexpensive measurements alone can estimate body fat.

1.2.3 Minimizing Film Thickness

In Section 13.3.1 we discuss an experiment that seeks to find combinations of
temperature and pressure that minimize the thickness of a film deposited on
a substrate. Each of these factors can affect thickness, and the complication here is
the possibility that the optimum amount of one of these factors may well depend on
the chosen amount of another factor. Modeling such interaction between factors is
key to a proper analysis. The statistician is also expected to advise on the extent of
sensitivity of thickness to small changes in the optimum mix of factors.

1.2.4 Surveys

Political candidates and news organizations routinely sample potential voters for
their opinions on candidates and issues. Results gleaned from samples selected by
contemporary methods are often regarded as sufficiently reliable to influence candi-
date behavior or public policy.

The marketing departments of retail firms often sample potential customers to
learn their opinions on product composition or packaging, and to help find the best
matches between specialized products and locales for their sale.

Manufacturers sample production to determine if the proportion of output that
is defective is excessive. If so, this may lead to the decision the output should be
scrapped, or at least that the production process be inspected and corrected for
problems.
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All three of these examples share statistical features. The data are collected using
techniques discussed in Section 3.11. The initial analysis is usually based on tech-
niques of Chapter 5.

1.2.5 Bringing Pharmaceutical Products to Market

The successful launching of a new pharmaceutical drug is a huge undertaking in
which statisticians are key members of the investigative team. After candidate drugs
are found to be effective for alleviation of a condition, experiments must be run
to check them for toxicity, safety, side effects, and interactions with other drugs.
Once these tests are passed, statisticians help to determine the optimum quantity
and spacing of dosages. Much of the testing is done on lab animals; only at the later
stages are human subjects involved. The entire process is performed in a manner
mandated by government regulatory agencies (such as the Food and Drug Adminis-
tration (FDA) in the United States, The European Medicines Agency (EMA) in the
European Union, or the Ministry of Health, Labour and Welfare (MHLW) in Japan).
Techniques are based on material developed in all chapters of this book.

1.3 The Rest of the Book

1.3.1 Fundamentals

Chapters 2 through 5 discuss data, types of data analysis, and graphical display of
data and of analyses.

Chapter 2 describes data acquisition and how to get the data ready for its analysis.
We emphasize that an important early step in any data analysis is graphical display
of the data.

Chapter 3 provides an overview of basic concepts—probability, distributions,
estimation, testing, principles of inference, and sampling—that are background
material for the remainder of the book. Several common distributions are discussed
and illustrated here. Others appear in Appendix J. Two important fitting criteria—
least squares and maximum likelihood—are introduced. Random sampling is a well-
defined technique for collecting data on a subset of the population of interest. Ran-
dom sampling provides a basis for making inferences that a haphazard collection of
data cannot provide.

A variety of graphical displays are discussed and illustrated in Chapter 4. The
graphs themselves are critically important analysis tools, and we show examples
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where different display techniques help in the interpretation of the data. On occasion
we display graphs that are intermediate steps leading to other graphs. For example,
Figure 14.17 belongs in a final report, but Figure 14.15, which suggests the im-
proved and expanded Figure 14.17, should not be shown to the client.

Chapter 5 introduces some of the elementary inference techniques that are used
throughout the rest of the book. We focus on tests on data from one or two normal
distributions. We show the algebra and graphics for finding the center and spread of
the distributions. These algebraic and graphical techniques are used in all remaining
chapters.

1.3.2 Linear Models

Chapters 6 through 13 build on the techniques developed in Chapter 5. The word
“linear” means that the equations are all linear functions of the model parameters
and that graphs of the analyses are all straight lines or planes.

In Chapter 6 we extend the t-tests of Chapter 5 to the comparison of the means
of several (more than two) populations.

With k > 2 populations, there are only k − 1 independent comparisons possible,
yet we often wish to make

(
k
2

)
comparisons. In Chapter 7 we discuss the concept of

multiple comparisons, the way to make valid inferences when there are more com-
parisons of interest than there are degrees of freedom. We introduce the fundamental
concept of “contrasts”, direct comparisons of linear combinations of the means of
these populations, and show several potentially sensible ways to choose k − 1 inde-
pendent contrasts. We introduce the MMC plot, the mean–mean plot for displaying
arbitrary multiple comparisons.

Chapters 8 through 11 cover regression analysis, the process of modeling a con-
tinuous response variable as a linear function of one or more predictor variables.

In Chapter 8 we plot a continuous response variable against a single continuous
predictor variable and develop the least-squares procedure for fitting a straight line
to the points in the plot. We cast the algebra of least squares in matrix notation
(relevant matrix material is in Appendix I) and apply it to more than one predictor
variable. We introduce the statistical assumptions of a normally distributed error
term and show how that leads to estimation and testing procedures similar to those
introduced in Chapter 5.

Chapter 9 builds on Chapter 8 by allowing for more than one predictor for a
response variable and introducing additional structure, such as interactions, among
the predictor variables. We show techniques for studying the relationships of the
predictors to each other as well as to the response.



8 1 Introduction and Motivation

Chapter 10 shows how dummy variables are used to incorporate categorical pre-
dictors into multiple regression models. We begin to use dummy variables to encode
the contrasts introduced in Chapter 6, and we continue using dummy variables and
contrasts in Chapters 12, 13, and 14. We show how the use of continuous (concomi-
tant) variables (also known as covariates) can enhance the modeling of designed
experiments.

Chapter 11 evaluates the models, introduces diagnostic techniques for checking
assumptions and detecting outliers, and uses tools such as transformation of the
variables to respond to the problems detected.

In Chapter 12 we extend the analysis of one-way classifications of continuous
data to several types of two-way classifications. We cast the analysis of variance
into the regression framework with dummy variables that code the classification
factors with sets of contrasts.

In Chapters 13 and 14 we consider the principles of experimental design and
their application to more complex classifications of continuous data. We discuss the
analysis of data resulting from designed experiments.

1.3.3 Other Techniques

The analysis of tabular categorical data is considered in Chapter 15. We discuss
contingency tables, tables in which frequencies are classified by two or more factors.
For 2 × 2 tables or sets of 2 × 2 tables we use odds ratios or the Mantel–Haenszel
test. For larger tables we use χ2 analysis. We discuss several situations in which
contingency tables arise, including sample surveys and case–control studies.

In Chapter 16 we briefly survey nonparametric testing methods that don’t require
the assumption of an underlying normal distribution.

Chapter 17 is concerned with logistic regression, the statistical modeling of a
response variable which is either dichotomous or which represents a probability.
We place logistic regression in the setting of generalized linear models (although
we do not fully discuss generalized linear models in this volume). We extend the
graphical and algebraic analysis of linear regression to this case.

We conclude in Chapter 18 with an introduction to ARIMA modeling of time
series. Time series analysis makes the explicit assumption that the observations are
not independent and models the structure of the dependence.
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1.3.4 New Graphical Display Techniques

This book presents many new graphical display techniques for statistical analysis.
Most of our new displays are based on defining the panels of a multipanel graphical
display by a Cartesian product of sets of variables, of transformations of a variable,
of functions of a fit, of models for a fit, of numbers of parameters, or of levels of a
factor. The appendix to Chapter 4 summarizes how we use the Cartesian products to
design these new displays and gives a reference to an example in the book for each.
The displays, introduced throughout this book’s 18 chapters, cover a wide variety of
statistical methods. The construction and interpretation of each display are provided
in the chapter where it appears.

We produced these displays with the functions that are included in the HH pack-
age available at CRAN (Heiberger, 2015) and CSAN (Heiberger, 2009). We use
R because it is especially strong for designing and programming statistical graph-
ics. We encourage readers and software developers to write and publish functions
and macros for these displays in other software systems that have a similarly rich
graphics environment.

1.3.5 Appendices on Software

Appendix A discusses the installation and use of R. Some of its material was in the
First Edition Appendix B.

Appendix B discusses the HH package. The scripts for all examples in both
the First and Second Editions of the book are included in the HH package. The
Appendix shows how to use the scripts to duplicate the figures and tables in the
book. Some of its materials were in the First Edition Appendix B.

Appendix C “Rcmdr” is new. It discusses and illustrates menu-driven access to
the functions and graphics in the book. It is based on my R package RmcdrPlu-
gin.HH, an add-in for the R package Rcmdr that provides the menu system.

Appendix D “RExcel” is new. It discusses the RExcel interface described in my
book with Erich Neuwirth (Heiberger and Neuwirth, 2009) describing his RExcel
software (Neuwirth, 2014). RExcel provides a seamless integration of R and Excel.
RExcel both places R inside the Excel automatic recalculation model and makes
the Rcmdr menu system available on the Excel menu bar.

Appendix E “Shiny” is new. It discusses and illustrates web-based access to R
functions using the shiny package written by R-Studio and distributed on CRAN.
shiny provides an R language interface for writing interactive web pages.

Appendix F “R Packages” gives a very brief discussion of software design. It
includes references to the R documentation.
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Appendix G “Computational Precision and Floating Point Arithmetic” is new.
Computers use floating point arithmetic. The floating point system is not identical
to the real-number system that we (teachers and students) know well, having studied
it from kindergarten onward. In this appendix we show several examples to illustrate
and emphasize the distinction.

Appendix H “Other Statistical Software” is new. It tells how to use the datasets
for this book with software other than R.

1.3.6 Appendices on Mathematics and Probability

Appendix I “Mathematics Preliminaries” has been expanded from First Edition
Appendix F with many more graphs and tables.

Appendix J “Probability Distributions” has been expanded from First Edition
Appendix D to include additional probability distributions. It now covers all prob-
ability distributions in the R stats package, and it now includes a density graph for
each distribution.

1.3.7 Appendices on Statistical Analysis and Writing

Appendix K “Working Style” has been split off and expanded from First Edition
Appendix E. It includes a discussion of the importance of a good R-aware text editor
and defines what that means. It includes a discussion of our process in writing this
book and my process in writing and maintaining the HH package.

Appendix L “Writing Style” has been split off and expanded from First Edition
Appendix E. It discusses some of the basics of clear writing—including typography,
presentation of graphs, and alignment in tables, and programming style.

Appendix M “Accessing R through a Powerful Editor—with Emacs and ESS
as the Example” has been split off and expanded from First Edition Appendix E. A
good editor is one of the most important programs on your computer. It is the direct
contact with all the documents, including R scripts and R functions, that you write.
A good editor will understand the syntax of your programming language (R specifi-
cally) and will simplify the running and testing of code. We write in the terminology
of Emacs because it is our working environment. Most of what we illustrate applies
to other high-quality editors.

Appendix N “LATEX” has been split off and expanded from First Edition
Appendix E. It provides basic information about LATEX, the document preparation
system in which we wrote this book.
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Appendix O “Word Processors and Spreadsheets” has been split off and expanded
from First Edition Appendix E. Unless there are specific add-ins that understand R,
we do not recommend word processing software for working with R. We can rec-
ommend spreadsheet software for use as a small-scale database management system
and as a way of organizing calculations. Unless you are working with RExcel (dis-
cussed in Appendix D) we do not recommend the use of spreadsheets for the actual
statistical calculations.



Chapter 2

Data and Statistics

Statistics is the field of study whose objective is the transformation of data (usually
sets of numbers along with identifying characteristics) into information (usually in
the form of tables, graphs, and written and verbal summaries) that can inform sound
policy decisions. We give examples of applications of statistics to many fields in
Chapter 1. Here we focus on the general concepts describing the collection and
arrangement of the numbers themselves.

2.1 Types of Data

Traditionally, we refer to five different types of data: count, categorical, ordered,
interval, and ratio.

count data: The observational unit either has, or does not have, a particular prop-
erty. For example, tossed coins can come up heads or tails. We count the number
n of heads when a total of N coins are tossed.

categorical data: The data values are distinct from each other. Categorical vari-
ables are also referred to as nominal variables, class variables, or factors. The
various categories or classes of a categorical variable are called its levels. An
example of a factor, from the introductory paragraph of Chapter 6, is factory

having six levels. That is, the investigation takes place at six factories. If we code
factory as {1, 2, 3, 4, 5, 6}, meaning that we arbitrarily assign these six numbers
to the six factories, we must be careful not to interpret these codes as ratio data.
Coding the factory levels as integers doesn’t give us the right to do arithmetic
on the code numbers.
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ordered data: The data values can be placed in a rank ordering. For any two
observations, the analyst knows which of the two is larger, but not necessarily
the magnitude of the difference between them. There is a distinct concept of first,
second, . . . , last. There is no way to measure the distance between values. An
example is military ranks: A general is higher-ranked than a colonel, which in
turn is higher than a major. There is no easy way to say something like, “A gen-
eral is twice as far above a colonel as a colonel is above a major.”

interval data: The data values have well-defined distances between them, but there
is not a ratio relationship. School grades are an example. Students in 10th grade
have studied one year longer than students in 9th grade; similarly, students in 9th

grade have studied one year longer than students in 8th grade. It is not meaningful
to say a 10th-grade student is twice as knowledgeable as a 5th-grade student.

ratio data: The data values are measured by real numbers: There are a well-
defined origin and a well-defined unit. Height of people is an example. There
is a well-defined 0 height. We can speak of one person being 1 inch taller than
another or of being 10% taller than another.

We also have another categorization of data as discrete or continuous. Discrete
data have a finite or countably infinite number of possible values the data can take.
Continuous data take any real number value in an interval; the interval may be either
closed or open.

Many of the datasets we will study, both in this book and in the data analysis sit-
uations that this book prepares you for, have several variables. Frequently, there are
one or more ratio-scaled numeric variables associated with each value of a categor-
ical variable. When only one numeric variable is measured for each observational
unit, the dataset is said to be univariate. When there are k (k > 1) variables mea-
sured on each observational unit, the dataset is said to be multivariate. Multivariate
datasets require additional techniques to identify and respond to correlations among
the observed variables.

2.2 Data Display and Calculation

Data are often collected and presented as tables of numbers. Analysis reports are
also frequently presented as numbers. Tables of numbers can be presented on a
page in ways that make them easier to read or harder to read. We illustrate some of
each here and will identify some of the formatting decisions that affect the legibility
of numerical tables.
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2.2.1 Presentation

There are two general principles:

alignment of decimal points: Units digits of each number are in the same vertical
column. Larger numbers extend farther to the left.

display comparable numbers with common precision: Numbers to be compared
are displayed so the positions to be compared are in the same column.

Table 2.1 shows two tables with identical numerical information. The first is legible
because it follows both principles; the second is not because it doesn’t.

Table 2.1 Legible and illegible tabular displays of the same numerical data: In panel a the numbers
are aligned on the decimal point and are displayed to the same precision (the same number of
decimal digits). In panel b the numbers are centered or left justified—with the effect of hiding the
comparability, and displayed with different precisions—which further hides comparability.

a. Legible
109.209 133.502 112.219
153.917 78.971 109.311

80.269 83.762 77.036
74.813 112.720 119.719
84.228 103.849 85.586
80.558 100.944 115.134
85.519 89.280 109.247

b. Illegible
109.209 133.50234 112.21
153.9 78 109.31152
80.26 83.76253 77.036

74.81323 112.72001 119.7
84.2 103. 85.58

80.55801 100.94474 115.13436
85.51940 89.28095 109.24788

2.2.2 Rounding

The number of decimal digits in a number indicates the precision with which
the number was observed. Any analysis normally retains the same precision. Any
changes in the number of decimal digits that are not justified by the method of analy-
sis implicitly suggests that the data are either more or less precise than they actually
are. This can lead to misleading inferences and wrong policy decisions.

Please see Appendix G for an illustration of the potential problems and references
to more detailed discussion. Be sure to read FAQ 7.31 in file

system.file("../../doc/FAQ")

The help menus in Rgui in Windows and R.app on Macintosh have direct links to
the FAQ file.
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There are simple rules:

1. DO NOT ROUND intermediate values! Keep all 16 digits of double precision
arithmetic in a computer program and all 12 digits on pocket calculators. For
example, if a correct calculation 7.1449/3.6451 = 1.9601 is rounded to 7.14/3.65,
the quotient is less than 1.96 and a decision based on whether or not the result
exceeds 1.96 will reach an incorrect conclusion.

2. Final answers may be rounded to the SAME number of significant digits as the
original data. You may never have final answers with more digits than any inter-
mediate value or with more digits than the original data.

3. Standard deviations can give a hint as to the number of believable digits. For
example, if x̄ = 1.23456 and sx̄ = .0789, then we can justifiably round to x̄ ≈
1.234 (using the logic that t = 1.23456/.0789 = 15.64715 ≈ 15.647 is good to
three decimal positions).

2.3 Importing Data

R, and other statistical software systems, have functions that can read data in a
variety of formats. All the datasets used in this book are included in the HH package.
Section 2.3.1 tells how to access them.

Access to datasets in other formats and in other locations (anywhere on the inter-
net) is described in Section 2.3.2.

2.3.1 Datasets for This Book

We have many datasets that we analyze in examples or make available for analysis
in exercises. Most datasets are real, taken from journal articles; data repositories of
governments, corporations and organizations; data libraries; or our own consulting
experience. Citations to these datasets are included in the text. As befits a text, most
data we present are structured for the techniques of the chapter in which we present
it. Our datasets are frequently used in more than one chapter. We have an Index
of Datasets with which you can locate all references to a specific dataset across
chapters.

The datasets discussed in this book are available for readers in two different
formats.

For use with R, all datasets mentioned in the book are available in the HH pack-
age for R. The HH package can be downloaded from CRAN (Comprehensive R
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Archive Network) for use on any computer on which R is installed. Details on
installing R are in Appendix A. Once the HH is loaded into an R session, the ABCD

dataset is made accessible with the statement
data(ABCD)

Additional information on the HH package is in Appendix B.

For use with any other software system, the datasets mentioned in the book are
available in ASCII format as csv files. These are text files in which each row of data
appears on one row of the file. Within a row, the items are separated by commas.
Further discussion of the ASCII files, including the url where they are available, is
in Appendix H.

2.3.2 Other Data sources

In consulting environments data is often collected and stored in a database man-
agement system. R has packages that can read directly from database management
systems that may be housed anywhere on the internet.

Datasets are often stored in MS Excel xls files. These can be directly read into
R on any operating system using the XLConnect package. See Section A.1.4 for
further discussion. On MS Windows machines, the RExcel software is available for
direct interaction between R and Excel. See Appendix D for further information.

Datasets stored as datafiles in the internal format of other statistical software
systems may be migrated to an R analysis. R can read and write most of them with
the aid of the foreign package. See the help file help(package="foreign") for
further information.

2.4 Analysis with Missing Values

Statisticians frequently encounter situations where an analysis cannot be completed
in a straightforward fashion because some portion of the data is missing. For some
analyses, missing or unbalanced data cause no difficulty beyond the need to calcu-
late results with a revised formula. Examples include the two-sample t-test of Sec-
tion 5.4.3 and the one-way analysis of variance of Chapter 6. In other circumstances,
such as multiple regression analyses discussed in Chapters 9 to 11, the analyst must
either discard the observations carrying incomplete information or use sophisticated
techniques beyond the scope of this book to impute, or estimate, the missing por-
tions of the existing data. If the reasons for “missingness” are related to the problem
being addressed, abandoning observations is likely to lead to incorrect inferences. If
the data are missing at random, discarding a few observations may be a satisfactory
solution, but the smaller the ultimate sample size, the less likely the analysis will
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produce useful and correct results. Imputing the values of missing data is usually
preferable to discarding cases with incomplete information. We recommend Little
and Rubin (2002) as a comprehensive reference on how to handle missing data,
particularly techniques of imputation.

A discussion of how missing values are handled is in R is in Section 2.A.

2.5 Data Rearrangement

Datasets are not necessarily arranged in the most convenient way for the analysis
you have in mind. Rearrangement is usually easy. Frequently the functions in the
reshape2 package will be helpful.

We usually work with one of the two data arrangements. Table 2.2 shows both
arrangements and the use of the reshape2 functions melt and dcast to convert
between them. One arrangement (the data.frame wide in Table 2.2) is a set of
multiple columns (x and y), one per variable, with factor levels Names explicitly
indicated by data values in the appropriate column. Each observation has all its
values listed in the same row of all columns.

The other (the data.frame long in Table 2.2) contains all the numeric values
in a single column (value), with levels of factors explicitly identified in their own
columns (Names and variable). Note that the two different variables in the wide

arrangement are represented by two levels of the variable factor in the long ar-
rangement.

2.6 Tables and Graphs

Graphs constructed from data arranged in a table are generally more useful and
informative than the table. The human eye and brain can quickly discern patterns
from a well-constructed picture that would be far from obvious from the underlying
tabular data. Excellent examples are contained in Tufte (2001) and Wainer (1997).

Characteristics that we wish to reveal with our graphs are location, variability,
scale, shape, correlation, interaction, clustering, and outliers. In Chapter 4 we illus-
trate many of these characteristics, primarily through our discussion of scatterplots
and scatterplot matrices. Additional types of displays are presented in many subse-
quent chapters. We discuss both the information about the data that we obtain from
the graphs and the structure of the graphs. We introduce many new types of graphs
throughout the book. In the appendix to Chapter 4 we provide a summary on those
new graphs that are based on Cartesian products.
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2.7 R Code Files for Statistical Analysis and Data Display (HH)

The HH package is available for R from CRAN. See Appendix A for details on
installing R with our recommended packages on your computer. The HH package
includes all datasets used in the book. R scripts for all figures and tables in the book
are included in files in the HH package. See Appendix B for details. Many of the
graphs were produced with functions that are included and fully documented in the
HH package.

Table 2.2 Define wide, a data.frame in the wide arrangement. Convert it to the long arrange-
ment with the melt function, and convert it back with the dcast function.

> library(reshape2)

> wide <- data.frame(Names=LETTERS[1:5], x=1:5, y=6:10)

> wide

Names x y

1 A 1 6

2 B 2 7

3 C 3 8

4 D 4 9

5 E 5 10

> long <- melt(wide, id="Names")

> long

Names variable value

1 A x 1

2 B x 2

3 C x 3

4 D x 4

5 E x 5

6 A y 6

7 B y 7

8 C y 8

9 D y 9

10 E y 10

> wideagain <- dcast(Names ~ variable, value="value", data=long)

> wideagain

Names x y

1 A 1 6

2 B 2 7

3 C 3 8

4 D 4 9

5 E 5 10
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The R code for all examples, and for occasional exercises is included with the
HH package from CRAN. Thus you can duplicate all tables and figures in the book
and you can use these as templates for analyzing other datasets. The R code for the
examples in each chapter of the Second Edition is in a file named after the chapter.
For example, the code file for Chapter 6, the one-way analysis of variance chapter, is
in file hh2/oway.R. The full path to the file on your computer is found by entering

HHscriptnames(6)

at the R prompt. The content of the tables and figures is not available as files. They
may all be reproduced by running the code.

The R code for the First Edition is also available. Enter
HHscriptnames(6, edition=1)

at the R prompt.

The Second edition code is identical to the code that actually produced the tables
and figures. The book was written using the Sweave and Stangle functions from
the utils package with the LATEX document preparation system. See Appendix N
for links to LATEX. All code is included within the LATEX source for the book. See
help(Sweave, package="utils") for details on writing using Sweave.

For the reader of this book, all you need to know is how to find the code for
a chapter (HHscriptnames(6) as indicated above), and the structure of the files.
Each file starts with a line that tells the name of my LATEX source file for that chapter.
It then has code chunks, with each chunk being the code associated with a table or
figure. The first chunk in all files is the line

library(HH)

Each file is independent of all other chapters and assumes only that the HH package
is loaded. Multiple chunks associated with the same dataset in the same file assume
the previous chunks have already been run.

The chunks begin with function calls to the hhpdf or hhcapture functions.
When I was writing the book, these calls were defined to capture the figure or table
as a file. For the reader, these calls are defined in the HH package as noops (NO
OPeration)—that is, they don’t do anything. All output goes directly to your console
window or your graphics window.

The best way to use the files is to pick up their lines and paste them in the R
console window. It will often be helpful to study how the lines are constructed.

It is possible to source the entire file. While it works, all it does is produce all
the tables and figures that you already have in the book. Sourcing the files won’t
help in learning.
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2.A Appendix: Missing Values in R

The R convention for missing values is NA (a standard abbreviation for “Not Avail-
able” or “No Answer”). When R knows that a value is missing it prints “NA” (with-
out the quotes). When R is reading an ASCII data file, it will recognize by default
the character sequence “NA” as a missing observation.

If the ASCII data file uses some other convention (such as the “.” that SAS uses
by default), then we must tell R to use a different convention for reading missing
values either with an argument to the read.table function or, after the reading, by
some logical investigation of the data values.

R has several conventions for working with datasets containing NA values.

Data Input: See Tables 2.3, 2.4, and 2.5 for an example. We use the default miss-
ing value indicator in Table 2.3, an explicitly defined missing value indicator in
Table 2.4, and a non-default missing value indicator in Table 2.5 without telling
the read.table function that we were doing so.

Table 2.3 The data are read from a text argument, which is equivalent to reading from a text file.
In the AA example, the default missing value is NA. In the BB example in Table 2.4, the argument
na.strings defines strings "999" and "." to indicate missing values. The internal representation
is the R value NA. In the CC example in Table 2.5, where we didn’t use the argument na.strings,
the y variable has been coerced to be a factor. Read the help file

help("read.table", package="utils")

for more information

> AA <- read.table(text="

+ x y

+ 1 2

+ 3 NA

+ 5 6

+ ", header=TRUE)

> AA

x y

1 1 2

2 3 NA

3 5 6

> sapply(AA, class)

x y

"integer" "integer"
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Table 2.4 The argument na.strings defines strings "999" and "." to indicate missing values.

> BB <- read.table(text="

+ x y

+ 1 2

+ 3 999

+ 5 6

+ 7 .

+ 9 10

+ ", header=TRUE, na.strings=c("999", "."))

> BB

x y

1 1 2

2 3 NA

3 5 6

4 7 NA

5 9 10

> sapply(BB, class)

x y

"integer" "integer"

Table 2.5 We neglected to use the argument na.strings. The y variable has become a factor.

> CC <- read.table(text="

+ x y

+ 1 2

+ 3 999

+ 5 6

+ 7 .

+ 9 10

+ ", header=TRUE)

> CC

x y

1 1 2

2 3 999

3 5 6

4 7 .

5 9 10

> sapply(CC, class)

x y

"integer" "factor"

> CC$y

[1] 2 999 6 . 10

Levels: . 10 2 6 999
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Printing: Missing numerical values are displayed as NA. Missing character and
factor items are displayed as <NA>. See Table 2.6

Table 2.6 Missing numerical values are displayed as NA. Missing character and factor items are
displayed as <NA>.

> abcd <- data.frame(x=c(1, 2, NA, 4, 5, 6, 7, 8),

+ y=c(6, 5, 8, NA, 10, 9, 12, 11),

+ ch=c(NA, "N", "O", "P", "Q", "R", "S", "T"),

+ stringsAsFactors=FALSE)

> abcd

x y ch

1 1 6 <NA>

2 2 5 N

3 NA 8 O

4 4 NA P

5 5 10 Q

6 6 9 R

7 7 12 S

8 8 11 T

> sapply(abcd, class)

x y ch

"numeric" "numeric" "character"
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Graphs: Points whose coordinates are not known (points “O” and “P”) are not
printed. Points with known coordinates and unknown value (the first point whose
value should have been “M”) are displayed as NA in the known position. See
Figure 2.1.

x

y

6

8

10

12

2 4 6 8

NA

N

Q

R

S

T

Fig. 2.1 The dataset abcd is defined in Table 2.6. The plot was drawn with

> xyplot(y ~ x, data=abcd, labels=abcd$ch, panel=panel.text,

+ col=c("red", "blue"))
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Arithmetic: Arithmetic with missing values returns a missing value. Many
functions, sum is illustrated in Table 2.7, can be told to remove the missing values
and sum the non-missing values.

Table 2.7 Arithmetic with missing values returns a missing value. Many functions, sum and mean

are illustrated in Table 2.7, can be told to remove the missing values and sum the non-missing
values.

> 3 + NA

[1] NA

> sum(3, NA)

[1] NA

> sum(3, NA, na.rm=TRUE)

[1] 3

> abcd$x

[1] 1 2 NA 4 5 6 7 8

> mean(abcd$x)

[1] NA

> mean(abcd$x, na.rm=TRUE)

[1] 4.714
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Linear Models: Default (na.action=na.omit) behavior is to remove the row.
Table 2.8 shows the default behavior of the lm and related modeling functions.
The entire row containing the missing values is removed from the analysis and
subsequent processing. Table 2.9 shows an optional better behavior.

Table 2.8 The default behavior of the lm and related modeling functions. The entire row contain-
ing the missing values is removed from the analysis and subsequent processing. See Table 2.9 for
an optional better behavior.

> a.lm <- lm(y ~ x, data=abcd)

> summary(a.lm)

Call:

lm.default(formula = y ~ x, data = abcd)

Residuals:

1 2 5 6 7 8

0.704 -1.219 1.013 -0.910 1.167 -0.755

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.373 1.053 4.16 0.0142 *

x 0.923 0.193 4.79 0.0087 **

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.2 on 4 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(a.lm)

1 2 5 6 7 8

5.296 6.219 8.987 9.910 10.833 11.755
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Linear Models: Better behavior (na.action=na.exclude) is to keep track of
which rows have been omitted. Table 2.9 shows an optional better behavior. The
rows with missing values are still removed from the calculations of the "lm"

object, but information on which rows were suppressed is retained.

Table 2.9 With na.action=na.exclude, the rows with missing values are still removed from
the calculations of the "lm" object, but information on which rows were suppressed is retained.

> b.lm <- lm(y ~ x, data=abcd, na.action=na.exclude)

> summary(b.lm)

Call:

lm.default(formula = y ~ x, data = abcd, na.action = na.exclude)

Residuals:

1 2 5 6 7 8

0.704 -1.219 1.013 -0.910 1.167 -0.755

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.373 1.053 4.16 0.0142 *

x 0.923 0.193 4.79 0.0087 **

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.2 on 4 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(b.lm)

1 2 3 4 5 6 7 8

5.296 6.219 NA NA 8.987 9.910 10.833 11.755



Chapter 3

Statistics Concepts

In this chapter we discuss selected topics on probability. We define and graph several
basic probability distributions. We review estimation, testing, and sampling from
populations. The discussion here is at an intermediate technical level and at a speed
appropriate for review of material learned in the prerequisite course.

3.1 A Brief Introduction to Probability

The quality of inferences are commonly conveyed by probabilities. Therefore,
before discussing inferential techniques later in this chapter, we briefly digress to
discuss probability in this section and random variables in Section 3.2.

If A is any event, P(A) represents the probability of occurrence of A. Always,
0 ≤ P(A) ≤ 1. The odds in favor of the occurrence of event A are

P(A)
1 − P(A)

(3.1)

and the odds against the occurrence of event A are

1 − P(A)
P(A)

(3.2)

Thus, if P(A) = 3
4 , then the odds in favor of A are 3, also referred to as 3 to 1, and

the odds against A are 1
3 .

If B is a second event, A∪ B represents the event that “either A or B occurs”, that
is, the union of A and B, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (3.3)
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where A ∩ B is the event that “both A and B occur”, that is the intersection of A
and B. Events A and B are said to be mutually exclusive events if they cannot both
occur; in this case, A ∩ B = ∅ (the impossible event) and so P(A ∩ B) = 0. Events A
and B are said to be independent events if the occurrence or nonoccurrence of one of
them does not affect the probability of occurrence of the other one; for independent
events,

P(A ∩ B) = P(A) P(B)

The conditional probability of B given A, written P(B | A), is the probability of
occurrence of B given that A occurs. If P(A) � 0,

P(B | A) =
P(A ∩ B)

P(A)

Note that P(B | A) = P(B) if A and B are independent events, but not otherwise.

To illustrate these ideas, imagine a box containing six white and four red billiard
balls, identical to the touch. Suppose we select two balls from the box and let A =
“the first ball is white” and B = “the second ball is white”. A and B are independent
events if the first ball is replaced in the box prior to drawing the second ball, but not
otherwise. Let us assume that the first ball is not replaced so that the two events are
dependent. Various sets of events are listed with their probabilities in Table 3.1.

In this table we demonstrate two ways to calculate the probability 78
90 that we

get a white ball in either the first selection or second selection or both selections.
One way is with the formula for P(A ∪ B) in Equation (3.3). Another method is to
recognize that the event “at least one white” can be partitioned into three mutually
exclusive events: First draw white and second draw red; first draw red and second
draw white; and both draws white. The probability of “at least one white” is seen to
be the sum of the probabilities of the events comprising this partitioning.

3.2 Random Variables and Probability Distributions

A random variable, abbreviated as r.v., is a function that associates events with
real numbers. For example, if we toss a coin 10 times, we can define an r.v. X to
be the number of heads observed in these 10 tosses. This r.v. has possible values
x = 0, 1, 2, . . . , 10. Observing 7 heads among the 10 tosses is an event, and “7” is
the number that this r.v. X associates with it.

A closely related concept is the r.v.’s probability distribution, which indicates
how the total probability, 1, is distributed or allocated to the possible values of
the r.v. It is usual to denote an r.v. with a capital letter and a possible value of this
r.v. with the corresponding lowercase letter.
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Table 3.1 Probability of intersection events, conditional events, union events in the setting of a
box containing six white and four red billiard balls. We select two balls from the box. The A event
is “the first ball is white” and the B event is “the second ball is white”. See Figure 3.1 for an
illustration of this distribution.

Event Position Probability Probability of event

1 2 1 2

A W ? 6
10 1 6

10

B ? W 1 6
10

6
10

B ∩ A W W 6
10

5
9

30
90

B̄ ∩ Ā R R 4
10

3
9

12
90

B | A [W] W
( 6

10 )

( 6
10 )

5
9

5
9

W R 6
10

4
9 P(WR) + P(RW)+P(WW) = P(A)+P(B)−P(B ∩ A) = P(B ∪ A)

B ∪ A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R W 4
10

6
9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

24
90
+

24
90
+

30
90
=

6
10
+

6
10
− 30

90
=

78
90

W W 6
10

5
9

3.2.1 Discrete Versus Continuous Probability Distributions

There are essentially two distinct types of probability distribution of a quantitative
variable: discrete and continuous. (Random variables are also classified as discrete
or continuous according to the classification of their probability distributions.) It is
important to distinguish between the two types because they differ in their methods
of display and calculation.

The key distinction between these two types relates to the spacings between
adjacent possible values of the data. For discrete data, the distance separating con-
secutive possible values of the variable does not depend on a measurement device;
indeed it may be completely arbitrary. For continuous data, the distances may
(theoretically) assume all possible values in some interval.

For example, the number of times an archer hits a target in 10 attempts is a dis-
crete variable because the answer is a count of the number of occurrences. It is
impossible for there to be 3.5 hits. A discrete variable need not be integer-valued.
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Second

First

W.

R.

.R .W

A

A

BB

RR = A∩B RW = A∩B

WR = A∩B WW = A∩B

(4 10)(3 9) = 2 15 (4 10)(6 9) = 4 15

(6 10)(4 9) = 4 15 (6 10)(5 9) = 5 15

Fig. 3.1 Mosaic plot corresponding to Table 3.1. The area of each panel is equal to the probability
of the event identified in that panel. The bottom row representing the event A = “W is selected
first” consists of the two panels WR and WW. The bottom row has height .6 = P(A). The right-
hand column represents the event B = “W is selected second” consists of the two panels RW and
WW. The event “B ∩ A” is the white region WW in the lower right corner. The event WW has
height .6 and width 5/9, hence area .6 × 5/9 = 1/3. The event B | A is also the white area WW, but
now thought of as the proportion of the A area that is also B. The probability of B | A is the ratio of
the area of B | A to the A area (1/3)/.6 = 5/9. The event B | Ā is the pink region RW in the upper
right corner. The probability of B | Ā is the ratio of the pink area RW to the Ā area (4/15)/.4 = 2/3.
The event B̄∩ Ā is the red region RR in the upper left corner. The event RR has height .4 and width
3/9, hence area .4 × 3/9 = 2/15.

The proportion of hits in 10 attempts is also discrete. It is impossible for this pro-
portion to be .35. It is possible for a discrete variable to have a countably infinite
number of possible values. An example would be the number of attempts needed
for the archer to achieve her ninth hit. This variable can assume any positive integer
value; it is possible but unlikely that the archer will need 100 attempts.

On the other hand, the archer’s height in inches is a continuous variable because it
can be anything between perhaps 3 feet and 8 feet (90–240 cm). While as a practical
matter it would be difficult to measure height to within 1

4 -inch (6 mm) accuracy, it
is not theoretically impossible for someone to be 68 3

4 inches (174.6 cm) tall.

In summary, it is possible to make a list of the possible values of a discrete
random variable, but this is not true for a continuous random variable.
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For completeness, we also point out that it is possible for data to be a mixture of
discrete and continuous types. Let Y = the total measurable daily precipitation mea-
sured at Philadelphia International Airport. On some fraction of all days, roughly
70% of them, there is no precipitation. So P(Y = 0) ≈ .7. But considering only
those dates with measurable precipitation, Y is continuous, i.e., the distribution of
(Y | Y > 0) is continuous.

3.2.2 Displaying Probability Distributions—Discrete Distributions

The display of a probability distribution varies according to whether the r.v. is dis-
crete or continuous. We can make an ordered list of the possible values of a discrete
r.v. For example, if X denotes the number of heads in two tosses of a fair coin, then X
has three possible values {0,1,2}. We will see later that for this coin, the probabilities
are as given in Table 3.2.

Table 3.2 The total probability 1.0 has been distributed to the three possible values: 0, 1, 2.

x P(X = x)

0 .25
1 .50
2 .25

x

P
(X

 =
 x

)

0.00

0.25

0.50

0 1 2

Sometimes we choose to study several interdependent random variables at the
same time. In such instances, we require their bivariate or multivariate probability
distribution.

In Table 3.3 we consider an example of a discrete bivariate and conditional dis-
tribution. Here p.m.f. stands for probability mass function.

Here X and Y are dependent r.v.’s because, e.g., f (1, 0) = .10, which differs from
f (1) × g(0) = .60 × .15 = .09. Alternatively, f (1 | 0) = 2

3 , which differs from
f (1) = .6. In general, if U and V are discrete random variables, then U and V are
independent r.v.’s if

P
(
(U = u) ∩ (V = v)

)
= P(U = u) × P(V = v)

for all possible values u of U and v of V , i.e., the distribution of U doesn’t depend
on the value of V .
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Table 3.3 Example of Discrete Bivariate and Conditional Distributions. The top panel shows the
probabilities of each of the six events in the distribution. The area of the six events adds up to 1.
The center panel shows conditioning of x on y. Within each column, the area adds up to 1. The
bottom panel shows conditioning of y on x. Within each row, the area adds up to 1.

Joint p.m.f. f (x, y)

y

x 0 1 2 y(x) = x-margin

1 .10 .20 .30 .60

2 .05 .10 .25 .40

g(y) = y-margin .15 .30 .55 1.00

x

y

1

0 1 2

2

Conditional p.m.f. f (x y)

y

x 0 1 2

1 2
3

2
3

6
11

2 1
3

1
3

5
11

all 1 1 1

y

x

0

2

1

1 2

Conditional p.m.f. g(y x)

y

x 0 1 2 all

1 1
6

2
6

3
6 1

2 1
8

2
8

5
8 1

y

x

2

1

0 1 2

The cumulative distribution F of a discrete random variable is calculated as

F (x) = P(X ≤ x) =
∑

t≤x

f (t)

where the sum is taken over all possible values t of X that are less than or equal to x.
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3.2.3 Displaying Probability Distributions—Continuous
Distributions

The probability distribution of a continuous random variable cannot be described in
the manner of Table 3.2 or 3.3 (listing its possible values alongside their associated
probabilities) because a continuous r.v. has an uncountably infinite number of pos-
sible values. Instead the probability distribution of a continuous r.v. X is described
by its probability density function (p.d.f.), say f (x). This function has the properties
that

1. f (x) ≥ 0

2. the probability that X lies in any interval is given by the area under f (x) above
this interval.

In the p.d.f. in Figure 3.2, the shaded area under the density and above the hori-
zontal axis represents the probability that the random variable lies between 2 and 4.

Prob(2 < X < 4) = 0.306

x

f(x)

0.00

0.05

0.10

0.15

0.20

−2 0 2 4 6

Fig. 3.2 P(2 < X < 4) equals the area under the density between 2 and 4.

The cumulative distribution F of a continuous random variable is calculated as

F (x) = P(X ≤ x) =
∫ x

−∞
f (t) dt

Continuous r.v.’s U and V are also independent if the distribution of U doesn’t
depend on the value of V or, equivalently, if the distribution of V doesn’t depend on
the value of U. In this case, we can express the independence condition as
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P
(
(U ≤ u) ∩ (V ≤ v)

)
= P(U ≤ u) × P(V ≤ v) (3.4)

for all u and v.

Appendix J catalogs frequently encountered probability distributions, illustrates
their density functions, and includes function names in R for calculations with the
distributions.

3.3 Concepts That Are Used When Discussing Distributions

Understanding the distribution of observations is critical to interpreting data. In this
section we introduce several concepts that are used to describe distributions: mean,
variance, median, symmetry, correlation; and types of graphs that are used to display
these concepts: histogram, stem-and-leaf, density, scatterplot.

3.3.1 Expectation and Variance of Random Variables

The expectation of an r.v. X, denoted E(X), is its expected or long-run average
value; alternatively it is the mean of the probability distribution of X and so we
write E(X) = μ. If X is discrete with p.m.f. p(x), then E(X) =

∑
x p(x). If X

is continuous, then E(X) =
∫

x f (x) dx, where the range of integration extends
over the set of real numbers that X may assume. The variance of X is defined by
σ2 = var(X) = E(X − μ)2 = E(X2) − μ2. The square root σ of the variance is
called the standard deviation, abbreviated s.d. It is a more useful measure of vari-
ability than the variance because it is measured in the same units as X, rather than
in artificial squared units.

If x1, x2, . . . , xn is a random sample of n items selected from some population,
the sample mean

x̄ =
1
n

n∑

i=1

xi (3.5)

estimates the population mean μ, and the sample variance

s2 =
1

n − 1

n∑

i=1

(xi − x̄)2 (3.6)

estimates the population variance σ2. In addition, the sample standard deviation
s =
√

s2 estimates the population standard deviation σ. Please see Section G.12 for a
discussion on the importance of using the two-pass algorithm based on the definition
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in Equation 3.6, and not the alternative one-pass algorithm based on Equation 3.7,

s2 =
1

n − 1

n∑

i=1

(
x2

i − nx̄2
)

(3.7)

when doing arithmetic by computer. The short explanation is that you will always
get the right answer with Equation 3.6 and may sometimes get a very wrong answer
with Equation 3.7.

It can be shown that if a1 and a2 are constants and x1 and x2 are any two random
variables, then

E(a1x1 ± a2x2) = a1E(x1) ± a2E(x2) (3.8)

If, in addition, x1 and x2 are uncorrelated random variables, then

var(a1x1 ± a2x2) = a2
1 var(x1) + a2

2 var(x2) (3.9)

When x1 and x2 are correlated, then the variance of the sum is given by

var(a1x1 ± a2x2) = a2
1 var(x1) + a2

2 var(x2) ± 2a1a2 cov(x1, x2) (3.10)

These three formulas (Equations 3.8, 3.9, and 3.10) generalize to the multivariate
situation in Equations 3.16 and 3.17.

3.3.2 Median of Random Variables

The median of an r.v. X, denoted median(X) = η, is the middle value of the
distribution. The population median is defined as the value η such that

∫ η

−∞
f (x) dx = .5 for continuous distributions (3.11)

or
∑

x≤η
p(x) ≥ .5 and

∑

x<η

p(x) ≤ .5 for discrete distributions. (3.12)

We show an example of the median of a distribution in Figure 3.6.

The order statistics X(i) are the values of the observed Xi ordered from smallest

to largest. The middle order statistic
⊥
X is called the sample median and is defined as

⊥
X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(
n+1

2

) odd n

⎛⎜⎜⎜⎜⎝X(
n
2

) + X(
n+1

2

)
⎞⎟⎟⎟⎟⎠ /2 even n

(3.13)
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The notation
⊥
X for the sample median used here is intended to be self-descriptive,

with an overbar split in the middle into two equal halves. We believe the notation is
due to Tukey. There is no standard notation for the median.

3.3.3 Symmetric and Skewed Distributions

Symmetry and skewness are classifications applicable to both continuous and dis-
crete distributions. The mean of a symmetric distribution coincides with its median.
A continuous distribution example is the normal distribution having a density func-
tion such as that plotted in Figure 3.13. A symmetric distribution has equivalent
behavior on either side of its mean. In particular, its tails, the values of the density
function away from the center, are mirror images.

A skewed distribution is one that is not symmetric. Unimodal distributions (ones
having a single point where the probability mass is higher than at adjacent points)
that are skewed are further classified as being positively or negatively skewed.
A positively skewed distribution has a long, thin tail on its right side and a short, fat
tail on its left side. Its mean exceeds its median. A negatively skewed distribution
has a long, thin tail on its left side and a short, fat tail on its right side. Its median ex-
ceeds its mean. Note that the left/right naming convention for skewed distributions
is based on the side containing the long, thin tail. We illustrate a negatively skewed,
symmetric, and positively skewed distribution in Figure 3.3. We show boxplots of
negatively skewed, symmetric, and positively skewed data in Figure 3.7.
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Fig. 3.3 Negatively skewed, symmetric, and positively skewed distributions.

The χ2 distribution described in Section J.1.3 is an example of a continuous pos-
itively skewed distribution. The (discrete) binomial distribution to be described in
Section 3.4.1 is negatively skewed, symmetric, or positively skewed according to
whether its parameter p is less than, equal to, or greater than 0.5.
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The skewness terminology often comes into play because many statistics pro-
cedures work best when underlying distributions are symmetric, and tactics that
move the distribution toward symmetry (for example, with data transformations
such as the power transformations described in Section 4.8) are frequently used
in the analysis of skewed distributions.

Each of the densities in Figure 3.3 has a single mode. Some densities have more
than one mode. Figure 3.2 is an example of a bimodal density, with one mode
between 0 and 1 and another mode between 2 and 3. Multimodal distributions, ones
having more than two modes, are occasionally encountered. Sometimes bimodal-
ity and multimodality arise as a result of interpreting samples coming from two or
more populations with different locations as having arisen from a single population.
Therefore, bimodality or multimodality may suggest a need for disaggregation of
samples.

3.3.4 Displays of Univariate Data

It is difficult to gain an understanding of data presented as a table of numbers. Sum-
mary statistics such as those presented in the preceding sections are helpful for
this purpose but may fail to capture some important features. In this section we
present three displays (Histogram, Stem-and-leaf, and Boxplots) for univariate data
that are basic tools for studying both the distributional shape and unusual data val-
ues. We illustrate these displays with the variable male.life.exp (1990 male life
expectancy) in each of 40 countries, part of the datafile data(tv) to be examined
in more detail in Section 4.6. We summarize the variable in Table 3.4 as a frequency
table, a partitioning of the data into k evenly spaced nonoverlapping categories, and
a tally of the number or proportion of items in each category.

3.3.4.1 Histogram

The construction of a histogram begins with the frequency table. Usually the number
of categories is between 6 and 12—the use of fewer than 6 categories tends to under-
summarize the data while the use of more than 12 categories tends to oversummarize
the data. For male.life.exp we chose 6 age-range categories that encompass the
ages from all 40 countries.

The corresponding histogram in Figure 3.4 is a graph consisting of rectangles
with width covering the breadth of the classes and heights equal to the class fre-
quencies. This plot is also called a relative frequency histogram, particularly when
the vertical axis is labeled to show the proportion of countries in each category, for
example 6

40 = 0.15 in the first category for ages 50–54. We show both axis labelings
in Figure 3.4 with the proportion axis on the right.
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Table 3.4 Frequency Distribution of Male Life Expectancy

> data(tv)

> tmp <- as.matrix(table(cut(tv$male.life.exp, breaks=seq(49.5,79.5,5))))

> dimnames(tmp) <-

+ list("Male Life Expectancy"=

+ c("50--54","55--59","60--64","65--69","70--74","75--79"),

+ " "="Frequency")

> tmp

Male Life Expectancy Frequency

50--54 6

55--59 4

60--64 9

65--69 11

70--74 7

75--79 3

male.life.exp
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Fig. 3.4 Life Expectancy for Males. The count axis is on the left and the proportion axis is on the
right.

Figure 3.4 is an example of a bimodal distribution, one having two peaks. In
this example, the lower peak may correspond to economically poorer countries and
the upper peak to wealthier countries, with relatively few countries falling between
these extremes. In general, bimodal distributions sometimes suggest an amalgama-
tion of samples from two separate populations that perhaps should be investigated
separately. An advantage of histograms is that they can be constructed from huge
datasets with no more effort than from small data sets. A disadvantage is that the
data used to construct a histogram cannot be recovered from the histogram itself.
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3.3.4.2 Stem-and-Leaf Display

Stem-and-leaf displays, designed by John Tukey, resemble histograms in that they
portray the shape of a distribution. The stem-and-leaf display is usually preferable
because it is possible to recover the data used to construct a stem-and-leaf display
(at least to some degree of precision). Unlike histograms, stem-and-leaf displays are
limited to data sets of not more than a few hundred observations in order that the
display fits entirely on one page or one computer monitor.

A stem-and-leaf display for male life expectancy is in Table 3.5. This is a table,
not a figure, because stem-and-leaf is a text-based graphic display.

Table 3.5 Stem-and-Leaf Display of Male Life Expectancy

> stem(tv$male.life.exp)

The decimal point is 1 digit(s) to the right of the |

5 | 002234

5 | 6799

6 | 012223344

6 | 66777888899

7 | 1223334

7 | 556

The column of numbers in this display to the left of the vertical bars represent
the tens digit of each of the life expectancies. This column is the stem. The numbers
to the right of the vertical bars, one digit for each country, are the leaves, the unit
digits of the life expectancies for the 40 countries. The stem-and-leaf display, fol-
lowing Tukey, rounds down, to maintain the same digit as appears in the data table.
A 90◦ counterclockwise rotation of the stem and leaves gives a picture that closely
resembles Figure 3.4. The legend locating the decimal point tells the reader that “5
| 0” in the display stands for 50, rather than .05 or 500.

Stem-and-leaf displays can accommodate measurements containing more than
two significant digits. This is accomplished either by suppressing the values of trail-
ing digits or by allowing more than a single digit for each leaf. For example, suppose
in a different problem the measurement is 564. This can be represented as “5 | 6”,
with the stem indicating the hundreds, rounding the units digit down to a multiple of
10, and with a legend locating the decimal point 2 places to the right of the vertical
bar. Alternatively, it can be represented with a stem indicating the hundreds and with
two-digit leaves as “5 | 64,”, again locating the decimal point two places to the
right of the vertical bar, and with the “,” indicating that the leaf is two digits wide.
Or, another option, as “56 | 4” with a stem of 56 tens (representing 560) and with
a single-digit leaf of 4.
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3.3.4.3 Boxplots

Boxplots, also known as box-and-whisker plots, are among the many inventions
of John Tukey. Their main use is as a compact, simultaneous display to compare
several related data sets. Many examples of side-by-side boxplots appear in this
book. Boxplots may be arranged along either a vertical or horizontal scale. This
book contains examples illustrating both options.

Boxplots make use of the sample first quartile Q1, median
⊥
x = Q2, and third

quartile Q3. The statistics Q1,
⊥
x, Q3 divide the sample into four equal parts. Q1 is

the median of the sample values that are less than or equal to
⊥
x and Q3 is the median

of the sample values that are greater than or equal to
⊥
x. Approximately 25% of the

sample lies within each of the four intervals (all finite intervals are closed, so double
counting is possible)

(−∞, Q1], [Q1,
⊥
x], [

⊥
x, Q3], [Q3,∞)

A rectangle (box) is drawn so that when placed against a numerical scale its edges
occur at Q1 and Q3. A line is drawn, parallel to the edges, through the inside of the
box at the median

⊥
x. Lines perpendicular to the edges of the box extend outward

from the midpoints of the edges. These lines are sometimes called “whiskers”. The
lower whisker extends to the lowest sample item not more than 1.5× IQR below Q1.
The upper whisker extends to the largest sample item not more than 1.5 × IQR
above Q3. Points outside the range of the whiskers are plotted as filled-in circles.
Such points are deemed extreme or outlying values (“outliers”). In general, outliers
should be carefully scrutinized. Sometimes they are due to transcription errors and
are not legitimately part of the data under consideration (in which case you should
attempt to correct the data). Other times, they are the critical data points that provide
the key to an explanation of the study. One example of a critically important outlier
is the Gulf of Mexico oil spill. On most days very little oil is released into the ocean.
If we ignored the large spill detected on 20 April 2010, we would be missing the
important information. In astronomy, ”transient” events are very important. That is
how supernovas are detected (Table 3.6).

Table 3.6 shows the quartiles for the male.life.exp variable. Figure 3.5 shows
the boxplot for the male.life.exp variable.

Table 3.6 Quartiles of Life Expectancy for Males

> quantile(tv$male.life.exp)

0% 25% 50% 75% 100%

50.00 59.75 66.00 69.50 76.00
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male.life.exp

50 55 60 65 70 75

Fig. 3.5 Boxplot of Life Expectancy for Males

See the illustration in Figure 3.6 for the quartiles of a continuous distribution.
The interquartile range

IQR = Q3 − Q1

is a measure of dispersion of the central portion of a distribution. When X is nor-
mally distributed X ∼ N(μ, σ2), we have IQR = 1.34898σ.

Figure 3.7 contains parallel boxplots depicting three samples on a common
scale, illustrating the distinctions between boxplots for negatively skewed, symmet-
ric, and positively skewed distributions. This parallels the density presentations in
Figure 3.3. Asymmetry is nicely displayed in this figure.

Several more elaborate versions of the boxplot exist. For example, adding a notch
to the sides of a box provides information on the variability of the sample median.
For details, see Hoaglin et al. (1983).

Quartiles of F(3,36)
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Fig. 3.6 Illustration of median and quartiles for a continuous distribution.
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Boxplots are generally unsuccessful in conveying the existence of multiple
modes. For such data, histograms and stem-and-leaf displays are often preferred
choices.

negatively skewed

symmetric

positively skewed

−5 0 5

Fig. 3.7 Boxplots illustrating negatively skewed, symmetric, and positively skewed distributions.

3.3.5 Multivariate Distributions—Covariance and Correlation

In Section 3.2.2 we give an example of a discrete multivariate (actually bivariate)
probability distribution. We now touch on the notion of the continuous multivariate
distribution of a continuous random vector X = (X1, X2, . . . , Xp)′. For example,
variable X1 could be height and variable X2 weight, all measured on the same set of
people. The mean or expectation of X is μ = (μ1, μ2, . . . , μp)′, the vector of means
of the univariate distribution of the X′i s. The variance–covariance matrix of X, say
V , also called the covariance matrix or dispersion matrix, is the symmetric p × p
matrix having the variances of the X′i s on its main diagonal, and the covariances of
different X′i s elsewhere. The covariance of Xi and Xj is

Vi j = σi j = cov(Xi, Xj) = E
(
(Xi − μi)(Xj − μ j)

)

is the element in the row i column j position of V . If we denote the standard devi-
ations of Xi and Xj by σi and σ j, respectively, then the correlation between Xi and
Xj is

ρi j =
cov(Xi, Xj)

σiσ j
=

Vi j√
ViiV j j

(3.14)

This is a rescaling of the covariance, interpreted as a measure of the strength of
the (straight line) linear relationship between Xi and Xj. It can be shown that
−1 ≤ ρi j ≤ 1. If this correlation is close to ±1, Xi and Xj are closely linearly ass-
ociated; the association is direct if ρi j > 0 and inverse if ρi j < 0. If ρi j = 0, then
Xi and Xj are said to be uncorrelated, i.e., the X’s are not linearly related. It is
easy to construct an example of correlated variables for any specified correlation.
Figure 3.8 gives a static view of a sequence of related variables with specified cor-
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relation coefficient. A dynamic illustration of the effect of the correlation coefficient
can be constructed by plotting a sequence of panels similar to those in Figure 3.8
and cycling through them. We do so in a shiny app in the HH package with the
statement

shiny::runApp(system.file("shiny/bivariateNormalScatterplot",

package="HH"))

at the R prompt. See Figure E.3 for a screenshot. In both the static and dynamic
illustrations the formula is very simple. Define x and e as independent realizations
from the N(0, 1) distribution. Then

y = ρx + (1 − ρ2)1/2e (3.15)

has correlation ρ with x.

Matrix algebra plays an important role in the study of multivariate distributions.
For example, in matrix notation, the covariance matrix is

V = E
(
(X − μ)(X − μ)′

)

and the correlation matrix P (uppercase ρ) is given by

P =
(
diag(V)

)− 1
2 V

(
diag(V)

)− 1
2

When the individual xi are normally distributed, their joint distribution is called
the multivariate normal and is notated x ∼ N(μ, V). The bivariate (p = 2) nor-
mal distribution with means μi = 0, variances σ2

i = 1, and correlation ρ = .7[
hence V =

(
1.0 0.7
0.7 1.0

)]
is plotted as a three-dimensional object in Figure 3.9. This is

actually one panel of the set of rotated views of the density shown in Figure 3.10.
A rotating version (see the shiny screenshot in Figure E.2) of the bivariate normal
density example runs in R with the statement

shiny::runApp(system.file("shiny/bivariateNormal",

package="HH"))

x

y

−2

0

2

−2 0 2

 = ρ −1

−2 0 2

 = ρ −0.9

−2 0 2

 = ρ −0.5

−2 0 2

 = ρ 0

−2 0 2

 = ρ 0.5

−2 0 2

 = ρ 0.9

−2 0 2

 = ρ 1

Fig. 3.8 Bivariate Normal distribution—scatterplot at various correlations. The distributions in
the panels are related. The x-variable in all panels is the same. The y is generated from a com-
mon e-variable by the formula y = ρx + (1 − ρ2)1/2e for a sequence of values for ρ. The x- and
e-variables were independently generated from the N(0,1) distribution. We provide a shiny app
bivariateNormalScatterplot for a dynamic version of this set of panels. See Figure E.3 for a
screenshot.
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Bivariate Normal, ρ = 0.7
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Fig. 3.9 Bivariate Normal density with (μ1, σ
2
1, μ2, σ

2
2, ρ) = (0, 1, 0, 1, .7) in 3D space with view-

ing angle = 112.5◦. A set of eight viewing angles is shown in Figure 3.10

If X and Y are random vectors with

Y = B +CX

for some vector B and some matrix C, then

E(Y) = B +C E(X) (3.16)
and

var(Y) = C var(X) C′ (3.17)

If, moreover, X has a multivariate normal distribution, then so does Y . In other
words, linear functions of normal r.v.’s are normal. Equations 3.16 and 3.17 gen-
eralize the scalar versions in Equations 3.8, 3.9, and 3.10.

It follows from Equation 3.17 that if X1, X2, X3, X4 are univariate random vari-
ables, then

var(X1 + X2) = var(X1) + var(X2) + 2 cov(X1, X2)

and

cov(X1 + X3, X2 + X4) = cov(X1, X2) + cov(X1, X4) + cov(X3, X2) + cov(X3, X4)

If Y has a k-dimensional multivariate normal distribution with mean μ and co-
variance matrix V , then
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Bivariate Normal, ρ = 0.7
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Fig. 3.10 Bivariate Normal density in 3D space with various viewpoints. Figure 3.9 shows
a higher resolution view of the 112.5◦ panel. The reader can view an interactive version of
this plot with the shiny app shiny::runApp(system.file("shiny/bivariateNormal",

package="HH")). See Figure E.2 for a screenshot.

Q = (Y − μ)′V−1(Y − μ)

has a χ2 distribution with k degrees of freedom (See Appendix J).

3.4 Three Probability Distributions

In this section we introduce three probability distributions, the (discrete) binomial
distribution and the (continuous) Normal and t distributions, that frequently arise
in practice. Details of how to perform probability-related calculations for these and
other frequently encountered distributions are discussed in Appendix J.
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3.4.1 The Binomial Distribution

The binomial distribution is perhaps the most commonly encountered discrete
distribution in statistics. Consider a sequence of n independent trials, or mini-
experiments, each of which can result in one of just two possible outcomes. For
convenience these outcomes are labeled success and failure although in context the
success outcome may not connote a favorable event. Further assume that the proba-
bility of success, p, is the same for each trial. Let X denote the number of successes
observed in the n trials. Then X has a binomial distribution with parameters n and
p. This distribution has mean μ = np and standard deviation σ =

√
np (1 − p).

We show an illustration of the discrete density for the binomial with n = 15 and
p = .4 in Section J.3.2. In Figure 3.11 we show the discrete density for the bi-
nomial with n = 15 and p = .4, underlaid with the normal approximation with
μ = np = 15 × .4 = 6 and σ =

√
np(1 − p) =

√
15 × .4 × .6 =

√
3.6 = 1.897.

The above scenario is widely applicable. If one randomly samples with replace-
ment from a population with a proportion p of successes, then the number of
successes in the sample is binomially distributed. Even if the sampling is without
replacement, the number of successes is approximately binomial if the population
size is much greater than the sample size; in this case the first two assumptions
above are only mildly violated. Applications include the number of voters favoring
a candidate in a political poll, the number of patients in a population that suffer from
a particular illness, and the number of defective items in one day’s output from an
assembly line.

However, it is not unusual for one or more of the binomial assumptions to be
violated. For example, suppose we sample without replacement from a population
of successes and failures and the population size is not much greater than the sample
size, say less than 20 times as large as the sample. Then the trials are not independent
and the success probability is not constant from trial to trial. (In this situation the
correct distribution to use for X is the hypergeometric distribution. See Appendix J.)

Similarly, the binomial model is unlikely to apply to the number of hits by the
archer in Section 3.2.1 because her shots (trials) may not be independent and may
not have the same probability of a hit.

Usually in practice, we need to calculate not just P(X = x), the probability of
achieving exactly x successes, but probabilities of an interval of successes such as
P(X ≤ x), the probability of at most x successes, or P(a ≤ X ≤ b), the probability
of observing between a and b successes inclusive.

A table of binomial probabilities can be used when n and p appear in the table.
Otherwise, as illustrated in Appendix J, R functions can easily be used to produce
accurate results.
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dbinom(x, size = 15, prob = 0.4)

x

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5.5 6.5

> pbinom(size=15, prob=.4, q=6)

[1] 0.6098

> pnorm(q=6.5, mean=15*.4, sd=sqrt(15*.4*(1-.4)))

[1] 0.6039

> dbinom(size=15, prob=.4, x=6)

[1] 0.2066

> diff(pnorm(q=c(5.5, 6.5), mean=15*.4, sd=sqrt(15*.4*(1-.4))))

[1] 0.2079

Fig. 3.11 We show the discrete density for the binomial with n = 15 and p = .4, underlaid with
the normal approximation with μ = np = 15 × .4 = 6 and σ =

√
np(1 − p) =

√
15 × .4 × .6 =√

3.6 = 1.897. The dark bar at x = 6 has probability P(x = 6) = .2066 from the binomial and
P(5.5 < x < 6.5) = .2079 from the normal. The dark bar at x = 6 and all bars to its left together
have probability P(x ≤ 6) = .6098 from the binomial and P(x < 6.5) = .6039 from the normal
approximation. The normal approximations are calculated with the correction for continuity (the
interval [6-.5, 6+.5] is the full width of the dark bar at x = 6).

3.4.2 The Normal Distribution

Many natural phenomena follow the normal distribution, whose probability density
function is the familiar “bell-shaped” curve, symmetric about the mean μ. In addi-
tion, a celebrated theoretical result called the Central Limit Theorem says that the
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sampling distributions of sample means (see Section 3.5), sample proportions, and
sample totals each are approximately normally distributed if the sample size is “suf-
ficiently large.” Since this theorem applies to almost all possible probability distri-
butions from which a sample might be selected, including discrete distributions, the
theorem brings the normal distribution into play in a wide variety of circumstances.

If X has a normal distribution with mean μ and standard deviation σ, and we
define the standardization of X as Z = X−μ

σ
, then Z is normally distributed with

mean 0 and standard deviation 1, i.e., the standard normal distribution. We write
X ∼ N(μ, σ2) to indicate that X has a normal distribution with mean μ and vari-
ance σ2 (or we could say with standard deviation σ). In this notation, the standard
normal distribution is N(0, 1). The density function φ(z) and cumulative distribution
function Φ(z) are defined in Section J.1.9 and illustrated in Figure 3.12.

The normal distribution is “bell-shaped” and symmetrically distributed about μ,
which is also this distribution’s median and mode. Almost all of the probability is
concentrated in the interval μ ± 3σ. We use zα to be the solution to the equation
P(Z > zα) = α. This is the value on the horizontal axis that has area α under the
curve and to its right. For example, z.05 = 1.645. Figure 3.13 shows the normal
density function for a N(100, 25) distribution. If X has this distribution, the left
shaded area in Figure 3.13 represents 95% of the area under the density function.
That is,

P(Z < 1.645) = P
( X − μ

σ
< 1.645

)
= P(X < 108.225) = .95

after substituting μ = 100 and σ = 5. The right shaded area is

α = .05 = P
(
(X − μ)/σ ≥ Φ−1(1 − α) = 1.645

)

A dynamic version of any call to the NTplot function is available as a shiny app
in the HH package with the argument shiny=TRUE included as an additional argu-
ment, for example

NTplot(shiny=TRUE)

A dynamic version of Figure 3.13 is initialized with the call
NTplot(mean0=100, mean1=NA, xbar=NA, xlim=c(75, 125),

sd=5, digits=6, zaxis=TRUE, cex.z=0.6,

cex.prob=.9, shiny=TRUE)

A screenshot of a dynamic NTplot example is in Figure E.1.

3.4.3 The (Student’s) t Distribution

The t distribution is similar to the standard normal distribution in that its density is
a bell-shaped curve symmetric about 0. However, as we see in Figure 3.14, where
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> dnorm(1.645, m=0, s=1)

[1] 0.1031

> pnorm(1.645, m=0, s=1)

[1] 0.95

> qnorm(0.95, m=0, s=1)

[1] 1.645

Fig. 3.12 The standard normal density N(0, 1) is shown in the top panel. The darker colored area
is Φ(1.645) = P(Z ≤ 1.645) = .95. The lighter colored area is 1−Φ(1.645) = P(Z > 1.645) = .05.
The height of the density function in the top panel at z = 1.645 is φ(1.645) = .1031. The cumulative
distribution is shown in the bottom panel. The height of the darker line segment (below the curve)
at z = 1.645 is P(Z ≤ 1.645) = .95. The height of the lighter line segment (above the curve) at
z = 1.645 is P(Z > 1.645) = .05.

we compare several t distributions to the normal distribution, the probability density
function for the t is lower in the center and “heavier” in the tails. If the mean of a
sample of size n is standardized with a sample standard deviation s rather than with
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a population standard deviation σ, then the resulting standardization, X̄−μ
s/
√

n
, has a

Student’s t distribution with degrees of freedom parameter n − 1. The t distribution
is used for inference on population means and regression coefficients.

That X̄−μ
s/
√

n
has a t distribution rests on the fact that X̄ and s are independent ran-

dom variables when sampling from a normal population.

normal: σx = 5, n = 1

w = x

φ(z) σx
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Fig. 3.13 A normal curve centered on the assumed true mean μ = 100. We assume σ = 5 and
α = .05. The left lightly shaded area is .95 = P

(
z = (X − μ)/σ ≤ Φ−1(1 − α) = 1.645

)
. The right

darkly shaded area is α = .05 = P
(
z = (X − μ)/σ ≥ Φ−1(1 − α) = 1.645

)
. The plot shows both

the x̄ scale and (in smaller font) the z scale. The table below the plot shows μ0 and the right critical
value x̄crit.R in both scales. The critical value in the z scale is directly from the normal table.

As the sample size n and hence the degrees of freedom get large, the sample
standard deviation s increasingly approximates σ so that X̄−μ

s/
√

n
increasingly approx-

imates X̄−μ
σ/
√

n
. In other words, as the degrees of freedom increases, a t distribution

increasingly resembles a standard normal distribution.
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normal and three t distributions, σx = 5 , n = 1
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Fig. 3.14 These panels are similar to Figure 3.13, the first panel is identical to Figure 3.13. The
remaining panels show t-distributions with 30 df, 10 df, and 2 df. Each panel has less area in the
center and more area in the tails. Use the reference line at y = .08 to see the drop in central area,
use the thickness of the tails at x̄ = 120 to see the increase in the probability in the tails. Use the
location of the critical value wc = x̄c on the graph and in the table below the graph to see that the
critical value for the α = .05 test is moving away from the null hypothesis value μ0 as the df gets
larger.



54 3 Statistics Concepts

3.5 Sampling Distributions

In Chapter 1 we learn that knowledge about characteristics of populations can be
gleaned from analogous characteristics of random samples from these populations.
Also recall that population characteristics are called parameters and sample char-
acteristics are called statistics. In the next two sections we discuss the two main
techniques for using statistics to infer about parameters: estimation, and hypothesis
testing. Implementation of these techniques requires that we use knowledge about
the likely values of statistics. Such information about statistics is contained in their
sampling distribution. The sampling distribution of a statistic depends on our as-
sumed knowledge of the distribution of values in the population to which we are
inferring. The term standard error is used to refer to the standard deviation of a
sampling distribution.

Consider first the mean X̄ of a sample of n items randomly selected from a normal
population, N(μ, σ2). It can be shown that the sampling distribution of X̄ is also
normally distributed with this same mean but with a much smaller variance:

X̄ ∼ N(μ, σ2/n)

We illustrate this phenomenon in Figures 3.15 and 3.16. Figure 3.15 shows the in-
dividual observations and their means. Figure 3.16 shows the distribution of the
means.

In the more likely situation where σ2 is unknown, analogous probability state-
ments are made with reference to the Student’s t distribution.

Next suppose that the population is not necessarily normal. Then under fairly
general conditions, a statistical theory result called the Central Limit Theorem states
that X̄ has “approximately” a N(μ, σ2/n) distribution if the sample size n is “suffi-
ciently large”. Thus, the inferential statements concerning μ made in the normal
distribution case are also approximately valid if the population is not normal.

What is meant here by “approximately” and “sufficiently large”? We mean that
the closer the population is to a normal population, the smaller the sample size
needs to be for the approximation to be acceptably accurate. Unless the population
is multimodal or severely skewed, a sample size of 30 to 50 is usually sufficient for
the approximation to hold.

Another application of the Central Limit Theorem implies that the sampling dis-
tribution of the proportion p̂ = X/n of successes in n binomial trials is approximately
normally distributed with mean μ = np and variance σ2 = npq, where q = 1 − p.
This result is used for inferences concerning the proportion of successes in a di-
chotomous population where the binomial assumptions apply.

If S 2 is the variance of a random sample of size n from a normal population
having variance σ2, then the sampling distribution of (n − 1)S 2/σ2 is χ2 with n − 1
degrees of freedom. We use this result for inferences concerning the population
standard deviation σ.
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Fig. 3.15 Each panel shows 10 sets of n observations from the N(μ = 100, σ2 = 52) distribution.
The number n (from the set {1, 4, 16, 64}) differs by panel. The open circles show each individual
observation. The semi-transparent triangle overlay shows the mean of each set of observations. As
n gets larger, the set of 10 means are closer together. In the n = 1 panel, the means are identical to
the individual observations and they occupy the full width of the panel. More precisely the variance
of the means in the n = 1 panel is σ2 = 52. In the n = 4 panel, the means are the average of 4
observations and they spread over only the central half of the panel with σ2

x̄ = 52/4. In the n = 16
panel, the means are the average of 16 observations and they spread over only the central quarter
of the panel with σ2

x̄ = 52/16. In the n = 64 panel, the means are the average of 64 observations
and they spread over only the central eighth of the panel with σ2

x̄ = 52/64.
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Fig. 3.16 These panels are also similar to Figure 3.13, with both the x̄-scale and the z-scale shown
in each panel of the graph. Again the panel with n = 1 is identical to Figure 3.13. The remaining
panels show the sampling distribution of x̄ as n increases. Each time the sample size goes up by a
multiple of 4, the distance on the x̄-scale from the critical value wc = x̄c to μo is halved, and the
height of the density is doubled. On the z-scale, the distance from wc = x̄c to μo is always exactly
zα = 1.645.

3.6 Estimation

A fundamental task of statistical analysis is inference of the characteristics of a
large population from a sample of n items or individuals selected at random from
the population. Sampling is commonly undertaken because it is
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a. cheaper and

b. less prone to error

than examining the entire population. Estimation is one of the two broad categories
of statistical techniques used for this purpose. The other is hypothesis testing, dis-
cussed in Section 3.7.

An estimator is a formula that can be evaluated with numbers from the sam-
ple. When the sample values are plugged into the formula, the result becomes an
estimate. An estimator is a particular example of a statistic.

3.6.1 Statistical Models

A key component of statistical analysis involves proposing a statistical model. A sta-
tistical model is a relatively simple approximation to account for complex phe-
nomena that generate data. A statistical model consists of one or more equations
involving both random variables and parameters. The random variables have stated
or assumed distributions. The parameters are unknown fixed quantities. The ran-
dom components of statistical models account for the inherent variability in most
observed phenomena. Subsequent chapters of this book contain numerous exam-
ples of statistical models.

The term estimation is used to describe the process of determining specific values
for the parameters by fitting the model to the data. This is followed by determina-
tions of the quality of the fit, often via hypothesis testing or evaluation of an index
of goodness-of-fit.

Model equations are often of the form

data = model + residual

where model is an equation that explains most of the variation in the data, and
residual, or lack-of-fit, represents the portion of the data that is not accounted for
by the model. A good-quality model is one where model accounts for most of the
variability in the data, that is, the data are well fitted by the model.

A proposed model provides a framework for the statistical analysis. Experienced
analysts know how to match models to data and the method of data collection. They
are also prepared to work with a wide variety of models, some of which are dis-
cussed in subsequent chapters of this book. Statistical analysis then proceeds by
estimating the model and then providing figures and tables to support a discussion
of the model fit.
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3.6.2 Point and Interval Estimators

There are essentially two types of estimation: point estimation and interval estima-
tion.

A typical example begins with a sample of n observations collected from a
normal distribution with unknown mean μ and unknown standard deviation σ.
We calculate the sample statistics

x̄ =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi

⎞⎟⎟⎟⎟⎟⎠ /n

s2 =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

(x − x̄)2

⎞⎟⎟⎟⎟⎟⎠ /(n − 1)

Then x̄ is a point estimator for μ. Define the standard error of the mean sx̄ as sx̄ =

s/
√

n. We then have

x̄ ± tα/2,ν sx̄ =
(
x̄ − tα/2,ν sx̄, x̄ + tα/2,ν sx̄

)

as a two-sided 100(1 − α)% confidence interval for μ.

For specificity, let us look in Figure 3.17 at the situation with n = 25, x̄ = 8.5,
ν = 24, s2 = 4, α = .05. From the t-table, the critical value tα/2,24 = 2.064. We get
sx̄ = s/

√
n = 2/

√
25 = .4 as the standard error of the mean.

Point estimators are single numbers calculated from the sample, in this example
μ̂ = 8.5. Interval estimators are intervals within which the parameter is expected
to fall, with a certain degree of confidence, in this example 95% CI(μ) = 8.5 ±
2.064 × 0.4 = (7.6744, 9.3256). Interval estimators are generally more useful than
point estimators because they indicate the precision of the estimate. Often, as here,
interval estimators are of the form:

point estimate ± constant × standard error

where “standard error” is the observed standard deviation of the statistic used as the
point estimate. The constant is a percentile of the standardized sampling distribution
of the point estimator. We summarize the calculations in Table 3.7.

3.6.3 Criteria for Point Estimators

There are a number of criteria for what constitutes “good” point estimators. Here is
a heuristic description of some of these.
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Fig. 3.17 Confidence interval plot for the t distribution with n = 25, x̄ = 8.5, ν = 24, s2 = 4,
α = .05. We calculate tα/2,24 = 2.064 and the two-sided 95% confidence interval (7.674, 9.326).
The algebra and R notation for the estimators are shown in Table 3.7.

Table 3.7 Algebra and R notation for the example in Figure 3.17.

x̄ > xbar <- 8.5

s > s <- sqrt(4)

n > n <- 25

sx̄ > s.xbar <- s/sqrt(n)

> s.xbar

[1] 0.4

tα/2,24 > qt(.975, df=24)

[1] 2.063899

x̄ ± tα/2,24 sx̄ 8.5 + c(-1,1) * 2.064 * 0.4

[1] 7.6744 9.3256

unbiasedness: The expected value of the sampling distribution of the estimator is
the parameter being estimated. The bias is defined as:

bias = expected value of sampling distribution − parameter

Unbiasedness is not too crucial if the bias is small and if the bias decreases with
increasing n. The sample mean x̄ is an unbiased estimator of the population mean
μ and the sample variance s2 is an unbiased estimate of the population variance
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σ2. The sample standard deviation s is a biased estimator of the population stan-
dard deviation σ. However, the bias of s decreases toward zero as the sample size
increases; we say that s is an asymptotically unbiased estimator of σ.

small variance: Higher precision. For example, for estimating the mean μ of a
normal population, the variance sx̄ = s/

√
n of the sample mean x̄ is less than the

variance s⊥
x
=

√
π
2 s/
√

n of the sample median
⊥
x.

consistency: The quality of the estimator improves as n increases.

sufficiency: the estimator fully uses all the sample information. Example: If X is
distributed as continuous uniform on [0, a], how would you estimate a? Since the
population mean is a/2, you might think that 2x̄ is a “good” estimator for a. The
largest item in the sample of size n, denoted x(n), is a better and sufficient estima-
tor of a. This estimator cannot overestimate a while 2x̄ can either underestimate
or overestimate a. If x(n) exceeds 2x̄, then it must be closer to a than is 2x̄.

3.6.4 Confidence Interval Estimation

A confidence interval estimate of a parameter is an interval that has a certain proba-
bility, called its confidence coefficient, of containing the parameter. The confidence
coefficient is usually denoted 1−α or as a percentage, 100(1−α)%. Common values
for the confidence coefficient are 95% and 99%, corresponding to α = .05 or .01,
respectively. Figure 3.17 illustrates a 95% confidence interval for the mean of a
normal distribution.

If we construct a 95% confidence interval (CI), what is the meaning of 95%? It
is easy to incorrectly believe that 95% is the probability that the CI contains the
parameter. This is false because the statement “CI contains the parameter” is not
an event, but rather a situation that is certainly either true or false. The correct in-
terpretation refers to the process used to construct the CI: If, hypothetically, many
people were to use this same formula to construct this CI, plugging in the results of
their individual random samples, about 95% of the CI’s of these many people would
contain the parameter and about 5% of the CI’s would exclude the parameter.

It is important to appreciate the tradeoff between three quantities:

• confidence coefficient (the closer to 1 the better)

• interval width (the narrower the better)

• sample size (the smaller the better)

In practice it is impossible to optimize all three quantities simultaneously. There is
an interrelationship among the three so that specification of two of them uniquely
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determines the third. A common practical problem is to seek the sample size re-
quired to attain a given interval width and confidence. Examples of such formulas
appear in Section 5.6.

3.6.5 Example—Confidence Interval on the Mean µ
of a Population Having Known Standard Deviation

The interpretation of the confidence coefficient may be further clarified by the
following illustration of the construction of a 100(1−α)% confidence interval on an
unknown mean μ of a normal population having known standard deviation σ, using
a random sample of size n from this population. If X̄ denotes the sample mean, then

X̄−μ
σ/
√

n
has a standard normal distribution. Let z α

2
denote the 100(1 − α

2 )th percentile
of this distribution. Then

P

(
−z α

2
<

X̄ − μ

σ/
√

n
< z α

2

)
= 1 − α

After a bit of algebraic rearrangement, this becomes

P

(
X̄ − z α

2

σ√
n

< μ < X̄ + z α
2

σ√
n

)
= 1 − α

The endpoints of the interval

(
X̄ − z α

2

σ√
n
, X̄ + z α

2

σ√
n

)
are random variables, so the

probability statement refers to the probability that the interval contains the parame-
ter, not the probability that the parameter is contained in the interval.

In practice, we replace the random variable X̄ with x̄, the realized value from the
sample, and wind up with the 100(1 − α)% confidence interval for μ:

(
x̄ − z α

2

σ√
n
, x̄ + z α

2

σ√
n

)
(3.18)

Figure 3.18 shows an example from the situation with known variance σ2.

3.6.6 Example—One-Sided Confidence Intervals

One-sided confidence intervals correspond to one-sided tests of hypotheses. Such
intervals have infinite width and therefore are much less commonly used in practice
than two-sided confidence intervals, which have finite width. The rationale for using
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normal: σx = 0.4, n = 25
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Fig. 3.18 Confidence interval plot for the normal distribution with n = 25, x̄ = 8.5, σ2 = 4,
α = .05. We calculate zα/2 = 1.96 and the two-sided 95% confidence interval (7.716, 9.284).
Compare this to the t-based confidence interval in Figure 3.17 and note that the width of the interval
is narrower here because we have more information, that is, because we know the variance, we
don’t have to estimate the variance.

one-sided intervals matches that for one-sided tests—sometimes the analyst believes
the value of a parameter is at least or at most some value rather than on either
side. One-sided confidence intervals on the mean of a population having known
standard deviation are shown in Table 5.1. Other examples of one-sided confidence
intervals appear in Tables 5.2 and 5.3. Figure 3.19 shows a one-sided example from
the situation with known variance σ2.

3.7 Hypothesis Testing

The statistician sets up two competing hypotheses, the null hypothesis H0 and the
alternative hypothesis H1, for example in Figure 3.21 in Section 3.8,

H0: μ = 32 vs H1: μ � 32. The task is to decide whether the sample evidence
better supports H0 (decision to “retain H0”) or H1 (decision to “reject H0”).
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Fig. 3.19 One-sided confidence interval plot for the normal distribution with n = 25, x̄ = 8.5,
σ2 = 4, α = .05. We are confident that the true mean is larger than the calculated value. We
calculate zα = 1.645 and the one-sided 95% confidence interval (7.842, ∞).

There are two types of errors: the Type I error of rejecting H0 when H0 is true,
and the Type II error of retaining H0 when H1 is true. In the classical hypothesis
setup, the statistician prespecifies α—the maximum probability of committing a
Type I error. Subject to this constraint, we select a testing procedure that gives good
control over β—the probability of committing a Type II error. This probability is a
function of the unknown parameter being tested. A plot of the probability against
the parameter is called an operating characteristic curve (O.C. curve) of the test.

The power of a hypothesis test is the probability of correctly rejecting a false null
hypothesis, equivalently, the probability 1− β. A power curve is a plot of the proba-
bility of rejecting H0 against the true value of the parameter. It contains information
identical to that conveyed by an O.C. curve. It is a convention in various scientific
fields whether the power or the O.C. curve is used. We illustrate both in Figure 3.20.
Statisticians can determine the sample size needed to conduct a test that has a high
probability of detecting a departure from H0 by studying O.C. or power curves for a
variety of proposed sample sizes. Examination of these curves displays the tradeoffs
between Type I error, Type II error, and sample size. See Figure 3.20 for a static
example. The reader can explore these options dynamically with the shiny=TRUE

argument to the NTplot function. Figure E.1 shows a screenshot of our shiny app
duplicating Figure 3.20. Further discussion of Operating Characteristic and power
curves is in Section 3.9.



64 3 Statistics Concepts

n
 =

 3
2

w
c

=
8.

58
2

μ a
=

8.
41

1
μ 0

=
8

0.
05

0.
68

50.
31

5

w
=

x

density

0

0.
250.
5

0.
751

0.
31

5

μ a
=

8.
41

1

power

0

0.
250.
5

0.
751

7.
5

8.
0

8.
5

0.
68

5

μ a
=

8.
41

1

beta

n
 =

 6
4 w

c
=

8.
41

1
μ a

=
8.

41
1

μ 0
=

8

0.
05

0.
5

0.
5

w
=

x

0

0.
250.
5

0.
751

0.
5

μ a
=

8.
41

1

0

0.
250.
5

0.
751

7.
5

8.
0

8.
5

0.
5

μ a
=

8.
41

1

n
 =

 1
28 w
c

=
8.

29
1

μ a
=

8.
41

1
μ 0

=
8

0.
05

0.
24

80.
75

2

w
=

x

0

0.
250.
5

0.
751

0.
75

2

μ a
=

8.
41

1

0

0.
250.
5

0.
751

7.
5

8.
0

8.
5

0.
24

8

μ a
=

8.
41

1



3.7 Hypothesis Testing 65

F
ig

.3
.2

0
(c

on
tin

ue
d)

T
he

th
re

e
se

ts
of

pa
ne

ls
sh

ow
th

e
sa

m
e

nu
ll

hy
po

th
es

is
(μ

0
=

8)
an

d
al

te
rn

at
iv

e
hy

po
th

es
is

(μ
1
=

8.
41

1)
w

ith
th

re
e

di
ff

er
en

ts
am

pl
e

si
ze

s
(n
=

32
,6

4,
12

8)
an

d
th

ei
r

co
rr

es
po

nd
in

g
po

w
er

s
(.

31
5,

.5
00

,.
75

2)
.E

ac
h

se
tc

on
ta

in
s

a
no

rm
al

pl
ot

in
th

e
to

p
pa

ne
l,

th
e

co
rr

es
po

nd
in

g
po

w
er

cu
rv

e
in

th
e

m
id

dl
e

pa
ne

l,
an

d
th

e
be

ta
cu

rv
e

(o
pe

ra
tin

g
ch

ar
ac

te
ri

st
ic

cu
rv

e)
in

th
e

bo
tto

m
pa

ne
l.

T
he

pi
nk

ar
ea

in
ea

ch
to

p
pa

ne
l

sh
ow

s
th

e
po

w
er

,t
he

pr
ob

ab
ili

ty
th

at
an

ob
-

se
rv

ed
x̄

w
ill

be
to

th
e

ri
gh

to
ft

he
cr

iti
ca

lv
al

ue
x̄ C
=

8.
41

1
w

he
n

th
e

tr
ue

m
ea

n
is

μ
1
=

8.
41

1.
T

he
gr

ay
cu

rv
e

in
ea

ch
m

id
dl

e
pa

ne
li

s
th

e
po

w
er

cu
rv

e,
sh

ow
-

in
g

th
e

po
w

er
fo

r
al

lp
os

si
bl

e
va

lu
es

of
th

e
al

te
rn

at
e

m
ea

n
μ

1
.T

he
cr

os
sh

ai
rs

in
th

e
m

id
dl

e
pa

ne
la

re
at

μ
1
=

8.
41

1
an

d
po

w
er

(μ
1
=

8.
41

1)
.T

he
re

d
ar

ea
in

th
e

to
p

pa
ne

ls
sh

ow
s

β
=

1
−p

ow
er

,t
he

pr
ob

ab
ili

ty
of

th
e

Ty
pe

II
E

rr
or

.T
he

gr
ay

cu
rv

e
in

ea
ch

bo
tto

m
pa

ne
li

s
th

e
be

ta
cu

rv
e

(t
he

O
pe

ra
tin

g
C

ha
ra

ct
er

is
tic

cu
rv

e)
sh

ow
in

g
th

e
β

fo
r

al
l

po
ss

ib
le

va
lu

es
of

th
e

al
te

rn
at

e
m

ea
n

μ
1
.

T
he

cr
os

sh
ai

rs
in

th
e

bo
tto

m
pa

ne
la

re
at

μ
1
=

8.
41

1
an

d
be

ta
(μ

1
=

8.
41

1)
.A

s
w

e
in

cr
ea

se
th

e
sa

m
pl

e
si

ze
(m

ov
e

fr
om

th
e

le
ft

se
t

of
pa

ne
ls

to
w

ar
d

th
e

ri
gh

t
se

t
of

pa
ne

ls
),

th
e

de
ns

ity
fu

nc
tio

ns
ge

t
ta

lle
r

an
d

th
in

ne
r

w
hi

le
m

ai
nt

ai
ni

ng
a

co
ns

ta
nt

ar
ea

of
1,

th
e

po
w

er
an

d
be

ta
cu

rv
es

ge
t

st
ee

pe
r,

an
d

th
e

po
w

er
in

cr
ea

se
s

(h
en

ce
be

ta
de

cr
ea

se
s)

fo
r

an
y

sp
ec

ifi
ed

va
lu

e
of

μ
1
.T

he
re

ad
er

ca
n

du
pl

ic
at

e
th

es
e

pa
ne

ls
by

ru
nn

in
g

th
e

R
co

de
in

fil
e
H
H
s
c
r
i
p
t
n
a
m
e
s
(
3
)

.T
he

re
ad

er
ca

n
se

t
up

a
dy

na
m

ic
ve

rs
io

n
of

th
is

pl
ot

fr
om

th
e

sa
m

e
co

de
w

ith
N
T
p
l
o
t
(
t
m
p
6
4
,

s
h
i
n
y
=
T
R
U
E
)

an
d

th
en

cl
ic

ki
ng

th
e

an
im

at
e

ic
on

fo
r

th
e

n-
sl

id
er

.S
ee

Fi
gu

re
E

.1
fo

ra
sc

re
en

sh
ot

.T
he

sc
re

en
sh

ot
in

iti
al

ly
do

es
n’

ts
ho

w
th

e
Po

w
er

an
d

B
et

a
cu

rv
es

.T
he

y
ca

n
be

in
cl

ud
ed

by
ch

ec
ki

ng
th

e
P

ow
er

an
d

B
et

a
ch

ec
kb

ox
es

on
th

e
D

is
pl

ay
O

pt
io

ns
ta

b.



66 3 Statistics Concepts

Do not confuse the decision to retain H0 with the statement that H0 is true. We
might be committing a Type II error. Similarly, the decision to reject H0 is not the
same as saying that H0 is false because we might be committing a Type I error.

Commonly selected values of α are .05 or .01. The choice is sometimes governed
by what is traditional in a research area.

With the prespecification of α, the statistician maintains better control over Type
I error than Type II error. When we have a choice, the names H0 and H1 should be
assigned such that the hypothesis with the more serious error is called H0 and its
more serious error is the Type I error. The hypothesis with the less serious error is
called H1 and its less serious error is the Type II error. In many applications, H0

is essentially the statement that the status quo is better, while H1 is the statement
that an innovation is better. The Type I error of incorrectly deciding in favor of an
innovation is typically more serious than the error of incorrectly maintaining the
status quo because innovation is usually costly. As a result, classical testing puts
the burden of proof on the innovation H1; H0 is retained unless there is compelling
evidence not to do so.

The preceding rules for deciding which hypothesis is H0 are based on the fact
that classical hypothesis testing places more control over Type I error at the cost of
reduced control over Type II error. The logic for this approach is seen by comparing
in Table 3.8 the definitions of these two errors in the hypothesis testing context with
the potential errors in a U.S. courtroom.

Table 3.8 Comparison of Hypothesis Testing with the Decision Options in a Court of Law

Hypothesis Testing Court of Law

True situation True situation

Decision H0 true H0 false Decision Innocent Guilty

Reject H0 Type I error correct Convict greater error correct
Retain H0 correct Type II error Acquit correct lesser error

In the United States, the error of convicting an innocent defendant is viewed as far
more serious than the error of acquitting a guilty defendant. Accordingly, the U.S.
legal system places the burden of proof on the prosecution to establish guilt beyond
a reasonable doubt. If sufficient evidence is not presented to the court, the defendant
is acquitted. Similarly, in hypothesis testing, the burden is placed on the analyst to
provide convincing evidence that H0 is false; in the absence of such evidence, H0 is
accepted. Continuing the analogy, in the hypothesis testing framework, the way to
reduce the probability of committing a Type II error without compromising control
of Type I error is to seek an increased sample size. In the legal framework, courts
can best reduce the probability of acquitting guilty defendants by obtaining as much
relevant evidence as possible.
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Table 3.8 also demonstrates that if we modify a hypothesis testing procedure to
less readily reject a null hypothesis, this results in both greater control of Type I
error and reduced control of Type II error.

Tests of hypotheses are conducted by determining what sample results would be
likely if H0 is true. If then a sufficiently unlikely sample statistic is observed, doubt
is cast on the truth of H0; i.e., H0 is rejected.

Most tests are constructed by calculating a test statistic from a random sample.
This is compared to a critical value, or values. If the test statistic is on one side of
the critical value(s), H0 is retained; if on the other side, H0 is rejected. If the value of
the test statistic leads to rejection of H0, the test statistic is said to be (statistically)
significant.

A criticism of classical hypothesis testing is the requirement that α be prespeci-
fied. One way around this is to calculate the p-value of the test.

The p-value is the probability of observing, in hypothetical repeated samples
from the null distribution (that is, when H0 is true), a value of the test statistic
at least as extreme in the direction of H1 as the test statistic calculated from
the present sample.

For most testing procedures, calculating the p-value requires the use of the com-
puter. We reject H0 (that is, we make the decision to act as if H0 does not describe
the world) if α > p-value; we retain H0 (that is, we make the decision to act as if
H0 does describe the world) otherwise. Then the analyst needs only to know how
α compares with the p-value, and does not have to commit to a particular value of
α. Most software provides p-values as part of the output rather than requesting α as
part of the input.

Another criticism of classical hypothesis testing is that if H0 is barely false, it
is always possible to reject H0 simply by taking a large enough sample size. For
example, if we test H0: μ = 32, where μ is the mean amount of soda a bottling
plant puts into 32-ounce (0.946 liter) bottles, and if in reality, μ = 32.001 ounces,
H0 can be rejected even though as a practical matter it makes no sense to act as
though anything is wrong with the filling mechanism. This would be an instance of
a statistically significant result that is not of practical significance. Because of this
criticism, many statisticians are much more comfortable using CIs than tests.

In practice, a very small p-value may be regarded as sufficiently strong evidence
against H0 to convince us to act as though H0 is false (that is, as though H0 does not
describe the world). However, even in this situation and especially if the sample size
is large, we should be mindful of the possibility that one is making a Type I error.
Also, we should always be alert to the possibility that an underlying assumption
about the population is incorrect; if so, the p-value calculation may be distorted.
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3.8 Examples of Statistical Tests

Suppose in the example of the previous section, the standard deviation of fill volume
is known to be 0.3 ounces, and that a sample of 100 bottles yields a mean of 31.94
ounces. If the alternative hypothesis is H1: μ � 32, then we should reject H0 if x̄
is sufficiently above or below 32. We illustrate this example in Figure 3.21. In this
example, in order to maintain Type I error probability at α = .01, we should reject
H0 if

x̄ < 32 − z.005 σ /
√

n
= 32 − 2.576 (0.3)/ 10 = 31.923

or

x̄ > 32 + z.005 σ /
√

n
= 32 + 2.576 (0.3)/ 10 = 32.077

Since x̄ meets neither condition, we should retain H0 when testing at α = .01. This
is an example of a “two-tailed” (or “two-sided”) test because we reject H0 if x̄ lies
sufficiently far on either tail of the Z distribution with the null hypothesized mean.

At this point we might ask whether a larger choice of α would have led to the
“retain H0” decision. This is answered by finding the p-value, here equal to 2P(Z >
|zcalc|) for zcalc = (x̄ − μ0)/(σ/

√
n) = −2. Thus p-value= 2P(Z > 2.00) = 0.046.

Then any choice of α ≤ 0.046 requires retention of H0; i.e., the decision to act as if
the filling machine is in control.

A two-tailed test can be conducted as follows. Reject the null hypothesis at level
α if the null hypothesized value of the parameter lies outside the 100(1 − α)% con-
fidence interval for the parameter.

Sometimes analysts prefer to conduct a “one-tailed” (or “one-sided”) test where
the alternative hypothesis statement is a one-sided inequality. Suppose in the soda
bottling example it was felt that the error of incorrectly claiming bottles are being
underfilled is much more serious than an error of incorrectly claiming bottles are
being overfilled. We illustrate the one-tailed test in Figure 3.22. Then we might test
H0: μ ≥ 32 vs H1: μ < 32, because this way the more serious error is the better
controlled Type I error. Now H0 will be rejected only when x̄ is sufficiently below
32. If once again we take α = .01, we reject H0 if

x̄ < 32− z.01 σ /
√

n
= 32−2.326 (0.3)/ 10 = 31.93

As with the two-tailed test, H0 is retained.

Note that, if instead we had observed x̄ = 31.925 ounces, we would have rejected
H0 with the one-tailed alternative but retained it with the two-tailed alternative. The
explanation for this distinction is that the portion of the left side of the parameter
space where H1 is true is larger under the one-tailed setup than under the analogous
two-tailed setup.
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normal: σx = 0.03, n = 100
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Fig. 3.21 Test whether the bottle production is within bounds. The figure shows a two-sided
rejection region—anything in the deep blue region outside the critical bounds (x̄critLeft =

31.92, x̄critRight = 32.08). The observed value x̄ = 31.94 is within the central light-blue do-not-
reject region. The p-value is the green shaded area outside the bounds (x̄ = 31.94, x̄otherside =

32.06) where x̄otherside = μ0 + (μ0 − x̄) = 32.06 is the value equally far from the null value μ0 = 32
in the other direction.

3.9 Power and Operating Characteristic (O.C.) (Beta) Curves

These two types of curves are used to assess the degree of Type II error control of
a proposed test. The O.C. curve is a plot of the probability of retaining H0 under
the condition of a specified value of the parameter vs the specified value of the
parameter being tested, and the power curve is a plot of the probability of rejecting
H0 vs the parameter being tested. These two plots give equivalent information, and
the choice of which to use is a matter of taste or tradition in one’s discipline.

Power and O.C. curves are used to display the menu of competing choices of
sample size, α, and Type II error probability. One desires that all three of these
quantities be as small as possible, but fixing any two of them uniquely determines
the third. Analysts commonly use one of these curves to assess the needed sample
size to achieve desired control over the two errors. If the required sample size is
infeasibly large, the analyst can see what combinations of diminished control over
the two errors are possible with the maximum attainable sample size. Note that
β = P(Type II error) is a function of the true value of the unknown parameter
being tested and that α is the maximum probability of committing a Type I error.
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normal: σx = 0.03, n = 100
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Fig. 3.22 Test whether the bottle production is within bounds. The figure shows a one-sided re-
jection region—anything in the deep blue region below the limit x̄c = 31.93. The observed value
x̄ = 31.94 is in the right light-blue do-not-reject region. The p-value is the green shaded area to the
left of x̄ = 31.94).

In the case discussed above, β = P(Type II error|μa) is a function of the true (and
unknown) value μa of the parameter.

We illustrate the formulation of an O.C. curve and its construction using R. The
pnorm function calculates the normal c.d.f. Φ. The qnorm function calculated the
inverse normal c.d.f. Φ−1.

Consider a situation where we have a normal population with unknown mean μ
and known s.d. σ = 2.0. Suppose we wish to test H0: μ ≤ 8 vs H1: μ > 8, using
α = .05 and a sample of n = 64 items. Here we retain H0 if

X̄ ≤ μ0 + Φ−1(.95) σ/
√

n

= 8 + 1.645 2/8

= 8.411

i.e., H0 is retained if X̄ ≤ 8.411. Since the true μ is unknown, the probability that H0

is retained is a function of this μ:

P(X̄ ≤ 8.411 | μ) = P
[

X̄−μ
σ/
√

n
≤ 8.411−μ

(2/8)

]

= P
[
Z ≤ 4(8.411 − μ)

]

= Φ(33.644 − 4μ)
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where Z is N(0, 1). The power curve for this problem is the plot of 1−Φ(33.644−4μ)
vs μ. Figure 3.23 shows the normal plot under both the null and alternative hy-
potheses for several values of μ1, and the associated power plot and beta (Operating
Characteristic) plots. The power and beta curves in all three columns of Figure 3.23
are identical. The crosshairs identify the location on the curves of the power and
probability of the Type II error for the specified value μa of the alternative.

For most distributions, tests of hypotheses, calculation of Type II error probabil-
ities, and construction of O.C. and power curves involves the use of a noncentral
probability distribution. Noncentral distributions are discussed in Section J.2 in Ap-
pendix J. Noncentrality is not an issue for tests using the normal distribution, as the
normal does not have a noncentral form.

We illustrate a noncentral alternative distribution in Figure 3.24.

The power.t.test function is essentially the same as the right panel in Fig-
ure 3.24, the only difference is that power.t.test assumes μ0 = 0.

PowerT <- power.t.test(n=12, sd=2, delta=1.4,

type="one.sample",

alternative="one.sided")

NTplot(PowerT, beta=TRUE, power=TRUE)

3.10 Efficiency

Efficiency is a measure of value (usually information in Statistics) per unit cost. We
wish to maximize efficiency. We want small sample sizes because each observation
has a cost, and fewer observations cost less than more observations. We want larger
sample sizes because that gives us a better estimate of the precision of our study.
A larger sample size increases the degrees of freedom for the error term. When
we look at a table of t- or F- or χ2-values we see that the critical value of the test
statistics for a specified significance level is smaller as the sample size increases.
We can see this in many of the figures in this chapter. Figure 3.20 shows that the
critical value for a normal test goes down as the sample size goes up. Figure 3.14
shows that the critical value is smaller as the degrees of freedom increase. Choosing
the right sample size is therefore important. It needs to be large enough that there is
information about the population, and small enough that the client is willing to pay
for the observations.
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Fig. 3.24 The t-test of the same null hypothesis (μ0 = 8) as Figure 3.23 and alternative hypothesis
values (μ1 = 9.4). On the left, under the assumption of known variance which implies that the
density curve for the alternative is also normal with the same variance as under the null, the power
is .782. On the right, under the assumption of unknown variance which requires that s must be
estimated from the data, the alternative distribution has a noncentral t distribution. The null has a
smaller central peak value and larger critical value. The alternative is no longer symmetric and has
an even smaller peak value. See further discussion of the noncentral t distribution in Section J.2.2.

3.11 Sampling

Whenever we wish to learn the characteristics of a large population or universe that
is unwieldy or expensive to completely examine, we may instead select a sample
from the population. If the sample has been selected by a random mechanism, it
is usually possible to infer population characteristics from the analogous character-
istics in the sample. Much of the remainder of this volume deals with methods for
conducting such inferences. In this section we discuss methods for selecting random
samples. Only rarely is it practical to sample the entire population; such a sample is
called a census of the population.

Here are some examples of situations where we would learn about a population
by choosing a random sample from it.
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• A factory wishes to know if the proportion of today’s output that is defective is
sufficiently small that the output may be shipped for sale rather than scrapped.
Examining the entire output stream is likely to be impractical and expensive,
and clearly impossible if examining an item results in its destruction. Instead, a
quality-control worker may suggest a random sample of the output, with a size
of sample that is sufficient to accurately estimate the proportion of defectives
without being excessively costly. [Formula (5.17) may be used for determining
the sample size in this situation.]

• A candidate for statewide political office wants to assess whether more than half
of the electorate will vote for her. An accurate estimate of the proportion favoring
her would greatly influence her future campaign strategy. She obviously must
contract for a sample because her campaign cannot afford to contact all potential
voters. A complication in this situation is that the population of voters and their
opinions are apt to be somewhat different on election day from what they are at
the time the sample is selected.

• A timber company wishes to estimate the average height of the trees in a forest
under its control. Such measurements are expensive to obtain because they in-
volve sighting a tree’s top at a fixed ground distance from the tree. Therefore, a
census of the forest would be prohibitively expensive and some type of random
sample of trees is preferred.

If an arbitrary sample (essentially any procedure that isn’t based on a specified
probability distribution) is used, there is no guarantee that it will truly represent
the population. To ensure that the sample adequately reflects the population, a ran-
domization mechanism must be used. The techniques for inferring from sample to
population discussed in the following chapters rest on the assumption that samples
are randomly selected. If this assumption is unjustified, the probability-based state-
ments that accompany the inferences will be incorrect.

For a given sample size n the analyst seeks to maximize the likely precision of
the inference from sample to population while minimizing the cost of selecting and
using the sample information. The most straightforward random sampling plan is
termed simple random sampling. Sometimes, however, a different sampling plan
can afford greater precision, or lower cost, or be easier to administer. We discuss
simple random sampling and several commonly used alternatives.

3.11.1 Simple Random Sampling

A simple random sample of size n from a population of size N is one selected
according to a mechanism guaranteeing that each of the

(
N
n

)
potential samples have

the same probability, 1/
(

N
n

)
, of being the sample actually selected.
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If, as is usually the case, the population is already identified with a numbering
from 1 to N, or if it is easy to set up such a numbering, then statistical software can
be used to select n distinct integers in the range 1 to N so that all potential selections
are equally likely to occur.

Such a sample is easily produced in R with the statement sample(N, n).
If the population is not numbered but exists as a character vector x [where n ≤
length(x)], then sample(x, n) produces the required sample from x.

3.11.2 Stratified Random Sampling

Sometimes the population of interest is meaningfully partitioned into groups, called
strata in the sampling literature. For example, in a school situation the strata could
be individual classrooms. In addition to making inferences about the entire popu-
lation, it is also desired to learn about each stratum (the singular of strata). When
this is the case, we may wish to select a random sample within each stratum. Then
sample estimates are available for each stratum, and these can be combined into
estimates for the entire population.

Suppose there are k strata and the number of population items in stratum i is
Ni, i = 1, . . . , k, where

∑k
i=1 Ni = N. The analyst then needs to decide how many of

the n total sample items should be selected from stratum i. One popular possibility,
called proportional allocation, stipulates sampling ni =

(
Ni

N

)
n items from the ith

stratum. Since ni need not be an integer, it is customary to round this calculation
to the nearest integer. The mean estimated from the stratified random sample is
x̄ST =

1
N

∑
i Ni x̄i, i.e., a weighted average of the stratum sample means using the

relative strata sizes as weights.

As an example, suppose it is desired to estimate the average annual malpractice
premium paid by physicians licensed to practice in Pennsylvania. Since the risk of
malpractice differs across medical specialties, it is likely also to be of interest to
determine such estimates for each medical specialty. A physician considering re-
location to Pennsylvania from elsewhere will be more interested in the estimated
premium for her own medical specialty than the average premium of all Pennsyl-
vania physicians. Accordingly, an investigator first decides the size n of a statewide
sample she can afford. Then she obtains a directory of Pennsylvania physicians clas-
sified according to specialty and notes the number Ni of Pennsylvania physicians in
each specialty i, i = 1, . . . , k, where k is the number of distinct medical specialties.
(Such a directory may be available for purchase from the American Medical Asso-
ciation.) Then a sample of approximately ni =

(
Ni

N

)
n physicians is selected from

among the Pennsylvania practitioners of specialty i.

Stratified sampling has the virtue of avoiding an undersampling of any stratum
and so guarantees some minimum degree of precision for estimates from each stra-
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tum. When the population exhibits minimal variability within strata but considerable
variability between units in different strata, estimates based on stratified random
sampling are likely to be more precise than ones based on simple random samples
of comparable total size. This fact will be demonstrated in Section 3.11.5.

3.11.3 Cluster Random Sampling

This technique is designed to control the cost of sampling in exchange for some
decrease in precision of estimation. It is most frequently used when it is necessary
to make personal contact with the sampling units (entity that is to be sampled), and
the sampling units are physically dispersed to the extent that traveling from one unit
to another is an appreciable cost.

As with stratified sampling, cluster sampling involves two stages. Assume that
the population is partitioned into c clusters. A cluster is typically formed from geo-
graphically contiguous units so that sampling units within the same cluster are much
closer to one another than two units in different clusters. In stage 1 the analyst se-
lects c0 of these clusters, where c0 is considerably less than c. Then in stage 2 the
analyst randomly samples ni items from each selected cluster i, where

∑c0

i=1 ni = n.
The samples within each cluster can be simple random samples, stratified random
samples, etc. As in the case of stratified random sampling, we must decide on a rule
for allocating the total sample size n to the clusters.

If Ti is the total for all observations in cluster i, then the mean estimated from
the cluster random sample is ȳCRS =

( ∑
i Ti

)
/
(∑

i Ni

)
, where both sums extend from

1 to c0.

Cluster random sampling saves costs because it involves much less travel from
one cluster to another than other sampling methods. But precision is sacrificed be-
cause this method prevents a large part of the population from appearing in the
sample. In contrast to stratified sampling of strata, cluster sampling of clusters is
most efficient when the variation within clusters is large compared to the variation
between clusters.

When it is required to personally interview persons sampled from a city’s pop-
ulation of eligible voters, a good strategy would be to identify voting districts as
clusters and use cluster sampling. If, instead, we wanted to interview city residents
as to their product preferences, an analyst might prefer to use zip codes as clusters
because geography-based marketing strategies are more likely to be segmented by
zip code than by voting district.
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3.11.4 Systematic Random Sampling

This method may be considered when simplicity of the sampling design and admin-
istration is of prime importance.

Order the population from 1 to N and initially assume that N is an integral
multiple of n, say N = mn. Then randomly select an integer i, 1 ≤ i ≤ m.
Then sample population item i and every mth item thereafter. For example, if
N = 120, n = 20, m = 6, we might randomly sample items 4, 10, 16, . . . , 118.

Suppose instead that N = mn + l, 1 ≤ l < n. The analyst may then seek to
move toward the N proportional to n situation. Suppose we modify the preceding
illustration to N = 132. A possibility is to accept a larger n = 22. Another option
that maintains n = 20 is to randomly remove l = 12 observations from sampling
consideration and then proceed as before with the mn remaining observations.

This method should not be used if the population displays a periodic character-
istic with the same period as m. For example, if we wish to randomly sample 20
houses in a subdivision consisting of 120 houses where each block has exactly 6
houses, then the preceding plan would either contain, or avoid, sampling houses on
the end of blocks. Such houses tend to be on larger lots than ones in the middle of
blocks and the plan would either include them exclusively or miss them entirely.

3.11.5 Standard Errors of Sample Means

In this section we provide standard errors for the means of random samples selected
by various methods. Then according to the Central Limit Theorem, an approximate
large-sample 100(1−α)% confidence interval for the population mean is of the form

sample mean ± standard error · z(1− α
2 )

For a simple random sample, the standard error is

sSRS =

√
s2

n

(N − n
N − 1

)

For a stratified random sample with sample variance s2
i from stratum i, the standard

error is

sST =
1
N

√√∑

i

N2
i

(
Ni − ni

Ni − 1

)
s2

i

ni
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If the {s2
i } tend to be smaller than s, then sST will tend to be smaller than sSRS with

the conclusion that stratification was worthwhile.

To present the standard error for the mean of a cluster random sample, define
N̄ = N/c to be the average cluster size. The standard error is

sCRS =

√(
c − c0

c0cN̄2

) ∑
i(Ti − ȳCRSNi)2

c0 − 1

The summation extends from 1 to c0, where as before, c0 is the number of clusters
that were sampled.

3.11.6 Sources of Bias in Samples

Sampling error is the discrepancy between the estimate and parameter being esti-
mated. This error decreases as the sample size increases. Nonsampling errors are
more serious than sampling errors because they can’t be minimized by increasing
the sample size. Continuing the example discussed in Section 3.11.2, we discuss two
such sources of bias in the context of randomly sampling physicians who practice in
Pennsylvania. Selection bias occurs when it is impossible to sample some members
of the population. Nonresponse bias occurs if responses are not obtained from some
members of the sample.

In order to randomly sample from the population consisting of all physicians
licensed to practice medicine in Pennsylvania, we must obtain a list or computer
file of such physicians. Even if we could obtain a list of physicians licensed to
practice, there is no way to know which physicians on such a list are in fact practic-
ing medicine (as opposed to performing medical research or administrative tasks).
Therefore, use of such a list would introduce selection bias. A better approach might
be to obtain a list of the Pennsylvania membership of the American Medical Asso-
ciation (AMA). This list does indicate the nature of the physician’s practice, if any,
so nonpractitioners on the list can be ignored. However, not all physicians practic-
ing in Pennsylvania are AMA members; such membership is not legally required
in order to practice medicine. Thus some selection bias would still be present with
this approach. Selection bias would be eliminated if the client can be persuaded to
amend the target population to AMA members practicing in Pennsylvania.

Next suppose that this amendment is accepted and that a random sample of n
practicing physicians is selected from the list. How should the physicians be con-
tacted? Since physicians are busy individuals; visiting them in person or contacting
them by telephone is unlikely to yield a response. Ignoring nonrespondents is likely
to result in nonresponse bias because busier physicians are less likely to respond,
and busyness may be associated with the survey questions.
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Mail contact of the sampled physicians is preferred for several reasons. Since a
written questionnaire can be answered at the physician’s convenience, the physician
is more likely to respond. Second, the questionnaire can be placed under a cover let-
ter that encourages participation, written by a person respected by the respondents.
Third, it is possible to keep track of who does not initially respond so that such
individuals can be contacted again. This is accomplished by asking respondents to
mail in a signed postcard indicating that they have participated, and to return the
anonymous questionnaire in an envelope mailed separately.

Even this elaborate mail questionnaire approach does not eliminate the possibil-
ity of nonresponse bias. The extent of any remaining bias can be judged by compar-
ing characteristics of the sampled physicians with those of the physician population
reported in the AMA membership directory.

3.12 Exercises

3.1. Refer to the discrete bivariate distribution considered in Table 3.3.

a. Let Z = X + 1. Find the distribution of Z.

b. Find E(2X + 1) and 2E(X) + 1. Then find E(X2) and [E(X)]2.

c. Find P(X < Y).

d. Let X1 and X2 be independent and identically distributed as X. Make a table of
the joint distribution of X1 and X2, and use this to find P(X1 < X2 + 1).

3.2. How large a random sample is required for there to be a 92% probability of
sampling at least one defective from a lot of 100,000 items which contains 100
defectives? (Hints: What is the random variable here? Consider the event that is the
complement of “at least one defective”.)

3.3. Suppose X is binomial(50, .10), and Y is binomial(20, .25). Draw the distribu-
tion functions of X and Y . Which one has a bigger mean? Which one has a bigger
standard deviation?

3.4. If X, Y are each standard normal random variables, and they are independent of
one another, what is the distribution of Z = 3X + 2Y?

3.5. Suppose that Y is a 2 × 1 random vector such that

W =

(
80
40

)
+

(
10 7
7 5

)
Y
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has a bivariate normal distribution with mean
(

60
70

)
and covariance matrix

(
100 40
40 50

)
. Find the probability distribution of Y , including its mean vector and

covariance matrix.

3.6. In class #1, 32 out of 40 students earned fewer than 70 points on the final exam.
In class #2, 40 out of 50 students earned fewer than 75 points on the same exam.
Restate the given class information in terms of percentiles. Is it possible to tell which
class had a higher average score?

3.7. Somebody tells you that a 95% confidence interval for the mean number of
customers per day is (74.2, 78.5), and that this indicates that 95% is the probability
that the mean is between 74.2 and 78.5. Criticize this statement and replace it with
one correct sentence.

3.8. Acme, Inc. thinks it has a new way of manufacturing a key product. It is trying
to choose between A = “new way is better than old way” or B = “old way is better
than new way”. Acme plans to reach its tentative conclusion by sampling some of
the product produced the new way and conducting a statistical test. The new way is
much more expensive than the old way. Which statement, A or B, should be the null
hypothesis? Justify your answer.

3.9. The probability that a project succeeds in New York is .4, the probability that it
succeeds in Chicago is .5, and the probability that it succeeds in at least one of these
cities is .6. Find the probability that this project succeeds in Chicago given that it
succeeds in New York.

3.10. You are considering two projects, A and B. With A you estimate a payoff of
$60,000 with probability .6 and $30,000 with probability .4. With B you estimate
a payoff of $80,000 with probability .5 or $30,000 with probability .5. Answer the
following questions after performing appropriate calculations.

a. Which project is better in terms of expected payoff?

b. Which project is better in terms of variability of payoff?

3.11. If X has a mean of 15 and a standard deviation of 4, and if Y = 5 − 3X, what
are the mean and standard deviation of Y?

3.12. State the two ways in which a data analyst can modify a statistical test in order
to decrease its Type II error probability.

3.13. An analyst makes three independent inferences. For each of these inferences,
the probability is .05 that it is incorrect. Find the probability that all three inferences
are correct.
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3.14. Let A = “a McDonald’s franchise in Kansas is profitable” and let B = “the
Philadelphia Eagles will have a winning season next year”. If P(A) = .8 and
P(B) = .6, find the probability that either A or B occurs.

3.15. Use statistical software commands to do this problem. A new medicine has
probability .70 of curing gout. If a random sample of 10 people with gout are to be
given this medicine, what is the probability that among the 10 people in the sample,
between 5 and 8 people will be cured?

3.16. Use statistical software commands to do this problem. The daily output of
a production line is normally distributed with a mean of 163 units and a standard
deviation of 4 units.

a. Find the probability that a particular day’s output will be 160 units or less.

b. The production manager wants to tell her supervisor, “80% of the time our pro-
duction is at least x units”. What number should she use for x?

3.17. Find the expected value and standard deviation of a random variable U if its
probability distribution is as follows:

u P(U = u)
1 .6
2 .3
3 .1

3.18. A random variable W has probability density function f (w) = 2 − 2w, 0 <
w < 1, and f (w) = 0 for all other values of w.

a. Verify that f (w) is indeed a probability density function.

b. Find the corresponding cumulative distribution function, F (w).

c. Find the expectation of W.

d. Find the standard deviation of W.

e. Find the median of this distribution, i.e., the number wm such that
P(W < wm) = .5.

3.19. Use a statistical software command to approximate the value of z.08.

3.20. State the two things that a data analyst can do in order to make a confidence
interval narrower.

3.21. A data analyst tentatively decides on values for α and n for a statistical test.
Before performing the test she investigates its Type II error control and finds this to
be unsatisfactory. What two options does she have to improve Type II error control?
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3.22. In the discussion of sufficiency of a point estimator in Section 3.6.3, we indi-
cated that 2x̄ is not a good estimator of a from a sample of n items from a continuous
uniform distribution on [0, a]. Can you suggest a better estimator of a and explain
why it is better than 2x̄?

3.23. The dataset data(salary), from Forbes Magazine (1993), contains the ages
and salaries of the chief executives of the 60 most highly ranked firms among Forbes
Magazine’s “Best small firms in 1993.” Consider the variable age.

a. Produce a boxplot and a stem-and-leaf plot for age.

b. Construct a 95% confidence interval for the mean age. What assumptions were
made in your construction?

c. Test H0: μ ≤ 50 against H1: μ > 50, reporting and interpreting the p-value for
this test.

d. Approximate the power of this test for the alternative μ1 = 53 by using the normal
distribution as an approximation for the test statistic in part c, assuming α = .05.

3.24. The dataset data(cereals) contains various nutritional measurements for 77
breakfast cereals. We are concerned here with the variable carbo (carbohydrates)
measured in grams per serving. Be aware that the cereal Quaker Oatmeal shows a
negative value for carbohydrates, probably indicating a missing value for that ob-
servation. Be sure that you inform your data analysis package of this anomaly and
that the package does something sensible with that information. Elimination of the
observation is one possible response to missingness.

a. Produce boxplots and stem-and-leaf plot for carbo. Do these plots suggest that
this variable comes from a normal population?

b. Construct at 99% confidence interval for the mean carbohydrate content.

c. Test H0: μ ≥ 16 against H1: μ < 16, reporting and interpreting the p-value for
this test.

d. Approximate the probability of committing a Type II error for the alternative
μ1 = 15. Use the normal distribution to approximate the test statistic in part c,
assuming α = .05.

3.25. The sampling bias in the December 1969 U.S. Draft Lottery, with data in file
data(draft70mn), is described in Exercise 4.1. Suppose you had been the admin-
istrator of that lottery. Explain how you would have performed the sampling without
incurring such bias.

3.26. Royalties paid to authors of novels have sometimes been based on the number
of words contained in the novel. Recommend to an old-fashioned author how to
estimate the number of words in a handwritten manuscript she is planning to give to
her publisher.
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3.27. Samples are taken from two strata. Suppose the variance of the two samples
combined is s2 = 7.6 and the following within-stratum information is known:

Stratum Ni ni s2
i

1 100 30 1.2
2 120 40 1.4

Observe that there is far less variability within the two strata than between the two
strata. Calculate sSRS and sST to verify that for estimating the common population
mean in this situation, x̄SRS is much preferred to x̄ST.

3.28. The organization of a candidate for a city political office wishes to poll the
electorate. For this purpose, discuss the relative advantages and disadvantages of
personal interview polling vs telephone polling.

3.29. Explain how it is possible for a census to yield less accurate results than a
random sample from the same population.

3.30. A student claims that a random sample of n items from a population of N
items is one selected so that each item in the population has the same probability n

N
of appearing in the sample. Demonstrate that this definition is inadequate.

3.31. A four-drawer file cabinet contains several thousand sheets of paper, each con-
taining a statement of the dollar amount due to be paid to your company. The sheets
are arranged in the order that the debt was incurred. You are asked to spend not more
than one hour to estimate the average dollar amount on all sheets in the file cabinet.
Propose a plan for accomplishing this.



Chapter 4

Graphs

Graphs are used to inspect and display patterns in data. Appropriately drawn graphs
are, in our opinion, the best way to gain an understanding of what data have to say.
In this chapter we present several of the types of graphs and plots we will be using
throughout. We discuss the visual impact of the graphs and relate them to the tabular
presentation of the same material.

Statistical techniques have underlying assumptions. An important use of graphs
is to aid in the checking of a list of assumptions a technique requires in order for
an analysis using the technique to be correct. For example, regression analysis, dis-
cussed in Chapters 8 to 11, requires that model residuals are randomly distributed.
Residual plots, discussed in these chapters, must show random scatter rather than a
systematic pattern.

We discuss the construction of graphs and pay attention to each of the compo-
nents of graphs that can aid (or hinder) the interpretation of the data. We show good
(and some bad) examples of plots and discuss why we make those value judgments.
Appendix 4.A gives an overview of R Graphics with an emphasis on the design and
use of the lattice package.

The appendix to this chapter summarizes many graphs that are introduced in this
book.

We see graphs as the heart of most statistical analyses; the corresponding tabu-
lar results are formal confirmations of our visual impressions. The graphs are not
automatically produced by most software; instead it is up to the analyst to request
them.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 4
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4.1 What Is a Graph?

A graph is a geometrical representation of the information in a table of numbers.
Our prototype graph is the traditional scatterplot—a two-dimensional plot of two
variables (x on the abscissa or horizontal axis and y on the ordinate or vertical axis).
For each observation (x, y) in the data we locate a point on the graphing surface
with coordinates (x, y). For a dataset with n observations we mark n points on the
graphing surface. Figure 4.1 is an example of such a plot.
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Fig. 4.1 Selling price by lot size for 105 single-family homes in Mount Laurel, New Jersey, from
March 1992 through September 1994. What is the meaning of a lot size of zero?

Note the graphic features of the plot in Figure 4.1 (the interpretation of this graph
will be discussed in Section 4.3):

x-axis tick marks, tick labels, label: Information on the variable that defines the
horizontal direction of the graph. The range of the scale is large enough to show
all points.

y-axis tick marks, tick labels, label: Information on the variable that defines the
vertical direction of the graph. The range of the scale is large enough to show all
points.

main title: Information on the subject matter of the graph.

plotting character: A plotting character, in this case a blue ’0’ or a red ’+’, is
placed at each x–y coordinate. The color and character represent some aspect of
the data. In this example they are redundant and represent whether the reported
Lot Size has a zero or nonzero value.
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color: The characters are color coded to represent a factor within the data. Please
see Section 4.A.4 for more information on color.

legend: There are several different plotting characters and colors used in this
graph. The reader needs identification of each. For this plot, they indicate levels
of a factor. In other examples, they might be used to indicate different response
variables.

caption: A short paragraph describing the structure of the graph and the message
that the graph is designed to illustrate.

The goal of statistical graphics is to make evident the characteristics of the data
such as location, variability, scale, shape, correlation, interaction, and clustering.
Once we have a visual understanding of the data, we usually attempt to model it with
formal algebraic procedures. We will normally translate our algebraic understanding
back to a graphical presentation and to a verbal discussion of our findings.

4.2 Example—Ecological Correlation

Examination of plots of the data at early stages of the analysis, before requesting and
examining tabular output, is an essential part of data analysis. This point is demon-
strated in Figure 4.2, which illustrates what is known as the Ecological Fallacy. If
without examining a plot of these (simulated) data we perform a simple regression
of y on x, we find that y and x are directly related. The plot strongly suggests that
what we have is the amalgamation of three disparate groups. Within each of the
groups it is clear that y and x are inversely related, the opposite conclusion from
the amalgamated result. In practice it is likely that the existence of the groups is
meaningful information that must be accounted for by the analyst. In this case the
individual within-group results are what should be reported.

Robinson (1950) introduced the idea by showing that the correlation between
percentage illiterate and percentage black racial group for the United States as a
whole, based on the 1930 U.S. Census, is different from this correlation within vari-
ous subgroups of the U.S. population. The terms Ecological Fallacy and Ecological
Correlation were coined by Selvin (1965). Human ecology is a branch of sociology
dealing with the relationship between human groups and their environments. The
fallacy is that we cannot necessarily use a finding from an entire population to reach
conclusions about various subsets of the population.
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Fig. 4.2 Ecological Correlation. The overall slope ignoring groups is strongly positive. The slope
within each group is strongly negative. These are simulated data.

4.3 Scatterplots

Figure 4.1 shows the selling price by lot size for 105 single-family homes in Mount
Laurel, New Jersey, from March 1992 through September 1994. The data, from
Asabere and Huffman (1996), are accessed with data(njgolf).

There is much information in Figure 4.1. We start by listing the most obvious
items, and then we will look at the less obvious and more puzzling items. The range
of lot sizes is 0–30,000 square feet, with most of the lots in the 8,000–15,000-
square-foot range. But what is that large cluster of lot sizes at 0 square feet? The
range of sale prices is $50,000–$250,000, with most of the 0-size lots selling for
under $130,000 and most of the nonzero lots selling above $130,000. Within the
5,000–25,000-square-foot range price seems independent of size of lot, that is, for
any lot size in that range the best estimate of sales price is the same, about $165,000.

The scatterplot is an ordinary 2-dimensional plot with one variable lotsize on
the x-axis (horizontal axis or abscissa) and the other variable sprice on the y-axis
(vertical axis or ordinate). The plotting routine automatically determines the appro-
priate scale and tick locations for both axes and prints the variable names as the
default labels for the axes.

We raised many questions in our perusal of Figure 4.1. Answering them requires
us to look carefully at the definitions of the variables we displayed in the figure. We
find that the variable labeled lotsize is actually a conflation of two distinct con-
cepts. If the property is a condominium (a form of ownership of an apartment that
combines single ownership of the residence unit with joint ownership of the build-
ing and associated grounds), the variable lotsize was arbitrarily coded to 0. If the
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property is a single-family house, then the variable lotsize contains the actual lot
size in square feet. This explains the numerous observations having lotsize=0 in
Figure 4.1.

We must also look at additional variables. We will start with three measures of
the size of the dwelling unit, rather than of the lot on which it is built. In Figure 4.3
we look at selling price against the number of bedrooms, the dining room area,
and the kitchen area. All three plots show a rise in selling price as the x-variable
increases. We can also see a hint in Figure 4.3 that selling price increases with x
for both the lower-priced properties (the condominiums) and the higher-priced ones
(the single-family houses).
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Fig. 4.3 Selling price by number of bedrooms, by dining room area, and by kitchen area for 105
single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994.

We investigate that possibility in Figure 4.4 where we show all three plots condi-
tioned on whether the property is a condominium or house. Now we see very clear
uphill trends of price on the measures of size within each of the panels of the figure.

4.4 Scatterplot Matrix

We looked at five variables in Figure 4.4 and nominally two, but actually three,
variables in Figure 4.1. In both figures we used selling price as the y-variable and
the others as either x-variables or as conditioning variables. In Figure 4.5 we look at
all six variables together. This display shows all the individual panels that we looked
at in the previous graphs in the sprice row and also shows the relationships among
the other variables.
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Fig. 4.4 Selling price by number of bedrooms, by dining room area, and by kitchen area for 105
single-family homes, conditioned on whether the property is a condominium or house, in Mount
Laurel, New Jersey, from March 1992 through September 1994.

The display type is a scatterplot matrix or splom (Scatter PLOt Matrix), a ma-
trix of scatterplots with each of the six variables taking the role of x-variable and
y-variable against all the others. Thus there are 6P2 = 30 distinct plots in Figure 4.5.
Each of these 30 plots is a plot of a pair of variables comparable to Figure 4.1.
Since each of the six variables appears in both the x- and y-position, there are only

6P2/2 = 30/2 =
(

6
2

)
= 15 distinct pairs of variables in the plots. We see that the (i, j)

panel of the splom (counting from the lower-left corner) is the reflection of the ( j, i)
panel.

A defining property of the scatterplot matrix is that all panels in the same row
have identical y-scaling and all panels in the same column have identical x-scaling.
It is therefore easy to trace an interesting point in one panel across to the other
panels. For example, the single point visible in the condominium position of the
lotsize ~ cond.house panel is recognized as an overplotting of many condo-
minium points when we trace it in the other panels to the left and see that the dining
area of condominiums runs the full range of dining areas for the entire dataset.

Unfortunately, Figure 4.5 has also lost (although we partially retain it by different
colors) the distinction between the condominiums and houses that we worked so
hard to find. We recover that distinction in Figure 4.6 where we now show the five
numeric variables separately for condominiums and houses. We can look across the
subpanels in each main panel of Figure 4.6 and see relationships among multiple
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variables. On the condominium panel of Figure 4.6 we see that the condominium
with largest kitchen and dining room is one of the higher-priced properties (but not
the highest) and it has only two bedrooms. On the house panel of Figure 4.6 we see
that the highest-priced house has the largest lot size, but not the largest dining area
and only four bedrooms.
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Fig. 4.5 Scatterplot matrix of six variables for the 105 single-family homes in Mount Laurel, New
Jersey, from March 1992 through September 1994. The sprice ~ lotsize panel outlined in
gray (bottom row, second column) is the same as Figure 4.1. The three panels in the bottom row
outlined in black (third, fourth, and fifth columns) are the same as Figure 4.3. The same three
panels, separated by color, are in Figure 4.4.

Additional discussion of scatterplot matrices appears in Section 4.7.
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Fig. 4.6 Scatterplot matrix of five variables for the 105 single-family homes, conditioned on
whether the property is a condominium or house, in Mount Laurel, New Jersey, from March 1992
through September 1994.

4.5 Array of Scatterplots

Let us step away from data analysis for a moment and look at the structure of
the graphs. Figures 4.2 and 4.3 contain graphs with multiple panels. The panels
are clearly labeled with a strip label that shows the level of the factor on which the
panels are conditioned. In Figure 4.2 the factor levels in the strip labels describe the
model by which the slopes were calculated. The x- and y-axes are identical in both
panels.

In Figure 4.3 the factor levels in the strip labels name the room of the house
for which the measurements are shown. Here, the three panels represent different
variables (number of bedrooms) or value ranges (square feet), hence each panel has
its own x-scale. All three panels have the same response variable Selling Price

and are therefore shown on the same y-scale.

Figure 4.4 is more elaborate, with conditioning on two factors. The horizontal
factor, the room of the house, is the same as the factor in Figure 4.3 and therefore
the top strips and the x-scales are the same as in Figure 4.3. The vertical factor
is the form of ownership (condominium or house), which in this case makes the
same distinction as the Lot Size factor. We distinguish the panels for the own-
ership/Lot Size factor with left strip labels for each row. The response variable
Selling Price is the same in all six panels, and all are shown on the same y-scale.
The panels are defined by the 3 × 2 crossing of the factor levels. Within each panel
we show the data points for only the specified factor levels.
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A set of scatterplots can be conditioned on more than two factors. Figure 4.7
has three factors. Figure 4.7 is a preview of Figure 17.10 and its content will be
discussed in Chapter 17. In this figure we use two rows of top strip labels, one for
the pairs of columns representing stage, and the other for levels of grade nested
within stage. We have a single column of left strip labels for levels of X.ray.

age ~ acid.ph | grade * stage * X.ray, group=nodes
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ag
e

45

50

55

60

65

50 100 150

000

00
00

0

00

0

0
0

0
0 0

1

:grade 0:stage 0

 : 
X

.r
ay

0

50 100 150

0

0

1

1

:grade 1:stage 0

:
X

ra
y

0

50 100 150

00 0

0

01

1

1
1

:grade 0:stage 1

:
X

ra
y

0

50 100 150

00

0

00

0

1

1

:grade 1:stage 1

:
X

ra
y

0

45

50

55

60

65 0
0

0

1

 : grade 0

 : stage 0

 : 
X

.r
ay

1

1

 : grade 1

 : stage 0
:

X
ra

y
1

1

1

1

 : grade 0

 : stage 1

:
X

ra
y

1

01

1

1

1
1

1
 : grade 1

 : stage 1

:
X

ra
y

1

nodes
0 1

Fig. 4.7 A scatterplot array conditioned on three factors. There are two rows of top strip labels
and one column of left strip labels. The upper strip label distinguishes pairs of columns for levels
of the stage factor. We also have additional horizontal space between the pairs of columns. The
lower strip label distinguishes levels of grade within each level of stage. The left strip label
distinguishes levels of X.ray. The plotting symbol and color represent a fourth factor. Within each
panel, the points show a plot of age ~ acid.ph.

4.6 Example—Life Expectancy

4.6.1 Study Objectives

For each of the 40 largest countries in the world (according to 1990 population
figures), the dataset data(tv) gives the country’s life expectancy at birth parti-
tioned by gender, number of people per television set, and number of people per
physician Rossman (1994).
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4.6.2 Data Description

life.exp: Life expectancy at birth

ppl.per.tv: Number of people per television set

ppl.per.phys: Number of people per physician

fem.life.exp: Female life expectancy at birth

male.life.exp: Male life expectancy at birth

4.6.3 Initial Graphs

We initially focus on the male and female life expectancies in Table 4.1 and
Figure 4.8.

Figure 4.8 shows each data row of Table 4.1 as a distinct point. Since both x and
y are the same variable in the same units for two different subsets of the population,
it is important to use a common range and ticks on both axes and maintain an aspect
ratio of 1. In a good graphical system we have control of the plotting symbols. We
plotted the points with a solid dot • and labeled one point (Japan) with text to show
its coordinates (x, y) = (82, 76).

The first impression we get from reading Figure 4.8 is that most of the points
are below the 45◦ line. This is such an important part of the interpretation of this
graph that we drew the 45◦ line. Once the line is there for reference we immediately
note that one country’s point is above the 45◦ line. Which one? The easiest way
to find out is to plot the abbreviated country names instead of dots (Figure 4.9a).
Bangladesh is the country that has a longer life expectancy for males than females.
On an interactive graphics system we merely click on the point and the system
will label it [see file (code/grap.identify.s)]. We have simulated the interactive
appearance in Figure 4.9b.

We see from the figures that life expectancy for males and females is related;
as one goes up the other tends to go up as well. We have done several other fine
tunings on Figure 4.8. Life expectancy is measured on the same numerical scale for
both male and female; therefore, we forced both scales to have the same range and
we forced the graph to be square. By default, most plotting systems independently
determine the x- and y-scales and use the maximum available area for the graph.
Figure 4.9c releases the constraint on the ranges and we see that the male and female
ranges are different (the female range is offset from the male range by 5 years). Since
the graph goes from the lower-left corner to the upper-right corner, it falsely gives
the visual impression that the two ranges are the same. When we plot the 45◦ line in
Figure 4.9d we get much of the correct impression back. In Figure 4.9e, where we
no longer constrain the graph to be square, we lose the visual effect of forcing the
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ranges to be the same on both axes. In Figure 4.9e we have plotted the least-squares
line through the points in addition to the 45◦ line. Least squares will be discussed
in detail in Chapter 8. For now we note that this line attempts to get close to most
of the points. It is used as an indicator of the linear relationship between the two
variables male and female life expectancy.

Table 4.1 Life expectancy. The country abbreviations used here are from the R function call
abbreviate(row.names(tv)).

Abbrev Country Female Male Abbrev Country Female Male
Argn Argentina 74 67 M(B) Myanmar (Burma) 56 53
Bngl Bangladesh 53 54 Pkst Pakistan 57 56
Brzl Brazil 68 62 Peru Peru 67 62
Cand Canada 80 73 Phlp Philippines 67 62
Chin China 72 68 Plnd Poland 77 69
Clmb Colombia 74 68 Romn Romania 75 69
Egyp Egypt 61 60 Russ Russia 74 64
Ethp Ethiopia 53 50 StAf South Africa 67 61
Frnc France 82 74 Span Spain 82 75
Grmn Germany 79 73 Sudn Sudan 54 52
Indi India 58 57 Tawn Taiwan 78 72
Indn Indonesia 63 59 Tnzn Tanzania 55 50
Iran Iran 65 64 Thln Thailand 71 66
Itly Italy 82 75 Trky Turkey 72 68
Japn Japan 82 76 Ukrn Ukraine 75 66
Keny Kenya 63 59 UnKn United Kingdom 79 73
K,Nr Korea, North 73 67 UnSt United States 79 72
K,St Korea, South 73 67 Vnzl Venezuela 78 71
Mexc Mexico 76 68 Vtnm Vietnam 67 63
Mrcc Morocco 66 63 Zair Zaire 56 52

4.7 Scatterplot Matrices—Continued

There are five variables in the tv dataset. Figure 4.10 plots them all in a scatterplot
matrix.

Continuing with the discussion begun in Section 4.4, the scatterplot matrix is
a coordinated set of scatterplots, one for each pair of variables in the dataset. We
refer to the individual scatterplots comprising the matrix as panels. The panels
are labeled by their Y ∼ X, that is RowName by ColumnName, variable names.
Thus, in Figure 4.10, the panel in the upper-left-hand corner (also called the NW
or Northwest corner) is called the ppl.per.phys ∼ fem.life.exp panel. Vari-
able names are unambiguous and are constant across multiple views of the data:
The male.life.exp ∼ fem.life.exp panel refers to the same data values all of
Figures 4.8, 4.9, and 4.10. We would NOT say “row 1 by column 4” because the
sequencing of variables and the direction of ordering the rows and columns (is row
1 at the top or bottom?) are unclear.
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Fig. 4.8 Life Expectancy. In most countries, female life expectancy is longer than male life ex-
pectancy.

There are several possible orientations of the panels; we display the best in Fig-
ure 4.10 and will discuss other orientations in Figures 4.11 and 4.12. There are five
variables; hence the matrix consists of a 5×5 array of scatterplots. Indexing for the
set of plots is sorted in the same way as the axes in each individual panel. Indexing
begins at the lower left and proceeds from left to right and from bottom to top. The
main diagonal runs from southwest to northeast (SW–NE). Each panel containing
one scatterplot is square. Each pair of variables appears twice, once below the main
diagonal and again as a mirror image above the main diagonal. There is a single axis
of symmetry for the entire splom.

The variables in Figure 4.10 are all continuous measurements. When using a
splom to display data with categorical variables, we recommend avoiding inclusion
of categorical variables among the variables comprising the splom itself, particularly
for categorical variables having few categories, as they will usually appear as a
noninformative regular lattice (see, for example, the customf×cornerf panel of
Figure 9.3). It is usually more informative to produce two or more adjacent sploms,
by conditioning on the categorical variables, or to use different plotting symbols
for the different levels of one of the factors. We use both strategies in Figure 9.4,
conditioning on the levels of corner and using different plotting symbols for the
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a. abbreviated names

fem.life.exp

m
al

e.
lif

e.
ex

p

50

60

70

80

50 60 70 80

Argn

Bngl

Brzl

Cand

ChinClmb

Egyp

Ethp

Frnc
Grmn

Indi
Indn

Iran

Itly
Japn

Keny

Kr,NKr,S
Mexc

Mrcc

M(B)

Pkst

PeruPhlp

PlndRomn

Russ

SthA

Span

Sudn

Tawn

Tnzn

Thln
Trky

Ukrn

UntK
UntS

Vnzl

Vtnm

Zair

b. simulated interactive

fem.life.exp

m
al

e.
lif

e.
ex

p

50

60

70

80

50 60 70 80

Bngl

c. square, unequal scale

fem.life.exp

m
al

e.
lif

e.
ex

p

50

55

60

65

70

75

55 60 65 70 75 80

d. x=y line, square, unequal scale

fem.life.exp
m

al
e.

lif
e.

ex
p

50

55

60

65

70

75

55 60 65 70 75 80

e. same xlim and ylim, unequal scale,
least squares line

fem.life.exp

m
al

e.
lif

e.
ex

p

55
60
65
70
75
80

55 60 65 70 75 80

Fig. 4.9 Life expectancy—variations on the plot. See discussion in text.

levels of custom. Another example is Figure 11.1, which contains two adjacent
sploms conditioned on the two levels of the categorical variable lime.

We have presented what we consider to be the best orientation of the splom in
Figure 4.10. Two other orientations are commonly used. When scatterplot matrices
were first invented, the importance of a single axis of symmetry was not yet realized.
Older scatterplot matrix programs (and some current ones) default, or are limited,
to the more difficult main diagonal from northwest to southeast (NW–SE). The R
splom function defaults to the optimal SW–NE main diagonal. It can be told to use
the nonoptimal alternate diagonal with the argument as.matrix=TRUE. The older
R function pairs defaults to the nonoptimal NW–SE diagonal but provides the
option to change it with the row1attop=FALSE argument. pairs also defaults to
rectangular panels (the goal is maximal use of the plotting surface) but fortunately
provides an option to force square panels (with a previous use of par(pty="s").
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Televisions, Physicians, and Life Expectancy
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Fig. 4.10 Televisions, physicians, and life expectancy. Variable ppl.per.tv has two missing val-
ues. We notice this immediately in panel ppl.per.tv ~ ppl.per.phys, where the two points at
ppl.per.phys = 25000 in the bottom three rows of the ppl.per.phys column do not appear.
Similarly these points are missing in Figures 4.11, 4.14, and 4.15.

We recommend also using a square plotting region.). We show the pairs plot with
both suboptimal choices in Figure 4.11.

The major difficulty with Figure 4.11 is that the multiple axes of symmetry are
hard to find. The axes of symmetry are illustrated in Figure 4.12. The confusion
in Figure 4.12a occurs because pairs of plots with the same variable names appear
to the lower left and upper right of the NW–SE main axis of the matrix of plots.
Within each pair, the upper plot needs to be reflected about its own SW–NE axis to
match the lower plot. By comparison, Figure 4.12b has a single axis of symmetry
for the entire plot. All pairs of plots and reflections within each pair occur around a
single SW–NE axis of symmetry. Note also that the individual panels of the display
are square to help ease the eye’s task of seeing the symmetry.
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Earlier versions of S (Becker et al., 1988) defaulted to printing just one triangle of
the two mirror image triangles in pairs and had an option full=TRUE to print the
full matrix. From the manual, “By default, only the lower triangle is produced, sav-
ing space and plot time, but making interpretation harder.” That option made sense
with typewriter terminals at 10 characters per second. It no longer makes sense with
desktop workstations, windowing terminals, and laser printers. The single triangle
of a scatterplot matrix can be created in R by suppressing one of the triangles, for
example with a call similar to

splom(iris, lower.panel=function(...){}).

Older programs sometimes display a very confusing subset of the lower triangle
in which the rows and columns of the display show different sets of variables. The
intent is to save space by suppressing a presumably non-informative main diagonal.
The effect on the reader is to add confusion by breaking symmetry. A symbolic
version of this form of the plot is in Figure 4.13.
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pairs with NW−−SE diagonal and rectangular panels

Fig. 4.11 Nonoptimal alternate orientation with rectangular panels for splom. The downhill diag-
onal is harder to read (see Figure 4.12). The rectangular panels make it hard to compare each panel
with its transpose.
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Fig. 4.12 Axes of symmetry for splom. Figure 4.12a has six axes of symmetry. We focus on panel
6, which appears in positions reflected about the main NW–SE axis. The individual points within
panels 6 and 6′ are reflected about the dashed SW–NE line, as indicated by the position of the
arrow. The other four axes, which reflect respectively panel 5, panels 3 and 4, panel 2, and panel 1
are indicated with dotted lines. Figure 4.12b has only one axis of symmetry. The arrow for panel 6
is reflected by the same SW–NE axis that reflects panels 6 and 6′.
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Fig. 4.13 Symbolic form of very confusing subset of panels for the scatterplot matrix. This form
has different variables along the rows and columns and has very little symmetry that might aid the
reader. Note, for example, that panels 31 and 42 are positioned such that the eye wants to treat
them as symmetric. This form is mostly obsolete and is strongly not recommended.

4.8 Data Transformations

Since the three life expectancy variables are similar, let us look at the simplified
splom in Figure 4.14. The bottom row of the splom, with life.exp as the y-
coordinate, shows an L-shaped pattern against both ppl.per.tv and
ppl.per.phys as the x-variables. We have learned (or will learn in this chapter
and again in Chapter 8) that straight lines are often helpful in understanding a plot.
There is no sensible way to draw a straight line here. The plot of the two potential
x-variables against each other is bunched up in the lower-left corner. The bunching
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Fig. 4.14 Televisions, physicians, and life expectancy.

suggests that a log transformation of the ppl.* variables will straighten out the plot.
We see in Figure 4.15 that it has done so.

We also see that the log transformation has stabilized the variance. By this we
mean that the ppl.per.phys ~ life.exp panel of Figure 4.14 has a range that
fills the vertical dimension of the panel for values of life.exp near 50 and that is
almost constant for values of life.exp larger than 65. After the log transformation
of ppl.per.phys shown in Figure 4.15, for any given value of life.exp we ob-
serve that the vertical range of the response is about 1

3 of the vertical dimension of
the panel.

There are several issues associated with data transformations. In the life ex-
pectancy example the natural logarithm ln was helpful in straightening out the plots.
In other examples other transformations may be helpful. We will take a first look at
a family of power transformations. We recommend Emerson and Stoto (1983) for
a more complete discussion. We identify some of the issues here and then focus on
the use of graphics to help determine which transformation in the family of power
transformation would be most helpful in any given situation.

• Stabilize variance. This chapter and also Chapters 6 and 14.

• Remove curvature. This chapter.

• Remove asymmetry. This chapter.

• Respond to systematic residuals. Chapters 8 and 11.
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log(Televisions, Physicians), and Life Expectancy
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Fig. 4.15 log(televisions), log(physicians), and life expectancy.

The family of power transformations Tp(x), often called the Box–Cox transfor-
mations Box and Cox (1964), are given by

Tp(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xp (p > 0)
ln(x) (p = 0)
−xp (p < 0)

(4.1)

Notice that the family includes both positive and negative powers, with the logarithm
taking the place of the 0 power. The negative powers have a negative sign to maintain
the same direction of the monotonicity; if x1 < x2, then Tp(x1) < Tp(x2) for all p.
When the data are nonnegative but contain zero values, logarithms and negative
powers are not defined. In this case we often add a “start” value, frequently 1

2 , to the
data values before taking the log or power transformation.

When we wish to study the mathematical properties of these transformations, we
use the related family of scaled power transformations T ∗p(x) given by

T ∗p(x) =

{ xp−1
p (p � 0)

ln(x) (p = 0)
(4.2)

The scaling in T ∗p(x) gives the same value T ∗p(1) = 0 and derivative d
dx T ∗p(1) = 1 for

all p.
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There is also a third family of power transformations Wp(x) given by

Wp(x) =

{
xp (p � 0) Do not use this form,

ln(x) (p = 0) the reciprocal is not negated.
(4.3)

that is occasionally (and incorrectly) used. This family does not negate the recipro-
cals; hence, as we see in Figure 4.16b, it is very difficult to read.

a. Simple Powers
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(monotonic, wrong order)
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c. Scaled Powers
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Fig. 4.16 Power Transformations. The smooth transitions between the scaled curves in Fig-
ure 4.16c is the justification for using the family of power transformations T ∗p(x) in Equation (4.2).
This is the only one of three panels in which both (a) the monotonicity of the individual powers
is visible and (b) the simple relation between the curves and the sequence of powers in the lad-
der of powers p = −1,− 1

2 , 0, 1
2 , 1, 2 is retained over the entire x domain. Figure 4.16a keeps the

monotonicity but loses the sequencing. Figure 4.16b, which doesn’t negate the reciprocals, is very
hard to read because two of the curves are monotone decreasing and four are monotone increasing.
Figure 4.16 is based on Figures 4-2 and 4-3 of Emerson and Stoto (1983).

Figure 4.16 shows the plots of all three families: the two parameterizations of the
Box–Cox power transformations Tp(x) and T ∗p(x), and the third, poorly parameter-
ized power family Wp(x). There are several things to note in these graphs.

1. Figure 4.16a, the plots of Tp(x), correctly negates the reciprocals, thereby main-
taining a positive slope for all curves and permitting the perception that these are
all monotone transformations.

2. In Figure 4.16b, the plots of Wp(x), we see that the plots of the two reciprocal
transformations have negative slope and that all the others have positive slope.
This reversal interferes with the perception of the monotonicity of the transfor-
mations.

3. Figure 4.16c, the plots of T ∗p(x), is used to study the mathematical and geo-
metric properties of the family of transformations. The individual formulas in
Equations (4.1) and (4.2) are linear functions of each other; hence the properties
and appearance of the individual lines in the graphs based on them are equiva-
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lent. Equation (4.1) is simpler for hand arithmetic. Equation (4.2) makes evident
that the powers (including 0 and negative) are simply and systematically related.
Taking the negative of the reciprocal explains how the negative powers fits in.
Showing how the 0 power or logarithm fits in is trickier; we use l’Hôpital’s rule:

lim
p→0

xp − 1
p
= lim

p→0

d
dp (xp − 1)

d
dp p

= lim
p→0

xp ln x = ln x

The ladder of powers is the sequential set of power transformations with p =
−1,− 1

2 , 0, 1
2 , 1, 2.

4.9 Life Expectancy Example—Continued

We look again at the plot of life.exp vs ppl.per.phys from Figures 4.14
and 4.15 where we see that taking the logarithm of ppl.per.phys straightened
out the graph. In Figure 4.17 we use the ladder.fstar function in the HH pack-
age to take the full set of scaled powers (in the ladder of powers T ∗p) of each of these
two variables and plot them against each other. It is apparent from these plots that
any power of life.exp plots as a straight line against the log of the number of
physicians (power = 0). This is unusual behavior. More typically the shape of the
plot shifts as the power of either variable shifts. This calls for further investigation.

We plot in Figure 4.18 the various scaled powers using equation (4.2) against
life.exp. This equation is plotted for each of the values p = −2,−1, 0, .5, 1, 2,
where p = 0 represents the log transformation. We see that within the observed
range of values (51, 79) of life exp, all the simple power transformations are
essentially linear. This explains why all panels in the ppp^0 column of Figure 4.17
are almost identical.

The columns of Figure 4.17 look different from each other. We look (for conve-
nience) at row life.exp^1, with the original scaling of life expectancy, and note
that the shape of the graphs shifts from concave-SW through diagonal to concave-
NE as the power of ppp (people per physician) increases. We need to look at just this
single variable as it moves through the series of powers. We do so in Figure 4.19.
Panel 4.19a shows the boxplots, panel 4.19b shows the dotplots, and panel 4.19c
shows the stem-and-leaf plots. All three panels show the same information. At the
positive powers, the data for ppp are extremely asymmetric; they are bunched up at
the low end of the scale. As the power moves from positive to negative, the center
moves toward the higher end and the distribution becomes more symmetric. At the
negative powers the data become asymmetric again; this time they are bunched up
at the high end. If symmetry for just one variable was the only objective, we might
try the −.3 power −x−.3 (-(x^-.3)).
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Fig. 4.17 Ladder of powers for “Life Expectancy” and “People per Physician”.
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Fig. 4.18 Powers of “Life Expectancy”. All powers in the range we are looking at yield a graph
very close to straight line. Read the panels starting on the bottom-left position, then the rest of the
bottom row, then the top row.
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The boxplots show the shift in center as the dot for the median moves from one
side to the other. They show the shift in symmetry as the center box increases from
a small portion to a large fraction of the total width and as the whisker and outliers
shift from one side to the other. The dotplots show the same information by density
and spread of dots. Both dotplots and boxplots have the same scale. The stem-and-
leaf is essentially a density plot. It shows the points bunched up at the low values
for positive powers, centered and symmetric for 0 power, and bunched at the high
values for the negative powers.

a. boxplots

ppp−1 ppp−0.5 ppp0 ppp0.5 ppp1 ppp2

b. stripplots

ppp−1 ppp−0.5 ppp0 ppp0.5 ppp1 ppp2

Fig. 4.19 Powers of “People per Physician”: boxplots, strip plots, and stem-and-leaf. Stem-and-
leaf appears in continuation of figure.
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c. stem-and-leaf
> stem(-‘-1‘, scale=2) > stem(-‘-0.5‘, scale=3) > stem(-‘0‘, scale=3)

The decimal point is The decimal point is The decimal point is
4 digit(s) to the left 2 digit(s) to the left 1 digit(s) to the left

|ehtfo|ehtfo|ehtfo

1|401-0|991-04772667|8999-
|201-77|891-07819|6999-

54|001-2|891-8|4999-
|89-577|791-56|2999-
|69-11|791-2666|0999-
4|49-6|691-6|8899-

|29-034|691-|6899-
|09-9|591-44|4899-

14|88-|591-163668|2899-
3|68-59|491-|0899-
99|48-2|491-2|8799-

-9976 | 7 -193 | 9976 -82 |
046|08-|391-22|4799-

1|87-|291-00|2799-
7|67-14|291-1|0799-

-9968 | -191 | 999875 -74 |
05|27-|191-|6699-

8|07-69|091-|4699-
7277|86-00|091-6|2699-

|66-66|981-4|0699-
012273|46-2|981-|8599-

36|26-|881-1|6599-
0017|06-|881-8|4599-

511|85-69|781-
2|65-|781-

256|45-79|681-

> stem(-‘0.5‘, scale=2) > stem(-‘1‘, scale=2) > stem(-‘2‘, scale=2)

The decimal point is The decimal point is The decimal point is
1 digit(s) to the right 3 digit(s) to the right 8 digit(s) to the right

|ehtfo|ehtfo|ehtfo

7|6-7|63-1|83-
|6-|43-|63-
|5-|23-|43-
|5-|03-|23-
|4-|82-36|03-
|4-|62-|82-
|3-2|42-|62-

2|3-2|22-|42-
7|2-|02-2|22-

|2-|81-|02-
|1-|61-|81-
|1-|41-03|61-

8|0-5|21-5|41-
000000000000000000000000000000111233|0-|01-88|21-

-10 | 697 -8 |
-8 | 75 -6 | 642
-6 | 7173320 -4 | 99
-4 | 0987776520 -2 | 51054
-2 | 886651098 -0 | 63211007666666654444433322

Fig. 4.19 continued. Powers of “People per Physician”: stem-and-leaf. We are using non-syntactic
names for the variables taken to a power (‘-1‘ for the ppp^-1) in this display. The negative sign
in the function call is a response to the difference in display conventions between graphics (with
small numbers at the bottom of the response axis) and the stem and leaf (with small numbers at
the top).
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4.10 Color Vision

About 10% of the population have color deficient vision. Your job is make your
graphs legible to everyone. Download ImageJ (Rasband, 2015) and VischeckJ

(Dougherty and Wade, 2006) and follow the instructions in those sites. This program
will allow you to simulate color deficient vision on your computer.

Figure 4.20 shows the first six colors of the lattice default colors and the color
scheme col3x2, designed to work well for use with a 3 × 2 classification, and used
here in many of the figures. We constructed the color scheme col3x2 using the
Dark2 and Set2 palettes in the RColorBrewer package (Brewer, 2002; Neuwirth,
2011).

Vision Type col3x2 lattice default colors (first six)

Normal Vision

Protanope (Red)

Deuteranope (Green)

Tritanope (Blue)

Fig. 4.20 Four visual appearances of two color schemes. The four vision types are crossed with
the two color schemes to create eight cells. The three color deficiency simulations were made with
the vischeck software. Six color choices which are intended to be distinct are in each of the eight
cells. It is very easy to track each color scheme across the four vision types. The six colors on
the left, consisting of three dark colors followed by lighter versions of the same three colors, are
the Dark2 and Set2 palettes from the RColorBrewer package. For all four vision types, the six
colors on the left are perceived as a set of darker three and lighter three colors. The six colors on
the right are the first six of the standard lattice colors. They are not clearly distinct in any of the
color deficiency simulations.

4.11 Exercises

We recommend that you begin all exercises by examining a scatterplot matrix of the
variables. Based on the scatterplot matrix, you might wish to consider transforming
some of the variables.

4.1. The U.S. Draft Lottery held in December 1969 was meant to prioritize the order
in which young men would be drafted during 1970 for service in the Vietnam War.
Each of the 366 dates was written on a small piece of paper and placed in a cap-
sule. In chronological order the capsules were placed in a vessel and the vessel was
stirred. The capsules were then drawn one at a time, thereby assigning ranks 1 to
366 to the dates. But because of inadequate stirring, men with birthdays toward the
end of the year tended to have higher rank and thus greater vulnerability to the draft
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than men born early in the year. The dataset data(draft70mn), originally from
Data Archive (1997), contains 12 columns for the months January through Decem-
ber. For each month, the mth entry represents the rank between 1 and 366 for the mth

day of that month. Produce parallel boxplots for the months arranged chronologi-
cally, and draw the line segments connecting the medians of adjacent months. This
illustrates the claim that the drawing was not random.

4.2. Sokal and Rohlf (1981), later in Hand et al. (1994), examined factors contribut-
ing to air pollution in 41 U.S. cities, as assessed by sulfur dioxide content. The
dataset appears in data(usair). The variables are

SO2: SO2 content of air in mcg per cubic meter

temp: average annual temperature in degrees Fahrenheit

mfgfirms: number of manufacturing firms employing at least 20 workers

popn: 1970 census population size, in thousands

wind: average annual wind speed in mph

precip: average annual precipitation in inches

raindays: average number of days per year having precipitation

Produce a scatterplot matrix for these data both before and after log-transforming all
7 variables. Compare the sploms and explain why the log transformation is appro-
priate for these data. Which of the 6 predictor variables are most highly correlated
with the logged response SO2? Which of the 15 pairs of logged predictors appear to
be highly correlated?

4.3. Vandaele (1978), also in Hand et al. (1994), contains data on the reported 1960
crime rate per million population and 13 potential explanatory variables for each of
47 states. The data appear in the file data(uscrime). The variables are

R: reported crime rate per million population

Age: the number of males aged 14 to 24

S: 1 if Southern state, 0 otherwise

Ed: 10 times mean years of schooling of population age 25 or older

Ex0: 1960 per capital expenditures by state and local government on police pro-
tection

Ex1: same as Ex0 but for 1959

LF: number of employed urban males aged 14–24 per 1000 such individuals

M: number of males per 1000 females

N: state population size in hundred thousands

NW: number of nonwhites per 1000 population

U1: unemployment rate per 1000 among urban males aged 14–24
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U2: unemployment rate per 1000 among urban males aged 25–39

W: a measure of wealth, units = 10 dollars

X: number of families per 1000 earning below one half of the median income
(a measure of income inequality)

Construct a scatterplot matrix for these data. The variables other than R will be
referred to as predictors in Exercise 9.6. Based on this plot, which pairs of predictors
are highly correlated? Which predictors are most closely linearly associated with R?

4.4. Hand et al. (1994) contains data on the average mortality rate for males per
100,000 and the calcium concentration (ppm) in the public drinking water in 61
large towns in England and Wales, averaged over the years 1958 to 1964. Each town
was also identified as being at least as far north as the town Derby (derbynor=1)
or south of Derby (derbynor=0). The data are accessed as data(water). Ex-
ercise 10.4 will request investigation of the relationship between water hardness
(calcium) and mortality. The sampling units are towns in two regions. Produce
two separate but adjacent plots of mortality vs calcium for the two regions spec-
ified by derbynor. Discuss the differences you see in the two plots.

4.5. Williams (1959), also in Hand et al. (1994), presents data on the density and
hardness of 36 Australian eucalyptus trees. The dataset is accessed as
data(hardness). Determine a transformation from the Box–Cox family that will
make hardness as close as possible to normally distributed. The result will be
useful for Exercise 11.2, which requests a model of hardness as a function of
density.

4.6. Following a severe water shortage in Concord, New Hampshire, during the late
1970s, conservation measures were instituted there in 1980. The shortage became
especially acute during the summer of 1981. Hamilton (1983) and Hamilton (1992)
discuss models of the 1981 household water consumption in Concord, New Hamp-
shire, in terms of several other variables. The dataset, accessed as data(concord),
contains information on the following variables from each of 496 households:

water81: cubic feet of household water use in 1981

water80: cubic feet of household water use in 1980

income: 1981 household income in $1000s

educat: education of head of household, in years

peop81: number of people living in household in summer 1981

retired: 1 if head of household is retired, otherwise 0

Exercise 11.3 requests the modeling of household water use in 1981 in Concord as
a function of 5 predictors. To assist with this task, investigate which transformation
from the ladder of powers family will bring the response variable, water81, as close
as possible to normality.
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4.A Appendix: R Graphics

R has three major tool sets for graphics specification: base, lattice/trellis, and ggplot.
R has a fourth tool set in the vcd package for Visualizing Categorical Data.

Base graphics, in the graphics package, is the oldest, going back to the beginning
of S (Becker et al., 1988). It provides functions for drawing plots and components
of plots directly on the graphics device (computer screen or paper).

Lattice graphics with the lattice package (Sarkar, 2008, 2014) dates back to the
Trellis system (Becker et al., 1996a,b) of S and S-Plus. lattice functions construct
R objects which represent the graph. The objects can be stored and updated with
additional labeling or other annotation. When the objects are printed, they produce
a visible plot on the graphics device.

Grammar of Graphics (Wilkinson, 1999), implemented in package ggplot2
(Wickham, 2009), is the newest system. While ggplot2 functions also construct R
objects which represent the graph, they do so with a completely different partition-
ing of the components of a graph.

Packages lattice, ggplot2, and vcd have all been implemented in the grid pack-
age (R Core Team, 2015; Murrell, 2011).

Most graphics in this book were constructed using lattice. Many were drawn by
direct use of the functions provided in the lattice package. Others were drawn by
first constructing new functions, distributed in the HH package, and then using the
new functions. The vcd graphics package (Meyer et al., 2012, 2006) is used for
mosaic plots and related plots in Chapter 15.

The R code for all graphs in this book is available in the HH package. To see the
code for any chapter, say Chapter 7, enter at the R prompt the line:

HHscriptnames(7)

and discover the pathname for the script file. Open that file in your favorite R-aware
editor. See Appendix B for more details on the R scripts distributed with the HH
package.

4.A.1 Cartesian Products

A feature common to many of the displays in this book is the Cartesian product
principle behind their construction.

The Cartesian product of two sets A and B is the set consisting of all possible
ordered pairs (a, b) where a is a member of the set A and b is a member of the set B.
Many of our graphs are formed as a rectangular set of panels, or subgraphs, where
each panel is based on one pair from a Cartesian product. The sets defining the
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Cartesian product differ for each graph type. For example, a set can be a collection
of variables, functions of a single variable, levels of a single factor, functions of a
fitted model, different models, etc.

When constructing a graph that can be envisioned as a Cartesian product, it is
necessary that the code writer be aware of the Cartesian product relationship. The
lattice code for such a graph includes a command that explicitly states the Cartesian
product.

4.A.2 Trellis Paradigm

Most of the graphs in this book have been constructed using the trellis paradigm as
implemented in lattice. The trellis system of graphics is based on the paradigm of
repeating the same graphical specifications for each element in a Cartesian product
of levels of one or more factors.

The majority of the methods supplied in the R lattice package are based on a
typical formula having the structure

y ~ x | a * b (4.4)

where

y is either continuous or factor
x is continuous
a is factor
b is factor

and each panel, as defined by the Cartesian product of the levels of a and b, is a plot
of y ~ x for the subset of the data with the stated values of a and b.

4.A.3 Implementation of Trellis Graphics

The concept of trellis plots can be implemented in any graphics system. In the S
family of languages (S-Plus and R), selection of the set of panels, assignment of
individual observations to one panel in the set, and coordinated scaling across all
panels are automated in response to a formula specification in the user level.

The term trellis comes from gardening, where it describes an open structure used
as a support for vines. In graphics, a trellis provides a framework in which related
graphs can be placed. The term lattice has a similar meaning.



4.A Appendix: R Graphics 113

4.A.4 Coordinating Sets of Related Graphs

There are several graphical issues that needed attention in any multipanel graph. See
Figure 10.8 for an example illustrating these issues.

positioning: The panels containing marginal displays (if any) need to be clearly
delineated as distinct from the panels containing data from just a single set of
levels of the factors. We do this by placing extra space between the set of panels
for the individual factor values and the panels containing marginal displays.

scaling: All panels need to be on exactly the same scale to enhance the reader’s
ability to compare the panels visually. We use the automatic scaling feature of
trellis plots to scale simultaneously both the individual panels and the marginal
panels.

labeling: We indicate the marginal panels by use of the strip labels.

shape of plotting characters: We used three distinct plotting characters for the
three-level factor.

color of plotting characters: We used three contrasting colors for the three-level
factor. The choice to use both distinct plotting characters and distinct colors is
redundant (reemphasizing the difference between levels), accessible (making the
graph work for people with color vision deficiencies), and defensive (protecting
the interpretability of the graph from black-and-white copying by a reader).

There are several packages in R that address color selection. The RColorBrewer
package (Neuwirth, 2011), based on the ColorBrewer website (Brewer, 2002),
gives a discussion on the principles of color choice and gives a series of palettes
for distinguishing nominal sets of items or sequences of items. The colorspace
package (Ihaka et al., 2013) provides qualitative, sequential, and diverging color
palettes based on HCL colors.

4.A.5 Cartesian Product of Model Parameters

Figure 10.12 displays four different models of a response variable as a function of a
factor and a continuous covariate. The model in the center row and right column is
the same model shown in Figure 10.8. The models are shown as a Cartesian product
of model parameters. The models in the columns of Figure 10.12 are distinguished
by the absence or presence of a parameter for Type—forcing a common intercept
in the left column and allowing different intercepts by Type in the right column.
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The three rows are distinguished by how the covariate Calories is handled: sepa-
rate slopes by Type in the top row, constant slope for all Types in the middle row,
or identically zero slope (horizontal line) in the bottom row.

Figure 10.12 is structured as a set of small multiples, a term introduced by Tufte
Tufte (2001) to indicate repetition of the same graphical design structure. “Small
multiples are economical: once viewers understand the design of one slice, they
have immediate access to the data in all other slices. Thus, as the eye moves from
one slice to the next, the constancy of the design allows the viewer to focus on
changes in the data rather than on changes in graphical design (Tufte (2001), page
48).” Figure 10.12 may be interpreted as a four-way Cartesian product: slope (α vs
αi), intercept (β = 0, β, β j), individual panels vs superpose, hotdog Type (Beef,
Meat, Poultry) with a an ordinary two-way scatterplot with a fitted line inside each
element of the four-way product.

4.A.6 Examples of Cartesian Products

1. In the plots illustrating lack of homogeneity of variance (Figure 6.6), one of the
sets in the Cartesian product is the function of the data represented (observed
data, median-centered data, absolute value of the median-centered data). The
other set is the levels of the catalyst factor. We discuss in Section 6.10 the
Brown–Forsyth test for variance homogeneity.

2. In the logistic regression plots (Figure 17.12) there are several sets used to define
the Cartesian products. The rows of the array are functions of the fitted probabil-
ity. The columns of the array are the levels of one of the factors (X-ray) with a
marginal value of X-ray in the left-most column. The individual lines within the
panels, as identified in the legend, are levels of the X.ray × stage × grade inter-
action. This is an ordinary xyplot of the predicted response variable displayed
on three scales—the logit scale, the odds scale, and the probability scale—against
one of the predictor variables acid.ph.

3. In the ladder-of-power plots (Figure 4.17) the rows of the array are powers of y
and the columns are powers of x. This plot is useful in a regression context for de-
termining the optimal power transformations of both the response and predictor
variables.

4. Figure 4.21 shows the ability to control the position and color of boxplots. This
simulated example shows the results of a clinical trial where the patients’ fol-
lowup visits were scheduled with nonconstant intervals between visits. Here, the
boxes for both treatment levels are grouped by week and the weeks are correctly
spaced. The default positioning for bwplot places the boxes evenly spaced, hon-
oring neither the week nor the treatment factor.
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Fig. 4.21 The response to treatments A and B was measured at weeks 1, 2, 4, and 8. The boxplots
have been positioned at distances illustrating the time difference and with A and B adjacent at each
time point.

5. Mosaic plots (Figure 15.11 and other figures in Chapter 15) as constructed as
Cartesian products of several factors.

6. Diverging stacked bar charts as used in displays of Likert scale data (Figure 15.14
and others in Section 15.9 are a crossing of a set of questions (possibly nested in
another factor) with a set of potential responses.

4.A.7 latticeExtra—Extra Graphical Utilities Based on Lattice

The latticeExtra provides many functions for combining independently constructed
lattice plots and for controlling the size and placement of arrays of lattice plots. We
use these functions in many of our graphs. The mmcplot (Figure 7.18 and elsewhere
in the book) is built by constructing the two panels independently and then combin-
ing them with the latticeExtra:::c.trellis function. Many of our plots are
constructed by overlaying two independently drawn graphs with the layer function
or with the latticeExtra:::‘+.trellis‘ as illustrated in Figure 4.22.
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4.B Appendix: Graphs Used in This Book

We emphasize throughout this book that graphical display is an integral part of data
analysis. Superior data analysis almost always benefits from high-quality graphics.
Appropriately drawn graphs are, in our opinion, the best way to gain an understand-
ing of what data have to say, and also to convey results of the analysis to others,
both other statisticians and persons with minimal training in statistics.

We illustrate many standard graphs. We also illustrate many graphical displays
that are not currently standard and some of which are new. The software for our
displays is included in the HH package.

Analysts occasionally require a graph unlike any readily available elsewhere. We
recommend that serious data analysts invest time in becoming proficient in writing
code rather than using the graphical user interface (GUI). Very few of the graphs in
this book can be produced using a standard GUI. Some of them can be produced
using the menus in our package RcmdrPlugin.HH. Users of a GUI are limited to
the current capabilities of the GUI. While the design of GUIs will continually im-
prove, their capabilities will always remain far behind what skilled programmers
can produce. Even less-skilled analysts can take advantage of cutting-edge graph-
ics by accessing libraries of graphing functions such as those included in the HH
package and other packages available on CRAN.

4.B.1 Structured Sets of Graphs

Several of our examples extend the concept of a structured presentation of plots of
different sets of variables, or of different parametric transformations of the same set
of variables. Several of our examples extend the interpretation of the model formula,
that is, the semantics of the formula, to allow easier exposition of standard statistical
techniques.

In this appendix we list these displays in order to comment on their construc-
tion. We provide a reference to an example in the book for each type of display.
Discussion of the interpretation of the graphs appears in the indicated chapters.

4.B.2 Combining Panels

1. Scatterplot Matrices: splom A scatterplot matrix (splom) is a trellis display in
which the panels are defined by a Cartesian product of variables. In the standard
scatterplot matrix constructed by splom, Figure 4.5 for example, the same set of
variables define both the rows and columns of the matrix.



4.B Appendix: Graphs Used in This Book 117

A scatterplot matrix (splom) does not follow the semantic paradigm of Equa-
tion (4.4). It differs from the majority of trellis-based methods in two ways. First,
each of the panels is a plot of a different set of variables. Second, each of the
panels is based on the entire set of observations.

Subsections 4.4 and 4.7 contain extensive discussions of scatterplot matrices. We
strongly recommend the use of a splom, sometimes conditioned on values of
relevant categorical variables, as an initial step in analyzing a set of data.

2. xyplot can be used to construct more general matrices of panels, for example
with different of sets of variables for the rows and columns of the scatterplot
matrix. Figure 4.4, for example, shows that xyplot can be used to specify a set
of variables to define the columns of the matrix and subsets of the observations
(specified as different levels of a factor) to define the rows. The formula is essen-
tially

sprice ~ beds + drarea + kitarea | CondoHouse

Sets of xyplots with coordinated subsets of variables can be useful in situations
where the number of variables under study is too large to produce a legible splom
containing all variables on a single page. In such a circumstance we recommend
the use of two or more pages of xyplots to display pairwise relationships among
variables.

3. Figure 4.22 shows several ways to combine multiple variables in one or more
panels. The figure shows overlaying plots, concatenating plots, and conditioning
panels on the levels of a factor.

4.B.3 Regression Diagnostics

In the regression diagnostics plots (Figure 11.6), the panels are defined by condi-
tioning on a set of functions (one for each statistic). This plot displays all common
regression diagnostics on a single page. Included are thresholds for flagging cases
as unusual along with identification of such cases.

4.B.4 Graphs Requiring Multiple Calls to xyplot

When one of the sets in the Cartesian product is a set of functions, the easiest way
to construct the product is to make several xyplot calls, one for each function in
the set.

1. Partial residual plots (Figure 9.10) — [functions of fitted values and residual]
× [variables]. Response against predictors, residuals against predictors, partial
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Fig. 4.22 Several ways to plot multiple variables simultaneously. The top row shows the
"trellis" objects from three separate calls to the xyplot function. The second row shows two
ways of combining the "trellis" objects in the top row. On the left they are overlaid into the
same panel using the latticeExtra +.trellis function. On the right they are concatenated into
a multi-panel "trellis" object by using the latticeExtra c.trellis function. The third row
shows two ways of specifying similar displays with a single xyplot command. On the left there
are three response variables in the model formula with the default setting that places them into the
same panel. On the right the outer=TRUE argument places them into three adjacent panels. The
bottom row shows placement of the points into separate panels by specifying the Cartesian product
of the levels of the factors a and b in the conditioning section (following the “|” symbol) of the
model formula. The code for these plots is included in the file identified by HHscriptnames(4).
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residuals against predictors (partial residual plots), and partial residuals of Y
against partial residuals of X (added variable plots). Each row of Figure 9.10
is a different function of fitted values or residual. Each column is either one of
the predictor variables or a function of the predictor variables. See the discussion
in Section 9.13.

2. Analysis of covariance plots (One example is in the set of Figures 10.6, 10.7, 10.8,
and 10.9. Another example is in Figure 14.6) — [models] × [levels]. A key fea-
ture of this set of plots is its presentation of all points both superposed into one
panel and also segregated into individual panels defined by the levels of a factor.
In this framework, the superposition of all levels of the factor is itself considered
a level.

3. ODOFFNA plots (Figure 14.17) — [transformation power] × [factors] × [fac-
tors], a 3-dimensional Cartesian product. This is a series of interaction plots in-
dexed by a third variable, the transformation power, all on a single page. Figure
14.17 is intended to find a satisfactory power transformation to achieve homo-
geneity of variance and then assess interaction among the two factors for the
chosen power transformation.

4.B.5 Asymmetric Roles for the Row and Column Sets

1. Interaction plots (Figure 12.1) — [factors] × [factors]. Each off-diagonal panel
is a standard interaction plot. Panels in transpose positions interchange the trace-
and x-factors. Rows are labeled by the trace factor. Columns are labeled by the
x-factor. The main diagonal is used for boxplots of the main effects.

2. ARIMA-trellis plots (Figure 18.8) — [number of AR parameters] × [number of
MA parameters] × [type of display]. Each of the 3×3 displays contains diagnostic
information about each of the 9 models indexed by the numbers of autoregressive
and moving average parameters p and q. In addition we group several types of
display on a single page. This plot displays most commonly used diagnostics for
identifying the number of AR and MA parameters in time series models of the
ARIMA class.

4.B.6 Rotated Plots

Mean–mean multiple comparisons plots (MMC plots) (Figure 7.19) — [means at
levels] × [means at levels]. The plot is designed as a crossing of the means of a
response variable at the levels of one factor with itself. It is then rotated 45◦ so the
horizontal axis can be interpreted as the differences in mean levels and the vertical
axis can be interpreted as the weighted averages of the means comprising each com-
parison. This class of plots is used to display the results of a multiple comparison
procedure.
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4.B.7 Squared Residual Plots

The fundamental concept of “least squares” is difficult to present to introductory
classes. Here, we illustrate the squares. The sum of their areas is the “sum of
squares” that is minimized according to the “least-squares” principle.

Illustrations of 2D and 3D least-squares fits (Figures 8.2, 9.1, and 9.5)—[fitted
models] × [methods of displaying residuals]. The rows of Figure 8.2 are ways of
displaying residuals; the first row shows the residuals as vertical lines, the second
as squares. The columns show different models: none, least-squares, and a too-
shallow fit.

4.B.8 Adverse Events Dotplot

There are two primary panels in Figure 15.13 — [factor] × [functions of percents].
The first panel shows the observed percentages on the x-axis. The second panel
shows the relative risk with its confidence interval on the x axis. Both panels have
the same y axis showing the event names.

4.B.9 Microplots

Microplots (as in Table 13.2) are small plots embedded into a table of numbers. The
plot often carries as much or more information as the numbers.

4.B.10 Alternate Presentations

We have alternate presentations of existing ideas.

1. Transposed trellis plots are sometimes helpful. In Figure 13.13 we show a set of
boxplots with the response variable on the vertical axis. The vertical orientation
places the response variable in the vertical direction and accords with how we
have been trained to think of functions—levels of the independent variable along
the abscissa and the response variable along the ordinate. In Section 13.A we
show in Figure 13.17 the same graphs with the response variable on the horizon-
tal axis.
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2. Odds-ratio CI plot (Figure 15.10). The odds ratio
(

p1

q1

)
/

(
p2

q2

)

does not, by construction, give information on both underlying p1- and p2-values.
It is necessary to specify one of them to estimate the other. We backtransform the
CI on the odds ratio to a CI on the probability scale and plot the CI of p2 for all
possible values of p1. The two axes have the same (0, 1) probability scale.



Chapter 5

Introductory Inference

In this chapter we discuss selected topics and issues dealing with statistical infer-
ences from samples to populations, building upon the brief introduction to these
ideas in Chapter 3. The discussion here is at an intermediate technical level and at a
speed appropriate for review of material learned in the prerequisite course.

We provide procedures for constructing confidence intervals and conducting hy-
pothesis tests for several frequently encountered situations.

5.1 Normal (z) Intervals and Tests

A confidence interval and test concerning a population mean were briefly described
in Chapter 3. This is a more extensive presentation.

The confidence interval on the mean μ of a normal population when the standard
deviation is known was given in Equation (3.18). The development there assumed
that the population was normal. However, since the Central Limit Theorem dis-
cussed in Section 3.4.2 guarantees that Ȳ−μ

σ/
√

n
is approximately normally distributed

if n is “sufficiently large”, the interval
(
ȳ − z α

2

σ√
n
, ȳ + z α

2

σ√
n

)
(5.1)

is an approximate two-sided 100(1 − α)% confidence interval when the population
is not normal. The closer the population is to a normal population, the closer will
be this interval’s coverage probability to 1 − α. Thus, in the nonnormal case, this
interval is an approximate CI for μ.
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Also shown in the rightmost column of Table 5.1 are one-sided confidence int-
ervals for μ. These are less commonly used than two-sided intervals because they
have infinite width. But they are sometimes encountered in contexts where an upper
or lower bound for μ is required.

5.1.1 Test of a Hypothesis Concerning the Mean of a Population
Having Known Standard Deviation

We consider three pairs of null and alternative hypotheses in Table 5.1 and
Figure 5.1.

Table 5.1 Confidence intervals and tests with known standard deviation σ,

where σȳ =
σ√

n
and zcalc =

ȳ − μ0

σȳ
. The six situations are shown graphically in Figure 5.1

Tests

H0 H1 Rejection Region p-value Confidence Interval

z-scale y-scale Lower Upper

μ ≤ μ0 μ > μ0 zcalc > zα ȳ > μ0 + zασȳ P(Z > zcalc) ( ȳ − zασȳ , ∞ )

μ ≥ μ0 μ < μ0 zcalc < −zα ȳ < μ0 − zασȳ P(Z < zcalc) ( −∞ , ȳ + zασȳ )

μ = μ0 μ � μ0 |zcalc|> z α
2
|ȳ − μ0|>z α

2
σȳ 2P(Z > |zcalc|) (ȳ − z α

2
σȳ , ȳ + z α

2
σȳ)

The first two pairs are called one-tailed or one-sided tests because their rejection
regions lie on one side of the normal distribution. The third pair has a two-sided
rejection region and hence is termed a two-tailed or two-sided test. In any given
problem, only one of these three is applicable. For expository purposes, it is conve-
nient to discuss them together.

Some authors formulate the one-sided tests with sharp null hypotheses

H0 H1

μ = μ0 μ > μ0

μ = μ0 μ < μ0

However, with the sharp formulation it can happen that neither the null nor alterna-
tive hypothesis is true, in which case the action of rejecting the null hypothesis has
an uncertain interpretation.
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Fig. 5.1 Graphical display of the six situations described in Table 5.1: Confidence intervals and
tests with known standard deviation σ. See Section 5.1.1 for full discussion.

For the first pair of hypotheses, we reject H0 if the sample mean is sufficiently
greater than μ0, specifically, if ȳ > (μ0 + zασ/

√
n). Otherwise, H0 is retained.

Equivalently, if we define the calculated Z statistic under the null hypothesis,

zcalc =
ȳ − μ0

σ/
√

n
(5.2)

then we reject H0 if zcalc > zα; otherwise H0 is retained. The p-value of this test is
P(Z > zcalc).
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The testing procedure for the second pair of hypotheses is the mirror image of the
first pair. H0 is rejected if ȳ < (μ0 − zασ/

√
n) and retained otherwise. Equivalently,

we reject H0 if zcalc < −zα. The p-value of this test is P(Z < zcalc).

For the third pair, the two-sided test, we reject H0 if either

ȳ < (μ0 − z α
2
σ/
√

n) or ȳ > (μ0 + z α
2
σ/
√

n);

equivalently, if |zcalc| > z α
2
. The p-value of this two-sided test is 2P(Z > |zcalc|).

Hence H0 is rejected if ȳ is sufficiently above or sufficiently below μ0. Another
equivalent rule is to reject H0 if and only if μ0 falls outside the 100(1 − α)% confi-
dence interval for μ.

The rejection region for all three pairs is included in Table 5.1.

5.1.2 Confidence Intervals for Unknown Population Proportion p

We consider a confidence interval on the unknown proportion p of successes in a
population consisting of items or people labeled as successes and failures. Such
populations are very frequently encountered in practice. For example, we might
wish to estimate the proportion p of voters who will ultimately vote for a particular
candidate, based on a random sample from a population of likely voters. Inspectors
of industrial output may wish to estimate the proportion p of a day’s output that is
defective based on a random sampling of this output.

Suppose the sample size is n, of which Y items are successes and that p̂ = Y
n ,

a point estimator of p, is the proportion of sampled items that fall into the success
category. Until recently, the usual 100(1 − α)% confidence interval for p suggested
in the statistics literature was

p̂ ± z α
2

√
p̂ (1 − p̂)

n

This interval is satisfactory when n ≥ 100 unless p is close to either 0 or 1. The
large sample is needed for the Central Limit Theorem to assure us that the discrete
probability distribution of p̂ is adequately approximated by the continuous normal
distribution.

Agresti and Caffo (2000) suggest the following alternative confidence interval
for p, where p̃ = Y+2

n+4 and ñ = n + 4:

p̃ ± z α
2

√
p̃ (1 − p̃)

ñ
(5.3)

Agresti and Caffo show that their interval has coverage probability that typically
is much closer to the nominal 1 − α than the usual confidence interval. It differs
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from the usual interval in that we artificially add two successes and two failures to
the original sample. For p near 0 or 1, the usual interval, which is symmetric about
p̂, may extend beyond one of these extremes and hence not make sense, while the
alternative interval is likely to remain entirely between 0 and 1.

Conventional one-sided confidence intervals for p are shown in Table 5.2. Com-
parable to Agresti and Caffo’s proposed two-sided interval, Cai (2003) proposes im-
proved one-sided confidence intervals for p having coverage probabilities closer to
1 − α than the conventional intervals. These lower and upper intervals, respectively,
are

[
0,F −1

Be (1 − α | Y + .5, n − Y + .5)
]

(5.4)

and
[
F −1

Be (α | Y + .5, n − Y + .5), 1
]

(5.5)

where F −1
Be (α | a, b) denotes the value x of a random variable corresponding to the

100α percentile of the beta distribution with parameters a and b. See Section J.1.1
for a brief discussion of the beta distribution.

5.1.3 Tests on an Unknown Population Proportion p

Assume we have a sample of n ≥ 100 items from a population of successes and
failures, and we wish to test a hypothesis about the proportion p of successes. Paral-
leling the previous discussion of tests on a population mean, there are two one-tailed
tests and one two-tailed test as detailed in Table 5.2 and Figure 5.2. As in the discus-
sion of the confidence interval on p, the normal approximation to the distribution
of p̂ requires that n not be too small. Note that the confidence intervals are based
on densities centered on the observed proportion p̂ = x/n. They therefore have a
different standard deviation

√
p̂(1 − p̂)/n, and therefore height at the center of the

density, than the densities centered at the null hypothesis p0 with standard deviation√
p0(1 − p0)/n.

5.1.4 Example—One-Sided Hypothesis Test Concerning
a Population Proportion

As an illustration, suppose a pollster wishes to test the hypothesis that at least 50%
of a city’s voting population favors a certain bond issue. The pollster observed only
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Fig. 5.2 Graphical display of the six situations described in Table 5.2: Confidence intervals and
tests for population proportions. Note that the confidence intervals, centered on the observed p̂,
have differently scaled density functions than the null hypothesis distributions, centered on the

hypothesized p0. For the tests, the standard deviation is σp0 =

√(
p0/(1 − p0)

)
/n. For the confi-

dence intervals, the standard deviation is sp̂ =

√(
p̂/(1 − p̂)

)
/n. In this example the densities for

the confidence interval are taller and narrower. See Section 5.1.3 for full discussion.
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Table 5.2 Conventional confidence intervals and tests with unknown population proportion p,
where

σp0 =

√
p0 (1 − p0)

n
and zcalc =

p̂ − p0

σp0

for tests, and sp̂ =

√
p̂ (1 − p̂)

n
for confidence intervals.

Tests

H0 H1 Rejection Region p-value Confidence Interval

z-scale p-scale Lower Upper

p ≤ p0 p > p0 zcalc > zα p̂ > p0 + zασp0 P(Z > zcalc) ( p̂ − zαsp̂ , 1 )

p ≥ p0 p < p0 zcalc <−zα p̂ < p0 − zασp0 P(Z < zcalc) ( 0 , p̂ + zαsp̂ )

p = p0 p � p0 |zcalc|> z α
2
| p̂ − p0|>z α

2
σp0 2P(Z > |zcalc|) ( p̂ − z α

2
sp̂ , p̂ + z α

2
sp̂)

222 of a random sample of 500 persons in the population favors this bond issue. Let
us conduct this test at α = 0.01.

Here H1 is of the form H1: p < .50. We reject H0 if

p̂ < p0 − z.01

√
p0(1 − p0)

n
(5.6)

With p0 = .50, p̂ = 222/500 = 0.444, z.01 = 2.326, and
√

p0(1 − p0)/n = .0224 (5.7)

we find that the right side of (5.6) is 0.448 so that H0 is (barely) rejected. In this
example, zcalc = −2.500 so that the p-value = P(Z < −2.500) = .0062. Hence we
reject H0 because α = .01 > p = .0062.

5.2 t-Intervals and Tests for the Mean of a Population Having
Unknown Standard Deviation

When we wish to construct a confidence interval or test a hypothesis about an
unknown population mean μ, more often than not the population standard devi-
ation σ is also unknown. Then we must use the sample standard deviation s =∑ (

(x − x̄)2
)
/(n − 1) from Equation 3.9 in place of σ when standardizing ȳ. But

while (ȳ − μ)/(σ/
√

n ) has an approximate normal distribution if n is sufficiently
large, (ȳ−μ)/(s/

√
n ) has an approximate t distribution with n−1 degrees-of-freedom.

The latter standardization with s in the denominator has more variability than the
former standardization with σ in the denominator. The t distribution reflects this in-
creased variability because it has less probability concentrated near zero than does
the standard normal distribution.
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The confidence interval and tests for μ using the t distribution are similar to those
using the normal (Z) distribution (that is, Table 5.1 is applicable), with tcalc replacing
zcalc and tα replacing zα. For this problem, the degrees-of-freedom parameter for the
t distribution is always n − 1.

For example, to test H0: μ ≥ μ0 vs H1: μ < μ0, we reject H0 if

tcalc =
ȳ − μ

s/
√

n
< −tα (5.8)

Here the p-value = P(t < tcalc) is calculated from the t distribution with n−1 degrees
of freedom.

Calculating the power associated with t-tests is more difficult than for the nor-
mal tests because the alternative distribution is not the same as the null distribution.
With the normal tests, both distributions have the same shape. With the t-tests, the
alternative distribution has the noncentral t distribution with noncentrality parame-
ter (μ1−μ0)/(σ/

√
n). We postpone further discussion of the noncentral t distribution

to Section 5.6.2 and Figure 5.10 in the context of sample size calculations. Also see
the illustration in Section J.2.2.

The approximate confidence interval on μ is ȳ ± t α
2

s√
n

.

5.2.1 Example—Inference on a Population Mean µ

Hand et al. (1994) presents a data set, reproduced in data(vocab), containing the
scores on a vocabulary test of a sample of 54 students from a study population.
Assume that the test was constructed to have a mean score of 10 in the general
population. We desire to assess whether the mean score of the study population
is also μ = 10. Assuming that standard deviation for the study population is not
known, we wish to calculate a 95% confidence interval for μ and to test H0: μ = 10
vs H1: μ � 10.

We begin by looking at a stem-and-leaf display of the sample data to see if the
underlying assumption of normality is tenable. We observe in Figure 5.3 that the
sample is slightly positively skewed with one high value that may be considered an
outlier. Based on the Central Limit Theorem, the t-based procedures in Figure 5.4
are justified here. The small p-value (p ≈ 310−14) is a strong evidence that μ is not
10. The 95% confidence interval (12.30, 13.44) suggests that the mean score is close
to 12.9 in the study population.

We examine a nonparametric approach to this problem in Section 16.2.
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> stem(vocab$score, scale=2)

The decimal point is at the |

9 | 0
10 | 0000
11 | 0000000000000
12 | 0000000
13 | 000000000
14 | 000000000
15 | 0000
16 | 00000
17 | 0
18 |
19 | 0

Fig. 5.3 Stem-and-leaf display of vocabulary scores.

5.3 Confidence Interval on the Variance or Standard Deviation
of a Normal Population

Let the (unbiased) estimator of σ2 based on a sample of size n be denoted s2. Then
(n − 1)s2/σ2 has a χ2 distribution with df = n − 1. Thus

P
(
χ2

α
2 , n−1 < (n − 1) s2/σ2 < χ2

1− α
2 , n−1

)
= 1 − α

Inverting this statement leads to the 100(1 − α)% confidence interval for σ2:
⎛⎜⎜⎜⎜⎜⎜⎝

(n − 1)s2

χ2
1− α

2 , n−1

,
(n − 1)s2

χ2
α
2 , n−1

⎞⎟⎟⎟⎟⎟⎟⎠

If instead a CI on σ is desired, take the square roots of both the lower and upper
limits in the above. We graph the estimation of a confidence interval in Figure 5.5.

The distribution of (n − 1)s2/σ2 can also be used to conduct a test about
σ2 (or σ). For example, to test H0: σ2 ≤ σ2

0 vs H1: σ2 > σ2
0, the p-value is

1−Fχ2
n−1

(
(n − 1)s2/σ2

0

)
. Tests of the equality of two or more variances are addressed

in Section 6.10.
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> vocab.t <- t.test(vocab$score, mu=10)

> vocab.t

One Sample t-test

data: vocab$score

t = 10.08, df = 53, p-value = 6.372e-14

alternative hypothesis: true mean is not equal to 10

95 percent confidence interval:

12.30 13.44

sample estimates:

mean of x

12.87

t: sx = 0.2848,  n = 1,  ν = 53

One Sample t−test: vocab$score
w = x

fν(t) sx

0.0

0.5

1.0

1.5

12.0 12.5 13.0 13.5

wLCL = 12.3 wUCL = 13.44
wobs = 12.87

0.95

x

t

wobs

12.87

0

wLCL

12.3

− 2.005

wUCL

13.44

2.009
Probability

Left

0.025

Confidence

0.95

Right

0.025

Fig. 5.4 t-test and t-based confidence interval of vocabulary scores.
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Fig. 5.5 Confidence interval for variance assuming a chi-square distribution with ν = 12 degrees
of freedom and an observed s2 = 15. The estimated 95% confidence interval on σ2 is (7.71, 40.87).
By taking the square root, we find the estimated 95% confidence interval on σ is (2.777, 6.393).

5.4 Comparisons of Two Populations Based on Independent
Samples

Two populations are often compared by constructing confidence intervals on the
difference of the population means or proportions. In this discussion it is assumed
that random samples are independently selected from each population.

5.4.1 Confidence Intervals on the Difference Between Two
Population Proportions

The need for confidence intervals on the difference of two proportions is frequently
encountered. We might wish to estimate the difference in the proportions of voters in
two populations who favor a particular candidate, or the difference in the proportions
of defectives produced by two company locations.

Labeling the populations as 1 and 2, the traditional confidence interval, assuming
that both populations are large and that neither proportion is close to either 0 or 1, is

( p̂1 − p̂2) ± z α
2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

(5.9)
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Agresti and Caffo (2000) also provided an improved confidence interval for this
situation, which again provides confidence closer to 100(1−α)% than the preceding
interval. For i = 1, 2, let p̃i =

Yi+1
ni+2 , i.e., revise the estimate of pi by adding one

success and one failure to both samples. Then the improved interval is

( p̃1 − p̃2) ± z α
2

√
p̃1(1 − p̃1)

n1 + 2
+

p̃2(1 − p̃2)
n2 + 2

(5.10)

To test the null hypothesis H0: p1 − p2 the appropriate statistic is

z =
p̂1 − p̂2√

p̂(1 − p̂)

(
1
n1
+

1
n2

) (5.11)

where p̂ =
n1 p1 + n2 p2

n1 + n2
.

Notice the distinction between the standard error portions of Equations 5.9
and 5.10. The standard error in the test statistic 5.11 is calculated under the as-
sumption that the null hypothesis is true. The larger standard error in 5.9 cannot
utilize this assumption.

5.4.2 Confidence Interval on the Difference Between Two Means

For a CI on a difference of two means under the assumption that the population
variances are unknown, there are two cases. If the variances can be assumed to be
equal, their common value is estimated as a weighted average of the two individual
sample variances. In general, the process of calculating such meaningfully weighted
averages is referred to as pooling, and the result in this context is called a pooled
variance:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(5.12)

The pooled estimator s2
p has more degrees of freedom (uses more information) than

either s2
1 or s2

2 for the estimation of the common population variance. When the
pooled variance is used as the denominator of F-tests it provides a more powerful
test than either of the components, and therefore it is preferred for this purpose.
Then the CI is

(ȳ1 − ȳ2) ± t α
2 ,n1+n2−2 sp

√
1
n1
+

1
n2
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In the case where the variances cannot be assumed equal, there are two proce-
dures. The Satterthwaite option is

(ȳ1 − ȳ2) ± t α
2 ,df

√
s2

1

n1
+

s2
2

n2

where df is the integer part of

⎛⎜⎜⎜⎜⎝
s2

1

n1
+

s2
2

n2

⎞⎟⎟⎟⎟⎠
2

⎛⎜⎜⎜⎜⎝
s2

1

n1

⎞⎟⎟⎟⎟⎠
2

n1 − 1
+

⎛⎜⎜⎜⎜⎝
s2

2

n2

⎞⎟⎟⎟⎟⎠
2

n2 − 1

The Satterthwaite option is sometimes referred to as the Welch option.

The Cochran option is

(ȳ1 − ȳ2) ± t

√
s2

1

n1
+

s2
2

n2

where t =
w1t1 + w2t2

w1 + w2
, wi = s2

i /ni, and ti is t α
2 ,(ni−1).

The Satterthwaite option is more commonly used than the Cochran option. In
practice, they lead to similar results.

5.4.3 Tests Comparing Two Population Means When the Samples
Are Independent

There are two situations to consider with independent samples. When the popu-
lations may be assumed to have a common unknown variance σ, the calculated t
statistic is

tcalc =
ȳ1 − ȳ2

sp

√
1
n1
+ 1

n2

(5.13)

where sp was defined in Equation (5.12) and tcalc has n1+n2−2 degrees of freedom.
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When the two samples might have different unknown variances, then the test is
based on

s(ȳ1−ȳ2) =
√

var (ȳ1 − ȳ2) =

√
s2

1

n1
+

s2
2

n2
and tcalc =

ȳ1 − ȳ2

s(ȳ1−ȳ2)
(5.14)

In either case, we consider one of the three tests in Table 5.3.

Table 5.3 Confidence intervals and tests for two population means. When the samples are in-

dependent and we can assume a common unknown variance, use sΔȳ = sp

√
1
n1
+ 1

n2
and tcalc as

given by Equation (5.13). When the samples are independent and we assume different unknown
variances, use sΔȳ = s(ȳ1−ȳ2) and tcalc as given by Equation (5.14). When the samples are paired,
use sΔȳ = sd̄ and tcalc as given by Equation (5.15).

Tests Confidence Interval

Rejection

H0 H1 Region p-value Lower Upper

μ1 ≤ μ2 μ1 > μ2 tcalc > tα P(t > tcalc)
(

(ȳ1 − ȳ2) − tαsΔȳ , ∞
)

μ1 ≥ μ2 μ1 < μ2 tcalc <−tα P(t < tcalc)
(

−∞ , (ȳ1 − ȳ2) + tαsΔȳ

)

μ1 = μ2 μ1 � μ2 |tcalc|> t α
2

2P(t > |tcalc|)
(
(ȳ1 − ȳ2) − t α

2
sΔȳ , (ȳ1 − ȳ2) + t α

2
sΔȳ

)

R uses the t.test function which calculates a one-sample, two-sample, or
paired t-test, or a Welch modified two-sample t-test. The Welch modification is syn-
onymous with the Satterthwaite method.

The example in Tables 5.4 and 5.5 and Figure 5.6 compares two means where
the samples are independent and assumed to have a common unknown variance.
Table 5.4 shows the t-test calculated with the t.test function. Table 5.5 calculates
the t-value manually using the definitions in Equations 5.12 and 5.13. Figure 5.6
plots the result of the t.test with the NTplot function.
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Table 5.4 Select the subset of the cereals dataset for “Cold cereal” and manufacturers “G” and
“K”. Use t.test to compare their mean carbohydrate values assuming independent samples with
a common unknown variance. The result from the t.test is plotted in Figure 5.6.

> data(cereals)

> table(cereals[,c("mfr","type")])

type

mfr C H

A 0 1

G 22 0

K 23 0

N 5 1

P 9 0

Q 7 1

R 8 0

> C.KG <- cereals$type=="C" & cereals$mfr %in% c("K","G")

> cerealsC <- cereals[C.KG, c("mfr", "carbo") ]

> cerealsC$mfr <- factor(cerealsC$mfr)

> bwplot(carbo ~ mfr, data=cerealsC) +

+ dotplot(carbo ~ mfr, data=cerealsC)

> t.t <- t.test(carbo ~ mfr, data=cerealsC, var.equal=TRUE)

> t.t

Two Sample t-test

data: carbo by mfr

t = -0.3415, df = 43, p-value = 0.7344

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.784 1.978

sample estimates:

mean in group G mean in group K

14.73 15.13
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Table 5.5 The t-value −.3415 in Table 5.4 is calculated manually.

> mm <- tapply(cerealsC$carbo, cerealsC$mfr, mean)

> vv <- tapply(cerealsC$carbo, cerealsC$mfr, var)

> ll <- tapply(cerealsC$carbo, cerealsC$mfr, length)

> s2p <- ((ll-1) %*% vv) / sum(ll-1)

> tt <- -diff(mm) / (sqrt(s2p) * sqrt(sum(1/ll)))

> tt

[,1]

[1,] -0.3415

t: sx1−x2
= 1.18, n = 1, ν = 43

 Two Sample t−test: carbo by mfr
w = x1 − x2

fν(t) sx1−x2

0.0

0.1

0.2

0.3

−2 −1 0 1 2

wobs = −0.403 wotherside = 0.403
wc = −2.38 wc = 2.38

(μ1 − μ2)0 = 0

α = 0.05
p = 0.734

−2 −1 0 1 2t

(μ1 − μ2)0

 0.0000x

wobs

 0.0000t

wother

−0.4030

wcrit.L

−0.3413

wcrit.R

 0.4030

 0.3413

−2.3810

−2.0167

 2.3810

 2.0167

Left

0.3672p

Combined

0.0250α

Right

0.7344

0.0500

0.3672

0.0250

Fig. 5.6 Show the NTplot(t.t, zaxis=TRUE) of the t-test in Table 5.4. There are two horizon-
tal scales on the bottom axis of the plot. The w = x̄1 − x̄2 scale is the top scale and the t scale is the
bottom scale. Specific interesting values in the w scale are identified on the top axis. wobs = −.403
and its symmetrically placed wotherside = .403 are very close to the center of the graph, illustrating
that the observation is not anywhere near the rejection region |W | > 2.38.

5.4.4 Comparing the Variances of Two Normal Populations

We assume here that independent random samples are available from both popula-
tions. The F distribution is used to compare the variances σ2

1 and σ2
2 of two normal

populations. Let s2
1 and s2

2 be the variances of independent random samples of size
ni, i = 1, 2 from these populations.
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To test

H0: σ2
1 ≤ σ2

2

vs

H1: σ2
1 > σ2

2

define F = s2
1/s2

2 and reject H0 if F is sufficiently large. The p-value of the test
is 1 − FF(n1−1, n2−1) (F). The power of this and other F-tests is sensitive to the second
(denominator) df parameter and is usually not adequate unless this df ≥ 20.

A 100(1 − α)% confidence interval for a ratio of variances of two normal popu-
lations, σ2

1/σ
2
2, is

⎛⎜⎜⎜⎜⎝
s2

1

s2
2

1
Flow

,
s2

1

s2
2

Fhigh

⎞⎟⎟⎟⎟⎠

where

Flow is F1− α
2 , n1−1, n2−1, the upper 100(1 − α

2 ) percentage point of an F distribution
with n1 − 1 and n2 − 1 degrees of freedom, and

Fhigh is F1− α
2 , n2−1, n1−1, the upper 100(1− α

2 ) percentage point of an F distribution
with n2 − 1 and n1 − 1 degrees of freedom.

An extension to testing the homogeneity of more than two population variances
will be presented in Section 6.10.

5.5 Paired Data

Sometimes we wish to compare the mean change in a measurement observed on an
experimental unit under two different conditions. For example:

1. Compare the subject knowledge of students before and after they receive instruc-
tion on the subject.

2. Compare the yield per acre of a population of farms for a crop grown with two
different fertilizers.

3. Compare the responses of patients to both an active drug and a placebo, when
they are administered each of them in sequential random order with a suitable
“washout” period between the administrations.
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This “matched pairs” design is superior to a design of the same total size using
independent samples because (in illustrations 1 and 3 above) the person to person
variation is removed from the comparison of the two administrations, thereby im-
proving the precision of this comparison. The principles of designing experiments
to account for and remove extraneous sources of variation are discussed in more
detail in Chapter 13.

It is assumed that the populations have a common variance and are approximately
normal. Let y11, y12, . . . , y1n be the sample of n items from the population under the
first condition, having mean μ1, and similarly let y21, y22, . . . , y2n be the sample from
the population under the second condition, having mean μ2.

Define the n differences d1 = y11 − y21, d2 = y12 − y22, . . . , dn = y1n − y2n. Let
d̄ and sd be the mean and standard deviation, respectively, of the sample of n di’s.
Then an approximate 100(1−α)% confidence interval on the mean difference μ1−μ2

is d̄ ± t α
2 ,n−1 sd̄ where sd̄ = sd/

√
n. Tests of hypotheses proceed similarly to t-tests

for two independent samples. Table 5.3 can still be used, but with

sd̄ = sd/
√

n, and tcalc =
d̄
sd̄

(5.15)

with degrees of freedom n − 1.

5.5.1 Example—t-test on Matched Pairs of Means

Woods et al. (1986), later in Hand et al. (1994), investigate whether native English
speakers find it easier to learn Greek than native Greek speakers learning English.
Thirty-two sentences are written in both languages. Each sentence is scored accord-
ing to the quantity of errors made by an English speaker learning Greek and by a
Greek speaker learning English. It is desired to compare the mean scores of the two
groups. The data are available as data(teachers); the first column is the error
score on the English version of the sentence and the second column is the error
score on the Greek version of the sentence.

These are 32 pairs of observations because the same sentence is evaluated in both
languages. It would be incorrect to regard these as independent samples. The dot-
plot in Figure 5.7 reveals that for most sentences the English version shows fewer
errors. The stem-and-leaf of the differences in Figure 5.8a shows the difference vari-
able is positively skewed so that a transformation, as discussed in Section 4.8, is
required. Care must be used with a power transformation because many of the dif-
ferences are negative. The smallest difference is −16. Therefore, we investigate a
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Fig. 5.7 Dotplot of language difficulty scores. The difficulty in learning each of 32 sentences writ-
ten in English for Greek speakers (marked English) and written in Greek for English speakers
(marked Greek) is noted. The panels are defined by placing the sentences in which the English
version showed fewer errors on the bottom and the sentences in which the Greek version showed
fewer errors on the top. The sentences have been ordered by the difference in the English and
Greek error scores. The left panels show the observed error scores. The center panels show the
differences, English−Greek, of the error scores. The right panels show the square root transformed
differences,

√
English−Greek + 17. The t-tests in Table 5.8 will be based on the differences and

the transformed differences.

square root transformation following the addition of 17 to each value. The second
stem-and-leaf in Figure 5.8b illustrates that this transformation succeeds in bringing
the data closer to symmetry. Since a difference of zero in the original scale corre-
sponds to a transformed difference of

√
17 ≈ 4.123, the null hypothesis of equal

difficulty corresponds to a comparison of the sample means in the transformed scale
to 4.123, not to 0. The observed p-value is .0073, showing a very clear difference in
difficulty of learning the two languages. For comparison, the t-test on the untrans-
formed differences show a p-value of only .0346.
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> stem(teachers$"English-Greek")

The decimal point is 1 digit(s) to the
right of the |

-1 | 65
-1 | 442000
-0 | 988887665
-0 | 4331
0 | 22344
0 | 7799
1 | 33

> t.test(teachers$"English-Greek")

One Sample t-test

data: teachers$"English-Greek"
t = -2.211, df = 31, p-value = 0.03457
alternative hypothesis:

true mean is not equal to 0
95 percent confidence interval:
-6.2484 -0.2516

sample estimates:
mean of x

-3.25

> stem(sqrt(teachers$"English-Greek" + 17),
+ scale=.5)

The decimal point is at the |

1 | 0477
2 | 26668
3 | 00002335677
4 | 04456699
5 | 1155

> t.test(sqrt(teachers$"English-Greek" + 17),
+ mu=sqrt(17))

One Sample t-test

data: sqrt(teachers$"English-Greek" + 17)
t = -2.871, df = 31, p-value = 0.00731
alternative hypothesis:

true mean is not equal to 4.123
95 percent confidence interval:
3.086 3.947

sample estimates:
mean of x

3.517

elacSdemrofsnarT.belacSlanigirO.a

Fig. 5.8 Stem-and-leaf display and t-test of sentence difference scores from Figure 5.7 in the orig-
inal scale and in the offset square-root transformed scale.

5.6 Sample Size Determination

Deciding on an appropriate sample size is a fundamental aspect of experimental
design. In this section we provide discussions of the minimum required sample size
for some situations of inference about population means:

• A confidence interval on μ with specified width W and confidence coefficient
100(1 − α)%.

• A test about μ having specified Type I error α, and power 1 − β at a specified
distance δ from the null hypothesized parameter.

These are key design objectives for many experiments with modest inferential
goals. Specialized software exists for the purpose of determining sample sizes in
a vast array of inferential situations. But our discussion here is limited to a few



5.6 Sample Size Determination 143

commonly encountered situations for which the formulas are sometimes mentioned
in elementary statistics texts.

We assume throughout this discussion that the sample size will be large enough to
guarantee that the standardized test statistic is approximately normally distributed.
If, as is usual, a sample size calculation does not yield an integer, it is conservative
to take n as the next-higher integer. The sample size formulas here are all the result
of explicitly solving a certain equation for n. In situations not discussed here, an
explicit solution for n may not exist, and the software may produce an iterative
solution for n.

5.6.1 Sample Size for Estimation

Since the width of a confidence interval can be expressed as a function of the sample
size, the solution of the problem of sample size for a confidence interval is straight-
forward in the case of a single sample.

For a CI on a single mean, assuming a known population variance σ2,

n =
4σ2

(
Φ−1(1 − α

2 )
)2

W2
(5.16)

where Φ−1 is the inverse cumulative distribution of a standard normal distribution
defined in Section J.1.9. Equation 5.16 is found by solving Equation 5.1 for n when
we want the width of the confidence interval to be W = 2 z α

2

σ√
n
. If σ2 is unknown,

a reasonable guess may be made in its place. (Note that the sample variance is not
known prior to selecting the sample.) If we are unable to make a reasonable guess,
an ad hoc strategy would be to take a small pilot sample of n0 items and replace σ in
the formula with the standard deviation of the pilot sample. Then if the calculation
results in a recommended n greater than n0, one samples n − n0 additional items.

The required sample size for the Agresti and Caffo CI on a single proportion,
Equation (5.3), is

n =

(
Φ−1(1 − α

2 )
)2

W2
− 4 (5.17)

This formula is based on the normal approximation to the binomial distribution.
Many statistics texts contain charts for finding the required sample size based on the
exact binomial distribution.
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5.6.2 Sample Size for Hypothesis Testing

For hypothesis testing we are interested in controlling the specified Type II error
probability β when the unknown parameter being tested is a distance δ from the null
hypothesized value. For a one-tailed test on the mean of a population with known
variance σ2, use

n = σ2
(
Φ−1(1 − α) +Φ−1(1 − β)

)2
/δ2 (5.18)

We illustrate Equation 5.18 in Figure 5.9.

normal: σx = 0.80435,  n = 13.91
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Fig. 5.9 Sample size and power for the one-sample, one-sided normal test. This figure illustrates
Equation 5.18. Both the null and alternative distributions are normal with the same standard error
σ = 3. There are three colored line segments in the horizontal axis region. The top line segment
(light gray) on the w = x̄ scale is δ = μa −μ0 = 2 w-units wide, going from w = μ0 = 1 to w = μa =

3. The middle line segment (light blue) and the bottom line segment (pink) together also are δ = 2 w
units wide. The middle segment is 2.323−1 = 1.323 w units wide which is equal to 1.6448 z units.
The bottom segment is 3 − 2.323 = 0.677 w units wide which is equal to .84167 z units We know
σ = 3 and we know that σx̄ = σ/

√
n. We need to solve for n = 32(1.6488 + .84167)2/22 = 13.96.

We round up to use n = 14.
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For a two-tailed test, use

n = σ2
(
Φ−1(1 − α

2 ) +Φ−1(1 − β)
)2

/δ2 (5.19)

For testing the equality of the means of two populations with a common variance,
with δ now equal to the mean difference under the alternative hypothesis, use

n = 2 σ2
(
Φ−1(1 − α) +Φ−1(1 − β)

)2
/δ2 (5.20)

for the one-tailed test, and

n = 2 σ2
(
Φ−1(1 − α

2 ) +Φ−1(1 − β)
)2

/δ2 (5.21)

for the two-tailed test.

When the variance σ2 is unknown and has to be estimated with s2 from the sam-
ple, the formulas are more difficult because the inverse t cumulative function for the
alternative depends on the standard deviation through the noncentrality parameter
(μ1 − μ0)/(σ/

√
n). The t formulas might require several iterations as the degrees of

freedom, hence the critical values are a function of the sample size.

Tables 5.6, 5.7, and 5.8 show sample size calculations for the one-sample, one-
sided test. The example is done three times. Table 5.6 shows the calculation using
Equation 5.18 when σ2 is assumed and the normal equations apply. Table 5.7 uses
the R function power.t.test which solves the t equations efficiently. Table 5.8
iterates the definitions for the t distribution. Figure 5.10 shows the power plot for
the n value in Table 5.7 and one of the n values in Table 5.8.

Lastly, consider attempting to detect a difference between a proportion p1 and a
proportion p2. The required common sample size for the one-tailed test is

n =

(
p1 (1 − p1) + p2 (1 − p2)

) (
Φ−1(1 − α) +Φ−1(1 − β)

)2

(p1 − p2)2
(5.22)

From the preceding pattern, you should be able to deduce the modification for the
two-tailed test (see Exercise 5.16).
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Table 5.6 We calculate the sample size for a one-sided, one-sample test for the normal distribution
with the assumption that the variance is known. In Tables 5.7 and 5.8 we show the same calculations
for the t-test under the assumption that the variance has been estimated from the sample.

> ## one sided

> alpha <- .05

> power <- .80

> beta <- 1-power

> delta <- 1

> sd <- 2

> ## Approximation using formula assuming normal is appropriate

> sd^2*(qnorm(1-alpha) + qnorm(1-beta))^2 / delta^2

[1] 24.73

> ## [1] 24.73

> ## n is slightly smaller with the normal assumption.

>

Table 5.7 We calculate the sample size for a one-sided, one-sample t-test using the
power.t.test function. We show the same calculation manually in Table 5.8. We show a static
plot of the result in the left column of Figure 5.10. We also show the shiny code to specify a
dynamic plot.

> ## solve using power.t.test

> PTT <-

+ power.t.test(delta=delta, sd=sd, sig.level=alpha, power=power,

+ type="one.sample", alternative="one.sided")

> PTT

One-sample t test power calculation

n = 26.14

delta = 1

sd = 2

sig.level = 0.05

power = 0.8

alternative = one.sided

> NTplot(PTT, zaxis=TRUE) ## static plot

> ## NTplot(PTT, zaxis=TRUE, shiny=TRUE) ## dynamic plot

>
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Table 5.8 We manually calculate the sample size for a one-sided, one-sample t-test to illustrate
the iterative process directly. The power.t.test function does this much more efficiently (see
Table 5.7). The iterative process starts with an initial sample size n0 and calculates the critical
value tc,0 using the central t distribution for that sample size. The second step in the process is to
evaluate the power associated with that critical value assuming fixed δ and a series of sample sizes
and their associated df and ncp. For the next iterate choose as the new sample size n1 the sample
size whose power is closest to the target power. Calculate a new critical value tc,1 and then a new set
of powers associated with that critical value. Continue until convergence, meaning the new sample
size is the same as the previous one.

> ## solve manually with t distribution. Use ncp for alternative.

> n0 <- 30 ## pick an n0 for starting value

> t.critical <- qt(1-alpha, df=n0-1)

> t.critical

[1] 1.699

> ## [1] 1.699

>

> ## a series of n values

> nn <- 23:30

> names(nn) <- nn

> nn

23 24 25 26 27 28 29 30

23 24 25 26 27 28 29 30

> ## find the power for a series of n values for the specified critical value

> pt(t.critical, df=nn-1, ncp=delta/(sd/sqrt(nn)), lower=FALSE)

23 24 25 26 27 28 29 30

0.7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

> ## 23 24 25 26 27 28 29 30

> ## 0.7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

>

> ## recalculate critical value with new n=26

> t.critical <- qt(1-alpha, df=26-1)

> t.critical

[1] 1.708

> ## find the power for a series of n values for the new critical value

> pt(t.critical, df=nn-1, ncp=delta/(sd/sqrt(nn)), lower=FALSE)

23 24 25 26 27 28 29 30

0.7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461

> ## 23 24 25 26 27 28 29 30

> ## 0.7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461

> ## conclude n between 26 and 27

>
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t: sx = 0.3912, n = 26.14, ν = 25.14

One−sample t test power calculation
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Fig. 5.10 Sample size and power figures for the one-sample, one-sided t-test. The left figure shows
the sample size n=26.14 calculated in Table 5.7. The right figure shows the starting position with
n=30 from Table 5.8. When the sample size n is larger (on the right), the df goes up, the height of
the densities (both null and alternative) go up, the densities become thinner, the critical value in
the t scale and in the x̄ scale goes down. The alternative distribution is noncentral t, has a different
maximum height, and is not symmetric.

5.7 Goodness of Fit

Goodness-of-fit tests are used to assess whether a dataset is consistent with hav-
ing been sampled from a designated hypothesized distribution. In this section we
discuss two general goodness-of-fit tests, the Chi-Square Goodness-of-Fit Test and
the Kolmogorov–Smirnov Goodness-of-Fit Test. For testing goodness of fit to spe-
cific distributions, there may be better (more powerful) specialized tests than these.
For example, the Shapiro–Wilk test of normality (shapiro.test) is more powerful
than either general test.

Since many statistics procedures assume an underlying normal distribution, a test
of goodness of fit to normal, either before or after transformation, is frequently per-
formed. Occasionally, analysts need to check for fit to other distributions. For exam-
ple, it is often the case that the distribution of a test statistics is known asymptotically
(i.e., if the sample is “large”), but not if the sample is of modest size. It is therefore of
interest to investigate how large a sample is needed for the asymptotic distribution to
be an adequate approximation. This requires a series of goodness-of-fit tests to the
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asymptotic distribution. In Chapter 15, we will learn in our discussion of the analy-
sis of contingency table data that the distribution of χ2 =

∑ (O−E)2

E is approximately
chi-square provided that no cell sizes are too small. A determination of the ground
rule for “too small” required tests of goodness of fit to chi-square distributions with
appropriate degrees of freedom.

This class of tests assesses whether a sample may be assumed to be taken from a
null hypothesized distribution.

5.7.1 Chi-Square Goodness-of-Fit Test

The chi-square distribution may be used to conduct goodness-of-fit tests, i.e., ones
of the form

H0: the data are from a [specified population]

vs

H1: the data are from some other population

For certain specific populations, including normal ones, other specialized tests are
more powerful.

The test begins by partitioning the population into k classes or categories. For a
discrete population the categories are the possible values; for a continuous popula-
tion the choice of a decomposition is rather arbitrary, and the ultimate conclusion
may well depend on the selected size of k and the selected partition.

The test statistic is the same as that used for contingency tables. For each cat-
egory, calculate from the probability distribution the theoretical or expected fre-
quency E. If over all k categories, there is a substantial discrepancy between the k
observed frequencies O and the k E’s, then H0 is rejected. The measure of discrep-
ancy is the test statistic χ2 =

∑ (O−E)2

E . A “large” value of χ2 is evidence against
H0. If the total sample size, n =

∑
O =

∑
E, is sufficiently “large”, χ2 is approx-

imately chi-square distributed and the p-value is approximately the chi-square tail
probability associated with χ2 with k − 1 degrees of freedom.

For adequacy of the chi-square approximation it is suggested that all expected
frequencies be at least 5. If this is not the case, the analyst may consider combining
adjacent categories after which this condition is met. Then k represents the number
of categories following such combining.

Sometimes, the statement of the null hypothesis is so vague that calculation of
expected frequencies requires that some parameters be estimated from the data. In
such instances, the df is further reduced by the number of such parameters estimated.
This possibility is illustrated in Example 5.7.3.
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5.7.2 Example—Test of Goodness-of-Fit to a Discrete Uniform
Distribution

A six-sided die (singular of the word dice) is rolled 30 times with the following
outcomes: 1, 3 times; 2, 7 times; 3, 5 times; 4, 8 times; 5, 1 time; and 6, 6 times.
Test whether the die is fair.

A fair die is one that has a discrete uniform distribution on 1, 2, 3, 4, 5, 6. Each
of these six possibilities has 1

6 chance of occurring, and all six E’s are 30( 1
6 ) = 5.

Then

χ2 =
(3 − 5)2

5
+ . . . +

(6 − 5)2

5
= 6.8

and the p-value from χ2
5 is 0.236. Hence these 30 observations do not provide evi-

dence to refute the fairness of the die. We show the calculations in Table 5.9 and the
plot of the test in Figure 5.11.

Table 5.9 Test of Goodness-of-Fit to a Discrete Uniform Distribution. The test is plotted in
Figure 5.11.

> dice <- sample(rep(1:6, c(3,7,5,8,1,6)))

> dice

[1] 4 6 4 2 3 2 4 4 6 3 6 4 3 2 3 4 6 2 6 2 1 4 3 5 1 2 1 6

[29] 4 2

> table(dice)

dice

1 2 3 4 5 6

3 7 5 8 1 6

> chisq.test(table(dice))

Chi-squared test for given probabilities

data: table(dice)

X-squared = 6.8, df = 5, p-value = 0.2359



5.7 Goodness of Fit 151

0 5 10 15

Chisq density : ν = 5
D

en
si

ty

0.00

0.05

0.10

0.15

χ2

11.07χ2

shaded area

0.05

6.8

0.2366.8χ2

Fig. 5.11 Plot of the hypothesis test of Table 5.9. The observed value χ2 = 6.8 shows p = 0.236
and is in the middle of the do-not-reject region,

Table 5.10 Observed and expected frequencies for the goodness-of-fit example in Section 5.7.3.

Y O E
(O − E)2

E

0 13 6.221 7.388

1 18 20.736 0.361

2 20 27.648 2.116

3 18 18.432 0.010

4 6 6.144 0.003

5 5 0.819 21.337

31.215

5.7.3 Example—Test of Goodness-of-Fit to a Binomial Distribution

In a certain community, there were 80 families containing exactly five children. It
was noticed that there was an excess of boys among these. It was desired to test
whether Y = “number of girls in family” is a binomial r.v. with n = 5 and p = .4.
The expected frequencies calculated from this binomial distribution are shown in Ta-
ble 5.10 along with the observed frequencies and the calculated χ2

5 statistic. Then the
p-value is, 8.510−6, calculated as the tail probability at 31.215 for a chi-square dis-
tribution with 5 df. We conclude that the sample data contain more dispersion than
does binomial(5, .4). The excess dispersion is visible in the left panel of Figure 5.12.
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Fig. 5.12 Plot of family size data from Table 5.11. The Observed data is more spread out
than the Expected (binomial) data. The sample variance for the Observed is var(rep(0:5,

times=Observed)) == 1.987 and the sample variance for the Expected is var(rep(0:5,

times=Expected)) == 1.131.

In this example, the value of the binomial proportion parameter, p, was specified.
If instead it had to be estimated, the df would decrease from 5 to 4. We illustrate the
calculation of both tests in R in Table 5.11.

5.8 Normal Probability Plots and Quantile Plots

Quantile plots (Q-Q plots) are visual diagnostics used to assess whether (a) a dataset
may reasonably be treated as if it were a sample from a designated probability dis-
tribution, or (b) whether two datasets show evidence of coming from a common
unspecified distribution.

The normal probability plot, an important special case of the more general quan-
tile plot, is used to assess whether data are consistent with a normal distribution. The
normal probability plot is a standard diagnostic plot in regression analysis (Chap-
ters 8–11) used to check the assumption of normally distributed residuals. This con-
dition is required for the validity of many of the usual inferences in a regression
analysis. If the normality assumption appears to be violated, it is often possible to
retain a simple analysis by transforming the data scale, for example by a power
transformation, and then reanalyzing and replotting to see if the residuals from the
transformed data are close to normal. The choice of transformation may be guided
by the interpretation of the normal probability plot.

In R, a normal probability plot is produced with the qqmath function (in lattice)
or the qqnorm function (in base graphics). function. Normal probability plots are
included in the default plots for the results of linear model analyses.

A quantile plot to assess consistency of observed data yi with a designated distri-
bution is easily constructed. We sort the observed data to get y[i], find the quantiles
of the distribution by looking up the fractions (i − 1

2 )/n in the inverse cumulative
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Table 5.11 Calculation of p-value for chi-square test with known p and with estimated p̂. The
Observed and Expected frequencies are plotted in Figure 5.12.

> Observed <- c(13, 18, 20, 18, 6, 5)

> names(Observed) <- 0:5

> ## binomial proportion p=.4 is specified

> Expected <- dbinom(0:5, size=5, p=.4)*80

> names(Expected) <- 0:5

> chisq.test(Observed, p=Expected, rescale.p=TRUE)

Chi-squared test for given probabilities

data: Observed

X-squared = 31.21, df = 5, p-value = 8.496e-06

Warning message:

In chisq.test(Observed, p = Expected, rescale.p = TRUE) :

Chi-squared approximation may be incorrect

> ## binomial proportion p is calculated from the observations

> p <- sum(Observed * (0:5)/5)/sum(Observed)

> p

[1] 0.4025

> Expected <- dbinom(0:5, size=5, p=p)*80

> names(Expected) <- 0:5

> WrongDF <- chisq.test(Observed, p=Expected, rescale.p=TRUE)

Warning message:

In chisq.test(Observed, p = Expected, rescale.p = TRUE) :

Chi-squared approximation may be incorrect

> WrongDF

Chi-squared test for given probabilities

data: Observed

X-squared = 30.72, df = 5, p-value = 1.066e-05

> c(WrongDF$statistic, WrongDF$parameter)

X-squared df

30.72 5.00

> ## correct df and p-value

> pchisq(WrongDF$statistic, df=WrongDF$parameter - 1, lower=FALSE)

X-squared

3.498e-06
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distribution function to get qi = F−1((i − 1
2 )/n), and then plotting the sorted data y[i]

against the quantiles qi. Consistency is suggested if the points tend to fall along a
straight line. A pattern of a departure from a straight-line quantile plot usually sug-
gests the nature of the departure from the assumed distribution. The R one-sample
quantile plots (both the lattice qqmath and the base graphics qqnorm) default to the
usual convention of plotting the data against the theoretical values. Other software
and a number of references reverse the axes. Readers of presentations containing
quantile plots should be alert to which convention is used, and writers must be sure
to label the axes to indicate the convention, because the choice matters considerably
for interpretation of departures from compatibility.

A general Q-Q (or quantile-quantile) plot is invoked in R with the base graphics
command qqplot(x, y, plot=TRUE), whereby the quantiles of two samples, x
and y, are compared. As with a normal probability case, the straightness of the
Q-Q plot indicates the degree of agreement of the distributions of x and y, and
departure from a well-fitting straight line on an end of the plot indicates the presence
of outlier(s). Quoting from the S-Plus online help for qqplot:

A Q-Q plot with a “U” shape means that one distribution is skewed relative to the other.
An “S” shape implies that one distribution has longer tails than the other. In the default
configuration (data on the y-axis) a plot from qqnorm that is bent down on the left and bent
up on the right means that the data have longer tails than the Gaussian [normal].

For a normal probability plot with default configuration, a plot that is bent up on
the left and bent down on the right indicates that the data have shorter tails than the
normal. A curved plot that opens upward suggests positive skewness and curvature
opening downward suggests negative skewness.

It is possible to construct a Q-Q plot comparing a sample with any designated
distribution, not just the normal distribution. In R and S-Plus this is accomplished
with the function ppoints(y), which returns a vector of n=length(y) fractions
uniformly spaced between 0 and 1 which will be used as input to the quantile (in-
verse cumulative distribution) function. For example, all three R statements

plot(sort(y) ~ qlnorm(ppoints(y)))

qqplot(qlnorm(ppoints(y)), y)

qqmath(y, distribution=qlnorm)

produce a lognormal Q-Q plot of the data in y. See Appendix J for the lognormal
distribution.

If it is unclear from a normal probability plot whether the data are in fact normal,
the issue may be further addressed by a specialized goodness-of-fit test to the nor-
mal distribution, the Shapiro–Wilk test. This test works by comparing

S (y) the empirical distribution function of the data, the fraction of
the data that is less than or equal to y

with

Φ
(
(y − ȳ)/s

)
the probability that a normal r.v. Y (with mean ȳ and s.d. s) is less
than or equal to y
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Over the observed sample, S (y) and Φ
(
(y − ȳ)/s

)
should be highly correlated if the

data are normal, but not otherwise. The Shapiro–Wilk statistic W is closely related
to the square of this correlation. If the normal probability plot is nearly a straight
line, W will be close to 1. A small value of W is evidence of nonnormality. The
Shapiro–Wilk test is available in R with the shapiro.test function. For this spe-
cific purpose the Shapiro–Wilk test is more powerful than a general goodness-of-fit
test such as the Kolmogorov–Smirnov procedure discussed in Section 5.9.

5.8.1 Normal Probability Plots

Figure 5.13 contrasts the appearance of normal probability plots for the normal dis-
tribution and various departures from normality. Typically, the plot has these ap-
pearances:

• An “S” shape for distributions with thinner tails than the normal.

• An inverted “S” shape for distribution with heavier tails than the normal.
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Fig. 5.13 Normal probability plots of data randomly selected from normal and other distributions.
The density plots of these variables are in Figure 5.14.
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Fig. 5.14 Density plots of the data randomly selected from normal and other distributions. This is
the same data whose normal probability plots are shown in Figure 5.13
.

• A “J” shape for positively skewed distributions.

• An inverted “J” shape for negatively skewed distributions.

• Isolated points at the extremes of a plot for distributions having outliers.

5.8.2 Example—Comparing t-Distributions

We compare a random sample of 100 from a t distribution with 5 df to quantiles from
a longer-tailed t3 distribution and from shorter-tailed t7 and normal distributions.
The four superimposed Q-Q plots and a reference 45◦ line are shown in Figure 5.15.

Note that the picture we get will vary according to the particular random sample
selected. In this example the plot against the quantiles of t5, the same distribution
from which the sample was drawn, is close to the 45◦ line. The longer-tailed t3
quantiles show a reflected “S” shape. The shorter-tailed t7 and normal distributions
show an “S” shape.
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Fig. 5.15 Q-Q plots for the t distribution with several different degrees of freedom. The normal is
the same as the t with infinite degrees of freedom. The scaling here is isometric, the same number
of inches per unit on the x and y scales. The aspect ratio is chosen to place the normal QQ plot
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Fig. 5.16 t densities. The normal (t with infinite degrees of freedom) is the tallest and thinnest.
As the degrees of freedom decrease, the center gets less high and the tails have noticeable weight
farther away from the center.

Long and short tails refer to the appearance of plots of the density functions.
Note that the normal has almost no probability (area) outside of ±2.5. The t distri-
butions have more and more probability in the tails of the distribution (larger |q|)
as the degrees of freedom decrease. The superimposed densities are displayed in
Figure 5.16.
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5.9 Kolmogorov–Smirnov Goodness-of-Fit Tests

The Kolmogorov–Smirnov goodness-of-fit tests are used to formally assess hypoth-
esis statements concerning probability distributions. The K–S one-sample test tests
whether a random sample comes from a hypothesized null distribution. The K–S
two-sample test tests whether two independent random samples are coming from
the same but unspecified probability distribution. The alternative hypothesis can be
either one-sided or two-sided.

The K–S one-sample test involves comparing the maximum discrepancy between
the empirical cumulative distribution of the data, defined as S (y) = fraction of the
data that is less than or equal to y, and the cumulative distribution function of
the hypothesized population being sampled. The K–S two-sample test statistic is
the maximum discrepancy between the empirical distribution functions of the two
samples.

The Shapiro–Wilk test of normality is more powerful than K–S for assessing
normality. The Shapiro–Wilk test statistic W more fully uses the sample than does
K–S. If we have data that are close to normal except for one very unusual point, K–S
will be more sensitive to this point than W. In general, the K–S procedure focuses
on the most extreme departure from the hypothesized distribution while Shapiro–
Wilk’s assessment based on Q-Q focuses on the average departure.

The K–S tests are performed in R with the function ks.test. See the R help file
for ks.test for details. This function can handle both one- and two-sample tests.
For the one-sample test, a long list of probability distributions can be specified as
the null hypothesis. The parameters of the null distribution can be estimated from
the data or left unspecified. With some exceptions, the alternative hypothesis can be
"greater" or "less" as well as "two-sided". The interpretation of a one-sided
hypothesis is that one c.d.f. is uniformly and appreciably shifted to one side of the
other c.d.f.

5.9.1 Example—Kolmogorov–Smirnov Goodness-of-Fit Test

We illustrate the One-Sample Kolmogorov–Smirnov Test in Table 5.12 and Figure
5.17. We illustrate the Two-Sample Kolmogorov–Smirnov Test in Table 5.13 and
Figure 5.18.

We selected two random samples of 300 items, the first from a t distribution with
5 df, and the second from a standard normal distribution. Table 5.12 shows the K–S
tests and Figure 5.17 the plot of the tests.
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Table 5.12 Kolmogorov–Smirnov One-Sample Test. The first test corresponds to the left panels
of Figure 5.17. We see a p-value of 0.2982 and do not reject the null. The second test corresponds
to the right panels of Figure 5.17. We see a p-value of 0.003808 and reject the null.

> rt5 <- rt(300, df=5)

> rnn <- rnorm(300)

> ks.test(rt5, function(x)pt(x, df=2))

One-sample Kolmogorov-Smirnov test

data: rt5

D = 0.0563, p-value = 0.2982

alternative hypothesis: two-sided

> ks.test(rnn, function(x)pt(x, df=2))

One-sample Kolmogorov-Smirnov test

data: rnn

D = 0.1022, p-value = 0.003808

alternative hypothesis: two-sided

Table 5.13 Kolmogorov–Smirnov Two-Sample Test. The test corresponds to Figure 5.18. We see
a p-value of 0.09956 and we do not reject the null.

> ks.test(rt5, rnn)

Two-sample Kolmogorov-Smirnov test

data: rt5 and rnn

D = 0.1, p-value = 0.09956

alternative hypothesis: two-sided

In the table we test to see if these sample datasets are consistent with a t dis-
tribution with 2 df. The 5-df dataset is consistent with the 2-df null distribution.
The normal dataset is not. The top panel in both columns of Figure 5.17 shows
the distribution for the hypothesized t2 distribution, and the vertical deviations of
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Fig. 5.17 Kolmogorov–Smirnov plots. Kolmogorov–Smirnov One-Sample Test. On the left we
compare a random selection from the t distribution with 5 df to a null hypothesis distribution of t
with 2 df. The ks.test in Table 5.12 shows a p-value of 0.2982 and does not reject the null. On
the right we compare a random selection from the standard normal distribution to a null hypothesis
distribution of t with 2 df. The ks.test in Table 5.12 shows a p-value of 0.003808 and rejects the
null. The solid line in the top panels is the CDF for null distribution, in this example the t with 2 df.
The deviation lines connect the observed y-values from the dataset under test to the hypothesized
y-values from the null distribution. The deviation lines are magnified and centered in the bottom
panels. The largest |vertical deviation| is the value of the K–S statistic in Table 5.12.

the data from the hypothesized distribution. The largest absolute value of these ver-
tical deviations is the Kolmogorov–Smirnov statistic. The lower panel shows the
deviations.

In Table 5.13 and Figure 5.18 we directly compare two different samples to see
if the Two-Sample ks.test can distinguish between them. In this example the null
hypothesis is retained. The plot shows both empirical distribution functions.
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Fig. 5.18 Kolmogorov–Smirnov two-sample plot. We plotted the two empirical CDF on the same
axes. The largest absolute vertical deviation is the value of the K–S statistic. Interpolation to cal-
culate the vertical deviations is messier in the two-sample case, therefore we didn’t do it for the
figure. The ks.test function in Table 5.13 does do the interpolation.

5.10 Maximum Likelihood

Maximum likelihood is a general method of constructing “good” point estimators.
Likelihood ratio is a general method of constructing tests with favorable properties.
We briefly consider both of these ideas.

5.10.1 Maximum Likelihood Estimation

We start from the joint distribution of the sample statistics. The maximum likelihood
estimator (MLE) is the value of the parameter that maximizes this expression of the
joint distribution, which is called the likelihood function L. In practice it is usually
easier to solve the equivalent problem of maximizing ln(L), equivalent since ln(·) is
an increasing function.

As a simple example, we derive the MLE of the mean μ of a normal popula-
tion with known standard deviation σ, based on a random sample of n from this
population.

The likelihood function L(μ) is a function of the parameter μ. L(μ) is constructed
as the product of the individual density functions for the observed data values yi.

L(μ) =
∏

φ

(
yi − μ√

2 σ

)
= (2πσ2)− n

2 exp

(
−

∑
(yi − μ)2

2 σ2

)
(5.23)



162 5 Introductory Inference

Apart from an additive constant that does not depend on μ, we find

ln(L) = −
∑

(yi − μ)2

2σ2

The value of μ that maximizes this expression is the value of μ that minimizes
∑

(yi − μ)2 =
∑

(yi − ȳ)2 + n(ȳ − μ)2

The answer, μ̂ = ȳ, is both the “least-squares” and maximum likelihood estima-
tor of μ. (The least-squares and maximum likelihood estimators do not necessarily
coincide for other estimands than μ.)

5.10.2 Likelihood Ratio Tests

Let y1, y2, . . . , yn denote a random sample of some population and let L = L(y1, y2

, ..., yn) denote the likelihood of this sample, i.e., the joint probability distribution
of the sample values. Let H0 be a null hypothesis about the parameter(s) of this
population. A likelihood ratio (LR) test of H0 uses the likelihood ratio

λ =
maximum of L over only those parameter values for which H0 is true

maximum of L over all possible parameter values
(5.24)

or some random variable that is a strictly increasing or strictly decreasing function
of only λ. H0 is rejected if λ is sufficiently small, where “sufficiently small” depends
on α.

While likelihood ratio tests do not, in general, have optimal properties, experi-
ence has taught that they frequently are competitive. One reason for their popularity
is that they have a known asymptotic (i.e., large sample size n) distribution: −2 ln(λ)
is approximately a χ2 r.v. with d.f. equal to the number of parameters constrained
by H0. This fact can be used to construct a large sample test.

For example, to test H0: μ = 0 vs H1: μ � 0, where μ is the mean of a normal
population with unknown variance, it is not difficult to show that the likelihood ratio
test procedure gives λ = 1

(1+t2)n/2 , where |t| is the usual absolute t statistic used for

this purpose. Here |t| arises as the appropriate test statistic because it is a strictly
decreasing function of λ.
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5.11 Exercises

5.1. Suppose that hourly wages in the petroleum industry in Texas are normally dis-
tributed with a mean of $17.60 and a standard deviation of $1.30. A large company
in this industry randomly sampled 50 of its workers, determining that their hourly
wage was $17.30. Stating your assumptions, can we conclude that this company’s
average hourly wage is below that of the entire industry?

5.2. The mean age of accounts payable has been 22 days. During the past several
months, the firm has tried a new method to reduce this mean age. A simple random
sample of 200 accounts payable last month had mean age 20.2 days and standard
deviation 7.2 days. Use a confidence interval to determine if the new method has
made a difference.

5.3. The Security and Exchange Commission (SEC) requires companies to file an-
nual reports concerning their financial status. Firms cannot audit every account re-
ceivable, so the SEC allows firms to estimate the true mean. They require that a
reported mean must be within $5 of the true mean with 98% confidence. In a small
sample of 20 from firm Y, the sample standard deviation was $40. What must the
total sample size be so that the audit meets the standard of the SEC?

5.4. The Kansas City division of a company produced 982 units last week. Of these,
135 were defective. During this same time period, the Detroit division produced 104
defectives out of 1,088 units. Test whether the two divisions differed significantly in
their tendency to produce defectives.

5.5. A human resources manager is interested in the proportion of firms in the
United States having on-site day-care facilities. What is the required sample size
to be 90% certain that the sample proportion will be within 5% of the unknown
population proportion?

5.6. A health insurance company now offers a discount on group policies to com-
panies having a sufficiently high percentage of nonsmoking employees. Suppose a
company with several thousand workers randomly samples 200 workers and finds
that 186 are nonsmokers. Find a 95% confidence interval for the proportion of this
company’s employees who do not smoke.

5.7. Out of 750 people chosen at random, 150 were unable to identify your product.
Find a 90% confidence interval for the proportion of all people in the population
who will be unable to identify your product.

5.8. A national poll, based on interviews with a random sample of 1,000 voters, gave
one candidate 56% of the vote. Set up a 98% confidence interval for the proportion
of voters supporting this candidate in the population. You need not complete the
calculations.
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5.9. Two hundred people were randomly selected from the adult population of each
of two cities. Fifty percent of the city #1 sample and 40% of the city #2 sample
were opposed to legalization of marijuana. Test the two-sided hypothesis that the
two cities have equal proportions of citizens who favor legalization of marijuana.
(Calculate and interpret the p-value.)

5.10. A random sample of 200 people revealed that 80 oppose a certain bond issue.
Find a 90% confidence interval for the proportion in the population who oppose this
bond issue. Work the arithmetic down to a final numerical answer.

5.11. The confidence interval answer to the previous question is rather wide. How
large a sample would have been required to reduce the confidence interval error
margin to 0.02?

5.12. Random samples of 400 voters were selected in both New Jersey and Pennsyl-
vania. There were 210 New Jersey respondents and 190 Pennsylvania respondents
who stated that they were leaning toward supporting the Democratic nominee for
President. Test the claim (alternative hypothesis) that the proportion of all New Jer-
sey voters who lean Democratic exceeds the proportion of all Pennsylvania voters
who lean Democratic.

a. Set up H0 and H1.

b. Calculate p̂1, p̂2, and p̂.

c. Calculate zcalc.

d. Approximate the p-value.

e. State your conclusion concerning the claim.

5.13. The relative rotation angle between the L2 and L3 lumbar vertebrae is defined
as the acute angle between posterior tangents drawn to each vertebra on a spinal
X-ray. See Figure 7.20 for an illustration with different vertebrae. When this angle
is too large the patient experiences discomfort or pain. Chiropractic treatment of
this condition involves decreasing this angle by applying (nonsurgical) manipula-
tion or pressure. Harrison et al. (2002) propose a particular such treatment. They
measured the angle on both pre- and post-treatment X-rays from a random sample
of 48 patients. The data are available as data(har1).

a. Test whether the mean post-treatment angle is less than the mean angle prior to
treatment.

b. Construct a quantile plot to assess whether the post-treatment sample is compat-
ible with a t distribution with 5 degrees of freedom.

5.14. The Harrison et al. (2002) study also measured the weights in pounds of
the sample of 48 treated patients and a random sample of 30 untreated volunteer
controls.
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a. Use the data available as data(har2) to compare the mean weights of the treat-
ment and control populations.

b. Use these data to compare the standard deviation of weights of the treatment and
control populations.

c. Construct and interpret a normal probability plot for the weights of the treated
patients.

5.15. The Poisson probability distribution is defined on the set of nonnegative inte-
gers. The Poisson is often used to model the number of occurrences of some event
per unit time or unit space. Examples are the number of phone calls reaching a
switchboard in a given minute (with the implication that the number of operators
scheduled to answer the phones will be determined from the model) or the number
of amoeba counted in a 1 ml. specimen of pond water. The probability that a Poisson
r.v. Y has a particular (nonnegative integer) value y is given by

P(Y = y) =
e−μμy

y!
, y = 0, 1, 2, . . .

(While the value of y may be arbitrarily large, the probability of obtaining a very
large y is infinitesimally small.) The parameter μ is the mean number of occurrences
per unit. The mean μ of the Poisson distribution is either known in advance or must
be estimated from the data. Poisson probabilities may be calculated with R as noted
in Section J.3.6.

You are asked to perform a chi-square goodness-of-fit test of the Poisson distribu-
tion to the following data, which concern the number of specimens per microscope
field in a sample of lake water.

y: 0 1 2 3 4 5 6 7

O: 21 30 54 26 11 3 3 2

The observed value Oy is the number of fields in which exactly y specimens were
observed. In this example,

∑
Oy = 150 fields were examined and, for example,

exactly O2 = 54 of the fields showed y = 2 specimens. The Poisson parameter μ
is unknown and should be estimated as a weighted average of the possible values
y, i.e.,

μ̂ =

7∑
y=0

y Oy

7∑
y=0

Oy

5.16. Extend the one-tailed sample size formula for comparing two proportions,
Equation (5.22), to the two-tailed case.



Chapter 6

One-Way Analysis of Variance

In Chapter 5 we consider ways to compare the means of two populations. Now we
extend these procedures to comparisons of means from several populations. For ex-
ample, we may wish to compare the average hourly production of a company’s six
factories. We say that the investigation has a factor factory that has six levels,
namely the six identifiers distinguishing the factories from one another. Or we may
wish to compare the yields per acre of five different varieties of wheat. Here, the fac-
tor is wheat, and the levels of wheat are variety1 through variety5. This chapter
discusses investigations having a single factor. Experiments having two factors are
discussed in Chapter 12, while situations with two or more factors are discussed in
Chapters 13 and 14.

One-way analysis of variance (ANOVA) is the natural generalization of the two-
sample t-test to more than two groups. Suppose that we have a factor A with a
levels. We select independent samples from each of these a populations, where ni

is the size of the sample from population i. We distinguish between two possible
assumptions about these populations comprising the single factor. We discuss fixed
effects beginning in Section 6.1 and random effects beginning in Section 6.4.

6.1 Example—Catalyst Data

With the catalyst data from Montgomery (1997) we are interested in comparing
the concentrations of one component of a liquid mixture in the presence of each
of four catalysts. We investigate whether the catalysts provide for equal mean
concentrations, and then since this does not appear to be true, we study the ex-
tent of differences among the mean concentrations. We access the dataset with
data(catalystm) and plot it in Figure 6.1. We see that group D does not over-
lap groups A and B and that group C has a wider spread than the others.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 6
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Fig. 6.1 Boxplots Comparing the Concentrations for each Catalyst

The ANOVA (analysis of variance) table and the table of means are in Table 6.1.
The F-test in the ANOVA table addresses the null hypothesis that the four catalysts
have equal mean concentrations. We see immediately, from the small p-value (p =
.0014), that these four catalysts do not provide the same average concentrations.

Table 6.1 ANOVA Table for Catalyst Data

> catalystm1.aov <- aov(concent ~ catalyst, data=catalystm)

> anova(catalystm1.aov)

Analysis of Variance Table

Response: concent

Df Sum Sq Mean Sq F value Pr(>F)

catalyst 3 85.7 28.56 9.92 0.0014 **

Residuals 12 34.6 2.88

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(catalystm1.aov, "means")

Tables of means

Grand mean

54.49

catalyst

A B C D

56.9 55.77 53.23 51.12

rep 5.0 4.00 3.00 4.00
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6.2 Fixed Effects

Initially we assume that the a stated levels of A are the totality of all levels of interest
to us. We call A a fixed factor. We model the jth observation from population i as

yi j = μ + αi + εi j for i = 1, . . . , a and j = 1, . . . , ni (6.1)

where μ and the αi are fixed quantities with the constraint
∑

i

αi = 0 (6.2)

and the εi j are assumed to be normally and independently distributed (NID) with
common mean 0 and common variance σ2, which we denote by

εi j ∼ NID(0, σ2) (6.3)

We interpret μ as the grand mean of all a populations, αi as the deviation of the
mean of population i from μ, and assume that the responses from all a populations
have a normal distribution with a common variance. If the normality assumption is
more than mildly violated, we must either transform the response variable to one
for which this assumption is satisfied, perhaps with a power transformation such as
those discussed in Section 4.8, or use a nonparametric procedure as described in
Chapter 16. The common variance assumption may be examined with the hypothe-
sis test described in Section 6.10. If the variances are not homogeneous, a transfor-
mation such as those discussed in Section 4.8 sometimes can fix the inhomogeneity
of variance problem as well as the nonnormality problem by changing to a scale in
which the transformed observations show homogeneity of variance.

We discuss in Appendix 6.A the correspondence between the notation of Equa-
tion (6.1) and the software notation in Table 6.1.

The initial question of interest is the equality of the a population means, which
we investigate with the test of

H0: α1 = α2 = . . . = αa

vs (6.4)

Ha: the αi are not all equal.

When a = 2, the test is the familiar

tn1+n2−2 =
ȳ1 − ȳ2

sp

√
( 1

n1
+ 1

n2
)
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where

s2
p =

(
(n1 − 1)s2

1 + (n2 − 1)s2
2

)
/(n1 + n2 − 2)

from Equations (5.13) and (5.12). By squaring both sides, we can show

F1,n1+n2−2 = t2
n1+n2−2 =

n1(ȳ1 − ¯̄y)2 + n2(ȳ2 − ¯̄y)2

s2
p

(6.5)

where

¯̄y =
n1ȳ1 + n2ȳ2

n1 + n2

In the special case where n1 = n2, Equation (6.5) is easily proved by using these
hints:

1. ¯̄y =
ȳ1 + ȳ2

2
2. (ȳ1 − ¯̄y) = −(ȳ2 − ¯̄y)

3.
1
n1
+

1
n2
=

2
n1

The equality (6.5) is also true for unequal ni, but the proof is messier.

When a ≥ 2, we generalize formula (6.5) to

Fa−1, (Σni)−a =
(
∑

ni(ȳi − ¯̄y)2)/(a − 1)
s2

p
(6.6)

where ¯̄y and s2
p are the weighted mean

¯̄y =
∑

niȳi∑
ni

(6.7)

and pooled variance

s2 = s2
p =

∑
(ni − 1)s2

i∑
(ni − 1)

= MSresidual (6.8)

over all a samples.

The usual display of this formula is in the analysis of variance table and the
notation is

F(a−1), (Σni)−a =
SStreatment/dftreatment

SSresidual/dfresidual
=

MStreatment

MSresidual
=

MSTr

MSRes

(6.9)
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The sample ANOVA table in Table 6.2 illustrates the structure. Note that Figure 6.2
includes a section “Total” that is missing in Table 6.1. The Total Sum of Squares is
the sum of the Treatment and Residual Sums of Squares, and the Total Degrees of
Freedom is the sum of the Treatment and Residual Degrees of Freedom. R does not
print the Total line in its ANOVA tables.

Table 6.2 Sample Table to Illustrate Structure of the ANOVA Table

Analysis of Variance of Dependent Variable y

Source Degrees Sum of Mean F p-value
of Freedom Squares Square

Treatment dfTr SSTr MSTr FTr pTr

Residual dfRes SSRes MSRes

Total dfTotal SSTotal

The terms of the table are defined by

Treatment

dfTr a − 1

SSTr
∑a

i=1 ni(ȳi − ¯̄y)2

MSTr SSTr/dfTr

FTr MSTr/MSRes

pTr 1 − FF (FTr | dfTr, dfRes)

Residual

dfRes
(∑a

i=1 ni

)
− a

SSRes
∑a

i=1
∑ni

j=1(yi j − ȳi)2

MSRes SSRes/dfRes

Total

dfTotal
(∑a

i=1 ni

)
− 1 = dfTr + dfRes

SSTotal
∑a

i=1
∑ni

j=1(yi j − ¯̄y)2 = SSTr + SSRes

As in Section 5.4.4, this F-test of the pair of hypotheses in Equation (6.4) com-
pares two estimates of the population variance σ2. MSRes is an unbiased estimator of
σ2 whether or not H0 is true. MSTr is unbiased for σ2 when H0 is true but an overes-
timate of σ2 when Ha is true. Hence, the larger the variance ratio F = MSTr/MSRes,
the stronger the evidence in support of Ha. Comparing two variances facilitates the
comparison of a means. For this reason, the foregoing procedure is called analysis of
variance. It involves decomposing the total sum of squares SSTotal into the variances
used to conduct this F-test. The p-value in this table is calculated as the probability
that a central F random variable with dfTr and dfRes degrees of freedom exceeds the
calculated FTr.
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6.3 Multiple Comparisons—Tukey Procedure for Comparing
All Pairs of Means

Multiple comparisons refer to procedures for simultaneously conducting all infer-
ences in a family of related inferences, while keeping control of a Type I error con-
cept that relates to the entire family. This class of inferential procedures is discussed
in detail in Chapter 7. In the present chapter, we introduce the Tukey procedure,
used for the family of all

(
a
2

)
pairwise comparisons involving a population means.

We illustrate the Tukey procedure with a continuation of the analysis of the cata-
lyst data. We seek to determine which catalyst mean differences are responsible for
the overall conclusion that the catalyst means are not identical.

Under the assumption that catalyst is a fixed factor, we investigate the nature
of the differences among the four catalysts. There are

(
4
2

)
= 6 pairs of catalysts, and

for each of these pairs we wish to determine whether there is a significant difference
between the concentrations associated with the two catalysts comprising the pair. (If
the levels of catalyst had instead been quantitative or bore a structural relationship
to one another, a different follow-up to the analysis of variance table would have
been more appropriate. An example of such a situation is the analysis of the turkey
data presented in Section 6.8.)

We seek to control at a designated level α the familywise error rate, FWE, defined
as the probability of incorrectly rejecting at least one true null hypothesis under
any configuration of true and false null hypotheses. For the family consisting of all
pairs of means, the Tukey procedure maximizes, in various senses, the probability
of detecting truly differing pairs of means while controlling the FWE at α.

The Tukey procedure uses a critical value qα from the Studentized range distribu-
tion (see Section J.1.10), i.e., the distribution of standardized difference between the
maximum sample mean and the minimum sample mean, rather than an ordinary t
distribution for comparing two means discussed in Section 5.4.3. The Tukey output
may be presented in the form of simultaneous confidence intervals on each of the
mean differences rather than, or in addition to, tests on each difference. The inter-
pretation is that the confidence coefficient 1 − α is the probability that all of the

(
a
2

)

pairwise confidence intervals among a sample means contain their respective true
values of the difference between the two population means:

1 − α ≤ P
(
CI12 ∩ CI13 ∩ . . .∩ CI1a

∩ CI23 ∩ . . .∩ CI2a

∩ . . .∩ CI(a−1)a

) (6.10)

where

CIii′ : (ȳi − ȳi′ ) − qα√
2

s(ȳi−ȳi′ ) ≤ (μi − μi′ ) ≤ (ȳi − ȳi′ ) +
qα√

2
s(ȳi−ȳi′ )

(6.11)
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and

s(ȳi−ȳi′ ) = s

√
1
ni
+

1
ni′

s =
√

MSresidual

If the sample sizes are unequal, the confidence intervals (6.11) are conservative in
the sense that the coverage probability in Equation (6.10) exceeds 1 − α. If the
sample sizes are equal, the inequality in Equation (6.10) is instead an equality and
the simultaneous 1 − α confidence for the set of intervals in (6.11) is exact.

We show the listing for the Tukey test of the catalyst data in Table 6.3 and the
MMC multiple comparisons plot in Figure 6.2. The Mean–mean Multiple Compar-
isons display is discussed in Section 7.2. Denoting the mean concentration associ-
ated with catalyst i as μi, since the confidence intervals on μA − μD and μB − μD

lie entirely above 0 while all other confidence intervals include 0, we conclude that
both catalysts A and B provide, on average, a significantly greater concentration
than catalyst D; no other significant differences between catalysts were uncovered.
We continue with this example in Section 7.2.4

In view of this finding one might be tempted to focus on the differences demon-
strated to be significant in Table 6.3, and construct hypothesis tests or confidence
intervals using a method from Section 5.4.2. A more general framing of this temp-
tation is to ask, “Is it permissible to use preliminary examinations of the data to
develop subsequent hypotheses about the data” (a practice referred to as data snoop-
ing)? With few exceptions, the answer is no because the two-stage nature of the pro-
cedure distorts the claimed significance levels or confidence coefficients of the anal-
yses in the second stage. Inferential strategies should be developed before the data
are collected—based entirely on the structure of the data and the sampling method
used. Strategies should not depend on the observed data. Here one should be content
with the analyses in Table 6.3 and supporting graphical displays such as Figure 6.2,
assuming the correctness of the assumptions underlying their construction.

Although in this example there were equal sample sizes from the levels of cata-
lyst, neither the basic analysis of variance nor the Tukey multiple comparison proce-
dure requires that the factor levels have the same sample size. Analyses of one-way
data having unequal sample sizes are requested in the Exercises.

6.4 Random Effects

We could assume that the a observed levels of A are a random sample from a large or
conceptually infinite population of levels. We call A a random factor. For example,
in a study to compare the daily productivity of assembly line workers in a large
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Table 6.3 Tukey Multiple Comparisons for Catalyst Data

> catalystm.mmc <-

+ mmc(catalystm1.aov, linfct = mcp(catalyst = "Tukey"))

> catalystm.mmc

Tukey contrasts

Fit: aov(formula = concent ~ catalyst, data = catalystm)

Estimated Quantile = 2.966

95% family-wise confidence level

$mca

estimate stderr lower upper height

A-B 1.125 1.138 -2.25211 4.502 56.34

A-C 3.667 1.239 -0.00986 7.343 55.07

B-C 2.542 1.296 -1.30334 6.387 54.50

A-D 5.775 1.138 2.39789 9.152 54.01

B-D 4.650 1.200 1.09022 8.210 53.45

C-D 2.108 1.296 -1.73667 5.953 52.18

$none

estimate stderr lower upper height

A 56.90 0.7590 54.65 59.15 56.90

B 55.77 0.8485 53.26 58.29 55.77

C 53.23 0.9798 50.33 56.14 53.23

D 51.12 0.8485 48.61 53.64 51.12

firm, the workers in the study may be a random sample of a employees from among
thousands of employees performing identical tasks.

We still work with Equation (6.1), and still maintain the same assumptions about
μ and the εi j’s. We have a different interpretation of the αi. Now the term αi in
Equation (6.1) is assumed to be a N(0, σ2

A) random variable and the restriction
∑

i αi

no longer applies. Instead we work with the hypotheses

H0: σ2
A = 0

vs (6.12)

Ha: σ2
A > 0

The sample ANOVA table in Table 6.2 still applies. The F statistic now compares
the hypotheses in Equation 6.12. In the context of the worker productivity example,
the factor worker is referred to as a random factor. We are using the a sampled
workers to assess whether the entire population of workers has identical or noniden-
tical productivity.
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Fig. 6.2 Tukey Multiple Comparisons of All Pairwise Comparisons of Catalyst Means with the
MMC plot. The MMC plot is fully developed in Section 7.2. The top panel is the MMC display.
The cell means are on the vertical axis and the confidence intervals for the contrasts are on the
horizontal axis. The isomeans grid in the MMC panel displays the cell means on both diagonal
axes. The bottom panel, labeled “Tiebreaker” even though there are no ties in the top panel for this
example, shows the contrasts in the same order as the MMC panel, but evenly spaced in the vertical
direction. The left tick labels in the Tiebreaker panel are the heights of the confidence lines in the
MMC panel. For example, the A-B line has height 56.34, halfway between the height of the A mean
at 56.90 and the height of the B mean at 55.77. The bottom panel does not have any information on
the values of the means themselves.

6.5 Expected Mean Squares (EMS)

To better understand the distinction between the F-test in the fixed and random fac-
tor cases, it is useful to compare the expected mean squares (EMS) for the ANOVA
table under the two assumptions. The EMS are algebraically displayed in Table 6.4.
Calculation of the EMS values in this table are outlined in Exercise 6.14.

In the case of factor A fixed, the F statistic is testing whether
∑

i ni(αi − ᾱ)2 = 0,
where ᾱ =

(∑
i niαi

)
/
(∑

i ni
)
. This statement is true if and only if the αi are identical.
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Table 6.4 Expected Mean Squares in One-Way Analysis of Variance. Similar tables for Two-Way
models and Three-Way models are in Tables 12.8 and 13.11.

Source df E(MS) EMS, factor A fixed EMS, factor A random

Treatment A a − 1 E(MSTr) σ2 +
(

1
a−1

) ∑
i ni(αi − ᾱ)2 σ2 + 1

a−1

(∑
i ni −

∑
i n2

i∑
i ni

)
σ2

A

Residual
∑

i(ni − 1) E(MSRes) σ2 σ2

Total
(∑

i ni
) − 1

In the case of factor A random, the F statistic tests whether σ2
A = 0 because the

coefficient of σ2
A is positive whether or not H0 is true.

For fixed effects the power of the F-test is an increasing function of the non-
centrality parameter of the F statistic, which in turn is an increasing function of
EMSTreatment/EMSResidual. When factor A is random, it follows that the power is an
increasing function of

∑
i ni − ∑

i n2
i /

∑
i ni. For fixed total sample size

∑
i ni, this

quantity and hence power is maximized when ni =
∑

i ni/a, that is, when the sam-
ple is equally allocated to the levels, or nearly equal allocation if

∑
i ni/a is not an

integer.

In general in Analysis of Variance tables, examination of expected mean squares
suggests the appropriate numerator and denominator mean squares for conducting
tests of interest. We look for EMSTreatment/EMSResidual that exceeds 1 if and only if
the null hypothesis of interest is false. This idea is especially useful in analyzing
mixed models (i.e., ones containing both fixed and random factors) as is discussed
in Section 12.10.

6.6 Example—Catalyst Data—Continued

In Section 6.1 the four levels of the factor catalyst were assumed to be qualitative
rather than quantitative. It was also assumed that these are the only catalysts of
interest. In this situation catalyst is a fixed factor since the four catalyst levels we
study are the only levels of interest.

If instead these four catalysts had been regarded as a random sample from a
large population of catalysts, then catalyst would have been considered a ran-
dom factor. Figure 6.1 provides a tentative answer to the question of whether the
four distributions are homogeneous. This figure also addresses the reasonableness
of the assumption that the data come from normal homoskedastic populations, that
is, populations having equal variances. The boxplots hint at the possibility that cat-
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alyst 3 has a more variable concentration than the others, but the evidence is not
substantial in view of the small sample sizes (5,4,3,4). We look more formally at the
homogeneity of the variances of these four catalysts in Section 6.10.

The F-test in Table 6.1 addresses the null hypothesis that the four catalysts have
equal mean concentrations. The small p-value suggests that these four catalysts pro-
vide different average concentrations.

If instead, the factor catalyst in this experiment had been a random factor
rather than a fixed factor, the F-test would be addressing the hypothesis that there
is no variability in concentration over the population of catalysts from which these
four catalysts are a random sample.

6.7 Example—Batch Data

In the batch data data(batch) taken from Montgomery (1997), the 5 sampled
batches constitute a random sample from a large population of batches. Thus batch
is a random factor, not a fixed factor. The response variable is calcium content.
The ANOVA is in Table 6.5. The small p-value, .0036, leads us to conclude that the
population of batches, from which these 5 batches were a random sample, had non-
homogeneous calcium content. We must investigate whether the variances within
batches are the same. We do so in Table 6.6 and Figure 6.3 and 6.4.

Table 6.5 ANOVA of Batch data. The batches are a random effect, therefore means are not
meaningful. Instead the test compares the variability between groups with the variability of within
groups.

> data(batch)

> bwplot(Calcium ~ Batch, data=batch, groups=Batch,

+ panel=panel.bwplot.superpose, xlab="Batch")

> batch1.aov <- aov(Calcium ~ Batch, data=batch)

> anova(batch1.aov)

Analysis of Variance Table

Response: Calcium

Df Sum Sq Mean Sq F value Pr(>F)

Batch 4 0.0970 0.02424 5.54 0.0036 **

Residuals 20 0.0876 0.00438

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.6 Homogeneity of Variance test for Batch data. With p = .9978, the conclusion is to
retain the null hypothesis and act as if all the group variances are equal. See caption of Figure 6.3
for discussion of this test.

> hovBF(Calcium ~ Batch, data=batch)

hov: Brown-Forsyth

data: Calcium

F = 0.03219, df:Batch = 4, df:Residuals = 20, p-value = 0.998

alternative hypothesis: variances are not identical

Brown−Forsyth Homogeneity of Variance
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Fig. 6.3 Homogeneity of Variance plot for Batch. The left panel shows the data within each group.

The center panel shows the same variabilities centered on the group medians (yi j − ⊥y j). The right

panel shows the boxplot of the absolute deviations from the median (| yi j−⊥y j |). The Brown–Forsyth
test is an ordinary analysis of variance of these absolute deviations from the median. If the means
of each group of the absolute deviations differ, then the test says the variances of the groups of
original data differ.

6.8 Example—Turkey Data

6.8.1 Study Objectives

The goal in many agricultural experiments is to increase yield. In the Turkey experi-
ment (data from Ott (1993)) data(turkey) the response is weight gain (in pounds)
of turkeys and the treatments are diet supplements.
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Fig. 6.4 Centered variability for the Batch data. The data has been centered on the group medians.
The left panel is identical to the middle panel of Figure 6.3. The center panel shows the variability
of the set of group means. The right panel shows the variability of the entire set of y = Calcium

values. The central box in each glyph shows the interquartile range, which is approximately pro-
portional to the standard deviation. The variability in the three panels corresponds to the square
root of the values in the Mean Square column of the ANOVA table in Table 6.5. The variability of
the right panel represents the Total line of the ANOVA table (the one that R doesn’t show) which
is the variance of the response variable ignoring all the predictor variables. When the center panel
variability is larger than the left panel variabilities, then the F value will be large (use the p-value
from the F table to see whether it is significantly large).

6.8.2 Data Description

Six turkeys were randomly assigned to each of 5 diet groups and fed for the same
length of time. The diets have a structure such that it is possible and desirable to
undertake an orthogonal contrast analysis, a systematic set of comparisons among
their mean responses. A contrast is a comparison of two or more means such that the
expected value of the comparison is zero when the null hypothesis is true. (Contrasts
and orthogonal contrasts are discussed in Section 6.9.) The diets are

control: control

A1: control + amount 1 of additive A

A2: control + amount 2 of additive A

B1: control + amount 1 of additive B

B2: control + amount 2 of additive B

The data are accessed as data(turkey) and plotted in Figure 6.5.



180 6 One-Way Analysis of Variance

diet

W
ei

gh
t G

ai
n

4

6

8

10

control A1 A2 B1 B2

Fig. 6.5 Turkey Data: Boxplots of Weight Gain for each Diet

Table 6.7 ANOVA Table for Turkey Data

> turkey.aov <- aov(wt.gain ~ diet, data=turkey)

> summary(turkey.aov)

Df Sum Sq Mean Sq F value Pr(>F)

diet 4 103.0 25.76 81.7 5.6e-14 ***

Residuals 25 7.9 0.32

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(turkey.aov, type="means", se=TRUE)

Tables of means

Grand mean

6.53

diet

diet

control A1 A2 B1 B2

3.783 5.500 6.983 7.000 9.383

Standard errors for differences of means

diet

0.3242

replic. 6
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6.8.3 Analysis

The ANOVA table and table of means are in Table 6.7. The first thing we notice is
that the diets differ significantly in their promotion of weight gain (F4,25 = 81.7,
p-value ≈ 0). Then we observe that the diets are structured so that particular com-
parisons among them are of special interest. We make these comparisons by par-
titioning the sum of squares to reflect several well-defined contrasts. The contrasts
are displayed in Table 6.8. The ANOVA table using them is in Table 6.9.

The interaction line diet: A.vs.B.by.amount in Table 6.8 asks the question,
“Does the increase from amount 1 to amount 2 of additive A have the same effect as
the increase from amount 1 to amount 2 of additive B?” This question may equiv-
alently be stated as: “Does the change from amount 1 of additive A to amount 1 of
additive B have the same effect as the change from amount 2 of additive A to amount
2 of additive B?” (We interpret the description of the experiment to mean that the
amounts 1 and 2 of the additives are measured in the same units). The concept of
interaction is discussed in detail in Chapter 12.

These contrasts decompose the 4-df sum of squares for diet into four single-
df sums of squares, one for each of the four contrasts. This set of contrast sums
of squares is additive because we have defined the contrasts in such a way that
they are mutually orthogonal. In essence this means that the information contained
in one of the contrasts is independent of the information contained in any of the
other contrasts. The independence of information makes each of the contrasts more
readily interpretable than they would be if the contrasts had been defined without
the property of orthogonality.

6.8.4 Interpretation

We tentatively interpret the contrast analysis as follows:

1. trt.vs.control: averaged over the 4 treatments, turkeys receiving a dietary additive
gain significantly more weight than ones not receiving an additive.

2. additive: turkeys receiving additive B gain significantly more weight than turkeys
receiving additive A.

3. amount: turkeys receiving amount 2 gain significantly more weight than turkeys
receiving amount 1.

4. interaction between additive and amount: the extent of increased weight gain as
a result of receiving amount 2 rather than amount 1 is not significantly different
for the two additives.
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Table 6.8 Specification of contrasts for turkey data. This set of contrasts has been constructed
to reflect the intent of the experiment: to compare A vs B, amount 1 vs amount 2, and control vs
treatment. We first show the default treatment contrasts, then replace them with our constructed
contrasts.

> contrasts(turkey$diet)

A1 A2 B1 B2

control 0 0 0 0

A1 1 0 0 0

A2 0 1 0 0

B1 0 0 1 0

B2 0 0 0 1

> contrasts(turkey$diet) <-

+ cbind(control.vs.treatment=c(1,-.25,-.25,-.25,-.25),

+ A.vs.B =c(0, .5, .5, -.5, -.5 ),

+ amount =c(0, .5, -.5, .5, -.5 ),

+ A.vs.B.by.amount =c(0, .5, -.5, -.5, .5 ))

> contrasts(turkey$diet)

control.vs.treatment A.vs.B amount A.vs.B.by.amount

control 1.00 0.0 0.0 0.0

A1 -0.25 0.5 0.5 0.5

A2 -0.25 0.5 -0.5 -0.5

B1 -0.25 -0.5 0.5 -0.5

B2 -0.25 -0.5 -0.5 0.5

> tapply(turkey$wt.gain, turkey$diet, mean) %*%

+ contrasts(turkey$diet)

control.vs.treatment A.vs.B amount A.vs.B.by.amount

[1,] -3.433 -1.95 -1.933 0.45

Our conclusions derive from the definitions of the contrasts, the signs of their es-
timates in Table 6.7, and the results of the tests that each contrast is 0, shown in
Table 6.8. We give further discussion of appropriate techniques for simultaneously
testing the point estimates of the contrasts in Section 7.1.4.1. We illustrate the con-
clusions in Figure 7.4. In general, conclusions such as these are tentative because we
are making several simultaneous inferences. Therefore, it may be appropriate to use
a form of Type I error control that accounts for the simultaneity. See the discussion
of multiple comparisons in Chapter 7. In this example, with very small p-values, the
use of simultaneous error control will not lead to different conclusions.
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Table 6.9 ANOVA Table for Turkey Data with Contrasts. The sum of the individual sums of
squares from each “diet:” line is the sum of squares for diet. The point estimates of the contrasts
are in Table 7.4. Development of this table’s F statistic for diet: A.vs.B is explained in the
discussion surrounding Equations (6.15)–(6.17).

> turkey2.aov <- aov(wt.gain ~ diet, data=turkey)

> summary(turkey2.aov)

Df Sum Sq Mean Sq F value Pr(>F)

diet 4 103.0 25.76 81.7 5.6e-14 ***

Residuals 25 7.9 0.32

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> old.width <- options(width=67)

> summary(turkey2.aov,

+ split=list(diet=list(

+ control.vs.treatment=1,

+ A.vs.B=2,

+ amount=3,

+ A.vs.B.by.amount=4)))

Df Sum Sq Mean Sq F value Pr(>F)

diet 4 103.0 25.8 81.67 5.6e-14 ***

diet: control.vs.treatment 1 56.6 56.6 179.40 6.6e-13 ***

diet: A.vs.B 1 22.8 22.8 72.34 7.6e-09 ***

diet: amount 1 22.4 22.4 71.11 8.9e-09 ***

diet: A.vs.B.by.amount 1 1.2 1.2 3.85 0.061 .

Residuals 25 7.9 0.3

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> options(old.width)

6.8.5 Specification of Analysis

The partitioned ANOVA table in Table 6.8 is constructed and displayed in two sep-
arate steps in Tables 6.8 and 6.9.

We specify the contrasts in several steps: We display the default contrasts, we
define new contrasts, we display the new contrasts. Sometimes several iterations are
needed until we get it right. Table 6.8 displays both the default and the new contrasts.

Once the contrasts are defined, we use them in the aov() command in Table 6.9.
The aov() command uses the contrasts that are in the data.frame when it is called.
Redefining the contrasts after the aov() command has been used has no effect on
the aov object that has already been created.
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The split argument to the summary command indexes the columns of the con-
trasts that are in the aov object. The index numbers in the list argument are nec-
essary. The names of the items in the list are optional. They are used to provide
pretty labels in the ANOVA table.

6.9 Contrasts

Once we have determined that there are differences among the means of the groups,
that is, that the null hypothesis is rejected, we must follow through by determining
the pattern of differences. Is one specific group responsible for the differences? Are
there subsets of groups that behave differently than other subsets? We make this
determination by partitioning the treatment sum of squares SStreatment into single
degree-of-freedom components, each associated with a contrast among the group
means. There are many possible contrasts that might be chosen. In this section we
discuss the algebra of a single contrast vector c. In Chapter 10 we discuss sets of
contrast vectors collected into a contrast matrix, and the relation between different
possible sets.

Contrasts are associated with precisely formulated hypotheses. In the turkey ex-
ample of Section 6.8 the initial null hypothesis was

H0: μcontrol = μA1 = μA2 = μB1 = μA2

H1: Not all μi are the same

That initial null hypothesis was rejected when we observed the overall p-value 5.6×
10−14.

For the next step in the analysis we must refine the hypotheses we are testing. In
this example there are 5 levels of diet, hence 5 − 1 = 4 degrees of freedom for the
diet effect. That means there are 4 statements that can be tested independently. For
this example we will specify a set of 4 null hypothesis statements:

μcontrol = (μA1 + μA2 + μB1 + μA2)/4

(μA1 + μA2)/2 = (μB1 + μB2)/2 (6.13)

(μA1 + μB1)/2 = (μA2 + μB2)/2

(μA1 − μA2)/2 = (μB1 − μB2)/2

These statements are usually written as inner products of the vector of group means
with a contrast vector C. We can rewrite Equations 6.13 by moving all terms to the
left-hand side and then using the inner product notation:
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(μcontrol μA1 μA2 μB1 μA2) · (1 −.25 −.25 −.25 −.25) = 0
(μcontrol μA1 μA2 μB1 μA2) · (0 .50 .50 −.50 −.50) = 0
(μcontrol μA1 μA2 μB1 μA2) · (0 .50 −.50 .50 −.50) = 0
(μcontrol μA1 μA2 μB1 μA2) · (0 .50 −.50 −.50 .50) = 0

(6.14)

The rest of this section discusses the properties of the various choices for the
contrasts vector C.

The concept of a contrast among group means was first encountered in
Section 6.8. Contrasts are chosen primarily from the structure of the levels, for ex-
ample, the average effect of Treatment A at several levels compared to the average
effect of Treatment B at several levels (the A.vs.B contrast in Tables 6.8 and 7.4
and in Figure 7.4). Or, for another example, a linear effect of the response to a linear
increase in speed (the .L contrast in Section 10.4).

6.9.1 Mathematics of Contrasts

The mathematics of contrasts follows directly from the mathematics of the indepen-
dent two-sample t-test:

tcalc =
ȳ1 − ȳ2

sp

√
1
n1
+ 1

n2

(5.13)

The residual mean square s2
Resid from the ANOVA table takes the place of s2

p.

We will look closely at the A.vs.B contrast in Table 6.8 comparing the average
of the A treatments Ȳ1 = (ȲA1 + ȲA2)/2 to the average of the B treatments Ȳ2 =

(ȲB1 + ȲB2)/2 with n1 = nA1 + nA2 = n2 = nB1 + nB2.

Direct substitution of these values into Equation (5.13) with n
def
= ncontrol = nA1 =

nA2 = nB1 = nB2, followed by simplification (see Exercise 6.12) leads to

tcalc =
(ȲA1 + ȲA2)/2 − (ȲB1 + ȲB2)/2

1
2 sResid

√
1
n +

1
n +

1
n +

1
n

def
= tA.vs.B (6.15)

We can write the numerator of Equation (6.15) as the dot product

CA.vs.B = ( Ȳcontrol ȲA1 ȲA2 ȲB1 ȲB2 ) · ( 0 1
2

1
2 − 1

2 − 1
2 )

= (Ȳ j) · (c j) (6.16)

and then recognize the denominator of Equation (6.15) as the square root of the
estimator of the variance of the numerator when the null hypothesis is true



186 6 One-Way Analysis of Variance

v̂ar(CA.vs.B) = 1
4 s2

Resid

(
1
n
+

1
n
+

1
n
+

1
n

)
(6.17)

When we do the arithmetic, the value

tA.vs.B =
CA.vs.B√

v̂ar(CA.vs.B)
= 8.5051 =

√
72.3367 =

√
FA.vs.B

is recognized as the square root of the F-statistic for the diet: A.vs.B line of the
ANOVA table in Table 6.8.

The vector c = (c j) = ( 0 1
2

1
2 − 1

2 − 1
2 ) is called a contrast vector and the product

CA.vs.B is called a contrast. The numbers c j in a contrast vector satisfy the constraint
∑

j

c j = 0 (6.18)

Under the null hypothesis that μ1 = μ2 = . . . = μ5, we have

E(CA.vs.B) = E

(∑

j

c jμ j

)
= 0

Under both the null and alternative hypotheses, assuming that all σ2
j are identical

and equal to σ2, we see that

var(CA.vs.B) =
σ2

n

∑
c2

j

A similar argument shows that each of the columns listed under
contrasts(turkey$diet) in Table 6.8 can be used to construct the correspond-
ingly named row of the ANOVA table (Exercise 6.13).

This set of contrasts has an additional property. They are orthogonal. This means
that the dot product of each column with any of the others is 0, for example,

cA.vs.B · camount = ( 0 1
2

1
2 − 1

2 − 1
2 ) · ( 0 1

2 − 1
2

1
2 − 1

2 ) = 0 (6.19)

This implies that the covariance of the contrasts is zero, for example

cov(CA.vs.B,Camount) = 0

that is, the contrasts are uncorrelated. As a consequence, the sum of sums of squares
for each of the four contrasts in Table 6.8 is the same as the sum of squares for diet
given by the SStreatment term in Equations (6.6) and (6.9).

The SStreatment, and the sum of squares for each of the single degree-of-freedom
contrasts comprising it, is independent of the MSresidual = s2

Resid. The F-tests for
each of the orthogonal contrasts are not independent of each other because all use
the same denominator term.



6.9 Contrasts 187

In general, the n j are not required to be identical. The general statement for a
contrast vector

(c j) = (c1, . . . , cJ) (6.20)

is that the contrast C =
∑

c jȲ j has variance

var(C) = σ2
∑ c2

j

n j
(6.21)

6.9.2 Scaling

The contrasts displayed here were scaled to make the sum of the positive values and
the sum of the negative values each equal to 1. This scaling is consistent with the
phrasing that a contrast is a comparison of the average response over several levels
of a factor to the average response over several different levels of the factor. Any
alternate scaling is equally valid and will give the same sum of squares.

6.9.2.1 Absolute-Sum-2 Scaling

We recommend the absolute-sum-2 scaling where the sum of the absolute values of
the coefficients equals 2,

∑

j

|c j| = 2 (6.22)

Equivalently, the sum of the positive coefficients equals 1 and the sum of the nega-
tive coefficients also equals 1. The absolute-sum-2 scaling makes it easy to extend
the mean–mean multiple comparisons plots to arbitrary sets of contrasts. See Sec-
tion 7.2.3 for details on the mean–mean multiple comparisons plots.

6.9.2.2 Normalized Scaling

The normalized scaling, with c∗j = c j/
√∑

c2
j , is frequently used because the corre-

sponding dot product

C∗A.vs.B = ( Ȳcontrol ȲA1 ȲA2 ȲB1 ȲB2 ) · ( 0 1
2

1
2 − 1

2 − 1
2 )

= (Ȳ j) · (c∗j) (6.23)
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is simply related to the A.vs.B sum of squares by

SSA.vs.B = n(C∗A.vs.B)2 = 22.815. (6.24)

Under the null hypothesis

var(C∗A.vs.B) = σ2
Resid (6.25)

and under the alternate hypothesis

var(C∗A.vs.B) � σ2
Resid (6.26)

This provides the justification for the F-test.

In this example, the normalized scaling in Equation (6.23) is identical to the
scaling in Equation (6.16) that makes the positive and negative sums each equal to
1. That is not always the case. The control.vs.treatment contrast with positive
and negative values each summing to 1 as displayed in Table 6.8 is

(1 − .25 − .25 − .25 − .25)

The samecontrol.vs.treatment contrast with normalized scaling is

√
.8 (1 − .25 − .25 − .25 − .25)

6.9.2.3 Integer Scaling

Another frequently used scaling makes each individual value c j an integer. For the
examples shown here, this gives

A.vs.B (0 1 1 −1 −1)
control.vs.treatment (4 −1 −1 −1 −1)

Because this scaling eases hand arithmetic, it was very important prior to digital
computers. This scaling is included in tables of orthogonal contrasts in many texts,
see for example, Cochran and Cox (1957), Table 3.4, page 64.

6.10 Tests of Homogeneity of Variance

In Sections 5.3, 5.4.4, 6.2, and 6.6 we mention that the assumption that several
populations have a common variance can be checked via a statistical test. Assuming
there are a populations having variances σ2

i for i = 1, 2, . . . , a, the test is of the form
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H0: σ2
1 = σ2

2 = . . . = σ2
a

vs (6.27)

H1: not all the σ2
i are identical to each other.

For this purpose, Brown and Forsyth (1974) present the recommended test.
Intensive simulation investigations, including Conover et al. (1981), have found that
this test performs favorably compared with all competitors in terms of Type I error
control and power for a wide variety of departures from Normality.

The Brown and Forsyth test statistic is the F statistic resulting from an ordinary
one-way analysis of variance on the absolute deviations from the median

Zi j = |Yi j − ⊥
Yi| (6.28)

where
⊥
Yi is the median of {Yi1, . . . , Yi,ni }.

The test is available as the hovBF function in the HH package with the form

hovBF( y ~ A )

where A is a factor. The plot illustrating the test is available as the hovplotBF func-
tion in the HH package.

We continue the data(catalystm) example of Sections 6.1 and 6.6. Our im-
pression from Figure 6.1 is that catalyst 3 has a larger variance than the other three
catalysts. We formally test this possibility with the Brown–Forsyth test, illustrated
in Figure 6.6. Because of the large p-value, .74, we are unable to conclude that the
variances of the concentrations are not identical.

6.11 Exercises

6.1. Till (1974), also cited in Hand et al. (1994), compared the salinity (in parts per
1000) for three distinct bodies of water in the Bimini Lagoon, Bahamas. The data
are available as data(salinity). Analyze the data under the assumption that the
3 bodies of water constitute a random sample from a large number of such bodies
of water.

6.2. Milliken and Johnson (1984) report on an experiment to compare the rates of
workers’ pulses during 20-second intervals while performing one of 6 particular
physical tasks. Here 68 workers were randomly assigned to one of these tasks. The
data are available as data(pulse). Investigate differences between the mean pulse
rates associated with the various tasks.
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Brown−Forsyth Homogeneity of Variance
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Fig. 6.6 Catalyst data: Brown–Forsyth test of the hypothesis of equal variances in Equation (6.27).
The left panel shows the original data. The middle panel shows the deviations from the median for
each group, hence is a recentering of the left panel. The right panel shows absolute deviations
from the median. The central dots for each catalyst in the right panel, the MAD (median absolute
deviation from the median), are approximately equal, reflecting the null distribution of the Brown–
Forsyth test statistic. The Brown–Forsyth test shows F = .42 with 3 and 12 df and p = .74. Hence
we do not reject this test’s null hypothesis. We conclude that the variances of the concentrations in
the four catalyst groups are approximately equal.

6.3. Johnson and Leone (1967) provide data(operator). Five operators ran-
domly selected from all company operators are each given four equal time slots in
which their production is measured. Perform an appropriate analysis. Does it appear
as if the population of operators has homogeneous productivity?

6.4. Anionwu et al. (1981), also reprinted in Hand et al. (1994), examine whether
hemoglobin levels for patients with sickle cell anemia differ across three particular
types of sickle cell disease. Here type is a fixed factor and its three qualitative
levels are “HB SS”, “HB S/thalassaemia”, and “HB SC”. The data are available as
data(sickle). Perform an analysis of variance and multiple comparison with the
Tukey procedure to compare the patients’ hemoglobin for the three types.

6.5. Cameron and Pauling (1978), also reprinted in Hand et al. (1994), compare
the survival times in days of persons treated with supplemental ascorbate following
a diagnosis of cancer at five organ sites: Stomach, Bronchus, Colon, Ovary, and
Breast. The dataset is available as data(patient).

a. Perform a log transformation of the response days for each of the five levels
of the factor site in order to improve conformity with the required assump-
tion that the data be approximately normally distributed with equal within-site
variance. Produce and compare boxplots to compare the response before and af-
ter the transformation.
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b. Perform an analysis to assess differences in mean survival between the different
cancer sites.

6.6. NIST (2002) reports the result of an experiment comparing the absorbed energy
produced by each of four machines. The machines are labeled Tinius1, Tinius2,
Satec, and Tokyo. The data are available as data(notch). Assuming that these
were the only machines of interest, compare the responses on the four machines and
use the Tukey procedure to assess significant differences among them.

6.7. An experiment was designed to examine the effect of storage temperature on the
potency of an antibiotic. Fifteen antibiotic samples were obtained and three samples
were stored at each of the five indicated temperatures (degrees F). The potencies of
each sample were checked after 30 days. The dataset, taken from Peterson (1985),
are available as data(potency).

a. Perform an analysis of variance to confirm that potency changes with storage
temperature.

b. Set up two orthogonal contrasts to assess the nature of the dependence of potency
on temperature. You may use the contrast (−2,−1, 0, 1, 2) to assess linearity and
the contrast (2,−1,−2,−1, 2) to assess whether there is a quadratic response.
(Further discussion of polynomial contrasts is in Section 10.4.)

c. Test whether each of the contrasts you proposed in part b) is significantly differ-
ent from 0.

d. Report your recommendations for the temperature at which this antibiotic should
be stored.

6.8. Anderson and McLean (1974) report the results of an experiment to compare
the disintegration times in seconds of four types of pharmaceutical tablets labeled
A, B, C, D. These were the only tablet types of interest. The data are available as
data(tablet1). Perform an analysis of variance to see if the tablets have equiva-
lent disintegration times. The time to disintegration determines when the medication
begins to work. Shorter times mean the tablet will begin disintegrating in the stom-
ach. Longer times mean the table will disintegrate in the small intestines where it
is more easily absorbed and less susceptible to degradation from the digestive en-
zymes. Assuming that longer times to disintegration are desirable, use the Tukey
procedure to prepare a recommendation to the tablet manufacturer.

6.9. The dataset data(blood) contain the results of an experiment reported by Box
et al. (1978) to compare the coagulation times in seconds of blood drawn from
animals fed four different diets labeled A, B, C, D. Assuming that these were the
only diets of interest, set up an analysis of variance to compare the effects of the
diets on coagulation. Use the Tukey procedure to investigate whether any pairs of
the diets can be considered to provide essentially equivalent coagulation times.
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6.10. Reconsider data(draft70mn) from Data Archive (1997), previously visited
in Exercises 4.1 and 3.25. Assuming that the ranks were randomly assigned to the
dates of the year, construct a one-way analysis of variance with the ranks as response
and the months as groups. Isolate the linear effect of month.

6.11. Westfall and Rom (1990) considered the nonbirth litter weights of mice whose
mothers were previously subjected to one of three treatments or a control, with the
objectives of relating weight differences to treatment dosages. (It is conjectured that
“nonbirth weight” refers to weight at some definite time following birth.) The data
are available as data(mice). Perform a Brown–Forsyth homogeneity of variance
test on these data and carefully state your conclusions.

6.12. Derive Equation (6.15) from Equation (5.13) by substitution and simplifica-
tion as outlined in Section 6.9.

6.13. Verify that the four single degree-of-freedom lines in the ANOVA table in
Table 6.8 can be obtained from the contrasts in the contrasts(turkey$dist)

section of Table 6.8.

6.14. Calculate the EMS values in Table 6.4. MS Tr is defined in Table 6.2. Define
yi j = μ + αi + εi j from Equation (6.1) and substitute into the formula for MS Tr to
get the EMS. When αi is fixed

(∑
i αi = 0

)
, then E

(
(αi − ᾱ)2

)
is σ2 plus a function

of the αi values. When αi is random
(
αi ∼ N(0, σ2

A)
)
, then E

(
(αi − ᾱ)2

)
is σ2 plus a

constant times σ2
A.
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6.A Appendix: Computation for the Analysis of Variance

Model formulas are expressed in R with a symbolic notation which is a simplifica-
tion of the more extended traditional notation

yi j = μ + αi + εi j for i = 1, . . . , a and j = 1, . . . , ni (6.1)

The intercept term μ and the error term εi j are usually assumed. The existence of the
subscripts is implied and the actual values are specified by the data values.

With R we will be using aov for the calculations and anova and related com-
mands for the display of the results. aov can be used with equal or unequal cell sizes
ni. Model (6.1) is denoted in R by the formula

Y ~ A

The operator ~ is read as “is modeled by”.

Two different algorithms are used to calculate the analysis of variance for data
with one factor: sums of squared differences of cell means and regression on dummy
variables. Both give identical results.

The intuition of the analysis is most easily developed with the sums of squared
differences algorithm. We began there in Equation 6.6 and the definitions in the
notes to Table 6.2. We show in Table 6.10 the partitioning of the observed values for
the response variable concent in catalystm example into columns associated with
the terms in the model. The sum of each row reproduces the response variable. This
is called the linear identity. The sum of the squares in each column is the ANOVA
table. This is called the quadratic identity. In the notation of Table 6.2 the numbers
in the (Intercept) column are ¯̄y, the numbers in the catalyst column are the
treatment effects ȳi − ¯̄y, and the numbers in the Residuals column are yi j − ȳi.
The numbers in the result of the apply statement are the sums of squares:

∑
i j ¯̄y2,

SSTr =
∑a

i=1 ni(ȳi − ¯̄y)2, SSRes =
∑a

i=1
∑ni

j=1(yi j − ȳi)2, and
∑

i j y2
i j. We come back to

the linear and quadratic identities in Table 8.6.

The regression formulation is easier to work with and generalizes better. Once we
have developed our intuition we will usually work with the regression formulation.
The discussion of contrasts in Section 6.9 leads in to the regression formulation in
Chapter 10. For the moment, In Table 6.11 we step forward into the notation of
Chapter 10 and express the catalystm example in regression notation.
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Table 6.10 Linear and quadratic identities for the one way Analysis of Variance. The column
labeled Sum is the sum of the three columns of the projection matrix onto the space of the Grand
Mean (labeled (Intercept)), the effects due to the factor catalyst, and the Residuals. The Sum
column is identical to the observed response variable concent. The sums of squares of each col-
umn of the projection matrix are the numbers in the similarly labeled row in the “Sum of Squares”
column of the ANOVA table.

> data(catalystm)

> catalystm.aov <- aov(concent ~ catalyst, data=catalystm)

> anova(catalystm.aov)

Analysis of Variance Table

Response: concent

Df Sum Sq Mean Sq F value Pr(>F)

catalyst 3 85.7 28.56 9.92 0.0014 **

Residuals 12 34.6 2.88

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(catalystm.aov)

Tables of effects

catalyst

A B C D

2.412 1.287 -1.254 -3.362

rep 5.000 4.000 3.000 4.000

> Proj <- proj(catalystm.aov)

> Proj <-cbind(Proj, Sum=apply(Proj, 1, sum))

> Proj

(Intercept) catalyst Residuals Sum

1 54.49 2.412 1.3000 58.2

2 54.49 2.412 0.3000 57.2

3 54.49 2.412 1.5000 58.4

4 54.49 2.412 -1.1000 55.8

5 54.49 2.412 -2.0000 54.9

6 54.49 1.287 0.5250 56.3

7 54.49 1.287 -1.2750 54.5

8 54.49 1.287 1.2250 57.0

9 54.49 1.287 -0.4750 55.3

10 54.49 -1.254 -3.1333 50.1

11 54.49 -1.254 0.9667 54.2

12 54.49 -1.254 2.1667 55.4

13 54.49 -3.362 1.7750 52.9

14 54.49 -3.362 -1.2250 49.9

15 54.49 -3.362 -1.1250 50.0

16 54.49 -3.362 0.5750 51.7

> apply(Proj, 2, function(x) sum(x^2))

(Intercept) catalyst Residuals Sum

47502.20 85.68 34.56 47622.44
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Table 6.11 The aov by the factor catalyst in Table 6.10 is identical to the lm shown here by the
three dummy variables generated from the catalyst factor. The degrees of freedom (1+1+1=3)
and the Sums of Squares (8.8+2.7+741.1=85.7) are both the same.

> contrasts(catalystm$catalyst)

B C D

A 0 0 0

B 1 0 0

C 0 1 0

D 0 0 1

> X <- model.matrix(catalystm.aov)[,2:4]

> X

catalystB catalystC catalystD

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 1 0 0

7 1 0 0

8 1 0 0

9 1 0 0

10 0 1 0

11 0 1 0

12 0 1 0

13 0 0 1

14 0 0 1

15 0 0 1

16 0 0 1

> catalystm.lm <-

+ lm(concent ~ X[,"catalystB"] + X[,"catalystC"] + X[,"catalystD"],

+ data=catalystm)

> anova(catalystm.lm)

Analysis of Variance Table

Response: concent

Df Sum Sq Mean Sq F value Pr(>F)

X[, "catalystB"] 1 8.8 8.8 3.07 0.10526

X[, "catalystC"] 1 2.7 2.7 0.95 0.35012

X[, "catalystD"] 1 74.1 74.1 25.73 0.00027 ***

Residuals 12 34.6 2.9

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



196 6 One-Way Analysis of Variance

6.B Object Oriented Programming

Many of R’s functions are designed to be sensitive to the class of object to which
they are applied. Figure 6.7 shows that the same syntax plot(x) produces a differ-
ent form of plot depending on the class of the argument x.
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> tmp <- data.frame(AA=c(5,6,8,7,8),

+ BB=factor(letters[c(5,6,8,7,8)]),

+ CC=ts(c(5,6,8,7,8)),

+ stringsAsFactors=FALSE)

> tmp

AA BB CC

1 5 e 5

2 6 f 6

3 8 h 8

4 7 g 7

5 8 h 8

> sapply(tmp, class)

AA BB CC

"numeric" "factor" "ts"

> is.numeric(tmp$A)

[1] TRUE

> plot(tmp$AA)

> plot(tmp$BB)

> plot(tmp$CC)

Fig. 6.7 The three columns of the data.frame tmp have three different classes. The plot func-
tion is sensitive to the class of its argument and draws a different style plot for each of these classes.
The integer object (more generally numeric object) is plotted as a scatterplot with an index on
the horizontal axis. The factor object is plotted as a barchart with the level names on the hori-
zontal axis. The time series object is plotted as a line graph with the time value on the horizontal
axis.
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> class(catalystm.aov)

[1] "aov" "lm"

> summary(catalystm.aov)

Df Sum Sq Mean Sq F value Pr(>F)

catalyst 3 85.7 28.56 9.92 0.0014 **

Residuals 12 34.6 2.88

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> old.par <- par(mfrow=c(1,4))

> plot(catalystm.aov)

> par(old.par)
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Fig. 6.8 The two accessor functions summary and plot are sensitive to the class of their argument
and produce a form of output appropriate to the argument, in this case an "aov" object. Note that
"aov" objects are a special case of "lm" objects. The summary function for an "aov" object
produces an ANOVA table. The plot function for an "lm" object is a set of four diagnostic plots
of the residuals from the fitted model. The contents of the panels of the plot are discussed in
Sections 8.4 and 11.3.7.

The result of a function call (aov for example) is an object with a class ("aov").
Accessor functions such as summary or plot are sensitive to the class of their ar-
gument and produce an appropriate form of output as shown in Figures 6.7 and
6.8.



Chapter 7

Multiple Comparisons

In Exercise 3.13 we discover that the probability of simultaneously making three
correct inferences, when each of the three individually has P(correct inference) =
1 − α = 0.95, is only (1 − α)3 = .953 = 0.857. Alternatively, the probability of
making at least one incorrect inference is 1 − −0.857 = 0.143 ≈ 3α. In general,
the more simultaneous inferences we make at one time, the smaller the probability
that all are correct. In this chapter we learn how to control the probability that all
inferences are simultaneously correct. We usually phrase the goal as controlling the
probability of making at least one incorrect inference.

We consider all inferences in a related family of inferences. Such a family is typ-
ically a natural and coherent collection; for example, all inferences resulting from
a single experiment. The inferences can be individual tests of hypotheses or con-
fidence intervals. In the context of a family of hypothesis tests, if we control the
Type I error probability for each test at level α, the probability of committing at
least one Type I error in the family will be much larger than α. For example, if
the tests are independent and α = .05, then the probability of at least one Type I
error is 1 − (1 − .05)6 ≈ .26, which seems an unacceptably large error threshold.
The way to control the probability of at least one Type I error in the family is to
choose a smaller α for each individual test. For example, with a single two-sided
test with α = .05 from a standard normal the critical value is 1.96. The intention
of all multiple comparison procedures is to provide a larger critical value than the
default value.

A way to avoid such errors when conducting many related inferences simulta-
neously is to employ a multiple comparison procedure. Such a procedure for sim-
ultaneous hypothesis testing may seek to (strongly) control the familywise error
rate (FWE), defined as P(reject at least one true hypothesis under any configuration
of true and false hypotheses). A procedure for simultaneous confidence intervals
should control the probability that at least one member of the family of confidence
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intervals does not contain the parameter being estimated by the interval. When a
multiple comparison procedure is used, it is said that the analyst is controlling for
multiplicity.

In order to exert FWE control over a family of related hypothesis tests, it is nec-
essary to have a reduced probability of rejecting any particular null hypothesis in
the family. As explained in Section 3.7, reducing the probability of rejecting partic-
ular hypotheses results in an increased probability of retaining them, and therefore
reduced power for tests of these hypotheses. This implies that, as compared with
testing hypotheses in isolation from one another, a multiple comparison procedure
has a diminished ability to reject false null hypotheses. In other words, a test of
a particular hypothesis using a multiple comparison procedure will be less power-
ful than the test of the same hypothesis in isolation. In deciding whether to use a
multiple comparison procedure, the protection against the possibility of an exces-
sive number of incorrect hypothesis rejections must be weighted against this loss of
power. An analogous statement holds for simultaneous versus isolated confidence
intervals.

In general, the choice of multiple comparison procedure to be used depends on
the structure of the family of related inferences and the nature of the collection of
statistics from which the confidence intervals or tests will be calculated.

Section 7.1 summarizes the most frequently used multiple comparisons proce-
dures. Section 7.2 presents a graphical procedure for looking at the results of the
multiple comparisons procedures.

7.1 Multiple Comparison Procedures

7.1.1 Bonferroni Method

A very general way to control the FWE is based on the Bonferroni inequality,
P(

⋃
Ei) ≤ ∑

i P(Ei), where the Ei are arbitrary events. If the family consists of
m related tests, conducting each test at level α

m ensures that FWE ≤ α. If the family
consists of m related confidence intervals, maintaining confidence 100(1 − α

m )% for
each interval will ensure that the overall confidence of all m intervals will be at least
100(1−α)%. The Bonferroni method should be considered for use when the family
of related inferences is unstructured (e.g., not like the structured families required
for the procedures discussed in Sections 7.1.2–7.1.4), or when the statistics used for
inference about each family member have nonidentical probability distributions.

The Bonferroni inequality is very blunt in the sense that its right side is typ-
ically much larger than its left. One reason for this is that it does not seek to
take into account information about the intersections of the events Ei. As a res-
ult, the Bonferroni approach is very conservative in the sense of typically guar-



7.1 Multiple Comparison Procedures 201

anteeing an FWE substantially less than its nominal value of α, and the extent of
this conservativeness increases with m. The value of this approach is that it is very
generally applicable, for example, when the pivotal statistics associated with the m
inferences have nonidentical probability distributions. Hochberg (1988) provides an
easy-to-understand improvement to the Bonferroni approach for hypothesis testing
that tends to reject more false null hypotheses than Bonferroni. Hochberg’s proce-
dure has been proven to be applicable to a wide variety of testing situations; see
Sarkar (1998).

7.1.2 Tukey Procedure for All Pairwise Comparisons

Often a family of inferences has a special structure that allows us to use available
information about the joint distributions of the pivotal statistics, thus enabling the
use of a less conservative approach than Bonferroni. An example of this, discussed
in Section 6.3, is the family consisting of all m =

(
k
2

)
comparisons among all pairs

of means of k populations. For this family, Tukey’s Studentized range test is usually
recommended.

7.1.3 The Dunnett Procedure for Comparing One Mean
with All Others

The Dunnett procedure is used when the family of inferences of interest is the com-
parisons of the mean of one designated population with each of the means of the
remaining populations, all populations being at least approximately normal with
approximately the same variance. Often in practice the designated population is a
control and the others are active treatments. The Dunnett procedure uses the per-
centiles of a multivariate t distribution rather than a univariate t distribution dis-
cussed in Section 5.4.3.

For purposes of illustration of the Dunnett procedure, we use weightloss data.
A random sample of 50 men who were matched for pounds overweight was
randomly separated into 5 equal groups. Each group was given exactly one of
the weight loss agents A, B, C, D, or E. After a fixed period of time, each man’s
weight loss was recorded. The data, taken from Ott (1993), are accessed as
data(weightloss) and shown in Figure 7.1.

The F-statistic tests the null hypothesis that the five groups have identical mean
weight loss vs the alternative that the groups do not have identical mean weight loss.
The small p-value from the F test in the basic ANOVA in Table 7.1 suggests that
the agents have differing impacts on weight loss.
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Fig. 7.1 Weightloss data: Boxplots of weight loss for each group.

Table 7.1 Weightloss ANOVA

> weightloss.aov <- aov(loss ~ group, data=weightloss)

> summary(weightloss.aov)

Df Sum Sq Mean Sq F value Pr(>F)

group 4 59.9 14.97 15.1 6.9e-08 ***

Residuals 45 44.7 0.99

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

When we regard agent D as the control, we seek to investigate whether any of the
other four agents appear to promote significantly greater weight loss than agent D.
From Figure 7.1 we see that the five populations are approximately normal with
approximately the same variance. Therefore, we may proceed with the Dunnett
procedure. Since we are investigating whether the other agents improve on D, we
display infinite upper one-sided confidence intervals against D in Table 7.2 and Fig-
ures 7.2 and 7.3.

The (default) 95% confidence level in Table 7.2 applies simultaneously to all four
confidence statements. The fact that all four confidence intervals lie entirely above
zero suggests that D is significantly inferior to the other four weightloss agents.

Figure 7.3 is a mean–mean display of Dunnett’s multiple comparison procedure
applied to the weightloss data. Tabular results are shown in Table 7.3. Figure 7.3 is
analogous to Figure 6.2 in Section 6.3. The mean–mean display technique is dis-
cussed in detail in Section 7.2. In Figure 7.3, reflecting the results for upper one-
sided Dunnett confidence intervals, all horizontal lines except that for comparing
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contrast value

0 1 2 3 contrasts

A−D

B−D

C−D

E−D

Fig. 7.2 Weightloss data: Standard display of one-sided multiple comparisons using the Dunnett
method against the control treatment D.

groups D and C fall to the right of zero. The line for C-D sits on the boundary
with lower limit .009. Consistent with the boxplots in Figure 7.1, we conclude that
all weightloss agents (except possibly C) provide superior mean weight loss to that
provided by agent D.

The Dunnett procedure is used in Exercises 7.7 and 12.4.

7.1.3.1 Computing Note—Specifying the Alternative Hypothesis

There are at least three conventions for indicating the alternative hypothesis. Be very
clear which you are using.

As shown here, the glht function in R uses the argument alternative to ind-
icate the alternative hypothesis. glht uses alternative="greater" to indicate
an infinite upper bound, alternative="less" for an infinite lower bound, and
defaults to alternative="two-sided".

The S-Plus function multicomp uses the argument bounds="lower" to ind-
icate a finite lower bound, implying an infinite upper bound. multicomp uses
bounds="upper" for a finite upper bound, implying an infinite lower bound. For
two-sided intervals multicomp defaults to bounds="both".

SAS PROC ANOVA specifies the alternative hypothesis by using a different option
name for each. SAS uses the option dunnettu, with the suffix “u” to indicate an
infinite upper interval, the option dunnettl with the suffix “l” to indicate an infinite
lower bound, and the option dunnett with no suffix for two-sided intervals.
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Table 7.2 Weight loss using the Dunnett procedure.

> weightloss.dunnett <-

+ glht(weightloss.aov,

+ linfct=mcp(group=

+ contrMat(table(weightloss$group), base=4)),

+ alternative = "greater")

> confint(weightloss.dunnett)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = loss ~ group, data = weightloss)

Quantile = -2.222

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

A - D <= 0 2.78000 1.78949 Inf

B - D <= 0 1.75000 0.75949 Inf

C - D <= 0 1.00000 0.00949 Inf

E - D <= 0 2.90000 1.90949 Inf
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Table 7.3 MMC calculations for weightloss using the Dunnett procedure.

> weightloss.mmc <-

+ mmc(weightloss.aov,

+ linfct=mcp(group=

+ contrMat(table(weightloss$group), base=4)),

+ alternative = "greater")

> weightloss.mmc

Dunnett contrasts

Fit: aov(formula = loss ~ group, data = weightloss)

Estimated Quantile = -2.222

95% family-wise confidence level

$mca

estimate stderr lower upper height

E-D 2.90 -Inf 1.909477 Inf 10.72

A-D 2.78 -Inf 1.789477 Inf 10.66

B-D 1.75 -Inf 0.759477 Inf 10.14

C-D 1.00 -Inf 0.009477 Inf 9.77

$none

estimate stderr lower upper height

E 12.17 -Inf 11.47 Inf 12.17

A 12.05 -Inf 11.35 Inf 12.05

B 11.02 -Inf 10.32 Inf 11.02

C 10.27 -Inf 9.57 Inf 10.27

D 9.27 -Inf 8.57 Inf 9.27
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Fig. 7.3 Weightloss data: Mean–mean display of one-sided multiple comparisons using the Dun-
nett method against the control treatment D. The Tiebreaker panel is needed in this example because
the E-D and A-D contrasts are at almost the same height in the top panel and are therefore over-
printed. The similar heights for these two contrasts follow from the similar means for the E and A

levels of the loss factor. Please see the discussion of the mean–mean display in Section 7.2.

7.1.4 Simultaneously Comparing All Possible Contrasts
Scheffé and Extended Tukey

7.1.4.1 The Scheffé Procedure

In the context of comparing the means of a populations, the Scheffé multiple com-
parison procedure controls the familywise error rate over the infinite-sized family
consisting of all possible contrasts

∑a
j=1 c j μ j involving the population means. The

Scheffé procedure is therefore appropriate for exerting simultaneous error control
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over the set of four contrasts in our analysis of the turkey data data(turkey) from
Section 6.8. In exchange for maintaining familywise error control over so large
a family, the Scheffé method gives rise to wide confidence limits and relatively
unpowerful tests. Therefore, we recommend its use only in the narrowly defined
situation of simultaneously inferring about mean contrasts more complex than a
comparison of two means. The Scheffé procedure uses a percentile of an F distribu-
tion, derived as the distribution of the most significant standardized contrast among
the sample means.

The confidence interval formula by the Scheffé procedure is

CI

⎛⎜⎜⎜⎜⎜⎜⎝
a∑

j=1

c j μ j

⎞⎟⎟⎟⎟⎟⎟⎠ =
a∑

j=1

c j ȳ j ±
√

(a − 1)F.05,a−1,N−a s

√√√ a∑

j=1

c2
j

n j
(7.1)

This provides the set of 100(1 − α)% simultaneous confidence intervals for all pos-
sible contrasts among the population means. In this equation N =

∑a
j=1 n j.

For R glht, we must manually calculate the critical value with, for example in
the turkey data,

scheffe.quantile <- sqrt(4*qf(.95, 4, 25))

The Scheffé test is one of the methods available in the S-Plus multicomp function
and is one of the options for the MEANS statement in SAS PROC ANOVA.

7.1.4.2 Scheffé Intervals with the Turkey Data

Table 6.8 provides F-tests of the hypotheses that the members of a basis set of
four contrasts are zero. These four tests do not control for multiplicity. The finding
in Table 6.8 is that three of these contrasts differ significantly from zero. We do
not declare the fourth contrast significantly different from zero because its p-value
exceeds 0.05.

The Scheffé procedure allows us to make inferences about these same contrasts
while controlling for multiplicity. The confidence interval and testing results are
shown in Table 7.4 and in Figure 7.4. An additional advantage of the Scheffé anal-
ysis is that the results specify the direction of contrasts’ significant difference from
zero. For example, in Table 7.4, the fact that the confidence interval on A.vs.B

lies entirely below zero implies that, on average, the mean weight gain from diet
B exceeds that from diet A. The F-statistics in Table 6.8 are essentially squared
t-statistics, and this obscures information on directionality unless the definitions of
the contrasts being tested are carefully examined alongside the test results.

We may use the results of the Scheffé analysis to assess the extent to which, if
any, of the Scheffé simultaneous confidence intervals cause us to modify our previ-
ous conclusions about the contrasts. When doing so it is important to observe the
contrast codings, that is, the numerical values defining the contrast. Observing that
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Table 7.4 Scheffé Test for Turkey Data Contrasts. See also Figure 7.4.

> data(turkey)

> turkey.aov <- aov(wt.gain ~ diet, data=turkey)

> scheffe.quantile <- sqrt(4*qf(.95, 4, 25))

> turkey.lmat <-

+ cbind(control.vs.treatment=c(1,-.25,-.25,-.25,-.25),

+ A.vs.B =c(0, .5, .5, -.5, -.5 ),

+ amount =c(0, .5, -.5, .5, -.5 ),

+ A.vs.B.by.amount =c(0, .5, -.5, -.5, .5 ))

> row.names(turkey.lmat) <- row.names(contrasts(turkey$diet))

> turkey.mmc <- mmc(turkey.aov, calpha=scheffe.quantile, focus="diet",

+ focus.lmat=turkey.lmat,

+ estimate.sign=0, order.contrasts=FALSE)

> turkey.mmc$lmat

estimate stderr lower upper height

control.vs.treatment -3.433 0.2563 -4.2849 -2.582 5.500

A.vs.B -1.950 0.2293 -2.7116 -1.188 7.217

amount -1.933 0.2293 -2.6950 -1.172 7.217

A.vs.B.by.amount 0.450 0.2293 -0.3116 1.212 7.217

contrast value

7.217

7.217

7.217

5.5

−6 −4 −2 0 2 4 6                       contrastsheight                       

A.vs.B.by.amount

control.vs.treatment

A.vs.B

amount

Fig. 7.4 Scheffé plot for turkey data. See also Table 7.4.

the first three of the four Scheffé intervals exclude 0 while the last one includes
0, the Scheffé results reinforce our original impressions from the nonsimultaneous
F-tests of these contrasts in Table 6.8.

In this example, examination of the Scheffé results did not cause us to revise our
earlier results ignoring multiplicity. In general, use of a multiple comparison pro-
cedure is an appropriately conservative approach that may not declare a difference
found by nonsimultaneous tests or confidence intervals.
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Figure 7.5 is a graphic presentation of the Scheffé procedure applied to compar-
isons of all pairs of means. We use Scheffé intervals here because these pairwise
comparisons are part of a larger family of contrasts that includes those displayed in
Figure 7.6. There are 10 =

(
5
2

)
pairwise differences among the means of the 5 diet

combinations studied. Figure 7.5 is a mean–mean display of Scheffé simultaneous
confidence intervals on these mean differences.

Figures 7.5 and 7.6 contain overprinting of the confidence lines and labels for
several of their comparisons of level means. The overprinting in Figure 7.5 is due to
almost identical mean values for levels B1 and A2. The overprinting in Figure 7.6 is
a consequence of the same almost identical mean values, now reflected as identical
heights for the contrasts because the interaction of the A.vs.B and the amount

comparisons is not significant. In situations with such overprinting, we augment the
mean–mean display with a traditional display of these same confidence intervals.
This Tiebreaker plot lists the contrasts in the same vertical order as in the mean–
mean plot. The conclusions here, based on the fact that 9 of the 10 intervals lie
entirely above zero, are

• For both amount 1 and 2, the mean weight gain from additive B is significantly
greater than the mean weight gain from additive A.

• For both additive A or B, the mean weight gain from amount 2 significantly exc-
eeds the mean weight gain from amount 1.

• The weight gain from the control diet is significantly below that from any of the
other 4 diets.

We graphically summarize these conclusions with the orthogonal contrasts in
Figure 7.6. The 3 contrasts that differ significantly from zero do not cross the vertical
d = 0 axis. The nonsignificant contrast does cross the d = 0 axis.

Table 7.4 and Figure 7.4 show three of the user-defined contrasts to have negative
estimates. Figure 7.6 shows those contrasts to be reversed to have positive contrasts.
We believe that multiple comparisons are most easily interpreted when the means
are sequenced in numerical order (not lexicographic order), and consequently that
all displayed contrasts should compare the larger value to the smaller value. That is,
all displayed contrast values should be positive. Such reversal of the direction of a
contrast creates no problem when assessing how contrasts relate to zero so long as
the reversal is noted. We note the reversal by appending a “−” to the names of the
reversed contrasts.
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Fig. 7.5 MMC: mca plot for Turkey data. Overprinting of contrasts at the same height in the
MMC panel are separated in the Tiebreaker panel by a standard multiple comparisons plot ordered
to match the order of the MMC plot.
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Fig. 7.6 MMC: Orthogonal basis set of contrasts for Turkey data. Overprinting of the confidence
lines (for contrasts A.vs.B-, amount-, and A.vs.B.by.amount, in this example) and their labels
in the right-axis labels of the MMC panel is a consequence of almost identical values for the group
means in the left-axis labels (A2 and B1). The overprinting is resolved in the Tiebreaker panel, a
standard multiple comparisons plot (without information on the group means) ordered to match
the order of the MMC plot. The contrasts in these panels are the same contrasts that appear in
Figure 7.4, but negative estimates there have been reversed here. During the reversal a “-” was
appended to contrast names for which it was not possible to figure out how to reverse the contrast
name.

7.1.4.3 The Extended Tukey Procedure

The Tukey procedure can be extended to cover the family of all possible contrasts
when the samples are of the same size n. Generalizing Equation (6.11) to any con-
trast vector (c j) in the equal n case, we get
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CI

⎛⎜⎜⎜⎜⎜⎜⎝
a∑

j=1

c j μ j

⎞⎟⎟⎟⎟⎟⎟⎠ =
a∑

j=1

c j ȳ j ± qα

2
s√
n

a∑

j=1

|c j| (7.2)

as the set of 100(1−α)% simultaneous confidence intervals for all possible contrasts
among the population means.

The qα here is the same value used in Equation (6.11). Except for very simple
contrasts, such as between pairs of means, these generalized Tukey intervals will
be even wider than the analogous Scheffé intervals, Hochberg and Tamhane (1987).
The generalized Tukey intervals (7.2) may be considered for use when interest lies
in a family consisting of the union of all pairwise contrasts with a small number of
more complicated contrasts.

As discussed in Hochberg and Tamhane (1987), the family encompassed by the
generalized Tukey intervals also includes the set of individual intervals on each
population mean,

CI(μ j) = ȳ j ± qα
s√
n j

(7.3)

These intervals are illustrated for the artificial data in Figure 7.11.

7.2 The Mean–Mean Multiple Comparisons Display (MMC Plot)

7.2.1 Difficulties with Standard Displays

The conclusions from the application of the Tukey procedure to the catalyst data are
not well conveyed by the standard tabular and graphical output shown in Table 7.5
and Figure 7.7. In both displays, the magnitudes of the sample means themselves
are not shown. These displays are therefore not capable of depicting the relative dis-
tances between adjacent sorted sample means. Indeed, the standard display ignores
the sample means entirely and instead sorts the contrasts alphabetically. Compare
Table 7.5 to the $mca section of Table 6.3, and Figure 7.7 to the bottom panel of
Figure 6.2.

Another standard display of results of a Tukey test, shown here in Figure 7.8, is
often used to communicate results when sample sizes are equal. The sample means
are listed in ascending magnitude. Straight-line segments are used to indicate sig-
nificance according to the following rules. If two sample means are not covered by
the same line segment, the corresponding population means are declared signifi-
cantly different. If two sample means are covered by a common line segment, the
corresponding population means are declared not significantly different.
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Table 7.5 Tukey Multiple Comparisons for Catalyst Data—Standard Display (not showing
means)

> catalystm.glht <-

+ glht(catalystm1.aov, linfct = mcp(catalyst = "Tukey"))

> confint(catalystm.glht)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = concent ~ catalyst, data = catalystm)

Quantile = 2.966

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

B - A == 0 -1.125 -4.501 2.251

C - A == 0 -3.667 -7.342 0.009

D - A == 0 -5.775 -9.151 -2.399

C - B == 0 -2.542 -6.386 1.302

D - B == 0 -4.650 -8.209 -1.091

D - C == 0 -2.108 -5.952 1.736

contrast value

−8 −6 −4 −2 0 2                       contrasts

B−A

C−A

C−B

D−C

D−A

D−B

Fig. 7.7 All Pairwise Comparisons of Catalyst Means. In this standard display, the group means
are not displayed. The contrasts are sorted alphabetically. Compare this figure to the bottom panel
of Figure 6.2 where the contrasts are sorted by the values of the means being compared.

With this procedure it is difficult to depict correctly the relative distances between
adjacent sorted sample means because the table is constrained by the limited reso-
lution of a fixed-width typewriter font rather than the high resolution of a graphical
display.
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Fig. 7.8 This example is constructed from the cld function in the multcomp package. The func-
tion call plot(cld(catalystm.glht)) draws the boxplots and the letter values. We manually
(by supplementary code) placed the numerical values of the means and the underlines connecting
the letters.

Further, the procedure cannot be used when sample sizes are unequal. Table 7.6
and Figure 7.9 illustrate this limitation using artificial data:

Group N Mean

A 5 2.0
B 100 2.1
C 100 2.8
D 5 3.0

The Tukey procedure shown in Table 7.6 uncovers a significant difference between
the means of populations B and C, for which the sample sizes are large, but no sig-
nificant difference between the means of populations A and D, for which the sample
sizes are small. With the lines-type graph in Figure 7.9 the nonsignificant difference
between the means of A and D requires that a common line covers the range from
2.0 to 3.0, including the location of the means of groups B and C. The presence
of this line contradicts the finding of a significant difference between the means of
groups B and C that is seen in the standard displays in Figures 7.10 and 7.11 and in
the mean–mean display (described in Section 7.2.2) in Figure 7.12.
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Table 7.6 Simultaneous confidence intervals on all pairs of mean differences. The means of sam-
ples B and C both lie between the means of samples A and D. This example is based on highly
unbalanced artificial data. Sample sizes were 100 from populations B and C and 5 from populations
A and D. The Tukey procedure finds a significant difference between the means of populations B
and C but no significant difference between the means of populations A and D.

> group <- factor(LETTERS[1:4])

> n <- c(5,100,100,5)

> ybar <- c(2, 2.1, 2.8, 3)

> inconsistent.aov <- aovSufficient(ybar ~ group, weights=n, sd=.8)

> anova(inconsistent.aov)

Analysis of Variance Table

Response: ybar

Df Sum Sq Mean Sq F value Pr(>F)

group 3 27 9.01 14.1 2.2e-08 ***

Residuals 206 132 0.64

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> inconsistent.glht <-

+ glht(inconsistent.aov, linfct=mcp(group="Tukey"),

+ vcov.=vcovSufficient, df=inconsistent.aov$df.residual)

> crit.point <- qtukey(.95, 4, 206)/sqrt(2)

> confint(inconsistent.glht, calpha=crit.point)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = formula, data = data, weights = weights, x = TRUE)

Quantile = 2.59

95% confidence level

Linear Hypotheses:

Estimate lwr upr

B - A == 0 0.1000 -0.8496 1.0496

C - A == 0 0.8000 -0.1496 1.7496

D - A == 0 1.0000 -0.3105 2.3105

C - B == 0 0.7000 0.4070 0.9930

D - B == 0 0.9000 -0.0496 1.8496

D - C == 0 0.2000 -0.7496 1.1496
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Fig. 7.9 Underlining of means that are not significantly different. Both the a and b lines, which are
valid for the comparison of catalysts A and D (in this example based on the low precision test for
small sample sizes), mask the significant difference between catalysts B and C (based on a much
higher precision test for much larger sample sizes).
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−0.5 0.0 0.5 1.0 1.5 2.0                       contrasts

B−A

C−A

D−A
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Fig. 7.10 Simultaneous confidence intervals on all pairs of mean differences. The means of sam-
ples B and C both lie between the means of samples A and D. Sample sizes were 100 from popula-
tions B and C and 5 from populations A and D. The Tukey procedure finds a significant difference
between the means of populations B and C but no significant difference between the means of pop-
ulations A and D. The short confidence interval for the C-A contrast reflects the higher precision
of the contrasts based on the larger sample sizes.

contrast value

1.5 2.0 2.5 3.0 3.5 contrasts

D

C

B

A

Fig. 7.11 The means of samples B and C both lie between the means of samples A and D. Sample
sizes were 100 from populations B and C and 5 from populations A and D. The Tukey proce-
dure finds a significant difference between the means of populations B and C but no significant
difference between the means of populations A and D. The underlying formula for these intervals
appears in Equation (7.3).
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Fig. 7.12 A mean–mean display (MMC plot described in Section 7.2.2) of simultaneous confi-
dences on the means from populations A, B, C, D in the artificial data. Each confidence interval
on a mean difference is represented by a horizontal line. If and only if an horizontal line crosses
the vertical “contrast value = 0” line, the corresponding population mean difference is declared
nonsignificant. In this display we use dashed black lines for nonsignificant comparisons and solid
red lines for significant comparisons. This display shows the relative differences between sample
means and allows for unequal sample sizes. The short confidence interval for the C-A contrast
reflects the higher precision of the contrasts based on the larger sample sizes.

7.2.2 Hsu and Peruggia’s Mean–Mean Scatterplot

Hsu and Peruggia (1994) address the deficiencies in standard displays of multiple
comparison procedures with their innovative graphical display of the Tukey pro-
cedure for all pairwise comparisons. In Section 7.2.2.1 we show the details of the
construction of the MMC plot displayed in Figure 7.13. We postpone interpretation
of Figure 7.13 until Section 7.2.2.2.

In Section 7.2.3 we extend their display to show other multiple comparison pro-
cedures for arbitrary sets of contrasts. Software for our extension is included in the
HH package as function mmc and its related functions.

7.2.2.1 Construction of the Mean–Mean Scatterplot

We begin with data-oriented orthogonal h- and v-axes in Figures 7.14 and 7.15 and
then move to rotated difference (h − v) and mean (h + v)/2 axes in Figure 7.16. The
rotations by 45◦ introduce factors of

√
2 that are there to maintain the orthogonality

of h and v in the rotated coordinates.
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Fig. 7.13 Multiple comparisons of all pairwise comparisons of catalyst means with the MMC
display. This is a repeat of the top panel of Figure 6.2.

Construction of MMC plot: concent ~ catalyst
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Fig. 7.14 Construction of mean–mean multiple comparisons plot for the catalyst data.
Data-oriented axes and isomeans grid, steps 1–6 in the discussion in Section 7.2.
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Construction of MMC plot: concent ~ catalyst
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Fig. 7.15 Construction of mean–mean multiple comparisons plot for the catalyst data.
Data-oriented axes, steps 7–9 in the discussion in Section 7.2.

1. Draw a square plot in Figure 7.14 on (h, v)-axes. Define (d, m)-axes at ±45◦.

2. Plot each ȳi against ȳ j.

3. Connect the points with h = ȳi and v = ȳ j lines. The lines are labeled with the
level names of the group means. We call this the isomeans grid. It is used as the
background reference for the MMC plot.

4. Draw the 45◦ line h = v. Define the value d = h − v, where the letter d indicates
differences between group means. The line we just drew corresponds to d = 0.
We will call this line the m-axis, where the name m = (h + v)/2 indicates the
group means.

5. Place tick marks on the m-axis at the points (ȳi, ȳi).

6. Draw the −45◦ line through the origin (h = 0, v = 0). The line we just drew cor-
responds to m = 0. We will call this line the d-axis, where the name d indicates
the differences.



220 7 Multiple Comparisons

7. Copy Figure 7.14 to Figure 7.15.

8. Draw another m-axis parallel to the d = 0 line. Drop a perpendicular from the
(ȳA, ȳA) intersection on the d = 0 line to the new m-axis. Place a tick at that
point and label it with the m = ȳA value. Place similar tick marks at the heights
m = ȳi. (The actual distances from the m = 0 line to the tick marks are ȳi

√
2.)

9. Draw another d-axis parallel to the line m = 0. We will place two sets of tick
marks on the new d-axis: at the projections of the observed differences (h, v) =
(ȳi, mini(ȳi)), and at unit intervals on the difference scale. Drop a perpendicular
from the (ȳA, ȳD) intersection to the new d-axis. Place a tick at that point and
label it with the level name A and the value ȳA − ȳD. Place similar ticks at the
distances ȳi − ȳD. (The actual distances from the d = 0 line to the tick marks are
(ȳi− ȳD)/

√
2.) Place ticks below the d-axis at the distances (0, 1, 2, 3, 4, 5, 6)/

√
2

and label them (0, 1, 2, 3, 4, 5, 6).

10. Rotate Figure 7.15 counterclockwise by 45◦ to get Figure 7.16.

11. Construct the confidence intervals. We show just one pairwise interval, the
one centered on the point

(
d = ȳB − ȳD, m = (ȳB + ȳD)/2

)
. The confi-

dence interval line is parallel to the d-axis at a height equal to the average of
the two observed means. The interval is on the d-scale and covers all points
(ȳB − ȳD) ± σ̂ q

√
1/nB + 1/nD, where σ̂ is the standard deviation from the

ANOVA table and q is the critical value used for the comparison. In this exam-
ple we use the critical value q = q.05,4,12/

√
2 = 2.969141 from the Studentized

range distribution.

12. We show all
(

4
2

)
= 6 pairwise differences ȳi − ȳ j with their confidence intervals

in Figure 7.13.

Figures 7.14, 7.15, and two additional intermediate figures were drawn with func-
tion HH:::mmc.explain, an unexported but accessible function in the HH package.
Figure 7.16 is an ordinary MMC plot with an lmat matrix indicating exactly one
contrast. The code for all figures is included in file HHscriptnames(7).

7.2.2.2 Interpretation of the Mean–Mean Scatterplot

We construct the background of Figures 7.16 and 7.13 by rotating Figure 7.15 coun-
terclockwise by 45◦ and suppressing the h- and v-axes. The horizontal d-axis shows
the values of the contrasts and the vertical m-axis shows the average values of the
two means being contrasted.

In Figure 7.13, each mean pair (ȳi, ȳ j) is plotted on the now-diagonal (h, v)-axes
and can also be identified with its (d, m)-coordinates. In Figure 7.16, we focus on the
pair of means ȳB and ȳD. We begin with the (h, v)-system and identify the point as

(h, v) = (ȳB, ȳD) = (55.8, 51.1)
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Fig. 7.16 Construction of mean–mean multiple comparisons plot for the catalyst data.
Difference and mean-oriented axes. This figure shows steps 1–11 in the discussion in Section 7.2.
This figure is essentially the same as Figure 7.15 with a single contrast and rotated 45◦ counter-
clockwise. This figure shows only one of the six pairwise contrasts. All six contrasts and the result
of all 12 construction steps are shown in Figure 7.13.

The coordinates of the same pair of means (ȳB, ȳD) in the (d, m)-system are

(d, m) =
(
ȳB − ȳD, (ȳB + ȳD)/2

)

=
(
(55.8 − 51.1), (55.8 + 51.1)/2

)
= (4.65, 53.45)

We choose to label the ticks on the m-axis by the means because they are more
easily interpreted: The confidence interval on ȳB − ȳD is at the mean height m =
(ȳB + ȳD)/2 in Figure 7.16. Hsu and Peruggia label the ticks on the m-axis by the
sum ȳB + ȳD = 2m because one unit on the 2m-scale takes exactly the same number
of inches as one unit on the d-scale.

Figure 7.13 is constructed from Figure 7.16 by including all of the
(

4
2

)
= 6 pair-

wise differences ȳi − ȳ j, not just the single difference we use for the illustration.

Each of the confidence intervals for the
(

4
2

)
= 6 pairwise differences ȳi − ȳ j in

Figure 7.13 is centered at a point whose height on the vertical m-axis is equal to
the average of the corresponding means ȳi and ȳ j and whose location along the
horizontal d-axis is at distance ȳi − ȳ j from the vertical line d = 0. Horizontal
lines are drawn at these heights so that the midpoints of these lines intersect their
(h = ȳi, v = ȳ j) intersection. The width of each horizontal line is the width of a
confidence interval estimating the difference ȳi − ȳ j. By default the endpoints of the
line are chosen to be the endpoints of the 95% two-sided confidence interval chosen
by the Tukey procedure for all

(
4
2

)
possible pairs.
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If a horizontal confidence interval line crosses the vertical d = 0 line, the mean
difference is declared not significant. Otherwise the mean difference is declared sig-
nificant. If an end of a horizontal line is close to the vertical d = 0, this says that the
declaration of significance was a close call.

When the critical value q is chosen by one of the standard multiple comparisons
procedures (we illustrate with and default to the Tukey procedure), the widths of the
horizontal confidence interval lines are the simultaneous confidence intervals for the
six pairs of population mean differences. This depiction is not restricted to the case
of equal sample sizes and hence equal interval widths.

The display in Figure 7.13 has several advantages over traditional presentations
of Tukey procedure results. In a single graph we see

1. The means themselves, with correct relative distances,

2. The point and interval estimates of the
(

4
2

)
pairwise differences,

3. The point and interval estimates for arbitrary contrasts of the level means,

4. Declarations of significance,

5. Confidence interval widths that are correct when the sample sizes are unequal.

7.2.3 Extensions of the Mean–Mean Display to Arbitrary Contrasts

Heiberger and Holland (2006) extend the mean–mean multiple comparisons plot
to arbitrary contrasts, that is, contrasts that are not limited to the set of pairwise
comparisons.

Two critical issues needed to be addressed. The first is the scaling of the contrast
and the second is the set of contrasts selected for consideration.

7.2.3.1 Scaling

The standard definition of a contrast in Equation (6.20) requires that it satisfy the
zero-sum constraint Equation (6.18). The variance of the contrast is calculated with
Equation (6.21).

When we calculate sums of squares and F-tests, this definition is sufficient. When
we wish to plot arbitrary contrasts on the mean–mean multiple comparisons plot
described in Section 7.2.2, the contrasts must be comparably scaled. The heights
must be in the range of the observed ȳ j, and all confidence intervals must fall
inside the range of the d-axis. To satisfy this additional requirement, we need to
require the absolute-sum-2 scaling introduced in Section 6.9.2.1 and made explicit
in Equation (6.22). Any other scaling makes it impossible to fit these values on the
mean–mean plot.
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With the absolute-sum-2 scaling we can think of any contrast as the comparison
of two weighted averages of ȳ j. Let us call them ȳ+ =

∑
c+j ȳ j and ȳ− =

∑
c−j ȳ j, where

we use the superscript notation a+ = max(a, 0) and a− = max(−a, 0). We illustrate
with the contrast comparing the average of means ȳA and ȳB with the mean ȳD.

A B C D ȳ+ ȳ−

absolute-sum-2 .5 .5 0 −1 (ȳA + ȳB)/2 ȳD

integer 1 1 0 −2
normalized 1/

√
6 1/

√
6 0 −2/

√
6

We plot the contrast centered at the (h, v)-location (ȳ−, ȳ+), where each term is at
the correctly weighted average of the observed ȳ j-values. The height on the m-axis
of the MMC plot is (ȳ+ + ȳ−)/2 and the difference on the d-axis is ȳ+ − ȳ−. The
confidence interval widths are proportional to the standard error of ȳ+ − ȳ−, which,

from (6.21), is proportional to
√∑

c2
j/n j.

7.2.3.2 Contrasts

The simplest set of contrasts is the set of all pairwise comparisons ȳi − ȳ j (as in
Figure 6.2). Others sets include comparisons ȳ j − ȳ0 of all treatment values to a
control (as in Figure 7.3) and a basis set of orthogonal contrasts that span all possible
contrasts (as will be seen in Figure 7.17).

7.2.3.3 Labeling

Our presentation of the MMC plot, for example in Figure 6.2, has improved labeling
compared to the Hsu and Peruggia presentation.

The left-axis ticks are the ȳi-values themselves, at the heights of the intersections
of the 45◦ h- and v-lines with the vertical d = 0 line. The labels on the outside of the
left axis are the ȳi-values. The labels on the inside of the left axis are the names of
the factor levels.

The right-axis labels belong to the horizontal CI lines for the contrasts. The labels
outside the right axis are the automatically generated contrasts, either pairwise ȳi−ȳ j

or comparisons ȳ j− ȳ0 of all treatment values to a control. The labels inside the right
axis are the requested contrasts from the explicitly specified lmat matrix. Each CI
line is at the height corresponding to the average of the two ȳ∗

(
(ȳi+ȳ j)/2 or (ȳ++

ȳ−)/2
)

values they are comparing. Each CI line is centered at the observed difference
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(
(ȳi− ȳ j) or (ȳ+− ȳ−)

)
. The half-width of the (two-sided) CI line is qsȳi−ȳ j , where

q is calculated according to the specified multiple comparisons criterion.

The bottom axis is in the difference ȳi − ȳ j d-scale. The ticks and labels outside
the bottom axis are regularly spaced values on the difference scale. The ticks inside
the bottom axis, at distances ± |ȳ j − min j ȳ j|, correspond to the horizontal d-axis
positions of the foot of the 45◦ h- and v-lines. The names of the factor levels appear
at the foot of each 45◦ line.

7.2.3.4 q Multipliers

Hypothesis test and confidence interval formulas, introduced in Chapter 3, depend
on a multiple of the standard deviation. The multiplier is a quantile chosen from an
appropriate distribution. When only one hypothesis is tested or only one interval is
constructed, the multiplier is denoted z when the test statistic is normally distributed
and t when the test statistic is from a t distribution. Multipliers denoted q, some-
times with a subscript, are used in many of this chapter’s formulas for confidence
intervals and rules for rejecting null hypotheses. In both Sections 7.1.2 and 7.1.4.3
discussing Tukey procedures, and in plots in Section 7.2 displaying results from
these procedures, q refers to the Studentized range distribution. The multiplier used
in the Dunnett procedure of Section 7.1.3 is a percentile of a marginal distribution of
a multivariate t distribution. The multiplier for the Scheffé procedure is the square
root of a percentile of an F distribution. For details, see Hochberg and Tamhane
(1987).

7.2.4 Display of an Orthogonal Basis Set of Contrasts

The sum of squares associated with the factor A with a levels has a − 1 degrees of
freedom. The missing degree of freedom is associated with the grand mean and is
normally suppressed from the ANOVA table.

In Section 6.8.3 we note that it is always possible to construct an orthogonal set
of contrasts that decompose the a − 1 df sum of squares for an effect into a − 1
independent single-df sums of squares. In this section we illustrate the mathematics
for constructing an orthogonal basis set by constructing one from the set of pair-
wise contrasts. From this basis set, we show that we can construct any other set of
contrasts. We also show that an orthogonal basis set, augmented with an additional
contrast for the grand mean (not actually a contrast since it doesn’t sum to 0), can
be used to construct any linear combination of the group means.

This discussion uses all the matrix algebra results summarized in Appendix
Section I.4. This section is placed here in Chapter 7 because it belongs to the dis-
cussion of the MMC plots. It might be more easily read after Section 10.3 where
contrast matrices and their relation to dummy variables are discussed.
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We illustrate the discussion with the catalyst data in data(catalystm). We
begin with the set of pairwise contrasts behind the construction of Figure 7.13. We
isolate the contrasts implicit in the "mmc" object with the lmatPairwise function
in Table 7.7.

Table 7.7 Contrast matrix for pairwise comparisons. There are three matrices displayed here. The
first is the contrasts for the catalyst factor as used by the aov function. We show the default
contrasts as defined by the contr.treatment function. The first level is omitted. Note that these
are not ‘contrasts’ as defined in the standard theory for linear models as they are not orthogonal
to the intercept. Then the contrast matrix for pairwise comparisons is displayed in two different
structures. The glht function uses the linfct (linear function) format. Each row is the difference
of two columns of the contr.treatment matrix. The last matrix, structured to be used in the
focus.lmat argument to the mmc function, shows columns which are standard contrasts (each
column sums to zero).

> ## aov contrast matrix for catalyst factor. The columns are

> ## constructed by contr.treatment with the default base=1

> contrasts(catalystm$catalyst)

B C D

A 0 0 0

B 1 0 0

C 0 1 0

D 0 0 1

> ## Linear function used internally by glht for pairwise contrasts.

> ## The rows of linfct are the differences of the columns

> ## of the contrast matrix.

> catalystm.mmc$mca$glht$linfct

(Intercept) catalystB catalystC catalystD

A-B 0 -1 0 0

A-C 0 0 -1 0

B-C 0 1 -1 0

A-D 0 0 0 -1

B-D 0 1 0 -1

C-D 0 0 1 -1

> ## Contrasts in lmat format, each column sums to zero.

> ## The last three rows are the transpose of the last three columns

> ## of the linfct matrix.

> ## The first row is prepended to make the column sum be zero.

> catalyst.pairwise <- lmatPairwise(catalystm.mmc)

> catalyst.pairwise

A-B A-C B-C A-D B-D C-D

A 1 1 0 1 0 0

B -1 0 1 0 1 0

C 0 -1 -1 0 0 1

D 0 0 0 -1 -1 -1
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Table 7.8 illustrates an orthogonal basis set of contrasts for the catalyst data. This
examination of 3 linearly independent contrasts succinctly summarizes the informa-
tion contained in the 3 degrees of freedom for comparing the means of the 4 levels
of the fixed factor catalyst. For completeness we show that catalystm.lmat
and catalyst.pairwise span the same subspace.

Table 7.8 The orthogonal contrast matrix catalysm.lmat contains three columns that decom-
pose the 3-df catalyst sum of squares term into three single-df sums of squares. The crossprod
shows that catalystm.lmat is an orthogonal rank-3 matrix. The zero residuals from the regres-
sion of catalystm.lmat on catalyst.pairwise shows that they span the same subspace.

> ## An orthogonal set of ($4-1$) contrasts for the catalyst factor.

> ## user-specified contrasts A B C D

> catalystm.lmat <- cbind("AB-D" =c(1, 1, 0,-2),

+ "A-B" =c(1,-1, 0, 0),

+ "ABD-C"=c(1, 1,-3, 1))

> dimnames(catalystm.lmat)[[1]] <- levels(catalystm$catalyst)

> catalystm.lmat

AB-D A-B ABD-C

A 1 1 1

B 1 -1 1

C 0 0 -3

D -2 0 1

> crossprod(catalystm.lmat)

AB-D A-B ABD-C

AB-D 6 0 0

A-B 0 2 0

ABD-C 0 0 12

> catalyst.pairwise

A-B A-C B-C A-D B-D C-D

A 1 1 0 1 0 0

B -1 0 1 0 1 0

C 0 -1 -1 0 0 1

D 0 0 0 -1 -1 -1

> resid(lm(catalystm.lmat ~ catalyst.pairwise))

AB-D A-B ABD-C

A 0 0 0

B 0 0 0

C 0 0 0

D 0 0 0
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In Table 7.9 and Figure 7.17 we use the orthogonal basis to construct an easily
interpretable MMC plot on the catalyst levels. The principal conclusion from
Figure 7.13 is that the means of both catalysts A and B significantly exceed the
mean of catalyst D. Figure 7.17 reforces this conclusion with the finding that the
average of the means of catalysts A and B significantly exceeds the mean of catalyst D
because the confidence interval for this contrast lies entirely above 0. A second new
conclusion from Figure 7.17 is that the average of the means of catalysts A, B, and
D is not significantly different from the mean of catalyst C because the confidence
interval for this contrast includes 0.

Table 7.9 We use catalysm.lmat as the focus.lmat argument to mmc leading to Figure 7.17.

> catalystm.mmc <-

+ mmc(catalystm1.aov,

+ linfct = mcp(catalyst = "Tukey"),

+ focus.lmat=catalystm.lmat)

> catalystm.mmc

Tukey contrasts

Fit: aov(formula = concent ~ catalyst, data = catalystm)

Estimated Quantile = 2.966

95% family-wise confidence level

$mca

estimate stderr lower upper height

A-B 1.125 1.138 -2.251228 4.501 56.34

A-C 3.667 1.239 -0.008905 7.342 55.07

B-C 2.542 1.296 -1.302338 6.386 54.50

A-D 5.775 1.138 2.398772 9.151 54.01

B-D 4.650 1.200 1.091143 8.209 53.45

C-D 2.108 1.296 -1.735671 5.952 52.18

$none

estimate stderr lower upper height

A 56.90 0.7590 54.65 59.15 56.90

B 55.77 0.8485 53.26 58.29 55.77

C 53.23 0.9798 50.33 56.14 53.23

D 51.12 0.8485 48.61 53.64 51.12

$lmat

estimate stderr lower upper height

A-B 1.125 1.138 -2.251 4.501 56.34

ABD-C 1.367 1.088 -1.860 4.594 53.92

AB-D 5.212 1.022 2.182 8.243 53.73
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Fig. 7.17 MMC plot constructed with
mmcplot(catalystm.mmc, type="lmat", style="both")

using the orthogonal set of contrasts defined in Table 7.8 based on the pairwise set in Figures 7.13
and 6.2. The comparison between the average of ȳA and ȳB with the mean ȳD is the only signifi-
cant comparison. The other two confidence intervals include 0. The Tiebreaker panel is needed to
respond to the overprinting of labels in the right axis of the MMC panel.

7.2.5 Hsu and Peruggia’s Pulmonary Example

This is the example that Hsu and Peruggia (1994) use to introduce the mean–mean
multiple comparisons plots. The response variable is FVC, forced vital capacity. The
groups are levels of the smoker factor
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Table 7.10 ANOVA table for pulmonary data.

> data(pulmonary)

> pulmonary

smoker n FVC s

NS NS 200 3.35 0.63

PS PS 200 3.23 0.46

NI NI 50 3.19 0.52

LS LS 200 3.15 0.39

MS MS 200 2.80 0.38

HS HS 200 2.55 0.38

> pulmonary.aov <-

+ aovSufficient(FVC ~ smoker, data=pulmonary,

+ weights=pulmonary$n, sd=pulmonary$s)

> summary(pulmonary.aov)

Df Sum Sq Mean Sq F value Pr(>F)

smoker 5 89.3 17.85 83.9 <2e-16 ***

Residuals 1044 222.1 0.21

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

NS nonsmokers
PS passive smokers
NI noninhaling smokers
LS light smokers (1–10 cigarettes per day for at least the last 20 years)
MS moderate smokers (11–39 cigarettes per day for at least the last 20 years)
HS heavy smokers (≥40 cigarettes per day for at least the last 20 years)

There are six levels of the smoker factor, hence 5 df for comparing them. The
means for the six groups are accessed as data(pulmonary). The ANOVA table is
in Table 7.10. The MMC plot is in Figure 7.18. The MMC plot of a set of orthogonal
contrasts is in Figure 7.19.

Figure 7.18 shows that the three levels {PS, NI, and LS} are indistinguishable; we
call this the low-smoker cluster. This comparison of three levels uses 2 df. There
are only 3 df left. From the SW–NE HS line, we see that the MS-HS contrast is
significant, that the comparisons between each of the three levels in the low-smoker
cluster with MS is significant, and that the comparison of NS with HS and with MS

are each significant. All three comparisons of NS with the low-smoker cluster have
lower bounds close to zero, and one of the three comparisons is significant.

We can summarize these visual impressions by constructing an orthogonal set of
contrasts that reflect them exactly. Figure 7.19 shows a basis set of five orthogonal
contrasts. In the center, the p-nl and n-l contrasts show that the three levels in
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Fig. 7.18 Hsu and Peruggia’s pulmonary example. The apparent clustering of the three groups
PS, NI, LS suggests the set of contrasts we show in Figure 7.19.

the low-smoker cluster are indistinguishable. The other three lines show that the
nonsmoker group is significantly different from the low-smoker cluster (n-pnl), that
the moderate- and heavy-smoker groups are significantly different (m-h), and that
the combined nonsmoker group and low-smoker cluster are significantly different
from the combined moderate- and heavy-smoker groups (npnl-mh).

The center of the interval for each of the contrasts in Figure 7.19 is constructed
by the linear combination of the means for the levels. For example, the n-pnl in-
terval is on the NW–SE NS line and on the average of the NE–SW PS, NI, and LS
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Fig. 7.19 Hsu and Peruggia’s pulmonary example: An orthogonal set of contrasts. There are
three significant contrasts and two not significant contrasts. The means for the three groups we
discovered in Figure 7.18 are indistinguishable. The other differences are significant. The ability
to display an arbitrary orthogonal set of contrasts is one of our enhancements to the mean–mean
plot.

lines. The width of the interval is calculated from the algebra of the contrast. A
simultaneous 95% coverage probability applies to the five confidence intervals in
Figure 7.19 because they are constructed using the extended Tukey procedure. This
procedure guarantees the coverage probability over the set of all possible contrasts.
In exchange for this guarantee, these extended Tukey intervals are fairly wide. Hav-
ing used the Tukey procedure to construct the intervals in Figure 7.18, it would be
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incorrect to switch to the narrower Scheffé procedure simultaneous intervals for the
basis set of contrasts. With such a switch we would have two competing analyses,
and this would distort the claimed coverage probabilities for the now distinct analy-
ses in the two figures.

7.3 Exercises

7.1. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.2.

7.2. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.4.

7.3. Use an MMC plot to display the results of the Tukey procedure applied to the
log-transformed data discussed in Exercise 6.5.

7.4. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.6.

7.5. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.8.

7.6. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.9.

7.7. The relative rotation angle between tangents to cervical vertebrae C3 and C4
is a standard musculoskeletal measurement. Figure 7.20 illustrates the measure-
ment of relative rotation angles. Harrison et al. (2004) hypothesize that the value

RRA C2-C3
RRA C3-C4

RRA C4-C5

RRA C5-C6

RRA C6-C7

C2

C4

C7

T1

T2

C

SUM
OF

RRA
2 θ

ARA
C2–C7

Fig. 7.20 Illustration of the relative rotation angles between the cervical vertebrae (neck area).
Exercise 7.7 uses the C3–C4 angle.
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of this angle, C3–C4, in persons complaining of neck pain tends to differ from that
in healthy individuals. The dataset, accessed as data(c3c4), contains the C3–C4
measurements of a random sample of 194 patients of which 72 had no complaints
of neck pain, 52 complained of acute neck pain of recent origin, and 70 have had
chronic neck pain. The pain condition is coded 0 for none, 1 for acute, and 2 for
chronic. There is no implied ordering in this coding scheme. Perform an analysis
of variance followed by Dunnett’s procedure to determine if the mean C3–C4 value
of persons with acute or chronic neck pain differs from the mean C3–C4 value of
persons without neck pain.



Chapter 8

Linear Regression by Least Squares

8.1 Introduction

We usually study more than one variable at a time. When the variables are continu-
ous, and one is clearly a response variable and the others are predictor variables, we
usually plot the variables and then attempt to fit a model to the plotted points. With
one continuous predictor, the first model we attempt is a straight line; with two or
more continuous predictors, we attempt a plane. We plot the model, the residuals
from the model, and various diagnostics of the quality of the fit.

In this chapter we are primarily concerned with modeling a straight-line rela-
tionship between two variables using n pairs of observations on these variables, a
common and fundamental task. One of these variables, conventionally denoted y, is
a response or output variable. The other variable, often denoted x, is known as an
explanatory or input or predictor variable. Usually, but not always, it is clear from
the context which of the two variables is the response and which is the predictor.
For example, if the two variables are personal income and consumption spend-
ing, then consumption is the response variable because the amount that is spent
depends on how much income is available to be spent.

The relationship between y and x is almost never perfectly linear. When the n
points are plotted in two dimensions, they appear as a random scatter about some
unknown straight line. We model this line as

yi = β0 + β1xi + εi for i = 1, . . . , n (8.1)

where
εi ∼ N(0, σ2) (8.2)

that is, the εi are assumed normally independently distributed with constant mean
0 and common variance σ2 [abbreviated as εi ∼ NID(0, σ2)]. In other words, we
assume that the response variable is linearly related to the predictor variables, plus

© Springer Science+Business Media New York 2015
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a normally distributed random component. Here the intercept β0 and slope β1 are
unknown regression coefficients that must be estimated from the data. The variance
σ2 is a third unknown parameter, introduced along with the assumption of a nor-
mally distributed error term, which must also be estimated.

A commonly used procedure for estimating β0 and β1 is the method of least
squares because, as we will see in Section 8.3.2, this mathematical criterion leads
to simple “closed-form” formulas for the estimates. Under the stated normality ass-
umptions in Equation (8.2) about the residuals εi of Model (8.1), the least-squares
estimates of the regression coefficients are also the maximum likelihood estimates
of these coefficients.

8.2 Example—Body Fat Data

8.2.1 Study Objectives

The example is taken from Johnson (1996). A group of subjects is gathered, and
various body measurements and an accurate estimate of the percentage of body fat
are recorded for each. Then body fat can be fit to the other body measurements
using multiple regression, giving, we hope, a useful predictive equation for people
similar to the subjects. The various measurements other than body fat recorded on
the subjects are, implicitly, ones that are easy to obtain and serve as proxies for body
fat, which is not so easily obtained.

Percentage of body fat, age, weight, height, and ten body circumference measure-
ments (e.g., abdomen) are recorded for 252 men. Body fat, a measure of health, is
estimated through an underwater weighing technique. Fitting body fat to the other
measurements using multiple regression provides a convenient way of estimating
body fat for men using only a scale and a measuring tape.

8.2.2 Data Description

We will initially use only 47 observations and only five of the measurements that
have been recorded.

bodyfat: Percent body fat using Siri’s equation, 495/Density − 450

abdomin: Abdomen circumference (cm) “at the umbilicus and level with the iliac
crest”

biceps: Extended biceps circumference (cm)
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wrist: Wrist circumference (cm) “distal to the styloid processes”

forearm: Forearm circumference (cm)

8.2.3 Data Input

We access the data from data(fat) and then look at the data with the scatterplot
matrix in Figure 8.1.

Fat data

bodyfat20
25
30
35 20253035

5
10
15
20

5 101520

abdomin
120

140 120 140

80

100

80 100

biceps

40

45
40 45

30

35

30 35

forearm28

30

32 28 30 32

24

26

28

24 26 28

wrist19

20

21 19 20 21

16

17

18

16 17 18

Fig. 8.1 Body Fat Data

The response variable bodyfat is in the bottom row of the plot. We can see that
a linear fit makes sense against abdomin. A linear relationship between bodyfat

and the other predictor variables is also visible in the plot, but is weaker. All the
predictor variables show correlation with each other.
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8.2.4 One-X Analysis

The initial analysis will look at just bodyfat and abdomin. We will come back to
the other variables later. We expand the bodyfat ~ abdomin panel of Figure 8.1
in the left column of Figure 8.2 and place two straight lines on the graph in the two
rightmost columns. The line in column 3 is visibly not a good fit. It is too shallow
and is far above the points in the lower left. The line in column 2, labeled “least-
squares fit”, is just right. The criterion we use is least squares, which means that the
sum of the squared differences from the fitted to observed points is to be minimized.
The least-squares line is the straight line that achieves the minimum.

The top row of Figure 8.2 displays the vertical differences from the fitted to
observed points. The bottom row displays the squares of the differences from the
fitted to observed points. The least-squares line minimizes the sum of the areas of
these squares. It is evident that the sum of the squared areas in column 2 is smaller
than the sum of squared areas for the badly fitting line in column 3.

From any of these panels it is apparent that on average, body fat is directly related
to abdominal circumference. As will be explained in Section 8.3.5, the least-squares
line in Figure 8.2 can be used to predict bodyfat from abdomin. Note that although
it is mathematically correct to say that abdomin increases with bodyfat, this is a
misleading statement because it implies an unlikely direction of causality among
these variables.

8.3 Simple Linear Regression

8.3.1 Algebra

Figure 8.2 illustrates the least-squares line that best fits bodyfat to abdomin. Now
that we see from the bottom row of the figure that the least-squares line actually does
minimize the sum of squares, let us review the mathematics behind the calculation
of the least-squares line. The standard notation we use for the least-squares straight
line is

ŷ = β̂0 + β̂1x (8.3)

where β̂0 and β̂1 are called the regression coefficients. We define the residuals by

ei = yi − ŷi (8.4)

We wish to find β̂0 and β̂1 that minimize the expression for the sum of squares of
the calculated residuals:

n∑

i=1

e2
i =

n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

(
yi − (β0 + β1xi)

)2
(8.5)
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abdomin

bo
dy

fa
t

least−squares fit:
y = −28.56 + .505 x

too shallow:
y = 20 + .1x

squared
residuals

residuals

80 100 120 140 160 180 80 100 120 140 160 180

10

20

30

40

Fig. 8.2 One X-variable and two straight lines. The second column is the least-squares line, the
third is too shallow. Row 1 shows the residuals. Row 2 shows the squared residuals. The least-
squares line minimizes the sum of the squared residuals.

We minimize by differentiation with respect to the parameters β0 and β1, setting the
derivatives to 0 (thus getting what are called the normal equations)

∂

∂β0

n∑

i=1

(
yi − (β0 + β1xi)

)2
=

n∑

i=1

2
(
yi − (β0 + β1xi)

)
(−1) = 0

(8.6)
∂

∂β1

n∑

i=1

(
yi − (β0 + β1xi)

)2
=

n∑

i=1

2
(
yi − (β0 + β1xi)

)
(−xi) = 0

and then solving simultaneously for the regression coefficients

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

(8.7)
β̂0 = ȳ − β̂1 x̄

In addition to minimizing the sum of squares of the calculated residuals, β̂0 and
β̂1 have the property that the sum of the calculated residuals is zero, i.e.,

n∑

i=1

ei = 0 (8.8)

We request a proof of this assertion in Exercise 8.9.
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For two or more predictor variables, the procedure (equating derivatives to zero)
is identical but the algebra is more complex. We postpone details until Section 9.3.

8.3.2 Normal Distribution Theory

Under the normality assumption (8.2) for the residuals of Model (8.1), the least-
squares estimates are also maximum likelihood estimates. This is true because if
the residuals are normally distributed, their likelihood function is maximized when
Equation (8.5) is minimized.

In Model (8.1), the unknown population variance of the εi, σ2, is estimated by
the sample variance

σ̂2 = s2 =

∑n
i=1(yi − ŷi)2

n − 2
(8.9)

Because the sample variance is proportional to the residual sum of squares in Equa-
tion (8.5), minimizing the sample variance also leads us to the least-squares esti-
mates β̂0 and β̂1 in Equations (8.7). The square root s of the sample variance in
Equation (8.9), variously termed the standard error of estimate, the standard error,
or the root mean square error, indicates the size of a typical vertical deviation of a
point from the calculated regression line.

8.3.3 Calculations

The results of the statistical analysis are displayed in several tables, primarily the
ANOVA (analysis of variance) table, the table of regression coefficients, and the
table of other statistics shown in Table 8.1. These tables are fundamental to our
interpretation of the analysis. The formulas for each number in these tables appear in
Tables 8.2, 8.3, and 8.4. As with Tables 6.2 and 6.2, the ANOVA table in Section 8.1
does not include the “Total” line and the interpretation in Table 8.2 does include the
“Total” line. R does not print the Total line in its ANOVA tables.

For one-x regression (this example), there is usually only one null and alternative
hypothesis of interest:

H0: β1 = 0 vs H1: β1 � 0 (8.10)

Both t = 9.297 in the table of coefficients and F = 86.427 = 9.2972 = t2

in the ANOVA table are tests between those hypotheses. The associated p-value
(p = .510−12, which we report as < 0.0001), is smaller than any reasonable α (the
traditional .05 or .01, for example). Therefore, we are justified in rejecting the null
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Table 8.1 ANOVA table and table of regression coefficients for the simple linear regression model
with y=bodyfat and x=abdomin.

> data(fat)

> fat.lm <- lm(bodyfat ~ abdomin, data=fat)

> anova(fat.lm)

Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)

abdomin 1 2440 2440 86.4 4.9e-12 ***

Residuals 45 1271 28

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(fat.lm)

Call:

lm(formula = bodyfat ~ abdomin, data = fat)

Residuals:

Min 1Q Median 3Q Max

-12.42 -4.11 1.21 3.52 9.65

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.5601 5.1100 -5.59 1.3e-06 ***

abdomin 0.5049 0.0543 9.30 4.9e-12 ***

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.31 on 45 degrees of freedom

Multiple R-squared: 0.658,Adjusted R-squared: 0.65

F-statistic: 86.4 on 1 and 45 DF, p-value: 4.85e-12

hypothesis in favor of the alternative. Inference on β0 frequently makes no sense. In
this example, for example, β0 is the expected bodyfat of an individual having the
impossible abdomin with zero circumference.

The Total line in the ANOVA table shows the sum of squares and degrees of
freedom for the response variable bodyfat around its mean. When we divide these
two numbers we recognize the formula

∑n
i=1(yi − ȳ)2/(n − 1) = 80.678 as Equation

(3.6) for the sample variance of the response variable. The goal of the analysis is to
explain as much of the variance in the response variable as possible with a model
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Table 8.2 Interpretation of items in “ANOVA Table” from Table 8.1. The symbols in the abdomin
section are subscripted Reg, short for “Regression”. In this setting, “Regression” refers to the group
of all model predictors. In this example there is only one predictor, abdomin.

Name Notation Formula Value in
Table 8.1

Total

Sum of Squares SSTotal
∑n

i=1(yi − ȳ)2 = SSReg + SSRes 3711.199

Degrees of Freedom dfTotal n − 1 46

Variance about Mean SSTotal/dfTotal 80.678

Residual

Sum of Squares SSRes
∑n

i=1(yi − ŷi)2 1270.699

Degrees of Freedom dfRes n − 2 45

Mean Square MSRes σ̂2 = s2 =

∑n
i=1(yi − ŷi)2

n − 2
28.238

abdomin

Sum of Squares SSReg
∑n

i=1(ŷi − ȳ)2 2440.500

Degrees of Freedom dfReg number of predictor variables 1

Mean Square MSReg variability in ŷ attributable to β̂1
(

abdomin Sum of Squares
abdomin Degrees of Freedom

)
2440.500

F-Value FReg

(
abdomin Mean Square
Residual Mean Square

)
86.427

Pr(> F) pReg P(F1,45 > 86.427) = 1 − F1,45(86.427) < 0.0001

that relates the response to the predictors. When we have explained the variance, the
residual (or leftover) mean square s2 is much smaller than the sample variance of
the response variable.

The coefficient of determination, also known as Multiple R2, usually accompanies
ANOVA tables. This measure, generally denoted R2, is the proportion of variation in
the response variable that is accounted for by the predictor variable(s). It is desirable
that R2 be as close to 1 as possible. Models with R2 considerably below 1 may be
acceptable in some disciplines. The defining formula for R2 is

R2 =
SSReg

SSTotal
(8.11)

In regression models with only one predictor, an alternative notation is r2. This
notation is motivated by the fact that r2 is the square of the sample correlation
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Table 8.3 Interpretation of items in “Table of Regression Coefficients” from Table 8.1.

Name Notation Formula Value in

Table 8.1

(Intercept)

Value β̂0 ȳ − β̂1 x̄ −28.560

Standard Error σ̂β0 σ̂

√
1
n
+

x̄2
∑

(xi − x̄)2
5.110

t-value tβ0

β̂0

σ̂β0

−5.589

Pr(> |t|) pβ̂0
P( t45 > | − 5.589| ) < 0.0001

abdomin

Value β̂1

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
0.505

Standard Error σ̂β1 σ̂/
√∑

(xi − x̄)2 0.054

t-value tβ1 β̂1/σ̂β1 9.297

Pr(> |t|) pβ̂1
P(t45 > |9.297|) < 0.0001

coefficient r between the response and predictor variable. r is the usual estimate
of the population correlation coefficient defined and interpreted in Equation (3.14).
A formula for the sample correlation r is

r =
∑

(yi − ȳ)(xi − x̄)
√∑

(yi − ȳ)2
∑

(xi − x̄)
(8.12)

It can be shown that −1 ≤ r ≤ 1. If r = ±1, then x and y are perfectly linearly
related, directly so if r = 1 and inversely so if r = −1. The arithmetic sign of r
matches the arithmetic sign of β̂1.

In the present body fat example, we find r = 0.811 and r2 = 0.658. This value
of r is consistent with the moderately strong positive linear relationship between
bodyfat and abdomin in the least-squares fit shown in Figure 8.2. Continuing
with this example, the estimated response variance ignoring the predictor is 80.678
and the estimated response variance paying attention to the predictor abdomin, the
Residuals Mean Square, is 28.238. Graphically, we see in Figure 8.3 that the vari-
ance estimate 80.678 about the mean belongs to Figure 8.3a and the variance est-
imate 28.238 about the regression line belongs to Figure 8.3b.
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Table 8.4 Interpretation of additional items, some of which are shown in Table 8.1.

Name Notation Formula Value
based on
Table 8.1

Coefficient of Determination

Multiple R2 R2

(
abdomin Sum of Squares

Total Sum of Squares

)
0.6576

p Number of predictor x variables in the model 1.

in the model

Adjusted R2 R2
adj 1 −

(
n − 1

n − p − 1

)
(1 − R2) 0.6500

Dependent Mean Ȳ
∑

Yi

n
18.3957

Residual Standard Error σ̂ = s
√

s2 5.3139

Coefficient of Variation cv s/Ȳ 28.8867

While these two estimates of response variance are intuitive, they are not actually
the statistically correct numbers to compare because they are not independent. The
Total Sum of Squares is the sum of the Residuals Sum of Squares and the
abdomin Sum of Squares. These two components of the Total Sum of Squares
are independent and are therefore the base for the correct quantities to compare. The
abdomin mean square is an unbiased estimate of σ2 if H0 is true but an overesti-
mate of σ2 if H0 is false. The Residuals Mean Square is unbiased for σ2 in either
case. Therefore, the ratio of these two mean squares will tend to be close to 1 if H0

is true but greater than 1 otherwise. With the assumption of independent normally
distributed εi, the ratio, given as the F-Value = 86.427 in the table, follows a (cen-
tral) F distribution with 1 and 45 degrees of freedom if H0 is true, but not otherwise.
Appeal to this distribution tells us whether the ratio is significantly greater than 1.
When the observed Pr(> F) value in the table (in this case < 0.0001) is small, we
interpret that as evidence that H0 is false.

The formal statement of the test is: Under the null hypothesis that β1 = 0 (that
is, that information about x=abdomin gives no information about y=bodyfat), the
probability of observing an F-value as large as the one we actually saw (in this case
86.427) is very small (in this case the probability is less than 0.0001). This very
small p-value (assuming H0 is true) is very strong evidence that H0 is not true, that
is, it is evidence that β1 � 0. We will therefore act as if H0 is false and take further
actions as if the relationship of the fitted regression model actually explains what is
going on.
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a. ∑ ∑(y − ȳ)2 = SSTotal = 3711.199 b. (y − ŷ)2 = SSResidual = 1270.699

Fig. 8.3 Variance about mean and about least-squares line.

The estimate β̂1 from Equation (8.7) can be rewritten as a weighted sum of
yi-values or of single-point slopes β̂1i = (yi − ȳ)/(xi − x̄)

β̂1 =
∑

i

(yi − ȳ)

(
(xi − x̄)∑
(xi − x̄)2

)
(8.13)

=
∑

i

(
yi − ȳ
xi − x̄

) (
(xi − x̄)2

∑
(xi − x̄)2

)
(8.14)

Figure 8.4 illustrates equation 8.14 with the R command
demo("betaWeightedAverage", ask=FALSE).

The variance of β̂1

σ2
β̂1
= var(β̂1) =

σ2

∑
(xi − x̄)2

(8.15)

is constructed from the sum in Equation (8.13) with formulas based on Equa-
tion (3.9) (see Exercise 8.7). The sample estimate of the standard error of β̂1 is

σ̂β̂1
=

σ̂
√∑

(xi − x̄)2
(8.16)

Under H0, and with the assumption of independent normally distributed εi, the t-
ratio tβ̂1

= β̂1/σ̂β̂1
has a t45 distribution allowing us to use the t table in our tests. It
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color x y

1 red 1 6

2 blue 2 2

3 green 3 10
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Fig. 8.4 Equation 8.14 shows that the slope β̂1 can be written as the weighted sum of the single-
point slopes β̂1i = (yi − ȳ)/(xi − x̄). The top set of panels shows the set of single-point slopes. The
bottom panel shows all six single-point slopes and the regression line whose slope is the weighted
sum of the individual slopes. The dataset for this example is displayed.

follows from this that a 100(1 − α)% confidence interval on β1 is

β̂1 ± td f , α
2

σ̂β̂1

where d f = dfRes degrees of freedom.

Similarly, we can show (see Exercise 8.8)

σ2
β̂0
= var(β̂0) = σ2

(
1
n
+

x̄2

∑
(xi − x̄)2

)
(8.17)
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8.3.4 Residual Mean Square in Regression Printout

The residual mean square is also called the error mean square. It is called residual
because it is the variability in the response variable left over after fitting the model.
It is called error because it is a measure of the difference between the model and the
data. We prefer the term “residual” and discourage the term “error” because the
term “error” suggests a mistake, and that is not the intent of this component of
the analysis. Nevertheless, on occasion we use the term “error” as a synonym for
“residual” to match the continued use by SAS of “Error Mean Square” rather than
our preferred “Residual Mean Square”. See Table 8.5 for a comparison of several
notations. See Tables 8.5 and 8.6 for illustrations of how the fitted values and the
residuals are related to the various sums of squares used in the ANOVA table. These
tables show the linear and quadratic identities introduced in Section 6.A.

8.3.5 New Observations

One of the uses of a fitted regression equation is to make inferences about new
observations. A new observation y0 at x0 has the model

y0 = β0 + β1x0 + ε0 = μ0 + ε0

where

• y0 is a single unobserved value

• x0 is a the value of the predictor x at the new observation

• β0 and β1 are the regression coefficients.

The concepts that we introduce here extend, almost without change, to the multiple
regression setting of Chapter 9. We therefore preview the slightly more elaborate no-
tation of Chapter 9. The model in Equation (8.1) can be rewritten in matrix notation
as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...

yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1
...

1 xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
β0

β1

)
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
...
εn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y
n×1
= X

n×(1+p)
β

(1+p)×1
+ ε

n×1

(8.18)

We restrict p = 1 in Chapter 8. More generally, beginning in Chapter 9, p is a
positive integer.
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Table 8.5 Residual Mean Square in Regression Printout. The “Residual Mean Square” and “Error
Mean Square” are two names for the same concept. Note that the (Std Err Residual)i is different for
each i. It is smallest for x values closest to x̄ and increases as the x values move away from x̄. This
is the reason that the confidence bounds for the regression line (see Figure 8.5) show curvature.

For each observation i the standard regression printout shows

v̂ar(μ̂i) + v̂ar(ei) = v̂ar(yi) = σ̂2

hiσ̂
2 + (1 − hi)σ̂2 = σ̂2

(Std Err Predict)2
i + (Std Err Residual)2

i = Residual Mean Square
= Error Mean Square

> h <- hat(model.matrix(fat.lm))

> pred <- predict(fat.lm, se.fit=TRUE)

> res <- resid(fat.lm)

> sigma.hat.square <- anova(fat.lm)["Residuals", "Mean Sq"]

> fat.predvalues <-

+ data.frame("y=bodyfat"=fat$bodyfat, "x=abdomin"=fat$abdomin,

+ h=h, mu.hat=pred$fit,

+ e=res, var.mu.hat=h*sigma.hat.square,

+ var.resid=(1-h)*sigma.hat.square,

+ sigma.hat.square=sigma.hat.square,

+ se.fit=sqrt(h*sigma.hat.square),

+ se.resid=sqrt((1-h)*sigma.hat.square))

> fat.predvalues[1:3, 1:7]

y.bodyfat x.abdomin h mu.hat e var.mu.hat var.resid

1 12.6 85.2 0.02762 14.46 -1.860 0.7800 27.46

2 6.9 83.0 0.03171 13.35 -6.450 0.8954 27.34

3 24.6 87.9 0.02399 15.82 8.776 0.6773 27.56

> ## fat.predvalues

>

> ## linear identity

> all.equal(rowSums(fat.predvalues[,c("mu.hat", "e")]),

+ fat$bodyfat,

+ check.names=FALSE)

[1] TRUE

> ## quadratic identity

> (SSqReg <- sum((fat.predvalues$mu.hat - mean(fat$bodyfat))^2))

[1] 2440

> (SSqRes <- sum(res^2))

[1] 1271

> (SSqTot <- sum((fat$bodyfat - mean(fat$bodyfat))^2))

[1] 3711

> all.equal(SSqReg + SSqRes, SSqTot)

[1] TRUE
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Table 8.6 We show the linear identity yi = ȳ+β̂1(xi− x̄)+ei and the quadratic identity
∑

(yi − ȳ)2 =∑
(β1 xi)2+

∑
ε2

i for least squares regression. The linear identity is the partitioning of the column of
yi into columns for the grand mean, the product of the regression coefficient and the difference of
xi from x̄, and the column of residuals ei. The quadratic identity is the arithmetic behind the sums
of squares in the ANOVA table.

yi = β̂0 + β̂1xi + ei for i = 1, . . . , n from Equation (8.1)
= (ȳ − β̂1 x̄) + β̂1xi + ei

= ȳ + β̂1(xi − x̄) + ei linear identity

i yi ȳ β1(xi − x̄) ei i yi ȳ β1(xi − x̄) ei

1 12.6 18.4 −3.935 −1.860 25 14.2 18.4 −8.429 4.233
2 6.9 18.4 −5.046 −6.450 26 4.6 18.4 −6.712 −7.083
3 24.6 18.4 −2.572 8.776 27 8.5 18.4 −9.288 −0.608
4 10.9 18.4 −3.329 −4.166 28 22.4 18.4 −2.168 6.172
5 27.8 18.4 3.538 5.866 29 4.7 18.4 −9.641 −4.055
6 20.6 18.4 0.710 1.494 30 9.4 18.4 −4.794 −4.202
7 19.0 18.4 −1.158 1.762 31 12.3 18.4 −2.168 −3.928
8 12.8 18.4 −2.269 −3.327 32 6.5 18.4 −4.289 −7.607
9 5.1 18.4 −5.299 −7.997 33 13.4 18.4 −7.015 2.020

10 12.0 18.4 −2.218 −4.177 34 20.9 18.4 3.790 −1.286
11 7.5 18.4 −4.743 −6.153 35 31.1 18.4 11.415 1.289
12 8.5 18.4 −1.057 −8.839 36 38.2 18.4 10.152 9.652
13 20.5 18.4 −0.704 2.808 37 23.6 18.4 3.992 1.212
14 20.8 18.4 4.447 −2.042 38 27.5 18.4 2.932 6.172
15 21.7 18.4 1.720 1.584 39 33.8 18.4 27.825 −12.421
16 20.5 18.4 −0.098 2.202 40 31.3 18.4 7.628 5.276
17 28.1 18.4 1.720 7.984 41 33.1 18.4 16.767 −2.063
18 22.4 18.4 2.275 1.729 42 31.7 18.4 5.709 7.595
19 16.1 18.4 −1.714 −0.582 43 30.4 18.4 9.193 2.811
20 16.5 18.4 3.790 −5.686 44 30.8 18.4 5.709 6.695
21 19.0 18.4 1.468 −0.863 45 8.4 18.4 −8.581 −1.415
22 15.3 18.4 2.932 −6.028 46 14.1 18.4 −5.804 1.508
23 15.7 18.4 −8.379 5.683 47 11.2 18.4 −9.742 2.546
24 17.6 18.4 −6.561 5.765

∑
columns2

i 19616 15905 2440 1271

Total Sum of Squares =
∑

y2
i −

∑
ȳ2

=
∑

(yi − ȳ)2

= 19616 − 15905
= 3711
=

∑
(β1xi)2 +

∑
ε2

i
= 2440 + 1271 quadratic identity



250 8 Linear Regression by Least Squares

In the extended notation, a new observation y0 at x0+ has the model

y0 = x0+ β + ε0 = μ0 + ε0

where

• y0 is a single unobserved value

• x0+ is a 1 × (1 + p) row of predictors [(1 x0) in Chapter 8]

• β is a (1 + p)-vector of regression coefficients [(β0 β1)′ in Chapter 8].

There are two related questions to ask about the new observation:

1. Estimate the parameter μ0 = E(y0) = x0+β.

2. Predict a specific observation y0 = μ0 + ε0.

Estimation intervals for new μ0 and prediction intervals for new y0 based on a new
value x0+ depend on the quantity h0 defined as

h0 =
1
n
+

(x0 − x̄)2

n∑
i=1

(xi − x̄)2
(8.19)

The formula for h0 is similar to the leverage formula for hi to be introduced in
Equations (9.14) or (9.15), where the new value x0+ replaces one of the observed
values Xi+. The notation i specifically means one of the original n observations and
the notation 0 means an additional observation that need not be one of the original
ones. Equation (8.19) is specifically for simple linear regression (p = 1). The more
complex formula in Equations (9.14) or (9.15) is needed when p > 1.

Answering the questions requires information about estimated variances:

1. Estimate the

a. parameter μ0 = E(y0) = x0+β with

b. estimator μ̂0 = x0+β̂,

c. variance of the estimator var(μ̂0) = h0σ
2, and

d. estimated variance of the estimator v̂ar(μ̂0) = h0σ̂
2.

2. Predict

a. a specific observation y0 = μ0 + ε0 with

b. predictor ŷ0 = μ̂0 = x0+β̂ (the same as the parameter estimate),
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c. variance of the predictor var(ŷ0) = var(μ̂0 + ε0) = var(μ̂0) + var(ε0), and

d. estimated variance of the predictor v̂ar(ŷ0) = v̂ar(μ̂0) + v̂ar(ε0) = h0σ̂
2 + σ̂2 =

σ̂2(h0 + 1).

In the special case that x0+ = xi+ (one of the observed points), we have

v̂ar(ŷi) = (1 + hi)σ̂
2 = σ̂2 + v̂ar(μ̂i)

Note that the (standard error)2 for prediction σ̂2(h0 + 1) is larger than the (standard
error)2 for estimation σ̂2h0. A prediction interval for individual observations ŷ0 est-
imates the range of observations that we might see. A confidence interval for the
estimated mean of the new observations estimates the center point of the predicted
range.

Most regression programs print the standard error for estimation of the mean:
σ̂
√

h0, the confidence interval for estimating μ0 = E(y0|x): ŷ0 ± td f , α
2
σ̂
√

h0, [also
shown in Equation (9.24)], and the prediction interval for a new observation (y0|x):
ŷ0 ± td f , α

2
σ̂
√

1 + h0 [also shown in Equation (9.25)]. These items are discussed in
detail in Section 9.9.

The commands that construct the confidence and prediction intervals in R, and
their interpretation, are shown in Table 8.7. To see the standard error for prediction
of a new observation, we must manually do the arithmetic

σ̂2h0 + σ̂2 = (1 + h0)σ̂2 (8.20)

The two questions about a new observation are actually familiar questions in a
new guise. They are the same questions addressed in Section 3.6 about the location
parameter μ of a sample from a single variable. We elaborate on the comparison in
Table 8.8.

In both the confidence interval and the prediction interval of the regression prob-
lem in Table 8.8, the magnitude of (Standard Deviation)2 increases as the new value
x moves further from the mean x̄ of the existing xi’s. This indicates that we have
more confidence in a prediction for an x in the vicinity of the xi’s of the existing
data than in an x far from the xi’s of the existing data. The lesson is that extrapo-
lations of the fitted regression relationship for remote values of x are likely to be
unreliable.

Confidence and prediction intervals for a particular new observation at x0 are
shown in Table 8.7. These intervals can be extended to confidence and prediction
bands by letting x0 vary over the entire range of x. Figure 8.5 illustrates such 95%
bands for fat.lm, the modeling of bodyfat as a function of abdomin, displayed in
Table 8.1. The 0.95 probability statement applies to each particular value of x = x0.
It does not apply to statements that the bands enclose the infinite set of all possible
means or predictions as x varies over its range.
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Table 8.7 Construction of the confidence and prediction intervals for new observations in R. See
also the discussion surrounding Equations (9.24) and (9.25).

> old.data <-

+ data.frame(y=rnorm(50), x1=rnorm(50), x2=rnorm(50), x3=rnorm(50))

> example.lm <- lm(y ~ x1 + x2 + x3, data=old.data)

> (example.coef <- coef(example.lm))

(Intercept) x1 x2 x3

-0.09670 0.11571 -0.12581 -0.09652

> (new.data <- data.frame(x1=3, x2=2, x3=45))

x1 x2 x3

1 3 2 45

> predict(example.lm, newdata=new.data, se.fit=TRUE,

+ interval="confidence")

$fit

fit lwr upr

1 -4.344 -18.03 9.337

$se.fit

[1] 6.797

$df

[1] 46

$residual.scale

[1] 0.9492

> predict(example.lm, newdata=new.data, se.fit=TRUE,

+ interval="prediction")

$fit

fit lwr upr

1 -4.344 -18.16 9.47

$se.fit

[1] 6.797

$df

[1] 46

$residual.scale

[1] 0.9492

> c(1, data.matrix(new.data)) %*% example.coef

[,1]

[1,] -4.344



8.3 Simple Linear Regression 253

Table 8.8 Comparison of confidence and prediction intervals in the one-sample problem (t-test)
and in the regression problem.

One Sample Regression

Model Parameters:

Model y = μY + ε yx = β0 + β1 x + ε
Parameter μY μYX = β0 + β1 x
Variance of ε var(ε) = σ2

Y var(ε) = σ2
YX

Sample Statistics:

Estimate μ̂Y = y μ̂yx = b0 + b1 x
ŷi = b0 + b1 xi

Variance s2
Y =

∑n
i=1 (yi − y)2/(n − 1) s2

YX =
∑n

i=1 (yi − ŷi)2/(n − 2)

Estimate Parameter:

(Standard Deviation)2 for Confidence Interval Estimate

What is the average height μY What is the average height μYX of those
of everyone? people who are x = 10 years old?

s2
μ̂Y
= s2

Y
=

s2
Y

n
= s2

Y

⎛⎜⎜⎜⎜⎜⎝
1
n

⎞⎟⎟⎟⎟⎟⎠ s2
μ̂yx
= s2

YXhx = s2
YX

⎛⎜⎜⎜⎜⎜⎝
1
n
+

(x − x)2

∑n
i=1(xi − x)2

⎞⎟⎟⎟⎟⎟⎠

Prediction Interval:
(Standard Deviation)2 for Prediction Interval for an Individual Response

How tall is the next person? How tall is the next 10-year-old?
ŷ = μ̂Y + ε = y + ε ŷx = μ̂yx + ε = (b0 + b1 x) + ε

s2
ŷ =

s2
Y

n
+ s2

Y = s2
Y

⎛⎜⎜⎜⎜⎜⎝
1
n
+ 1

⎞⎟⎟⎟⎟⎟⎠ s2
ŷx
= s2

YXhx + s2
YX = s2

YX(1 + hx)

= s2
YX

⎛⎜⎜⎜⎜⎜⎝1 +
1
n
+

(x − x)2

∑n
i=1(xi − x)2

⎞⎟⎟⎟⎟⎟⎠
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95% confidence and prediction intervals for fat.lm
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Fig. 8.5 Confidence and prediction bands for modeling bodyfat ~ abdomin, body fat data. The
widths of these bands are minimized at x = x̄ because h0 is minimized at x = x̄.

8.4 Diagnostics

There are two steps to a statistical analysis. The first step is to construct a model and
estimate its parameters. Sections 8.3.2 and 9.2 discuss estimation of the parameters
of linear models with one and two predictor variables. The second step is to study
the quality of the fit of the data to that model and determine if the model adequately
describes the data. This section introduces the diagnostics. They are investigated
more thoroughly in Section 11.3.

The choice of diagnostic techniques is connected directly to the model and
assumptions. If the assumption (8.2) that the error terms εi are normally indepen-
dently distributed with constant mean 0 and variance σ2 is valid, then the residuals
ei = (yi − ŷi) will be approximately normally distributed. More precisely, the n val-
ues ei will behave exactly like n numbers independently chosen from the normal
distribution and subjected to p + 1 linear constraints. In the simplest case, when
p = 0 (one-sample t-test in Chapter 5), the residuals ei behave like n independent
normals centered on their observed mean x̄. For simple linear regression (p = 1),
the residuals behave like n independent normals vertically centered on a straight line
specified by the two estimated parameters β̂1 and β̂0.
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The diagnostic techniques are various procedures for looking at approximately
normal numbers and seeing if they display any systematic behavior. If we see sys-
tematic behavior, then we conclude that the model did not capture all the interesting
features of the data. We iterate the analysis steps by trying to model the systematic
behavior we just detected and then looking at the residuals from the newer model.

Figure 8.6 shows several diagnostic plots from the simple regression model of
Section 8.1. These are our versions of standard plots of the Fitted Values and Resid-
uals from the regression analysis. The first three panels are based on the output of
the R statement plot(fat.lm) (using the plot.lm method in the stats package).
The fourth is based on an S-Plus plot. All four as displayed here were drawn with
the statement lmplot(fat.lm) using the lmplot function in the HH package.

(We show plots from plot(fat.lm) in Figure 11.18. We prefer the lattice-
based appearance of our first three plots to the base graphics of plot(fat.lm).
We believe the fourth panel of Figure 11.18 (enlarged in Figure 11.19) can’t be
described until Chapter 11. We believe the fourth panel of Figure 8.6 is highly inf-
ormative and wish that R had included it as part of their standard display.)

We discuss each panel in turn, with the numbering sequence
(

13
24

)
.

1. Panels 1 and 2 are coordinated. Panel 1 is a plot of the Residuals e = y − ŷ
against the Fitted Values ŷ along with a horizontal line at e = 0. The horizontal
line corresponds to the least-squares fit of the Residuals against the Fitted Values.
There is, by construction, no linear effect in this panel. There may be quadratic
(or higher-order polynomial) effects visible. The marginal distribution of the Fit-
ted Values ŷ may show patterns that need further investigation. When there is
only one x-variable, as in the example in Figure 8.6, the Fitted Values are a linear
transformation of the x-variable. In this example, we see that the x-value of the
point with the largest absolute residual is noticeably larger than any of the other
x-values.

2. Panel 2 plots
√|e| = √|Residuals| against the Fitted Values ŷ. It shows much of

the same information as Panel 1. The absolute value folds the negative residuals
onto the positive direction in order to emphasize magnitude of departure from the
model at the expense of not showing direction. The square root transformation
brings in the larger residuals and spreads out the smaller ones. See the discussion
of the ladder of powers in Section 4.9 for more information on the effects of
transformations. In this display we chose to retain the original directionality by
choice of plotting symbol and color.

3. Panel 3 is a normal probability plot with the Residuals on the vertical axis and
the normal quantiles on the horizontal axis. The diagonal line has the standard
deviation s for its slope. When the residuals are approximately normal, the points
will be close to the diagonal line. Asymmetries in the residuals will be visible.
Short tails in the distribution of the residuals will be visible as an “S”-shaped
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Fig. 8.6 Diagnostics for lm(bodyfat ~ abdomin, data=fat). Diagnostic Plots of the Residu-
als and Fitted Values from a regression analysis. See Section 8.4 for an extensive discussion of each
of the four panels in this display. On the left we show two views of the Residuals plotted against
the Fitted Values, with the Residuals themselves on the top, and the square root of the absolute
values of the Residuals on the bottom. On the top right, we show the QQ plot of the Residuals
against the Normal quantiles. On the right bottom, we show the r-f spread plot—a two-panel dis-
play of the transposed empirical distributions of the Centered Fitted Values and of the Residuals
(see Section 8.5).

display, and long tails in the distribution of the residuals (seen as vertical outliers
in panels 1 and 2) will be visible as a mirror-image “ S” shape. See Section 5.8
for further discussion of probability plots.

4. Panel 4 is subdivided into two transposed empirical distributions. The left panel
shows the Centered Fitted Values ŷ − ȳ and the right panel shows the Residuals
y − ŷ. The relative vertical ranges of these two panels gives some information on
the multiple correlation coefficient R2. We develop the construction and interpre-
tation of panel 4 in Section 8.5 and Figure 8.7.

8.5 ECDF of Centered Fitted Values and Residuals

The ECDF plot of Centered Fitted Values and Residuals is the r-f spread plot defined
by Cleveland (1993). The empirical distribution of S (x) is defined in Section 5.7 as
the fraction of the data that is less than or equal to x. The empirical distribution is
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defined analogously to the cumulative distribution F(x) = P(X ≤ x) of a theoretical
distribution.

We discuss each of the panels of Figure 8.7.

a. The plot of the cumulative distribution is a plot of F(x) against x.

b. The empirical cumulative distribution of an observed set of data is a plot of
proportion(X ≤ x) against x. If there are n observations in the dataset, we plot
i/n against x[i]. We use the convention here that subscripts in square brackets
mean that the data have been sorted. For example, let us look at the fitted values
ŷ and residuals e = y − ŷ from the regression analysis in Table 8.1. The left side
of Figure 8.7b is the cumulative distribution of the fitted values. The right side
is the cumulative distribution of the residuals. Note that these plots are on very
different scales for the abscissa and therefore cannot easily be compared visually.

c. We construct Figure 8.7c by making two adjustments to Figure 8.7b. First, we
center the fitted values on their mean. Second, we plot both graphs on the same
abscissa scale by forcing them to have the same x-axis constructed as the range
of the union of their individual abscissas.

d. Figure 8.7d is the transpose of the pair of graphs in Figure 8.7c. We interchange
the axes, putting the proportions on the abscissa and the data (centered fitted val-
ues in the left panel and residuals in the right panel) on the ordinate. We therefore
force the y-axes to have a common limits. S-Plus uses Figure 8.7d as the fifth
diagnostic plot of their analog of Figure 8.6. The vertical axis now uses the same
y units as panels 1 and 3 of Figure 8.6.

If our model explains the data well, then we would anticipate that the residuals
have less variability than the fitted values.

The multiple correlation R2 can be written as

R2 =
SSReg

SSTotal
=

SSReg

SSReg + SSRes
(8.21)

We can use the squared range of the fitted values as a surrogate for the SSReg and
the squared range of the residuals as a surrogate for the SSRes. This leads to the
interpretation of panel 4 of Figure 8.6 as an indicator of R2. We show a series of
illustrations of this interpretation in Figure 8.8. If the ranges of the ŷ − ȳ and y − ŷ
panels are similar, then R2 ≈ 1

2 . If the range of the fitted values is larger, then the
R2 is closer to 1, and if the range of the fitted values is smaller, then the R2 is closer
to 0.
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a. Cumulative distribution of the standard b. Empirical distributions of fitted values and
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Fig. 8.7 Explanation of panel 4 of Figure 8.6. Panels a,b,c are empirical distribution plots and
panel d is the transposed empirical distribution plot of the fitted values and residuals from the
linear regression fat.lm <- lm(bodyfat ~ abdomin, data=fat). Please see the discussion
in the text of Section 8.5 for more detailed description of the panels in this figure.
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Fig. 8.8 There are three columns y, ŷ − ȳ, and y − ŷ. The rows of the y column shows a plot of y
against x along with the fitted regression line for each of three levels of R2 (.1, .5, .9). The ŷ− ȳ and
y − ŷ columns show the transposed ECDF of the Fitted Values and Residuals for those situations.
For R2 = .1, the Residuals y− ŷ has a wider range than the Centered Fitted Values ŷ− ȳ. For R2 = .5,
the two ranges are equal. For R2 = .9, the Residuals y − ŷ has a narrower range than the Centered
Fitted Values ŷ − ȳ.

8.6 Graphics

The figures in this chapter represent several different types of plots.

Figure 8.1 is a scatterplot matrix, constructed in R with splom().

Figures 8.2 and 8.3 use regrresidplot, a function in the HH package in R. Our
function panel.residSquare, used by regrresidplot, constructs the squares
that represent the squared residuals with real squares on the plotting surface.
The heights of the squares are in y-coordinates. The widths of the squares are the
same number of inches (or cm) on the plotting surface as the heights. Each of the fig-
ures has been placed into a lattice structure which enforces the same x- and y-ranges
for comparability. Our function regrresidplot is based on the explanation of
least-squares regression in Smith and Gonick (1993).

Figure 8.5 is a scatterplot drawn with HH function ci.plot with superimposed
lines for the fitted regression line and the confidence and prediction intervals.
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Figures 8.6, 8.7, and 8.8 use functions in the HH package that are based on the R
function plot.lm to display the standard plots of Residuals and Fitted Values from
a regression analysis. The ECDF plots of Centered Fitted Values and Residuals are
drawn by the HH function diagplot5new, which is based on the S-Plus function
rfplot, which in turn is based on a plot by Cleveland (1993).

8.7 Exercises

8.1. Hand et al. (1994) report on a study by Lea (1965) that investigated the relation-
ship between mean annual temperature (degrees F) in regions of Britain, Norway,
and Sweden, and the rate of mortality from a type of breast cancer in women. The
data are accessed as data(breast).

a. Plot the data. Does it appear that the relationship can be adequately modeled by
a linear function?

b. Estimate the regression line and add this to your plot.

c. Calculate and interpret R2.

d. Calculate and interpret the standard error of estimate.

e. Interpret the estimated slope coefficient in terms of the variables mortality and
temperature.

f. Find a 95% confidence interval on the population slope coefficient.

g. Find a 95% prediction interval for a region having mean annual temperature 45.

h. One of these 16 data points is unusual compared to the others. Describe how.

8.2. Shaw (1942), later in Mosteller and Tukey (1977), shows the level of Lake
Victoria Nyanza relative to a standard level and the number of sunspots in each of
20 consecutive years. The data are accessed as data(lake). Use linear regression
to model the lake level as a function of the number of sunspots in the same year.

8.3. Does muscle mass decrease with age? The age in years and muscle mass were
obtained from 16 women. The data come from Neter et al. (1996) and are accessed
as data(muscle).

a. Plot mass vs age and overlay the fitted regression line.

b. Interpret the slope coefficient in terms of the model variables.

c. Predict with 90% confidence the muscle mass of a 66-year-old woman.

d. Interpret the calculated standard error of estimate.

e. Interpret R2 in terms of the model variables.
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8.4. The dataset data(girlht) contains the heights (in cm) at ages 2, 9, and 18 of
70 girls born in Berkeley, California in 1928 or 1929. The variables are named h2,
h9, and h18, respectively. The data come from a larger file of physical information
on these girls in Cook and Weisberg (1999).

a. Regress h18 on h9 and also h18 on h2.

b. Discuss the comparative strengths of these two regression relationships.

c. Interpret the slope coefficients of both regressions.

8.5. We would expect that the price of a diamond ring would be closely related to
the size of the diamond the ring contains. Chu (1996) presents data on the price

(Singapore dollars) of ladies’ diamond rings and the number of carats in the ring’s
diamond. The data are accessed as data(diamond).

a. Regress price on carats.

b. Notice that the estimated intercept coefficient is significantly less than 0. There-
fore, this model is questionable, although the range of the predictor variables
excludes 0. Instead fit a model without an intercept term.

c. Compare the goodness of fits of the two models. Which is preferable?

8.6. The data data(income), from Bureau of the Census (2001), contains year
2000 data on the percentage of college graduates and per capita personal income
for each of the 50 states and District of Columbia. Regress income on college.
Interpret the meaning of R2 for these data. Discuss which states have unusually low
or high per capita income in relation to their percentage of college graduates.

8.7. Prove Equation (8.15)

σ2
β̂1
= var(β̂1) =

σ2

∑
(xi − x̄)2

The proof is primarily algebraic manipulation. Rewrite (8.13) as a weighted sum of
the independent yi, that is as

β̂1 =
∑

(yi − ȳ)

(
(xi − x̄)∑
(xi − x̄)2

)
=

∑
yiki (8.22)

then write

var(β̂1) = σ2
∑

k2
i (8.23)

and simplify.
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8.8. Prove Equation (8.17) that the variance of the estimate of the intercept β̂0 has
variance

σ2
β̂0
= var(β̂0) = σ2

(
1
n
+

x̄2

∑
(xi − x̄)2

)

8.9. Algebraically prove the assertion in Equation (8.8) that in simple regression,
the sum of the calculated residuals is zero.

8.10. In Figure 8.2 we construct the actual squares of the residuals and show that
the sum of the areas of the squared residuals is smallest for the least-squares line.
We do the construction in the simplest way, placing the other three sides on the side
that is already there representing the residual. Other possibilities are

a. Place the left–right center of the square on the residual line. Use the function
panel.residSquare as the model for your function.

b. Place a circle (a real circle in inches of graph surface) on the points. Base your
function on the functions panel.residSquare and the descriptions of the R
points function (?points). The value pch=1 provides a circle. You can use the
cex argument to control the size of the circles.

Option 1: Keep the existing residual line and center the circle on the observed
point.

Option 2: Use the existing residual line as the diameter of the circle.



Chapter 9

Multiple Regression—More Than One Predictor

In Chapter 8 we introduce the algebra and geometry behind the fitting of a linear
model relating a single response variable to one or more explanatory (predictor)
variables using the criterion of least squares. In this chapter we consider in more
detail situations where there are two or more predictors.

The two linear modeling techniques we have studied so far, regression in
Chapter 8 and analysis of variance in Chapter 6, have much of their mathematics
interpretation in common. In this chapter we explore the common mathematical
features, with some examples of how they apply. In the following chapters we use
this common structure.

We begin by extending the Chapter 8 discussion of regression with a single pre-
dictor (simple regression) to allow for two or more predictors. Multiple regression
refers to regression analysis with at least two predictors. There is another term mul-
tivariate regression which refers to situations with more than one response variable.
We do not discuss multivariate regression in this book.

9.1 Regression with Two Predictors—Least-Squares Geometry

The graphics for least squares with two x-variables, and in general for more than
two x-variables, are similar to the graphics in Figure 8.2. We will work with
two x-variables, abdomin and biceps, from the data(fat) dataset we used in
Chapter 8. In the three snapshots of the basic 3-dimensional plot in Figure 9.1,
bodyfat is plotted as y against the other two variables as x1 and x2.

The response variable is placed on the vertical dimension and the two x-variables
biceps and abdomin define the horizontal plane. The red and green dots at the
observations show the three-dimensional location of the observed points. Positive
residuals are shown as green dots above the least-squares plane and are connected

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 9
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to the fitted value on the plane by a green residual line. The green residual line forms
one edge of the square. Negative residuals are shown as red dots below the least-
squares plane and are connected to the fitted value on the plane by a red residual
line. The red residual line forms one edge of the square.

The least-squares plane minimizes the sum of the squared areas. The displayed
squares are the squares whose sum has been minimized by the least-squares process.
The view in the right panel is from above the plane. It shows biceps coming out
of the page and abdomin going into the page. The view in the center panel is from
a point that is on the least-squares plane. The view in the left panel is from below
the least-squares plane. Variable biceps is coming out of the page and variable
abdomin is almost along the page. The code in file HHscriptnames(9) constructs
an interactive 3-d version of this plot. We selected these specific static snapshots
from the interactive plot.

We think of this plot as a point cloud in 3-space floating over the surface defined
by the x-variables. Any plane other than the least-squares plane will show a larger
sum of squared areas than the least-squares plane illustrated here.

9.2 Multiple Regression—Two-X Analysis

The specification of the analysis for two x-variables is similar to that for one
x-variable. The sequential ANOVA table and the table of coefficients for a two
x-variable analysis of the body fat data data(fat) are in Table 9.1.

Since both predictors are significantly different from 0, the arithmetic justifies
the illustration in Figure 9.1, where we see from the regression plane that ŷ changes
linearly with changes in either x1 and x2. The table of coefficients tells us that on
average for this population, percent body fat increases by 0.683 if abdomen circum-
ference increases by one cm and biceps is unchanged, and percent body fat decreases
by .922 if biceps increases by one cm while abdomin is unchanged.

The t-value for biceps (the second variable in the ANOVA table) is related to the
F-value for biceps: t2 = (−2.946)2 = 8.677 = F. The t-value (8.693) for abdomin
(the first variable in the ANOVA table) is not simply related to the correspond-
ingly labeled F-value (101.172). We investigate this relationship in the discussion
of Table 13.27.

Figure 9.2 shows the diagnostics from the two-X regression model of Section 9.2.
Compare this to the similar plot for one-X regression in Figure 8.6.
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Table 9.1 Sequential ANOVA table and table of regression coefficients from the two-x model
with y=bodyfat, x1=abdomin, and x2=biceps. See Figure 9.1.

> fat2.lm <- lm(bodyfat ~ abdomin + biceps, data=fat)

> anova(fat2.lm)

Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)

abdomin 1 2440 2440 101.17 5.6e-13 ***

biceps 1 209 209 8.68 0.0051 **

Residuals 44 1061 24

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(fat2.lm)

Call:

lm(formula = bodyfat ~ abdomin + biceps, data = fat)

Residuals:

Min 1Q Median 3Q Max

-11.252 -3.674 0.716 3.771 10.241

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.5937 6.6922 -2.18 0.0346 *

abdomin 0.6829 0.0786 8.69 4.2e-11 ***

biceps -0.9222 0.3130 -2.95 0.0051 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.91 on 44 degrees of freedom

Multiple R-squared: 0.714,Adjusted R-squared: 0.701

F-statistic: 54.9 on 2 and 44 DF, p-value: 1.1e-12

9.3 Multiple Regression—Algebra

Everything in simple regression analysis carries over to multiple regression. There
are additional issues that arise because we must also study the relations among the
predictor variables. The algebra for multiple regression is most easily expressed in
matrix form. (A brief introduction to matrix algebra appears in Appendix I.) The for-
mulas for simple regression can be derived as the special case of multiple regression
with p = 1.
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Fig. 9.2 Diagnostics for lm(bodyfat ~ abdomin + biceps, data=fat). Compare this to
the similar plot for one-X regression in Figure 8.6.

Assume

Y
n×1

= X
n×(1+p)

β
(1+p)×1

+ ε
n×1

(9.1)

or equivalently

yi = β0 + β1Xi1 + · · · + βpXip + εi for i = 1, . . . , n (9.2)

where

• Y
n×1

are observed values,

• X
n×(1+p)

= [1 X1X2 . . . Xp ] are observed values with 1
n×1

representing the constant

column with 1 in each row and Xj
n×1

indicating the column with Xi j in the ith row,

• β
(1+p)×1

are unknown constants,

• ε
n×1
∼ N(0, σ2I) are independent.

Then the least-squares estimate β̂ is obtained by minimizing the sum of squared
deviations

S = (Y − Xβ)′(Y − Xβ) =
n∑

i=1

(
yi − (β0 + β1Xi1 + · · · + βpXip)

)2
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by taking the derivatives (∂S/∂β j) with respect to all the β j and setting them
to 0. The resulting set of equations, called the Normal Equations and generalizing
Equation 8.6,

(X′X)̂β = (X′Y) (9.3)

are solved for β̂. The solution [equivalent to Equation 8.7] is equal to

β̂ = (X′X)−1(X′Y) =
(
(X′X)−1X′

)
Y = (X+)Y (9.4)

The symbol X+
def
= (X′X)−1X′ is the notation for the Moore–Penrose generalized inv-

erse of any rectangular matrix. In the special case of square invertible matrices the
generalized inverse becomes the familiar matrix inverse. We introduce this notation
here because it simplifies the appearance of the equations. We start with the model
Y = Xβ + ε in Equation (9.1) and conclude with the estimate β̂ = X+Y in Equation
(9.4). We effectively moved the X to the other side and replaced the ε with the hat
on the β. Note that Equation (9.4) is an identity, but neither efficient nor numerically
stable as a computing algorithm. An efficient algorithm uses Gaussian elimination
to solve the equations directly. See Section I.4.7 for further discussion on efficient
computation.

We construct the fitted values with

Ŷ = Xβ̂ =
(
X(X′X)−1X′

)
Y = HY (9.5)

where the matrix

H
def
= X(X′X)−1X′ (9.6)

is a projection matrix. The sum of squares (SS) for the regression is SSReg = Y ′HY .
The projection matrix H is called the hat matrix because multiplying H by Y places
a hat ‘̂ ’ on Y . We can see that Hi j = ∂Ŷi/∂Yj. We discuss the hat matrix in
Section 9.3.1.

The residuals are defined as the difference

e = Y − Ŷ = (I − H)Y (9.7)

between the observed values Y and the fitted values Ŷ . With least-squares fitting, the
residuals are orthogonal to the observed x-values

e′X = 0 (9.8)

and therefore to the fitted values

e′Ŷ = e′Xβ̂ = 0 (9.9)

The variance–covariance matrix of the residuals e is σ2(I−H). Note in particular that
var(ei) = σ2(1−Hii) is not constant for all i. As a consequence the confidence bands
in Figure 8.5 are not parallel to the regression line, but instead have a minimum
width at the mean of the x values.
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An unbiased estimator of σ2 is

s2 =
Y ′(I − H)Y
n − p − 1

= MSRes = SSRes/dfRes (9.10)

Its square root, s, sometimes called the standard error of estimate, is an asymptot-
ically unbiased estimator of σ. As in the case of simple regression, the sum of the
residuals is zero, that is,

n∑

i=1

ei = 1′e = 0 (9.11)

where 1′ is a row vector of ones. The proof of this assertion is requested in
Exercise 9.1.

Both β̂ and Ŷ are linear combinations of yi. The yi are independent because the εi

are independent. Hence the elementary theorems

E(a1y1 ± a2y2) = a1E(y1) ± a2E(y2) (3.8)

and

var(a1y1 ± a2y2) = a2
1 var(y1) + a2

2 var(y2) (3.9)

are applicable. These are where we get Equation (8.15), the standard error for β1,
the corresponding formula

var(β̂) = σ2(X′X)−1 (9.12)

for the estimator of β in Equation (9.4), and formulas (9.24) and (9.25) for tests
and confidence intervals about E(Y |X) and for prediction intervals about Y for new
values of X.

9.3.1 The Hat Matrix and Leverage

The hat matrix in Equation (9.6) is called that because premultiplication by H places
a hat ‘̂’ on Y: Ŷ = HY . The ith diagonal of H is called the leverage of the ith case
because it tells how changes in Yi affect the location of the fitted regression line,
specifically:

∂Ŷi

∂Yi
= Hii (9.13)

If
(
Hii > 2(p + 1)/n

)
, then the ith point is called a high leverage point. See

Section 11.3.1. Equation (9.13) shows that changes in the observed Yi-value of high
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leverage points have a large effect on the predicted value Ŷi, that is, they have a large
effect on the location of the fitted regression plane.

The hat matrix is used in regression diagnostics, that is, techniques for evaluating
how the individual data points affect the regression analysis. Many diagnostics are
discussed in Section 11.3.

Frequently these diagonals of H are denoted by hi = Hii. They are calculated in
R with the command hat(X).

A specific formula for the leverage hi itself is almost simple:

hi = Xi·(X′X)−1X′i· where Xi· is the ith row of X (9.14)

In an alternate but common notation, the predictor matrix does not include the
column 1. To avoid excessive confusion, define Z to be all the columns of X except
the initial column 1:

Z
n×p
= [X1X2 . . . Xp ]

and let

Z̄ = (X̄1X̄2 . . . X̄p)

In this notation the formula for leverage looks worse:

hi =
1
n
+ (Zi· − Z̄)

(
(Z − 1Z̄)′(Z − 1Z̄)

)−1
(Zi· − Z̄)′ (9.15)

The term 1
n in Equation (9.15), with the Z matrix which excludes the column 1, is

not needed in Equation (9.14), with the X matrix which includes the column 1. In
simple regression, with Z = X1 = x, formula (9.15) simplifies to Equation (8.19)

hi =
1
n
+

(xi − x̄)2

n∑
i=1

(xi − x̄)2
(8.19)

9.3.2 Geometry of Multiple Regression

Several types of pictures go along with multiple regression. We have already looked
at the scatterplot matrix, drawn with the R command splom(data.frame); for
example, see Figure 8.1 for the splom of the body fat dataset fat.

The picture that goes best with the defining least-squares equations is the multi-
dimensional point cloud. It is easiest to illustrate this with Y and two X-variables.
See Figures 8.2 and 9.1 for one-X and two-X examples.
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A similar construction is in principle possible for more X-variables. Illustrating
the projection of four or more dimensions onto a two-dimensional graph is difficult
at best.

9.4 Programming

9.4.1 Model Specification

We use several notations for the specification of a regression model to a computer
program. How are the statements constructed in each notation, and what are their
syntax and their semantics?

For specificity, let us look at a linear regression model with a response variable y
and two predictor variables x1 and x2. We express this model in several equivalent
notations. In the algebraic notation of Section 9.3, we have

Y
n×1

= X
n×(1+2)

β
(1+2)×1

+ ε
n×1

(9.16)

or equivalently

yi = β0 + β1Xi1 + β2Xi2 + εi for i = 1, . . . , n (9.17)

In R model formula notation, we have

y ~ x1 + x2 (9.18)

In SAS model statement notation (with the space character indicating the formulaic
sum), we have

y = x1 x2 (9.19)

In both computer languages the statement is read, “y is modeled as a linear function
of x1 and x2.”

The four statements (9.16)–(9.19) are equivalent. Both computational specifica-
tions remove the redundancy in notation used by the traditional scalar algebra nota-
tion. The program knows that the variables (y, x1, and x2) have length n; there is
no need to repeat that information. All linear model specifications have regression
coefficients, and most have a constant term (we discuss models without a constant
term in Section 9.8); there is no need to specify the obvious. There is always an error
term because the model does not fit the data exactly; there is no need to specify the
error term explicitly. The two pieces of information unknown to the program are
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• Which variable is the response and which are the predictors. This is indicated
positionally—the response is on the left, and notationally—the “~” or “=” sep-
arates the response from the predictors. A separation symbol is needed because
the same notation can be generalized to express multiple response variables.

• The relationship between the predictors. R indicates summation explicitly with
the “+” and SAS indicates it implicitly by leaving a space between the predictor
variable names. Other relationships, for example crossing or nesting (to be dis-
cussed beginning in Section 13.5), are indicated by other algebraic symbols as
indicated in Table 13.18.

The interpretation of operator symbols in the model specification notation is rel-
ated to, but not identical to, the interpretation of the same symbols in an ordinary
algebra statement. The model formulas (9.18) and (9.19) mean:

find the coefficients β̂0, β̂1, β̂2 that best fit

yi = β̂0 + β̂1xi1 + β̂2xi2 + ε̂i (9.20)

for the observed values (yi, xi1, xi2) for all i: 1 ≤ i ≤ n.

The “+” and space “ ” in formulas (9.18) and (9.19) do not have the ordinary arith-
metic sense of xi1 + xi2.

9.4.2 Printout Idiosyncrasies

The R summary and anova functions do not print the Total line in their ANOVA
tables.

SAS PROC GLM uses the name “Type I Sum of Squares” for the sequential
ANOVA table. See the discussion of sums of squares types in Section 13.6.1.

9.5 Example—Albuquerque Home Price Data

9.5.1 Study Objectives

Realtors can use a multiple regression model to justify a house selling price based on
a list of desirable features the house possesses. Such data are commonly compiled
by local boards of realtors. We consider a data file containing a random sample of
117 home sales in Albuquerque, New Mexico during the period February 15 through
April 30, 1993, taken from Albuquerque Board of Realtors (1993).
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9.5.2 Data Description

We use a subset of five of the eight variables for which data are provided, and 107
of the 117 houses that have information on all five of these variables.

price: Selling price in $100’s

sqft: Square feet of living space

custom: Whether the house was built with custom features (1) or not (0)

corner: Whether the house sits on a corner lot (1) or not (0)

taxes: Annual taxes in $

We investigate models of price as a function of some or all of the candidate predic-
tors sqft, custom, corner, and taxes. This example assumes that taxes poten-
tially determine price. In some real estate contexts the causality could work in the
opposite direction: selling prices can affect subsequent home appraisals and hence
tax burden.

9.5.3 Data Input

The data are accessed with data(houseprice) and looked at initially with the
scatterplot matrices in Figures 9.3 and 9.4. Two of the four candidate predictors,
custom and corner, are dichotomous variables, and the panels involving them in
Figure 9.3 are wasteful of space and not very informative. Figure 9.4, with separate
superpanels for the two values of corner and separate plot symbols for the two
values of custom, displays the information much more efficiently. We learn from
these figures that custom houses tend to have higher prices than regular houses,
and corner houses have different patterns of relationships between price and the
continuous predictors than middle houses.

Figure 9.4 suggests that price is directly related to all four candidate predictors.
We proceed with the analysis by regressing price on the four variables in Table 9.2.
In this Table we examine the signs of the regression coefficients and the magnitudes
of their p-values. We see that price is strongly positively associated with sqft,
taxes and custom (as opposed to regular) houses. Such conclusions are consistent
with common knowledge of house valuation. The predictor corner has a marginally
significant negative coefficient. Hence there is moderate evidence that, on average,
corner houses tend to be lower priced than middle houses.

The magnitudes of the regression coefficients also convey useful information.
For example, on average, each additional square foot of living space corresponds
to a 0.2076 × $100 = $20.76 increase in price, and on average custom houses sell
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Fig. 9.3 House-price data. The discreteness of variables customf and cornerf decreases the in-
formativeness of this splom, particularly the panel for this pair of variables. Figure 9.4 is a preferred
splom presentation of these data.

for 156.81481 × $100 = $15,681.48 more than regular houses. The R2 = 0.8280
says that in the population of houses from which data(houseprice) is a random
sample, 82.8% of the variability in price is accounted for by these four predictors.

9.6 Partial F-Tests

Sometimes we wish to examine whether two or more predictor variables acting
together have a significant impact on the response variable. For example, suppose
we consider the house-price data of Section 9.5 with four candidate predictors,
sqft, custom, corner, and taxes, and wish to examine if custom and corner

together have a significant impact on price, above and beyond the impacts of
sqft and taxes. R (in Table 9.3) approaches this by direct comparison of two
models. The full model contains all predictors under consideration. The reduced
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Table 9.2 Analysis of variance table for house-price data.

> houseprice.lm2 <- lm(price ~ sqft + taxes + custom + corner,

+ data=houseprice)

> anova(houseprice.lm2)

Analysis of Variance Table

Response: price

Df Sum Sq Mean Sq F value Pr(>F)

sqft 1 11102445 11102445 421.34 < 2e-16 ***

taxes 1 1374474 1374474 52.16 9.5e-11 ***

custom 1 350716 350716 13.31 0.00042 ***

corner 1 114215 114215 4.33 0.03985 *

Residuals 102 2687729 26350

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(houseprice.lm2)

Call:

lm(formula = price ~ sqft + taxes + custom + corner,

data = houseprice)

Residuals:

Min 1Q Median 3Q Max

-544.6 -99.5 -4.8 64.8 510.2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 175.166 56.312 3.11 0.00242 **

sqft 0.208 0.061 3.40 0.00096 ***

taxes 0.677 0.101 6.70 1.2e-09 ***

custom 156.815 44.495 3.52 0.00064 ***

corner -83.401 40.059 -2.08 0.03985 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 162 on 102 degrees of freedom

Multiple R-squared: 0.828,Adjusted R-squared: 0.821

F-statistic: 123 on 4 and 102 DF, p-value: <2e-16
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Fig. 9.4 Albuquerque house-price data. Custom houses go for higher prices than regular houses.
Corner houses have a different pattern than middle houses.

Table 9.3 Partial F-tests of H0: βcustom = βcorner = 0 using the R anova() function with two
linear models as arguments.

> houseprice.lm1 <- lm(price ~ sqft + taxes, data=houseprice)

> anova(houseprice.lm1, houseprice.lm2)

Analysis of Variance Table

Model 1: price ~ sqft + taxes

Model 2: price ~ sqft + taxes + custom + corner

Res.Df RSS Df Sum of Sq F Pr(>F)

1 104 3152660

2 102 2687729 2 464931 8.82 0.00029 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

model contains all predictors apart from the ones we test in order to see if then can
be eliminated from the model. Partial F refers to the fact that we are simultane-
ously testing part of the model’s predictors, not all predictors but perhaps more than
just one of them. The idea behind this test is apparent from Table 9.3. The F-test
examines whether the reduction in residual sum of squares as a result of fitting the
more elaborate model is a significant reduction. This assessment is performed by
measuring the extra sum of squares, defined as
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(residual SS from reduced model) − (residual SS from full model) (9.21)

against the residual sum of squares from the full model. The degrees of freedom
associated with the extra sum of squares equals the number of parameters being
tested for possible elimination.

The general form of the test is

F =
(extra SS )/(df associated with extra SS)

(full model residual SS)/(df associated with full model residual SS)
(9.22)

The strategy of this approach is used whenever one wishes to compare the fits of
two linear models, one of which has the same terms as the other plus at least one
more term.

For testing the hypothesis that the population regression coefficients of custom
and corner are both equal to 0, we see that the F-statistic is 8.82 on 2 and 102
degrees of freedom. There are two numerator degrees of freedom because the null
hypothesis involves constraints on two model parameters. The very small p-value
strongly suggests that this null hypothesis is false. We conclude that at least one of
custom and corner is needed in the model.

The preceding discussion assumes that sqft and taxes were already in the
model. It is also possible to test the combined effect on price of custom and
corner compared with no other predictors, or exactly one of the predictors sqft

and taxes. However, we do not pursue these possibilities here.

9.7 Polynomial Models

If the relationship between a response Y and an explanatory variable X is believed
to be nonlinear, it is sometimes possible to model the relationship by adding an
X2-term to the model in addition to an X-term. For example, if Y is product demand
and X is advertising expenditure on the product, an analyst might feel that beyond
some value of X there is “diminishing marginal returns” on this expenditure. Then
the analyst would model Y as a function of X, X2, and possibly other predictors, and
anticipate a significant negative coefficient for X2. Occasionally a need is encoun-
tered for higher-order polynomial terms.

An example from Hand et al. (1994), original reference Williams (1959), is
data(hardness) which we first encountered in Exercise 4.5. In this section we inv-
estigate the modeling of hardness as a quadratic function of density. We pursue
this analysis in Exercise 11.2 from another angle, a transformation of the response
variable hardness.
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Hardness of wood is more difficult to measure than density. Modeling hardness
in terms of density is therefore desirable. These data come from a sample of Aus-
tralian Janka timbers. The Janka hardness test measures the resistance of a sample
of wood to denting and wear. A quadratic model fits these data better than a linear
model. An additional virtue of the quadratic model is that its intercept term differs
insignificantly from zero; this is not true of a model for these data containing only a
linear term. (If wood has zero hardness, it certainly has zero density.)

The fitted quadratic model in Table 9.4 is

density = −118.007 + 9.4340 hardness + 0.5091 hardness2

The regression coefficient for the quadratic term is significantly greater than zero,
indicating that the plot is a parabola opening upwards as shown in Figure 9.5. The
p-value for the quadratic regression coefficient is identical to the p-value for the
quadratic term in the ANOVA table because both tests are for the marginal effect
of the quadratic term assuming the linear term is already in the model. The two
p-values for the linear term differ because they are testing the linear coefficient
in two different models. The p-value for linear regression coefficient assumes the
presence of a quadratic term in the model, but the linear p-value in the sequential
ANOVA table addresses a model with only a linear component.

When fitting a truly quadratic model, it is necessary to include the linear term in
the model even if its coefficient does not significantly differ from zero unless there is
subject area theory stating that the relationship between the response and predictor
lacks a linear component.

The regression coefficients of the x2 term are difficult to interpret. An interpre-
tation should be done with the coefficients of the orthogonal polynomials shown
in Table 9.5, not the simple polynomials of Table 9.4. See Section 10.4 for further
discussion.
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Table 9.4 Quadratic regression of hardness data. The quadratic term, with p=.0027, is very im-
portant in explaining the curvature of the observations. See Figure 9.5 to compare this fit with the
linear fit. Compare the regression coefficients here with the regression coefficients in Table 9.5
where we use the orthogonal quadratic polynomial, rather than the simple square, for the quadratic
regressor.

> data(hardness)

> hardness.lin.lm <- lm(hardness ~ density,

+ data=hardness)

> anova(hardness.lin.lm)

Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)

density 1 21345674 21345674 637 <2e-16 ***

Residuals 34 1139366 33511

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> hardness.quad.lm <- lm(hardness ~ density + I(density^2),

+ data=hardness)

> anova(hardness.quad.lm)

Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)

density 1 21345674 21345674 815.9 <2e-16 ***

I(density^2) 1 276041 276041 10.6 0.0027 **

Residuals 33 863325 26161

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> coef(summary.lm(hardness.quad.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -118.0074 334.9669 -0.3523 0.726857

density 9.4340 14.9356 0.6316 0.531970

I(density^2) 0.5091 0.1567 3.2483 0.002669
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Table 9.5 Quadratic regression of hardness data with orthogonal polynomials. The quadratic term,
with p=.0027, is very important in explaining the curvature of the observations. See Figure 9.5 to
compare this fit with the linear fit. In this fit with the orthogonal polynomial for the quadratic term,
the regression coefficient for the linear term is identical to the regression coefficient in the simple
linear regression. Compare to the very different regression coefficients in Table 9.4. The ANOVA
tables are identical.

> data(hardness)

> hardness.lin.lm <- lm(hardness ~ density,

+ data=hardness)

> anova(hardness.lin.lm)

Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)

density 1 21345674 21345674 637 <2e-16 ***

Residuals 34 1139366 33511

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> coef(summary.lm(hardness.lin.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1160.50 108.580 -10.69 2.066e-12

density 57.51 2.279 25.24 1.333e-23

> h2 <- data.frame(density=hardness$density, poly(hardness$density, 2))

> xyplot(X1 + X2 ~ density, data=h2) ## graph not shown in book

> hardness.quad.orth.lm <- lm(hardness ~ density + h2$X2,

+ data=hardness)

> anova(hardness.quad.orth.lm)

Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)

density 1 21345674 21345674 815.9 <2e-16 ***

h2$X2 1 276041 276041 10.6 0.0027 **

Residuals 33 863325 26161

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> coef(summary.lm(hardness.quad.orth.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1160.50 95.937 -12.096 1.125e-13

density 57.51 2.013 28.564 7.528e-25

h2$X2 525.40 161.745 3.248 2.669e-03
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Fig. 9.5 Linear y ∼ x and quadratic y ∼ x + x2 fits of y=hardness to x=density. The quadratic
curve fits much better as can be seen from the much smaller squares (leading to smaller residual
sum of squares) at the left and right ends of the density range in the quadratic fit. See Table 9.4
for the numerical comparison.

9.8 Models Without a Constant Term

Sometimes it is desired that the statistical model for a response not contain a con-
stant (i.e., vertical intercept) term because the response is necessarily equal to zero
if all predictors are zero. An example is the modeling of the body fat data discussed
in Section 9.1. Obviously, if a “subject” has zero measurements for abdomin and
biceps, then the response bodyfat is necessarily zero also. Similarly, if we wish
to model the volume of trees in a forest as a function of trees’ diameters and heights,
a “tree” having zero diameter and height must have no volume.

An advantage to explicitly recognizing the zero intercept constraint is that a
degree of freedom that would be used to estimate the intercept is instead used to
estimate the model residual. This results in slightly increased power of tests and
decreased sizes of interval estimates of model parameters.

Figure 9.6 and Table 9.6 are for regressions of bodyfat on biceps, both with
and without a constraint that the regression pass through the origin. Note the appre-
ciably smaller slope of the no-intercept regression and that the no-intercept model
has 46 df for residual as compared with 45 df for the unconstrained model.
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Fig. 9.6 Regressions with and without a constant term for a portion of the body fat data. See
Table 9.6. The left panel is limited to the range of the data. The right panel extends the range to
include both intercepts. The dotted line through the origin at (0,0) makes an unwarranted extrapo-
lation outside the range of the data.
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Table 9.6 Body fat data: Regressions of bodyfat on biceps, with an intercept term (here) and
without an intercept term (in Table 9.7). See Figure 9.6. As compared with the intercept model,
the no-intercept model has larger values of both the regression sum of squares and the total sum of
squares, and hence also a larger value of R2.

> data(fat)

> ## usual model with intercept

> xy.int.lm <- lm(bodyfat ~ biceps, data=fat)

> summary(xy.int.lm)

Call:

lm(formula = bodyfat ~ biceps, data = fat)

Residuals:

Min 1Q Median 3Q Max

-16.580 -5.443 -0.846 5.255 21.088

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.364 10.855 -1.88 0.06715 .

biceps 1.171 0.326 3.59 0.00081 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 8.01 on 45 degrees of freedom

Multiple R-squared: 0.223,Adjusted R-squared: 0.206

F-statistic: 12.9 on 1 and 45 DF, p-value: 0.00081

> anova(xy.int.lm)

Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)

biceps 1 827 827 12.9 0.00081 ***

Residuals 45 2884 64

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 9.7 Body fat data: Regressions of bodyfat on biceps, without an intercept term. See
Table 9.6 for the model with an intercept term. See Figure 9.6. R uses the notation - 1 in the
formula to indicate that the column of 1 is to be suppressed from the dummy variable matrix. As
compared with the intercept model, the no-intercept model has larger values of both the regression
sum of squares and the total sum of squares, and hence also a larger value of R2. The no-intercept
model has a very high regression sum of squares and corresponding F-value because it includes
the contribution from the constant term.

> data(fat)

> ## model without a constant term

> xy.noint.lm <- lm(bodyfat ~ biceps - 1, data=fat)

> summary(xy.noint.lm)

Call:

lm(formula = bodyfat ~ biceps - 1, data = fat)

Residuals:

Min 1Q Median 3Q Max

-15.110 -6.145 -0.006 6.841 20.185

Coefficients:

Estimate Std. Error t value Pr(>|t|)

biceps 0.563 0.036 15.6 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 8.22 on 46 degrees of freedom

Multiple R-squared: 0.841,Adjusted R-squared: 0.838

F-statistic: 244 on 1 and 46 DF, p-value: <2e-16

> anova(xy.noint.lm)

Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)

biceps 1 16506 16506 244 <2e-16 ***

Residuals 46 3110 68

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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9.9 Prediction

Generalizing the discussion in Section 8.3.5 for simple regression, the multiple reg-
ression model equation, with regression coefficients estimated by the least-squares
analysis, is commonly used for two distinct but related problems.

1. Find a confidence interval on the conditional mean of the population of Y |x. That
is, estimate a range of mean E(Y |x)-values that (with high confidence) bracket
the true mean for the specified values of the predictors x.

2. Find a prediction interval for a new observed response Y0 from these values of
the predictors x; i.e., an interval within which a particular new observation will
fall with a certain probability.

We continue the analysis of data(fat) to illustrate the distinction between these
two problems. Using R we continue with fat2.lm displayed in Table 9.1. For speci-
ficity, we work with x1 = abdomin = 93 and x2 = biceps = 33.

The algebraic setup begins from the model in Equation (9.1), from which it fol-
lows that

s2
e =

Y ′Y − β̂′X′Y
n − p − 1

=
(Y − Ŷ)′(Y − Ŷ)

n − p − 1

Let x0 = (93 33) denote the vector of predictor values for which we wish to construct
these two intervals. Define

h0 = x0(X′X)−1x′0 (9.23)

Let t α
2 ,n−p−1 denote the 100(1− α

2 ) percentage point of the t distribution with n− p−1
degrees of freedom. The expected response E(y|x0) (the center of the confidence
interval) and the predicted response ŷx0 for a new observation (the center of the pre-
diction interval) are both equal to x′0β̂. Then the 100(1 − α)% confidence interval is

x′0β̂ ± t α
2 ,n−p−1 se

√
h0 (9.24)

and the 100(1 − α)% prediction interval is

x′0β̂ ± t α
2 ,n−p−1 se

√
1 + h0 (9.25)

The prediction interval is wider than the confidence interval because we are pre-
dicting one particular y corresponding to x0, but estimating with confidence the
mean E(y|x0) of all possible y’s that could arise from x0. A particular y could be
much smaller or larger than the mean, and hence there is more uncertainty about y
than about the mean. This is captured in the distinction between the two preceding
formulas: the “1+” inside the square root. The “1+” arises from the fact that we must
predict the ε0 part of the model, but in the estimation problem, we estimate that ε0
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Table 9.8 95% Confidence and prediction intervals for the body-fat example. See Tables 9.1
and 13.27 for the ANOVA table and the regression coefficients. The predict function produces
se
√

h0=se.fit, se=residual.scale and the confidence and prediction intervals.

> fat2.lm <- lm(bodyfat ~ abdomin + biceps, data=fat)

> pi.fit <- predict(fat2.lm,

+ newdata=data.frame(abdomin=93:94, biceps=33:34),

+ se.fit=TRUE, interval="prediction")

> ci.fit <- predict(fat2.lm,

+ newdata=data.frame(abdomin=93:94,

+ biceps=33:34),

+ se.fit=TRUE, interval="confidence")

> pi.fit

$fit

fit lwr upr

1 18.49 8.485 28.49

2 18.25 8.236 28.26

$se.fit

1 2

0.7171 0.7518

$df

[1] 44

$residual.scale

[1] 4.911

> ci.fit$fit

fit lwr upr

1 18.49 17.04 19.93

2 18.25 16.73 19.76

is zero. As a result, the prediction interval for a given set of explanatory variables is
always wider than the corresponding confidence interval.

The confidence and prediction intervals for this example are shown in Table 9.8.
The confidence interval (17.0, 19.9) is for the mean percentage body fat of a popula-
tion of individuals each having abdomin circumference 93 cm and biceps circum-
ference 33 cm. The prediction interval (8.5, 28.5) is for one particular individual
with this combination of abdomin and biceps. Observe that the prediction interval
is wider than the confidence interval. This is because a single person can have atyp-
ically low or high body fat, but “many” people includes those with both atypically
low and high body-fat percentages in comparison to their abdomin and biceps,
and the lows and highs tend to cancel out when averaging. See Table 8.8 for an
illustration of this in the more familiar setting of estimation of a sample mean.
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9.10 Example—Longley Data

9.10.1 Study Objectives

The Longley data is a classic small set containing 16 years of annual macroeco-
nomic data that Longley (1967) used to illustrate difficulties arising in computations
involving highly intercorrelated variables. R does accurately calculate the regres-
sion coefficients for these data. Less numerically sophisticated statistical software
packages, including most in existence at the time Longley wrote his article, produce
incorrect analyses because the high intercorrelation, or ill-conditioning of the data,
is a computational challenge for the numerical solution of linear equations and re-
lated matrix operations. Please see the computational discussion in Section I.4.7 for
details.

We use data(longley), distributed with R, a subset of all variables in Long-
ley’s original data set. Our intent here is to develop a parsimonious model to explain
the response variable Employed as a function of the remaining variables as can-
didate predictors. The extreme collinearity arises in this data set because all of its
economic variables tend to increase as time progresses. We acknowledge that these
are really time series data, and if more than 16 years were involved, it would be
appropriate to use time series techniques such as those in Chapter 18 for a proper
analysis. We use this example because it is now a classical dataset for investigating
a set of poorly conditioned linear equations. Our intention in this section is to ana-
lyze these data using multiple regression, demonstrating ways to bypass or confront
the difficulties collinearity presents for regression modeling. In contrast, time series
analyses specifically seek to model the interdependence caused by time.

9.10.2 Data Description

GNP.deflator: GNP adjusted for inflation based on year 1954 = 100

GNP: Gross National Product, 1964 Economic Report of the President

Unemployed: 1964 Economic Report of the President

Armed.Forces: Number serving in the U.S. Armed Forces

Population: Noninstitutional, aged at least 14

Year: 1947 through 1962

Employed: Total employment, U.S. Department of Labor, March 1963
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9.10.3 Discussion

Figure 9.7 contains a scatterplot matrix of the Longley data. Here the response vari-
able Employed appears in the top (last) row and last column. (In general, for ease of
interpretation, response variables should appear in this way or in the bottom (first)
row and first column. Remember from Section 4.7 and Figure 4.12 that we strongly
recommend that sploms have the main diagonal in the SW–NE direction.)

We see that Employed is highly positively correlated with four of the six pre-
dictors and mildly positively correlated with the others. In addition, the predictors
(including Year) that are highly correlated with Employed are also highly correlated
with one another. This suggests that these four predictors carry redundant informa-
tion and therefore some of them are unnecessary for modeling the response.

Consider the listing in Table 9.9 for a model containing all six candidate predic-
tors. The proportion of variability in the response Employed that is collectively ex-
plained by all six predictors is given by R2, the proportion of the Sum of Squares

GNP.deflator100

105

110

115 100105110115

85

90

95

100

85 90 95 100

GNP400

450

500

550 400 450 500 550
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250 300 350 400

Unemployed350
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450 350 400 450
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Employed
66

68

70 66 68 70
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62

64

60 62 64

Fig. 9.7 Longley data splom. Notice the high positive correlations of four predictors (including
Year) with one another and with the response variable Employed.
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Table 9.9 Longley data regression using all six original predictors.

> longley.lm <- lm( Employed ~ . , data=longley)

> summary(longley.lm)

Call:

lm(formula = Employed ~ ., data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.4101 -0.1577 -0.0282 0.1016 0.4554

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.48e+03 8.90e+02 -3.91 0.00356 **

GNP.deflator 1.51e-02 8.49e-02 0.18 0.86314

GNP -3.58e-02 3.35e-02 -1.07 0.31268

Unemployed -2.02e-02 4.88e-03 -4.14 0.00254 **

Armed.Forces -1.03e-02 2.14e-03 -4.82 0.00094 ***

Population -5.11e-02 2.26e-01 -0.23 0.82621

Year 1.83e+00 4.55e-01 4.02 0.00304 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.305 on 9 degrees of freedom

Multiple R-squared: 0.995,Adjusted R-squared: 0.992

F-statistic: 330 on 6 and 9 DF, p-value: 4.98e-10

> anova(longley.lm)

Analysis of Variance Table

Response: Employed

Df Sum Sq Mean Sq F value Pr(>F)

GNP.deflator 1 174.4 174.4 1876.53 9.3e-12 ***

GNP 1 4.8 4.8 51.51 5.2e-05 ***

Unemployed 1 2.3 2.3 24.36 0.00081 ***

Armed.Forces 1 0.9 0.9 9.43 0.01334 *

Population 1 0.3 0.3 3.75 0.08476 .

Year 1 1.5 1.5 16.13 0.00304 **

Residuals 9 0.8 0.1

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> vif(longley.lm)

GNP.deflator GNP Unemployed Armed.Forces

135.532 1788.513 33.619 3.589

Population Year

399.151 758.981
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column not in the Residuals row: more than 0.99. So the predictors can be used
to adequately explain Employed. In this model, three predictors that seem to be
closely correlated with the response Employed in Figure 9.7, Population, GNP,
and GNP.deflator, are not statistically significant in Table 9.9. We continue to
discuss the Longley data, focusing on the selection of an appropriate subset of the
predictors, in Sections 9.11 and 9.12.

9.11 Collinearity

Collinearity, also called multicollinearity, is a condition where the model’s pre-
dictors variables are highly intercorrelated. A consequence of this situation is the
inability to estimate the model’s regression coefficients with acceptable precision.
Therefore, models with this problem are not considered useful. It is unacceptable to
reach a final model that has this condition to an appreciable extent.

Collinearity arises when investigators include predictors carrying redundant inf-
ormation in the model. A symptom is a model with a high R2, showing that collec-
tively the predictors bear heavily on the response, but paradoxically, few or none of
the predictors have regression coefficients significantly different from zero.

Consider the case of a single response Y and two predictors X1 and X2. The fitted
model plots as a plane in the 3-dimensional space of (Y, X1, X2). A near-collinear
situation exists if the correlation between X1 and X2 is close to ±1. Geometrically,
this occurs when the data points congregate close to a (2-dimensional) straight line
when plotted in the 3-dimensional space. When this happens, the points can be
fitted fairly well by any plane containing this straight line. Since each of these many
planes is a candidate for the best model, the model decided upon as being the best
will be similar to other model candidates. Therefore, declaring any model to be best
will be a tentative decision. This tentativeness is expressed by large standard errors
of the estimated regression coefficients that comprise the coefficients of the plane
corresponding to the best model.

Figure 9.8, based on a portion of the Longley data introduced in Section 9.10, ill-
ustrates these ideas. Here the variables GNP and Year are almost perfectly correlated
and so the scattering of points falls close to a line in 3-dimensional space. Many
planes fit this line approximately equally well. The uncertainty about the best fitting
of these many planes causes the coefficients of the estimated plane, the regression
coefficients, to have large standard errors.

When there are more than two predictors, the geometric argument extends to
discussions of hyperplanes. The consequence is again unacceptably large standard
errors of regression coefficients.

Although collinearity limits our ability to model the relationship between the
predictors and the response accurately, it does not necessarily impede our ability to
use the predictors to predict the response. In the context of the example associated
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Fig. 9.8 The two X-variables, Year and GNP, are highly collinear. See model
longley2.lm <- lm(Employed ~ Year + GNP, data=longley)

in file HHscriptnames(9). The response variable Employed is essentially on a straight line in the
three-dimensional space of the figure. The specific plane displayed is almost arbitrary. Any plane
that goes through the straight line of the observed points on the plane we see would work just as
well.

with Figure 9.8, if we want to predict the response for values of the predictors near
the straight line in 3-dimensional space, many planes that are good fits to this straight
line will yield roughly the same prediction.

A simple diagnostic of collinearity is the variance inflation factor, VIF, one
for each regression coefficient (other than the intercept). Since the condition of
collinearity involves the predictors but not the response, this measure is a function
of the X’s but not of Y . The VIF for predictor i is

VIFi = 1/(1 − R2
i ) (9.26)

where R2
i is the R2 from a regression of predictor i against the remaining predictors.

If R2
i is close to 1, this means that predictor i is well explained by a linear function

of the remaining predictors, and, therefore, the presence of predictor i in the model
is redundant. Values of VIF exceeding 5 are considered evidence of collinearity:
The information carried by a predictor having such a VIF is contained in a subset of
the remaining predictors. If, however, all of a model’s regression coefficients differ
significantly from 0 (p-value < .05), a somewhat larger VIF may be tolerable.

VIF is an imperfect measure of collinearity. Occasionally the condition can be
attributable to more complicated relationships among the predictors than VIF can
detect.
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The best approach for alleviating collinearity is to reduce the set of predictors to a
noncollinear subset. Methods for accomplishing this are presented in Section 9.12.
An ad hoc (manual) procedure, presented in Section 9.12.1, involves eliminating
predictors one at a time, at each stage deleting the predictor having the highest VIF.
If two predictors are almost tied for highest, then subject area information should
be used to choose between them. Proceed until all remaining predictors have VIF
≤ 5. Other approaches (not discussed in this book) include ridge regression and
regression on principal components Gunst and Mason (1980).

For the regression analysis of the Longley data, evidence of collinearity appears
in Table 9.9 in the variance inflation factors (VIF) for the six predictors. Five of these
exceed 33. The next section discusses an approach for dealing with multicollinearity.

Collinearity often arises in polynomial regression models discussed in Section 9.7
because polynomials can be approximated by linear functions within a restricted
domain. To avoid both collinearity in polynomial models and numerical instability
caused by working with variables of greatly differing orders of magnitude, it is rec-
ommended to recenter the response variable to have mean = 0 prior to initiating a
polynomial modeling.

9.12 Variable Selection

In building a regression model the analyst should consider for use any explana-
tory variable that is likely to bear upon the response while avoiding the use of two
explanatory variables that carry essentially the same information. For example, in
modeling the monthly cost of energy needed to heat a 2000-square-foot home, one
should avoid using both the mean monthly exterior temperature and the heating
degree days (a measure used by heating fuel suppliers) in the same model. The use
of redundant explanatory variables is likely to lead to a model with unacceptable
collinearity having large standard errors for the predictor regression coefficients.

When subject area theory does not suggest a parsimonious model (i.e., one with
relatively few predictors), it is tempting to construct a model using all possibly rel-
evant predictors for which data are available. However, doing so is again likely to
result in a collinearity problem. In such circumstances, how can the analyst decide
on an appropriate subset of the candidate predictors for a regression model?

Stepwise regression is a tool for answering this question. But this mechanical
technique should not be used in order to avoid careful thought about potentially
useful predictor variables. Careless use of stepwise regression can, to some extent,
distort the significance and confidence levels of inferences in the ultimately specified
model, potentially leading to erroneous conclusions. In addition, a model that makes
reasonable subject area sense to the client is much preferred to an equally well fitting
one that is less intuitive and harder to understand and explain.
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In our experience, a careful systematic approach can often be used to develop a
more interpretable model than one produced by a mechanical stepwise algorithm.
The starting point is a scatterplot matrix that, along with examination of variance
inflation factors, can be used to identify redundant predictors. If two predictors are
seen to be highly correlated, we prefer to avoid using the one that has a less obvious
subject matter connection to the response variable. An algorithm cannot make such
a judgment. Inspection of sploms invite the analyst to consider whether an original
variable should be transformed before inclusion in the model. Nevertheless, step-
wise approaches to model selection continue to be commonly used, particularly
when there are a large number of potential predictors and the analyst has minimal
feel for which variables should be or need not be included in the model.

We discuss in turn two systematic methods for model selection, a manual app-
roach and an automated approach, and apply both methods to the Longley data.

9.12.1 Manual Use of the Stepwise Philosophy

The first approach involves manual inspections of the VIFs, the p-values associated
with the t-tests on the regression coefficients, and any available subject matter inf-
ormation to eliminate variables one at a time until a final model is reached with all
predictors significant and all VIFs under 5. This approach is viable if the number
of predictors is small as in this example. It would be too cumbersome in a situation
with more than 12 to 15 predictors.

The three largest VIFs belong to GNP, Year, and Population. The splom implies
that they carry almost identical information. We begin by removing one of them
from the model. We choose to eliminate Population because the t-test that its
regression coefficient is zero has a larger p-value than the tests for either GNP or
Year.

The analysis with all predictors except population appears in Table 9.10.

The outstanding feature of this model is the high p-value associated with vari-
able GNP.deflator. Its VIF is well in excess of 5. We proceed with an analysis
eliminating GNP.deflator in Table 9.11.

All four predictors in this model have significant regression coefficients. How-
ever, two of the VIFs are still large, and one of the predictors corresponding to them
must be eliminated. We choose to eliminate GNP because its p-value, while small, is
larger than those of the three other remaining predictors.

The results of the analysis with the remaining predictors Unemployed, Year, and
Armed.Forces are in Table 9.12.

This is our tentative final model. The collinearity has been eliminated (all VIFs
are below 5), and all regression coefficients differ significantly from zero. In addi-
tion, R2 = 0.993, so these three predictors account for virtually all of the variability
in Employed.
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Table 9.10 Longley data regression. Best five-predictor model after eliminating one predictor
using the manual stepwise approach.

> longley3.lm <- lm( Employed ~

+ GNP.deflator + GNP + Unemployed + Armed.Forces + Year,

+ data=longley)

> summary(longley3.lm)

Call:

lm(formula = Employed ~ GNP.deflator + GNP + Unemployed +

Armed.Forces + Year, data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.3901 -0.1434 -0.0356 0.0973 0.4614

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.56e+03 7.72e+02 -4.62 0.00096 ***

GNP.deflator 2.77e-02 6.07e-02 0.46 0.65798

GNP -4.21e-02 1.76e-02 -2.39 0.03789 *

Unemployed -2.10e-02 3.03e-03 -6.95 4e-05 ***

Armed.Forces -1.04e-02 2.00e-03 -5.21 0.00040 ***

Year 1.87e+00 3.99e-01 4.68 0.00087 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.29 on 10 degrees of freedom

Multiple R-squared: 0.995,Adjusted R-squared: 0.993

F-statistic: 438 on 5 and 10 DF, p-value: 2.27e-11

> anova(longley3.lm)

Analysis of Variance Table

Response: Employed

Df Sum Sq Mean Sq F value Pr(>F)

GNP.deflator 1 174.4 174.4 2073.3 6.3e-13 ***

GNP 1 4.8 4.8 56.9 2.0e-05 ***

Unemployed 1 2.3 2.3 26.9 0.00041 ***

Armed.Forces 1 0.9 0.9 10.4 0.00905 **

Year 1 1.8 1.8 21.9 0.00087 ***

Residuals 10 0.8 0.1

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> vif(longley3.lm)

GNP.deflator GNP Unemployed Armed.Forces Year

76.641 546.870 14.290 3.461 644.626
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Table 9.11 Longley data regression. Best four-predictor model after eliminating two predictors
using the manual stepwise approach.

> longley4.lm <- lm(Employed ~

+ GNP + Unemployed + Armed.Forces + Year,

+ data=longley)

> summary(longley4.lm)

Call:

lm(formula = Employed ~ GNP + Unemployed + Armed.Forces + Year,

data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.4217 -0.1246 -0.0242 0.0837 0.4527

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.60e+03 7.41e+02 -4.86 0.00050 ***

GNP -4.02e-02 1.65e-02 -2.44 0.03283 *

Unemployed -2.09e-02 2.90e-03 -7.20 1.7e-05 ***

Armed.Forces -1.01e-02 1.84e-03 -5.52 0.00018 ***

Year 1.89e+00 3.83e-01 4.93 0.00045 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.279 on 11 degrees of freedom

Multiple R-squared: 0.995,Adjusted R-squared: 0.994

F-statistic: 590 on 4 and 11 DF, p-value: 9.5e-13

> anova(longley4.lm)

Analysis of Variance Table

Response: Employed

Df Sum Sq Mean Sq F value Pr(>F)

GNP 1 179.0 179.0 2292.7 4e-14 ***

Unemployed 1 2.5 2.5 31.5 0.00016 ***

Armed.Forces 1 0.8 0.8 10.5 0.00779 **

Year 1 1.9 1.9 24.3 0.00045 ***

Residuals 11 0.9 0.1

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> vif(longley4.lm)

GNP Unemployed Armed.Forces Year

515.124 14.109 3.142 638.128
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Table 9.12 Longley data regression. Best three-predictor model after eliminating three predictors
using the manual stepwise approach.

> longley5.lm <- lm(Employed ~

+ Unemployed + Armed.Forces + Year,

+ data=longley)

> summary(longley5.lm)

Call:

lm(formula = Employed ~ Unemployed + Armed.Forces + Year,

data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.5729 -0.1199 0.0409 0.1398 0.7530

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.80e+03 6.86e+01 -26.18 5.9e-12 ***

Unemployed -1.47e-02 1.67e-03 -8.79 1.4e-06 ***

Armed.Forces -7.72e-03 1.84e-03 -4.20 0.0012 **

Year 9.56e-01 3.55e-02 26.92 4.2e-12 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.332 on 12 degrees of freedom

Multiple R-squared: 0.993,Adjusted R-squared: 0.991

F-statistic: 555 on 3 and 12 DF, p-value: 3.92e-13

> anova(longley5.lm)

Analysis of Variance Table

Response: Employed

Df Sum Sq Mean Sq F value Pr(>F)

Unemployed 1 46.7 46.7 424 1.0e-10 ***

Armed.Forces 1 57.0 57.0 517 3.1e-11 ***

Year 1 79.9 79.9 725 4.2e-12 ***

Residuals 12 1.3 0.1

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> vif(longley5.lm)

Unemployed Armed.Forces Year

3.318 2.223 3.891



9.12 Variable Selection 297

9.12.2 Automated Stepwise Regression

The second approach to model selection is stepwise regression. This automated ap-
proach is recommended when the number of predictors is so large that the manual
approach becomes unacceptably laborious. We illustrate here how it is used to reach
the same model that we found with the manual procedure. A stepwise approach that
examines all subsets of predictors is viable if the number of predictors p is less than
10 to 12. If p > 12, then forward selection or backward elimination is preferred.

The three basic methods for automated stepwise regression are

forward selection: Predictors are added to the model one at a time until a stopping
rule is satisfied.

backward elimination: All predictors are initially placed in the model. Predictors
are removed from the model one at a time until a stopping rule is satisfied.

all subsets: All 2p − 1 possible models, where p is the number of predictors, are
attempted and the best is identified. This method is viable only for “small” values
of p. Efficient algorithms exist that avoid actually examining every such model.

The literature contains many hybrids and refinements of these basic methods.

Each of the automated stepwise methods uses a criterion for choosing the next
step or stopping the algorithm.

Such criteria may relate to appreciable R2
adj or F-statistic improvement or detri-

ment, substantial mean square error decrease or increase, or size of change in
Daniel–Mallows’ Cp statistic discussed below. Another possibility is to look, at each
step, at the p-value for the variables already in the model and for the potential next
variable to be brought in to the model. If the largest p-value of the variables already
in the model is larger than the threshold, then remove it. If the smallest p-value of
the potential variables is larger than the threshold, then stop. Otherwise, bring in a
new variable and repeat the process.

Computer algorithms allow the option of accepting or overriding default criterion
values or thresholds for appreciable change.

Each of the automated stepwise methods uses one or more criteria for choosing
among competing models. Here is a list of possible criteria.

p Models containing fewer predictors are easier to interpret and understand. It is
desirable that the number of predictors p be as small as possible.

σ̂2 We also require that the predictors account for most of the variability in the
response. Equivalently, we wish that the residual mean square, MSE = σ̂2, be as
small as possible, preferably not much larger than for the model containing all
candidate predictors. This criterion is easier to meet with more predictors rather
than few; hence it asks that the number of predictors p be as large as possible
and competes with the goal of minimizing p.
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The above criteria address one of the two competing objectives at a time. Other
criteria jointly address the two objectives.

R2
adj Unadjusted R2 is not used as a model selection criterion because it necessarily

increases as the number of predictors increases. A model can have R2 close to
1 but be unacceptable due to severe collinearity. Instead we use R2

adj, which is

R2 adjusted downward for the number of predictors,

R2
adj = 1 −

(
n − 1

n − p − 1

)
(1 − R2) (9.27)

which increases as R2 increases but provides a penalty for an excessive number
of predictors p. Models with higher R2

adj are preferred to ones with lower R2
adj.

Cp Daniel–Mallows’ Cp statistic is another criterion that addresses both the fit
of the model and the number of predictors used. Consistent with customary
notation, in the context of the Cp statistic but nowhere else in this chapter,
p is the number of regression coefficient parameters, equal to the number of
predictors plus 1. The original definition is

Cp = (SSRes/σ̂
2
full) + 2p − n (9.28)

where SSRes is the residual sum of squares for the reduced model under dis-
cussion (fewer X-variables than the full model) and the σ̂2

full is the error
mean square for the full model containing all candidate predictors. If the
extra X-variables are noise, rather than useful, then the ratio SSRes/σ̂

2
full ≈

((n − p)σ2)/σ2
full ≈ n − p. If the extra X-variables are useful, then the nu-

merator σ2 � σ2
full and the ratio will be much larger than n − p. The extra

terms 2p − n make the entire Cp approximate p when the extra X-variables are
not needed.

A desirable model has Cp ≈ p for a small number of parameters p. (If pmax

denotes p for a model containing all candidate predictors, then necessarily
Cpmax = pmax, but such a model is almost never acceptable.) Cp results are often
conveyed with a Cp plot, that is, a plot of Cp vs p, with each point labeled with
an identifier for its model and the diagonal line having equation Cp = p added
to the plot. Desirable models are those close to or under this diagonal line.

AIC The Akaike information criterion is proportional to the Cp statistic. The AIC is
scaled in sum of squares units.

F At each step we can look at the p-value associated with the F-statistic for
the variables already in the model and for the potential next variable to be
brought in to the model. If the largest p-value of the variables already in the
model is larger than the threshold, then remove it. If the smallest p-value of the
potential variables is larger than the threshold, then stop. Otherwise, bring in a
new variable and repeat the process.
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9.12.3 Automated Stepwise Modeling of the Longley Data

Table 9.13 contains the results of an R stepwise regression analysis considering all
subsets of the predictors, with printouts of the properties of two models of each size
having smallest residual sum of squares among models having Cp < 10. Figure 9.9
is a plot of the Cp-values for all models with Cp < 10. The acronymic plot symbols
in Figure 9.9 are decoded in Table 9.13. According to Table 9.13, the best parsimo-
nious model is the one with the four predictors GNP, Unemployed, Armed.Forces,
and Year displayed in Table 9.11. This model has Cp close to p, and a smaller AIC
and larger adjusted R2 than any of the other models in Table 9.13. Unlike the model
we selected with our manual approach, this one includes the predictor GNP. The al-
gorithm underlying Table 9.13 suggests inclusion of GNP despite its high correlation
with Year and high VIF shown in Table 9.11.

4 5 6 7 8
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4

5
6

7

cp

Number of Parameters

S
ta

tis
tic

: c
p

U−A−Y

GNP−U−A−Y

U−A−P−Y

GNP−U−A−P−YGNP.−GNP−U−A−Y

GNP.−GNP−U−A−P−Y

Fig. 9.9 Cp Plot for Longley data. See Table 9.13 for interpretations of the acronyms used to label
points. The overplotting occurs because, as seen in Table 9.13, two models have almost identical
values of Cp.
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Table 9.13 Longley data regression. Model 7 with the four predictors GNP, Unemployed,
Armed.Forces and Year is competitive with respect to Cp and other criteria. This model has
the largest adjusted R2 and the smallest Cp. This is the same model we found in Table 9.11.

> longley.subsets <-

+ leaps::regsubsets(Employed ~ GNP.deflator + GNP +

+ Unemployed +

+ Armed.Forces + Population + Year,

+ data=longley, nbest=2)

> longley.subsets.Summary <- summaryHH(longley.subsets)

> ## longley.subsets.Summary

> tmp <- (longley.subsets.Summary$cp <= 10)

> longley.subsets.Summary[tmp,]

model p rsq rss adjr2 cp bic stderr

5 U-A-Y 4 0.993 1.323 0.991 6.24 -68.0 0.332

7 GNP-U-A-Y 5 0.995 0.859 0.994 3.24 -72.1 0.279

8 U-A-P-Y 5 0.995 0.986 0.993 4.61 -69.9 0.299

9 GNP-U-A-P-Y 6 0.995 0.839 0.993 5.03 -69.7 0.290

10 GNP.-GNP-U-A-Y 6 0.995 0.841 0.993 5.05 -69.7 0.290

11 GNP.-GNP-U-A-P-Y 7 0.995 0.836 0.992 7.00 -67.0 0.305

Model variables with abbreviations

model
GNP GNP
Y Year
U-Y Unemployed-Year
GNP-U GNP-Unemployed
U-A-Y Unemployed-Armed.Forces-Year
GNP-U-A GNP-Unemployed-Armed.Forces
GNP-U-A-Y GNP-Unemployed-Armed.Forces-Year
U-A-P-Y Unemployed-Armed.Forces-Population-Year
GNP-U-A-P-Y GNP-Unemployed-Armed.Forces-Population-Year
GNP.-GNP-U-A-Y GNP.deflator-GNP-Unemployed-Armed.Forces-Year
GNP.-GNP-U-A-P-Y GNP.deflator-GNP-Unemployed-Armed.Forces-Population-Year

model with largest adjr2

7

Number of observations

16

Which model is preferred, the one in Table 9.11 containing four predictors in-
cluding GNP or the three predictor model in Table 9.12 that excludes GNP? Our
answer to this question demonstrates our preference for the manual approach.
The coefficient of GNP in Table 9.11 is negative. This model says that hold-
ing Unemployed, Armed.Forces and Year constant, GNP and Employed are
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negatively associated. This statement conflicts with our expectation that this as-
sociation is positive, and is a strong argument against the four-predictor model in
Table 9.11.

9.13 Residual Plots

Partial residual plots and added variable plots are visual aids for interpreting rela-
tionships between variables used in regression. They can serve as additional com-
ponents of our manual approach for variable selection.

Figure 9.10 shows four different types of plots.

• Row 1 shows the response variable Y=Employed against each of the six predic-
tors Xj.

• Row 2 shows the ordinary residuals e = Y − Ŷ from the regression on all six
variables against each of the six predictors.

• Row 3 shows the “partial residual plots”, the partial residuals e j for each predictor
against that predictor. See Section 9.13.1 for construction of the partial residuals
and Section 9.13.2 for construction of the partial residual plots.

• Row 4 shows the “added variable plots”, the partial residuals e j against the par-
tial residuals Xj|1,2,..., j−1, j+1,...,p of Xj regressed on the other five predictors. See
Section 9.13.3 for the definition of partial correlation, and Section 9.13.4 for
construction of the Xj|1,2,..., j−1, j+1,...,p and the added variable plots.

We discuss the interpretation of the all four types of plots in Section 9.13.5. We rec-
ommend the discussions of partial residual plots and added variable plots in Weis-
berg (1985) and Hamilton (1992).

9.13.1 Partial Residuals

The partial residuals e j for variable Xj in a model with p predictor variables Xj are
defined

e j = Y − Ŷ1,2,..., j−1, j+1,...,p (9.29)

and calculated with

e j = Xjβ̂ j + e (9.30)
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or equivalently

e j
i = Xi jβ̂ j + ei for i = 1, . . . , n (9.31)

where e = (ei) are the ordinary residuals from the model with all p predictors

e = Y − Ŷ1,2,...,p (9.32)

The partial residuals are interpreted as the additional information available for Xj to
pick up after all X except Xj have been included in the model.

9.13.2 Partial Residual Plots

Partial residual plots are the set of plots of e j against Xj for all j. Each panel’s slope
has exactly the numerical value of the corresponding regression coefficient.

We show the partial residual plots for the Longley data in Row 3 of Figure 9.10.

9.13.3 Partial Correlation

The partial correlation r(X1, X2|X3, X4, X5) between X1 and X2, after correction for
the effect of X3, X4, X5, is the correlation coefficient between X1 and X2 after the
(linear) effects of X3, X4, X5 have been removed from both X1 and X2. When X1

through X5 are multivariate data, we can compute the sample partial correlation
coefficient as follows:

• Regress X1 on X3, X4, X5. Get the residuals E1.

• Regress X2 on X3, X4, X5. Get the residuals E2.

• Find the (usual) correlation coefficient between E1 and E2. This turns out to be
r(X1, X2|X3, X4, X5).

In R, we use

partial.corr(cbind(X1,X2),

cbind(X3,X4,X5))

using the function partial.corr defined in the HH package.
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9.13.4 Added Variable Plots

The added variable plots are the set of plots of E1 = e j against E2 = Xj|1,2,..., j−1, j+1,...,p

for all j. We define X̂1,2,..., j−1, j+1,...,p to be the predicted value of Xj after regressing
Xj against all the other X-variables in the model. We define the residual

Xj|1,2,..., j−1, j+1,...,p = Xj − X̂1,2,..., j−1, j+1,...,p (9.33)

to be the additional information in Xj after removing the information provided by all
the other X in the model. Thus the added variable plots are the plots of the E1 and
E2 defined by regressing Y and Xj against all the other X-variables. Each panel’s
slope has exactly the numerical value of the corresponding regression coefficient.

We show the added variable plots for the Longley data in Row 4 of Figure 9.10.

9.13.5 Interpretation of Residual Plots

9.13.5.1 Response Variable Against Each of the Predictors

Row 1 of Figure 9.10, the plots of the response variable Y=Employed against each
of the six predictors Xj, is almost identical to the top row of the splom in Figure 9.7.
The only difference is the explicit one-x regression line in Figure 9.10. If there is
no visible slope in any of these panels, then we can effectively eliminate that x-
variable from further consideration as a potential explanatory variable. This row
is essentially the same as the first step of a stepwise-forward procedure. In this
example, we cannot eliminate any of the potential predictors at this stage.

9.13.5.2 Residuals Against Each of the Predictors

Row 2 of Figure 9.10, the plots of the ordinary residuals e = Y − Ŷ (from the com-
plete regression of the response on all six potential predictors Xj), against each of
the Xj shows horizontal slopes. This is by construction, as the least-squares resid-
uals are orthogonal to all X-variables. In this example, we see no structure in the
plots. The types of structure we look for are

Curvature. Plot the residuals from the quadratic fit in the left side of Figure 9.5
against the predictor density and note that the residuals are predominantly
above the y = 0 axis at the left and right ends of the range and predominantly
below the axis in the middle of the range. Curvature in the residual plots often



9.13 Residual Plots 305

suggests that additional predictors, possibly powers of existing predictors, are
needed in the model.

Nonuniformity of variance. The life.exp ~ ppl.per.tv panel of Figure 4.14
shows high variability in life.exp for low values of ppl.per.tv and very
low variability for high values of ppl.per.tv. Nonuniformity of variance in
the residual plots often suggests power transformations of one or more of the
variables. Transformations of both the response and predictor variables need to
be considered.

Bunching or granularity. See the residuals ~ lime panel of Figure 11.11
where we see that lime has only two levels and there are different variances
for each.

9.13.5.3 Partial Residuals

Both Rows 3 and 4 use the partial residuals of the response as the y-variable of each
plot. Since “partial” means “adjusted for all the other x-variables”, each column
of Rows 3 and 4 is different. Column 1 is adjusted for X2, X3, . . . , X6. Column 2
is adjusted for X1, X3, . . . , X6. Similarly through Column 6, which is adjusted for
X1, . . . , X5.

In Row 3, the partial residual plots, the x-variables are the observed
x-variables Xj.

In Row 4, the added residual plots, the x-variables are the adjusted-x variables,
that is, “adjusted for all the other x-variables”. Thus the x-variable in Column 1 of
Row 4 is X1|2,...,6, that is, X1 adjusted for X2, . . . , X6.

In both Rows 3 and 4 the slope of the two-dimensional least-squares line in panel
j is exactly the value of the regression coefficient β j for the complete regression of
Y on all the X-variables in the model.

9.13.5.4 Partial Residual Plots

In Row 3, the partial residuals e j are plotted against the observed x-variables Xj.
Since the partial residuals e j are specific to each Xj, the values for the y-range are
unique to each panel. The x-range of the x-variables in Row 3 is the same as it is in
Rows 1 and 2 of this display.

We look for the tightness of the points in each plot around their least-squares
line. High variability around the two-dimensional least-squares line indicates low
significance for the corresponding regression coefficient. Low variability around the
least-squares line indicates a significant regression coefficient.
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In Row 3 of Figure 9.10, we see that Columns 1 (GNP.deflator) and 5
(Population) have high variability around their least-squares lines. This is a ref-
lection of the high p-value that we see for those regression coefficients in Table 9.9.
The remaining four columns all look like their points are tightly placed against their
least-squares lines, an indication of possible significance. Note that Column 2 (GNP)
looks tight, even though its p-value is the nonsignificant 0.3127. We really do need
the tabular results to completely understand what the graph is showing us.

9.13.5.5 Added Variable Plots

In Row 4, the partial residuals e j are plotted against the adjusted x-variables
Xj|1,2,..., j−1, j+1,...,p. In Row 4, both the x- and y-variables in each column have been
adjusted for all the other X-variables. Therefore, both the x- and y-ranges are unique
to each panel. The partial residuals, the y-variables in the added variable plots, are
identical to the y-variables in the partial residual plots; hence the y-ranges are iden-
tical for corresponding columns of Rows 3 and 4.

We look at the slope of the two-dimensional least-squares line in each plot.
A nearly horizontal line indicates low significance for the corresponding regression
coefficient. A nonzero slope indicates a significant regression coefficient.

The three x-variables with significant regression coefficients in Table 9.9 have
visible nonzero slopes to their least-squares lines in Row 4 of Figure 9.10. The three
x-variables with nonsignificant regression coefficients have almost horizontal least-
squares lines.

9.14 Example—U.S. Air Pollution Data

Exercise 4.2 introduces the data set data(usair) on causes of air pollution in
U.S. cities. A scatterplot matrix of these data appears in Figure 9.11. Here we seek
to develop a model to explain the response SO2, SO2 content of air, using a subset
of six available explanatory variables.

In Figure 9.11 we see that the three variables SO2, mfgfirms, and popn are all
pushed against their minimum value with a long tail toward the maximum value.
This pattern suggests a log transformation to bring these three distributions close
to symmetry. Following these transformations, Figure 9.12 shows the new response
variable lnSO2 and the revised list of six potential explanatory variables.

For pedagogical purposes we approach this problem in two different ways. We
first use the automated stepwise regression approach and then consider the manual
approach.
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U.S. Air Pollution Data with SO2 response variable

Original Scaling

SO2

100 100

50

50

temp60

70 60 70

50

60

50 60

mfgfirms
2000

3000 2000 3000

0

1000
0 1000

popn
2000

3000 2000 3000

0

1000
0 1000

wind
10

12 10 12

6

8

6 8

precip
40

60

40 60

20

40

20 40

raindays100

150 100 150

50

100

50 100

Fig. 9.11 Scatterplot matrices for air pollution data with the original scaling.

We illustrate the automated approach with the leaps::regsubsets function in
R, using the exhaustive method that considers all subsets. In this problem there
are only a small number, 26−1 = 31, of subsets to consider, so this method is viable.
We request the best two subsets for each possible value of the number of included
explanatory variables. The tabular and graphical results of the stepwise analysis
are displayed in Table 9.14 and Figure 9.13. The model with the four predictors
temp, lnmfg, wind, and precip seems best. It has Cp ≈ p, the smallest AIC of
contenders, the largest R2

adj, and one of the smallest values of SSRes.

In Table 9.15 we look at the detail for the selected model. We observe that all
VIFs are small and the p-values are below 0.01 for all model coefficients. The signs
of the estimated coefficients are reasonable or defensible. United States cities with
high average annual temperature are located in the Sunbelt and tend to have less
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U.S. Air Pollution Data with ln(SO2) response variable

Three log−transformed variables

lnSO2
3

4
3 4

2

3

2 3

temp60

70 60 70

50

60

50 60

lnmfg6

8
6 8

4

6

4 6

lnpopn

7

8
7 8

5

6

5 6

wind
10

12 10 12

6

8

6 8

precip
40

60

40 60

20

40

20 40

raindays100

150 100 150

50

100

50 100

Fig. 9.12 Scatterplot matrices for air pollution data with improved symmetry after a log transfor-
mation of the three variables: SO2, mfgfirms, popn.

pollution-causing heavy industry than colder temperature cities well north of the
Sunbelt. We are not surprised that greater amounts of manufacturing are associated
with more pollution or that wind dissipates pollution.

We can arrive at the same model without a formal stepwise approach. We notice
from Figure 9.12 that lnmfg and lnpopn are highly correlated, so it would be re-
dundant to include both in the model. The variables precip and raindays seem
quite similar, so again, it is unlikely that both are needed. Inspection of the Cp plot
in Figure 9.13 indicates that the model with temp, lnmfg, wind, and precip has
Cp close to p and only one member of each pair of similar predictors.
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Table 9.14 Stepwise regression analysis of U.S. air pollution data. See also Figure 9.13.

> usair.regsubset <- leaps::regsubsets(

+ lnSO2 ~ lnmfg + lnpopn + precip + raindays + temp + wind,

+ data=usair, nbest=2)

> usair.subsets.Summary <- summaryHH(usair.regsubset)

> tmp <- (usair.subsets.Summary$cp <= 10)

> usair.subsets.Summary[tmp,]

model p rsq rss adjr2 cp bic stderr

5 lnm-t-w 4 0.456 10.74 0.412 8.15 -10.09 0.539

6 p-t-w 4 0.446 10.94 0.401 8.93 -9.33 0.544

7 lnm-p-t-w 5 0.543 9.02 0.492 3.58 -13.51 0.501

8 lnm-r-t-w 5 0.513 9.61 0.459 5.82 -10.93 0.517

9 lnm-lnp-p-t-w 6 0.550 8.88 0.486 5.03 -10.46 0.504

10 lnm-p-r-t-w 6 0.543 9.02 0.477 5.58 -9.80 0.508

11 lnm-lnp-p-r-t-w 7 0.550 8.87 0.471 7.00 -6.78 0.511

Model variables with abbreviations

model

t temp

r raindays

p-t precip-temp

r-t raindays-temp

lnm-t-w lnmfg-temp-wind

p-t-w precip-temp-wind

lnm-p-t-w lnmfg-precip-temp-wind

lnm-r-t-w lnmfg-raindays-temp-wind

lnm-lnp-p-t-w lnmfg-lnpopn-precip-temp-wind

lnm-p-r-t-w lnmfg-precip-raindays-temp-wind

lnm-lnp-p-r-t-w lnmfg-lnpopn-precip-raindays-temp-wind

model with largest adjr2

7

Number of observations

41
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4 5 6 7

4
5

6
7

8
9

cp

Number of Parameters

S
ta

tis
tic

: c
p

lnm−t−w

p−t−w

lnm−p−t−w

lnm−r−t−w

lnm−lnp−p−t−w

lnm−p−r−t−w

lnm−lnp−p−r−t−w

Fig. 9.13 Cp plot. Model “lnm-p-t-w” (lnmfg, precip, temp, wind) has the smallest Cp

value and the largest R2
adj. See also Table 9.14.

9.15 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

9.1. Use matrix algebra to prove the assertion in Equation (9.11) that the sum of the
calculated residuals is also zero in multiple regression. We proved the assertion for
simple linear regression in Exercise 8.9.

Hint: Write the vector of residuals as e = (I − H)Y , verify that X = HX, and use
the fact that in a model with a nonzero intercept coefficient, as in Equation (9.1) and
following, the first column of X is a column of ones.

9.2. Davies and Goldsmith (1972), reprinted in Hand et al. (1994), investigated
the relationship between the abrasion loss of samples of rubber (in grams per
hour) as a function of hardness and tensile strength (kg/cm2). Higher values of
hardness indicate harder rubber. The data are accessed as data(abrasion).
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Table 9.15 Fit of recommended model for U.S. air pollution data.

> usair.lm7 <- lm.regsubsets(usair.regsubset, 7)

> anova(usair.lm7)

Analysis of Variance Table

Response: lnSO2

Df Sum Sq Mean Sq F value Pr(>F)

lnmfg 1 2.26 2.26 9.00 0.0049 **

precip 1 0.03 0.03 0.11 0.7396

temp 1 6.21 6.21 24.77 1.6e-05 ***

wind 1 2.21 2.21 8.84 0.0052 **

Residuals 36 9.02 0.25

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(usair.lm7)

Call:

lm(formula = lnSO2 ~ lnmfg + precip + temp + wind, data = usair)

Residuals:

Min 1Q Median 3Q Max

-0.8965 -0.3405 -0.0854 0.2963 1.0321

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.89138 1.07009 6.44 1.8e-07 ***

lnmfg 0.23999 0.08677 2.77 0.0089 **

precip 0.01930 0.00738 2.62 0.0129 *

temp -0.07304 0.01283 -5.69 1.8e-06 ***

wind -0.18437 0.06203 -2.97 0.0052 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.501 on 36 degrees of freedom

Multiple R-squared: 0.543,Adjusted R-squared: 0.492

F-statistic: 10.7 on 4 and 36 DF, p-value: 8.23e-06

> vif(usair.lm7)

lnmfg precip temp wind

1.115 1.204 1.373 1.253
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a. Produce a scatterplot matrix of these data. Based on this plot, does it appear that
strength would be helpful in explaining abrasion?

b. Calculate the fitted regression equation.

c. Find a 95% prediction interval for the abrasion corresponding to a new rubber
sample having hardness 60 and strength 200.

9.3. Narula and Wellington (1977) provide data on the sale price of 28 houses in
Erie, Pennsylvania, in the early 1970s, along with 11 possible predictors of these
prices. The data are accessed as data(hpErie). The variables are:

price: price in $100’s

taxes: taxes in dollars

bathrm: number of bathrooms

lotsize: lot size in square feet

sqfeet: square footage of living space

garage: number of cars for which there is garage space

rooms: number of rooms

bedrm: number of bedrooms

age: age in years

type: type of house
brick, brick and frame, aluminum and frame, frame

style: 2 story, 1.5 story, ranch

fireplac: number of fireplaces

In parts a–d, exclude factors type and style from the analysis.

a. Produce a scatterplot matrix for these data. Notice that two houses had a sale
price much higher than the others.

b. Use a stepwise regression technique to formulate a parsimonious model for sale
price. Do the arithmetic signs of your model’s regression coefficients make eco-
nomic sense?

c. Redo part a with the two large-priced houses excluded. Compare your answer
with that of part a.

d. Add a new variable sqfeetsq (defined as the square of sqfeet) to the list of
variables. Perform the stepwise regression allowing for this new variable. Does
its presence change the preferred model?
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e. For the model you found in part d, provide plots of the residuals vs the fitted re-
sponse for each of the 12 combinations of type and style. Use Figure 13.1 and
its code included in HHscriptnames(13) as a template for constructing these
plots. Based on these plots, does it appear that including either of the variables
type or style would contribute to the model fit?

9.4. World Almanac and Book of Facts (2001) lists the winning times for the men’s
1500-meter sprint event for the Olympics from years 1900 through 2000. The data
are accessed as data(sprint).

a. Plot the data.

b. Use linear regression to fit the winning times to the year, producing a plot of the
residuals vs the fitted values.

c. The residual plot suggests that an additional predictor should be added to the
model. Refit this expanded model and compare it with the model you found in
part b.

d. Interpret the sign of the coefficient of this additional predictor.

9.5. A company wished to model the number of minutes required to unload ship-
ments of drums of chemicals at its warehouse as a function of the number of drums
and the total shipment weight in hundreds of pounds. The data from 20 consecutive
shipments, from Neter et al. (1996), are accessed as data(shipment).

a. Regress minutes on drums and weight, storing the residuals.

b. Interpret the regression coefficients of drum and weight.

c. Provide and discuss plots of the residuals against the fitted values and both pre-
dictors, and a normality plot.

d. Provide a 90% prediction interval for the time it would take to unload a new
shipment of 10 drums weighing 1000 pounds.

9.6. The dataset data(uscrime) is introduced in Exercise 4.3. Use a stepwise reg-
ression approach to develop a model to explain R. Your solution should not have
a collinearity problem, all predictor regression coefficients should be significantly
different from zero and have an arithmetic sign consistent with common knowledge
of the model variables, and no standard residual plots should display a problem.

9.7. It is desired to model the manhours needed to operate living quarters for U.S.
Navy bachelor officers. Candidate explanatory variables are listed below. The data
in data(manhours) are from Freund and Littell (1991) and Myers (1990), and
originally from Navy (1979). Perform a thorough regression analysis, including rel-
evant plots. Note that at least initially, there is a minor collinearity problem to be
addressed. Show that, no matter how the collinearity is addressed, the predictions
are similar. Only the interpretation of the effects of the x-variables is affected.
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manhours: monthly manhours needed to operate the establishment

occupanc: average daily occupancy

checkins: average monthly number of check-ins

svcdesk: weekly hours of service desk operation

common: common use area, in square feet

wings: number of building wings

berthing: operational berthing capacity

rooms: number of rooms

9.A Appendix: Computation for Regression Analysis

regr2.plot

The regr2.plot function does the same type of plot for bivariate regression, one
y-variable and two x-variables. The function is based on the persp perspective plot-
ting function in R. We designed the regr2.plot function with options to display
grids for the base plane and the two back planes in addition to the observed points
and the regression plane and the fitted points. We turned off the default plot of the
3-dimensional box. The function regr2.plot uses the functions defined in our
function persp.hh.s.



Chapter 10

Multiple Regression—Dummy Variables,
Contrasts, and Analysis of Covariance

Any analysis of variance model (for example, anything in Chapters 6, 12, 13, or 14)
can be expressed as a regression with dummy variables. The dummy variables are
usually based on a set of contrasts. The algebra of individual contrast vectors is dis-
cussed in Section 6.9. Many software procedures and functions make explicit use
of this form of expression. Here we explore this equivalence of different represen-
tations of the contrasts associated with a factor. The notation in Chapter 10 is that
used in Sections I.4.2, 9.3, and 9.4.1.

Section 10.1 introduces dummy variables. Section 10.3 looks at the equivalence
of different sets of dummy variable codings for factors. Section 13.5 shows how the
R and SAS languages express the dummy variable coding schemes. Table 13.18
shows the notation for applying them to describe models with two or more factors.

10.1 Dummy (Indicator) Variables

Dummy variables, also called indicator variables, are a way to incorporate qualita-
tive predictors into a regression model. If we have a qualitative predictor A with a
distinct values, we will need a − 1 distinct dummy variables to code it. For exam-
ple, suppose we believe that the gender of the subject may impact the response. We
could define Xfemale = 1 if the subject is female and Xfemale = 0 if the subject is male.
Then we interpret the estimated regression coefficient β̂female as the estimated aver-
age amount by which responses for females exceed responses for males, assuming
the values of all other predictors are unchanged. If β̂female > 0, then on average fem-
ales will tend to have a higher response than males; if β̂female < 0, then the average
male response will exceed the average female response. There are g = 2 levels to
the classification variable gender, hence we defined g − 1 = 1 dummy variable to
code that information. We pursue this example in Section 10.2.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 10
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As another example, suppose one of the predictor variables in a model is the
nominal variable ResidenceLocation, which can take one of r = 3 values: urban,
suburban, or rural. If a qualitative predictor has r categories, we must assign
r − 1 dummy variables to represent it adequately. Otherwise, we may be imposing
an unwarranted implicit constraint. It would be incorrect to code this with a single
numeric variable XRL = 0 for urban, 1 for suburban, and 2 for rural, as that
would imply that the difference between average urban and suburban responses
must equal the difference between average suburban and rural responses, which
is probably not justifiable.

One correct coding is to let XRLu = 1 if urban and 0 otherwise and let XRLs

= 1 if suburban and 0 otherwise. Then the coefficient β̂RLu of XRLu is interpreted
as the average difference between urban and rural response, and the coefficient
β̂RLs of XRLs is interpreted as the average difference between suburban and rural

response. The difference between the coefficients β̂RLu and β̂RLs is the average dif-
ference between the urban and suburban response. Here we used rural as the
reference response. The results of the analysis would have been the same had we
used either urban or suburban as the reference response. See Section 10.3 for the
justification of this statement. See Exercise 10.3 to apply the justification to this
example.

This type of coding is done automatically in R’s linear modeling functions (lm
and aov when variables have been defined as factors with the factor() function.

The PROC ANOVA and PROC GLM in SAS require use of the CLASSES command
within the PROC specification. SAS’s PROC REG requires explicit coding to con-
struct the dummy variables in the DATA step.

Any pair of independent linear combinations of XRLu and XRLs would be equally
as valid. R gives the user choice with the contrasts() and related functions. SAS
gives the user choice with the estimate and test statements on the PROC ANOVA

and PROC GLM commands.

10.2 Example—Height and Weight

10.2.1 Study Objectives

In the fall of 1998, one of us (RMH) collected the height, weight, and age of the
39 students in one of his classes. The data appear in file data(htwt). While this
example does give information on the comparative height distributions of men and
women, the primary intent then, and now, is to use this example to illustrate how
the techniques of statistics give us terminology and notation for discussing ordinary
observations.
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10.2.2 Data Description

feet: height in feet rounded down to an integer

inches: inches to be added to the height in feet

lbs: weight in pounds

months: age in months

sex: m or f

meters: height in meters

10.2.3 Data Problems

From the stem-and-leaf in Table 10.1 we see that even in this small dataset, collected
with some amount of care, there are data problems. There are 39 observations, yet
only 38 made it to the stem-and-leaf and one of those has a missing value. Further
investigation of the data file shows that one student reported her height in meters
and another didn’t indicate sex. For the remaining figures and tables in this chapter
we converted meters to inches for the one. For the other we had the good fortune
to have access to the sample population at the next class meeting and were able to
fill in the missing value (m in this case) by checking the data forms directly with
the students. We were lucky in this example that the data file was investigated soon
enough after collection that the data anomalies could be resolved. That is not always
possible. We describe techniques for dealing with missing data in Section 2.4.

We show a splom of the completed data in Figure 10.1. The age range in our class
was 18–28 for women and 19–24 for men. There is no visible relation between age
and either height or weight. There is a clear difference in height ranges between men
and women and a visible, but less strong, difference in weight ranges. We investigate
this further by expanding the lbs ~ ht panel in Figure 10.2.
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Table 10.1 Stem-and-leaf of Heights from class observation. We used this display to detect the
two missing values. Note that this is an edited version of the output. We placed the two distributions
adjacent to each other and added additional lines to the high end of the female distribution and to
the low end of the male distribution to make the two stem-and-leaf displays align correctly.

> data(htwt)

> levels(factor(htwt$sex, exclude=NULL))

[1] "f" "m" NA

> any(is.na(htwt$ht))

[1] TRUE

> for (h in tapply(htwt$ht, factor(htwt$sex, exclude=NULL), c))

+ stem(h, scale=1.5)

The decimal point is at the |

Female Male

58 | 0 58 |

60 | 60 |

62 | 00000 62 | 0

64 | 000000000 64 | 0

66 | 000008 66 | 000

68 | 0 68 | 00

70 | 70 |

72 | 72 | 000000

74 | 74 | 00

lbs
180

200

220
180 220

120

140

160

120 160

months280
300
320
340

280 320

220
240
260
280

220 260

sex

female

fe
m

al
e

male

m
al

e

ht
70

75
70 75

60

65

60 65

male
female

Fig. 10.1 Scatterplot matrix of completed height and weight data from example collected in class.
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ht

lb
s

120

140

160

180

200

220

60 65 70 75

male
female

Fig. 10.2 Expansion of lbs ~ ht panel of Figure 10.1. There is visibly less overlap in the range
for the heights of men and women than for their weights.

Table 10.2 One-way analysis of variance of heights from class observation.

> ## one-way analysis of variance

> htwt.aov <- aov(ht ~ sex, data=htwt)

> summary(htwt.aov)

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 282 282.3 30.8 2.5e-06 ***

Residuals 37 339 9.2

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(htwt.aov, type="means")

Tables of means

Grand mean

66.71

sex

f m

64.47 69.94

rep 23.00 16.00
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10.2.4 Three Variants on the Analysis

Table 10.2 uses the techniques of Chapter 6 to compare the means of two distribu-
tions. The specific features that we will look at are the various values in the ANOVA
table and the mean heights for each of the groups. We will follow by using regres-
sion on two different sets of dummy variables to duplicate those numbers.

We initially use the g − 1 = 1 dummy variable Xfemale with the (1, 0) coding
scheme suggested above, with value 1 for females and value 0 for males. We display
the results of an ordinary linear regression of height on the dummy variable Xfemale in
Table 10.3. The estimated intercept β̂0 = 69.9375 is the mean height for males. The

Table 10.3 Regression analysis of heights from class observation on the dummy variable coding
sex as female=1 for female and female=0 for male.

> ## dummy variable

> htwt$female <- as.numeric(htwt$sex == "f")

> htwt.lm <- lm(ht ~ female, data=htwt)

> summary(htwt.lm, corr=FALSE)

Call:

lm(formula = ht ~ female, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-7.938 -2.202 0.533 2.062 5.062

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.938 0.757 92.42 < 2e-16 ***

female -5.470 0.985 -5.55 2.5e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.03 on 37 degrees of freedom

Multiple R-squared: 0.454,Adjusted R-squared: 0.44

F-statistic: 30.8 on 1 and 37 DF, p-value: 2.54e-06

> anova(htwt.lm)

Analysis of Variance Table

Response: ht

Df Sum Sq Mean Sq F value Pr(>F)

female 1 282 282.3 30.8 2.5e-06 ***

Residuals 37 339 9.2

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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estimated regression coefficient for the Xfemale predictor, β̂female = −5.4701, is the
increment to the intercept that produces the mean height for females. The ANOVA
table in Table 10.3 is identical to the ANOVA table in Table 10.2.

There are many other dummy variable coding schemes that we could use to get
exactly the same ANOVA table and the same estimated mean heights for the two
groups. We show another in Table 10.4. In this coding, the dummy variable Xtreat

has the value 1 for females and the value −1 for males. The estimated intercept β̂0 =

67.2024 is the average of the mean heights for females and males. The estimated
regression coefficient for the Xtreat predictor, β̂treat = −2.7351, is the amount that

Table 10.4 Regression analysis of heights from class observation on the dummy variable coding
sex as treat=1 for female and treat=−1 for male.

> ## dummy variable

> htwt$treat <- (htwt$sex == "f") - (htwt$sex == "m")

> htwtb.lm <- lm(ht ~ treat, data=htwt)

> summary(htwtb.lm, corr=FALSE)

Call:

lm(formula = ht ~ treat, data = htwt)

Residuals:

Min 1Q Median 3Q Max

-7.938 -2.202 0.533 2.062 5.062

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.202 0.493 136.40 < 2e-16 ***

treat -2.735 0.493 -5.55 2.5e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.03 on 37 degrees of freedom

Multiple R-squared: 0.454,Adjusted R-squared: 0.44

F-statistic: 30.8 on 1 and 37 DF, p-value: 2.54e-06

> anova(htwtb.lm)

Analysis of Variance Table

Response: ht

Df Sum Sq Mean Sq F value Pr(>F)

treat 1 282 282.3 30.8 2.5e-06 ***

Residuals 37 339 9.2

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



322 10 Multiple Regression—Dummy Variables, Contrasts, and Analysis of Covariance

added to the intercept produces the mean height for females and subtracted from the
intercept produces the mean height for males. The ANOVA table in Table 10.4 is
also identical to the ANOVA table in Table 10.2.

10.3 Equivalence of Linear Independent X-Variables
(such as Contrasts) for Regression

It is not an accident that the ANOVA tables in Tables 10.2, 10.3, and 10.4 are
identical. We explore here why that is the case.

Please review the definition of linear dependence in Section I.4.2.

The X
n×c

matrix in the linear regression presentation of the one-way analysis of

variance model with one factor with a categories must have a leading column of
ones X0 = 1 for the intercept and at least a − 1 additional columns, for a total of
c ≥ a columns. The entire X matrix can be summarized by a contrast matrix W

a×c
consisting of a unique rows, one for each level of the factor.

We explore the relationship between several different contrast matrices W in the
case a = 4. The principles work for any value a. The matrix X of dummy variables
itself consists of ni copies of the ith row of W (where n =

∑a
i=1 ni):

X
n×c
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1{(1 0 0 0)
n2{(0 1 0 0)
n3{(0 0 1 0)
n4{(0 0 0 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×4

W
4×c
= N

n×4
W
4×c

(10.1)

Any contrast matrix W with a = 4 rows and with rank 4 (which means it must
have at least 4 columns) is equivalent for linear regression in the senses that

1. Any two such matrices W1 and W2 with dimensions (4 × c1) and (4 × c2) where
ci ≥ 4 are related by postmultiplication of the first matrix by a full-rank matrix

A
c1×c2

, that is,

W1
4×c1

A
c1×c2

= W2
4×c2

Equivalently, any two such dummy variables matrices X1 and X2 with dimensions
(n × c1) and (n × c2) are similarly related by

X1
n×c1

A
c1×c2

= X2
n×c2

Examples (R code for all the contrast types in these examples is included in file
HHscriptnames(10)):
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1a. A simple overparameterized matrix (5 columns with rank=4) (this is the SAS
default):

Wsimple
4×(1+4)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1b. Treatment contrasts (4 columns with rank=4) (R contr.treatment. This is
the R default for factors. These are not ‘contrasts’ as defined in the standard
theory for linear models as they are not orthogonal to the intercept.):

Wsimple
4×(1+4)

A
(1+4)×(1+3)

= Wtreatment
4×(1+3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1c. Helmert contrasts (4 columns with rank=4) (R contr.helmert ):

Wsimple
4×(1+4)

A
(1+4)×(1+3)

= Whelmert
4×(1+3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 −2 −2 −2
0 0 −2 −2
0 −1 1 −2
0 −1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1
1 1 −1 −1
1 0 2 −1
1 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1d. Sum contrasts (4 columns with rank=4) (R contr.sum ):

Wsimple
4×(1+4)

A
(1+4)×(1+3)

= Wsum
4×(1+3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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1e. Polynomial contrasts (4 columns with rank=4) (R contr.poly. This is the R
default for ordered factors.):

Wsimple
4×(1+4)

A
(1+4)×(1+3)

= Wpolynomial
4×(1+3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 0.0000 0.0 0.0000
0.2 −0.6708 0.5 −0.2236
0.2 −0.2236 −0.5 0.6708
0.2 0.2236 −0.5 −0.6708
0.2 0.6708 0.5 0.2236

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.6708 0.5 −0.2236
1 −0.2236 −0.5 0.6708
1 0.2236 −0.5 −0.6708
1 0.6708 0.5 0.2236

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. The hat matrices are the same.

H1 = (X1(X′1X1)−1X′1) = (X2(X′2X2)−1X′2) = H2

An equivalent statement is that both X matrices span the same column space.

Proof. For the special case that c = a, hence the X′X and A matrices are
invertible:

H2 =

X2(X′2X2)−1X′2 =

(X1A )
(
(X1A )′(X1A )

)−1
(X1A )′ =

(X1A )(A′X′1X1A )−1(A′X′1) =

X1(X′1X1)−1X′1 =
H1

When c > a, the step from line 4 to line 5 involves matrix algebra manipulations
that we do not discuss here. Effectively, we are dropping any redundant columns.

3. The predicted values are the same.

Ŷ = H1Y = H2Y

4. The regression coefficients are related by premultiplication of the second set of
coefficients by the same matrix A,

β1 = Aβ2
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Proof.

E(Y) = X2β2 = (X1A)β2 = X1(Aβ2) = X1β1

5. The ANOVA (analysis of variance) table is the same:

Source Sum of Squares

Regression SSReg = Y ′H1Y = Y ′H2Y
Residual SSRes = Y ′(I − H1)Y = Y ′(I − H2)Y

Exercise 10.1 gives you the opportunity to explore the equivalence of the two
coding schemes in Section 10.2.

As a consequence of the equivalence up to multiplication by a matrix A, the
regression coefficients in regression analyses with factors (which means most ex-
periments) are uninterpretable unless the definitions of the dummy variables have
been provided.

10.4 Polynomial Contrasts and Orthogonal Polynomials

Ott (1993) reports an experiment that uses an abrasives testing machine to test the
wear of a new experimental fabric. The machine was run at six different speeds
(measured in revolutions per minute). Forty-eight identical square pieces of fabric
were prepared, 8 of which were randomly assigned to each of the 6 machine speeds.
Each square was tested for a three-minute period at the appropriate machine setting.
The order of testing was appropriately randomized. For each square, the amount
of wear was measured and recorded. The data from file data(fabricwear) are
displayed in Figure 10.3. The initial ANOVA is in Table 10.5.

From Figure 10.3 we see that the assumption in Equation (6.3) of approxi-
mately constant variance across groups is satisfied by this dataset, hence ANOVA
is an appropriate technique for investigating the data. We also note one outlier at
speed=200. We will return to that data point later.

The ANOVA table in Table 10.5 shows that speed is significant. From the table
of means we see that the means increase with speed and the increase is also faster
as speed increases. Figure 10.3 shows the same and suggests that the means are
increasing as a quadratic polynomial in speed.

There are several essentially identical ways to check this supposition. We start
with the easiest to do and then expand by illustrating the arithmetic behind it. When
we defined speed as a factor in Table 10.5, we actually did something more specific,
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Fig. 10.3 Fabric wear as a function of speed. We see constant variance and a curved uphill trend.
There is one outlier

Table 10.5 ANOVA and means for wear as a function of speed.

> fabricwear.aov <- aov(wear ~ speed, data=fabricwear)

> summary(fabricwear.aov)

Df Sum Sq Mean Sq F value Pr(>F)

speed 5 4872 974 298 <2e-16 ***

Residuals 42 137 3

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(fabricwear.aov, "mean")

Tables of means

Grand mean

34.93

speed

speed

100 120 140 160 180 200

24.78 26.96 28.68 32.93 43.05 53.19

we declared it to be an ordered factor. This means that the dummy variables are the
orthogonal polynomials for six levels. We display the orthogonal polynomials in
Figure 10.4 and Table 10.6. See the discussion in Section I.4 for an overview of
orthogonal polynomials and their construction.
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Fig. 10.4 Orthogonal polynomials for speed.

From the panels in Figure 10.4 we see that the linear polynomial plots as a
straight line against the speed. The quadratic polynomial plots as a discretization of
a parabola. The higher-order polynomials are rougher discretizations of their func-
tions. In Table 10.6 we see that the orthogonal polynomials are scaled so their cross
product is the identity matrix, that is, it is a diagonal matrix with 1s on the diagonal.
Compare this (in Exercise 10.2) to a matrix of the simple powers of the integers
(1, 2, 3, 4, 5, 6). The columns of the simple powers span the same linear space as the
orthogonal properties. Because they are not orthogonal (their cross product is not
diagonal), their plots are harder to interpret and they may show numerical difficul-
ties when used as predictor variables in a regression. See Appendix G for further
discussion on the numerical issues.

In Table 10.7 we show two variants of an expanded display of the ANOVA from
Table 10.5. The top of the table shows the regression coefficients for the regression
against the orthogonal polynomials used as the dummy variables. Here we see that
the linear and quadratic terms are highly significant. The cubic term is not signifi-
cant. Based on our reading of the graph, and the comparison of the p-value for the
quartic term to that of the quadratic term, we will interpret the quartic term as not
significant and do all continuing work with the quadratic model.

In the bottom of Table 10.7 we show the partitioned ANOVA table with the linear,
quadratic, and cubic terms isolated. By dint of the orthogonality the F-values are the
square of the t-values for the coefficients (36.35802 = 1321.903) and the p-values
are identical.

What happens when we redo the analysis without the outlier noted in Figure
10.3? The residual mean square goes down by a factor of 4; consequently, all the
t-values go up. While the p-values for the cubic and quartic terms now show sig-
nificance at .0001, we will continue to exclude them from our recommended model
because the p-values for the linear and quadratic terms are orders of magnitude
smaller (< 10−16). See Exercise 10.8.
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Table 10.6 Orthogonal polynomials for speed. The slightly complex algorithm shown here for
scaling the orthogonal polynomials, with attention paid to computational precision by use of the
zapsmall function, is necessary for factors with an odd number of levels. See Appendix G for
further discussion on the numerical issues.

> tmp.c <- zapsmall(contrasts(fabricwear$speed), 14)

> dimnames(tmp.c)[[1]] <- levels(fabricwear$speed)

> tmp.c

.L .Q .C ^4 ^5

100 -0.5976 0.5455 -0.3727 0.1890 -0.06299

120 -0.3586 -0.1091 0.5217 -0.5669 0.31497

140 -0.1195 -0.4364 0.2981 0.3780 -0.62994

160 0.1195 -0.4364 -0.2981 0.3780 0.62994

180 0.3586 -0.1091 -0.5217 -0.5669 -0.31497

200 0.5976 0.5455 0.3727 0.1890 0.06299

> zapsmall(crossprod(tmp.c), 13)

.L .Q .C ^4 ^5

.L 1 0 0 0 0

.Q 0 1 0 0 0

.C 0 0 1 0 0

^4 0 0 0 1 0

^5 0 0 0 0 1

> min.nonzero <- function(x, digits=13) {

+ xx <- zapsmall(x, digits)

+ min(xx[xx != 0])

+ }

> tmp.min <- apply(abs(tmp.c), 2, min.nonzero)

> sweep(tmp.c, 2, tmp.min, "/")

.L .Q .C ^4 ^5

100 -5 5 -1.25 1 -1

120 -3 -1 1.75 -3 5

140 -1 -4 1.00 2 -10

160 1 -4 -1.00 2 10

180 3 -1 -1.75 -3 -5

200 5 5 1.25 1 1
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Table 10.7 Regression coefficients on dummy variables, and partitioned ANOVA table.

> summary(fabricwear.aov,

+ split=list(speed=list(speed.L=1, speed.Q=2,

+ speed.C=3, rest=4:5)))

Df Sum Sq Mean Sq F value Pr(>F)

speed 5 4872 974 297.70 < 2e-16 ***

speed: speed.L 1 4327 4327 1321.90 < 2e-16 ***

speed: speed.Q 1 513 513 156.76 9.1e-16 ***

speed: speed.C 1 7 7 2.10 0.154

speed: rest 2 25 13 3.88 0.028 *

Residuals 42 137 3

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary.lm(fabricwear.aov)

Call:

aov(formula = wear ~ speed, data = fabricwear)

Residuals:

Min 1Q Median 3Q Max

-9.487 -0.653 0.181 0.825 2.712

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.929 0.261 133.76 < 2e-16 ***

speed.L 23.256 0.640 36.36 < 2e-16 ***

speed.Q 8.009 0.640 12.52 9.1e-16 ***

speed.C 0.928 0.640 1.45 0.154

speed^4 -1.677 0.640 -2.62 0.012 *

speed^5 -0.600 0.640 -0.94 0.354

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.81 on 42 degrees of freedom

Multiple R-squared: 0.973,Adjusted R-squared: 0.969

F-statistic: 298 on 5 and 42 DF, p-value: <2e-16
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10.4.1 Specification and Interpretation of Interaction Terms

Example—consider a model

E(Y) = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β34X3X4

to “explain” determinants of annual salary Y in dollars for workers in some pop-
ulation. Here X1 is age in years, X2 is gender (1 if female, 0 if male), X3 is race
(1 if white, 0 if nonwhite), and X4 is number of years of schooling. (Discussion:
What other variables might such a model include to explain salary?)

The existence of the interaction terms allows for the possibility that the degree of
enhancement of education on schooling differs for whites and nonwhites.

Consider a white and a nonwhite of the same age and gender and having the same
amount of schooling. Then:

• β4 is the expected increase in annual salary for a nonwhite attributable to an
additional year of schooling.

• β4 + β34 is the expected increase in annual salary for a white attributable to an
additional year of schooling.

• β34 is the expected amount by which a white’s salary increase as a result of an
additional year of schooling exceeds a nonwhite’s salary increase as a result of
an additional year of schooling.

Also, still assuming the same age and gender,

• β3 + β34X4 is the difference between white and nonwhite expected salary.

• β3 is the component of this difference that does not depend on years of schooling
and is attributable only to difference in race.

We examine this model further in Exercise 10.7.

10.5 Analysis Using a Concomitant Variable (Analysis
of Covariance—ANCOVA)

In some situations where we seek to compare the differences in the means of a
continuous response variable across levels of a factor A, we have available a second
continuous variable that can be used to improve our ability to distinguish among the
levels. Historically this extended model has been called the analysis of covariance
model because the second variable varies along with the first. To avoid confusion
with the concept of covariance introduced in Chapter 3, we prefer to call this app-
roach analysis using a concomitant variable. Nevertheless we will retain use of
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the term covariate as a shorthand term for concomitant variable and the acronym
ANCOVA as an abbreviation for this method.

If Xi j denotes the jth observation of the covariate at the ith level of factor A, our
original ANOVA model in Equation (6.1) generalizes to

Yi j = μ + αi + β(Xi j − ¯̄X) + εi j (10.2)

for i = 1, . . . , a and j = 1, . . . , ni

where ¯̄X is the grand mean of the Xi j’s and all other terms are as defined in Equa-
tion (6.1). The model in Equation (10.2) has separate intercepts αi for each level of A
but retains a common slope. The differences between the intercepts αi are identical
to the vertical differences between the parallel lines (to be illustrated in Figure 10.8).
Equation (10.2) is the classical ANCOVA model.

The logic of this approach is that if Xi j is related to Yi j then the ε’s of the model
in Equation (10.2) will be measured from a different regression line for each level
of A rather than from a different horizontal line as in model (6.1). This will give the
ε’s less variability than those of Equation (6.1), thereby sharpening our inferences
on the αi’s. The αi’s estimated from Equation (10.2) are said to be adjusted for the
covariate. Quite frequently the range of observed Xi j differs for each level of Ai and
therefore the Ȳi means from Equation (6.1) reflect the difference in the X-values
more than the differences attributable to the change in levels of A.

The next level of generalization allows the slopes to differ, i.e., replace the com-
mon β in Equation (10.2) with βi:

Yi j = μ + αi + βi(Xi j − ¯̄X) + εi j (10.3)

for i = 1, . . . , a and j = 1, . . . , ni

We illustrate models Equations (10.2) and (10.3) in Section 10.6. In Section 10.6.5
we will use the model in Equation (10.3) to test the assumption that the lines are par-
allel. Formally, we will test whether the lines have the same slope

H0: β1 = β2 = β3 (10.4)

H1: Not all βi are identical

or the same intercept

H0: α1 = α2 = α3 (10.5)

H1: Not all αi are identical
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or both (in which case the lines coincide). We illustrate each model by an appropriate
graph. We construct a single meta-graph in Figure 10.12 to illustrate the comparison
of all the models we consider.

These ideas can be extended to situations with more than one covariate variable
and to more complicated experimental designs such as those discussed in Chapters
12 through 14.

10.6 Example—Hot Dog Data

10.6.1 Study Objectives

Hot dogs based on poultry are said to be healthier than ones made from either meat
(beef and pork) or all beef. A basis for this claim may be the lower-calorie (fat)
content of poultry hot dogs. Is this advantage of poultry hot dogs offset by a higher
sodium content than meat hot dogs?

Researchers for Consumer Reports analyzed three types of hot dog: beef, poul-
try, and meat (mostly pork and beef, but up to 15% poultry meat). The data in file
data(hotdog) come from Consumer Reports (1986) and were later used by Moore
and McCabe (1989).

10.6.2 Data Description

Type: Type of hot dog (beef, meat, or poultry)

Calories: Calories per hot dog

Sodium: Milligrams of sodium per hot dog

10.6.3 One-Way ANOVA

We start by comparing the Sodium content of the three hot dog Types by the meth-
ods of Chapter 6 in Figure 10.5 and in Table 10.8. We see that the three Types have
similar Sodium content.

Figure 10.6 shows the response Sodium plotted against the covariate Calories

by Type. Within each panel we plot a horizontal line at the mean of the Sodium
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values for that Type. The analysis of variance in Table 10.8 compares the vertical
distance between these horizontal lines. It ignores the most evident feature of this
plot, that the three Types have very different fat contents with Poultry low, Beef
intermediate, and Meat high. We wish to see if knowledge about Calories affects
our understanding about Sodium.

10.6.4 Concomitant Explanatory Variable—ANCOVA

It is possible that our finding of similar Sodium content is attributable in part to
a need to add sodium to enhance the flavor of higher-fat hot dogs. The Calories

information can be incorporated into the analysis by adding Calories to the model
as a concomitant explanatory variable. Then in this revised model, comparisons
between the mean Sodium contents of the three Types will have been adjusted for
differing Calories contents. In this way, comparisons between the three Types

will be made on the basis that each Type has the mean Calories content of all
Types.

We illustrate this revised analysis in two steps. Initially, in Figure 10.7 and
Table 10.9, we show the regression (Chapter 8) of Sodium on Calories ignor-
ing the Types. The common regression line makes some sense in the Superpose
panel but very clearly has the wrong slope and wrong intercept in all three of the
individual panels.
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Fig. 10.5 Boxplots comparing the Sodium content of three Types of hot dogs. See Table 10.8.
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Sodium ~ Type, x=Calories

Calories
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Fig. 10.6 Sodium ∼ Type, x=Calories. Horizontal lines at Sodium means for each Type.
Yi j = μ + αi + εi j. See Table 10.8. The intent of the notation is twofold: The arithmetic of the
analysis is based on the one-way ANOVA of Sodium ∼ Type. The graph is more complex. The
points in the graph show y=Sodium plotted against x=Calories separately for each level of Type.
The horizontal line in each panel is the mean of the levels of Sodium at each level of Type.

Table 10.8 Hot dog ANOVA and means. This is the one-way ANOVA of Chapter 6. See Figures
10.5 and 10.6.

> aovStatementAndAnova(TxC)

> anova(aov(Sodium ~ Type, data = hotdog))

Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 31739 15869 1.78 0.18

Residuals 51 455249 8926

> model.tables(TxC, type="means")

Tables of means

Grand mean

424.8

Type

Beef Meat Poultry

401.1 418.5 459

rep 20.0 17.0 17
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Sodium ~ Calories, groups=Type

Calories
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Fig. 10.7 Sodium ∼ Calories, groups=Type. Common regression line that ignores Type.
Yi j = μ + β(Xi j − ¯̄X) + εi j. See Table 10.9. The intent of the notation is twofold: The arithmetic of
the analysis is based on the simple linear regression of Sodium ∼ Calories. The graph is more
complex. The points in the graph show y=Sodium plotted against x=Calories separately for each
level of Type. The common regression line in all panels ignores Type.

Table 10.9 Hot dog ANCOVA with a common regression line that ignores Type. See Figure 10.7.

> aovStatementAndAnova(CgT, warn=FALSE)

> anova(aov(Sodium ~ Calories, data = hotdog))

Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)

Calories 1 106270 106270 14.5 0.00037 ***

Residuals 52 380718 7321

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Figure 10.8 and Table 10.10 show parallel regression lines for each type. They
have separate intercepts and a common slope. This model is the standard analysis
of covariance model. We are interested in the vertical distance between the parallel
lines. Equivalently, we are interested in the distance between the intercepts. We see
from the F = 37.07433 with p = 1.310−10 in the first part of Table 10.10 that the
vertical distance is significant.

The original preliminary conclusion based on Table 10.8 was misleading because
it left out the critical dependence of y=Sodium on the x=Calories variable.

It is possible (see Exercise 10.5 for an example) for the covariate to be significant
and not the grouping factor. In this example both are significant.
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Sodium ~ Calories + Type
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Fig. 10.8 Sodium ∼ Calories + Type. Parallel lines. Yi j = μ + αi + β(Xi j − ¯̄X) + εi j. See
Table 10.10. This illustrates the standard ANCOVA model.

Table 10.10 Hot dog ANCOVA with parallel lines and separate intercepts. See Figure 10.8.

> aovStatementAndAnova(CpT)

> anova(aov(Sodium ~ Calories + Type, data = hotdog))

Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)

Calories 1 106270 106270 34.6 3.3e-07 ***

Type 2 227386 113693 37.1 1.3e-10 ***

Residuals 50 153331 3067

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We construct Figure 10.9 and Table 10.11 to show the means for the response
Sodium adjusted for the covariate Calories. The adjustment maintains the same
vertical distance between the fitted lines that we observe in Figure 10.8. From the
ANOVA table in Table 10.11 we see that the adjusted means have the same residual
sum of squares as the unadjusted means. The residual degrees of freedom are wrong
because the analysis doesn’t know that the effect of the Calories variable has
already been removed. The Type sum of squares is not what we anticipated because
we did not adjust the Type dummy variables for the covariate; we only adjusted the
response variable.

Now that we have shown the factor Type to be important, we show in Table 10.12
and Figure 10.10 the results of multiple comparisons analysis using the Tukey
procedure. These show that Meat and Beef are indistinguishable and that Poultry
differs from both Meat and Beef.
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Sodium.Calories ~ Type, x=Calories
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Fig. 10.9 Sodium.Calories ∼ Type, x=Calories. Horizontal lines after adjustment for the
covariate.

(
Yi j|Xi j

)
= μ + αi + εi j. See Table 10.11. The vertical distance from each point to its line

is identical in this figure to the vertical distances shown in Figure 10.8.

Table 10.11 Horizontal lines after adjustment for the covariate. See Figure 10.9.

> aovStatementAndAnova(T.C)

> anova(aov(Sodium.Calories ~ Type, data = hotdog))

Analysis of Variance Table

Response: Sodium.Calories

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 368463 184232 61.3 2.7e-14 ***

Residuals 51 153331 3006

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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contrast value
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Fig. 10.10 Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8
and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for
Calories. See also Figures 10.8 and 10.9 and Table 10.12.

Table 10.12 Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8
and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for
Calories. See also Figure 10.10.

> CpT.mmc <- mmc(aov.trellis(CpT))

> CpT.mmc

Tukey contrasts

Fit: aov(formula = Sodium ~ Calories + Type, data = hotdog)

Estimated Quantile = 2.41

95% family-wise confidence level

$mca

estimate stderr lower upper height

Poultry-Meat 171.47 23.13 115.73 227.21 460.8

Poultry-Beef 182.76 22.19 129.30 236.22 455.1

Meat-Beef 11.29 18.28 -32.75 55.34 369.4

$none

estimate stderr lower upper height

Poultry 546.5 16.07 507.8 585.2 546.5

Meat 375.0 14.13 341.0 409.1 375.0

Beef 363.7 12.94 332.6 394.9 363.7
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Sodium ~ Calories * Type

Calories
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Fig. 10.11 Sodium ∼ Calories * Type. Separate regression lines. Yi j = μ+αi+βi(Xi j− ¯̄X)+εi j.
See Table 10.13.

Table 10.13 Hot dog ANCOVA with separate regression lines (slopes and intercepts). See
Figure 10.11.

> aovStatementAndAnova(CsT)

> anova(aov(Sodium ~ Calories * Type, data = hotdog))

Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)

Calories 1 106270 106270 35.69 2.7e-07 ***

Type 2 227386 113693 38.18 1.2e-10 ***

Calories:Type 2 10402 5201 1.75 0.19

Residuals 48 142930 2978

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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10.6.5 Tests of Equality of Regression Lines

In Section 10.6.4 we assume the constant slope model (10.2) and test whether the
intercepts differed by testing (10.5) about αi. We can also work with the separate
slope model (10.3) and test (10.4) about βi.

Figure 10.11 and Table 10.13 show separate regression lines for each group.
These have separate intercepts and slopes. The F-test of Calories:Type in
Table 10.13 having p-value = .185 addresses the null hypothesis that the regression
lines for predicting Sodium from Calories are parallel.

Sodium ~ Calories, groups=Type

Beef Meat Poultry Superpose

Sodium ~ Type, x=Calories

Beef Meat Poultry Superpose

Sodium ~ Calories + Type
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Composite graph illustrating four models with a factor and a covariate

Fig. 10.12 Four models for the hot dog data, arranged in two columns corresponding to the two
possibilities for the intercept in the model and three rows corresponding to the three possibilities
for the slope in the model. The models are often described as

Constant intercept α Variable intercept α

Variable slope β Analysis of covariance with interaction
of the factor and the covariate.

Constant slope β Linear regression, Standard analysis of covariance with
ignoring the factor. constant slope and variable intercept.

Zero slope β = 0 Analysis of variance, ignoring the
covariate.
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Observe in Figure 10.11 that the slopes of the lines for the regressions of Sodium
on Calories appear to differ for the three Types of hot dog. This null hypothesis
is expressed as two equalities in Equation (10.4) and is tested in Table 10.13 using
the two degree-of-freedom sum of squares for the interaction Calories:Type. The
p-value for this test, 0.185, implies that the null hypothesis cannot be rejected and
therefore that the three slopes are homogeneous. Any difference among them is too
small to detect with the sample sizes in this data set.

Conditional on the homogeneity of the three slopes, the two degree-of-freedom
sum of squares for Type in Table 10.10 tests the hypothesis that the three regression
lines have a common intercept, a null hypothesis expressed in Equation (10.5). The
zero p-value for this test implies that the intercepts are not identical.

10.7 ancovaplot Function

The ANCOVA plot has been calculated with the ancovaplot function, one of the
functions that we provide in the HH package. The ancovaplot function constructs
the appropriate trellis graphics commands for the plot. The specific feature
that requires a separate function is its handling of the x= and groups= arguments
respectively for the one-way ANOVA and the simple regression models. The result
of the function is an ancovaplot object, which is essentially an ordinary trellis

object with a different class. We have provided methods for ancova and related
functions that will operate directly on the ancovaplot object.

The four basic options are shown in Table 10.14. Output from each is shown in
Figures 10.7, 10.6, 10.8, and 10.11 and Tables 10.9, 10.8, 10.10, and 10.13. Figure
10.12 shows the graphs from all four in a single coordinated display.
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Table 10.14 Four ways to use the ancovaplot function. See Figure 10.12 for a coordinated
placement of all four of these plots on the same page.

data(hotdog, package="HH")

data(col3x2, package="HH")

## constant line across all groups

## y ~ x

ancovaplot(Sodium ~ Calories, groups=Type, data=hotdog, col=col3x2)

## different horizontal line in each group

## y ~ a

ancovaplot(Sodium ~ Type, x=Calories, data=hotdog, col=col3x2)

## constant slope, different intercepts

## y ~ x + a or y ~ a + x

ancovaplot(Sodium ~ Calories + Type, data=hotdog, col=col3x2)

## different slopes, and different intercepts

## y ~ x * a or y ~ a * x

ancovaplot(Sodium ~ Calories * Type, data=hotdog, col=col3x2)

10.8 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

10.1. Demonstrate that the two coding schemes

Wfemale =

(
1 1
1 0

)
and Wtreat =

(
1 1
1 −1

)

in Section 10.2 are equivalent for regression in the sense of Section 10.3 by finding
the A matrix that relates them.

10.2. Demonstrate that the orthogonal polynomials in Table 10.6 span the same
column space as the matrix whose columns are the simple polynomials
x = (1, 2, 3, 4, 5, 6), x2, x3, x4, x5. Plot the columns of the matrix and compare the
plot to Figure 10.4.

10.3. Demonstrate that the two coding schemes for the ResidenceLocation

example in Section 10.1 are equivalent by defining the corresponding W variables
and finding the A matrix that relates them.
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10.4. We first investigated the dataset data(water) in Exercise 4.4.

a. Plot mortality vs calcium, using separate plot symbols for each value of
derbynor. Does it appear from this plot that derbynor would contribute to ex-
plaining the variation in mortality?

b. Perform separate regressions of mortality on calcium for each value of
derbynor. Compare these to the estimated coefficients in a multiple regression
of mortality on both calcium and derbynor.

c. Interpret the regression coefficients in the multiple regression in terms of the
model variables.

d. Suggest the public health conclusions of your analysis.

10.5. Do an analysis of covariance with model (10.2) of the simple dataset

y x a
1 1 1
2 2 1
3 3 2
4 4 2
5 5 3
6 6 3

Show that covariate x is significant and the grouping factor a is not.

10.6. The Erie house-price data data(hpErie) is introduced in Exercise 9.3. That
exercise invites examination of the impact of two high-priced houses by compar-
ing analyses with these houses included or omitted. Revisit these data, adding a
dummy variable highprice defined as 1 if one of the two high-priced houses and
0 otherwise. Perform a stepwise regression analysis including this new variable and
compare your results with those in Exercise 9.3.

10.7. Reconsider the salary model in Section 10.4.1.

a. Interpret, in terms of the model variables salary, age, gender, etc., the finding that
β2 is significantly less than zero.

b. Write the null hypothesis in terms of the β j’s:

E(Y) for whites with 12 years of schooling is the same as E(Y) for nonwhites with 16
years of schooling.

c. Write the null hypothesis in terms of the β j’s:

E(Y) increases at the rate of $2,000 per year of schooling for whites and at the rate of
$2,500 per year of schooling for nonwhites.
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d. If the gender and race are interpreted as factors, rather than as arbitrarily coded
dummy variables, then the generated dummy variables differ from the 0 and 1
coding used in Section 10.4.1. Therefore, the estimated β̂ j will differ. Explain
why the t-tests and the F-test will remain the same.

10.8. Rerun the polynomial contrasts for the data(fabricwear) example in
Table 10.7 without the outlier noted in Figure 10.3.



Chapter 11

Multiple Regression—Regression Diagnostics

In Chapter 9 we show how to set up and produce an initial analysis of a regression
model with several predictors. In this chapter we discuss ways to investigate whether
the model assumptions are met and, when the assumptions are not met, ways to
revise the model to better conform with the assumptions. We also examine ways to
assess the effect on model performance of individual predictors or individual cases
(observations).

11.1 Example—Rent Data

11.1.1 Study Objectives

Alfalfa is a high-protein crop that is suitable as food for dairy cows. There are two
research questions to ask the data in file data(rent) (from file (alr162) in Weis-
berg (1985)). It is thought that rent for land planted to alfalfa relative to rent for other
agricultural purposes would be higher in areas with a high density of dairy cows and
rents would be lower in counties where liming is required, since that would mean
additional expense.

11.1.2 Data Description

The data displayed in the scatterplot matrices (sploms) in Figure 11.1 were collected
to study the variation in rent paid in 1977 for agricultural land planted to alfalfa. The
unit of analysis is a county in Minnesota; the 67 counties with appreciable rented
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farmland are included. Note that we automatically conditioned the splom on the
factor lime. The original data include:

rnt.alf: average rent per acre planted to alfalfa

rnt.till: average rent paid for all tillable land

cow.dens: density of dairy cows (number per square mile)

prop.past: proportion of farmland used as pasture

lime: “lime” if liming is required to grow alfalfa; “no.lime” otherwise
(Lime is a calcium oxide compound that is spread on a field as a fertilizer.)

We added one more variable

alf.till: the ratio of rnt.alf to rnt.till

to investigate the relative rent question.
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Fig. 11.1 Scatterplot matrices of all variables conditioned on lime.

11.1.3 Rent Levels

It is immediately clear from the sploms in Figure 11.1 that lime is very important
in the distribution of cow.dens and prop.past as neither has any large values in
the lime splom. The ratio alf.till is slightly higher in the no.lime splom.
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lime does not seem to have an effect on either of the rent variables rent.alf or
rent.till, as their panels have similar distributions in both sploms. The regression
analysis of rent.alf in Table 11.1 supports that impression as lime has a very low
t-value. prop.past also has a very low t-value.

Table 11.1 rent.alf regressed against all other observed variables.

> rent.lm3l <-

+ lm(rnt.alf ~ rnt.till + cow.dens + prop.past + lime,

+ data=rent)

> summary(rent.lm3l)

Call:

lm(formula = rnt.alf ~ rnt.till + cow.dens + prop.past + lime,

data = rent)

Residuals:

Min 1Q Median 3Q Max

-21.229 -4.869 -0.029 4.755 27.767

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.334 4.101 -0.81 0.41931

rnt.till 0.883 0.069 12.80 < 2e-16 ***

cow.dens 0.432 0.108 4.00 0.00017 ***

prop.past -11.380 11.894 -0.96 0.34236

lime1 -0.506 1.425 -0.36 0.72371

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.31 on 62 degrees of freedom

Multiple R-squared: 0.84,Adjusted R-squared: 0.83

F-statistic: 81.6 on 4 and 62 DF, p-value: <2e-16

> anova(rent.lm3l)

Analysis of Variance Table

Response: rnt.alf

Df Sum Sq Mean Sq F value Pr(>F)

rnt.till 1 25824 25824 297.89 <2e-16 ***

cow.dens 1 2386 2386 27.53 2e-06 ***

prop.past 1 74 74 0.85 0.36

lime 1 11 11 0.13 0.72

Residuals 62 5375 87

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 11.2 Scatterplot matrices of rnt.alf with 2 X-variables, conditioned on lime.

We therefore look at a simpler model, without the prop.past predictor but
with the cow.dens:lime interaction, in Figure 11.2 and Table 11.2. Although the
regression analysis shows the lime coefficient as not significant, it shows the inter-
action of lime with cow density to be on the edge of significance (p = .055). We
left both in the model because there appears to be much higher variability in the
residuals for high values of rnt.till and lower variability in the residuals for low
values of cow.dens in the no.lime counties as indicated in Figure 11.3.

Our conclusion from this portion of the analysis is that rent for alfalfa is related
to rent for tillage and to cow density. The relationship with cow density may depend
on the need for lime. We need to investigate the variability of the residuals.
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Table 11.2 rent.alf regressed against all variables except prop.past, and including the inter-
action of cow density with lime.

> rent.lm4ln <- lm(rnt.alf ~ rnt.till + cow.dens +

+ lime + cow.dens:lime, data=rent)

> summary(rent.lm4ln)

Call:

lm(formula = rnt.alf ~ rnt.till + cow.dens + lime + cow.dens:lime,

data = rent)

Residuals:

Min 1Q Median 3Q Max

-24.346 -4.251 -0.194 4.151 27.193

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.9584 3.0117 -1.98 0.052 .

rnt.till 0.9269 0.0536 17.28 < 2e-16 ***

cow.dens 0.4567 0.0991 4.61 2.1e-05 ***

lime1 -3.6034 2.1642 -1.66 0.101

cow.dens:lime1 0.1926 0.0986 1.95 0.055 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.1 on 62 degrees of freedom

Multiple R-squared: 0.847,Adjusted R-squared: 0.838

F-statistic: 86.1 on 4 and 62 DF, p-value: <2e-16

> anova(rent.lm4ln)

Analysis of Variance Table

Response: rnt.alf

Df Sum Sq Mean Sq F value Pr(>F)

rnt.till 1 25824 25824 311.61 < 2e-16 ***

cow.dens 1 2386 2386 28.80 1.3e-06 ***

lime 1 5 5 0.07 0.799

cow.dens:lime 1 316 316 3.81 0.055 .

Residuals 62 5138 83

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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11.1.4 Alfalfa Rent Relative to Other Rent

Returning to the sploms in Figure 11.1, we see that that lime puts an upper bound
on the alf.till ratio. The ratio does seem to go up with cow density and seems
to have a variance relation with proportion in pasture. In Table 11.3, a regression
of the alf.till ratio against the non-rent variables, we see that we can drop the
prop.past variable.

We continue with Table 11.4 and Figure 11.4, which show an ordinary analysis
of covariance with model

alf.till ~ cow.dens * lime (11.1)

The ANOVA table in Table 11.4 shows the interaction is not quite significant.

We choose to investigate individual points by looking at plots of the residu-
als in Figure 11.5 (with the QQ-plot expanded in Figure 11.9) and the regression
diagnostics in Figure 11.6. These show the three points (19, 33, 60) in the no.lime

group and the single point (49) in the lime group as being potentially influential.
Figure 11.6, produced with our functions lm.case.s and plot.case.s, includes
boundaries for the standard recommended thresholds for the various diagnostic mea-
sures discussed in Section 11.3.
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Fig. 11.3 Residuals from rnt.alf ~ rnt.till + cow.dens*lime (in Table 11.2 and
Figure 11.2) plotted against the X-variables conditioned on lime.
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Table 11.3 alf.till ratio regressed against cow density | lime and proportion in pasture.

> rent.lm12p <- lm(alf.till ~ lime * cow.dens + prop.past, data=rent)

> summary(rent.lm12p, corr=FALSE)

Call:

lm(formula = alf.till ~ lime * cow.dens + prop.past, data = rent)

Residuals:

Min 1Q Median 3Q Max

-0.3342 -0.1247 -0.0203 0.1045 0.7853

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.78957 0.05637 14.01 < 2e-16 ***

lime1 -0.09686 0.05333 -1.82 0.07419 .

cow.dens 0.00944 0.00259 3.64 0.00056 ***

prop.past 0.18989 0.22670 0.84 0.40546

lime1:cow.dens 0.00391 0.00242 1.62 0.11063

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.223 on 62 degrees of freedom

Multiple R-squared: 0.366,Adjusted R-squared: 0.325

F-statistic: 8.94 on 4 and 62 DF, p-value: 9.17e-06

> anova(rent.lm12p)

Analysis of Variance Table

Response: alf.till

Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.846 0.846 17.03 0.00011 ***

cow.dens 1 0.754 0.754 15.19 0.00024 ***

prop.past 1 0.045 0.045 0.91 0.34503

lime:cow.dens 1 0.130 0.130 2.62 0.11063

Residuals 62 3.078 0.050

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We locate the potentially influential points in Figure 11.7 and see them as the
three counties with the highest ratios and the one lime county with an unusually
high cow density. In Section 11.3 we will discuss the statistics displayed in Figures
11.5 and 11.6 as well as their interpretation.

We redo the analysis without these four points in Table 11.6 and Figure 11.8.
After isolating these four counties we see significantly different slopes in the
no.lime and lime counties.
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Table 11.4 alf.till ratio regressed against cow density | lime. See Figure 11.4.

> rent.lm12m <- aov(alf.till ~ lime * cow.dens, data=rent)

> anova(rent.lm12m)

Analysis of Variance Table

Response: alf.till

Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.846 0.846 17.11 0.00011 ***

cow.dens 1 0.754 0.754 15.26 0.00023 ***

lime:cow.dens 1 0.140 0.140 2.84 0.09708 .

Residuals 63 3.113 0.049

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary.lm(rent.lm12m)

Call:

aov(formula = alf.till ~ lime * cow.dens, data = rent)

Residuals:

Min 1Q Median 3Q Max

-0.3296 -0.1362 -0.0139 0.0877 0.8408

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.80653 0.05248 15.37 < 2e-16 ***

lime1 -0.10424 0.05248 -1.99 0.051 .

cow.dens 0.01024 0.00241 4.25 7.1e-05 ***

lime1:cow.dens 0.00405 0.00241 1.68 0.097 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.222 on 63 degrees of freedom

Multiple R-squared: 0.359,Adjusted R-squared: 0.328

F-statistic: 11.7 on 3 and 63 DF, p-value: 3.32e-06

Our conclusion at this step is that for most counties, there is a linear relationship
of the rent ratio to the cow density, with the slope depending on the need for lime.
The three no.lime counties and the one lime county need additional investigation.
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Fig. 11.4 ANCOVA rnt.alf/rnt.till ~ cow.dens | lime. See Table 11.4.
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11.4 and Figure 11.4. The structure of the panels in this figure is discussed in Section 8.4. The
figure itself is similar to Figure 8.6.
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Table 11.5 Case diagnostics for model in Table 11.4. The diagnostics are plotted in Figure 11.6.
The case numbers for the noteworthy cases are listed here.

> rent.case12m <- case(rent.lm12m)

> rent.case12m.trellis <-

+ plot(rent.case12m, rent.lm12m, par.strip.text=list(cex=1.2),

+ layout=c(3,3), main.cex=1.6, col=likertColor(2)[2], lwd=4)

> rent.case12m.trellis ## display both graph and list of noteworthy cases

Noteworthy Observations

Student del resid 19 33

deleted std dev 19 33

h 13 40 49 56

Cook’s distance

dffits 5 19 32 33 49 60 66

DFBETAS (Intercept) 5 19

DFBETAS lime1 5 19

DFBETAS cow.dens 5 32 33 49 60

DFBETAS lime1:cow.dens 5 32 33 49 60

aov(formula = alf.till ~ lime * cow.dens, data = rent)
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Fig. 11.6 Diagnostics from ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime. The
model is displayed in Table 11.4 and Figure 11.4. Each of the statistics in these panels is dis-
cussed in Section 11.3 and shown enlarged in Figures 11.12–11.17. To work around the problem
that identification in the graph’s x-axis of noteworthy cases often suffers from overprinting, the
plot.case function returns and prints a list of noteworthy cases. We show the list in Table 11.5.
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Fig. 11.7 Identified points in ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime.

Table 11.6 ANCOVA of alf.till ratio regressed against cow density and lime with four rem-
oved observations. See Figure 11.8. Compare to Table 11.4.

> rent.lm12ms.aov <- aov(alf.till ~ lime * cow.dens,

+ data=rent[-c(19, 33, 60, 49),])

> anova(rent.lm12ms.aov)

Analysis of Variance Table

Response: alf.till

Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.428 0.428 17.81 8.5e-05 ***

cow.dens 1 0.395 0.395 16.43 0.00015 ***

lime:cow.dens 1 0.233 0.233 9.67 0.00288 **

Residuals 59 1.419 0.024

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 11.8 Repeat of Figure 11.4 with four counties removed from ANCOVA
ancovaplot(alf.till ~ lime * cow.dens, data=rent[-c(19, 33, 60, 49),]).
See Table 11.6. Compare to Figure 11.4.
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11.2 Checks on Model Assumptions

We assume in Section 9.3 that the model error terms εi ∼ NID(0, σ2) (Normal Inde-
pendently Distributed), that is that they have the same variance σ2 for all cases, are
mutually uncorrelated or independent, and are normally distributed. In order for the
conclusions from our analyses to be valid, these assumptions must be true. There-
fore, we discuss ways to verify the assumptions and then suggest some remedies
when assumptions are not met.

11.2.1 Scatterplot Matrix

We previously mentioned the importance of routinely producing scatterplot matri-
ces as part of analyses involving several variables. We produced many such plots in
our discussion in Section 11.1. Here we focus on the rows of the scatterplot matrix
that correspond to the response variables. The panels in these rows, the plots of the
response y vs each of the explanatory variables x j, should each be approximately lin-
ear. In Section 11.1.3 the response is shown in the rnt.alf row in Figure 11.1 and
in Figure 11.2. In Section 11.1.4 the response is the alf.till row in Figure 11.1
and in Figure 11.4. If the plot of y against any explanatory variable suggests curva-
ture in the relationship, the analyst should consider transforming either the response
variable or that explanatory variable so that following transformation the plot of y
vs the transformed x j is close to linear. A successful transformation suggests the
use of this transformed predictor rather than the original in the regression model.
Exercise 11.5 explores this idea.

11.2.2 Residual Plots

Before a model can be accepted for use in explanation or prediction, the analyst
should produce and examine plots involving the residuals calculated from the fit of
the model to the data. The residuals ei should be plotted vs each of the following,
one plot point per case:

• the fitted values of the response ŷi

• each of the model’s explanatory variables x j

• possibly other variables under consideration for the model but not yet a part of it

• time, if the data are time-ordered

In addition, the partial residuals (see Section 9.13.1) should be plotted against the
corresponding predictors and against the residuals from regressing each predictor
against the other predictors (added variable plots; see Section 9.13.4). Ideally, each
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of these plots should exhibit no systematic character and have random scatter about
the horizontal line at 0, the mean of the ei.

In order to check for normality, the analyst should produce a normal probability
plot of the residuals. If there is doubt that this plot confirms normality, the analyst
can request the p-value from an all-purpose test of normality having good power
against a variety of alternatives, such as the Shapiro–Wilk test mentioned in Sec-
tion 5.7.

If a residual plot suggests that an assumption is not met, the analyst must seek a
remedy following which the assumption is met.

We show in Figure 11.9 the normal probability plot for the rent ratio alf.till

analysis in Table 11.4 and Figure 11.4. It does not look normal. Compare this plot
to Figure 11.10, which shows probability plots of six normal and six non-normal
variables.

From the cow.dens column, we again see similar behavior in Rows 1 and 3.
We also note the higher variability in Y for the higher densities. We get a sense
of why we see that difference in variability from the interaction lime:cow.dens

column. Here we see, most clearly in the partial residuals plot in Row 3, that the
high variability is observed when the interaction variable is negative, corresponding
to the no.lime counties.

Figure 11.11 shows several plots of the residuals and partial residuals from the
model in Table 11.4 and Figure 11.4. From the lime column, we see that the ratio
alf.till is higher for lime=−1 (no lime) than for lime=1 (lime). The pattern
is similar in the observed variable plots in Row 1 and the partial residuals plots in
Row 3, suggesting that the lime effect is independent of the other variables.
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Fig. 11.9 Normal plot of residuals from ANCOVA rnt.alf/rnt.till ~ cow.dens | lime.
See Table 11.4 and Figure 11.4. The results do not look normal. We ran the Shapiro-Wilk normality
test with statistic W=0.8969 and p = 4 10−5. We identified the four most extreme points. Three of
them are the three no.lime counties that we had previously identified.
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six randomly generated normal plots
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Fig. 11.10 Normal plot of six randomly generated normal variables and six randomly generated
nonnormal variables. These plots are placed here to help you calibrate your eye to what normal
and nonnormal distributions look like when plotted against the normal quantiles. t: long left and
right tails as indicated by points below the diagonal on the left and above the diagonal on the right.
Chi-square: short left and long right tails. Poisson: discrete appearance and long tail on the right.
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and we see more points on the left.
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i)

X
β̂

R
es

id
ua

l
e i

Y
i
−Ŷ
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11.3 Case Statistics

Many of the diagnostics discussed in this chapter fall under the heading case statis-
tics, i.e., they have a value for each of the n cases in the data set. If a case statistic has
a value that is unusual, based on thresholds we discuss, the analyst should scrutinize
the case. One action the analyst might take is to delete the case. This is justified if
the analyst determines the case is not a member of the same population as the other
cases in the data set. But deletion is just one possibility. Another is to determine
that the flagged case is unusual in ways apart from those available in its information
in the present data set, and this may suggest a need to add one or more additional
predictors to the model.

There are many case statistics used in regression diagnostics. The concepts
are complex and the notation more so. We summarize the notation in Table 11.7.
We discuss each of the formulas and illustrate them with the diagnostic plots for the
rent data that we originally showed in Figure 11.6. We reproduce each of the panels
in that figure as a standalone plot here as part of the discussion.

We focus on five distinct case statistics, each having a different function and
interpretation. (One of these, DFBETAS, is a vector with a distinct value for each
regression coefficient including the intercept coefficient.) For small data sets the
analyst may choose to display each of these case statistics for all cases. For larger
data sets we suggest that the analyst display only those values of the case statistics
that exceed a threshold, or flag, indicating that the case is unusual in some way.
Recommended thresholds are mentioned in the following sections.

Leverage measures how unusual a case is with respect to the values of its predic-
tors, i.e., whether the values of a case’s predictors are an outlying point in the
p-dimensional space of predictors. Unlike the other case statistics, leverage does
not involve the response variable.

Studentized deleted residuals suggest how unusual cases are with respect to the
case’s value of the response variable.

Cook’s distance is a combined measure of the unusualness of a case’s predictors
and response. It sometimes happens that a case is flagged by Cook’s distance but
not quite flagged by leverage or Studentized deleted residuals.

DFFITS indicates the extent to which deletion of the case impacts predictions
made by the model.

DFBETAS (one for each regression coefficient) show the extent to which deletion
of a case would perturb that regression coefficient.

In the following sections we discuss these statistics in turn, presenting two for-
mulas for each of them. The first, the definitional formula, is intended to be intuitive.
It is used to explain to the reader what the formula measures and why it is helpful to
view it in an analysis. It is also inefficient and should not be used as a computational
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formula. The second formula, the computational formula, is an order of magnitude
more efficient for computation. It is not intuitive. We leave for Exercise 11.8 the
proofs that the two sets of formulas are equivalent.

11.3.1 Leverage

The calculation of leverages is briefly addressed in 9.3.1. Leverages measure how
unusual a case is with respect to its set of predictors. Unlike other measures in this
chapter, leverages do not involve the response variable. The leverage hii of case i,
usually abbreviated to hi, is the ith diagonal entry of the hat matrix H = X(X′X)−1X′.
This matrix has come to be called the hat matrix because in matrix notation the
predicted response is Ŷ = X(X′X)−1X′Y = HY , i.e., H transforms Y to Ŷ by placing
a “hat” on the Y . It can be shown (see Exercise 11.9) that all leverages satisfy 1

n ≤
hi ≤ 1. If a model contains p predictors, an excessively large leverage is one for
which

hi >
2(p + 1)

n
or hi >

3(p + 1)
n

(11.2)

These suggested rules derive from the fact that the average of all n leverages is p+1
n ,

so they are based on exceeding 2 or 3 times this average. A case that is flagged
because its leverage exceeds one or both of these thresholds has a value for at least
one predictor that is unusual compared to values of such predictors for other cases.
We can show that

hii =
∂ŷi

∂yi
and hi j =

∂ŷi

∂y j

The leverage hi of case i is geometrically interpreted as the generalized (Maha-
lanobis) distance of Xi· (the ith row of X) from the (p + 1)-dimensional centroid of
all n rows of X.

More complicated forms of leverage have been devised to diagnose a group of
cases that when considered together are unusual but when considered individually
are not unusual.

Figure 11.12 displays the leverages for each case of the fit of the rent data using
Model (11.1). This figure includes horizontal dotted lines demarking the two lever-
age thresholds given above. We observe that county 49 exceeds both thresholds,
telling us that this county (requiring lime) has an unusually large cow.dens.
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Fig. 11.12 Leverage for Model (11.1) for rent data.
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Fig. 11.13 Deleted standard deviations for Model (11.1) for rent data.

11.3.2 Deleted Standard Deviation

The deleted standard deviation s(i) is defined to be the value of s calculated from
the same regression model using all cases except case i. Because the primary use of
the s(i) is in the definition of the Studentized deleted residuals, there are no standard
rules for interpreting these values themselves.

We compare the s(i) values to two thresholds, .95s and 1.05s. If deletion of an
observation shifts the estimated standard deviation by 5% in either direction, we
note it on the graph and choose to investigate the observation.

Figure 11.13 shows the deleted standard deviations for the rent data. We see two
observations, 19 and 33, that are below our lower threshold.
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11.3.3 Standardized and Studentized Deleted Residuals

The standardized and Studentized residuals help to assess the effect of each indi-
vidual case on the calculated regression relationship. For case i the standardized
residual

e∗i = ei/
√

v̂ar(ei) (11.3)

is the calculated residual, ei, standardized by dividing by its estimated standard error

√
v̂ar(ei) = s

√
1 − hi (11.4)

Note that because this standard error depends on i, it differs slightly from case to
case. The standardized residual is also called the internally standardized residual
because the calculation of s includes case i.

The Studentized deleted residual, also called the externally standardized residual,
for case i is calculated from the regular residuals, the deleted standard deviations,
and the hat diagonals.

ti =
ei

s(i)
√

1 − hi

(11.5)

As implied by this notation, ti has a Student’s t distribution with n− p−1 degrees of
freedom. Considering the t distribution with moderate degrees of freedom, we say
that case i’s response value is “unusual” (the actual response differs “appreciably”
from the predicted response) if its absolute Studentized deleted residual exceeds 2
or 3. Such a case may be termed an outlier. We recommend a threshold of 2 for
small data sets and 3 for large data. The reason for this recommendation is that for
a large data set, 2 is the approximate 97.5th percentile of the t distribution so that
when the model assumptions are satisfied for all cases, approximately 5% of these
residuals will exceed 2 by chance alone.

We prefer the use of Studentized deleted residuals rather than standardized resid-
uals because the former are interpretable as t statistics but the latter are not. A rea-
son is that the numerator and denominator of ti are statistically independent, but the
numerator and denominator of the standardized residuals e∗i are not independent.

It can be shown (see Exercise 11.8c) that the Studentized deleted residual defined
intuitively in Equation (11.5) can be calculated more efficiently by the computa-
tional formula

ti = ei

⎛⎜⎜⎜⎜⎝
n − p − 1

SSE (1 − hi) − e2
i

⎞⎟⎟⎟⎟⎠
1
2

(11.6)
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Fig. 11.14 Studentized deleted residuals for Model (11.1) for rent data.

where SSE is the error sum of squares under the full model having n cases. All terms
in this expression are available from a single fitting with the n cases. Therefore, in
calculating the n ti’s it is not necessary to refit the model n times corresponding to
deleting each case in turn.

For our modeling of the rent data in Table 11.4, Figure 11.14 displays the Stu-
dentized (deleted) residuals for each case. We see that counties 19 and 33 both
exceed the threshold 3, indicating that these counties have unusually large values of
alf.till.

11.3.4 Cook’s Distance

While leverage addresses the unusualness of a case’s predictor variables, and Stu-
dentized deleted residuals address (primarily) the unusualness of a case’s response
variable, the Cook’s distance Di of a case assesses the unusualness of both its res-
ponse and predictors. The Cook’s distance Di for case i can be interpreted in two
ways.

Let Ŷ be the n-vector of fitted values using all n cases and Ŷ(i) be the n-vector of
fitted values when case i is not used in fitting. Then

Di =

(
Ŷ − Ŷ(i)

)′ (
Ŷ − Ŷ(i)

)

p MSE
(11.7)

This illustrates the interpretation that Cook’s distance for case i measures the change
in the vector of predicted values when case i is omitted.
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Let β̂(i) be the vector of estimated regression coefficients estimated without case i.
Then

Di =

(
β̂ − β̂(i)

)′
X′X

(
β̂ − β̂(i)

)

p MSE
(11.8)

This representation shows that Di measures the change in the vector of estimated
regression coefficients when case i is omitted.

As with the Studentized deleted residual, the n Cook’s distances can be calculated
without running n regressions omitting each case in turn. It can be shown that

Di =
e2

i

p MSE

(
hi

(1 − hi)2

)
(11.9)

From this formula it is apparent that a case with a large Cook’s distance has either a
large residual, a large leverage, or some combination of these two.

We recommend that a case be regarded as unusual if its Cook’s distance exceeds 1.
This threshold for what constitutes an unusually large value of Cook’s distance Di

follows the recommendation of Weisberg (1985) (page 120).

Since for most F distributions the 50% point is near 1, a value of Di = 1 will move the
estimate to the edge of about a 50% confidence region, a potentially important change. If
the largest Di is substantially less than 1, deletion of a case will not change the estimate of
β by much. To investigate the influence of a case more closely, the analyst should delete the
large Di case and recompute the analysis to see exactly what aspects of it have changed.

There are also arguments, for example in Fox (1991), for a much smaller thresh-
old 4/(n − p − 1) or 4/n that decreases with increasing sample size. We are uncon-
vinced by these arguments.

Figure 11.15 displays the Cook’s distances for the rent data. Counties 5, 19, 32,
33, 49, 60, and 66 have much larger Cook’s distances than the other counties, but
none of these 7 counties approaches the threshold of 1 that would flag a county
as unusual. Therefore, Cook’s distance flags no data points fitted by alf.till ˜
lime*cow.dens.

11.3.5 DFFITS

DFFITS, shown in Figure 11.16, is an abbreviation for “difference in fits”. DFFITSi is
a standardized measure of the amount by which predicted value Ŷi for case i changes
when the data on this case is deleted from the data set. A flag for a case with large
DFFITS is one having absolute value greater than 2

√
p/n.
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Fig. 11.15 Cook’s distances for Model (11.1) for rent data.
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Fig. 11.16 DFFITS for Model (11.1) for rent data.

The interpretation of DFFITSi is apparent from the formula

DFFITSi =
Ŷi − Ŷi(i)√
MSE(i) hi

(11.10)

where, as before, an (i) in a subscript means that the quantity is calculated with case
i omitted from the data. As is seen from

DFFITSi =

⎛⎜⎜⎜⎜⎝
n − p − 1

SSE (1 − hi) − e2
i

⎞⎟⎟⎟⎟⎠
1
2
(

hi

1 − hi

) 1
2

(11.11)

DFFITSi can be calculated from the output of the regression using all n cases.
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11.3.6 DFBETAS

DFBETASik is a standardized measure of the amount by which the kth regression
coefficient changes if the ith observation is omitted from the data set. A case is
considered to have a large such measure if its absolute DFBETAS is greater than
2/
√

n. Since a regression analysis has np DFBETAS in all, a request for DFBETAS in
a large complicated regression analysis will generate a lot of output.

DFBETASik is defined by

DFBETASik =
β̂k − β̂k(i)√
MSE(i) ckk

for k = 0, 1, . . . , p, where ckk is the kth diagonal entry in (X′X)−1. The terms β̂k(i) are
called the deleted regression coefficients.

An efficient calculation algorithm is

1. Let β̂ be the regression coefficients from regressing y on x.

2. Let X be the matrix of predictors including the column 1.

3. Factor X = QR. See Section I.4.7 for details.

4. Multiply the ith row of Q by zi = ei/(1 − hi). Call the result Qz.

5. Solve R Δb = Q′z for Δb.

6. Then β̂(i) = β̂ − Δbi, where Δbi is the ith column of Δb.

This algorithm is efficient because it does the hard work of solving a linear system
only once, when it factors X = QR to construct the orthogonal matrix Q and the
triangular matrix R. The backsolve in step 5 is not hard work because it is working
with a triangular system. All the remaining steps are simple linear adjustments to
the original solution.

Another efficient algorithm, shown in Table 11.8, is essentially the same although
with the steps in a different order. This is the algorithm used by R in function
stats:::dfbetas.lm.

Figure 11.17 gives one DFBETAS plot for each predictor in the model in
Table 11.4. We do not ordinarily interpret DFBETAS for the intercept term. Figure
11.6 shows that cases 5 and 19 impact the regression coefficient of lime, cases 33
and 49 impact the regression coefficient of cow.dens, and that these four coun-
ties plus county 32 are primarily responsible for the difference in slopes of the two
regression lines in Figure 11.4.
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Table 11.8 R’s algorithm for dfbetas. The function chol2inv inverts a symmetric, positive def-
inite square matrix from its Choleski decomposition. Equivalently, it computes (X′X)−1 from the
(R part) of the QR decomposition of X. The value infl$sigma is a vector whose ith element con-
tains the estimate of the residual standard deviation obtained when the ith case is dropped from the
regression. The value returned by the stats:::dfbeta function is the changes in the coefficients
which result from dropping each case. Function stats:::dfbeta does the scaling.

> stats:::dfbetas.lm

function (model, infl = lm.influence(model, do.coef = TRUE),

...)

{

qrm <- qr(model)

xxi <- chol2inv(qrm$qr, qrm$rank)

dfbeta(model, infl)/outer(infl$sigma, sqrt(diag(xxi)))

}

<bytecode: 0x10a0fa708>

<environment: namespace:stats>
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Fig. 11.17 DFBETAS for all four predictors in Model (11.1) for the rent data: the column of 1s
for the intercept, the factor lime, the covariate cow.dens, and the interaction lime:cow.dens.
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Fig. 11.18 Standard R plot of a linear model: plot(rent.lm12m). The first three panels were
discussed in Figure 11.5. The fourth is discussed in Figure 11.19. R by default fits a smooth curve
to the points in these plots. The three largest residuals are indicated. “Largest” means larger than
the others. There is no statistical significance associated with an identified point.

11.3.7 Residuals vs Leverage

We show R’s standard set of regression diagnostic plots in Figure 11.18. The first
three are essentially the same as the first three included in our Figure 11.5 con-
structed with lmplot from the HH package. R by default fits a smooth curve
through both the plots of Residuals vs Fitted and

√|Residuals| vs Fitted. The fourth
standard R plot, shown enlarged in Figure 11.19, shows the Residuals plotted against
the leverage and includes contours of Cook’s distance.
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Fig. 11.19 This is a repeat of the fourth panel of Figure 11.18 with the smooth curve suppressed.
The “Residuals vs Leverage” plot shows the standardized residuals e∗ against the leverage hi along
with contours of Cook’s distance. Cook’s distance, a combined measure of the “unusualness” of
a case’s predictors and response, is discussed in Section 11.3.4. The contours of constant Cook’s
distance c are calculated as

√
c p (1 − hi)/hi, where p is the number of estimated regression coeffi-

cients (p = 2 for simple linear regression). By default, contours are plotted for the two c-values 0.5
and 1. Note on the graph that the contour lines are closer to the 0-residual horizontal line for higher
leverage values (corresponding to points farther away from x̄) than for lower leverage values.

11.3.8 Calculation of Regression Diagnostics

Regression diagnostics are calculated from the matrix formulation of the equations
in the “Sequenced calculation formulas” column of Table 11.7.

In R see the documentation for the functions dfbetas, lm.influence, and
plot.lm. See also our functions lm.case and plot.case in the HH package.

Regression diagnostics in SAS are computed by adding the option INFLUENCE

to the MODEL statement in PROC REG.
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11.4 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

11.1. Data from Brooks et al. (1988), reprinted in Hand et al. (1994), relate the
number of monthly man-hours associated with the anesthesiology service for 12
U.S. Naval hospitals to the number of surgical cases, the eligible population

per thousand, and the number of operating rooms. The data appear in the file
data(hospital).

a. Construct and examine a scatterplot matrix of these data. Does it appear that
multicollinearity will be a problem?

b. Fit the response to all three predictors, calculating the VIFs. Based on the analysis
thus far, which predictor is the best candidate for removal? Why?

c. Fit the response with the predictor in part (b) removed.

d. Calculate the Studentized residuals, leverages, and Cook’s distances for the
model in part (c). Based on these calculations, what action would you recom-
mend?

11.2. We previously encountered the dataset data(hardness) in Section 9.7 and
Exercise 4.5. Since density is easily measured but hardness is not, it is desired to
model hardness as a function of density.

a. Construct a histogram of hardness and confirm that a transformation is required
in order to use this chapter’s regression modeling procedures.

b. Regress the transformation of hardness you chose based on either part (a) or
Exercise 4.5. For this regression, produce a scatterplot of the residuals vs the
fitted values and of the residuals vs density. Conclude from these plots that a
quadratic regression is appropriate.

c. We illustrate a linear and a quadratic fit of the hardness data in Figure 9.5 and
Table 9.4. Produce residual plots and regression diagnostics for both models.

11.3. The dataset data(concord) is described in Exercise 4.6. Use multiple re-
gression analysis to model water81 as a function of a subset of the five candidate
predictors. Consider transforming variables to assure that the assumption of regres-
sion analysis are well satisfied. Carefully interpret, in terms of the original model
variables, all regression coefficients in your final model.

11.4. Creatine clearance is an important but difficult to measure indicator of kidney
function. It is desired to estimate clearance from more readily measured variables.
Neter et al. (1996) discuss data, originally from Shih and Weisberg (1986), relating
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clearance to serum clearance concentration, age, and weight. The datafile is
data(kidney).

a. Regress clearance on each of the three individual predictors. Investigate the
adequacy of this model.

b. Improve on the model in part (a) by adding to the set of candidate predictors the
squares and pairwise products of the three original predictors. Conclude that the
addition of one of these six new candidates improves the original model.

c. Investigate the adequacy of this model.

d. Carefully interpret each of the four estimated regression coefficients in terms of
the model variables.

11.5. Heavenrich et al. (1991) provide data on the gasoline mileage (MPG) of 82
makes and models of automobiles as well as 4 potential predictors of MPG. The data
appear in data(mileage). The potential predictors are

WT: vehicle weight in 100 lbs

HP: engine horsepower

SP: top speed in mph

VOL: cubic feet of cab space

We wish to use them to model MPG.

a. Produce a scatterplot matrix and comment on the plots of MPG vs HP and of HP
vs SP.

b. Regress MPG on WT, HP, and SP. Are the signs of the estimated regression coeffi-
cients as expected? Explain what is causing the anomaly.

c. First regress MPG on WT and SP and then regress MPG on WT and HP. Which of
these two regressions is preferred?

d. For the model you prefer in part (c), produce a normal plot of the residuals and a
plot of the residuals vs the fitted values. What do you conclude?

e. Regress the log of MPG on WT and SP and also the log of MPG on the log of WT and
SP. Produce residual plots and normal probability plots from both of these runs.
Based on the numerical output and plots, explain which model is preferred.

f. For the preferred model, produce case diagnostics. For each flagged case, indicate
what is unusual about it.

11.6. Neter et al. (1996) discuss a dataset relating the amount of life insurance
carried in thousands of dollars (lifeins) to average annual income in thousands
of dollars (anninc) and risk aversion score (riskaver), for 18 managers, where
higher scores connote greater risk aversion. The data are contained in the file
data(lifeins).
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a. Produce a scatterplot matrix. Which of anninc and riskaver appears to be
more closely related to lifeins?

b. Regress lifeins on anninc and riskaver, storing the residuals.

c. From a scatterplot of these residuals vs anninc, conclude that the relation-
ship between lifeins and anninc is nonlinear. Define the square of average
annual income, annincsq = anninc2. Regress lifeins on the three predic-
tors anninc, annincsq, and riskaver. Plot the residuals from this run against
anninc. Based on this plot, discuss whether addition of the curvature term seems
worthwhile.

d. Identify cases (managers) whose values indicate either high influence or high
leverage. Also note whether these cases have high values of any of the measures
Cook’s distance, DFFITS, or DFBETAS. If so, interpret such high values in terms
of the model variables.

11.7. Refer to data(hpErie), previously considered in Exercise 9.3.

a. Rerun the regression for the final model you found in Exercise 9.3b, this time
requesting a complete set of regression diagnostics.

b. Closely examine the values of the diagnostics for the two high-priced houses that
are the focus of Exercise 9.3c. Would you recommend both of these houses or
just one of them for special scrutiny?

11.8. Prove the equivalence of the intuitive and computational formulas for the
following case statistics:

a. DFFITS in Equations (11.10) and (11.11)

b. Cook’s distance in either intuitive Equation (11.7) or (11.8), and computational
Equation (11.9)

c. Studentized deleted residual in Equations (11.5) and (11.6)

11.9. Explore the diagonals of the hat matrix H = X(X′X)−1X′.

a. Prove that all leverages satisfy 1
n ≤ hi ≤ 1. Since H is a projection matrix, show

that the upper bound on the diagonals is 1. Since the column X0 = 1 is included
in the X matrix, show that the lower bound on the diagonals is 1

n .

b. Show that the average leverage
∑

i hi

n
≡ (p + 1)/n



Chapter 12

Two-Way Analysis of Variance

In Chapter 6 we consider situations where a response variable is measured on groups
of observations classified by a single factor and look at ways to compare the changes
in the mean of the response variable attributable to the various levels of this factor.
Here we extend this to situations where there are two factors. In Chapters 13 and 14
we will discuss instances where there are more than two factors.

12.1 Example—Display Panel Data

12.1.1 Study Objectives

An air traffic controller must be able to respond quickly to an emergency condi-
tion indicated on her display panel. It was desired to compare three types of dis-
play panel. Each panel was tested under four simulated emergency situations. Two
well-trained controllers were assigned to each of the 12 combinations of emergency
condition and display panel type; 24 controllers in all. The data in data(display)

are from Bowerman and O’Connell (1990). It is clear that the type of display panel
is a fixed factor, but unclear from this reference whether emergency situation is a
fixed or random factor (review these concepts in Sections 6.2 and 6.4). That is, do
these four situations represent the totality of incidents to which air traffic controllers
might be exposed, or are they four of far more situations? In the former case, emer-
gency situation is a fixed factor; in the latter case, emergency situation is a random
factor.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 12
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12.1.2 Data Description

The data in data(display) is structured as 24 rows with four variables.

time: the response variable, time in seconds

panel: factor with three levels indicating the panel being tested

emergenc: factor describing four simulated emergencies

panel.ordered: repeat of the panel factor with the levels reordered to match the
order of the response means.

12.1.3 Analysis Goals

We seek to determine whether the three panels afford significantly different display
times and whether such conclusions are consistent across different types of emer-
gency.

Exhibited here are graphs and tables that will aid in answering these questions.
Discussion of this output is deferred until Section 12.11.

Figure 12.1 shows plots for assessing interaction between panel and emergenc

as well as boxplots for examining the main effects of these factors. The concept
of interaction is introduced in Section 12.2. The structure of the interaction plot in
Figure 12.1 is discussed in Section 12.4.

Table 12.1 shows the aov and anova statements assuming that emergenc is a
fixed factor. Table 12.2 and Figures 12.2 and 12.3 show the panel means and the
results of the multiple comparisons by the Tukey method. As will be explained in
Section 12.11, the conclusion derived from this table is that there is a significant
difference in response times for the three panels. Panel 3 affords a significantly
longer response time than panels 1 or 2; response times for panels 1 and 2 do not
differ significantly.

Table 12.3 shows the aov and summary statements assuming that emergenc is a
random factor.
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time: main effects and 2−way interactions

3 1 2

panel.orderedpanel.ordered

time ~ panel.ordered | panel.ordered

3 2 1 4

emergencemergenc
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timetime

time ~ emergenc | panel.ordered

time ~ panel.ordered | emergenc
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1
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panel.ordered
3
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Fig. 12.1 Interaction plot for display panel experiment. The nearly parallel traces suggest the
absence of interaction between panel and emergenc. Note that we reordered the emergencies and
the panels by average time in order to simplify the appearance of the plot. The structure of the
interaction plot is discussed in Section 12.4.

Table 12.1 Display panel data: ANOVA table with test of panel appropriate if emergenc is
fixed. The test of panel is from the “both factors fixed” column of Table 12.8. That is, all sums
of squares are compared to the Residuals line of the ANOVA table. The listing is continued in
Table 12.2.

> displayf.aov <- aov(time ~ emergenc * panel, data=display)

> anova(displayf.aov)

Analysis of Variance Table

Response: time

Df Sum Sq Mean Sq F value Pr(>F)

emergenc 3 1052.46 350.82 60.5731 1.612e-07 ***

panel 2 232.75 116.38 20.0935 0.0001478 ***

emergenc:panel 6 28.92 4.82 0.8321 0.5675015

Residuals 12 69.50 5.79

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 12.2 Display panel data: ANOVA table with test of panel appropriate if emergenc is fixed.
Multiple comparisons of panel by Tukey method. The standard deviation for the comparison is
based on the Residuals line of the ANOVA table in Table 12.1. We show plots of the multiple
comparisons in Figures 12.3 and 12.2.

> displayf.mmc <- mmc(displayf.aov, focus="panel")

> displayf.mmc

Tukey contrasts

Fit: aov(formula = time ~ emergenc * panel, data = display)

Estimated Quantile = 2.668615

95% family-wise confidence level

$mca

estimate stderr lower upper height

3-1 5.375 1.203294 2.163871 8.586129 22.9375

3-2 7.375 1.203294 4.163871 10.586129 21.9375

1-2 2.000 1.203294 -1.211129 5.211129 19.2500

$none

estimate stderr lower upper height

3 25.625 0.8508574 23.35439 27.89561 25.625

1 20.250 0.8508574 17.97939 22.52061 20.250

2 18.250 0.8508574 15.97939 20.52061 18.250
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Fig. 12.2 MMC plot of pairwise comparisons of panel means by the Tukey method. The top
panel shows the panel means along the y-axis and the confidence intervals for the differences
along the x axis. The Tiebreaker plot in the bottom panel shows the contrasts equally spaced along
the y-axis and in the same sequence as the top panel. The heights displayed as the y-axis tick
labels in the Tiebreaker panel are the actual heights along the y-axis for the contrasts in the MMC
panel. These heights are the weighted averages of the means being compared by the contrasts. The
Tiebreaker panel is not needed in this example.
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Fig. 12.3 Confidence intervals on each of the panel means.
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Table 12.3 Display panel data: ANOVA table with test of panel appropriate if emergenc is
random. In this example, the test is from the “A fixed, B random” column of Table 12.8 with panel

taking the role of A. That is, the sum of squares for panel is compared to the panel:emergenc

interaction line of the ANOVA table.

> displayr.aov <- aov(time ~ Error(emergenc/panel) + panel,

+ data=display)

> summary(displayr.aov)

Error: emergenc

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 1052 350.8

Error: emergenc:panel

Df Sum Sq Mean Sq F value Pr(>F)

panel 2 232.75 116.38 24.15 0.00135 **

Residuals 6 28.92 4.82

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 12 69.5 5.792

12.2 Statistical Model

To model an experiment with two factors, we begin by calling the factors A and
B, where A has a levels and B has b levels. We use ni j to denote the number of
observations taken from cell (i, j), i.e., the treatment combination corresponding to
level i of A and level j of B, i = 1, . . . , a and j = 1, . . . , b. Our discussion in this
chapter is confined to the case where the ni j are equal for all i, j, and sometimes
ni j = 1. We extend the notation of Equation (6.1) by replacing the singly indexed
symbol αi with a doubly indexed set of symbols αi + β j + (αβ)i j and model the kth

observation at the ith level of A, jth level of B, as

Yi jk = μ + αi + β j + (αβ)i j + εi jk = μi j + εi jk (12.1)

for 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ ni j. The expectations for the cell means are
denoted

E(Yi jk) = μi j = μ + αi + β j + (αβ)i j (12.2)
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We assume the errors εi jk ∼ NID(0, σ2), that is they are assumed to be normally
independently distributed with a common variance σ2. The parameter μ represents
the grand mean of all ab populations.

Each of the factors A and B can be either fixed or random. If A is fixed, then we
assume that

∑
i αi = 0. If A is random, we assume that each αi ∼ N(0, σ2

A). Similarly,
if B is fixed, then we assume that

∑
j β j = 0 and if B is random, we assume that each

β j ∼ N(0, σ2
B).

The term (αβ)i j models the possibility of interaction between the two factors. If
A and B are both fixed factors, then the sum of (αβ)i j over either i or j is zero. If both
factors are random, then (αβ)i j ∼ N(0, σ2

AB). In the case of a mixed model, where
for concreteness we have A fixed and B random, (αβ)i j ∼ N(0, a−1

a σ2
AB) subject to∑

i(αβ)i j = 0 for each j = 1, . . . , b.

Factors A and B are said to interact if the difference in response between two
levels of A differs according to the level of B. Equivalently, there is interaction
between factors A and B if the difference in response between two levels of B differs
according to the level of A. Graphically, the traces for each level of factor A across
levels of B are parallel if there is no interaction, and are not parallel when there is
interaction. Equivalently, the traces for each level of B across levels of A are parallel
if there is no interaction. In Figure 12.1 we see essentially parallel traces, consistent
with the non-significance of the test of the interaction in Table 12.1. In Figure 12.12
we will see nonparallel, actually crossing, traces consistent with the significance of
the interaction in Table 12.12.

12.3 Main Effects and Interactions

As in one-way ANOVA, we are interested in comparing the means of observations
in each cell, that is for each treatment combination (combination of factor levels),
in the design, and for combinations of cells. We work with the cell means

Ȳi j =
∑

k

Yi jk

/
ni j (12.3)

and the marginal means. The marginal means for the rows are calculated by av-
eraging the cell means in each row over the columns. The marginal means for the
columns are calculated by averaging the cell means in each column over the rows:

Ȳi. =
∑

j

Ȳi j

/
b (12.4)

Ȳ. j =
∑

i

Ȳi j

/
a (12.5)
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Table 12.4 Table of means for the rhizobium clover experiment of Section 12.14. Means from
Table 12.12 have been arranged in a two-way table to display the cell means in the body of the
table, the marginal means on the margins of the table, and the grand mean as the margin of the
marginal means. clover and clover+alfalfa are the two levels of the factor comb. The left side
of the table shows the means symbolically using Ȳi j notation. The right side show the numerical
values from Table 12.12.

Strain Clover Clover+alfalfa Mean

3DOk1 Ȳ11 Ȳ12 Ȳ1.

3DOk5 Ȳ21 Ȳ22 Ȳ2.

3DOk4 Ȳ31 Ȳ32 Ȳ3.

3DOk7 Ȳ41 Ȳ42 Ȳ4.

3DOk13 Ȳ51 Ȳ52 Ȳ5.

k.composite Ȳ61 Ȳ62 Ȳ6.

Mean Ȳ.1 Ȳ.2 Ȳ..

=

Strain Clover Clover+alfalfa Mean

3DOk1 29.04 28.41 28.72
3DOk5 36.29 27.44 31.86
3DOk4 21.35 23.98 22.66
3DOk7 22.93 24.96 23.95
3DOk13 22.49 24.30 23.39
k.composite 25.97 24.92 25.45

Mean 26.35 25.67 26.01

where ni. =
∑

j ni j, n. j =
∑

i ni j, and n.. =
∑

i j ni j. Marginal means get their name
because they are often displayed on the margins of a two-way table of cell means,
as in Table 12.4. We also use the grand mean:

Ȳ.. =
∑

i

ni.Ȳi.

/
n.. =

∑

j

n. jȲ. j

/
n.. =

∑

i jk

Yi jk

/
n.. (12.6)

When more than one factor is present, there are three principal types of compar-
isons that we will investigate.

Main effects are comparisons of the marginal means for one of the factors, for
example, Ȳ1. − Ȳ2.. It is usually valid to compare main effects only when there is
no interaction.

Interactions (or interaction effects) are comparisons of the cell means across lev-
els of both factors, for example, (Ȳ13 − Ȳ23) − (Ȳ14 − Ȳ24). When interaction is
present, that is when differences in the cell means across rows depend on the
column or equivalently, when comparisons of the form indicated here are signif-
icantly different from 0, we usually must use simple effects, not main effects, to
discuss the factors.

Simple effects are separate comparisons of the cell means across levels of one
factor for some or all levels of the other factor, for example, Ȳ13 − Ȳ23. See
Section 13.3.

The analyst should be alert to the possibility that interaction is present. The nature
of the analysis when interaction exists is different from that when interaction is
absent.
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Without interaction, the analysis proceeds similarly to the procedures for one-
way analysis. The marginal means are calculated and compared, perhaps by us-
ing one of the multiple comparisons techniques discussed in Sections 6.3, 7.1.3,
or 7.1.4.1. The advantage of the two-way analysis in this case is in the efficiency,
hence increased power, of the comparisons. Because we use the same residual sum
of squares for the denominator of both F-tests (for the rows and for the columns), we
can run the combined experiment to test the effect of both factors for less expense
than if we were to run two separate experiments.

When interaction between two factors is present, it is not appropriate to compare
the main effects, the levels of one of these factors averaged over the levels of the
other factor. It is possible, for example, that the mean of Y increases over factor B
for level 1 of factor A and decreases over factor B for level 2 of factor A. Averaging
over the levels of factor A would mask that behavior of the response.

We explore main effects, interactions, and simple effects with the rhizobium data
in Section 12.14.

12.4 Two-Way Interaction Plot

The two-way interaction plot, first shown in Figure 12.1 and used throughout the
remainder of this book, shows all main effects and two-way interactions for designs
with two or more factors. We construct it using the interaction2wt function in the
HH package by analogy with the splom (scatterplot matrix) function in the lattice
package. The rows and columns of the two-way interaction plot are defined by the
Cartesian product of the factors.

1. Each main diagonal panel shows a boxplot for the marginal effect of a factor.

2. Each off-diagonal panel is a standard interaction plot of the factors defining its
position in the array. Each point in the panel is the mean of the response variable
conditional on the values of the two factors. Each line in the panel connects the
cell means for a constant level of the trace factor. Each vertically aligned set of
points in the panel shows the cell means for a constant value of the x-factor.

3. Panels in mirror-image positions interchange the trace- and x-factors. This dupl-
ication is helpful rather than redundant because one of the orientations is fre-
quently much easier to interpret than the other.

4. The rows are labeled with a key that shows the line type and color for the trace
factor by which the row is defined.

5. Each box in the boxplot panels has the same color, and optionally the same line
type, as the corresponding traces in its row.

6. The columns are labeled by the x-factor.
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12.5 Sums of Squares in the Two-Way ANOVA Table

Table 12.5 presents the structure of the analysis of variance table for a balanced two-
way ANOVA with a levels of the A factor, b levels of the B factor, and n observations
at each of the ab AB-treatment combinations, analogous to Table 6.2 for one-way
ANOVA. If the test FAB shows that AB interaction is present, the F-tests on A and
B are not interpretable.

If the AB interaction is not significant, then the form of the tests for the main
effects A and B depends on whether the factors A and B are fixed or random factors.
See the discussion in Section 12.10 where Table 12.8 lists the expected mean squares
and F-tests under various assumptions.

Table 12.5 Two-way ANOVA structure with both factors representing fixed effects.

Analysis of Variance of Dependent Variable y

Source Degrees Sum of Mean F p-value
of Freedom Squares Square

Treatment A dfA SSA MSA FA pA

Treatment B dfB SSB MSB FB pB

AB Interaction dfAB SSAB MSAB FAB pAB

Residual dfRes SSRes MSRes

Total dfTotal SSTotal

Terms of the table are defined by:

Treatment A

dfA a − 1

SSA bn
∑

(Ȳi. − Ȳ..)2

MSA SSA/dfA
FA MSA/MSRes

pA 1 − FF (FA | dfA, dfRes)

Treatment B

dfB b − 1

SSB an
∑

(Ȳ. j − Ȳ..)2

MSB SSB/dfB
FB MSB/MSRes

pB 1 − FF (FB | dfB, dfRes)

Treatment AB

dfAB (a − 1)(b − 1)

SSAB n
∑

(Ȳi j − Ȳ..)2 − SSA − SSB

MSAB SSAB/dfAB

FAB MSAB/MSRes

pAB 1 − FF (FAB | dfAB, dfRes)

Residual

dfRes ab(n − 1)

SSRes
∑

i
∑

j(Yi jk − Ȳi j)2

MSRes SSRes/dfRes

Total

dfTotal abn − 1

SSTotal
∑

i
∑

j
∑

k(Yi jk − Ȳ..)2
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Table 12.5 shows the F-statistics and their p-values for tests on the main effects A
and B under the assumption that both factors represent fixed effects. Most ANOVA
programs calculate these values by default whether or not they are appropriate.

12.6 Treatment and Blocking Factors

Treatment factors are those for which we wish to determine if there is an effect.
Blocking factors are those for which we believe there is an effect. We wish to prevent
a presumed blocking effect from interfering with our measurement of the treatment
effect.

An experiment with two factors may have either two treatment factors or one
treatment factor and one blocking factor. The primary objective of a factorial exp-
eriment is comparisons of the levels of treatment factors. By contrast, a blocking
factor is set up in order to enhance one’s ability to distinguish between the levels
of treatment factors. The term block was chosen by analogy to two of the dictio-
nary definitions: a rectangular section of land bounded on each side by consecutive
streets; or a set of similar items sold or handled as a unit, such as shares of stock.

We are not interested in comparing the blocks, i.e., the levels of a blocking fac-
tor. In a well-designed experiment, we anticipate that the response differs across
the levels of a blocking factor because if the levels of this factor cover a variety
of experimental conditions, this broadens the scope of our inferences about treat-
ment differences. Multiple comparisons across blocks are not meaningful because
we know in advance that the blocks are different. In general, blocking is advisable
and successful as an experimental and analytical technique if the experimental units
can reasonably be grouped into blocks such that the units within every block are
homogeneous, while the units in any given block are different from those in any
other block. By homogeneous units, we mean that they will tend to respond alike if
treated alike. Usually, there is no interaction between blocking and treatment factors;
otherwise blocking will not have accomplished its objective and the analysis will be
much less able to detect significant differences than if blocking were properly done.

Blocking is the natural extension to three or more treatments of the matched
pairs design introduced in Section 5.5. The F-test of the treatment effect against the
residual is the generalization of the paired t-test. It is exactly true that a blocked
design with two levels of the treatment factor and with many blocks of size two is
identical to the matched pairs design.

For example, in an experiment on tire wear, the location of the tire on the car
(say, Right Front) is a treatment effect and the specific car (of the many used in the
experiment) is a blocking effect.
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12.7 Fixed and Random Effects

As mentioned in Sections 6.2 and 6.4, treatment factors may be regarded as either
fixed or random. The levels of a fixed factor are the only levels of interest in the
experiment, and we wish to see if the response is homogeneous across these levels.
The levels of a random factor are a random sample from some large population of
levels, and we are interested in assessing whether the variance of responses over this
population of levels is essentially zero. Block factors are almost always regarded as
random.

The levels of a treatment factor can be either categorical or quantitative. For
example, in an experiment where the fertilizer treatment has four levels, the
experimental levels of fertilizer could be four different fertilizer compounds, or four
different applications per acre of one fertilizer compound. When the levels are quan-
titative, it is usually preferable to regard the factor as a single degree-of-freedom
predictor variable.

12.8 Randomized Complete Block Designs

A randomized complete block design (RCBD) has one treatment factor involving t
treatment levels and one blocking factor having b levels. The b blocks each contain
experimental units arranged according to the principles discussed in Section 12.6.
That is, experimental units in the same block are expected to respond alike if treated
alike, while the blocks should reflect a variety of experimental conditions to broaden
the scope of conclusions to be drawn from inferences about the treatments. It is
assumed that blocks and treatments do not interact. This assumption permits us to
compare the treatment levels when each block contains exactly t experimental units,
i.e., there is no replication of treatments within any block. If there are n > 1 obs-
ervations on each treatment within each block, then additional degrees of freedom
are available for comparing treatments. We outline the effect of larger sample size,
which usually means more degrees of freedom in the denominator of statistical tests,
in Section 3.10. In summary, more degrees of freedom move us up the t-table or
F-table or χ2-table and the critical value gets smaller.

The model for the RCBD with one observation on each treatment in each block is

yi j = μ + τi + ρ j + εi j (12.7)

where μ represents the overall mean, τi is the differential effect of treatment level i,
ρ j is the differential effect of block j, and the ε’s are random N(0, σ2) residuals. We
further define

ȳi =
∑

i

yi j/b, ȳ j =
∑

j

yi j/t, and ¯̄y.. =
∑

i

∑

j

yi j/bt (12.8)
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Table 12.6 ANOVA table structure for a randomized complete block design with no replication.

Analysis of Variance of Dependent Variable y

Source Degrees Sum of Mean F p-value
of Freedom Squares Square

Blocks dfBlk SSBlk MSBlk

Treatments dfTr SSTr MSTr FTr pTr

Residuals dfRes SSRes MSRes

Total dfTotal SSTotal

The terms of the table are defined by:

Blocks

dfBlk b − 1

SSBlk
∑

i
∑

j(ȳ j − ¯̄y..)
2

MSBlk SSBlk/dfBlk

Treatments

dfTr t − 1

SSTr
∑

i
∑

j(ȳi − ¯̄y..)
2

MSTr SSTr/dfTr

FTr MSTr/MSRes

pTr 1 − FF (FTr | dfTr, dfRes)

Residual

dfRes (b − 1)(t − 1)

SSRes
∑

i
∑

j(yi j − ȳi − ȳ j + ¯̄y..)
2

MSRes SSRes/dfRes

Total

dfTotal bt − 1

SSTotal
∑

i
∑

j(yi j − ¯̄y..)
2

The setup of the ANOVA table for an RCBD with n = 1 is shown in Table 12.6.
Some ANOVA programs also display an F-statistic and p-value for blocks, but it is
inappropriate to interpret these since the experiment is designed in such a way that
responses will differ across blocks and artificially force high F values for blocks.
We could do efficiency of blocking calculations. See, for example, Cochran and
Cox (1957) (Section 4.37).

12.9 Example—The Blood Plasma Data

12.9.1 Study Objectives

The dataset data(plasma) comes from Anderson et al. (1981) and is reproduced
in Hand et al. (1994). The data are measurements on plasma citrate concentrations
in micromols/liter obtained from 10 subjects at 8 am, 11 am, 2 pm, 5 pm, and 8 pm.
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To what extent is there a normal profile for the level in the human body during the
day?

This experiment is viewed as an RCBD with treatment factor time and blocking
factor id. It is desirable here that the subjects (blocks) be as unlike as possible in
order to broaden the scope of the conclusion about normal profiles as much as pos-
sible. The no-interaction assumption amounts to assuming that the daily response
profile is constant across subjects.

12.9.2 Data Description

The data in data(plasma) is structured as 50 rows with three variables.

plasma: the response variable, plasma citrate concentrations in micromols/liter

time: factor with five values: 8 am, 11 am, 2 pm, 5 pm, and 8 pm

id: factor with 10 levels, one per subject

12.9.3 Analysis

We begin our analysis with the interaction plots in Figure 12.4. There seem to be
anomalies for id=3 at 8 pm and for id=6 at 11 am, but otherwise both sets of traces
look reasonably parallel.

We proceed with an additive model in Table 12.7 and discover that the ratio of
the id stratum Residual Mean Square to the Within stratum Residual Mean Square
(1177/147.5 = 7.98) is large (had this been a valid test, which it is not because id

is a blocking factor, it would have been F = 7.98), confirming our decision to block
on patients. This is not a hypothesis test, because we know at the beginning of our
analysis that patients are different from each other.

The test of differences due to time rejects the null hypothesis that the response at
all times is the same. Since there appears to be no interaction, we can act as if there
is a single pattern that applies to everyone. We investigate the time pattern with the
MMC plot in Figure 12.5. The only significant single contrast is between the low
at 5PM and the high at 11AM. The low at 5PM is clearly visible in the plasma ~

time | id panel of Figure 12.4. The high at 11AM is hinted at in Figure 12.4.
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plasma: main effects and 2−way interactions

8am 11am 2pm 5pm 8pm

timetime

plasma ~ time | time

7 6 2 1 3 5 8 10 9 4

idid

80

100

120

140

160

plasmaplasma

plasma ~ id | time

plasma ~ time | id

80

100

120

140

160

plasmaplasma

plasma ~ id | id

id
7
6
2
1
3
5
8
10
9
4

time
8am
11am
2pm
5pm
8pm

Fig. 12.4 Interaction Plot for Plasma Citrate. The id factor has been sorted by median plasma

value. The time factor must be displayed in chronological order.

Table 12.7 ANOVA Table for Plasma Citrate Experiment

> plasma.aov <- aov(plasma ~ Error(id) + time, data=plasma)

> summary(plasma.aov)

Error: id

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 10593 1177

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

time 4 2804 701.0 4.754 0.00349 **

Residuals 36 5308 147.5

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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 The MMC panel shows informative overprinting.  Please see Tiebreaker panel and caption.

contrast value

pl
as

m
a 

m
ea

ns
  |

  t
im

e 
le

ve
l

127.9

120.3119.7
118.5

104.8

11am

2pm8pm8am

11am

2pm8pm8am

5pm

11am−2pm11am−8pm11am−8am

2pm−8pm2pm−8am8pm−8am

2pm−5pm8pm−5pm8am−5pm

11am−5pm

11am

2pm8pm
8am

5pm

                       contrasts

MMC

111.7
112.3
112.6
116.4
119.1
119.4

120
123.2
123.8
124.1

−20 −10 0 10 20 30                       contrastsheight                       

11am−2pm
11am−8pm
11am−8am
2pm−8pm
2pm−8am
8pm−8am

2pm−5pm
8pm−5pm
8am−5pm

11am−5pm

Tiebreaker

Fig. 12.5 MMC plot and Tiebreaker plot of time in the plasma data. The low at 5PM is clearly
visible in the plasma ~ time | id panel of Figure 12.4. The high at 11AM is hinted at in Fig-
ure 12.4. The Tiebreaker plot in the bottom panel is imperative for this example. The means at
many of the levels of time are very close and therefore their labels are overprinted. As a conse-
quence, the heights of the contrasts are similar and their labels are also overprinted. The Tiebreaker
plot shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel.
The heights displayed as the y-axis tick labels in the Tiebreaker panel are the actual heights along
the y-axis for the contrasts in the MMC panel.
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12.10 Random Effects Models and Mixed Models

In Section 6.4, we compare two analyses of the same data assuming the single factor
is fixed or random. There we indicate that a table of expected mean squares may be
used to formulate the correct mean square ratio to test the hypothesis of interest.
We also show that in the single factor case, while the same ratio is used in both
the fixed and random cases, the hypothesis tested about the factor differs in the two
cases.

When we have two or more factors and interactions, the test statistics as well as
the hypotheses depend on whether the factors are fixed or random. The formulas for
standard errors for comparing the levels of fixed factors also depend on whether the
other factor(s) are fixed or random.

Table 12.8 is an algebraically derived table of expected mean squares for an
experiment with two possibly interacting factors A and B and equal sample sizes
ni j = n ≥ 2 at each of the ab treatment combinations under each of three assump-
tions: the fixed model where both factors are fixed, the mixed model where one
factor is fixed and the other factor is random, and the random model where both
factors are random. Each entry in the table is derived by evaluating, for example
(using the notation of Table 12.5), the statement

E(MSA) + E
(
bn

∑
(Ȳi. − Ȳ..)

2
)
/(a − 1)

where we model Yi jk and E(Yi jk) by Equations 12.1 and 12.2.

From the lineups of the expected mean squares, we see that for testing the A main
effect, the appropriate denominator mean square is the Residual mean square when
factor B is fixed (from the “Both factors fixed” column, EMS(A) = σ2 + nbκ2

A and
EMS(Residual) = σ2).

Table 12.8 Expected mean squares in two-way analysis of variance. Compare to Tables 6.4, 12.5,
and 13.11. See Section 12.10 for the discussion on when to use each of the columns.

Source df Both factors fixed A fixed, B random Both factors random

Treatment A a − 1 σ2 + nbκ2
A σ2 + nσ2

AB + nbκ2
A σ2 + nσ2

AB + nbσ2
A

Treatment B b − 1 σ2 + naκ2
B σ2 + naσ2

B σ2 + nσ2
AB + naσ2

B

AB Interaction (a − 1)(b − 1) σ2 + nκ2
AB σ2 + nσ2

AB σ2 + nσ2
AB

Residual ab(n − 1) σ2 σ2 σ2

Total abn − 1

where κ2
A =

∑
i α

2
i

a − 1
κ2

B =

∑
j β

2
j

b − 1
κ2

AB =

∑
i
∑

j(αβ)2
i j

(a − 1)(b − 1)
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The appropriate denominator mean square for testing the A main effect is
the AB-interaction mean square when B is random (from the other two columns
EMS(A) = σ2+nσ2

AB+nb f (A) and EMS(AB) = σ2+nσ2
AB, where f (A) = κ2

A when
A is fixed and f (A) = σ2

A when A is random). The ratio of these mean squares is
appropriate for testing equality of the levels of factor A because the corresponding
ratio of these expected mean squares exceeds one if and only if σ2

A > 0 or κ2
A > 0.

Use of the Residual mean square as the denominator of the F-test would be inap-
propriate because such a ratio would exceed one if there is an AB interaction effect.

The conclusions for testing the B main effect follow from interchanging “A” and
“B” in the previous sentence.

12.11 Example—Display Panel Data—Continued

In Section 12.1 we introduced the display panel example illustrating a two-way
analysis of variance. We continue here with the analysis by discussing Figures 12.1–
12.3 and Tables 12.1–12.3.

In Figure 12.1 we display two-way interaction plots and boxplots for the factors
panel and emergenc. The two interaction plots in the off-diagonal panels contain
equivalent information, but in general, one of them is more readily interpretable
than the other. In this instance, the close-to-parallel traces suggest the absence of
interaction between panel and emergenc. This is anticipated because emergenc is
a block factor and confirmed by the large p-value for the interaction test in Table
12.1. One set of boxplots in Figure 12.1 evinces a greater response time with panel
3 than with either panel 1 or panel 2. The other set of boxplots shows substantial
differences in the response times of the four emergencies; this is anticipated since
emergenc is regarded as a blocking factor and differences in response across blocks
are expected by design.

The simplest ANOVA specification in Table 12.1 assumes all factors are fixed.
We see that when emergenc is a fixed factor, the F-statistic for panel is 20.09 on 2
and 12 degrees of freedom. The small corresponding p-value suggests that response
time varies with the type of panel.

If emergenc is a random factor, as in Table 12.3, the pattern of expected mean
squares in Table 12.8 indicates that the appropriate denominator mean square for
testing panel is the interaction mean square. This test is specified by placing
emergenc/panel inside the Error() function in the model formula. We see that
panel is tested with F = 24.15 on 2 and 6 degrees of freedom.

The F-statistic for panel corresponds to a small p-value under either assumption
on emergenc. Therefore, in this example, we reach the same conclusion under both
assumptions: that response time differs across panels. However, since in general the
F-statistic differs in the two cases, the ultimate conclusion concerning a fixed factor
may depend crucially on our assumption concerning the other factor. If emergenc
is a fixed factor, the conclusions regarding panels applies to these four emergencies
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only. If emergenc is a random factor, the panel conclusions apply to the entire
population of emergencies from which these four emergencies are assumed to be a
random sample.

The F-test for interaction between panel and emergenc when emergenc is a
random factor is the same test as when emergenc is a fixed factor.

Since panel is a fixed factor, an appropriate follow-up is a Tukey test to compare
the response time for each display panel. This is shown in Table 12.2 for the case
where emergenc is fixed. The means are in the estimate column of the $none

section. We find that both display panel 1 and display panel 2 have significantly
shorter response times than display panel 3, but panels 1 and 2 are not significantly
different. Therefore, we conclude that display panel 3 can safely be eliminated from
further consideration. The absence of interaction tells us that these conclusions are
consistent over emergencies. If interaction had existed in this experiment, one would
have concluded that the optimal panel differs according to the type of emergency.
Then one would need to make separate panel recommendations for each emergency
type. Since we will normally select just one panel type for the entire facility, and
since we have no control over emergencies, the decision process would become
more difficult.

The confidence intervals in the $mca section of Table 12.2 and in both panels
Figure 12.2 display the differences between all pairs of panel means using the
two-sided Tukey multiple comparisons procedure introduced in Section 6.3. The
$mca (the term mca stands for multiple comparisons analysis) section of Table 12.2
shows the results of the

(
3
2

)
= 3 pairwise tests. The negative lower bound and pos-

itive upper bound for the 1-2 comparison indicates that the confidence interval
for the difference between the corresponding population means (ȳ1 = 20.250 and
ȳ2 = 18.250) includes zero, hence the difference is not significant. The comparisons
between ȳ3 = 25.625 and the other two panel means have positive lower and upper
bounds, hence these confidence intervals exclude zero. This indicates that the pop-
ulation mean of panel 3 is significantly different from both other population means.

Figure 12.2 provides two confidence interval displays for pairwise comparisons
of the population means of the three panels. Both contain the confidence intervals
on each pairwise difference taken directly from the $mca section of Table 12.2.
A pairwise difference of means is significantly different from zero; equivalently, the
two means differ significantly if the confidence interval for the pairwise difference
excludes zero. If this confidence interval includes zero, then conclude that the two
population means do not significantly differ. Thus the “1–2” interval says that these
two panel means are indistinguishable. The “1–3” and “2–3” intervals says that the
mean of panel 3 differs from the means of the other two panels. The top panel is an
MMC plot (see Chapter 7) with the contrasts displayed on the isomeans grid as a
background that shows the individual panel means. The bottom panel uses equal
vertical spacing between contrasts.
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The $none (the term none indicating no contrasts) section of Table 12.2 shows
the results for the individual group means. Figure 12.3 contains simultaneous con-
fidence intervals for the three population means, where the confidence coefficient,
here 95%, is the probability that each interval contains its respective population
mean. If two of these confidence intervals overlap, then the corresponding popu-
lation means are not significantly different. Since panels 1 and 2 have overlapping
intervals, these two panel means are not distinguishable. If a pair of these confidence
intervals does not overlap, then the corresponding population means are declared to
differ significantly. Since the panel 3 interval does not overlap the other two, we
conclude that the mean of panel 3 differs from the means of the other two panels.

12.12 Studentized Range Distribution

The tabled values of the Studentized Range Distribution (see Section J.1.10) of a set
of a means are scaled for the random variable Q = (ȳ(a) − ȳ(1))/sȳ. The denominator
is the standard error of a single ȳ. The estimated quantile (critical point) shown in
Table 12.2 and used in Figure 12.2 is 2.668. This is not the Studentized range tabular
value q.05 but instead q.05/

√
2. Details of the R calculation can be followed in file

HHscriptnames(12). The equivalent SAS code reports the Studentized range q.05.

We use the tabled values in two places in the MMC display. In Table 12.2,
q.05 = 3.77278, the Estimated Quantile is q.05√

2
= 2.668, MSRes = 5.791667 (from

Table 12.1), and m = 8.

In the $none section of Table 12.2 we show the sample means ȳi in the estimate
column and the standard error sȳ of an individual ȳ in the stderr column. We
must adjust the Q value by dividing by

√
2. The formula for the simultaneous 95%

confidence intervals on individual means is

μi: Ȳi ± q.05√
2

√
MSRes

m
(12.9)

where q.05 is the 95th percentile of the Studentized range distribution and m is the
common sample size used in calculating each sample mean. The “minimum signif-
icant difference” in this table is the “±” part of formula (12.9),

q.05√
2

√
MSRes

m
= 2.27 (12.10)

In the $mca section of Table 12.2 we show the differences ȳi− ȳ j in the estimate
column and the standard error

√
2sȳ of the difference in the stderr column. Again

we must adjust the Q value by dividing by
√

2. The formula for the simultaneous
95% confidence intervals on pairwise mean differences shown in Figure 12.2 is
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μi − μ j: Ȳi − Ȳi′ ± q.05√
2

√
2

MSRes

m
= Ȳi − Ȳi′ ± q.05

√
MSRes

m
(12.11)

The “minimum significant difference” in this table is the “±” part of formula (12.11),

q.05

√
MSRes

m
= 3.21 (12.12)

12.13 Introduction to Nesting

In the previous examples the two factors have a crossed relationship. Saying that
factors A and B are crossed indicates that each level of A may be observed in a
treatment combination with any level of B. Alternatively, two factors may have a
nested or hierarchical relationship. When B is nested within A, the levels of B are
similar but not identical for different levels of A.

12.13.1 Example—Workstation Data

A small electronics firm wishes to compare three methods for assembling an elec-
tronic device. For this purpose, the plant has available six different workstations.
The study is conducted by randomly assigning s = 2 workstations to each of the
m = 3 assembly methods. At each workstation–method combination w = 5 ran-
domly selected production workers will assemble the device for one hour using the
appropriate assembly method. The response is the number of devices produced in
one hour. The data from Bowerman and O’Connell (1990) (p. 890) are accessible as
data(workstation) and are displayed in Figure 12.6.

12.13.2 Data Description

The data in data(plasma) is structured as 30 rows with three variables.

method: factor with three levels describing the assembly methods

station: factor with two levels describing the workstations

devices: response variable, number of devices produced in one hour.
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Fig. 12.6 Boxplot of workstation data. The significance of method and station within method

are confirmed in Table 12.10.

12.13.3 Analysis Goals

Note that the workstations assigned to any assembly method are different from
those assigned to any other method. As a consequence, the factors (which we call
station and method) are not crossed with one another, and an analysis using a
model we have previously studied would be incorrect. The factor station is said
to be nested within the factor method because each workstation is associated with
exactly one of the methods.

Our analysis assumes that station is a fixed factor. If instead station were
assumed to be a random factor, the code would have to be modified to force station
to be tested against the station within method mean square instead of against
the Residuals mean square. The procedures for doing so are demonstrated in the
data analysis in Section 13.4.

The basic structure of the ANOVA table is in Table 12.9. In R, we use the formula

devices ~ method / station

to indicate that station is nested within method. The analysis is in Table 12.10.

We conclude that when using at least one of the three methods, the two worksta-
tions for that method produced a significantly different number of devices. We also
conclude that the three methods produced significantly different numbers of devices.

In this example there is balanced sampling. That is, each method has the same
number of workstations and each workstation has the same number of workers.
Without much additional difficulty, the above nested factorial analysis can be ext-
ended to situations with unbalanced sampling. (In contrast, when one has unbal-
anced sampling and crossed factors, the analysis is considerably more difficult than
with balanced sampling.)
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Table 12.9 Basic structure of the ANOVA table for a nested design with m = 3, s = 2, and w = 5.

Source df MS F

Algebra Example

Method m − 1 = 3−1 = 2 MSm
MSm
MSw

Station within Method m(s − 1) = 3×(2−1) = 3 MSs
MSs
MSw

Worker within Station (Residual) ms(w − 1) = 3×2×(5−1) = 24 MSw

Total msw − 1 = 3×2×5 − 1 = 29

Table 12.10 Workstation data. ANOVA table and means.

> workstation.aov <- aov(devices ~ method / station,

+ data=workstation)

> summary(workstation.aov)

Df Sum Sq Mean Sq F value Pr(>F)

method 2 1545.3 772.6 51.452 2.09e-09 ***

method:station 3 210.2 70.1 4.666 0.0105 *

Residuals 24 360.4 15.0

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(workstation.aov, "means", se=TRUE)

Tables of means

Grand mean

23.06667

method

method

1 2 3

14.8 22.1 32.3

method:station

station

method 1 2

1 11.8 17.8

2 19.2 25.0

3 30.4 34.2

Standard errors for differences of means

method method:station

1.733 2.451

replic. 10 5
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12.14 Example—The Rhizobium Data

12.14.1 Study Objectives

Erdman (1946) discusses experiments to determine if antibiosis occurs between Rhi-
zobium Meliloti and Rhizobium Trifolii. Rhizobium is a bacteria, growing on the
roots of clover and alfalfa, that fixes nitrogen from the atmosphere into a chemical
form the plants can use. The research question for Erdman was whether there was
an interaction between the two types of bacteria, one specialized for alfalfa plants
and the other for clover plants. If there was an interaction, it would indicate that
clover bacteria mixed with alfalfa bacteria changed the nitrogen fixing response of
alfalfa to alfalfa bacteria or of clover to clover bacteria. The biology of the exper-
iment says that interaction indicates antibiosis or antagonism of the two types of
rhizobium. That is, the goal was to test whether the two types of rhizobium kill each
other off. If they do, then there will be less functioning bacteria in the root nodules
and consequently nitrogen fixation will be slower.

Erdman ran two sets of experiments in parallel. In one the response variable was
the nitrogen content in clover plants, in the other the nitrogen content in alfalfa
plants. The treatments were combinations of bacterial cultures in which the plants
were grown. As a historical note, beginning with Steel and Torrie (1960), the one-
way analysis of the clover plus alfalfa combination of the Clover experiment has
been frequently used as an example to illustrate multiple comparisons procedures.
Here we examine the complete data from two related two-way experiments.

12.14.2 Data Description

Both experiments are two-way factorial experiments with two treatment factors:

strain: one of six rhizobium cultures, five pure strains and one a mixture of all
five strains. Five strains of alfalfa rhizobium were used for the alfalfa plants and
five strains of clover rhizobium were used for the clover plants.

comb: a factor at two levels. At one level the rhizobium cultures consisted of only
strains specialized for the host plant. At the other level each of the six cultures
was combined with a mixture of rhizobium strains specialized for the other plant.
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12.14.3 First Rhizobium Experiment: Alfalfa Plants

Five observations on the response variable, nitrogen content, were taken at each
of the 12 strain*comb treatment combinations. Primary interest was in the dif-
ferences in responses to the six rhizobium treatments. Erdman originally analyzed
the response variable “milligrams of nitrogen per 20 plants”. After studying his
analysis and his discussion we choose to analyze a related response variable, “mil-
ligrams of nitrogen per gram of dry plant weight”. We give the original analysis as
Exercise 12.1.

12.14.4 Second Rhizobium Experiment: Clover Plants

Five observations on the response variable, nitrogen content, were taken at each
of the 12 strain*comb treatment combinations. Primary interest was in the dif-
ferences in responses to the six rhizobium treatments. Erdman originally analyzed
the response variable “milligrams of nitrogen per 10 plants”. After studying his
analysis and his discussion, we choose to analyze a related response variable, “mil-
ligrams of nitrogen per gram of dry plant weight”. We give the original analysis as
Exercise 12.2.

12.14.5 Initial Plots

Datasets data(rhiz.alfalfa) and data(rhiz.clover) contain the complete
data for both experiments. The alfalfa data is plotted in Figure 12.7. The clover data
is plotted in Figure 12.8. Erdman’s response variable is shown as nitro in both
figures. Our response variable is shown as Npg. The single most evident feature from
the clover boxplots is the large response to the pure culture 3DOk5. This observation
is the one that caused us to consider the alternate response variable. There were
fewer plants, hence larger plants, for this strain. We posit that the reported values
were scaled up, that is reported as grams per 10 plants. We hope that analyzing
the ratio, milligrams of nitrogen per gram of plants, rather than the reported rate,
milligrams per 10 plants, will adjust for the outliers. Nothing in the alfalfa plots is
as clear.

As a graphical aside, we looked at four different layouts for these plots. In Fig-
ures 12.7 and 12.8 we show vertical boxplots by strain conditioned on comb. We
also looked at vertical boxplots by comb conditioned on strain and horizontal
boxplots with both conditionings. We chose this one because we have a preference
for the response variable on the vertical axis and because we believe the patterns
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Fig. 12.7 Boxplot of alfalfa data. The Npg response variable has the least variability. We shall
continue our analysis with Npg.

are easier to see when this example is conditioned on the factor comb. The other
three layouts for the data in Figure 12.8 can be viewed by running the code in file
HHscriptnames(12). Also see the discussion in Section 13.A.
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Clover Experiment
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Fig. 12.8 Boxplot of clover data. The Npg response variable has the least variability. We shall
continue our analysis with Npg. The large variability in the 3DOk5 strain is visible in all three
response variables.

12.14.6 Alfalfa Analysis

The ANOVA table and table of means for the alfalfa experiment are in Table 12.11.
Since there was no interaction with the combination of clover strains of bacteria
(strain:comb interaction p-value = .53 in Table 12.11), there is no evidence of
antibiosis or antagonism.

Since only the strain main effect is significant, we confine our investigation to
differences among the means for strain. Figures 12.9, 12.10, and 12.11 display the
results of the Tukey multiple comparison procedure for comparing strain mean
differences. Since strain has 6 levels, we simultaneously examine all

(
6
2

)
= 15

pairwise mean differences. Any mean difference having a confidence interval in
Figure 12.10 that doesn’t include 0 is declared a significantly differing pair. There
are three such confidence intervals, therefore we conclude that a.composite has a
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Table 12.11 ANOVA table and table of means for alfalfa experiment. See Figure 12.7.

> ## unset position(rhiz.alfalfa$comb) for glht

> data(rhiz.alfalfa) ## fresh copy of the data.

> rhiz.alfalfa.aov <- aov(Npg ~ strain * comb, data=rhiz.alfalfa)

> summary(rhiz.alfalfa.aov)

Df Sum Sq Mean Sq F value Pr(>F)

strain 5 46.22 9.244 4.565 0.00174 **

comb 1 0.57 0.573 0.283 0.59714

strain:comb 5 8.44 1.687 0.833 0.53275

Residuals 48 97.21 2.025

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> alf.means <- model.tables(rhiz.alfalfa.aov, type="means",

+ se=TRUE, cterms="strain")

> alf.means

Tables of means

Grand mean

30.73547

strain

strain

3DOa1 3DOa7 3DOa10 3DOa12 3DOa15 a.comp

30.00 29.89 30.00 30.82 31.43 32.27

Standard errors for differences of means

strain

0.6364

replic. 10

29.5 30.0 30.5 31.0 31.5 32.0 32.5

Npg

3DOa7: 29.8932 3DOa12: 30.8171 a.comp: 32.2650
3DOa15: 31.43473DOa10: 29.9997

3DOa1: 30.0031

Fig. 12.9 Means for alfalfa experiment. Dots that appear over a common horizontal line corre-
spond to population means that do not differ significantly according to the Tukey multiple compar-
isons procedure with simultaneous 95% confidence intervals. Compare this figure to Figure 12.10.
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 The MMC panel shows informative overprinting.  Please see Tiebreaker panel and caption.
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Fig. 12.10 Mean–mean multiple comparisons plot and Tiebreaker plot showing Tukey contrasts
for alfalfa data. The MMC panel shows informative overprinting. Note that 3DOa1, 3DOa10, and
3DOa7 have almost identical means. Consequently (i) their means overprint on the left axis, (ii)
their differences overprint on the right axis, and (iii) their contrasts are displayed at the same
vertical position in the MMC panel. Most of the overprinting contrasts cross zero and are not
significant. Their details are displayed in the Tiebreaker panel. The only significant contrasts (the
red solid lines) are on the right corner of the isomeans grid. All three are contrasts of a.comp

with the three almost identical means of the lower three strains. Again the details are clear in the
Tiebreaker panel. The MMC panel displays the contrasts at heights constructed as the average
of the two means being compared. The Tiebreaker panel shows the contrasts in the same data-
dependent vertical order as the MMC panel. The Tiebreaker panel breaks the ties in the MMC
panel by placing the confidence intervals at equally spaced vertical positions. See also Figure 12.11
where we have constructed a set of orthogonal contrasts to capture and illustrate the relationships
among the levels.



406 12 Two-Way Analysis of Variance

significantly higher mean response than each of 3DOa1, 3DOa7, and 3DOa10; these
were the only significant differences detected. The inference is that any of the three
treatments with high response (3DOa12, 3DOa15, or a.composite) should be used.

Equivalent information is contained in Figure 12.9, where two population means
are declared significantly different if their corresponding sample means are not un-
derlined by the same line. (Such an underlining display may be used only when all
samples have the same size, as is the case here.)

Figure 12.10 is very busy because it shows 15 pairwise contrasts for only
5 degrees of freedom. In Figure 12.11 we provide a graphical summary of our
conclusions by constructing an orthogonal basis for the contrasts. We believe the
orthogonal contrasts in Figure 12.11 are easier to use in expository settings. The
detail of Figure 12.10 is needed to help us construct a useful and meaningful set of
orthogonal contrasts. We see that the single comparison between a.composite and
the average of the three strains with low means (3DOa1, 3DOa7, and 3DOa10) is the
only significant effect.

Figure 12.10 and 12.11 each have two panels. The MMC (mean–mean multiple
comparisons) panel shows the MMC plot discussed in Chapter 7. There is severe
overprinting of the confidence intervals and their labeling because so many of the
means and estimates of their differences have almost identical values. The over-
printing is itself information on similarity of level means. Nonetheless we need a
tiebreaker that will return legibility to the plot. We provide the tiebreaker in the
Tiebreaker panel, an ordinary multiple comparisons plot of the individual contrasts
placed at equally spaced vertical positions, sorted to be in the same data-dependent
order that is used in the MMC panel. This sort order is based on the values of the
level means. The standard sort order used by both R (see for example Table 6.3) and
SAS is based on the names of the levels.

12.14.7 Clover Analysis

The ANOVA table and table of means for the clover experiment are shown in Ta-
ble 12.12. In this experiment the strain:comb interaction effect is significant and
the comb main effect is not significant.

The significance of the strain:comb in Table 12.12 (p-value < .01) implies
that we can’t immediately, if at all, interpret the main effect of strain. Main effect
comparisons of the levels of comb and strain are inappropriate because the differ-
ence in response to two levels of strain will differ according to the level of comb.
From the table of means in Table 12.12 and the interaction plots in Figure 12.12 we
discover, again, that strain 3DOk5 is the anomaly. The interaction is made evident by
the lack of parallel profiles in both interaction plot panels. The three points marked
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Fig. 12.11 MMC plot and Tiebreaker plot of an orthogonal set of Tukey contrasts for alfalfa data.
There are six strains, hence five independent comparisons. This orthogonal set has been chosen
to summarize the information in Figure 12.10 and show that only one comparison is significantly
different from 0. We see now that the three strains with low means are indistinguishable, that
the two intermediate strains are indistinguishable, and that these two clusters are not significantly
different from each other. The only significant comparison is from the mean of the composite to the
mean of the cluster of three strains with low means. The MMC panel shows the same overprinting
discussed in the caption to Figure 12.10. The Tiebreaker panel shows clearly the single significant
comparison of the composite mean to the mean of the cluster of three strains with low means.

as outliers in both boxplot panels are the points that drive much of the remaining
analysis. We show the simple effects in Figure 12.13.

Once we decide that main effects are not meaningful in the presence of strong
interaction, we must look at the behavior separately for each level of the comb fac-
tor. We continue to do so in the context of a single analysis because we are still able
to use the residual term constructed from all levels of comb. This residual term has
48 degrees of freedom. Had we been forced to run separate analyses each would
have had a residual with much fewer degrees of freedom. Recall from Section 3.10
that tests are more powerful when the denominator has higher degrees of freedom.
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Table 12.12 ANOVA table and table of means for clover experiment. See Figure 12.8.

> rhiz.clover.aov <- aov(Npg ~ strain * comb, data=rhiz.clover)

> summary(rhiz.clover.aov)

Df Sum Sq Mean Sq F value Pr(>F)

strain 5 642.3 128.45 9.916 1.47e-06 ***

comb 1 6.9 6.88 0.531 0.46955

strain:comb 5 228.2 45.65 3.524 0.00857 **

Residuals 48 621.8 12.95

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(rhiz.clover.aov, type="means", se=TRUE)

Tables of means

Grand mean

26.00674

strain

strain

3DOk1 3DOk5 3DOk4 3DOk7 3DOk13 k.comp

28.72 31.86 22.66 23.95 23.39 25.45

comb

comb

clover clover+alfalfa

26.345 25.668

strain:comb

comb

strain clover clover+alfalfa

3DOk1 29.04 28.41

3DOk5 36.29 27.44

3DOk4 21.35 23.98

3DOk7 22.93 24.96

3DOk13 22.49 24.30

k.comp 25.97 24.92

Standard errors for differences of means

strain comb strain:comb

1.6096 0.9293 2.2763

replic. 10 30 5
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Npg: main effects and 2−way interactions
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Fig. 12.12 Interaction plot for clover experiment. The three points marked as outliers in clover
3DOk5 are the points that drive much of the remaining analysis. We show the simple effects for
this interaction in Figure 12.13.
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Npg: simple effects and 2−way interactions
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Fig. 12.13 Simple effects plot for the clover experiment interaction in Figure 12.12. It is now even
more clear that the clover 3DOk5 points differ from the others.

We therefore repartition the sums of squares in Table 12.13 and look separately
at the simple effect of strain within each of the levels of comb. The notation in
Table 12.13 is the mechanics by which the 10 degrees of freedom are separated into
two meaningful groups of 5 degrees of freedom. The differences in the clover strains
of rhizobium alone are significant. The differences with the combination clover and
alfalfa strains of rhizobium are not. Therefore, we examine only the simple effects
within the clover strains. These simple effects are the differences between pairs of
means of strain within the clover level of the factor comb. We examine and
report on those such differences that are statistically significant. Since the simple
effect for strain within the clover+alfalfa level of comb is not significant, we
do not look further at those means.

Erdman’s interpretation of the analysis shows that bacteria strain 3DOk5 showed
antibiosis with the alfalfa bacteria strains. With 3DOk5 the response was strong alone
and suppressed when combined with the alfalfa bacteria culture.
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Table 12.13 ANOVA table showing simple effects for strain in clover experiment. We partitioned
the sums of squares for the nesting with the split argument to the summary function. We needed
to display the names of the individual regression coefficients in order to determine which belonged
to each of the levels of comb. In this example the comb and strain effects are orthogonal, hence
the partitioning is valid. The individual degrees of freedom are usually not interpretable.

> rhiz.clover.nest.aov <-

+ aov(Npg ~ comb/strain, data=rhiz.clover)

> summary(rhiz.clover.nest.aov)

Df Sum Sq Mean Sq F value Pr(>F)

comb 1 6.9 6.88 0.531 0.47

comb:strain 10 870.5 87.05 6.720 2e-06 ***

Residuals 48 621.8 12.95

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> old.width <- options(width=35)

> names(coef(rhiz.clover.nest.aov))

[1] "(Intercept)"

[2] "combclover+alfalfa"

[3] "combclover:strain3DOk5"

[4] "combclover+alfalfa:strain3DOk5"

[5] "combclover:strain3DOk4"

[6] "combclover+alfalfa:strain3DOk4"

[7] "combclover:strain3DOk7"

[8] "combclover+alfalfa:strain3DOk7"

[9] "combclover:strain3DOk13"

[10] "combclover+alfalfa:strain3DOk13"

[11] "combclover:straink.comp"

[12] "combclover+alfalfa:straink.comp"

> options(old.width)

> summary(rhiz.clover.nest.aov,

+ split=list("comb:strain"=

+ list(clover=c(1,3,5,7,9),

+ "clover+alf"=c(2,4,6,8,10))))

Df Sum Sq Mean Sq F value Pr(>F)

comb 1 6.9 6.88 0.531 0.470

comb:strain 10 870.5 87.05 6.720 2.00e-06 ***

comb:strain: clover 5 788.4 157.68 12.172 1.22e-07 ***

comb:strain: clover+alf 5 82.1 16.42 1.268 0.293

Residuals 48 621.8 12.95

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



412 12 Two-Way Analysis of Variance

clover comparisons −−− combn(6,2) == 15
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contrast value

N
pg

 m
ea

ns
  |

  c
s 

le
ve

l

36.29

29.04

25.97

22.93
22.49

21.35

clover.3DOk5

clover.3DOk1

clover.k.comp

clover.3DOk7clover.3DOk13

clover.3DOk5

clover.3DOk1

clover.k.comp

clover.3DOk7clover.3DOk13
clover.3DOk4

clover.3DOk1−clover.k.comp

clover.3DOk1−clover.3DOk7clover.3DOk1−clover.3DOk13

clover.k.comp−clover.3DOk7clover.k.comp−clover.3DOk13
clover.k.comp−clover.3DOk4

clover.3DOk7−clover.3DOk13
clover.3DOk7−clover.3DOk4clover.3DOk13−clover.3DOk4

clover.3DOk5−clover.3DOk1

clover.3DOk5−clover.k.comp

clover.3DOk5−clover.3DOk7clover.3DOk5−clover.3DOk13
clover.3DOk5−clover.3DOk4

clover.3DOk1−clover.3DOk4

clover.3DOk5

clover.3DOk1

clover.k.comp

clover.3DOk7
clover.3DOk13

clover.3DOk4

                       contrasts

MMC

21.92
22.14
22.71
23.66
24.23
24.45
25.2

25.76
25.99
27.51
28.82
29.39
29.61
31.13
32.66

−20 −10 0 10 20                       contrastsheight                       

clover.3DOk1−clover.k.comp
clover.3DOk1−clover.3DOk7
clover.3DOk1−clover.3DOk13

clover.k.comp−clover.3DOk7
clover.k.comp−clover.3DOk13
clover.k.comp−clover.3DOk4
clover.3DOk7−clover.3DOk13
clover.3DOk7−clover.3DOk4
clover.3DOk13−clover.3DOk4

clover.3DOk5−clover.3DOk1
clover.3DOk5−clover.k.comp
clover.3DOk5−clover.3DOk7
clover.3DOk5−clover.3DOk13
clover.3DOk5−clover.3DOk4

clover.3DOk1−clover.3DOk4

Tiebreaker

Fig. 12.14 MMC plot and Tiebreaker plot of Tukey simple effect contrasts for comb="clover"
data. It is visually quite clear that the strain 3DOk5 differs from the rest (very strongly for the
bottom three strains and less so for the middle two strains.) There is also one marginally significant
contrast between the second largest mean and the smallest mean. We illustrate this observation in
Figure 12.15 with an appropriately chosen set of orthogonal contrasts. The Tiebreaker plot in the
bottom panel is imperative for this example. The means at many of the levels of cs are very close
and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally spaced
along the y-axis and in the same sequence as the top panel.

Table 12.14 shows the dummy variables and Table 12.15 shows the regression
coefficients for the simple effects of strain in the clover experiment displayed in
Table 12.13. The names for the columns of the dummy variables generated by the
program are excessively long and would force the matrix of dummy variables to
occupy many pages just to accommodate the column names. Therefore, we abbrevi-
ated them. We see the nesting structure in the dummy variables as the cmbn columns
for pure strains and the cm+n columns for combination strains are identical in struc-
ture. Only the cmbn regression coefficients are significant. The dummy variables are
constructed from the default treatment contrasts.

Since there is interaction in the clover experiment, we must look at the multiple
comparisons for the simple effects of strain at each value of comb.
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Fig. 12.15 MMC plot and Tiebreaker plot of an orthogonal basis set of Tukey simple effect con-
trasts for comb="clover" data. We summarize the conclusions from Figure 12.14. The strongest
contrast compares 3DOk5 to the rest. There is one other marginally significant contrast. Two con-
trasts show that the three strains with the lowest means are indistinguishable. The Tiebreaker plot
in the bottom panel is imperative for this example. The means at many of the levels of cs are very
close and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally
spaced along the y-axis and in the same sequence as the top panel.

Figure 12.14 shows the simple effects for comb="clover". The only strongly
significant contrasts are the ones centered on the upper right isomeans grid line
(clover.3DOk5) comparing 3DOk5 to the rest of the strains. There is one other bor-
derline significant contrast. The Tiebreaker panel makes it slightly easier to identify
the names of the contrasts. The set of orthogonal contrasts in Figure 12.15 shows
that the single contrast comparing 3DOk5 to the others carries almost all the signifi-
cance in Figure 12.15.

Figure 12.16 shows that there are no significant contrasts in the simple effects
for comb="clover+alfalfa". We forced Figure 12.16 to be on the same scale as
Figure 12.14.
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clover+alfalfa comparisons −−− combn(6,2) == 15
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Fig. 12.16 MMC plot and Tiebreaker plot of Tukey simple effect contrasts for
comb="clover+alfalfa" data. This plot is on the same scale as Figure 12.14. This common
scale emphasizes the disparity between 3DOk5 in comb="clover" and any values of strain in
comb="clover+alfalfa". None of the simple effects for strain within the clover+alfalfa

level of comb are significant. The Tiebreaker plot in the bottom panel is imperative for this example
as all the means are almost identical and therefore their labels are overprinted.
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Table 12.14 Dummy variables for simple effects of strain in clover experiment. These dummy
variables are based on the treatment contrasts. The sums of squares from these dummy variables
are displayed in Table 12.13. The regression coefficients are in Table 12.15. The dummy variables
and regression coefficients have been reordered to place the within-clover values together and the
within-clover+alfalfa values together.

> ## Look at the contrasts, their generated dummy variables,

> ## and their regression coefficients.

> ## Abbreviate their names for presentation.

> tmp <- abbreviate(names(coef(rhiz.clover.nest.aov)))

> ## tmp

>

> ## contrasts(rhiz.clover$comb)

> ## contrasts(rhiz.clover$strain)

>

> cnx <- aov(Npg ~ comb/strain, data=rhiz.clover, x=TRUE)$x

> dimnames(cnx)[[2]] <- tmp

> ## cnx

> cnx[seq(1,60,5), c(1,2, 3,5,7,9,11)]

(In) cmb+ c:3DO5 c:3DO4 c:3DO7 c:3DO1 cm:.

1 1 0 0 0 0 0 0

6 1 0 1 0 0 0 0

11 1 0 0 1 0 0 0

16 1 0 0 0 1 0 0

21 1 0 0 0 0 1 0

26 1 0 0 0 0 0 1

31 1 1 0 0 0 0 0

36 1 1 0 0 0 0 0

41 1 1 0 0 0 0 0

46 1 1 0 0 0 0 0

51 1 1 0 0 0 0 0

56 1 1 0 0 0 0 0

> cnx[seq(1,60,5), c(4,6,8,10,12)]

c+:3DO5 c+:3DO4 c+:3DO7 c+:3DO1 c+:.

1 0 0 0 0 0

6 0 0 0 0 0

11 0 0 0 0 0

16 0 0 0 0 0

21 0 0 0 0 0

26 0 0 0 0 0

31 0 0 0 0 0

36 1 0 0 0 0

41 0 1 0 0 0

46 0 0 1 0 0

51 0 0 0 1 0

56 0 0 0 0 1
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Table 12.15 Regression coefficients for simple effects of strain in clover experiment. The con-
trasts and dummy variables are displayed in Table 12.14. The dummy variables and regression
coefficients have been reordered to place the within-clover values together and the within-
clover+alfalfa values together.

> cnxb <- round(coef(summary.lm(rhiz.clover.nest.aov)), 3)

> dimnames(cnxb)[[1]] <- tmp

> ## cnxb

> cnxb[c(1,2, 3,5,7,9,11, 4,6,8,10,12),]

Estimate Std. Error t value Pr(>|t|)

(In) 29.042 1.610 18.043 0.000

cmb+ -0.637 2.276 -0.280 0.781

c:3DO5 7.243 2.276 3.182 0.003

c:3DO4 -7.688 2.276 -3.378 0.001

c:3DO7 -6.110 2.276 -2.684 0.010

c:3DO1 -6.556 2.276 -2.880 0.006

cm:. -3.070 2.276 -1.349 0.184

c+:3DO5 -0.966 2.276 -0.424 0.673

c+:3DO4 -4.430 2.276 -1.946 0.057

c+:3DO7 -3.441 2.276 -1.512 0.137

c+:3DO1 -4.106 2.276 -1.804 0.078

c+:. -3.482 2.276 -1.530 0.133
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12.15 Models Without Interaction

Experiments with two factors are normally designed with a large enough sample size
to investigate the possibility that the factors interact. When the analyst has previous
experience with these factors, or subject area knowledge that the factors are unlikely
to interact, it is possible to set up the model without an interaction term:

Algebra Yi jk = μ + αi + β j + εi jk

R Y ~ A + B

SAS Y = A B

The residual portion of this no-interaction model includes the (a − 1)(b − 1)
degrees of freedom that would otherwise have been attributable to the AB interac-
tion. If the no-interaction assumption is correct, the no-interaction model provides
a more precise estimate of the residual than a model incorporating interaction and
this in turn implies more power for tests involving the individual main effects or the
means of their levels. With this model, comparisons among the levels of factor A or
among the levels of factor B are undertaken in much the same way as in a one-way
experiment, but using this model’s residual sum of squares and degrees of freedom.

When we initially posit a model containing the two-factor interaction, it may
happen that the analysis of variance test for interaction leads to non-rejection
of the no-interaction hypothesis. If the evidence for no interaction is sufficiently
strong (a large p-value for this test and/or no strong subject area feeling about the
existence of interaction), the analyst may feel comfortable about reverting to the
no-interaction model and proceeding with the analysis as above. This amounts to
pooling a nonsignificant interaction sum of squares with the previous residual sum
of squares (calculated under the now rejected assumption of an interaction) to pro-
duce a revised residual mean square (under the assumption of no interaction). This
combined or pooled estimate is justified because in the absence of interaction, the
interaction mean square estimates the same quantity, the residual variance, as does
the residual mean square. The pooled estimate of the residual variance is an im-
provement over the individual estimates because it is constructed with additional
degrees of freedom. Therefore, the pooled estimate provides more powerful infer-
ences on the level means of the two factors than would a residual mean square in a
model including interaction. See Section 5.4.2 for further discussion of pooling.
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12.16 Example—Animal Feed Data

12.16.1 Study Objectives

A manufacturer of animal feed investigated the influence on the amount of vitamin
A retained in feed. The manufacturer considered 15 treatment combinations formed
from 5 amounts of feed supplement and 3 levels of temperature at which the supple-
ments were added to the feed. Two samples were selected at each treatment combi-
nation. The data from Anderson and McLean (1974), accessible as data(feed), are
said to be on transformed scales that this reference does not specify. The response
variable is retained and the two factors are temp and supp.

12.16.2 Analysis

The data is displayed in the interaction plot in Figure 12.17. The profiles in the
interaction plot are sufficiently close to parallel to suggest that there is no interaction
between temp and supp.

Table 12.16 Feed data: ANOVA table for model with interaction. The interaction is not signifi-
cant.

> feed.int.aov <- aov(retained ~ temp * supp, data=feed)

> anova(feed.int.aov)

Analysis of Variance Table

Response: retained

Df Sum Sq Mean Sq F value Pr(>F)

temp 2 1479.2 739.60 26.0423 1.321e-05 ***

supp 4 3862.1 965.53 33.9977 2.334e-07 ***

temp:supp 8 243.5 30.43 1.0716 0.4313

Residuals 15 426.0 28.40

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Initially, in Table 12.16, we fit an interaction model leading to an interaction
p-value of 0.43, confirming our impression from the interaction plot that temp and
supp do not interact. It is not unreasonable to conclude that temperature affects each
concentration of feed supplement in roughly the same way. Therefore, we abandon
the assumption of interaction and move to a no-interaction model.
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Table 12.17 Feed data: ANOVA with main effects and their polynomial contrasts.

> feed.aov <- aov(retained ~ temp + supp, data=feed)

> anova(feed.aov)

Analysis of Variance Table

Response: retained

Df Sum Sq Mean Sq F value Pr(>F)

temp 2 1479.2 739.60 25.410 1.499e-06 ***

supp 4 3862.1 965.53 33.172 3.037e-09 ***

Residuals 23 669.5 29.11

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(feed.aov, split=

+ list(temp=list(linear=1, quadratic=2),

+ supp=list(linear=1, quadratic=2, rest=3:4)))

Df Sum Sq Mean Sq F value Pr(>F)

temp 2 1479 739.6 25.409 1.50e-06 ***

temp: linear 1 370 369.8 12.705 0.00165 **

temp: quadratic 1 1109 1109.4 38.114 2.68e-06 ***

supp 4 3862 965.5 33.172 3.04e-09 ***

supp: linear 1 2912 2912.1 100.046 7.61e-10 ***

supp: quadratic 1 947 946.7 32.525 8.30e-06 ***

supp: rest 2 3 1.7 0.058 0.94418

Residuals 23 669 29.1

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(feed.aov, type="means", se=TRUE)

Tables of means

Grand mean

68.8

temp

temp

40 80 120

60.2 77.4 68.8

supp

supp

2 4 6 8 10

48.33 64.67 76.00 79.00 76.00

Standard errors for differences of means

temp supp

2.413 3.115

replic. 10 6
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retained: main effects and 2−way interactions
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Fig. 12.17 Feed data interaction plots.

The fit of the no-interaction model in Table 12.17 suggests that both temp and
supp impact significantly on retained. Since both of these factors have quantita-
tive levels, our analysis of the nature of the mean differences involves modeling the
response retained as polynomial functions of both temperature and the amount
of supplement. The method for accomplishing such modeling was introduced in
Section 10.4.

The interaction plot in Figure 12.17 suggests that the response to changes in the
level of supp is quadratic in nature and that possibly the response to changes in the
level of temp is quadratic as well. Therefore, for both of these factors we calculated
the one degree-of-freedom tests on the linear and quadratic contrasts among the fac-
tor levels, and show the results in Table 12.17. Since the p-values for both quadratic
contrasts are close to 0, there is strong evidence that the response of vitamin A ret-
ention is a quadratic function of both temperature and amount of feed supplement.

We show the MMC plot for supplement in Figure 12.18 for all pairwise contrasts
and in Figure 12.19 for the orthogonal contrasts. The Tiebreaker panel is needed
because two of the supplement means are identical. The MMC plot of the orthogonal
polynomial contrasts shows the linear and quadratic effects are significant.

Our findings implies that for maximum vitamin A retention we should recom-
mend intermediate amounts of temp and supp, perhaps in the vicinity of temp=80
and supp=6. An enlargement of this experiment could more accurately determine
the optimal values.
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If the analyst had been told, prior to the design of the experiment, that the pri-
mary goal was to determine the optimizing combination of the inputs temp and
supp, the analyst would have considered using a response surface design, the most
efficient design for this purpose. A brief introduction to such designs is contained in
Montgomery (2001).

12.17 Exercises

12.1. Do the original Erdman alfalfa analysis of Section 12.14.3 with nitro as the
response variable. Use the data accessible as data(rhiz.alfalfa).

12.2. Do the original Erdman clover analysis of Section 12.14.4 with nitro as the
response variable. Use the data accessible as data(rhiz.clover).

12.3. Analyze the two factor experiment with data accessible as data(testing).
This is a 3×3 design with 4 observations per treatment combination. The factors are
breaker at levels 1 to 3 and Gauger at levels 1 to 3. The observations are strengths of
cement. The cement is “gauged” or mixed with water and worked by three different
gaugers before casting it into cubes. Three testers or “breakers” later tested the cubes
for compressive strength, measured in pounds per square inch. Each gauger gauged
12 cubes, which were divided into 3 sets of 4, and each breaker tested one set of 4
cubes from each gauger. Breakers and gaugers are fixed in this experiment. Breakers
and gaugers are people, not machines. Are there differences in the strength of the
cement that depend on the handling by the breakers and gaugers?

We got the data from Hand et al. (1994). The data originally appeared in Davies
and Goldsmith (1972). There the data were coded by .1(X − 1000) before analysis.

The term coded data means that they have been centered and scaled to make the
numerical values easier to work with by hand. The F-tests in the ANOVA table and
the t-tests for regression coefficients with coded data are identical to the tests for the
original data.

12.4. An agronomist compared five different sources of nitrogen fertilizer and a
control (no fertilization) on the yield of barley. A randomized block design was
used with four types of soil as the blocks. Each soil type was randomly divided
into six plots, and the six treatments were randomly assigned to plots within
each type. The treatments were, respectively, (NH4)SO4, NH4NO3, CO(NH2)2,
Ca(NO3)2, NaNO3, and control. The data, taken from Peterson (1985), are acces-
sible as data(barleyp).

a. Plot the data. Does it appear from the plot that yield is related to treatment? Does
it appear from the plot that blocking was successful?
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The MMC panel shows informative overprinting.  Please see Tiebreaker panel and caption.
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Fig. 12.18 Feed data MMC plot for pairwise contrasts of supplement. The means of retained
at levels of feed 6 and 10 are identical. We need the Tiebreaker panel to distinguish them. Since
Table 12.17 shows that the polynomial contrasts are very significant, we show the MMC plot for
orthogonal polynomial contrasts in Figure 12.19.

b. Set up the two-way analysis of variance table for these data and explain what you
conclude from it.

c. Use the Dunnett procedure, introduced in Section 7.1.3, to compare the five fer-
tilizers with the control. Report your findings to the agronomist.

12.5. A chemist compared the abilities of three chemicals used on plywood panels
to retard the spread of fire. Twelve panels were obtained, and each chemical was
randomly sprayed on four of these twelve panels. Two pieces were cut from each
panel and the time was measured for each piece to be completely consumed by a
standard flame. (Thus Panel is nested within Chemical and Sample is nested within
Panel.) The data, from Peterson (1985), are accessible as data(retard). Carefully
noting the relationship between the factors chemical and panel, and considering
whether these factors are fixed or random, set up an analysis of variance and fol-
lowup analysis of chemical means in order to make a recommendation of the best
chemical for retarding the spread of plywood fires.
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The MMC panel shows informative overprinting.  Please see Tiebreaker panel and caption.
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Fig. 12.19 Feed data MMC plot for orthogonal polynomial contrasts of supplement. As indicated
in the ANOVA table, the linear and quadratic contrasts are significant and the cubic and quartic are
not. We show the Tiebreaker panel even though it is not really needed in this example.

12.6. The judging of the ice skating events at the 2002 Winter Olympics in Salt
Lake City was very controversial. The data, accessible as data(skateslc), are
taken from Olympic Committee (2001). The dataset contains the scores on both
technique and presentation of the five leading skaters, assigned by each of
nine judges. We have recoded the data with 10(X − 5). Perform a two-way analysis
of variance where the response is the total of both scores. Do further analysis and
comment on the consistency of the nine judges across skaters.

12.7. Box and Cox (1964), reprinted in Hand et al. (1994), present the results of a 3×
4 factorial experiment with four replications per treatment combination to illustrate
the importance of investigating the normality assumption underlying analyses of
variance. The original response variable is the survival time, survtime of each of
four antidotes, treatment to each of three poisons. The data are accessible as
data(animal).

a. Perform a two-way analysis of variance using survtime as the response, taking
care to save the calculated cell residuals.
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b. Produce a normal probability plot (described in Chapter 5) of the cell residuals
and use it to conclude that the residuals are not normally distributed.

c. Redo the two-way analysis of variance with a reciprocal transformation of the
response variable survtime, and again save the cell residuals. From a normal
probability plot of these cell residuals, conclude that these new residuals are nor-
mally distributed and hence the transformation was successful.

d. Report your findings to the antidote researchers.

12.8. An experiment was constructed to compare the effects on etchings of wafers
of four etching compounds and heat treatment by each of three furnaces. The ex-
periment was reported in Johnson and Leone (1967) and the data are accessible as
data(furnace). Viewing furnace as a random factor and allowing for the possi-
bility of interaction, provide a thorough analyses of these data.

12.9. Anemia, caused by iron deficiency in the blood, is common in some countries.
It was hypothesized that food cooked in iron pots would gain iron content from
the pot and, hence when eaten, contribute to alleviation of iron deficiency. Research
performed by Adish et al. (1999) compares the iron content (mg/100g) of three types
of (traditional Ethiopian) food when cooked in pots of aluminum, clay, or iron. The
data, accessible as data(ironpot), give the Iron content in mg/100g of food, the
type of Pot, and the type of Food. Perform a two-way analysis of variance and
provide interaction plots. Based on your analysis, is the hypothesis supported? Does
your conclusion apply to all Foods studied?

12.10. To check the consistency of new car fuel efficiency, the miles per gallon of
gasoline consumed was recorded for each of 5 cars of the same year and brand, on
each of 10 randomly selected days. The investigation was reported in Johnson and
Leone (1967) and the data are accessible as data(mpg). Viewing car as a random
treatment factor and day as a random blocking factor, analyze the data and carefully
state your conclusions. Suggest ways to elaborate on and improve this experiment.

12.11. Williams (1959), originally in Sulzberger (1953), examined the effects of
temperature on the strength of wood, plywood, and glued joints. The data are acc-
essible as data(hooppine). The studied wood came from hoop pine trees. The
response is compressive strength parallel to the grain, and the treatment factor is
temperature in degrees C. An available covariate is the moisture content of the
wood, and tree is a blocking factor.

a. Fit a full model where both strength and moisture are adjusted for the block-
ing factor tree, allowing for the possibility that temp interacts with moisture.

b. Conclude that the interaction term can be deleted from this model. Reanalyze
without this term. Carefully state your conclusions.

c. Investigate the nature of the relationship between strength and temp. Conclude
that a linear fit will suffice.
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d. Provide plots illustrating the conclusion from part a and the final model in parts b
and c.

12.A Appendix: Computation for the Analysis of Variance

When there is more than a single factor, the discussion in this chapter is usually
limited to the case where the sample size ni j is the same for each cell. The programs
we use for the computation do not usually have this limitation. We will discuss more
general cases in Chapters 13 and 14.

With R we will be using aov for the calculations and anova and related com-
mands for the display of the results. aov can be used with equal or unequal cell
sizes. Model (12.1)

Yi jk = μ + αi + β j + (αβ)i j + εi jk = μi j + εi jk (12.1)

is denoted in R either by the formula
Y ~ A + B + A:B

which uses the operator + to indicate the sum of two terms and the operator : to
indicate the interaction of two factors, or by the formula

Y ~ A * B

which uses the operator * to denote the crossing of two factors. The operator ~ is
read as “is modeled by”. The second formula is syntactically expanded by the pro-
gram to the first formula before it is evaluated. We usually prefer the more compact
notation Y ~ A * B because it more closely captures the English statement, “Y is
modeled by the crossing of factors A and B.”

With SAS we use PROC ANOVA and PROC GLM. PROC ANOVA is limited to the
equal sample size cases (actually, to balanced designs; see the SAS documentation
for details). Where there are at least two factors and unequal cell sizes [that is, the ni j

are not constrained to be equal and some cells may be empty (with ni j = 0)] PROC
GLM should be used. PROC ANOVA may not give sensible answers in such cases.
Model (12.1) is denoted in SAS either by the expression

Y = A B A*B

which uses a space to indicate the sum of two terms and the operator * to indicate
the interaction term, or by the expression

Y = A | B

which uses the operator | to denote the crossing of two factors. The operator = is
read as “is modeled by”. The second expression is syntactically expanded by the
program to the first expression before it is evaluated. We usually prefer the more
compact notation Y = A | B because it more closely captures the English state-
ment, “Y is modeled by the crossing of factors A and B.”
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The intercept term μ and the error term εi jk are assumed in both statistical lan-
guages. The existence of the subscripts is implied and the actual values are specified
by the data values.

The formula language also includes a notation for nesting of factors. We intro-
duce nesting in Section 12.13 and say more in Section 13.5, especially in Tables
13.18 and 13.21. In R use the formula

Y ~ A + A:B

or the formula (which will be expanded to the first formula)
Y ~ A / B

which uses the / to indicate that A is an outer factor and B is nested within A.

SAS doesn’t have the equivalent of the second formula. In SAS, use either the
equivalent of the first formula

Y = A A*B

or an alternative notation
Y = A B(A)

which uses the parenthesis notation to indicate that B is nested within A.

Note that the A:B notation (or A*B in SAS) tells about the relation of the levels
of the factors, not the degrees of freedom. Degrees of freedom depend on the linear
dependencies with earlier terms in the model formula.



Chapter 13

Design of Experiments—Factorial Designs

Designs are often described by the number of factors. Chapter 6, “One-Way Analysis
of Variance”, discusses designs with one factor. Chapter 12, “Two-Way Analysis of
Variance”, discusses designs with two factors. More generally, we speak of “three-
way” or “higher-way” designs and talk about main effects (one factor), two-way int-
eractions (two factors), three-way interactions, four-way interactions, and so forth.
Factors can have crossed or nested relationships. A factor can be fixed or random.
When interaction is significant, its nature must be carefully investigated. If higher-
order interactions, meaning those involving more than two factors, can be assumed
to be negligible, it is often possible to design experiments that require observations
on only a fraction of all possible treatment combinations.

Section 13.1 discusses a three-way ANOVA design with a covariate and poly-
nomial contrasts. Section 13.2 introduces Latin squares. Section 13.3 introduces
simple effects for interaction analyses. Section 13.4 discusses a nested factorial
experiment with both crossed and nesting relationships among the factors. Section
13.6.1 discusses the SAS terminology for types of sums of squares used in sequen-
tial and conditional ANOVA tables. Related topics are discussed in Chapter 14.

13.1 A Three-Way ANOVA—Muscle Data

Cochran and Cox (1957) report on an experiment to assess the effect of electrical
stimulation to prevent the atrophy of muscle tissue in rats. The dataset is available
as data(cc176). The response wt.d is the weight of the treated muscle. There
were three fixed factors: the number of treatments daily, n.treat, 1, 3, or 6; the
duration of treatments in minutes, 1, 2, 3, or 5; and the four types of current

used. A concomitant variable, the weight of corresponding muscle on the opposite
untreated side of the rat, wt.n, was also made available. There were two replications
of the entire experiment.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 13

427
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The analysis is constructed with code in HHscriptnames(13). The data are
plotted in Figure 13.1. The ANCOVA and adjusted means are in Table 13.1. Also
included in Table 13.1 is a partitioning of the 2 degrees of freedom for n.treats
into linear and quadratic components, taking account of the unequal spacing of the
quantitative levels of n.treats.

Plotting symbol is duration of the treatment in minutes
wt.n, weight of untreated other side
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Fig. 13.1 Muscle data. The response variable wt.d is plotted against the covariate wt.n within
each current×n.treats experimental condition. The plotting symbol is the duration of the treat-
ment in minutes. The ANCOVA and adjusted means are in Table 13.1. We also plotted the common
regression line (ignoring experimental conditions) of the response against the covariate. The pres-
ence of a covariate wt.n effect is evident from the graph by noting that the points in all panels
approximate the uphill slope of the regression slope. The absence of a minutes effect is evident
since there is no systematic pattern among the plotting symbols.

Table 13.1 suggests that after adjusting for the concomitant variable wt.n,
there are no significant interactions and the effect of minutes is not signifi-
cant. This table shows that n.treat contributes significantly to explaining wt.d,
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Table 13.1 Muscle data. ANCOVA and adjusted means. The covariate wt.n, the linear effect
of n.treats, and the current are the significant treatment effects. We show the calculation of
y.adj, the response variable adjusted for the covariate, and the adjusted means.

> ## y=wt.d with x=wt.n as covariate

> ## (get essentially the same ANOVA as the approximate (y-bx)^2

> ## ANOVA table in Cochran and Cox)

> cc176.aov <- aov(wt.d ~ rep + wt.n + n.treats*minutes*current,

+ data=cc176)

> ## summary(cc176.aov)

> summary(cc176.aov,

+ split=list(n.treats=list(n.treats.lin=1,

+ n.treats.quad=2)),

+ expand.split=FALSE)

Df Sum Sq Mean Sq F value Pr(>F)

rep 1 605 605 12.58 0.00091 ***

wt.n 1 1334 1334 27.74 3.6e-06 ***

n.treats 2 439 219 4.56 0.01557 *

n.treats: n.treats.lin 1 438 438 9.11 0.00413 **

n.treats: n.treats.quad 1 1 1 0.01 0.91048

minutes 3 184 61 1.28 0.29409

current 3 2114 705 14.66 7.8e-07 ***

n.treats:minutes 6 198 33 0.69 0.66051

n.treats:current 6 492 82 1.70 0.14163

minutes:current 9 383 43 0.88 0.54627

n.treats:minutes:current 18 1022 57 1.18 0.31542

Residuals 46 2212 48

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> ##

> ## adjust y for x

> cc176$y.adj <- cc176$wt.d -

+ (cc176$wt.n - mean(cc176$wt.n))*coef(cc176.aov)["wt.n"]

> ## duplicate CC Table 5.17

> cc176.means <- tapply(cc176$y.adj,

+ cc176[,c("current","n.treats")], mean)

> cc176.means

n.treats

current 1 3 6

galvanic 56.03 59.08 65.29

faradic 59.95 55.79 57.27

60.cycle 63.26 63.92 68.58

25.cycle 64.47 71.78 73.20

> apply(cc176.means, 1, mean)

galvanic faradic 60.cycle 25.cycle

60.13 57.67 65.25 69.82
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p−value = .0000036. The visible upward trend in all panels of Figure 13.1 suggests
that response wt.d increases linearly with n.treats and differs according to the
type of current used. The response variable y.adj in Figure 13.2 is constructed
by adjusting the response wt.d for the covariable wt.n. We see in both Figures 13.1
and 13.2 a larger response when current is 25 cycle than when current is at one
of its other three levels. Inclusion of wt.n reinforces these conclusions. The paral-
lel traces in Figure 13.2 correspond to the absence of interaction between n.treat

and current, a finding also suggested by the large p-value for this interaction in
Table 13.1.

y.adj: main effects and 2−way interactions
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Fig. 13.2 Muscle data. Two-way interactions of significant main effects from the ANCOVA in
Table 13.1. The adjusted response y.adj increases linearly with n.treats and differs according
to the type of current used.

In Table 13.2 we display a microplot of horizontal boxplots that compares the
distributions of responses for each level of the factor current. This is the same set
of boxplots that appears in the y.adj ∼ current | current panel of Figure 13.2.

Boxplots capture comparative information better than numbers. They don’t have
to take much space, therefore they can fit into tables of numbers and satisfy both
the convention (perhaps mandated) of displaying numbers and the legibility of
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displaying graphs. We call the plots microplots when they are deliberately sized
to fit into a table of numbers without interfering with the overall layout. When small
plots are placed into a table of numbers, they can carry the same or more information
per cm2 as the numbers themselves.

Table 13.2 Muscle data: Distribution statistics and boxplots for adjusted weights. The statistics
show only a few values. The boxplot shows the entire distribution.

Treatment Min m−sd Mean m+sd Max boxplot

25.cycle 54.21 61.04 69.82 78.59 85.92

40 50 60 70 80

60.cycle 47.07 57.93 65.25 72.58 79.69
faradic 39.55 51.98 57.67 63.37 67.64
galvanic 45.52 52.82 60.13 67.44 73.72

A display comparable to Figure 13.3 could be used to determine the nature of a
3-way interaction. Such an interaction does not exist in this example.

Figure 13.4 shows four different models for the relationship between the response
wt.d and the covariate wt.n. The figure is similar to Figure 10.12 which showed
four sets of panels for the simpler dataset with only one factor. The overall conclu-
sion is that the relation between wt.d and wt.n differs according to the levels of
current and n.treat. More detail appears in the caption of this figure.

Figure 13.5 is a Tukey procedure MMC plot examining the six pairwise dif-
ferences among the four levels of current. As summarized in the caption of this
figure, four of these six differences are declared statistically significant. Inspection
of Figure 13.5 and the means of the levels of current in Table 13.1 reveals that
25.cycle and 60.cycle current, indistinguishable from each other, correspond to
significantly greater treated muscle weight wt.d than either galvanic or faradic
current.
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Fig. 13.3 Muscle data. Three-way interactions of all effects. One of the (3! = 6) possible orderings.
The three-way interaction is not significant in this example. If there were a significant three-way
interaction, the patterns in boxplots in adjacent rows and columns would not be the same. For
example, we note a hint of a difference in the y.adj ~ minutes behavior across panels. It has a
negative slope in the galvanic ~ 3 panel and a positive slope in the faradic ~ 3 panel, but a
positive slope in the galvanic ~ 6 panel and a negative slope in the faradic ~ 6 panel. The
ANOVA table tells us these differences in slope are not significant. These boxplots are all based on
samples of size 2. Such boxplots are a well-defined but uncustomary way to display such a sample.
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b. Identical lines: wt.d ~ wt.n

wt.n, weight of untreated other side
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c,d. Parallel lines: wt.d ~ n.c + wt.n

wt.n, weight of untreated other side
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e. Separate lines: wt.d ~ wt.n * n.c

wt.n, weight of untreated other side
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Fig. 13.4 Muscle data. ANCOVA plots with four different models. Panel a ignores wt.n and
shows the average value of wt.d. Panel b fits a common regression of wt.d on wt.n on all com-
binations of n.treat and current and differs from Figure 13.1 only in its choice of plot symbol.
Panel c,d allows for different intercepts but forces common slopes. The difference in intercepts cor-
responds to the small p-value for wt.n in Table 13.1. Panel e shows distinct regressions of wt.d
on wt.n for each combination of current and n.treat. It suggests that the relationship between
wt.d and wt.n differs according to the levels of n.treat and current. The term n.c in the title
for the graphs is an abbreviation for the interaction (n.treats*current).
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Table 13.3 Muscle data. ANCOVA with the simpler model using only the significant terms
from Table 13.1 plus an additional interaction. We show the MMC plot for the current effect
in Figure 13.5.

> cc176t <- cc176

> for (i in names(cc176t))

+ if (is.factor(cc176t[[i]]))

+ contrasts(cc176t[[i]]) <-

+ contr.treatment(length(levels(cc176t[[i]])))

> sapply(cc176t, class)

$wt.d

[1] "numeric"

$wt.n

[1] "numeric"

$n.treats

[1] "positioned" "ordered" "factor"

$current

[1] "positioned" "ordered" "factor"

$minutes

[1] "positioned" "ordered" "factor"

$rep

[1] "factor"

> cc176t.aov <- aov(wt.d ~ rep + wt.n + n.treats + wt.n*current,

+ data=cc176t)

> summary(cc176t.aov)

Df Sum Sq Mean Sq F value Pr(>F)

rep 1 605 605 14.19 0.00030 ***

wt.n 1 1334 1334 31.29 2.6e-07 ***

n.treats 2 439 219 5.15 0.00776 **

current 3 2114 705 16.53 1.5e-08 ***

wt.n:current 3 867 289 6.78 0.00038 ***

Residuals 85 3624 43

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 13.5 Muscle data. MMC plot for the analysis in Table 13.3. The top panel shows the Tukey
95% intervals for all pairwise contrasts of treatment means wt.d adjusted for wt.n at the four
levels of current. The Tukey procedure leads to the conclusions illustrated by the orthogonal
contrasts in the bottom panel. The adjusted treatment means of both of 25.cycle and 60.cycle

exceed both of galvanic and faradic; 25.cycle is indistinguishable from 60.cycle; and
galvanic is indistinguishable from faradic. The Tiebreaker plot is not needed in this example.

13.2 Latin Square Designs

This design is useful when we have three factors having the same number, say r, of
levels and the factors do not interact. Although there are r3 treatment combinations,
the Latin Square design permits us to run the experiment with a carefully chosen
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Table 13.4 Sample 4× 4 Latin square design. The rows represent tire positions: LF is Left-Front,
RF is Right-Front, LR is Left-Rear, and RR is Right-Rear.

Car

Position 1 2 3 4

LF C D A B

RF B C D A

LR A B C D

RR D A B C

Table 13.5 Sample ANOVA for 4 × 4 Latin square design.

Source df Sum of Sq Mean Sq F Value Pr(> F)

Row r − 1 SSRow MSRow
Column r − 1 SSCol MSCol
Treatment r − 1 SSTrt MSTrt MSTrt/MSRes 1 − FdfTrt ,dfRes

(F)

Residual (r − 1)(r − 2) SSRes MSRes

Total r2 − 1 SSTotal

subset of r2 of them while retaining the ability to conduct tests on all main effects.
A Latin square is a square array of r Latin letters A, B,C, . . . such that each letter
appears exactly once in each row and once in each column. Typically, the treatment
factor is associated with these letters, and both row and column are blocking type
factors. For example, if an experiment is run at r selected times of day on each of
r days, then each row could represent one of the days, and each column one of the
selected times. As another example, displayed in Table 13.4, if we have four cars
available to compare the wear of four brands of tire, the rows of the square could
represent the wheel position on the car, the columns represent the selected car, and
the letters the tire brands.

The basic structure of the ANOVA table is in Table 13.5. Since we are using the
Row and Columns factors as blocks, there is no test for those terms in the table.
The only test we are justified in making is the test of the Treatment. The purpose
of including the Row and Column factors is to pick up some of the Total Sum of
Squares and thereby reduce the size of the residual mean square.

The arithmetic of the Latin square design depends on the assumption of no inter-
action between Row, Column, and Treatment. The arithmetic of the interaction of
Row and Column gives (r − 1)2 df to the interaction and 0 df for an error term. By
assuming no interaction, we gain the ability to split the (r − 1)2 df into two compo-
nents: Treatment with r − 1 df and Error with (r − 1)2 − (r − 1) = (r − 1)(r − 2) df.
If the no-interaction assumptions hold, this is a very efficient design.

Almost always, 5 ≤ r ≤ 8, for if r < 5 there are too few df for error, and one is
unlikely to encounter situations where one has three factors each having r > 8 levels,



13.2 Latin Square Designs 437

two of which are blocking factors. However, it is possible to run an experiment
containing several 3×3 squares or several 4×4 squares, each of which is considered
a block, in order to achieve sufficient error df.

Catalogs of Latin squares appear in Cochran and Cox (1957) and elsewhere. In
practice, one selects a square from a catalog and randomizes it by randomly assign-
ing levels of one of the blocking factors to the rows of the square, randomly as-
signing levels of the other blocking factor to the columns of the square, and then
randomly assigning treatment levels to the letters.

13.2.1 Example—Latin Square

The dataset data(tires), from Hicks and Turner (1999, page 115), is displayed
in Table 13.6 alongside the original Latin square. A boxplot of the data is in
Figure 13.6.

An initial ANOVA run in Table 13.7 revealed significant differences among cars
and brands, but not among positions. Here r = 4, allowing just 6 df for estimat-
ing error. Hence the denominator df of the F-tests is also 6, which as discussed in
Section 5.4.4 implies that these tests have little power. Nevertheless, the differences
in this example among cars and brands are large enough for the F-tests to detect
them.

Table 13.6 Latin square of tire wear experiment. The Latin square from Table 13.4 is repeated
here. On the left with letters and on the right with the observed response values.

Car Car
Position 1 2 3 4 Position 1 2 3 4

LF C D A B LF 12 11 13 8
RF B C D A RF 14 12 11 13
LR A B C D LR 17 14 10 9
RR D A B C RR 13 14 13 9

w
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1 2 3 4

car

1 2 3 4

position

1 2 3 4

tires

Fig. 13.6 Tires data. Boxplots of the response variables wear against the three factors.
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To learn about the nature of the brand differences, we reran with a request for
Tukey multiple comparisons tests on the brand means (Tables 13.7 and 13.8 and
Figure 13.7). We find that brand 1 had significantly greater wear than brands 3 and
4, but the improvement in wear of brand 1 over brand 2 was not significant. We also
see that cars 1, 2, and 3 all had significantly greater wear than car 4; no significant
difference in tire wear was detected among cars 1, 2, and 3.

In this example the primary interest is studying the differences between brands of
tires. Both car and position are blocking factors. We assume different cars will have
different effects on tires because each person who owns a car drives different routes
and puts the car through different wear patterns. We know there are differences in
position on the car. Front tires are used for steering, rear tires just follow. In some
cars only the front tires get power directly from the engine. In other cars only the
rear tires, and in 4-wheel drive vehicles both front and rear tires get power. The goal
of the Latin square experiment is to reduce the residual sum of squares by absorbing
some of the variation into known blocking factors. This makes the comparisons of
interest, those on brand, more precise because they can be made with a smaller
standard deviation (based on the residual mean square).

Table 13.7 Latin square design. tires data. Differences in the blocks car are large, justifying
blocking. Differences in brand are significant. We investigate further in Table 13.8.

> data(tires)

> tires.aov <- aov(wear ~ car + position + brand, data=tires)

> summary(tires.aov)

Df Sum Sq Mean Sq F value Pr(>F)

car 3 38.69 12.896 14.395 0.00378 **

position 3 6.19 2.062 2.302 0.17695

brand 3 30.69 10.229 11.419 0.00683 **

Residuals 6 5.38 0.896

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> tapply(tires$wear, tires$car, "mean")

1 2 3 4

14.00 12.75 11.75 9.75

> tapply(tires$wear, tires$position, "mean")

1 2 3 4

11.00 12.50 12.50 12.25

> tapply(tires$wear, tires$brand, "mean")

1 2 3 4

14.25 12.25 10.75 11.00
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Table 13.8 Continuation of analysis in Table 13.7. Latin square design. tires data. Brand 1
shows significantly greater mean wear than brand 3 or brand 4.

> tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"))

> ## print(tires.mmc.brand)

> brand.lmat <- cbind("1-43" =c( 2, 0,-1,-1),

+ "4-3" =c( 0, 0,-1, 1),

+ "143-2"=c( 1,-3, 1, 1))

> dimnames(brand.lmat)[[1]] <- levels(tires$brand)

> tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"),

+ focus.lmat=brand.lmat)

> print(tires.mmc.brand)

Tukey contrasts

Fit: aov(formula = wear ~ car + position + brand, data = tires)

Estimated Quantile = 3.462

95% family-wise confidence level

$mca

estimate stderr lower upper height

1-2 2.00 0.6693 -0.3173 4.317 13.25

1-4 3.25 0.6693 0.9327 5.567 12.62

1-3 3.50 0.6693 1.1827 5.817 12.50

2-4 1.25 0.6693 -1.0673 3.567 11.63

2-3 1.50 0.6693 -0.8173 3.817 11.50

4-3 0.25 0.6693 -2.0673 2.567 10.88

$none

estimate stderr lower upper height

1 14.25 0.4732 12.611 15.89 14.25

2 12.25 0.4732 10.611 13.89 12.25

4 11.00 0.4732 9.361 12.64 11.00

3 10.75 0.4732 9.111 12.39 10.75

$lmat

estimate stderr lower upper height

1-43 3.375 0.5796 1.368 5.382 12.56

2-143 0.250 0.5465 -1.642 2.142 12.13

4-3 0.250 0.6693 -2.067 2.567 10.88

> contrasts(tires$brand) <- brand.lmat

> tires.aov <- aov(wear ~ car + position + brand, data=tires)

> summary(tires.aov, split=list(brand=list("1-43"=1, rest=2:3)))

Df Sum Sq Mean Sq F value Pr(>F)

car 3 38.7 12.90 14.40 0.0038

position 3 6.2 2.06 2.30 0.1769

brand 3 30.7 10.23 11.42 0.0068

brand: 1-43 1 30.4 30.37 33.91 0.0011

brand: rest 2 0.3 0.16 0.17 0.8441

Residuals 6 5.4 0.90
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Fig. 13.7 Tires data. The top panel shows the Tukey 95% intervals for all pairwise contrasts of
wear means at the four levels of brand. The Tukey procedure leads to the conclusions illustrated
by the orthogonal contrasts in the bottom panel. Brand 1 shows significantly greater mean wear

than brand 3 or brand 4. The Tiebreaker plot is not needed in this example.

The results of the F-test on a blocking factor are not ordinarily presented in the
discussion because block differences are expected, and multiple comparisons on
block means are not usually performed. Nevertheless, when blocks are significant,
it is an indication that the blocking was worthwhile. Most experimental design texts
contain formulas for the efficiency attributable to blocking in Latin square, random-
ized complete block, and other experimental designs; see, for example, Cochran and
Cox (1957) (Section 4.37).
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We continue with this example in Exercise 13.6 where we use dummy variables
to illustrate the linear dependence of the treatment (brand) sum of squares on the
interaction of the two blocking factors.

13.3 Simple Effects for Interaction Analyses

When a low p-value for an interaction term in an ANOVA table leads the analyst to
believes that interaction exists, it is necessary to study the nature of the interaction.

We re-emphasize that in this situation, tests of the main effects of the factors
comprising the interaction are inappropriate. Instead we seek to analyze the simple
effects, which we now define. An analysis of simple effects, along with interaction
plots of cell means which we’ve previously discussed, are the correct tools for inv-
estigating interaction. We note which simple effects are appreciable, either by ex-
amining confidence intervals on the simple effects or by testing whether the simple
effects are zero. Since such activities involve simultaneous inferences, it is desirable
to give attention to use either simultaneous confidence levels or a familywise error
rate for simultaneous tests. The importance of studying individual simple effects
rather than the overall interaction effect is comparable to the ecological fallacy intro-
duced in Section 4.2 and the cautions resulting from Simpson’s paradox, discussed
in Section 15.3.

We confine attention here to the case of two factors, say A and B, at a and b
levels, respectively. Continuing with the notation of Equation (12.1), let μi j denote
the mean response of the treatment combination where A is at its ith level and B is
at its jth level. Then a simple effect for B is a pairwise comparison of levels of B at
a particular level of A, for example, μ12 − μ13. Similarly, a simple effect for A is a
pairwise comparison of levels of A at a particular level of B, such as μ32 − μ12.

This assumes that the levels of a factor for which we are calculating simple effects
are qualitative in nature. If instead the levels of factor B are quantitative, then a
different analysis is called for, namely, a comparison of comparable polynomial
contrasts of the cell means at each level of factor A. This analysis is superior to
performing a separate one-way analyses comparing the levels of B because we are
pooling the information from all levels of A to estimate the common error variance.
This enables us to compare the levels of B with maximum available power.

In experiments with three or more factors, there is a potential for 3-factor inter-
action. If there are three factors (A, B,C) that interact, this may be interpreted as
saying that the nature of the AB interaction varies according to the particular level
of factor C. An analysis of such an interaction is more complicated than is the case
for two interacting factors.
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13.3.1 Example—The filmcoat Data

We illustrate the use of simple effects in analyzing interaction with the dataset
data(filmcoat) from Iman (1994, pp. 768–778).

13.3.2 Study Objectives

Chemical vapor deposition is a process used in the semiconductor industry to deposit thin
films of silicon dioxide and photoresist on substrates of wafers as they are manufactured.
The films must be as thin as possible and have a uniform thickness, which is measured by a
process called infrared interference.

A process engineer evaluated a low-pressure chemical vapor deposition (LPCVD) pro-
cess that reduces costs and increases productivity. The engineer set up an experiment to
study the effect of chamber temperature and pressure on film thickness. Three temperatures
and three pressures were selected to represent the low, medium, and high levels of operating
conditions for both factors. The experiment was conducted by randomly selecting one of the
temperature–pressure combinations and determining the thickness of the film coating after
processing is completed. This experiment was repeated three times with each temperature–
pressure combination. The engineer wanted to determine the joint effect of temperature and
pressure on the mean film thickness. The response was thickness (in Ångström units) of
film coatings applied to wafers.

13.3.3 Data Description

temprt: temperature: low, medium, and high levels

pressure: pressure: low, medium, and high levels

coat: thickness of film coat

The data are displayed in Table 13.9 and Figure 13.8. The table of means and
ANOVA table are in Table 13.10. The plots of the means and interactions are in
Figure 13.9.

We observe that the temprt × pressure interaction is moderately significant.
Therefore, conclusions about which level of temprt tends to minimize coat de-
pend on the level of pressure. This statement is supported by Figure 13.9, which
suggests that for low and high pressure, the response coat is minimized at
medium temprt while for medium pressure, coat is minimized at high temprt.
In addition, it is suggested that for low and medium temprt, coat is minimized at
low pressure while for high temprt, coat is minimized at medium pressure.
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Table 13.9 filmcoat data. Thickness of film coat at various settings of temperature and pressure.

Pressure

Temperature Low Medium High

Low 42, 43, 39 45, 43, 45 45, 44, 47

Medium 36, 34, 37 39, 39, 37 40, 42, 38

High 38, 37, 37 35, 36, 33 40, 41, 42
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Fig. 13.8 a Filmcoat data. Each box is based on three data points. The interaction between tem-
perature and pressure is very visible in the t.high ~ p.med panel. Along the top two rows of the
plot, the boxes move up from left to right. In the bottom row, the second box is below the other
two.

13.3.4 Data Analysis

These informal visual impressions are formally investigated by examining the si-
multaneous confidence intervals on the simple effects displayed in Figures 13.10
and 13.11. Control of the simultaneous confidence level at 95% within each of
the two sets of nine intervals is maintained by using simulation-generated crit-
ical points for this procedure as recommended by Edwards and Berry (1987).
These simultaneous confidence intervals are produced in R with the glht func-
tion in the multcomp package. The simultaneous confidence of the collection of all
18 confidence intervals is closer to 90%.
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Table 13.10 Means and ANOVA table for filmcoat data. The moderately significant interaction
between pressure and temperature requires that we examine simple effects rather than main effects.

> reshape2::acast(filmcoat, temprt ~ pressure, mean,

+ value.var="coat", margins=TRUE)

p.low p.med p.high (all)

t.low 41.33333 44.33333 45.33333 43.66667

t.med 35.66667 38.33333 40.00000 38.00000

t.high 37.33333 34.66667 41.00000 37.66667

(all) 38.11111 39.11111 42.11111 39.77778

> film.aov1 <- aov(coat ~ temprt*pressure, data=filmcoat)

> summary(film.aov1)

Df Sum Sq Mean Sq F value Pr(>F)

temprt 2 204.67 102.33 47.638 6.46e-08 ***

pressure 2 78.00 39.00 18.155 4.83e-05 ***

temprt:pressure 4 37.33 9.33 4.345 0.0124 *

Residuals 18 38.67 2.15

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We examine which of these intervals excludes zero and for those that do, whether
the interval lies above or below zero. In Figure 13.10, we see that at medium
pressure,

• the confidence interval on mean coat at low temprt minus mean coat at high
temprt lies entirely above zero,

• the confidence interval on mean coat at medium temprt minus mean coat at
high temprt is closer to zero, but is also entirely above zero.

From these two statements we can conclude that at medium pressure, mean coat

is minimized at high temprt. This is the only firm conclusion we can draw about
coat minimization because many of the other intervals in these two figures overlap
zero, indicating nonsignificant differences of means. We are unable to formally con-
firm our other graphical impressions that for low and high pressure, the response
coat is minimized at medium temprt. Nor are we able to confirm our initial graph-
ical impressions about levels of pressure that minimize coat at each level of
temprt.

In summary, while we can make some confident assertions about differences in
coating between some of the combinations of temperature and pressure, it is not
possible to infer from these data an overall recommendation of the optimal com-
bination of temperature and pressure. It is possible that a larger experiment would
have led to such a conclusion.
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coat: simple effects and 2−way interactions
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Fig. 13.9 Simple effects plot for filmcoat data. At medium pressure, mean coat is minimized
at high temprt. No other firm conclusions can be drawn because many of the simultaneous confi-
dence intervals in Figures 13.10 and 13.11 overlap zero. We saw in Section 13.3 that main effects
are not defined in the presence of interaction. The simple effects plot here shows individual box-
plots for each level of pressure conditioned on the level of temperature in the lower left panel. The
plot shows individual boxplots for each level of temperature conditioned on the level of pressure
in the upper right panel.
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13.4 Nested Factorial Experiment

Thus far we have considered situations where the relationships among the factors
are either completely crossed or completely nested. It is also possible to have an
experiment with three or more factors having both crossed and nesting relationships.
Such an arrangement is called a nested factorial experiment.

13.4.1 Example—Gunload Data

We illustrate one possible arrangement with an example taken from Hicks and
Turner (1999). It was desired to improve the number of rounds per minute that could
be fired from a large naval gun. There are two levels of loading method, 1=new and
2=old, and three groups defining the physiques of the loaders, 1=slight, 2=average,
3=heavy. From each of these groups the experimenter selected three equal sized
teams of men. Thus there are three teams of men having slight build, three teams of
men having average build, and three teams of men having heavy build. Using both
of the two methods, each of the nine teams fired the gun on two separate occasions.
It is seen that team is nested within group, and that method is crossed with both
group and team within group. The factors method and group are fixed, while
team is a random factor. The data are contained in the dataset data(gunload). We
display the data in Figure 13.12.

If all three factors were fixed factors, then the residual mean square would serve
as the denominator for all analysis of variance table F-tests on main effects and
interactions. When at least one factor is random, the F-test denominators are some-
times another mean square in the ANOVA table. As with our use of Table 12.8 to
determine the correct denominator for an analysis with two crossed factors where
one or both could be random factors, we construct Table 13.11 to aid in our anal-
ysis of the gunload data. The table is constructed by writing the sums of squares
as quadratic forms in the Yi jkl defined in Equation (13.1), and using Equation (I.6)
in Appendix I for finding the expected values of these quadratic forms. Then as
with Table 12.8, the ANOVA F-test of any effect uses as the denominator the mean
square having expectation identical to the expected mean square of the effect, apart
from the term for the effect itself.

In Table 13.11, we have three factors, which we call M, G, and T for easy asso-
ciation with method, group, and team in the gunload example. We use the corre-
sponding Greek letters θ (for meTHod), γ, and τ for the population effects. Here T
is nested within G, and M is crossed with both G and T. In this table, the factors M,
G, and T have m, g, and t levels, respectively, and the common number of replica-
tions of each treatment combination is n. In the gunload example, there are n = 2
occasions.
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Fig. 13.12 Boxplot of gunload data. The response rounds is higher for the new method than the
old method and does not appear to differ across the three physique groups. These findings are
consistent with the small p-value for method and the large p-value for group in Table 13.13.

The statistical model associated with this analysis may be written as

Yi jkl = μ + γi + τ j(i) + θk + (γθ)ik + (τθ) jk(i) + εi jkl (13.1)

Here γi is the effect of group level i, τ j(i) is the effect of level j of team nested within
level i of group, θk represents level k of method, (γθ)ik represents the interaction of
group and method, (τθ) jk(i) represents the interaction of team and method within
group level i, and εi jkl is the residual error.

For ease of presentation, we use the convention that

σ2
A =

∑
i α

2
i

a − 1
if A is a fixed factor
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and

σ2
AB =

∑
i j(αβ)2

i j

(a − 1)(b − 1)
if A and B are both fixed factors.

We use the indicator function IA defined as 1 if A is a random factor or 0 if A is a
fixed factor. (This is not the same convention we used in Table 6.4. There we used
the notation σ2

A for random effects and κ2
A for fixed effects.)

We illustrate the use of Table 13.11 by considering the test of the main effect for
group, factor G. Since in this example method is fixed and team is random, we
have IM = 0 and IT = 1. Therefore, the expected value of the mean square for G is

σ2 + nmσ2
T + nmtσ2

G (13.2)

and the expected value of the mean square for T nested in G is

σ2 + nmσ2
T (13.3)

The ratio of these mean squares is appropriate for testing equality of the levels of
group, factor G, because the corresponding ratio of these expected mean squares
exceeds one if and only if σ2

G > 0. Use of the residual mean square as the denomi-
nator of the F-test would be inappropriate because such a ratio would exceed one if
there is a G effect, a T (team) effect, or both effects.

Note that if instead method were a random factor and team were a fixed fac-
tor, the pattern of expected mean squares would be quite different from those in
Table 13.11, with different denominators appropriate for some of the ANOVA F-
tests.

The model specifications for the sums of squares in the gunload example are
shown for both R and SAS in Table 13.12. Discussion of the operators in this table
appears in Section 13.5 and Table 13.18.

We overrode the default choices of the denominator mean squares for the F-tests
for method, group, and method*group. These new choices are necessitated by the
facts that one of the factors is random and there are both mixing and crossing of
factors. Our conclusions here are that after correcting for both loaders’ physiques
and other person-to-person differences, the two methods have significantly different
loading speeds. The new method averaged 23.59 rounds per minute compared with
15.08 rounds per minute for the old method. The analysis also shows a secondary
finding that loading times do not differ significantly across physique groups.
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Table 13.11 Expected mean squares for a three-factor nested factorial ANOVA. See also
Tables 6.4 and 12.8.

Source df Expected Mean Square

G g − 1 σ2 + nIMσ2
T M + ntIMσ2

GM + nmIT σ2
T + nmtσ2

G

T within G g(t − 1) σ2 + nIMσ2
T M + nmIT σ2

T

M m − 1 σ2 + nIT σ2
T M + ntIGσ2

GM + ngtσ2
M

GM (m − 1)(g − 1) σ2 + nIT σ2
T M + nt σ2

GM

TM within G g(m − 1)(t − 1) σ2 + n σ2
T M

Residual mgt(n − 1) σ2

Total mgtn − 1

Table 13.12 Nested factorial model specifications in R and SAS. Specifications for the sums of
squares for the gunload example are shown here. The tests are specified separately. In Table 13.13
we show use of the Error function in R.

Algebra Yi jkl = μ + γi + τ j(i) + θk + (γθ)ik + (τθ) jk(i) + εi jkl

R Y ˜ G + T%in%G + M + G:M + T:M%in%G

SAS Y = G T(G) M G*M T*M(G)

13.4.2 Example—Turkey Data (Continued)

We continue the discussion of the turkey data data(turkey) from Section 6.8.

Contrasts of the form used in Table 6.8 are so important in the design of exp-
eriments and in their analysis that we have a simple terminology and notation to
describe them. In this experiment there are three distinct factors, one with two levels
and two with three levels:

trt.vs.control: with levels control and treatment

additive: with levels control, A, and B

amount: with levels 0, 1, and 2

occurring in the pattern shown in Table 13.14. The algebraic formula describing the
model is

Ymi jk = μ + τm + αi + β j + (αβ)i j + εi jk = μi j + εmi jk (13.4)
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Table 13.13 Gunload data. The F-tests that appear without the Error function are incorrect. Here
we produce correct tests by using the Error function to override the default choice of denominators
of F-tests.

> gunload.aov <-

+ aov(rounds ~ method*group + Error((team %in% group)/method),

+ data=gunload)

> summary(gunload.aov)

Error: team:group

Df Sum Sq Mean Sq F value Pr(>F)

group 2 16.05 8.026 1.227 0.358

Residuals 6 39.26 6.543

Error: team:group:method

Df Sum Sq Mean Sq F value Pr(>F)

method 1 652.0 652.0 364.841 1.33e-06 ***

method:group 2 1.2 0.6 0.332 0.73

Residuals 6 10.7 1.8

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 18 41.59 2.311

> model.tables(gunload.aov, type="means")

Tables of means

Grand mean

19.33333

method

method

new old

23.589 15.078

group

group

slight average heavy

20.125 19.383 18.492

method:group

group

method slight average heavy

new 24.350 23.433 22.983

old 15.900 15.333 14.000
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Several issues are raised here to be discussed. How do these factors relate to each
other? How does describing a design in terms of the factors specify the analysis?

Factors can be related in several ways (see Table 13.18). In the turkey example,
we illustrate two relations: crossing and nesting.

crossing: Every level of additive appears at every level of amount. In this ex-
ample, Additive A appears at Amounts 1 and 2, as does Additive B.

nesting: Some Additive–Amount combinations (A1, A2, B1, B2) appear in only
the treatment level of trt.vs.control. Other Additive–Amount combina-
tions (control-0) appear in only the control level of trt.vs.control. The
factors additive and amount are then said to be nested within the factor
trt.vs.control.

When we add these factors to the dataset, for example with commands in
Table 13.15, we can write a much simpler model formula that automatically pro-
duces the easily readable ANOVA table in Table 13.16. Notice that the four
1-degree-of-freedom sums of squares in Table 13.16 are a decomposition of the 4-
degree-of-freedom sum of squares in Table 6.7. The significance of the correspond-
ing F-test in Table 6.7 is a rationale for producing and interpreting Table 13.16. We
illustrate the structure with the table of means in Table 13.17 and the boxplots in
Figure 13.13. See the discussion on orientation of boxplots in Section 13.A.

Table 13.14 Factor structure for turkey data.

Treatment Level Trt.vs.Cont Treatment Level

0 1 2 0 1 2

control × C control ×
A × × T A × ×
B × × T B × ×

In the turkey example there does not seem to be serious interaction (p ≈ .06). In
other situations the interaction dominates the analysis. An example with prominent
interaction is the analysis of the Rhizobium clover data in Section 12.14.7.
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Table 13.15 R commands to create factors for the turkey data introduced in Section 6.8.

> data(turkey)

> turkey[c(1,7,13,19,25),]

diet wt.gain

1 control 4.1

7 A1 5.2

13 A2 6.3

19 B1 6.5

25 B2 9.5

> turkey$trt.vs.control <-

+ factor(rep(c("control","treatment"), c(6,24)))

> contrasts(turkey$trt.vs.control) <- c(4,-1)

> turkey$additive <- factor(rep(c("control","A","B"), c(6,12,12)),

+ levels=c("control","A","B"))

> contrasts(turkey$additive) <- c(0,1,-1)

> turkey$amount <- factor(rep(c(0,1,2,1,2), c(6,6,6,6,6)))

> contrasts(turkey$amount) <- c(0,1,-1)

> turkey[c(1,7,13,19,25),]

diet wt.gain trt.vs.control additive amount

1 control 4.1 control control 0

7 A1 5.2 treatment A 1

13 A2 6.3 treatment A 2

19 B1 6.5 treatment B 1

25 B2 9.5 treatment B 2
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Table 13.16 ANOVA for turkey data with the crossing of the additive and amount factors
nested within the trt.vs.control factor. Interaction is borderline nonsignificant. The main
effects of additive and amount nested within trt.vs.control are significant.

> turkey3.aov <- aov(wt.gain ~ trt.vs.control / (additive*amount),

+ data=turkey, x=TRUE)

> summary(turkey3.aov)

Df Sum Sq Mean Sq F value Pr(>F)

trt.vs.control 1 56.58 56.58 179.395 6.58e-13 ***

trt.vs.control:additive 1 22.81 22.81 72.337 7.56e-09 ***

trt.vs.control:amount 1 22.43 22.43 71.105 8.88e-09 ***

trt.vs.control:additive:amount 1 1.21 1.21 3.852 0.0609 .

Residuals 25 7.88 0.32

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 13.17 Means for turkey data.

> print(na.print="",

+ tapply(turkey$wt.gain,

+ turkey[,c("additive","amount")],

+ mean)

+ )

amount

additive 0 1 2

control 3.783333

A 5.5 6.983333

B 7.0 9.383333
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Fig. 13.13 Turkey data with factor structure. The main effect for amount is visible as the consis-
tent increase in wt.gain as amount goes from 1 to 2. The main effect for additive is visible as
the consistent increase in wt.gain as additive goes from A to B. The hint of borderline non-
significant Interaction is seen as the different slope connecting the median dots in the A row and
the B row of the display. This figure shows the boxplots in vertical orientation. Figure 13.17 shows
the same boxplots in horizontal orientation. We discuss orientation in Section 13.A.

13.5 Specification of Model Formulas

Dummy variables (discussed in Section 10.1), and the contrasts they code for, are
so important that all statistical languages have constructs for describing them and
the relations between them. The model specification operators in R and SAS are
detailed in Table 13.18.

Let us explore the meaning of the concepts of crossed and nested factors with a
set of simple examples using the data in Table 13.19. The dataset data(abc) has
two factors, A with three levels and B with four levels. Tables 13.20 and 13.21 show
visual interpretations of the structure of the dataset with several different assump-
tions about the relation of the factors.

We show the model formula specifications, the generated dummy variables, the
ANOVA tables, and the estimated ai, b j, (ab)i j, and b j(i) values for several differently
structured models. Table 13.22 contains the complete R input for these models. We
recommend that you read these examples closely and experiment with them on your
computer.

The simplest set of dummy variables (that is, easiest to understand) is the set of
treatment contrasts. The most frequently used is the set of sum contrasts. We show
both in Table 13.23.
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Table 13.18 Model specification operators. In R, the two notations a:b and b%in%a are
equivalent.

R SAS Algebra

abbrev expanded abbrev expanded

Double index a:b a*b (ab)i j

Sum a+b a b ai + b j

Cross a*b a+b+a:b a|b a b a*b ai + b j + (ab)i j

Nested b%in%a b(a) a*b b j(i)

Nest a/b a + b%in%a a b(a) a a*b ai + b j(i)

Table 13.19 Sample data used to explore concepts of crossed and nested factors. Factor A has three
levels and factor B has four levels. The interaction AB has 12 levels named by crossing the level
names of A and B. The nested factor BwA (B within A) has 12 levels named without reference to
factor A.

obs A B AB BwA y

r.w r w r.w c 0.17
r.x r x r.x d 2.25
r.y r y r.y e −1.57
r.z r z r.z f −1.55

s.w s w s.w g −0.24
s.x s x s.x h 1.71
s.y s y s.y i 0.38
s.z s z s.z j −1.26
t.w t w t.w k 0.34
t.x t x t.x l −0.15
t.y t y t.y m −1.70
t.z t z t.z n −1.93
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Table 13.20 Rearrangements of abc data to show different assumptions about the relation of the
factors: data, one factor, two factors crossed.

> data(abc)

> abc

A B AB BwA y

r.w r w r.w c -0.02

r.x r x r.x d 1.19

r.y r y r.y e -0.02

r.z r z r.z f 0.23

s.w s w s.w g 0.67

s.x s x s.x h 1.95

s.y s y s.y i -0.71

s.z s z s.z j -0.40

t.w t w t.w k -0.56

t.x t x t.x l 0.01

t.y t y t.y m 0.13

t.z t z t.z n 1.19

> abc.oneway <- ## one-way

+ with(abc,

+ matrix(y, 4, 3, dimnames=list(1:4, A=unique(A)))

+ )

> abc.oneway

A

r s t

1 -0.02 0.67 -0.56

2 1.19 1.95 0.01

3 -0.02 -0.71 0.13

4 0.23 -0.40 1.19

> abc.crossed <- ## crossed

+ with(abc,

+ matrix(y, 3, 4, byrow=TRUE,

+ dimnames=list(A=unique(A), B=unique(B)))

+ )

> abc.crossed

B

A w x y z

r -0.02 1.19 -0.02 0.23

s 0.67 1.95 -0.71 -0.40

t -0.56 0.01 0.13 1.19
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Table 13.21 Rearrangements of abc data to show different assumptions about the relation of the
factors: two factors nested, two factors doubly indexed.

> abc.nested <- ## nested

+ with(abc,

+ matrix(c(y[1:4], rep(NA,8),

+ rep(NA,4), y[5:8], rep(NA,4),

+ rep(NA,8), y[9:12]),

+ 3, 12, byrow=TRUE,

+ dimnames=list(A=unique(A), BwA=BwA))

+ )

> print(abc.nested, na.print="")

BwA

A c d e f g h i j k l m n

r -0.02 1.19 -0.02 0.23

s 0.67 1.95 -0.71 -0.4

t -0.56 0.01 0.13 1.19

> abc.double.indexed <- ## doubly-indexed

+ abc[,"y",drop=FALSE]

> abc.double.indexed

y

r.w -0.02

r.x 1.19

r.y -0.02

r.z 0.23

s.w 0.67

s.x 1.95

s.y -0.71

s.z -0.40

t.w -0.56

t.x 0.01

t.y 0.13

t.z 1.19
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Table 13.22 Specification of several models using one or both variables in the abc dataset.

## one-way

abc.A.aov <- aov(y ~ A, data=abc)

anova(abc.A.aov)

coef(abc.A.aov)

contrasts(abc$A)

model.matrix(abc.A.aov)

## crossed: no interaction

abc.ApB.aov <- aov(y ~ A+B, data=abc)

anova(abc.ApB.aov)

coef(abc.ApB.aov)

contrasts(abc$A)

contrasts(abc$B)

model.matrix(abc.ApB.aov)

## crossed: with interaction

abc.AsB.aov <- aov(y ~ A*B, data=abc)

anova(abc.AsB.aov)

coef(abc.AsB.aov)

contrasts(abc$A)

contrasts(abc$B)

contrasts(abc$AB)

model.matrix(abc.AsB.aov)

## nested

abc.BwA.aov <- aov(y ~ A/B, data=abc)

anova(abc.BwA.aov)

coef(abc.BwA.aov)

contrasts(abc$A)

contrasts(interaction(abc$A, abc$B))

model.matrix(abc.BwA.aov)

## doubly-indexed

abc.AB.aov <- aov(y ~ AB, data=abc)

anova(abc.AB.aov)

coef(abc.AB.aov)

contrasts(abc$AB)

model.matrix(abc.AB.aov)
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Table 13.23 These dummy variables are constructed for a fit of the form ŷi = m+ ai to a model of
the form yi j = μ + αi + εi j. With treatment contrasts, m is an estimate of μ + αr , as is an estimate
of αs − αr , and at is an estimate of αt − αr. With sum contrasts, m is an estimate of μ, a1 is an
estimate of αr , and a2 is an estimate of αs. There is no need for an a3 because of the constraint on
the parameters αt = −(αr + αs).

> model.matrix(~A, data=abc,

+ contrasts=

+ list(A=contr.treatment))

(Intercept) A2 A3

r.w 1 0 0

r.x 1 0 0

r.y 1 0 0

r.z 1 0 0

s.w 1 1 0

s.x 1 1 0

s.y 1 1 0

s.z 1 1 0

t.w 1 0 1

t.x 1 0 1

t.y 1 0 1

t.z 1 0 1

attr(,"assign")

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$A

2 3

r 0 0

s 1 0

t 0 1

> model.matrix(~A, data=abc,

+ contrasts=

+ list(A=contr.sum))

(Intercept) A1 A2

r.w 1 1 0

r.x 1 1 0

r.y 1 1 0

r.z 1 1 0

s.w 1 0 1

s.x 1 0 1

s.y 1 0 1

s.z 1 0 1

t.w 1 -1 -1

t.x 1 -1 -1

t.y 1 -1 -1

t.z 1 -1 -1

attr(,"assign")

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$A

[,1] [,2]

r 1 0

s 0 1

t -1 -1



462 13 Design of Experiments—Factorial Designs

13.5.1 Crossing of Two Factors

We provide a detailed discussion here of just one model, the crossing of two factors.
The dummy variables for interaction in the crossing model

Algebra: yi = μ + αi + β j + (αβ)i j + εi j

R: Y ~ A + B + A:B

SAS: Y = A B A*B

are constructed as the outer product of the rows of the dummy variables for each of
the main effects. We illustrate in Table 13.24 with the sum contrasts.
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Table 13.24 Dummy variables for the interaction (αβ)i j constructed as the outer product of the
rows of the dummy variables for the two main effects A and B. We continue with the data of
Table 13.19 and the sum contrasts defined in the right side of Table 13.23. For example, in row r.z

the value in column A1:B1 is the product of the 1 in column A1 and the −1 in column B1. There
are two degrees of freedom, hence two dummy variables for the A effect. There are three dummy
variables for the B effect. Therefore, there are 2 × 3 dummy variables for the A:B interaction.

> old.width <- options(width=70)

> mm <- model.matrix(~A*B, data=abc,

+ contrasts=list(A=contr.helmert, B=contr.helmert))

> mm[,]

(Intercept) A1 A2 B1 B2 B3 A1:B1 A2:B1 A1:B2 A2:B2 A1:B3 A2:B3

r.w 1 -1 -1 -1 -1 -1 1 1 1 1 1 1

r.x 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1

r.y 1 -1 -1 0 2 -1 0 0 -2 -2 1 1

r.z 1 -1 -1 0 0 3 0 0 0 0 -3 -3

s.w 1 1 -1 -1 -1 -1 -1 1 -1 1 -1 1

s.x 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1

s.y 1 1 -1 0 2 -1 0 0 2 -2 -1 1

s.z 1 1 -1 0 0 3 0 0 0 0 3 -3

t.w 1 0 2 -1 -1 -1 0 -2 0 -2 0 -2

t.x 1 0 2 1 -1 -1 0 2 0 -2 0 -2

t.y 1 0 2 0 2 -1 0 0 0 4 0 -2

t.z 1 0 2 0 0 3 0 0 0 0 0 6

> print(AA <- mm["s.y", c("A1","A2")])

A1 A2

1 -1

> print(BBB <- mm["s.y", c("B1","B2","B3")])

B1 B2 B3

0 2 -1

> outer(AA, BBB)

B1 B2 B3

A1 0 2 -1

A2 0 -2 1

> as.vector(outer(AA, BBB))

[1] 0 0 2 -2 -1 1

> mm["s.y", c("A1:B1","A2:B1","A1:B2","A2:B2","A1:B3","A2:B3")]

A1:B1 A2:B1 A1:B2 A2:B2 A1:B3 A2:B3

0 0 2 -2 -1 1

> options(old.width)
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13.5.2 Example—Dummy Variables for Crossed Factors Nested
Within Another Factor—Turkey Data (Continued Again)

A model formula specifies a set of dummy variables. Just as in one-way analysis of
variance, we control the structure of the dummy variables with the contrast matrix
assigned to each factor. Let us look at the dummy variables generated for us by the
model formula

wt.gain ~ trt.vs.control / (additive*amount)

We do so in R by adding the argument x=TRUE to the aov statement in Table 13.16
and then displaying the x component of the resulting aov object in Table 13.25.

There are some complications in the display in Table 13.25. The generation of
the x matrix of dummy variables doesn’t know about the actual degrees of free-
dom for each effect. It assumes the maximum possible if all implied cells were
observed (in this example there are 2 × 3 × 3 = 18 cells implied by the complete
crossing of trt.vs.control, additive, and amount). Only five of those implied
cells actually have observations. The match and the relabeling are used to find just
the ones that matter in this example and to give them more reasonable names. See
Exercise 13.10 for guidance on discovering how the match function is used.

The predicted value for an observation i is calculated, as with any linear model,
as the inner product of the regression coefficients with the dummy variables in row i.
In this example, we predict the weight gain for observation 7 as

ŷ7 = ( 1 −1 1 1 1 )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.5300
−0.6867
−0.9750
−0.9667

0.2250

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 5.5

13.6 Sequential and Conditional Tests

When there are two or more predictors in a model, they are usually not orthogonal
to each other. Therefore, the interpretation given to the relative importance of each
predictor depends on the order in which they enter the model. One of the important
goals of designed experiments is the choice of combinations of levels for factors
that will make the dummy variables for each factor or interaction orthogonal to the
others. Most of the examples in this book in Chapters 12, 13, and 14 have orthogonal
effects.

When the data for an example have continuous predictors or covariates, or are
classified by factors with unequal numbers of observations per cell, the effects are
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Table 13.25 Regression coefficients and dummy variables for turkey data. This table is a continu-
ation of Tables 13.15 and 13.16.

> match(dimnames(coef(summary.lm(turkey3.aov)))[[1]],

+ dimnames(turkey3.aov$x)[[2]])

[1] 1 2 4 8 12

> turkey[c(1,7,13,19,25),]

diet wt.gain trt.vs.control additive amount

1 control 4.1 control control 0

7 A1 5.2 treatment A 1

13 A2 6.3 treatment A 2

19 B1 6.5 treatment B 1

25 B2 9.5 treatment B 2

> turkey3.coef <- summary.lm(turkey3.aov)$coef

> turkey3.x <- turkey3.aov$x

> term.names <-

+ c("(Intercept)","trt.vs.control","additive","amount",

+ "additive:amount")

> dimnames(turkey3.coef)[[1]] <- term.names

> dimnames(turkey3.x)[[2]][c(1,2,4,8,12)] <- term.names

> zapsmall(turkey3.coef)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.53000 0.10253 63.68585 0.0000

trt.vs.control -0.68667 0.05127 -13.39386 0.0000

additive -0.97500 0.11464 -8.50510 0.0000

amount -0.96667 0.11464 -8.43241 0.0000

additive:amount 0.22500 0.11464 1.96272 0.0609

> turkey3.x[c(1,7,13,19,25), c(1,2,4,8,12)]

(Intercept) trt.vs.control additive amount additive:amount

1 1 4 0 0 0

7 1 -1 1 1 1

13 1 -1 1 -1 -1

19 1 -1 -1 1 -1

25 1 -1 -1 -1 1



466 13 Design of Experiments—Factorial Designs

usually not orthogonal. Most of the examples in Chapters 9, 10, and 11 have contin-
uous predictor variables and therefore do not have orthogonal effects.

When effects are not orthogonal, the sequence in which they are entered into the
model affects the interpretation of the effects. See Sections 9.6 (Partial F-Tests) and
9.13 (Residual Plots) for techniques used to investigate the relative importance of
the predictors.

The sequential ANOVA table depends on the order in which the effects are en-
tered into the model. Each row of the table is calculated under the assumption that all
effects in higher rows have already been included and that all effects in lower rows
have not. R normally prints the sequential ANOVA table. SAS calls the sequential
ANOVA table the table of Type I sums of squares.

There are several types of conditional ANOVA tables. One of the most fre-
quently used is Yates’ weighted squares of mean, what SAS calls Type III sums
of squares, in which each row of the table is calculated under the assumption that all
other rows—both higher and lower in their placement in the ANOVA table—have
already been included. We, and many others, have difficulty with Type III sums of
squares when used with designed experiments because they violate the principle of
marginality that says it is usually not meaningful to test, estimate, or interpret main
effects of explanatory variables when the variables interact. The principle was stated
by Nelder (1977) and strongly supported by Venables (1998).

Another method, Yates’ Method of Fitting Constants, what SAS calls Type II
sums of squares, makes different assumptions for each class of effect. ANOVA
table rows for main effects assume all other main effects are already included in
the model. ANOVA table rows for two-way interactions assume all main effects and
other two-way interactions are in the model. Higher-order interactions assume all
lower-order effects and interactions are already in the model, hence are consistent
with the marginality principle.

13.6.1 SAS Terminology for Conditional Sums of Squares

The terminologies Type I, Type II, and Type III sum of squares originated by SAS
have become so widely known that they are used nowadays even outside the context
of interpreting SAS listing files. In order that readers be able to request and interpret
SAS analysis of variance presentations, we provide here more details on these types
in two contexts, the context of designed experiments having two factors and the
context of regression analysis with continuous predictor variables.

Suppose the response is Y, the two factors are A and B, and the SAS model
statement reads

Model Y = A B A*B;



13.6 Sequential and Conditional Tests 467

Since no particular types of sums of squares were requested, SAS provides by de-
fault Types I and III. If the user wishes to override the default, particular types can
be requested as illustrated here:

Model Y = A B A*B /ss1 ss2;

The sequential (Type I) sum of squares for each effect is the portion of model sum
of squares attributable to that effect above and beyond what is attributable to all
effects listed prior to it in the expanded model statement. It is conditional on all the
previous terms already being in the model. Thus in the illustration, the Type I sum of
squares for B is the marginal contribution of factor B conditional on factor A already
being in the model. Use of this sum of squares is appropriate if a model containing
factor A without factor B makes sense, but a model containing factor B makes no
sense unless the model already includes factor A.

For each main effect in the model statement, the Type II sum of squares is the
marginal contribution of that effect beyond the sum of squares attributable to all
other main effects in the model statement. The Type II sum of squares for A*B is
the portion of model sum of squares attributable to this interaction after the main
effects A and B are already in the model. Yates (1934) gave the name method of
fitting constants to what is now called Type II sums of squares. In the absence of
interaction, this method produces the maximum power tests for the main effects.

Note that while the Type I sums of squares for A, B and A*B add up to the model
sum of squares, the Type II sums of squares for these three effects are not in general
an orthogonal partitioning of the model sum of squares and hence do not in general
sum to the model sum of squares. An exception occurs when the data are balanced
(for example, each of the ab cells contain the same number of observations); in this
case the Type I and Type II sums of squares coincide.

Type III sums of squares can be used with the above model statement provided
that each of the ab cells contains at least one observation. The Type III sum of
squares for any effect, including A*B, is adjusted for all other effects in the model.
If the sampling is balanced, the Type III sums of squares for main effects coincide
with the sums of squares for Type I and Type II. The Type III partitioning provides
what is known as the Yates’ weighted squares of means analysis of unbalanced data;
see Searle (1971).

Type IV sums of squares coincide with Type III sums of squares when all cells
contain observations. This partitioning is used when some cells are empty, a situa-
tion we do not pursue in this text. The Type IV sum of squares partitioning is not
unique, a feature that makes many analysts uncomfortable with their use.

The nomenclature Type I and Type III (as well as Type II and Type IV) was orig-
inated by SAS in Goodnight (1978) and summarized in SAS Institute, Inc. (1999).
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13.6.2 Example—Application to Clover Data

In Table 12.12 we showed the two-way ANOVA table for the clover data. The data in
data(rhiz.clover) is balanced. As a consequence all three forms of conditional
sums of squares give exactly the same results (as long as proper contrasts (with
columns orthogonal to the constant column) are used for all factors. The treatment
contrasts (the default) are not proper contrasts and may show strange results).

In Table 13.26 we illustrate the three conditional sets of sums of squares using
an unbalanced dataset, constructed by deleting two observations from the balanced
clover data. The data are displayed in Figure 13.14.
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clover: Nitrogen per Gram −−− Observations 7,9,10 dropped
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Fig. 13.14 Full clover dataset on top. Two observations removed on the bottom.
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Table 13.26 Display of conditional sums of squares (Sequential/Type I, Method of Fitting
Constants/Type II, and Weighted Squares of Means/Type III) for an unbalanced dataset. The
car::Anova function requires contrasts orthogonal to the constant column. Compare the Sum

Sq values for strain and comb. The left column shows the model formula Npg ~ strain *

comb and the right column shows Npg ~ comb * strain. The main effects in the sequential ta-
bles (using anova) depend on the order. The main effects in the method of fitting constants tables
car::Anova(type=2) do not depend on order and are the same as the second position of the se-
quential tables. The main effects in the weighted squares of means tables car::Anova(type=3)
do not depend on order; they violate the principal of marginality because they are conditional
on taking out the interaction effect first. The Residuals and interaction comb:strain sums of
squares are identical in all six tables.

> data(rhiz.clover)

> ## drop two observation to illustrate Type II and III sums of squares
> ## I am dropping the non-outlier observations in 3D0k5
> cloverD <- rhiz.clover[-c(7,9,10),]

> old.opt <- options(show.signif.stars=FALSE, digits=3)

> cloverDsc.aov <-
+ aov(Npg ~ strain * comb,
+ data=cloverD,
+ contrasts=
+ list(strain=contr.sum,
+ comb=contr.sum))

> anova(cloverDsc.aov)[,c(2,1,4,5)]
Sum Sq Df F value Pr(>F)

strain 657 5 29.28 4.2e-13
comb 20 1 4.46 0.04
strain:comb 594 5 26.47 2.3e-12
Residuals 202 45

> Anova(cloverDsc.aov, type=2)
Anova Table (Type II tests)

Response: Npg
Sum Sq Df F value Pr(>F)

strain 675 5 30.07 2.7e-13
comb 20 1 4.46 0.04
strain:comb 594 5 26.47 2.3e-12
Residuals 202 45

> Anova(cloverDsc.aov, type=3)
Anova Table (Type III tests)

Response: Npg
Sum Sq Df F value Pr(>F)

(Intercept) 38711 1 8621.1 < 2e-16
strain 1049 5 46.7 < 2e-16
comb 86 1 19.3 6.8e-05
strain:comb 594 5 26.5 2.3e-12
Residuals 202 45

> cloverDcs.aov <-
+ aov(Npg ~ comb * strain,
+ data=cloverD,
+ contrasts=
+ list(strain=contr.sum,
+ comb=contr.sum))

> anova(cloverDcs.aov)[,c(2,1,4,5)]
Sum Sq Df F value Pr(>F)

comb 2 1 0.52 0.48
strain 675 5 30.07 2.7e-13
comb:strain 594 5 26.47 2.3e-12
Residuals 202 45

> Anova(cloverDcs.aov, type=2)
Anova Table (Type II tests)

Response: Npg
Sum Sq Df F value Pr(>F)

comb 20 1 4.46 0.04
strain 675 5 30.07 2.7e-13
comb:strain 594 5 26.47 2.3e-12
Residuals 202 45

> Anova(cloverDcs.aov, type=3)
Anova Table (Type III tests)

Response: Npg
Sum Sq Df F value Pr(>F)

(Intercept) 38711 1 8621.1 < 2e-16
comb 86 1 19.3 6.8e-05
strain 1049 5 46.7 < 2e-16
comb:strain 594 5 26.5 2.3e-12
Residuals 202 45

> options(old.opt)
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13.6.3 Example—Application to Body Fat Data

We revisit in Table 13.27 the analysis begun in Section 9.2 of a portion of the body
fat data data(fat) using the two predictors abdomin and biceps of the response
bodyfat.

The F-value 54.92 applies to the composite hypothesis H0: β1 = β2 = 0 against
the alternative that at least one βi is nonzero, where the βi are the coefficients of the
two predictors. The corresponding small p-value indicates that either abdomin or
biceps or both are linearly related to bodyfat. The R2 = 0.714 tells us that 71.4%
of the variability in these subjects’ bodyfat is accounted for by their abdomin and
biceps measurements. The remaining 28.6% of bodyfat variability is explained
by other measurable variables not presently in the model as well as the random error
component of the model in Equation (9.1).

The Type I sums of squares are sequential in that the sum of squares 2440.5 for
the first listed predictor, abdomin, is calculated assuming that this is the only pre-
dictor in the model, while the sum of squares 209.32 for the second listed predictor,
biceps, is calculated assuming that the first listed predictor is already in the model.
In general, the top to bottom ordering of sources of variation in the Type I sum of
squares table is the same as the ordering of these sources in the Model statement.

Each predictor’s Type III sum of squares is calculated assuming that all other
predictors are already in the model. Thus the Type III sum of squares for abdomin,
1823.02, is conditional in the sense that it is calculated under the assumption that
the model already contains the other predictor biceps. In general, any entry in a
Type III sum of squares table is conditioned on the existence in the model of all
sources above it in this table.

The parameter estimates in both Table 9.1 and Table 13.27 are based on this
same “last-in” rule, corresponding to the Type III sums of squares. The Type III
F-value for abdomin, 75.57, is the square of the t-value for abdomin, 8.69, in the
Parameter section of Table 13.27 and in Table 9.1. This corresponds to the inter-
pretation of the t-tests for the regression coefficients, each of which measures the
marginal contribution of its predictor variable conditional on all the other predictor
variables already being in the model.

In this context, it is preferable to work with the Type I analysis if the investigator
believes that a model containing biceps makes no sense unless abdomin is already
in the model. Otherwise, with continuous predictor variables, the Type III approach
is preferred. In this example, each predictor has a statistically significant impact
on bodyfat after the other predictor has already been included in the model. In
general, it is possible for one predictor to have an insignificant additional impact on
the response when other more prominent predictors are already in the model. See
Section 9.11 on collinearity for a discussion of this issue.
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Table 13.27 car::Anova from the car package display for two-X regression of bodyfat. The
sequential sums of squares (Type I sums of squares) correspond to the display in Table 9.1. The se-
quential sums of squares are an orthogonal partitioning of the model sum of squares. The weighted
squares of means (Type III sums of squares) is not an orthogonal partitioning. The sum of the two
values for abdomin and biceps is not equal to the model sum of squares.

> library(car)

> data(fat)

> fat.lm <- lm(bodyfat ~ abdomin + biceps, data=fat)

> ## regression coefficients

> coef(summary(fat.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.5937363 6.69222199 -2.180701 3.459548e-02

abdomin 0.6829379 0.07855885 8.693329 4.168613e-11

biceps -0.9221544 0.31304822 -2.945726 5.133920e-03

> ## sequential sums of squares (Type I)

> anova(fat.lm)

Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)

abdomin 1 2440.50 2440.50 101.1718 5.581e-13 ***

biceps 1 209.32 209.32 8.6773 0.005134 **

Residuals 44 1061.38 24.12

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> ## weighted squares of means (Type III)

> Anova(fat.lm, type="III")

Anova Table (Type III tests)

Response: bodyfat

Sum Sq Df F value Pr(>F)

(Intercept) 114.71 1 4.7555 0.034595 *

abdomin 1823.02 1 75.5740 4.169e-11 ***

biceps 209.32 1 8.6773 0.005134 **

Residuals 1061.38 44

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> ## model sum of squares

> var(fat$bodyfat) * (nrow(fat)-1) - sum(fat.lm$residuals^2)

[1] 2649.817
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13.7 Exercises

13.1. Consider an experiment to determine which of the four types of valve used
in an artificial heart maximizes blood pressure control as measured by maximum
flow gradient (mm Hg). Flow was maintained at each of the same six pulse rates
for each valve type. Two runs were made for each valve type. The order of the
eight runs at the four valve types was randomized. Note that run is a random factor,
nested within valve. The dataset data(heartvalve) comes from Anderson and
McLean (1974). Perform a thorough analysis including plots of the data.

13.2. An experiment reported in Lewin and Shakun (1976) investigated whether an
Octel filter (type=2) or a standard filter (type=1) provided superior suppression of
noise produced by automobile exhaust systems. The experiment considered three
vehicle sizes coded 1 small, 2 medium, 3 large; and both the right 1 and left 2 side

of cars. The dataset is available as data(filter). Perform a thorough analysis
leading to a recommendation of which filter to use under the various experimental
conditions.

13.3. An experiment explored the abilities of six commercial laboratories to accu-
rately measure the percentage fat content in samples of powdered eggs. A pair of
samples from a single can was sent to each lab. The labs were told that the samples
were of two types, but in fact they were from the same can. Each lab assigned two
technicians to analyze each type. The dataset from Bliss (1967) is data(eggs).
Analyze the data in order to recommend which lab(s) have superior or inferior abil-
ities to ascertain the fat content of powdered eggs.

13.4. Box and Cox (1964), reprinted in Hand et al. (1994), reported the results of
a 33 factorial experiment. The dataset is data(wool). The response is the cycles

under tension to failure of worsted yarn. The three factors are length of test spec-
imen (250, 300, 350 mm), amplitude of loading cycle (8, 9, 10 mm), and load

(40, 45, 50 g). The levels of all three factors are coded as −1, 0, 1 in the data file.
The authors recommend a preliminary log transformation of the response. Perform
an analysis to determine the influences of the factors on the response. This dataset
is from the paper defining the Box–Cox transformation.

13.5. A 5×3×4 factorial experiment is designed to compare the wear resistance of
vulcanized rubber Davies (1954, p. 192). The three factors are

filler: 5 qualities

pretreatment: 3 methods

raw: 4 qualities
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wear: main effects and 2−way interactions

1 3 5 2 4

fillerfiller

wear ~ filler | filler

4 1 2 3
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1 2 3
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Fig. 13.15 Main effects and two-way interactions for wear resistance of vulcanized rubber.

There is only one replicate; thus the assumption must be made that the three-factor
interaction is negligible and the three-factor sum of squares can be used for the error
term.

The data are available as data(vulcan). The graph of the main effects and two-
way interactions is in Figure 13.15. The simple effects of filler and raw are in
Figure 13.16.

a. Determine from the ANOVA table whether any of the main effects or two-way
interactions are significant.

b. Why can’t we test the three-way interaction?

c. From the figures and tables of means, determine if any levels of any factors can
be eliminated from further consideration. Assume that we are looking for big
numbers for the best wear resistance.

d. Of the treatment combinations that are left for consideration, are any clearly dom-
inant? Would we need to make a conditional recommendation to the client?
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wear: simple effects and 2−way interactions

1 3 5 2 4
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wear ~ filler | filler

4 1 2 3

rawraw
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3
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2
4

Fig. 13.16 Main effects and simple effects of filler and raw for wear resistance of vulcanized
rubber.

13.6. Continue the Latin square example using the dataset data(tires) in Sec-
tion 13.2. The treatment sum of squares with 3 degrees of freedom is linearly
dependent on the Row×Column interaction with (r − 1) × (c − 1) degrees of
freedom. Demonstrate the dependency by showing that each of the dummy vari-
ables for brand has a zero residual when regressed on the dummy variables for
car*position.

You may use chunk 39 of file HHscriptnames(13), reproduced in Table 13.28,
as a starting point. Explain why the residual sum of squares in tr1.lm (and the
analogous tr2.lm and tr3.lm) is 0.

13.7. Peterson (1985) discusses an experiment to assess the effects on strengths of
spot welds (psi ×10−3) created by robots on automobile assembly lines. On each of
two assembly lines (blocks) there were three fixed treatment factors: maker at two
levels, rod diameters at three levels (30 mm, 60 mm, 90 mm), and chromium con-
tent at three levels (1%, 1.5%, 2%). The 18 treatment combinations were randomly
assigned to 18 robots on each assembly line. The dataset is data(weld). Analyze
the data, including
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Table 13.28 Chunk 39 of file HHscriptnames(13) to be used as starting point for Exercise 13.6.

## R defaults to treatment contrasts for factors.

## We need an orthogonal set of factors for this exercise.

##

data(tires)

contrasts(tires$car) <- contr.helmert(4)

contrasts(tires$position) <- contr.helmert(4)

contrasts(tires$brand) <- contr.helmert(4)

tires.aov <- aov(wear ~ car + position + brand, data=tires, x=TRUE)

anova(tires.aov)

tires.rc.aov <- aov(wear ~ car * position, data=tires, x=TRUE)

anova(tires.rc.aov)

t(tires.aov$x[,8:10])

t(tires.rc.aov$x[,8:16])

tr1.lm <- lm(tires.aov$x[,8] ~ tires.rc.aov$x[,8:16])

anova(tr1.lm)

a. a discussion of interaction among the treatment factors.

b. a recommendation of the combination of the treatment factors for maximizing
strength. Explain how you know that your recommendation for diameter is
distinctly better than the next-best choice of diameter.

13.8. Peterson (1985) describes an investigation to compare the abilities of seven
washday products to remove dirt in cloth:

• liquid detergent

• granular detergent

• detergent flakes

• liquid detergent plus phosphate

• granular detergent plus phosphate

• detergent flakes with phosphate

• soap

Each of these seven products was assigned to three bedsheets soiled in a standard
way, and the amount of dirt removed (mg) from each bedsheet was recorded. The
data is in data(washday). Analyze these data.

a. Perform a one-way analysis of variance to assess whether the mean amount of
dirt removed is the same for all seven products.
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b. Partition the 6 degrees of freedom sum of squares for product into 6 mutually
orthogonal 1 degree-of-freedom sums of squares, each of which has an interpre-
tation based on the similarities and differences among the products.

c. Estimate each of the six corresponding contrasts.

d. The six levels (hence five contrasts) within detergent can be specified as the cross-
ing of three levels of form (liquid, granular, flakes) and two levels of ingredient
(none, phosphate). Rewrite the model as a crossing of form and phosphate nested
within soap.vs.detergent.

e. Assuming that the costs per wash are roughly the same for all seven products,
provide recommendations for consumers.

13.9. Neter et al. (1996) describe an experiment to compare the work of market
research firms. The dataset is data(market). It was desired to evaluate the effects
on quality of work performed by 48 firms of the factors of the three crossed factors
fee level (feelevel), scope, and supervision. Fee level has three levels (1 =
high, 2 = average, 3 = low), scope has two levels (1 = all performed in-house;
2 = some contracted out), and supervision has two levels (1 = local supervisors,
2 = traveling supervisors). Construct an analysis of variance table. Produce and
interpret interaction plots for any interaction found significant in the table. Compare
the means of the levels of any factors not involved in a significant interaction.

13.10. In Table 13.25 we use the R match function to identify which of the implied
dummy variables in a nested design are actually used. The complete command using
the match function is

match(dimnames(coef(summary.lm(turkey3.aov)))[[1]],

dimnames(turkey3.aov$x)[[2]])

Study the command by picking up pieces of it and dropping them into the Console
window. For example, assuming you have already defined all the variables by run-
ning the R statements leading up to Table 13.25, open file HHscriptnames(13) in
your editor and highlight and run the pieces of code corresponding to the lines in
Table 13.29.

13.11. It is desired to compare a response variable dimvar, dimensional variability,
of a component produced by each of three machines. Each machine is comprised of
two spindles, and four components are selected at random from each spindle. This
example is attributable to Montgomery (2001), and the dataset is data(spindle).
Perform an analysis to determine the effects of spindle and machine on dimvar,
assuming that both factors are fixed.
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Table 13.29 Isolated code fragments to be run one line at a time to help learn what the complete
statement is doing. See Exercise 13.10 for more detail.

summary.lm(turkey3.aov)

coef(summary.lm(turkey3.aov))

dimnames(coef(summary.lm(turkey3.aov)))

dimnames(coef(summary.lm(turkey3.aov)))[[1]]

turkey3.aov$x

dimnames(turkey3.aov$x)

dimnames(turkey3.aov$x)[[2]]

match(dimnames(coef(summary.lm(turkey3.aov)))[[1]],

dimnames(turkey3.aov$x)[[2]])

13.12. In an experiment reported by Montgomery (2001), the response variable is
a measure of surface finish of a metal part. Each part is produced by one of four
machines, a fixed factor. Three operators are assigned to produce parts on each
machine. The operators are selected at random and a total of 12 different operators
are chosen for the 4 machines. Analyze the data in data(surface) to determine
the effects on surface of machine and operator.
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13.A Appendix: Orientation for Boxplots

We display the boxplots for the turkey data in two orientations in Figures 13.13
and 13.17. We prefer the vertical orientation for the values of the response variable
because it accords with how we have been trained to think of functions—levels
of the independent variable along the abscissa and the response variable along the
ordinate. Most of the graphs in this book are oriented with the response variable in
the vertical direction.

wt.gain

ad
di

tiv
e

amount

4 6 8 10

0

B

4 6 8 10

1

B

4 6 8 10

2

B
0

A

1

A

2
A

0

co
nt

ro
l

1
co

nt
ro

l
2

co
nt

ro
l

Fig. 13.17 Turkey data with factor structure. This figure is essentially the same as Figure 13.13,
but with horizontal boxplots instead of vertical boxplots.

We chose to display Figures 12.7, and 12.8 in vertical orientation. In Sec-
tion 12.14.5 we discuss three other options for varying the horizontal and vertical
orientation and varying the conditioning variable. One of our concerns was legibil-
ity of the labels when there are too many long labels on the abscissa. Code chunks
for viewing the options are included in file HHscriptnames(12).



Chapter 14

Design of Experiments—Complex Designs

In this chapter we introduce some additional topics in experimental design beyond
those discussed in Chapters 6, 12, and 13. The principle of confounding is used to
design efficient experiments having many factors but using only a small subset of
all possible treatment combinations. Split plot designs involve placing a restriction
on the randomization of treatments to experimental units in order to achieve more
precision for comparisons involving levels of one factor in exchange for reduced
precision for comparisons involving levels of another factor. We illustrate crossover
designs that allow for the estimation of treatment effects that can linger across time
periods. We show how to test for interaction in two-way designs having exactly one
observation at each treatment combination. We show how to extend ANCOVA to
designs with blocking factors.

14.1 Confounding

In order to understand the following sections on fractional factorial designs and split
plot designs, one must become familiar with the concept of confounding of factors.

Two effects (main effects or interactions) are said to be confounded if they can-
not be independently estimated. (English language equivalents of the statistics term
confounded include intermixed, intertwined, and confused.) Two completely con-
founded effects are said to be aliases of one another. Each such effect is referred to
as an alias of the other effect or is said to be aliased with the other effect. The whole
plot effect (indexing on the physical location of the plot) and the treatment effect
(indexing on the level of the treatment assigned to the whole plot) in a split plot
design (see Sections 14.2 and 14.3) are completely confounded. Effects can also be
partially confounded. See a design of experiments text (Cochran and Cox, 1957, for
example) for a more complete discussion of confounding.

© Springer Science+Business Media New York 2015
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If the analyst must be able to estimate separately the effects of both of the two
factors or interactions, it is essential that these factors not be confounded. On the
other hand, if the effects of some interactions can be assumed to be negligible, an
effective design strategy may be to confound such negligible interactions with non-
negligible factors or interactions. By doing so, the analyst strives to be able to esti-
mate all effects of interest with a much smaller experiment than would be required
without using confounding. The fractional factorial designs in Section 14.4 illustrate
confounding of interactions with blocks.

To illustrate the importance of avoiding the confounding of nonnegligible fac-
tors, let’s return to the turkey data data(turkey) analysis in Section 13.4.2. In
that experiment there were five groups of six turkeys per group. The turkeys in each
group were fed one of five diets, a control diet and four experimental diets A1 A2
B1 B2. The naming convention for the experimental diets refers to four combina-
tions of the two factors additive, with levels A or B, and amount, with levels 1
or 2. Both of these factors were a priori believed likely to impact on the response,
wt.gain. Suppose instead that a novice investigator without training in statistics
fed 12 turkeys diet A1 and 12 other turkeys diet B2. If the novice then subtracts
the mean weight gain on A1 from the mean weight gain on B2, there is no way
to tell whether the result is attributable to the difference between amounts 2 and 1,
the difference between diets B and A, or some combination of these two factors.
In this poorly designed experiment, additive and amount are confounded. With
the correctly designed experiment, it is possible to estimate separately the effects of
additive and amount, as well as the interaction between these factors.

As another illustration of confounding, consider an experiment involving three
factors A, B,C each having two levels, where blocks of homogeneous experimental
units are of size at most 4, so that we can examine just four treatment combinations
(t.c.’s) in any block. Also suppose that we are able to assume that all interactions are
negligible, i.e., the response is additive with respect to the three factors.

A word on notation. For each factor we arbitrarily designate one of the levels
as the upper, or 1 level, and the other level as the lower, or 0 level. A t.c. may be
written by listing the lowercase letters of all factors observed at their 1 level. Thus
if there are four factors A, B,C, D, the t.c. bd is that with factors A and C at their
lower levels and factors B and D at their upper levels. The t.c. where all factors are
at their lower level is denoted (1).

Returning to our three-factor experiment, suppose we run just the four t.c.’s a,
b, c, and abc in any block. Then we can estimate the A main effect as 1

2 (abc + a −
b − c), and the other two main effects similarly. In this setup, we say that factor
A is confounded with the BC interaction because BC would be estimated with this
same estimate. Since we are assuming that this interaction is negligible, we are
estimating only the A main effect. Similarly, the estimate of the B main effect would
be confounded with the negligible AC interaction.

In this way we can estimate all main effects with just four observations. However,
no degrees of freedom are available to estimate the residual sum of squares needed
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to produce confidence intervals and conduct tests. This can be handled by replicat-
ing runs of the above four t.c.’s or their mirror image ab, bc, ac, and (1), in additional
blocks. The set of four t.c.’s run in each block is called a fractional replicate of the
set of all possible treatment combinations. In Section 14.4 we study fractional fac-
torial designs, where an entire experiment consists of one large fractional replicate,
usually arranged in blocks consisting of smaller fractional replicates.

In more complicated designs it is common for main effects and interactions to
have several aliases. A design may be described by providing an equation that spec-
ifies its aliasing structure.

14.2 Split Plot Designs

This design involves placing a restriction on the randomization of treatments to ex-
perimental units. Sometimes it is easiest to administer an experiment by applying
one treatment factor to groups of experimental units, called plots, and another treat-
ment factor to the individual experimental units, referred to as subplots. Designs
with such a restriction on the randomization are called split plot designs. This des-
ign strategy is especially useful if the experimenter wants to gain greater precision
for inferences involving the treatment applied to subplots, the subplot treatment,
at the expense of lower precision for inferences on the treatment applied to whole
plots, the whole plot treatment. We confine our attention to the simple case of one
blocking factor and two fixed treatment factors. However, the principles behind this
restricted randomization approach can be applied to other design types such as ones
without blocks, or Latin squares, factors that are random rather than fixed, and sit-
uations involving more than two treatment factors. The terminology split-split plot
refers to the possibility of further splitting the plot into sub-subplots within subplots
to accommodate three or more treatment factors.

We model this experiment as follows, where Yi jk is the yield of the observation
in block i receiving level j of fixed treatment A, and level k of fixed treatment B. Let
the number of blocks be r, the number of levels of A be a, and the number of levels
of B be b.

Yi jk = μ + ρi + α j + ηi j + βk + (αβ) jk + εi jk = μi jk + εi jk (14.1)

where 1 ≤ i ≤ r, 1 ≤ j ≤ a, and 1 ≤ k ≤ b. Note that this model contains two
random error components, ηi j ∼ N(0, σ2

η) and εi jk ∼ N(0, σ2
ε ), the first associated

with the plots and the second associated with the subplots. If (as expected) σ2
ε < σ2

η,
then comparisons of the levels of B will be performed with greater precision at the
cost of less precision for comparisons of the levels of A. Also note that within each
block, treatment A is completely confounded with whole plots.
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Although the example below is an agricultural experiment, split plot designs are
widely used in other application areas including industry, clinical trials, and the
social sciences. The agricultural terminologies plot and subplot are usually retained
when working in other application areas. The terminology “repeated measures” is
used in the social sciences for similar designs.

14.3 Example—Yates Oat Data

This example comes from Yates (1937). We are interested in examining the effects
of nitrogen fertilizer and seed variety on the yield of an oat crop. A total of 72
experimental units are arranged in 6 blocks of size 12. Each block is randomly
subdivided into three plots, and each plot is further randomly subdivided into four
subplots. In each block, the three varieties of seed are randomly assigned to the
three plots. Then within each plot, the four levels of nitrogen are randomly assigned
to the four subplots. Thus the randomization proceeds in two stages. By assigning
varieties to plots and nitrogen to subplots it is implicit that there is more interest
in the comparison of nitrogen levels than the comparison of varieties. The nitrogen
levels are equally spaced amounts of a single fertilizer, 0, .2, .4, and .6.

The data are available as data(oats). Note that this dataset contains six vari-
ables: those for yield, blocks, variety, plots, nitrogen, and subplots.

The design layout for this example is in Table 14.1. The physical locations of
the blocks, plots, and subplots are indicated positionally. The random assignment
of variety to whole plots is visible since each column within a block contains only
one level of variety. The random assignment of nitrogen to subplots is made visible
since each column within a block contains all four levels of nitrogen.

Here we have two fixed factors bearing a crossed relationship. In this situation
the restricted randomization requires that the plot factor variety must be tested
with denominator mean square for plots(blocks) or “whole plot error” as in
Tables 14.2 and 14.3. This specification usually requires a statement to override
of the default choice of the denominator of the F-test.

Testing variety against the residual mean square is incorrect in this example
because that test assumes an unrestricted randomization. Table 14.4 is therefore not
correct.

The interaction plot of the two treatment variables is in Figure 14.1. The correct
tabular analyses support the visual impressions from this figure:

• The factors variety and nitrogen do not interact.

• The mean Yield increases linearly as the amount of nitrogen increases.
nitrogen linear has a small p-value; the p-value of nitrogen quadratic is large.

• The mean Yield does not differ significantly across the three levels of variety.
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Table 14.1 Experimental layout for oat yield data with display of randomization scheme. Within
each block, the variety factor is randomly assigned to an entire plot. Within each block/plot,
the nitrogen factor is randomly assigned to the subplots.

, , B1

P1 P2 P3

S1 V3:N.6 V1:N.0 V2:N.0

S2 V3:N.4 V1:N.2 V2:N.2

S3 V3:N.2 V1:N.6 V2:N.4

S4 V3:N.0 V1:N.4 V2:N.6

, , B2

P1 P2 P3

S1 V3:N.4 V1:N.6 V2:N.2

S2 V3:N.0 V1:N.0 V2:N.0

S3 V3:N.2 V1:N.2 V2:N.4

S4 V3:N.6 V1:N.4 V2:N.6

, , B3

P1 P2 P3

S1 V2:N.2 V3:N.6 V1:N.0

S2 V2:N.4 V3:N.2 V1:N.6

S3 V2:N.6 V3:N.4 V1:N.2

S4 V2:N.0 V3:N.0 V1:N.4

, , B4

P1 P2 P3

S1 V3:N.4 V2:N.0 V1:N.2

S2 V3:N.6 V2:N.4 V1:N.4

S3 V3:N.0 V2:N.6 V1:N.6

S4 V3:N.2 V2:N.2 V1:N.0

, , B5

P1 P2 P3

S1 V2:N.6 V1:N.4 V3:N.4

S2 V2:N.0 V1:N.6 V3:N.6

S3 V2:N.4 V1:N.0 V3:N.2

S4 V2:N.2 V1:N.2 V3:N.0

, , B6

P1 P2 P3

S1 V1:N.4 V2:N.6 V3:N.0

S2 V1:N.0 V2:N.4 V3:N.2

S3 V1:N.6 V2:N.0 V3:N.4

S4 V1:N.2 V2:N.2 V3:N.6
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Table 14.2 Correct analysis for oats split plot design. The ANOVA table was constructed by
specifying the denominators for the appropriate F-tests in the Error formula.

> yatesppl.aov <-

+ aov(y ~ variety*nitrogen + Error(blocks/plots/subplots),

+ data=yatesppl)

> summary(yatesppl.aov)

Error: blocks

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

Error: blocks:plots

Df Sum Sq Mean Sq F value Pr(>F)

variety 2 1786 893 1.49 0.27

Residuals 10 6013 601

Error: blocks:plots:subplots

Df Sum Sq Mean Sq F value Pr(>F)

nitrogen 3 20021 6674 37.7 2.5e-12 ***

variety:nitrogen 6 322 54 0.3 0.93

Residuals 45 7969 177

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 14.3 Table of means and effects for oats split plot. The stats package in R (as of version
3.2.2) provides standard errors for effects, but not for means, in multi-strata designs.

> model.tables(yatesppl.aov, type="means")

Tables of means

Grand mean

104

variety

variety

1 2 3

97.63 104.50 109.79

nitrogen

nitrogen

1 2 3 4

79.39 98.89 114.22 123.39

variety:nitrogen

nitrogen

variety 1 2 3 4

1 71.50 89.67 110.83 118.50

2 80.00 98.50 114.67 124.83

3 86.67 108.50 117.17 126.83

> model.tables(yatesppl.aov, type="effects", se=TRUE)

Tables of effects

variety

variety

1 2 3

-6.347 0.528 5.819

nitrogen

nitrogen

1 2 3 4

-24.583 -5.083 10.250 19.417

variety:nitrogen

nitrogen

variety 1 2 3 4

1 -1.542 -2.875 2.958 1.458

2 0.083 -0.917 -0.083 0.917

3 1.458 3.792 -2.875 -2.375

Standard errors of effects

variety nitrogen variety:nitrogen

5.006 3.137 5.433

replic. 24 18 6



486 14 Design of Experiments—Complex Designs

Table 14.4 Incorrect specification for oats split plot design that ignores the split plot. The test
for variety is incorrectly tested against the 45-df Residual and incorrectly shows as significant.
The nitrogen and interaction tests are correct. We placed the model formula inside the terms

function, and used the keep.order=TRUE argument, to force the ANOVA table to display the
terms in the specified order. We are using the same order as appears in the split plot analysis. We
do need this specification in order to calculate the multiple comparisons of the nitrogen (more
generally, the subplot) effects using glht and mmc. See Table 14.7 and Figure 14.2 for the details.

> yatesppl.wrong.aov <-

+ aov(terms(y ~ (blocks*variety) + (nitrogen*variety),

+ keep.order=TRUE),

+ data=yatesppl)

> summary(yatesppl.wrong.aov)

Df Sum Sq Mean Sq F value Pr(>F)

blocks 5 15875 3175 17.93 9.5e-10 ***

variety 2 1786 893 5.04 0.0106 *

blocks:variety 10 6013 601 3.40 0.0023 **

nitrogen 3 20021 6674 37.69 2.5e-12 ***

variety:nitrogen 6 322 54 0.30 0.9322

Residuals 45 7969 177

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



14.3 Example—Yates Oat Data 487

y: main effects and 2−way interactions

V1 V2 V3

varietyvariety

y ~ variety | variety

0.0 0.2 0.4 0.6

nit.levnit.lev
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yy

y ~ nit.lev | variety

y ~ variety | nit.lev
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y ~ nit.lev | nit.lev

nit.lev
0.0
0.2
0.4
0.6

variety
V1
V2
V3

Fig. 14.1 Interaction plot for Yates split plot on oats. The linear effect of nitrogen level is clearly
visible in both right-hand panels. The lack of effect of variety, confirmed in Table 14.2, is also
visible.

14.3.1 Alternate Specification

Our presentation of the Yates oat data in Table 14.1 and our emphasis in the analysis
in Table 14.2 show five distinct factors in the split plot design. We believe this is
the best way to illustrate the concepts of restricted randomization, of different pre-
cisions for different comparisons, and the logistics and practical details of running
an experiment. Many texts and examples show only three factors by suppressing the
explicit identification of the plots and subplots.

The arithmetic of the analysis and the interpretation of the results are identical
whether or not the structure is made explicit with the extra factors. The two ANOVA
tables generated by the statements in Tables 14.2 and 14.5 are identical. The spec-
ification in Table 14.5 leads the reader to ask nonsense questions like “how can
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nitrogen be crossed with variety and nested within variety at the same time?” The
specification in Table 14.2, by explicitly naming the random plots and subplots

factors and explicitly showing the random assignment of the fixed variety and
nitrogen factors to the random factors, makes the distinction clear. The plot struc-
ture shows the subplots nested in the plots. The treatment structure shows the
variety crossed with the nitrogen. They are different factors. We are therefore
not surprised that they have different relationships.

The ANOVA table and interpretation of the analysis are identical with either
specification. The logic behind the EMS (expected mean squares) calculations is
displayed when the plots and subplots factors are visible. The statistical justifi-
cation for the appropriate F-tests is cryptic at best when the plots and subplots

factors are suppressed. We further explore the equivalence of these two formulations
in Exercise 14.7.

The common practice of suppressing the structure is a legitimate response to
the computing technology at the time (1930s) when the split plot design was in-

Table 14.5 Alternate specifications of design. The hypothesis tests in the ANOVA table here are
identical to the tests in Table 14.2. The use of the same factor names in the specification of both
the treatment model and the Error model can lead to confusion for the person reading the model
specification and the ANOVA table.

> yatesppl2.anova <-

+ aov(y ~ variety*nitrogen + Error(blocks/variety/nitrogen),

+ data=yatesppl)

> summary(yatesppl2.anova)

Error: blocks

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

Error: blocks:variety

Df Sum Sq Mean Sq F value Pr(>F)

variety 2 1786 893 1.49 0.27

Residuals 10 6013 601

Error: blocks:variety:nitrogen

Df Sum Sq Mean Sq F value Pr(>F)

nitrogen 3 20020 6674 37.7 2.5e-12 ***

variety:nitrogen 6 322 54 0.3 0.93

Residuals 45 7969 177

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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vented. The calculation of the analysis with 3 explicit factors costs O(263) multipli-
cations. It costs O(723) multiplications [that is, (72/26)3 ≈ 21 times as many] with
5 explicit factors. (The “big O” notation is defined in Appendix Section I.4.1 in the
“operation count” discussion.) When ANOVA analyses were routinely performed
with handcrank-operated calculating equipment, the time savings was well worth
the ambiguity in notation.

14.3.2 Polynomial Effects for Nitrogen

Note that, as anticipated, the mean square for comparing the levels of the whole plot
factor variety, 601, is greater than the mean square for comparing the levels of
the levels of the subplot factor nitrogen, 177. There is no evidence of interaction
between variety and nitrogen. The large p-value for variety suggests that the
three varieties do not differ significantly, but the small p-value for the subplot factor,
nitrogen, tells us yield is significantly affected by the amount of nitrogen used.

We further investigate the nature of the relationship between nitrogen and
yield by decomposing the 3-df sum of squares for nitrogen into orthogonal con-
trasts for linear, quadratic, and cubic effects. In R we use the polynomial contrast
function cont.poly to assign the contrasts to the nitrogen factor. See Table 14.6
for details. (In SAS we explicitly define the contrasts in contrast statements.)
Since only the linear contrast is significant (p-value < .01) we conclude that yield
increases linearly with nitrogen. This finding suggests a need for further exper-
imentation to determine the amount of nitrogen that should be used to maximize
yield.

Response surface methodology is the experimental design technique used to de-
termine the combination of inputs that maximizes or minimizes output. We do not
pursue this further but recommend the interested reader consult either Montgomery
(2001) or Box et al. (1978).

We calculate the MMC for the nitrogen effect in Table 14.7 using the ANOVA
from Table 14.4. The subplot tests in Table 14.4 are correct. The multiple com-
parisons plots for nitrogen are in Figure 14.2. The linear contrast appears to be
carrying all the significance.
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Table 14.6 Continuation of the split plot analysis from Table 14.2. The 3-df nitrogen effect is
partitioned into polynomial contrasts. The linear effect carries almost the entire sum of squares and
is the only significant contrast.

> ## polynomial contrasts in nitrogen

> contrasts(yatesppl$nitrogen)

2 3 4

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

> contrasts(yatesppl$nitrogen) <- contr.poly(4)

> contrasts(yatesppl$nitrogen)

.L .Q .C

1 -0.6708204 0.5 -0.2236068

2 -0.2236068 -0.5 0.6708204

3 0.2236068 -0.5 -0.6708204

4 0.6708204 0.5 0.2236068

> ## split plot analysis with polynomial contrasts

> yatespplp.aov <-

+ aov(y ~ variety*nitrogen + Error(blocks/plots/subplots),

+ data=yatesppl)

> summary(yatespplp.aov,

+ split=list(nitrogen=list(linear=1, quad=2, cub=3)),

+ expand.split=FALSE)

Error: blocks

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

Error: blocks:plots

Df Sum Sq Mean Sq F value Pr(>F)

variety 2 1786 893.2 1.485 0.272

Residuals 10 6013 601.3

Error: blocks:plots:subplots

Df Sum Sq Mean Sq F value Pr(>F)

nitrogen 3 20021 6674 37.686 2.46e-12 ***

nitrogen: linear 1 19536 19536 110.323 1.09e-13 ***

nitrogen: quad 1 480 480 2.713 0.106

nitrogen: cub 1 4 4 0.020 0.887

variety:nitrogen 6 322 54 0.303 0.932

Residuals 45 7969 177

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 14.7 MMC of nitrogen effect in oats split plot design calculated using the ANOVA from
Table 14.4. The subplot tests in Table 14.4 are correct. Pairwise contrasts, observed means, and
polynomial contrasts are shown in Figure 14.2.

> yatesppl.mmc <- mmc(yatesppl.wrong.aov, focus="nitrogen")

> nitrogen.lmat <- contr.poly(4)

> rownames(nitrogen.lmat) <- levels(yatesppl$nitrogen)

> yatesppl.mmc <- mmc(yatesppl.wrong.aov, focus="nitrogen",

+ focus.lmat=nitrogen.lmat)

mmc: At least one reversed contrast name did not have a ’-’ sign.

We appended a ’-’ sign.

> yatesppl.mmc

Tukey contrasts

Fit: aov(formula = terms(y ~ (blocks * variety) + (nitrogen *

variety), keep.order = TRUE), data = yatesppl)

Estimated Quantile = 2.667

95% family-wise confidence level

$mca

estimate stderr lower upper height

4-3 9.167 4.436 -2.662 21.00 118.81

4-2 24.500 4.436 12.671 36.33 111.14

3-2 15.333 4.436 3.504 27.16 106.56

4-1 44.000 4.436 32.171 55.83 101.39

3-1 34.833 4.436 23.004 46.66 96.81

2-1 19.500 4.436 7.671 31.33 89.14

$none

estimate stderr lower upper height

4 123.39 3.137 115.02 131.75 123.39

3 114.22 3.137 105.86 122.59 114.22

2 98.89 3.137 90.52 107.25 98.89

1 79.39 3.137 71.02 87.75 79.39

$lmat

estimate stderr lower upper height

.C- 0.500 3.507 -8.852 9.852 105.3

.Q- 5.167 3.137 -3.198 13.531 104.0

.L 36.833 3.507 27.482 46.185 102.7
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Fig. 14.2 MMC plot of nitrogen effect in oats split plot design. Calculations are shown in Ta-
ble 14.7. The 45◦ isomeans grid lines (and the nitrogen means they reflect) are approximately
equally spaced. This suggests that the linear contrast may be carrying all the significance. The
polynomial contrasts displayed in the right panel agree. The contrasts in the right panel are all
in the vertical center of the plot. This frequently happens with contrasts that have approximately
equal weights for both high and low means. The Tiebreaker plot isn’t needed in this example.

14.4 Introduction to Fractional Factorial Designs

The idea behind fractional factorial designs is to substantially reduce the number
of experimental units (e.u.’s) required for the experiment by purposely confounding
(see Section 14.1) all effects of interest with only effects that are not of interest and
that can be assumed negligible. One is almost always able to assume that high-order
interactions are negligible. This strategy permits estimation of main effects and low-
order interactions while experimenting on only a small proportion of all possible
treatment combinations (t.c.’s). The resulting experimental plan is called a fractional
replicate. Implementation of this class of designs involves carefully selecting a frac-
tional replicate subset of the possible t.c.’s so as to purposely confound high-order
factor interactions with one another (and with blocks, if any), while maintaining the
unconfoundedness of main effects and of lower-order interactions of interest.

Since it is frequently the case that there are more t.c.’s to be run than there are
homogeneous experimental units (e.u.’s), a blocking scheme is usually part of this
type of design. A fractional replicate of the complete experiment is run within each
homogeneous block. The assignment of t.c.’s to e.u.’s purposely confounds higher-
order interactions of the treatment factors with the block effects.

Note that the r × r Latin square design in Section 13.2 is a special case of frac-
tional replication, a 1

r replicate of an r3 experiment.

Our discussion will be limited to the situation where there are n factors each at
2 levels and only 2k e.u.’s are available, k < n; this is referred to as a 1/(2n−k) frac-
tional replication. The design is called a 2n−(n−k) design. Fractional factorial designs
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exist when all factors have a common number of levels greater than 2, or the fac-
tors have varying numbers of levels, for example three factors with 2 levels each
and four factors each having 3 levels. The need to consider a situation with many
2-level factors is not uncommon, for the 2 levels can be the presence or absence of
a particular condition.

14.4.1 Example—28−2 Design

Suppose we have 8 factors (denoted by the letters A through H), each with 2 levels,
and we have enough experimental units to run 26 = 32 of the 28 = 128 possible t.c.’s.
Further assume that the maximum sized set of homogeneous experimental units is
24 = 16, so that the 64 selected t.c.’s will be arranged in 4 blocks, each containing
16 e.u.’s. Table 14.8 is an experimental layout for the 28−2 = (28)/4 = 64 design,
prior to randomization.

Table 14.8 Experimental layout for the 28−2 = (28)/4 = 64 design, prior to randomization. This
design follows from a permutation of the factor labels in Plan 6A.16 of Cochran and Cox (1957).
This design specification is available as data(Design 2.8 2).

Block 1 Block 2 Block 3 Block 4
(1) ab ce de
ach bch aeh acdeh
aef bef acf adf
cefh abcefh fh cdfh
bdh adh bcdeh beh
abcd cd abde abce
abdefh defh abcdfh abfh
bcdef acdef bdf bcf
beg aeg bcg bdg
abcegh cegh abgh abcdgh
abfg fg abcefg abdefg
bcfgh acfgh befgh bcdefgh
degh abdegh cdgh gh
acdeg bcdeg adg acg
adfgh bdfgh acdefgh aefgh
cdfg abcdfg defg cefg

The treatment combinations have been very carefully chosen so that, provided
one can assume that all 3-factor and higher-order interactions are negligible, one can
“cleanly” estimate all main effects and 2-factor interactions with a sufficient number
of error df to assure tests of reasonable power. Blocks, all main effects, and all two-
factor interactions are confounded only with three-factor and higher interactions.
This property makes the 28−2 a Resolution V design, and it is often denoted as 28−2

V .
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The basic form of the ANOVA table for the 28−2 design in Table 14.8 is in Table
14.9. Estimates are not available for interaction effects that are confounded with
blocks.

Table 14.9 ANOVA table for the 28−2 = (28)/4 design from Table 14.8. The main effects and
2-factor interactions are unconfounded with blocks.

Source df Comments

Blocks 3 Blocks are aliased with acf, bdg, and cdh

Main effects 8 Unconfounded

2-factor interactions 28
(

8
2

)
terms, unconfounded

Residuals 24 Aliased with 3-factor and higher interactions

Total 63

If instead we had been required to maintain a maximum block size of 8, an addi-
tional 4 degrees of freedom would go to the blocks. It would have been necessary to
completely confound 2 of the 28 2-factor interactions with blocks, and 2 Residuals
df would have moved to blocks leaving only 22 for the Residuals.

The analysis of such data is very straightforward as shown in Table 14.10. We
need to ensure that the model statement declares only blocks, the 8 main effects, and
the 28 interactions.

Table 14.10 Specification and analysis of a 28−2 = (28)/4 fractional factorial design. The code
shows the specification of the dummy variables for the design in R282 and specification of the
analysis using the model formula shown in the aov statement. The displayed formula generates
the dummy variables for the complete set of main effects and all 2-factor interactions.

R282 <- t(sapply(strsplit(Design_2.8_2$trt,""),

function(trtcomb)

as.numeric(letters[1:8] %in% trtcomb)))

dimnames(R282) <- list(Design_2.8_2$trt, letters[1:8])

R282 <- data.frame(blocks=Design_2.8_2$blocks, R282)

R282

data(R282.y) ## R282.y was randomly generated

R282.aov <- aov(R282.y ~ blocks + (a+b+c+d+e+f+g+h)^2, data=R282)

anova(R282.aov)

model.matrix(R282.aov)

## confirm aliasing

R282E.aov <- aov(R282.y ~ Error(blocks) + (a+b+c+d+e+f+g+h)^2,

data=R282)

summary(R282E.aov)
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14.4.2 Example—25−1 Design

Five factors involved in a manufacturing process for an integrated circuit were in-
vestigated. For brevity we refer to the five factors as A, B, C, D, E. Resources were
available to examine only 16 of the 25 treatment combinations. A particular half-
replicate of the complete experiment was used such that all main effects are con-
founded with four-factor interactions and all two-factor interactions are confounded
with three-factor interactions. Based on experience with these factors, the investiga-
tor was very confident that only factors A, B, C, and the AB interaction were likely
to have an appreciable effect on the process yield. This is confirmed by examin-
ing the interaction plot in Figure 14.3 or the means in Table 14.11. The output in
Table 14.11 also contains two tables of means demonstrating that the D main ef-
fect and AC interaction are not significant. The data from Montgomery (2001) is in
data(circuit). We find that there is a significantly higher yield at the higher level
of each of A, B,C than at their respective lower levels, and that the simple effect of
B at the higher level of A is significantly greater than the simple effect of B at the
lower level of A.

yield: main effects and 2−way interactions

0 1
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yield ~ A | A

0 1
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yield ~ B | A

0 1
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Fig. 14.3 Interaction plot for circuit 25−1 design. All three main effects are visibly significant, as
is the A×B interaction. The traces in the A×C and B×C panels are parallel, hence not significant.
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Table 14.11 Analysis of 25−1 = (25)/2 fractional factorial design.

> circuit.aov <- aov( yield ~ A + B + C + A:B, data=circuit)

> summary(circuit.aov)

Df Sum Sq Mean Sq F value Pr(>F)

A 1 495 495 193.2 2.5e-08 ***

B 1 4590 4590 1791.2 1.6e-13 ***

C 1 473 473 184.6 3.2e-08 ***

A:B 1 189 189 73.8 3.3e-06 ***

Residuals 11 28 3

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> model.tables(circuit.aov, type="means")

Tables of means

Grand mean

30.31

A

A

0 1

24.75 35.88

B

B

0 1

13.38 47.25

C

C

0 1

24.88 35.75

A:B

B

A 0 1

0 11.25 38.25

1 15.50 56.25

> tapply(circuit[,"yield"], circuit[,"D"], mean)

0 1

30.75 29.88

> tapply(circuit[,"yield"], circuit[,c("A","C")], mean)

C

A 0 1

0 19.50 30.0

1 30.25 41.5
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14.5 Introduction to Crossover Designs

This is a subclass of repeated measures designs, used when one applies two or more
treatments to each of several subjects over the course of two or more periods, and
needs to account for the possibility that a carryover or residual effect of a treatment
lingers into the following period (and possibly beyond it). Thus a subject’s response
may be attributable to both the treatment given in the period and the treatment ad-
ministered in the preceding period. One seeks to be able to provide unconfounded
estimates of both the direct and residual effects. These designs are also referred to
as changeover or residual effects designs.

The possible existence of residual effects is easy to imagine in medical or agri-
cultural experiments. It also must be accounted for in meteorological experiments
involving cloud seeding intended to induce precipitation.

Intuitively, a “good” design is one in which

1. Each treatment occurs equally often on each subject.

2. Each treatment occurs equally often in each period.

3. Each treatment follows each other treatment the same number of times.

But the available numbers of treatments, subjects, and periods often make it im-
possible to satisfy all three criteria. As a simple example, suppose we have two
treatments, say A and B, to compare in three periods on two experimental animals.
Consider the following two designs:

Design 1 Design 2

Period Animal 1 Animal 2 Animal 1 Animal 2

1 A B A B

2 B A B A

3 A B B A

Which design is preferred?

It turns out that both the direct and residual treatment effects can be estimated
much more precisely in Design 2 than in Design 1. Design 1 has the deficiency
that each treatment is always preceded by the other treatment, never by itself. Only
Design 2 satisfies the third of the above intuitive criteria. This design is a member of
a class of crossover designs constructed as a Latin square with the last row repeated
once. This class has the property that the estimation of direct and residual treatment
effects are orthogonal to one another.
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14.5.1 Example—Two Latin Squares

This design, from Cochran and Cox (1957) and Heiberger (1989) uses two 3×3 Latin
squares to estimate the residual effects as well as the direct effects of milk yields re-
sulting from three treatments to dairy cows. The design and data from data(cc135)

are in Table 14.12 and Figure 14.4.

Table 14.12 Two 3 × 3 Latin squares for crossover design with display of the residual effect. The
factor nores is an indicator for observations that do not have a residual effect because there is no
preceding treatment. The residual treatment factor restreat has the value of the treatment treat
for the preceding period with the same square and sequence.

a. Design arranged to show the Latin square structure.

square 1 2

cow 1 2 3 4 5 6

1 A B C A B C

period 2 B C A C A B

3 C A B B C A

b. Design and data arranged by observation.

period square sequence cow treat yield nores restreat

1 1 1 1 A 38 0 0
1 1 2 2 B 109 0 0
1 1 3 3 C 124 0 0
1 2 1 4 A 86 0 0
1 2 2 5 B 75 0 0
1 2 3 6 C 101 0 0

2 1 1 1 B 25 1 A
2 1 2 2 C 86 1 B
2 1 3 3 A 72 1 C
2 2 1 4 C 76 1 A
2 2 2 5 A 35 1 B
2 2 3 6 B 63 1 C

3 1 1 1 C 15 1 B
3 1 2 2 A 39 1 C
3 1 3 3 B 27 1 A
3 2 1 4 B 46 1 C
3 2 2 5 C 34 1 A
3 2 3 6 A 1 1 B



14.5 Introduction to Crossover Designs 499

period

yi
el

d

0

50

100

1 2 3

r l f

 : cow 1

1 2 3

r

l
f

 : cow 2

1 2 3

r
l

f
 : cow 3

1 2 3

r
l

f

 : cow 4

1 2 3

r
l

f

 : cow 5

1 2 3

r

l
f

 : cow 6

Fig. 14.4 Each panel shows the observations per period for one cow. In all treatment plans yield
goes down over time. Note that cows 3 and 6 who start with full.grain have the highest initial yield.
The drop in yield from anything else to full.grain is smaller than the drop to either of the other
treatments.

We specify the design as if the residual effects are attributable to another factor.
The residual effects restreat are explicitly set to the value of the direct effects
treat in the preceding period. A new dummy variable nores is set to 0 for the first
period (in which there are no residual treatments), and to 1 for the remaining periods
(in which it is meaningful to speak about residual effects from the previous period).
The new variable nores is confounded with one degree of freedom of period.
restreat is nested in nores. The arithmetic does not need the identification of
the nores dummy variable. The analysis is easier to follow if nores is explicitly
identified.

The analysis specification statements includes two sets of aov statements, with
different orderings for the direct effects treat and residual effects res.treat. The
ANOVA table edited from the output is in Table 14.13.

The direct and residual effects are not orthogonal to each other. Their sum is
partitioned in two different ways in Table 14.13. The additional sum of squares for
the residual effects after accounting for the direct effects, for which we use the first
model statement and the results of which are reflected in the first set of braced lines
in the ANOVA table, tells us whether there are longer-term differences that need to
be accounted for. The additional sum of squares for the direct effects after account-
ing for the residual effects, for which we use the second model statement and the
results of which are reflected in the second set of braced lines in the ANOVA table,
tells us whether the single period effects are themselves important. Since the residual
effects after the direct effects are borderline significant with p = .06, we conclude
that isolating the residual effect is important. Had we not done so the power for
detecting the direct effects would have been reduced because the res.treat sum
of squares would have been left in the residual. It would have inflated the residual,
hence decreased the F-value and increased the p-value for the direct effects. We can
approximate this effect by calculating MSresid (approx) = (616+199)/(2+4) = 136 and
Fapprox = 1138/136 = 8.36 on 2 and 6 df with p = .018. This is an approximation
because that isn’t how the experiment was done.
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Table 14.13 Latin Square for Residual Effects design cc135. The braced expressions are two dif-
ferent partitionings of the same 4 df for the combined treat + res.treat effects. This ANOVA
table is manually constructed from the output of the programs.

data(cc135)

a1c <- aov(terms(yield ~ cow + square:period + treat + res.treat,

keep.order=TRUE), data=cc135)

summary(a1c)

a1cr <- aov(terms(yield ~ cow + square:period + res.treat + treat,

keep.order=TRUE), data=cc135)

summary(a1cr)

Source Df Sum of Sq Mean Sq F Value Pr(F)

cow 5 5781.111 1156.222 23.211 0.005

period in square 4 11489.111 2872.278 57.662 0.001

treat+res.treat 4 2892.972
{

treat 2 2276.778 1138.389 22.853 0.006
res.treat after treat 2 616.194 308.097 6.185 0.060

{
res.treat 2 38.422 19.211 0.386 0.703
treat after res.treat 2 2854.550 1427.275 28.653 0.004

Residuals 4 199.250 49.812

Total 17 20362.444
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Fig. 14.5 Boxplots for residual effects design, treatments and residual treatments, each adjusted
for the blocking factors and for each other. From the left panel, we see that the full.grain treatment
is much better than the other two. From the right panel, we see that the residual effect of the
full.grain treatment is much stronger than the others. This is the explanation for the reduced drop
in yield we commented on in Figure 14.4.

The boxplots of the adjusted treatments and adjusted residual treatments are in
Figure 14.5.

14.6 ANCOVA with Blocks: Example—Apple Tree Data

In Section 10.5 we studied the analysis using a concomitant variable (covariate) in
an experiment having only one factor. In this example we demonstrate the use of
this technique when there are two factors.

In Section 10.6 we showed a composite figure with four distinct models for an
ANCOVA design with one covariate and one treatment factor. All four models were
displayed together in Figure 10.12. In this section we have a more complex design,
with a block factor in addition to the covariate and treatment factor. We therefore
have a more complex composite figure with six models in Figure 14.6.
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14.6.1 Study Objectives

Pearce (1983), later reprinted in Hand et al. (1994), describes a randomized block
experiment to determine the effects of six ground cover treatments on the yield of
apple trees. A concomitant variable, the volume of crop during the four years prior to
treatment, is available. Perform the analysis both using and ignoring the concomitant
variable. Provide recommendations as to treatment.

14.6.2 Data Description

The data are accessed with data(apple). The variables are

treat: ground cover treatments. Treatments 1–5 are experimental treatments;
Treatment 6 is a control

block: four randomized blocks

yield: pounds over a four-year period following treatment

pre: volume of crop over a four-year period prior to treatment

14.6.3 Data Analysis

The strategy is to begin with the most complex model and then progress toward
simpler ones. This systematic approach assures that the ultimately selected model
will include all significant effects but be no more complex than necessary. The anc-
ova plots for the full set of models we will use are in Figure 14.6. The index to the
ANOVA tables for each of these models is in Table 14.14. We will discuss each of
the models.
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Fig. 14.6 Several models for yield. See the text for the discussion of the models in each row.
The concluding model is illustrated in the bottom row. Treatment 6 is significantly lower on the
vertical axis than the other treatments. The color in each panel represents the treatment. The plot-
ting symbol in the top two rows indicates the block. The plotting symbol in the bottom four rows
indicates the treatment (and is intentionally redundant with the column number and color). The left
strip shows the row number and an abbreviated model name. The full model formulas are shown in
Table 14.14. All six rows are on the same y-scale. Row 1 has a wider y-range in the y-scale because
its response variable is yield which reflects the block effect. Rows 2–6 show yield.block, the
yield adjusted for blocks. The bottom two rows have the same vertical distances between the fitted
line and the points. The bottom two rows are magnified in Figure 14.8.
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Table 14.14 Index to analysis of covariance models for the apple data in Section 14.6.

Model Model Name Model ANOVA
Number Abbreviated Table

1 y~b+p*t yield ~ block + pre * treat 14.15

2 y.b~p.b*t yield.block ~ pre.block * treat 14.16
2q yield.block ~ pre.block + treat 14.17

+ (pre:treat).block

3 y.b~p.b yield.block ~ pre.block 14.18

4 y.b~t yield.block ~ treat 14.19

5 y.b~p.b+t yield.block ~ pre.block + treat 14.20
5b y~b+p+t yield ~ block + pre + treat 14.21
5c y.b~b+p.b+t yield.block ~ block + pre.block + treat 14.22

6 y.b.p~t yield.block.pre ~ treat 14.23

14.6.4 Model 1: yield ~ block + pre * treat

Model 1 allows for the possibility that the covariate pre and the treatment factor
treat interact. This model allows for differing slopes in the simple regressions
of yield on pre across the levels of treat. We draw two conclusions from the
ANOVA of Model 1.

1. The ANOVA table for Model 1 in Table 14.15 shows that most of the sum
of squares for the data is attributable to the blocking factor (SSblock/SSTotal =

47852/72034 = 66%). Note that we can discuss the proportion of total sum of
squares for the blocking factor block, but not the F- and p-values—even though
the program calculated and printed them in the ANOVA table (most ANOVA
programs print these values). We assumed that blocks are important for this
study and designed the study by stratifying the sample within blocks. Because
the study was designed under the assumption that blocks are important, there is
no testable hypothesis about blocks. We do have the right to calculate an esti-
mate of the efficiency of the blocking. Most experimental design texts contain
formulas for the efficiency attributable to blocking in Latin Square, Randomized
Complete Block, and other experimental designs. See, for example, Cochran and
Cox (1957) (Section 4.37).

We investigate the block factor in Figure 14.7. The left column of panels indi-
cates that the means of both yield and pre are heterogeneous across blocks.
Therefore, in subsequent analysis we adjust both yield and pre for blocks. For
example, the quantity yield.block in Table 14.14 represents yield adjusted
for blocks. This is the original data vector of yields minus the vector of least-
squares estimates of block effects.

yield.blocki j = Yi j − β̂i,
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Table 14.15 Analysis of variance for apple data. Model 1 ‘y~b+p*t‘, full model with blocks
and interaction of covariate and treatment. The interaction between the treatment and the covari-
ate (pre:treat) is not significant. The model specifies separate lines in each panel of row 1 in
Figure 14.6. The lines in row 1 are dominated by the block differences (block “d” is always at the
top).

> anova(aov(yield ~ block + pre * treat, data = apple))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 3 47853 15951 80.82 7.9e-07 ***

pre 1 15944 15944 80.78 8.6e-06 ***

treat 5 4353 871 4.41 0.026 *

pre:treat 5 2109 422 2.14 0.152

Residuals 9 1776 197

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

where β̂i is the least-squares estimate of the effect of block i in the simple one-
way ANOVA model

Yi j = μ + βi + εi j

Comparable definitions apply to pre.block and yield.block.pre. These adj-
ustments are in the same sense used in several places in Section 9.13, and allow
us to focus our attention on the remaining variables in the model. From the right
column of panels of Figure 14.7 we see that the adjusted values are more hom-
ogeneous. The adjusted response variable (in Model 2, with ANOVA table in
Table 14.16) has the same sums of squares for the treatment and covariate effects
as the unadjusted response variable in Table 14.15.

The heterogeneity of responses across blocks is also visible in Row 1 of
Figure 14.6 where we display separate regressions of yield on pre for each
of the 6 levels of treat. The plotting characters a,b,c,d represent blocks 1–4.
We see that block 4 (“d”) has a consistently higher yield than the other 3 blocks.

2. Since the ANOVA table shows p = .152 for the interaction pre:treat we con-
clude that the slopes do not significantly differ. We will show the model without
interaction in Section 14.6.8.
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Fig. 14.7 Apple yield and pre by block. In the left column the block effect is visible. In the
right column, in which we have adjusted the data for the block effect, we see that the data appear
more homogeneous.

14.6.5 Model 2: yield.block ~ pre.block * treat

In Model 2 (row 2 in Figure 14.6), we have removed the block effect. The range
of the observations in the y-direction is reduced and the highly visible block effect
(with “d” at the top) is gone. The regression lines in each panel, repeated in the
Superpose panel, are similar. We will eventually drop the interaction term in Model
5 (row 5 of in Figure 14.6) and note that the fits are similar. First we must look at
the ANOVA table for Model 2. We do so twice, naively and incorrectly in Table
14.16 and more sophisticatedly and correctly in Table 14.17. Table 14.16 naively
constructs the interaction dummy variables by crossing the covariate adjusted for
blocks with the dummy variables for treatment. This does not span the same sub-
space as the construction in Table 14.17, where we take the dummy variables for
the interaction from Table 14.15 and adjust them for blocks. See Exercise 14.8 for
further details.
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Table 14.16 Analysis of variance for apple data. Model 2 ‘y.b~p.b*t‘, model with response
yield and covariate pre adjusted for blocks, and with interaction of adjusted covariate and treat-
ment. There are separate lines in each panel. The block effect shows as zero because the block
variation has been removed. The covariate and treatment sums of squares are identical to those
terms in Table 14.15. The interaction dummy variables are not correctly adjusted by this proce-
dure. The linear space spanned by the crossing of pre.block and treat is not the same as the
linear space specified by adjusting the dummy variables of the crossing of block and treat for
block. Hence the interaction sums of squares is incorrect.

> apple$yield.block <-

+ apple$yield - proj(lm(yield ~ block, data=apple))[,"block"]

> apple$pre.block <-

+ apple$pre - proj(lm( pre ~ block, data=apple))[,"block"]

> ## wrong interaction sum of squares

> anova(aov(yield.block ~ block + pre.block * treat,

+ data = apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

block 3 0 0 0.00 1.00000

pre.block 1 15944 15944 42.56 0.00011 ***

treat 5 4353 871 2.32 0.12840

pre.block:treat 5 514 103 0.27 0.91600

Residuals 9 3372 375

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 14.17 Analysis of variance for apple data. Model 2q ‘y.b~p.b*t‘ has adjusted the re-
sponse yield, the covariate pre, and the dummy variables for interaction of adjusted covariate
and treatment for blocks. There are separate lines in each panel. The interaction dummy vari-
ables are correctly adjusted by this procedure. Hence the interaction sums of squares is correct and
matches the interaction sum of squares for Model 1 in Table 14.15. The degrees of freedom for the
Residuals is incorrect. It includes the degrees of freedom that belong to the block term.

> applebpst.aov <- aov(yield ~ block + pre * treat, data=apple,

+ x=TRUE)

> appleQ <- qr.Q(qr(applebpst.aov$x))

> ‘(pre.block:treat).block‘ <- appleQ[,11:15]

> ## correct anova for ‘y.b~p.b*t‘

> anova(aov(yield.block ~ pre.block + treat +

+ ‘(pre.block:treat).block‘, data=apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

pre.block 1 15944 15944 107.71 2.4e-07 ***

treat 5 4353 871 5.88 0.0057 **

‘(pre.block:treat).block‘ 5 2109 422 2.85 0.0637 .

Residuals 12 1776 148

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

14.6.6 Model 3: yield.block ~ pre.block

Model 3 is linear regression of the adjusted yield.block by the adjusted covari-
ate pre.block and ignoring the treat factor. The points are plotted in panels by
treatment in row 3 of Figure 14.6 even though treatment is not included in the con-
struction of the common line nor in the ANOVA table in Table 14.18. This line is
not a good fit to the points in most of these panels, suggesting that treat cannot be
ignored as an explanatory variable.
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Table 14.18 Analysis of variance for apple data. Model 3 ‘y.b~p.b‘, simple linear regression
model with yield and pre adjusted for blocks, and ignoring treatment. There is one common reg-
ression line in all panels. The degrees of freedom for the Residuals is incorrect. It includes the
degrees of freedom that belong to the block term.

> anova(aov(yield.block ~ pre.block, data = apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

pre.block 1 15944 15944 42.6 1.5e-06 ***

Residuals 22 8238 374

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 14.19 Analysis of variance for apple data. Model 4 ‘y.b~t‘, one-way ANOVA of yield
adjusted for blocks by treatment, and ignoring covariate. Separate horizontal lines in each panel.

> anova(aov(yield.block ~ treat, data = apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

treat 5 750 150 0.12 0.99

Residuals 18 23432 1302

14.6.7 Model 4: yield.block ~ treat

Model 4 is one-way analysis of variance of the adjusted yield.block by the treat-
ment. The covariate is ignored. The ANOVA table in Table 14.19. We can see in
the figure that most of the points are not close to the horizontal lines in any of the
panels.

14.6.8 Model 5: yield.block ~ pre.block + treat

Model 5, yield.block ~ pre.block + treat, in row 5 of Figure 14.6, with
ANOVA in Tables 14.20, 14.21, and 14.22, forces parallel regression lines with
possibly differing intercepts for the adjusted response against the adjusted covariate
and the treatment. The value p = 0.0417 for treat tells us that there is a significant
difference at α = .05 in the treat adjusted means. Stepping forward for a moment,
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Table 14.20 Analysis of variance for apple data. Model 5 ‘y.b~p.b+t‘, model with response
yield and covariate pre adjusted for blocks, and with no interaction of adjusted covariate and
treatment. Separate parallel lines in each panel. There is no block term in this model, hence the
Residuals line includes the degrees of freedom that should be in the block effect.

> anova(aov(yield.block ~ pre.block + treat, data = apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

pre.block 1 15944 15944 69.76 2e-07 ***

treat 5 4353 871 3.81 0.017 *

Residuals 17 3885 229

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

to be justified by the time we get there, the intercepts of the parallel regression lines
in rows 5 and 6 of Figure 14.6 are significantly different.

Model 5b, yield ~ block + pre + treat, gives the same regression coeffi-
cients, fitted values, and residuals as model 5. The ANOVA tables for Models 5 and
5b show different degrees of freedom for the residuals, as Model 5 does not account
for the prior adjustment for the blocking factor.

Model 5c, yield.block ~ block + pre.block + treat, gives the same
regression coefficients, fitted values, and residuals as Models 5 and 5b. The ANOVA
tables for Model 5c shows the correct degrees of freedom for the residuals. Model
5c does account for the prior adjustment for the blocking factor by including the
block factor in the model equation solely to absorb the degrees of freedom.

In Model 5, the sum of squares for treat after adjustment for the covariate pre is
deemed significant. In Model 4, the effect of treat is assessed prior to consideration
of pre and found to be not significant. Therefore, taking account of the available
covariate pre has enabled us to detect differences in the adjusted mean yield at the
levels of treat. Without the presence of this covariate, we would not have detected
treat differences.

If the covariate pre had not been available for this analysis, the sums of squares
for block and for treat would be identical to those in the anova table for Model
4. But without pre in the model, the corresponding terms in the anova table would
have lower F statistics and higher p-values than those in Table 14.16 because the
sum of squares for pre, that should have been assigned to a term for pre, would
instead remain as a large component of the sum of squares for Residuals.

The finding of a significant difference for the treatment in Model 5 (row 5 of
Figure 14.6) means that we can interpret the difference in intercepts among the
panels of row 5, or equivalently the vertical difference between the regression lines
at any specified value of the adjusted covariate.
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Table 14.21 Analysis of variance for apple data. Model 5b ‘y~b+p+t‘, model with original
unadjusted response yield and covariate pre, and with no interaction of covariate and treatment.
Separate parallel lines in each panel. This table gives the full analysis of this model and shows the
correct degrees of freedom for the Residuals. The pre.block and treat sums of squares in
Table 14.20 match the sums of squares here.

> anova(aov(yield ~ block + pre + treat, data=apple))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 3 47853 15951 57.48 4.1e-08 ***

pre 1 15944 15944 57.45 2.6e-06 ***

treat 5 4353 871 3.14 0.042 *

Residuals 14 3885 278

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 14.22 Analysis of variance for apple data. Model 5c ‘y.b~b+p.b+t‘, model with response
yield and covariate pre adjusted for blocks, and with no interaction of adjusted covariate and
treatment. Separate parallel lines in each panel. The block effect has been removed from both
response and covariate and therefore shows with a 0 sum of squares in the ANOVA table. Placing
the block term in the model gets the correct degrees of freedom for the Residuals.

> anova(aov(yield.block ~ block + pre.block + treat, data=apple))

Analysis of Variance Table

Response: yield.block

Df Sum Sq Mean Sq F value Pr(>F)

block 3 0 0 0.00 1.000

pre.block 1 15944 15944 57.45 2.6e-06 ***

treat 5 4353 871 3.14 0.042 *

Residuals 14 3885 278

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

14.6.9 Model 6: yield.block.pre ~ treat

We have one more step. Most people have trouble seeing vertical distances be-
tween nonhorizontal parallel lines. Therefore, we use Row 6 of Figure 14.6 to
make the lines horizontal and retain the same vertical differences. We do so by
making an additional adjustment to the response variable, subtracting out the effect
of the covariate pre.block from the response variable yield.block. Details are
in Table 14.23.
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Row 6 (Model 6, yield.block.pre ~ treat) of Figure 14.6 adjusts yield

for both treat and pre. The differences in the y-coordinate of the fitted horizontal
lines drawn at adjusted the yield means for each treat level displays the extent
of the effect of treat on yield after accounting for both block and pre. The dif-
ference in intercepts of the horizontal regression lines in Row 6 is identical to the
difference in intercepts in Row 5. The ANOVA table for Model 6 is in Table 14.23.

The plot of Model 6 is constructed from the plot of Model 5 by vertically shifting
the points and the regression lines about a fixed point at the mean of the covariate.
We redraw the treatment panels of rows 5 and 6 from Figure 14.6 as Figure 14.8 to
illustrate the shift. The lengths of the residual lines from the points to the fitted line
are identical in rows 5 and 6.

Table 14.23 Analysis of variance for apple data. Model 6 ‘y.b.p~t‘, model with response
yield adjusted for both blocks and the covariate pre, Separate horizontal lines in each panel. The
vertical distance between these horizontal lines is identical to the vertical distance between the
parallel lines in Model 5. The degrees of freedom for the Residuals is incorrect. It includes the
degrees of freedom that belong to the block and pre terms.

> apple.aov.4 <- aov(yield.block ~ pre.block + treat, data=apple)

> apple$yield.block.pre <- apple$yield.block -

+ predict.lm(apple.aov.4, type="terms", terms="pre.block")

> anova(aov(yield.block.pre ~ treat, data = apple))

Analysis of Variance Table

Response: yield.block.pre

Df Sum Sq Mean Sq F value Pr(>F)

treat 5 5472 1094 5.07 0.0045 **

Residuals 18 3885 216

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 14.8 Vertical difference between points and the parallel lines from rows 5 and 6 of
Figure 14.6. It is easily seen in the bottom row that the control treatment 6 has a lower adjusted
mean than the others. The light gray vertical reference line is at the mean of the adjusted pre

values. The vertical reference line indicates the fulcrum of the vertical shifting of the points and
parallel regression lines. The lengths of the residual lines from the points to the fitted line are
identical in rows 5 and 6.

14.6.10 Multiple Comparisons

Now that we have detected treat differences, we wish to investigate their nature.
Since level 6 of treat has been designated as a control, we follow up the finding of
significant treat with Dunnett’s multiple comparison procedure to simultaneously
compare the mean adjusted yield of treat levels 1 through 5 with the mean adj-
usted yield of treat level 6. We illustrate the multiple comparisons in Figure 14.9
with the mean–mean display including the Tiebreaker panel and in Table 14.24.
These displays tell us that the adjusted mean yield of treat level 5 is significantly
greater than the adjusted mean yield of the control (treat level 6). No other sig-
nificant differences with treat level 6 are uncovered.
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Table 14.24 Multiple comparisons of Treatments for Model 5 (yield ~ block + pre +

treat) by Dunnett’s method. The comparison of treatment 5 with the control treatment 6 is the
only significant comparison. The output section labeled $mca is the set of contrasts comparing
the means of the experimental treatments 1–5 to the mean of the control treatment 6. The section
labeled none (meaning no contrasts) are the means for each individual treatment.

> apple5.aov <- aov(yield ~ block + pre + treat, data=apple)

> anova(apple5.aov)

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 3 47853 15951 57.48 4.1e-08 ***

pre 1 15944 15944 57.45 2.6e-06 ***

treat 5 4353 871 3.14 0.042 *

Residuals 14 3885 278

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> apple5d.mmc <- mmc(apple5.aov,

+ linfct=mcp(treat=contrMat(table(apple$treat),

+ type="Dunnett", base=6)))

> apple5d.mmc

Dunnett contrasts

Fit: aov(formula = yield ~ block + pre + treat, data = apple)

Estimated Quantile = 2.821

95% family-wise confidence level

$mca

estimate stderr lower upper height

5-6 49.58 13.30 12.065 87.10 276.1

4-6 29.80 12.67 -5.924 65.53 266.2

1-6 29.14 12.13 -5.062 63.34 265.9

3-6 22.73 12.21 -11.711 57.17 262.7

2-6 15.23 12.21 -19.211 49.67 259.0

$none

estimate stderr lower upper height

5 300.9 8.794 276.1 325.7 300.9

4 281.1 8.430 257.4 304.9 281.1

1 280.5 8.343 256.9 304.0 280.5

3 274.1 8.331 250.6 297.6 274.1

2 266.6 8.331 243.1 290.1 266.6

6 251.3 8.980 226.0 276.7 251.3



14.6 ANCOVA with Blocks: Example—Apple Tree Data 515

Dunnett comparisons against Control=6

 The MMC panel shows informative overprinting.  Please see Tiebreaker panel and caption.
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Fig. 14.9 Multiple comparisons of Treatments for Model 5 (yield ~ block + pre + treat)
by Dunnett’s method. The comparison of treatment 5 with the control treatment 6 is the only
significant comparison. The means for treatments 1 and 4 are very close; therefore the contrasts
4-6 and 1-6 are almost collinear in the MMC panel. We need the Tiebreaker panel to distinguish
them.
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14.7 Example—testscore

The example in Section 14.6 was modeled with one covariate. This example requires
two covariates.

14.7.1 Study Objectives

The dataset data(testscore) from Johnson and Tsao (1945), also reprinted in
Anderson and Bancroft (1952), discuss the modeling of a final test score using four
factors and two concomitant variables. Their goal was to explain the response vari-
able final score by using the information in the factors and continuous variables.
As a secondary goal they used this paper to illustrate the advantages of using con-
comitant variables (covariates) to increase the sensitivity of their experiment and the
precision with which estimates and predictions can be made.

14.7.2 Data Description

final: response variable: final test score

sex: male=1, female=0

scholastic standing: good=1, average=2, poor=3

order: order on a battery of standardized tests: high=1, medium=2, low=3

grade: 10, 11, 12

initial: initial test score

mental.age: mental age

Note that this was not a longitudinal study: Different students were assessed at each
grade level.

The study has no replication. The original authors used the four-way interaction
as their initial error term. They found that all of the three-way interactions and some
of the two-way interactions were not significant, so they continued by pooling all
the nonsignificant interactions. Our analysis begins by assuming that the four-way
and all three-way interactions are negligible. We proceed to investigate the two-way
interactions and main effects, both with and without adjustment for the continuous
variables.
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14.7.3 Analysis—Plots

The goal of the analysis is to explain the variability in the final scores based on
the initial score, the covariates, and the factors. We start the analysis by looking
at the scatterplot matrix of the data in Figure 14.10. Two things are immediately
visible. First, the plots of the factor levels against each other form simple lattices.
This reflects the design of the study in which the factors were chosen to be balanced.
Second, we see that the response variable final is positively correlated with the two
continuous variables initial and mental.age and negatively correlated with two
of the factors standing and order. When we look closer at the factors, we discover
that they are coded with high scores first. Therefore, the visual negative correlation
is an artifact of the coding. We recode both standing and order to place the low
scores first and thereby have all variables coded in a consistent direction.

We redraw the plot with the recoded variables in Figure 14.11. While here, we
also changed the order of the variables, placing all the continuous variables together
and all the factors together. There is now a clear display of the positive correlations
among all continuous variables and ordered factors. We would display Figure 14.11
rather than Figure 14.10 in our final report.

14.7.4 Analysis—ANOVA

In an analysis with both factors and continuous concomitant variables, it is necessary
to determine the contribution of each. We therefore fit four different models,

1. factors only,

2. continuous first: fitting factors after continuous predictors,

3. continuous second: fitting continuous predictors after factors,

4. continuous only.

These four models are summarized in Table 14.25. The full analyses can be repro-
duced with the code in file HHscriptnames(14). The first thing to notice is the
residual mean square s2 for the models. The reduction in sum of squares from “fac-
tors only” to both factors and continuous (observed in either column “continuous
first” or “continuous second”) has an F2,26 = ((97.704−28.057)/2)/1.0791 = 32.27
with p = 10−7. The reduction from continuous only to both has F25,26 = ((131.291−
28.057)/25)/1.0791 = 3.827 with p = 0.0006.

We look further at a follow-up set of listings for the continuous-variables-first
analysis in Table 14.26. We see that the initial score all by itself has R2 =

1468.423/1607.333 ≈ 0.9. We determined from the results of testscore2.aov

in Table 14.25 that none of the two-way interactions (with the possible exception
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Fig. 14.10 testscore data, original ordering of variables and factor levels. The plots of the
factor levels against each other form simple lattices. This reflects the design of the study in which
the factors were chosen to be balanced. The response variable final is positively correlated with
the two continuous variables initial and mental.age and negatively correlated with two of the
factors standing and order.

of sex:order) is significant; therefore, we dropped them. We also see the main
effect sex is not significant as the first factor; therefore, we moved it last. In the
ANOVA testscore5.aov we see that grade is the least important of the main ef-
fects, so we moved it to next-to-last. In the ANOVA testscore6.aov we see that
we don’t need grade at all. This brings us to the ANOVA testscore7.aov with
three significant main effects after adjusting for the covariates.

Let us plot the information in ANOVA table testscore7.aov. As is usual with
analysis of covariance, we are interested in the difference between the intercepts
for each of the groups assuming parallel planes defined by the coefficients of the
covariates. In the testscore7.aov setting we have 2 covariates and 18 groups
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Fig. 14.11 testscore data, revised ordering of variables and factor levels. The continuous vari-
ables are collected together in the lower left. We recoded both standing and order to place the
low scores first. Now the response variable final is positively correlated with all covariates and
factors. This is the only splom we would show the client.

with model

Yi jk� = μ̂i jk + β̂1X1,i jk� + β̂2X2,i jk� + ε̂i jk�

We move the X terms to the other side to get final.adj, the final scores adjusted
for the covariates X1=initial and X2=mental.age.

Ŷadj = Ŷi jk� − β̂1X1,i jk� − β̂2X2,i jk� = μ̂i jk + ε̂i jk�

We plot the initial variable (X1), the observed final variable (Y), and the ad-
justed final.adj (Ŷadj) in Figure 14.12. The standard error of the difference of
two observations in the plot is approximately

√
(2)(1.324)/3 ≈ 0.94. Therefore, the
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Table 14.25 Comparison of sequential p-values for four different models of the testscore data.
In each of the models, the response variable is the final score.

Factors Continuous Continuous Continuous
only first second only
testscore1 testscore2 testscore3s testscore4

Df Pr(F) Df Pr(F) Df Pr(F) Df Pr(F)
initial 1 0.0000 1 0.0000

mental.age 1 0.0132 1 0.0914
sex 1 0.0069 1 0.2522 1 0.0000

grade 2 0.0010 2 0.0029 2 0.0000
standing 2 0.0000 2 0.0005 2 0.0000

order 2 0.0000 2 0.0000 2 0.0000
sex:grade 2 0.0184 2 0.6567 2 0.0000

sex:standing 2 0.7728 2 0.7506 2 0.4427
sex:order 2 0.6719 2 0.0792 2 0.2885

grade:standing 4 0.0519 4 0.1519 4 0.0001
grade:order 4 0.8250 4 0.1319 4 0.3304

standing:order 4 0.6085 4 0.2426 4 0.0952
initial 1 0.0000

mental.age 1 0.1066

Residuals Df 28 26 26 51
Residuals Mean Sq 3.4894 1.0791 1.0791 2.5743
Residuals Sum Sq 97.704 28.057 28.057 131.291

Total Sum Sq 53 1607.333 53 1607.333 53 1607.333 53 1607.333

visible differences in the plot are significant. We repeat the Adjusted panel of Fig-
ure 14.12 with greater magnification as the top panel of Figure 14.13. We can easily
see all three main effects of the factors standing, order, and sex in the top panel
of Figure 14.13. We can also see the hint of interaction between sex and order in
the reversal of direction in the medium panel: the male scores go up from poor to
good and the female scores go down from poor to good.

14.7.5 Summary of ANOVA

We conclude the search for a model with our final model, testscore7.aov. We
find three main effects: standing, order, and sex after accounting for the two
covariates: initial and mental.age. These are the same variables the original
authors found.

The original investigation of this data used the analysis to predict final scores
given the variables in the data description.
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Table 14.26 Continuous variables first, and further refinements.

> ## after looking at all of above

> ## Total Sum of Squares

> var(testscore$final) * (length(testscore$final)-1)

[1] 1607

> testscore5.aov <- aov(final ~ initial + mental.age +

+ grade + standing + order + sex

+ + sex:order,

+ data=testscore)

> summary(testscore5.aov)

Df Sum Sq Mean Sq F value Pr(>F)

initial 1 1468 1468 1176.02 < 2e-16

mental.age 1 8 8 6.10 0.01765

grade 2 16 8 6.34 0.00393

standing 2 21 10 8.23 0.00096

order 2 30 15 11.82 8.5e-05

sex 1 7 7 5.69 0.02169

order:sex 2 6 3 2.35 0.10811

Residuals 42 52 1

> testscore6.aov <- aov(final ~ initial + mental.age +

+ standing + order + grade + sex,

+ data=testscore)

> summary(testscore6.aov)

Df Sum Sq Mean Sq F value Pr(>F)

initial 1 1468 1468 1108.18 < 2e-16

mental.age 1 8 8 5.75 0.02080

standing 2 29 15 10.96 0.00014

order 2 34 17 12.77 4.2e-05

grade 2 3 2 1.13 0.33094

sex 1 7 7 5.36 0.02535

Residuals 44 58 1

> testscore7.aov <- aov(final ~ initial + mental.age +

+ standing + order + sex,

+ data=testscore)

> summary(testscore7.aov)

Df Sum Sq Mean Sq F value Pr(>F)

initial 1 1468 1468 1108.96 < 2e-16

mental.age 1 8 8 5.75 0.02056

standing 2 29 15 10.97 0.00013

order 2 34 17 12.77 3.9e-05

sex 1 7 7 5.66 0.02153

Residuals 46 61 1
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Fig. 14.12 testscore data, initial scores, final scores, and final scores adjusted for
the covariates using model testscore7.aov. All panels are on the same scale. The plotting
position of the standing variable have been jittered to avoid overstriking of the points. The
initial scores are responsible for most of the variability. The adjusted scores still show the eff-
ects of the three factors standing, order, sex. Figure 14.13 shows the adjusted scores at greater
magnification.
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Table 14.27 and Figure 14.13 contain predictions for the final test score for the
average values of the two covariates and for all possible values of the three factors
we retained.

Table 14.27 Predictions of final score for each of the categories using model testscore7.aov.

> newdata <- cbind(initial=mean(testscore$initial),

+ mental.age=mean(testscore$mental.age),

+ testscore[c(1:9,28:36),

+ c("standing","order","sex")])

> newdata[c(1,2,3,4,18),]

initial mental.age standing order sex

1 17.48 44.06 good high male

2 17.48 44.06 good medium male

3 17.48 44.06 good low male

4 17.48 44.06 average high male

36 17.48 44.06 poor low female

> final.pred <- predict(testscore7.aov, newdata=newdata)

> final.pred.table <- tapply(final.pred, newdata[,3:5], c)

> final.pred.table

, , sex = female

order

standing low medium high

poor 16.05 17.69 18.69

average 17.48 19.12 20.12

good 20.37 22.02 23.01

, , sex = male

order

standing low medium high

poor 16.81 18.46 19.45

average 18.24 19.89 20.88

good 21.14 22.79 23.78

> ## now summarize this over each factor to get predicted values

> apply(final.pred.table, 1, mean) ## each scholastic standing

poor average good

17.86 19.29 22.19

> apply(final.pred.table, 2, mean) ## each individual order

low medium high

18.35 20.00 20.99
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Fig. 14.13 testscore data, The final.adj panel has identical content to the third panel in
Figure 14.12, but on a larger vertical scale. The Prediction panel here contains the same information
as Table 14.27 displayed on the same scale as the final scores adjusted for the covariates.

14.8 The Tukey One Degree of Freedom for Nonadditivity

What can we do when linearity cannot be assumed and there are not enough obser-
vations to study interaction? We construct a single degree of freedom variable that
represents the linear by linear component of interaction.

14.8.1 Example—Crash Data—Study Objectives

Does the tendency of teenage drivers to be involved in automobile accidents increase
dramatically with the number of passengers in the car? Believing this to be so, legis-
lators in several states require that junior license holders be prohibited from driving
with more than one passenger. Williams (2001) presents the data data(crash).



14.8 The Tukey One Degree of Freedom for Nonadditivity 525

14.8.2 Data Description

crashrate: crashes per 10,000 trips

agerange: driver age: 16–17, 18–19, 30–59

passengers: number of passengers: 0, 1, 2, 3+

14.8.3 Data Analysis

The original author displayed the data in the barplot format of Figure 14.14. We see
several difficulties with barplots used in this situation:

1. There are two factors, driver age and passenger presence. They are not treated
symmetrically.

2. The marginal main effects of the factors are not displayed.

3. The response variable is a rate. Barplots were designed for counts and don’t make
much sense for rates.

4. The majority of the plotting surface is used to display the region where the data
doesn’t appear.

5. The symmetry in uncertainty is hidden by the asymmetry between the heavy bar
below each observed value and the empty region above.

6. Superimposed error bars (not shown here) on a barplot add to the asymmetry.

We prefer the interaction plot format of Figure 14.15 to display both the main
effects of each factor and the interactions between the two factors. Figure 14.15
addresses all the difficulties noted above for barplots. As usual, when we present
an interaction plot we show two versions, interchanging the trace- and x-factors

Crash Rates by Driver Age and Passenger Presence per 10,000 Trips
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Fig. 14.14 Barplot of crash data.
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Crash Rates by Driver Age and Passenger Presence per 10,000 Trips
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Fig. 14.15 Interaction plot of crash data. The lines in lower right panel trace the age of the driver.
These lines show the same information as the heights of the bars in Figure 14.14. The lines in the
upper left panel trace the number of passengers. The boxplots on the main diagonal show wide
disparity in variance.

Table 14.28 ANOVA for crash data.

> crash.aov <- aov(crashrate ~ agerange + passengers, data=crash)

> summary(crash.aov)

Df Sum Sq Mean Sq F value Pr(>F)

agerange 2 17.943 8.971 7.238 0.0252 *

passengers 3 6.230 2.077 1.675 0.2701

Residuals 6 7.437 1.239

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

between them. In this example the traces in the lower right panel match the heights
of the bars in each panel of Figure 14.14. We find the lack of parallelism in the traces
in the same panel to be more compelling than the same information spread across
several panels.

Table 14.28 contains an initial analysis of variance. It suggests that the number of
passengers does not impact significantly on crashrate. The figures show com-
pletely different means and variances for different levels of passengers, implying
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that some type of interaction is present. The usual way of investigating interaction
can’t be used for this example because there is only one observation for each combi-
nation of agerange and passengers. The entire residual sum of squares has only
6 degrees of freedom. If all of them are used to estimate the interaction, then none
are left for the residual, and testing becomes impossible.

The Tukey One Degree of Freedom for Nonadditivity (ODOFFNA) Tukey (1949)
and Hoaglin et al. (1983) is the proper response to this impasse. Tukey constructs the
comparison values, the linear-by-linear component of the interaction. He identifies
it as one of the degrees of freedom in the residual and tests it for significance against
the remaining degrees of freedom in the residual. There are several possible options
for dealing with a significant ODOFFNA: Find an outlier, transform the data, regress
on the comparison value.

We construct the comparison value by partitioning the data into four components.
We augment the r × c table with a column of row margins r0

i = 0 and a row of
column margins c0

j = 0 and a summary number in the last row–last column μ̂0 = 0.
The table at the right symbolically indicates the four sections of the augmented
table. Note that each value of the table has been partitioned into four pieces, one in
each section of the augmented table. We can trivially reconstruct the original table
with Yi j = μ̂0 + r0

i + c0
j + Yi j.

0 1 2 3+ row
16–17 1.60 2.30 3.30 6.30 0.00
18–19 1.00 1.20 1.80 2.10 0.00
30–59 0.49 0.41 0.40 0.34 0.00

col 0.00 0.00 0.00 0.00 0.00

=

0 1 2 3+ row
16–17
18–19 Yi j r0

i
30–59

col c0
j μ̂0

In the second display of the table, we find the row means r1
i for each of the rows

of the first table and place them in the column of row margins. We also subtract
the row means from each value of the original table. Now the reconstruction of the
original table with Yi j = μ̂0 + r1

i + c0
j + e1

i j is still possible, but is no longer trivial.

0 1 2 3+ row
16–17 −1.775 −1.075 −0.075 2.925 3.375
18–19 −0.525 −0.325 0.275 0.575 1.525
30–59 0.080 0.000 −0.010 −0.070 0.410

col 0.0000 0.0000 0.0000 0.000 0.000

=

0 1 2 3+ row
16–17
18–19 e1

i j = Yi j − r1
i r1

i = Ȳi.

30–59

col c0
j μ̂0
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In the third display of the table, we find the column means c j for each of the
columns of the second table and place them in the row of column margins. We also
subtract these column means from each value of the body of the second table. Now
the reconstruction of the original table with Yi j = μ̂+ ri + c j + ei j is meaningful. For
example, the entry 1.60 in the upper-left corner of the original table is calculated
with components in the final table: 1.770 + 1.605 − .740 − 1.035.

0 1 2 3+ row
16–17 −1.035 −0.6083 −0.1383 1.7817 1.605
18–19 0.215 0.1417 0.2117 −0.5683 −0.245
30–59 0.820 0.4667 −0.0733 −1.2133 −1.360

col −0.740 −0.4667 0.06333 1.1433 1.770

=

0 1 2 3+ row
16–17
18–19 ei j = e1

i j − c j ri = r1
i − μ̂

30–59

col c j = ē1
. j μ̂ = r̄1

. = Ȳ..

This process is called row and column polishing by means. The notation was
introduced by Tukey with medians and is described in the “Median Polish” chapter
of Hoaglin et al. (1983). Median polish is an iterative technique that usually takes at
least two cycles. The analogous mean polish illustrated here uniquely converges on
just the one cycle illustrated here. Medians are resistant to outliers whereas means
are not. The advantage of means is that they correspond to least-squares fits.

We construct the comparison value by recombining the components

comparison value = ri×c j

μ̂
= xcv

0 1 2 3+
16–17 −0.6710 −0.4232 0.05743 1.0368
18–19 0.1024 0.0646 −0.00877 −0.1583
30–59 0.5685 0.3586 −0.04866 −0.8785

We then compute the ANOVA table (in Table 14.29) with the comparison value as
a covariate.

The regression coefficient of the comparison value, in this example β̂cv = 1.5516,
is identical to the regression of the residuals from the first ANOVA against the com-
parison value as illustrated in Figure 14.16. Tukey calls this the diagnostic plot.

There are several things to do with this plot. If most of the points lie in a horizon-
tal band, then the ones that don’t are potential outliers and need to be carefully inves-
tigated. If there is a clear nonhorizontal line, then the slope of the line gives a hint as
to an appropriate transformation. When the slope is β̂cv, then an appropriate power
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Table 14.29 ANOVA with the comparison value as a covariate. See also Figure 14.16. The reg-
ression coefficient for the comparison value is 1.5516.

> crash2.aov <- aov(crashrate ~ agerange + passengers +

+ as.vector(cv), data=crash)

> summary(crash2.aov)

Df Sum Sq Mean Sq F value Pr(>F)

agerange 2 17.94 8.97 161.2 2.9e-05 ***

passengers 3 6.23 2.08 37.3 0.00076 ***

as.vector(cv) 1 7.16 7.16 128.7 9.3e-05 ***

Residuals 5 0.28 0.06

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> coef(crash2.aov)

(Intercept) agerange.L agerange.Q passengers.L

1.77000 -2.09657 0.30006 1.38189

passengers.Q passengers.C as.vector(cv)

0.40333 0.06559 1.55165
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Fig. 14.16 Diagnostic plot for crash data. See also Table 14.29. The data follow the regression
line. Therefore, the slope of 1.5516 suggests a power transformation of 1 − 1.5516 = −.5516.
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Fig. 14.17 Main effect and interaction plots of the crash data with several different power trans-
formations. The k = −.5 and k = −1 plots look similar. Since it is easy to explain the reciprocal—it
is measured in units of trips per crash—we select the reciprocal for further analysis and display in
Table 14.30. Panel a is identical to Figure 14.15. Figure 14.18 is an enlarged version of panel d.
The cover illustration of the first edition is based on panel d.

transformation that will stabilize the variance of the groups is given by k = 1 − β̂cv.
In this example, the suggested power is 1− 1.5516 = −.5516. As with the Box–Cox
transformations in Section 4.8, we usually look at graphs of the transformed values
to help make the decision. We show in Figure 14.17 the data distributions and inter-
action plots for four power transformations: the original scale (k = 1), and powers
k = (0,−.5,−1).

We see in Figure 14.17 that our transformation has accomplished several of its
purposes. Moving from panel a to b to c to d, we see that the variance has been
stabilized. In panel a, the boxplots show strong changes in height; in panels c
and d, the boxes are almost the same height. In panel a, the lines in the subpanel
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Trips per Crash by Driver Age and Passenger Presence
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Fig. 14.18 Interaction plot of reciprocal crash data. The message is best seen in the bottom row.
The boxplots in the lower-left panel show a difference in the small number of trips per crash for
teens compared to the larger number of trips per crash for the adults. The lines in the lower-right
panel show that adults increase the number of trips per crash with more passengers, meaning that
they drive more safely with more passengers. But teens decrease the number of trips per crash with
more passengers, meaning that they drive less safely with more passengers. This figure is identical
to panel d in Figure 14.17.

Table 14.30 ANOVA of the reciprocal of crash rate. The passengers effect is not shown as
significant and the single degree of freedom for the linear by linear component of the interaction
isn’t shown at all.

> crashi.aov <-

+ aov(10000/crashrate ~ agerange + passengers, data=crash)

> summary(crashi.aov)

Df Sum Sq Mean Sq F value Pr(>F)

agerange 2 1.02e+09 5.09e+08 44.97 0.00024 ***

passengers 3 2.42e+06 8.06e+05 0.07 0.97325

Residuals 6 6.79e+07 1.13e+07

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

tracing passengers are not parallel and the lines in the subpanel tracing agerange

are uphill or nearly horizontal. In panels c and d, the lines in the subpanel tracing
passengers are parallel and downward sloping. The lines tracing agerange are
uphill and parallel for the two teenage classifications and downhill for the adults.
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Trips per Crash by Driver Age and Passenger Presence
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Fig. 14.19 Barplot of reciprocal crash data. The values displayed here are identical to the traces
in the lower-right panel of Figure 14.18. Again we see that adults increase the number of trips per
crash with more passengers, meaning that they drive more safely with more passengers. But teens
decrease the number of trips per crash with more passengers, meaning that they drive less safely
with more passengers.

The simplistic ANOVA table for the reciprocal displayed in Table 14.30 correctly
shows agerange as significant, but it also shows passengers as not significant. We
still need more work to make an ANOVA table of the reciprocal crashrate show
the interaction between agerange and passengers, an interaction that we can see
in Figures 14.15 and 14.18.

We choose the reciprocal over the reciprocal square root for the presentation of
the analysis to the client even though both produce similar graphs. The reciprocal is
measured in units of Trips per Crash, units that are easily interpreted. The reciprocal
square root, in units of Square Root of Trips per Crash, is not easily interpreted. We
use the reciprocal, not the negative reciprocal, when we present the results to the
client. We do not need to maintain for the client the monotonicity of the series of
transformations that we need when we compare several powers chosen from the
ladder of powers.

The transformation of the crash rate to the reciprocal scale of trips per crash also
works in the barplot format of Figure 14.19. The downhill and parallel pattern for
the teens is evident. This contrasts sharply with the larger values and uphill pattern
of the adults.

Now that we can see the different behavior for the passengers conditional on
the agerange, let us make the ANOVA table show it. We do so by isolating the lin-
ear contrast for passengers and nesting it in the agerange. We combine the two
teenage groups, which show a parallel upward trend over passengers. The result-
ing ANOVA table is in Table 14.31. The p-values in Table 14.31 are comparable to
those in Table 14.29. Instead of an overall passenger effect, we are now looking at
the linear contrast of passenger within the ageranges.
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Table 14.31 ANOVA of the reciprocal of crash rate with linear effect of number of passengers
nested within age range. We are partitioning the previous passenger + residual effects into the
agerange/passenger effect plus a redefined residual. We see that the passengers within age range is
highly significant for both age ranges, teens and adults.

> pass <- as.numeric(crash$passengers)

> crashinlin.aov <- aov(10000/crashrate ~ agerange/pass,

+ data=crash)

> ## summary(crashinlin.aov)

> ## coef(summary.lm(crashinlin.aov))

> print(coef(summary.lm(crashinlin.aov))[4:6,], digits=4)

Estimate Std. Error t value Pr(>|t|)

agerange16-17:pass -1531 335 -4.569 0.0038164

agerange18-19:pass -1849 335 -5.520 0.0014874

agerange30-59:pass 2762 335 8.244 0.0001721

> print(digits=3,

+ summary(crashinlin.aov,

+ split=list("agerange:pass"=list(teens=1:2, adults=3))))

Df Sum Sq Mean Sq F value Pr(>F)

agerange 2 1.02e+09 5.09e+08 906.9 3.6e-08 ***

agerange:pass 3 6.70e+07 2.23e+07 39.8 0.00024 ***

agerange:pass: teens 2 2.88e+07 1.44e+07 25.7 0.00115 **

agerange:pass: adults 1 3.81e+07 3.81e+07 68.0 0.00017 ***

Residuals 6 3.37e+06 5.61e+05

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

What actually did we do in Table 14.31 that we were unable to do in Table 14.30?
The basic idea of the ODOFFNA is to look at the linear by linear component of
the interaction. There aren’t enough degrees of freedom with only one observation
per cell to do more than that. From the graph in Figure 14.17d we see that the
two teenage groups show a clear uphill trend and the adults a clear downhill trend.
When we combine those two effects by averaging over the ages, we lose the dis-
tinction between age groups. We therefore isolated just one degree of freedom of
the passengers effect, the linear component. We nested the linear effect within the
ageranges and easily see in Table 14.31 that the teens and adults have strong, and
opposite, linear components of the passengers effect.

In summary, adults have many more trips between crashes than teenagers. Adults
have fewer crashes as the number of passengers increases. Teens have more crashes
as the number of passengers increases.
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14.8.4 Theory

The heart of the analysis in Section 14.8.1 involves partitioning the residual sum
of squares in Table 14.28 into two components in Table 14.29. The sum of squares
for one of these components involves the vector of comparison values, the linear-by-
linear effect constructed in Section 14.8.1. By construction, the vector of comparison
values is orthogonal to the dummy variables for the row and column effects. Hence,
it must be in the space of the interaction of the row and column effects. In this
section we outline the theory justifying that the statistic for testing nonadditivity
in Table 14.29, the ratio of nonadditivity mean square to remaining residual mean
square, has an F-distribution under the null hypothesis of nonadditivity.

If in the model in Equation (12.1) we have ni j = 1 for all i and j, that is, there is
exactly one observation at each treatment combination, then no degrees of freedom
are available to estimate the interactions (αβ)i j as we would have if there were at
least two observations at each treatment combination. However, for this situation
Tukey (1949) developed a test for the special case of multiplicative interaction, that
is, a test of

H0: θ = 0 vs H1: θ � 0 (14.2)

in the model

Yi j = μ + αi + β j + θαiβ j + εi j for i = 1, . . . , a and j = 1, . . . , ni

where
∑

i αi = 0, and
∑

j β j = 0. In this situation, unbiased estimators are

α̂i = Ȳi. − ¯̄Y ..

β̂ j = Ȳ. j − ¯̄Y ..

θ̂αiβ j = Yi j − Ȳi. − Ȳ. j +
¯̄Y ..

Therefore a reasonable estimator of θ is

θ̂ =

∑
i, j(Ȳi. − ¯̄Y ..)(Ȳ. j − ¯̄Y ..)(Yi j − Ȳi. − Ȳ. j +

¯̄Y ..)
∑

i, j(Ȳ. j − ¯̄Y ..)2(Ȳ. j − ¯̄Y ..)2

Since the numerator estimates
∑

i, j

αiβ j(θαiβ j) = θ
∑

i, j

α2
i β

2
j

and the denominator estimates
∑

i, j

α2
i β

2
j
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it follows that

θ̂ =

∑
i, j(Ȳi. − ¯̄Y ..)(Ȳ. j − ¯̄Y ..)(Yi j)

∑
i, j(Ȳ. j − ¯̄Y ..)2(Ȳ. j − ¯̄Y ..)2

From this it can be shown that if θ = 0,

SN =

∑
i, j(Ȳi. − ¯̄Y ..)(Ȳ. j − ¯̄Y ..)(Yi j)2

∑
i, j(Ȳ. j − ¯̄Y ..)2(Ȳ. j − ¯̄Y ..)2

(14.3)

has a χ2 distribution with 1 df, and if θ � 0, (14.3) has a noncentral χ2 distribution.
Tukey (1949) showed that if SSRes denotes the usual residual Sum of Squares with
(a − 1)(b − 1) df, then

SN(
SSRes − SN

ab − a − b

) (14.4)

has an F distribution with 1 and ab− a− b degrees of freedom if the null hypothesis
in Equation (14.2) is true and a noncentral F distribution otherwise. Therefore, the
test of the no-multiplicative-interaction hypothesis is given by Equation (14.4).

Experience with this test has shown that it is sensitive to the presence of other
forms of interaction.

14.9 Exercises

14.1. Peterson (1985) reports an experiment to determine the effect of the annealing
(heating to be followed by slow cooling) temperature on the strength of three
metal alloys. Four temperatures were used: 675, 700, 725, and 750 degrees Fahren-
heit. It was only possible to make one run per day in each of the four ovens available
for the experiment, but all three alloys were accommodated in each oven run. The
experimenter regarded this as a split plot design with days as blocks and ovens as
plots. The data are in data(anneal). Perform a complete analysis including data
plots and an investigation of the borderline significant interaction.

14.2. Peterson (1985) discusses an experiment to compare the yield in kg/plot of
four varieties of beans (New Era, Big Green, Little Gem, and Red Lake), also taking
into account 3 spacings between rows, 20, 40, and 60 cm. A randomized block
design was used, with four blocks. The data are in data(bean). Analyze the data
including an investigation of the simple effects of variety at each level of spacing.

14.3. Barnett and Mead (1956), also in Johnson and Leone (1967), discuss an exp-
eriment to determine the efficiency of radioactivity decontamination. The response
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is a measure (alpha activity) of remaining contamination, modeled by these four
2-level factors:

B: added barium chloride

A: added aluminum sulfate

C: added carbon

P: final pH

The maximum possible block size consisted of eight plots, but four blocks were
used. The four-factor interaction was confounded with blocks, so that an even num-
ber of the four factors were at their upper levels in blocks 1 and 3, and an odd number
of the four factors were at their upper levels in blocks 2 and 4. The experimental lay-
out is implicit in data(radioact). Assuming that all three-factor interactions are
negligible and that treatments do not interact with blocks, perform an analysis of
variance and produce estimated contrasts to determine which factors and two-factor
interactions contribute most to the remaining contamination. Produce a written rec-
ommendation for the client.

14.4. Neter et al. (1996) describe an experiment to examine the effect of two
irrigation methods and two fertilizers on the yield of wheat. The data are
in data(wheat). Five fields were available to conduct this experiment. Each field
was divided into two Plots to which the two irrigation methods were randomly
assigned. Each Plot was subdivided into two Subplots to which the fertilizers
were randomly assigned. Perform a complete analysis. Produce a written recom-
mendation for the farmer. (The Plot and Subplot factors were not in our source.
We added them to the dataset to be consistent with our emphasis in Section 14.3
on the importance of distinguishing between the plot structure of the experimental
material and the assigned treatments.)

14.5. In Section 14.3 it is stated that use of the split plot design resulted in increased
precision for inferences involving the subplot factor nitrogen at the cost of reduced
precision for the whole plot factor variety. Demonstrate this by reanalyzing the
data under the assumption that the experimental design was a completely random
one, with no randomization restrictions. That is, compare the F-tests for nitrogen
and for variety under both design assumptions.

14.6. Fouts (1973) reports on an experiment in which times in minutes were recorded
for each of 4 chimpanzees to learn each of 10 signs of American Sign Language.
The data are in data(chimp).

a. Use the Tukey one-degree-of-freedom test to check whether there is interaction
between sign and chimpanzee.

b. Is there evidence that the signs differ in the time required for the chimps to
securely learn them? Discuss.
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14.7. In Section 14.3.1 we note that the three-factor representation of the split plot
design gives the same ANOVA table as the more complete five-factor representa-
tion. In this exercise we ask you to verify that statement by looking at the column
space spanned by the various dummy variables implicitly defined by the model for-
mula. Review the definitions of column space and orthogonal bases in Appendix
Section I.4. We continue with the example in Section 14.3. The R code for this
exercise is in chunk 53 of file HHscriptnames(14).

a. The whole plot column space is defined by the
plots %in% blocks

dummy variables generated by the alternate residuals formula: orthogonal con-
trasts are critical.
data(yatesppl)

yatesppl.resida.aov <-

aov(y ~ blocks/plots,

data=yatesppl, x=TRUE,

contrasts=list(blocks=contr.helmert,

plots=contr.helmert))

summary(yatesppl.resida.aov)

t(yatesppl.resida.aov$x)

b. This is the same column space defined by the
variety + blocks:variety

dummy variables generated by the computational shortcut
yatesppl.short.aov <-

aov(terms(y ~ blocks + variety + blocks*variety +

nitrogen + variety*nitrogen,

keep.order=TRUE),

## try it without keep.order=TRUE

data=yatesppl, x=TRUE)

summary(yatesppl.short.aov)

t(yatesppl.short.aov$x)
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c. We illustrate this by regressing the response variable y on the
variety + blocks:variety

dummy variables:

## project y onto blocks/plots dummy variables

plots.aov <-

lm(y ~ yatesppl.resida.aov$x[,7:18], data=yatesppl)

summary.aov(plots.aov)

y.bp <- predict(plots.aov)

variety.aov <-

aov(y.bp ~ blocks*variety, data=yatesppl)

summary(variety.aov)

and seeing that we reproduce the
plots %in% blocks

stratum of the ANOVA table
Error: plots %in% blocks

Df Sum of Sq Mean Sq F Value Pr(F)

variety 2 1786.361 893.1806 1.48534 0.2723869

Residuals 10 6013.306 601.3306

obtained from the complete five-factor specification.
## split plot analysis

yatesppl.anova <-

aov(y ~ variety*nitrogen +

Error(blocks/plots/subplots),

data=yatesppl)

summary(yatesppl.anova)

14.8. Tables 14.16 and 14.17 show two different analyses for Model 2 yield.block

~ pre.block * treat. Confirm that the difference between them is in the choice
of dummy variables for the pre.block:treat interaction term. Do so by con-
structing both sets of dummy variables and regressing one against the other. The
residuals are nonzero. File HHscriptnames(14) contains code for both sets of
dummy variables.



Chapter 15

Bivariate Statistics—Discrete Data

In this chapter we discuss bivariate discrete distributions. Bivariate means that
there are two factors (categorical variables) defining cells. The response values are
frequencies, that is, counts or instances of observations, at each cell.

It is convenient to arrange such data in a contingency table, that is, a table with
r rows representing the possible values of one categorical variable and c columns
representing the possible values of the other categorical variable. Each of the rc cells
of the table contains an integer, the number of observations having the levels of the
two variables specified by the cell location. We give extra attention to the special
case where r = c = 2, that is, a 2 × 2 contingency table.

This data type is different from situations with two categorical variables (factors)
described in Chapters 12 through 14. In those chapters the response variables are
one or more continuous measurements at each cell.

We introduce a relatively new form of graph, the mosaic plot, which along with
related plots we access through the R package vcd “Visualizing Categorical Data”.
In simplest terms, a mosaic plot consists of a tiling of rectangles (hence the name)
where the height, width, and area (product of height and width) are each inter-
pretable.

15.1 Two-Dimensional Contingency Tables—Chi-Square
Analysis

15.1.1 Example—Drunkenness Data

Table 15.1 shows the number of persons convicted of drunkenness in two London
courts during the first six months of 1970. The data come from Cook (1971), later
reprinted in Hand et al. (1994). The dataset is accessed as data(drunk). There are
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two rows, males and females. The five columns are five age categories. The question
of interest is whether the age distribution of convicted offenders is the same for
both genders, or equivalently, as illustrated in the bar chart of Figure 15.1, if the
proportion of female offenders is the same for all age categories.

We show the mosaic plot of the same data in Figure 15.2.

Table 15.1 Persons convicted of drunkenness in two London courts during the first six months of
1970.

Age group 0–29 30–39 40–49 50–59 ≥60

Number of males 185 207 260 180 71
Number of females 4 13 10 7 10

proportion female

0.00

0.05

0.10

0−29 30−39 40−49 50−59 >=60

Fig. 15.1 Proportion female for drunkenness data.

The tabular display from the chi-square analysis (to be described in Section
15.1.2) is in Table 15.2.

The p-value .0042 for the chi-square test strongly suggests an association between
age and gender of convicted offenders, that is, the proportion of females in each age
group is not identical. From the “Cell Chi-square” values in Table 15.2 and their
square roots displayed in Figure 15.3, it seems that only 1 of the 10 cells contributes
appreciably to total chi-square. The cell for female offenders aged at least 60 con-
tributes 10.34, or 68%, of the total chi-square value 15.25. We observe 10 female
offenders aged at least 60, but under the null hypothesis of independence we expect
only 3.8 offenders. No other cell is suggestive of dependence.
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age

sex

0−29

females

males

30−39 40−49 50−59 >=60

Fig. 15.2 Mosaic plot of the drunkenness data. The widths of the sets of tiles for each age group
are proportional to the counts of all persons in that age groups. The heights of the bottom set of
tiles (females) are the same as the heights of the bars in Figure 15.1 and are the proportions female
within each age group. The area of each tile is proportional to the count of individuals of that sex
and age group.

Age

sex Chi values
−1
0
1
2
3

m
al

es

0−29 30−39 40−49 50−59 >=60

−1
0
1
2
3

fe
m

al
es

Fig. 15.3 Cell chi-deviations (residuals from Table 15.2, also the signed square root of the cell
chi-square values χi j = (ni j − ei j)/

√
ei j ) for drunkenness data. The signed heights of these bars are

the same as the signed heights of the bars in the association plot in Figure 15.4.

We must be careful not to overinterpret this finding as meaning that older fem-
ales have a greater tendency toward this crime than older males. We believe that
the finding may be an artifact of the demographic distribution. The population pro-
portion of females under the age of 60 is roughly 50%. This proportion tends to
increase after age 60 because of higher male mortality beginning at approximately
that age. Therefore, it is possible that this study could have been improved by adj-
usting the responses to a per capita basis.
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Table 15.2 Chi-square analysis of Drunkenness Data.

> drunk.chisq <- chisq.test(drunk)

> drunk.chisq

Pearson’s Chi-squared test

data: drunk

X-squared = 15.25, df = 4, p-value = 0.004217

> drunk.chisq$observed

age

sex 0-29 30-39 40-49 50-59 >=60

males 185 207 260 180 71

females 4 13 10 7 10

> drunk.chisq$expected

age

sex 0-29 30-39 40-49 50-59 >=60

males 180.219 209.78 257.46 178.312 77.237

females 8.781 10.22 12.54 8.688 3.763

> drunk.chisq$residuals ## cell chi values

age

sex 0-29 30-39 40-49 50-59 >=60

males 0.3562 -0.1918 0.1586 0.1264 -0.7096

females -1.6135 0.8690 -0.7185 -0.5728 3.2148

> drunk.chisq$residuals^2 ## cell chi-square values

age

sex 0-29 30-39 40-49 50-59 >=60

males 0.12686 0.03679 0.02516 0.01599 0.50357

females 2.60344 0.75512 0.51626 0.32814 10.33473

15.1.2 Chi-Square Analysis

When we work with two-dimensional tables, such as this example, we often want
to test whether the row and column classifications are independent, that is, whether
the probability of an entry’s being in a particular row is independent of the entry’s
column.

When r = 2, the test is essentially asking whether the proportion of data in Row
1 is homogeneous across the c columns, i.e., whether c binomial populations have
the same (unspecified) proportion parameter. Therefore, this is a generalization of
the inferences comparing c = 2 population proportions discussed in Chapter 5 to
c ≥ 2 population proportions.
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If the total number of observations n is sufficiently large and if none of the rc
expected cell frequencies is less than somewhere between 3 and 5, the chi-square
distribution may be used to test the hypothesis of independence. The logical idea
behind this test is to compare, in each of the cells,

ni j the observed frequency in the cell in row i and column j

with

ei j the expected frequency calculated under the assumption
that the independence null hypothesis is true.

The test statistic is a function of the aggregate discrepancy between the ni j’s
and ei j’s.

Define
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ni. =
∑

j

ni j the row totals

n. j =
∑

i

ni j the column totals

n = n.. =
∑

i, j

ni j the grand total

(15.1)

Under the null hypothesis of independence between rows and columns, the expected
frequency for the cell in row i and column j is

ei j =
ni. n. j

n
(15.2)

The cell residuals, also called chi-deviations or scaled deviations,

χi j =
ni j − ei j√

ei j
(15.3)

are displayed in Figure 15.3. The squares, the cell chi-square values χ2
i j, are dis-

played in Figure 15.3 and also displayed in Table 15.2.

The assoc function in the vcd package provides an alternative plot of the chi-
deviations. In Figure 15.4 we see the association plot for the drunk dataset. The
heights of the rectangles are proportional to the cell residual values χi j, the widths
of the rectangles are proportional to the square root of the cell expected values

√
ei j,

and therefore the areas are proportional to the difference in observed and expected
frequencies ni j − ei j.

The test statistic is the sum of the scaled deviations squared

χ̂2 =
∑

i j

(ni j − ei j)2

ei j
(15.4)
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age

sex

females

males

0−29 30−39 40−49 50−59 >=60

Fig. 15.4 Association plot for the drunk dataset. The heights of the rectangles are proportional
to the cell residual values χi j = (ni j − ei j)/

√
ei j (the same heights as in Figure 15.3), the widths of

the rectangles are proportional to the square root of the cell expected values
√

ei j , and therefore
the areas are proportional to the difference in observed and expected frequencies ni j − ei j.

where the sum is taken over all rows and columns. If the null hypothesis is true, χ̂2

has, approximately, a chi-square distribution with (r − 1)(c− 1) degrees of freedom,
and the p-value is 1−Fχ2 (χ̂2 | (r−1)(c−1)), the chi-square tail probability associated
with χ̂2. Most authorities agree that the chi-square approximation is good if almost
all ei j are at least 5 and none is less than 3. The degrees-of-freedom formula derives
from the fact that if all marginal totals are given, knowledge of (r−1)(c−1) interior
values uniquely determines the remaining r + c − 1 interior values.

Apart from the degrees-of-freedom calculation, the form of this test, comparing
observed and expected frequencies, is identical to the goodness-of-fit test described
in Section 5.7.1. This methodology can be extended to contingency tables having
more than two dimensions.

Further analysis is required to assess the nature of any lack of independence that
is suggested by the chi-square test. One approach to this is discussed in the next
paragraph. Another is a multivariate display technique called correspondence anal-
ysis. See Greenacre (1984) for an introduction to this topic.

The chi-square test of independence, shown in Table 15.2, is the default display
from chisq.test. The result of the test also contains each cell’s observed value
ni j, expected value ei j, residual (square root of its contribution to the chi-square
statistic) χi j.

Cells with a sizeable cell chi-square value have an appreciable discrepancy
between their observed and expected frequency. Scrutiny of such cells leads to
interpretation of the nature of the dependence between rows and columns. A cell
chi-square is calculated as (n − e)2/e, where n and e are, respectively, the cell’s
observed frequency and expected frequency under the null hypothesis. Under the
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model that observations are randomly assigned to cells with a Poisson distribution,
the variance of n is also e. Hence (n − e)2/e has the form

(n − E(n))2

var(n)

and, using the normal approximation, we interpret it as approximately a one-df chi-
square statistic. Since the 95th and 99th percentiles of this chi-square distribution
are 3.84 and 6.63, we recommend reporting the discrepancy between the observed
and expected frequency for all cells with cell chi-square exceeding the higher value.
Also, consideration should be given to reporting cells having chi-square between
3.84 and 6.63 when the discrepancy between the cell’s observed and expected fre-
quency can be meaningfully interpreted.

15.2 Two-Dimensional Contingency Tables—Fisher’s Exact Test

An alternative to the approximate chi-square statistic discussed above is Fisher’s
exact test, which uses the exact hypergeometric distribution probabilities calculated
for all tables at least as extreme in the alternative hypothesis direction as the existing
table. Since it is exact, this procedure, when available, is preferable to the chi-square
test, but it is extremely computer intensive for all but the smallest tables, even by
contemporary standards.

Fisher’s exact test is available in R as fisher.test(x), where x is a two-
dimensional contingency table in matrix form. For tables larger than 2 × 2, only
the two-sided test is available.

15.2.1 Example—Do Juvenile Delinquents Eschew Wearing
Eyeglasses?

Weindling et al. (1986) discuss a small study of juvenile delinquent boys and a con-
trol group of nondelinquents. The data in Table 15.3 also appear in Hand et al.
(1994). All of these subjects failed a vision test. The boys were also classified
according to whether or not they wore glasses.

Table 15.3 Wearing prescribed glasses and juvenile delinquency.

Juvenile delinquents Nondelinquents
Wears glasses 1 5
Doesn’t wear glasses 8 2
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Clearly, the data set is much too small to use the chi-square analysis of the
previous section. Therefore, we request an analysis using Fisher’s exact test, shown
in Table 15.4. We are interested in the two-sided p-value, .0350. Since this falls be-
tween the two thresholds .01 and .05, we can say there is suggestive but inconclusive
evidence that a smaller proportion of delinquents than nondelinquents wear glasses.

Table 15.4 Fisher’s exact test of glasses data. Is the proportion of delinquents who wear glasses
the same as the proportion of nondelinquents who wear glasses Fisher’s exact test for glasses data.
The p-value for the two-sided exact test is .035. Compare this to p = .0134 from the (uncorrected)
chi-square approximation that R warns might be incorrect.

> fisher.test(glasses)

Fisher’s Exact Test for Count Data

data: glasses

p-value = 0.03497

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.0009526 0.9912282

sample estimates:

odds ratio

0.06464

The calculation of the p-values for Fisher’s exact test utilizes the hypergeo-
metric probability distribution discussed in Appendix J to calculate the probability
of obtaining the observed table and “more extreme” tables assuming that the ta-
ble’s marginal totals are fixed. We illustrate the calculations in Table 15.5. The ob-
served table is shown in Column 1. The remaining columns, indexed by the [1,1]

cell count, show all possible tables with the same row and column margins. The
probability of observing the counts in Table 15.3 (identical to Column 1, marked
“∗”, in Table 15.5) given this table’s marginal totals is

(
9
1

)(
7
5

)

(
16
6

) = 0.0236

The one-sided p-value is the sum of this probability and the probability, 0.0009, of
the more extreme table 0 on the same tail of the distribution.
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Table 15.5 All possible 2×2 tables with the same margins as the observed glasses table. In these
tables glasses denotes “wears glasses” and del denotes “delinquent.” We show the probabilities
of each under the assumption of a hypergeometric distribution for the [1,1] position and the
common row and column cell margins. The observed table 1 is marked with “∗” and the more
extreme tables in the same tail 0 and opposite tail 6 are marked “<”. The mosaic plots of each
of the tables are shown in Figure 15.5. The probabilities of each of the tables are graphed in
Figure 15.6.

[1,1] cell count

glasses 0 1 2 3 4 5 6
del no.del del no.del del no.del del no.del del no.del del no.del del no.del

glasses 0 6 1 5 2 4 3 3 4 2 5 1 6 0
no.glasses 9 1 8 2 7 3 6 4 5 5 4 6 3 7

probability 0.0009 0.0236 0.1573 0.3671 0.3304 0.1101 0.0105
which < ∗ <

table

delinquent

w
ea

re
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0

delinq

no
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s

non.del

1

delinq non.del

2

delinq non.del

3

delinq non.del

4

delinq non.del

5

delinq non.del

6

delinq non.del

Fig. 15.5 All possible 2×2 tables with the same margins as the observed glasses table.
The numerical values corresponding to this figure are in Table 15.5. The observed table is Table 1.
In each table we are comparing the proportion of glasses within delinq to the proportion of
glasses within non.del. The widths of each bar are proportional to the count of people in that
category of delinquent. The heights are percents of wearer within that category of delinquent
and therefore add up to 100% in each column.

0.0009 0.0236 0.1573 0.3671 0.3304 0.1101 0.0105

0.0

0.1

0.2

0.3

0 < 1 * 2 3 4 5 6 <

observed more extreme* <

Fig. 15.6 Probabilities for all possible 2×2 tables with the same margins as the observed glasses

table.
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Table 6, the more extreme on the opposite tail of the distribution, has probability
(
9
6

)(
7
0

)

(
16
6

) = 0.0105

The two-sided p-value is the sum of the probabilities of the observed table and
both more extreme tables, 0.0236 + 0.0009 + 0.0105 = 0.0350. The R code for the
probability calculations is included in file HHscriptnames(15).

15.3 Simpson’s Paradox

Simpson’s paradox, a counterintuitive situation, occurs when the presence of a third
variable is unexpectedly responsible for a change, or even reversal, of the relation-
ship between two categorical variables. The following example taken from Blyth
(1972), with dataset data(blyth), illustrates this phenomenon.

The data, including the margin summed over location, are shown in Table 15.6
and Figure 15.7. A medical researcher selected 11,000 human subjects at location
A and 10,100 subjects at location B. At A, 1,000 of the subjects were randomly
assigned to the standard treatment (standard) and the remaining 10,000 subjects
were assigned to a new treatment (new). At B, 10,000 of the subjects were ran-
domly assigned to standard and the remaining 100 subjects were assigned to new.
Eventually, each subject was classified as not-survived (not) or survived (survive).

Table 15.6. The intent is to show for each Location that the percentage surviv-
ing with the new Treatment is larger than with the standard treatment, but that

Table 15.6 Blyth’s data illustrating Simpson’s Paradox. Within each location (A and B), the new
treatment has a higher survival rate than standard treatment. Summed over locations (A&B com-
bined), new has a lower survival rate than standard. We show several different style graphs of the
Counts and Proportions for this dataset in Figure 15.7.

Location
A B A&B combined

Summary Survival standard new standard new standard new
Count not 950 9000 5000 5 5950 9005

survive 50 1000 5000 95 5050 1095

Percent not 95 90 50 5 54 89
survive 5 10 50 95 46 11
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the reverse is true when the two Locations are combined. This portrayal fails for
these data because it is not possible to distinguish the very small counts 5, 50, and
95 in three of the eight cells in Table 15.6 when they are displayed on a common
numerical scale with counts ranging from 950 to 9,005 in the table’s other cells.

The paradox is better communicated by Figure 15.7 panels b,c,d,f which graph
the percentages themselves. We observe that in Location A, the percent surviving
following the new Treatment was 10% as compared to 5% with the standard treat-
ment. In Location B, the new Treatment improved the survival percentage to 95%
from 50% for the standard Treatment. It seems that the new Treatment was very
successful. Now look at the summary results for both Locations combined. The
survival rate for the standard Treatment is 46%, but it is only 11% for the new
Treatment. The combined results suggest that the new Treatment is a disaster!

The substantive reason for this finding is that the subjects in Location A were
much less healthy than those in B and the new Treatment was given mostly to
subjects in A, where it could not be expected to fare as well as with subjects in B.
That is, the factors Treatment and Location are not independent. When this is so, it
can happen as here that

P(survive | new) < P(survive | standard)

while both

P(survive | new ∩ A) ≥ P(survive | standard ∩ A)

and

P(survive | new ∩ B) ≥ P(survive | standard ∩ B)

corresponding to .11 < .46 but .10 > .05 and .95 > .50 in this example.

The Percent panels b,c,d,f of Figure 15.7 display the disparity better than the
Count panels a,e because they transform the observed data from the scale reported
by the client to the proportion scale, a scale in which the reversal is visible. In the
proportion scale, most strongly in the mosaic plot in Panel d, we can easily see
that the combined location information is almost the same as the B–standard and
A–new information. In retrospect we can also see the same information in the Count
panels. We can explain it by noting that there is almost no data in the A–standard
and B–new cells; hence the combined information really is just the B–standard
and A–new information plus a little noise.

When analyzing contingency table data, we should be alert to the possibility
illustrated in this example that results for tables individually can differ from those
when these tables are combined.

What is the resolution in situations such as this where individual results contradict
combined results? Almost always, the individual results have more credence be-
cause combining such individuals cannot be adequately justified. In Blyth’s example,
the disparity between individual and combined results could have been attributable
to different baseline health status of the patients at the two locations. Or it could be
an artifact of the radically different treatment allocation patterns at the two locations.
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Fig. 15.7 Blyth’s data illustrating Simpson’s paradox. Within each location (A and B), the new
treatment has a higher survival rate than standard treatment. Summed over locations, new has a
lower survival rate than standard. We note that the combined location information is almost the
same as the B–standard and A–new information. The great disparity in counts among the four
Location–Treatment groups makes it difficult to see the survival rates in the stacked bar chart in
Panel a. The rates are easier to see in the stacked bar chart of percents in Panel b. They are less
easy to see in the bar chart of only survive rates in Panel c—these bars are identical to the bottom
bars in Panel b, but the visual sense of proportion is missing.
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d. Mosaic plot of Counts and Percents

e. Likert Plot of Counts
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f. Likert Plot of Percents
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Fig. 15.7 continued The mosaic plot in Panel d shows three summaries: Counts of treat-
ment assignments—as widths of each set of bars, Percents surviving conditional on Location–
Treatment—as the relative heights of the bars in each Location–Treatment combination, and
Counts of each Location–Treatment combination—as areas of each rectangle. In Panel e, the Likert
plot of Counts, we again can barely see the B–new bars. In Panel f, the Likert plot of Percents, we
print the observation counts for the Location–Treatment combinations above the bars. In the Likert
plots (diverging stacked barcharts), the not survive values are shown diverging down from zero.
In the other plots, the vertical range is from 0% to 100% and the not survive values are stacked
above the survive values.
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Simpson’s paradox is the discrete analogue of the ecological fallacy discussed in
Section 4.2. It is also related to the need to examine simple effects in the presence of
interaction of qualitative factors, discussed in Chapters 12 to 14, since both problems
refer to the importance of distinguishing overall conclusions from conclusions for
subgroups.

15.4 Relative Risk and Odds Ratios

Analysis of data arranged in a 2×2 table is equivalent to comparing two proportions.
However, analyzing the difference p1 − p2 via a CI or test as outlined in Chapter 5
is often not an appropriate way to compare them. Instead a measure of relative
difference is appropriate. Consider two cases, the first with p1 = .02 and p2 = .07
and the second with p1 = .50 and p2 = .55. In both cases, p2− p1 = .05. However, in
the first case, p2 is 250% more than p1, but in the second case p2 is only 10% more
than p1, and from this point of view it is inadequate to merely consider differences
of proportions, particularly proportions close to either 0 or 1.

We discuss two additional measures for comparing two proportions. The first, the
relative risk, is simply the ratio of the two proportions, p̂1/p̂2.

The odds ratio is a widely used measure of relative difference. It is more infor-
mative than a chi-square test for a 2 × 2 table because it measures the magnitude
of difference between two proportions. Unlike the chi-square test, the odds ratio is
minimally affected by the size of the sample.

Based on the definition of odds in Equation (3.2), if p̂ is an estimated probability
of success, the estimated odds in favor of success are ω̂ = p̂/(1− p̂). For comparing
two estimated proportions, p̂1 and p̂2 in a 2 × 2 contingency table, the estimated
ratio of two odds, the odds ratio, is

Ψ̂ = ω̂2/ω̂1 (15.5)

A quick way to hand-calculate the estimated odds ratio is Ψ̂ = (n11n22)/(n21n12),
and for this reason the odds ratio is also known as the cross-product ratio.

If the odds ratio exceeds 1 so does the relative risk, and conversely.

15.4.1 Glasses (Again)

For example, reconsider the data of Section 15.2.1. The relative risk is
(

8
10

)

(
1
6

) = 4.8
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This says that based on these data, nonwearers of glasses are four times more likely
to become delinquent than wearers of glasses.

The odds ratio is

Ψ̂ =

⎛⎜⎜⎜⎜⎜⎝
5
7

1 − 5
7

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1
9

1 − 1
9

⎞⎟⎟⎟⎟⎟⎠

= 20

This means that the odds that a nondelinquent wears glasses are estimated to be
20 times the odds that a delinquent wears glasses. Alternatively, the odds that a
delinquent wears glasses are estimated as 1/20 times the odds that a nondelinquent
wears glasses. If this ratio had been maintained for a larger sample, an implication
might have been that police needn’t pay much attention to boys wearing glasses.

Often investigators report the log of the odds ratio since the change in the
reference group simply reverses the sign of the log odds: ln(20) = 2.996 and
ln

(
1

20

)
= −2.996.

15.4.2 Large Sample Approximations

A useful property of both the odds ratio and the relative risk is that for large sample
sizes, the log of the estimated odds ratio and the log of the estimated relative risk
are approximately normally distributed.

15.4.2.1 Odds Ratio

From Agresti (1990) Equation (3.15) we find the log of the estimated odds ratio is
approximately normally distributed

ln(Ψ̂ ) ∼ N
(
ln(Ψ ), σ2

ln(Ψ̂ )

)
(15.6)

with mean equal to the log of the population odds ratio and estimated variance

σ̂2
ln(Ψ̂ )
=

1
n11
+

1
n12
+

1
n21
+

1
n22

(15.7)

These facts lead to large sample confidence intervals and hypothesis tests for odds
ratios. A test of H0: ln(Ψ ) = 0, or equivalently, Ψ = 1, is based on
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zcalc =
ln(Ψ̂ )

√
1

n11
+ 1

n12
+ 1

n21
+ 1

n22

An approximate 100(1 − α)% confidence interval on ln(Ψ ) is

CI
(
ln(Ψ )

)
= ln(Ψ̂ ) ± z α

2

√
1

n11
+

1
n12
+

1
n21
+

1
n22
= (L, U) (15.8)

If we denote this interval by (L, U), the approximate confidence interval on the odds
ratio Ψ21 is (eL, eU).

15.4.2.2 Relative Risk

From Agresti (1990) Equation (3.18) we find the log of the estimated relative risk is
approximately normally distributed

ln( p̂1/p̂2) ∼ N
(
ln(p1/p2), σ2

ln(p̂1/ p̂2)

)
(15.9)

with mean equal to the log of the population relative risk and estimated variance

σ̂2
ln(p̂1/ p̂2) =

√
1 − p1

p1 n1
+

1 − p2

p2 n2
(15.10)

These facts lead to large sample confidence intervals and hypothesis tests for relative
risks. A test of H0: ln( p̂1/p̂2) = 0, or equivalently, p̂1/p̂2 = 1, is based on

zcalc =
ln( p̂1/p̂2)

√
1−p1

p1n1
+

1−p2

p2n2

An approximate 100(1 − α)% confidence interval on ln(p̂1/p̂2) is

CI
(
ln( p̂1/p̂2)

)
= ln( p̂1/p̂2) ± z α

2

√
1 − p1

p1n1
+

1 − p2

p2n2
= (L, U) (15.11)

If we denote this interval by (L, U), the approximate confidence interval on the
relative risk Ψ21 is (eL, eU).
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15.4.3 Example—Treating Cardiac Arrest
with Therapeutic Hypothermia

Holzer (2002) supervised a multicenter trial of patients who were randomly ass-
igned to receive or not receive therapeutic hypothermia (lowered body temperature)
to assist in recovery following resuscitation from cardiac arrest. Six months after
cardiac arrest, patients were classified as having a favorable neurologic outcome or
not. Of the 136 patients treated with hypothermia, 75 had a favorable neurological
outcome. Of the 137 patients not treated with hypothermia, 54 had a favorable neu-
rological outcome (see Table 15.7 and Figure 15.8 for the counts and Figure 15.9 for
the odds and log of the odds). All patients received standard treatment for cardiac
arrest apart from hypothermia and the treatment was blinded from the assessors of
the outcome.

Table 15.7 Results of therapeutic hypothermia investigation Holzer (2002).

Favorable

neurological

outcome

Yes No Total

Treated 75 61 136

Control 54 83 137

For a patient who receives the therapeutic hypothermia treatment, the estimated
odds in favor of a favorable neurologic outcome are

ω̂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

75
136

1 − 75
136

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈ 1.23

For a patient who does not receive this treatment, the estimated odds in favor of a
favorable neurological outcome are

ω̂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

54
137

1 − 54
137

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈ 0.65

The odds and log odds are plotted in Figure 15.9.
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Fig. 15.9 Barchart of odds and barchart of logit.

The estimated odds ratio is

Ψ̂ =
ω̂2

ω̂1
=

(75)(83)
(54)(61)

≈ 1.8898

The reader can verify that the estimated standard deviation of the log of the odds
ratio is 0.246, and that this leads to an approximate 95% confidence interval
(1.168, 3.058) for the population odds ratio.

For the hypothermia example with α = .05, we have

CI
(
ln(Ψ )

)
= ln(1.8898) ± 1.96

√
1
75
+

1
54
+

1
61
+

1
83
≈ (0.1552, 1.1177)

We therefore have an approximate confidence interval on the odds ratio of

CI(Ψ ) ≈ (1.168, 3.058)

This means that the odds of a favorable neurological outcome for a patient
receiving the therapeutic hypothermia treatment are estimated to be between 1.17
and 3.06 times the odds of a favorable neurological outcome for a patient not re-
ceiving this particular treatment. Further, the calculated z-statistic for a test of the
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one-sided alternative hypothesis that the population odds ratio exceeds 1 is 2.592,
with corresponding p-value less than 0.01. Therefore, there is strong evidence that
the therapeutic hypothermia treatment improves probability of a successful neuro-
logical outcome.

For fixed probability of favorable outcome for control patients of 54/137 =
.3942, corresponding to fixed odds of favorable outcome of .3942/.6058 = .6506,
the point estimate for the odds of favorable outcome for treated patients is given
by 1.8898×.6506 = 1.2295, and an estimated confidence interval for the odds by
(1.168×.6506, 3.058×.6506) = (0.7599, 1.9895). The corresponding point and int-
erval estimates for the probabilities of outcome for treated are

estimate favorable

point 1.2295/2.2295 = 0.5515

interval (0.7599/1.7599, 1.9895/2.9895) = (0.4318, 0.6655)

The point estimate of the probability of favorable outcome for treated is exactly the
observed proportion 75/136=0.5515, and the confidence interval of the proportion
of favorable outcomes excludes the observed proportion for the control group.

We can extend this discussion by assuming any fixed probability of favorable
outcome for treatment and then calculating the confidence interval for the probabil-
ity of favorable outcome for control. We do so in Figure 15.10 for the set of fixed
probabilities p1 = (0, .05, . . . , 1).
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Fig. 15.10 Confidence intervals for P(favorable | treated) in the hypothermia example given the
odds ratio. The confidence intervals are calculated from an assumed P(favorable | control) and the
given odds ratio using the odds ratio formula in Equation 15.8. Details for P(favorable | control) =
54/137 = .3942 and P(not.favorable | control) = .6058, corresponding to given odds of favorable
outcome of .3942/.6058 = .6506, are shown in Section 15.4.3. Symmetrically, we can assume any
fixed probability of favorable outcome for control and then calculate the confidence interval for the
probability of favorable outcome for treatment.

15.5 Retrospective and Prospective Studies

Consider two possible experiments to assess whether vitamin C supplementation
prevents occurrences of the common cold.

In the first experiment we select 100 people who have had a cold during the past
two months and 100 people who have not had a cold during the past two months.
We then ask these people whether or not they have taken a daily vitamin C sup-
plement during this period. In the second experiment we select 200 volunteers,
assigning them to take no vitamin C supplementation apart from that offered by
the study. We randomly assign 100 of these subjects to receive the study’s vitamin
C supplement and the other 100 subjects to receive a placebo, indistinguishable by
these subjects from vitamin C. Then, two months later, we ask the subjects whether
or not they have had a cold since the experiment began.

The first experiment is an example of a retrospective study, also called a case–
control study. Subjects having a condition are called cases, subjects not having a
condition are termed controls, and subjects are cross-classified with a risk factor
(present or absent). In the above example, the risk factor is presence or absence of
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vitamin C supplementation. In retrospective studies, the subjects are selected after
the events in question have already occurred, in this case having contracted one or
more colds. Such studies are common in medical research because they generally
assure a larger number of subjects than prospective studies.

The second experiment is an example of a prospective study, also known as a
cohort study. Samples are taken from a population of subjects classified according to
two risk factors (events) defined prior to initiating sampling, in this case assignment
to vitamin C or placebo. Such studies often require that subjects be followed for a
period of time until the subjects are determined to have a condition or not.

In the cold example, the analysis of the retrospective study can be done imme-
diately, but analysis of the prospective study must wait two months to see if colds
develop. Prospective studies often run over a long time period; 5 to 10 years is not
unusual. It is not uncommon for subjects to withdraw or be lost to the study. For this
reason, it is more difficult to obtain sizeable samples from prospective studies than
from retrospective ones. Prospective studies are more informative than retrospective
studies. Investigators have more control over the risk factor in prospective studies
than in retrospective studies. In prospective studies investigators are often able to
obtain information on important confounding variables that bear on the response.
Such information is usually unavailable in retrospective studies. The experiment
discussed in Section 15.4.3 is an example of a prospective study.

Odds ratios are particularly important in the analysis of experiments involving
retrospective studies. In a retrospective study it is unlikely that the cases can be con-
sidered a random sample of all persons afflicted with the condition. In the context
of our example, we cannot be sure that the 100 selected people with colds are rep-
resentative of all people with colds. Therefore, in such a study we cannot estimate
the proportion of people having the risk factor who have the condition, or the pro-
portion of people without the risk factor who have the condition. Nevertheless, in a
retrospective study we are able to measure the odds ratio and we can claim that the
sample odds ratio estimates the population odds ratio.

15.6 Mantel–Haenszel Test

Analysts are often called on to interpret k 2×2 contingency tables, related to one
another by the fact that each table has the same row and column categories. The
k tables usually represent the k levels of a third (categorical) factor in addition to
the two-level factors specified by rows and columns. For example, we look in Ta-
ble 15.8 and Figure 15.11 at data studying the effectiveness of the Salk vaccine for
polio protection for k = 6 different age groups. Each of the k = 6 2×2 tables in the
“Observed” column shows the response (paralysis or no.paralysis) for sub-
jects who were or were not vaccinated (vac or no.vac). The complete discussion
of the dataset and the table are in Section 15.7.
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In earlier sections of this chapter we consider procedures for testing indepen-
dence of the row and column categories for individual tables. We are now interested
in testing the hypothesis that all k tables show the same pattern of relation of the
rows to the columns: Either all tables show independence of rows and columns or
all show the same dependency structure.

The Mantel–Haenszel test, also referred to as the Cochran–Mantel–Haenszel test,
tests the hypothesis that row vs column independence holds simultaneously in each
table. It is designed to be sensitive to an overall consistent pattern. It has low power
for detecting association when patterns of association for some strata are in the
opposite direction of other strata.

Let us now look at the algebra of the test statistic. Since we now have k 2 × 2
tables, we require a third subscript on the n’s. Let the kth table be

n11k n12k n1.k

n21k n22k n2.k

n.1k n.2k n..k

Also define

ei jk =
(ni.k) (n. jk)

n..k

to be the expected (i, j) cell count under independence in table k, and

V(n11k) =
n1.k n2.k n.1k n.2k

n2
..k (n..k − 1)

=
e11k e22k

(n..k − 1)

to be the estimated variance of n11k under the assumption of a hypergeometric dis-
tribution of a 2×2 table with fixed margins. Then we make a normal approximation
and work with

n11k ∼ N
(
e11k, V(n11k)

)

The sum
∑

k n11k is also approximately normal with mean
∑

k e11k and variance∑
k V(n11k). We therefore use as the test statistic the quantity

M2 =

[∑
k

n11k −∑
k

e11k

]2

∑
k

V(n11k)
(15.12)

and the p-value of the test is 1 − Fχ2 (M2 | 1), the corresponding tail percentage of
the chi-square distribution with 1 df.
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Sometimes we will wish to use a variant of M2 with a continuity correction and
then we use

M2 =

[ ∣∣∣∣∣∣
∑
k

n11k −∑
k

e11k

∣∣∣∣∣∣ − .5

]2

∑
k

V(n11k)
(15.13)

Inspecting the form of M2 tells us that significance can occur under either of two
conditions:

1. Most or all tables must have the observed (1, 1) cell count at least as large as
expected under the null hypothesis.

2. Most or all tables must have the observed (1, 1) cell count at most as small as
expected under the null hypothesis.

Equivalently, most or all of the tables must have an odds ratio either

1. at least 1, or

2. at most 1.

Note that M2 is not the same as the chi-square statistic one gets from the 2× 2 table
formed as the sum of the k tables.

15.7 Example—Salk Polio Vaccine

Chin et al. (1961), also in Agresti (1990), discuss 174 polio cases classified by age of
subject, whether or not the subject received the Salk polio vaccine, and whether the
subject was ultimately paralyzed by polio. The dataset is in data(salk). We wish
to learn if symptom status (paralysis or not) is independent of vaccination status
after controlling for age.

Each of the k=6 “Observed” subtables in Table 15.8, one for each of k=6 age
ranges, shows two estimated probabilities of no paralysis, for subjects without
vaccine and subjects with vaccine. In the “0–4” subtable, for example, we see
pno.vac(no.par)=.294 and pvac(no.par)=.588. In all cases the observed proportion
with vaccine is higher. The “chi-square” column shows the ordinary contingency
table chi-square for each subtable. The four subtables with older subjects do not have
many observations and do not strongly support the conclusion that vaccine is better.
The Cochran–Mantel–Haenszel test provides a way of combining the information,
properly weighted, from all six subtables to get a stronger conclusion. The “O”, “E”,
and “O−E” columns show the [1,1] or [no.vac,no.par] position from the “Observed”
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and “Expected” tables. “O−E” is the weighted difference of the row probabilities
Oi−Ei = wi(pno.vac(no.par) − pvac(no.par)) [with weights wi = 1/(1/n1 + 1/n2) for
the ith subtable, where n j is the total count on the jth row]. While we choose to focus
on the counts of the [1,1] cells, an identical conclusion would be reached if the focus
were on any of the three other cells of the 2 × 2 table.

The “var” column shows the variance of “O−E” under the assumption of the
hypergeometric distribution for Oi assuming both row and column margins of the ith

table are fixed. The “dev” column is a standardized deviation, (O−E)/
√

var, and the
“mh” column is the squared standardized deviation. We plot the standardized devi-
ations in Figure 15.12. The squared standardized deviation is the Mantel–Haenszel
statistic for the subtable. The MH statistic for a subtable is very close to the chi-
square statistic.

The Cochran–Mantel–Haenszel (CMH) test for the set of all k=6 subtables is
constructed as a weighted combination of the same components used for the sub-
table statistics. Since each “O−E” is a random variable with mean and variance, we
use Equations (3.8) and (3.9) to combine them. The CMH statistic is constructed
from the sum of the “O−E” for the subtables, divided by the standard deviation of
the sum, which is the square root of the sum of the variances:

∑
(O−E)/

√∑
(var).

Then the whole is squared. Thus the CMH statistic for this example is

(∑
(O−E)

)2

∑
(var)

=
(−5 − 4.20 − 0 − 2.11 − 1.44 − .33)2

(4.25 + 2.65 + .67 + 1.12 + 1.44 + .22)
= 16.54

For each of the age ranges with a sufficiently large sample, Fisher’s exact test
performed on the 2 × 2 tables, shown in Table 15.9, detects a positive association
between symptom and vaccination status: Persons vaccinated had a significantly
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Fig. 15.12 Standardized deviations for individual table Mantel–Haenszel values.
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lower incidence of paralysis than persons not vaccinated. In addition, each of the
six 2 × 2 tables has an odds ratio

(
(no.par/par)no.vac

)
/
(
(no.par/par)vac

)
of at most 1.

Therefore, the Mantel–Haenszel test can be used. The Mantel–Haenszel test statis-
tic has value 16.54, which is highly significant. This means that the relationship
between symptom and vaccination status is consistent over all age ranges.

15.8 Example—Adverse Experiences

Evaluation of adverse experience data is a critical aspect of all clinical trials. This
dotplot of incidence and relative risk, and the specific example, are taken from Amit
et al. (2008). We proposed graphics for exploratory data analysis or signal identi-
fication, and for adverse experiences (AEs, also read as adverse events) that may
result from a compound’s mechanism of action or events that are of special interest
to regulators.

Figure 15.13 is a two-panel display of the AEs most frequently occurring in the
active arm of the study. The first panel displays their incidence by treatment group,
with different symbols for each group. The second panel displays the relative risk of
an event on the active arm relative to the placebo arm, with 95% confidence intervals
(as defined in Equation 15.11) for a 2×2 table. The panels have the same vertical
coordinates and different horizontal coordinates. R code for the construction of this
plot is available as the AEdotplot function in the HH package.

Table 15.9 Run Fisher’s exact test on each of the 2 × 2 tables in the “Observed” column of
Table 15.8. Each of the six 2 × 2 tables has an odds ratio of at most 1. Therefore, the Mantel–
Haenszel test can be used.

> data(salk)

> salk2 <- tapply(salk$Freq, salk[c(2,3,1)], c)

> class(salk2) <- "table"

> ## salk2 ## salk2 is structured as a set of 2x2 tables

> lt <- apply(salk2, 3, fisher.test, alternative="less")

> ## odds ratio and p-value

> sapply(lt, ‘[‘, c("estimate","p.value"))

0-4 5-9 10-14 15-19 20-39 40+

estimate 0.2973 0.1669 1 0.1098 0.3645 0

p.value 0.01359 0.009521 0.7381 0.05656 0.2116 0.6667
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Fig. 15.13 Adverse Events dotplot for the clinical trial discussed in Amit et al. (2008). The left
panel shows the observed percents of patients who reported each adverse event. The center panel
shows the relative risk of Drug B relative to Drug A with 95% confidence intervals for a 2×2 table.
By default, the AEs are ordered by relative risk so that events with the largest increases in risk for
the active treatment are prominent at the top of the display.

If the display is not for regulatory purposes, intervals showing ±1 s.e. may be
preferred. If confidence intervals are presented, multiple comparison issues should
be given consideration, particularly if there is interest in assessing the statistical
significance of differences of the relative risk for so many types of events. However,
the primary goal of this display is to highlight potential signals by providing an
estimate of treatment effect and the precision of that estimate. The criteria for inc-
luding specific AEs in the display should be carefully considered. In Figure 15.13,
the criterion used was that AEs have at least 2% incidence in the active arm.
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The graphical presentation of this form of data has a very strong impact. The
AEs are ordered by relative risk so that events with the largest increases in risk for
the active treatment are prominent at the top of the display. Unlike with a table, it
is immediately obvious to the reader which are the most serious AEs. This could be
reversed to put the largest increases at the bottom, or the order could be defined by
the actual risk in one of the treatment arms rather than the relative risk. Depending
on the desired message, other sorting options include: magnitude of relative risk,
incidence of event in a given treatment arm, or total incidence of events across all
arms. We do not recommend ordering alphabetically by preferred term, which is the
likely default with routine programming, because that makes it more difficult to see
the crucial information of relative importance of the AEs.

15.9 Ordered Categorical Scales, Including Rating Scales

Ordered Categorical Scales, including Rating scales such as Likert scales, are very
common in marketing research, customer satisfaction studies, psychometrics, opin-
ion surveys, population studies, and numerous other fields. We recommend diverg-
ing stacked bar charts as the primary graphical display technique for Likert and
related scales. We also show other applications where diverging stacked bar charts
are useful. Many examples of plots of Likert scales are given. We discuss the per-
ceptual issues in constructing these graphs.

An ordered categorical scale is an ordered list of mutually exclusive terms. Or-
dered categorical scales are used, for example, in questionnaires where each respon-
dent is asked to choose one of the terms as a response to each of a series of questions.
The usual summary is a table that shows the number of respondents who chose each
term for each question. The summary table is a special case of a contingency ta-
ble where the rows are individual questions and the columns are the ordered set of
potential responses.

A rating scale is a form of psychometric scale commonly used in questionnaires.
The most familiar rating scale is the Likert scale (Likert, 1932), which consists of a
discrete number of choices per question among the sequence: “strongly disagree”,
“disagree”, “no opinion”, “agree”, “strongly agree”. Likert-type scales may use
other sequences of bipolar adjectives: “not important” to “very important”; “evil”
to “good”. These scales sometimes have an odd number of levels, permitting a neu-
tral choice. Sometimes they have an even number of levels, forcing the respondent
to make a directional choice. Some ordered categorical scales are uni-directional—
age ranges or population quantiles, for example—for which negative and neutral
interpretations are not meaningful.

For concreteness we present in Section 15.9.1 a dataset from a survey for which
a natural display is a coordinated set of diverging stacked bar charts. We introduce



568 15 Bivariate Statistics—Discrete Data

the dataset by showing and discussing a multi-panel plot of the entire dataset. Then
we move to the construction and interpretation of individual panels.

15.9.1 Display of Professional Challenges Dataset

Our primary data example is from an Amstat News article (Luo and Keyes, 2005)
reporting on survey responses to a question on job satisfaction. A total of 565 res-
pondents replied to the survey. Each person answered one of five levels of agreement
or disagreement with the question “Is your job professionally challenging?” The res-
pondents were partitioned into nonoverlapping subsets by several different criteria.
For each of the criteria, the original authors were interested in comparing the percent
agreement by that criterion’s groups.

In Figure 15.14, we show the complete results of the survey as a coordinated set
of diverging stacked bar charts. In this section we concentrate on the appearance of
the plot for its function of representing the meaning of the dataset.

There are six panels in the plot. The top panel shows “All Survey Respondents”.
The remaining panels show different partitions of the 565 respondents. In the second
panel from the top, for example, the criterion name “Employment sector” is in the
left strip label. The respondents self-identify to one of the five employment groups
named in the left tick labels. The number of people in each group is indicated as the
right-tick label. Each stacked bar is 100% wide. Each is partitioned by the percent
of that employment group who have selected the agreement level indicated in the
legend below the body of the plot. The legend is ordered by the values of the labels.
Darker colors indicate stronger agreement. Gray indicates the neutral position, in
this example, “No Opinion”. The bar for the neutral position is split, half to the left
side of the vertical zero reference line and half to the right side. The reference line
is placed behind the bars to prevent it from artificially splitting the neutral bar into
two pieces. The default color palette has red on the left for disagreement and blue
on the right for agreement. See Section 15.9.2 for a discussion of color palettes.

The intent of this plot is to compare percents within subgroups of the survey
population; consequently we made all bars have equal vertical thickness. The panel
heights are proportional to the number of bars in the panel. The x-axis labels are
displayed with positive numbers on both sides. The bars within each panel have
been sorted by the percent agreeing (totaled over all levels of agreement). We usually
prefer horizontal bars, as shown here, because the group labels and the names of the
groups are easier to read when they are displayed horizontally on the y-axis.
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Fig. 15.14 Survey responses to a question on job satisfaction (Luo and Keyes, 2005). A total of
565 respondents replied to the survey. Each person answered one of five levels of agreement or
disagreement with the question “Is your job professionally challenging?” Each panel of the plot
shows a breakdown of the respondents into categories defined by the criterion listed in its left strip
label.
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Table 15.10 The respondents have been divided into five employment categories. The rows (em-
ployment categories) are displayed in the original order: alphabetical plus other. Columns are dis-
played sequentially, with disagreement to the left and agreement to the right.

Strongly No Strongly
Disagree Disagree Opinion Agree Agree

Employment Sector
Academic (nonstudent) 0 5 8 78 162
Business and industry 0 11 5 88 72
Federal, state, an local government 2 3 5 34 27
Private consultant/self-employed 0 0 2 15 11
Other (including retired, students, 2 2 5 15 10

not employed, etc.)

15.9.2 Single-Panel Displays

In this section, we look at the data for just the Employment panel of the full plot in
Figure 15.14. Table 15.10 shows the respondents divided into five employment cat-
egories and the counts for each agreement level within each employment category.

Diverging stacked bar charts are easily constructed from Likert scale data. Each
row of the table is mapped to a stacked bar in a bar chart. Usually the bars are
horizontal. The counts (or percentages) of respondents on each row who agree with
the statement are shown to the right of the zero line in one color; the counts (or
percentages) who disagree are shown to the left in a different color. Agreement
levels are coded from light (for closer to neutral) to dark (for more distant from
neutral). The counts (or percentages) for respondents who neither agree nor disagree
are split down the middle and are shown in a neutral color. The neutral category is
omitted when the scale has an even number of choices. Our default color palette is
the (Red–Blue) palette constructed by the diverge_hcl function in the colorspace
package in R. The colors in the diverging palettes have equal intensity for equal
distances from the center. The base colors Red and Blue have been chosen to avoid
ambiguity for those with the most prevalent forms of color vision deficiencies.

It is difficult to compare lengths without a common baseline; see pages 54–57
of Robbins (2013) and the reference therein to Cleveland and McGill (1984). We
are primarily interested in the total count (or percent) to the right or left of the zero
line; the breakdown into strongly or not is of lesser interest so that the primary
comparisons do have a common baseline of zero.

Figure 15.15 shows a direct translation of the counts in Table 15.10 to a plot. The
strongest message in this presentation is that the sample has a very large percent-
age of academics. It is harder to compare relative proportions in the employment
categories because the total counts in each row are quite disparate.
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Fig. 15.15 This plot is a direct translation of the numerical values in Table 15.10 to graphical
form. Blue is agree, red is disagree, gray is no opinion. The strongest message in this presentation
is that the sample has a very large percentage of academics.
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Fig. 15.16 In this variant of the plot, we display the row percents. We don’t want to lose infor-
mation about the uneven selection of respondents from the employment sectors so we display the
counts as the right axis labels. Now we see that “Academic (nonstudent)” stands out as the largest
percentage of dark blue on the graph.

Figure 15.16 displays the percents within each row. Now it is easy to see that a
large majority of the people in all employment categories have a positive answer to
the survey question. We don’t want to lose the disparity in row totals, so we use the
row count totals as the right-axis tick labels.

For plots such as Figure 15.16 with a single panel, and also for multiple-panel
plots where the rows are distinct in each panel, we can still do better. Figure 15.17
shows the same scaling as Figure 15.16, but this time the row order is data-
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Fig. 15.17 In our third presentation of the same table, we now sort the rows of the table by the
total percent agree (dark blue + light blue + 1

2 gray). Data-dependent ordering is usually more
meaningful than alphabetical ordering for unordered categories.

dependent. Rows are now ordered by the total percent of positive responses. This
allows the reader to recognize groupings among rows (in this example, groupings
of employment categories) that show similar responses.

15.9.3 Multiple-Panel Displays

Our illustration in Figures 15.15–15.17 is a single panel. It displays information
on a single question for a partition of the respondents into several groups based
on employment. Figure 15.14 is a multiple-panel display containing Figure 15.17
combined with other partitions of the same set of respondents.

15.9.3.1 One Question with Multiple Subsets of the Sample

Figure 15.14 shows responses to the same question for the same population of
respondents partitioned into several series of groups based on additional charac-
teristics.

The partitions have different numbers of groups. In order to retain the same ver-
tical spacing between parallel bars, the vertical space allocated for the panels must
differ. The different panels have been labeled by the name of the partitioning char-
acteristic. In this example the panels are identified by a left strip label. Within each
panel the bars have been sorted by the total percent of positive responses.
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15.9.3.2 One or More Subpopulations with Multiple Questions

Figure 15.18 is differently structured. The data are the responses to a survey spon-
sored by the New Zealand Ministry of Research Science and Technology (New
Zealand Ministry of Research Science and Technology, 2006). Here we have two
different sets of questions that have been asked of the same set of respondents.
Sometimes the respondents can be subdivided. If we had the data separately for
the Male and Female subsets, we could have a plot similar to Figure 15.18 but with
two columns of panels, left and right, one for each subset.

15.9.3.3 Common Structure at Multiple Times—Population Pyramids

Population pyramids are used in demographic studies and in epidemiological stud-
ies. The pyramid is a pair of back-to-back bar charts, one for males and one for
females. We display the population pyramid as a Likert-type scale with two levels,
male and female, for each age range. Figure 15.19 shows five pyramids at ten-year
intervals years 1939–1979, with the y-labels on both the left and right axes. A shiny
app that cycles through all years 1900–1979 is available by entering

shiny::runApp(system.file("shiny/PopulationPyramid",

package="HH"))

The data is from the USAage dataset in the latticeExtra package.

15.10 Exercises

15.1. Hand et al. (1994) revisit a dataset attributed to Karl Pearson, data(crime),
that examines the relationship between type of crime committed and whether the
perpetrator was a drinker or abstainer. Investigate whether these two classifica-
tions are independent, and if they are not, discuss the nature of the dependence.

15.2. Senie et al. (1981), also in Hand et al. (1994), investigate whether the fre-
quency of breast self-examination is related to age group. The data appear accessed
as data(selfexam). Do you agree that there is a relationship? If so, describe it.

15.3. Sokal and Rohlf (1981), later in Hand et al. (1994), concern an experiment
to determine the preference of invading ant colonies on two species of acacia tree.
A total of 28 trees were made available for the study, 15 of species A and 13 of
species B. Initially each tree was treated with insecticide to remove all existing
colonies. Then 16 ant colonies were invited to invade any of the trees they chose.
By construction, the 2 × 2 data, in data(acacia), have both margins fixed. Use
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Fig. 15.18 Two sets of questions have been asked of all respondents. Each set is presented in its
own panel.
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Fig. 15.19 Five population pyramids at ten-year intervals years 1939–1979. We can see the baby
boom start at the bottom of the population graph for 1949 and work its way up over time. We have
placed the age tick labels on both the left and right axes of the set of panels.
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Fisher’s exact test to determine if the ants have a significant preference for one
species over the other.

15.4. Fleiss (1981) presents the dataset in data(mortality) concerning mortality
following 37,840 live births to nonwhite mothers in New York City in 1974. In
the file, rows are birth weights, ≤2500 grams or >2500 grams, and columns are
outcomes one year after birth, dead or alive. 2500 grams is 5.5 pounds. Construct
and carefully interpret the sample odds ratio for these data and construct a 95%
confidence interval for the population odds ratio.

15.5. Wynder et al. (1958), later in Fleiss (1981), report a retrospective study of
factors associated with cancer of the oral cavity. In this study there were 34 women
with this cancer and 214 women, matched by age, without it. It was found that 24%
of the cases but 66% of the controls were nonsmokers. The dataset is available as
data(oral). Construct and carefully interpret the sample odds ratio for these data
and then construct a 95% confidence interval on the population odds ratio.

15.6. Braungart (1971) refers to data(political), also found in Bishop et al.
(1975), in which 271 college students of the 1960s who admitted to extreme politi-
cal leanings were cross classified according to the style of parental decision making
they received, authoritarian or democratic, and their political leaning, left or right.
Construct and carefully interpret the sample odds ratio for these data and also con-
struct a 95% confidence interval on the population odds ratio.

Table 15.11 Jury pool composition data for the Rotorua and Nelson districts.

Rotorua Nelson Combined

Maori Non-Maori Maori Non-Maori Maori Non-Maori

Jury pool 79 258 1 56 80 314
Others 8,810 23,751 1,328 32,602 10,138 56,353

15.7. Westbrooke (1998) discusses claims that Maori are underrepresented on juries
in districts in New Zealand. Jury pool composition data for the Rotorua and Nelson
districts are shown in Table 15.11, and accessed as data(jury), along with totals
for these two districts combined.

From this table it is easy to verify the following:

• The population of Rotorua is 27.0% Maori, but this district’s jury pool is only
23.4% Maori.

• The population of Nelson is 3.9% Maori, but this district’s jury pool is only 1.7%
Maori.
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• However, the combined population of these two districts is 15.3% Maori, but the
combined jury pools of these districts is 20.3% Maori.

Discuss whether Maori are indeed underrepresented on the juries of these two dis-
tricts.

15.8. Brochard et al. (1995) report a prospective study of patients with chronic
obstructive pulmonary disease, assessing the effect of noninvasive ventilation ther-
apy on reducing the need for subsequent invasive intubation. A total of 85 pa-
tients were recruited at five centers. The data are in Table 15.12 and dataset
data(intubate). The data in the file are arranged differently than in the table:
The first column is the center number; the second column entries are yes if received
ventilation therapy and no if didn’t receive this therapy; the third column entries
are yes if required invasive intubation and no if didn’t require invasive intubation;
and the entries in column 4 are the number of patients in the categories specified in
columns 1–3.

Compute the odds ratio at each center. Use the Mantel–Haenszel test to produce
a carefully stated conclusion of the combined data.

Table 15.12 Chronic Obstructive Pulmonary Disease.

Center
1 2 3 4 5

Ventilation invasive not invasive not invasive not invasive not invasive not
therapy intubation inv intubation inv intubation inv intubation inv intubation inv

ventilation 3 6 2 3 1 7 0 5 5 11
not vent 9 0 5 1 4 5 3 1 10 4



Chapter 16

Nonparametrics

16.1 Introduction

Most of the statistical procedures we’ve introduced in the previous 15 chapters
require an assumption about the form of a probability distribution, often the Normal
distribution. When such assumptions are unjustified, the consequences of the pro-
cedure are dubious at best. In situations where distributional assumptions cannot be
justified, even after a well-chosen data transformation, the analyst should consider
another approach.

Nonparametric statistical procedures are ones that do not require the assumption
of a specific probability distribution. (In contrast, procedures that do make distri-
butional assumptions are referred to as parametric procedures.) In exchange for
not requiring a detailed distributional assumption, nonparametric testing procedures
have less power, and nonparametric confidence intervals are wider than their para-
metric analogues in the same problem situation using the same error control. In
addition, the parameter(s) of interest in a nonparametric procedure may not be iden-
tical to those of corresponding parametric procedures. For example, we may use
a nonparametric procedure for comparing two population medians as a substitute
for a parametric procedure for comparing two means. For these reasons, parametric
procedures are preferred if their assumptions are reasonably well met.

In the previous chapters we have discussed a number of procedures for inferring
about one or more population means. Those procedures required assumptions that
underlying populations are normally distributed, at least approximately, and that
when inferring about the means of two or more populations, these populations have
a common variance. Often transformations such as those discussed in Chapter 4
can be used to make such assumptions tenable once the transformations have been
applied. Sometimes this is not possible, for example, when the data contain outliers
whose elimination cannot be justified. In such instances, a nonparametric approach
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may be considered. Our discussion here is limited to hypothesis tests. Analogous
confidence interval estimates cannot be described succinctly and are discussed in
Lehmann (1998) and Desu and Raghavarao (2003).

Many nonparametric procedures use statistics based on ranks of the data rather
than the data themselves. Such procedures require only that the data be on at least an
ordered scale. In contrast, parametric procedures generally carry the more stringent
requirement that the data be measured on an interval or ratio scale. The various scale
types are defined in Section 2.1.

We’ve actually encountered some nonparametric procedures in earlier chapters.
For example, the two-sample Kolmogorov–Smirnov goodness-of-fit test discussed
in Section 5.9 does not require that we specify the natures of the two populations
being sampled. In this chapter we introduce some additional commonly used non-
parametric procedures. Our examples include checks of the assumptions of com-
peting parametric procedures and comparisons of the nonparametric and parametric
results.

16.2 Sign Test for the Location of a Single Population

The example in Section 5.2.1 discusses a parametric approach to a problem involv-
ing data(vocab), concerning whether μ = 10 is consistent with a random sample
of 54 test scores. Since Figure 5.3 shows that the sample had one high outlier, there
was at least some doubt that the assumptions underlying the parametric analysis
were correct.

The nonparametric approach here is the sign test to assess the hypothesis that the
population median equals 10. If the population is not symmetric so that its mean and
median are not identical, then the analogy between the nonparametric and paramet-
ric inferences is imperfect. We look again at the data in Table 16.1.

The logic of this nonparametric test stems from the insight that if the population
median η is indeed 10, we would expect half of the sample values not exactly equal
to 10 to fall on either side of 10. If appreciably more than half exceed 10, this
suggests that the median exceeds 10. Let n be the number of sample items different
from 10 and m be the number of these exceeding 10. The formal test of

H0: η = 10

vs

H1: η > 10

is based on the distribution of a binomial random variable X with n trials and success
probability .5. The test has p-value = P(X ≥ m). The two-sided test, with the same
null hypothesis but having alternative hypothesis
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Table 16.1 p = P(X ≥ 49) = P(X ≥ 48.5) = 1 − FBi(48.5 | 50, .5) ≈ 410−14

> data(vocab)

> table(vocab)

vocab

9 10 11 12 13 14 15 16 17 19

1 4 13 7 9 9 4 5 1 1

> table(vocab$score - 10)

-1 0 1 2 3 4 5 6 7 9

1 4 13 7 9 9 4 5 1 1

> table( sign(vocab$score-10) )

-1 0 1

1 4 49

> pbinom(48.5, 50, .5, lower=FALSE)

[1] 4.53e-14

> 1 - pbinom(48.5, 50, .5)

[1] 4.53e-14

H1: η � 10

has p-value 2P
(
X ≥ max(n − m, m)

)
.

This test is called the sign test because it is based on the arithmetic signs of the
differences between the data and the null hypothesized median. Some authors refer
to it as the binomial test.

In data(vocab), 4 of the 54 scores equalled the null value η=10, and n=50
scores were not exactly equal to the null value of η=10. We observed m=49 scores
that exceeded 10 and n−m=1 score less than 10. If the null were true, then X comes
from the distribution Bin(n = 50, p = .5) with discrete density shown in Figure 16.1.
The one-sided p-value is the probability of observing 49 or more (that is, 49 or 50)
larger scores from this distribution. This probability is the sum of the probabilities
for the bars at 49 and 50. Therefore, the one-sided p-value is

P(X ≥ 49) = 1 − FBi(48 | 50, .5)

using the binomial distribution with n = 50 and p = .5. This number p ≈ 410−14 is
calculated in R by

pbinom(48.5, 50, .5, lower.tail=FALSE)
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Fig. 16.1 Panel a shows the Bin(n = 50, p = .5) discrete density. Panel b shows the same discrete
density on a log scale. Panel c magnifies (and truncates) the probability scale to emphasize that
there are nonzero values at x = 49 and x = 50. The p-value for the sign test is the probability that
a random selection from this distribution would yield the observed x = 49 or the larger x = 50.
From the graph we see that this is the very small number p ≈ 410−14.

p ≈ 410−14 is overwhelming evidence that the population median η exceeds 10,
consistent with the strong parametrically based conclusion in Section 5.2.1 that the
population mean μ exceeds 10.

The procedure we just developed is an example of an exact test or of a random-
ization test. In this form of testing procedure, a discrete model for the distribution of
the observed statistic under the null hypothesis is postulated. Then the probability
of obtaining the observed value (or larger) from that model is calculated and used
as the p-value of the test.
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16.3 Comparing the Locations of Paired Populations

Just as the parametric paired t-test is equivalent to a one-sample t-test on the pair
differences, the locations of paired populations can be compared by inferring about
the median of the population consisting of the differences (in a consistent direction)
between the two individual populations.

16.3.1 Sign Test

Exercise 5.13 requests a comparison of the population means of pre- and post-
treatment measurements based on a random sample of 48 patients. However, the
density and histogram plots of the post-treatment measurements in Figure 16.2 show
a number of both low and high outliers, suggesting that the post population may not
be close to normally distributed, and calling into question the validity of an anal-
ysis based on a two-sample t-test. Therefore, a nonparametric approach should be
considered.

We show the sign test for paired observations in Table 16.2. Analogous to
Section 16.2, let n be the number of pairs of observations, excluding tied pairs.
For testing against the one-sided alternative hypothesis that the post-treatment
median is less than the pretreatment median, let m be the number of sample pairs
where the post-treatment measurement is less than the pretreatment measurement.
Then for binomially distributed X with n trials and success probability 0.5, the
p-value is P(X ≤ m). For these data, n = 46, m = 15 and we use R to calcu-
late p =pbinom(15,46,.5) ≈ .0129. This p-value indicates moderate evidence
that in the population of patients from which this sample was selected, the median
post-treatment angle is less than the median pretreatment angle. For the analogous
parametric paired t-test requested in Exercise 5.13, the p-value is considerably less
than 0.01. Because we question the validity of the t-test, we believe the p-value from
the t-test is way too small.

Table 16.2 Sign test applied to relative rotation angle data. The conclusion of the test is that the
median post-treatment angle is less than the median pretreatment angle.

> table(sign(har1$Post - har1$Pre))

-1 0 1

31 2 15

> pbinom(15, 46, .5, lower=TRUE)

[1] 0.01295
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Fig. 16.2 We show the density plot of the Post and Pre scores, and their difference (Post-Pre),
in the top set of panels. We show the histogram of the same variables in the bottom panels. The
individual jittered points in the density plots may be thought of as a vertical view of the histogram.
Both graphical displays show that the data does not appear to be normally distributed. The Post

scores have outliers are well outside the vicinity of the bulk of the data. The Pre scores have a
relatively flat distribution. Post scores are generally smaller than Pre scores. The (Post-Pre)

differences are predominantly negative.

16.3.2 Wilcoxon Signed-Ranks Test

The sign test in Section 16.3.1 uses the arithmetic sign of differences between mem-
bers of each pair but ignores the magnitude of these differences. Such information
can be crucial, particularly if the samples contain outlying values. The Wilcoxon
signed-ranks test uses information on the magnitude of the differences and there-
fore is more sensitive than the sign test. The Wilcoxon test assumes an interval or
ratio measurement scale involving continuous variables. If the data are ordinal but
not interval, the Wilcoxon test cannot be used.

The construction of the signed-rank test for data(har1) is depicted in Table 16.3.
For testing hypotheses involving the difference between the medians of two popu-
lations, say the X = har1$Pre population and Y = har1$Post population, let
Di = Xi − Yi = har$diff be the observed difference for the ith pair. Let n = 46
be the number of such differences that are not zero; hereafter ignore any zero dif-
ferences. Rank the n nonzero absolute differences (|Di|, i = 1, . . . , n) = har$abs in
ascending order from 1 to n and store the ranks in har$rank. (If there are ties, assign
the average rank. For example, if the first and second largest absolute differences are
both equal to .3, assign rank 1.5 to both absolute differences.) Copy the ranks for the
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positive differences into har$prnk. Then the test statistic is the sum of the ranks in
har$prnk. The idea here is that if the population medians are equal, we expect half
of the differences to be positive and so the test statistic should be approximately one
half the sum of the ranks of the nonzero differences, or n(n + 1)/4, where n is now
the number of nonzero differences. A test statistic much different from this value
suggests that the difference between the population medians is nonzero. The signed
rank distribution is discussed in Section J.3.7. We usually show the normal approx-
imation. The variance is related to the variance of the discrete uniform distribution
(see Appendix J.3.1). We outline the calculation of the variance in Exercise 16.6.

Figure 16.3 shows the differences and the ranks of the absolute values of these
differences used in a Wilcoxon signed-ranks test for the data in data(har1).
The positive differences (between the pre- and post-treatment angles) in this example
generally have larger absolute values than the negative differences. The magnitudes
of these differences is relevant to the test result—a large positive difference is greater
evidence that pre exceeds post than a small positive difference. These magnitudes
are ignored by the sign test but accounted for by the Wilcoxon signed-ranks test.

Assuming one-sided alternative hypothesis as in Section 16.2, this test is run in
R with

wilcox.test(X, Y, alternative="greater",

paired=TRUE, exact=TRUE)

If restrictive conditions are met, R calculates the p-value based on the exact distribu-
tion of the test statistic. These conditions are n < 50 and no tied ranks. Otherwise,
as in the analysis of the data(har1) dataset, the p-value is based on a normal
approximation. The results of the wilcox.test command applied to data(har1)

are shown in Table 16.5.

The fact that the p-value for the Wilcoxon test is much less than that of the sign
test for the same data demonstrates that the signed-ranks test is more powerful than
the sign test.
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Table 16.3 Detail for construction of the Wilcoxon signed-ranks test applied to relative rotation
angle data. The diff column contains the differences Pre - Post. The abs column contains the
absolute value of the differences. NA values were assigned to the 0-valued differences. This has the
effect of placing them last in the sort order. Only nonzero differences are used in the test. In this
example with 48 observations, there are n = 46 nonzero differences. The rank column contains the
ranks of the absolute differences. The prnk column contains the same ranks, but only for rows that
have positive differences. The test statistic in Tables 16.5 and 16.4 is the sum of the prnk column.

> har <- data.frame(diff=har1$Pre - har1$Post)

> har$abs <- abs(har$diff)

> har$abs[har$abs==0] <- NA

> har$rank <- rank(har$abs)

> har$rank[har$diff == 0] <- 0

> har$prnk <- har$rank ## rank for positive differences

> har$prnk[har$diff < 0] <- 0

> har[order(har$abs),] ## manually edit into columns

diff abs rank prnk diff abs rank prnk

4 0.3 0.3 1.5 1.5 11 -1.9 1.9 25.0 0.0

22 0.3 0.3 1.5 1.5 33 2.1 2.1 26.0 26.0

13 -0.4 0.4 3.5 0.0 18 2.2 2.2 27.0 27.0

35 0.4 0.4 3.5 3.5 36 2.2 2.2 28.5 28.5

1 0.4 0.4 5.0 5.0 44 -2.2 2.2 28.5 0.0

17 -0.4 0.4 7.0 0.0 46 2.3 2.3 30.0 30.0

21 -0.4 0.4 7.0 0.0 25 2.3 2.3 31.0 31.0

39 0.4 0.4 7.0 7.0 5 2.9 2.9 32.0 32.0

19 0.5 0.5 9.5 9.5 43 3.2 3.2 33.0 33.0

45 0.5 0.5 9.5 9.5 6 3.2 3.2 34.0 34.0

16 0.7 0.7 11.5 11.5 23 3.8 3.8 35.0 35.0

26 -0.7 0.7 11.5 0.0 31 3.9 3.9 36.0 36.0

12 -0.7 0.7 13.0 0.0 47 4.1 4.1 37.0 37.0

15 -0.8 0.8 14.0 0.0 40 4.2 4.2 38.0 38.0

42 0.9 0.9 15.0 15.0 38 4.3 4.3 39.0 39.0

37 0.9 0.9 16.0 16.0 14 4.5 4.5 41.0 41.0

20 -1.0 1.0 17.0 0.0 24 4.5 4.5 41.0 41.0

28 -1.1 1.1 18.0 0.0 30 4.5 4.5 41.0 41.0

27 -1.1 1.1 19.0 0.0 34 -4.6 4.6 43.0 0.0

48 -1.1 1.1 20.0 0.0 29 5.0 5.0 44.0 44.0

10 1.4 1.4 21.0 21.0 8 7.5 7.5 45.0 45.0

32 -1.5 1.5 22.0 0.0 41 9.0 9.0 46.0 46.0

2 1.7 1.7 23.0 23.0 3 0.0 NA 0.0 0.0

7 -1.7 1.7 24.0 0.0 9 0.0 NA 0.0 0.0
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Table 16.4 The sum of the positive ranks from Table 16.3 is first calculated. Then we construct
the normal approximation. These values match the values in Table 16.5.

> ## calculate the statistic

> sum.prnk <- sum(har$prnk)

> n <- sum(har$diff != 0)

> sum.prnk

[1] 808.5

> n

[1] 46

> ## normal approximation

> mean.prnk <- n*(n+1)/4

> numerator <- sum.prnk - mean.prnk

> var.prnk1 <- n * (n + 1) * (2 * n + 1)/24

> NTIES <- table(har$abs[1:46]) ## non-zero differences

> TIEadjustment <- sum(NTIES^3 - NTIES)/48

> var.afterTIES <- var.prnk1 - TIEadjustment

> z <- (numerator - .5) / sqrt(var.afterTIES)

> z

[1] 2.923

> p.val <- pnorm(z, lower.tail = FALSE)

> p.val

[1] 0.001733

Table 16.5 Wilcoxon signed-ranks test applied to relative rotation angle data. The conclusion of
the test is that the median post-treatment angle is less than the median pretreatment angle.

> wilcox.test(har1$Pre, har1$Post, alternative="greater",

+ paired=TRUE, exact=FALSE)

Wilcoxon signed rank test with continuity correction

data: har1$Pre and har1$Post

V = 808.5, p-value = 0.001734

alternative hypothesis: true location shift is greater than 0
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Fig. 16.3 The differences and ranks from Table 16.3 used in the Wilcoxon test of data(har1).
Observe that the positive differences between pre- and post-treatment angles tend to have larger
magnitudes than the negative differences. The Wilcoxon test, which takes account of these magni-
tudes, has more power than the sign test, which ignores the magnitudes. The test statistic is the sum
of the ranks for positive differences (the sum of the displayed numbers in the upper-right quadrant).

16.4 Mann–Whitney Test for Two Independent Samples

Some authors refer to this test as the Wilcoxon–Mann–Whitney test because Frank
Wilcoxon initiated its development. It is analogous to the parametric two-sample
t-test but compares medians rather than means. We wish to compare the medians
of two populations based on independent random samples from each. It is assumed
that the measurement scale is at least ordinal. Combine the two samples and then
rank the resulting observations in ascending order. As in Section 16.3.2, if there
are tied observations, each should be assigned the average rank. The test statistic
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Fig. 16.4 Balance data. The extreme outlier in the age=="old" group makes the two-sample
t-test invalid. See Table 16.6.

T is the sum of the ranks of the smaller sample. Assume the smaller sample is
assigned index 1 and the larger sample index 2. Denoting the observed value of T as
tcalc, the p-value depends on the form of the alternative hypothesis. If the alternative
hypothesis is η1 > η2, then p-value = P(T > tcalc). For the alternative η1 < η2, the
p-value is = P(T < tcalc). For the two-sided alternative, p-value = 2 min

(
P(T >

tcalc), P(T < tcalc)
)
.

The data in data(balance), taken from Teasdale et al. (1993), illustrate this
test. These authors sought to compare the forward/backward sway in mm of 9
elderly and 8 young subjects who took part in an investigation of their reaction
times. We see in Figure 16.4 that one of the elderly measurements is an extreme
outlier, and if it is retained in the analysis the two-sample t-test is invalid. The al-
ternative hypothesis is that the median sway of elderly subjects exceeds the median
sway of young subjects. The R analysis uses wilcox.test as in Section 16.3.2.

In Table 16.6 we list the two samples and their ranks after they are combined. The
analysis with the R function wilcox.test is in Table 16.7 and “by hand” with R
in Table 16.8. The Wilcoxon distribution is described in Section J.3.8. We conclude
that there is moderate evidence that, on average, elderly subjects have greater sway
than young subjects.



588 16 Nonparametrics

Table 16.6 Mann–Whitney test applied to balance data. See Figure 16.4.

old young
sway ranks sway ranks

19 6.5 25 13.5
30 16.0 21 9.5
20 8.0 17 4.5
19 6.5 15 3.0
29 15.0 14 1.5
25 13.5 14 1.5
21 9.5 22 11.0
24 12.0 17 4.5
50 17.0

49.0 = rank sum, smaller sample

Table 16.7 Mann–Whitney test applied to balance data by R. R does not compute the exact test
when some of the ranks are tied. The ranks are plotted in Figure 16.5.

> wilcox.test(balance$sway[balance$age=="young"],

+ balance$sway[balance$age=="old"],

+ alternative="less", exact=FALSE)

Wilcoxon rank sum test with continuity correction

data: balance$sway[balance$age == "young"] and

balance$sway[balance$age == "old"]

W = 13, p-value = 0.01494

alternative hypothesis: true location shift is less than 0
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Fig. 16.5 Balance data. The plot of the ranks shows a distinct difference in the medians ranks of
the two age groups.
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Table 16.8 Mann–Whitney test applied “by hand” to balance data.

> data(balance)

> unname(n.old <- table(balance$age)["old"])

[1] 9

> unname(n.young <- table(balance$age)["young"])

[1] 8

> (r <- rank(balance$sway))

[1] 6.5 16.0 8.0 6.5 15.0 13.5 9.5 12.0 17.0 13.5 9.5

[12] 4.5 3.0 1.5 1.5 11.0 4.5

> (NTIES <- table(r))

r

1.5 3 4.5 6.5 8 9.5 11 12 13.5 15 16 17

2 1 2 2 1 2 1 1 2 1 1 1

> unname(tie.adjustment <-

+ sum(NTIES^3 - NTIES) /

+ ((n.old + n.young) * (n.old + n.young - 1)))

[1] 0.1103

> unname(SIGMA <-

+ sqrt((n.old * n.young/12) *

+ ((n.old + n.young + 1) - tie.adjustment)))

[1] 10.36

> unname(STATISTIC.old <-

+ c(W = sum(r[1:9]) - n.old * (n.old + 1)/2))

[1] 59

> unname(z.old <- STATISTIC.old - n.old * n.young/2)

[1] 23

> unname(z.old <- (z.old - .5)/SIGMA)

[1] 2.172

> unname(pnorm(z.old, lower.tail = FALSE))

[1] 0.01494

> unname(STATISTIC.young <-

+ c(W = sum(r[10:17]) - n.young * (n.young + 1)/2))

[1] 13

> unname(z.young <- STATISTIC.young - n.old * n.young/2)

[1] -23

> unname(z.young <- (z.young + .5)/SIGMA)

[1] -2.172

> unname(pnorm(z.young))

[1] 0.01494
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16.5 Kruskal–Wallis Test for Comparing the Locations
of at Least Three Populations

This test is the nonparametric analogue of the F-test for equality of the means of
several populations. A natural generalization of the Mann–Whitney test, it tests the
null hypothesis that all k populations have a common median. It is assumed that the
measurement scale is at least ordered and that the k random samples are mutually
independent.

Suppose ni is the size of the sample from population i and n· =
∑

i ni. Rank all n·
observations from 1 to n· and let Ri be the sum of the ranks from sample i. As usual,
in case of ties, assign average ranks to the tied values. The test statistic is

T =
12

n·(n· + 1)

k∑

i=1

[Ri − ni(n· + 1)/2]2

ni
(16.1)

The idea behind this formula is that if the null hypothesis is exactly true, the
expected sum of the ranks of sample i is E(Ri) = ni(n· + 1)/2.

This test is conducted in R with the command
kruskal.test(y ~ g, dataframe)

where y is the numeric vector of sample observations and g is the same sized fac-
tor indicating the population number from which the observation came. As usual
dataframe is the data.frame containing the observations.

Exercise 6.2 refers to an experiment comparing the pulse rates of workers while
performing six different tasks data(pulse). From Figure 16.6 we see that the nor-
mality assumption required for a standard one-way analysis of variance is somewhat
questionable as most tasks seem to show a uniform distribution of pulses. We there-
fore investigate the data analysis via the Kruskal–Wallis test.

Table 16.9 Kruskal–Wallis rank sum test applied to pulse rate data by R.

> kruskal.test(pulse ~ task, data=pulse)

Kruskal-Wallis rank sum test

data: pulse by task

Kruskal-Wallis chi-squared = 16, df = 5, p-value = 0.007

Table 16.9 shows the chi-square approximation to the distribution of the Kruskal–
Wallis statistic yields a p-value of .007. This is not too dissimilar from the one-way
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Fig. 16.6 Pulse data. The uniform distributions within the groups make the one-way ANOVA
inappropriate. See Table 16.9.

ANOVA p-value of .0015. We conclude, unsurprisingly, that the pulse rate of work-
ers differs according to the task performed immediately prior to the pulse reading.

16.6 Exercises

16.1. A study of Darwin (1876), discussed in Hand et al. (1994) with the data in
data(darwin), compared the ultimate heights of plants grown from otherwise
comparable seedlings that were either cross-fertilized or self-fertilized. Compare the
heights using the Wilcoxon signed-ranks procedure. Would a paired t-test have been
appropriate?

16.2. High levels of carbon monoxide transfer are a risk factor for contracting pneu-
monia. Ellis et al. (1987), also in Hand et al. (1994), studied the levels of car-
bon monoxide transfer in 7 chicken pox patients who were smokers. They were
measured upon hospital admission and one week later. The data are in the file
data(pox).

a. Verify the inappropriateness of a paired t-test for these data. Discuss your
reasoning.

b. Analyze using the Wilcoxon signed-ranks procedure.

16.3. Simpson et al. (1975), also in Chambers et al. (1983), studied the amount of
rainfall (measured in acre-feet) following cloudseeding. They seeded 26 clouds with
silver nitrate and 26 clouds with a placebo seeding (that is, the airplane went up but
didn’t release the silver nitrate). The data are contained in the file data(seeding).
Assume these data represent independent random samples.
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a. Use the Mann–Whitney test to assess whether cloudseeding impacted rainfall.

b. Construct the ladder of powers graph (see Figure 4.19) to find a power trans-
formation that makes the histograms of post-transformed samples symmetric
and bell-shaped. Redo part a using the two-sample t-test instead of the Mann–
Whitney test.

c. Discuss which of these procedures is preferred.

16.4. VanVliet and Gupta (1973), later cited by Hand et al. (1994), compared the
birthweights in kg of 50 infants having severe idiopathic respiratory distress syn-
drome. Twenty-seven (27) of these infants subsequently died and the remainder
lived. The data appear in the file data(distress). Perform a nonparametric test
to address whether deaths from this cause are associated with low birthweight.

16.5. Exercise 6.8 requested a comparison of the mean disintegration times of four
types of pharmaceutical tablets. The data are in file data(tablet1). Compare the
results of a Kruskal–Wallis test with the conclusion of the F-test for that exercise.

16.6. Calculate the variance of the null distribution for the Wilcoxon signed-ranks
statistic, assuming no ties. The set of all signed ranks, not just the positive values,
in the null distribution consists of the integers {−n to −1, 1 to n}. This has mean
0 and variance proportional to the

∑
i2. The variance of just the positive values is

1/4 times the variance of all of them. The mean of just the positive signed ranks is
proportional to

∑
i.



Chapter 17

Logistic Regression

Logistic regression is a technique similar to multiple regression with the new feature
that the predicted response is a probability. Logistic regression is appropriate in the
often-encountered situation where we wish to model a dependent variable which is
either

dichotomous: The dependent variable can assume only the two possible val-
ues 0 and 1 (often as a coding of a two-valued categorical variable such as
Male/Female or Treatment/Control).

sample proportion: The dependent variable is a probability and hence confined to
the interval (0, 1).

The methodology of ordinary multiple regression analysis cannot cope with
these situations because ordinary regression assumes that the dependent variable
is continuous on the infinite interval (−∞,∞). When this assumption on the dep-
endent variable is not met, we must employ a suitable transformation—a link
function—to change its range. One such transformation (shown in Equation (17.1)
and Figure 17.1) from the closed interval [0, 1] to the set of all real numbers is the
logarithm of the odds, known as the logit transformation

y = logit(p) = ln

(
p

1 − p

)
(17.1)

The logit transformation is the key to logistic regression. R functions for the logit
and its inverse

p = antilogit(y) =
ey

1 + ey
(17.2)

are defined in the HH package.

© Springer Science+Business Media New York 2015
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The model for logistic regression is

logit(p) = Xβ + ε (17.3)

y = logit(p)

p

y

−4

−2

0

2

4

0.0 0.5 1.0

p = antilogit(y)

y

p

0.0

0.5

1.0

−4 −2 0 2 4

Fig. 17.1 Left panel: y = logit(p). Right panel: p = antilogit(y).

where

p The response is either a binary 0/1 variable indicating
failure/success or a number in the range [0, 1] indicating
an observed proportion of successes.

X matrix of predictor variables.

β vector of regression coefficients.

ε vector of discrepancies assumed to have a binomial distribution.

In the special case of a single continuous predictor, model (17.3) specializes to

logit(p) = β0 + β1x + ε (17.4)

Logistic regression is a special case of a generalized linear model. There are two
components to the generalization.

1. In ordinary linear models, the response variable is assumed to be linearly related
to the predictor models. In generalized linear models a function (the link func-
tion) of the response variable is assumed to be linearly related to the predictor
models. In logistic models we usually use the logit function.
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2. In ordinary linear models, the variance of the residuals is assumed to be normal.
In glm (generalized linear models), the variance function is usually something
else. With logistic models the variance function is assumed to be binomial.

Probit regression is another type of generalized linear model. Instead of using
the logit link function, probit regression uses the inverse of the normal c.d.f., Φ−1,
defined in Section 3.9, to map from (0, 1) to the set of all real numbers. As with
logistic regression, the variance function for probit models is usually assumed to be
binomial. Probit regression and logistic regression give very similar results unless
many of the estimated probabilities are close to either 0 or 1.

The predictor variables in logistic regression are the same types of continuous
variables and factors that we use in ordinary multiple regression. All the familiar
operations on the predictor variables (nesting, crossing, polynomial powers) are also
appropriate with generalized linear models.

17.1 Example—The Space Shuttle Challenger Disaster

17.1.1 Study Objectives

The NASA space shuttle has two booster rockets, each of which has three joints
sealed with O-rings. A warm O-ring quickly recovers its shape after a compression
is removed, but a cold one will not. An inability of an O-ring to recover its shape
can allow a gas leak, which may lead to disaster. On January 28, 1986, the Space
Shuttle Challenger exploded during the launch.

The coldest previous launch temperature was 53 degrees Fahrenheit. The temper-
ature forecast for time of launch of Challenger on the morning of January 28, 1986,
was 31 degrees Fahrenheit. On the evening of January 27, a teleconference was
held among people at Morton Thiokol, Marshall Space Flight Center, and Kennedy
Space Center. There was a substantial discussion among engineers over whether the
flight should be cancelled. No statistician was present for any of these discussions.

17.1.2 Data Description

The input dataset in data(spacshu) from Dalal et al. (1989) contains two columns.

tempF: temperature in degrees Fahrenheit at the time of launch

damage: 1 if an O-ring was damaged and 0 otherwise
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Each launch has six cases, one for each O-ring. There are a total of 23 × 6 = 138
cases (the O-rings for one flight were lost at sea).

17.1.3 Graphical Display

The five panels in Figures 17.2 and 17.3 show the relationship between number of
damaged O-rings and launch temperature for space shuttle flights prior to the Chal-
lenger disaster. They clearly suggest a temperature effect. Logit regression can be
used to model the probability of O-ring damage as a function of launch tempera-
ture, and hence estimate the probability that any one particular O-ring is damaged
at launch temperature 31◦F.

a. observed
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Fig. 17.2 Panel a. Original data. Panel b. Sectioned fit. (The panel naming continues through
Figures 17.3, 17.4, and 17.6.)
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c. observed and sectioned proportions
appropriate temperature scale
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d. glm logit fit with pi, estimating p(damage in one ring)
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Fig. 17.3 Panel c. Sectioned fit with appropriate temperature scale. Panel d. Logit fit with 95%
prediction band focusing on estimating probability of damage in one ring on the next launch. Panel
e. Logit fit with 95% prediction band focusing on estimating number of damaged rings in the next
launch.
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The logistic curves in Figures 17.3d and 17.3e decrease as the predictor vari-
able tempF increases. This behavior differs from that displayed in Figure 17.1b
because the logistic regression coefficient of tempF is negative. Models with a sin-
gle predictor and a positive logistic regression coefficient have logit fits resembling
Figure 17.1b.

The dataset data(spacshu) from Dalal et al. (1989) includes one observation
for each O-ring. Figure 17.2a shows the observed data, jittered (by adding random
noise to break ties) so multiple O-rings at the same launch (hence same temper-
ature) are visible. Note that the tempF scale includes only the observed tempera-
tures. Figure 17.2b shows a simplistic model fit to the data. Within each 5-degree
interval we have calculated the proportion of O-rings that were damaged. We see a
strong indication that the proportion of damaged rings goes up as the temperature
goes down. The graph suggests that the probability of damage will be high when
the temperature reaches 31◦F. There are several limitations to this inference. First,
the graph doesn’t extend to 31◦F. Second, the model doesn’t extend to 31◦F.

Figure 17.3 extends the axes to include the temperature of the launch day in ques-
tion. It is easier to see the suggested inference of high probability of damage even
in panel c. We need a different model than simply averaging over a 5-degree range
to clarify the impression. Panels d and e show the prediction bands for estimating
probabilities of damage to individual O-rings (• in panel d) and for estimating the
number of O-rings damaged per flight (× in panel e). Note this is an extrapolation.
The fitted response values and their standard errors are calculated in Table 17.1

Figure 17.3d shows confidence bands for the number of damaged O-rings. The
shape of the prediction bands in panels d and e are the same because the expected
number of damaged rings is the constant 6 (the number of O-rings on a shuttle)
times the probability of damage to an individual ring.

At the January 28, 1986, teleconference, they displayed not Figure 17.3, but
Figure 17.4, a figure showing only those launches with at least one damaged O-ring.

f. observed damaged O−rings
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Fig. 17.4 Panel f. Observed damaged O-rings, without the information about total number of
rings.
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Figure 17.4 is essentially just the top of our Figure 17.2a, the portion with dam-
age=1. One cannot tell from such a chart that there is a temperature/damage rel-
ationship. Information about temperatures for launches without damage is highly
relevant. Tragically, the assembled engineers did not realize the vital importance
of seeing the number of launches without damage. They okayed the launch on
January 28.

17.1.4 Numerical Display

We show in Table 17.1 a logistic regression analysis of these data to the model

logit(p) = β0 + βtempF tempF + ε (17.5)

where p = P(damage). Discussion of the terminology used in this table appears in
Section 17.2.

The fitted equation is logit(p̂) = 5.085 − .1156 tempF. A test of hypothesis that
the coefficient of tempF is zero is the 1 d.f. χ2 statistic 6.144 with corresponding p-
value .0132. This p-value suggests that there is a moderately significant relationship
between temp and damage. Inserting tempF=31 gives logit( p̂) = 1.5014 ⇒ p̂ =
.8178. If the six O-rings on a Space Shuttle fail independently of one another (a
roughly true assumption), we could have expected 6× .8178 = 4.9 failures of the six
O-rings for the launch. This analysis could have been performed prior to launch!

The interpretation of logistic regression coefficients is less straightforward than
interpretations of linear regression coefficients. In this problem, an increase in
launch temperature of 1◦F multiplies the expected odds in favor of O-ring failure
by e−0.1156 = 0.8908. Equivalently, each 1◦F decrease in launch temperature corre-
sponds to multiplication of the expected odds of O-ring failure by e0.1156 = 1.1225.
In this problem the intercept coefficient 5.085 is not readily interpretable because
tempF = 0 is not a feasible launch temperature.

We must study Table 17.1 together with the logit.p ~ tempF plot in Figure
17.5a. The model says that logit.p=logit(p) is linearly related to temperature
tempF. The slope βtempF = −0.1156 and intercept β0 = 5.0848 describe the straight
line in Figure 17.5a.

Table 17.2 compares the three scales used in logistic regression analysis. Figure
17.5 shows the predicted probability of failure on each scale. Logits are hard to inter-
pret as they are not in a scale that we are comfortable thinking about. Two alternate
transformations are the odds ratio in the odds scale panel, and the probability in
the probability scale panel.
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Table 17.1 Logistic regression of Challenger data.

> spacshu.bin.glm <- glm(damage ~ tempF, data=spacshu, family=binomial)

> spacshu.bin.glm

Call: glm(formula = damage ~ tempF, family = binomial, data = spacshu)

Coefficients:

(Intercept) tempF

5.085 -0.116

Degrees of Freedom: 137 Total (i.e. Null); 136 Residual

Null Deviance: 66.5

Residual Deviance: 60.4 AIC: 64.4

> anova(spacshu.bin.glm, test="Chi")

Analysis of Deviance Table

Model: binomial, link: logit

Response: damage

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 137 66.5

tempF 1 6.14 136 60.4 0.013 *

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> coef(summary(spacshu.bin.glm))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.0850 3.05248 1.666 0.09574

tempF -0.1156 0.04702 -2.458 0.01396

> ## prediction on response scale, in this case (0,1).

> ## leading to Figure spaceshuttle-d.pdf, Panel d

> spacshu.pred <-

+ interval(spacshu.bin.glm, newdata=data.frame(tempF=30:85),

+ type="response")



17.1 Example—The Space Shuttle Challenger Disaster 601

a. logit scale.

b. odds scale.

c. probability scale.
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Fig. 17.5 Observed damage and estimated proportion of damaged O-rings in three scales plotted
against temperature. Panel a shows the logit scale, where we see the linear relationship that logit(p)
is proportional to temperature. Panel b shows the odds scale, where we see the tendency for the
odds in favor of damage to go up as temperature goes down. Panel c shows the probability scale,
where we see the tendency for the probability of damage to go up as temperature goes down.

Table 17.2 Three scales used in logistic regression.

probabilities p̂ p.hat <- predict(spacshu.bin.glm

type="response")

odds
p̂

1 − p̂
odds.hat <- p.hat/(1-p.hat)

logit logit p̂ = log

(
p̂

1 − p̂

)
logit.p.hat <- log(odds.hat)

The calculations for the 95% prediction bands based on the linear model for the
logit(p) are shown in the proportion scale and the logit scale in Table 17.3. The
bands are displayed in the proportion scale in Figure 17.3d and in the logit scale in
Figure 17.6g.
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Table 17.3 Details of logistic regression of Challenger data. The top table is in the link scale
where the model is linear. The bottom table is in the response scale where the units are more easily
interpreted; they are probabilities in this example.

> ## prediction on link scale, in this case (-Inf, Inf)

> ## leading to Figure spaceshuttle-g.pdf Panel g

> spacshu.pred.link <-

+ interval(spacshu.bin.glm, newdata=data.frame(tempF=30:85),

+ type="link")

> cbind(tempF=30:85, round(spacshu.pred.link, digits=2))[c(1:3,54:56),]

tempF fit ci.low ci.hi pi.low pi.hi

1 30 1.62 -1.66 4.90 -2.21 5.45

2 31 1.50 -1.69 4.69 -2.25 5.26

3 32 1.39 -1.71 4.49 -2.29 5.06

54 83 -4.51 -6.37 -2.65 -7.23 -1.79

55 84 -4.63 -6.57 -2.68 -7.40 -1.85

56 85 -4.74 -6.77 -2.71 -7.58 -1.90

> cbind(tempF=30:85, round(spacshu.pred, digits=2))[c(1:3,54:56),]

tempF fit ci.low ci.hi pi.low pi.hi

1 30 0.83 0.16 0.99 0.10 1.00

2 31 0.82 0.16 0.99 0.10 0.99

3 32 0.80 0.15 0.99 0.09 0.99

54 83 0.01 0.00 0.07 0.00 0.14

55 84 0.01 0.00 0.06 0.00 0.14

56 85 0.01 0.00 0.06 0.00 0.13

g. glm logit fit with logit(pi), estimating logit(p(damage in one ring))
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Fig. 17.6 Panel g. Logit fit on logit scale with 95% prediction band.
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Lavine (1991) disagreed with the analysis in Dalal et al. (1989), stating that the
31◦F temperature at Challenger’s launch is too far below the lowest previously obs-
erved launch temperature, 53◦F, to assume that the logistic relationship persisted for
the Challenger launch. He claimed that without additional engineering input, one
can only say that the probability of O-ring failure at 31◦F is greater than or equal to
the probability of O-ring failure at 53◦F. We agree that the extrapolation from 53◦F
to 31◦F is too great for anyone to be highly confident in our p̂ = .8178 estimate of
the failure probability at 31◦F.

17.2 Estimation

The computations for calculating the parameter estimates β̂ are usually done by the
method of maximum likelihood with an iterative computer program. The likelihood
is defined algebraically as the joint probability of the observations viewed as a func-
tion of the parameters conditional on the data.

Let us use the notation that the ith case, for i: 1, . . . , n, consists of a single response
value yi and a single predictor variable xi. The likelihood with a single predictor
variable is written as

L(β|y; x) = L
(
(β0, β1)

∣∣∣∣ (y1, . . . , yn) ; (x1, . . . , xn)
)

=

n∏

i=1

f
(
yi

∣∣∣∣ xi ; β0, β1

)
(17.6)

=

n∏

i=1

pyi

i (1 − pi)
1−yi

where

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
= antilogit(β0 + β1xi) (17.7)

or equivalently,

logit(pi) = log

(
pi

1 − pi

)
= β0 + β1xi (17.8)

The logistic link function appears in the likelihood equation with the expression of
p as the antilogit of the linear function of the predictor x-variables.

In general, the terminology link function refers to the transformation of the
response variable such that the transformed response achieves an approximate lin-
ear relationship with explanatory variables. After selecting a link function, it is
also necessary to specify a variance function, usually by accepting the software’s
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default choice. A binomial variance is the usual choice with logistic or probit links.
A Poisson variance is associated with a logarithmic link function. See McCullagh
and Nelder (1983) and the software help files for more details.

The binomial error function appears in the likelihood expression (17.6) as the
product of Bernoulli (binomial with n = 1) terms, one for each of the n observations.
The binomial distribution is thus involved in the likelihood equations for estimating
the β coefficients.

The log of the likelihood, called the loglikelihood, is written as

�(β|y; x) = log
(
L(β|y; x)

)
(17.9)

=

n∑

i=1

(
yi log(pi) + (1 − yi) log(1 − pi)

)

We estimate the parameters β by differentiating the log of the likelihood with res-
pect to the vector of parameters β, setting the derivatives to 0, and solving for β.
Substitute Equation 17.7 into Equation 17.9 and differentiate with respect to β0 and
β1 to get:

∂

∂β0
�(β|y; X) =

n∑

i=1

(yi − pi) = 0

∂

∂β1
�(β|y; X) =

n∑

i=1

xi(yi − pi) = 0

(17.10)

Exercise 17.1 gives you an opportunity to follow the steps in detail.

Logistic regression is a special case of a generalized linear model, hence the
model specification is easily interpreted.

glm: The statement in Table 17.1

spacshu.bin.glm <- glm(damage ~ tempF, data=spacshu,

family=binomial)

says that the logit of the expected value of the response variable damage is to be
modeled by a linear function of the predictor variable tempF, that is,

logit(E( p̂ j)) = log

(
E( p̂ j)

1 − E( p̂ j)

)
= β0 + βxx

The family=binomial argument says that the error term has a binomial distri-
bution and that the link function is the logit. The logit is the default link for the
binomial family; we could have specified the link explicitly with

spacshu.bin.glm <- glm(damage ~ tempF, data=spacshu,

family=binomial(link=logit))
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R places the results of the fitting process into a "glm" object (for this example
called spacshu.bin.glm) that we can look at.

Two principal functions are used to display textual information about the object.

anova: The anova function

anova(spacshu.bin.glm, test="Chi")

displays the analysis of deviance table, an analogue to the analysis of vari-
ance table in ordinary linear models. Table 17.1 is consistent with what we
see in Figure 17.5. There is a clearly visible effect in the figure. The ANOVA
table shows the linear dependence on tempF has p-value 0.013, highly signif-
icant at α = .05. The table is interpreted similarly to an ordinary analysis of
variance table. The deviance for tempF is twice the drop in the loglikelihood
from the model without the tempF term to the model with the tempF term,
6.144035 = 66.54037 − 60.39634, with degrees of freedom the difference in
the number of parameters in the two models, 1 = 137− 136. We use the χ2 table,
hence 1 − Fχ2 (6.144035 | 1) = 0.01318561.

Deviance is very general concept. The formula for deviance specializes to vari-
ance for the normal error function with the identity link function. In this, and in
many other ways, least squares is a special case of maximum likelihood.

summary: The summary function

summary(spacshu.bin.glm)

shows the table of regression coefficients. It is less helpful than the deviance
table in situations with only a single predictor variable. In this example it says
that the t-value for tempF is −0.1155985. This number does not have an exact
t-distribution, which is why no p-value is associated with it. Since |−2.46| > 2, it
appears to be significant, but we must look at the chi-square value in the analysis
of deviance table to make a valid inference.

17.3 Example—Budworm Data

An experiment discussed in Collett (1991) and Venables and Ripley (1997) was
performed to model the dose–response of a particular insecticide required to kill
or incapacitate budworms, insects that attack tobacco plants. A potential additional
factor was the budworm’s sex. In particular, it was desired to estimate the lethal
dose proportions LD25, LD50, LD75. LD50, lethal dose 50, is an abbreviation for
the dose that is lethal for 50% of the budworms. Twenty moths of each sex were exp-
osed to each of seven experimental doses. The data, accessible as data(budworm),
present ldose, the log2 of dose, along with the number of moths of each sex that
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Fig. 17.7 Observed number (out of 20) of dead Male and Female budworms as a function of
log(dose). The goal of the study is the prediction of the proportion dead, so we included a right
axis with the data rescaled values to proportion. The horizontal reference lines are placed at the
limits proportion=0 and proportion=1. The dashed lines connecting the observed values are a
visual aid to the reader of the graph.

were killed after three days of exposure. We show the observed data in Figure 17.7.
For each dose of insecticide, male budworms have higher mortality than females.

We model the data with a logistic regression calculated as a generalized linear
model with a binomial error term and a logit link function. Table 17.4 shows two
models, with and without an interaction term. The p-value of the interaction is high,
so we will continue with the no-interaction model.

We read the predicted LD50 (on log2 scale) by placing a horizontal line at
prob=.5 on the prob ~ log.dose panel of Figure 17.8. For each dose of insecti-
cide, male budworms have higher mortality than females. We look at the log.dose
coordinate of the intersection of the horizontal line with the fitted lines and find
that the LD50 is slightly over 2 for males and slightly over 3 for females. Calcula-
tions for the LD50, as well as ones for LD25 and LD75, using the MASS function
dose.p are illustrated in Table 17.5.

Figure 17.9 shows the relationship of predicted probability of kill, odds, and
logit to the observed data. The logit ~ log.dose panel shows the assumed linear
relationship of logit(p) = log(p/(1 − p)).
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Table 17.4 Logisitic regression of the budworm data with and without an interaction term. The
p-value shows that we not need the interaction term, and we do need both the other terms.

> SF <- cbind(numdead=budworm$numdead,

+ numalive = 20 - budworm$numdead)

> ## model with interaction term for sex and logdose, from VR

> budworm.lg <-

+ glm(SF ~ sex*ldose,

+ data=budworm,

+ family = binomial)

> anova(budworm.lg, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: SF

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 11 124.9

sex 1 6.1 10 118.8 0.014 *

ldose 1 112.0 9 6.8 <2e-16 ***

sex:ldose 1 1.8 8 5.0 0.184

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> ## model with no interaction term

> budworm.lg0 <- glm(SF ~ sex + ldose - 1,

+ data=budworm,

+ family = binomial)

> anova(budworm.lg0, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: SF

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 12 126.2

sex 2 7.4 10 118.8 0.024 *

ldose 1 112.0 9 6.8 <2e-16 ***

---

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 17.8 Budworm data with LD25, LD50, LD75 from logistic regression. The horizontal refer-
ence lines at probabilities .25, .50, and .75 are used to find the LD values. For example, the hori-
zontal line at p=.50 intersects the fitted Male curve at log dose=2.229. Thus the LD50 for Male is
2.229. Similarly the horizontal line at p=.50 intersects the fitted Female curve at log dose=3.264.
Thus the LD50 for Female is 3.264.

Table 17.5 Budworm data with LD25, LD50, LD75 from logistic regression. See also Figure 17.8.

> ## LD25 LD50 LD75

> xp.M <- MASS::dose.p(budworm.lg0, cf = c(2,3), p = 1:3/4)

> xp.M

Dose SE

p = 0.25: 1.197 0.2635

p = 0.50: 2.229 0.2260

p = 0.75: 3.262 0.2550

> xp.F <- MASS::dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)

> xp.F

Dose SE

p = 0.25: 2.231 0.2499

p = 0.50: 3.264 0.2298

p = 0.75: 4.296 0.2747
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Fig. 17.9 Predicted probabilities of kill, and the odds and logit=log(odds), as a function of
log(dose). A constant difference in the logit scale, seen as parallel lines in the logit ~ log.dose

panel, corresponds to a constant ratio in the odds. The logit scale plot of this example, with
one continuous covariate and one factor, is analogous to the analysis of covariance for contin-
uous response and normally distributed error term as seen in Figure 10.8. The panels on the
left for odds and logit have missing symbols where the transformation created infinite values(
odds(1) = ∞, logit(0) = −∞, logit(1) = ∞

)
. In the panels on the right we placed partial symbols

on the edge of the panel to indicate that there is an observation and that it is off the scale. The
p.hat ~ log.dose is the same on both sides and is the same as Figure 17.8.

17.4 Example—Lymph Nodes

These data come from Brown (1980). The problem is outlined in this reference as
follows:

When a patient is diagnosed as having cancer of the prostate, an important question in
deciding on treatment strategy for the patient is whether or not the cancer has spread to
the neighboring lymph nodes. The question is so critical in prognosis and treatment that
it is customary to operate on the patient for the sole purpose of examining the nodes and
removing tissue samples to examine under the microscope for evidence of cancer. How-
ever, certain variables that can be measured without surgery are predictive of the nodal
involvement; and the purpose of the study presented here was to examine the data for 53
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prostate cancer patients receiving surgery, to determine which of five preoperative variables
are predictive of nodal involvement, and how accurately the prediction can be made.

In particular, the medical investigator was interested in whether or not an elevated level
of acid phosphatase in the blood serum would be of added value in the prediction of whether
or not the lymph nodes were affected, given the other four more generally used variables.

17.4.1 Data

The variables accessed as data(lymph) are described in Table 17.6. The data are
displayed in Figure 17.10, constructed as a plot of the two continuous x-variables
conditioned on the three 2-level factors and with the plotting symbol chosen to re-
flect the 2-level response variable. The investigator wants to know if the predicted
proportion of nodes (symbol “1”) in each panel (that is, conditional on grade, stage,
X-ray, and age) is affected by the additional information on acid phosphatase.

Our first impression from Figure 17.10 is that age seems not to make a difference.
Therefore, our subsequent analysis considers only the three remaining factors and
one continuous predictor.

17.4.2 Data Analysis

In Table 17.7 we model the logit transformation of nodes as a function of X.ray,
stage, grade, and acid.ph. Figure 17.11 contains plots of jittered nodes vs
acid.ph along with the model’s predicted probability of nodal involvement par-
titioned according to the 8 = 23 combinations of the factors X.ray, stage, and
grade. The predicted relationship is plausible in 5 of these 8 panels, where there

Table 17.6 Lymph Data from Brown (1980)

Response Variable
nodes 1 indicates nodal involvement found at surgery,

0 no nodal involvement

Predictor Variables
X.ray 1 is serious, 0 is less serious
stage measure of size and location of tumor,

1 is serious, 0 is less serious
grade pathology reading of a biopsy, 1 is serious, 0 is less serious
age at diagnosis
acid.ph level of serum acid phosphatase
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age ~ acid.ph | grade * stage * X.ray, group=nodes
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Fig. 17.10 Much of the relation between variables is visible in this set of panels conditioned on
three factors, with the plotting symbol representing a fourth factor. The top row with X-ray=1 has
a higher proportion of nodes=1. The right two columns with stage=1 have a higher proportion
of nodes=1.

is a visible tendency for the nodes=1 points to be farther to the right, that is to
have higher acid.ph scores, than the nodes=0 cases. Two of the panels have
only nodes=1 cases and can’t be used for this comparison. In only one panel
(X.ray=0, grade=0, stage=1) is there a balanced overlap of ranges. This suggests
that acid.ph is positively associated with nodes and therefore may be a useful ad-
ditional predictor.

The p-value for acid.ph in Table 17.7, 0.075, indicates that acid.ph is a bor-
derline predictor of the presence of nodes. A tentative interpretation is that acid.ph
is a potential predictor for some but not all combinations of X.ray, stage, and
grade. In this same table, the p-value for grade is 0.45, suggesting that this factor
can be dropped from the model. However, we choose to retain gradea because a
rerun of the model without grade actually increases the p-value of acid.ph. Inves-
tigation of this issue is requested in Exercise 17.10.

Figure 17.12 shows the predicted probability of nodal involvement as a function
of acid.ph, and the transformation of these predicted probabilities to predicted
odds and predicted logits for the additive model in Table 17.7, conditioned on the
levels of X.ray, stage, and grade. Figure 17.12 uses different plot symbols for the
two levels of stage. The left column shows all (2 × 2 × 2) = eight groups. A sep-
arate line is shown for predictions for each of the 8 = 23 combinations of the three
factors X.ray, stage, and grade. In the logit.p.hat ~ acid.ph panels there
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Table 17.7 Logistic regression with three factors and one continuous predictor. See also Figures
17.11 and 17.12.

> lymph3.glm <- glm(nodes ~ X.ray + stage + grade + acid.ph,

+ data=lymph, family=binomial)

> anova(lymph3.glm, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: nodes

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3

X.ray 1 11.25 51 59.0 0.0008 ***

stage 1 5.65 50 53.4 0.0175 *

grade 1 0.57 49 52.8 0.4489

acid.ph 1 3.16 48 49.6 0.0753 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

are 8 parallel lines, one for each value of acid.ph*X.ray*nodes. The right two
columns partition the lines into separate sets of panels for each level of X.ray. The
logit.p.hat ~ acid.ph plots in the top panels in this figure suggest that there
is positive association between nodal involvement and acid.ph. The intercepts in
the right two columns and the top row show the clear distinction attributable to the
level of X-ray. Within the X-ray=0 and X-ray=1 columns, the stage=1 lines are
both higher than the stage=2 lines. Within each of the panels the grade=1 line is
higher than the grade=0 line. The distinctions easily seen in the top row with the
logit scale are reflected in the odds.hat and p.hat rows.

17.4.3 Additional Techniques

In the remainder of this section we consider a simpler logistic regression model for
nodes primarily to further illustrate the variety of modeling and plotting techniques
available to analysts. We model the probability of nodal involvement as a function
of just acid.ph and X.ray, initially requiring constant slope and allowing for the
possibility that the intercept in logistic relationship between nodes and acid.ph

differs according to whether X.ray = 0 or 1.
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Fig. 17.11 Jittered and predicted nodes vs acid.ph for each combination of values of stage,
grade, and X.ray. The asymptotes for fit at nodes=0 and nodes=1 are indicated with a gray
dotted line. The significant terms in Table 17.7 are visible here. The fitted line is higher and to
the right in the X-ray=1 than in the X-ray=0 panels. The fitted line is higher and to the right in
the stage=1 panels than in the stage=0 panels. All panels show higher fitted values for higher
acid.ph values. We can even see the small effect of grade in each pair of panels at the same
X-ray and stage. All eight fitted lines shown here are displayed together in the first column and
p.hat row of Figure 17.12.

Figure 17.13 shows nodes as a function of acid.ph separately for each value of
X.ray. Except for the single point with acid.ph=187, to be investigated later, the
illustration shows clearly that high acid.ph predicts nodes=1 for X.ray=1, and
that high acid.ph doesn’t help very much for X.ray=0.

We can get a sense of this interpretation in Figure 17.14 by partitioning the x-axis
(acid.ph) into sections 20 units wide and plotting the proportion of 1s in each sec-
tion. The line segments plotted in each x-section mostly represent increasing propor-
tions of 1s as acid.ph goes up. Compare this to the logistic regression technique in
Table 17.8 and Figure 17.15 which uses a continuous x-axis, thus no segmentation,
and forces the fit to be monotone increasing.
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Fig. 17.12 Plot of p.hat, odds(p.hat), logit(p.hat) for the model nodes ~ acid.ph |

X.ray + stage + grade, with plotting symbol indicating stage and placed at the predicted
values for the observed acid.ph. The left column shows the fit for both values of X.ray. The
right columns are the same fitted values with the illustration conditioned on the value of X.ray. The
panel in the p.hat row and the X-ray:both column shows the eight fitted lines from Figure 17.11.
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Fig. 17.13 xyplot(nodes.j ~ acid.ph | X.ray). The observed nodes are jittered to break
the ties. The dashed lines indicate the location of the actual 0 and 1 values.
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Fig. 17.14 Figure 17.13 plus proportion of 1s in sections 20 units wide.
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Fig. 17.15 Figure 17.13 plus fitted logistic curve for the simple model glm(nodes ~ X.ray +

acid.ph, data=lymph, family=binomial).

In Figure 17.15 with logistic regression we model the data in Figure 17.13 by
fitting a linear model with x=acid.ph to the logit of the response variable

logit(E( p̂ j)) = log

(
E( p̂ j)

1 − E( p̂ j)

)
= β0 + β j + βxx

with the error distribution assumed to be binomial with

p j = P(nodes = 1 | X.ray = j) (17.11)
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Table 17.8 Logistic regression with one factor and one continuous predictor. See also Fig-
ure 17.15 .

> lymph1.glm <- glm(nodes ~ X.ray + acid.ph, data=lymph, family=binomial)

> anova(lymph1.glm, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: nodes

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3

X.ray 1 11.25 51 59.0 0.0008 ***

acid.ph 1 1.94 50 57.1 0.1634

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> summary(lymph1.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.33567 0.96831 -2.412 0.015861

X.ray1 2.11596 0.70911 2.984 0.002845

acid.ph 0.01685 0.01262 1.336 0.181701

The model in Equation (17.11) is structurally similar to an ANCOVA model, with
common slope βx and with different intercepts. β0 is the reference intercept and β j

is the offset of the intercept for group j. The ANOVA table and plot for this model
are in Table 17.8 and Figure 17.15. We see the appropriateness of this model in the
logit.p.hat ~ acid.ph panel of Figure 17.16 and, even more strikingly, in the
logit.p.hat ~ acid.ph panels of Figure 17.12.

The results of fitting the model to the data of Figure 17.13 are displayed in Fig-
ures 17.15 (just the probability scale) and 17.16 (with the probability, odds, and logit
scales). Note that the farther right we move in each panel, the higher the proportion
of dots that appear in nodes=1 and therefore the higher the predicted probability
that a case will have nodes=1.

Figure 17.14 displays partitioned fits by value of X.ray, suggesting that forcing a
common slope (in the logit scale) might not be the best two-variable model for these
data. Let us try adding the interaction of X.ray and acid.ph. We see in Table 17.9
that the X.ray:acid.ph interaction has a p-value of .0605. The fitted curves for
this model are shown in the probability scale in Figure 17.17. The transformation
to odds and logit scales is shown in Figure 17.18. Note the completely different
appearance of the curve for the X.ray=1 group when it is not constrained to be
parallel to the X.ray=0 curve in the logit scale.
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Fig. 17.16 Three scalings of fit to nodes ~ acid.ph | X.ray with the responses at both values
of X.ray superposed on the same plot. The parallel lines in the logit.p.hat panel show the
analogy with ANCOVA.

Table 17.9 Logistic regression with interaction of X.ray and acid.ph. See also Figure 17.17.

> lymph1Xa.glm <- glm(nodes ~ X.ray * acid.ph, data=lymph, family=binomial)

> anova(lymph1Xa.glm, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: nodes

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3

X.ray 1 11.25 51 59.0 0.0008 ***

acid.ph 1 1.94 50 57.1 0.1634

X.ray:acid.ph 1 3.52 49 53.5 0.0605 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 17.17 Figure 17.13 plus fitted logistic curves for the interaction model glm(nodes ~ X.ray

* acid.ph, data=lymph, family=binomial).
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Fig. 17.18 Three scalings of fit to nodes ~ X.ray * acid.ph with the responses at both values
of X.ray superposed on the same plot. The non-parallel lines in the logit.p.hat panel show the
analogy with interaction in the ANCOVA setting. Two of the points in the odds.hat panel are
beyond the limits we chose for the display. Their values in the odds.hat scale are 1256 and 3472.
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Figure 17.17 displays the overlay of the (nodes ~ acid.ph | X.ray) from
Figure 17.13 and the fitted values from the model lymph1Xa.glm from Table 17.9.
Figure 17.17 actually displays the entire fitted line for the p.hat panels, not just the
specific points corresponding to the observed data. Compare this to Figure 17.15.

Each panel of Figure 17.17 is constructed as the superposition of the subpan-
els for observed data (nodes ~ acid.ph | X.ray) and for predicted probabil-
ity (p.hat ~ acid.ph | X.ray) from Table 17.9. We see that the probability of
nodal involvement as a function of acid.ph depends on the level of X.ray.

When we look at Figure 17.16 we see that the logit.p.hat ~ acid.ph panel
shows two distinct parallel lines. These parallel lines correspond to the predicted
probabilities for the two levels of X.ray.

Remembering that logit( p̂) = log(odds( p̂)), we see that the parallel lines have
common slope (0.01685 logit.p.hat units per acid.ph) and different intercepts
2.116 units apart. Translating the difference in intercepts back to odds ratios, we
find the odds ratio attributable to X.ray is e2.116 = 8.298, and we can see from the
(odds.hat ~ acid.ph) panel of Figure 17.16 that the X.ray=1 line is about 8
times higher than the X.ray=0 line.

17.4.4 Diagnostics

All the usual diagnostic calculations, statistics, and graphs developed for linear re-
gression are used with logit regression to help determine goodness of fit. Details are
discussed in Hosmer and Lemeshow (2000).

One of the most important diagnostics for this dataset is the comparison of the
graphs in Figures 17.15 and 17.17 where we note that the outlier for acid.ph=187
is a critical point. In Figure 17.14, with the sectioned fit, we see that that single point
in the X.ray=0 panel flattens the logistic curve for both levels of X.ray. Compare
the similar curves for both levels of X.ray in Figures 17.15 and 17.16 without the
interaction term to the very different curves in Figures 17.17 and 17.18 with the
interaction term.

17.5 Numerical Printout

We calculate the fitted values from a logistic regression model in the three scales
(probability, odds, and logit) defined in Table 17.2 and plot them against the
continuous predictor variables. The fit in lymph1.glm is calculated in Table 17.8
and illustrated in Figures 17.15 and 17.16. The logit.p.hat ~ acid.ph panel in
Figure 17.16 shows the straight-line fit of logit p̂ to acid.ph. There are two parallel
lines in the panel, one for each value of the factor X.ray. The slope is given by
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the coefficient βacid.ph. The difference in intercepts is given by the coefficient βX.ray1

(note the dependence on the dummy variable coding scheme). The fitted curves in
the p.hat ~ acid.ph panel are the same, now transformed to the probability scale.
The p.hat ~ acid.ph panel of Figure 17.16 consists of the curves in both panels
of Figure 17.15. Figure 17.15 overlays the logit.p.hat ~ acid.ph panels on the
nodes ~ acid.ph panels of Figure 17.13.

The more complete model with all three factors in Figure 17.11 is calculated in
Table 17.7.

17.6 Graphics

The datasets for this chapter are displayed with several types of graphs. Most of
the graphs are constructed with multiple panels to display several variables in a
coordinated fashion.

17.6.1 Conditioned Scatterplots

The initial display of the lymph dataset in Figure 17.10 is a scatterplot of the two
continuous variables age on the y-axis and acid.ph on the x-axis, conditioned on
the three binary-valued x-factors and using the binary-valued nodes-variable as the
plotting character. All eight panels of the display are scaled alike in order to help
the eye distinguish the important features. Common scaling is critical for making
comparisons.

Figure 17.11 is similarly constructed, although in this case with age suppressed
and with nodes on the y-axis. This graph presents the same view of the data, with
important differences. We have jittered the nodes variable to counter the overprint-
ing. Also, in Figure 17.11, we have overlaid the observed data with the predicted
probabilities from the logistic model. By doing so we get an immediate sense of
how the predictions are affected by the values of the conditioning factors and can
see directly in each panel that higher acid.ph values correspond to higher predicted
probabilities and to a higher proportion of points with observed response nodes=1.

The displays of the simplified models using only the single factor X.ray in
Figures 17.13–17.18 are constructed similar to Figure 17.11. In these simpler
models there are only two panels rather than eight.

Figure 17.12 shows two sets of conditioned scatterplots. The right two columns
are conditioned on the level of X.ray. The left column is marginal to the right
two columns. Each of the left column’s panels shows the sum of the corresponding
panels in the right two columns.
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Common Scaling: Easy to Compare Panels
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Separate Scaling: Difficult to Compare Panels
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Fig. 17.19 Two views of the logit.p.hat row and the X-ray: 0 and X-ray: 1 columns of
Figure 17.12. The top two panels with common scaling make it easy to see the effect of the X.ray
level on the logit. With a common scale we see that the X.ray=0 predictions are mostly to the
left of and below the X.ray=0 observations. The bottom two panels, with idiosyncratic scaling for
each panel, hinder the ability of the reader to understand the effect of X.ray level. With separate
scales, each set of points is individually centered in its own plotting window, and the ability to
compare them visually is lost.

17.6.2 Common Scaling in Comparable Plots

Let us illustrate the importance of common scaling by looking in Figure 17.19 at
the predictions of Figure 17.11 in the logit scale both with common scaling and
with idiosyncratic scaling. In the logit scale all eight lines have identical slope. With
common scaling we see the parallelism. We also see the outlier at X.ray=0 and
acid.ph=187. With idiosyncratic scaling we see two unrelated parallel structures,
and worse, we think the distant points at X.ray=1 and acid.ph≈130 are as far out
as the real outlier at X.ray=0 and acid.ph=187. Only when the viewer looks very
closely at the printed scale, a requirement that indicates a poorly designed graphic,
is it possible to see the major message in this idiosyncratically scaled pair of graphs.
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17.6.3 Functions of Predicted Values

Figures 17.15 and 17.16 show the predicted values for the simplest of the logistic
regression models for the lymph dataset. The observed x=acid.ph are the same in
both graphs. The panels in Figure 17.15 are conditioned on the level of X.ray. Each
panel in Figure 17.16 shows both levels of X.ray and a different transformation of
the predicted probability. Figure 17.15 superposes the predicted p.hat values in the
probability scale onto the jittered nodes.j data first shown in Figure 17.13. The
variable p̂=p.hat is in the same scale (0 to 1) as the observed data. In this scale, the
S-shaped logistic curve is apparent. The p.hat panel of Figure 17.16 shows only
the predicted probability of success and does not show the observed node values.

The odds transformation p̂
1− p̂=odds.hat in the odds.hat panel of Figure 17.16

shows that the predicted odds for the two groups have a constant ratio. Constant ra-
tios are difficult to see in a graph. The third transformation, the logit transformation
logit( p̂) = log( p̂

1− p̂ )=logit.p.hat, most clearly shows the model assumptions:
The two lines for the two groups are parallel. A constant difference in the log(odds)
corresponds to a constant ratio in the odds.

17.7 Model Specification

Logistic regression is a special case of generalized linear modeling; hence the pro-
gramming constructs developed for ordinary linear models can be used.

The ANOVA tables and predicted values will agree across programs. The
regression coefficients and their standard deviations depend on the choice of
coding schemes for the factors. R and S-Plus use the treatment contrasts (defined in
Section 10.3) with argument base=1 as the default (In R notation,
contr.treatment(k, base=1)). SAS uses the treatment contrasts with base=k

for a k-level factor. In R notation, SAS uses contr.treatment(k, base=k).

17.7.1 Fitting Models When the Response Is Dichotomous

The response variable nodes in the lymph dataset is dichotomous, that is, it can
take only the two values 0 or 1.
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17.7.1.1 R and S-Plus

The basic R and S-Plus statements for estimating logistic models with dichotomous
response variables as in the example in Table 17.7 and Figures 17.11 and 17.12, are
a special case of generalized linear models,

lymph3.glm <- glm(nodes ~ X.ray + stage + grade + acid.ph,

data=lymph, family=binomial)

anova(lymph3.glm, test="Chisq")

summary(lymph3.glm)

The user needs to use ordinary data management statements to arrange for the ap-
propriate subjects and variables to appear in the data.frames. Graphical display of
the results also requires data management statements to select columns of the data
and to construct the transformations of the predicted values.

17.7.1.2 SAS

The basic SAS statements for estimating logistic models with dichotomous re-
sponse variables as in the example in Table 17.7 and Figure 17.11, use PROC

LOGISTIC

proc logistic data=lymph descending;

title "lymph 3" ;

model Y = X_ray stage grade acid_ph ;

output out=probs3 predicted=prob xbeta=logit;

run;

The user needs to use ordinary DATA step data management statements to arrange for
the appropriate subjects and variables to appear in the datasets. Graphical display of
the results also requires data management statements to select columns of the data
and to construct the transformations of the predicted values. SAS PROC LOGISTIC

doesn’t accept the nesting and crossing statements of PROC GLM. For more complex
models we will need to construct interaction variables acidXry0 and acidXry1 in
an extra DATA step. The descending option is needed to make PROC LOGISTIC

model P(nodes = 1). The default is to model P(nodes = 0).

17.7.2 Fitting Models When the Response Is a Sample Proportion

The examples in Sections 17.1 and 17.4 both have dichotomous (0 or 1) responses.
As illustrated in Section 17.3, responses for logistic regression models can also be
proportions. Models with a proportion-valued response variable are requested in
Exercises 17.8 and 17.9. Specifying such models differs slightly from specifications
of models with dichotomous responses.
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Suppose the total number of observations is in a column named n.total for
R or S-Plus (or n_total for SAS), and the number of observations having the
attribute under study is in a column named n.attribute (or n_attribute for
SAS). Further assume there are two explanatory variables X1 and X2; extension to
situations with more than two explanatory variables will be obvious.

R and S-Plus use a syntax based on the odds ratio and SAS uses a syntax based
on the proportion for this type of problem.

17.7.2.1 R and S-Plus

glm() uses the symbolic representation of the odds ratio
cbind(n.attribute, n.total-n.attribute)

for the response in the model formula. Here is the entire model formula

glm(cbind(n.attribute, n.total-n.attribute) ~ X1 + X2,

family=binomial)

17.7.2.2 SAS

PROC GENMOD uses the symbolic representation of the proportion
n_attribute/n_total

for the response in the model statement. Here is the entire model statement

MODEL n_attribute/n_total = X1 X2 / dist=binomial;

17.8 LogXact

The model estimates shown in Section 17.2 and confidence limits and p-values in
computer listings throughout this chapter are based on maximum likelihood estima-
tion, and asymptotic (large-sample) standard errors and normality. LogXact c© Cytel
Software Corporation (2004) is a software package that uses algorithms from Mehta
et al. (2000) to perform exact, rather than asymptotic, estimation and inference for
logistic regression models. Documentation for LogXact states that its exact results
sometimes differ appreciably from the asymptotic results provided by R, S-Plus,
or SAS. We recommend that readers who work extensively with logistic regression
models become familiar with this package.
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17.9 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

17.1. In Equations (17.6) and (17.9) we show the likelihood and loglikelihood equa-
tions for the logistic regression model (17.4). For the dataset

x y
1 1
2 0
3 1
4 0

estimate the parameters β0 and β1. This problem is almost doable by hand. The
derivatives in Equation (17.10) are tedious (remember to substitute the data values
for x and y and to take the derivatives with respect to β j). Once you have simplified
the derivatives (an easy task), you have two nasty fractions in β0 and β1 to set equal
to zero and solve simultaneously (a hard task). Verify that you have done the algebra
and arithmetic correctly by comparing the results to a computer program. You can
also substitute these answers into your simultaneous equations and verify that they
are both satisfied.

Computer programs usually use iterative techniques rather than the brute-force
technique suggested here.

17.2. Complete the analysis of the data in Exercise 17.1. Plot the data and the anal-
ysis and interpret the numerical values and the graph.

17.3. Mendenhall et al. (1989), subsequently discussed in several other places, stud-
ied the effect of radiotherapy on the absence (response = 1) or presence (response
= 0) of tongue carcinoma three years after the completion of radiotherapy. The ex-
planatory variable days is the number of days across which the fixed total dose of
radiotherapy was administered. The data is accessed as data(tongue).

a. Use logistic regression to model response as a function of days. Is the coeffi-
cient of days significantly different from 0? Estimate the change in the odds of
response resulting from one additional day of radiotherapy.

b. Produce a plot of the fitted equation with 95% prediction bands analogous to
Figure 17.3d.

c. The negative arithmetic sign of the coefficient of days may at first glance seem
counterintuitive. Offer a possible explanation for this result.

17.4. Dataset data(icu), from Hosmer and Lemeshow (2000), presents the ICU
data, a selection of cases from a larger study of survival in an intensive care unit.
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Table 17.10 Code Sheet for the ICU Study. This is Table 1.5 from Hosmer and Lemeshow (2000).

Variable Description Codes/Values Name
1 Identification Code ID Number ID
2 Vital Status 0 = Lived, 1 = Died STA
3 Age Years AGE
4 Sex 0 =Male, 1 = Female SEX
5 Race 1 =White, 2 = Black, 3 = Other RACE
6 Service at ICU 0 =Medical, 1 = Surgical SER

Admission
7 Cancer Part of 0 = No, 1 = Yes CAN

Present Problem
8 History of Chronic 0 = No, 1 = Yes CRN

Renal Failure
9 Infection Probable 0 = No, 1 = Yes INF

at ICU Admission
10 CPR Prior to ICU 0 = No, 1 = Yes CPR

Admission
11 Systolic Blood Pressure mm Hg SYS

at ICU Admission
12 Heart Rate Beats/min HRA

at ICU Admission
13 Previous Admission to 0 = No, 1 = Yes PRE

an ICU Within 6 Months
14 Type of Admission 0 = Elective, 1 = Emergency TYP
15 Long Bone, Multiple, 0 = No, 1 = Yes FRA

Neck, Single Area, or
Hip Fracture

16 PO2 from Initial 0 = > 60, 1 = ≤ 60 PO2
Blood Gases

17 PH from Initial 0 = ≥ 7.25, 1 = < 7.25 PH
Blood Gases

18 PCO2 from Initial 0 = ≤ 45, 1 > 45 PCO
Blood Gases

19 Bicarbonate from 0 = ≥ 18, 1 < 18 BIC
Initial Blood Gases

20 Creatinine from 0 = ≤ 2.0, 1 = > 2.0 CRE
Initial Blood Gases

21 Level of Consciousness 0 = No Coma or Deep Stupor, LOC
at ICU Admission 1 = Deep Stupor, 2 = Coma

The major goal of the study was to develop a logistic regression model to predict
the probability of survival to hospital discharge of these patients. The code sheet for
the data is in Table 17.10. We will initially look at just two variables, AGE and SEX.
There are a few young males and no young females who did not survive, suggesting
that SEX might be an important indicator.

a. Plot the response variable STA (survival status) against the continuous variable
AGE conditioned on SEX.
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b. Fit a logistic regression model to STA with predictor variables AGE and SEX.

c. Plot the logistic fit of STA against AGE conditioned on SEX, comparable in style
to Figure 17.17.

d. Interpret your results.

17.5. For the same dataset data(icu) used in Exercise 17.4, we will also look at
CPR status. Did the patient receive CPR prior to being admitted?

a. Plot the response variable STA (survival status) against the continuous variable
AGE conditioned on CPR.

b. Fit a logistic regression model to STA with predictor variables AGE and CPR.

c. Plot the logistic fit of STA against AGE conditioned on CPR, comparable in style
to Figure 17.17.

d. Interpret your results.

17.6. The dataset data(esr) from Collett (1991) deals with the relationship be-
tween erythrocyte sedimentation rate (ESR) and two other blood chemistry mea-
sures, fibrin, the level of plasma fibrinogen (g/liter), and gamma globulin level
(g/liter). ESR is the settlement rate of red blood cells from suspension in blood.
Healthy individuals have ESR below 20 mm/hr. In this analysis the variable ESR is
dichotomized to be 1 if ESR < 20 and 0 if ESR ≥ 20. Use logistic regression to
determine if fibrin or globulin impact on ESR.

17.7. Lee (1980) describes an investigation to determine if any of six prognostic
variables can be used to predict whether a patient will respond to a treatment for
acute myeloblastic leukemia. The dataset data(leukemia) contains the prognostic
variables in columns 1–6 and response = 1 if responds to treatment and 0 if doesn’t
respond to treatment in column 7. (This data file also contains variables in columns
8–9 that are to be ignored in this exercise.) The prognostic variables are

age: in years

smear: smear differential (%)

infiltrate: absolute infiltrate (%)

labeling: labeling index (%)

blasts: absolute blasts (× 103)

temp: temperature (× 10 degrees F)

a. Construct scatterplot matrices of the prognostic variables conditioned on the two
values of response. Which prognostic variables seem most closely associated
with response?
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b. Justify a log transformation of blasts.

c. Find a good-fitting model to explain response. Interpret all estimated logistic
regression coefficients.

17.8. Higgens and Koch (1977), later reprinted in Hand et al. (1994), discuss a study
of workers in the U.S. cotton industry to discover factors that relate to contraction
of the lung disease byssinosis. In the dataset data(byss) the columns are

yes: number suffering from byssinosis

no: number not suffering from byssinosis

dust: dustiness of workplace, 1 = high, 2 = medium, 3 = low

race: 1 = white, 2 = other

sex: 1 = male, 2 = female

smoker: 1 = yes, 2 = no

emp.length: length of employment:
1 = “<10 years”, 2 = “10–20 years”, 3 = “>20 years”

a. Fit a logistic model to explain what factors affect the probability of contracting
byssinosis. Since the response variable involves the counts in the two response
categories rather than a dichotomous indicator, you will need to use model syntax
similar to that described in Section 17.7.2. Look at the main effects and the two-
way interactions.

b. Produce a plot showing all the significant main effects and interactions. One such
plot is a multipanel display of the observed proportion of byssinosis sufferers
against each of the significant effects.

c. Carefully state all conclusions.

17.9. Murray et al. (1981), also in Hand et al. (1994), report on a survey that ex-
plored factors affecting the pattern of psychotropic drug consumption. The columns
of the dataset data(psycho) are

sex: 0 = male, 1 = female

age.group

mean.age

GHQ: General Health Questionnaire, 0 = low, 1 = high

taking: number taking psychotropic drugs

total: total number
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a. Use logistic regression to model the proportion taking psychotropic drugs as a
function of those explanatory variables among sex, agegroup, and GHQ and their
interactions that are significant. Since the response variable is a sample propor-
tion, not a dichotomous indicator, you will have to fit models using the syntax
described in Section 17.7.2.

b. Produce a plot showing all the significant main effects and interactions. One such
plot is a multipanel display of the observed proportion of byssinosis sufferers
against the significant effects.

c. Interpret the logistic regression coefficients of all main effects.

17.10. Table 17.7 shows a p-value of 0.45 for the test that the coefficient of grade
is zero.

a. Fit the model logit.p.hat ~ X.ray + stage + acid.ph.

b. Account for the difference between the p-values in Table 17.7 and in part 17.10a
by fitting and interpreting a model containing the term acid.ph %in% grade.



Chapter 18

Time Series Analysis

18.1 Introduction

Time series analysis is the technique used to study observations that are measured
over time. Examples include natural phenomena (temperature, humidity, wind
speed) and business variables (price of commodities, stock market indices) that are
measured at regular intervals (hourly, daily).

Like regression analysis, time series analysis seeks to model a response vari-
able as a function of one or more explanatory variables. Time series analysis differs
from other forms of regression analysis in one fundamental way. Previously we have
assumed the observations are uncorrelated with each other, except perhaps through
their dependency on the explanatory variables. Thus, in regression, we would model

Y = Xβ + ε

and make the assumption that corr(εi, ε j) = 0. In time series analysis we do not
make the assumption of independence. Instead we make an explicit assumption of
dependence and the task of the analysis is to model the dependence.

Conventionally, the notation used to denote a time series is Xt, t = 1, 2, . . . , n.
In this chapter we assume that the successive times at which observations are taken
are equally spaced apart, for example, monthly, quarterly, or annual observations.
(Extensions to non-equally spaced observations are in the zoo package in R.) Ini-
tially, we also assume that Xt is a stationary zero-mean time series. (A time series
is said to be stationary if the distribution of {Xt, . . . , Xt+n} is the same as that of
{Xt+k, . . . , Xt+n+k} for any choice of t, n, and k.) This means that as time passes, the
series does not drift away from its mean value. Often when stationarity is absent
it can be achieved by analyzing differences between successive terms of the time
series rather than the original time series itself.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5 18
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The term lag is used to describe earlier observations in a sequence. We indicate
lagged observations with the backshift operator B, defined to mean

BXt = B1Xt = Xt−1

and by extension
B2Xt = B(BXt) = BXt−1 = Xt−2

Often B is used as the argument of a polynomial function. For example, if

ψ(B) = 3B2 − 4B + 2

then
ψ(B)Xt = 3Xt−2 − 4Xt−1 + 2Xt

There is a distinction between the residual error ε in regression analysis and ε
components of time series models. A time series Xt, t = 1, 2, . . . , n, is a special
case of a large class of models known as stochastic processes. Random variables
εt, εt−1, . . . are random shocks to the process. This shock concept is distinct from
regression residuals ε that represent the inability of model predictors to completely
explain the response. In some time series models a linear combination of lagged ε’s,∑

θkεt−k, can be viewed as an error concept analogous to ε in regression.

The ARIMA class of models discussed in this chapter can be fit to most regular
time series that exhibit systematic behavior with random perturbations that are small
compared to the systematic components. They are not appropriate for modeling time
series having irregular cyclical behavior (such as the business cycle when modeling
Gross National Product) or irregular sizeable shocks (such as federal spending for
relief from natural disasters such as major hurricanes, floods, earthquakes, etc.).

Standard time-related data manipulations are easier when the time parameter is
built into the data object. Fundamental operations like comparisons of two series or
merging two series (ts.union or ts.intersect) are easily specified and the pro-
gram automatically aligns the time parameter. Table 18.1 illustrates the two align-
ment options.

18.2 The ARIMA Approach to Time Series Modeling

In this chapter we introduce the Box–Jenkins ARIMA approach to time series mod-
eling Box and Jenkins (1976). This methodology involves two primary types of
dependence structures, autoregression and moving averages, as well as the concept
of differencing. We assume throughout that the independent random shocks εt are
distributed with mean 0 and a common variance σ2.
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Table 18.1 Alignment of time series with the (ts.union or ts.intersect) functions.

> x <- ts(sample(10), start=1978)

> y <- ts(sample(6), start=1980)

> x

Time Series:

Start = 1978

End = 1987

Frequency = 1

[1] 10 6 9 1 4 3 2 7 8 5

> y

Time Series:

Start = 1980

End = 1985

Frequency = 1

[1] 3 4 6 1 2 5

> ts.union(x,y)

Time Series:

Start = 1978

End = 1987

Frequency = 1

x y

1978 10 NA

1979 6 NA

1980 9 3

1981 1 4

1982 4 6

1983 3 1

1984 2 2

1985 7 5

1986 8 NA

1987 5 NA

> ts.intersect(x,y)

Time Series:

Start = 1980

End = 1985

Frequency = 1

x y

1980 9 3

1981 1 4

1982 4 6

1983 3 1

1984 2 2

1985 7 5

18.2.1 AutoRegression (AR)

The equation describing the first-order autoregression model AR(1) is

Xt = φXt−1 + εt (18.1)

Each observation Xt is correlated with the preceding observation (at lag=1) Xt−1 and,
to a lesser extent, with all earlier observations. In the AR(1) model, each observation
Xt has correlation φ with the preceding (at lag=1) observation Xt−1. The correlation
of Xt with Xt−k is

corr(Xt, Xt−k) = φk, k = 1, 2, . . . (18.2)
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That is, the correlation decreases exponentially with the length of lag. For example,

corr(Xt, Xt−1) = corr(φXt−1 + εt, Xt−1)

= φ

and

corr(Xt, Xt−2) = corr(φXt−1 + εt, Xt−2)

= corr(φ(φXt−2 + εt−1) + εt, Xt−2)

= φ2 corr(Xt−2, Xt−2) + corr(φεt−1 + εt, Xt−2)

= φ2 + 0

The AR(1) model is further discussed in Section 18.5.2.

With p-order lags, the autoregression equation is written as

Φp(B)Xt = εt (18.3)

where

Φp(B) = φ(B) = 1 − φ1B − . . . − φpBp

is a pth-degree polynomial. This model is referred to as AR(p). The AR(1) model in
Equation (18.1) is the special case where Φp(B) = Φ1(B) = 1 − φB.

18.2.2 Moving Average (MA)

The equation describing the first-order moving average model MA(1) is

Xt = εt − θεt−1 (18.4)

This model is called “moving average” because the right-hand side is a weighted
moving average of the independent random shock εt at two adjacent time periods.

Each observation Xt in the MA(1) model is correlated with the preceding obser-
vation Xt−1 and is uncorrelated with earlier observations. For example,

corr(Xt, Xt−1) = −θ/(1 + θ2)

and

corr(Xt, Xt−2) = corr(εt − θεt−1, εt−2 − θεt−3)

= 0

With q-order lags, the equation is written as

Xt = Θq(B)εt (18.5)
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where

Θq(B) = θ(B) = 1 − θ1B − . . . − θqBq

is a qth-degree polynomial. This model is denoted MA(q). The MA(1) model in
Equation (18.4) is the special case where Θq(B) = Θ1(B) = 1 − θB. The MA(1)
model is further discussed in Section 18.5.3.

18.2.3 Differencing

Differencing of order 1 is defined by

∇Xt = (1 − B)Xt = Xt − Xt−1 (18.6)

Simple models are written for the differenced data, for example,

∇Xt = εt − θεt−1 (18.7)

or, equivalently

Xt − Xt−1 = εt − θεt−1

Model (18.7) is structurally the same as Model (18.4) in that it has the same right-
hand side. The left-hand sides differ. Model (18.7) uses the differenced time series
∇Xt as its response variable where Model (18.4) used the observed variable Xt. Dif-
ferencing removes nonstationarity in the mean. More complicated models involving
higher-order differencing are denoted by a polynomial

∇d(B) = (1 − B)d

The interpretation is

∇1(B)Xt = Xt − Xt−1

18.2.4 Autoregressive Integrated Moving Average (ARIMA)

We work with both AR(p) and MA(q) with lags greater than or equal to 1, and
with a combined situation called ARIMA(p, d, q) (autoregressive integrated moving
average). The term integrated means that we use the AR and MA techniques on
differenced data. The general form of the ARIMA(p, d, q) model is

Φp (B)∇dXt = Θq (B) εt (18.8)

where εt is a random shock with mean zero and var (εt) = σ2
ε.
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There are many important special cases.

ARIMA(1,0,0) = AR(1) model is in Equation (18.1).

ARIMA(0,0,1) =MA(1) model is in Equation (18.4).

ARIMA(0,1,0) is the first difference model in Equation (18.6).

ARIMA(0,1,1) model is shown in Equation (18.7).

ARIMA(1,1,1) model looks like

Φ1(B)∇Xt = Θ1(B)εt

(1 − φB)(1 − B)Xt = (1 − θB)εt

(1 − (1 + φ)B + φB2)Xt = (1 − θB)εt

Xt − (1 + φ)Xt−1 + φXt−2 = εt − θεt−1

ARIMA(p, 0, q) with d = 0, hence no differencing, is also called an ARMA(p, q)
model (autoregressive moving average)).

18.3 Autocorrelation

Two principal tools for studying time series are the autocorrelation function (ACF)
and the partial autocorrelation function (PACF). The ACF assists in the diagnosis of
MA models. The PACF is used in the diagnosis of AR models.

18.3.1 Autocorrelation Function (ACF)

The defining equation for the lag-k autocorrelation coefficient ρk is

ρk = acf(k) = corr(Xt, Xt−k)

The discrete function {ρk} indexed by the lag k is called the autocorrelation function
of the series Z. The sample estimators {rk} are defined by
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X̄ = 1
n

n∑
t=1

Xt

ck =
1
n

n∑
t=k+1

(Xt − X̄)(Xt−k − X̄) autocovariance

rk = ck/c0 autocorrelation

Note that the division is always by n.

The ACF for a time series z = (x1, . . . , xn) is calculated in R by

acf(z)

18.3.2 Partial Autocorrelation Function (PACF)

The defining equation for the PACF is

φkk = pacf(k) = corr(Xt, Xt−k | Xt−1, Xt−2, . . . , Xt−(k−1))

The sample estimators are defined by solving the Yule–Walker equations that hold
for an AR(p) process (see Box and Jenkins (1976) for details). An illustrative (but
not practical) estimator is shown in the R function in Table 18.2. The PACF is cal-
culated in R by

acf(z, type="partial")

Note that ρ1 = φ11, that is pacf(1) = acf(1), in mathematics notation. In R notation,
the same statement is

acf(x)["1"]$acf == acf(x, type="partial")["1"]$acf

for a numeric vector x.

18.4 Analysis Steps

There are three main steps in time series analysis using the ARIMA models of the
Box–Jenkins approach.

Identification: choice of the proper transformations to apply to the time series,
consisting of variance-stabilizing transformations and of differencing. Determin-
ing the number of model parameters: d, the order of differencing; p, the number
of autoregressive parameters; and q, the number of moving average parameters.
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Table 18.2 Illustrative definition of the PACF. Do NOT use in actual calculations!

> ## This function illustrates the definition of the pacf.

> ## Do NOT use in actual calculations!

> ##

> ## my.pacf requires a detrended series, otherwise the answer is

> ## nonsense, as it starts losing precision after the first few lags.

>

> my.pacf <- function(z, k=2) {

+ z <- z - mean(z)

+ x <- ts.intersect(z, lag(z,-1))

+ if (k==1) return(cor(x[,1], x[,2]))

+ for (kk in 2:k) x <- ts.intersect(x, lag(z,-kk))

+ nr <- nrow(x)

+ nc <- ncol(x)

+ r1 <- lm(x[,1] ~ -1 + x[,-c(1,nc)])$resid

+ r2 <- lm(x[,nc] ~ -1 + x[,-c(1,nc)])$resid

+ cor(r1,r2)

+ }

> my.pacf(ozone.subset, 2)

[1] -0.2665

> acf(ozone.subset, type="partial", plot=FALSE)$acf[2]

[1] -0.2583

Estimation: estimation of the parameters of the identified model, usually by
maximum likelihood.

Diagnostics: verification that the estimated model and parameters do indeed
capture the essence of the behavior of the data.

We offer these recommendations for interpreting sequence plots, ACF plots, and
PACF plots. They are based on the Box–Jenkins methodology described in the texts
by Box and Jenkins (1976) and Wei (1990).

1. Trends in the sequence plot must be removed by differencing. This is required
before attempting to interpret the ACF and PACF plots. The interpretation below
of ACF and PACF plots depends on stationarity.

2. No correlation—white noise
The ACF and PACF are negligible at all lags.

3. AR(p)
The ACF decays slowly.
The PACF cuts off at lag p.
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4. MA(q)
The ACF cuts off at lag q.
The PACF decays slowly.

5. ARMA(p, q)
The ACF decays slowly from lag max(q − p, 0) on.
The PACF decays slowly from lag max(p − q, 0) on.

The orders p and q usually can’t be read directly from these plots. Looking at
the ACF and PACF plots for models with larger values of p and q can be helpful.
The ESACF (extended sample autocorrelation function) (see, for example, Wei
(1990), p. 128) can also be helpful.

Several additional tools are used to identify well-fitting models.

• The Akaike information criterion (AIC) for a particular model is defined as
−2(ln L) + 2m, where L is the model’s loglikelihood and m is the number of
parameters needed to estimate the model. Like the Cp statistic used to decide
among multiple regression models, introduced in Equation (9.28), the AIC is the
sum of a goodness-of-fit component and a penalty for lack of simplicity. Low
values of AIC are preferred to large values.

• The portmanteau goodness-of-fit test for a particular model at lag � is actually
a collection of tests, one for each k = 1, 2, . . . , �. Each of these individual tests
is a test of the negligibility of the autocorrelations of the model residuals up to
and including lag �. In a well-fitting model, these hypotheses should be retained
because such a model should have negligible autocorrelations. Therefore, for
well-fitting models the p-values of these tests should not be small.

• The highest-order AR and MA parameters of well-fitting models are significantly
different from zero, indicating that the corresponding model terms and terms
of lower order are needed. Such significance is suggested by a corresponding
t statistic that exceeds 2 in absolute value. For example, a model with p = 2
must have φ2 significantly different from zero, but it is not essential that φ1 be
significantly nonzero.

• A well-fitting model has an estimated residual variance σ̂2 at least as small as
those of competing models. The estimated residual variance and the AIC carry
similar information. The AIC is usually preferred to the residual variance because
the AIC includes a penalty for lack of simplicity and the residual variance does
not.

In most situations these diagnostics will point to the same uniquely best model
or subset of equivalently well-fitting models.
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18.5 Some Algebraic Development, Including Forecasting

Usually, the ultimate purpose of finding a well-fitting time series model is the pro-
duction of forecasts and forecast intervals h periods beyond the final observation of
the existing series. While we have shown how to produce forecasts and intervals in
R, here we provide a brief introduction to the algebra behind such forecasts. The
algebra is intractable by hand for all but a few special cases.

18.5.1 The General ARIMA Model

The time series model for a 0-mean time series Xt, with E(Xt) = 0 and
var(Xt) = σ2, is

φ(B)∇dXt = θ(B) εt (18.9)

One way to rewrite (18.9) is

εt = θ−1(B)φ(B)∇dXt

Once the coefficients of φ and θ have been estimated by maximum likelihood, the
fitted model is expressed in terms of the calculated residuals as

ε̂t = θ̂−1(B)φ̂(B)∇dXt

where θ̂(·) and φ̂(·) are the polynomials in B after the coefficient estimates have been
substituted into θ(·) and φ(·).

The calculated residuals ε̂t will be used in many subsequent calculations.

The model (18.9) can also be rewritten as

Xt = φ−1(B)∇−d θ(B) εt
def
= ψ(B) εt

= (1 + ψ1B + . . . ) εt

= εt + ψ1εt−1 + . . . + ψkεt−k + . . .

where ψ(B) may have an infinite number of terms. The number of terms is finite
with purely MA models (where ψ = θ) and infinite when there are AR or differenc-
ing factors. In order that the model be stationary and invertible (that is, explicitly
solvable for Xt), it is required that the roots of both polynomials φ (B) and ψ (B) lie
outside the unit circle. In addition φ (B) and θ (B) must have no roots in common. If
the polynomials have common roots, these roots can be factored out.
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The nonzero-mean case is essentially the same. Let the nonzero-mean time series
be Yt = Xt + μ. We can subtract the mean from the observed Yt-values to construct a
0-mean times series Xt = Yt − μ and then proceed.

When we use the model for forecasting h steps ahead, we use the equation

X̂t+h = E(Xt+h|Xt, Xt−1, . . . ) = (ψh + ψh+1B + . . . ) εt

with forecast error

et+h = Xt+h − X̂t+h = εt+h + ψ1εt+h−1 + . . . + ψh−1εt+1

and with variance of the forecast error

var(et+h) = σ2(1 + ψ2
1 + ψ2

2 + . . . + ψ2
h−1)

The forecast error for h-step ahead forecasts, and its variance, have exactly h terms.
The εt are uncorrelated. The forecast errors are correlated.

Probability limits for the forecasts are calculated as

X̂t+h ± zα/2 σ̂
√

1 + ψ2
1 + ψ2

2 + . . . + ψ2
h−1

18.5.2 Special Case—The AR(1) Model

Starting from X2 = φX1 + ε2, incrementing the subscripts on Xt, and then back-
substituting [for example, X3 = φ(φX1 + ε2) + ε3], we eventually get

Xt+h = φhXt + φh−1εt+1 + . . . + φεt+h−1 + εt+h

As a consequence, we take X̂t+h = φ̂hXt. Further,

var(Xt+h) = σ2(1 + φ2 + φ4 + . . . + φ2(h−1))

= σ2

(
1 − φ2h

1 − φ2

)

A 100(1 − α)% prediction interval for Xt+h is

X̂t+h ± zα/2σ̂

√
1 − φ̂2h

1 − φ̂2
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18.5.3 Special Case—The MA(1) Model

Here we have Xt+1 = εt+1 − θ1εt, and the general formulas simplify to

X̂t+1 = −θ1ε̂t for h = 1
X̂t+h = 0 for h > 1
var(X̂t+1) = σ2 for h = 1
var(X̂t+h) = σ2(1 + θ2

1) for h > 1

In the MA(q) models the ε̂t+ j-values are known for past observations (those for
which j ≤ 0), hence they appear in the prediction equations. A 100(1− α)% predic-
tion interval for Xt+h is

X̂t+1 ± zα/2σ̂ for h = 1

X̂t+h ± zα/2σ̂
√

1 + θ2
1 for h > 1

18.6 Graphical Displays for Time Series Analysis

We present a number of graphical displays to facilitate the identification and model
checking steps of ARIMA(p, d, q) modeling. Much of this material previously app-
eared in Heiberger and Teles (2002). We discuss an extension of these displays to
model time series with seasonal components in Section 18.8. A general discussion
of the features of these graphs appears in Section 18.A of this chapter’s appendix.

Table 18.3 summarizes the nine achievable models formed by possible combina-
tions of the number of AR parameters (p = 0, 1, 2) and MA parameters (q = 0, 1, 2).
The appearance of the left-hand and right-hand side of the model equations is shown
for each value of (p, 0, q).

Figures 18.1 and 18.3 are examples of coordinated plots useful for identifying an
ARIMA time series model.

Figure 18.1 contains a plot of the original time series along with its autocorre-
lation function and partial autocorrelation function. (Figure 18.2 is comparable to
Figure 18.1 but for a differenced time series.)

The set of plots in Figure 18.3 consists of the residual ACF and PACF, the port-
manteau goodness-of-fit test statistic (GOF), the standardized residuals, and the
Akaike information criterion (AIC). The panels in the first four sets of plots are
indexed by the number of ARMA parameters p and q. The AIC plot uses p and q
as plotting variables. The orders of differencing and the orders of the autoregres-
sive and moving average operators have been limited to 0 ≤ p, d, q,≤ 2. While this
limitation is usually reasonable in practice, it is not inherent in the software.
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Table 18.3 3 × 3 layout for the ARIMA(p, 0, q) models. All the time series diagnostic plots and
summary tabular data are constructed on this pattern. The rows give the number of AR parameters
(p = 0, 1, 2) and the corresponding left-hand side of the model equation. The columns give the
number of MA parameters (q = 0, 1, 2) and the corresponding right-hand side of the model equa-
tion. For example, the (1, 1) cell of the array shows the information for the ARIMA(1, 0, 1) model:

Xt − φ1Xt−1 = εt − θ1εt−1

In all the displays we show, the differencing parameter d (d = 0 in this example) and the seasonal
parameters (P, D, Q)s (if any) are held constant.

Moving average model — Right-hand side

Autoregression model q = 0 q = 1 q = 2

p Left-hand side εt εt − θ1εt−1 εt − θ1εt−1 − θ2εt−2

p = 0 Xt (0, 0, 0) (0, 0, 1) (0, 0, 2)

p = 1 Xt − φ1Xt−1 (1, 0, 0) (1, 0, 1) (1, 0, 2)

p = 2 Xt − φ1Xt−1 − φ2Xt−2 (2, 0, 0) (2, 0, 1) (2, 0, 2)

Each set of nine panels is systematically structured in a 3×3 array indexed by
the number of AR parameters p and MA parameters q. All nine panels in a set are
scaled identically. Thus the reader can scan a row or column of the array of panels
and see the effect of adding one more parameter to either the AR or MA side of the
model.

The graphics are used to analyze the monthly El Nino data in file data(elnino)
from NIST (2005). The El Nino effect is thought to be a driver of world-wide
weather. The southern oscillation is a predictor of El Nino. It is defined as the sea
level barometric pressure at Tahiti minus the sea level barometric pressure at the
Darwin Islands. Repeated southern oscillation values below −1 essentially defines
an El Nino. Figures 18.1 and 18.2 show the reported data yt=elnino and the first

differences ∇yt
def
= yt − yt−1. The horizontal dashed lines on the ACF and PACF plots

are the critical values for α = .05 tests of the hypothesis, at each individual lag k,
that the correlation coefficient is zero. Spikes on these plots that fall outside these
horizontal boundaries suggest the possibility of a nonzero correlation.

Figure 18.1 suggests that successive months’ southern oscillations are positively
associated: corr(yt, yt−1) ≈ 0.65. To address the positive association between succes-
sive months we analyze first differences in Figure 18.2; this Figure does not suggest
a need for additional differencing and its ACF and PACF for the first differences
shows systematic behavior: the ACF cuts off at lag 1 and the PACF decays slowly.
This suggests an ARIMA(0,1,1) model for the original series.

Since the ACF and PACF show systematic behavior, we proceed to Figure 18.3,
a collection of five sets of coordinated plots on a single page designed to facilitate
identifying the best ARIMA(p, 1, q) model based on fits of the nine models with
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Fig. 18.1 Coordinated time series plot and ACF/PACF plots for the elnino time series: yt. The
response variable on the time series plot is the monthly value of the southern oscillation.

0 ≤ p, q ≤ 2. For each of these nine models, Figure 18.3 shows the ACF and PACF
plots of the standardized residuals, a plot of the p-values of portmanteau goodness-
of-fit tests at various lags, the Akaike information criterion arranged in the form
of a pair of interaction plots, and the standardized residuals themselves. While in
theory it is possible for p or q to exceed 2 (and the software permits larger values
of p and/or q), this is unlikely to occur in practice provided that the data have been
properly differenced and that any seasonal effects have been addressed.
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Fig. 18.2 Coordinated time series and ACF/PACF plots for the differenced elnino time
series: ∇yt.

Figure 18.3 confirms the choice p = 0, q = 1. For this parsimonious model,

• The ACF and PACF plots stay within the thresholds of significance.

• All p-values for the goodness-of-fit test exceed 0.05.

• The Akaike criterion is only slightly above that for all less parsimonious models.

Table 18.4 provides additional support for the ARIMA(0,1,1) model. The maxi-
mum likelihood estimate of the ARIMA parameters coef shows the MA(1) parame-
ter to be 0.53. As this number is not close to 1, no further differencing is needed. The
standardized value (denoted t.coef) of the MA(1) parameter is 13.2. This number
greatly exceeds the usual critical value |2|.
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Fig. 18.3 Diagnostic plots for the set of models ARIMA(p,1,q) fit to the elnino data by maximum
likelihood. Each set of nine panels is systematically structured in a 3×3 array with rows indexed by
the number of AR parameters p and columns by the number of MA parameters q. All nine panels
in a set are scaled identically. The AIC has been plotted as a pair of interaction plots: AIC plotted
against q using line types defined by p; and AIC plotted against p, using line types defined by q.
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Table 18.4 Estimation results for ARIMA(p, 1, q) models fit to the elnino data.

> elnino.loop <- arma.loop(elnino, order=c(2,1,2))

> elnino.loop

$series

[1] "elnino"

$model

[1] "(p,1,q)"

$sigma2

0 1 2

0 0.8333 0.6740 0.6707

1 0.7250 0.6708 0.6707

2 0.6925 0.6704 0.6678

$aic

0 1 2

0 1210 1116 1116

1 1149 1116 1118

2 1130 1118 1118

$coef

ar1 ar2 ma1 ma2

(0,1,0) NA NA NA NA

(1,1,0) -0.36153 NA NA NA

(2,1,0) -0.43720 -0.21245 NA NA

(0,1,1) NA NA -0.5258 NA

(1,1,1) 0.12397 NA -0.6127 NA

(2,1,1) 0.07603 -0.04306 -0.5625 NA

(0,1,2) NA NA -0.4868 -0.06870

(1,1,2) -0.02671 NA -0.4604 -0.08237

(2,1,2) 0.73112 -0.23604 -1.2121 0.48199

$t.coef

ar1 ar2 ma1 ma2

(0,1,0) NA NA NA NA

(1,1,0) -8.2319 NA NA NA

(2,1,0) -9.5122 -4.6147 NA NA

(0,1,1) NA NA -12.492 NA

(1,1,1) 1.4328 NA -8.944 NA

(2,1,1) 0.6434 -0.5906 -5.099 NA

(0,1,2) NA NA -10.391 -1.4911

(1,1,2) -0.0642 NA -1.115 -0.3805

(2,1,2) 3.0449 -2.0250 -5.266 2.6781
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18.7 Models with Seasonal Components

One of the strengths of the Box–Jenkins method is its handling of seasonal param-
eters. Time series frequently show seasonal patterns in their correlation structure.
Most economic series have annual, quarterly, monthly, or weekly patterns as well
as daily patterns. For example, retail sales figures often shows a surge in activity in
December; power consumption figures show seasonal patterns as heating is used in
the winter months and air conditioning in the summer months, and a weekly pattern
where weekday consumption differs systematically from weekend consumption.

18.7.1 Multiplicative Seasonal ARIMA Models

Seasonal parameters are handled similarly to the nonseasonal parameters, with the
subscripts varying by increments of the season. With monthly data, an annual season
s = 12 is denoted by using 12-month lags, that is, Xt and Xt−12. We use uppercase
Greek letters Φ and Θ to denote autoregressive and moving average polynomials,
respectively, in the seasonal backshift operator Bs. The polynomials in the backshift
Bs are denoted Φ(Bs) and Θ(Bs), and the differences are ∇s = 1 − Bs.

The seasonal portion of a seasonal model is denoted ARIMA(P, D, Q)s (with, for
example, the seasonal s = 12 used for annual seasons when the underlying data is
monthly, and s = 7 for weekly seasons when the underlying data is daily), where

P is the number of lags in the seasonal AR portion of the model, equivalently the
order of the polynomial

Φ(Bs) = 1 −Φ1Bs − . . . −ΦPBsP

Q is the number of lags in the seasonal MA portion of the model, equivalently the
order of the polynomial

Θ(Bs) = 1 − Θ1Bs − . . . − ΘQBsQ

D is the number of seasonal differences prior to the AR and MA modeling, equiva-
lently the power of the differencing binomial

∇D
s = (1 − Bs)D

The general multiplicative seasonal model, denoted

ARIMA(p, d, q) × (P, D, Q)s
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is given by

Φ (Bs) φ (B)∇D
s ∇dXt = Θ (Bs) θ (B) εt (18.10)

For various technical reasons, the roots of the seasonal polynomials Φ(B) and
Ψ (B) must satisfy certain conditions that parallel the restrictions on φ(B) and ψ(B)
mentioned in Section 18.5.1. The roots of Φ(B) and Ψ (B) must lie outside the unit
circle to assure that the model is stationary and invertible (solvable for X(t)). In
addition, Φ(B) and Ψ (B) must have no common roots. If these polynomials have
common roots, these roots can be factored out.

18.7.2 Example—co2 ARIMA(0, 1, 1) × (0, 1, 1)12 Model

The final model for the co2 example discussed in Section 18.8 is written as
ARIMA(0, 1, 1) × (0, 1, 1)12 model for Xt:

∇12∇Xt = (1 − θ1B)
(
1 − Θ1B12

)
εt (18.11)

which expands to

Xt − Xt−1 − Xt−12 + Xt−13 = εt − θ1εt−1 − Θ1εt−12 + θ1Θ1εt−13

18.7.3 Determining the Seasonal AR and MA Parameters

The procedure for determining the order P and Q of the seasonal parameters is
comparable to the recommendations given in Section 18.4 for determining the order
p and q of the nonseasonal parameters. As before, we work with the ACF and PACF
for an appropriately differenced model. The distinction is that in examining the beh-
avior of the ACF and PACF for seasonality, we examine only the values at seasonal
intervals. For example, for monthly data with annual season (s = 12), these plots are
examined at t = 12, 24, 36, . . . = 12 × (1, 2, 3, . . .), ignoring values at other times.
We then visualize the cutoff or decay behavior where lag now refers to seasonal
intervals. If the ACF decays slowly at t = 12, 24, 36, . . . = 12 × (1, 2, 3, . . .) and the
PACF cuts off at t = 24 = 12 × 2, then P = 2 and Q = 0. If the PACF decays slowly
at t = 12, 24, 36, . . . = 12 × (1, 2, 3, . . .) and the ACF cuts off at t = 12 × 1, then
P = 0 and Q = 1.
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18.8 Example of a Seasonal Model—The Monthly co2 Data

We extend the graphical displays discussed in Section 18.6 to the identification and
model checking steps of ARIMA(p, d, q) × (P, D, Q)s modeling. These graphs also
first appeared in Heiberger and Teles (2002). A general discussion of the features of
these graphs is deferred to Section 18.A.

The graphics are illustrated with one of the time series datasets distributed in the
R package datasets, the Mauna Loa Carbon Dioxide Concentration series collected
by the Scripps Institute of Oceanography, in La Jolla, California. The source is the
climatology database maintained by the Oak Ridge National Laboratory Peterson
(1990). These data represent monthly CO2 concentrations in parts per million (ppm)
from January 1959 to December 1990. Missing values have been filled in by linear
interpolation.

Figures 18.4 through 18.7 are structured presentations of the plots of the series
itself, of the ACF, and of the PACF. We show a magnified section of the plot for
a five-year interval in Figure 18.5 Figure 18.4 displays the raw data series while
Figure 18.6 displays the differenced series (monthly) and Figure 18.7 displays the
twice-differenced series (monthly and annually).

18.8.1 Identification of the Model

Figure 18.4 is the plot of the observed data. The plot of the series itself shows a
strong upward trend and a systematic labeling, with peaks occurring in the spring
months and troughs in the autumn months. It is clear that the mean of this series
is not constant over time. Both the ACF and PACF show systematic behavior. The
ACF exhibits large values and a very slow decay with an annual periodicity. The
PACF has large values and an annual periodicity. The conclusion is that the series
is nonstationary, that is, it does not have a constant mean, and its autocorrelation
function is time-dependent, implying that it shows nonrandom time-dependent be-
havior. Monthly differencing is required to model the nonstationarity, and annual
differencing is necessary to remove the periodicity.

The time series and ACF and PACF plots for the differenced series ∇Xt in
Figure 18.6 also show systematic annual behavior. The time series plot shows
August/September troughs. The ACF exhibits a very slow decay at the seasonal
lags, lags that are multiples of the seasonal period s = 12 months. This confirms
that seasonal differencing with period 12 is required.

Figure 18.7 shows the time series (and the ACF and PACF) after non-seasonal
and seasonal differencing ∇12∇Xt. There are no longer systematic components visi-
ble in the plot of the differences. The differenced series is stationary and it becomes
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Fig. 18.4 Coordinated time series plot and ACF/PACF plots for the Mauna Loa CO2 time series:
Xt. The response variable on the time series plot is concentration in parts per million. We show a
magnified section of the time series plot in Figure 18.5.

possible to identify a model for the series, that is, to look for the AR and MA par-
ameters that best fit the twice-differenced data.

The nonseasonal component of the model of Xt is identified by looking at the first
few monthly lags of the sample ACF and PACF of ∇12∇Xt in Figure 18.7. The ACF
seems to cut off after lag 1 and the PACF shows an exponential decay. The same
type of behavior is seen at the seasonal lags, i.e., the ACF cuts off after lag 12 and
the PACF shows an exponential decay at lags 12, 24, 36, . . . . These characteristics
of the ACF and PACF suggest the ARIMA(0, 1, 1) × (0, 1, 1)12 model for Xt:
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Fig. 18.5 Time series plot for 10 years of the Mauna Loa CO2 time series: Xt. The data from 1959
to 1997 is shown in Figure 18.4.

∇12∇Xt = (1 − θ1B)
(
1 − Θ1B12

)
εt (18.12)

A closer look at the ACF in Figure 18.7 indicates that it too may show an exponential
decay in the first lags, suggesting that the ARIMA(1, 1, 1) × (0, 1, 1)12 model

(1 − φ1B)∇12∇Xt = (1 − θ1B)
(
1 − Θ1B12

)
εt (18.13)

might also be appropriate.

18.8.2 Parameter Estimation and Diagnostic Checking

In general, when analyzing seasonal time series data, initial guesses of at least
some of the parameters p, q, P, Q may be provided from inspections of coordi-
nated plots of original and differenced data such as Figures 18.4–18.7. Figures 18.8
and 18.9 each simultaneously consider nine models produced with the user function
arma.loop described in Section 18.A.4. Figures in this class can be used to suggest
seasonal parameters P and Q for a given set of nonseasonal and differencing pa-
rameters p, q, d, D, or to suggest nonseasonal parameters p and q for a given set of
seasonal and differencing parameters P, Q, d, D. Alternating consideration of figures
of both of these types can be used to settle on a final model.

Continuing with the co2 data, Figure 18.8 displays a set of diagnostic plots for
several models without a seasonal component, the ARIMA(p, 1, q)×(0, 1, 0)12 mod-
els with 0 ≤ p, q ≤ 2, that have been fit to the series ∇12∇Xt.

Since the co2 data exhibit a seasonal behavior, Figure 18.8 is expected to confirm
that seasonal parameters are required in the model of ∇12∇Xt. All the residual ACF
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Fig. 18.6 Coordinated time series plot and ACF/PACF plots for the differenced Mauna Loa CO2

time series: ∇Xt.

plots show a significant spike at lag=12 months, and all the GOF plots show a break
at the same lag=12 months.

The residual ACF, PACF, and GOF plots in Figure 18.8 clearly confirm that sea-
sonal parameters are necessary. The cutoff after the spike at lag=12 of the residual
ACF, and the exponential decay of the residual PACF at the seasonal lags (those that
are multiples of 12 months), show that a seasonal MA parameter is necessary. This
agrees with the identification of candidate models (18.11) and (18.13).

Next consider the ARIMA(p, 1, q) × (0, 1, 1)12 models with 0 ≤ p, q ≤ 2. The
diagnostic plots for models including the seasonal MA parameter are in Figure 18.9.
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Fig. 18.7 Coordinated time series plot and ACF/PACF plots for the twice-differenced Mauna Loa
CO2 time series: ∇12∇Xt.

The q = 0 column of the residual ACF and GOF plots shows poor fits. The q = 1
column appears better than the q = 2 column. All three GOF plots for q = 1 are
similar. The AIC plots show almost identical values when q = 1. This is seen as
three almost coincident points at q = 1 in the “aic ∼ ma | ar” plot and as a
horizontal line for q = 1 over all three values of p in the “aic ∼ ar | ma” plot.
The conclusion is that one nonseasonal MA parameter is necessary.

Table 18.5 shows the AIC, the estimates of σ2
ε, and the estimates of the ARMA

parameters with their t-statistics for the set of ARIMA(p, 1, q) × (0, 1, 1)12 models.
From the t.coef section of Table 18.5, the t statistics for both AR parameters in the
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Fig. 18.8 Diagnostic plots for the set of models ARIMA(p, 1, q) × (0, 1, 0)12 fit to the CO2 data
by maximum likelihood. Each set of nine panels is systematically structured in a 3×3 array with
rows indexed by the number of AR parameters p and columns by the number of MA parameters
q. All nine panels in a set are scaled identically. The AIC is plotted as a pair of interaction plots:
AIC plotted against q using line types defined by p; and AIC plotted against p, using line types
defined by q.
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ARIMA(2, 1, 1)×(0, 1, 1)12 model are not significant and this model can be rejected.
The t-statistic for the AR(1) parameter in the ARIMA(1, 1, 1) × (0, 1, 1)12 model is
marginally significant, leading us to consider both the models ARIMA(0, 1, 1) ×
(0, 1, 1)12 and ARIMA(1, 1, 1) × (0, 1, 1)12 for Xt. A different criterion is needed
to distinguish between them. Both models are consistent with the analysis at the
identification stage.

The detailed display of the estimation results for the ARIMA(0, 1, 1)× (0, 1, 1)12

model is shown in Table 18.6 (as displayed by the new print method for arima

objects). A similar display for the ARIMA(1, 1, 1) × (0, 1, 1)12 model in Table 18.7
shows that the AR(1) and MA(1) parameters are highly correlated (r = −.0167184/√

.02040605 × .0152966 = −0.9463). The ARIMA(1, 1, 1) × (0, 1, 1)12 models can
be discarded from further consideration.

The final step is the verification of the adequacy of the ARIMA(0, 1, 1)×(0, 1, 1)12

model. The residual ACF and PACF plots exhibit no significant spikes and all the
GOF p-values are also not significant, showing that the residuals are approximately
white noise. The AIC values have dropped from 310 in Figure 18.8 to 136 in
Figure 18.9. The standardized residuals in Figure 18.9 are not inconsistent with the
normal distribution. The ARIMA(0, 1, 1)× (0, 1, 1)12 model seems to be appropriate
for Xt and the estimated model is

∇12∇Xt =
(
1 − θ̂1B

) (
1 − Θ̂1B12

)
ε̂t (18.14)

= (1 − 0.36338 B)(1 − 0.85806 B12) ε̂t

σ̂2
ε = 0.080299



18.8 Example of a Seasonal Model—The Monthly co2 Data 657

Table 18.5 Estimation results for ARIMA(p, 1, q) × (0, 1, 1)12 models fit to the CO2 data.

> ddco2.loopPQ <-

+ arma.loop(co2,

+ order=c(2,1,2),

+ seasonal=list(order=c(0,1,1), period=12))

> ddco2.loopPQ

$series

[1] "co2"

$model

[1] "(p,1,q)x(0,1,1)12"

$sigma2

0 1 2

0 0.09063 0.08260 0.08242

1 0.08358 0.08221 0.08214

2 0.08315 0.08176 0.08162

$aic

0 1 2

0 221.5 178.2 179.1

1 184.2 178.1 180.1

2 183.5 177.8 179.1

$coef

ar1 ar2 ma1 ma2 sma1

(0,1,0)x(0,1,1)12 NA NA NA NA -0.8887

(1,1,0)x(0,1,1)12 -0.292654 NA NA NA -0.8603

(2,1,0)x(0,1,1)12 -0.317119 -0.07825 NA NA -0.8551

(0,1,1)x(0,1,1)12 NA NA -0.3501 NA -0.8506

(1,1,1)x(0,1,1)12 0.239889 NA -0.5710 NA -0.8516

(2,1,1)x(0,1,1)12 0.390518 0.10540 -0.7329 NA -0.8544

(0,1,2)x(0,1,1)12 NA NA -0.3436 -0.0492 -0.8499

(1,1,2)x(0,1,1)12 -0.962631 NA 0.6204 -0.3571 -0.8440

(2,1,2)x(0,1,1)12 0.007095 0.23191 -0.3477 -0.2473 -0.8548

$t.coef

ar1 ar2 ma1 ma2 sma1

(0,1,0)x(0,1,1)12 NA NA NA NA -36.66

(1,1,0)x(0,1,1)12 -6.43561 NA NA NA -34.04

(2,1,0)x(0,1,1)12 -6.64989 -1.650 NA NA -33.66

(0,1,1)x(0,1,1)12 NA NA -7.0529 NA -33.15

(1,1,1)x(0,1,1)12 1.67707 NA -4.6167 NA -33.29

(2,1,1)x(0,1,1)12 3.01877 1.503 -6.2632 NA -33.52

(0,1,2)x(0,1,1)12 NA NA -7.2649 -1.036 -33.26

(1,1,2)x(0,1,1)12 -37.32018 NA 11.4769 -7.224 -31.34

(2,1,2)x(0,1,1)12 0.01896 1.883 -0.9297 -1.150 -33.30
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Fig. 18.9 Diagnostic plots for the set of models ARIMA(p, 1, q) × (0, 1, 1)12 fit to the CO2 data
by maximum likelihood.
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Table 18.6 Estimation results for ARIMA(0, 1, 1) × (0, 1, 1)12 models fit to the CO2 data.

> co2.arima <- ddco2.loopPQ[["0","1"]]

> co2.coef.t <- co2.arima$coef / sqrt(diag(co2.arima$var.coef))

> co2.arima

Call:

arima(x = x, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1),

period = 12))

Coefficients:

ma1 sma1

-0.35 -0.851

s.e. 0.05 0.026

sigma^2 estimated as 0.0826: log likelihood = -86.08, aic = 178.2

> co2.coef.t

ma1 sma1

-7.053 -33.151

> vcov(co2.arima)

ma1 sma1

ma1 0.0024638 -0.0002662

sma1 -0.0002662 0.0006583
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Table 18.7 Estimation results for ARIMA(1, 1, 1) × (0, 1, 1)12 models fit to the CO2 data.

> co2.arima11 <- ddco2.loopPQ[["1","1"]]

> co2.coef11.t <- co2.arima11$coef / sqrt(diag(co2.arima11$var.coef))

> co2.arima11

Call:

arima(x = x, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1),

period = 12))

Coefficients:

ar1 ma1 sma1

0.240 -0.571 -0.852

s.e. 0.143 0.124 0.026

sigma^2 estimated as 0.0822: log likelihood = -85.03, aic = 178.1

> co2.coef11.t

ar1 ma1 sma1

1.677 -4.617 -33.287

> vcov(co2.arima11)

ar1 ma1 sma1

ar1 0.0204605 -0.0167184 -0.0004893

ma1 -0.0167184 0.0152966 0.0002301

sma1 -0.0004893 0.0002301 0.0006544
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18.8.3 Forecasting

The final plot in Figure 18.10 shows the last year of observed data and the forecasts,
with their 95% forecast limits, obtained from the fitted model for the following year,
i.e., for the months January through December 1998.
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Fig. 18.10 CO2—1997 observed, 1998 forecast + 95% CI.

18.9 Exercises

Many of the time series exercises ask you to construct and/or interpret plots of the
time series itself, of the ACF and PACF, and of the diagnostics from a 3 × 3 set of
ARIMA models. For Exercises 18.1, 18.2, and 18.3, go through this set of steps:

a. Describe the plot of the data and the ACF and PACF plots. Comment on whether
you see anything systematic in the plot of the data. Are there spikes in the ACF
and PACF plots. At which lags do they appear and what do they suggest? Do the
ACF and PACF plots show any indication of a seasonal effect?

b. We chose to investigate a family of ARIMA(p, 0, q) models, with 0 ≤ p, q ≤ 2.
Study the figures showing the diagnostic plots and the tables listing the param-
eter estimates. Describe each of the four sections of the diagnostic plot. What
characteristics of each suggest a final model? Does the σ2 (sigma2) section in
the tables also suggest the same final model? Note for these three exercises, all of
which are stationary and have zero mean, that the (0, 0) panels of the ACF, PACF,
and standardized residuals plots are essentially the same as the ACF, PACF, and
time series plot of the data.

c. We printed the detail for the ARIMA(1, 0, 1) model. Compare the ARIMA(1, 0, 1)
model to a simpler model with the closest σ2. How do the AIC and the σ2 com-
pare? Would you recommend the simpler model? Why or why not?
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18.1. Figure 18.11 shows the sequence, ACF, and PACF plots for a mystery time ser-
ies X data(tser.mystery.X). Figure 18.12 and Table 18.8 show the diagnostics
and estimated coefficients obtained by fitting the 3×3 set of ARIMA(p, 0, q) models
to the series. Table 18.9 shows the detail for the ARIMA(1, 0, 1) model. Study the
graphs and tables and explain why and how they indicate that one of these models
seems better suited to explain the data than the others.
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Fig. 18.11 Mystery time series X.
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series: tser.mystery.X   model: (p,0,q)   by CSS−ML

Fig. 18.12 Mystery time series X.
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Table 18.8 Mystery time series X.

> X.loop

$series

[1] "tser.mystery.X"

$model

[1] "(p,0,q)"

$sigma2

0 1 2

0 2.715 1.435 1.277

1 1.500 1.271 1.262

2 1.286 1.260 1.260

$aic

0 1 2

0 387.7 326.6 317.1

1 330.9 316.7 318.0

2 317.9 317.9 319.8

$coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 0.6636 NA NA NA -0.2744

(2,0,0) 0.9135 -0.3721 NA NA -0.2528

(0,0,1) NA NA 0.7264 NA -0.2568

(1,0,1) 0.4299 NA 0.5221 NA -0.2629

(2,0,1) 0.6213 -0.1781 0.3483 NA -0.2571

(0,0,2) NA NA 0.9272 0.32958 -0.2548

(1,0,2) 0.2614 NA 0.7057 0.17341 -0.2588

(2,0,2) 0.5417 -0.1479 0.4280 0.04826 -0.2572

$t.coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 9.0295 NA NA NA -0.7684

(2,0,0) 9.9262 -4.0464 NA NA -1.0257

(0,0,1) NA NA 13.2037 NA -1.2471

(1,0,1) 3.8606 NA 5.1540 NA -0.8828

(2,0,1) 2.6785 -0.9701 1.5262 NA -0.9525

(0,0,2) NA NA 10.6280 3.5060 -1.0063

(1,0,2) 1.0949 NA 3.0019 0.8897 -0.9135

(2,0,2) 0.7891 -0.4658 0.6246 0.1267 -0.9478
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Table 18.9 Mystery time series X.

> X.loop[["1","1"]]

Call:

arima(x = x, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.430 0.522 -0.263

s.e. 0.111 0.101 0.298

sigma^2 estimated as 1.27: log likelihood = -154.3, aic = 316.7
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18.2. Figure 18.13 shows the sequence, ACF, and PACF plots for a mystery time
series Y data(tser.mystery.Y). Figure 18.14 and Table 18.10 show the diag-
nostics and estimated coefficients obtained by fitting the 3×3 set of ARIMA(p, 0, q)
models to the series. Table 18.11 shows the detail for the ARIMA(1, 0, 1) model.
Study the graphs and tables and explain why and how they indicate that one of these
models seems better suited to explain the data than the others.
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Fig. 18.13 Mystery time series Y .
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standardized residuals
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Fig. 18.14 Mystery time series Y .
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Table 18.10 Mystery time series Y .

> Y.loop

$series

[1] "tser.mystery.Y"

$model

[1] "(p,0,q)"

$sigma2

0 1 2

0 1.186 1.064 1.0243

1 1.035 1.034 1.0042

2 1.034 1.015 0.9502

$aic

0 1 2

0 304.9 296.1 294.4

1 293.3 295.3 294.5

2 295.2 295.5 293.0

$coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 0.3740 NA NA NA 0.03050

(2,0,0) 0.3623 0.03129 NA NA 0.03248

(0,0,1) NA NA 0.29684 NA 0.01777

(1,0,1) 0.4189 NA -0.05195 NA 0.03180

(2,0,1) -0.4676 0.38428 0.82758 NA 0.03363

(0,0,2) NA NA 0.37855 0.1854 0.02912

(1,0,2) -0.6314 NA 1.03122 0.4139 0.02815

(2,0,2) -0.9648 -0.54982 1.32535 0.9453 0.01509

$t.coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 3.817 NA NA NA 0.1884

(2,0,0) 3.433 0.2962 NA NA 0.1944

(0,0,1) NA NA 3.6035 NA 0.1331

(1,0,1) 1.994 NA -0.2342 NA 0.1924

(2,0,1) -1.913 3.6606 3.3770 NA 0.1988

(0,0,2) NA NA 3.5048 2.022 0.1846

(1,0,2) -2.958 NA 5.0593 3.723 0.1879

(2,0,2) -8.179 -5.0155 21.2693 14.542 0.1191
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Table 18.11 Mystery time series Y .

> Y.loop[["1","1"]]

Call:

arima(x = x, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.419 -0.052 0.032

s.e. 0.210 0.222 0.165

sigma^2 estimated as 1.03: log likelihood = -143.6, aic = 295.3
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Fig. 18.15 Mystery time series Z.

18.3. Figure 18.15 shows the sequence, ACF, and PACF plots for a mystery time
series Z data(tser.mystery.Z). Figure 18.16 and Table 18.12 show the diag-
nostics and estimated coefficients obtained by fitting the 3×3 set of ARIMA(p, 0, q)
models to the series. Table 18.13 shows the detail for the ARIMA(1, 0, 1) model.
Study the graphs and tables and explain why and how they indicate that one of these
models seems better suited to explain the data than the others.
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standardized residuals
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Fig. 18.16 Mystery time series Z.
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Table 18.12 Mystery time series Z.

> Z.loop

$series

[1] "tser.mystery.Z"

$model

[1] "(p,0,q)"

$sigma2

0 1 2

0 0.9454 0.9354 0.8930

1 0.9399 0.9039 0.8930

2 0.8868 0.8862 0.8088

$aic

0 1 2

0 282.2 283.1 280.6

1 283.6 281.9 282.6

2 279.9 281.8 277.2

$coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 0.07625 NA NA NA 0.06379

(2,0,0) 0.09630 -0.2360 NA NA 0.06402

(0,0,1) NA NA 0.13415 NA 0.06471

(1,0,1) -0.78022 NA 0.91668 NA 0.06438

(2,0,1) 0.17084 -0.2424 -0.07901 NA 0.06405

(0,0,2) NA NA 0.09445 -0.2177 0.06464

(1,0,2) 0.01253 NA 0.08246 -0.2183 0.06466

(2,0,2) -0.38096 -0.8567 0.57783 0.9732 0.06617

$t.coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 0.76442 NA NA NA 0.6083

(2,0,0) 0.98844 -2.424 NA NA 0.7721

(0,0,1) NA NA 1.0571 NA 0.5905

(1,0,1) -5.17277 NA 8.8387 NA 0.6291

(2,0,1) 0.57788 -2.458 -0.2664 NA 0.7885

(0,0,2) NA NA 0.9615 -2.171 0.7771

(1,0,2) 0.02659 NA 0.1788 -2.139 0.7786

(2,0,2) -4.25626 -13.016 6.2170 9.171 0.6453
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Table 18.13 Mystery time series Z.

> Z.loop[["1","1"]]

Call:

arima(x = x, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

-0.780 0.917 0.064

s.e. 0.151 0.104 0.102

sigma^2 estimated as 0.904: log likelihood = -137, aic = 281.9
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18.4. The product data data(product) (originally from Nicholls (1979) and re-
produced in Hand et al. (1994)) graphed in Figure 18.17 are the weekly sales of a
plastic container used for the packaging of drugs in the United States. First differ-
ences were taken to produce the yt, shown in Figure 18.18. The AR(1) model con-
verged with AIC=2919, a larger number than for nonconverging models with more
terms. The nonconverging models shown in Figure 18.19 and Table 18.14 showed
high correlation between the estimates of the AR and MA coefficients.

a. Discuss why the above-mentioned findings and other results in Table 18.14 imply
that an ARIMA(p, 1, q) nonseasonal model is inappropriate for these data.

b. The peaks in the ACF and PACF plots of Figure 18.18 at 4 and 8 weeks suggest
that there might be a monthly effect in this data. Examine and discuss the set of
ARIMA(p, 1, q) × (1, 0, 0)4 models for these data.
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Fig. 18.17 Coordinated time series plot and ACF/PACF plots for the product time series: yt. The
response variable on the time series plot is weekly sales of the product.
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Table 18.14 Estimation results for ARIMA(p, 1, q) models fit to the product data.

> product.loop <- arma.loop(product, order=c(2,1,2))

> product.diags <- diag.arma.loop(product.loop, x=product, lag.max=60)

> product.loop

$series

[1] "product"

$model

[1] "(p,1,q)"

$sigma2

0 1 2

0 1043 1041.8 1025.3

1 1042 1029.3 919.9

2 1033 917.8 916.3

$aic

0 1 2

0 2919 2920 2918

1 2920 2919 2889

2 2920 2889 2890

$coef

ar1 ar2 ma1 ma2

(0,1,0) NA NA NA NA

(1,1,0) 0.02806 NA NA NA

(2,1,0) 0.03066 -0.09105 NA NA

(0,1,1) NA NA 0.03390 NA

(1,1,1) -0.82544 NA 0.88997 NA

(2,1,1) 0.90160 -0.15413 -0.98624 NA

(0,1,2) NA NA -0.02332 -0.1995

(1,1,2) 0.71744 NA -0.81250 -0.1736

(2,1,2) 1.11728 -0.32627 -1.20533 0.2183

$t.coef

ar1 ar2 ma1 ma2

(0,1,0) NA NA NA NA

(1,1,0) 0.4833 NA NA NA

(2,1,0) 0.5299 -1.576 NA NA

(0,1,1) NA NA 0.5341 NA

(1,1,1) -6.5556 NA 8.7970 NA

(2,1,1) 15.4832 -2.648 -61.7180 NA

(0,1,2) NA NA -0.3401 -2.0824

(1,1,2) 12.9601 NA -10.9925 -2.5043

(2,1,2) 4.6121 -1.697 -4.8510 0.8844
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Fig. 18.18 Coordinated time series and ACF/PACF plots for the differenced product time
series: ∇yt.
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Fig. 18.19 Diagnostic plots for the set of models ARIMA(p,1,q) fit to the Product data by max-
imum likelihood. Each set of nine panels is systematically structured in a 3×3 array with rows
indexed by the number of AR parameters p and columns by the number of MA parameters q. All
nine panels in a set are scaled identically. The AIC has been plotted as a pair of interaction plots:
AIC plotted against q using line types defined by p; and AIC plotted against p, using line types
defined by q.
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18.5. Figures 18.20, 18.21, and 18.22 and Tables 18.15 and 18.16 show the mean
monthly air temperature in degrees Fahrenheit from January 1920 to December 1939
at Nottingham. R users can use the nottem data in the pkgdatasets package. We
first got the data from Venables and Ripley (1997). The original source is “Meteor-
ology of Nottingham” in City Engineer and Surveyor. We show the original series,
the seasonally differenced series, the diagnostic display from the series of models
ARIMA(p, 0, q) × (2, 1, 0)12, and numerical results from the set of all nine models
table and detail on the recommended model ARIMA(1, 0, 0) × (2, 1, 0)12.

a. What are the most evident features of the plot of the original data?

b. Compare the plot of the seasonally differenced data to the original plot. What
structure was captured by the differencing? What remains?

c. Compare the recommended model ARIMA(1, 0, 0) × (2, 1, 0)12 to the next most
likely model ARIMA(2, 0, 0) × (2, 1, 0)12. Do you agree that the ar(2) term is
not needed? Why?
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Fig. 18.20 Mean monthly air temperature in degrees Fahrenheit from January 1920 to December
1939 at Nottingham.
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Fig. 18.21 Seasonal differences of mean monthly air temperature in degrees Fahrenheit from
January 1920 to December 1939 at Nottingham.
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Fig. 18.22 Mean monthly air temperature in degrees Fahrenheit from January 1920 to December
1939 at Nottingham Castle.



18.9 Exercises 683

Table 18.15 Nottingham temperature—models ARIMA(p, 0, q) × (2, 1, 0)12.

> nottem.loop <- arma.loop(nottem, order=c(2,0,2),

+ seasonal=list(order=c(2,1,0), period=12),

+ method="ML")

> print(nottem.loop, digits=4)

$series

[1] "nottem"

$model

[1] "(p,0,q)x(2,1,0)12"

$sigma2

0 1 2

0 6.219 5.799 5.661

1 5.702 5.674 5.656

2 5.666 5.661 5.656

$aic

0 1 2

0 1078 1065 1062

1 1061 1062 1063

2 1062 1064 1065

$coef

ar1 ar2 ma1 ma2 sar1 sar2

(0,0,0)x(2,1,0)12 NA NA NA NA -0.8220 -0.2931

(1,0,0)x(2,1,0)12 0.285599 NA NA NA -0.8598 -0.2963

(2,0,0)x(2,1,0)12 0.261443 0.07937 NA NA -0.8602 -0.3074

(0,0,1)x(2,1,0)12 NA NA 0.23606 NA -0.8505 -0.2866

(1,0,1)x(2,1,0)12 0.478197 NA -0.20979 NA -0.8603 -0.3033

(2,0,1)x(2,1,0)12 0.001805 0.15577 0.26037 NA -0.8608 -0.3100

(0,0,2)x(2,1,0)12 NA NA 0.25718 0.1575 -0.8607 -0.3131

(1,0,2)x(2,1,0)12 0.169231 NA 0.09343 0.1200 -0.8611 -0.3127

(2,0,2)x(2,1,0)12 0.118763 0.01077 0.14252 0.1212 -0.8614 -0.3153

$t.coef

ar1 ar2 ma1 ma2 sar1 sar2

(0,0,0)x(2,1,0)12 NA NA NA NA -13.07 -4.418

(1,0,0)x(2,1,0)12 4.451829 NA NA NA -13.46 -4.443

(2,0,0)x(2,1,0)12 3.899219 1.1772 NA NA -13.54 -4.596

(0,0,1)x(2,1,0)12 NA NA 4.0370 NA -13.32 -4.275

(1,0,1)x(2,1,0)12 2.668022 NA -1.0576 NA -13.52 -4.556

(2,0,1)x(2,1,0)12 0.003237 0.9644 0.4644 NA -13.56 -4.620

(0,0,2)x(2,1,0)12 NA NA 3.9101 2.302 -13.58 -4.661

(1,0,2)x(2,1,0)12 0.448103 NA 0.2501 1.008 -13.58 -4.650

(2,0,2)x(2,1,0)12 2.887888 NaN 1.0990 1.015 -26.55 -29.916

> nottem.diag <-

+ rearrange.diag.arma.loop(diag.arma.loop(nottem.loop, nottem))
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Table 18.16 Nottingham temperature—recommended model ARIMA(1, 0, 0) × (2, 1, 0)12.

> nottem.loop[["1","0"]]

Call:

arima(x = x, order = c(1, 0, 0), seasonal = list(order = c(2, 1, 0),

period = 12), method = "ML")

Coefficients:

ar1 sar1 sar2

0.286 -0.860 -0.296

s.e. 0.064 0.064 0.067

sigma^2 estimated as 5.7: log likelihood = -526.6, aic = 1061

18.6. We have a time series of size n = 100 for which we have determined that we
have an ARIMA(1,0,0) model and have estimated μ̂ = 15, φ̂ = .2, and σ̂2 = 3. The
last few observations in the series are

t 97 98 99 100
Xt 13 15 18 17

Forecast, with 95% forecast intervals, the values X̂101 and X̂102.

18.7. We have a nonseasonal time series in the dataset data(tsq) covering 100
periods. The time series and its ACF and PACF plots are displayed in Figure 18.23.
Table 18.17 contains the R output from a 3× 3 set of ARIMA models fit to the data.
The tsdiagplot for these data is in Figure 18.24. Use this information to answer
the following questions:

a. Recommend the (p, 0, q) order for an ARIMA modeling of these data.

b. Write out the equation for the best-fitting model following your recommendation
in part (a).

c. Use your model and the coefficient information in the R output to produce
forecasts and 95% forecast intervals for the value of this series in periods 101
and 102.



18.9 Exercises 685

Table 18.17 Three by three set of ARIMA models for Exercise 18.7.

> tsq.loop <- arma.loop(tsq, order=c(2,0,2))

> tsq.loop

$series

[1] "tsq"

$model

[1] "(p,0,q)"

$sigma2

0 1 2

0 1.330 0.9469 0.9267

1 1.173 0.9328 0.8730

2 1.003 0.9175 0.8715

$aic

0 1 2

0 316.3 285.2 285.0

1 305.8 285.6 283.2

2 292.6 286.0 284.9

$coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 0.3444 NA NA NA 0.09045

(2,0,0) 0.4894 -0.38808 NA NA 0.08309

(0,0,1) NA NA 0.7524 NA 0.08843

(1,0,1) -0.1523 NA 0.8031 NA 0.09029

(2,0,1) -0.1087 -0.15017 0.7447 NA 0.08999

(0,0,2) NA NA 0.6043 -0.1653 0.09055

(1,0,2) 0.8468 NA -0.2290 -0.7710 0.12449

(2,0,2) 0.7879 0.06726 -0.2076 -0.7924 0.12323

$t.coef

ar1 ar2 ma1 ma2 intercept

(0,0,0) NA NA NA NA NA

(1,0,0) 3.6551 NA NA NA 0.5505

(2,0,0) 5.1886 -4.0813 NA NA 0.7431

(0,0,1) NA NA 11.139 NA 0.5208

(1,0,1) -1.2440 NA 12.664 NA 0.5992

(2,0,1) -0.8042 -1.2726 7.520 NA 0.6785

(0,0,2) NA NA 5.272 -1.493 0.6549

(1,0,2) 14.4918 NA -3.308 -11.612 3.9454

(2,0,2) 6.4214 0.5445 -2.841 -11.185 3.7167
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Fig. 18.23 Time series and its ACF and PACF plots for Exercise 18.7.
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Fig. 18.24 Diagnostic plots for the 3 × 3 set of ARIMA models in Exercise 18.7.
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18.8. Figure 18.25 contains time series, ACF, and PACF plots for monthly data on
the thickness of the ozone layer (measured in Dobson units) at Arosa, Switzerland,
from September 1931 through November 1953. Note the labeling of the months of
the year (J = January, June, or July, F = February, etc.) at the plot points. The data
in the dataset data(ozone) are from Andrews and Herzberg (1985), Table 12.1.

a. Comment on the seasonal nature of the time series plot and discuss how this is
consistent with what you see in the ACF plot.

b. Notice that the variability of the series appears to increase, at least temporarily,
in the early 1940s and around 1952 to 1953. For each of these periods, iden-
tify historical events that potentially impacted on the atmosphere to produce this
increased variability.

18.9. n = 100 and Z̄ = 25. See Figure 18.26.

a. Identify a tentative underlying model in explicit form and justify your model.

b. Propose possible preliminary parameter estimates for your model.

c. Assume the residual sum of squares from the fitting of your model is 256, and
Z98 = 24, Z99 = 26, Z100 = 25. Compute your forecasts for Z101 and Z102 and
their 95% forecast intervals.
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Fig. 18.25 Thickness of the ozone layer (measured in Dobson units) at Arosa, Switzerland, from
September 1931 through November 1953.
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lag

1 2 3 4 5 6 7 8 9 10

acf(Zt) 0.80 0.61 0.47 0.40 0.31 0.21 0.18 0.11 0.06 0.01
pacf(Zt) 0.80 0.08 0.00 −0.11 0.00 −0.12 0.07 0.05 0.01 0.02

Time Series Question, n=100, Z.bar=25

lag

0.0
0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10

acf

0 2 4 6 8 10

pacf

Fig. 18.26 ACF and PACF for Exercise 18.9, n = 100 and Z̄ = 25. The same information is
presented in both tabular and graphical form.
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lag

1 2 3 4 5 6 7 8 9 10

acf(Zt) 0.93 0.92 0.90 0.90 0.87 0.86 0.85 0.84 0.82 0.80
acf(∇Zt) −0.57 −0.10 0.12 0.06 −0.12 0.09 0.05 −0.01 0.02 0.03

Time Series Question, n=100, Z.bar=60

lag

−0.5

0.0

0.5

1.0

0 2 4 6 8 10

acf(Z)

0 2 4 6 8 10

acf(diff(Z))

Fig. 18.27 ACF and PACF for Exercise 18.10, n = 100 and Z̄ = 60. The same information is
presented in both tabular and graphical form.

18.10. n = 100 and Z̄ = 60. Identify a tentative underlying model in explicit form
and justify your model. See Figure 18.27.

18.11. n = 100 and Z̄ = 55. Identify a tentative underlying model in explicit form
and justify your model. See Figure 18.28.

18.12. Time series data differs from any other data type we have discussed in one
important characteristic: The observations are not independent. What are the impli-
cations of that difference for modeling time series data? Be sure to discuss implica-
tions for each of

a. Modeling

b. Estimation

c. Prediction
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lag

1 2 3 4 5 6 7 8 9 10

acf(Zt) 0.99 0.94 0.87 0.81 0.75 0.65 0.55 0.53 0.43 0.40
acf(∇Zt) 0.43 0.28 0.51 0.80 0.65 0.44 0.31 0.77 0.30 0.20
acf(∇4Zt) 0.72 0.67 0.55 0.32 0.38 0.23 0.24 0.23 0.18 0.13
acf(∇∇4Zt) 0.30 0.07 0.32 0.50 0.20 0.01 −0.05 −0.01 0.02 0.03

Time Series Question, n=100, Z.bar=55

lag

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

acf(Z)

0 2 4 6 8 10

acf(diff(Z))

0 2 4 6 8 10

acf(diff(Z,4))

0 2 4 6 8 10

acf(diff(diff(Z,4)))

Fig. 18.28 ACF and PACF for Exercise 18.11, n = 100 and Z̄ = 55. The same information is
presented in both tabular and graphical form.

18.13. Figure 18.29 shows the “United States of America Monthly Employment Fig-
ures for Males Aged 16–19 Years from 1948 to 1981”. Dataset data(employM16)
is Table T.65.1 from Andrews and Herzberg (1985). What are the features of this
plot that you would try to capture in a time series model? Comment on

a. Seasonality

b. Trend

c. Aberrations

18.A Appendix: Construction of Time Series Graphs

This section discusses the technical aspects of the construction of the set of plots
used to check the validity of the proposed model. The interpretation of the plots,
and the discussion of how to use them to help identify the model that best fits the
data, appear in Sections 18.6 and 18.8.

The graphical display techniques demonstrated in Sections 18.6 and 18.8 were
developed by Heiberger and Teles (2002). The R functions from the HH pack-
age used to produce these displays are described in help files ?tsacfplots and
?tsdiagplot.
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Fig. 18.29 United States of America Monthly Employment Figures for Males Aged 16–19 Years
from 1948 to 1981, for use with Exercise 18.13.

The set of plots in Figure 18.8 consists of the residual ACF and PACF, the
portmanteau goodness-of-fit test statistic (GOF), the standardized residuals, and
the Akaike information criterion (AIC). The panels in the first four sets of plots
are indexed by the number of nonseasonal ARMA parameters p and q for fixed
values of the seasonal parameters P and Q. The AIC plot uses p and q as plot-
ting variables. The orders of differencing and the orders of the autoregressive and
moving average operators (both seasonal and nonseasonal) have been limited to
0 ≤ p, d, q, P, D, Q ≤ 2. While this limitation is usually reasonable in practice, it is
not inherent in the software.
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Each set of nine panels is systematically structured in a 3×3 array indexed by the
number of AR parameters and MA parameters. All nine panels in a set are scaled
identically. Thus the reader can scan a row or column of the array of panels and see
the effect of adding one more parameter to either the AR or MA side of the model.

Traditionally (that is, as constructed by the standard R tsdiag), the plots coor-
dinated in Figure 18.8 are shown on nine separate pages, one page for each model.
The standard display shows the standardized residuals, the residual ACF and PACF
plots, and the portmanteau goodness-of-fit test. The nine sets of plots, each associ-
ated with a different model, will not necessarily be scaled alike. Even the GOF and
ACF/PACF plots for the same model may have different lag scales.

Labeling the axis in months and putting the residual ACF and PACF plots and
the GOF plot on the same set of lags make it easy to compare the plots for different
models. In this example it is easy to see that something is happening at lag=12
months. The AIC plots for all the models in Figure 18.8 are similar, with AIC≈315.
The AIC has been plotted as a pair of interaction plots: AIC plotted against q, the
number of nonseasonal MA parameters, using line types defined by p, the number
of nonseasonal AR parameters; and AIC plotted against p, using line types defined
by q. These plots enable us to study the magnitudes of the differences in AIC of
competing models.

18.A.1 Characteristics of This Presentation
of the Time Series Plot

• Individual points are identified with a letter indicating the position of each ob-
servation according to the frequency of collection of the data. The user can
control the choice of plotting characters. The default characters used are de-
pendent on the frequency of collection of the data. For example, when the
frequency is 12, the default plotting characters are the month abbreviations
J,F,M,A,M,J,J,A,S,O,N,D. Otherwise they are chosen from the beginning of
the lower case alphabet letters().

• The plotting characters are an explicit argument and can be chosen by the user
(with pch.seq), or suppressed entirely with type="l".

• Color is often very helpful with the time series plots. Color plots show the sea-
sonal pattern more strongly than the black and white. Figure 18.4 has a clear
pattern of gold-May and red-April along its top and green-October along the
bottom. The first differences in Figure 18.6 show a clear pattern of blue-August
along the bottom and color-coded June–July–August–September below the axis.
Figure 18.7 shows random behavior in colors.
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18.A.2 Characteristics of This Presentation of the Sample ACF
and PACF Plots

• The axes are coordinated and have the same scale.

• Lags are indicated in appropriate units (for example, months for monthly series).

• The ACF and PACF plots consistently both show, or do not show (at the user’s
option), the spike for correlation=1 at lag=0.

• The default tick marks are related to the frequency of collection of the data. The
user has control over tick mark location.

• Most of the plotting surface is occupied by the body of the plot, and the amount
of surface used for labeling is minimized.

We point out that the individual plots are accessible to the user. They can be placed
on their own pages or displayed with other relative spacings. For details, see the
function HH:::print.tsacfplots.

18.A.3 Construction of Graphical Displays

This section shows how to construct the two display types presented in this chapter.
For brevity, only Figures 18.7 and 18.9 are described.

Figure 18.7, a single display with subgraphs, is constructed with the single com-
mand:

tsacfplots(diff(diff(co2,1), 12))

The figure uses the majority of the plotting surface to display the time series itself
and a minority of the plotting surface to display the ACF and PACF plots drawn to
the same scale.

All models in the family of ARIMA models under investigation are fit with a
single command specified in standard R time series model notation:

ddco2.loopPQ <-

arma.loop(co2,

order=c(2,1,2),

seasonal=list(order=c(0,1,1), period=12))
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Figure 18.9 plots the family of models, again as a single display with coordinated
sets of subgraphs, with another single command:

tsdiagplot(armas=co2.loop)

The series of plots in each set of subgraphs is displayed in the same systematic order.
All plots of the same form are displayed to the same scale.

Fine control of plotting options and labeling is possible with optional arguments
to the tsacfplots and tsdiagplot functions. Each of the individual subgraphs is
also directly accessible to the user.

Formal and systematic display of a series of models makes it easy to recognize
the structural differences in the series of models and to compare them.

18.A.4 Functions in the HH package for R

Several functions are provided and described here in terms of their role in the mod-
eling. In addition to these functions, there are unexported functions that the primary
functions call to do much of the work.

Primary Functions in the HH Package

tsacfplots: Provides a single display (of the form of Figure 18.7) with the
times series plot central and both the ACF and PACF plots on the same scale.
It does so by calling seqplot (equivalent to ts.plot but with much finer
control of labeling options) for the time series plot and then acf.pacf.plot

for the coordinated ACF and PACF plots. These in turn are constructed by the
R routine acf.

arma.loop: Takes a time series and a model statement of the form

(pmax, d, qmax) × (P, D, Q)period

It then loops through the family of models indexed by the model parameters
1:pmax and 1:qmax, with d, P, D, Q held constant. Results are stored in a list
indexed by the values of p and q.

arma.loop also permits the model statement (note that order matters)

(Pmax, D, Qmax)period × (p, d, q)

and then loops through the family of models indexed by the model parameters
1:Pmax and 1:Qmax, with p, d, q, D held constant. Results are stored in a list
indexed by the values of P and Q.
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diag.arma.loop: Produces an indexed list of the arima.diag results for
each model in the result of the arma.loop. Diagnostics are calculated on
the boundary values of the parameters p and q, and in particular for those
functions defined in the special case (p, d, q) = (0, 0, 0).

tsdiagplot: Takes a time series and a model statement and calls all the diag-
nostic plot routines. It makes sensible default choices for all the arguments
and produces a graph similar to Figure 18.9. For printouts of any of the
numerical tables, or finer control over the layout and labeling of the plots,
the user should study the more detailed illustrations of function use in the
demo("tsamstat").

Print Methods

print.arma.loop and summary.arma.loop: Produce tables similar to Ta-
ble 18.5 from the result of the arma.loop function.

Individual Plot Functions

Each of the subgraphs in tsacfplots and tsdiagplot is directly accessible to
the users. Each is fully parameterized.

tsacfplots: Figures 18.4 and 18.7.

seqplot Time series

acf.pacf.plot Coordinated ACF and PACF

tsdiagplot: Figures 18.8 and 18.9.

acfplot ACF and PACF of residuals

residplot Standardized residuals

gofplot Portmanteau goodness-of-fit statistic (GOF)

aicsigplot Interaction plot of AIC or σ2

seqplotForecast: Figure 18.10. Data, forecasts, and confidence bands.

Additional functions

Not for direct use by users.

rearrange.diag.arma.loop: Rearranges the list of diagnostics indexed by
model into a list of matrices of diagnostics, each matrix indexed by the mod-
els. The sole purpose of this rearrangement is for plotting.
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R

R (R Core Team, 2015) is the lingua franca of data analysis and graphics. In this
book we will learn the fundamentals of the language and immediately use it for the
statistical analysis of data. We will graph both the data and the results of the anal-
yses. We will work with the basic statistical tools (regression, analysis of variance,
and contingency tables) and some more specialized tools. Many of our examples
use the additional functions we have provided in the HH package (Appendix B)
(Heiberger, 2015). The R code for all tables and graphs in the book is included in
the HH package.

In later appendices we will also look at the Rcmdr menu system (Appendix C),
RExcel integration of R with Excel (Appendix D), and the shiny package for inte-
gration of R with interactive html web pages (Appendix E).

A.1 Installing R—Initial Installation

R is an open-source publicly licensed software system. R is free under the GPL
(Gnu Public License).

R is available for download on Windows, Macintosh OSX, and Linux com-
puter systems. Start at http://www.R-project.org. Click on “download R” in
the “Getting Started” box, pick a mirror near you, and download and install the most
recent release of R for your operating system.

Once R is running, you will download several necessary contributed packages.
You get them from a running R session while connected to the internet. This
install.packages statement will install all the packages listed and additional
packages that these specified packages need.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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A.1.1 Packages Needed for This Book—Macintosh and Linux

Start R, then enter

install.packages(c("HH","RcmdrPlugin.HH","RcmdrPlugin.mosaic",

"fortunes","ggplot2","shiny","gridExtra",

"gridBase","Rmpfr","png","XLConnect",

"matrixcalc", "sem", "relimp", "lmtest",

"markdown", "knitr", "effects", "aplpack",

"RODBC", "TeachingDemos",

"gridGraphics", "gridSVG"),

dependencies=TRUE)

## This is the sufficient list (as of 16 August 2015) of packages

## needed in order to install the HH package. Should

## additional dependencies be declared by any of these packages

## after that date, the first use of "library(HH)" after the

## installation might ask for permission to install some more

## packages.

The install.packages command might tell you that it can’t write in a system
directory and will then ask for permission to create a personal library. The question
might be in a message box that is behind other windows. Should the installation
seem to freeze, find the message box and respond “yes” and accept its recommend
directory. It might ask you for a CRAN mirror. Take the mirror from which you
downloaded R.

A.1.2 Packages and Other Software Needed for This
Book—Windows

A.1.2.1 RExcel

If you are running on a Windows machine and have access to Excel, then we rec-
ommend that you also install RExcel. The RExcel software provides a seamless
integration of R and Excel. See Appendix D for further information on RExcel,
including the download statements and licensing information. See Section A.1.2.2
for information about using Rcmdr with RExcel.
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A.1.2.2 RExcel Users Need to Install Rcmdr as Administrator

Should you choose to install RExcel then you need to install Rcmdr as Adminis-
trator. Otherwise you can install Rcmdr as an ordinary user.

Start R as Administrator (on Windows 7 and 8 you need to right-click the R
icon and click the “Run as administrator” item). In R, run the following commands
(again, you must have started R as Administrator to do this)

## Tell Windows that R should have the same access to the

## outside internet that is granted to Internet Explorer.

setInternet2()

install.packages("Rcmdr",

dependencies=TRUE)

Close R with q("no"). Answer with n if it asks
Save workspace image? [y/n/c]:

A.1.2.3 Packages Needed for This Book—Windows

The remaining packages can be installed as an ordinary user. Rcmdr is one of the
dependencies of RcmdrPlugin.HH, so it will be installed by the following state-
ment (unless it was previously installed). Start R, then enter

## Tell Windows that R should have the same access to the

## outside internet that is granted to Internet Explorer.

setInternet2()

install.packages(c("HH","RcmdrPlugin.HH","RcmdrPlugin.mosaic",

"fortunes","ggplot2","shiny","gridExtra",

"gridBase","Rmpfr","png","XLConnect",

"matrixcalc", "sem", "relimp", "lmtest",

"markdown", "knitr", "effects", "aplpack",

"RODBC", "TeachingDemos",

"gridGraphics", "gridSVG"),

dependencies=TRUE)

## This is the sufficient list (as of 16 August 2015) of packages

## needed in order to install the HH package. Should

## additional dependencies be declared by any of these packages

## after that date, the first use of "library(HH)" after the

## installation might ask for permission to install some more

## packages.
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A.1.2.4 Rtools

Rtools provides all the standard Unix utilities (C and Fortran compilers, command-
line editing tools such as grep, awk, diff, and many others) that are not in-
cluded with the Windows operating system. These utilities are needed in two
circumstances.

1. Should you decide to collect your R functions and datasets into a package, you
will need Rtools to build the package. See Appendix F for more information.

2. Should you need to use the ediff command in Emacs for visual comparison
of two different versions of a file (yesterday’s version and today’s after some
editing, for example), you will need Rtools. See Section M.1.2 for an example
of visual comparison of files.

You may download Rtools from the Windows download page at CRAN. Please
see the references from that page for more details.

A.1.2.5 Windows Potential Complications: Internet, Firewall, and Proxy

When install.packages on a Windows machine gives an Error message that
includes the phrase “unable to connect”, then you are probably working behind
a company firewall. You will need the R statement

setInternet2()

before the install.packages statement. This statement tells the firewall to give
R the same access to the outside internet that is granted to Internet Explorer.

When the install.packages gives a Warning message that says you don’t have
write access to one directory, but it will install the packages in a different directory,
that is normal and the installation is successful.

When the install.packages gives an Error message that says you don’t have
write access and doesn’t offer an alternative, then you will have to try the package
installation as Administrator. Close R, then reopen R by right-clicking the R icon,
and selecting “Run as administrator”.

If this still doesn’t allow the installation, then

1. Run the R line
sessionInfo()

2. Run the install.packages lines.

3. Highlight and pick up the entire contents of the R console and save it in a text
file. Screenshots are usually not helpful.

4. Show your text listing to an R expert.
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A.1.3 Installation Problems—Any Operating System

The most likely source of installation problems is settings (no write access to res-
tricted directories on your machine, or system-wide firewalls to protect against
offsite internet problems) that your computer administrator has placed on your
machine.

Check the FAQ (Frequently Asked Questions) files linked to at
http://cran.r-project.org/faqs.html.

For Windows, see also Section A.1.2.5.

If outside help is needed, then save the contents of the R console window to show
to your outside expert. In addition to the lines and results leading to the problem,
including ALL messages that R produces, you must include the line (and its results)

sessionInfo()

in the material you show the expert.

Screenshots are not a good way to capture information. The informative way
to get the contents of the console window is by highlighting the entire window
(including the off-screen part) and saving it in a text file. Show your text listing to
an R expert.

A.1.4 XLConnect: All Operating Systems

The XLConnect package lets you read MS Excel files directly from R on any oper-
ating system. You may use an R statement similar to the following

library(XLConnect)

WB <- ## pathname of file with some additional information

loadWorkbook(

## "c:/Users/rmh/MyWorkbook.xlsx" ## rmh pathname in Windows

"~/MyWorkbook.xlsx" ## rmh pathname in Macintosh

)

mydata <- readWorksheet(WB, sheet="Sheet1", region="A1:D11")

If you get an error from library(XLConnect) of the form
Error : .onLoad failed in loadNamespace() for ’rJava’

then you need to install java on your machine from http://java.com. The java
installer will ask you if you want to install ask as your default search provider. You
may deselect both checkboxes to retain your preferred search provider.

http://cran.r-project.org/faqs.html
http://java.com
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A.2 Installing R—Updating

R is under constant development with new releases every few months. At this writ-
ing (August 2015) the current release is R-3.2.2 (2015-08-14).

See the FAQ for general update information, and in addition the Windows FAQ
or MacOs X FAQ for those operating systems. Links to all three FAQs are available
at http://cran.r-project.org/faqs.html. The FAQ files are included in the
documentation placed on your machine during installation.

The update.packages mechanism works for packages on CRAN. It does not
work for packages downloaded from elsewhere. Specifically, Windows users with
RExcel installed will need to update the RExcel packages by reinstalling them as
described in Section D.1.2.

A.3 Using R

A.3.1 Starting the R Console

In this book our primary access to the R language is from the command line. On
most computer systems clicking the R icon on the desktop will start an R session
in a console window. Other options are to begin within an Emacs window with M-x

R, to start an R-Studio session, to start R at the Unix or MS-DOS command line
prompt, or to start R through one of several other R-aware editors.

With any of these, the R offers a prompt “> ”, the user types a command, R
responds to the user’s command and then offers another prompt “> ”. A very simple
command-line interaction is shown in Table A.1.

Table A.1 Very simple command-line interaction.

> ## Simple R session

> 3 + 4

[1] 7

> pnorm(c(-1.96, -1.645, -0.6745, 0, 0.6745, 1.645, 1.96))

[1] 0.02500 0.04998 0.25000 0.50000 0.75000 0.95002 0.97500

>

http://cran.r-project.org/faqs.html
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A.3.2 Making the Functions in the HH Package Available
to the Current Session

At the R prompt, enter

library(HH)

This will load the HH package and several others. All HH functions are now avail-
able to you at the command line.

A.3.3 Access HH Datasets

All HH datasets are accessed with the R data() function. The first six observations
are displayed with the head() function, for example

data(fat)

head(fat)

A.3.4 Learning the R Language

R is a dialect of the S language. The easiest way to learn it is from the manuals that
are distributed with R in the doc/manual directory; you can find the pathname with
the R call

system.file("../../doc/manual")

or

WindowsPath(system.file("../../doc/manual"))

Open the manual directory with your computer’s tools, and then read the pdf or
html files. Start with the R-intro and the R-FAQ files. With the Windows Rgui,
you can access the manuals from the menu item Help > Manuals (in PDF). From
the Macintosh R.app, you can access the manuals from the menu item R Help.

A Note on Notation: Slashes

Inside R, on any computer system, pathnames always use only the forward
slashes “/”.

In Linux and Macintosh, operating system pathnames use only the forward
slashes “/”.
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In Windows, operating system pathnames—at the MS-DOS prompt shell CMD,
in the Windows icon Properties windows, and in the Windows Explorer file-
name entry bar—are written with backslashes “\”. The HH package provides a
convenience function WindowsPath to convert pathnames from the forward slash
notation to the backslash notation.

A.3.5 Duplicating All HH Examples

Script files containing R code for all examples in the book are available for you to
use to duplicate the examples (table and figures) in the book, or to use as templates
for your own analyses. You may open these files in an R-aware editor.

See the discussion in Section B.2 for more details.

A.3.5.1 Linux and Macintosh

The script files for the second edition of this book are in the directory

HHscriptnames()

The script files for the first edition of this book are in the directory

HHscriptnames(edition=1)

A.3.5.2 Windows.

The script files for the second edition of this book are in the directory

WindowsPath(HHscriptnames())

The script files for the first edition of this book are in the directory

WindowsPath(HHscriptnames(edition=1))

A.3.6 Learning the Functions in R

Help on any function is available. For example, to learn about the ancovaplot

function, type
?ancovaplot
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To see a function in action, you can run the examples on the help page. You can
do them one at a time by manually copying the code from the example section of a
help page and pasting it into the R console. You can do them all together with the
example function, for example

example("ancovaplot")

Some functions have demonstration scripts available, for example,
demo("ancova")

The list of demos available for a specific package is available by giving the package
name

demo(package="HH")

The list of all demos available for currently loaded packages is available by
demo()

See ?demo for more information on the demo function.

The demo and example functions have optional arguments ask=FALSE and
echo=TRUE. The default value ask=TRUE means the user has to press the ENTER

key every time a new picture is ready to be drawn. The default echo=FALSE often
has the effect that only the last of a series of lattice or ggplot2 graphs will be dis-
played. See FAQ 7.22:

7.22 Why do lattice/trellis graphics not work?

The most likely reason is that you forgot to tell R to display the graph. lattice functions
such as xyplot() create a graph object, but do not display it (the same is true of ggplot2
graphics, and trellis graphics in S-Plus). The print() method for the graph object pro-
duces the actual display. When you use these functions interactively at the command line,
the result is automatically printed, but in source() or inside your own functions you will
need an explicit print() statement.

A.3.7 Learning the lattice Functions in R

One of the best places to learn the lattice functions is the original trellis docu-
mentation: the S-Plus Users Manual (Becker et al., 1996a) and a descriptive paper
with examples (Becker et al., 1996b). Both are available for download.

A.3.8 Graphs in an Interactive Session

We frequently find during an interactive session that we wish to back up and com-
pare our current graph with previous graphs.

For R on the Macintosh using the quartz device, the most recent 16 figures are
available by Command-leftarrow and Command-rightarrow.
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For R on Windows using the windows device, previous graphs are available
if you turn on the graphical history of your device. This can be done with the
mouse (by clicking History > Recording on the device menu) or by entering the R
command

options(graphics.record = TRUE)

You can now navigate between graphs with the PgUp and PgDn keys.

A.4 S/R Language Style

S is a language. R is a dialect of S. Languages have standard styles in which they
are written. When a language is displayed without paying attention to the style, it
looks unattractive and may be illegible. It may also give valid statements that are
not what the author intended. Read what you turn in before turning it in.

The basic style conventions are simple. They are also self-evident after they have
been pointed out. Look at the examples in the book’s code files in the directory

HHscriptnames()

and in the R manuals.

1. Use the courier font for computer listings.
This is courier.

This is Times Roman.
Notice that displaying program output in a font other than one for which it was
designed destroys the alignment and makes the output illegible. We illustrate the
illegibility of improper font choice in Table A.2 by displaying the first few lines
of the data(tv) dataset from Chapter 4 in both correct and incorrect fonts.

Table A.2 Correct and incorrect alignment of computer listings. The columns in the correct
example are properly aligned. The concept of columns isn’t even visible in the incorrect example.

Courier (with correct alignment of columns) Times Roman (alignment is lost)

> tv[1:5, 1:3] > tv[1:5, 1:3]
life.exp ppl.per.tv ppl.per.phys life.exp ppl.per.tv ppl.per.phys

Argentina 70.5 4.0 370 Argentina 70.5 4.0 370
Bangladesh 53.5 315.0 6166 Bangladesh 53.5 315.0 6166

Brazil 65.0 4.0 684 Brazil 65.0 4.0 684
Canada 76.5 1.7 449 Canada 76.5 1.7 449
China 70.0 8.0 643 China 70.0 8.0 643
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2. Use sensible spacing to distinguish the words and symbols visually. This conven-
tion allows people to read the program.

bad: abc<-def no space surrounding the <-

good: abc <- def

3. Use sensible indentation to display the structure of long statements. Additional
arguments on continuation lines are most easily parsed by people when they
are aligned with the parentheses that define their depth in the set of nested
parentheses.

bad: names(tv) <- c("life.exp","ppl.per.tv","ppl.per.phys",

"fem.life.exp","male.life.exp")

good: names(tv) <- c("life.exp",

"ppl.per.tv",

"ppl.per.phys",

"fem.life.exp",

"male.life.exp")

Use Emacs (or other R-aware editor) to help with indentation. For example,
open up a new file tmp.r in Emacs (or another editor) and type the above
bad example—in two lines with the indentation exactly as displayed. Emacs in
ESS[S] mode and other R-aware editors will automatically indent it correctly.

4. Use a page width in the Commands window that your word processor and printer
supports. We recommend

options(width=80)

if you work with the natural width of 8.5in×11in paper (“letter” paper in the US.
The rest of the world uses “A4” paper at 210cm×297cm) with 10-pt type. If you
use a word processor that insists on folding lines at some shorter width (72 char-
acters is a common—and inappropriate—default folding width), you must either
take control of your word processor, or tell R to use a shorter width. Table A.3
shows a fragment from an anova output with two different width settings for the
word processor.
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Table A.3 Legible and illegible printings of the same table. The illegible table was inappropriately
folded by an out-of-control word processor. You, the user, must take control of folding widths.

Legible:

> anova(fat2.lm)

Analysis of Variance Table

Response: bodyfat

Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value Pr(F)

abdomin 1 2440.500 2440.500 101.1718 0.00000000

biceps 1 209.317 209.317 8.6773 0.00513392

Residuals 44 1061.382 24.122

Illegible (folded at 31 characters):

> anova(fat2.lm)

Analysis of Variance Table

Response: bodyfat

Terms added sequentially (first

to last)

Df Sum of Sq Mean Sq

F Value Pr(F)

abdomin 1 2440.500 2440.500

101.1718 0.00000000

biceps 1 209.317 209.317

8.6773 0.00513392

Residuals 44 1061.382 24.122

5. Reserved names. R has functions with the single-letter names c, s, and t. R
also has many functions whose names are commonly used statistical terms, for
example: mean, median, resid, fitted, data. If you inadvertently name an
object with one of the names used by the system, your object might mask the
system object and strange errors would ensue. Do not use system names for your
variables. You can check with the statement

conflicts(detail=TRUE)
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A.5 Getting Help While Learning and Using R

Although this section is written in terms of the R email list, its recommendations ap-
ply to all situations, in particular, to getting help from your instructor while reading
this book and learning R.

R has an email help list. The archives are available and can be searched. Queries
sent to the help list will be forwarded to several thousand people world-wide and
will be archived. For basic information on the list, read the note that is appended to
the bottom of EVERY email on the R-help list, and follow its links:

R-help@r-project.org mailing list -- To UNSUBSCRIBE and more,

see https://stat.ethz.ch/mailman/listinfo/r-help

PLEASE do read the posting guide

http://www.R-project.org/posting-guide.html and

provide commented, minimal, self-contained, reproducible code.

R-help is a plain text email list. Posting in HTML mangles your code, making it
hard to read. Please send your question in plain text and make the code reproducible.
There are two helpful sites on reproducible code

http://adv-r.had.co.nz/Reproducibility.html

http://stackoverflow.com/questions/5963269/

how-to-make-a-great-r-reproducible-example

When outside help is needed, save the contents of the R console window to show
to your outside expert. In addition to the lines and results leading to the problem,
including ALL messages that R produces, you must include the line (and its results)

sessionInfo()

in the material you show the expert.

Screenshots are not a good way to capture information. The informative way
to get the contents of the console window is by highlighting the text of the entire
window (including the off-screen part) and saving it in a text file. Show your text
listing to an R expert.

http://adv-r.had.co.nz/Reproducibility.html
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example
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A.6 R Inexplicable Error Messages—Some Debugging Hints

In general, weird and inexplicable errors mean that there are masked function
names. That’s the easy part. The trick is to find which name. The name conflict
is frequently inside a function that has been called by the function that you called
directly. The general method, which we usually won’t need, is to trace the action
of the function you called, and all the functions it called in turn. See ?trace,
?recover, ?browser, and ?debugger for help on using these functions.

One method we will use is to find all occurrences of our names that might
mask system functions. R provides two functions that help us. See ?find and
?conflicts for further detail.

find: Returns a vector of names, or positions of databases and/or frames that
contain an object.

• This example is problem because the user has used a standard function name
“data” for a different purpose

> args(data)

function (..., list = character(), package = NULL,

lib.loc = NULL, verbose = getOption("verbose"),

envir = .GlobalEnv)

NULL

> data <- data.frame(a=1:3, b=4:6)

> data

a b

1 1 4

2 2 5

3 3 6

> args(data)

NULL

> find("data")

[1] ".GlobalEnv" "package:utils"

> rm(data)

> args(data)

function (..., list = character(), package = NULL,

lib.loc = NULL, verbose = getOption("verbose"),

envir = .GlobalEnv)

NULL

>

conflicts: This function checks a specified portion of the search list for items
that appear more than once.
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• The only items we need to worry about are the ones that appear in our working
directory.

> data <- data.frame(a=1:3, b=4:6)

> conflicts(detail=TRUE)

$.GlobalEnv

[1] "data"

$‘package:utils‘

[1] "data"

$‘package:methods‘

[1] "body<-" "kronecker"

$‘package:base‘

[1] "body<-" "kronecker"

> rm(data)

Once we have found those names we must assign their value to some other vari-
able name and then remove them from the working directory. In the above example,
we have used the system name "data" for one of our variable names. We must
assign the value to a name without conflict, and then remove the conflicting name.

> data <- data.frame(a=1:3, b=4:6)

> find("data")

[1] ".GlobalEnv" "package:utils"

> CountingData <- data

> rm(data)

> find("data")

[1] "package:utils"

>



Appendix B

HH

Every graph and table in this book is an example of the types of graphs and analytic
tables that readers can produce for their own data using functions in either base R or
the HH package (Heiberger, 2015). Please see Section A.1 for details on installing
HH and additional packages.

When you see a graph or table you need, open the script file for that chapter and
use the code there on your data. For example, the MMC plot (Mean–mean Multiple
Comparisons plot) is described in Chapter 7, and the first MMC plot in that Chapter
is Figure 7.3. Therefore you can enter at the R prompt:

HHscriptnames(7)

and discover the pathname for the script file. Open that file in your favorite R-aware
editor. Start at the top and enter chunks (that is what a set of code lines is called in
these files which were created directly from the manuscript using the R function
Stangle) from the top until the figure you are looking for appears. That gives the
sequence of code you will need to apply to your own data and model.

B.1 Contents of the HH Package

The HH package contains several types of items.

1. Functions for the types of graphs illustrated in the book. Most of the graphical
functions in HH are built on the trellis objects in the lattice package.

2. R scripts for all figures and tables in the book.

3. R data objects for all datasets used in the book that are not part of base R.

4. Additional R functions, some analysis and some utility, that I like to use.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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B.2 R Scripts for all Figures and Tables in the Book

Files containing R scripts for all figures and tables in the book, both Second and
First Editions, are included with the HH package. The details of pathnames to the
script files differ by computer operating systems, and often by individual computer.

To duplicate the figures and tables in the book, open the appropriate script file
in an R-aware editor. Highlight and send over to the R console one chunk at a
time. Each script file is consistent within itself. Code chunks later in a script will
frequently depend on the earlier chunks within the same script having already been
executed.

Second Edition: The R function HHscriptnames displays the full pathnames
of Second Edition script files for your computer. For example, HHscriptnames(7)
displays the full pathname for Chapter 7. The pathname for Chapter 7 relative to the
HH package is HH/scripts/hh2/mcomp.r. Valid values for the chapternumbers
argument for the Second Edition are c(1:18, LETTERS[1:15]).

First Edition: First Edition script file pathnames are similar, for example, the
relative path for Chapter 7 is HH/scripts/hh1/Ch07-mcomp.r. The full path-
names of First Edition files for your computer are displayed by the R state-
ment HHscriptnames(7, edition=1). Valid values for the chapternumbers

argument for the First Edition are c(1:18).

The next few subsections show sample full pathnames of Second Edition script
filenames for several different operating systems.

B.2.1 Macintosh

On Macintosh the full pathname will appear as something like

> HHscriptnames(7)

7 "/Library/Frameworks/R.framework/Versions/3.2/Resources/

library/HH/scripts/hh2/mcomp.R"

B.2.2 Linux

On Linux, the full pathname will appear something like

> HHscriptnames(7)

7 "/home/rmh/R/x86_64-unknown-linux-gnu-library/3.2/HH/

scripts/hh2/mcomp.R"
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B.2.3 Windows

On Windows the full pathname will appear as something like

> HHscriptnames(7)

7 "C:/Users/rmh/Documents/R/win-library/3.2/HH/scripts/

hh2/mcomp.R"

You might prefer it to appear with Windows-style path separators (with the escaped
backslash that looks like a double backslash)

> WindowsPath(HHscriptnames(7), display=FALSE)

7 "C:\\Users\\rmh\\Documents\\R\\win-library\\3.2\\HH\

\scripts\\hh2\\mcomp.R"

or unquoted and with the single backslash

> WindowsPath(HHscriptnames(7))

7 C:\Users\rmh\Documents\R\win-library\3.2\HH\scripts\

hh2\mcomp.R

Some of these variants will work with Windows Explorer (depending on which
version of Windows) or your favorite editor, and some won’t.

B.3 Functions in the HH Package

There are many functions in the HH package, and in the rest of R, that you will
need to learn about. The easiest way is to use the documentation that is included
with R. For example, to learn about the linear regression function lm (for “Linear
Model”), just ask R with the simple “?” command:

?lm

and a window will open with the description. Try it now.

B.4 HH and S+

Package version HH 2.1-29 of 2009-05-27 (Heiberger, 2009) is still available at
CSAN. This version of the package is appropriate for the First Edition of the
book. It includes very little of the material developed after the publication of the
First Edition. Once I started using the features of R’s latticeExtra package it no
longer made sense to continue compatibility with S-Plus. HH 2.1-29 doesn’t have
data(); instead it has a datasets subdirectory.
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Rcmdr: R Commander

The R Commander, released as the package Rcmdr (Fox, 2005; John Fox et al.,
2015), is a platform-independent basic-statistics GUI (graphical user interface) for
R, based on the tcltk package (part of R).

We illustrate how to use it by reconstructing the two panels of Figure 9.5 directly
from the Rcmdr menu. We load Rcmdr indirectly by explicitly loading our package
RcmdrPlugin.HH (Heiberger and with contributions from Burt Holland, 2015). We
then use the menu to bring in the hardness dataset, compute the quadratic model,
display the squared residuals for the quadratic model (duplicating the left panel of
Figure 9.5), display the squared residuals for the linear model (duplicating the right
panel of Figure 9.5). The linear model was fit implicitly and its summary is not
automatically printed. We show the summary of the quadratic model.

Figures C.1–C.14 illustrate all the steps summarized above.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
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Fig. C.1 From the *R* buffer (or the R Console) enter library(RcmdrPlugin.HH). This
also loads HH and Rcmdr and several other packages. It also open the Rcmdr window shown in
Figure C.2.
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Fig. C.2 The Rcmdr window as it appears when first opened. It shows a menu bar, a tool bar, and
three subwindows.
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Fig. C.3 We bring in a dataset by clicking on the Data menu sequence to open Figure C.4.

Fig. C.4 In this menu box we click on the HH package and within it, on the hardness data.



C Rcmdr: R Commander 723

Fig. C.5 The Data set: item in the tool bar now shows hardness as the active dataset. The R
Script subwindow show the R command that was generated by the menu sequence. The Output
subwindow shows the transcript of the R session where the command was executed. The Mes-
sages subwindow give information on the dataset that was opened.



724 C Rcmdr: R Commander

Fig. C.6 From the Statistics menu we open the Linear model menu box in Figure C.7.

Fig. C.7 Specify the linear model. The user can enter the model by typing or by clicking on the
menu items.
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Fig. C.8 The Linear model menu item wrote the R commands shown in the R Script sub-
window and executed them in the Output window. The model is stored in the R "lm" object
named LinearModel.1. The Model: item in the tool bar now shows LinearModel.1 as the
active model.
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Fig. C.9 Use the Graphs menu to get to the Squared Residuals. . . (HH) menu box in
Figure C.10.



C Rcmdr: R Commander 727

Fig. C.10 Specify the x-variable, the y-variable, and the active model (LinearModel.1) to get
Figure C.11.
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Fig. C.11 This is the squared residuals for the quadratic model (duplicating the right panel of
Figure 9.5).
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Fig. C.12 We repeated Figure C.9 to get the menu box again. This time we took the default linear
model to get Figure C.13.
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Fig. C.13 This is the squared residuals for the linear model (duplicating the left panel of
Figure 9.5).
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Fig. C.14 The Rcmdr window now shows the summary for the quadratic regression and the
specifications for the two graphs in Figures C.11 and C.13.
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RExcel: Embedding R inside Excel
on Windows

If you are running on a Windows machine and have access to MS Excel, then we
recommend that you install RExcel (Baier and Neuwirth, 2007; Neuwirth, 2014).
RExcel is free of charge for “single user non-commercial use” with 32-bit Excel.
Any other use will require a license. Please see the license at rcom.univie.ac.at
for details.

RExcel seamlessly integrates the entire set of R’s statistical and graphical meth-
ods into Excel, allowing students to focus on statistical methods and concepts and
minimizing the distraction of learning a new programming language. Data can be
transferred between R and Excel “the Excel way” by selecting worksheet ranges
and using Excel menus. RExcel has embedded the Rcmdr menu into the Excel
ribbon. Thus R’s basic statistical functions and selected advanced methods are avail-
able from an Excel menu. Almost all R functions can be used as worksheet functions
in Excel. Results of the computations and statistical graphics can be returned back
into Excel worksheet ranges. RExcel allows the use of Excel scroll bars and check
boxes to create and animate R graphics as an interactive analysis tool.

See Heiberger and Neuwirth (2009) for the book R through Excel: A Spreadsheet
Interface for Statistics, Data Analysis, and Graphics. This book is designed as a
computational supplement for any Statistics course.

RExcel works with Excel only on Windows. Excel on the Macintosh uses a
completely different interprocess communications system.

© Springer Science+Business Media New York 2015
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733

http://rcom.univie.ac.at


734 D RExcel: Embedding R inside Excel on Windows

D.1 Installing RExcel for Windows

You must have MS Excel (2007, 2010, or 2013) installed on your Windows
machine. You need to purchase Excel separately. Excel 2013 is the current ver-
sion (in early 2015). RExcel is free of charge for “single user non-commercial use”
with 32-bit Excel. Any other use will require a license.

D.1.1 Install R

Begin by installing R and the necessary packages as described in Section A.1.

D.1.2 Install Two R Packages Needed by RExcel

You will also need two more R packages that must be installed as computer
Administrator.

Start R as Administrator (on Windows 7 and 8 you need to right-click the R
icon and click the “Run as administrator” item). In R, run the following commands
(again, you must have started R as Administrator to do this)

## Tell Windows that R should have the same access to the outside

## internet that is granted to Internet Explorer.

setInternet2()

install.packages(c("rscproxy","rcom"),

repos="http://rcom.univie.ac.at/download",

type="binary",

lib=.Library)

library(rcom)

comRegisterRegistry()

Close R with q("no"). If it asks
Save workspace image? [y/n/c]:

answer with n.
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D.1.3 Install RExcel and Related Software

Go to http://rcom.univie.ac.at and click on the Download tab. Download
and execute the following four files (or newer releases if available)

• statconnDCOM3.6-0B2_Noncommercial

• RExcel 3.2.15

• RthroughExcelWorkbooksInstaller_1.2-10.exe

• SWord 1.0-1B1 Noncommercial SWord (Baier, 2014) is an add-in package
for MSword that makes it possible to embed R code in a MSword document.
The R code will be automatically executed and the output from the R code will
be included within the MSword document. SWord is free for non-commercial
use. Any other use will require a license. SWord is a separate program from
RExcel and is not required for RExcel.

These installer .exe files will ask for administrator approval, as they write in
the Program Files directory and write to the Windows registry as part of the
installation. Once they are installed, they run in normal user mode.

D.1.4 Install Rcmdr to Work with RExcel

In order for RExcel to place the Rcmdr menu on the Excel ribbon, it is necessary
that Rcmdr be installed in the C:/Program Files/R/R-x.y.z/library direc-
tory and not in the C:/Users/rmh/*/R/win-library/x.y directory. If Rcmdr is
installed in the user directory, it must be removed before reinstalling it as Adminis-
trator. Remove it with the remove.packages function using

remove.packages(c("Rcmdr", "RcmdrMisc"))

Then see the installation details in Section A.1.2.2.

D.1.5 Additional Information on Installing RExcel

Additional RExcel installation information is available in the Wiki page at
http://rcom.univie.ac.at

http://rcom.univie.ac.at
http://rcom.univie.ac.at
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D.2 Using RExcel

D.2.1 Automatic Recalculation of an R Function

RExcel places R inside the Excel automatic recalculation model. Figure D.1 by
Heiberger and Neuwirth was originally presented in Robbins et al. (2009) using
Excel 2007. We reproduce it here with Excel 2013.

Fig. D.1 Any R function can be used in Excel with the RExcel worksheet function RApply. The
formula =RApply("pchisq", B1, B2, B3) computes the value of the noncentral distribution
function for the quantile-value, the degrees of freedom, and the noncentrality parameter in cells
B1, B2, and B3, respectively, and returns its value into cell B4. When the value of one of the
arguments, in this example the noncentrality parameter in cell B3, is changed, the value of the
cumulative distribution is automatically updated by Excel to the appropriate new value.
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Fig. D.2 Retrieve the StudentData into Excel. From the RExcel Add-In tab, click
RthroughExcel Worksheets. This brings up the BookFilesTOC worksheet in Figure D.3.

D.2.2 Transferring Data To/From R and Excel

Datasets can be transferred in either direction to/from Excel from/to R. In
Figures D.2–D.4 we bring in a dataset from an Excel worksheet, transfer it to R,
and make it the active dataset for use with Rcmdr.

The StudentData was collected by Erich Neuwirth for over ten years from
students in his classes at the University of Vienna. The StudentData dataset is
included with RExcel.
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Fig. D.3 Click the StudentData button to bring up the StudentData worksheet in Figure D.4.
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Fig. D.4 Highlight the entire region containing data A1:Q1126. Right-click for the menu and
select Put R DataFrame. Click OK on the “Put dataframe in R” Dialog box. This places the
dataset name StudentData into the Rcmdr’s active Dataset box in Figure D.5.
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D.2.3 Control of a lattice Plot from an Excel/Rcmdr Menu

The example in Figures D.5–D.8 is originally from Heiberger and Neuwirth (2009)
using Excel 2007. We reproduce it here with Excel 2013. We made it the active
dataset for Rcmdr in Figures D.2–D.4.

Fig. D.5 RExcel has placed the Rcmdr menu onto the Excel ribbon. Click the Graphs tab to
get the menu and then click XY conditioning plot. . . (HH) to get the Dialog box in Figure D.6.
The (HH) in the menu item means the function was added to the Rcmdr menu by our RcmdrPlu-
gin.HH package (Heiberger and with contributions from Burt Holland, 2015).
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Fig. D.6 The user fills in the Dialog box to specify the graph in Figure D.7 and generate the R
commands displayed in Figure D.8.
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Fig. D.7 The graph is displayed. Shoesize is the student’s shoe size in Paris points (2/3 cm). Size
is the student’s height in cm. SizeFather and SizeMother are the heights of the student’s parents.
Fathers of both male and female students have the same height distribution as the male students.
Mothers of both male and female students have the same height distribution as the female students.

Fig. D.8 The generated R code is displayed.



Appendix E

Shiny: Web-Based Access to R Functions

Shiny (Chang et al., 2015; RStudio, 2015) is an R package that provides an R
language interface for writing interactive web applications. Apps built with shiny
place the power of R behind an interactive webpage that can be used by non-
programmers. A full tutorial and gallery are available at the Shiny web site.

We have animated several of the graphs in the HH package using shiny.
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E.1 NTplot

The NTplot function shows significance levels and power for the normal or t-
distributions. Figure E.1, an interactive version of the top panel of the middle section
of Figure 3.20, is specified with

NTplot(mean0=8, mean1=8.411, sd=2, n=64, cex.prob=1.3,

shiny=TRUE)

Fig. E.1 This is an interactive version of Figure 3.20 constructed with the shiny package. Adjust-
ing the n slider at the bottom right can produce all three columns of Figure 3.20. Clicking the �
button below the slider will dynamically move through all values of n from 1 through 150, includ-
ing the three that are displayed in Figure 3.20. There are additional controls on the Normal and t,
Display Options, and Fonts tabs that will show the power and beta panels.



E.2 bivariateNormal 745

E.2 bivariateNormal

Figure E.2 is an interactive version of Figure 3.9 showing the bivariate normal den-
sity in 3D space with various correlations and various viewpoints.

shiny::runApp(system.file("shiny/bivariateNormal",

package="HH"))

Fig. E.2 This is an interactive version of Figure 3.9 constructed with the shiny package. Adjusting
the rho slider changes the correlation between x and y. Adjusting the angle in degrees slider
rotates the figure through all the viewpoint angles shown in Figure 3.10. Both sliders can be made
dynamic by clicking their � buttons.
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E.3 bivariateNormalScatterplot

Figure E.3 is a dynamic version of Figure 3.8 specified with

shiny::runApp(system.file("shiny/bivariateNormalScatterplot",

package="HH"))

Fig. E.3 This is an interactive version of Figure 3.8 constructed with the shiny package. Adjusting
the rho slider changes the correlation between x and y. By clicking the � button, the figure will
transition through the panels of Figure 3.8.
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E.4 PopulationPyramid

Figure E.4 is an interactive version of Figure 15.19 showing the population pyramid
for the United States annually for the years 1900–1979 specified with

shiny::runApp(system.file("shiny/PopulationPyramid",

package="HH"))

Fig. E.4 This is an interactive version of Figure 15.19 constructed with the shiny package. Ad-
justing the Year slider changes the year in the range 1900–1970. By clicking the � button, the
figure will dynamically transition through the panels of Figure 15.19.
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R Packages

The R program as supplied by R-Core on the CRAN (Comprehensive R Archive
Network) page (CRAN, 2015) consists of the base program and about 30 required
and recommended packages. Everything else is a contributed package. There are
about 6500 contributed packages (April 2015). Our HH is a contributed package.

F.1 What Is a Package?

R packages are extensions to R.

Each package is a collection of functions and datasets designed to work together
for a specific purpose. The HH package is designed to provide computing support
for the techniques discussed in this book . The lattice package (a recommended
package) is designed to provide xyplot and related graphics functions. Most of the
graphics functions in HH are built on the functions in lattice.

Packages consist at a minimum of functions written in R, datasets that can be
brought into the R working directory, and documentation for all functions and
datasets. Some packages include subroutines written in Fortran or C.

F.2 Installing and Loading R Packages

The base and recommended packages are installed on your computer when you
download and install R itself. All other packages must be explicitly installed (down-
loaded from CRAN and placed into an R-determined location on your computer).
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The packages available at CRAN are most easily installed into your computer
with a command of the form

install.packages("MyPackage")

The R GUIs usually have a menu item that constructs this statement for you.

The functions in an installed package are not automatically available when you
start an R session. It is necessary to load them into the current session, usually with
the library function. Most examples in this book require you to enter

library(HH)

(once per R session) before doing anything else. The HH package loads lattice and
several additional packages.

The list of R packages installed on your computer is seen with the R command
library()

The list of R packages loaded into your current R session is seen with the R
command

search()

F.3 Where Are the Packages on Your Computer?

Once a package has been installed on your computer it is kept in a directory (called a
“library” in R terminology). The base and recommended packages are stored under
R itself in directory

system.file("..")

Files inside the installed packages are in an internal format and cannot be read by
an editor directly from the file system.

Contributed packages will usually be installed in a directory in your user space.

In Windows that might be something like
C:/Users/yourloginname/Documents/R/win-library/3.2

or
C:/Users/yourloginname/AppData/Roaming/R/win-library/3.2

On Macintosh it will be something like
/Users/yourloginname/Library/R/3.2/library

You can find out where the installed packages are stored by loading one and then
entering

searchpaths()

(searchpaths() is similar to search() but with the full pathname included in the
output, not just the package name). For example,

library(HH)

searchpaths()
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F.4 Structure of an R Package

The package developer writes individual source files. The R build system (see the
Writing R Extensions manual) has procedures for checking coherency and then for
building the source package and the binaries.

The packages at CRAN are available in three formats. The source packages
(what the package designer wrote and what you should read when you want to read
the code) are stored as packagename.tar.gz files. The binary packages for Win-
dows are stored as packagename.zip files. The binary packages for Macintosh
are stored as packagename.tgz files.

F.5 Writing and Building Your Own Package

At some point in your analysis project you will have accumulated several of your
own functions that you quite frequently use. At that point it will be time to collect
them into a package.

We do not say much here about designing and writing functions in this book.
Begin with An Introduction to R in file

system.file("../../doc/manual/R-intro.pdf")

It includes a chapter “Writing your own functions”.

Nor do we say much here about building a package. The official reference is the
Writing R Extensions manual that also comes with R in file

system.file("../../doc/manual/R-exts.pdf")

When you are ready, begin by looking at the help file
?package.skeleton

to see how the pieces fit together.

It will help to have someone work with you the first time you build a package.
You build the package with the operating system command

R CMD check YourPackageName

and then install it on your own machine with the command
R CMD INSTALL --build YourPackageName

The checking process is very thorough, and gets more thorough at every release
of R. Understanding how to respond to the messages from the check is the specific
place where it will help to have someone already familiar with package building.
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F.6 Building Your Own Package with Windows

The MS Windows operating system does not include many programs that are cen-
tral to building R packages. You will need to download and install the most recent
Rtools from CRAN. See Section A.1.2.4 for download information.

You will need to include Rtools in your PATH environment variable to enable the
R CMD check packagename command to work. See “Appendix D The Windows
toolset” in R Installation and Administration manual at

system.file("../../doc/manual/R-admin.pdf")



Appendix G

Computational Precision and Floating-Point
Arithmetic

Computers use floating point arithmetic. The floating point system is not identical to
the real-number system that we (teachers and students) know well, having studied
it from kindergarten onward. In this section we show several examples to illustrate
and emphasize the distinction.

The principal characteristic of real numbers is that we can have as many digits
as we wish. The principal characteristic of floating point numbers is that we are
limited in the number of digits that we can work with. In double-precision IEEE
754 arithmetic, we are limited to exactly 53 binary digits (approximately 16 decimal
digits)

The consequences of the use of floating point numbers are pervasive, and present
even with numbers we normally think of as far from the boundaries. For detailed
information please see FAQ 7.31 in file

system.file("../../doc/FAQ")

The help menus in Rgui in Windows and R.app on Macintosh have direct links to
the FAQ file.

G.1 Examples

Let us start by looking at two simple examples that require basic familiarity with
floating point arithmetic.

1. Why is .9 not recognized to be the same as (.3 + .6)?
Table G.1 shows that .9 is not perceived to have the same value as .3 + .6, when
calculated in floating point (that is, when calculated by a computer). The differ-
ence between the two values is not 0, but is instead a number on the order of
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machine epsilon (the smallest number ε such that 1 + ε > 1). In R, the standard
mathematical comparison operators recognize the difference. There is a function
all.equal which tests for near equality. See ?all.equal for details.

Table G.1 Calculations showing that the floating point numbers .9 and .3 + .6 are not stored the
same inside the computer. R comparison operators recognize the numbers as different.

> c(.9, (.3 + .6))

[1] 0.9 0.9

> .9 == (.3 + .6)

[1] FALSE

> .9 - (.3 + .6)

[1] 1.11e-16

> identical(.9, (.3 + .6))

[1] FALSE

> all.equal(.9, (.3 + .6))

[1] TRUE

Table G.2
(√

2
)2
� 2 in floating point arithmetic inside the computer.

> c(2, sqrt(2)^2)

[1] 2 2

> sqrt(2)^2

[1] 2

> 2 == sqrt(2)^2

[1] FALSE

> 2 - sqrt(2)^2

[1] -4.441e-16

> identical(2, sqrt(2)^2)

[1] FALSE

> all.equal(2, sqrt(2)^2)

[1] TRUE
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2. Why is
(√

2
)2

not recognized to be the same as 2?

Table G.2 shows that the difference between the two values
(√

2
)2

and 2 is not
0, but is instead a number on the order of machine epsilon (the smallest number
ε such that 1 + ε > 1).

We will pursue these examples further in Section G.7, but first we need to intro-
duce floating point numbers—the number system used inside the computer.

G.2 Floating Point Numbers in the IEEE 754 Floating-Point
Standard

The number system we are most familiar with is the infinite-precision base-10
system. Any number can be represented as the infinite sum

± (a0 × 100 + a1 × 10−1 + a2 × 10−2 + . . .) × 10p

where p can be any positive integer, and the values ai are digits selected from
decimal digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For example, the decimal number 3.3125
is expressed as

3.3125 = (3 × 100 + 3 × 10−1 + 1 × 10−2 + 2 × 10−3 + 5 × 10−4) × 100

= 3.3125 × 1

In this example, there are 4 decimal digits after the radix point. There is no limit to
the number of digits that could have been specified. For decimal numbers the term
decimal point is usually used in preference to the more general term radix point.

Floating point arithmetic in computers uses a finite-precision base-2 (binary) sys-
tem for representation of numbers. Most computers today use the 53-bit IEEE 754
system, with numbers represented by the finite sum

± (a0 × 20 + a1 × 2−1 + a2 × 2−2 + . . . + a52 × 2−52) × 2p

where p is an integer in the range −1022 to 1023 (expressed as decimal numbers),
the values ai are digits selected from {0, 1}, and the subscripts and powers i are dec-
imal numbers selected from {0, 1, . . . , 52}. The decimal number 3.12510 is 11.01012

in binary.

3.312510 = 11.01012 = (1 × 20 + 1 × 2−1 + 0 × 2−2 + 1 × 2−3 + 0 × 2−4 +

1 × 2−5) × 210

= 1.101012 × 210
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This example (in the normalized form 1.101012 × 210) has five binary digits (bits)
after the radix point (binary point in this case). There is a maximum of 52 binary
positions after the binary point.

Strings of 0 and 1 are hard for people to read. They are usually collected into
units of 4 bits (called a byte).

The IEEE 754 standard requires the base β = 2 number system with p = 53 base-
2 digits. Except for 0, the numbers in internal representation are always normalized
with the leading bit always 1. Since it is always 1, there is no need to store it and
only 52 bits are actually needed for 53-bit precision. A string of 0 and 1 is difficult
for humans to read. Therefore every set of 4 bits is represented as a single hexadec-
imal digit, from the set {0 1 2 3 4 5 6 7 8 9 a b c d e f}, representing the
decimal values {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15}. The 52 stored bits can be
displayed with 13 hex digits. Since the base is β = 2, the exponent of an IEEE 754
floating point number must be a power of 2. The double-precision computer num-
bers contain 64 bits, allocated 52 for the significant, 1 for the sign, and 11 for the
exponent. The 11 bits for the exponent can express 211 = 2048 unique values. These
are assigned to range from −2−1022 to 21023, with the remaining 2 exponent values
used for special cases (zero and the special quantities NaN and∞).

The number 3.312510 is represented in hexadecimal (base-16) notation as

3.312510 = 3.5016 = (1 × 160 + a16 × 16−1 + 816 × 16−2) × 210

= 1.a816 × 210

= 1.101010002 × 210

There are two hex digits after the radix point (binary point, not hex point because
the normalization is by powers of 210 not powers of 1610).

The R function sprintf is used to specify the printed format of numbers. The
letter a in format sprintf("%+13.13a", x) tells R to print the numbers in hex-
adecimal notation. The “13”s say to use 13 hexadecimal digits after the binary point.
See ?sprintf for more detail on the formatting specifications used by the sprintf
function. Several numbers, simple decimals, and simple multiples of powers of 1/2
are shown in Table G.3 in both decimal and binary notation.

G.3 Multiple Precision Floating Point

The R package Rmpfr allows the construction and use of arbitrary precision
floating point numbers. It was designed, and is usually used, for higher-precision
arithmetic—situations where the 53-bit double-precision numbers are not precise
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Table G.3 Numbers, some simple integers divided by 10, and some fractions constructed as multi-
ples of powers of 1/2. The i/10 decimal numbers are stored as repeating binaries in the hexadecimal
notation until they run out of digits. There are only 52 bits (binary digits) after the binary point.
For decimal input 0.1 we see that the repeating hex digit is “9” until the last position where it is
rounded up to “a”.

> nums <- c(0, .0625, .1, .3, .3125, .5, .6, (.3 + .6), .9, 1)

> data.frame("decimal-2"=nums,

+ "decimal-17"=format(nums, digits=17),

+ hexadecimal=sprintf("%+13.13a", nums))

decimal.2 decimal.17 hexadecimal

1 0.0000 0.00000000000000000 +0x0.0000000000000p+0

2 0.0625 0.06250000000000000 +0x1.0000000000000p-4

3 0.1000 0.10000000000000001 +0x1.999999999999ap-4

4 0.3000 0.29999999999999999 +0x1.3333333333333p-2

5 0.3125 0.31250000000000000 +0x1.4000000000000p-2

6 0.5000 0.50000000000000000 +0x1.0000000000000p-1

7 0.6000 0.59999999999999998 +0x1.3333333333333p-1

8 0.9000 0.89999999999999991 +0x1.cccccccccccccp-1

9 0.9000 0.90000000000000002 +0x1.ccccccccccccdp-1

10 1.0000 1.00000000000000000 +0x1.0000000000000p+0

enough. In this Appendix we use it for lower-precision arithmetic—four or five sig-
nificant digits. In this way it will be much easier to illustrate how the behavior of
floating point numbers differs from the behavior of real numbers.

G.4 Binary Format

It is often easier to see the details of the numerical behavior when numbers are dis-
played in binary, not in the hex format of sprintf("%+13.13a", x). The Rmpfr
package includes a binary display format for numbers. The formatBin function
uses sprintf to construct a hex display format and then modifies it by replacing
each hex character with its 4-bit expansion as shown in Table G.4.

Optionally (with argument scientific=FALSE), all binary numbers can be for-
matted to show aligned radix points. There is also a formatHex function which is
essentially a wrapper for sprintf. Both functions are used in the examples in this
Appendix. Table G.5 illustrates both functions, including the optional scientific
argument, with a 4-bit arithmetic example.



758 G Computational Precision and Floating-Point Arithmetic

Table G.4 Four-bit expansions for the sixteen hex digits. We show both lowercase [a:f] and up-
percase [A:F] for the hex digits.

> Rmpfr:::HextoBin

1 2 3 4 5 6 7

"0000" "0001" "0010" "0011" "0100" "0101" "0110" "0111"

8 9 A B C D E F

"1000" "1001" "1010" "1011" "1100" "1101" "1110" "1111"

a b c d e f

"1010" "1011" "1100" "1101" "1110" "1111"

G.5 Round to Even

The IEEE 754 standard calls for “rounding ties to even”. The explanation here is
from help(mpfr, package="Rmpfr"):

The round to nearest ("N") mode, the default here, works as in the IEEE 754 standard: in
case the number to be rounded lies exactly in the middle of two representable numbers, it
is rounded to the one with the least significant bit set to zero. For example, the number 5/2,
which is represented by (10.1) in binary, is rounded to (10.0)=2 with a precision of two bits,
and not to (11.0)=3. This rule avoids the drift phenomenon mentioned by Knuth in volume
2 of The Art of Computer Programming (Section 4.2.2).

G.6 Base-10, 2-Digit Arithmetic

Hex numbers are hard to fathom the first time they are seen. We therefore look at a
simple example of finite-precision arithmetic with 2 significant decimal digits.

Calculate the sum of squares of three numbers in 2-digit base-10 arithmetic. For
concreteness, use the example

22 + 112 + 152

This requires rounding to 2 significant digits at every intermediate step. The steps
are easy. Putting your head around the steps is hard.

We rewrite the expression as a fully parenthesized algebraic expression, so we
don’t need to worry about precedence of operators at this step.

((22) + (112)) + (152)

Now we can evaluate the parenthesized groups from the inside out.
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Table G.5 Integers from 0 to 39 stored as 4-bit mpfr numbers. The numbers from 17 to 39 are
rounded to four significant bits. All numbers in the “16” and “24” columns are multiples of 2, and
all numbers in the “32” columns are multiples of 4. The numbers are displayed in decimal, hex,
binary, and binary with aligned radix points. To interpret the aligned binary numbers, replace the
“_” placeholder character with a zero.

> library(Rmpfr)

> FourBits <- mpfr(matrix(0:39, 8, 5), precBits=4)

> dimnames(FourBits) <- list(0:7, c(0,8,16,24,32))

> FourBits

’mpfrMatrix’ of dim(.) = (8, 5) of precision 4 bits

0 8 16 24 32

0 0.00 8.00 16.0 24.0 32.0

1 1.00 9.00 16.0 24.0 32.0

2 2.00 10.0 18.0 26.0 32.0

3 3.00 11.0 20.0 28.0 36.0

4 4.00 12.0 20.0 28.0 36.0

5 5.00 13.0 20.0 28.0 36.0

6 6.00 14.0 22.0 30.0 40.0

7 7.00 15.0 24.0 32.0 40.0

> formatHex(FourBits)

0 8 16 24 32

0 +0x0.0p+0 +0x1.0p+3 +0x1.0p+4 +0x1.8p+4 +0x1.0p+5

1 +0x1.0p+0 +0x1.2p+3 +0x1.0p+4 +0x1.8p+4 +0x1.0p+5

2 +0x1.0p+1 +0x1.4p+3 +0x1.2p+4 +0x1.ap+4 +0x1.0p+5

3 +0x1.8p+1 +0x1.6p+3 +0x1.4p+4 +0x1.cp+4 +0x1.2p+5

4 +0x1.0p+2 +0x1.8p+3 +0x1.4p+4 +0x1.cp+4 +0x1.2p+5

5 +0x1.4p+2 +0x1.ap+3 +0x1.4p+4 +0x1.cp+4 +0x1.2p+5

6 +0x1.8p+2 +0x1.cp+3 +0x1.6p+4 +0x1.ep+4 +0x1.4p+5

7 +0x1.cp+2 +0x1.ep+3 +0x1.8p+4 +0x1.0p+5 +0x1.4p+5

> formatBin(FourBits)

0 8 16 24 32

0 +0b0.000p+0 +0b1.000p+3 +0b1.000p+4 +0b1.100p+4 +0b1.000p+5

1 +0b1.000p+0 +0b1.001p+3 +0b1.000p+4 +0b1.100p+4 +0b1.000p+5

2 +0b1.000p+1 +0b1.010p+3 +0b1.001p+4 +0b1.101p+4 +0b1.000p+5

3 +0b1.100p+1 +0b1.011p+3 +0b1.010p+4 +0b1.110p+4 +0b1.001p+5

4 +0b1.000p+2 +0b1.100p+3 +0b1.010p+4 +0b1.110p+4 +0b1.001p+5

5 +0b1.010p+2 +0b1.101p+3 +0b1.010p+4 +0b1.110p+4 +0b1.001p+5

6 +0b1.100p+2 +0b1.110p+3 +0b1.011p+4 +0b1.111p+4 +0b1.010p+5

7 +0b1.110p+2 +0b1.111p+3 +0b1.100p+4 +0b1.000p+5 +0b1.010p+5

> formatBin(FourBits, scientific=FALSE)

0 8 16 24 32

0 +0b_____0.000 +0b__1000.___ +0b_1000_.___ +0b_1100_.___ +0b1000__.___

1 +0b_____1.000 +0b__1001.___ +0b_1000_.___ +0b_1100_.___ +0b1000__.___

2 +0b____10.00_ +0b__1010.___ +0b_1001_.___ +0b_1101_.___ +0b1000__.___

3 +0b____11.00_ +0b__1011.___ +0b_1010_.___ +0b_1110_.___ +0b1001__.___

4 +0b___100.0__ +0b__1100.___ +0b_1010_.___ +0b_1110_.___ +0b1001__.___

5 +0b___101.0__ +0b__1101.___ +0b_1010_.___ +0b_1110_.___ +0b1001__.___

6 +0b___110.0__ +0b__1110.___ +0b_1011_.___ +0b_1111_.___ +0b1010__.___

7 +0b___111.0__ +0b__1111.___ +0b_1100_.___ +0b1000__.___ +0b1010__.___



760 G Computational Precision and Floating-Point Arithmetic

( (22) + (112) ) + (152) ## parenthesized expression
( (4) + (121) ) + (225) ## square each term
( 4 + 120 ) + 220 ## round each term to two significant decimal digits
( 124 ) + 220 ## calculate the intermediate sum
( 120 ) + 220 ## round the intermediate sum to two decimal digits

340 ## sum the terms

Compare this to the full precision arithmetic
( (22) + (112) ) + (152) ## parenthesized expression
( 4 + 121 ) + 225 ## square each term
( 125 ) + 225 ## calculate the intermediate sum

350 ## sum the terms

We see immediately that two-decimal-digit rounding at each stage gives an answer
that is not the same as the one from familiar arithmetic with real numbers.

G.7 Why Is .9 Not Recognized to Be the Same as (.3 + .6)?

We can now continue with the first example from Section G.1. The floating point
binary representation of 0.3 and the floating point representation of 0.6 must be
aligned on the binary point before the addition. When the numbers are aligned by
shifting the smaller number right one position, the last bit of the smaller number has
nowhere to go and is lost. The sum is therefore one bit too small compared to the
floating point binary representation of 0.9. Details are in Table G.6.

G.8 Why Is
(√

2
)2

Not Recognized to Be the Same as 2?

We continue with the second example from Section G.1. The binary representation

inside the machine of the two numbers
(√

2
)2

and 2 is not identical. We see in

Table G.7 that they differ by one bit in the 53rd binary digit.

G.9 zapsmall to Round Small Values to Zero for Display

R provides a function that rounds small values (those close to the machine epsilon)
to zero. We use this function for printing of many tables where we wish to inter-
pret numbers close to machine epsilon as if they were zero. See Table G.8 for an
example.
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Table G.6 Now let’s add 0.3 and 0.6 in hex:

0.3 +0x1.3333333333333p-2 = +0x0.9999999999999p-1 aligned binary (see below)
0.6 +0x1.3333333333333p-1 = +0x1.3333333333333p-1

-------------------------- ---------------------

0.9 add of aligned binary +0x1.cccccccccccccp-1

0.9 convert from decimal +0x1.ccccccccccccdp-1

We need to align binary points for addition. The shift is calculated by converting hex to bi-
nary, shifting one bit to the right to get the same p-1 exponent, regrouping four bits into hex
characters, and allowing the last bit to fall off:
1.0011 0011 0011 ... 0011 × 2−2 → .1001 1001 1001 ... 1001 | 1/ × 2−1

> nums369 <- c(.3, .6, .3+.6, 9)

> nums369df <-

+ data.frame("decimal-2"=nums369,

+ "decimal-17"=format(nums369, digits=17),

+ hexadecimal=sprintf("%+13.13a", nums369))

> nums369df[3,1] <- "0.3 + 0.6"

> nums369df

decimal.2 decimal.17 hexadecimal

1 0.3 0.29999999999999999 +0x1.3333333333333p-2

2 0.6 0.59999999999999998 +0x1.3333333333333p-1

3 0.3 + 0.6 0.89999999999999991 +0x1.cccccccccccccp-1

4 9 9.00000000000000000 +0x1.2000000000000p+3

Table G.7 The binary representation of the two numbers
(√

2
)2

and 2 is not identical. They differ

by one bit in the 53rd binary digit.

> sprintf("%+13.13a", c(2, sqrt(2)^2))

[1] "+0x1.0000000000000p+1" "+0x1.0000000000001p+1"

Table G.8 We frequently wish to interpret numbers that are very different in magnitude as if the
smaller one is effectively zero. The display function zapsmall provides that capability.

> c(100, 1e-10)

[1] 1e+02 1e-10

> zapsmall(c(100, 1e-10))

[1] 100 0
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G.10 Apparent Violation of Elementary Factoring

We show a simple example of disastrous cancellation (loss of high-order digits),
where the floating point statement

a2 − b2 � (a + b) × (a − b)

is an inequality, not an equation, for some surprising values of a and b. Table G.9
shows two examples, a decimal example for which the equality holds so we can
use our intuition to see what is happening, and a hex example at the boundary of
rounding so we can see precisely how the equality fails.

Table G.9 Two examples comparing a2 − b2 to (a + b) × (a − b). On the top, the numbers are
decimal a = 101 and b=102 and the equality holds on a machine using IEEE 754 floating point
arithmetic. On the bottom, the numbers are hexadecimal a = 0x8000001 and b = 0x8000002 and
the equality fails to hold on a machine using IEEE 754 floating point arithmetic. The outlined 0 in

the decimal column for a^2 with x=+0x8000000 would have been a 1 if we had 54-bit arithmetic.

Since we have only 53 bits available to store numbers, the 54th bit was rounded to 0 by the Round
to Even rule (see Section G.5). The marker � in the hex column for a^2 with x=+0x8000000

shows that one more hex digit would be needed to indicate the squared value precisely.

Decimal Hex
100 = +0x64

x 100 +0x1.9000000000000p+6

a <- x+1 101 +0x1.9400000000000p+6

b <- x+2 102 +0x1.9800000000000p+6

a^2 10201 +0x1.3ec8000000000p+13

b^2 10404 +0x1.4520000000000p+13

b^2 - a^2 203 +0x1.9600000000000p+7

(b+a) * (b-a) 203 +0x1.9600000000000p+7

Decimal Hex
134217728 = +0x8000000

x 134217728 +0x1.0000000000000p+27

a <- x+1 134217729 +0x1.0000002000000p+27

b <- x+2 134217730 +0x1.0000004000000p+27

a^2 18014398777917440 +0x1.0000004000000�p+54
b^2 18014399046352900 +0x1.0000008000001p+54

b^2 - a^2 268435460 +0x1.0000004000000p+28

(b+a) * (b-a) 268435459 +0x1.0000003000000p+28
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G.11 Variance Calculations

Once we understand disastrous cancellation, we can study algorithms for the cal-
culation of variance. Compare the two common formulas for calculating sample
variance, the two-pass formula and the disastrous one-pass formula.

Two-pass formula One-pass formula
⎛⎜⎜⎜⎜⎜⎝

n∑

i=1

(xi − x̄)2

⎞⎟⎟⎟⎟⎟⎠ /(n − 1)

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

x2
i

⎞⎟⎟⎟⎟⎟⎠ − nx̄2

⎞⎟⎟⎟⎟⎟⎠ /(n − 1)

Table G.10 shows the calculation of the variance by both formulas. For x = (1, 2, 3),
var(x) = 1 by both formulas. For x = (k + 1, k + 2, k + 3), var(x) = 1 by both
formulas for k ≤ 107. For k = 108, the one-pass formula gives 0. The one-pass
formula is often shown in introductory books with the name “machine formula”.
The “machine” it is referring to is the desk calculator, not the digital computer.
The one-pass formula gives valid answers for numbers with only a few significant
figures (about half the number of digits for machine precision), and therefore does
not belong in a general algorithm. The name “one-pass” is reflective of the older
computation technology where scalars, not the vector, were the fundamental data
unit. See Section G.14 where we show the one-pass formula written with an explicit
loop on scalars.

We can show what is happening in these two algorithms by looking at the binary
display of the numbers. We do so in Section G.12 with presentations in Tables G.11
and G.12. Table G.11 shows what happens for double precision arithmetic (53 sig-
nificant bits, approximately 16 significant decimal digits). Table G.12 shows the
same behavior with 5-bit arithmetic (approximately 1.5 significant decimal digits).

G.12 Variance Calculations at the Precision Boundary

Table G.11 shows the calculation of the sample variance for three sequential num-
bers at the boundary of precision of 53-bit floating point numbers. The numbers in
column “15” fit within 53 bits and their variance is the variance of k+ (1, 2, 3) which
is 1. The numbers 1016 + (1, 2, 3) in column “16” in Table G.11 require 54 bits for
precise representation. They are therefore rounded to 1016 + c(0, 2, 4) to fit within
the capabilities of 53-bit floating point numbers. The variance of the numbers in col-
umn “16” is calculated as the variance of k+ (0, 2, 4) which is 4. When we place the
numbers into a 54-bit representation (not possible with the standard 53-bit floating
point), the calculated variance is the anticipated 1.

Table G.12 shows the calculation of the sample variance for three sequential
numbers at the boundary of precision of 5-bit floating point numbers. The numbers
{33, 34, 35} on the left side need six significant bits to be represented precisely.
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Table G.10 The one-pass formula fails at x = (108 + 1, 108 + 2, 108 + 3) (about half as many
significant digits as machine precision). The two-pass formula is stable to the limit of machine
precision. The calculated value at the boundary of machine precision for the two-pass formula is
the correctly calculated floating point value. Please see Section G.12 and Tables G.11 and G.12 for
the explanation.

> varone <- function(x) {

+ n <- length(x)

+ xbar <- mean(x)

+ (sum(x^2) - n*xbar^2) / (n-1)

+ }

> x <- 1:3

> varone(x)

[1] 1

> varone(x+10^7)

[1] 1

> ## half machine precision

> varone(x+10^8)

[1] 0

> varone(x+10^15)

[1] 0

> ## boundary of machine precision

> ##

> varone(x+10^16)

[1] 0

> varone(x+10^17)

[1] 0

> vartwo <- function(x) {

+ n <- length(x)

+ xbar <- mean(x)

+ sum((x-xbar)^2) / (n-1)

+ }

> x <- 1:3

> vartwo(x)

[1] 1

> vartwo(x+10^7)

[1] 1

> ## half machine precision

> vartwo(x+10^8)

[1] 1

> vartwo(x+10^15)

[1] 1

> ## boundary of machine precision

> ## See next table.

> vartwo(x+10^16)

[1] 4

> vartwo(x+10^17)

[1] 0

Following the Round to Even rule, they are rounded to {32, 34, 36} in the five-
bit representation on the right side. The easiest way to see the rounding is in the
scientific=FALSE binary presentation (the last section on both sides of the Ta-
ble G.12, repeated in Table G.13).

There is also a third formula, with additional protection against cancellation,
called the “corrected two-pass algorithm”.

y = x − x̄
∑

(y − ȳ)2/(n − 1)

We define a function in Table G.14 and illustrate its use in a very tight boundary
case (the 54-bit column “16” of Table G.11) in Table G.15.
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Table G.11 Variance of numbers at the boundary of 53-bit double precision arithmetic. Column
“15” fits within 53 bits and the variance is calculated as 1. Column “16” requires 54 bits for
precise representation. With 53-bit floating point arithmetic the variance is calculated as 4. With
the extended precision to 54 bits, the variance is calculated as 1.

> x <- 1:3; p <- 15:16

> xx <- t(outer(10^p, x, ‘+‘)); dimnames(xx) <- list(x, p)

> print(xx, digits=17)

15 16

1 1000000000000001 10000000000000000

2 1000000000000002 10000000000000002

3 1000000000000003 10000000000000004

> formatHex(xx)

15 16

1 +0x1.c6bf526340008p+49 +0x1.1c37937e08000p+53

2 +0x1.c6bf526340010p+49 +0x1.1c37937e08001p+53

3 +0x1.c6bf526340018p+49 +0x1.1c37937e08002p+53

> var(xx[,"15"])

[1] 1

> var(xx[,"16"])

[1] 4

> x54 <- mpfr(1:3, 54)

> xx54 <- t(outer(10^p, x54, ‘+‘)); dimnames(xx54) <- list(x, p)

> xx54

’mpfrMatrix’ of dim(.) = (3, 2) of precision 54 bits

15 16

1 1000000000000001.00 10000000000000001.0

2 1000000000000002.00 10000000000000002.0

3 1000000000000003.00 10000000000000003.0

> vartwo(xx54[,"16"] - mean(xx54[,"16"]))

1 ’mpfr’ number of precision 54 bits

[1] 1

> ## hex for 54-bit numbers is not currently available from R.

>

> ## We manually constructed it here.

> formatHex(xx54) ## We manually constructed this

15 16

1 +0x1.c6bf5263400080p+49 +0x1.1c37937e080008p+53

2 +0x1.c6bf5263400100p+49 +0x1.1c37937e080010p+53

3 +0x1.c6bf5263400180p+49 +0x1.1c37937e080018p+53
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Table G.13 This table focuses on the last displays in Table G.12. The last three bits in the 6-
bit display of 33 (001) show a 1 in the “1” position. The number is rounded to the nearest even
number (000) in the “2” digit (with a 0 in the “1” position) and truncated to (00 ) in the 5-bit
display. The last three bits (011) of 35 are rounded to the nearest even number (100) in the “2”
digit and truncated to (10 ) In both values, the resulting “2” digit is (0). The last three bits (010)
of 34 already have a (0) in the “1” digit and therefore no rounding is needed. The sample variance
of {33, 34, 35} is 1. When those numbers are rounded to five-bit binary, they become {32, 34, 36}.
The sample variance of {32, 34, 36} is 4.

6-bit binary rounded to 5-bit binary

displayed truncated equivalent
decimal binary as 6-bit to 5-bit decimal

33 +0b100001. +0b100000. +0b10000 . 32

34 +0b100010. +0b100010. +0b10001 . 34

35 +0b100011. +0b100100. +0b10010 . 36

Table G.14 The corrected two-pass algorithm centers the data by subtracting the mean, and then
uses the two-pass algorithm on the centered data. It helps in some boundary conditions, for example
the one shown in Table G.15.

> vartwoC <- function(x) {

+ vartwo(x-mean(x))

+ }

> x <- 1:3

> vartwoC(x)

[1] 1

> vartwoC(x+10^7)

[1] 1

> ## half machine precision

> vartwoC(x+10^8)

[1] 1

> vartwoC(x+10^15)

[1] 1

> ## boundary of machine precision

> ##

> vartwoC(x+10^16)

[1] 4

> vartwoC(x+10^17)

[1] 0
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Table G.15 vartwo doesn’t work for some problems on the boundary, such as this example at
the boundary of 54-bit arithmetic. Summing the numbers effectively required one more significant
binary digit. Since there are no more digits available, the data was rounded and the variance is not
what our real-number intuition led us to expect. vartwoC does work.

> vartwo(xx54[,"15"])

1 ’mpfr’ number of precision 54 bits

[1] 1

> ## wrong answer. numbers were shifted one binary position.

> vartwo(xx54[,"16"])

1 ’mpfr’ number of precision 54 bits

[1] 2.5

> ## vartwoC protects against that problem and gets the right answer.

> vartwoC(xx54[,"16"])

1 ’mpfr’ number of precision 54 bits

[1] 1

> sum(xx54[1:2,"16"])

1 ’mpfr’ number of precision 54 bits

[1] 20000000000000004

> ## Adding the first two numbers effectively doubled the numbers which

> ## means the significant bits were shifted one more place to the left.

> ## The first value was rounded up. Looking at just the last three bytes

> ## (where the last three bits are guaranteed 0):

> ## +0x008p53 + 0x010p53 -> +0x010p53 + 0x010p53 -> +0x020p53

>

> sum((xx54)[1:3,"16"]) ## too high

1 ’mpfr’ number of precision 54 bits

[1] 30000000000000008

> sum((xx54)[3:1,"16"]) ## too low

1 ’mpfr’ number of precision 54 bits

[1] 30000000000000004

> sum((xx54)[c(1,3,2),"16"]) ## just right

1 ’mpfr’ number of precision 54 bits

[1] 30000000000000006
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G.13 Can the Answer to the Calculation be Represented?

Chan et al. (1983) discuss various strategies needed to make sure that the fundamen-
tal goal of numerical analysis is achieved:

If the input values can be represented by the computer, and if the answer can be represented
by the computer, then the calculation should get the right answer.

It is very easy to construct an easy sum-of-squares problem for which naive cal-
culations cannot get the right answer. The programmer’s task is to get the right
answer.

The Pythagorean Theorem tells us that z =
√

x2 + y2 will be an integer for several
well known sets of triples {x, y, z}. The triple {3, 4, 5} is probably the best known.
The triple {3k, 4k, 5k} for any k is also a triple which works. Table G.16 shows an
example of k for which naive calculation fails, and for which Mod (modulus), one of
R’s base function, works. The goal is to understand how Mod is written.

Table G.16 The naive square-root-of-the-sum-of-squares algorithm gets the right answer in two
of the three cases shown here. Mod gets the right answer in all three cases.

> x <- 3; y <- 4

> sqrt(x^2 + y^2)

[1] 5

> Mod(x + 1i*y)

[1] 5

> x <- 3e100; y <- 4e100

> sqrt(x^2 + y^2)

[1] 5e+100

> Mod(x + y*1i)

[1] 5e+100

> x <- 3e305; y <- 4e305

> sqrt(x^2 + y^2)

[1] Inf

> Mod(x + y*1i)

[1] 5e+305
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The problem is that squaring arguments with a large exponent causes floating
point overflow, which R interprets as infinite. The repair, shown in the MyMod func-
tion in Table G.17, is to rescale the numbers to a smaller exponent and then take the
square root of the sum of squares. At the end the exponent is restored.

Table G.17 The MyMod function rescales the numbers and gets the right answer in all three cases.
Only the third case is shown here.

> MyMod <- function(x, y) {

+ XYmax <- max(abs(c(x, y)))

+ xx <- x/XYmax

+ yy <- y/XYmax

+

+ result <- sqrt(xx^2 + yy^2)

+

+ result * XYmax

+ }

> x^2

[1] Inf

> y^2

[1] Inf

> MyMod(x, y)

[1] 5e+305

G.14 Explicit Loops

Desk calculator technology had different technical goals than digital computer tech-
nology. Entering the data manually multiple times was expensive and to be avoided.
Table G.18 shows a scalar version of the one-pass algorithm for calculating sample
variance. The explicit loop uses each entered value x[i] twice before going on to
the next value. The term one-pass refers to the single entry of the data value for
both accumulations

(∑
(xi ) and

∑
(x2

i )
)

on the scalars in the vector x. Explicit scalar
loops are exceedingly slow in R and are normally avoided. When we use vectorized
operations (as in statements such as sum(x^2)) the looping is implicit at the user
level and is done at machine speeds inside R.

We timed the scalar version of the one-pass algorithm along with the vector-
ized one-pass and two-pass algorithms. The explicitly looped one-pass algorithm
varoneScalar is much slower than the vectorized algorithms. The vectorized
onepass and twopass algorithms are about equally fast. Only the twopass al-
gorithm gives the correct calculation to the precision of the computer.
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Table G.18 The one-pass formula written as a scalar loop. This made sense for desk calculators
because the user keyed in each number exactly once. It is about the most inefficient way to write
code for R. In this example it is about 60 times slower than the vectorized algorithms.

> varoneScalar <- function(x) {

+ ## This is a pedagogical example.

+ ## Do not use this as a model for writing code.

+ n <- length(x)

+ sumx <- 0

+ sumx2 <- 0

+ for (i in 1:n) {

+ sumx <- sumx + x[i]

+ sumx2 <- sumx2 + x[i]^2

+ }

+ (sumx2 - (sumx^2)/n) / (n-1)

+ }

> x <- 1:3

> varoneScalar(x)

[1] 1

> varoneScalar(x+10^7)

[1] 1

> ## half machine precision

> varoneScalar(x+10^8)

[1] 0

> xx <- rnorm(1000)

> ## explicit loops are much slower in R

> system.time(for (j in 1:1000) varoneScalar(xx))

user system elapsed

1.249 0.309 1.483

> system.time(for (j in 1:1000) varone(xx))

user system elapsed

0.020 0.002 0.021

> system.time(for (j in 1:1000) vartwo(xx))

user system elapsed

0.021 0.001 0.022



Appendix H

Other Statistical Software

The statistical analyses described in this book can be calculated with other software
than R.

Readers are welcome to work the examples and exercises in this book using other
software. All datasets used in either the text or exercises are available in ASCII
characters in csv (comma-separated-values) format in the zip file

http://astro.ocis.temple.edu/~rmh/HH2/HH2datasets.zip

The reader must be aware of several issues when using these datasets.

1. All data sets.

The first row of the csv file contains variable names. There is one fewer name
than columns of data with the convention that the initial unnamed column is the
row number or row name. Missing observations are coded NA. Factors are stored
as character strings. When converting them back to factors, verify that the factor
levels are ordered correctly. Names (row names, column names, level names for
factors, and values of character variables) may include blanks and other non-
alphanumeric characters.

2. Time Series datasets.

co2, elnino, employM16, nottem, ozone are stored one row per year in
twelve columns named with the month names. Missing observations are coded
NA. When converting this back to a time series in any software system, verify
that the months are identified as a factor in the correct calendar order. Factor
levels may include blanks and other non-alphanumeric characters.

product, tser.mystery.X, tser.mystery.Y, tser.mystery.Z, tsq

are stored as a single column named x. Read the problem description for any
other information.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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3. Very Long character strings.

SFF8121 contains very long character strings with embedded newline characters
and with embedded commas. It is the only csv file in this set that has been saved
with double quotes around all character strings.



Appendix I

Mathematics Preliminaries

A certain degree of mathematical maturity is a prerequisite for understanding the
material in this book. Many chapters in this book require a basic understanding of
these areas of mathematics:

• algebra

• differential calculus

• matrix algebra, with special attention devoted to quadratic forms, eigenvalues
and eigenvectors, transformations of coordinate systems, and ellipsoids in matrix
notation

• combinations and permutations

• floating point arithmetic

This appendix provides a brief review of these topics at a level comparable to the
book’s exposition of statistics.

I.1 Algebra Review

We begin with some topics in algebra, focusing on the case of two dimensions. The
labels x and y are given to the horizontal and vertical dimensions, respectively.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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I.1.1 Line

The general equation of a straight line is given by y = a + bx, where a and b are
constants with b � ±∞. The line in Figure I.1 intersects the y-axis at y = a and the
x-axis at x = −a/b, and has slope b.

+

y = − 2 +
1

2
 x = a + bx

x

y

−3

−2

−1

0

1

−2 0 2 4

+

2
1

a

Fig. I.1 Straight line y = 2 + 1/2x with intercepts and slope indicated.

I.1.2 Parabola

The general equation of a parabola having a vertical axis is the quadratic equation
y = ax2 + bx + c for constants a, b, c with a � 0. The graph of the parabola opens
upward if a > 0 and attains a minimum when x = −b/2a. The graph opens down-
ward if a < 0 and attains a maximum when x = −b/2a. The quantity d = b2 − 4ac
is called the discriminant. The parabola intersects the horizontal axis at

x =
−b ± √d

2a
(I.1)

The number of intersections, or real roots, is 2, 1, or 0 according to whether d >, =,
< 0. The parabola intersects the y-axis at y = c. Equation (I.1) is referred to as the
quadratic formula for solving the equation ax2 +bx+ c = 0. We illustrate a parabola
opening upward in Figure I.2.
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y = (x + 5)(x − 3) = 1x2 + 2x − 15 = ax2 + bx + c

x

y

−15

−10

−5

0

5

10

−6 −4 −2 0 2 4

root1 root2minimum

minimum

Fig. I.2 Parabola with x-roots and minimum indicated.

I.1.3 Ellipse

The equation

x2

a2
+

y2

b2
= 1

represents an ellipse centered at (0, 0) with major and minor axes parallel to the
coordinate system. When a > b, the semimajor axis has length a and the semiminor
axis has length b. We graph a sample ellipse, with a = 3 and b = 2, in Figure I.3.

An ellipse centered at (μx, μy) is obtained by replacing x and y in the above with
x−μx and y−μy, respectively. Ellipses having axes nonparallel to the coordinate sys-
tem are important in statistics and will be discussed in Section I.4.13 as an example
of the use of matrix notation.

I.1.4 Simultaneous Equations

A common algebraic problem is the determination of the solution to two (or more)
simultaneous equations. In the case of two linear equations, the number of solutions
may be 0, 1, or∞. There are no solutions if the equations are contradictory, such as
x + y = 8 and x + y = 9; there are an infinite number of solutions if one equation
is indistinct from the other, for example x + y = 8 and 2x + 2y = 16. When there is
a unique solution, several approaches exist for finding it. One of these is adding a
carefully chosen multiple of one equation to the other equation so as to result in an
easily solved new linear equation involving just one variable. For example, suppose
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x2

32
+

y2

22
=

x2

a2
+

y2

b2
= 1

x

y

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

a

b

Fig. I.3 Ellipse
x2

32
+

y2

22
= 1

the two equations are x+y = 8 and 2x−3y = 1. Adding three times the first equation
to the second yields 5x+ 0y = 25, which implies x = 5 and then y = 3. We illustrate
in Figure I.4.

I.1.5 Exponential and Logarithm Functions

Two additional elementary functions are the exponential function and logarithmic
function. The exponential function y = c1ec2 x (where c1, c2 are nonzero constants)
has the property that the rate of change in y in response to a change in x is pro-
portional to the current value of y. The logarithmic function y = c ln(x), x > 0 is
useful in situations when successive changes in x are geometrical (i.e., proportional
to the current value of x). The exponential function and the natural (to the base e)
logarithm are inverse to each other. We illustrate both in Figure I.5.
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x + y = 8, 2x − 3y = 1

x

y

0

1

2

3

4

0 2 4 6 8

+
x + y = 82x − 3y = 1

(5, 3)

Fig. I.4 Solution of simultaneous equations at the intersection of the two straight lines described
by the equations.
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Fig. I.5 Exponential and logarithmic functions with derivatives at x=0.
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Fig. I.6 Asymptotes of the hyperbola y = 1/x at the horizontal axis as x → ∞ and the vertical
axis as x→ 0+.

I.1.6 Asymptote

An asymptote is a straight line that is gradually approached by a curved line. This
concept is used to describe the ultimate behavior of the curved line. For example in
Figure I.6, the graph of y = 1

x has the horizontal axis as its asymptote as x→ ∞ and
the vertical axis as its asymptote as x→ 0+.

I.2 Elementary Differential Calculus

If y = f (x) expresses the functional relationship between x and y, the derivative of y
with respect to x, denoted dy

dx or Dxy or f ′(x), is a new function of x. For each value
of x, f ′(x) gives the relative amount that y changes in response to a small change in
x. For example, if y = f (x) = x2, then it can be shown that f ′(x) = 2x. When x = 3,
a small increase in x will beget a sixfold increase in y because f ′(3) = 2(3) = 6.
Graphically, f ′(x0) is the slope of the straight line tangent to f (x) at x = x0.

If f (x) = a0 + a1x + a2x2 + . . . + amxm, an mth-degree polynomial, then f ′(x) =
a1+2a2x+3a3x2+ . . .+mamxm−1. This rule can be used to differentiate (i.e., find the
derivative of) many common functions. If f (x) can be expressed as the product of
two functions, say f (x) = g(x) h(x), then its derivative is given by the product rule
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f ′(x) = g(x) h′(x) + g′(x) h(x). This can be used, for example, to find the derivative
of (3x2 + 4x + 5)(−8x2 + 7x − 6) without first multiplying the quadratics.

The most important application of f ′(x) is in finding relative extrema (i.e., max-
ima or minima) of f (x). A necessary condition for x0 to be an extremum of f (x) is
that f ′(x0) = 0. This follows from the interpretation of the derivative as a tangent
slope. Additional investigation is needed to confirm that such an x0 corresponds to
either a maximum or minimum, and then to determine which of the two it is. For
example, if f (x) = x3 − 3x, then f ′(x) = 3x2 − 3. Setting f ′(x) = 0, we find x = ±1.
x = 1 corresponds to a local minimum and x = −1 corresponds to a local maximum.
As another example, consider f (x) = x3. While for this function, f ′(0) = 0, x = 0 is
neither a relative minimum nor a relative maximum of f (x).

Example of an Optimization Problem

A rectangular cardboard poster is to have 150 square inches for printed matter. It is
to have a 3-inch margin at the top and bottom and a 2-inch margin on each side. Find
the dimensions of the poster so that the amount of cardboard used is minimized.

Solution I.1. Let the vertical dimension of the printed matter be x. Then for the
printed area to be 150, the horizontal dimension of the printed matter is 150

x . Then
allowing for the margins, the vertical and horizontal dimensions of the poster are
x + 6 and 150

x + 4. The product of these dimensions is the area of the poster that we
seek to minimize: a(x) = 174 + 4x + 900

x . Taking the derivative and setting it equal
to zero gives a′(x) = 4 − 900x−2 = 0, which leads to the positive solution x = 15.
Thus the minimum-sized poster with required printed area is 21 inches high by 14
inches wide, and its printed area is 15 inches high by 10 inches wide.

I.3 An Application of Differential Calculus

We introduce Newton’s method for solutions of an equation of the form f (x) = 0.
A common application is the need to solve f ′(x) = 0 to find extrema, as discussed
in Section I.2. Many equations of this type are readily solvable by successively
moving toward isolation of a lone x on one side of the equation, or via a specialized
technique such as the quadratic formula. In other situations one must employ one
of the number of numerical techniques designed for this purpose, one of which is
Newton’s method.

Newton’s method has the disadvantage of requiring knowledge of the derivative
f ′(x), but it will often converge to a solution within a small number of iterations.
As with all procedures for dealing with this problem, one must start with a first
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approximation x0, and if this is “too far” from the solution x∗, the procedure may
fail to converge.

The idea behind Newton’s method is not difficult to understand. It is based on
the equation of the tangent line to f (x) at x = x0. If this tangent line intersects the
x-axis at x = x1, then

f ′(x0) =
f (x0)

x0 − x1
→ x1 = x0 − f (x0)

f ′(x0)

The iteration then proceeds with

x2 = x1 − f (x1)
f ′(x1)

and so on.

An Illustration of Newton’s Method

Consider solving f (x) = x3 − x − 5 = 0, f ′(x) = 3x2 − 1, and let x0 = 2. You can
verify with Figure I.7 the following sequence:

i xi f (xi)
0 2.00000000 1.00100

1 1.90909091 4.8810−2

2 1.90417486 1.3810−4

3 1.90416086 1.1410−9

I.4 Topics in Matrix Algebra

We next provide an overview of selected topics from matrix algebra that are use-
ful in applied statistics. Not only do matrices (the plural of matrix) allow for
a more concise notation than scalar algebra, but they are an indispensable tool
for communicating statistical findings. Additional material on matrix algebra is
contained in the appendices of most books dealing with regression analysis, linear
models, or multivariate analysis.

A matrix is a rectangular array consisting of r rows and c columns. A vector is a
special type of matrix, having either r or c equal to 1. Data files are often arranged
as a matrix, such that each variable is one column and each observation is one row.
Systems of linear equations may be succinctly written in matrix notation.
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Fig. I.7 An illustration of Newton’s Method.

Multivariate analysis involves probability distributions of random vectors rather
than scalar random variables. Each component of a random vector is a scalar ran-
dom variable. The variances and covariances of the components of a random vector
are arranged in a variance–covariance matrix. (Such a symmetric matrix V , also
called covariance matrix or dispersion matrix, has the variances on the main diago-
nal and the covariance between variables i and j in its row i column j position. See
Section 3.3.5.) The multivariate normal distribution of the random k-vector x with
mean vector μ and covariance matrix V , with notation

x ∼ N(μ, V) (I.2)

and probability density function

f (x) =
1

(2π)k/2 |V |1/2
e(x−μ)′V−1(x−μ)/2 (I.3)

is the most important distribution used in multivariate analysis. We give examples
of the bivariate (multivariate with k = 2) normal in Sections 3.3.5 and J.4.2.

Matrices may be used to translate from one coordinate system to another. Orthog-
onal matrices perform rigid rotations in order to facilitate meaningful interpretation
of results.
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I.4.1 Elementary Operations

sum: If two matrices are of the same size, their sum is the new matrix of this size
comprised of the element-wise sums. The difference of two matrices of the same
size is defined similarly.

transpose: If A is an r×c matrix, then its transpose, denoted A′, is the c× r matrix
having columns identical to the rows of A and conversely.

inner product: The inner product of two vectors of the same size, say u =
(u1, u2, . . . , uk)′ and v = (v1, v2, . . . , vk)′, is written u′v = v′u =

∑k
i=1 uivi, i.e.,

the sum of the products of the corresponding elements of the two vectors. The
inner product of a vector with itself yields the sum of squares of the elements of
this vector. A vector u is said to be normalized if u′u = 1, i.e., if its (Euclidean)
length equals 1. Two vectors u and v are said to be orthogonal if their inner prod-
uct is zero: u′v = 0.

matrix product: The matrix product AB of an r × c matrix A with an m × n matrix
B is defined when c = m. The element in row i and column j of AB is calculated
as the inner product of the ith row of A and the jth column of B. The condition
c = m assures that the vectors forming the inner products are of the same size.
Matrix addition has the mathematical properties of commutativity and associa-
tivity. Matrix multiplication has only associativity. When AB is defined, BA may
have different dimensions from AB or even be undefined.

Matrix multiplication is used when expressing systems of linear equations in
matrix notation. Earlier we considered the system x + y = 8 and 2x − 3y = 1. If
we define the 2 × 1 vectors X =

(
x
y

)
and c =

(
8
1

)
and the 2 × 2 matrix A =

(
1 1
2 −3

)
,

then this system can be written AX = c. In this context, the matrix A is referred
to as the coefficient matrix.

transpose: The transpose of the product of two matrices is the product of their
transposes in reverse order: (AB)′ = B′A′.

square: A matrix is said to be square if it has the same number of rows as columns.

identity: The n × n identity matrix has ones on its main diagonal positions (those
where the row number equals the column number) and zeros everywhere else.
Thus, for example, the 3 × 3 identity matrix is

I3 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

The identity matrix plays the same role in matrix notation as does the number 1
in scalar notation: If I denotes an identity matrix such that the indicated multipli-
cation is defined, then AI = A and IA = A.
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Jn: We define Jn to be the n × n matrix having all entries equal to 1.

symmetric: A square matrix A is said to be a symmetric matrix if A = A′. This
means that row number i corresponds to column number i for all i. Let ai j denote
the element in row i and column j of matrix A. Then if A is square, its trace is
the sum of its main diagonal elements: trace(A) =

∑
i aii.

operation count: Numerical analysts count the number of multiplications in an al-
gorithm as an indicator of the costliness of the algorithm. A vector inner product∑n

i=1 aibi, for example, takes n multiplications to complete. There are other op-
erations (indexing, adding) that must also be performed. Rather than report them
explicitly, we say instead that the amount of computation is proportional to the
number of multiplications. We indicate the proportionality by saying the oper-
ation count is O(n) (read as “big ‘O’ of n”). Similarly, the operation count for
matrix multiplication is proportional to n3 and is reported as O(n3).

determinant: The determinant of a square matrix A, denoted |A|, is a scalar calcu-
lated from the elements of A. In the 2 × 2 case where

A =
(

a11 a12

a21 a22

)

the determinant is |A| = a11a22 − a21a12. If A is a square coefficient matrix of a
system of linear equations (thus implying that the system has the same number
of equations as unknowns), then the system has a unique solution if and only
if |A| � 0. The determinant has useful mathematical properties, but is totally
impractical from a computational standpoint. It is almost never needed as an
intermediate calculation. There is almost always a cheaper way to calculate the
final answer.

nonsingular: If |A| � 0, then A is said to be a nonsingular matrix. There is no
vector v other than v = 0 such that Av ≡ 0.

inverse: A nonsingular matrix has associated with it a unique inverse, denoted
A−1. The inverse has the property that AA−1 = A−1A = I. The unique solution to
a system of linear equations AX = c is then X = A−1c. For example, the inverse
of

A =

(
a11 a12

a21 a22

)
is

1
|A|

(
a22 −a12

−a21 a11

)

provided that |A| � 0. Note that this is a mathematical identity. It is not to be
interpreted as an algorithm for calculation of the inverse. As an algorithm it is
very expensive, requiring O(2n3) arithmetic operations for an n× n matrix A. An
efficient algorithm requires only O(n3) operations.

singular: If |A| = 0, then A is said to be a singular matrix. There exists at least one
vector v other than v = 0 such that Av ≡ 0. A singular matrix does not have an
inverse.
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idempotent: A square matrix A is said to be an idempotent matrix if AA = A, i.e.,
A equals the product of A with itself. A simple example is

(
.5 −.5
−.5 .5

)

I.4.2 Linear Independence

A matrix X consists of a set of column vectors

X
n×(1+p)

= [1X1X2 . . . Xp] = [X0X1X2 . . . Xp]

The columns are numbered 0, 1, . . . , p.

The matrix X is said to have linearly dependent columns if there exists a nonzero
(1 + p)-vector � such that

X� = 0

or, equivalently,
⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

� jX j

⎞⎟⎟⎟⎟⎟⎟⎠
n×1

= (0)
n×1

The matrix X is said to have linearly independent columns if no such vector � exists.
For example, the matrix

X
4×(1+4)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(I.4)

has linearly dependent columns because there exists a vector � = (−1 1 1 1 1)′ such
that X� = 0.

The matrix

X(,−1)
4×(1+3)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(I.5)

has linearly independent columns because there exists no nonzero vector � such that
X� = 0.

The rank of a matrix is the number of linearly independent columns it contains.
Both matrices above, X and X(,−1) in Equations (I.4) and (I.5), have rank 4. For any
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matrix X, rank(X) = rank(X′X). A full-rank matrix is one whose rank is equal to the
minimum of its row and column dimensions, that is,

rank
(

A
r×c

)
= min(r, c)

I.4.3 Rank

The rank of a matrix A is the maximum number of linearly independent rows (equiv-
alently, the maximum number of linearly independent columns) the matrix has. For
example, the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 2
1 2 3
1 3 4

⎞⎟⎟⎟⎟⎟⎟⎠

has rank 2 since columns 1 and 2 add to column 3, but any two of the columns are
linearly independent of one another (i.e., are not proportional to one another).

I.4.4 Quadratic Forms

A quadratic form is a scalar resulting from the matrix product x′Ax, where x is a
k × 1 vector and A is a k × k symmetric matrix. The matrix A is termed the matrix
of the quadratic form. Complicated sums of squares and products as often occur in
an analysis of variance can be written as quadratic forms. If x has a standardized
multivariate normal distribution x ∼ N(0, I) [see Equation (I.2)], then x′Ax has a
χ2-distribution with ν degrees of freedom if and only if A is an idempotent matrix
with rank ν. For example, the numerator of the usual univariate sample variance,∑n

i=1(xi − x̄)2, can be written as x′Ax where x = (x1, x2, . . . , xn)′ and A = In − 1
n Jn.

It can be shown that this matrix A has rank n − 1, the degrees of freedom associated
with the sample variance.

If x is a random vector with expected value μ and covariance matrix V , then the
expected value of the quadratic form x′Ax is

E(x′Ax) = μ′Aμ + trace(AV)

Result (I.6) does not require that x has a multivariate normal distribution.

A square symmetric matrix A is said to be a positive definite (abbreviated p.d.)
matrix if x′Ax > 0 for all vectors x other than a vector of zeros. The matrix associ-
ated with the quadratic form representation of a sum of squares is always p.d.
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I.4.5 Orthogonal Transformations

A matrix M is said to be orthogonal if M′M = I. An example is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A transformation based on an orthogonal matrix is called an orthogonal transfor-
mation. Such transformations are rotations that preserve relative distances: y =
Mx → y′y = x′M′Mx = x′x. Orthogonal transformations are frequently enc-
ountered in statistics. A common use of them is to transform from a correlated set
of random variables x to an uncorrelated set y.

The columns of an orthogonal matrix are said to be orthonormal. The columns
are orthogonal to each other, that is M′, jM, j′ = 0 for j � j′. In addition, the columns
have been scaled so that M′, jM, j = 1.

I.4.6 Orthogonal Basis

If rank
(

A
r×c

)
= p < min(r, c) and c ≤ r, then any set of p linearly independent

columns of A constitutes a basis for A. The set of all vectors that can be expressed
as a linear combination Xv of the columns of A is called the column space of A,
denoted C(A). Therefore, C(A) is completely specified by any basis of A. We say
that the columns of the basis span the column space of A.

An orthogonal basis for A is a basis for A with the property that any two vectors
comprising it are orthogonal. Starting from an arbitrary basis for A, algorithms are
available for constructing an orthogonal basis for A. We show one algorithm, the
Gram–Schmidt process, in Section I.4.8.

A basis set of column vectors for a matrix X is a set of column vectors Ui that
span the same linear space as the original columns Xi. An orthogonal basis is a set
of column vectors that are mutually orthogonal, that is U′i U j = 0 for i � j. An
orthonormal basis is an orthogonal basis whose columns have been rescaled to have

norm ‖ Ui ‖=
√

U′i Ui = 1.
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I.4.7 Matrix Factorization—QR

Any rectangular matrix X
n×m

can be factored into the product of an matrix with or-

thogonal columns Q
n×m

and an upper triangular R
m×m

X
n×m
= Q

n×m
R

m×m

The columns of Q span the same column space as the columns of the original
matrix X. This means that any linear combination of the columns of X, say Xv, can
be constructed as a linear combination of the columns of Q. Specifically, using the
associative law, Xv = (QR)v = Q(Rv).

The numerically efficient R function qr is the computational heart of the linear
models and analysis of variance functions. The intermediate matrices Q and R are
usually not explicitly produced. If you wish to see them, use the qr.Q and qr.R

functions. An example showing the QR factorization using the qr function is in
Table I.1.

An expository R function illustrating the construction of the QR factorization is
in Section I.4.8.

I.4.8 Modified Gram–Schmidt (MGS) Algorithm

There are many algorithms available to construct the matrix factorization. We
show one, the Modified Gram–Schmidt (MGS) algorithm Bjork (1967). “Modified”
means that the entire presentation is in terms of the columns Qi of the matrix under
construction. The MGS algorithm is numerically stable when calculated in finite
precision. The original Gram–Schmidt (GS) algorithm, which constructs Q in terms
of the columns Xi of the original matrix, is not numerically stable and should not be
used for computation.

Let Xn×m = [X1X2 . . . Xm]. The results of the factorization will be stored in Qn×m

and Rm×m. The columns of X and Q and both the rows and columns of R are num-
bered 1, . . . , m.
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Table I.1 Illustration of QR algorithm to factor X into the product of an orthogonal matrix and an
upper triangular matrix.

> X <- matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

> X

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 3 3 5

[3,] 6 8 3

[4,] 4 6 2

> crossprod(X)

[,1] [,2] [,3]

[1,] 62 83 45

[2,] 83 113 59

[3,] 45 59 54

> ## use the efficient calculation

> X.qr <- qr(X)

> qr.Q(X.qr) ## display q

[,1] [,2] [,3]

[1,] -0.127 0.48139 0.8188

[2,] -0.381 -0.73969 0.4755

[3,] -0.762 -0.02348 -0.3038

[4,] -0.508 0.46965 -0.1057

> qr.R(X.qr) ## display r

[,1] [,2] [,3]

[1,] -7.874 -10.541 -5.7150

[2,] 0.000 1.374 -0.9041

[3,] 0.000 0.000 4.5301

> zapsmall(crossprod(qr.Q(X.qr))) ## identity

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> crossprod(qr.R(X.qr)) ## reproduce crossprod(X)

[,1] [,2] [,3]

[1,] 62 83 45

[2,] 83 113 59

[3,] 45 59 54

> qr.X(X.qr) ## reproduce X

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 3 3 5

[3,] 6 8 3

[4,] 4 6 2



I.4 Topics in Matrix Algebra 791

We will construct Q and R in steps.

1. Initialize R to 0.

R ← 0

2. Initialize Q to X.

Q ← X

3. Initialize the column counter.

i ← 1

4. Normalize column Qi.

ri,i ←
√

Q′i Qi

Qi ← Qi/ri,i

If i = m, we are done.

5. For each of the remaining columns Qj, j = i + 1, . . . , m, find the component of
Qj orthogonal to Qi by

ri, j ← Q′i Q j

Qj ← Qj − Qi ri, j

6. Update the column counter.

i ← i + 1

7. Repeat steps 4–6 until completion.

An R version of this expository algorithm is in Table I.2. An example using the
expository function is in Table I.3.
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Table I.2 An expository algorithm for the Modified Gram–Schmidt Algorithm. The function is a
direct translation of the pseudo-code in Section I.4.8.

## modified Gram-Schmidt orthogonalization

mgs <- function(x) {

## modified Gram-Schmidt orthogonalization

## this is an expository algorithm

## this is not an efficient computing algorithm

## q[,j] is the normalized residual from the least squares fit of

## x[,j] on the preceding normalized columns q[,1:(j-1)]

n <- nrow(x)

m <- ncol(x)

q <- x

r <- matrix(0, m, m)

for (i in 1:m) {

r[i,i] <- sqrt(sum(q[,i]^2)) ## length of q[,i]

q[,i] <- q[,i] / r[i,i] ## normalize q[,i]

if (i < m) { ## if we still have columns to go

for (j in (i+1):m) {

r[i,j] <- sum(q[,i] * q[,j]) ## length of projection of q[,j] on q[,i]

q[,j] <- q[,j] - q[,i] * r[i,j] ## remove projection of q[,j] on q[,i]

}

}

}

list(q=q, r=r)

}
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Table I.3 Illustration of the expository algorithm for the Modified Gram–Schmidt Algorithm
shown in Table I.2. These are the same values (up to multiplication by −1) as calculated by the qr

function in Table I.1.

X <- matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

X

crossprod(X)

## use the expository function defined in the previous chunk

X.mgs <- mgs(X)

X.mgs ## q is orthogonal, r is upper triangular

## These are identical to the results of qr(X)

## up to the sign of the columns of q and the rows of r.

zapsmall(crossprod(X.mgs$q)) ## identity

crossprod(X.mgs$r) ## reproduces crossprod(X)

X.mgs$q %*% X.mgs$r ## reproduces X

I.4.9 Matrix Factorization—Cholesky

Any square positive definite matrix S
m×m

can be factored into the product of an upper

triangle matrix R
n×m

and its transpose

S = R′R

When S has been constructed as the cross product S = X′X of a rectangular matrix
X

n×m
, then the upper triangular matrix R is the same matrix we get from the QR

factorization.

S = X′X = (QR)′(QR) = R′(Q′Q)R = R′R

The numerically efficient R function chol is illustrated in Table I.4.

I.4.10 Orthogonal Polynomials

Consider the k-vector v = (v1, v2, . . . , vk)′, where v1 < v2 < . . . < vk. Construct a
matrix V = [v0, v1, v2, . . . , vk−1], where we use the notation v j = (v j

1, v j
2, . . . , v j

k)′
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Table I.4 Illustration of Cholesky factorization of a square positive definite matrix into an upper
triangular factor and its transpose.

> X <- matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

> M <- crossprod(X)

> M

[,1] [,2] [,3]

[1,] 62 83 45

[2,] 83 113 59

[3,] 45 59 54

> chol(M)

[,1] [,2] [,3]

[1,] 7.874 10.541 5.7150

[2,] 0.000 1.374 -0.9041

[3,] 0.000 0.000 4.5301

> crossprod(chol(M)) ## reproduce M

[,1] [,2] [,3]

[1,] 62 83 45

[2,] 83 113 59

[3,] 45 59 54

An orthogonal basis Q constructed from the matrix V is called a set of orthogonal
polynomials. In the analysis of variance and related techniques, we often construct
dummy variables for ordered factors from a set of contrasts that are orthogonal
polynomials. See Figure 10.4 and the surrounding discussion in Section 10.4 for an
illustration.

I.4.11 Projection Matrices

Given any matrix X
n×m
= Q

n×m
R

m×m
the matrix PX

n×n
= X(X′X)−1X′ = QQ′ is a projection

matrix that projects an n-vector y onto the space spanned by the columns of X, that
is, the product PXy is in the column space C(X). If X has m columns and rank r ≤ m,
then the eigenvalues of PX consist of r 1s and m − r 0s. See Table I.5.
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Table I.5 Projection of a 3-vector onto the space of its first two coordinates.

> X <- matrix(c(3,1,0, 1,2,0, 0,0,0), 3, 3)

> P <- cbind(qr.Q(qr(X))[, 1:2], 0)

> P

[,1] [,2] [,3]

[1,] -0.9487 0.3162 0

[2,] -0.3162 -0.9487 0

[3,] 0.0000 0.0000 0

> crossprod(P)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 0

> y <- matrix(1:3)

> y

[,1]

[1,] 1

[2,] 2

[3,] 3

> P %*% y

[,1]

[1,] -0.3162

[2,] -2.2136

[3,] 0.0000

> sqrt(sum(y[1:2,]^2))

[1] 2.236

> sqrt(sum((P %*% y)^2))

[1] 2.236

I.4.12 Geometry of Matrices

We provide some details of the application to two-dimensional geometry. Each two-
dimensional vector represents a point; alternatively, a directed line segment from the
origin to this point. A 2 × 2 matrix postmultiplied by a vector transforms this point
to another point. Consider the orthogonal matrix

M =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
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θ

Fig. I.8 Rotation of a vector u and its coordinate system into v by angle θ.

and let u be a 2 × 1 vector representing a point in two dimensions. Then v = Mu
produces a new point v which is where u appears in the new coordinate system
formed by rotating the old one θ degrees around the origin. See Figure I.8.

If x and y are each two-dimensional vectors and θ is the angle between them,
then cos(θ) = x′y/

√
x′x y′y = corr(x, y), the correlation between these two vectors.

Note that if the vectors are orthogonal so that x′y = 0, then cos(θ) = 0 and θ = 90◦.

I.4.13 Eigenvalues and Eigenvectors

Next we study the concepts of eigenvectors and eigenvalues of an n × n symmetric
matrix V .

If Vξ = λξ, where ξ is an n × 1 vector and λ is a scalar, then λ is said to be
an eigenvalue of V with corresponding eigenvector ξ. Without loss of generality,
we can take the eigenvector to be normalized. Geometrically, the matrix V trans-
forms its eigenvectors into multiples of themselves. Any two distinct eigenvectors
are orthogonal: ξ′i ξ j = 0, i � j. V can be written as its spectral decomposition

V =
∑

i λiξiξ
′
i . V can be written as its eigenvalue factorization V = ΞΛΞ′.

A matrix is nonsingular if and only if it has only nonzero eigenvalues. A matrix
is positive definite if and only if all of its eigenvalues are positive. The eigenvalues
of V−1 are the reciprocals of the eigenvalues of V . The determinant of a matrix
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equals the product of its eigenvalues |V | = ∏
λi, and calculating the eigenvalues is

normally the most efficient way to calculate the determinant. The trace of a matrix
equals the sum of its eigenvalues trace(V) =

∑
λi.

Consider the problem of choosing x to maximize x′V x subject to x′x = 1. The
maximum value is the largest eigenvalue of V and is attained when x is the eigen-
vector corresponding to this eigenvalue. Similarly, x′V x is minimized (subject to
x′x = 1) at the value of the smallest eigenvalue of V , occurring at the corresponding
eigenvector.

Here is an example of hand calculation of eigenvalues and eigenvectors. Consider
the 2 × 2 matrix

V =
(

2 1
1 1

)

Its 2 eigenvalues are the 2 scalar solutions λ to the equation |V − λI| = 0. Taking the
determinant leads to (2 − λ)(1 − λ) − 1 = 0 =⇒ λ2 − 3λ + 1 = 0 =⇒ λ = (3 ±√

5)/2, which expands to ≈ 2.618 or ≈ 0.382. (Note that we are explicit about the
approximation to 3 decimal digits. Our usual practice is not to round answers.) The
eigenvector ξ =

(
ξ11
ξ21

)
corresponding to λ ≈ 2.618 is the solution to the equation Vξ ≈

2.618ξ. This implies that 2ξ11 + ξ21 ≈ 2.618ξ11, and coupled with the normalization
restriction ξ2

11 + ξ2
21 = 1 we find that ξ11 ≈ .8507 and ξ21 ≈ .5257. The eigenvector

corresponding to the other eigenvalue is found similarly.

As a geometric application of eigenvalues, consider the ellipse having equation
(x− μ)

′
V−1(x− μ) = b. In statistics, this ellipse based on the inverse V−1 is the form

of a confidence ellipse for μ. Let λ1 < λ2 be the eigenvalues of V with corresponding
normalized eigenvectors ξ1 =

(
ξ11
ξ21

)
, ξ2 =

(
ξ12
ξ22

)
. Then the semimajor axis of this ellipse

has length
√

λ2b and the semiminor axis has length
√

λ1b. The angle between the
extension of the semimajor axis and the horizontal axis is arctan

(
ξ12

ξ22

)
.

Continuing the example, we calculate the eigenvalues of V =
(

2 1
1 1

)
in Table I.6

and graph the ellipse x′V x = x′
(

2 1
1 1

)
x = 1 in Figure I.9.

I.4.14 Singular Value Decomposition

Let M be an arbitrary r × c matrix, U the r × r matrix containing the eigenvectors
of MM′, and W the c × c matrix containing the eigenvectors of M′M. Let Δ be
the r × c matrix having δi j = 0 (i � j). If r ≥ c (the usual case in statistical
applications), define δii = the square root of the eigenvalue of M′M corresponding
to the eigenvector in the ith column of W. If r < c, define δii = the square root of
the eigenvalue of MM′ corresponding to the eigenvector in the ith column of U.
Then the singular value decomposition of M is M = UΔW. Note that the number of
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Table I.6 Eigenvalues and eigenvectors of V =

(
2 1
1 1

)
.

> V <- matrix(c(2, 1, 1, 1), 2, 2)

> V

[,1] [,2]

[1,] 2 1

[2,] 1 1

> eV <- eigen(V)

> eV

$values

[1] 2.618 0.382

$vectors

[,1] [,2]

[1,] -0.8507 0.5257

[2,] -0.5257 -0.8507

> sqrt(eV$val) ## semimajor and semiminor axis lengths

[1] 1.618 0.618

> ## angle of axes in radians

> atan(c(eV$vec[2,1]/eV$vec[1,1], eV$vec[2,2]/eV$vec[1,2]))

[1] 0.5536 -1.0172

> ## = -pi/2 ## right angle

> diff(atan(c(eV$vec[2,1]/eV$vec[1,1], eV$vec[2,2]/eV$vec[1,2])))

[1] -1.571

nonzero diagonal values in Δ is min(r, c). We show a numerical example in standard
mathematical notation in Table I.7. We show the same example calculated with the
svd function in Tables I.8 and I.9.
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Fig. I.9 Ellipse x′V x = x′
(
2 1
1 1

)
x = 1. We show the unit circle with the normalized eigenvectors,

the ellipse, and the semimajor and semiminor axes whose lengths are the eigenvalues multiplied
by the square root of the eigenvectors.

Table I.7 Matrix multiplication of the components of the Singular Value Decomposition of the
matrix M in Table I.9).

M = UΔV ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4

3 3 5

6 8 3

4 6 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2561 0.6098 −0.6935

−0.4102 0.6334 0.5907

−0.7125 −0.3674 0.1755

−0.5084 −0.3034 −0.3733

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14.481 0.000 0.000

0.000 4.324 0.000

0.000 0.000 0.783

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5383 −0.7246 −0.4302

−0.2099 −0.3791 0.9012

0.8162 −0.5755 −0.0520

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table I.8 Illustration of singular value decomposition, part I (to be continued in Table I.9).

> M <- matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

> M

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 3 3 5

[3,] 6 8 3

[4,] 4 6 2

> M.svd <- svd(M)

> M.svd

$d

[1] 14.4806 4.3243 0.7825

$u

[,1] [,2] [,3]

[1,] -0.2561 0.6098 -0.6935

[2,] -0.4102 0.6334 0.5907

[3,] -0.7125 -0.3674 0.1755

[4,] -0.5084 -0.3034 -0.3733

$v

[,1] [,2] [,3]

[1,] -0.5383 -0.2099 0.81617

[2,] -0.7246 -0.3791 -0.57547

[3,] -0.4302 0.9012 -0.05198

> zapsmall(crossprod(M.svd$u))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> zapsmall(crossprod(M.svd$v))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> M.svd$u %*% diag(M.svd$d) %*% t(M.svd$v)

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 3 3 5

[3,] 6 8 3

[4,] 4 6 2
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Table I.9 Illustration of singular value decomposition, part II (continued from Table I.8). Relation
between singular value decomposition and Eigenvalue decomposition.

> eigen(tcrossprod(M))

$values

[1] 2.097e+02 1.870e+01 6.123e-01 -5.978e-15

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.2561 0.6098 0.6935 -0.2857

[2,] -0.4102 0.6334 -0.5907 0.2857

[3,] -0.7125 -0.3674 -0.1755 -0.5714

[4,] -0.5084 -0.3034 0.3733 0.7143

> eigen(crossprod(M))

$values

[1] 209.6877 18.7000 0.6123

$vectors

[,1] [,2] [,3]

[1,] -0.5383 -0.2099 0.81617

[2,] -0.7246 -0.3791 -0.57547

[3,] -0.4302 0.9012 -0.05198

> M.svd$d^2

[1] 209.6877 18.7000 0.6123

I.4.15 Generalized Inverse

For any rectangular matrix X
n×m
= UΔW ′, the Moore–Penrose generalized inverse is

defined as

X− = WΔ−1U′

Since Δ = diag(δi) is a diagonal matrix, its inverse is Δ−1 = diag(δ−1
i ). The defini-

tion is extended to the situation when rank(X) < min(n, m) by using 0−1 = 0. See
Table I.10 for an example.

When rank(X) = m = n, hence the inverse exists, the generalized inverse is equal
to the inverse.
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Table I.10 Illustration of the generalized inverse.

> M <- matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

> M

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 3 3 5

[3,] 6 8 3

[4,] 4 6 2

> library(MASS)

> Mi <- ginv(M)

> Mi

[,1] [,2] [,3] [,4]

[1,] -0.7434 0.6006 0.22741 -0.35569

[2,] 0.4694 -0.4694 -0.06122 0.32653

[3,] 0.1808 0.1050 -0.06706 -0.02332

> zapsmall(eigen(M %*% Mi)$value)

[1] 1 1 1 0

> zapsmall(Mi %*% M)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> M.svd$v %*% diag(1/M.svd$d) %*% t(M.svd$u)

[,1] [,2] [,3] [,4]

[1,] -0.7434 0.6006 0.22741 -0.35569

[2,] 0.4694 -0.4694 -0.06122 0.32653

[3,] 0.1808 0.1050 -0.06706 -0.02332
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I.4.16 Solving Linear Equations

There are three cases.

I.4.16.1 n = m = rank(X)

Given a matrix X
n×m

and an n-vector y, the solution β of the linear equation

y = Xβ

is uniquely defined by

β = X−1y

when X is invertible, that is when n = m = rank(X).

I.4.16.2 n > m = rank(X)

When n > m = rank(X), the linear equation is said to be overdetermined. Some
form of arbitrary constraint is needed to find a solution. The most frequently used
technique is least-squares, a technique in which β̂ is chosen to minimize the norm
of the residual vector.

min
β
‖ y − Xβ ‖2=

n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝yi −
m∑

j=1

xi jβ j

⎞⎟⎟⎟⎟⎟⎟⎠

2

The solution β̂ is found by solving the related linear equations

X′y = X′Xβ̂

The solution is often expressed as

β̂ = (X′X)−1(X′y) = X−y

This is a definition, not an efficient computing algorithm. The primary efficient
algorithm in R is the QR algorithm as defined in qr and related functions, includ-
ing lm.
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I.4.16.3 m > p = rank(X)

When m > p = rank(X), there are an infinite number of solutions to the linear
equation. The singular value decomposition X = UΔW ′ will have m− p zero values
along the diagonal of Δ. Let β0 be one solution. Then

βγ = β0 +W

(
0
γ

)

where 0 is a vector of p zeros and γ is any vector of length m− p, is also a solution.

I.5 Combinations and Permutations

I.5.1 Factorial

For a positive integer n, the notation n!, read “n factorial”, is used to indicate the
product of all the integers from 1 through n:

n! = n × (n − 1) × . . . × 1 = n × (n − 1)!

The factorial of zero, 0!, is separately defined to equal 1.

Thus

n n = n = n((n − 1)!)
0 0 = 1 = 1
1 1 = 1 = 1 × 1
2 2 = 2 = 2 × 1
3 3 = 6 = 3 × 2
4 4 = 24 = 4 × 6
5 5 = 120 = 5 × 24
...

... =
... =

...

I.5.2 Permutations

The notation nPp, read “n permute p”, indicates the number of ways to select p
distinct items from n possible items where two different orderings of the same p
items are considered to be distinct. Equivalently, nPp is the number of distinct ways
of arranging p items from n possible items:
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nPp =
n!

(n − p)!

For example,

5P3 =
5!

(5 − 3)!
=

5 × 4 × 3 × 2 × 1
2 × 1

= 5 × 4 × 3 = 60

I.5.3 Combinations

The notation nCp or
(

n
p

)
, read “n choose p”, indicates the number of ways to select

p distinct items from n possible items, where two different orderings of the same p
items are considered to be the same selection. Equivalently, nCp is the number of
distinct ways of choosing p items from n possible items:

(
n
p

)
=n Cp =

n!
p ! × (n − p)!

=
nPp

p !

For example,
(
5
3

)
=

5C3

2!
=

5!
3!(5 − 3)!

=
5 × 4 × 3 × 2 × 1
(3 × 2 × 1)(2 × 1)

=
5 × 4
2 × 1

= 10

I.6 Exercises

Exercise I.1.

Start from the matrix in Equation (I.6)

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 2
1 2 3
1 3 4

⎞⎟⎟⎟⎟⎟⎟⎠

Give an example of a basis for A. Then give an example of a vector in C(A) and also
a vector not in C(A). Give an example of an orthogonal basis of A, demonstrating
that it is orthogonal.

Verify that Equation (I.6) defines a family of solutions to the set of linear equations
with p = rank(X) < m.



Appendix J

Probability Distributions

We list, with some discussion, several common probability distributions. We illus-
trate 21 distributions, 20 distributions in the R stats package and one in the HH
package, for which all three functions (d* for density, p* for probability, and q* for
quantile) are available. We also include the Studentized Range distribution for which
only the p* and q* functions are available, and the discrete multinomial and con-
tinuous multivariate normal. The d* functions give the density f (x) for continuous
distributions or the discrete density f (i) for discrete distributions. The p* functions
give the cumulative distribution, the probability that an observation is less than or
equal to the value x

F(x) = P(X ≤ x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

−∞
f (x) dx for continuous distributions

x∑

i=−∞
f (i) for discrete distributions

The q* functions give the quantiles F−1(p), that is the inverse of the probability
function F(x).

In the example illustrations all three functions (d*, p*, and q*) are shown and
evaluated at sample X and for specific values of the parameters. For distributions
with finite support, the entire domain of x is shown. For distributions with infinite
support, the domain of x showing most of the probability is shown.

For the continuous distributions, we show the plot of the density function. The
darker color shows the probability (area) to the left of x, and the lighter color shows
the probability (area) to the right of x. d*(X) gives the height of the density function
at X, p*(X) gives the probability (area) to the left of X, and q*(p) recovers X from
the probability p.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5

807



808 J Probability Distributions

For the discrete distributions, we show the plot of the discrete density function.
The darkest color shows the probability at X, the intermediate color shows the prob-
ability strictly left of X, and the lightest color shows the probability to the right of
X. d*(X) gives the probability at X, p*(X) gives the probability to the left of and
including X, and q*(p) recovers X from the probability p.

We list the continuous central distributions in Section J.1, the continuous noncen-
tral distributions in Section J.2, and the discrete distributions in Section J.3. Within
each section the distributions are ordered alphabetically.

J.1 Continuous Central Distributions

J.1.1 Beta

dbeta(x, shape1 = 85.5, shape2 = 15.5)

x

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

> dbeta(.85, shape1=85.5, shape2=15.5)

[1] 11.22

> pbeta(.85, shape1=85.5, shape2=15.5)

[1] 0.5131

> qbeta(0.5131489, shape1=85.5, shape2=15.5)

[1] 0.85

This two-parameter distribution is often used to model phenomena restricted to
the range (0, 1), for example sample proportions. It is used in Section 5.1.2 to con-
struct alternative one-sided confidence intervals on a population proportion.
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J.1.2 Cauchy

dcauchy(x)

x

0.0

0.1

0.2

0.3

−20 −10 0 10 20

> dcauchy(1.96)

[1] 0.06574

> pcauchy(1.96)

[1] 0.8498

> qcauchy(0.8498286)

[1] 1.96

The Cauchy distribution is the same as the t-distribution with 1 degree of free-
dom. It’s special feature is that it does not have a finite population mean.

J.1.3 Chi-Square

dchisq(x, df = 10)

x

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25

> dchisq(18.31, df=10)

[1] 0.01547

> pchisq(18.31, df=10)

[1] 0.95

> qchisq(0.9500458, df=10)

[1] 18.31
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The central χ2 distribution with k degrees of freedom is the distribution of the
sum of squares of k independent standard normal r.v.’s. If k > 2, a χ2 r.v. has a
unimodal, positively skewed PDF starting at zero and asymptotically tapering to
the horizontal axis for large values. The mean of this distribution is k, and k is also
approximately its median if k is large. The r.v. [(n−1)s2]/σ2, where s2 is the variance
of a normal sample, has a χ2 distribution with n − 1 degrees of freedom.

This distribution is used in inferences about the variance (or s.d.) of a single
population and as the approximate distribution of many nonparametric test statistics,
including goodness-of-it tests and tests for association in contingency tables.

J.1.4 Exponential

dexp(x, rate = 0.6)

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8

> dexp(1, rate=.6)

[1] 0.3293

> pexp(1, rate=.6)

[1] 0.4512

> qexp(0.4511884, rate=.6)

[1] 1

μ is both the mean and standard deviation of this distribution. R parameterizes
the exponential distribution with the rate 1/μ, the reciprocal of the mean μ. Times
between successive Poisson events with mean rate of occurrence μ have the expo-
nential distribution. The exponential distribution is the only distribution with the
“lack of memory” or “lack of deterioration” property, which states that the proba-
bility that an exponential random variable exceeds t1 + t2 given that it exceeds t1
equals the probability that it exceeds t2.
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J.1.5 F

df(x, df1 = 4, df2 = 20)

x

0.0

0.2

0.4

0.6

0 1 2 3 4 5

> df(3, df1=4, df2=20)

[1] 0.0469

> pf(3, df1=4, df2=20)

[1] 0.9568

> qf(0.956799, df1=4, df2=20)

[1] 3

The F distribution is related to the χ2 distribution. If Ui, for i = {1, 2}, is a χ2 r.v.
with νi degrees of freedom, and if U1 and U2 are independent, then F = U1/U2 has
an F distribution with ν1 and ν2 df. This distribution is extensively used in problems
involving the comparison of variances of two normal populations or comparisons of
means of two or more normal populations.

J.1.6 Gamma

dgamma(x, shape = 3)

x

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8
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> dgamma(6, shape=3)

[1] 0.04462

> pgamma(6, shape=3)

[1] 0.938

> qgamma(0.9380312, shape=3)

[1] 6

From ?dgamma:

The Gamma distribution with parameters ’shape’ = a and ’scale’ = s has density
f (x) = 1/(saΓ(a))x(a−1)e−(x/s)

for x ≥ 0, a > 0 and s > 0. (Here Γ(a) is the function implemented by R’s gamma() and
defined in its help. Note that a = 0 corresponds to the trivial distribution with all mass at
point 0.)

The mean and variance are E(X) = a × s and Var(X) = a × s2.

The special case of the gamma distribution with shape=1 is the exponential
distribution.

J.1.7 Log Normal

dlnorm(x)

x

0.0

0.2

0.4

0.6

0 5 10

> dlnorm(5)

[1] 0.02185

> plnorm(5)

[1] 0.9462

> qlnorm(0.9462397)

[1] 5
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A r.v. X is said to have a lognormal distribution with parameters μ and σ if
Y = ln(X) is N(μ, σ2); i.e., if Y is normal, then eY is lognormal. This is a positively
skewed unimodal distribution defined for x > 0. It is commonly used as a good
approximation for positively skewed data, such as a distribution of income.

J.1.8 Logistic

dlogis(x)

x

0.00

0.05

0.10

0.15

0.20

0.25

−4 −2 0 2 4

> dlogis(2)

[1] 0.105

> plogis(2)

[1] 0.8808

> qlogis(0.8807971)

[1] 2

From ?dlogis:

The Logistic distribution with location=m and scale=s has distribution function
F(x) = 1/

(
1 + exp (−(x − m)/s)

)

and density
f (x) = (1/s) exp ((x − m)/s)

(
1 + exp ((x − m)/s)

)−2.
It is a long-tailed distribution with mean m and variance (π2/3)s2.
qlogis(p) is the same as the well known logit function, logit(p) = log(p/(1 − p)), the

log odds function, and plogis(x) has consequently been called the inverse logit.
The distribution function is a rescaled hyperbolic tangent, plogis(x) = (1 + tanh(x/2)) /2,

and it is called a sigmoid function in contexts such as neural networks.
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J.1.9 Normal

dnorm(x, m = 0, s = 1)

x

0.0

0.1

0.2

0.3

0.4

−2 −1 0 1 2

> dnorm(1.645, m=0, s=1)

[1] 0.1031

> pnorm(1.645, m=0, s=1)

[1] 0.95

> qnorm(0.95, m=0, s=1)

[1] 1.645

This distribution was introduced in Section 3.4.2. If Z is standard normal N(0, 1),
the standard normal density φ and cumulative distribution Φ functions are

φ(z) =
1√
2π

exp

(
z2

2

)

Φ(Z) =
∫ Z

−∞
φ(z) dz

The general density, for random variable x with mean μ and variance σ2, is

f (x | μ, σ2) =
1
σ

φ
( x − μ

σ

)
=

1√
2πσ2

exp

(
(x − μ)2

2σ2

)

The term probit is an alternate notation for the inverse function Φ−1.

q = Φ−1(p) = probit(P)

is the inverse function such that p = Φ(q).
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J.1.10 Studentized Range Distribution

ptukey(x, nmeans=4, df=12)

x

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

> ptukey(4.199, nmeans=4, df=12)

[1] 0.95

> qtukey(0.95, nmeans=4, df=12)

[1] 4.199

This distribution is used in the Tukey multiple comparisons procedure discussed
in Section 6.3. Let ȳ(1) and ȳ(a) denote the smallest and largest means of samples of
size n drawn from a populations having a common variance σ2, and let s =

√
MSRes

be the estimate of σ calculated from the ANOVA table, for example, Table 6.2. Then
the random variable

Q =
ȳ(a) − ȳ(1)

s/
√

n

has a Studentized range distribution with parameters a and dfRes = a(n − 1). The
Studentized range distribution is defined on the domain 0 ≤ q < ∞. R provides the
ptukey and qtukey functions, but not the density function dtukey. We therefore
show the cumulative probability function instead of the density for the Studentized
range distribution.
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J.1.11 (Student’s) T

dt(x, df = 4)

x

0.0

0.1

0.2

0.3

−4 −2 0 2 4

> dt(2, df=4)

[1] 0.06629

> pt(2, df=4)

[1] 0.9419

> qt(0.9419417, df=4)

[1] 2

This distribution was introduced in Section 3.4.3.

J.1.12 Uniform

dunif(x)

x

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

> dunif(.7)

[1] 1

> punif(.7)

[1] 0.7

> qunif(.7)

[1] 0.7

All real numbers between a and b are equally likely. The standard case has a = 0
and b = 1. Hypothesis tests work by mapping an appropriate null distribution to the
uniform (with the appropriate p* function in R).
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J.1.13 Weibull

dweibull(x, shape = 4)

x

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

> dweibull(1.3, shape=4)

[1] 0.5052

> pweibull(1.3, shape=4)

[1] 0.9425

> qweibull(0.9425075, shape=4)

[1] 1.3

From dweibull:

The Weibull distribution with ’shape’ parameter a and ’scale’ parameter b has density given
by
f (x) = (a/b) (x/b)(a−1) exp(−(x/b)a)
for x > 0. The cumulative distribution function is F(x) = 1 − exp(−(x/b)a) on x > 0, the
mean is E(X) = bΓ(1 + 1/a), and the Var(X) = b2

(
Γ(1 + 2/a) − (Γ(1 + 1/a))2

)
.

J.2 Noncentral Continuous Probability Distributions

In hypothesis testing, except in special cases such as testing with the normal distri-
bution, one deals with a central distribution when the null hypothesis is true and an
analogous noncentral distribution when the null hypothesis is false. Thus calcula-
tions of probabilities under the alternative hypothesis, as are required when doing
Type II error analysis and when constructing O.C. (beta curves) and power curves,
necessitate the use of noncentral distributions.

The forms of the t, chi-square, and F distributions we’ve considered thus far
have all been central distributions. For example, if X̄ is the mean and s the standard
deviation of a random sample of size n from a normal population with mean μ, then
t = (x̄ − μ)/(s/

√
n) has a central t distribution with n − 1 df. Suppose, however, that

the population mean is instead μ1, different from μ. Then t above is said to have a
noncentral t distribution with n− 1 df and a noncentrality parameter proportional to
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((μ − μ1)/σ)2. (If μ = μ1, so that the noncentrality parameter is zero, the noncentral
t distribution reduces to the central t distribution.)

A noncentral chi-square (χ2) r.v. is a sum of squares of independent normal r.v.’s
each with s.d. 1 but at least some of which have a nonzero mean. A noncentral F
r.v. is the ratio of a noncentral chi-square r.v. to a central chi-square r.v., where the
two chi-squares are independent.

For tests using the t, chi-square, or F distribution, the power of the test (protection
against Type II errors) is an increasing function of the noncentrality parameter.

Noncentral distributions are specified with one more parameter than their cor-
responding central distribution. Consequently, tabulations of their cumulative dis-
tribution function appear much less frequently than those for central distributions.
Fewer statistical software packages include them. There is no noncentral normal dis-
tribution. The distribution under the alternative hypothesis is just an ordinary normal
distribution with a shifted mean.

The R functions for noncentral t, chi-square, and F CDFs are the same as those
for the corresponding central distribution with the addition of an argument for the
noncentrality parameter ncp. The noncentrality parameter defaults to zero (hence to
a central distribution) if it is not specified.

The figures in Sections J.2.1, J.2.2, and J.2.3 show the noncentral distribution
along with the corresponding central distribution. This way it is possible to see that
a positive noncentrality parameter shifts the mode to the right.
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J.2.1 Chi-Square: Noncentral

dchisq(x, df = 10, ncp = 4)

x

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30

non−central
central

> dchisq(18.31, df=10, ncp=4)

[1] 0.0408

> pchisq(18.31, df=10, ncp=4)

[1] 0.7852

> qchisq(0.7852264, df=10, ncp=4)

[1] 18.31

See discussion in Section 14.8.2 and example in Figure D.1.

J.2.2 T: Noncentral

dt(x, df = 4, ncp = 2)

x

0.0

0.1

0.2

0.3

−2 0 2 4 6 8

non−central
central

> dt(2, df=4, ncp=2)

[1] 0.3082

> pt(2, df=4, ncp=2)

[1] 0.4557

> qt(0.455672, df=4, ncp=2)

[1] 2

See examples in Figures 3.24, 5.2, and 5.10.
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J.2.3 F: Noncentral

df(x, df1 = 4, df2 = 20, ncp = 2)

x

0.0

0.2

0.4

0.6

0 2 4 6

non−central
central

> df(3, df1=4, df2=20, ncp=2)

[1] 0.1062

> pf(3, df1=4, df2=20, ncp=2)

[1] 0.871

> qf(0.8710256, df1=4, df2=20, ncp=2)

[1] 3

See example in Section 6.5 and discussion in Section 14.8.2.

J.3 Discrete Distributions

Discrete distributions are defined to have nonzero values on a set of integers.

F(x) = P(X ≤ x) =
x∑

i=−∞
f (i)

The inverse functions (the q* functions in R) are sensitive to the precision of the
numerical representation.

Computers use finite precision floating point arithmetic, precise to 53 signifi-
cant binary digits (bits)—approximately 17 decimal digits. They do not use the real
number system that we are familiar with. Simple decimal repeating fractions such
as these are not stored precisely with finite precision machine arithmetic. All of the
individual values in this example are automatically rounded to 53 bits when they
are entered into the computer. None of them are exactly represented inside the com-
puter. See Appendix G for more on the floating point arithmetic used in computers.
In several of the discrete distribution examples here, it has been necessary to dis-
play the p values to 17 decimal digits in order to get the desired answer from the q*
functions.
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Here is a simple example, the 6-level discrete uniform (one fair die), to illustrate
the problem. In this example, rounding produces several results from the qdiscunif
function that are one unit off (either too large or too small).

F(i)
machine precision,

rounded to rounded to 53 bits,
i f (i) fraction 4 decimal digits ≈ 17 decimal digits
1 1/6 1/6 0.1667 0.16666666666666666
2 1/6 2/6 0.3333 0.33333333333333331
3 1/6 3/6 0.5000 0.50000000000000000
4 1/6 4/6 0.6667 0.66666666666666663
5 1/6 5/6 0.8333 0.83333333333333337
6 1/6 6/6 1.0000 1.00000000000000000

> ## this is printing precision, not internal representation

> old.digits <- options(digits=7)

> ddiscunif(1:6, 6)

[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

> pdiscunif(1:6, 6)

[1] 0.1666667 0.3333333 0.5000000 0.6666667 0.8333333 1.0000000

> qdiscunif(pdiscunif(1:6, 6), 6)

[1] 1 2 3 4 5 6

> round(pdiscunif(1:6, 6), 4) ## rounded to four decimal digits

[1] 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000

> ## inverse after rounding to four decimal digits

> qdiscunif(round(pdiscunif(1:6, 6), 4), 6)

[1] 1 1 3 4 4 6

> options(old.digits)
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J.3.1 Discrete Uniform

ddiscunif(x, size = 12)

x

0.00

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11 12

> ddiscunif(6, size=12)

[1] 0.08333

> pdiscunif(6, size=12)

[1] 0.5

> qdiscunif(.5, size=12)

[1] 6

In the discrete uniform distribution, the integers from 1 to n are equally likely.
The population mean is (n + 1)/2. The population variance is (n2 − 1)/12. The
distribution function is

J.3.2 Binomial

dbinom(x, size = 15, prob = 0.4)

x

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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> ## probability of exactly 6 Heads

> dbinom(6, size=15, prob=.4)

[1] 0.2066

> ## probability of 6 or fewer Heads

> ## extra precision is needed

> print(pbinom(6, size=15, prob=.4), digits=17)

[1] 0.60981315570892769

> ## q, the number for which the probability of seeing

> ## q or fewer Heads is 0.60981315570892769

> qbinom(0.60981315570892769, size=15, prob=.4)

[1] 6

The binomial distribution was introduced in Section 3.4.1. If X has a binomial
distribution with parameters n (n=size, number of coins tossed simultaneously)
and p (p=prob, probability of one coin landing Heads on one toss), then the bino-
mial distribution gives the probability of observing exactly X heads.

J.3.3 Geometric

dgeom(x, prob = 0.5)

x

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9

> dgeom(3, prob=.5)

[1] 0.0625

> pgeom(3, prob=.5)

[1] 0.9375

> qgeom(0.9375, prob=.5)

[1] 3
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From ?dgeom:

The geometric distribution with ’prob’ = p has density
p(x) = p(1 − p)x

for x = 0, 1, 2, ..., 0 < p ≤ 1.
The quantile is defined as the smallest value x such that F(x) ≥ p, where F is the

distribution function.

J.3.4 Hypergeometric

dhyper(x, m = 5, n = 6, k = 7)

x

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7

> dhyper(3, m=5, n=6, k=7)

[1] 0.4545

> print(phyper(3, m=5, n=6, k=7), digits=17)

[1] 0.65151515151515149

> qhyper(0.65151515151515149, m=5, n=6, k=7)

[1] 3

The hypergeometric distribution is used in Chapter 15. We sample n items with-
out replacement from a population of N items comprised of M successes and N −M
failures. Then the number of successes X observed in the population is said to have
a hypergeometric distribution with parameters N, M, and n.
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J.3.5 Negative Binomial

dnbinom(x, size = 8.5, prob = 0.4)

x

0.00

0.02

0.04

0.06

0 5 10 15 20 25 30

> dnbinom(17, size=8.5, prob=.4)

[1] 0.04338

> print(pnbinom(17, size=8.5, prob=.4), digits=17)

[1] 0.81209497223034977

> qnbinom(0.81209497223034977, size=8.5, prob=.4)

[1] 17

The negative binomial distribution with size = n and prob = p has density

Γ(x + n)
Γ(n) x!

pn(1 − p)x

for x = 0, 1, 2, . . ., n > 0, and 0 < p ≤ 1.

This represents the number of failures which occur in a sequence of Bernoulli
trials before a target number of successes is reached. The mean is μ = n(1 − p)/p
and variance is n(1 − p)/p2.

J.3.6 Poisson

dpois(x, lambda = 4)

x

0.00

0.05

0.10

0.15

0 2 4 6 8 10 12
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> dpois(7, lambda=4)

[1] 0.05954

> print(ppois(7, lambda=4), digits=17)

[1] 0.94886638420715264

> qpois(0.94886638420715264, lambda=4)

[1] 7

Let the random variable X be the number of occurrences of some event that are
observed in a unit of time, volume, area, etc., and let λ be the mean number of
occurrences of the event per unit, assumed to be constant throughout the process that
generates the occurrences. Suppose that the occurrence(s) of the event in any one
unit are independent of the occurrence(s) of the event in any other nonoverlapping
unit. Then X has a Poisson distribution with parameter λ.

J.3.7 Signed Rank

dsignrank(x, n = 5)

x

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> dsignrank(11, n=5)

[1] 0.0625

> psignrank(11, n=5)

[1] 0.8438

> qsignrank(0.84375, n=5)

[1] 11

See the discussion in Section 16.3.2.
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J.3.8 Wilcoxon

dwilcox(x, m = 4, n = 12)

x

0.00

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35 40 45 50

> dwilcox(35, m=4, n=12)

[1] 0.02088

> print(pwilcox(35, m=4, n=12), digits=17)

[1] 0.9148351648351648

> qwilcox(0.9148351648351648, m=4, n=12)

[1] 35

See Table 16.7 for an example of a rank sum test.
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J.4 Multivariate Distributions

J.4.1 Multinomial

dmultinom(x, prob = c(1,2,5))

0.244

0.146

0.029

0.002

0.293

0.117

0.012

0.117

0.023

0.016
003

102

201

300

012

111

210

021

120

030

> ## This example is based on ?dmultinom in R

> ## all possible outcomes of Multinom(N = 3, K = 3)

> X <- t(as.matrix(expand.grid(0:3, 0:3)))

> X <- X[, colSums(X) <= 3]

> X <- rbind(X, 3:3 - colSums(X))

> dimnames(X) <- list(letters[1:3], apply(X, 2, paste, collapse=""))

> Y <- round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

> rbind(X, Y)

003 102 201 300 012 111 210 021 120 030

a 0.000 1.000 2.000 3.000 0.000 1.000 2.000 0.000 1.000 0.000

b 0.000 0.000 0.000 0.000 1.000 1.000 1.000 2.000 2.000 3.000

c 3.000 2.000 1.000 0.000 2.000 1.000 0.000 1.000 0.000 0.000

Y 0.244 0.146 0.029 0.002 0.293 0.117 0.012 0.117 0.023 0.016

The (discrete) multinomial distribution is a generalization of the binomial distri-
bution to the case of k > 2 categories. Suppose there are n independent trials, each
of which can result in just one of k possible categories such that p j is the probability
of resulting in the jth of these k categories. (Hence p1 + p2 + . . . + pk = 1.) Let Xj

be the number of occurrences in category j. Then the vector (X1, X2, ..., Xk) is said
to have a multinomial distribution with parameters n, p1, p2, . . . , pk. Its PMF is
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P(Xj = x j | j = 1, . . . , k) =
n!px1

1 px2
2 . . . pxk

k

x1!x2! . . . xk!
, x1 + x2 + . . . xk = n

If a proportion pj of a population of customers prefers product number j, j =
1, . . . , k, among k products, then the multinomial distribution provides the probabil-
ity of observing any particular configuration of preferences among a random sample
of n customers.

J.4.2 Multivariate Normal

row
column

z

Bivariate Normal: dmvnorm(c(−1, −1))

> dmvnorm(c(-1, -1))

[1] 0.05855

> pmvnorm(upper=c(-1, -1))[1]

[1] 0.02517

> qmvnorm(0.02517, mean=c(0,0))$quantile

[1] -1

See Sections 3.3.5 and I.4 for examples.



Appendix K

Working Style

Working style in a computer environment depends on two interrelated concepts:
which programs you use and how you use them.

For statistical analysis we are recommending R as the primary computational
tool. There are other very good programs, and it is imperative that you develop a
working understanding of several of them. See Appendix H for information on how
to use the datasets discussed in this book with other software.

An excellent text editor is an indispensable tool for the statistical analyst. The
editor is the single program in which we spend most of our time. We use it for
looking at raw data, for writing commands in the statistical languages we use, for
reading the output tables produced by our statistical programs, for writing reports,
and for reading and writing correspondence about our studies to our clients, consul-
tants, supervisors, and subordinates. We discuss our requirements for a text editor
in Section K.1. Our personal choice of editor is Emacs (Free Software Foundation,
2015), which we discuss in Appendix M. There are other excellent editors which
satisfy our requirements.

We discuss in Section K.2 the types of interaction that are possible with R.
We recommend in Section K.3 working with files of R commands. We discuss in
Section K.4 our recommendations for organization of the files within the operating
system’s directory structure.

K.1 Text Editor

As we indicated in the Preface on page ix, our goal in teaching statistical languages
is to make the student aware of the capabilities of the language for describing data
and their analyses. The language is approached through the text editor.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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We distinguish between the concepts of text editing (discussed in this Appendix)
and word processing (discussed in Appendix O). Text editing is moving characters
around on the screen with the expectation that they will stay where you put them.
This is critical when writing computer programs where the physical placement of
lines and characters on the page is part of what the computer program interprets. In
the R language the two layouts of the same characters in Table K.1 have completely
different interpretations.

Word processing is moving sentences, paragraphs, sections, figures, and cross-
references around. A word processor can be used as a text editor by manually turning
off many of the word processing features.

Table K.1 Two different interpretations of the same characters {“3”, “+”, “4”} that depend on their
placement on separate lines. If the first set of input lines were reformatted according to English
language paragraph formatting rules it would be interpreted as if it were the second set, which has
a completely different meaning. This is the simplest possible example of why we make a distinction
between text editing and word processing.

R Input
Two lines One line

3 3 + 4

+ 4

R Output

> 3 > 3 + 4

[1] 3 [1] 7

> + 4

[1] 4

K.1.1 Requirements for an Editor

These are the requirements we place on any text editor that is to be used for inter-
acting with a computing language:

1. Permit easy modification of computing instructions and facilitate their resub-
mission for processing

2. Be able to operate on output as well as input

3. Be able to cut, paste, and rearrange text; to search documents for strings of text;
to work with rectangular regions of text

4. Be aware of the language, for example, to illustrate the syntax with appropriate
indentation and with color and font highlighting, to detect syntactic errors in
input code, and to check the spelling of statistical keywords
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5. Handle multiple files simultaneously

6. Interact cleanly with the presentation documents (reports and correspondence)
based on the statistical results

7. Check spelling of words in natural languages

8. Permit placement of graphics within text.

9. Permit placement of mathematical expressions in the text.

10. Work with Unicode to give access to all character sets in all human languages.

K.1.2 Choice of Editor

Our preference for an editor is Emacs with ESS, which we discuss in Appendix M.
In Section M.5 we show how Emacs satisfies the requirements in Section K.1.1.

There are many other options for an editor, usually within the context of an Inte-
grated Development Environment (IDE), a software application that provides com-
prehensive facilities to computer programmers for software development. An IDE
normally consists of a source code editor, build-automation tools, and a debugger.
For more information on IDEs see Wikipedia (2015).

For an annotated list, with links to their webpages, of other editors and IDEs that
work with R, see Grosjean (2012).

We discuss word processors such as MS Word (Microsoft, 2015) in Section O.1.
In Section O.1.1 we show how MS Word satisfies some of the requirements in
Section K.1.

K.2 Types of interaction with R

1. CLI Command Line Interface: The user types R statements and the system re-
sponds with requested output. Examples: R in a shell/terminal/CMD window, R
in the *R* buffer in Emacs, R in the Console window in the Rgui.exe for Win-
dows, the R.app for Macintosh, and the JGR package on all operating systems.

2. Menu or Dialog Box: Dropdown lists of command names, often with default
settings for arguments. This allows point and click access to many R functions
with standard settings of options. The Rcmdr (R Commander) package described
in Appendix C is such a system.
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3. Spreadsheet. The RExcel system described in Appendix D allows access to all R
functions from within the automatic recalculation mode of Excel for Windows.
The Rcmdr interface is incorporated into the Excel menu ribbon.

4. Web-based interface. Technology for embedding R applications within an html

page to provide interactive access to R functions for non-programmers. See Ap-
pendix E for a discussion of the shiny system.

5. Document based interface. The end user writes a document (book, paper, report)
in a standard document writing system (LATEX or Word, for example) with em-
bedded R code. Three examples are Sweave (Leisch and R-core, 2014), knitr
(Xie, 2015), and SWord (Baier, 2014). The second edition of HH is written using
Sweave (see help(Sweave, package="utils")). All R code, leading to all
graphs and tables in the book, is included in the LATEX source files for the chap-
ters. The code files for the HH package, located with the HHscriptnames()

function, were pulled from the LATEX files by the Stangle function which is part
of the Sweave framework.

6. GUI Graphical User Interface: anything other than the command line interface.

K.3 Script File

Our personal working style (and the one we recommend to our readers) is to write a
file of commands (a script file with extension .R or .r) that specify the analysis, run
the commands and review the graphs and tables so produced, and then correct and
augment the analysis specifications. We construct the command file interactively.
Initially we write the code to read the data into the program and to prepare several
graphs and the initial tables. If there are errors (in typing or in programming logic),
we correct them in the file and rerun the commands. As we progress and gain insight
into what the data say, we add to the code to produce additional graphs and tables.
When we have finished, we have a file of commands that could be run as a batch job
to produce the complete output. We also have a collection of graphs and tables that
can be stored in additional files.

K.4 Directory Structure

When we have many files, we need to organize them within the directory structure
of our computer’s operating system.
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K.4.1 Directory Structure of This Book

This book is written in LATEX (Lamport, 1994). Our organizational structure uses the
directory structure provided by the computer’s operating systems. For this book we
have a main directory (hh2) and subdirectories for code (containing .R files), tran-
scripts (.Rout) files, and figures (.pdf) files. The main directory contains all the
.tex files (one per chapter plus a master file), our LATEX style file (hh2.sty), and
several other support files. We have a work directory parallel to the hh2 directory
for experiments with R code, for correspondence with our publisher, and for corre-
spondence with the people who were kind enough to read and comment on drafts of
this book.

The R functions that we developed for the book, and all datasets used in the book,
are collected into the HH package (Heiberger, 2015) distributed through CRAN.

The master copy of the R scripts for all figures and tables in the second edition
is included in the *.tex source files for the individual chapters. We use the Sweave
functions included in R to execute the code directly from the *.tex files. When
we are ready to distribute the code, we pull the R code from the *.tex files with
the Stangle function (part of R’s Sweave system) and place them into the HH
package. The script files in the HH package for the book can be located by the
package user with the HHscriptnames() function.

We hope that readers of our book, and more generally users of R, design and
collect their own functions into a personal package (it doesn’t have to be distributed
through CRAN). Once you have more than a few functions that are part of your
working pattern, maintaining them in a package is much simpler than inventing
your own idiosyncratic way of keeping track of what you have. We say a few words
about building a package in Appendix F and refer you to the R document

system.file("../../doc/manual/R-exts.pdf")

for complete information.

K.4.2 Directory Structure for Users of This Book

It is critical to realize that your work is yours. Your work is not part of the computer’s
operating system, nor of the installed software. The operating system, the editor, R,
and other software are kept in system directories. In order to protect the integrity of
the system you will usually not have write access to those locations.

You need a home directory, the one where you keep all your personal subdirecto-
ries and files. Your operating system automatically creates a HOME directory for you.
R can find its name with the command Sys.getenv("HOME"). Everything you do
should be in a subdirectory of your home directory.
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For example, each time we teach a course, we create a directory for that course.
For last year’s course based on this book, we used the directory 8003.f14 directly
under the HOME directory. We have a subdirectory of the course directory for
the syllabus, for each class session, and for student records. We keep handouts,
R scripts, and transcripts of the class R session as files within each class session’s
directory.

K.4.3 Other User Directories

We recommend a separate directory for each project. It will make your life much
easier a year from now when you try to find something.
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Writing Style

Reports, including homework exercises, based on computer printout must be typed
correctly. We recommend LATEX (the standard required by many statistics and math-
ematics journals, and the typesetting package with which we wrote this book). We
do accept other word processing software. Whichever software you use, you must
use it correctly. We discuss in this appendix some of the fundamentals about good
technical writing.

L.1 Typographic Style

Specific style issues that you must be aware of are

1. Fonts: Computer listings in R (and S-Plus and SAS and many other statistical
software systems) are designed for monowidth fonts (such as Courier) where all
characters (including spaces) are equally wide. These listings are unreadable in
Times Roman or any other proportional font. English text looks best in a propor-
tional font (where, for example, the letter “M” is wider than the letter “i”) such
as Times Roman. Table L.1 shows the difference with simple alphabetic text.

Table L.2 shows an example of the issue for computer listings. The Courier ren-
dition is consistent with the design of the output by the program designer. The
Times Roman is exactly the same text dropped into an environment that is in-
correctly attempting to space it in accordance with English language typesetting
rules. In our classes, we return UNREAD any papers that use a proportional
font for computer listings.

2. Alignment: Numbers in a column are to be aligned on decimal points. Alignment
makes it possible to visually compare printed numbers in columns. There are two

© Springer Science+Business Media New York 2015
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Table L.1 We placed a vertical rule after four characters on each line in both Courier and Times
Roman. The Courier rules are aligned because all characters in Courier are exactly the same width.
The Times Roman rules are not aligned because each character in Times Roman has its own width.

Courier

Wide and narrow.

Letters in each row align

with letters in the previous row.

Times Roman

Wide and narrow.

Letters in each row do not align

with letters in the previous row.

Table L.2 R output displayed correctly in a monowidth font, and incorrectly in a proportional
font. The same text, the output from an R summary.data.frame call, is displayed in both fonts.
The unequal width of the characters in the Times Roman font destroys the vertical alignment that
is necessary for interpretation of this listing.

Courier (correct spacing)

> summary(ex0221)

weight code

Min.:23.20 1:35

1st Qu.:24.75 2:24

Median:25.70

Mean:25.79

3rd Qu.:26.50

Max.:31.10

Times Roman (incorrect spacing)

> summary(ex0221)
weight code
Min.:23.20 1:35
1st Qu.:24.75 2:24
Median:25.70
Mean:25.79
3rd Qu.:26.50
Max.:31.10

Table L.3 Alignment of decimal points in the numbers on the left makes it easy to compare the
magnitudes of the numbers. Centering of the numbers on the right, and therefore non-alignment of
decimal points, makes it difficult to compare the magnitudes of the numbers.

Correct Wrong
123.45 123.45

12.34 12.34
−4.32 −4.32

0.12 0.12

reasons for getting it wrong. One is carelessness. The other is blind copying from
a source that gets it wrong. We show an example of both alignments in Table L.3.

3. Minus signs and dashes: There are four distinct concepts that have four differ-
ent typographical symbols in well-designed fonts. On typewriters all four are
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usually displayed with the symbol “-” that appears on the hyphen key (next to
the number 0). You are expected to know the difference and to use the symbols
correctly.

Table L.4 shows an example of the correct usage of all four symbols and the keys
in LATEX and MS Word.

Table L.4 Correct usage of all four dash-like symbols (- – −—) and the keys to generate them in
LATEX and MS Word.

Symbol Use Example LATEX MS Word

- hyphen compound word t-test - -

– en dash range 100–120 -- ctrl-num -

− minus negation −12 $-$ Insert-menu/symbol. . . / −
— em dash apposition punctuation—like this --- alt-ctrl-num -

The misuse of dashes that touches my (rmh) hot button the most is misuse of
hyphen when minus is meant, for example

correct WRONG
+12.2 +12.2
−12.2 -12.2

In this wrong usage, the “+” and “-” are not aligned and consequently the decimal
point is not aligned.

4. Right margins and folding: Table L.5 intentionally misuses formatting to illus-
trate how bad it can look. This usually occurs when the R window width is
wider than your word processor is willing to work with. Verify that you picked
an options()$width consistent with your word processor. You can make the
width narrower in R by using the R command

options(width=72)

5. Quotation marks: Quotation marks in Times Roman are directional. This is
“Times Roman correct” (with a left-sided symbol on the left and a right-sided
symbol on the right). This is ”Times Roman incorrect” (with the right-sided sym-
bol on both sides). In the typewriter font recognized by R, quotation marks are
vertical, not directional. and are the same on both sides. In typewriter font, this
is "typewriter correct" (same non-directional symbol on both sides).
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Table L.5 Intentional misuse of formatting. Never turn in anything that looks like these bad
examples. The top section has lines of text that extend beyond the right margin of the page. The
middle section is an R table that has been arbitrarily folded at 49 mono-spaced letter widths. The
bottom section retains the lines, but places them in a proportional font and ignores the alignment
of columns.

Do not allow the right margins of your work to run off
the edge of the page. It is hard to read text that isn’t visible.

Do not allow lines to be arbitrarily folded in a way that destroys the formatting.

This is particularly a problem if you copy output from
the R Console window to an editor in a word-processing mode. Word proces-
sors (as distinct from text editors) by default enforce
English-language conventions (such as maximum line
length and proportional font) on code and output text that is designed for col-
umn alignment and a fixed-width font. Use an editor,
such as Emacs with ESS, that is aware of the R formatting conventions. Most
word processors do have an option to set sections in
fixed-width Courier font and to give the write control of margins.

Folding
makes
this table
impossible to
read.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sum of

Source DF Squares Mean Squa

re F Value Pr > F

Model 2 2649.816730 1324.9083

65 54.92 <.0001

Error 44 1061.382419 24.1223

28

Corrected Total 46 3711.199149

Column
alignment
ignored.
Table is
unreadable.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 2649.816730 1324.908365 54.92 <.0001
Error 44 1061.382419 24.122328
Corrected Total 46 3711.199149
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L.2 Graphical Presentation Style

Graphs designed for someone to read must be legible. Legibility includes the items
listed in this section and in Chapter 4 (some of which are repeated here).

L.2.1 Resolution

Figure L.1 shows the same graph drawn on a vector graphics device (pdf() in this
example) and a bitmap device (png() in this example).

Vector graphics devices define objects to be drawn in terms of geometrical prim-
itives such as points, lines, curves, and shapes or polygons. Vector graphics can be
magnified without pixalation. Current vector graphics formats are pdf, ps, and wmf.

By contrast bitmap (or raster) graphics devices define objects in terms of the
set of pixels used in one specific magnification. Further magnification gives larger
discrete dots and not smooth objects. Current bitmap formats are png, bmp, tif,
and gif.

Figure L.1 panels a and c are drawn with a vector graphics device. They are
clear and crisp at any magnification (two magnifications are shown here). Figure
L.1 panels b and d are drawn with a bitmapped graphics device. Panel b is not clear,
and the magified version in panel d is granular and fuzzy.

L.2.2 Aspect Ratio

The graphs are initially drawn for the device size they see at the time they are drawn.
The aspect ratio (the ratio of the width to height in graphic units) is set at that time.
Plotting symbols and text are positioned to look right at that initial magnification
with that size device. The graphs in Figure L.1 honor the aspect ratio. Both the x
and y dimensions are scaled identically in those panels.

Changing the aspect ratio after the graph has been drawn interferes with the mes-
sage of the graph. It is most evident when both axes use the same units, but is visible
even when the units are different.

The graph in Figure L.2 does not honor the aspect ratio, and the graph becomes
very hard to read. The width is stretched to twice its initial size and the height is
left at the original height. As a consequence, the circles used as plotting symbols
are stretched to ellipses. The font used for the labels is stretched to visually change
the shapes of the letters. About half of the zero characters look like circles. The
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Fig. L.1 Panels a and b were drawn with the same command addressed to different devices. Panel
a uses the pdf vector device and panel b uses the png bitmap device. Even at low magnification
the difference between the two images is clear. The circle glyphs, the text, and the lines are crisp
on the vector device. The circle glyphs, the text, and the lines are granular on the bitmap device.
Panels c and d are the lower left corners of panels a and b magnified by a scale of 2. The vector
display is just as crisp at this magnification. The bitmap display is more granular and fuzzy. Not
even the straight lines are clear in panel d.
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PNG (bitmap) device stretched

Fig. L.2 The figure here is the same plot shown in Figure L.1 panel b, this time with its x-
dimension stretched. The circular glyphs are now ellipses. The thin numeral “0” are now circles.
The vertical straight lines are even fuzzier than before.

other half look different because the pixel break points are placed differently on the
underlying letter shapes.

It is possible to damage the aspect ratio even with a good typographic system
(I intentionally did so in Figure L.2 using LATEX). Under normal circumstances in
LATEX the aspect ratio is retained.

It is too easy to damage the aspect ratio with a drag-and-drop editing system
by stretching an image at the top, bottom, or sides of an image. It is also easy to
maintain the aspect ratio when controlling the size of an image, by stretching only
at the corners, and never stretching the top, bottom, or sides of an image.

L.2.3 Other Features

Other features to be aware of were discussed and illustrated in Chapter 4 and are
summarized here.

1. In scatterplot matrices, a NW–SE main diagonal has a consequence of multiple
axes of symmetry that interfere with easy reading. The (SW–NE) main diagonal
(the defaul in splom has a single axis of symmetry both within and between
panels. See the examples and discussion in Section 4.7 for more detail.

2. The panels in a scatterplot matrix should be square to emphasize the equivalence
of rows and columns. The intention of the scatterplot matrix is the comparison of
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y ~ x with x ~ y, and maintaining the same scale in both orientations facilitates
the comparison of reflected panels. Compare Figures 4.10 and 4.11.

3. Choice of plotting symbols, open circles, closed circles, other symbols (triangles,
squares, etc), letters. See the itemized discussion in Section 4.1.

4. Choice of colors. See Section 4.10 for discussion of color vision.

5. Location of ticks and labels inside or outside the panels. In scatterplot matrices,
placing ticks and labels inside the main diagonal makes the frees more surface
area for the panels themselves. Compare Figures 4.10 and 4.11.

6. Space between panels. Compare Figures 4.10 and 4.11.

L.3 English Writing Style

1. Check spelling

• Select the right homophone (words that sound alike): brake vs break. Both
spellings will be accepted by a spell-checking program.

• Learn to spell technical words correctly. The following words seem to be par-
ticularly liable to misspelling:

– separate: The fourth letter is “a”.

– correlation: The letter “r” is doubled.

– collinear: The letter “l” is doubled.

– stationary: not moving

– stationery: writing paper and envelopes

– symmetric: The letter “m” is doubled.

– asymmetric: The letter “s” is single.

– Tukey: John W. Tukey

– turkey: a bird

• “p-value” is preferred (with p in math italic). “P-value” is not OK (with “P”
in uppercase roman).

• Spell people’s names correctly and with proper capitalization (John W. Tukey,
Dennis Cook).

2. Punctuation.

“.” “:” “,” “;” always touch the preceding character. They always have a space
after them.
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L.4 Programming Style and Common Errors

1. Data entry: Use real variable names. The default variable names “X1” and “X2”
carry no information. Variable names like “height” and “weight” carry infor-
mation.

2. Data entry: probably you don’t need to do that step. Don’t reenter by hand the
numbers that you already have in machine-readable form.

3. Use dump("varname","") to get ASCII versions of R variables that can be
read back into R with no loss (of digits, labeling, attributes). The output from
the dump can be copied into email and copied back from email. The output from
the simpler print commands will frequently get garbled in email. See Table L.6
for an illustration where the original class of two of the columns is lost when
we neglected to use the dump function.

4. The R function splom() for scatterplot matrices by default gives easy-to-read
plots with a single axis of symmetry over the entire set of square panels. The R
pairs() function (for all pairwise two-variable graphs) by default gives many
conflicting axes of symmetry and rectangular panels. See Figure 4.12 and the
accompanying discussion.

5. Analyze the experiment given you. Don’t ignore the block factor. Usually the
block sum of squares is removed first, before looking at the treatment effects.
In R, this is done by placing the block factor first in the model formula, for exa-
mple, in Section 12.9 we use aov(plasma ~ id + time) so the sequential
analysis of variance table will read

id

time

Residuals

This way, in non-balanced designs, the sequential sum of squares for the treat-
ment factor (time in this example) is properly adjusted for the blocking fac-
tor id.

6. We normally recommend the use of the R command language, not a menu sys-
tem, when you are learning the techniques. You will get

• much better-looking output

• more control

• the ability to reproduce what you did

7. When GUI point-and-click operations have been used to construct preliminary
graphical (or tabular) views of the data, the commands corresponding to these
operations are frequently displayed. Rcmdr for example displays the generated
commands in its R Script window (see Figure C.14 for an example). These
commands can then be used as components in the construction of more complex
commands needed to produce highly customized graphs.
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Table L.6 We construct a data.frame and then display it twice, once by typing the variable name,
the second time by using the dump function. When we re-enter the typed text back to R, we lose the
structure of the data.frame. When we re-enter the dumped structure, we retain the original structure.

> tmp <- data.frame(aa=1:3, bb=factor(4:6), cc=letters[7:9],

+ dd=factor(LETTERS[10:12]), stringsAsFactors=FALSE)

> str(tmp)

’data.frame’: 3 obs. of 4 variables:

$ aa: int 1 2 3

$ bb: Factor w/ 3 levels "4","5","6": 1 2 3

$ cc: chr "g" "h" "i"

$ dd: Factor w/ 3 levels "J","K","L": 1 2 3

> tmp

aa bb cc dd

1 1 4 g J

2 2 5 h K

3 3 6 i L

> dump("tmp", "")

tmp <-

structure(list(aa = 1:3, bb = structure(1:3, .Label = c("4",

"5", "6"), class = "factor"), cc = c("g", "h", "i"),

dd = structure(1:3, .Label = c("J",

"K", "L"), class = "factor")), .Names = c("aa", "bb", "cc", "dd"

), row.names = c(NA, -3L), class = "data.frame")

> tmp <- read.table(text="

+ aa bb cc dd

+ 1 1 4 g J

+ 2 2 5 h K

+ 3 3 6 i L

+ ", header=TRUE)

> sapply(tmp, class)

aa bb cc dd

"integer" "integer" "factor" "factor"

> tmp <-

+ structure(list(aa = 1:3, bb = structure(1:3, .Label = c("4",

+ "5", "6"), class = "factor"), cc = c("g", "h", "i"),

+ dd = structure(1:3, .Label = c("J",

+ "K", "L"), class = "factor")), .Names = c("aa", "bb", "cc", "dd"

+ ), row.names = c(NA, -3L), class = "data.frame")

> sapply(tmp, class)

aa bb cc dd

"integer" "factor" "character" "factor"
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8. Store results of an R function call in a variable to permit easy extraction of var-
ious displays from the results. For example,

mydata <- data.frame(x=1:6, y=c(1,4,2,3,6,2))

my.lm <- lm( y ~ x , data=mydata)

summary(my.lm) ## summary() method on lm argument

old.mfrow <- par(mfrow=c(2,2)) ## four panels on the graphics device

plot(my.lm) ## plot() method on lm argument

par(old.mfrow) ## restore previous arrangement

coef(my.lm) ## coef() method on lm argument

anova(my.lm) ## anova() method on lm argument

resid(my.lm) ## resid() method on lm argument

predict(my.lm) ## predict() method on lm argument

9. Analysis of Variance requires that the classification factor be declared as a
factor. Otherwise you will get a nonsense analysis. The wrong degrees of
freedom for a treatment effect is usually the indicator that you forgot the
factor(treatment) command in R.

10. The degrees of freedom for a problem always comes from the Residual or
ERROR line of the ANOVA table. In multiple-stratum models, the Residual

line in each stratum provides the comparison value (denominator Mean Square
and degrees of freedom) for effects in that stratum.

11. Please use par(mfrow=c(2,2)) (as illustrated above in item 8) for plotting the
results of an lm() or aov(). That way the plot uses only one piece of paper,
not four.

12. All comparable graphs must be on the same scale—on the same axes is often
better. See Section 17.6.2, especially Figure 17.19, for an example of compara-
ble scaling in the top panels and noncomparable scaling in the bottom panels.
See Figure 4.9 for comparable scaling in Panels a and b and noncomparable
scaling in Panels c, d, and e.

L.5 Presentation of Results

This list is designed for our classroom setting. It is more generally applicable.

1. Use the minus sign “−4” in numbers. We do not accept hyphens “-4”. See
Table L.4.
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Fig. L.3 qqplot of a regression of noise. The usual three “largest” residuals are labeled, and none
of the labeled residuals are big.

2. For multiple comparisons we can use the MMC (Section 7.2) default of Tukey
pairwise comparisons. The mmc and mmcplot functions in the HH package are
built on the glht function in the multcomp package.

3. We don’t do multiple comparisons of blocks. We know there are differences.
That is why we chose to use that factor as a block, not as a treatment. See
Section 12.6.

4. Write an experiment description that tells the reader how to reproduce the
experiment.

5. Distinguish between “bigger than the others” and “big”. The plot.lm() la-
bels the three biggest points. It doesn’t care if they are significantly big. In
Figure L.3, for example, the qqplot of a regression of random noise, the usual
three “largest” residuals are labeled, and none of the labeled residuals are big.

6. summary.lm(...) doesn’t usually provide interesting information in designed
experiments. summary.aov(..., split=list()) is frequently interesting.
The ANOVA table in Table 12.13, for example, shows the partition of the 10-df
“strain nested within combination” into two easily interpretable 5-df sums of
squares, “strain within clover” and “strain within clover+alfalfa”. It is easy to
interpret these partitioned sums of squares along with the interaction means at
the bottom of Table 12.12 and in the upper-left panel of Figure 12.12.

Had we used summary.lm we would have gotten information in Table 12.15 on
the regression coefficients for the dummy variables, and we would need to see
the dummy variables in Table 12.14 for the coefficients themselves to make any
sense.

7. Always state the conclusions in the context of the problem.
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8. Please do not turn in impossible or illegal formatting. For example, the line
breaks in the middle of words or character strings in Table L.7 are unacceptable.

Table L.7 Impossible formatting in R output.

## line break in the middle of a word

Residual standard error: 0.4811 on 10 degrees of fre

dom

## wrong: line break in string

plot(y ~ x, main="abc

def")

plot(y ~ x, ### correct

main="abc def")

9. Do not turn in lists or tables of data values in homework assignments. We know
the data values. In the classroom situation we gave them to you. You may show
a few observations to verify that you have read the data correctly. For example:

data(gunload)

head(gunload)

10. On the other hand, plots of the data are very interesting. We usually expect to
see appropriate plots of the data (scatterplot matrix, interaction plots, sets of
boxplots) and of the analysis.

11. We do not want a cover page for homework. This is our personal style. A class-
full of essentially empty cover pages weighs too much and wastes paper.

12. Use spacing for legibility, for example:

abc<--5+3 is hard to read.
abc <- -5 + 3 is easy to read.

13. When you copy output, particularly by mouse from a document in a monowidth
font to one with a default proportionally spaced font, make sure you keep the
original spacing and indentation.

14. Short, complete answers are best.



Appendix M

Accessing R Through a Powerful Editor
—With Emacs and ESS as the Example

This Appendix is a discussion of the use of a powerful editor and programming en-
vironment. We use Emacs terminology and examples because we are most familiar
with it—we use Emacs with ESS as our primary editing environment. One of us
(RMH) is a coauthor of ESS.

Much of the discussion applies with only small changes to use of many of the
other high-quality editors. See Grosjean (2012) for an annotated list (with links) of
other editors that are used in programming R.

Emacs (Stallman, 2015) is a mature, powerful, and easily extensible text editing
system freely available under the GNU General Public License for a large number
of platforms, including Linux, Macintosh, and Windows. Emacs shares some fea-
tures with word processors and, more importantly, shares many characteristics with
operating systems. Most importantly, Emacs can interact with and control other
programs either as subprocesses or as cooperating processes.

The name “Emacs” was originally chosen as an acronym for Editor MACroS.
Richard M. Stallman got a MacArthur genius award in 1990 for the development
of Emacs. Emacs comes from the Free Software Foundation, also known as the
GNU project (GNU is Not Unix).

Emacs provides facilities that go beyond simple insertion and deletion: viewing
two or more files at once (see Figures M.1 and M.2); editing formatted text; visual
comparison of two similar files (Figure M.1); and navigation in units of characters,
words, lines, sentences, paragraphs, and pages. Emacs knows the syntax of each
programming language. It can provide automatic indentation of programs. It can
highlight with fonts or colors specified syntactic characteristics. Emacs is exten-
sible using a dialect of Lisp (Chassell, 1999; Graham, 1996). This means that new
functions, with user interaction, can be written for common and repeated text editing
tasks.

ESS (Mächler et al., 2015; Rossini et al., 2004) extends Emacs to provide a
functional, easily extensible, and uniform interface for multiple statistical packages.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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One of us (RMH) is a coauthor of ESS. Several of the other coauthors are mem-
bers of R-Core, the primary authors of R itself. Currently ESS works with R, S+,
SAS, Stata, OpenBUGS/JAGS, and Julia. The online documentation includes an
introduction in file ESS/ess/doc/intro.pdf (an early version of Rossini et al.
(2004)). Online help is available from within Emacs and ESS.

M.1 Emacs Features

M.1.1 Text Editing

Most programming and documentation tasks fall under the realm of text editing.
This work is enhanced by features such as contextual highlighting and recognition
of special reserved words appropriate to the programming language in use. In ad-
dition, editor behaviors such as folding, outlining, and bookmarks can assist with
maneuvering around a file. We discuss in Appendix K the set of capabilities we
expect a text editing program to have. Emacs automatically detects mismatched
parentheses and other types of common syntax and typing mistakes.

Typesetting and word processing, which focus on the presentation of a document,
are tasks that are not pure text editing. Emacs shares many features with word
processing programs and cooperates with document preparation systems such as
LATEX (discussed in Section N) and html (discussed in Appendix E).

We strongly recommend that students in our graduate statistics classes use
Emacs as their primary text editor. The primary reason for this recommendation is
that Emacs is the first general editor we know of that fully understands the syntax
and formatting rules for the statistical language R that we use in our courses. Other
editing systems designed to work with R are described and linked to in the webpage
provided by Grosjean (2012). Emacs has many other advantages (listed above), as
evidenced by Richard Stallman having won a MacArthur award in 1992 for devel-
oping Emacs.

M.1.2 File Comparison

Visual file comparisons are one of the most powerful capabilities provided by
Emacs. Emacs’ ediff function builds on the standard Unix diff command and
is therefore immediately available for Linux and Macintosh users. Windows users
must first install Rtools and place Rtools in the PATH (see Section F.6).
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Fig. M.1 ediff of two similar files. All mismatches between the two files are detected and
highlighted. The ediff control frame shows that we are currently in the third of three detected
differences between the two files. The matching sections of the third chunk are highlighted in light
pink in the top buffer and light green in the bottom buffer. The mismatching sections of the third
chunk are highlighted in darker pink in the top buffer and darker green in the bottom buffer.

For a simple example, let us compare the current version of our R script for a
homework exercise with the first version we started yesterday. Figure M.1 shows
the comparison.

M.1.3 Buffers

Emacs can work with many multiple files simultaneously. It brings each into a
buffer. A buffer is copy of a file within the Emacs editor. Any editing changes
made to the contents of a buffer are temporary until the buffer is saved back into
the file system. A buffer can hold a file, a directory listing, an interactive session
with the operating system, or an interactive instance of another running program.
Emacs allows you to open and edit an unlimited number of files and login sessions
simultaneously, running each in its own buffer. The files or login sessions can be
local or on another computer, anywhere in the world. You can run simultaneous
multiple sessions. The size of a buffer is limited only by the size of the computer.
One of us (RMH) normally has several buffers visible and frequently has hundreds
of open buffers (several chapters, their code files, their transcript files, the console
buffer for R, help files, directory listings on remote computers, handouts for classes,
and a listing of the currently open buffers).
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M.1.4 Shell Mode

Emacs includes a shell mode in which a terminal interaction runs inside an Emacs
buffer. The Unix terminology for the program that runs an interactive command
line session is a “shell”. There are several commonly used shell programs: sh is
the original and most fundamental shell program. Other Unix shell programs are
csh and bash. The MS-DOS prompt window (c:/Windows/System32/cmd.exe)
is the native shell program in MS Windows. We usually use the sh included in
Rtools as our shell under MS Windows.

A terminal interaction running inside an Emacs buffer is much more powerful
than one run in an ordinary terminal emulator window. The entire live login session
inside an Emacs buffer is just another editable buffer (with full search capability).
The only distinction is that both you and the computer program you are working
with can write to the buffer. This is exceedingly important because it means nothing
ever rolls off the top of the screen and gets lost. Just roll it back. The session can be
saved to a file and then is subject to automatic backup to protect you from system
crash or loss of connection to a remote machine.

M.1.5 Controlling Other Programs

A shell running in an Emacs buffer is normally used to run another program (R for
example). Frequently we can drop the intermediate step and have Emacs run the
other program directly. ESS provides that capability for R. The advantage of running
R directly through Emacs is that it becomes possible to design the interactivity that
allows a buffer containing R code to send that code directly to the running R process.

ESS (see Section M.2) builds on shell mode to provide modes for interacting with
statistical processes. The terminal interaction can be local (on the same computer on
which Emacs is running) or remote (anywhere else).

M.2 ESS

Figure M.2 is a screenshot showing an interactive Emacs session. Emacs is a pow-
erful program, hence the figure is quite dense. We discuss many of its components
in the following subsections.

The discussion here is based on Rossini et al. (2004). ESS provides:
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M.2.1 Syntactic Indentation and Color/Font-Based Source
Code Highlighting

The ESS interface includes a description of the syntax and grammar of each statisti-
cal language it knows about. This gives ESS the ability to edit the programming lan-
guage code, often more smoothly than with editors distributed with the languages.
The process of programming code is enhanced as ESS provides the user with a
clear presentation of the code with syntax highlighting to denote assignment, re-
served words, strings, and comments. The upper-left buffer (labeled emacsDemo.R)
in Figure M.2 contains an R script file. The mode-line for the buffer is in the “mode-
line” face indicating that this is the active buffer. The mode-lines for the other, in-
active, buffers in this figure are in the lighter-colored “mode-line-inactive” face. We
can tell from the ** in the mode-line that the file is still under construction. Those
two symbols would be replaced by -- once the file is saved.

In order to illustrate syntactic indentation, we show the statement fat.lm <-

lm(bodyfat ~ abdomin, data=fat) on two lines in Figure M.2. When we en-
tered the <RET> character after the comma, Emacs automatically indented the sec-
ond line of the statement and placed the cursor aligned with the first character after
the open paren.

The assignment arrow, a keyword in the language, is detected and colored in the
“constant” face. Comments indicated by “##” are colored in the “comment” face.
The cursor, represented by a blinking “|”, is redundantly located by the (11,13)

(indicating row and column in the file) in the mode-line. In this snapshot the cur-
sor immediately follows a closing paren “)”, hence both the closing paren and its
matching opening paren “(” are highlighted in the paren-match face. Mismatched
parens, as in Figure M.3, are shown in the paren-mismatch face.

Fig. M.3 Mismatched parens are shown in a glaring color to help protect the user from many
types of typographical errors.

M.2.2 Partial Code Evaluation

Emacs/ESS can send individual lines, entire function definitions, marked regions,
and whole edited buffers from the window in which the code is displayed for edit-
ing to the statistical language/program for execution. Emacs/ESS sends the code di-
rectly to the running program and receives the printed output back from the program
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in an editable Emacs buffer (the *R* buffer). This is a major improvement over cut-
and-paste as it does not require switching buffers or windows.

We show this twice in Figure M.2. The dropdown menu is set to show the various
options on which subset of the buffer will be sent over. The menu also shows the
key-stroke combinations that can be typed directly and thereby avoid using the menu
at all. The cursor is on the line anova(fat.lm) and that line was sent over by this
command.

The *R* buffer has just received the command (the hooked down arrow

↪→

in the
left margin shows the beginning of the output from the most recently executed line).
The command and its output are displayed. In addition to receiving and executing
lines sent over from the script file, the *R* buffer is also an ordinary R console and
the user can type directly into the *R* buffer.

ESS facilitates the editing of files of R scripts by providing a means for loading
and error-checking of small sections of code (as illustrated in Figure M.2). This
allows for source-level debugging of batch files.

M.2.3 Object Name Completion

In addition, for languages in the S family (S developed at Bell Labs, S+ from
TIBCO, and R) ESS provides object-name completion of user- and system-defined
functions and data, and filename completion for files in the computer.

M.2.4 Process Interaction

ESS builds on Emacs’s facilities to interface directly with the running R process.
The output of the package goes directly to the editable *R* text buffer in Emacs.
Emacs has historically referred to processes under its control as “inferior”, ac-
counting for the name inferior ESS (iESS) shown in the mode-line of the *R*

buffer in Figure M.2. This mode allows for command-line editing and for recalling
and searching the history of previously entered commands. Filename completion,
and object-name and function-name completion are available. Transcripts are easily
recorded and can be edited into an ideal activity log, which can then be saved. ESS
intercepts calls to the internal help system for R and displays the help files inside an
Emacs buffer (see the bottom left buffer in Figure M.2).
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M.2.5 Interacting with Statistical Programs on Remote Computers

ESS provides the facility to edit and run programs on remote machines in the same
session and with the same simplicity as if they were running on the local machine.

M.2.6 Transcript Editing and Reuse

Once a transcript log is generated, perhaps by saving an iESS buffer, transcript
mode assists with reuse of part or all of the entered commands. It permits editing
and re-evaluating the commands directly from the saved transcript. This is useful
for demonstration of techniques as well as for reconstruction of data analyses. There
currently exist functions within ESS for “cleaning” transcripts from the R, S+, and
SAS languages back to source code by finding all input lines and isolating them
into an input file.

By default transcript files (files with extensions *.Rout *.rt *.Sout *.st)
open into read-only buffers. The intent is to protect the history of your analysis
sequence. If you need to make them writable, use C-x C-q.

M.2.7 Help File Editing (R)

ESS also provides an interface for writing help files for R functions and packages
(see Appendix F). It provides the ability to view and execute embedded R source
code directly from the help file in the same manner as ESS normally handles code
from a source file. ESS Help mode provides syntax highlighting and the ability to
submit code from the help file to a running R process.

M.3 Learning Emacs

There are several ways to learn Emacs. Whichever you choose, it will give you
access to the most comprehensive editing system.
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M.3.1 GUI (Graphical User Interface)

Emacs provides a GUI (graphical user interface) with dropdown menus (shown
in Figure M.2) or with toolbar icons (not shown here). An excellent guide to menu-
based Emacs usage, with the delightful title “Emacs has no learning curve: Emacs
and ESS”, is available in Johnson (2015). Detailed help on Emacs is available from
the Help dropdown menu item.

M.3.2 Keyboard Interface

Emacs, in its present incarnation, goes back to 1984. A precursor goes back to
1976. One of us (RMH) started using Emacs about 1990. Emacs was originally
designed in a keyboard-only environment, long before mice and multi-windowed
“desktop” environments. We still prefer the keyboard as it is faster (once learned)
and has more capabilities than the menu-based GUI options. The dropdown menus
themselves show the keyboard equivalents. For keyboard-based usage use one or
more of

1. Tutorial. Enter “C-h t”. Then read the file and follow the instructions. You are
working with your own private copy of the TUTORIAL file, so you can practice
the keystrokes as suggested.

2. Manual. The manual is online in the hyperlinked Info system. It can be accessed
from the menu or by entering “C-h i” to bring up the Info: buffer.

3. Help. You can search within the dropdown Help menu. Or, to find help apropos
a topic, for example to answer the question “How do I save my current editing
buffer to a file?”, enter “C-h a save RET” and get a list of all commands with
save as part of their name. You probably want the command save-buffer and
will see that you can use that command by typing “C-x C-s” or by using the
files pull-down menu.

4. Reference Card to Emacs keystroke commands. The Emacs reference card is
in the directory accessed by “C-h r C-x d ../etc/refcards”. The English
card is in file refcard.pdf. Several other languages are also available as files
with names **-refcard.pdf. Reference cards for other Free Software Founda-
tion programs are also in the same directory.
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M.4 Nuisances with Windows and Emacs

When R has been started by an ordinary user, as opposed to Administrator, then
installed packages are placed into a personal library. The R GUI under Windows
uses the directory

"C:/Users/loginname/Documents/R/win-library/x.y"

as the location of your personal library. The *R* buffer inside Emacs uses
"C:/Users/loginname/AppData/Roaming/R/win-library/x.y"

as the location of your personal library. The notation x.y must be replaced by the
first two digits of your current version of R. For example, with R-3.3.0, "x.y"
would become "3.3". Neither will automatically see packages that were installed
into the directory used by the other. You must tell it about the other directory.

You can tell the R GUI to use the additional directory with the statement
.libPaths(

"C:/Users/loginname/AppData/Roaming/R/win-library/x.y")

You can tell *R* to use the additional directory with the statement
.libPaths(

"C:/Users/loginname/Documents/R/win-library/x.y")

M.5 Requirements

Emacs satisfies the requirements detailed in Section K.1.1.

1. ESS provides full interaction between the commands file, the statistical process,
and the transcript.

2. The statistical process runs in an Emacs buffer and is therefore fully searchable
and editable.

3. Cut and paste is standard.

4. Emacs comes with modes specialized for all standard computing languages (C,
C++, Fortran, VBA). ESS provides the modes for R and S+ (and for SAS and
several others). Each mode by default highlights all keywords in its language,
is aware of recommended indentation patterns and other formatting issues, and
has communication with its associated running program.

5. Emacs handles multiple files as part of its basic design.

6. Emacs has a LATEX mode, and therefore provides editing access to the best
mathematical typesetting system currently available anywhere.

7. Emacs has several text modes.

8. Several spell-check programs works with Emacs; we use ispell.
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9. Emacs permits embedding of graphics directly into the Emacs buffer.

10. Graphics in PDF, PostScript, and bitmap formats can be embedded into LATEX
documents.

11. Emacs includes encoding (Unicode) for all human languages. Enter C-H h to
display the HELLO file, which lists many languages and characters.



Appendix N

LATEX

We used LATEX (Lamport, 1994) as the document preparation system for writing this
book. LATEX knows all the intricacies of mathematical typesetting and makes it very
easy to include figures and tables into the manuscript. LATEX is the standard required
by many statistics and mathematics journals. LATEX can adapt to any standard style,
such as those used by book publishers and journals, or you can write your own.

The LATEX document preparation system is written as a collection of macros for
Donald Knuth’s TEX program (Knuth, 1984). LATEX adds to TEX a collection of
commands that simplify typesetting by letting the user concentrate on the structure
of the text.

TEX is a sophisticated program designed to produce high-quality typesetting,
especially for mathematical text. The TEX system was developed by Donald E.
Knuth at Stanford University. It is now maintained by CTAN, the Comprehensive
TEX Archiving Network (Comprehensive TEX Archiving Network, 2002). There are
several distributions available. We use MikTEX (Schenk, 2001) on Windows and
MacTEX (The TeX Users Group (TUG), 2014) on Macintosh.

The latex function in R (Heiberger and Harrell, 1994; Frank E Harrell et al.,
2014) may be used to prepare formatted typeset tables for a LATEX document. Several
tables in this book (8.1, 9.1, 12.4, 15.5, and 15.8) were prepared in this way.

N.1 Organization Using LATEX

There are several ways to approach LATEX. The way we used for this book was to
write each chapter in its own file, and then combine them into book using the style
file provided by our publisher Springer.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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N.2 Setting Equations

This is equation 8.1 as we typed it:

\begin{eqnarray*}

y_i = \beta_0 + \beta_1 x_i + \epsilon_i \cond{for $i=1,

\dots,n$}

\end{eqnarray*}

This is how it appears when typeset:

yi = β0 + β1xi + εi for i = 1, . . . , n

N.3 Coordination with R

The Second Edition of this book was written using the Sweave and Stangle func-
tions from the utils package. All R code is included within the LATEX source for the
book. Stangle reads the LATEX input files, isolates from the input files the actual
code that produced the tables and figures, and collects the code into the script files
that are included with the HH package. See help(Sweave, package="utils")

for details on writing using Sweave.

N.4 Global Changes: Specification of Fonts

In LATEX, it is very easy to make global changes to a document style. For example,
placing programs and transcripts into a verbatim environment takes care of the
font. Should we later decide that we would like a different monowidth font, say
“Adobe Courier” instead of the default “Computer Modern Typewriter”, we include
the single statement \renewcommand{\ttdefault}{pcr} and then immediately
ALL instances of the typewriter font will change. We illustrate in Table N.1.

Compare this simple change of a single specification in LATEX to the more labor-
intensive way of accomplishing the same task in a visual formatting systems (MS
Word, for example). In a visual formatting system, programs and transcripts must
be individually highlighted and then explicitly placed into Courier. Changing ALL
instances of the typewriter font requires manually highlighting and changing EACH
of them individually, one at a time.
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Table N.1 Switching the typewriter font (LATEX command \tt) in LATEX from the default “Com-
puter Modern Typewriter” to “Adobe Courier” and back.

This is the default Computer Modern Typewriter font.

%% switch to Adobe Courier

\renewcommand{\ttdefault}{pcr}

This is Adobe Courier font.

%% return to Computer Modern Typewriter
\renewcommand{\ttdefault}{cmtt}

And back to the Computer Modern Typewriter font.
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Word Processors and Spreadsheets

Word processing is moving sentences, paragraphs, sections, figures, and cross-
references around. Most word processors can be used as a text editor by manually
turning off many of the word processing features.

Spreadsheet software is used to operate on tables of numbers.

Microsoft Word and Microsoft Excel are the most prevalent word processor and
spreadsheet software systems. Most of what we say here applies to all such systems.

O.1 Microsoft Word

Microsoft Word is probably the most prevalent text editor and word processor today.

MS Word is configured by default as a word processor. It can be used as a text
editor by changing those default settings. The most critical features are the font and
the paragraph reflow. Courier (or another monowidth font in which all letters are
equally wide) should be used for program writing or for summary reports in which
your displayed output from R is included. The software output from R is designed
to look right (alignment and spacing) with monowidth fonts. It looks terrible, to
the point of illegibility, in proportional fonts. See examples in Section A.4 and Ap-
pendix L. Other word processor features to turn off are spell checking and syntax
checking, both of which are designed to make sense with English (or another natural
language) but not with programming languages.

© Springer Science+Business Media New York 2015
R.M. Heiberger, B. Holland, Statistical Analysis and Data Display,
Springer Texts in Statistics, DOI 10.1007/978-1-4939-2122-5
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If you are using an editor that thinks it knows more than you, be very sure that
the *.r, *.Rout, and *.rt files are displayed in Courier and fit within the margin
settings of the word processor.

O.1.1 Editing Requirements

MS Word satisfies some of the requirements detailed in Section K.1.1.

1. MS Word can edit the commands file. It does not interact directly with the
running statistical process; manual cut-and-paste is required.

2. The output from the statistical process is in a window independent of MS Word.
The output can be picked up and pasted into an MS Word window.

3. Cut and paste is standard.

4. When checking is on, MS Word will by default inappropriately check computer
programs for English syntax and spelling.

5. MS Word handles multiple files as part of its basic design.

6. Reports can be written and output text can be embedded into them;

7. MS Word has syntax and spell-checking facilities limited to the natural lan-
guage (English in our case).

8. Graphics can be pasted directly into an MS Word document.

9. Mathematical formulas can be entered in an MS Word document.

10. SWord and other connections between R and MS Word.

11. MS Word works with Unicode, providing access to all character sets in all
human languages. On the Insert tab, click Symbols and then More Symbols.
In the font box, find Arial Unicode MS.

O.1.2 SWord

SWord (Baier, 2014) is an add-in package for MS Word that makes it possible to
embed R code in an MS Word document. The R code will be automatically executed
and the output from the R code will be included within the MS Word document.
SWord is free for non-commercial use. Any other use will require a license. Please
see Section D.1.3 for installation information.
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O.2 Microsoft Excel

Microsoft Excel is probably the most prevalent spreadsheet program today.

We believe MS Excel is well suited for two tasks: as a small-scale database
management system and as a way of organizing calculations. We do not recommend
Excel for the actual calculations.

O.2.1 Database Management

R (and S+ and SAS) can read and write Excel files. Since many people within an
organization collect and distribute their data in Excel spreadsheets, this is a very
important feature.

O.2.2 Organizing Calculations

R can be connected directly to Excel on Windows via RExcel (Baier and Neuwirth,
2007) using DCOM, Microsoft’s protocol for exchanging information across pro-
grams. See Appendix D for further details and for download information. Used in
this way, Excel can be used similarly to the ways that Emacs and MS Word are
used. Excel can be used to control R, for example by putting R commands inside
Excel cells and making them subject to automatic recalculation. Or R can be in
control, and use Excel as one of its subroutines.

O.2.3 Excel as a Statistical Calculator

We believe Excel is usually a poor choice for statistical computations because:

1. As of this writing (Excel 2013 for Windows and Excel 2011 for Macintosh) at
least some of the built-in statistical functions do not include even basic numerical
protection.

Table O.1 and Figure O.1 show the calculation of the variance of three numbers
by R’s var function and Excel’s VAR function. Figure O.1 shows a simple set
of variance calculations where Excel reveals an algorithmic error. We show the
erroneous number as a hex number in Table O.2. For comparison, Table O.1
shows the correct calculations by R.
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Fig. O.1 Calculation of the variance by Excel for the sequence (10k) + 1, (10k) + 1, (10k) + 1 for
several values of k. The real-valued result for all values of k is exactly 1. The 2.833 × 1022 value
shown for k = 27 is the indication of an erroneous algorithm in Excel. We see this for Excel 2013
on Windows and Excel 2011 on Macintosh. The floating point result for k = 0 : 15 is exactly 1
as shown. The correct floating point result for all k >= 17 is exactly 0. The floating point value 4
for k = 16 is correct. We illustrate the correct floating point behavior in Section G.12. Table O.2
shows the hexadecimal display for the erroneous value.

Table O.1 Calculation of the variance by R for the sequence (10k) + 1, (10k) + 1, (10k) + 1 for
several values of k. The real-valued result for all values of k is exactly 1. R gets the correct floating
point variance for all values of k. The floating point result for k = 0 : 15 is exactly 1. The floating
point value 4 for k = 16 is correct. The floating point result for k >= 17 is exactly 0. We illustrate
the correct floating point behavior in Section G.12.

> k <- c(0, 1, 2, 15, 16, 17, 26, 27, 28)

> cbind(k=k, var=apply(cbind(10^k + 1, 10^k + 2, 10^k + 3), 1, var))

k var

[1,] 0 1

[2,] 1 1

[3,] 2 1

[4,] 15 1

[5,] 16 4

[6,] 17 0

[7,] 26 0

[8,] 27 0

[9,] 28 0
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Table O.2 The first statement shows the hex display of the number Excel shows in Figure O.1
as the result of var(1027 + 1, 1027 + 2, 1027 + 3). It is very close to a pretty hex number suggesting
that there is a numeric overflow somewhere in the algorithm. The second statement shows the hex
display of the three input numbers. They are all identical to machine precision.

> sprintf("%+13.13a", 28334198897217900000000)

[1] "+0x1.8000000000007p+74"

> as.matrix(sprintf("%+13.13a", c(10^27 + 1, 10^27 + 2, 10^27 + 3)))

[,1]

[1,] "+0x1.9d971e4fe8402p+89"

[2,] "+0x1.9d971e4fe8402p+89"

[3,] "+0x1.9d971e4fe8402p+89"

Earlier versions of MS Excel got different wrong answers for the variance of
three numbers. Most notably MS Excel 2002 gets the right answer for 107 and
the wrong answer for 108, suggesting that it was using the numerically unstable
one-pass algorithm. Later releases got different sets of wrong answers.

2. Most add-in packages are not standard and are not powerful. If add-ins are used
along with an introductory textbook, they will most likely be limited in capability
to the level of the text. They are unlikely to be available on computers in a work
situation.

RExcel is an exception. It uses R from the Excel interface and therefore has all
the power and generality of R.
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A
abc 456
abrasion 310
acacia 573
animal 423
anneal 535
apple 502

B
balance 587
barleyp 421
batch 177
bean 535
blood 191
blyth 548
breast 260
budworm 605
byss 628

C
c3c4 232
catalystm 167, 189, 225
cc176 427
cereals 83
chimp 536
circuit 495
concord 110, 373
crash 524
crime 573

D
darwin 591
diamond 261
display 377
distress 592

draft70mn 83, 108, 191
drunk 539

E
eggs 472
elnino 643
employM16 692
esr 627

F
fabricwear 325, 344
fat 237, 263, 264, 285,

470
feed 418
filmcoat 441
filter 472
furnace 424

G
girlht 261
gunload 448

H
har1 164, 582, 583, 586
har2 165
hardness 110, 277, 373
heartvalve 472
hooppine 424
hospital 373
hotdog 332
houseprice 273, 274
hpErie 312, 343, 375
htwt 316
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I
icu 625, 627
income 261
intubate 575
ironpot 424

J
jury 575

K
kidney 373

L
lake 260
leukemia 627
lifeins 374
longley 287
lymph 610

M
manhours 313
market 476
mice 192
mileage 374
mortality 573
mpg 424
muscle 260

N
njgolf 88
notch 191

O
oats 482
operator 189
oral 575
ozone 688

P
patient 190
political 575
potency 191
pox 591
product 674
psycho 628
pulmonary 229
pulse 189, 590

R
radioact 536
rent 345
retard 422
rhiz.alfalfa 421
rhiz.clover 421, 468

S
salary 83
salinity 189
salk 563
seeding 591
selfexam 573
shipment 313
sickle 190
skateslc 422
spacshu 595, 598
spindle 476
sprint 313
surface 477

T
tablet1 191, 592
teachers 140
testing 421
tires 437, 474
tongue 625
tser.mystery.X 662
tser.mystery.Y 666
tser.mystery.Z 670
tsq 684
turkey 178, 179, 207, 450, 480
tv 39, 93, 708

U
usair 109, 306
uscrime 109, 313

V
vocab 130, 578, 579
vulcan 473

W
washday 475
water 110, 343
weightloss 201
weld 474
wheat 536
wool 472
workstation 397
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Symbols
Φ 51
Φ 70
α 60, 63
β 63
∩ 29–30
χ2 38
∪ 29–30
ε 285
ε 632
η 37
μ 36, 44
⊥
X 38
ρ 44
P (uppercase ρ) 45
σ 36, 44
σ2 36, 268
t distribution 816
X+ 268
= 271
˜ 271

A
absolute-sum-2 scaling 187, 222
accuracy 763
ACF see autocorrelation
acid phosphatase 610
ACM ix
added residual plots 305
added variable plots 301–304, 306, 356,

359
AEdotplot 120
Agresti 126
AIC see Akaike information criterion
Akaike information criterion 298, 309, 639
Akaike, Hirotugu 298

algebra 272, 775
algorithm 785
alias 479, 481, 494
alignment 15, 708, 837

time series 633
alternative hypothesis) 203
analysis of covariance see ANCOVA
analysis of deviance table 605
analysis of variance see ANOVA, 171
analysis of variance table see ANOVA table
analysis with concomitant variables see

ANCOVA
ANCOVA 113, 330–343, 428, 429, 434, 479,

501–512, 516, 520, 521
ancova 503
ANCOVA dummy variables 538
ANCOVA plot 353, 355, 428, 433, 513
ANOVA 167–193, 332, 377–425

computation 425
ANOVA table 168–172, 240, 347, 349, 351,

352, 354, 355, 386
antilogit 593, 594
ARIMA 632, 635
arithmetic 272
ARMA 636
ASCII format 17, 21
aspect ratio 841
asymmetry 104
autocorrelation 636
autoregression (AR) 633

B
backshift operator 632
backslash 705, 706
barchart 567
barplot 525, 532
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baseline 570
batch 834
Bell Labs ix
bell-shaped curve 49
Bernoulli distribution 604
beta curve 64, 65, 69, 817
beta distribution 808
bias 59, 79
binary format 757
binomial distribution 48, 578–579, 822
binomial test 579
binomial, normal approximation 48
bitmap graphics 841
bivariate discrete distribution 539
bivariate normal distribution 45, 46
block 387
blocking factor 387, 388
bmp 841
Bonferroni inequality 200
Bonferroni method 200–201
Box, George E. P. 632
Box–Cox transformations 102, 472, 530
Box–Jenkins method 632
boxplot 42–44, 114, 333, 401, 449, 478

with control of position 114
Brown–Forsyth test 189–190
browser 712
build a package 751, 752
bunching 305
bwplot 437
byssinosis 628

C
Caffo 126
calculus 780, 781
cancellation 762, 763
cancer 609
carryover effect 497
Cartesian product 111–114, 121, 385
case 345, 558
case-control study 558
categorical variable 539
Cauchy distribution 809
cell 383, 539
cell means 383
Central Limit Theorem 54
central limit theorem 55, 56
Chambers, John M. ix
changeover design 497
chi-square analysis 539–545
chi-square distribution 543, 809
Cholesky Factorization 793
class variable 13

cluster random sampling 77
Cochran option 135
Cochran, William G. 562
code 20
coded data 421
coding 13, 207, 315–316, 321, 325, 342,

421
coefficient of determination 241, 242, 244,

256, 257, 298, 309
cohort study 559
collinearity 287–292, 373
color choice 113
color deficient vision 107
color palette 570
color vision 107
ColorBrewer 113
column space 324
combinations 805
command file 834
command language ix
common scaling 621
comparison value 527–529
computational precision 753
computing note 203
concomitant variable 330, 331
concomitant variables, analysis of see

ANCOVA
conditional probability 30
conditional sums of squares 466
conditional tests 464–470
confidence bands 251, 254, 259

logistic regression 598
confidence coefficient 60
confidence interval 58–63

matched pairs of means 139–141
one-sided 61
population mean 123, 129–130
population proportion 126–127
population variance 131
two means 134–136
two proportions 133–134
variance ratio 138

conflicts 712
conflicts, names 712
confounding 479–495, 559
conservative 200
consistency 60
console 704
contingency table 8
contingency tables 539–575
continuity 49
contrast matrix 224, 322
contrast vector 186
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contrasts 179, 183–188, 222, 223, 225, 315,
316, 322–327, 419, 420, 451, 622

arbitrary 222–224
orthogonal 181–182, 224–228, 489, 490

controls 558
Cook’s distance 360, 362, 366–368, 372
Cook, R. Dennis 362, 366
correction for continuity 49
correlation 44–47
correlation coefficient 243
Courier 837
court system 66
covariance 44–47
covariance adjustment 331, 336, 338, 511
covariance matrix 44, 45
covariance, analysis of see ANCOVA
covariate 330–332, 335, 336, 343
Cp 297–299, 309
Cp plot 299, 310
CRAN 749
cross-product ratio 552
crossing 272, 425, 451, 453, 482
crossover design 479, 497–501
cumulative distribution 34, 35

D
Daniel, Cuthbert 297
data

categorical 13
continuous 14
count 13
discrete 14
importing 16
interval 13, 14, 578
missing 17, 21, 317
multivariate 14
ordered 13, 14, 578, 590
ratio 13, 14, 578
rearrangement 18
types of 13

data display 2, 239
data snooping 173
database management system 17
datasets 16
datasets for HH 19–20
debugger 712
debugging 712
dedication v
degrees of freedom 52, 277
deleted predicted value 360
deleted regression coefficients 360
deleted standard deviation 360, 364
deviance 605
DFBETAS 360

DFBETAS 362, 369–370
DFFITS 360
DFFITS 362, 367–368
diagnostic

logistic regression 619
diagnostic plot 528, 529

time series 646, 678
diagnostics

time series 638, 652
dichotomous 54, 273, 593, 623, 627
dichotomous response variable 622
differencing 635
direct effect 497
directory structure 834
disastrous cancellation 762, 763
discrete distribution 539
discrete uniform distribution 822
discretization 327
distribution see the name of the particular

distribution
diverging stacked barchart 115, 567
dotplot 522
dummy variable 315–321, 325, 336, 343,

456, 461–465, 534, 537
dummy variables 224
Dunnett procedure 201–206, 513–515

E
ECDF 256
ecological correlation 87, 441, 552
editors 831
efficiency 71, 385, 504
eigenvalues 796
elementary operations 783
Emacs 709, 851–861

buffer 853
shell mode 853

EmacsRot 855
Empirical CDF 256
empirical cumulative distribution plot 257,

258
EMS see expected mean squares, 488
epsilon, machine 754
error see residuals
ESS 851–861
estimate 57
estimation 55–62, 638
estimator 57

point 58–60
exact test 580
Excel, Microsoft 17, 869–871
expectation 36–37
expectation of sum 37, 269
expected mean squares 393
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expected mean squares 175–176, 192, 386,
393, 448, 450, 451, 488

experimental units 481, 492
exponential distribution 810
externally standardized residuals see

Studentized deleted residuals
extra sum of squares 276

F
F 35
F-distribution 811
F-test 134, 139, 168, 171, 175–177, 186,

188, 240, 242, 590
factor 13, 167, 539
factorial 804
family (of related inferences) 199
familywise error rate 172, 199, 200
FAQ 7.22 707
FAQ 7.31 15, 753
figure 20
find 712
firewall 702
Fisher’s exact test 545–548, 564, 573
Fisher, Ronald A. 545
fitting constants 466, 467
fixed effects 167, 169, 388
fixed factor 169
fixed-width font 840
floating-point arithmetic 753
folding 710, 839
font 708, 837
forecasting 641, 661
foreign 17
formatting 840
forward slash 705, 706
fractional factorial design 479–481, 492–496
fractional replicate 481, 492
full model 274
FWE see familywise error rate

G
Gaussian elimination 268
generalized inverse 268, 801
generalized linear model 595, 604
geometric distribution 823
geometry 270
geometry of matrices 795
gif 841
glm see generalized linear model
Gnu Public License 699
GOF see goodness-of-fit
goodness-of-fit test 148–153, 158–160, 544,

578
portmanteau 639

GPL 699
Gram–Schmidt algorithm 789
grand mean 384
granularity 305
graph 401
graphical design 2, 9, 18, 116–121, 213,

620–622
ACF plot 695
ANCOVA plot 119, 332, 341, 342
ARIMA-trellis plot 119
barplot 525
boxplot 401, 456, 478
common scaling 621
construction 695
interaction plot 119, 385
logistic regression plot 117
MMC plot 119, 212–231
odds-ratio CI plot 121, 557, 558
ODOFFNA plot 119, 529, 530
regression diagnostic plots 350, 354, 371,

372
seasonal time series 650
squared residual plot 120
time series 642–645, 692–696
time series plot 694

graphical display
logistic regression 596–599

graphical user interface 116
graphics 841
GUI see graphical user interface

H
Haenszel, William 559
hat matrix 268–270, 363, 375
Heiberger, Mary Morris v
Helmert contrasts 323
hexadecimal notation 756, 871
HH 16, 715
HH package 705
hhcapture 20
hhpdf 20
HHscriptnames 706, 715, 716
HHscriptnames 20
hierarchical factorial relationship 397
high leverage point 269
higher way designs 427–477
histogram 39–40
Hochberg procedure 201
Holland, Andrew v
Holland, Ben v
Holland, Irene v
Holland, Margaret v
homogeneity of variance 114
hov see variance, homogeneity of
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Hsu, Jason 217
hypergeometric distribution 48, 545–547,

824
hypothesis test

matched pairs of means 139–141
one-sided 68
population mean 124–126
population proportion 127–129
population variance 131
two means 135–136
two variances 138
two-sided 68

hypothesis testing 62–67, 73, 74

I
identification 637
ill-conditioned data 287
imputation 17–18
indentation 709
independence 30, 33, 35, 542–544
indicator variable see dummy variable
inductive inference 2
inexplicable error messages 712
inexplicable messages 712
influence 350, 351, 367, 372
install 749
install.packages 699
integer scaling 188
interaction 5, 181, 330, 350, 378–385

models without 417–420
interaction plot 379, 385, 394, 409, 410, 420,

422–424, 430, 432, 444, 473, 474, 487,
495, 499, 526, 530, 531

internally standardized residuals see
standardized residuals

internet 702
intersection see ∩
isomeans grid 219

J
Jenkins, Gwilym M. 632
jitter 598
judicial system 66

K
Kolmogorov–Smirnov test 148
Kruskal–Wallis test 590–591

L
l’Hôpital’s rule 104
ladder of powers 104, 530, 532
ladder-of-powers plot 114
lag 632

language
command ix

LATEX 837, 863
LATEX 20
Latin square design 435–440, 474, 481, 492,

497, 498, 500, 504
lattice 517
lattice 707
latticeExtra 115
latticeExtra x, 156, 717
latticeExtra 118
LD50 605
least squares 236, 238, 239, 267, 314
least-squares geometry 263
least-squares plane 264
level 13, 167
leverage 250, 269, 270, 360, 362–364, 366
library, personal 700, 860
likelihood ratio 161
likelihood ratio test 162
likert 567
Likert scale 567
line width 839
linear dependence 322
linear equations 803
linear Identity 193, 194
linear identity 248
linear independence 786
linearly independent 316
link 593
link function 594, 603, 604
Linux 700
lmatPairwise 225
load 749
logistic distribution 813
logistic regression 114, 593–629
logistic regression plot 609
logit 593, 601, 813
logit scale 601
lognormal distribution 812
LogXact 624
longitudinal study 516
Loops 770
lung 628
lymph nodes 609

M
machine epsilon 760
machine epsilon 754
Macintosh 700
MAD 1, 190
main effect 384, 480
Mallows, Colin 297, 298
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Mann–Whitney test 586–590
Mantel, Nathan 559
Mantel–Haenszel test 559–565, 575
marginal means 383
marginal panels 113
marginality 466
margins 839
matrix

geometry 795
matrix algebra 783
matrix factorization 788
maximum likelihood 161, 236
maximum likelihood estimation 161–162
mean polish 528
mean square

error see mean square, residual
residual 242–244, 247, 248

mean square, residual 297
mean–mean display see MMC plot
median 37, 60
median polish 528
method of fitting constants 466
microplot 430, 431
microplots 120
Microsoft 867
Minitab 773
minus sign 838, 847
missing data 17, 21, see data, missing
missing values 17, 21
mixed model 393–394
MMC 431
MMC plot 175, 187, 206, 210–231, 381,

405, 408, 412–414, 435, 440, 443, 515
MMC, split plot 486, 489, 491
model 57
model formula 271
model specification 271–272, 450, 451,

456–462, 622
mono-width font 840
monowidth font 837
Moore–Penrose generalized inverse 268,

801
mosaic plot 114
moving average (MA) 634
mpfr 756
MSE see mean square, residual
multicollinearity see collinearity
multinomial distribution 828
multiple comparison procedures 172–175,

199–232, 513
multiple precision floating point 756
multiplicity 200, 207–208
multivariate distribution 44, 45
multivariate normal distribution 46, 783, 829

N
NA 21
name conflict 712
name conflicts 712
negative binomial distribution 825
Nelder, John A. 466
nested factorial experiment 448–453
nesting 272, 397–398, 411, 412, 448–453
new observation 247–252
New Zealand 572
Newton’s method 782
NID 169, 235, 356, 383
no-intercept models 261, 281
nominal variable 13
nonadditivity 527
noncentral 71, 74
noncentral chi-square distribution 818, 819
noncentral distribution 817–818
noncentral F distribution 818, 820
noncentral t distribution 817–819
noncentrality parameter 817, 818
nonparametric methods 577–591
nonparametric procedures 169
normal approximation to the binomial 48, 49
normal distribution 49–50, 52, 53, 55, 56,

59, 62–64, 69, 70, 72, 74, 144, 814
normal equations 239, 268
normal probability plot 152–157, 255, 357,

358
normalized scaling 187
notch 43
numerical stability 763

O
O(n) 785
O.C. curve see operating characteristic curve
Object Oriented Programming 196, 197
odds 552–557, 593, 601
odds ratio 552–557, 559, 575, 624
odds scale 601
ODOFFNA 119
odoffna see one degree of freedom for

nonadditivity
one degree of freedom for nonadditivity

524–536
online files 16
OOP 196, 197
operating characteristic curve 63–65, 69, 73,

74, 817
operator symbols 272
optimization 781
order statistics 37
ordered categorical scale 567
ordered factor 326
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orientation 478
origin, regression through 261, 281
orthogonal basis set 406
orthogonal basis set 408, 413, 788
orthogonal contrasts see contrasts,

orthogonal, 405, 408, 412, 413
orthogonal matrix 783
orthogonal polynomials 325–330, 342, 793
orthogonal transformation 787
OSX 700
outlier 365, 577–579, 581, 582, 587

P
p-value 67
PACF see autocorrelation
package 749
paired t-test 136, 581
pairwise 225
parameter 2
parameterization 323
parsimony 287, 292
partial F-tests 274–277
partial correlation 303
partial residual plots 301–306, 357, 359
partial residuals 301, 303, 305
pdf 841
permutations 804
personal library 700, 860
Peruggia, Mario 217
placebo 139, 558, 559
plots 481
p.m.f. see probability mass function
png 841
point cloud 264, 270
point estimator 58
Poisson distribution 165, 825
polynomial 325
polynomial contrasts 323, 325–330, 344,

489
polynomial function 632
polynomial model 277–281, 292
pooling 134, 417
population 2
population pyramid 573
portmanteau goodness-of-fit test 639
position 114
power 63, 142, 176, 200, 577, 818
power curve 63–65, 69, 73, 74, 817
power transformations 102
powers, ladder of 104
precision 15–16, 60, 328, 756, 758,

763
precision, computational 753
prediction 285–286

prediction bands 251, 254, 259
logistic regression 597, 598, 601

prediction interval 250–253, 260, 285–286
predictor matrix 270
predictor variable 263, 264, 273, 315, 316,

327
Preface vii
presentation of results 847
principle of marginality 466
probability 29–31
probability distribution see the name of the

particular distribution
probability distributions 30–54
probability mass function 33
probability scale 601
probit regression 595
programming style 845
projection matrix 268, 794
proportion 624
proportional font 840
prospective study 558–559
proxy 702
ps 841
psychometric scale 567

Q
QR decomposition 508, 788
quadratic form 787
quadratic identity 193, 194, 248
quadratic model 278–280
quantile plot 152–157, 164
quartiles 42, 43
questionnaire 567
quotation marks 839

R
R 2, 112, 699
R Development Core Team x
R language 708
R2 see coefficient of determination

adjusted 241, 242, 298, 309
r-f spread plot 256
random effcts 383
random effects 167, 173, 175, 382, 386, 388,

393–394, 448
random factor 173
random sample 2
random sampling 75
random shock 632
random variable 29–38
random vector 44, 783
randomization 75
randomization test 580



896 Index

randomized complete block design 388–390,
504

rank 14, 578, 582–591, 787
raster graphics 841
rating scale 567
RCBD see randomized complete block

design
Rcmdr 701, 719
recover 712
reduced model 274
regression analysis

diagnostics 345–375
multiple linear regression 263–310
simple linear regression 235–260
using dummy variables 315–341

regression coefficients 236, 238, 241, 243,
247, 249, 250, 266–268, 275, 311, 315,
321, 324, 325, 347, 349, 351

regression diagnostics 117, 254–257
relative risk 552–557
repeated measures design 497
reshape data 18
residual effect 497
residual effects design 497–501
residual mean square see mean square,

residual
residual plot 197, 254–256, 353, 356–357,

371, 372, 848
residual sum of squares see sum of squares,

residual
residuals 238, 247, 268
Resolution 493
resolution 841
response surface 421
response surface methodology 489
retrospective study 558–559, 573
RExcel 17, 700, 701, 733
rhizobium 400
risk factor 558
Rmpfr 756
root mean square error 240
round to even 758
rounding 15–16, 758
Rtools 702
r.v. see random variable

S
S+ x
S-Plus x, 112
sample 2
sample proportion 593

models 623
sample size 63
sample size determination 142–148

sampling 74–78
sampling distribution 54
SAS 372, 773
Satterthwaite option 136
scaled deviation 543
scaling 222
scatterplot 88–89, 114
scatterplot matrix 89–92, 95–100, 108,

116–117, 237, 259, 270, 273, 274, 276,
293, 307, 308, 317, 346, 348, 350, 356,
385, 518, 519, 609, 615, 617, 618

Scheffé procedure 206–209, 211
screenshots 702, 703, 711
script file 706, 834
s.d. see standard deviation
seasonal models 648–649
semantics 272
sequential sums of squares 466
sequential tests 464–470
setInternet2 702
Shapiro–Wilk test 154, 357
shiny 9, 45, 47, 50, 63, 65, 73, 146, 699,

743–747
sign test 578–582
signed rank distribution 826
significant 67
significant digits 763
simple effects 384, 410–416, 441–447, 474
simple random sampling 75
Simpson’s paradox 441, 548–552, 575
simultaneous confidence intervals 172–173
singular value decomposition 797
skewness 38–39
slash 705, 706
small multiples 114
space shuttle 595
spelling 833
split plot design 479, 481–490
splom see scatterplot matrix
spreadsheet 867
sprintf 756
Minitab 773
squared residual plot 239, 265
stacked barchart 567
standard deviation 36
standard error 54, 240, 245, 251
standard error of estimate 240, 269
standard error of sample mean 78–79
standardized residuals 360, 365–366
Stangle 20, 835
start value 102
stationarity 631
statistic 2
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statistical model 57, 169, 267, 311, 382–383,
448, 481

statistically significant 67
statistics 2
statistics profession 3
stem-and-leaf display 41, 317, 318, 579, 581
stepwise regression 292, 293, 297–298

all subsets 297
backward elimination 297
forward selection 297

stochastic process 632
stratified random sampling 76–77
strip label 92
Student’s t distribution 50–52, 816, 817
Studentized deleted residuals 360, 362,

365–367
Studentized Range Distribution 396
Studentized range distribution 172, 396,

815
subplot 481
sufficiency 60
sum contrasts 323, 456–463
sum of random variables 37, 46
sum of squares 268

regression 241, 242
residual 240–242, 244
total 241, 242, 244

sum, expectation of 37
sums of squares 469
surveys 5
Sweave 20, 835
SWord 868
symmetry 98, 100
syntax 272
syntax highlighting 832
systematic random sampling 78

T
t distribution 148
t distribution 50–52
t-test 140, 141, 253, 254, 581,

586
text editors 852, 867
tif 841
time series analysis 631–697
Times Roman 837
total sum of squares see sum of squares,

total
trace 712
trace factor 385
transcript 20
transformation 39, 100–106, 169, 306, 356,

577, 593
treatment 387

treatment combinations 383, 492
trellis 707
Trellis paradigm 111–113
Tukey procedure 172–173, 201, 211–212,

216, 338, 378, 380, 381, 395, 403–405,
408, 414, 431, 435, 437–440, 443

Tukey, John 38, 42, 524
Type I error 63–69
Type I Sum of Squares 272, 466–471
Type II error 63–66, 69, 817, 818
Type II Sum of Squares 466–467
Type III Sum of Squares 466
Type III Sum of Squares 380, 382, 466–471
Type IV Sum of Squares 467
typography 837

U
unbalanced design 468
unbalanced sampling 398
unbiased 59
Unicode 833
uniform distribution 816
union see ∪

V
values

missing 17, 21
variable selection 292–301
variance 36–37, 60, 870, 871

accuracy 763
homogeneity of 169, 188–190

variance function 603
variance inflation factor 291–293, 373
variance of median 60
variance stabilization 101, 530
variance, analysis of see ANOVA
variance-covariance matrix see covariance

matrix
vector graphics 841
Venables, William N. 466
VIF see variance inflation factor
vision, color 107

W
weibull distribution 817
weighted squares of means 466, 467
Welch two-sample t-test 136
whole plot 479, 481
whole plot error 482
Wilcoxon distribution 827
Wilcoxon signed-ranks test 582–586
Wilcoxon, Frank 582, 586
Wilk–Shapiro test 154, 357
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Windows 700, 701, 733, 860
WindowsPath 706
wmf 841
word processing 840
word processing software 710
word processor 867
Word, Microsoft 867, 868
working style 831
write a function 751, 752
writing style 837, 844, 847

X
X+ 268
x-factor 385
XLConnect 17, 703
xyplot 117

Y
Yates, Frank 466

Z
zapsmall 760
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