


Design and Analysis 
of Experiments 
Volume 1 

Introduction to Experimental Design 
Second Edition 

Klaus Hinkelmann 
Virginia Polytechnic Institute and State University 
Department of Statistics 
Blacksburg, VA 

Oscar Kempthorne 
Iowa State University 
Department of Statistics 
Ames, IA 

B I C E N T E N N I A L  

B I C E N T E N N I A L  

WILEY-INTERSCIENCE 
A John Wiley & Sons, Inc., Publication 



This Page Intentionally Left Blank



Design and Analysis 
of Experiments 



T H E  WlLEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS 

G a c h  generation has its unique needs and aspirations. When Charles Wiley first 
opened his small printing shop in lower Manhattan in 1807, it was a generation 
of boundless potential searching for an identity. And we were there, helping to 
define a new American literary tradition. Over half a century later, in the midst 
of the Second Industrial Revolution, it was a generation focused on building the 
future. Once again, we were there, supplying the critical scientific, technical, and 
engineering knowledge that helped frame the world. Throughout the 20th 
Century, and into the new millennium, nations began to reach out beyond their 
own borders and a new international community was born. Wiley was there, 
expanding its operations around the world to enable a global exchange of ideas, 
opinions, and know-how. 

For 200 years, Wiley has been an integral part of each generation’s journey, 
enabling the flow of information and understanding necessary to meet their needs 
and fulfill their aspirations. Today, bold new technologies are changing the way 
we live and learn. Wiley will be there, providing you the must-have knowledge 
you need to imagine new worlds, new possibilities, and new opportunities. 

Generations come and go, but you can always count on Wiley to provide you the 
knowledge you need, when and where you need it! 

4 

WILLIAM J. PESCE PETER BOOTH WILEY 
PRESIDENT AND CHIEF EXECUTIVE OmCER CHAIRMAN OF THE BOARD 



Design and Analysis 
of Experiments 
Volume 1 

Introduction to Experimental Design 
Second Edition 

Klaus Hinkelmann 
Virginia Polytechnic Institute and State University 
Department of Statistics 
Blacksburg, VA 

Oscar Kempthorne 
Iowa State University 
Department of Statistics 
Ames, IA 

B I C E N T E N N I A L  

B I C E N T E N N I A L  

WILEY-INTERSCIENCE 
A John Wiley & Sons, Inc., Publication 



Copyright 0 2008 by John Wiley & Sons. Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

KO part of this publication may be reproduced, stored in a retrieval system. or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning. or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act. without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc.; 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, ZJ 
07030, (201) 748-601 1. fax (201) 748-6008. or online at http://www.wiley.com/go/permission. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book. they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental. consequential, or other damages. 

For general information on our other products and services or for technical support, please contact our 
Customer Care Department within the United States at (800) 762-2974, outside the United States at 
(317) 572-3993 or fax (317) 572-4002. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may 
not be available in electronic format. For information about Wiley products. visit our web site at 
www.wiley.com. 

Wiley Bicentennial Logo: Richard J .  Pacific0 

Library of Congress Cataloging-in-Publication Data: 

Hinkelmann, Klaus, 1932- 

Kempthome. - 2nd ed. 
Design and analysis of experiments / Klaus Hinkelmann, Oscar 

v. cm. - (Wiley series in probability and statistics) 
Includes index. 
Contents: v. 1. Introduction to experimental design 

1. Experimental design. I. Kempthome, Oscar. 11. Title. 
ISBN 978-0-471-72756-9 (cloth) 

QA279.K45 2008 
519.5'7-dc22 2007017347 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 



Contents 

Preface to the Second Edition 
Preface to the First Edition 

xvii 
xxi 

1 The Processes of Science 
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1.1 . 1 Observations in Science . . . . . . . . . . . . . . . . . . . .  
1.1.2 Two Types of Observations . . . . . . . . . . . . . . . . . . .  
1.1.3 From Observation to Law . . . . . . . . . . . . . . . . . . .  

1.2 DEVELOPMENT OF THEORY . . . . . . . . . . . . . . . . . . . .  
1.2.1 The Basic Syllogism . . . . . . . . . . . . . . . . . . . . . .  
1.2.2 Induction, Deduction, and Hypothesis . . . . . . . . . . . . .  

1.3 THE NATURE AND ROLE OF THEORY IN SCIENCE . . . . . . .  
1.3.1 What Is Science? . . . . . . . . . . . . . . . . . . . . . . . .  
1.3.2 Two Types of Science . . . . . . . . . . . . . . . . . . . . .  

1.4 VARIETIES OF THEORY . . . . . . . . . . . . . . . . . . . . . . .  
1.4.1 Two Types of Theory . . . . . . . . . . . . . . . . . . . . . .  
1.4.2 What Is a Theory? . . . . . . . . . . . . . . . . . . . . . . .  
THE PROBLEM OF GENERAL SCIENCE . . . . . . . . . . . . . .  
1.5.1 Two Problems . . . . . . . . . . . . . . . . . . . . . . . . .  
1 S .2  The Role of Data Analysis . . . . . . . . . . . . . . . . . . .  
1 S .3  The Problem of Inference . . . . . . . . . . . . . . . . . . .  

1.6 CAUSALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.6.1 Defining Cause. Causation. and Causality . . . . . . . . . . .  
1.6.2 The Role of Comparative Experiments . . . . . . . . . . . . .  

1.7 THEUPSHOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.8 WHAT IS AN EXPERIMENT? . . . . . . . . . . . . . . . . . . . .  

Absolute and Comparative Experiments . . . . . . . . . . . .  
1.8.2 Three Types of Experiments . . . . . . . . . . . . . . . . . .  

1.9 STATISTICAL INFERENCE . . . . . . . . . . . . . . . . . . . . . .  
1.9.1 Drawing Inference . . . . . . . . . . . . . . . . . . . . . . .  
1.9.2 Notions of Probability . . . . . . . . . . . . . . . . . . . . .  
1.9.3 Variability and Randomization . . . . . . . . . . . . . . . . .  

1.5 

1.8.1 

1 
1 
1 
2 
3 
5 
5 
6 
8 
8 
9 

11 
11 
12 
14 
15 
15 
16 
16 
17 
19 
21 
21 
22 
23 
24 
24 
25 
26 



vi CONTENTS 

2 Principles of Experimental Design 29 
2.1 CONFIRMATORY AND EXPLORATORY EXPERIMENTS . . . .  29 
2.2 STEPS OF DESIGNED INVESTIGATIONS . . . . . . . . . . . . .  30 

2.2.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . .  31 
2.2.2 Subject Matter Model . . . . . . . . . . . . . . . . . . . . .  32 
2.2.3 Three Aspects of Design . . . . . . . . . . . . . . . . . . . .  33 
2.2.4 Modeling the Response . . . . . . . . . . . . . . . . . . . . .  35 
2.2.5 Choosing the Response . . . . . . . . . . . . . . . . . . . . .  36 
2.2.6 Principles of Analysis . . . . . . . . . . . . . . . . . . . . .  36 

2.3 THE LINEAR MODEL . . . . . . . . . . . . . . . . . . . . . . . . .  37 
2.3.1 Three Types of Effects . . . . . . . . . . . . . . . . . . . . .  37 
2.3.2 Experimental and Observational Units . . . . . . . . . . . . .  38 
2.3.3 Outline of a Model . . . . . . . . . . . . . . . . . . . . . . .  40 

2.4.1 The Questions and Hypotheses . . . . . . . . . . . . . . . . .  41 
2.4.2 The Experiment and a Model . . . . . . . . . . . . . . . . . .  41 
2.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

2.4 ILLUSTRATING INDIVIDUAL STEPS: STUDY 1 . . . . . . . . .  41 

2.4.4 Alternative Experimental Setup . . . . . . . . . . . . . . . .  44 
2.5 THREE PRINCIPLES OF EXPERIMENTAL DESIGN . . . . . . . .  45 
2.6 THE STATISTICAL TRIANGLE: STUDY 2 . . . . . . . . . . . . .  46 

2.6.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . .  46 
2.6.2 Four Experimental Situations . . . . . . . . . . . . . . . . .  46 

2.7 PLANNING THE EXPERIMENT: THINGS TO THINK ABOUT . . 5 1 
2.8 COOPERATION BETWEEN SCIENTIST AND STATISTICIAN . . 53 
2.9 GENERAL PRINCIPLE OF INFERENCE AND TYPES OF 

STATISTICAL ANALYSES . . . . . . . . . . . . . . . . . . . . . .  56 
2.9.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . .  56 
2.9.2 Outline of the ANOVA . . . . . . . . . . . . . . . . . . . . .  56 

2.10 OTHER CONSIDERATIONS FOR EXPERIMENTAL DESIGNS . . 58 

3 Survey of Designs And Analyses 61 
3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 
3.2 ERROR-CONTROL DESIGNS . . . . . . . . . . . . . . . . . . . .  62 
3.3 TREATMENT DESIGNS . . . . . . . . . . . . . . . . . . . . . . . .  64 
3.4 COMBINING IDEAS FROM ERROR-CONTROL AND 

TREATMENT DESIGNS . . . . . . . . . . . . . . . . . . . . . . . .  65 
3.5 SAMPLING DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . .  68 
3.6 ANALYSIS AND STATISTICAL SOFTWARE . . . . . . . . . . . .  68 
3.7 SUMMARY. ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

4 Linear Model Theory 71 
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

4.1.1 The Concept of a Model . . . . . . . . . . . . . . . . . . . .  71 
4.1.2 Comparative and Absolute Experiments . . . . . . . . . . . .  73 

4.2 REPRESENTATION OF LINEAR MODELS . . . . . . . . . . . . .  73 
4.3 FUNCTIONAL AND CLASSIFICATORY LINEAR MODELS . . .  74 



CONTENTS vii 

4.3.1 Functional Models . . . . . . . . . . . . . . . . . . . . . . .  74 
4.3.2 Classificatory Models . . . . . . . . . . . . . . . . . . . . .  74 
4.3.3 

Components . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
4.4 THE FITTING OF y = Xp . . . . . . . . . . . . . . . . . . . . . .  76 

4.4.1 The Notion of Identifiability . . . . . . . . . . . . . . . . . .  76 

4.4.3 The Method of Least Squares . . . . . . . . . . . . . . . . .  77 
4.4.4 Theory of Linear Equations . . . . . . . . . . . . . . . . . .  81 

4.5 MOORE-PENROSE GENERALIZED INVERSE . . . . . . . . . . .  84 
4.6 CONDITIONED LINEAR MODEL . . . . . . . . . . . . . . . . . .  85 

4.6.1 Affine Linear Model . . . . . . . . . . . . . . . . . . . . . .  85 
4.6.2 Normal Equations for the Conditioned Model . . . . . . . . .  87 
4.6.3 Different Types of Conditions . . . . . . . . . . . . . . . . .  88 
4.6.4 General Case . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

4.7 TWO-PART LINEAR MODEL . . . . . . . . . . . . . . . . . . . .  90 
4.7.1 Ordered Linear Models . . . . . . . . . . . . . . . . . . . . .  90 
4.7.2 Using Orthogonal Projections . . . . . . . . . . . . . . . . .  91 
4.7.3 Orthogonal ANOVA . . . . . . . . . . . . . . . . . . . . . .  93 

Models with Classificatory and Functional 

4.4.2 The Notion of Estimability . . . . . . . . . . . . . . . . . . .  77 

4.8 SPECIAL CASE OF A PARTITIONED MODEL . . . . . . . . . . .  94 
4.9 THREE-PART MODELS . . . . . . . . . . . . . . . . . . . . . . . .  94 
4.10 TWO-WAY CLASSIFICATION WITHOUT INTERACTION . . . .  95 
4.1 1 K-PART LINEAR MODEL . . . . . . . . . . . . . . . . . . . . . . .  97 

4.11.1 The General Model and Its Sums of Squares . . . . . . . . . .  97 
4.1 1.2 The Means Model . . . . . . . . . . . . . . . . . . . . . . .  99 

4.12 BALANCED CLASSIFICATORY STRUCTURES . . . . . . . . . .  100 
4.12.1 Factors, Levels, and Partitions . . . . . . . . . . . . . . . . .  101 
4.12.2 Nested, Crossed, and Confounded Factors . . . . . . . . . . .  101 
4.12.3 The Notion of Balance . . . . . . . . . . . . . . . . . . . . .  102 
4.12.4 Balanced One-way Classification . . . . . . . . . . . . . . .  102 
4.12.5 Two-way Classification with Equal Numbers . . . . . . . . .  103 
4.12.6 Experimental versus Observational Studies . . . . . . . . . .  104 
4.12.7 General Classificatory Structure . . . . . . . . . . . . . . . .  106 
4.12.8 The Well-Formulated Model . . . . . . . . . . . . . . . . . .  109 

112 
4.13.1 Two-Fold Nested Classification . . . . . . . . . . . . . . . .  112 
4.13.2 Two-way Cross-Classification . . . . . . . . . . . . . . . . .  113 
4.13.3 Two-way Classification without Interaction . . . . . . . . . .  116 

4.14 ANALYSIS OF COVARIANCE MODEL . . . . . . . . . . . . . . .  118 
4.14.1 The Question of Explaining Data . . . . . . . . . . . . . . .  118 
4.14.2 Obtaining the ANOVA Table . . . . . . . . . . . . . . . . . .  120 
4.14.3 The Case of One Covariate . . . . . . . . . . . . . . . . . . .  121 
4.14.4 The Case of Several Covariates . . . . . . . . . . . . . . . .  121 

4.15 FROM DATA ANALYSIS TO STATISTICAL INFERENCE . . . . .  122 
4.16 SIMPLE NORMAL STOCHASTIC LINEAR MODEL . . . . . . . .  123 

4.16.1 The Notion of Estimability . . . . . . . . . . . . . . . . . . .  123 

4.13 UNBALANCED DATA STRUCTURES . . . . . . . . . . . . . . . .  



... 
V l l l  CONTENTS 

4.16.2 Gauss-Markov Linear Model . . . . . . . . . . . . . . . . . .  
4.16.3 Ordinary Least Squares and Best Linear Unbiased Estimators 
4.16.4 Expectation of Quadratic Forms . . . . . . . . . . . . . . . .  

4.17.1 Distributional Properties of X'P . . . . . . . . . . . . . . . .  
4.17.2 Distribution of Sums of Squares . . . . . . . . . . . . . . . .  
4.17.3 Testing of Hypotheses . . . . . . . . . . . . . . . . . . . . .  

4.18 MIXED MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.18.1 The Notion of Fixed, Mixed and Random Models . . . . . . .  
4.18.2 Aitken-like Model . . . . . . . . . . . . . . . . . . . . . . .  
4.18.3 Mixed Models in Experimental Design . . . . . . . . . . . .  

4.17 DISTRIBUTION THEORY WITH GXNLM . . . . . . . . . . . . .  

5 Randomization 
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.1.1 Observational versus Intervention Studies . . . . . . . . . . .  
5.1.2 Historical Controls versus Repetitions . . . . . . . . . . . . .  

5.2 THE TEA TASTING LADY . . . . . . . . . . . . . . . . . . . . . .  
5.3 TRIANGULAR EXPERIMENT . . . . . . . . . . . . . . . . . . . .  

5.3.1 Medical Example . . . . . . . . . . . . . . . . . . . . . . . .  
5.3.2 Randomization. Probabilities. and Beliefs . . . . . . . . . . .  

5.4 SIMPLE ARITHMETICAL EXPERIMENT . . . . . . . . . . . . . .  
5.4.1 Noisy Experiments . . . . . . . . . . . . . . . . . . . . . . .  

Investigative Experiments and Beliefs . . . . . . . . . . . . .  
5.4.3 Randomized Experiments . . . . . . . . . . . . . . . . . . .  

5.5 RANDOMIZATION IDEAS . . . . . . . . . . . . . . . . . . . . . .  
5.6 EXPERIMENT RANDOMIZATION TEST . . . . . . . . . . . . . .  
5.7 INTRODUCTION TO SUBSEQUENT CHAPTERS . . . . . . . . .  

5.4.2 

6 Completely Randomized Design 
6.1 INTRODUCTION AND DEFINITION . . . . . . . . . . . . . . . .  
6.2 RANDOMIZATION PROCESS . . . . . . . . . . . . . . . . . . . .  

Use of Random Numbers . . . . . . . . . . . . . . . . . . . .  
6.2.2 Design Random Variables . . . . . . . . . . . . . . . . . . .  

6.3 DERIVED LINEAR MODEL . . . . . . . . . . . . . . . . . . . . .  
Conceptual Responses and Observations . . . . . . . . . . . .  

6.3.2 Distributional Properties . . . . . . . . . . . . . . . . . . . .  
6.3.3 Additivity in the Broad Sense . . . . . . . . . . . . . . . . .  
6.3.4 Error Structure . . . . . . . . . . . . . . . . . . . . . . . . .  
6.3.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . .  

6.4 ANALYSIS OF VARIANCE . . . . . . . . . . . . . . . . . . . . . .  
6.4.1 Deriving the ANOVA Table . . . . . . . . . . . . . . . . . .  

Obtaining Expected Mean Squares . . . . . . . . . . . . . . .  
6.5 STATISTICAL TESTS . . . . . . . . . . . . . . . . . . . . . . . . .  

6.5.1 Enumerating Randomizations . . . . . . . . . . . . . . . . .  
6.5.2 Randomization Test . . . . . . . . . . . . . . . . . . . . . .  

6.6 APPROXIMATING THE RANDOMIZATION TEST . . . . . . . . .  

6.2.1 

6.3.1 

6.4.2 

124 
126 
128 
128 
128 
130 
131 
132 
132 
133 
134 

137 
137 
137 
139 
139 
140 
141 
141 
142 
142 
144 
145 
148 
150 
151 

153 
153 
154 
154 
154 
157 
157 
159 
161 
162 
164 
165 
165 
168 
171 
171 
172 
174 



CONTENTS ix 

6.6.1 Moments of the Test Statistic . . . . . . . . . . . . . . . . . .  174 
6.6.2 Approximation by the F-Test . . . . . . . . . . . . . . . . . .  177 
6.6.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . .  177 

6.7 CRD WITH UNEQUAL NUMBERS OF REPLICATIONS . . . . . .  179 
6.7.1 Randomization . . . . . . . . . . . . . . . . . . . . . . . . .  180 
6.7.2 The Model and ANOVA . . . . . . . . . . . . . . . . . . . .  180 
6.7.3 Comparing Randomization Test and F-Test . . . . . . . . . .  180 

6.8 NUMBER OF REPLICATIONS . . . . . . . . . . . . . . . . . . . .  180 
6.8.1 Power of the F-Test . . . . . . . . . . . . . . . . . . . . . . .  182 
6.8.2 Smallest Detectable Difference . . . . . . . . . . . . . . . . .  184 
6.8.3 Practical Considerations . . . . . . . . . . . . . . . . . . . .  185 

6.9 SUBSAMPLING IN A CRD . . . . . . . . . . . . . . . . . . . . . .  191 
6.9.1 Subsampling Model . . . . . . . . . . . . . . . . . . . . . .  191 
6.9.2 Inferences with Subsampling . . . . . . . . . . . . . . . . . .  193 
6.9.3 Comparison of CRDs without and with Subsampling . . . . .  193 

6.10 TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . .  196 
6.10.1 Nonadditivity in the General Sense . . . . . . . . . . . . . .  196 
6.10.2 Nonconstancy of Variances . . . . . . . . . . . . . . . . . . .  197 
6.10.3 Choice of Transformation . . . . . . . . . . . . . . . . . . .  198 
6.10.4 Power Transformations . . . . . . . . . . . . . . . . . . . . .  200 

6.1 1 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  201 
6.12 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 

7 Comparisons of Treatments 213 
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 
7.2 COMPARISONS FOR QUALITATIVE TREATMENTS . . . . . . .  213 

7.2.1 Treatment Contrasts . . . . . . . . . . . . . . . . . . . . . .  214 
7.2.2 Orthogonal Contrasts . . . . . . . . . . . . . . . . . . . . . .  214 
7.2.3 Partitioning the Treatment Sum of Squares . . . . . . . . . .  215 

7.3 ORTHOGONALITY AND ORTHOGONAL COMPARISONS . . . .  218 
7.4 COMPARISONSFORQUANTITATIVETREATMENTS . . . . . .  219 

7.4.1 Comparisons for Treatments with Equidistant Levels . . . . .  219 
7.4.2 Use of Orthogonal Polynomials . . . . . . . . . . . . . . . .  220 
7.4.3 Contrast Sums of Squares and the ANOVA . . . . . . . . . .  223 

7.5 MULTIPLE COMPARISON PROCEDURES . . . . . . . . . . . . .  224 
7.5.1 Multiple Comparisons and Error Rates . . . . . . . . . . . . .  224 
7.5.2 Least Significant Difference Test . . . . . . . . . . . . . . . .  225 
7.5.3 Bonferroni t-Statistics . . . . . . . . . . . . . . . . . . . . .  225 
7.5.4 Studentized Range Procedure . . . . . . . . . . . . . . . . .  226 
7.5.5 Duncan’s Multiple Range Test . . . . . . . . . . . . . . . . .  226 
7.5.6 Scheffk’s Procedure . . . . . . . . . . . . . . . . . . . . . .  227 
7.5.7 Comparisons with a Control . . . . . . . . . . . . . . . . . .  227 
7.5.8 Alternatives to Tests Based on Normality . . . . . . . . . . .  228 

7.6 GROUPING TREATMENTS . . . . . . . . . . . . . . . . . . . . . .  229 
7.7 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  230 
7.8 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236 



X CONTENTS 

8 Use of Supplementary Information 
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.2 MOTIVATION OF THE PROCEDURE . . . . . . . . . . . . . . . .  
8.3 ANALYSIS OF COVARIANCE PROCEDURE . . . . . . . . . . . .  

8.3.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.3.2 Least Squares Analysis . . . . . . . . . . . . . . . . . . . . .  
8.3.3 Least Squares Means . . . . . . . . . . . . . . . . . . . . . .  
8.3.4 Formulation in Matrix Notation . . . . . . . . . . . . . . . .  
8.3.5 ANOVA Table . . . . . . . . . . . . . . . . . . . . . . . . .  

8.4 TREATMENT COMPARISONS . . . . . . . . . . . . . . . . . . . .  
8.4.1 Preplanned Comparisons . . . . . . . . . . . . . . . . . . . .  
8.4.2 Multiple Comparison Procedures . . . . . . . . . . . . . . .  

8.5 VIOLATION OF ASSUMPTIONS . . . . . . . . . . . . . . . . . . .  
8.5.1 Linear Relationship between x and y . . . . . . . . . . . . . .  
8.5.2 Common Slope . . . . . . . . . . . . . . . . . . . . . . . . .  
8.5.3 Covariates Affected by Treatments . . . . . . . . . . . . . . .  
8.5.4 Normality Assumption . . . . . . . . . . . . . . . . . . . . .  

8.6 ANALYSIS OF COVARIANCE WITH 
SUBS AMPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8.7 CASE OF SEVERAL COVARIATES . . . . . . . . . . . . . . . . .  
8.7.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.7.2 Two Covariates . . . . . . . . . . . . . . . . . . . . . . . . .  

8.8 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  
8.9 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 Randomized Block Designs 
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.2 RANDOMIZED COMPLETE BLOCK DESIGN . . . . . . . . . . .  

9.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.2.2 Derived Linear Model . . . . . . . . . . . . . . . . . . . . .  
9.2.3 Estimation of Treatment Contrasts . . . . . . . . . . . . . . .  
9.2.4 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . .  
9.2.5 Randomization Test and F-Test . . . . . . . . . . . . . . . .  
9.2.6 Additivity in the Broad Sense . . . . . . . . . . . . . . . . .  
9.2.7 Subsampling in an RCBD . . . . . . . . . . . . . . . . . . .  

9.3 RELATIVE EFFICIENCY OF THE RCBD . . . . . . . . . . . . . .  
9.3.1 Question of Effectiveness of Blocking . . . . . . . . . . . . .  
9.3.2 Use of Uniformity Trials . . . . . . . . . . . . . . . . . . . .  
9.3.3 Interpretation and Use of Relative Efficiency . . . . . . . . .  

9.4 ANALYSIS OF COVARIANCE . . . . . . . . . . . . . . . . . . . .  
9.4.1 TheModel . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.4.2 Least Squares Analysis . . . . . . . . . . . . . . . . . . . . .  
9.4.3 The ANOVA Table . . . . . . . . . . . . . . . . . . . . . . .  

9.5 MISSING OBSERVATIONS . . . . . . . . . . . . . . . . . . . . . .  
9.5.1 Estimating a Missing Observation . . . . . . . . . . . . . . .  

Using the Estimated Missing Observation . . . . . . . . . . .  9.5.2 

239 
239 
240 
242 
242 
242 
244 
245 
246 
250 
250 
251 
252 
252 
253 
256 
257 

258 
259 
260 
262 
264 
274 

277 
277 
278 
278 
278 
282 
282 
285 
286 
288 
288 
288 
290 
291 
292 
292 
293 
294 
295 
295 
297 



CONTENTS xi 

9.5.3 Several Missing Observations . . . . . . . . . . . . . . . . .  298 
9.6 NONADDITIVITY IN THE RCBD . . . . . . . . . . . . . . . . . .  300 

9.6.1 The Problem of Nonadditivity . . . . . . . . . . . . . . . . .  300 
9.6.2 General Model for Nonadditivity . . . . . . . . . . . . . . . .  300 

Nonadditivity . . . . . . . . . . . . . . . . . . . . . . . . . .  302 
9.6.4 Testing for Nonadditivity . . . . . . . . . . . . . . . . . . . .  303 

9.6.6 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . .  305 
9.6.7 Several Blocking Factors . . . . . . . . . . . . . . . . . . . .  306 
9.6.8 Dealing with Block-Treatment Interaction . . . . . . . . . . .  312 

9.7 GENERALIZED RANDOMIZED BLOCK DESIGN . . . . . . . . .  314 
9.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314 
9.7.2 Derived Linear Model . . . . . . . . . . . . . . . . . . . . .  314 
9.7.3 TheANOVATable . . . . . . . . . . . . . . . . . . . . . . .  317 
9.7.4 Analyzing Block-Treatment Interaction . . . . . . . . . . . .  319 
9.7.5 A More General Formulation . . . . . . . . . . . . . . . . . .  323 
9.7.6 Random Block Effects . . . . . . . . . . . . . . . . . . . . .  324 
9.7.7 Using Satterthwaite’s Procedure . . . . . . . . . . . . . . . .  326 

9.8 INCOMPLETE BLOCK DESIGNS . . . . . . . . . . . . . . . . . .  328 

Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328 
9.8.2 Balanced Incomplete Block Designs . . . . . . . . . . . . . .  330 
9.8.3 BalancedTreatment IncompleteBlockDesigns . . . . . . . .  333 
9.8.4 Partially Balanced Incomplete Block Designs . . . . . . . . .  335 
9.8.5 Extended Block Designs . . . . . . . . . . . . . . . . . . . .  337 
9.8.6 Some General Remarks . . . . . . . . . . . . . . . . . . . . .  338 

9.9 SYSTEMATIC BLOCK DESIGNS . . . . . . . . . . . . . . . . . .  340 
9.9.1 Dealing with Trends . . . . . . . . . . . . . . . . . . . . . .  340 
9.9.2 Trend-free Designs . . . . . . . . . . . . . . . . . . . . . . .  341 

9.10 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  343 
9.11 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366 

9.6.3 One Blocking Factor: A Specific Model for 

9.6.5 Tukey’s Test for Nonadditivity . . . . . . . . . . . . . . . . .  303 

9.8.1 General Notion of Designs with Incomplete 

10 Latin Square Type Designs 373 
10.1 INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . .  373 
10.2 LATIN SQUARE DESIGN . . . . . . . . . . . . . . . . . . . . . . .  374 

10.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .  374 
10.2.2 Transformation Sets and Randomization . . . . . . . . . . . .  376 
10.2.3 Derived Linear Model . . . . . . . . . . . . . . . . . . . . .  377 
10.2.4 Estimation of Treatment Contrasts . . . . . . . . . . . . . . .  380 
10.2.5 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . .  382 

The Model under Additivity in the Broad Sense . . . . . . . .  
10.2.7 Consequences of Nonadditivity . . . . . . . . . . . . . . . .  386 
10.2.8 Investigating Nonadditivity . . . . . . . . . . . . . . . . . . .  387 
10.2.9 Miscellaneous Remarks . . . . . . . . . . . . . . . . . . . .  389 

10.3 REPLICATED LATIN SQUARES . . . . . . . . . . . . . . . . . . .  390 

10.2.6 385 



xii CONTENTS 

10.3.1 Different Scenarios for Replication . . . . . . . . . . . . . .  390 
10.3.2 Rows and Columns Crossed with 

10.3.3 Rows Nested in and Columns Crossed with 

10.3.4 Rows and Columns Nested in Replications . . . . . . . . . .  392 
10.3.5 Replication x Treatment Interaction . . . . . . . . . . . . . .  392 

10.4 LATIN RECTANGLES . . . . . . . . . . . . . . . . . . . . . . . . .  393 
10.5 INCOMPLETE LATIN SQUARES . . . . . . . . . . . . . . . . . .  394 
10.6 ORTHOGONAL LATIN SQUARES . . . . . . . . . . . . . . . . . .  395 

10.6.1 Graco-Latin Squares . . . . . . . . . . . . . . . . . . . . . .  395 
10.6.2 Mutually Orthogonal Latin Squares . . . . . . . . . . . . . .  396 

10.7.1 Two-Treatment Change-Over Design . . . . . . . . . . . . .  398 
10.7.2 Change-Over Designs for More than Two Treatments . . . . .  401 
10.7.3 Some Variations and Extensions . . . . . . . . . . . . . . . .  402 

10.9 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414 

Replications . . . . . . . . . . . . . . . . . . . . . . . . . .  391 

Replications . . . . . . . . . . . . . . . . . . . . . . . . . .  391 

10.7 CHANGE-OVER DESIGNS . . . . . . . . . . . . . . . . . . . . . .  397 

10.8 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  404 

11 Factorial Experiments: Basic Ideas 419 
11.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  419 
1 1.2 INFERENCES FROM FACTORIAL EXPERIMENTS . . . . . . . .  420 
11.3 EXPERIMENTS WITH FACTORS AT TWO LEVELS . . . . . . . .  422 

11.3.1 Definition of Main Effects and Interactions . . . . . . . . . .  422 
1 1.3.2 Estimation of Main Effects and Interactions . . . . . . . . . .  425 
11.3.3 Sums of Squares for Main Effects and Interactions . . . . . .  426 

1 1.4 INTERPRETATION OF EFFECTS AND INTERACTIONS . . . . .  426 
11.5 INTERACTIONS: A CASE STUDY . . . . . . . . . . . . . . . . . .  428 

1 1.5.1 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . .  428 
1 1.5.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . .  428 
1 1 S.3 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .  430 
11.5.4 Separate Analyses . . . . . . . . . . . . . . . . . . . . . . .  439 
1 1 S.5 Blocking by Intrinsic Factor Only . . . . . . . . . . . . . . .  440 
1 1 S .6  Using the Half-normal Plot Technique . . . . . . . . . . . . .  441 
1 1 S.7 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .  443 
11.5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446 

1 1.6 2n FACTORIALS IN INCOMPLETE BLOCKS . . . . . . . . . . . .  446 
11.6.1 23 Factorial in Blocks of Size 4 . . . . . . . . . . . . . . . .  446 
11.6.2 23 Factorial in Blocks of Size 2 . . . . . . . . . . . . . . . .  447 
1 1.6.3 Partial Confounding . . . . . . . . . . . . . . . . . . . . . .  449 

1 1.7 FRACTIONS OF 2n FACTORIALS . . . . . . . . . . . . . . . . . .  451 
11.7.1 Rationale for Fractional Replication . . . . . . . . . . . . . .  451 
1 1.7.2 1/2 Fraction of the 23 Factorial . . . . . . . . . . . . . . . . .  454 
11.7.3 The Alias Structure . . . . . . . . . . . . . . . . . . . . . . .  454 
11.7.4 1/4 Fraction of the 28 Factorial . . . . . . . . . . . . . . . . .  456 
11.7.5 Systems of Confounding for Fractional Factorials . . . . . . .  457 



... CONTENTS X l l l  

11.8 ORTHOGONAL MAIN EFFECT PLANS FOR 2n FACTORIALS . . 462 
11.9 EXPERIMENTS WITH FACTORS AT THREE LEVELS . . . . . .  464 

11.9.1 The 3' Factorial . . . . . . . . . . . . . . . . . . . . . . . .  465 
11.9.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . .  468 

11.9.4 Systems of Confounding for the 3" Factorial . . . . . . . . .  470 
1 1.9.5 Fractions of 3" Factorials . . . . . . . . . . . . . . . . . . .  472 
11.9.6 Highly Fractionated 3" Factorials . . . . . . . . . . . . . . .  475 

11.9.3 Formal Definition of Main Effects and Interactions . . . . . .  468 

11.9.7 Systems of Confounding for Fractions of 3n 
Factorials . . . . . . . . . . . . . . . . . . . . . . . . . . . .  475 

476 
11.10.1 Asymmetrical Factorial Experiments . . . . . . . . . . . . .  476 
11 . 10.2 Confounding in 2" x 3n Factorials . . . . . . . . . . . . . .  477 

Blocks of Size 18: . . . . . . . . . . . . . . . . . . . . . . .  478 
Blocks of Size 12: . . . . . . . . . . . . . . . . . . . . . . .  478 
Blocks of Size 9: . . . . . . . . . . . . . . . . . . . . . . . .  478 
Blocks of Size 6: . . . . . . . . . . . . . . . . . . . . . . . .  478 
Blocks of Size 4: . . . . . . . . . . . . . . . . . . . . . . . .  478 

479 
11.1 1 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  481 
11.12 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  492 

11.10 FACTORS AT TWO AND THREE LEVELS . . . . . . . . . . . . .  

11.10.3 Fractions of 2m x 3n Factorials . . . . . . . . . . . . . . . .  

12 Response Surface Designs 497 

12.2 FORMULATION OF THE PROBLEM . . . . . . . . . . . . . . . .  498 
12.3 FIRST-ORDER MODELS AND DESIGNS . . . . . . . . . . . . . .  500 

12.3.1 First-Order Regression Model . . . . . . . . . . . . . . . . .  500 
12.3.2 Least Squares Analysis . . . . . . . . . . . . . . . . . . . . .  
12.3.3 Alternative Designs . . . . . . . . . . . . . . . . . . . . . . .  503 

12.4 SECOND-ORDER MODELS AND DESIGNS . . . . . . . . . . . .  504 
12.4.1 Second-Order Linear Regression . . . . . . . . . . . . . . . .  504 
12.4.2 Possible Designs . . . . . . . . . . . . . . . . . . . . . . . .  505 
12.4.3 Central Composite Designs . . . . . . . . . . . . . . . . . .  506 

Blocking in Central Composite Designs . . . . . . . . . . . .  
12.4.5 Box-Behnken Designs . . . . . . . . . . . . . . . . . . . . .  509 

Hard-to-Change versus Easy-to-Change Factors . . . . . . . .  
12.5 INTEGRATED MEAN SQUARED ERROR DESIGNS . . . . . . . .  

12.5.1 Variance and Bias for the One-Factor Case . . . . . . . . . .  514 
12.5.2 Choice of Design . . . . . . . . . . . . . . . . . . . . . . . .  

12.6 SEARCHING FOR AN OPTIMUM . . . . . . . . . . . . . . . . . .  518 
12.7 EXPERIMENTS WITH MIXTURES . . . . . . . . . . . . . . . . .  519 

12.7.1 Defining the Problem . . . . . . . . . . . . . . . . . . . . . .  519 
12.7.2 Simplex-Lattice Designs . . . . . . . . . . . . . . . . . . . .  520 
12.7.3 Simplex-Centroid Designs . . . . . . . . . . . . . . . . . . .  521 
12.7.4 Axial Designs . . . . . . . . . . . . . . . . . . . . . . . . . .  521 
12.7.5 Canonical Polynomials . . . . . . . . . . . . . . . . . . . . .  521 

12.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  497 

500 

12.4.4 

12.4.6 

507 

511 
513 

517 



xiv CONTENTS 

12.7.6 Including Process Variables . . . . . . . . . . . . . . . . . .  523 
12.8 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  523 
12.9 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  531 

13 Split-Plot Type Designs 533 
13.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  533 
13.2 SIMPLE SPLIT-PLOT DESIGN . . . . . . . . . . . . . . . . . . . .  534 

13.2.1 Superimposing Two Randomized Complete Block Designs . . 534 
13.2.2 Derived Linear Model . . . . . . . . . . . . . . . . . . . . .  537 
13.2.3 Testing of Hypotheses . . . . . . . . . . . . . . . . . . . . .  538 
13.2.4 Estimating Treatment Contrasts . . . . . . . . . . . . . . . .  539 
13.2.5 Testing Hypotheses about Treatment Contrasts . . . . . . . .  542 

13.3 RELATIVEEFFICIENCY OFSPLIT-PLOTDESIGN . . . . . . . .  543 
13.4 OTHER FORMS OF SPLIT-PLOT DESIGNS . . . . . . . . . . . . .  544 

13.4.2 Split-Plot Design in Time . . . . . . . . . . . . . . . . . . .  545 

13.4.4 SPD(LSD, RCBD) . . . . . . . . . . . . . . . . . . . . . . .  548 
13.4.5 SPD(CRD, IBD) . . . . . . . . . . . . . . . . . . . . . . . .  549 
13.4.6 SPD(GRBD, RCBD) . . . . . . . . . . . . . . . . . . . . . .  550 
13.4.7 SPD(GRBD, IBD) . . . . . . . . . . . . . . . . . . . . . . .  552 

13.4.1 SPD(CRD, RCBD) . . . . . . . . . . . . . . . . . . . . . . .  545 

13.4.3 SPD(CRD, LSD) . . . . . . . . . . . . . . . . . . . . . . . .  547 

13.4.8 SPD(IBD, RCBD) . . . . . . . . . . . . . . . . . . . . . . .  553 
13.4.9 SPD(RCBD, GRBD) . . . . . . . . . . . . . . . . . . . . . .  554 
13.4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .  555 

13.5.1 The Layout . . . . . . . . . . . . . . . . . . . . . . . . . . .  555 
13.5.2 Linear Model and ANOVA . . . . . . . . . . . . . . . . . . .  557 
13.5.3 Estimating Treatment Contrasts . . . . . . . . . . . . . . . .  557 

13.7 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  562 
13.8 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  569 

13.5 SPLIT-BLOCK DESIGN . . . . . . . . . . . . . . . . . . . . . . . .  555 

13.6 SPLIT-SPLIT-PLOT DESIGN . . . . . . . . . . . . . . . . . . . . .  560 

14 Designs with Repeated Measures 573 
14.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  573 
14.2 METHODS FOR ANALYZING REPEATED MEASURES DATA . . 574 

14.2.1 Comparisons at Separate Time Points . . . . . . . . . . . . .  574 
14.2.2 Use of Summary Measures . . . . . . . . . . . . . . . . . . .  575 
14.2.3 Trend Analysis . . . . . . . . . . . . . . . . . . . . . . . . .  575 
14.2.4 The ANOVA Method . . . . . . . . . . . . . . . . . . . . . .  577 
14.2.5 Mixed Model Analysis . . . . . . . . . . . . . . . . . . . . .  578 

14.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  593 
14.3 EXAMPLES USING SAS@ . . . . . . . . . . . . . . . . . . . . . .  580 

Epilogue 595 



CONTENTS 

Bibliography 

Abbreviations 

Author Index 

Subject Index 

xv 

597 

613 

615 

619 



This Page Intentionally Left Blank



Preface to the Second Edition 

Imagine the following telephone conversation between a statistician (S) and a research 
scientist (R). R: “Hello, Mr. Stat, I wonder whether you have just a minute for a quick 
statistical question.” S: “Usually I do not do statistical consulting over the phone, but 
let me see if I can help you. What is the problem?’ R: “We are developing new 
growth media for industrial producers for growing flower plants. We have three such 
media and we use them with four flower varieties. We have five replications for each 
combination of medium and flower. We have analyzed the data as a 3 x 4 two-way 
classification with five observations per cell. But my graduate assistant has talked to 
one of your students and he is now confused about the validity of this analysis. I just 
want you to confirm that we have done the right thing.” S: “Well, I do not know.” R: 
“What do you mean, you do not know? You are the expert!” S: “I really need to know 
more about how you performed the experiment. For example, how did you prepare the 
media that you used in the individual pots? I assume that you grow the flowers in pots 
in the greenhouse.” R: “Yes, that is right. My graduate assistant simply mixed each 
medium in a big container, which we then put in the individual pots.” S: “That may be 
a problem, because now you may not have any replication.” R: “What do you mean, 
we have no replication? I just told you that we have five replications.” S: “Yes, but . . . 
I think it would be best if you would come to my office for me to explain this to you 
and to take a closer look at your experiment.” R: “But we have already submitted the 
paper for publication.” S: “Then why don’t you come when you get the reviews back.” 
Silence. R: “Yes, thank you. I’ll do that.” 

This is, of course, just a fictitious conversation. But many consulting statisticians 
have had similar conversations, The aim of this book is to help statisticians as well as 
research scientists not only to better understand each other but also to obtain a better 
understanding of the intricacies of designing and analyzing experiments It is our hope 
that this can be achieved by using the book as a textbook as well as a reference book. 

Having used the first edition for several years as a textbook in an MS level class for 
statistics students and well-qualified graduate students from other fields relying heavily 
on experimental research, I have gained valuable insight into the needs of both types of 
students. This has led to some changes and enhancements in the second edition without 
giving up the general flavor and philosophy of the book. 

Although some readers may feel the book is too theoretical, we strongly believe 
that these developments are necessary to understand the basic ideas and principles of 
experimental design, to enable students and researchers to pursue ideas of designing 
experiments not covered in this book, and to lay the foundation for even more theo- 
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retical work as covered, for example, in Volume 2: Advanced Experimental Design. 
For the non-statistics student it is not always necessary to understand all the details 
leading to important results as long as they develop a certain feel for these results and 
appreciate their role and importance in the overall picture. A skillful teacher will be 
able to accomplish these aims without compromising the rigor of the development of 
the material. 

Having said this, I have tried to make the second edition more user-friendly by also 
emphasizing the practical aspects of designing and analyzing experiments. I have con- 
siderably expanded Chapter 2 with further discussion of the planning aspects of setting 
up an experiment and giving heuristic arguments why the various steps are so impor- 
tant for a successful experiment. This should appeal to both consulting statisticians and 
research scientists. 

Other major changes involve the development in Chapter 9, which I consider to be 
one of the most important chapters in the book because of the introduction of the notion 
of blocking. I spend a great deal of time discussing the different types of blocking 
factors and their importance in the overall scheme of setting up, analyzing, and drawing 
inference using various forms of block designs. These ideas are then carried over to 
Chapter 1 1, which introduces the basic concepts of factorial treatment structure and 
design. I have included a case study, based on an invited presentation at a meeting 
of the American Society for Horticultural Science, which discusses in some detail the 
role, analysis, and interpretation of various forms of interactions. 

The discussion about repeated measures has been moved to a separate chapter 
(Chapter 14) to give it more emphasis, as this type of experimentation occurs quite 
often. I explain how repeated measures can be paired with any error-control design, 
how this leads to a split-plot type structure of the experiment, and how and why the 
analysis differs from that of a split-plot experiment. 

Finally, I have added to most chapters numerical examples using the statistical 
software package SAS@ (SAS Institute, Inc. 2002-2003)as a tool to analyze the data. 
This should not considered to be a tutorial in SAS, but it should provide some help 
to readers of this book about how to analyze similar data from their experiments and 
to relate such analyses to the developments, in particular ANOVA tables, given in the 
book. In order to preserve space I have omitted some information provided in the usual 
SAS output. Also, I should mention that the data are not real, even though some of the 
experiments described are, as research scientists are generally not willing to share their 
original raw data. The results presented should, therefore, not be interpreted as findings 
in a given subject matter area, but rather as illustrations of statistical procedures useful 
for analyzing such data. For readers who do not have access to SAS or who prefer to 
use other statistical software, the examples should provide some help in setting up the 
analyses in their environment. In addition to using SAS as a tool for the analysis from 
designed experiments I also show how SAS can be used for randomization procedures 
and for constructing certain types of factorial designs. 

I hope that the changes and enhancements in the second edition will prove useful 
to students, teachers, and researchers. For those who seek a deeper understanding and 
further developments of the material presented here I provide references to chapters 
and sections in Volume 2 indicated, for short, by II.xx or II.xx.yy, respectively. 

An FTP (ftp://ftp.wiley.com/public/sci_tech_med/design_experiments/) for this book 
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will be maintained by wiley.com, which will also contain additional exercises and so- 
lutions to selected exercises. 

During the process of thinking about and completing this revision I have received 
help from several people. I would like to thank my students and colleagues for pointing 
out errors in the first edition and for making suggestions for changes. I am grateful to 
Yoon Kim and Ayca Ozol-Godfrey for their help with some computational and graph- 
ical aspects in Chapters 6 and 11. It is difficult to find the right words to express my 
profound gratitude to Linda Breeding for her tireless and skillful efforts in producing 
the camera-ready manuscript. This has been a monumental and difficult job, and even 
during times of despair she found a way to carry on until the work was completed. No- 
body could have done it better. Thank you, Linda. I also would like to thank Jonathan 
Duggins, Amy Hendrickson, and Scotland Leman for their expert advice and help with 
LaTeX. 

Finally, I would like to dedicate this edition to the memory of my co-author and 
mentor, Oscar Kempthorne, for his many important contributions to the philosophy, 
theory, practice, and teaching of experimental design (for a bibliography, see Hinkel- 
mann, 2001). 

KLAUS HINKELMANN 
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Preface to the First Edition 

The subject of the design of experiments has been built up largely by two men, R. A. 
Fisher and F Yates. The contributions of R. A. Fisher to mathematical statistics form 
a major portion of the subject as we now know it. His contributions to the logic of 
the scientific method and of experimentation are no less outstanding, and his book The 
Design of Experiments will be a classic of statistical literature. The contributions of 
F. Yates to the field of the design of experiments are such that nearly all the complex 
designs of value were first put forward by him in a series of papers since 1932. Both 
Fisher and Yates have also made indirect contributions through the staff of the statistical 
department of Rothamsted Experimental Station, since its founding in 1920. It is not 
surprising that the contributions originated from Rothamsted, because Rothamsted was 
probably the first place in the world to incorporate a statistical department as a regular 
part of its research staff, and the design of experiments is a subject that must grow 
through stimulation by the needs of the experimental sciences. 

This quotation from the preface of Design and Analysis of Experiments by Kemp- 
thorne (1952) affirms our recognition of the enormous and path-breaking contributions 
made by these two men to the field of experimental design and experimentation in 
general. Even though most of their ideas originated in connection with agricultural or 
genetic experiments, the resulting principles and designs have found wide applicability 
in all areas of scientific investigations as well as in many areas of industrial production 
and development. 

Because of the widespread use and increasing importance of experimental design, 
it is essential that students and users obtain a firm understanding of the philosophical 
basis and of the principles of experimental design as well as a broad knowledge of 
available designs together with their assumptions, their construction, their applicability, 
and their analysis. These topics then are the subject of this book which will appear in 
two volumes. 

Volume I is a general introduction to the subject laying the foundation for the devel- 
opment of various aspects of experimental design. In it we describe and discuss many 
of the commonly used designs and their analyses. We return to some of these designs 
and introduce other designs in Volume I1 at a more technical and mathematically more 
advanced level. 

With respect to the present volume, Chapters 1 through 5 describe in some detail 
the philosophical foundation and the mathematical-statistical framework for our ap- 
proach to the discussion of experimental design. We put the notion of and the necessity 
for intervention studies, the main topic of this book, squarely into the context of the 
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scientific method. We develop and draw a sharp distinction between observational and 
intervention studies, a theme to which we return at various places throughout the book, 
in particular in connection with the analysis of data. Much of the analysis is based on 
the theory of linear models. A thorough discussion of linear models theory is given in 
Chapter 4. Our major aim here is to provide the reader with the basic tools to under- 
stand and develop the analysis of data from intervention studies of the sort discussed 
in this book. 

Although linear models play a fundamental role we stress the fact that they do 
not exist in and of themselves but that they evolve from very basic principles and in 
the context of the experimental situation at hand. Indeed, in Chapter 2 we argue that 
many facets are involved in advancing from a research idea or question to a designed 
experiment which permits the investigator to draw valid conclusions. Some of these 
facets are of a statistical nature such as developing an appropriate experimental design, 
developing an appropriate model, and carrying out an appropriate analysis, and they 
are the subject of this book. But it is important, we assert, to always keep in mind that 
statisticians and subject-matter scientists have to combine their knowledge to develop 
an experimental protocol according to sound principles of both fields. 

We have alluded earlier to the impact that R. A. Fisher had on the development 
of the field of experimental design. One of his contributions concerning the design of 
experiments is the use of randomization. In Chapter 5, as well as in following chapters, 
we discuss the general idea and then apply it to specific designs. It forms the basis of 
the analysis for all intervention studies. 

Beginning with Chapter 6 we develop from first principles various error-control de- 
signs. We start with the completely randomized design (Chapter 6) as the simplest form 
of error-control design and then move on to more complex error-control designs such 
as randomized block designs (Chapter 9), Latin square type designs (Chapter 10) and 
split-plot type designs (Chapter 13). For each design we derive linear models and the 
associated analyses, mainly in the form of analyses of variance. Other forms of analy- 
sis such as estimating and testing treatment contrasts are dealt with in Chapter 7. And 
further reduction of experimental error through the use of supplementary information 
is described in Chapter 8. 

The notion of treatment design is introduced in Chapter 11 when we discuss facto- 
rial experiments. Particular attention is paid to experiments involving factors with two 
and three levels. This serves as an introduction to the vast opportunities and techniques 
that are available for such type of experimentation. We emphasize in particular how 
treatment designs can be combined with or embedded in error-control designs in the 
form of systems of confounding. 

In Chapter 12 we touch briefly on a different form of experiment designs: response 
surface and mixture designs. It serves mainly to point out the difference between com- 
parative and absolute experiments, but it also serves to show how error-control designs 
and treatment designs can be applied towards the construction of response surface de- 
signs. 

Although many experiments can be conducted using the designs discussed here and 
in Volume 11, there are many others for which special designs need to be constructed. 
It is our aim here to lay the foundation for such work by discussing in detail the major 
principles of experimental design, such as randomization, blocking (in particular in- 
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complete blocks), the Latin square principle, the split-unit principle, and the notion of 
factorial treatment structure. 

The relationship of the present two volumes to the book Design and Analysis of 
Experiments by 0. Kempthorne published in 1952 merits some discussion. Very much 
is common. We have felt it absolutely necessary to add a long chapter on the pro- 
cess of science, discussing our perception of observation theory in science, the role of 
experiments, the role of data analysis, and the introduction of ideas of probability as 
related to relative frequency in a defined population of repetitions. The presentation 
of least squares and the general linear hypothesis needed large improvement. We have 
based most of the data analysis and inference on randomization analysis, expanding 
and formalizing the presentation. The remainder of the presentation in the present two 
volumes is a considerable expansion and rearrangement of standard material of the 
1952 book taking many of the developments during the last 40 years into account. 

The organization and presentation of the material has evolved over a number of 
years of teaching the subject to graduate students in statistics. Volume I is intended 
as a textbook for a one-semester course for first year graduate students. To make the 
course effective, the students should have been exposed to a fairly rigorous course 
in statistical methods. They should be familiar with the basic principles of statistical 
inference and with the rudimentary ideas of analysis of variance and regression, i.e., 
they should have some understanding of and appreciation for linear models and their 
role in statistical inference. 

The book contains more material than can be taught reasonably in one semester, and 
hence a selection of topics will have to be made. This will depend to some extent on the 
students’ background and preparation. One suggestion is to skip some details and omit 
certain parts in individual chapters, Another is to omit much of Chapter 4 and Chapter 7 
and omit all of Chapter 12 (at Virginia Tech, for example, there exists a concurrent 
course in the theory of linear models covering the material in Chapter 4, most of the 
material in Chapter 7 will have been covered in a course on applied statistics, and 
there exists a separate course for response surface designs). At any rate, Chapters 6 
through 13 are fairly self-contained except that frequent reference is made to results in 
Chapter 4 for a better understanding of the underlying principles. 

The reader will notice that no numerical examples are given throughout the text. 
It is assumed that the reader is familiar with mathematical notation and does not have 
any difficulty with reading and handling formulas. There is no emphasis at all on 
calculations. Instead, we provide some guidance on how to use available statistical 
software. This attempt is, however, rather limited in that we refer only to SAS as an 
example of available software packages, and even that is by necessity not complete. 

A thorough knowledge of the material in Volume I is a prerequisite for understand- 
ing Volume 11. As mentioned before, the presentation of the material in Volume I1 is 
more technical and hence suited for a more advanced course in experimental design. 
It contains more than enough material for another one-semester course. In addition, 
Volume I1 is intended to serve as a reference book on many topics in experimental 
design. 

Many people have contributed to this book in different ways. Foremost among them 
are our students who have been exposed to this material over the years. We thank them 
for their questions and comments. K. H. would like to thank Virginia Tech for granting 
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him study-research leaves and the Departments of Statistics at the University of New 
South Wales and Iowa State University for providing him with support, facilities, and a 
congenial atmosphere in which to work. 0. K. is grateful to Iowa State University for 
providing more than 40 years of stimulating environment and association with many 
graduate students of high ability. We thank Yoon Kim and Sungsue Rheem for help 
with the simulations for the randomization analyses, and Markus Huttmann and Sandra 
Schlafke for extensive help with the preparation of the index. And finally, we express 
our deep appreciation and gratitude to Linda Breeding and Ginger Wenzlik for their 
expert typing and word-processing. 

KLAUS HINKELMANN 
OSCAR KEMPTHORNE 



CHAPTER 1 

The Processes of Science 

1.1 INTRODUCTION 

In order to understand the role of statistics, generally, and the role of design of experi- 
ments in particular, it is useful to attempt to characterize the processes of science and 
technology. All science and technology starts with questions or problems. The grand 
aim is to develop a model which will describe adequately, that is, accurately, the past, 
present, and future of the universe. Obviously, if we are to describe the future, we must 
have a model that incorporates development over time-that is, a dynamic model, and 
a model that predicts what alterations will be brought about by interventional acts, such 
as drug therapy, reducing money supply, or supplying a nation with armaments, to give 
widely disparate examples. 

1.1.1 Observations in Science 

The foundation of all science is, obviously, observation. This, which we all do every 
waking minute of our lives, would seem to be a very simple matter, with a logic that 
is entirely clear. It is not clear from several points of view. Curiously enough, it 
is not discussed, it seems by philosophers of knowledge. It is obvious that animals 
make observations-all one has to do is to try to catch a rabbit. It observes that it 
is being chased and takes evasive action. This is, presumably, an instinct bred into 
rabbits by the evolutionary process. In science, a reaction to a portion of the world is 
an observation only if that reaction can be recorded, perhaps only in memory, or better, 
of course, by actual physical recording. To do this requires a language and descriptive 
terms. It is necessary that an observation can be described in terms that have some 
meaning to others. The development of a language for this purpose, a language that is 
effective, is a process of science that continues. We need only look at the development 
of the language of biology. This field is full of names of things, and indeed, one of 
the great difficulties of the field is to learn the naming that has been developed in the 
past, a task that becomes more and more difficult as processes of observation are being 
developed, one can almost say, day by day. Many parts of the journal Science of today 
are unreadable except by experts and would be unreadable for the experts of decades 
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ago. The development of this type of descriptive language proceeds with care, and 
with the discipline of the area of study. A descriptive term does not receive validation 
until it is agreed on and can be confirmed by any observer who follows the prescribed 
protocol of observation and has been educated in the use of the descriptive terms. This 
is no more than a clicht in physical and biological science and one might be led to the 
view that it is not worth stating. But when we turn to any aspect of human mental status 
or mental behavior, the “obvious” clicht becomes critical. One merely has to look at 
the nosology that occurs in psychiatry to see the problem. This is not to imply that 
workers in that area are dolts-the area is remarkably difficult because of the problem 
of validation of observation. 

A second point about observation is that it is by its very nature incomplete. One 
observes, one says, a robin outside one’s window. Humanity uses this mode of expres- 
sion and it has served it well. But one does not observe the whole of the phenomenon. 
Just recall the commonplace interchange. Person A says “I see a robin.” Person B says, 
“Yes, I see it too. Did you notice that it has a gray bar on its wing tips?” Person A says, 
“No, I did not notice that, but now that you mention it, I do see it.” Person A’s observa- 
tion was incomplete relative to B’s observation. Obviously, there can be person C, who 
sees more. Also, obviously, observation is not an innate ability; it is one which may 
require high “professional” training-even in areas that use no more than the ordinary 
unaided human eye. For the naturalist of the sixteenth century, for the ordinary citizen 
naturalist, and for the person who has received two years of training, observation is not 
at all the same. If we adjoin the obvious massive development of observational pro- 
cesses, with physical devices, for instance, observing in infrared light, observing with 
an electron microscope, and so on, there is not an elemental activity which we can call 
“making observation.” 

Another aspect, which is much more subtle, is that the process of observation may 
or may not have an effect on what is being observed, with the elementary consequence 
that one simply cannot observe the status of an object of observation. There are, of 
course, elementary techniques for combating this, as in the use of blinds to observe 
birds, or of walls that have one-way vision. But when one considers observing, or 
trying to observe, the mental state of a human and leaving aside the possibility of ob- 
serving what one thinks to be physical correlates of mental status, one has to talk to 
the human and ask questions and then it is not at all clear what the status of ensuing 
conversation by the human being observed is. Turning aside from an obviously fantas- 
tically difficult area, we saw a revolution in physics at the beginning of the twentieth 
century with the realization that one could not look at a particle except by shooting 
another particle at it and getting a collision. This type of situation led to the famous 
Heisenberg uncertainty principle in an area for which it was thought previously that 
one could observe without interfering with the object observed. This phenomenon has 
huge consequences as any modern physicist knows. It has, also, huge consequences 
with respect to epistemology. 

1.1.2 Two Qpes of Observations 

We leave this discussion. For the purposes of our discussion here, we assume that there 
is a validated process of observation that has no effect on the object being observed. We 
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must, however, discuss a major point. There are fundamentally, it seems, two types of 
observation. The first consists of placing an observation of an object of observation in a 
class: for instance, the flower being observed is pink or has pinnate leaves. In most cir- 
cumstances, there is no doubt of the recorded observation (though one can be doubtful, 
e.g., on a color designation). In other cases, the result of the observation is uncertain; 
we merely have to imagine being given sequentially with repetition unknown to the ob- 
server of a set of colored blocks that do not have strongly distinguishable colors. One 
will find that one’s observation of a block will give different results in repetitions, over 
which one is fairly sure that color has not changed. In such cases, one has no recourse 
but to use a probability model to the effect that, in repetitions that are unconnected in a 
known way, there will be a frequency distribution of observational outcomes. We shall 
not be concerned with this at present. The second type of observation, which perme- 
ates quantitative science, is the measurement of a numerical magnitude, for example, 
the weight of a piece of rock, which one is confident does not change. In this case, 
there is always an error and an imprecision of measurement. The nature of the error 
and of the imprecision is again representable by some frequency distribution of results. 
This type of problem permeates, of course, the physical sciences, and increasingly so, 
as the sought after observation, such as weight, becomes smaller and smaller. 

We hope that we have given a useful discussion of observation, though elementary 
and potentially highly obscure at a philosophical level. We take comfort in the fact that 
even if the process of observation is quite unclear (as it is at a fundamental level), the 
world of science is permeated with interpersonally validated observation. 

1.1.3 From Observation to Law 

Our writing here is aimed at constructing a useful model of what happens in science. It 
seems clear that the beginning of science is observation and description. It also seems 
clear that this is still a critical feature of science. This observation process requires no 
theory. It is interesting in this connection, to look at what Darwin (1809-1882) did in 
the voyage of the Beagle. He was, for his age, a very remarkable observer. The point 
of expressing the above views is that it is sometimes said that the mere collection of 
observations has to be based on a theory, a concept to which we shall turn. If one wishes 
to state that even the simplest observation is based on the informal theory that one’s 
observation process obtained an attribute of what is observed and not of the observer, 
one cannot object. Apart from this, much observation has been generated not by any 
theory but by curiosity, an attribute that one observes in animals. It is true, of course, 
that, very often, observation is initiated by a question or by a problem situation. One 
could say that curiosity is the result of a question, but this seems to be mere playing of a 
verbal game. Obviously, our presentation is Baconian and we quote his first Aphorism 
(Spedding et al., Vol. I, 1861, p. 241): 

Homo, Nature minister et interpres, tantum facit et intelligit quantum de Nature 
ordine re vel mente observaverit, nec amplius scit aut potest. 

for in its translation (Spedding et al., Vol. VIII, 1863, p. 67): 

Man, being the servant and interpreter of Nature, can do and understand so much 
and so much only as he has observed in fact or thought of the course of nature: 
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beyond this he neither knows anything nor can do anything. 

However, we cannot accept the full Baconian prescription as given by his succes- 
sive aphorisms. 

It is obvious that science does not consist merely of a collection of, shall we say, 
interpersonally validated observations. What comes next? Rather clearly, it is the 
organization of such observations-let us call them facts, into sets of related facts. Let 
us suppose that our observations are categorical. We observe trees. This consists of 
noting, with our developed language, that there are trees that keep their leaves through 
the winter and those that do not. We deliberately take simple examples that even the 
proverbial man-in-the-street can appreciate. So this part of our observation places the 
objects of observation into one of an exhaustible polytomy. Let us call the classes 
of one polytomy a1 ~ a2. . . . . a, and of the second, 31. 32, . . . ~ 3,. We look at our 
observations and we see that in our observations every object which was a3 is 132. 

Obviously, a generalization is suggested: every object that is a3 is 3 2 .  We have a 
suggestion of a “law.” The word “law” is used in our language in many senses and 
even in science it is used in at least two senses. A “law” states that something must 
occur. The Creator has decreed so. This is one sense. Another sense, which is really 
quite different, is that a law is an empirical generalization. A hoary and false example 
is: I have seen 10 swans and they were all white. So I infer (falsely) the “law” that 
all swans are white. This example leads, of course, into the problem of induction, on 
which libraries of books have been written, without resolution. 

We then see a very curious thing happening, the development of a theory. From the 
“law” obtained as a suggested empirical generalization, we convert our generalization 
into a “law” of Nature, something that must necessarily be the case. When we do this, 
we are beginning to make a theory. This is, however, just one part of the construction 
of a theory. It is the absence of a role for theory that has been the main criticism of the 
prescription of Bacon (1560-1626). 

It is informative, here, to bring in the work of Kepler (1571-1630). The observa- 
tions were the positions of planets at different times of the year. The contribution of 
Kepler was to analyze the data and to show that the path of each planet was an ellipse, 
with the sun as focus, and other aspects that are given in his famous three laws. It is 
also informative to recall the work of Mendel (1822-1884) in biology. The crossing of 
types X and Y gave offspring of type Z, say, and then the crossing of these offspring 
gave an array of offspring which had the appearance that were Z, and 

were Y. Interestingly, this appears to be the first case of occurrence of a validated 
probability model in science (apart from mere gambling). 

In the one case, we have Kepler’s laws and, in the other case, Mendel’s laws. Now, 
we have to raise the hard question. Are these laws as empirical generalizations or are 
these laws that tell us what must happen? Are they built into Nature by the Creators? 
Our answer is obvious, we think: they are merely empirical generalizations. 

How then do we get to a theory? The process is rather simple, though rarely ex- 
posited in our experience. At first, we have what may be called “naive” laws, merely 
empirical generalizations. But we want an explanation. We are in a morass and we 
shall have to discuss the idea of “explanation.” 

were X, 
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1.2 DEVELOPMENT OF THEORY 

The suggestion of Bacon that all we need to do is make observations has been rather 
uniformly criticized in the ensuing four centuries or so. We suggest that the criticism 
has not been entirely justified. One question is: what observations should one make? 
Obviously, we could suggest that the way to understand the universe is to have millions 
of humans observing-observing, only observing. It is obvious, indeed, that such a 
program would lead to an incredible mass of observational facts. The first missing 
ingredient in the Baconian prescription is given by the question: “What are we to 
do with all the facts that are obtained?” This question is interesting to the field of 
statistics, and eventually, to the whole of science, because it tells us that we have to 
do “data analysis.” It is interesting and curious that this is a term used to denote an 
activity that has been pursued by humans from the beginning of time, but which has 
been popularized since the 1960s in all discussions of statistics. 

It is surely pretentious to think that one can encapsulate the efforts of humanity to 
understand the universe in a few printed pages. But it is useful, we think, to attempt to 
present a broad picture that captures essential features of the human efforts that have 
been made. Interestingly, this is, of course, a problem of data analysis of its own. We 
can look over the history of science. None of us can do this completely, but perhaps 
we can see a general pattern which is not misleading. 

1.2.1 The Basic Syllogism 

The beginning is surely observation of entities that have some degree of permanence 
in time, usually entities that one can, so to speak “hold in one’s hand,” literally or 
metaphorically. These are looked at and classified. This is just Aristotelian classifica- 
tion. From this came laws as empirical generalizations such as “All A are B,” or “All 
entities which have attributes a and 3 have attribute 3.’’ It is interesting that this led to 
the basic syllogism: (i) All entities with Q. have 3; (ii) entity E has a ;  therefore, (iii) 
entity E has 3. We find this presented as a mode of deduction, and this matter needs 
discussion. This syllogism is used widely and essentially in mathematical reasoning, 
and without it, the possibility of the sort of mathematics we do would be impossible. 
For instance, every triangle has the property that the sum of its interior angles is 180”: 
here is a triangle; therefore, the sum of its interior angles is 180”. From where do 
we get the first part of the syllogism? The answer is simple. We prove it! But then 
we have to ask: “What do you mean by that?” What does it mean to say: “We prove 
it”? The answer is given in simple and not misleading form. We have defined “tri- 
angle.” We have developed modes of deduction that we accept as constituting proof. 
This whole process is very subtle. Just how subtle it is can be seen from the develop- 
ments of mathematics of the past two centuries or so. We see students in high school 
trying to write proofs in geometry. We see ourselves writing proofs that we judge to 
be complete. But we later see that our proofs are incorrect or incomplete. We see in 
the history of mathematics incorrect proofs by great mathematicians. We see proofs in 
which a questionable syllogism has been used with total unawareness that it has been 
used. The curious outcome of this phenomenon is that a proof of a mathematical the- 
orem is a sequence of statements, in mathematical form, developed from axioms that 
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are unquestionable, that the world of mathematics accepts as constituting proof. The 
purported proofs have been examined by thousands of mathematicians and found to be 
convincing. This should not be taken to be derogative and pejorative. The world of 
non-mathematicians should know that there is considerable controversy at the founda- 
tions of mathematics, a controversy that has arisen only in the past century or so. What 
are the axioms that we are to accept as indubitable? 

Our interest in the basic syllogism is not with respect to its use in mathematics, 
but its use in describing and explaining the real world-the world we can observe. It 
seems entirely clear that the use of the syllogism in this context is totally questionable. 
It is questionable from the point that it is empty. If we know that all A’s are B, and 
we know that X is an A, we are allowed to deduce “Therefore X is B.” But this is an 
empty deduction, because with respect to the real observable world, we cannot use as 
a premise that all A’s are B without having assured ourselves that X, which is an A, is 
B. We read texts on logic and we find the standard example: 

All men are mortal. 
Socrates is a man. 
Therefore, Socrates IS mortal. 

Can we use this in deduction about the real world? The problem is, of course, the 
validity of the first statement-the premise. As we have said, by accepting that all men 
are mortal, that Socrates is a man, we have accepted the so-called conclusion. From 
one point of view, we are just playing a word game, and are hoping to impress our 
reader by using the very heavy word “therefore.” A curious example was given in the 
popular press recently. Consider the sequence of statements: 

All babies are nurtured in a uterus before birth. 
Individual X is a baby. 
Therefore X was nurtured in a uterus. 

The point of the example is that the uterus of a mother had been removed some years 
before. 

Surely one cannot say that the basic syllogism is nonsense. Without it, no science 
would be possible. What then is going on? The answer to this question is very simple 
in form. If the premise is to be useful, it must be established independently of the 
individual use of it; in other words, we must have the knowledge that all men are 
mortal, without having observed that Socrates is mortal. The upshot is then obvious; 
to establish the premise in such a way as to be useful in the syllogism, we must use 
induction. We can do no more than say: We have examined many humans and found 
that everyone of them was mortal. So we induce that mortality is a universal property 
of the class “humans.” Then if we see that Socrates is in the class “humans,” it must be 
the case that Socrates is mortal. 

1.2.2 Induction, Deduction, and Hypothesis 

The punch line of this stream of thinking is that the use of the basic syllogism as a tool 
of science is based on induction. Or, with perhaps a harsh mode of statement, deduction 
as applied to the real world is totally ineffective without the establishing of the premise 
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by induction. Bacon in his Aphorism XIV stated (Spedding et al., Vol. VIII, 1863, 
p. 70): “Our only hope therefore lies in a true induction.” So we have to try to say 
something reasonable about induction. This is a very difficult task; we merely have to 
read the many volumes on the topic. To exemplify the difficulties, we quote Bertrand 
Russell (1959): 

But there is a much more general problem involved here, which has continued 
to bedevil logicians to the present day. The difficulty is, roughly, that somehow 
people feel induction is not after all as respectable as it ought to be. Therefore it 
must be justified. But this would seem to lead to an insidious dilemma that is not 
always recognized. For justification is a matter of deductive logic. It cannot itself 
be inductive if induction is what must be justified. As for deduction itself, this 
no one feels compelled to justify, it has been respectable from time immemorial. 
Perhaps the only way is to let induction be different without seeking to tie it to 
deductive apologies. 

This statement deserves comment. It tells us, clearly, that Russell (1872-1970), surely 
one of the ten or so finest minds of the twentieth century, does not help us. It tells us 
that Russell cannot help us with the problem of understanding and carrying on science, 
because it is obvious, we assert, that one of the primary bases of science is induction. 

The foremost philosopher of science, perhaps, was C. S. Peirce (1839-1914) (see 
Gallie, 1966). We cannot, here, give our detailed understanding (which may be falla- 
cious) of his ideas. Peirce distinguished three types of inference: deduction, induction, 
and hypothesis. The third he preferred to call “abduction”, which, it seems, is a method 
of testing rather than of developing knowledge. Workers in statistics will have no dif- 
ficulty in appreciating this third type: a considerable portion of statistical theory and 
practice is the testing of statistical models. This, of course, entertains the possibility 
that a model or a theory can be shown to be false. The essential feature of science is 
that its theories can be “falsified.” This view is supported strongly, it appears, by the 
philosopher of science, Karl Popper (1902-1994). The only problem we see with his 
writings is an absence of an approach to methods of falsifying hypotheses or models. 
If we have a universal, “All A’s are B,” how are we to falsify it? Rather obviously, the 
only thing we can do is to continue to examine the A’s that we meet and see if they are 
B. A single occurrence of A and not B falsifies the universal. Suppose, however, that 
we have observed 100 A’s and find that they are all B. Does this justify the universal? 
Obviously not. It does, of course, suggest it. Can we quantify strength of support for 
the universal? Obviously, we should feel more confident if we found the occurrence 
with 100 A’s rather than 10 A’s. We shall not pursue this discussion except to state our 
view that this problem can be addressed only by making an assumption of randomness, 
which must be questioned, followed by tests of significance and tests of hypotheses. 
These are hypothesis “falsification” procedures. If our hypothesis is that an unknown, 
which is a constant in a theory takes a certain value or lies in a certain range we shall 
again use statistical tests, and associated statistical intervals. 

No theory put forward so far, even in physics, the so-called “Queen of Science”, 
has withstood the test of falsification. We do not bother to substantiate this; we merely 
advise the reader of this exposition to look over the sequence of theories. A facet of 
this must be discussed. Even though a theory, for example, the theory of gravitation 
or the theory of electricity and magnetism of some past period, has been shown to be 
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false, that theory may be excellent for predicting a wide variety of outcomes of circum- 
stances. Our ordinary living is based, with the use of electricity, on what may be called 
the classical theory of electricity and magnetism, and in such application this theory 
is excellent, and obviously so. This tells us something that is highly significant. We 
cannot talk about a theory being absolutely true. We can only talk about a theory being 
true in a given context of application. Obviously, we have many such theories which 
we use every day, in devising, for instance, the “gadgets,” heating systems, cooling 
systems, transportation systems, sending man to the moon, etc., and in the nutritional 
“theories” that we use for plant, animal and human nutrition, etc., and the medical the- 
ories we use, such as those to cure deadly diseases, such as syphilis or gonorrhea, etc., 
or to palliate chronic diseases, such as diabetes. 

We do not have the time or the ability to pursue this line of thought. However, it 
leaves us with the view, that we hold rather firmly that the question of whether a theory 
is true, unconditionally, is not a well-formed question. We have to ask if the application 
of a given theory to a specified set of circumstances gives a prediction that is verified 
to be correct. 

1.3 THE NATURE AND ROLE OF THEORY 
IN SCIENCE 

We read writings, which we shall not cite, which take the position that there cannot be 
science without scientific theory. We may mention, however, the writings of PoincarC 
(1854-1912) and the writings of Popper as indicating at least a strong tendency toward 
this view. We shall first exposit our opinion that this view is wrong. It is wrong for the 
very simple reason that there are varieties of science. 

It is absurd for any writer to claim that he or she can classify science into well- 
defined disjoint activities. However, any writer who pretends, that is, claims, to write 
about science in the broad sense must make an attempt and must recognize that there 
are, indeed, partially disjoint activities. 

1.3.1 What Is Science? 

A century ago, with some exceptions, some of which we shall mention, science was 
thought to consist of physics. Perhaps chemistry could be admitted to the domain of 
science, if only because much of it is based on physics. This view, we believe, persisted 
and still persists in the writings of philosophers of science. We shall not attempt to 
give our basis for this perception. What were the exceptions? Rather obviously, one 
had to admit that biology is a branch of science. As regards agriculture, it is obvious, 
being ironical, that is a problem for farmers, not for science. But should one admit 
psychology, sociology, economics (the so-called “dismal science”), political science, 
demography (and all related problems, such as nature and amount of employment, cost 
of living, etc.), education, child development, ecology, traffic, and so on to the august 
realm of science? Our view is that we should do so. Furthermore, any exposition 
of philosophy of science that does not give this status to the areas of investigation 
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mentioned and to others that could be listed, should be regarded as being so defective 
as not to merit deep acceptance. 

It is useful, perhaps, to give some perceptions on the origin and history of the 
limitation of science in the way indicated. One has to go back to the Greeks, for whom 
science is what one knows, or science is what is true. This leads, of course, to the 
question of “What is truth?” This question has, obviously plagued humanity “since 
time began,” and it is clearly impossible to address this question in all its depths, for 
many reasons, including that of competence of the writers. 

To cut a long story short, and, hopefully, not to do rank injustice to the thinkers of 
the past, the basic idea of proving something, that is, proving a proposition to be true, 
is to take as true certain axioms and then deduce the proposition from those axioms by 
Aristotelian logic. An early formulation of this was the process of Descartes (1 596- 
1650), whose prescription was to subject every proposition to extreme doubt. As a 
result of this process, one would reach certain propositions that cannot be doubted. 
One would, then, have a basis for a deductive argument. The problem with this pre- 
scription is, obviously, that a process of extreme doubting will lead to nothing certain. 
For Descartes, the first unquestionable proposition was “Cogito ergo sum”-“I think, 
therefore I am.” Whether we can accept this translation with the present-day meanings 
of words is not at all clear. However, it is surely the case that this, as a basic proposition, 
has been questioned severely over the centuries, most recently by Sartre (1905-1980). 
The whole history of philosophy since Descartes has been very tangled. Certainly, 
highly significant thinkers were the so-called British empiricists: Locke (1632-1704), 
and, especially, Hume (171 1-1776), who, it seems, was the first to pose the problem 
of induction. If we continue the development, we come to Kant (1724-1804), who 
had two highly significant ideas. One is that behind the world of phenomena there is 
a world of noumena, about which we can know nothing. If this is a correct, even if 
brutally short, characterization, the idea is remarkably modern. A second Kantian idea 
is that there are two types of truth: a priori analytic truth, which is true by virtue of 
language, e.g., “I am the father of my son,” and a priori synthetic truth. There can be 
no doubt about the first within a language, it would seem. The word “synthetic” means 
“about the real world.” The question then is simply: Are there any a priori synthetic 
truths? One may suggest that there are indeed none. The one such that Kant accepted 
is “Every event has a cause.” This leads us into the meaning of cause and causality, 
which we shall take up later. 

1.3.2 Two Types of Science 

The point toward which we are directing the previous discussion is absurdly simple. 
There are two types of science. The first type is descriptive science, in which man looks 
at the universe and describes what he sees. This surely characterizes the biology work 
of Aristotle (384-322 B.C.), the naturalist work of Charles Darwin (1809-1882), all the 
description of the biological world that we see in a good basic college text on biology, 
and so on. It is essential to realize that all description is incomplete. We may quote the 
Existential aphorism: “Essence is the totality of appearances” which we translate to 
mean: the real nature of an entity that is being observed is given only by “all possible 
ways of looking at it.” Obviously, we never reach this end and will never do so, because, 
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even with today’s observational techniques and apparatuses, the task is impossible, and 
also, critically, a highly significant part of science is the development of new ways of 
looking at things, e.g., via the electron microscope, by the quite remarkable techniques 
of “chopping up” chromosomes and determining DNA sequences, to give just two, now 
common, but very new (in the history of science) observation techniques. 

The second part of science is the development of theory. This forces us to give 
a picture (our picture, of course) of the nature of theory in science. Our perception 
of this, as a concept of theory that was used before modern physics and quantum me- 
chanics, is as follows. One observed the world by certain observational procedures. 
These procedures possessed two critical properties. The first is that the observations 
made by one trained observer were essentially the same as those made by any other 
trained observer. If, in fact, two observers do not obtain essentially the same resultant 
observations, then the actual process of observation used by each has to be examined. 
If two observers appear to be following the same protocol of measurement and they get 
different results, then we conclude that the specification of protocol of measurement is 
incomplete and is susceptible to different implementation by different observers. This 
is, of course, a frequently traveled path of investigation. If a protocol of measurement 
cannot be specified so that two trained observers cannot obtain essentially the same 
observation by following the written protocol of measurement, then the measurement 
process is not well-defined and needs further specification. We have used the phrase 
“essentially the same.” We have to include this because much observation consists of 
placing an observed unit into a category or of attaching a numerical magnitude to the 
unit being observed. In the former case, it may be that the placing in a category is not 
entirely reproducible between observers, or even between repeated observations of a 
unit that is judged on other evidence not to have changed. A simple example of this is 
observation, say, of a mouse recorded on a film as being normally active, hyperactive 
or hypoactive; another is classification of individuals who are “mentally ill” as being 
“organic, psychotic or characterological.” Clearly, we are unable to describe all the 
problems in this area, or even indicate, even superficially what they are, except to give 
our perception of reports in this area, which is that psychiatric diagnoses are unreliable 
in terms of agreement of independently acting observers. In giving this, we do not 
intend to be pejorative: the problems are incredibly difficult, much more so than ob- 
serving growth of a plant, the endocrinology of an ant, or the behavior of an atom that 
has been hit by a particular type of particle. In the latter case mentioned, that of attach- 
ing a numerical magnitude to an object of observation, it is always the case that there 
is error of measurement, either of inexplicable variability of result of measuring an ob- 
ject that does not vary (according to all we know), or of measuring to a prespecified 
degree of “tolerance,” as when we say that the height of a human is 69 inches, mean- 
ing that our judgment is that the height is somewhere between 68.5 and 69.5 inches. 
Such grouping error of measurement is obviously inevitable; the extent of such error 
can be diminished by using an improved measurement process but it cannot be elimi- 
nated totally. We suggest that this is entirely obvious. If the point is accepted then the 
implications with respect to the use of continuous probability (or relative frequency) 
models are clear. Our use of a mathematical distribution such as the Gaussian distribu- 
tion to represent real observations of a numerical magnitude is an approximation that is 
convenient for many purposes but misleading for some purposes. Without discussion, 
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we give our view that one never observes exactly a random variable that is Gaussian, 
and furthermore, that we, finite individuals with finite observational abilities, do not 
observe events of probability zero, as a naive reading of some statistical theory would 
suggest. The point here is discussed by Kempthorne and Folks (1971, pp. 258-263) in 
connection with likelihood ideas. 

A second property is that the measurement process itself does not affect the prop- 
erties being measured, so that the achieved measurement can be regarded solely as a 
property of the object being measured. In all the common cases of physical measure- 
ment this is a property that is assumed, rationally, to be met. In the case of measurement 
of a mental attribute, it is a property that may be questioned. Certainly, in a psycholog- 
ical or psychiatric interview it cannot be assumed. At the level of measuring properties 
of elementary particles in physics, there is a fundamental indeterminacy in measuring 
two attributes; position and momentum, that is formalized in the Heisenberg (1901- 
1976) uncertainty principle. 

1.4 VARIETIES OF THEORY 

It is essential to distinguish several types or varieties of theory. Rather than attempt to 
characterize these by terms, such as weak or strong, which always carry pejorative and 
derogatory connotations, we shall try to give an idea of what we have in mind. 

1.4.1 Two Types of Theory 

There are, it seems, two basic types of theory. One type is exemplified by the theo- 
ries of classical physics. These are dominated by modeling a system of one or more 
particles through time. One observes attributes, say, a .  b . .  . ., at times t l .  t 2 .  . . . . One 
looks at the resultant data and one surmises that the variables a. b. .  . ., are functions 
of time a @ ) %  b ( t ) ,  . . . . One can then conceptualize that their observations are realiza- 
tions of functions of time, which we can denote by A(T) ,  B ( T ) ,  . . ., such that these 
are general relations holding over time, T ,  which are subject to various mathematical 
relations, usually involving derivatives and partial derivatives. One then has a formal 
mathematical problem in the conceptual mathematical variables, which one can solve. 
Having then obtained an understanding of the mathematical functions A(T) ,  B ( T ) ,  
and so on, one then translates this into functions a ( t ) ,  b ( t ) ,  and so on, that are to give 
predictions of what one will observe with the observable variables. Proof of the validity 
or rather justification, because there can be no proof, of the process is given by obser- 
vation, obtaining empirical relationships by data analysis, “translating” these into re- 
lationships among the conceptual mathematical variables, deducing the consequences 
in the mathematical formulation, and checking that these consequences are verified as 
predictions in the observable world. A general problem underlies the whole of this pro- 
cess, the problem of epistemic correlations; on the one hand, we have the observable 
real world, with observations given by observation protocols; on the other hand, one 
has a mathematical theory with mathematical variables; one wishes to use deduction in 
the mathematical system with formulae for and relationships among the mathematical 
variables to infer formulae for and relationships among the real-world variables. One 
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is using what are called epistemic correlations between observable variables of the real 
world with mathematical variables of the mathematical formalization. This process is 
so widely used in basic mathematical physics that one uses the same symbols for the 
real-world variables and the mathematical variables. In other areas of science, one finds 
mathematical variables used in a mathematical formalization that do not correspond to 
any real-world variables that can be observed. Under such circumstances, the nature, 
role, and utility of theory must, surely, be questioned severely. 

There is no disagreement that the so-called theories of physics are really and truly 
theories. We see what may be termed the full mix: observation, data analysis, concep- 
tualization to a mathematically exact theory, developing this theory to mathematical 
consequences of the elements of the theory, and finally verification by reference to the 
real observable world. 

To exhibit the contrast that we wish to emphasize, we ask the reader to consider 
some examples: the Aristotelian theory of tragedy, sociological theory, psychological 
theory, and the theory of plant and animal nutrition. In all these cases, we hold the 
view that the designation as “theory” is valid. It would seem that it should be quite 
unnecessary to make this statement, and we would not feel called on to make it if 
we do not see clear evidence that some individuals educated in the so-called “exact 
sciences” dismiss what some groups, e.g., sociologists or psychologists, describe as 
their theories, as being not theories at all but strings of highly imprecise verbal, that is, 
nonmathematical, “literary” expositions that cannot be given the status of theory. 

1.4.2 What Is a Theory? 

To form judgment of the question of whether an account of an area of human interest 
should be accorded the status of theory, it is helpful, we think, to first look at physics. 
Obviously, we cannot review the progression of theory in any direction, but it is useful, 
indeed critical, to glance over physical theory. We are told by Russell (19S9), that phi- 
losophy and science began with Thales of Miletus (624-547 B.C.)), who is reported to 
have said, “All things are made of water,” a theory, even though entirely verbal. Anaxi- 
mander (610- ca. 546 B.C.)) questioned this, “Why choose water?” He said, it appears, 
that man derives from the fish of the sea-again a theory. For Anaximenes (ca. 570-ca. 
500 B.C.)), the basic matter was air. Later for Pythagoras (ca. 569-ca. 475 B.C.)), the 
whole of reality could be captured by numbers and mathematics. For Heraclitus (ca. 
600 B.c.)) the real world consisted of a balanced adjustment of opposing tendencies, 
then he chose Fire as the primary ingredient. These are mere examples from the suc- 
cession of theories that were held at one time or another. Somewhat later Leucippus 
(480-420 B.C.)) put forward the theory that the world is made up of “rigid, solid, and 
indivisible” atoms. This theory was developed by Democritus (460-370 B.c.)). Neces- 
sarily, we do not enumerate the Socrates-Plato story, which used the theory of ideas, 
except to give our impression that this was both sterile and highly captivating to the 
point that it has influenced science strongly over the millennia. Also, rather clearly, 
its main thrust was towards ethics and the nature of man. Books on the nature of the 
thoughts of Socrates (469-399 B.C.)) and Plato (427-347 B.C.)) would easily fill a small 
library. The scientific ideation of Plato was that everything could be reduced to geom- 
etry, which much later was reduced to algebra by Descartes. Next came Aristotle who, 
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we suggest, was perhaps the first real scientist. He worked on classification of animals 
and did research in marine biology. The assessment of Aristotle, by the later world, 
and particularly in comparison to Plato is very mixed-on the one hand, just a pale 
imitation of Plato and on the other hand the first scientist and philosopher of science, 
as well as having made vast original contributions to human knowledge. After a dor- 
mancy of centuries, apart from some Moslem thinkers, such as Avicenna (980-1037), 
in opposition to the writings of Aquinas (1225-1274), Roger Bacon (1214-1294) can 
reasonably be regarded as initiating modern science with the thesis that we must re- 
sort to experiment. Bacon was condemned by the Pope and spent 12 years in prison. 
Again summarizing a huge history, and perhaps rather unreasonably, we see the helio- 
centric theory of Copernicus (1473-1543), the works of observation of Tycho Brahe 
(1546-1601), and the data analysis of Kepler (1571-1630), events which must surely 
be regarded as early and critical in the development of physical science. During the 
same period Francis Bacon (1560-1 626) produced his “Novum Organum.” According 
to Russell (1959) “to replace the evidently bankrupt theory of the syllogism,” Bacon 
put forward the method of induction. Again “cutting through” a long and fascinating 
history and talking o id j  about science, which was physical science, we see the the- 
ories of Boyle (1627-1691), Lavoisier (1743-1794), Faraday (1791-1867). Maxwell 
(1831-1879), and so on, just to mention a few of the significant names. The point 
of the present discussion is to indicate the succession of theories-theories that are 
mathematically based. A curiosity of the present time is that the Einstein (1879-1955) 
axiom that nothing can exceed in velocity the speed of light is now being questioned, 
and it seems seriously. So, we see, no axiom of a theory of the real world, no basic 
proposition about the real world, survives the so-called extreme doubting of Descartes. 
There is, at base, no single generalization about the real world that should be taken as 
undoubtable. The life of undoubted generalizations of the past has decreased over the 
centuries, and much more rapidly so in the twentieth century with relatively huge and 
growing scientific efforts of mankind. 

It is our view. then, that there are varieties of theory. There are systems of the real 
world that can be idealized into very simple ones, with the aid of ideas such as mass 
and force. Furthermore, these systems can be isolated from the rest of the world, as 
in the physics laboratory at the elementary college level and even at a more advanced 
level such as the now easy experiment of weighting an electron. The same happens 
in chemistry as is too obvious to need discussion. But the actual world is so much 
more complicated that to try to place biology, medicine, psychology, and so on in the 
so-called exact physical science mold is little short of ludicrous. 

This rather forthright statement needs, perhaps, substantiation. So we give some 
obvious examples. Consider plant growth, for instance. We have no problem in being 
reductionist, that is reducing, in our minds, a plant or a tree, say, to a physical system. 
A standard college text on plants tells us about the system, roots, stems, leaves, flow- 
ers, and so on; we can see, to some extent, the vascular system; we can, in some cases, 
feed the plant radioactively tagged chemicals, via the soil in which it grows, and we 
can follow this material as it progresses through the plant. We know a huge amount 
about plants, but, also, there is a huge amount we do not know; for instance we may 
ask what “really” goes on in mitochondria, what do the Golgi bodies do? These are 
merely two examples. Then we know that the growth of plants depends on many types 
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of nutrients, nitrogen, phosphate, potash, and so-called minor elements; on the amount, 
nature, and timing of water supply to the plant; on the climate the plant experiences, 
and so on. Then we have to adjoin the demonstrated experientialfact that genetics is 
important. Perhaps, in the not too distant future, we shall have a technique by which we 
can determine the whole DNA sequence in the chromosomes of a plant. This will be 
represented by a string of well-defined symbols, doublets from C, G, A, T. The reduc- 
tionist hypothesis is, essentially, the hypothesis that if we know everything described 
above and a huge variety of other aspects not mentioned, then we could explain why 
one ash tree sheds its leaves three weeks earlier than another ash tree which grows 
some 70 feet apart. This is plainly silly. We shall never have enough data to establish 
the types of law that we see in physical science. Even if we had all the data on plants 
that a group of well-trained biologists regard as relevant, we shall be in the position of 
trying to model, for simplicity, one attribute such as plant height at maturity in terms 
of thousands, even millions, of potential explanatory factors. 

Now let us take another example-humans. The complexity of the bio-physical 
system in humans is really quite fantastic. Surely, there is no need to exposit why a pure 
reductionist attitude and approach cannot be generally followed. We can be reductionist 
about certain phenomena, such as certain genetic diseases, and many other medical 
workers could enumerate. But it is plainly silly or ludicrous to attempt to formulate 
a system of differential equations, say, to explain human growth, these equations, of 
course, involving all or even a small fraction of the factors that we know to be involved. 

Obviously, the same sort of discussion can be applied to psychology, sociology, 
and wildlife studies, to mention just three areas of science. 

A consequence of this argument is that in many areas of science the modeling 
can only be simple, and, often, not even mathematical. As we have said, to use this 
experiential fact to dismiss many areas of science as not being “real science” is stupid 
and myopic as well as arrogant. An example is given by Linus Pauling (1901-1994), 
winner of two Nobel Prizes, one in science and one in peace. The one in science was 
surely one for reductionist science in an  area that could be reduced. In his later years, 
Pauling exposited over the nation his theory that massive dosing of vitamin C will 
prevent the common cold (Pauling, 1970). Additionally, Pauling has a theory, a verbal 
one, as to why this should happen, this theory relating to the ascent of man in tropical 
environments (Pauling, 1970). Our point is that Pauling has a theory. One may not like 
it. One may question it. It is a falsifiable theory, obviously, by means of comparative 
experimentation. 

1.5 THE PROBLEM OF GENERAL SCIENCE 

In the pure physical sciences, one can isolate “small” systems from the rest of the 
world (perhaps at the cost of vast concrete enclosures). Any such small system can be 
manufactured independently by many scientists. The proof of validity is that different 
scientists following the same protocol of investigation obtain equivalent results (apart, 
perhaps, from measurement error). 
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1.5.1 Two Problems 

When we turn to general science, in contrast, a first problem is that we cannot manu- 
facture essentially or nearly identical small systems. In human biology, we cannot find 
two humans who are essentially identical. Even in the case of so-called identical twins, 
it is the case that the two members will not have experienced the same environment 
at the same moment of life. What then are we to do to attempt to falsify Pauling’s 
theory, for example. In agriculture, we cannot find two plots of land that are identical. 
Two plots may look identical to the man in the street, but one can make many physi- 
cal, biological, and microbiological measurements, to show that the two plots are not 
identical. Consider, again, a rather advanced and frequently used, surgical procedure, 
the coronary bypass operation. Can one find two identical humans so that we can have 
a simple comparative experiment, with one being a control and the other receiving the 
operation? Obviously, we cannot. Can we model, mathematically, the heart system so 
that we have a theory to which we can apply the tight deductive approaches of math- 
ematics? Again, obviously not. What then are we to do? Chapters that follow on 
randomization give one suggested process. 

A second problem is that we wish to draw conclusions about a population of 
units, for instance, humans who at present or in the future will have the problems for 
which coronary bypass surgery is a possible treatment. The standard way (except to 
Bayesians) to approach examination of a large defined population of units, for instance, 
humans, is to use the ideas of random sampling-that is, draw a sample at random from 
the population, examine the sample and attempt to make some sort of inference about 
the population, But this prescription cannot be applied to the populations of the future 
for which we wish to “make an inference.” We do not know the set of humans who 
will be candidates for bypass surgery in the future. How then are we to attempt to form 
judgments? 

1.5.2 The Role of Data Analysis 

This problem is, obviously, of vast importance. Unfortunately, it does not seem to be 
generally recognized to be one in common statistical circles. So we give a little discus- 
sion. Given a set of human subjects in 2005, we can perform a comparative experiment. 
Having performed the comparative experiment, we have to attempt to determine if the 
response to treatment is in the same direction for all groupings of subjects that we can 
envisage; i.e., is this so for males and females, for nonsmokers and smokers, for blon- 
des and brunettes, for thin and fat people, and so on. This is obviously an impossible 
prescription to fill. All we can do is to do data analysis in which we look to see if 
such factors of classification (categorical, ordered categorical, or arithmetically based) 
give evidence of having explanatory power with respect to outcome of the experiment. 
We shall discuss this in the later text under the names of “additivity” and concomitant 
variable analysis. However, we inform the reader that there are no simple answers. The 
discipline of statistics suggests data analysis procedures. 
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1.5.3 The Problem of Inference 

The outcome of such analysis may be, for instance, that thin people do not respond well 
and that fat people do respond well. Or that individuals of blood group 0 respond well 
and individuals of other groups do not. We are merely giving examples. Obviously, in 
this type of activity “one swallow does not make a spring,” or, more explicitly, one such 
study is mere evidence, perhaps strongly suggestive. So studies have to be repeated 
under different naturally occurring circumstances, with different groups of people, for 
example, South European, North European, African, Oriental, and so on. The outcome, 
one hopes, is very much the same in all these groups. The wider the groups of people 
experimented with, the more confidence one will have, in an unquantifiable way, to 
“extending” a resultant inference to groups not represented in the studies and the more 
confidence one will have in extending the inference to John Smith in August, 2010, who 
is 57, white, blood group O,.. . . It is clear that the extension of an inference from data to 
this John Smith is not one that can be made tight. The inference is subjective. It will be 
made by the controlling physician, and you, the patient, can do nothing except to hope 
that the physician makes good judgments. One will be able, perhaps, to see data that 
enables one to quantify formally the judgment ability of the physician; as, for instance, 
it can be found that he had met 25 cases “like” the one under consideration, made a 
decision, and then found that he was correct, in some sense, in 24 of the cases. One 
could formalize this problem somewhat. One could say to the physician, “You, surely. 
understand coin tossing, so that you understand what a probability of & is; simply 
the probability of getting four heads on four successive tosses of a (tested) penny. So. 
now please give me your judgment of your probability that this proposed operation 
will benefit me.” We can be quite sure that practicing physicians follow some route of 
this sort. Presumably and hopefully, this judgment will be based on literature search 
and on actual experiential facts. Also, however, it is necessarily based on incomplete 
analogy, expressed by the physician somewhat as follows. “You, John Smith, are a 
unique individual. No one else has your genetic structure: no one has had your life 
experiences; no one is in exactly the same configuration as you; but my judgment is 
that you are sufficiently like the humans in such and such studies, that I feel justified in 
applying, say, the 9 5 8  chance of success observed therein to you.” 

1.6 CAUSALITY 

It is obviously critical that a general discussion, even if brief and even potentially par- 
tially misleading, be given of the idea of causality. This is a topic with history going 
back to the pre-Socratics; also, we are confident, that it occurs in early non-Greek writ- 
ings; and it surely occurs in ancient philosophy of the East. We, not only in science, 
but in nearly all human mental activities, use some concept of causation. As the ensu- 
ing discussion indicates the word “cause” has been used for millennia and at present 
in several senses that are not at all consonant with each other. Because the design of 
experiments is directly aimed at one type of causality, it is essential to try to achieve 
a coherent and usejiiil understanding. Underlying every use of the word “cause” is a 
primeval concept that everything that happens had a cause (cf. the Kantian a priori 
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synthetic truth). 
To begin, let us list some examples, “higgledy-piggledy” of statements using the 

words “cause, caused, and because of.” Our reason for writing these in haphazard order 
is a simple one, namely, to exhibit the fact that the concept of cause is used with a 
recklessness that is really quite appalling. We shall not always complete the statements 
and shall give . . . to indicate that a proverbial intelligent and educated person, could 
complete the sentence in various ways. 

The sky is blue because . . . 
A rainbow is caused by . . . 
Such and such happens because of the second law of thermodynamics. 
The apple fell because of gravitation. 
Genes cause IQ. 
Radiation causes cancer. 
Socioeconomic status is one of the causal variables of crimes. 
The tight money supply causes stagflation. 
Bill Jones caused the automobile accident. 
The hooter in the factory at Birmingham caused the workers to stop for lunch. 
We have day and night because the earth is rotating. 

1.6.1 Defining Cause, Causation, and Causality 

We now attempt to encapsulate the ideas of Aristotle on cause and causation. We use 
Runes (1962) as part of our information sources. First on the nature of cause, Aristotle 
distinguished four interpretations: (1) the material cause out of which something arises; 
(2) the formal cause, the essence determining the creation of a thing; (3) the efficient 
cause, a force or agent producing an effect; and (4) the final cause or purpose. This 
language is surely perplexing. Why should one equate cause and purpose? Obviously, 
one becomes enmeshed in teleology, that everything is in the world for some end, 
some “telos.” Not unsurprisingly, both the idea that there must be a prime, necessarily 
single, cause and the idea that life has a “telos,” led Aquinas to one of his proofs for the 
existence of God. a proof rejected by many outstanding philosophers since, especially 
Kant. Newton (1643-1727) was a great believer in a concept of causation, that to every 
effect we must assign a cause, though just what Newton really meant by this obviously 
innocuous proposition should, we suggest, be considered moot and uncertain. 

When we turn to causality, we find ourselves drawn into an even deeper quagmire 
of words and statements. Causality is the relationship between cause and effect. Given 
the obvious obscurity about cause and also of effect, it is hard to make progress. We 
have no doubt, in these days, about accepting the idea that radiation, a “cause,” pro- 
duces cancer, an effect. M. T. Keeton in the aforementioned Dictionarl). of Plzilosoplzy 
(Runes, 1962) lists nine definitions for causality; they are so important that we have no 
alternative but to attempt to encapsulate these in very few words: 

1. a relation between events, processes or entities in the same time series subject to 
several conditions; 

2. a relationship between events, processes or entities in a time series such that 
when one occurs the other follows invariably; 
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3. a relationship, etc., such that one has the efficacy to produce or alter another; 

4. a relationship, etc., such that without one, the other could not occur; 

5. a relationship between experienced events, processes or entities and extra-experiential 
events, processes or entities; 

6. a relation between a thing and itself (self-causality); 

7. a relation between an event, process or entity, and the reason or explanation for it; 

8. a relation between an idea and an experience; 

9. a principle or category incorporating into experience one of the previous. 

If the reader is perplexed with all this, we have great sympathy. 
A shorter classification is given by Nowell-Smith (1960). He distinguishes three 

senses which we attempt to summarize: 

I. Human agency-to cause an event is to perform an action which produces a 
prechosen outcome; 

11. Causes in Nature-to characterize a natural event that produces a certain precho- 
sen outcome; 

111. Cause as explanation. 

This third sense begs the question: “What is explanation?” of course, on which 
many are curiously silent. This seems to be a conceptualization like I and I1 without an 
active agent or a natural agent. It can always be used in answering the question “Why?’ 
It may be a state of affairs, as in the proposition “Height at age 6 causes height at age 
12.” The reader may find it useful to place the usages given earlier into categories (1) 
to (9), or in categories I, 11, and 111. In spite of the huge use of sense 111, the usage is 
murky. Mill (1806-1873) thought selection of one factor as cause from the whole set 
of antecedents was arbitrary. Nowell-Smith says: ‘‘. . . alternative explanations do not 
exclude one another; any number of them can be true, and the cause will be relative to 
the interests and abilities of the investigator.” This, we suggest, “lets the cat out of the 
bag.” The use of cause in sense I11 is remarkably vague, fuzzy, and indeterminate. 

It is useful, we think, to recall a famous example of Bertrand Russell, the hooters. 
One is an observer looking at a factory in Birmingham, England; one notices that when 
a hooter is sounded, the workers stop work for lunch. The event A-“workers stop 
for lunch” invariably follows the event B-“the hooter sounds at the factory around 
midday.” We have invariable succession. Therefore, event B causes event A. Who 
can question this? It is surely obvious. But there is, we suggest, a hole. Suppose 
you are an observer in Glasgow, some 200 miles away. Factory hooters are used there 
also. Also, you have a screen which you have excellent reason to trust as conveying 
what is happening at the factory in Birmingham. However, you do not hear sounds 
at Birmingham. What will you see? The event A*, “the hooter sounds in Glasgow” 
is invariably followed by the event B, the workers stop for lunch in Birmingham-the 
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same B as before. Hence it is obvious to you that A* causes B. Surely! But this is 
plainly ludicrous. Suppose we really wished to check the proposition that A* causes 
B. To do so is easy; most children would, we surmise, tell one what to do: Simply, 
just arrange for the hooter in Glasgow not to work, e.g., cut off its power or, whatever. 
Then see if B occurs. What will happen, of course, is that the observer will note that 
B does occur. The point of this rather silly example is merely to indicate that the idea 
of inferring causation from invariable succession is a rather hopelessly inadequate and 
improper act. This problem is, of course, rather simple to look at. Merely stop the 
hooter in Birmingham and see what happens. 

1.6.2 The Role of Comparative Experiments 

We do not wish to be derogatory of the various uses of cause and causation. Obviously, 
humanity has found the various usages useful. The use of cause as explanation as in 
explaining what happens in a physical process by means of a law-even a conceptual 
theoretical one rather than a purely inductive generalization-has been fantastically 
useful. The absence of role of theory has been the perennial and valid criticism of 
Bacon’s “Novum Organum.” 

This having been said, however, we take the view that cause in sense I, that of 
human agency, is the critical one for very many, perhaps most, of the concerns of 
humanity. If we were to radiate humans, would we later find cancer in them? “How can 
I make the grass on my lawn grow?” is a perennial question of suburban America (and 
elsewhere, perhaps even in Russia). Our horticulturists have a partial answer: Put on 
nitrogen. We have experimented, we have done comparative experiments and we found 
an invariable succession. Event or action, A: “Put nitrogen on a lawn” is followed 
invariably by event 8: “The grass grows.” Outside the sphere of purely theoretical 
science, the idea underlying this “inference” permeates real world science. The big 
philosophical movement that underlies this approach is “Pragmatism,” formulated by 
the leading United States epistemologist of all time, C. S. Peirce. It is summarized in 
the oft-quoted statement of Peirce (1963, p.6): 

In order to ascertain the meaning of an intellectual conception one should consider 
what practical consequences might conceivably result by necessity from the truth 
of that conception, and the sum of these consequences will constitute the entire 
meaning of the conception. 

We do not claim, really, to understand exactly what Peirce was saying-we merely 
have glimmerings. (What is the meaning of “by necessity,” a phrase so often used in 
epistemological writings.) We do, however, interpret this and other writings, especially 
those of John Dewey (1859-1952), to conclude that a necessary and even critical pro- 
cess in all science, whether “pure” or “applied” (an unfortunate but commonly used 
dichotomy) is the process of comparative experiments. Does vitamin C prevent colds 
or cause absence of colds? The only way to form a good judgment on this is the con- 
trolled experiment in which some individuals receive massive doses of vitamin C and 
others do not. Then compare the outcomes. It would be plain silly and page-filling 
to make a list of questions and problems that are attacked by the comparative experi- 
ment method. It is hard, even, to think of a human problem of the biophysical nature 
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and even psychologic, which cannot be attacked by the comparative experiment. We 
close with just one example. We are all concerned about disease; we all want allevia- 
tion of some pain or discomfort at one time or another time. So we have investigators 
studying methods of intervention-take this pill, have that operation and so on. The 
last requirement for a submission of a request for licensing a drug use is the clinical 
trial-a comparative experiment. Without such an experiment that is judged adequate, 
an application is simply not even considered. The immediate foregoing constitute the 
case for the importance of comparative experiments. 

We must now cover a general point. The simple comparative experiment uses ex- 
perimental units, mice, humans, pieces of steel, etc., and with a proposed treatment, T, 
includes also a control, C, say, which is nothing but absence of T. One then compares 
the two groups of outcomes, those following T and those following C. In most so-culled 
inexact sciences it is critical that a study possess “adequate controls,” to use a hack- 
neyed but useful expression. It appears necessary to state an “obviosity,” something 
that is obvious. The behavior under the control may have been established with indef- 
initely strong validation by previous investigation. If we want to investigate the effect 
of applied heat to, say, a beaker of sulfuric acid, to take an absurdly simple example, 
one does not have to do the full comparative experiment of having, say, 6 beakers of 
acid which merely sit on the bench and 6 beakers to which heat is applied. One knows 
what will happen to the controls. If we are studying cancer of the colon and contem- 
plate a surgical procedure we do not have to obtain, say, 12 patients and then merely 
maintain 6, while treating 6 by the surgical procedure. We know, empirically what will 
happen to the controls. In the case of coronary bypass surgery, on the other hand, we do 
not know how the controls will react, so that we have a huge comparative experiment 
known as the Coronary Artery Surgery Study (CASS) sponsored by the National Heart, 
Lung and Blood Institute (see e.g. CASS Principal Investigators, 1983a, b; Rogers et 
al., 1990; van Belle et al., 2004 (Chapter 20)). We could trace down perhaps 100 such 
large comparative trials in human medicine, and we could track down thousands in 
health research organizations, including so-called “drug houses.” We could track down 
many thousands of comparative experiments in agriculture and biology over the world. 
And so, on and on. The subject of “Design and Analysis of Experiments” needs no 
justification by philosophers of science or mathematical statisticians. 

Finally, there is a critical point that must be discussed, at least, in a preliminary way. 
A comparative experiment consists of treating experimental units according to various 
protocols of experimentation, with necessarily one unit receiving only one protocol. 
Having done the experiment, what can one conclude? Clearly, nothing more at best 
than that protocol A led, say, to recovery from such and such a disease; or that the total 
act of putting 40 pounds of nitrogen per acre on the lawn led to a fine lawn. Having 
found such a conclusion, it is both necessary and inevitable that one should ask: What 
in the protocol produced the effect? Recall the hoary, but informative, example that 
goes as follows: When I drink vodka and tonic, I get drunk; when I drink a scotch and 
water, I get drunk; when I drink gin and tonic water, I get drunk. What then is the cause 
of my getting drunk? I ponder the question and come to the conclusion: the only thing 
common to those interventions that make me drunk is that each intervention includes 
my drinking water. The example is laughable-but we must interpose-to us with our 
knowledge. It is, of course, easily questioned by asking: Does drinking water make me 
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drunk? Obviously, here, we have a historical control with respect to the hypothesis and 
then, obviously, the causal inference is merely silly. 

The example illustrates, however, a remarkably critical aspect. The isolation from 
a protocol of one particular component as being the “real” causative agent is in some 
cases a very simple matter, as in our hoary example above. But in general this can be 
very difficult. The health research field is interesting, and perhaps, exemplar. It is not 
enough to know that drug X cures an ulcer (supposing that it does). It is regarded as 
essential to have evidence and hypotheses that are consonant with accepted scientific 
knowledge of the mode of action of the drug; in what way, does it produce its effect? 
This brings in, of course, the whole field of pharmacology. This type of epistemolog- 
ical problem pervades science. It is an attempt to justify the efficacy by reference to 
established scientific laws. 

This final point has a rather curious aspect that arises in psychological and soci- 
ological experiments. The mere fact of intervention, independently of the nature of 
the intervention, may produce an effect. This is strongly reminiscent of the possibility 
that the act of observation alone may produce an effect. The only way of attacking 
or falsifying such an explanation is, again, by comparative experiment appropriately 
designed. 

1.7 THE UPSHOT 

We have given a very long discussion of basic ideas. We do not apologize for the 
length. We have tried, foolishly perhaps, to capture or encapsulate in a few short pages 
the whole of the intellectual efforts of Mankind to “come to peace with” the unending 
anxiety of Mankind to understand and control the processes, haphazard though they 
may seem to be and must have seemed to be to, say, the educated Greek of 1500 
B.C. The outcome of this effort is, we suggest, to convince the reader that the role of 
experiments and in particular that of comparative experiments and of interventional 
studies are critical in the grand effort. If this is accepted, then there is a clear need for 
a book on “Design and Analysis of Experiments.” 

1.8 WHAT IS AN EXPERIMENT? 

To focus briefly, and on a less philosophical basis, on the nature of this book, it is 
appropriate to ask and discuss this question. 

An experiment is “deliberate observation under conditions deliberately arranged by 
the observer” (Stebbing, 1961, p. 302). This statement is acceptable as a beginning, but 
it is surely not adequate for general use, because there are many sorts of experiment, 
just as, for instance, there are many sorts of mammal. It is important to make some sort 
of classification. If, for instance, John Doe goes to New York to look at Rockefeller 
Center, this action could be called an experiment, according to the quasi-definition 
above. 
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1.8.1 Absolute and Comparative Experiments 

One, by now fairly ancient, partition was that into absolute experiments and compara- 
tive experiments. Unfortunately, the ideation behind this dichotomy is not at all clear. 
The determination of the weight of an object, for example, a human, or a sack of sugar 
is based on the idea that the object has a definite fixed attribute, the weight, which is the 
result of applying a measuring apparatus to it. The determination of the speed of light, 
assumed to be a constant attribute of light is obtained by a particular process of mea- 
surement. The process of measurement may well be based on theory, which consists 
of a mathematical structure incorporating mathematical variables that are considered 
to represent actual real world properties. In any of the examples of this paragraph, the 
hope is that if the whole process is repeated, one will obtain the same result. If the result 
is a categorical one such as a color, this may happen. If, however, the result is an arith- 
metic number, like weight in kg, grams, milligrams, , it is entirely unusual for this 
to happen. One need only experience the taking of one’s weight on a well-graduated 
balance, e.g., with gradation of of an ounce. Repetitions of the measurement 
process will not yield the same number. The assumption that is made, rather uniformly, 
is that the numbers that are obtained are independent “realizations” of a random vari- 
able, which, furthermore, is in fact a standard Gaussian random variable, that is, with 
zero mean. We place the word realizations in quotes because an actual realization of 
such a random variable will be an infinite decimal. We say that this assumption has 
been made by essentially everyone in this area. A few workers have suggested that the 
appropriate distribution is the double exponential with zero mean. 

The idea of repetitions, along with the idea of replication which permeates this area 
of design and analysis of experiments, is very difficult to characterize. Suppose John 
Doe makes a measurement at 9:OO a.m. Then has a cup of coffee, and then repeats the 
measurement at 1O:OO a.m. Is this repetition a replication? John Doe at 10: a.m. is 
different from John Doe at 9:OO a.m. Also, of course, what is being measured may be 
different over the two times. Curiously, there is very little discussion of the semantic 
problem that underlies the ideas. Repetition of an observation requires constancy of 
what is being observed. If what is being observed is not constant, then repetition does 
not have constant significance. It is clear that a basic component of education in the 
physical sciences is training in observation so that different observers will obtain “the 
same result.” This does not happen, of course, with any measurement problem of 
an (assumed) underlying continuous variable. If we assume, for instance, as seems 
reasonable, that z equals the weight of John Doe at 1O:OO a.m. can be any real number, 
then z cannot be observed. The simplest model of actual observation is that the real 
line is partitioned by a grid, and actual observation consists of deciding that the value 
sought lies in a particular cell of the grid. This will not be totally satisfying because 
the observer will meet cases such a5 the grid being in intervals of . 1 and the observer 
will meet observations which appear to him to be at a good point. If this happens at 
all frequently and if, say, the difference between an observation being in [5, 5.011 and 
being in [5.01, 5.021 is important, then a finer grid must be used. 

It is necessary, obviously, that measurements made by scientists agree-that mea- 
surements have interpersonal validity. It is not at all obvious that this will happen with 
a measurement process. So it is necessary that a study be made of the process, by 

or 
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repeated measurements by the same and different measures. This involves the con- 
struction of a design and protocol of such a study. 

1.8.2 Three Qpes of Experiments 

We distinguish basically among the following three types of experiments. 
Type I: The observation of an assumed constant. Examples are the measurement of 

(i) the velocity of light; 

(ii) the mass of an electron; 

(iii) the gravitational constant; 

(iv) the conductivity of a sample of water. 

Any book on chemistry describes a multitude of fixed properties of chemical sub- 
stances. If a measurement gives variable results in which the variability is greater than 
that explainable by pure measurement variability, the natural assumption is that the 
material being measured is not constant. 

Type 11: The measurement of a property of a population the numbers of which have 
variability. Obvious examples are 

(i) the average income of the population of families in the USA; 

(ii) the average age of automobiles that can use the roads of the USA; 

(iii) the average of the number of years of education of the adults of the USA; 

(iv) the area in the USA that has been planted to corn in the year 2000. Any book on 
economics and sociology mentions many such properties. 

In Type I, there is strong evidence that there is an underlying constant and the only 
problem is that there may be, or more generally, will be measurement errors. In Type 
11, there is the assumption, usually somewhat well based, that there is an underlying 
constant for each member of the population. 

The present book is concerned with a very different situation, which we call Type 
111. It is best exemplified by biological examples, but the same considerations arise 
throughout all technology, including engineering, and agriculture. Suppose we wish to 
develop a diet to promote growth in children of, say, age two years. We know from 
utterly casual observation that children grow at various rates. Suppose we quantify 
growth by measuring height at two years and at three years of age. We know that 
we can measure height easily within inch. We know that growth is a very variable 
process. Some children grow very little from age two to three. Others grow a lot. The 
variable we are trying to understand and modify is height gain from age two to three. 
We do not know what diet to use but we have ideas. The only thing we can do is to run 
an experiment comparing the diets that we judge to merit consideration. 

This situation is entirely different from those of Type I and I1 above. In both of these 
types there is a true value with the possibility, or, in fact, certainty of measurement or 
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observation error. In Type 111 it is impossible to have total replication of any diet. 
To obtain this, we would have to possess two or more children of age two, who are 
totally alike and who will be exposed to the same environment from age two to age 
three. The only thing we can do is to apply each diet to several two year old children 
and observe them from age two to age three. In doing this, we have replication over 
children variability. We can obtain measurement variability by repeated measurement 
using a measurement process that is under statistical control. This Type I11 experiment 
is commonly called a comparative experiment because the experimenter is comparing 
what are naturally called treatments. It is obvious that comparative experiments have 
been used and, indeed, should be used in all endeavors of critical inquiry, be this in 
science, and in this we include all sciences, in industry, especially in the manufacturing 
process, or in government, for developing certain types of social policies (see Northrop, 
1948; Scheffler, 1967). 

1.9 STATISTICAL INFERENCE 

As discussed above and as will become clearer in subsequent chapters, we are con- 
cerned about the effects of interventions. The sole purpose of the performance and 
analysis of experiments is therefore the drawing of inferences about the effects of treat- 
ments. 

1.9.1 Drawing Inference 

We have to present our opinions on what meanings we attach to the term “inference” 
and to the phrase “drawing of inference.” In Webster’s Dictionmy (1948, p. 1273) in- 
ferences are classified as mediate (= drawn from more than one proposition or premise) 
or immediate (= drawn from a single premise). The making of an inference is the act 
of passing from one judgment to another, or from a belief or cognition to a judgment. 

The field of statistics has been concerned with drawing judgments from observa- 
tions. 

Let us give a few examples. You, an ordinarily educated citizen, were exposed 
to various plays, allegedly written by William Shakespeare. This exposure we call 
the observation. Then you hear that a question has been raised on whether the plays 
were written by said Shakespeare or by someone else. Your task is to pass from the 
observation to your judgment. 

A second example is that you are to form a judgment on whether the sun will “rise” 
tomorrow. 

A third example is that an observation consists of the result of n tosses of a two- 
headed coin, which is T heads and ( n  - T )  tails. You are to make a judgment of the 
result of a ( n  + 1)th toss. 

These three examples have plagued philosophers of science for centuries. They 
exhibit differences in content. In the first case, the simple judgment is yes or no, though 
clearly a judgment could be that the author was Bacon, or perhaps others of large extent. 

In the second and third cases, a classical answer was to assume that the event was 
a realization of a binomial trial, p. Then we were to assume that p is a random variable 
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uniformly distributed over the interval [0, 11. And then to assume that we have observed 
r successes (heads) in n outcomes. By writing down the joint probability, one can 
obtain the conditional probability of p ,  given the observation of r successes from n. 
trials, the posterior distribution of p ,  as 

The posterior expectation of p is then ( r +  l)/(n $ 2 ) .  This result, that the “probability” 
of a success after T successes in n trials is ( r  + l ) / ( n  + 2 )  was known as the law of 
succession. This “result” received wide support from philosophers and observational 
scientists for decades, even centuries. The whole story is absurd. What was probabil- 
ity? Why should the “true” probability be “distributed” uniformly over the interval [0, 
l]? Where did the representation of the result T successes from a trial as a realization 
of the result of n independent Bernoulli trials come from? 

1.9.2 Notions of Probability 

Quite a different use of an idea of probability arose in connection with games of chance: 
for example, with dice tossing and the question of what is the probability that a toss 
of three coins will yield three heads. This question is, of course, totally unanswerable 
without assuming a probability structure, that is, a class of elementary events with asso- 
ciated probabilities (which were equal). These elementary probabilities were assumed 
to be frequencies of outcomes. The outcomes were then frequency probabilities in an 
indefinitely large number of repetitions. The probabilities will not be realized unless 
the elementary assumed probabilities will be realized in an indefinitely large number 
of repetitions. This mode of development became a very significant portion of math- 
ematics, particularly in the development of asymptotics. This theory has little bearing 
on inference except to make a judgment of where the probability model is reasonable. 

A very different formulation of probability was developed by J. M. Keynes (1 883- 
1946). He considers our premises to be a set of propositions h, and our conclusion to be 
a set of propositions a. “If knowledge of h justifies a rational belief in a of degree a,  we 
say that there is a probability-relation of degree a: between a and h” (Keynes, 1921, p. 
4). So for Keynes, probability is a degree of rational belief. However, Keynes does not 
explain what he intends belief to be and not at all what is rational belief. He claims that 
probable beliefs are objective and logical. Keynes then (Chapter IV) discusses a rule 
by which equiprobability could be established, due to Bernoulli (1654-1703, which 
he names the Principle of Indifference, according to which if there were several alter- 
natives with no reason for predicating one rather than another, each of the alternatives 
should have an equal probability. This was discussed by very powerful mathemati- 
cians: Bore1 (1871-1956), PoincarC (1854-1912), and Bertrand (1822-1900). After 
an unsuccessful attempt to give a forceful presentation of his Principle of Indifference, 
Keynes (1921, p. 92) says: “The theory of probability, outlined in previous chapters, 
has serious difficulties to overcome. There i s . .  .difficulty in measuring or comparing 
degrees of probability.. . .” He turns to the frequency theory of probability and bases 
his ideas on those of Venn’s Logic of Chance (1962). 

Venn (1834-1923) uses as a fundamental concept a series. The variable attributes 
of a series occur in a certain definite proportion of the whole number of cases in the 
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series. The probability of an event is the proportion of the event in the series. The 
origin of the phrase “the frequency theory of probability” is obvious. However, Venn 
did not discuss how a series should be envisaged. In fact, a series appropriate to a 
situation can be obtained only by assumption or from a history judged to be relevant 
and from data analysis. 

It is clear that philosophy has not been able to give a well-founded logic of the use 
of ideas of probability. There have been three developers of ideas of belief calculus 
of the twentieth century. Harold Jeffreys (1891-1989) gave a set of axioms which in- 
cluded the idea of a prior distribution: let y = (y1, y2. . . . . yn)  be the data; assume that 
this is a realization of a random variable whose probability distribution p(yi0) depends 
on a vector of parameters 0; then suppose 0 is a random variable with probability 
distribution p ( 0 ) ;  then the joint distribution of y and 0 is p(y. 0) = p(Q)p(ylQ) which 
is also equal to p(Q/y)p(y).  Hence p(0ly) = p(yIQ)p(B)/p(y). This is the posterior 
distribution of 0 given y. There are two problems: (1) how do we get p(yl0)? and (2) 
how do we get p ( 0 ) ?  Jeffreys did not address the first. He attempted to obtain a p ( Q )  
by a logical argument, but failed (naturally). The Jeffreys development is an attempted 
completion of the Keynes development. 

A second development was by F. P. Ramsey (1903-1930), who held the view that 
probability had to be based on knowledge and could be scaled by reference to frequency 
obtained by independent tosses of a perfect coin. 

A third development was made by L. J. Savage (1917-1971), who used the ideation 
of Ramsey, in his book, The Foundations of Statistics (1954), where he advocated 
that the prior should be obtained by “introspection.” This work has received great 
support and has led to the resurgence of “Bayesian inference,” which, incidentally, 
is a misnaming, because Bayes (1701-1761) obtained his prior by a supplementary 
experiment. 

There have been attempts to justify what are called noninformative prior distribu- 
tions. Also there have been attempts to relate the choice of prior to the nature of the 
likelihood functions, p(yl0). This function must be obtained from data analysis, so we 
are back to “square one.” 

1.9.3 Variability and Randomization 

The need for use of probability ideas arises from the fact that variability of outcome is 
omnipresent. Furthermore, this variability must be discovered by actual observation of 
the variability and cannot be discovered by “pure thought.” So, in the beginning must 
come the obtaining of data and data analysis. 

Because we are concerned with design and analysis of experiments we have to 
consider how we can “live with” variability. We cannot assume that our data are a 
realization of some convenient stochastic process, e.g., a Gaussian linear model. We 
shall use randomization and rely on randomization tests of significance and inversions 
thereof to obtain intervals of uncertainty about effects of treatments. Doing one full test 
and inversion requires massive computation. However, we find that the randomization 
distribution of the usual test statistics is closely approximated by the Gaussian linear 
model distribution of the same statistics. This will be discussed in Chapter 6. The in- 
versions of randomization tests of significance gives then statistical intervals of uncer- 
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tainty, commonly called (but erroneously) confidence intervals (see, e.g., Kempthorne 
and Folks, 1971). The point is simply that the probability is ensured essentially by the 
randomization procedure. 
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CHAPTER 2 

Principles of Experimental 
Design 

In subsequent chapters we shall describe in detail various experimental designs, their 
properties, construction, and analysis. We shall start with very simple designs and then 
proceed to more complex designs. Each design is based on a certain rationale (and 
we shall explain the basis for this) and is applicable in certain experimental situations. 
There are, however, some basic, common principles of experimentation and experi- 
mental designs that need to be clearly understood. These principles have to do with the 
formulation of the problem under investigation, the choice of the experimental design, 
the execution of the experiment, the analysis of the data, and the interpretation of the 
results. We shall discuss these principles in general terms in this chapter, leaving the 
more specific details for later chapters dealing with specific designs. 

2.1 CONFIRMATORY AND EXPLORATORY 
EXPERIMENTS 

Most experiments are of an exploratory nature in the following sense. The investigator 
is interested in finding out what factors have an influence on the outcome of a certain 
process. For example, one might be interested whether or to what extent the factors 
concentration of a chemical compound, time of baking, temperature of oven, degree of 
cooling, and amount of pressure have an effect, either individually and/or jointly, on 
the breakability of a certain type of cookware. The obvious procedure to follow here is 
to vary the “levels” of these factors and compare the performance of the various level 
combinations. How exactly this is to be done is, however, not so obvious. To perform 
the experiment many decisions have to be made, such as: the choice and number of lev- 
els of the various factors, possibly selecting only a subset of all feasible combinations; 
the choice of the experimental layout as determined partly by the physical conditions, 
partly by statistical considerations; the choice of measurement of the performance; and 
the choice of the statistical analysis which is most appropriate for drawing conclusions 
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for the intended purpose. We shall address these types of questions in later chapters 
in great detail and discuss the underlying principles so that an investigator can make 
appropriate decisions for a particular problem at hand. 

Experimentation is essentially a sequential process. One experiment leads to an- 
other as some insight is gained from a process and new questions are being asked. An 
exploratory experiment, as described above, may be followed by what we may call a 
confirmatory experiment. We may, for example, want to compare the “best” procedure 
found from the exploratory experiment with an established procedure or product and 
“establish” that the procedure or product is “better” than the old. This in itself is already 
a well-defined and narrower problem than the one described earlier. As such, it calls 
for different design considerations. For example, the number of experimental runs may 
be very important so that the resulting statistical analysis, that is, the statistical test, 
may achieve a certain desirable power. 

To pursue the idea of a confirmatory experiment in a different direction, we may 
have found the “best” procedure and may want to establish, for process control pur- 
poses for example, its statistical properties. We know that process conditions may 
change and it is important, therefore, to establish the mean performance and the vari- 
ability associated with the process. For unsatisfactory values this may lead to refine- 
ments in the actual production process. 

The discussion up to this point has been deliberately vague. It is merely intended 
to give the reader some idea about kinds of experiments. We urge the reader to think 
about similar experiments in other fields of investigation and then carry them through 
the individual steps (to the extent possible) of experimentation which we shall outline 
in the following sections. 

2.2 STEPS OF DESIGNED INVESTIGATIONS 

In practical situations many scientific or industrial investigations are doomed to fail. 
There are many and varied reasons for this, but the most often encountered reason 
is simply that the investigation was not properly planned. Many investigators fail to 
understand that careful pre-planning is essential for a successful experiment. This in- 
volves going through a number of steps and making decisions at each point before the 
actual investigation begins. 

A schematic presentation depicting the logical steps of scientific and industrial ex- 
perimentation is given in Figure 2.1. 

In the following sections we shall comment on the individual steps and explain their 
importance in the overall process (for an alternative description of such an approach 
for industrial experiments see Coleman and Montgomery, 1993). These steps can be 
divided into two categories: statistical (that is, development of the statistical design, 
translation into a statistical model, and statistical analysis, which we shall refer to as 
the “statistical triangle,” indicated by solid lines in Figure 2.1) and nonstatistical in 
nature. Even though we shall concentrate in this book on the purely statistical aspects 
of experimentation, it is important to realize that the nonstatistical steps are intimately 
connected with the statistical steps and require interaction between the subject matter 
scientisthnvestigator and the statistician and should not be ignored in any discussion 
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Figure 2.1 Logical steps of scientific experimentation. 

of designing an experiment. 

2.2.1 Statement of the Problem 

Investigation starts often with a simple speculation: “A tree in my garden is hurting; 
I wonder if it needs more water?” Immediately this leads to questions, such as “How 
much water should the tree get and how often should it get water?’ or “Are there 
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other deficiencies that need to be corrected and if so, how?” On a more scientific level, 
speculations and questions of this kind lead to the formulation of a problem: “I wish 
to determine the best cure for the tree in its present state” or, more in keeping with the 
topic of this book, “I wish to compare the effectiveness of alternative procedures for 
curing the tree.” 

Although this may sound obvious, each scientific investigation must begin with the 
development and a statement of a problem. This is important not only with respect to 
subsequent statistical considerations, but also with respect to delimiting the problem to 
one that can be addressed realistically. All too often experiments are started without 
a clearly formulated question, purpose or goal in mind, and all too often it is realized 
too late that such an experiment has been conceived and laid out on too broad a basis 
leading often to practical difficulties in actually carrying out the experiment. This may 
lead to a curtailment of the experiment in midstream which may in turn result in an 
unsatisfactory experiment, that is, one that cannot answer the most important question 
or questions that the researcher may have. Obviously, other considerations come into 
play also. These will be outlined in general terms below as a guide to determining 
reasonable strategies for experimental investigations. 

2.2.2 Subject Matter Model 

The first step, statement of the problem, is equivalent to the formulation of questions 
or research and working hypotheses. As mentioned above, such hypotheses must be 
stated as clearly as possible even though the formulation may not be as precise as that 
of a statistical hypothesis. Statements such as “I want to compare treatment (proce- 
dure) X with treatment (procedure) Y” or “I want to compare several treatments” or 
“I want to find out which factors have an effect on a certain outcome of a process” are 
usually quite appropriate. This, in turn, will lead in an obvious way, to the formulation 
of what we might call a subject matter model. By this we simply mean a listing of all 
the factors that might influence the outcome of the experiment. Such factors will in- 
clude the treatment factors which are the main objective of the investigation as well as 
classification (or blocking) factors which are determined by the conditions under which 
the experiment is performed (see also Section 2.2.4). It cannot be emphasized enough 
that such a listing is crucial to the whole investigation for the following reasons: (i) 
It determines, if not completely then to a large extent, the choice of the experimental 
designs, and (ii) it defines the target population with respect to which inferences can be 
drawn. 

We shall illustrate these ideas with the following examples. 

EXAMPLE 2.1 : Suppose we are planning a chronic heart failure randomized clinical 
trial to investigate the effect of carvedilol and metoprolol on the regional vascular re- 
sponses to adrenergic stimuli (Hryniewicz et al., 2003). In addition to the treatment 
factor the following factors may need to be considered in deciding on the final trial 
protocol: gender of subjects; type of subjects, e.g. normal subjects, New York Heart 
Association class 11,111, IV patients; prior or concurrent type of treatment; age of sub- 
jects. 0 
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EXAMPLE 2.2: In a study to assess the effect of cognitive behavioral therapy for 
nocturnal panic (Craske et al., 2005) additional factors to include may be gender, race, 
marital status, level of education, employment status. 

EXAMPLE 2.3: The importance of mycorrhizal colonization in the establishment and 
growth of forest trees has long been recognized, and mycorrhizal inoculum is used 
regularly in replanting (Amaranthus et al., 2005). To further study this effect the fol- 
lowing treatment factor may be considered: Type of ectomycorrhizal fungus inoculum, 
amount of inoculum, type of application. Other classification factors may include: 
Species of trees, age of seedlings at time of inoculation, environmental conditions in 

0 the greenhouse, type and amount of pesticide application. 

EXAMPLE 2.4: A study was conducted to investigate the effects of drinking saline 
water on farmed deer (Kii and Dryden, 2005). In addition to the treatment factor salin- 
ity, the following factors may have to be considered: Deer species, gender of deer, age 

0 of deer, location of deer population, other environmental conditions. 

Based upon these factors and possibly others imposed by physical or biological lim- 
itations and/or statistical considerations (which will be explained in detail in this book), 
a suitable experimental design has to be chosen together with an appropriate statistical 
model. These two steps go hand in hand and once they are established the course of the 
investigation is pretty well determined and so is the basic statistical analysis. Thus, at 
this point any reconsideration of the experiment, if needed, should take place (indicated 
by the broken lines in Figure 2.1). One can think of a number of reasons why such a 
reevaluation and reformulation of the experiment might become necessary: (i) The ex- 
periment, as conceived, has become too big and too complex to be carried out under 
existing conditions, (ii) the physical limitations imposed by the available experimental 
material may make it impossible to obtain any or part of the information sought, and 
(iii) not enough experimental units are available to yield "good" information. 

2.2.3 Three Aspects of Design 

The point we are trying to make here is that this is the appropriate time to think the 
experiment through to its logical conclusion before embarking on it. Of crucial impor- 
tance in this respect is the choice of the experimental design which consists of three 
components: (i) treatment design, (ii) error-control design, and ( 5 )  sampling and ob- 
servation design. The treatment design determines the treatments to be included in the 
study: which treatments should we choose and how many? The treatments may be de- 
termined by various treatment factors and level combinations of such factors. Then the 
questions arise how many factors should be used, how many levels should be included 
for each factor, what is a reasonable range for these levels or what are possible choices 
for these levels. Not only will this depend on whether the factors are qualitative or 
quantitative, but also what kind of information is being sought and how that will be 
reflected in the analysis. It is impossible to give specific guidelines as to how to answer 
these questions. Each experiment has its own characteristics and demands. General 
guidelines will, however, become obvious as we discuss in later chapters more specific 
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designs, both treatment designs and error-control designs. 

Aspects of treatment design are closely connected to aspects of error-control de- 
sign. By error-control design we mean the actual arrangement of the treatments in an 
experimental plan using a rule of assigning the treatments to experimental units, that 
is, to pieces of experimental material. Examples of such designs are the completely 
randomized design, randomized (complete or incomplete) block design, Latin square 
design, etc. (see Chapter 3). The choice of an error-control design depends on the 
availability of experimental units, the structure of those units, and the precision of esti- 
mation desired by the investigator. For example, if the experimental units have a block 
structure, that is, can be grouped into sets (blocks) of homogeneous units, then some 
form of randomized block design may be called for. Or if the experimental units exhibit 
heterogeneity in two directions (as perhaps in a field trial), some form of row-column 
design (e.g., Latin square, Youden square) may be the most appropriate design. The 
principle of blocking (see Section 2 .5 )  and the way in which the resulting designs con- 
trol the error will be explained in later chapters together with reasons for choosing one 
design over another. 

The third component of the experimental design is the sampling and Observation 
design. It determines at which level observations are being taken and what kinds of 
observations are being taken. More precisely it tells us whether the observational units 
are the same as the experimental units or whether subsampling from the experimental 
units is to be done. Also, it specifies whether univariate or multivariate observations 
are to be taken. 

As mentioned before and as indicated in Figure 2.1, the development of the exper- 
imental design and the formulation of an appropriate statistical model are intimately 
connected in that the structures of the treatment design, the error-control design, and 
the sampling and observation design determine essentially the complexity of the sta- 
tistical model. In the context of this book, the statistical models will be linear models 
or linearized forms of nonlinear models, more specifically classification and regression 
models (see Chapter 4). Since this book is concerned mainly with comparative rather 
than absolute experiments, the linear models used will be classification models incor- 
porating the effects associated with the three component designs discussed above. This 
will be made clearer as we discuss the various designs. 

Having chosen a suitable experimental design, the experiment itself can now be 
performed. It is worth noting here that although this part of the whole experimental 
process appears to be nonstatistical in nature, it is crucial that it be carried out in con- 
formance with the statistical requirements for the design chosen. This includes, for 
example, proper randomization of the treatments to the experimental units and proper 
replication of the application of the treatments. For this reason it is important for the 
statistician and the investigator to at least work out and write up a protocol spelling out 
all the details of the experiment as far as possible. Included in this should also be de- 
tails about the actual data collection and the measurement process, for example, when 
data should be collected and what the scales of measurement are. 
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2.2.4 Modeling the Response 

In the actual experiment each treatment factor is represented by different ‘‘levels’’, that 
is, different forms or different amounts, such as different types of inoculum, different 
amounts of inoculum. With regard to the other factors in the subject matter model, the 
investigator may decide to restrict a factor to just one level, for example, only russa 
deer, or include several levels, such as patients from different illness severity groups. 
In the latter case these factors will have to be also included in the ensuing analysis of 
the data. For this purpose it is important to provide a suitable model of the response 
data. 

To formalize this idea in general terms (which will be made more specific in later 
chapters) we write 

(2.1) 

where f represents an unknown function and the explanatory variables refer to treat- 
ment and blocking factors as employed in the treatment and error-control designs, re- 
spectively. 

Among the blocking factors are factors identified by the subject matter model (Sec- 
tion 2.2.2) as essential for defining the target population for purposes of statistical in- 
ference. Cox (1984) referred to these factors as intrinsic factors. We shall adopt his 
terminology and divide the blocking factors into intrinsic and nonspeciJic factors, the 
latter being determined by the necessities of the error-control design, that is, consid- 
erations of further reducing heterogeneity of the experimental material. If we denote 
the set of treatment factors by X = ( 2 1 .  2 2 . .  . . . xt}, the set of intrinsic factors by 
2 = (z1, z 2 . .  . . . z q } ,  and the set of nonspecific factors by U = {u~. u2..  . . , u s } ,  we 
can rewrite (2.1) more explicitly as 

(2.2) 

Response = f(Exp1anatory variables) + Error. 

y = f(zl.z2.. . . .xt: ~ 1 . ~ 2 . .  . . . zq;  ~ 1 . ~ 2 , .  . . . u s )  + e.  

We illustrate the above terminology with the following examples. 

EXAMPLE 2.5: We consider an experiment reported by Pearce (1953, 1983) (see also 
Hinkelmann, 2004) comparing different pruning managements of pear trees. Combi- 
nations of different types and amounts of pruning are assigned to individual trees in 
each of several selected rows of trees. The trees in each row are quite uniform, but 
there exist row-to-row differences due to environmental conditions. For purposes of 
inference several varieties of pear trees were included in the experiment. In this setting 
there are two treatment factors: 21 = type of pruning and 2 2  = amount of pruning, 
one intrinsic factor: z1 = variety of pears, and one nonspecific factor: u1 = rows of 
trees. The final experimental design is a factorial treatment design (see Section 11.1) 

0 in a randomized complete block design (see Sections 9.1 and 9.2). 

EXAMPLE 2.6: The following description of a clinical trial serves as another illustra- 
tion. Suppose we want to investigate the effectiveness of different treatments with re- 
gard to the elimination of a certain type of skin rash on the human body. The treatment 
factors are 21 = concentration of lotion, 2 2  = frequency of application. A combina- 
tion of different levels of each factor defines the medical treatment, and each arm of 
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each patient included in the trial receives a different treatment. The trial includes male 
and female patients classified according to disease severity. Thus gender and severity 
classes represent the intrinsic factors z1 and 2 2 ,  respectively. The patients represent a 
nonspecific factor, ul. The resulting experimental design consists of a factorial treat- 
ment design (see Section 11.1) and some form of incomplete block design (see Section 

0 9.8) as the error-control design. 

2.2.5 Choosing the Response 

In the preceding discussion we have used the term “response” in a generic sense. In 
many situations it is actually clear what the response or response variable should be. 
If, for example, we want to determine the effect of different manufacturing processes 
on the strength of a certain type of plastic tube, then the obvious response is measured 
in psi, pounds per square inch, needed to destroy the tube. As another example, if we 
want to assess the effects of different pollutants on a certain crop, it may not be so clear 
what should be measured. We could measure the growth of the plants at the end of 
the trial or at the end of the growth period, or the yield of the plants at the end of the 
growing season, or the amount of damage on the leaves of the plants at the end of the 
trial. 

Our intention here is to point out that the researcher must give careful considera- 
tion to the choice of response variable, one that is most meaningful in the context of 
and most clearly associated with the expected outcome of the experiment. In other 
words, the response variable should be chosen so that the inferences and results from 
the experiment can be clearly stated and communicated. In this context, a continuous 
response variable is preferable to a binary or ordinal variable because it contains more 
information. On the same grounds, an objective, that is, measurable variable is prefer- 
able to a subjective variable. All this depends, of course, on whether we have a choice 
at all. 

There are still other considerations. For example, should we measure the yield of 
an individual plant or of a bunch of plants? Or, should we measure the pulse rate of an 
individual at a certain point in time or at several time points within a specified period? 
Again, this may be determined by the type of inference we want to make concerning 
the treatments used in the experiment. 

2.2.6 Principles of Analysis 

Once data have been collected they will be subjected to a statistical analysis in con- 
cordance with the experimental design and its associated model. Such analyses will be 
dealt with in great detail in later chapters. We shall mention at this point only the basic 
principles involved. 

A major aim of analyzing data from designed experiments is to quantify and eval- 
uate the importance of possible sources of variation. This can be achieved through the 
analysis of variance (ANOVA) associated with the underlying linear model, either in 
its univariate or multivariate form. The topic of ANOVA will be taken up in great detail 
in Chapter 4. For purposes of the discussion in this chapter we shall give just a brief 
outline. 
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Given observations, y say, from an experiment, the general idea of ANOVA is to 
partition the “total variability” (or total sum of squares), SS(Tota1) = C(y - j j ) 2 ,  into 
component parts as specified by an underlying linear model. Such a model reflects the 
structure of the observations as determined by the treatment design, the error-control 
design, and the sampling design [see also (2.3)]. Each design is represented by several 
sets of effects (parameters). These effects provide a more explicit expression of model 
(2.2) in the form of so-called main effects of and various interactions among the ex- 
planatory variables in (2.2), in addition to one or more error terms (see Section 2.3.2). 
Suppose there are q such sets altogether. Then, using the method of least squares (see 
Chapter 4), SS(Tota1) is partitioned (not necessarily uniquely) as follows 

where S S ( i )  represents the sum of squares associated with the ith set of effects (z  = 

1 . 2 , .  . . . q )  accounting in some sense for the variation that can be attributed to these 
effects [see also Section 2.9 for a brief discussion of the partition of the total number 
of degrees of freedom (d.f.) into the d.f. associated with the individual S S ( i ) ] .  Of 
particular interest and importance in our subsequent discussion will be the sums of 
squares associated with the treatments, and with experimental error. 

The ANOVA provides the basic information necessary for making statistical infer- 
ence either in terms of tests of hypotheses (or tests of significance) or confidence inter- 
val estimation. Associated with a sum of squares, S S ( i ) ,  are the d.f. uL,  and the mean 
squares, MS(i) = SS(a ) /uz .  It is the form of the expected mean squares, E [ M S ( i ) ] ,  
which determines, for example, how tests of hypotheses are performed and how error 
variances are estimated. 

All tests of hypotheses (or significance) and estimation of parametric functions are 
done in accordance with the aims of the experiment. Thus the statistical results will 
have to be interpreted in terms of the investigator’s originally formulated hypotheses. 

2.3 THE LINEAR MODEL 

2.3.1 Three Qpes of Effects 

In our discussion we have pointed out repeatedly the importance of the linear model 
as it relates to the subject matter model and the experimental design. Such models 
will be given or derived for all designs presented in later chapters, but it seems useful 
to give some heuristic arguments here about the form of these models. The general 
idea is to express the observations, generally denoted by y, in terms of “effects” which 
contribute to y. These effects or components fall basically into three categories: (i) 
treatment effects, (ii) design effects, and (iii) error effects. 

The treatment effects are a reflection of the intervention procedure or treatment 
design. The treatment factors listed in X (see Section 2.2.4) indicate whether a single 
treatment or combinations of several treatment factors are used. Together with subject 
matter considerations this will determine which effects, that is main and interaction 
effects. will be included in the linear model. 
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The design effects are determined by the explanatory variables included in Z and 
U (see Section 2.2.4). We refer to these effects also as block effects as part of the 
error-control design. 

In addition to pure treatment and design effects we may need to include occasion- 
ally treatment x design interaction effects into the model. These arise from possible 
interactions between treatment factors in X and intrinsic factors in 2 (see Section 9.6.8, 
also Hinkelmann, 2004). 

Finally, the error effects, or errors for short, represent different kinds of random 
variation. Such variation arises in connection with the experimental and observational 
units (see Section 2.3.2) as well as some aspects of the actual experimentation and 
data collection. Again, these aspects will be discussed in more specific details in the 
following chapters (see, in particular, Section 6.3). 

We illustrate some of the notions discussed above in the following example. 

EXAMPLE 2.7: The objective of a study by Rosen et al. (2005) was to determine 
whether nitrogen and sulfur fertility affects glucosinolate concentrations in cabbage. 
The treatment factors were 51 = nitrogen = (at two rates), 5 2  = sulfur = S (at two 
rates), 2 3  = cultivars (two types: green cabbage and red cabbage). The experiment 
was set up as a so-called split-plot design (see Chapter 13) with four replications in 
two years. Thus z1 = year as an intrinsic factor and u1 = replicate as a nonspecific 
factor. 

The treatment effects included in the model then are: 117 rate, S rate, L%r rate x S 
rate interaction, cultivar, cultivar x S rate interaction, cultivar x S rate interaction, 
cultivar x AV rate x S rate interaction. The design effects are year effects and replicate 
within year effects. In addition, the treatment x design interaction effects include 1%- 

0 rate x year interaction, S rate x year interaction, cultivar x year interaction. 

2.3.2 Experimental and Observational Units 

In order to understand the nature and use of the error effects or error components it is 
essential to understand the distinction between the (possibly different) units to which 
treatments are applied and on which observations or measurements are being made. 
These units are called experimental units and observational or sampling units, respec- 
tively. The e.xperimenta1 unit (EU) is the piece of experimental material, to which a 
treatment is assigned and applied. For example, in a clinical trial where different pa- 
tients are given different drugs, each patient is an EU. If, on the other hand, each patient 
is given a different ointment on each arm, then each arm constitutes an EU. Associated 
with an EU is experiinental error. Such error is a reflection of the fact that EUs are not 
alike, that is, cannot be replicated exactly. Contributing to experimental error is also 
our failure to replicate a treatment exactly, that is, instead of administering 15 ppm of a 
certain substance, as called for in the protocol, we administer to some units 14 ppm or 
16 ppm and so on. We refer to this component of the experimental error as treatment 
error. 

We emphasize here already that it is very important to always clearly identify the 
experimental units for a given experimental situation. In the case of several treatment 
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small EU I 

Figure 2.2 Schematic representation of experimental layout. 

factors it may happen that different treatment factors are applied independently and 
separately to different types of experimental units. As a consequence there will then be 
also different experimental errors, and that becomes important for tests of significance. 
This is the special characteristic of split-plot type designs (see Chapter 13). 

We shall use the experimental setup of the study in Example 2.7 to illustrate the 
point mentioned above. 

EXAMPLE 2.7 (continued): Here we have two types of experimental units. More specif- 
ically we have “large” EUs to which combinations of the two rates of N and S are 
applied, and two “small” EUs within each large EU in each of which one type of cab- 
bage is grown. If we denote the two rates of N by n1, n2, the two rates of S by s ~ ,  s2, 

and a combination of them by (nz,  s J )  (i, j = 1,2),  then the essence of the experimen- 
tal layout for one replicate in one year is illustrated in the schematic representation of 
Figure 2.2, where the open circles 0 represent green cabbage and the full circles 

It is important to distinguish between the EU and the observational unit (OU). The 
observational (or sampling) unit is the unit on which observations, that is, measure- 
ments, are made. In many situations EU and OU are identical, but in other situations 
they are not. For example, in an educational study a class, that is, a collection of stu- 
dents, is the EU as the class as a whole is subjected to a particular teaching method 
which is the treatment. Observations are made, however, on the individual students in 
the form of test scores. Then the students are the OUs. Associated with the OU is an 
observational (or sampling) error, which reflects, among other things, measurement 
error and also sampling error in that if the experiment were repeated, most likely other 
students would be part of the study. 

represent red cabbage. 0 
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To elaborate on this point further we consider again the experiment described in 
Example 2.7. 

EXAMPLE 2.7 (continued): One can think of different scenarios of obtaining data in this 
setting: 

(i) In each row (small EU) we may randomly select one cabbage head and perform 
the appropriate chemical analysis on it. In this case, at least from a statistical 
point of view, there is then no distinction between EU and OU. It illustrates, 
however, the point that there will be sampling error as part of the observational 
error. 

(ii) We may randomly harvest two cabbage heads per row, chop them and then com- 
bine them in a forced air dryer for further analysis. For purposes of statistical 
analysis the situation is the same as in (i). 

(iii) Two (or more) cabbage heads are randomly harvested from each row and glu- 
cosinate extraction is performed on each head. In this case then the EUs and 
OUs are different: The rows are the EUs and the individual cabbage heads are 
the OUs. This is an example of what is referred to as subsampling (see Sections 
3.5 and 6.9). 0 

2.3.3 Outline of a Model 

In equations (2.1) and (2.2) we have given a very general form of a model for the 
observations from an experiment. The discussion above suggests that the function f 
in (2.1) and (2.2) is a linear function. A formal derivation, based on the notion of 
unit-treatment additivity (see Section 6.3), will be given in later chapters. The idea 
we want to convey here is that the response after the intervention, which, following 
an agronomic practice, is often called yield, is made up additively of a unit effect plus 
a treatment effect plus error effects, e.g., unit or experimental error, observational or 
measurement and sampling error. The unit effects and experimental error effects are 
used to model the systematic and random influences, respectively, of the error-control 
design. Hence we shall refer to the unit effects also as the design effects. They contain 
the effects of the intrinsic and nonspecific factors of (2.2). 

Schematically we write all this as 

Observation = Design effect + Treatment effect 

[+ Design x Treatment interaction effect] 

+ Experimental error 

+ Observational error 

(2.3) 

In (2.3) we have added the design x treatment interaction effect which may arise in 
certain experimental situation as a component of interest. We shall elaborate on this 
model in more detail as we discuss specific examples and different designs - error 
control designs as well as treatment designs - in later chapters. 
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2.4 ILLUSTRATING INDIVIDUAL STEPS: 
STUDY 1 

2.4.1 The Questions and Hypotheses 

We shall now illustrate the various steps we have described in Section 2.2 and the for- 
mulation of a linear model as outlined in Section 2.3 in terms of an example. Suppose 
an investigator wants to study the effects of air pollutants on seedlings of loblolly pine. 
The pollutants to be used, singly and in combinations, are 0 3 ,  ozone, and NO*, nitro- 
gen dioxide, at levels .OO, .05, . 10 ppm for 6 hourslday for 28 consecutive days, applied 
to seedlings at uniform age. The investigator is interested in: (i) comparing the dam- 
aging effects of the pollutants and (ii) assessing potential synergistic effects of 0 3  and 
NO*. These effects are possibly influenced also by the genetic make-up of the trees, 
that is, whether they are relatively susceptible or relatively resistant to air pollutants 
(Kress, Skelly and Hinkelmann, 1982b). More formally, the research hypotheses can 
then be stated as follows: 

(i) Long-term exposure to 0 3  and NO2 has damaging effects on pine seedlings with 
respect to growth, mottling, and chlorotic spot symptoms (see e.g., Kress, Skelly 
and Hinkelmann, 1982a). 

(ii) The amount of damage increases with the level of pollution. 

(iii) A combination of pollutants will exhibit synergistic effects. 

(iv) The amount of damage will also depend on the degree of sensitivity (as deter- 
mined genetically) of the family from which the seedlings come, one type of 
family being relatively resistant and one being relatively susceptible. 

The observations and measurements will then be determined and influenced by the 
treatments, that is, the type (combination) of pollutants, the level of pollution, by the 
genetic background, and for growth by initial height. Other factors such as temperature, 
amount of light, and humidity, may have to be taken into account depending on the 
experimental design to be adopted. The seedlings will be exposed to the pollutants in 
pollution chambers. 

2.4.2 The Experiment and a Model 

In what follows we shall use language and terminology which is not very precise and 
intended only to give the reader some feeling for and appreciation of the various con- 
cepts we have mentioned so far. More precise formulations will be given in subsequent 
chapters. 

The error-control design depends on the availability and arrangement of the pollu- 
tion chambers. Suppose the researcher has 18 chambers available to him distributed 
in a laboratory under uniform environmental conditions, such as heat, light, and hu- 
midity. One possible arrangement then would be to randomly assign each treatment, 
that is, each of the nine possible pollution combinations, to two pollution chambers. In 
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each chamber a specified number of seedlings, 2s say, equally divided between the two 
families will be exposed in the prescribed way to the assigned pollutant. We shall refer 
to this as arrangement I. 

A linear model associated with this experimental setup might be as follows: 

Y i j k ~  = + Pi + Cij + Fk + (PF)ik + E i j k  + ‘VijkL > (2.4) 

where y i j k l  denotes an observation for the 1th seedling of the kth type of family in the 
j t h  chamber assigned to the ith pollutant, and p is an overall mean, Pi is the effect of the 
ith pollutant (i = 1: 2; . . . 9), Cij is the effect of the j t h  chamber ( j  = 1.2)  assigned 
to the ith pollutant, Fk is the effect associated with the kth type of family (k = 1: 2 ) ,  
(PF) ik  is an effect due to the interaction (nonadditivity) between the ith pollutant and 
the kth type of family, and ~ i j k  represents an experimental error component and q i j k l  

represents the observational (or sampling) error (1 = 1; 2, . . . s). We note that the 
experimental error here consists of two components: one component (Cij) arises from 
the application of the pollutants to different chambers (= EU); the other component 
( ~ i j k )  arises in connection with each chamber-family combination as the families, even 
though they are labeled resistant, say, are not identical, that is, not exactly reproducible 
as they may be full-sib families produced from different trees. Model (2.4) can be 
expanded further by making use of the fact that the treatments, that is, pollutants, are 
actually level combinations of two factors, O3 and NO2, as shown below: 

NO2 

0 3  .OO .05 .10 

.oo PI P2 P3 

.05 P4 Ps Ps 

.10 P7 Ps PS 

This structure, which is also referred to as a factorial structure, enables one to partition 
each effect P, into O3 and NO2 main effects and 0 3  x NO2 interaction. This leads to 
particular comparisons among the nine pollutants which will enable us to answer, for 
example, the question posed originally whether 0 3  and NO2 if applied jointly exhibit 
synergism. 

Relating model (2.4) to the terms of our discussion in Section 2.2.4 we note that 
O3 and NO2 represent treatment factors, type of family represents an intrinsic factor, 
and pollution chamber represents a non-specific factor. 

2.4.3 Analysis 

An outline of the statistical analysis can be exhibited in an analysis of variance table 
as given in Table 2.1 (see Chapter 13). This table indicates, again not in very precise 
terms, which hypotheses can be tested and that these are in agreement with the inves- 
tigator’s aims. More specific hypotheses can be tested using follow-up procedures as 
described in Chapter 7. Our main point in all of this is that the experiment is designed 
in such a way that it can provide answers to the questions posed at the outset of the 
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Table 2.1 Analysis of Variance for pollution 
Arrangement 1 

Research Hypothesis That 
Source of Variation d.f. Can Be Tested 

Pollutants 8 Differences among pollutants [see (i)] 

0 3  

0 3  x NO2 

Chambers (Error 1) 
Families 
Pollutants x Families 

Error 2 
Obs. Error 

9 
1 
8 

2 

2 

4 

9 
3 6 ( ~  - 1) 

Total 36s - 1 

Differences among levels of 0 3 ,  

averaged over NO2 [see (ii)] 
Differences among levels of N02 ,  

averaged over 0 3  [see (ii)] 
Synergism between 0 3  and NOp 
[see (iii)] 

Interaction between pollutants and 
families [see (iv)] 

experiment. This, of course, does not imply that this is the only way to achieve these 
objectives. Physical conditions and fiscal considerations may, indeed, dictate another 
course of action as long as it is consistent with the aims of the experiment. Concern- 
ing the performance of the experiment, care must be taken that the treatments, that 
is, pollutants, are assigned at random to the pollution chambers, and that the seedlings 
within a chamber are arranged at random or in some rotating fashion for the duration of 
the experiment. An established protocol controlling other “environmental” conditions 
will have to be followed. Attention must be given to the evaluation procedures. For 
example, should foliar symptoms be measured or evaluated on each needle and how, 
or should each seedling as a whole be rated. How should height growth be measured, 
from where to where and during which time period? 

After the appropriate data have been collected they will be analyzed according 
to the model outlined above. It is difficult to draw conclusions in the abstract here 
without any real data, but in light of what has been said before it should be clear how 
the results from this experiment can be interpreted. The question of synergism can be 
answered directly. As a result, it is not difficult to imagine that new questions might be 
raised which then will lead to a new investigation as part of sequential experimentation. 
The crucial point in designing an experiment is to make sure that the investigator’s 
questions can be answered in the context of the statistical analysis. This means that we 
must be able to test, in the analysis of variance table, the statistical hypotheses which 
correspond to the research hypotheses. 
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2.4.4 Alternative Experimental Setup 

To show in terms of the example discussed above how things can go wrong, we con- 
sider the following alternative arrangement, referred to as arrangement 11. We assign 
each pollutant combination to two chambers with 2s seedlings of one family in one 
chamber and 2s seedlings of the other family in the other chamber. Expressed alterna- 
tively, this means that each combination of pollutants and family is randomly assigned 
to one chamber (this implies that "family" is now a treatment factor). The reader should 
recognize that this arrangement is, indeed, different from arrangement I. As a conse- 
quence, a different linear model will be used to analyze the data. It can be written in 
the following form: 

(2 .5)  

where all the terms are as defined before with E : ~  and q z k l  ( 1  = 1 . 2 .  . . . , 2s )  repre- 
senting experimental and observational errors. An outline of the associated analysis 
of variance is given in Table 2.2. The main result here is that there are zero d.f. for 
experimental error (this follows formally from the position of the total d.f., 36s - 1, 
but also from the fact that each treatment combination is assigned to only one chamber 
(see Section 2.5)) which implies that we cannot test any hypotheses unless we assume 
that all or parts of the interaction between pollutants and families is negligible. That 
assumption, however, is not realistic in light of research hypothesis (iv). Hence this 
arrangement is of no value and should, therefore, not be used. The only reason for 
mentioning this arrangement then is to emphasize the importance of checking whether 
a particular arrangement will lead to a statistical model and hence to an analysis which 
is capable of providing answers to the questions posed by the investigator. 

g ~ k i  I-1 + pt + Fk + ( ~ F ) L I ,  + ETk + %kl  

Table 2.2 Analysis of Variance for Pollution 
Experiment (Arrangement 11) 

Source of Variation d.f. 

Pollutants 
0 3  

NO2 
O3 x NO2 
Families 
Pollutants x Families 
Oyx Families 
i V 0 ~  x Families 
O3 x ;VO2x Families 
Expt. Error 
Obs. Error 

8 
2 
2 
4 

1 
8 

2 
2 
4 

0 
1 g(2s-l) 

Total 36s - 1 
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2.5 THREE PRINCIPLES OF 
EXPERIMENTAL DESIGN 

In describing the steps of an experiment we have emphasized the statistical aspects, in 
particular what we have called with reference to Figure 2.1, the “statistical triangle,” 
namely choice of an experimental design, that is, treatment and error-control design, 
formulation of an appropriate linear model, and outline of the statistical analysis based 
on the chosen experimental design and its associated model. To assure validity of the 
analysis and to increase its sensitivity we have to observe three basic principles which 
are crucial to any experiment. 

The first principle is that of replication. By this we mean that each treatment (or 
some of the treatments) must be applied to several experimental units. In the absence 
of systematic differences among experimental units treated alike, such replications will 
enable us to estimate the experimental (random) error against which differences among 
treatments are judged. (Unreplicated experiments are useful only in certain situations 
under certain assumptions.) 

To ensure validity of the estimate of experimental error we rely on the second prin- 
ciple which is that of randonzization. It leads to an unbiased estimate of variance as well 
as an unbiased estimate of treatment differences, that is, estimates that are free from 
systematic differences due to otherwise uncontrolled variation. We shall comment on 
the principle of randomization in more detail in Chapter 5 as well as in connection 
with the individual types of designs. We shall point out then how randomization is 
to be performed and how that enables one to formulate appropriate linear models and 
what effect it has on the statistical analysis. 

One of the main objectives in choosing an appropriate error-control design is, in 
fact the reduction of experimental error. In many cases this is achieved by means of the 
third principle, that of local control or blocking. The basic idea is to partition the total 
set of experimental units into subsets (blocks) that are as homogeneous as possible. 
In this way the effects of nuisance factors which contribute systematic variation to 
the differences among experimental units can be eliminated. This in turn will lead 
to a more sensitive analysis since, loosely speaking, the experimental error will be 
evaluated in each block so generated and then pooled over the whole experiment. Such 
blocking (by intrinsic and/or nonspecific factors) can occur in various ways and at 
various stages of the experiment and is dictated by the experimental conditions and the 
requirements on the desired sensitivity of the experiment. The Latin square design and 
the split-plot design are examples of more complicated blocking structures which will 
be discussed in greater detail later in this book. The obvious implication of the present 
discussion is that the more blocking is being done, the more sensitive the experiment 
becomes. This is true, however, only up to a certain point and depends on the amount of 
systematic variability associated with blocking factors, that is to say that it is a function 
of the given experimental situation and the amount of knowledge one has about it. Also, 
it should come as no surprise that increased amounts of blocking will invariably lead 
to more complex experiments, complex from the point of view of execution as well as 
analysis. All this will become clearer later on. 
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2.6 THE STATISTICAL TRIANGLE: STUDY 2 

In Section 2.2 we have outlined in great detail the various steps essential to designed 
investigations. These were outlined schematically in Figure 2.1. We have drawn special 
attention to the intimate relationship between the choice of the experimental design, 
the associated statistical model, and the resulting statistical analysis. With reference to 
Figure 2.1, we have called this the “statistical triangle.” Because of its central role in the 
whole endeavor of scientific experimentation as described in this book, it is important 
that we give some further discussion along these lines so that the reader can develop an 
understanding and appreciation of it. We shall do this in terms of a very simple example 
(Study 2). The idea behind this is to show how, using only heuristic arguments, models 
for the observations (yields) can be formulated which reflect different experimental 
situations. The major point we would like to impress upon the reader is that, although 
all models for the situations described below contain the same components in the form 
of treatment effect, experimental error and observational error, the roles of the two 
error components and their associated mean squares in the ANOVA depend heavily 
and crucially on the underlying experimental plan. 

2.6.1 Statement of the Problem 

Suppose an investigator wants to study and compare the effects of pollutants on pine 
seedlings. In addition to charcoal filtered air (PI) as the control, he includes the fol- 
lowing pollutants: ozone (Pz), sulfur dioxide (P3), and nitrogen dioxide (P4). This is 
an exploratory experiment for which he has available four seedlings for each pollutant, 
that is, 16 seedlings altogether. We shall assume that the seedlings are of the same age 
and of uniform height, and that a reasonable fumigation protocol has been established 
and is being carried out properly. The questions we are addressing here are: What are 
some of the alternative designs for this experiment; what are the corresponding linear 
models; how can these experiments be analyzed; and most importantly, to what extent 
can these experiments provide answers to the investigator’s questions? 

2.6.2 Four Experimental Situations 

In Tables 2.3-2.6 we outline schematically four possible (not necessarily good) exper- 
imental plans together with appropriate linear models and an outline of the associated 
analysis of variance table. There are, obviously, other ways of conducting this exper- 
iment, but we shall use the four situations given here to point out differences among 
them and their associated models and subsequent analyses. 

EXPERIMENT I: In experimental situation I (Table 2.3), four pollution chambers are 
used, each chamber containing four seedlings. The pollutants are randomly assigned 
to the chambers with four seedlings placed in each chamber. Since a particular pol- 
lutant is administered to a chamber, the chamber or, alternatively, the collection of 
four seedlings constitutes the experimental unit (EU) whereas each individual seedling 
constitutes the observational (or sampling) unit (OU). As a consequence, the treat- 
ment effect and the experimental error are “confounded” with each other, or insepa- 
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Table 2.3 Study 2: Experimental Situation I 

MODEL: 

EXPERIMENTAL UNIT OBSERVATIONAL UNIT 

\I 1’ 

j t h  observation 
for ith treatment 

i = 1 , 2 ,  . . ., t(= 4) 
j = 1 , 2 ,  . . .) n(= 4) 

ANOVA: 
Source d.f. E(MS) 

Pollutants + Experimental Error 3 ff; + 4; g c r; 
Observational Error 12 ff; 

rable, which is reflected in the model equation (2.6) in that the treatment effect ( T )  

and the experimental error ( E )  have the same subscript. This, of course, leads to 
the partitioning of the total sum of squares, SS(Total), into only two components, 
SS(Pol1utants + Experimental Error) and SS(Observationa1 Error). Their expected 
mean squares, E(MS), which are obtained under assumptions to be discussed in later 
chapters, make it quite obvious that there is no legitimate error term to test hypotheses 
about treatment effects, that is, under the null hypothesis that the treatment effects are 
all identical (and equal to zero), the two MSs do not have the same expected value. 
From that point of view this experiment is unsatisfactory: It cannot answer the investi- 
gator’s questions. 0 

EXPERIMENT 11: In one sense, experimental situation I represents one extreme situa- 
tion, the other extreme occurring in experimental situation 11. Here each seedling is 
put into a separate pollution chamber, four of which are randomly assigned to each 
pollutant. Then the EU and OU are identical so that the two associated types of errors 
cannot be separated from each other as indicated in model equation (2.7). Both errors, 
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Table 2.4 Study 2: Experimental Situation I1 

P2 P3 P4 P2 P4 P4 PI 

MODEL: 

ANOVA: 
Source 

FXPERI\lElrlT-\L UNIT \‘ = OBSER\-\TIONAL L1IT 

(2.7) 

i = 1 , 2 , .  . .) t ( =  4) 
j = 1 , 2 ,  . . ., n(= 4) 

Pollutants 3 a;+a,2+4CT,2 

Error (Experimental + Observational) 12 a; + af - 
4 

however, can be separated from the treatment effect and hence tests of hypotheses for 
0 

EXPERIMENT 111: In experimental situation 111, two chambers are available for each 
pollutant so that each chamber contains two seedlings. Variation among chambers 
(EU) treated with the same pollutant is then a “measure” of experimental error, whereas 
variation among seedlings (OU) within a chamber is a “measure” of observational or 
sampling error. Not only are both types of errors separable from each other, but also 
from the pollutant effects, which is formally expressed in model equation (2.8) as well 

0 

EXPERIMENT IV: Finally, experimental situation IV represents a variation of situation 
I11 in that the pollution protocol can be carried out on four pollution chambers with 

treatment effects are available (see ANOVA table in Table 2.4). 

as in the analysis of variance (see Table 2.5). 
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Table 2.5 Study 2: Experimental Situation I11 

MODEL: 

kth observation 
for j th  EU (replicate) 
of ith treatment 

i = 1,2,  . . .) t (= 4) 
j = 1,2,  . . . )  T (= 2 )  
k = 1,2,  . . ., n(= 2 )  

ANOVA: 

Pollutants 3 0; + 20," + $ c r," 
Experimental Error 4 u; + 2 4  

Observational Error 8 0: 
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Table 2.6 Study 2: Experimental Situation IV 

MODEL: (2.9) 

kth observation 
for ith treatment 
in j t h  block 

2 = 1 , 2 , .  . ., t (= 4) 

k = 1 , 2 , .  . ., n(= 2 )  
j = 1 ,2 ,  . . ., b (= 2 )  

ANOVA: 
Source 

Pollutants 3 0; + 2a,2* + $ c r,” 

Experimental Error 3 a; + 20,2* 

- Blocks 1 

8 4 Observational Error 
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each pollutant once in the morning (M) and again in the afternoon (A). It is expected 
that because of the diurnal rhythm of plants, there are systematic differences among 
the seedlings in the morning and in the afternoon, that is, time of day represents an 
intrinsic factor. Those systematic differences can be "eliminated" by considering the 
two sets of four chambers each as blocks. Moreover, this arrangement may lead to a 
reduction in experimental error (as indicated by cz* instead of 0: in Table 2.6). All ef- 
fects are separable [see model equation (2.9)] and hence this is a suitable experimental 

Experimental situations I, 11, and I11 are different versions of a completely ran- 
domized design (see Chapter 6) and experimental situation IV represents a randomized 
complete block design (see Chapter 9). The reader should notice how these different 
arrangements lead to different models and hence to different analyses. This discussion 
should also help to bring out the point we have made earlier that it is important to 
consider the analysis along with the experimental design to ensure that valid statistical 
inferences can be made. We shall not discuss here which arrangement is best, except to 
say that arrangement I should not be used, but the use of the other arrangements may 
be determined entirely by practical considerations and conditions about which we have 
said nothing here. 

procedure. L l  

2.7 PLANNING THE EXPERIMENT 
THINGS TO THINK ABOUT 

In the preceding sections we have discussed various aspects of the design process. We 
have shown how these aspects are interconnected and why it is therefore important 
to approach the planning of an experiment in a careful and systematic fashion. To 
emphasize this point we shall summarize below the important features of the individual 
steps. 

1. Statement of the objective (or obiectives): 

At least a general formulation of the problem to be investigated is essential before 
proceeding to the next steps. This is even more important if there are multiple 
objectives which are not to be investigated at the same time. 

2. Formulation of the subiect-matter model: 

The important point here is to prepare a list of all factors that potentially affect the 
measured response. This involves choosing the treatment factors and identifying 
possible intrinsic factors. In the interest of keeping the size of the experiment at a 
reasonable level it may be necessary to restrain some intrinsic factors to just one 
level, for example female subjects at one age group rather than male and female 
subjects at different age groups. This will, of course, curtail the applicability of 
the results concerning the treatment effects, that is, narrow the inference space of 
the experiment. Another important - and possibly negative - aspect of narrowing 
the scope of the experiment is the inability of investigating possible interactions 
between treatment and intrinsic factors. 
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3. Choosing factor levels: 

We are concerned here with both, treatment factors and intrinsic factors. And 
when we refer to factor “levels” we mean different expressions of that factor, 
for example, different settings, for instance, 200°C and 3OOcC, for the factor 
“temperature”, or different therapies, for instance, radiation and chemotherapy, 
for the factor “cancer treatment”. For both, treatment and intrinsic factors, it is 
important to consider carefully how many and which levels we should choose. 
The choice will affect the type and amount of inferential information as well as 
the size of the experiment. 

For a quantitative treatment factor, for example, it may be important to use more 
than two levels to assess any possible curvature in the response function (see 
Section 7.4). Moreover, the levels should be chosen within the practical range 
for the treatment, including lower and upper limits of the range. Furthermore, the 
levels should be chosen far enough apart so that a possible difference in response 
becomes detectable, but not too far apart so that a possible change in response 
at an intermediate level goes undetected. For example, there may not be any 
difference between the temperature factor levels 200°C and 225”C, but 200°C 
and 250°C may be far enough apart for detecting a possible change in response. 
On the other hand, the levels 200°C and 400”C, may be too far apart because 
important changes may occur between 250°C and 300°C. 

Similar considerations hold also for qualitative factors. For the treatment factors 
it is usually quite clear which levels to choose, but for the choice of intrinsic 
factor levels the size of the experiment may become important. For example, in 
order to investigate the effects of different types of pollutants on plants it may 
be appropriate to confine oneself to trees or tree seedlings initially. And rather 
than including in the experiment different species of conifers it may be useful to 
choose one species from coniferous and one from deciduous trees. A subsequent 
experiment may then include other plants, such as different types of vegetables. 

4. Measuring the remonse: 

The statement of the problem as in 1. above usually not only defines the obser- 
vational unit (OU) and the response variable but also the way in which the latter 
should be measured. Such measurements are either continuous or discrete. In 
some situations different types of measurement are possible, and a decision has 
to be made which one should be used. For example, to assess the damage due to 
pollution we may actually measure for each plant the damaged leaf area and the 
total leaf area and then obtain the percentage of damaged leaf area. This may be 
rather cumbersome. Alternatively, we may set up a scoring system, say a 5-point 
score, and then visually assign each plant a score, that is, put it in one of the 
five categories, that best reflects the amount of damage. Clearly, a continuous 
measurement is most informative. To approach such a measurement and keep it 
relatively simple at the same time. we may choose instead of the 5-point system a 
10-point system, say, realizing that such a more differentiated subjective scoring 
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system becomes less repeatable. The other extreme, of course, is a binary sys- 
tem - damaged versus non-damaged - which may be too crude to establish any 
differences among the pollutants under investigations. In summary, the choice 
of measurement may be important from a practical as well as from a statistical 
point of view. 

5. Specification of the error-control design: 

Identifying intrinsic factors and including several levels of one or more intrinsic 
factors will already determine to a great extent the type of error-control design 
that needs to be used, for example, some form of block design (see Chapter 9). To 
specify the design more explicitly, we need to identify the EUs and OUs and how 
the treatments are applied to the EUs. This is particularly important if there are 
several treatment factors. There may be different types of EUs (see Example 2.7) 
and hence different error-control designs, for example, block design (Chapter 9) 
versus split-plot design (Chapter 13). 

6. Formulating a model and aspects of the analysis: 

Although we shall discuss these topics extensively in later chapters, it is impor- 
tant to point out again that mapping out a model and at least parts of the ensuing 
analysis is a crucial aspect of planning an experiment. These considerations will 
tell us if and how the research hypothesis can be evaluated within a statistical 
framework. Among other things we can identify appropriate error terms to test 
statistical hypotheses or obtain confidence intervals for informative parametric 
functions. We then can assess whether the error terms are based on a sufficient 
number of degrees of freedom (d.f.) (see, for example, Sections 6.8 and 6.9.3). 
In the end these considerations may lead us to conclude that either the experi- 
ment as planned is satisfactory or that changes may have to be made to provide 
for a successful experiment. We cannot emphasize enough that the last point 
above represents really the culmination of the planning process. 

2.8 COOPERATION BETWEEN 
SCIENTIST AND STATISTICIAN 

We have just discussed in detail the various steps of a scientific investigation, with 
special emphasis on the planning of an experiment. This process requires a close co- 
operation between the subject-matter, scientistlinvestigator and the statistician. Below 
we shall outline some features of such cooperation, paralleling the points discussed in 
Section 2.7. 

1’. Statement of the objective: 

Research objectives and hypotheses originate in the context of research activities 
within a certain subject-matter field. Thus, formulation of such objectives is 
clearly the primary responsibility of the investigator. It is, however, never too 
early to contact a statistician if experimental work will be involved. The main 
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reason for this is to draw attention to the various steps of planning and executing 
an experiment. 

2 ‘ .  Formulation of the subject-matter model: 

This aspect, too, is the primary responsibility of the investigator. This is, how- 
ever, already a good time for the statistician to raise questions about the desired 
and possible inference space of the results from the contemplated experiment. 
Sometimes “dumb” questions by the statistician will help the researcher to clar- 
ify and perhaps modify the aims of the experiment. In particular, considerations 
of potential intrinsic factors will draw attention to the size of the experiment. 

3’. Choosing factor levels: 

We have argued earlier that in order to make an experiment meaningful it is im- 
portant to choose the levels of the treatment and intrinsic factors with great care. 
Here again the statistician has to rely on the subject-matter knowledge of the in- 
vestigator. It may be desirable from a statistical perspective, for example, to have 
certain level combinations of the treatment factors present in the experiment, but 
such combinations may be undesirable or even impossible for biological, phys- 
ical or chemical reasons, or they may be difficult to achieve for purely practical 
reasons. In the end, compromises may have to be made to satisfy both statis- 
tical and subject-matter considerations without sacrificing the objectives of the 
experiment. 

4’. Measuring the response: 

Not many experiments are conducted in a complete vacuum, that is similar ex- 
periments have been performed previously. As a consequence, procedures have 
been agreed upon now to measure the response to treatments. It is generally 
desirable to conform to such procedures in order to make it possible to make 
comparisons among the outcomes of different experiments. Precedent and new 
ways to look upon the results of an experiment may, in fact, lead to using differ- 
ent response measures. This may have to be decided on practical and economical 
grounds. 

5 ‘ .  Specification of the error-control design: 

This aspect of the experiment requires a close collaboration between the inves- 
tigator and the statistician. Here, questions have to be settled as to how the 
experiment should actually be performed. At this point a number of questions 
have to be answered: What are the experimental units (EU)? What are the obser- 
vational units (OU)? How homogeneous are the EUs? Can and should they be 
divided into more homogeneous groups (blccks)? Will the experiment be per- 
formed at different stages, that is at different times or different places? How will 
the treatments be assigned to the EUs? Will there be different such assignments? 
Answers to these and perhaps additional questions will help in selecting one of 
the error-control designs discussed in later chapters, or help in modifying one of 
those error-control designs in accordance with the needs of the experiment. An 
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important aspect of these considerations here is the identification of non-specific 
factors (see Section 2.2.4) in addition to the already chosen intrinsic factors. 

Representing one vertex of the statistical triangle of Figure 2.1, developing the 
error-control design sets the stage for actually performing the experiment. There- 
fore, there must be complete agreement between the investigator and the statis- 
tician on all points of the design. In order to facilitate communication between 
both sides and avoid misunderstandings, we strongly recommend to draw a dia- 
gram which represents a schematic picture of the physical layout of the experi- 
ment, similar to those in Tables 2.3 - 2.6. 

6’. Formulating a model and aspects of the analysis: 

The model for analyzing the data to be obtained from the experiment is deter- 
mined in large measure by the treatment and error-control designs, aspects of 
which we have discussed above. In fact, for each error-control design we shall 
show in later chapters how a linear model can be derived, and what assumptions 
have to be made. Such assumptions may involve the nature of certain interac- 
tions. Subject-matter knowledge can be of great help in deciding, in particular, 
which treatment-intrinsic factor interactions may be negligible. 

We cannot overemphasize enough how important it is to give careful thought to 
the basic elements of the statistical analysis and how the various elements relate 
to the various aspects of the research hypotheses. Hinkelmann (1963) describes 
an example where from what appeared to be a perfectly logical experimental 
setup (albeit different from the designs discussed in this book), not all of the 
researcher’s questions could be answered and how the situation could have been 
rescued if the analysis had been anticipated. 

7‘. Performing the experiment: 

Although the investigator is responsible for performing the experiment, ideally 
the assisting statistician should be involved, too. Both should make sure that the 
agreed upon experimental protocol is being followed. For example, it is impor- 
tant to carry out the appropriate treatment randomization in order to avoid bias 
or confounding. Also, if it turns out that, in spite of careful planning, the exper- 
iment cannot be performed in its original form, ways will have to be found to 
modify or curtail the experiment such that most, if not all, of the original ques- 
tions can still be answered. An arbitrary curtailment without close consultation 
between investigator and statistician can lead to undesirable consequences and, 
indeed, failure of the experiment. 

8’. Collecting and recording data: 

This is the final step prior to the formal analysis of the data. Not only is it im- 
portant to collect the data as carefully and completely as possible, following the 
established protocol, but also to label and organize them in close cooperation in 
order to facilitate the analysis, typically using some statistical software program. 
Although so-called missing observations can be handled in many situations by 
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statistical software packages, this does not provide a license for carelessness, 
since this may lead to needless complications in the analysis and its interpreta- 
tion. 

2.9 GENERAL PRINCIPLE OF INFERENCE 
AND TYPES OF STATISTICAL ANALYSES 

Our discussion in previous sections has made it clear that the analysis of data obtained 
from a designed experiment depends very heavily on a linear model which should 
reflect the structure of the experiment itself. In fact, formulation of such a linear model 
is a very important aspect in this whole endeavor and we shall return to this problem 
throughout the book. Once an appropriate linear model has been formulated, the next 
step will be to obtain the associated analysis of variance or, as the case may be, several 
analyses of variance. These then provide the basis for making statistical inferences as 
deemed appropriate for the particular situation at hand. 

2.9.1 General Model 

As mentioned earlier, a linear model for an experimental design contains generally 
three types of components: treatment components, design components, and error com- 
ponents. A linear model can be written more formally than (2.2) and 2.3) as follows: 

t b C d 

y = 3 P  + c x27, + c U,P, + c Z k E k  + c Wlrll (2.10) 

where Y represents an s x 1 vector of observations, p is an overall mean, and 
T, = ( ~ ~ 1 .  r,2. . . . ~ qa,)’ is an a, x 1 vector of “treatment effects” (i = 1 .2 ,  . . . . t ) ,  
p, = (3]1. 3 J 2 . .  . . . 3133b,)’ is a b, x 1 vector of “blocking effects” ( j  = 1 .2 . .  . . , b ) ,  
~k = ( ~ k l .  ~ k 2 . .  . . , E I , C k ) ’  is a C I ,  x 1 vector of experimental errors ( k  = 1 . 2 . .  . . . c), 
ql = ( ~ 1 . 7 7 1 2 ,  . . . . q d l ) ’  is a dl x 1 vector of observational errors ( I  = 1 , 2 .  . . . . d ) ,  
3 is an s x 1 vector of unity elements, X,, U,, Z k ,  W1 are known matrices of 
order s x a,(i = 1.2  . . . . .  t ) ,  s x b J ( j  = 1 . 2 , .  . .  . b ) ,  s x c k ( k  = 1.2 . .  . . .  c). 
s x d l ( l  = 1.2 .  . . . , d ) ,  respectively. The matrices X, represent the treatment structure, 
e.g., treatment factors and their interactions (and possibly treatment-intrinsic factor in- 
teractions), whereas the matrices U, reflect the error-control design aspects, that is, the 
various blocking devices as suggested by the intrinsic and non-specific factors, and the 
matrices ZI ,  and W1 reflect the error structure which is partly induced by the block- 
ing devices and various stages of randomization as well as the nature of EUs and OUs 
and the various types of errors associated with them and with the measurement and 
observation process. 

1=1 1=1 k l  1=1 

2.9.2 Outline of the ANOVA 

Based upon a model of the form (2.8) we can outline, albeit in not very precise terms, 
the general structure of the analysis of variance as given in Table 2.7. The basic parti- 
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tion of SS(Tota1) is into SS(Among EUs) and SS(Within EUs) with m - 1 and s - m 
d.f., respectively, assuming that there are m EUs. The SS(Among EUs) can then be 
partitioned further into SS(Among Treatments) with t .  = t ,  d.f. and SS(Among 
EUs Within Treatments) with m - t d.f. Further partitioning of SS(Among Treat- 
ments) is possible and sometimes desirable, for example, when one is interested in 
testing hypotheses about certain treatment contrasts or when the treatments have a fac- 
torial structure. Thus, such partitioning is determined largely by the treatment design. 
The partitioning of the SS(Among EUs Within Treatments) is determined by the error- 
control design, which leads to various sums of squares associated with blocking factors 
and associated experimental errors as a function of the different randomizations. The 
different SS(Experimenta1 Error) will, of course, be used to make statistical inferences 
about the treatment effects (examples of this will be provided later in the book). Finally, 
the partitioning of the SS(Within EUs) is determined by the various types of sampling 
and sub-sampling, that is, by the observational structure. 

We shall illustrate this general discussion with Study 1 (Arrangement I) given in 
Section 2.4.2. Model equation (2.4) can be expressed in the form (2.10) by way of the 
following correspondences: The fact that with respect to the pollutants the chambers 

are the EUs implies that S S ( E ~ )  provides the appropriate error term (denoted as Error 1 
in Table 2.1) for testing hypotheses about pollutant effects. S S ( E * ) ,  on the other hand, 
provides the error term (denoted by Error 2 in Table 2.1) for testing hypotheses about 
pollutant x family interaction effects. A sampling error is provided by SS(v1). 

As illustrated above, one important feature of the analysis of variance is the sepa- 
ration of systematic effects such as treatment and block effects from random or error 
effects. This is not only important in the context of hypothesis testing but also for estab- 
lishing confidence intervals and obtaining standard errors for treatment comparisons. 
Together with model equations of the form (2.10) and properties of (or assumptions 
about) the error components, the analysis of variance of a properly designed experiment 
enables us to estimate the variance components azl,  a&. . . . . a:, and a&. . . . % oVd 
(or linear functions of them) which can then be used as mentioned above. Knowledge 
about these variance components is quite often useful also to establish further experi- 
mental strategies such as determining the appropriate numbers of replications for each 
treatment and the amount of sampling within EUs. To summarize, statistical inference 
from experimental data, whether it is in the form of testing or estimation, is based on 
an underlying linear model. The method of least squares (Chapter 4) is then used to 
obtain estimates of pertinent parameters as well as the analysis of variance table. In all 

2 
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Table 2.7 General Structure of Analysis of Variance 
for Model (2.10) 

Source d.f. 

Total 
Among EUs 

Among treatments 

I;] Treatment 
Design 

Among EUs within treatments 

Error-Control 
Design 

Observation 
Design 

s - 1  
m - 1  

tl 

t 2  

tt 

s - m  

01 

this, elements of randomization theory will play an important part. 

2.10 OTHER CONSIDERATIONS FOR 
EXPERIMENTAL DESIGNS 

Our main emphasis in this general discussion so far has been that an experimental 
design, consisting of a treatment design, an error-control design, and an observation 
(sampling) design, must be chosen in such a way that the investigator’s questions can 
be answered. In this connection we have elaborated upon the connection between the 
design and the associated statistical analysis. Now, in many situations a particular 
scientific objective can be met by different types of experiments. An example of this 
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was given in Section 2.6. In such a case an obvious question is: Which experiment 
setup should we choose? Or what is the “best” experimental design for this situation? 

Although the question is straightforward, the answer may not always be easy as 
different criteria have been developed to compare competing designs. We shall mention 
briefly some of these criteria. Some of them will be discussed in more detail later. 

One of the most important criteria is that of optimality or better, variance-optimality. 
By this we mean maximum precision (in some sense) in estimating linear combinations 
of treatment cffects. Usually a functional of all such variances is minimized which has 
led to various optimality criteria, such as A-optimality, D-optimality, or E-optimality, 
(for example, Kiefer, 1959) and it is not always clear which is the best criterion to use 
(see 11. 1.13). 

A useful property for a design is that of orthogonality. It allows one to look simply 
at treatment means for purposes of comparisons. It also leads to a unique analysis of 
variance the sums of squares of which can be computed easily. All this may not seem 
very important in these days of high speed electronic computers. It does, however, 
make the interpretation of results easier and more transparent. 

Many of the existing and most commonly used designs are orthogonal, but if or- 
thogonality cannot be achieved, the property of balancedness is often sought. Here 
we are referring to variance-balanced designs in the sense that normalized treatment 
comparisons are estimated with the same precision. Other notions of balance exist, 
particularly in the context of factorial experiments, which are important in the whole 
discussion of experimental design (for example, Yates, 1935, 1937; Shah, 1958; Preece, 
1982; and 11.12.5). 

There are many other criteria and properties that we could mention here such as 
connectedness, efficiency, and unbiasedness (see, for example, Federer, 1984), but we 
shall defer these to later chapters when the need for them will become more apparent. 

As pointed out earlier, one of the major objectives in designing an experiment is 
to estimate comparisons among treatment effects as precisely as possible. This can 
be achieved in a number of ways such as replication and blocking or refinement of 
experimental and measurement techniques. One other important device is to use sup- 
plementary information in the form of measurements on the OUs which are correlated 
with the final responses and not affected by the treatments applied to the units. This 
has the effect of “making the EUs more uniform” and hence of reducing the variabil- 
ity. The statistical technique to be used for this situation is the so-called analysis of 
covariance (see Chapter 8). It can be used in connection with all types of experimental 
designs. 

Supplementary information may not always be available and if available it may not 
always be advantageous or it may be too expensive to obtain. It is quite clear that in 
many instances of designed experiments cost considerations come into the picture. Un- 
fortunately, there is very little of concrete advice that we can offer the reader. Related 
to this problem we only make one point here: to keep the design as simple as possible 
as long as it is consonant with the investigator’s objectives. Simplicity is a requirement 
that affects the execution of the experiment as well as the analysis and the interpreta- 
tion of results. But simplicity is not an absolute term. The simplest experiment for a 
given situation may be rather complex indeed. 

The notion of simplicity is also tied to another concept which is perhaps the most 
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important among the ones that we have mentioned: range of validity or target popu- 
lation. If the range of validity is very narrow the experimental design can be rather 
simple. To give an example, if we want to investigate the effect of ozone at 5 ppm over 
a period of 30 days at 6 hourslday exposure on loblolly pine seedlings at age 20 days, 
the target population is rather small and a completely randomized design (similar to the 
one described in Section 2.6) would be an appropriate design. If, however, we would 
like to extend the range of validity to natural forests and various forms of pollution, 
both the treatment design and the error-control design would have to be much more 
complicated, if indeed it can be done at all without making simplifying assumptions or 
limiting the target population. 

The reader will realize that the preceding discussion has not been exhaustive but 
rather sketchy. The purpose has been to point out the many facets, statistical and non- 
statistical, that one must be aware of when designing an experiment. Furthermore, it 
shows that it is not always possible to meet all the requirements and criteria and that, in 
fact, some are in conflict with each other so that compromises have to be made. Even 
though the basic ideas and principles of experimental design are well understood and 
appreciated, new criteria are being constantly developed (see, for example, Srivastava, 
1984) and need be incorporated in this field. 



CHAPTER 3 

Survey of Experimental Designs 
and Analyses: 
A Preview 

3.1 INTRODUCTION 

In the preceding chapter we have discussed, in general terms, the basic ideas and steps 
of scientific experimentation, how simple questions and speculations together with 
knowledge of the subject matter should eventually guide the investigator to a designed 
experiment which is based on sound statistical principles. We have touched on the 
major principles of randomization, replication, and blocking and their functions with 
respect to designing and analyzing an experiment. We shall pursue these ideas in much 
more detail, of course, as we discuss various forms of statistical designs in subsequent 
chapters. Our major aim in Volume I is to acquaint the reader, first of all, with a broad 
variety of error-control designs, treatment designs, and sampling designs so that, given 
a certain experimental situation, he or she can make a choice among various options, 
and make that choice intelligently. This means the reader must understand the proper- 
ties of the various designs, how they can be used to answer the researcher’s questions 
and how a choice of a design from among the possible ones will affect the answer. 

The following overview of statistical designs is intended to provide a catalog of de- 
signs to be discussed in Volumes I and I1 and also to describe, albeit somewhat superfi- 
cially at this point, the hierarchy of error-control designs in terms of their complexity, 
the nature of treatment designs, the connection between certain types of error-control 
and treatment designs, and finally, the sublety of sampling designs. We shall do this 
in a somewhat schematic way showing the progression from simple to more complex 
designs. It is useful to keep this in mind as one chooses an appropriate design, be it 
an error-control or a treatment design, because the choice of a design is often made 
difficult by conflicting ideas and principles. On the one hand one would like the design 
to be as simple as possible, mainly for practical reasons, but on the other hand one 

61 



62 CHAPTER 3. SURVEY OF DESIGNS AND ANALYSES 

would like to account for as many sources of systematic variation as possible, that is, 
use a more complex design, mainly for reasons of statistical inference. A compromise 
is often the final result. 

We shall conclude this chapter with some remarks about analyzing experimental 
data. 

3.2 ERROR-CONTROL DESIGNS 

Table 3.1 gives a list of classes of error-control designs in increasing order of com- 
plexity, where complexity is defined by the number of blocking factors for each class. 
The blocking factors correspond to different sources of systematic variation. The sense 
then in which the designs “control” the error is through the amount of blocking. Elim- 
inating, that is, blocking for, additional sources of systematic variation (using some 
intrinsic and/or non-specific factors) will lead to a reduction of the experimental error. 

The simplest design is the completelj randomized design (see Chapter 6 )  with no 
blocking factors, that is. assuming essentially homogeneous experimental material (ex- 
perimental units). Next, a rather large class of designs is that of randomized block de- 
signs (see Chapter 9). As the name indicates for these designs we have one type of 
blocking, such as different litters, different breeds, different species, different sources 
of raw material, different manufacturers, and so on. The specific designs in this class 
are the complete block design, the generalized block design, and various forms of in- 
complete block designs which are characterized by the fact that each treatment occurs 
exactly once in each block, several times in each block, or not in every block, respec- 
tively. The complete and generalized block designs have a very simple structure and 
are easy to analyze and interpret. The incomplete block designs have a more intricate 
structure. Because of the fact that not every treatment occurs in every block these de- 
signs constitute what we shall refer to as nonorthogonal designs. Historically that has 
meant a more complicated analysis (for instance, various forms of analysis of variance) 
but in today’s computing environment that is no longer true. Nevertheless, these de- 
signs which are very versatile and flexible deserve special attention and although they 
are introduced briefly in Chapter 9, a much more detailed technical discussion of the 
properties, analysis, and construction is given in Volume 11. 

The use of intrinsic factors will introduce additional blocking, leading to designs 
that we shall refer to as replicated randomized block designs. As we have already al- 
luded to earlier an important feature of these designs is that they allow the investigation 
of possible interaction between treatments and some or all intrinsic factors. 

An important principle in the design of experiments is that of a Latin square. In its 
simplest form this is a t x t row-column array such that every one o f t  symbols appears 
exactly once in each row and in each column. In the context of experimental design, 
the rows and columns refer to two different blocking factors and the t symbols refer 
to the treatments (see Chapter 10). Thus, compared to the randomized block designs, 
we have one additional blocking factor. Furthermore, the structure obtained through 
the Latin square principle is such that the blocking (in two directions) is orthogonal, 
resulting again in a very simple analysis. The general class of Latin square Qpe designs 
contains several specific designs, such as the Latin square design and the Latin rectan- 
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Table 3.1 Hierarchy of Error-Control Designs 

Number of 
Blocking 
Factors Class of Designs Specific Designs 

0 Completely Randomized 
Designs 

1 Randomized Block Designs Randomized Complete Block Design 
Generalized Randomized Block 

Incomplete Block Designs: 
Design 

Balanced Incomplete Block 

Balanced Treatment Incomplete 

Partially Balanced Incomplete 

Lattice Design 

Design 

Block Design 

Block Design 

Extended Block Design 
Trend-free Block Design 

2 

Replicated Randomized 
Block Designs 

Latin Square Type Designs Latin Square Design 
Latin Rectangle 
Incomplete Latin Square Design 

(Youden Square) 
Cross-over Design 

2 3  Replicated Latin Square 
Designs 

3 Graeco-Latin Square Designs 

2 3  Mutually Orthogonal Latin 
Squares 



64 CHAPTER 3. SURVEY OF DESIGNS A N D  ANALYSES 

gle design, which are, except for the degree of blocking, comparable to the complete 
and generalized block designs, respectively. Corresponding to the incomplete block 
designs, we now have incomplete Latin square designs where, as the name implies. the 
Latin square principle is not completely satisfied because, for example, the number of 
columns is less than the number of rows and treatments. This makes the requirement 
for the design less rigid, but it makes the analysis slightly more complicated. This is a 
reoccurring theme: We “gain” something on the one hand, but “lose” something on the 
other hand. 

The usefulness of Latin square designs can be enhanced through replications of the 
basic design. This enables us to take one more blocking factor into account which, of 
course, widens the inferential basis for the experimental results. Other extensions of the 
Latin square design using more than two blocking factors lead to designs in the form 
of mutually orthogonal Latin squares. An example of this is the Graco Latin square 
design with three orthogonal blocking factors. Just as for the Latin square design, 
replications of the basic design will make them more useful. 

3.3 TREATMENT DESIGNS 

Each of the error-control designs mentioned in the previous section is used to compare 
t treatments with each other. So far we have not said anything about the nature of the 
treatments, and it is indeed not necessary to do so. Very often, however, the treatments 
are chosen to have some structure, in particular a factorial structure. This is what we 
have referred to as the treatment design. Just as the error-control design, the treatment 
design has to be chosen by the experimenter based upon the goals of the investigation 
and the experimental material and resources available. The chosen treatment design 
will then be embedded into an appropriate error-control design. 

For factorial treatment structures, we distinguish between symmetrical (pure) facto- 
rial structures (also referred to as symmetrical (pure) factorial experiments) and asym- 
metrical (mixed) factorial structures or experiments (see Chapter 11). For the symmet- 
rical structure, we have n factors each at s levels, say, where s is an integer. This is also 
referred to as an sn factorial. The most useful and practical values for s are 2 ,  3, and 4. 
For the asymmetrical factorial structure we have n1 factors at s1 levels, n2 factors at s2 
levels, . . . % n, factors at s, levels, where the s, ( i  = 1 . 2 .  . . . , rn) are different integers 
and n, 2 1 (z = 1 . 2 . .  . . . m). We refer to this as an syl x s;’ x . . . x s z  factorial. 
An important property of any factorial experiment is that it allows one to study not 
only the effects of the individual treatment factors, but also the interactions between 
treatment factors. The usefulness of factorial experiments rests, however, upon the fact 
that, typically, interactions involving several factors are nonexistent or negligible from 
a practical point of view. 

This observation is of great value in that it allows us often to reduce the size of 
the experiment by considering only a fraction of all possible treatment (level) combi- 
nations. Such an experiment is referred to as a fractional factorial. For 2” .  3”, and 
2” x 3n factorials we discuss the basic ideas of a fraction briefly in Chapter 11, but 
general methods of constructing various types of fractional factorials are discussed ex- 
tensively in Volume I1 (see 11. 13 - 16). The difficulty in choosing appropriate fractions 
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is to ensure that essential information about interactions is not being lost. 

Table 3.2. 
A schematic overview of these treatment designs and their hierarchy is given in 

3.4 COMBINING IDEAS FROM ERROR- 
CONTROL AND TREATMENT DESIGNS 

It is important to be aware of and understand the properties and purpose of existing 
error-control and treatment designs in order to make appropriate choices for a particular 
experiment. But just as these two design aspects are important in and by themselves, it 
is imperative to understand how error-control designs and treatment designs have influ- 
enced each other in generating special error-control designs in particular for factorial 
experiments. Especially noteworthy here are incomplete block designs for complete 
factorial or fractional factorial experiments. A brief introduction for 2n factorial exper- 
iments is given in Chapter 11, but the more technical and detailed discussion is deferred 
to Volume I1 (see 11. 8-12, 13.8). Suffice it to say here only that these designs are con- 
structed by making use of the notion, mentioned above, that certain interactions among 
treatment factors are negligible and hence information on them can be sacrificed. 

Other examples of the interplay between error-control and treatment design are the 
various forms of split-plot Qpe designs (see Chapter 13). This is a large class of designs 
in which the treatments have a factorial structure, typically with two or three factors. 
The essential feature of these designs is that the levels of the various factors are applied 
independently (using independent randomizations) to different types of experimental 
units by superimposing different error-control designs upon each other. For example, 
in a simple split-plot design the levels of one factor are applied to “large” experimental 
units in a randomized complete block design, and the levels of another factor are ap- 
plied to “smaller” experimental units in a randomized complete block design with the 
large units representing the blocks, that is, the experimental units for the first factor are 
split into experimental units for the second factor (hence the name split-plot). Many 
variations and extensions of this principle exist and are discussed in Chapter 13. As a 
special case, this contains also so-called repeated measures designs (see Chapter 14). 

In Chapter 12, we give a brief introduction to response surface designs. And even 
though these designs are not intended for comparative experiments but rather for ab- 
solute experiments, the notions of treatment design, that is, factorial experiment, and 
error-control design, that is, blocking, play a prominent role. As one interesting ex- 
ample of the simultaneous use of error-control and treatment design we mention the 
so-called Box-Behnken designs, the construction of which is based on essentially su- 
perimposing a factorial structure over an incomplete block design. 

And finally, we mention a class of designs which are constructed by using the 
notion of pseudo-factors, that is, by pretending that a factorial structure exists for the 
treatments when in fact it does not, to construct certain types of incomplete block 
designs for a large number t of treatments, where t is of the form; t = k 2  or t = k3  or 
t = k ( k  - l),  etc., for some integer k .  These are referred to as Lattice designs and are 
of practical value for agronomic experiments (see 11. 18). 
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3.5 SAMPLING DESIGNS 

In Section 2.3.2, we have discussed the importance of the notions of experimental units, 
EU, and observational (or sampling) units, OU. In many experimental situations, the 
EU and OU are identical. However, if they are not the same, then this needs to be 
recognized and reflected in the analysis (an example of this is given in Section 2.6.2). 
Such a situation is referred to as subsampling and it can occur in connection with any 
error-control design. We shall discuss the consequences of subsampling in detail for 
the completely randomized design (see Section 6.9). The same arguments apply then 
to all other error-control designs discussed in this book. 

The most important feature of an error-control design with subsampling is that it 
allows the separation of experimental error and observational (or sampling) error, or 
more precisely, the separation, that is, separate estimation of the experimental error 
variance and the observational error variance. We shall discuss the statistical impli- 
cations of this fact in connection with making inference about treatment effects and 
comparisons among treatment effects. The possibility of being able to estimate the two 
types of variances may prove to be useful to the investigator in assessing the “quality” 
of the experimental and observational (measurement) procedures. Large variances may 
lead to a closer look at and, hence, to possible refinements of one or the other or both 
procedures. 

The notion of subsampling can obviously be extended to more than one level. for 
example, for each experimental unit we may have several sampling units and then for 
each sampling unit we may have several observational units. We refer to this situa- 
tion as sub-subsampling for obvious reasons. As an example, consider an individual 
as the experimental unit receiving a particular treatment; several blood samples, con- 
stituting the sampling units, are taken at one time from this individual, and duplicate 
determinations of, say, the blood sugar level are made, each determination represent- 
ing an observational unit. Such a scheme would enable the investigator to assess the 
variability due to three sources: experimental, sampling, and observational. 

Theoretically this can be extended even further, but this does not provide any new 
insight from the point of view of experimental design as discussed in this book. 

A schematic representation of the sampling designs described above is given in 
Table 3.3. 

3.6 ANALYSIS AND STATISTICAL 
SOFTWARE 

Following chapters will show that the notion of randomization is not only fundamental 
to physically performing the experiment but also to analyzing the data from such an ex- 
periment. This is accomplished by introducing the notion of design random variables 
which are then used to obtain a derived linear model which reflects the randomiza- 
tion procedure used for a particular error-control design. Such a model and the ensuing 
analysis of variance will then be used to formulate the randomization analysis due to R. 
A. Fisher (1926, 1935). This is a nonparametric analysis and, hence, does not depend 
on the often quoted normality assumption for experimental data. 
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Although we advocate the randomization analysis as the proper analysis, it is of- 
ten met with practical difficulties, because for most situations the number of possible 
randomizations becomes extremely large. We shall show how the randomization anal- 
ysis, that is, randomization tests, can be approximated by appropriate F-tests. At this 
point we shall then make use of existing statistical software for purposes of analysis, 
always keeping in mind, however, that this represents an approximation only, albeit 
a "good" ap roximation. Among the available statistical software packages we have 

of which will be illustrated through numerous examples. 
chosen SAS b , a Statistical Analysis System (SAS Institute, Inc., 2002-2003), the use 

3.7 SUMMARY 

The preceding discussion and enumeration of classes of error-control and treatment de- 
signs and combinations thereof by no means exhaust the list of available designs. Many 
speciality designs have been constructed and it would be impossible to list and discuss 
them all. We have, however, mentioned and we shall discuss in subsequent chapters 
the major classes of designs and their properties, how they are constructed, how they 
are analyzed, and how they are applied. The major point here is that for many experi- 
mental situations special designs may have to be constructed and that this can be done 
easily by having a firm understanding of the notions of blocking, incomplete blocks, 
the Latin square principle, the split-unit (split-plot) principle, and factorial treatment 
structure. They are the building blocks of almost all designs, and it is the aim of this 
book to elucidate them in a rigorous way, emphasizing the mathematical and statistical 
aspects. 
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CHAPTER 4 

Linear Model Theory 

4.1 INTRODUCTION 

4.1.1 The Concept of a Model 

The greatest intellectual achievement, perhaps, of the twentieth century has been the 
development of the concept of model and the use of that concept. A model is an 
explanation of observables in terms of observables. Explanations are of various types. 
The most simple is, surely, the notion of descriptive explanation; so, for instance, to use 
an ancient statistical example, height and weight of human adults of one or the other sex 
follow approximately a bivariate normal distribution. Or at an even more elementary 
level, with s denoting distance and t being time then with certain units of measurement, 
s = $gt2,  where g is a constant of gravitivity. Models can be static in the sense that 
they describe a situation. They can be dynamic in the sense that they tell us, given the 
truth of the model, what will happen in, say, the future, the prime example being those 
arising from differential equations, such as d y / d t  = at + b, where t indicates time. 
The whole area of differential equations and partial differential equations is concerned 
with what may be reasonably called dynamic models so that from a starting point, the 
differential equation, one can, hopefully, obtain the solution which tells us the outcome 
over the relevant space, for instance, physical space and time. Models can be classified 
in another way as being merely explanatory or causal. If we envisage a variable y 
as being affected by a variable z, and we can, furthermore, envisage a comparative 
experiment in which the variable z is controllable and is observed at various prechosen 
levels, then we can reasonably regard a resulting explanation, y = f(z), where f(z), as 
a special case of ( 2 . 2 ) ,  is some function such as ax, Cn z, sin z, or whatever, as being 
a causal explanation or a causal model. Clearly, the imputation of the explanation 
or model having a causal basis must in the last resort have an experimental, that is, 
interventional, basis. 

An approximate model is one in which a variable (of arbitrarily general form) is 
approximated by a function of variables deemed appropriate, or merely being available. 
So, for instance, we may have the variable y denoting the weight of a child, and we 
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have a mathematical formula 

in which we approximately describe y in terms of two variables, x = sex, and z = age. 
As we shall see later, a very common situation is that we have a vector variable y, say 
n x 1, which we wish, for one reason or another to describe approximately in terms of 
other vector variables, XI. x2. . . . , xp, and we seek a description 

y = 31x1 + 32x2 + ' .  ' + 3pxp.  

In contrast to the notion of the previous paragraph which is solely in the realm of 
approximation and approximation theory, we have the notion of a stochastic model. 
In this case we have, for example, a random variable, Y, which has a probability dis- 
tribution, and we wish to describe the distribution of Y ;  for instance, that Y follows 
.Y(p. a 2 ) ,  the normal distribution with mean p and variance c?. There is, of course, no 
limit to the nature and complexity of such stochastic models. One that is surely easy 
to imagine and think about is that we have a sequence of random variables Yl ~ Y2. . . . 
and we wish to characterize in some way the joint distribution of the random variables. 
In such problems, we may have some variables that are considered, in our proposed 
explanation, to be predetermined, or exogenous, the variables for which we need an 
explanation being called endogenous. In the case of stochastic models general develop- 
ment involves two entirely different directions, with different mathematical techniques. 
It may be that we have a basic probability model that is specified mathematically, and 
we then have to derive by mathematical reasoning the probability distribution of vari- 
ables that result from numerical processes from the variables in the basic and given 
probability model. All this leads, of course, and as many readers will realize, to the 
whole realm of probability theory, stochastic processes, and so on. This is one of the 
two directions and it requires certain easy and many not-so-easy types of mathematical 
analysis and technique. The other direction is that we have to envisage, by one route or 
another (perhaps rather naive and perhaps very sophisticated mathematically) a prob- 
ability distribution, perhaps specified only to a partial extent, or perhaps completely. 
Then our task is to do one or both of the following: (a) Obtain observations accord- 
ing to some investigative plan (or even with no plan at all, except that we accept what 
our observation process gives) and then (b) follow procedures of statistical analysis to 
estimate, that is, form judgments, preferably, in objective ways, of aspects of the prob- 
ability distributions, with the assumptions that our given data comprise realizations of 
random variables. 

What we have described above, characterizes, in a sense, all that goes on in all 
branches of science, though what we have given is a short picture that would require 
huge amount of writing to exposit in reasonable detail. 

What is really happening in this whole broadly specified process is a two-branched 
operation. In one branch, one abstracts what one envisages as being relevant variables 
into mathematical entities, variables of one sort or another, one abstracts properties of 
these real-world variables, and one develops consequences of this mathematical struc- 
ture that one has abstracted. Then one examines the real world, and one has mea- 
surement processes: one decides, or merely hopes, that the result of a measurement 
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process on the real world, say X ,  can be regarded as a correlate of an element J: in 
the associated mathematical abstracted structure. In other words, one makes epistemic 
correlations of real world observables to entities in the associated mathematical struc- 
ture. In general, the whole process is very complicated. Just to take a very simple case, 
consider temperature, as a measurable attribute of a specimen, and temperature as it 
appears in some mathematically formulated theory. The process of developing modes 
of observation and drawing on measurement protocols is itself a result, nearly always, 
of some interplay of formal (or perhaps, very informal) theory and observation. 

4.1.2 Comparative and Absolute Experiments 

We are concerned with the area of design and analysis of experiments, and more specifi- 
cally, with comparative experiments. The use of the restricting adjective “comparative” 
is very natural in that we are concerned with entities called treatments which can be 
applied to experimental units, for example, children, cows, plots of lawn, and pieces of 
steel, and we are concerned with determining differences between treatments with re- 
spect to outcome or response variables, which we shall, often, call yields; for example, 
with children under different treatments beginning at the age of 6, we are interested in 
height and weight at age 8, the latter being yields or outcomes or response variables. 

In contrast to the comparative experiment we have the absolute experiment. In this 
case we have observations on a presumed constant (or set of constants) and our task is 
to determine it; for example, the charge on an electron, or the life curve of a species or 
race of mice. 

The most widely used approach to the comparative experiment, and to a large ex- 
tent, to the absolute experiment, is the use of linear models to which we now turn. 

4.2 REPRESENTATION OF LINEAR 
MODELS 

We suppose that we have a variable y to be explained in terms of variables x1,22. . . . . xp. 
We have units or entities, such as, human subjects, plots of land, and pieces of steel, 
on which we have observed each of the variables y ?  2 2 .  . . . , xp. Suppose we have 
observed n units. We may then represent our data set as an n x 1 vector y, y’ = 

(y l .  y2.. . . , yn) which is to be explained by means of the columns of what we call the 
model matrix 

X =  = (x1.x2.. . . . xp), 

where XI. x2. . . . . xp are vectors. A linear model is given by the equation 

y = xp = n,x, + 32x2 + .  . . + npxp. (4.1) 

in which the coefficients 31. b2, . . . . 0, are either given or are to be determined, and 
there are no relationships among the coefficients &,&.  . . . . B,,, We use = to be a 
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shorthand for “approximately described by.” In contrast to a linear model, we might 
have occasion, for instance, to consider the model 

Y = , h X l  + 2:x2 + P 3 x 3 .  

which is nonlinear in the parameters 31 and 33. Equation 4.1 will be used to encompass 
two types of model: 

(a) An approximative model in which we wish to represent a given vector y by a 
linear form in x 1  x 2 :  . . . x p ,  so that the problem is then strictly one of defining 
a distance between two n x 1 vectors, say y and z and then obtaining that z 
which is a linear combination of X I ,  x 2 ,  . . . , xp which is nearest to y, a problem 
that clearly lies in approximation theory, perhaps elementary. 

(b) A stochastic linear model in which y is a random vector and 

y = XP + e ,  

where Xp is some fixed vector, to be estimated in one way or another and e is a 
random vector following some distribution. 

4.3 FUNCTIONAL AND CLASSIFICATORY 
LINEAR MODELS 

4.3.1 Functional Models 

If we measure, say humans of age 21, with y being weight, 2 1  height, 2 2  being adult 
height of the male parent and if we wish to explain or fit y by means of a model on 2 1  

and 2 2 ,  the values of the explanatory variables can take a continuum of values. It is 
useful to give such models the name functional models. 

A general problem that arises in observational studies in which one merely observes 
the explanatory variables and these are continuous variables is when the explanatory 
vectors X I .  x 2 ,  . . . . xp are nearly linearly related by one or more relations of the sort 

7 1 x 1  + y 2 x 2  + . . . + “/pxp = 0, 

where 7 1 , ~ ~  , . . . . yp are constants and 0 is the n x 1 vector of zeros. This is called the 
problem of multicollinearity. It leads to considerable difficulties (for example, Myers, 
1990). This problem is of great concern when the explanatory variables are numerous 
and related in some way not necessarily known or even partially understood as in many 
economic studies, for example. 

4.3.2 Classificatory Models 

In contrast to the previous case, the individuals with y-values which we wish to fit by 
the model may be classified according to factors of classification: for example, with 
an experiment in blocks and treatments (see Chapter 9) the observational units may be 
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classified by the block classificatory factor and the treatment classificatory factor. In 
such cases a classijicatory linear model is considered of the type 

y block effect + treatment effect 

or more conveniently for many purposes 

y = ,u + block effect + treatment effect. 

where p is some (appropriately defined) constant. 
Formal representation of this as a linear model is achieved by the following type of 

language. Let the units be indexed by u = 1 , 2 . .  . . . n. Let ~ ( u .  i) = 1 if unit u is in 
block i and let z ( u . j )  = 1 if unit u has treatment j, these variables being otherwise 
equal to zero. Then a linear classificatory model in simple scalar form is 

yu = X ( U *  1)31 + X ( U %  2 ) p 2  + . ’ .  1 x(u. b)3* 

+ Z(U. 1)Ti + Z ( U .  2)T2 + .  . . + Z(U. t )Tt  

h t 

z=1 J=1 

where & (i = 1 . 2 , .  . . b )  represents the effect of the ith block and T~ ( J  = 1 . 2 , .  . . , t )  
the effect of the j t h  treatment. In matrix form this can be written as 

y = XRP + x,r, 
where X3 and X, are n x b and n x t matrices, respectively, of known constants and 
P = (31. 32 . . . a*)’, ?- = (‘1 7-2. . . . , rt )’ are vectors of unknown parameters. One 
may wish to include a constant term and would then have 

y = 3,p f x3P + X,T, (4.2) 

where 3, is the n x 1 vector of unities. 
The significant aspect of models of the form (4.2) is that every element of X, the 

model matrix, is equal to 0 or 1. Then, additionally, because every unit is in one and 
only one of the blocks and receives one and only one treatment, we have relation- 
ships like 

From one point of view we have in the model multicollinearity of a very simple type re- 
sulting from the fact that the model contains contributions, combining additively, from 
subsets of the data resulting from imposition of classifications into disjoint subsets. 

X33b = 3,. x,3t = 3,. 

4.3.3 Models with Classificatory and Functional 
Components 

A more general class of linear models has both functional and classificatory portions. 
A very simple example occurs with a block-treatment classification if an additional 
“continuous” variable has been obtained: so, for instance, we might have 

yX3 = 1-1 + ,A + T., + YX~.,. 
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where observations are indexed by ij, {a,} are block effects, { T ~ }  are treatment effects, 
and x z j  is an observation on the ijth individual, such as initial weight in a growth 
feeding experiment. Continuous variables that are adjoined to a classificatory linear 
model as potential explanatory variables are given, for some quite obscure reason, the 
name concomitant variables, or covariates (see Section 4.13 and Chapter 8). 

4.4 THE FITTING OF y = XP 

In formal terms the problem of fitting a model of the form (4.1) may be represented 
as follows: determine p and Xp such that the badness of fit of y by XP, denoted 
by B F ( y ,  Xp), is minimized. We shall not give a general discussion of this general 
problem. Instead we shall take, for our purposes, 

BF(Y. XP) = (Y - XP)’(Y - XP), (4.3) 

and we refer to this as least squaresjtting. We shall suppose at this point that p may 
be any vector in R P ,  that is, the components of p’ = (31.32. . . . .3,) may be any real 
numbers. 

4.4.1 The Notion of Identifiability 

Before proceeding with this, we ask a simple question: Suppose one is actually given 
the vector Xp with knowledge of X but not of p. Can one determine a linear function 

x’p = A131 + A2132 + .  . . + A,3, 
for given values XI, A2.  . . . . A,? As background for the question, suppose we are given 
that, with 31 = p,  3 2  = al, 133 = a 2 ,  

p + a 1 = 5  

p + a 2 = 7  

can we determine al? This question can be thought about in very simple terms or in 
nonelementary but nonadvanced terms. Here is a geometric way of doing so. 

We suppose Xp = XP,, that is, there is a vector Po which gives the vector Xp. Is 
then X’p necessarily determined to be X’P,? A slightly sophisticated way of thinking 
about this is to note the following: The equation X(p - Po)  = 0 is equivalent to the 
vector P - Po being perpendicular to every vector that is the transpose of a row of the 
matrix X. With 

we say: The row space of X is the set of all vectors { C ~ = l u l q ~ : ~ Z ’ ~  arbitrary real 
numbers, and we denote this by R = R(X). Also X’(p - P o )  = 0 says that p - Po is 
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perpendicular to the vector 

77 

which we write as (P - Po)  1. A. Then we can see that 

(P - Po) 1 R(X) 

must imply 

This happens if and only if X E R(X) or A’ = a’X for some vector a, or X = X’a. 

if A’ = a’X for some vector a. 

(P - Po) 1 

In the case of an approximative linear model, y = XP, we say X‘P is identijable 

4.4.2 The Notion of Estimability 

In the case of a stochastic linear model 

y = X P + e  

with E(e) = 0, where E(.) denotes the expectation or expected value, we say that X’P 
is linearly estimable if there exists a vector a such that 

E(a’y) = X’P 

or because 

E(a’y) = E[a’(XP + e ) ]  

= E[a’XP + a’e] 

= a’Xp + E(a’e) 

= a‘xp 

we say, given that p is a completely free vector, that X’P is estimable if there exists a 
vector a such that 

a‘X = A’ 

or, again, X E R(X). 

4.4.3 The Method of Least Squares 

Now we proceed to the least squares fitting and give a sequence of results 

1. By differentiation of (4.3) with respect to the unknowns, 31. 3 2 .  . . . . &, we get 
the normal equations (NE) 

where we use b to denote the variable in the equations. 

X’Xb = X’y. (4.4) 
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2. These equations are consistent for all y E R”; that is, all vectors y’ = (y1, y2 % . . . . y,) 
where each g, can be any real number. Hence solution vectors b exist for any 
such vector y. 

3. Whatever solution we take, the vector Xb is unique given a particular vector y. 
This is so because for two solutions to (4.4), say bl and bz, we have X’Xbl = 

X’Xb2 which implies X’X(bl - b2) = 0 and hence 

or 
(bl - bZ)’X’X(bl - bz) = 0 

(Xbl - Xbz)’(Xbi - Xb2) = 0. 

from which it follows that Xbl - Xbn = 0. 

4. No matter what solution vector 6 we take, B F ( y ,  X6) is the minimum value of 
(Y - XP)’(Y - XP). 

5. Because Xb is unique, the NE necessarily give a unique answer for a given y 
for any identifiable or estimable function X’P. In fact, X then is such that there 
exists a solution to the conjugate normal equation: X’Xp = A, and the fit for 
x’P is p’x’y. 

6. There is, from ( 2 )  above, a vector b, such that 

X’Xb, = X’e,. 

e: = ( O . . . O  1 O . . . O )  ( i =  1 . 2  , . . . .  72). 

where 

1’ 
ith position 

So there is a matrix B = (bl. b2. . . . . b,) such that 

X’XB = X’(e1 e2 . . . en) = X’I, = X’, (4.5) 

and XB is unique. 

7. From (4.5) we have 
B’X’XB = B’X’ 

and transposing yields 

So BX is symmetric and idempotent ( s ip . ) .  This matrix XB is determined 
solely by the matrix X and we write 

B’X’XB = XB. 

P x  = XB (4.6) 

with 
P& = Px = P$> (4.7) 

these encompassing the symmetric idempotent properties. Furthermore 

PxX = XBX = B’X’X = X. (4.8) 
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8. Premultiplying 

by B’ we get 

or, using (4.6), (4.7), and (4 .Q 

X’Xb = X’y 

B’X’Xb = B’X’y 

9. We write 

Y = P X Y  + (1 - P X ) Y  
- - ax + ao, (4.9) 

where ax represents the fit of y by Xb and a 0  represents the residual. Then 

ahax = y’(I - P x ) ’ P x y  = 0. 

So Pxy and (I - Px)y are n x 1 vectors that are perpendicular and 

Y’Y = (PXY)’(PXY) + “1 - PX)Yl ’ [ ( I  - P X I Y I  

= y’Pxy + y’(I - P x ) Y .  (4.10) 

10. This gives the very simple analysis of variance: 

Explanatory Source Degrees of Freedom Sum of Squares 

X rank()() Y’PXY 
Residual n - rank(X) Y’(1 - P X ) Y  

Total n Y‘Y 

11. We attach a number, the degrees offreedom (d.f.) associated with the explanatory 
source, X, equal to rank(X), the rank of X, which is equal to the row rank of X 
or the column rank of X or the determinant rank of X .  Also 

rank(X) = rank(Px)  

because 
Px = X B .  

X = P x X .  

so rank(Px) < rank(X) 

so rank(X) < rank(Px).  
and 

A rationale for the number of d.f. is as follows: The fit for y is Xb for some 
b .  Writing Xb = blxl + b2x2 + . . . + b,x,, we say that Xb is in the column 
space of X, denoted by C(X). Now C(X) is a space of dimension T = rank(X). 
Similarly, the residual is (I - Px)y which is restricted to C(1 - Px) which is 
a space of dimension rank(1 - Px) which is equal to n - T ,  because X’[(I - 
Px)y] = 0 for every y .  So the elements of (I - Px)y are n linear forms which 
are restricted to be null in T ways. 
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12. We must emphasize that the matrix PX which is utterly intrinsic in the math- 
ematics of the least squares approximation is not at all essential to the actual 
numerics of least squares fitting. We are given the NE: X’Xb = X’y and we 
have to find a solution, it does not matter which because Xb is invariant. We 
shall describe below how one may adjoin conditions on solutions in the form of 
Cb = c (which we may take to be 0) ,  so as to get a definite solution to the NE. 

13. If 6 is a solution vector, we have 

The well-established phrase associated with this is: 

The sum of squares removed by the fitting of y by X p  is equal to the sum of 
products of a solution of the NE and the right-hand sides of the NE, that is, the 
inner product of a solution vector and the right-hand side of the NE. 

14. It is worth noting that rank(X) is equal to the dimensionality of C(X), that is with 
X = (XI. x2. . . . , xP) so that x, is the ith column of X, the set of all vectors 

a,x, : a, a real number = C(X). El I 
Given the vectors XI % x2. . . . . xp, we can find a maximal set of linearly indepen- 
dent vectors 

{ E l . & . .  . . .GI 
such that 

r 

C = o implies a, = o (i = 1 . 2 . .  . . . r )  
a = l  

and every vector x, is given by 

j=1 

The number of vectors in such a maximal set is the column rank of X. 

We have seen that PX = XB, P x y  = X(By); so PX takes a vector y into a 
vector that is in C(X). Further, 

(y - Pxy)’Pxz = y’(1 - Px)Pxz = 0 

so P x  projects y orthogonally onto C(X) 

15. It is also clear that there exist maximal sets of independent row vectors in X. 
One merely “works down” the row vectors keeping in a list those that are linearly 
independent of previous ones on that list. Necessarily, any such maximal set has 
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r members, where r = rank(X). This tells us that there exists a set of linear 
functions of p, Xip .  Xi ,B3. . . . X’,p, such that with 

it is the case that 
x p  = Z A ’ ~  = ze. 

x’p = d e  

where Z is n x r of rank r. Also, if X’p is identifiable or estimable then 

for some v. In other words: a linear model y = Xp of rank r on a parameter 
that is ap-vector (p 3 r ,  of course) can be written as a model y Z B  where Z is 
n x T of rank r ,  and 8 is a set of r linearly independent identifiable or estimable 
functions. This process is called reparametrization to full rank. Clearly, it can 
be done in many ways. We shall see that some ways are more natural or more 
convenient than others. 

4.4.4 Theory of Linear Equations 

We have seen that to obtain the fit for any identifiable or estimable function we merely 
have to obtain any solution of the NE: X’Xb = X’y and then if b” is any such 
solution, the solution for Xb is Xb” and the solution for any identifiable function X’p 
is X’b*. The question is, therefore, to exhibit ways of getting one solution. 

1. We now give a few basic ideas on the theory of equations. A necessary and 
sufficient condition for the equations Ax = d with unknown vector x to be 
consistent can be expressed equivalently as 

(a) d E C(A) or 

(b) rank(A1d) = rank(A) or 

(c) v’A = 0’ implies v’d = 0. 

2. Notions of generalized inverses of matrices are useful. Consider the equation 
with a given real matrix A in an unknown matrix X, 

AXA = A. (4.12) 

It is solvable because of the following: 

(i) From basic matrix theory, there exist invertible P and Q such that 

1, 0 
PAQ = (. .) 
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or 

(4.13) 

where r = rank(A); and 0 are null-matrices of appropriate dimensions. 

(ii) Take such P and Q. Then, take 

X = Q ( ,  I r  L ) ~ .  J (4.14) 

where J, K ,  L are arbitrary but of appropriate dimensions. It is easy to 
verify that AXA = A and hence X of (4.14) is a solution and any solution 
is necessarily representable in this way. 

(iii) Suppose A is of rank r and the submatrix consisting of rows a1, a 2 ,  . . ., 
a,  and columns pl. p2. . . . . p, is A and is invertible. Then we can obtain 
an X satisfying AXA = A by making up X from k1 by inserting this 
in rows pl. p2. . . . . p r  and columns al .  a 2 , .  . . , a ,  and inserting zeros 
everywhere else (see Example 4.1). 

Any solution X of AXA = A is called a generalized inverse (or g-inverse 
for short) of A and is usually denoted by A-,  even though it is not unique. 

3. Let A- be a particular generalized inverse of A. Then 

(i) the equation Ax = d is consistent if AA-d = d, 

(ii) any solution to a consistent equation is of the form 

x = A-d + (I - A-A)z (4.15) 

for some z.  

4. Hence, if we have to solve the NE, X’Xb = X’y, we can find an (X’X)- by 
the procedure in (2) above and then take as solution 

b = (X’X)-X’y. (4.16) 

It is the case necessarily that 

x(x’x)-x’ = Px 

because with X’XB = X’ and PX = XB = Pk = P$ we have 

X(X’X)-X’ = B’X’X(X’X)-X’XB = B’X’XB = PkPx = Px.  

5. Another process for obtaining a solution to the consistent equation Ax = d is 
merely to adjoin consistent equations Cx = c so that the augmented equations 
have a unique solution. In our case, then, given the NE. X’Xb = X’y we adjoin 
conditions on solutions: Cb = c .  It is the case that 



4.4. THE FITTING OF y = X p  83 

(i) If the equations in b are to be consistent, then, from l(c) above, we must 
have that viX’X + vLC = 0’ implies v’,X’y + Y ~ C  = 0. If we must have 
consistency for any conforming y, we must have that viX’X + vkC = 0’ 
implies vLc = 0 and viX’ = 0’ which implies viX’X = 0’, vkc = 0. 
So, of course, Cb  = c must be consistent in b. 

(ii) This condition on C is, in slightly sophisticated terms, the condition 

R ( C ) n ~ ( x ’ x ) = { i a }  

or 
R(X) n R(C) = ( 0 )  

because 
B’X’X = X 

implies 
R(X) c R(X’X): 

R(X’X) c R(X): 

R(X’X) = R(X). 

which with 

gives 

Hence the prescription is clear: We adjoin to the NE the equations Cb = c,  
which are consistent (which we can accomplish merely by taking c = 0) 
and which are such that the only identifiable or estimable function v/Cp is 
the null function and such that rank( C) = p-r., the column rank deficiency 
of X. We shall give examples of this process later. 

The method of obtaining a g-inverse as described in 2.(iii) above is used often in 
statistical software to obtain a solution to the NE (4.4). We shall return to this point in 
Section 6.1 1, but give a simple example here to illustrate the procedure. 

EXAMPLE 4.1: For the model (4.2) with b = t = 2 we obtain X’X in (4.4) as 

4 2 2 2 2  

X’X= [i i = A s a y  

and, obviously, rank(A) = 3. Then 
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with r a n k ( i )  = 3 and 

.75 - . 5  - . 5  - 
A - ’ =  p ) . 

We then obtain 

.75 - . 5  0 - . 5  0 
1 0 0 0  

A- = (X’X)- 

4.5 MOORE-PENROSE GENERALIZED 
INVERSE 

We know from (4.5), (4.6) and (4.7) that there exists a U such that 

A’AU = A’. PA = AU = Pa = P i .  

Similarly, there exists a V such that 

AA‘V = A. A‘V = PA, = P’ A , = P2 A’ .  

Now consider the matrix A+ = V‘AU, which is unique because AU and A‘V are 
both unique. Clearly, this matrix A+ is determined uniquely by A. It is an interesting 
matrix because 

(i) AA’A = A. 

(ii) AfAA+ = A+. 

(iii) AA+ is symmetric and idempotent. 

(iv) A+A is also symmetric and idempotent. 

The properties (i)-(iv) above can be verified easily by making use repeatedly of 
(4.8) and the properties of PA and PA! above: 

(i) AA’A = AV’AUA = AUA = A. 

(ii) A+AA+ = V‘AUAV‘AU = V‘AV‘AU = V‘AU = A+. 

(iii) (AA+)’ = (AV’AU)’ = (AU)’ = AU 

(iv) (ACA)’ = (V’AUA)’ = (V’A)’ = VIA. 
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Furthermore AT is the unique solution to the equations in X 

AXA = A 
XAX = X 
(XA)’ = XA 

(AX)’ = AX. 

This matrix is called the Moore-Penrose generalized inverse of A, or, now briefly, the 
M-P inverse of A. The M-P inverse has the following basic properties: 

(i) (A’)+ = (A+)’. 

(ii) The shortest solution, that is, x such that x’x is minimized, of the consistent 
equation 

A x = d  

is 
2 = A’d. 

(iii) (A’A)+ = A+(A+)’ 

This gives us directly, 

(iv) The shortest solution of the NE: X’Xb = X’y is 

6 = x + y .  (4.17) 

(v) The vector perpendicular to the hyperplane set {p :  Cp = c} is C’c. 

We see, of course, that A+ is a particular generalized inverse of A. 

4.6 CONDITIONED LINEAR MODEL 

4.6.1 Affine Linear Model 

Consider the model y = XP, with p not free in RP but restricted by consistent equality 
conditions, Cp = c, but otherwise free. Clearly we can write for any particular choice 
of c-, 

p = C-c + (I - C-C)y for some y 

p = C+c + (I - C+C)y for some y. 
or 

So this restricted model is transformable to 

y = x c - c  + X(I - C-C)y 

or 
y = x c + c  + X(I - C+C)y. (4.18) 
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Table 4.1 Moore-Penrose Inverse 

p r o c  iml; 

A =  14 2 2 2 2, 
2 2 0 1 1 ,  
2 0 2 1 1 ,  
2 1 1 2 0 ,  
2 1 1 0 2j; 

Ainv=ginv (A) ; print Ainv; 

MOORE-PENROSE INVERSE 

AINV 

0.0625 0.03125 0.03125 0.03125 0.03125 
0.03125 0.265625 -0.234375 0.015625 0.015625 
0.03125 -0.234375 0.265625 0.015625 0.015625 
0.03125 0.015625 0.015625 0.265625 -0.234375 
0.03125 0.015625 0.015625 -0.234375 0.265625 

Either of these is appropriately called an afJine linear model. 

The fitting of this is really quite routine because with y* = y - XC+c the NE for 
y in (4.18) is 

[X(I - C+C)]"X(I - C+C)]? = [X(I - C+C)]'Y* 

7 = [X(I - C+C)]+[Y - XC+C]. 

with shortest solution [see (4.17)] 

Hence, as one may verify, the shortest solution to the least squares fitting of the whole 
problem is 

6 = c+c + [X(I - c+C)]"y - XC+C]. (4.19) 

This mode of procedure is of considerable interest with regard to the mathematical 
structure that is being investigated. It does require, however, determination of M-P 
inverses and these are not at all easy to find, in general. Computer programs to do this 
exist, of course, such as SAS/IML (SAS Institute, Inc., 2002-2003). 

The following example serves as an illustration. 

EXAMPLE 4.2: Using the matrix A from Example 4.1 with the GINV function in 
SAS/IML yields, together with the input statement, the Moore-Penrose inverse given 
in Table 4.1. 0 
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4.6.2 Normal Equations for the Conditioned Model 

A quite different method of tackling the problem is to use Lagrange multipliers and 
differentiation. This gives the following equations, which we define to be the NE asso- 
ciated with y = Xp, Cp = c, 

(4.20) 

in which the vector m is a vector of undetermined multipliers. We now state basic 
properties of this NE (4.20): 

(i) It is consistent for all y and all c such that Cp = c is consistent. 

(ii) The vector Xp is invariant over all solutions. 

(iii) Any part solution b gives a minimum of (y -Xp)’(y -Xp) subject to Cp = c.  

(iv) The minimum sum of squares is 

y’y - b’X’y - b’C’m 

Interesting and relevant properties of matrices involved are 

X’X C’ 
(i) rank ( = rank (‘6) +rank((=). 

(ii) Suppose a generalized inverse of the coefficient matrix is given by 

X’X C’ 

then a solution of (4.20) is 

b = DX’y + Ec 

m = FX’y + Gc 

and 

Xb = XDX’y + XEC. 

Furthermore XDX’ is symmetric idempotent and is, in fact, equal to 

X[X(I - C+C)]+ 

[see (4.19)]. 
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4.6.3 Different Qpes of Conditions 

An interesting point arises if Cp  is not identifiable or estimable. In that case v’,X + 
vLC = 0’ implies v’,X = 0’. vkC = 0’. It follows then from (4.20), which can be 
written in part as (Xb - y)’X + m’C = O’, that m’C = 0’ and the minimum sum of 
squares is the same as that which would be obtained with just y = Xp, that is, without 
the restriction, C p  = c. Also, we may note that if R(C) f’ R(X) = {0}, that is, no 
nontrivial v’Cp is identifiable or estimable, and rank C = p - T ,  the rank deficiency 
of X, then 

(x: :) 
is invertible and implies 

(X’X + C’C)b = X’y + C’C (4.21) 

with solution 
b = (X’X + C’C)-’(X’y + C’C) (4.22) 

A particularly important special case of the preceding occurs when C = A’X so 
that for every v, it is the case that v’Cp is identifiable or estimable. In that case, in 
(4.201, 

X’Xb + C’m = X’y 

gives 
X‘Xb + X‘Am = X‘y 

or 
Xb = Px(y  - Am). (4.23) 

Then 
c = Cb = A’Xb = A’Px(y - Am) 

A’PxAm = A’Pxy - c = A’Px(y - Xp,) (4.24) 

for Po such that Cp, = c .  Then (4.24) gives a unique solution for PxAm, which can 
be written as 

so that 

PxAm = PxA(A’PxA)-A’Px(y - Xpo) Q(Y - X&). 

which, substituted into (4.23), gives 

Xb = PXY - Q(Y - XPo). 

The minimum sum of squares is 
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where A‘b is the fit for A’@ in the model y = Xp, that is, the one without the 
restriction, and the additional sum of squares of deviation is then 

( cb  - c ) ’ ( ~ f ~ x ~ ) - ( ~ b  - c ) .  

Here, we may, of course, also use (A’PxA)+ and if, as would normally be the case, 
C = A’X is of full row rank, then A’PxA is of full rank. Note that we can also write 

It is clear from the above that if we have the model: y = Xg. C l p  = c1, Czp = 
c2, with R(C1) c R(X), and R(Cz) n R(X) = {0}, then the space of possible fit 
vectors {Xb: b E RP} is not restricted by the conditions Czb = c2. In other words, 
given bl such that Clbl = cl,C2bl = 122, we can find bz such that Clbz = c1, 

but C2b2 = E z  # c2. Obviously, then the restriction C2b = c2 has no impact 
on the goodness of the representation of y by a vector Xb. More formally, with the 
model specified in the preceding, we have, with C1 = AiX, that the LS fit for X p  is, 
according to (4.23), 

Xb = Px[y  - hlm] 

A ’ P ~ A  = A’X(X/X)-X~A = c(xfx)-ct. 

with m satisfying (4.24), and it will be the case that 

4.6.4 General Case 

We can now describe very succinctly the situation with general conditions on param- 
eters, CP = c. Necessarily, there exists with C of dimensions q x p ,  a partitioned 
matrix 

T = (::). 
of order q x q and invertible, such that 

R(T1C) c R(X) 
R(T2C) n R(X) = {a} 

and the conditions Cp  = c have impact on the fitting (whatever “reasonable” criterion 
of badness of fit is used) only with respect to the “portion”: TlCP = TIC. Further- 
more, the conditions TzCP = T ~ c  have no impact on the resulting fit of X p  by Xb 
for some vector b. 

A small final point merits a little consideration. How do we find T1 and Tz? A 
possible procedure, not necessarily optimal with regard to computing, is as follows: 
Obtain first a basis for R(X). Let the matrix of this be 3. Then consider 
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Reduce this to row echelon form. Then we shall obtain a matrix c as the lower nonnull 
part of the row echelon form. Then Cp = c, c/J = E,  and (?p is not identifiable or 
estimable and the conditions c p  = E are not restrictive at all. The conditions Cp = c 
are equivalent then to c p  = E and Tl CP = Tlc. We are not giving here any attention 
to the question of how best to perform the operations that are involved. 

4.7 TWO-PART LINEAR MODEL 

4.7.1 Ordered Linear Models 

Suppose we wish to consider explaining or approximating a variable vector y by means 
of a linear model on explanatory variables 2 1 . 2 2 .  . . . . x,, and z1, z2 % . . . % z,. Then we 
will wish to ask: 

Do the variables 2 1 . 2 2 .  . . . , z ,  help in explaining y after we have used ~ 1 , 2 2 ,  . . ., 
X,? 

or 

We may address these questions with matrix language by considering two ordered two- 
part linear models: 

Y = XlPl+  X2P2 (4.26) 

Do the variables 2 1 .  2 2 .  . . . . z, help in explaining y after we have used 2 1 .  z2, . . . . z,? 

and 
y = x2p2 + XI&. (4.27) 

Here the order of writing is strongly relevant. To address this, taking the model (4.26) 
we can contemplate fitting y by X1pl, for which we are then looking at the residual 
(I - P x , ) ~  [see (4.9)]. Then, multiplying (4.26) by (I - Px,) ,  our model would give 

(I - PX,)Y = (I - PXI)X2P2. (4.28) 

If now we fit (4.28) by the method of least squares we get the NE 

Xk(I - Pxl)X2b2 = Xk(I - P x , ) ~ .  (4.29) 

Rather naturally, we call (4.29) the reduced normal equation, RNE, associated with 
X2p2 after Xlpl .  Since (4.29) is a normal equation [that is, of the type Z’ZB = 
Z’y], it follows that (I - Px,)Xzbz is uniquely determined. We achieve then the 
representation, based on (4.28), 

Y PxlY + (I - Pxl)X2b2. (4.30) 

In the same way, we have the RNE for X1pl, after X2p2, using model (4.27), which is 

(4.3 1) 

The overall minimum sum of squares is then obtained from (4.30) as 

[(I - Pxi)Y - (1 - P x , ) X ~ ~ ~ ] ’ [ ( I  - P x , ) ~  - (I - Px1)X2b2] 
= Y/(I - PX,)Y - W ( I  - Px,)(I  - Pxl)X2b2 + bkXk(1- Pxl)X2b2 
= f ( I  - P x , ) ~  - bkXk(1- P x , ) ~ .  (4.32) 
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We note that in (4.32) y’(1 - Pxl )y  is the minimum sum of squares for fitting the 
model y A X1P1. Hence (4.32) says that the additional sum of squares removed is 
the inner product of a solution vector of the RNE (4.29) and the right-hand vector of 
the RNE. 

4.7.2 Using Orthogonal Projections 

We shall now develop the situation by the use of P-matrices, projection matrices. We 
use s i p .  as an abbreviation for symmetric idempotent matrix. 

We have the following: 

(i) There exists B1 such that XiX1B1 = Xi and Px, = XlBl is s i p .  with 
Px,Xl  = X1 and Pxl is the orthogonal projector onto C(X1), the column 
space of XI. 

(ii) There exists Bz such that XhX2B2 = X; and Px, = X2Bz is s.i.p. with 
Px,X* = Xz and Px, is the orthogonal projector onto C(X2). 

(iii) There exist B 1 ~  B 2  such that 

(X,iX*)’(X,iX,) (2) = (XI!X2)’ 

or 

and 

(4.33) 

P X l X ,  = (XliX2) (it) = XlB1+ x*B2  

is s i p .  with Pxlxz(XliX2) = (XIiX2) and Pxlx2 is the orthogonal projec- 

tor onto C(Xl!Xz). 

For brevity of writing, we now use 

P X l  = P1. Px, = P*. P X I X Z  = P12. 

Then 

1 = P1+ (P12 - P1) + (I - Pn) 

and 

y = p l y  + (P12 - P l ) Y  + (I - P 1 2 ) Y  

= a1 + a2.1 + a0.12 (by definition). (4.34) 
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Table 4.2 (X2 IXl)-ANOVA for the Ordered 
Model y = X l p l  + X2p2 

Explanatory Source d.f. Sum of Squares 

XlPl 7-1 Y ’ P l Y  
x2p2 after xlpl 7-12 - 7-1 y’(P1z -  pi)^ 
Residual n - 7-12 ~ ’ ( 1 -  PE)Y 

Total n V’V 

Then we have decomposed the vector y additively into three orthogonal vectors a1 % a2 1, 

and a 0  12. We believe the reader will recognize immediately the rationale for the nam- 
ing of these that we use. A little thought gives 

P12P1 = PI. so PIP12 = PI by transposition, 

P1(I - PlZ) = 0. 

(Pl2 - Pl)’ = (PlZ - Pl). 

(P12 - = (Pl2 - Pl)? 

(I - = (I - P12) .  

y’y = a:al+ a; 1a2 1 + ab 
So PI, P12 - PI and I - PI are each s i p .  and we then have from (4.34) 

12 

= Y ’ P l Y  + Y ’ ( P I 2  - P l ) Y  + Y’(1 - P 1 2 ) Y  

This is nothing but the ANOVA corresponding to the ordered linear model: y = 
Xlpl + X2p2 which is normally presented as in Table 4.2 where TI = rankX1, 

7-12 = rank(Xl:X*). 
We see that the degrees of freedom associated with y’(P1Z - Pl)y  are the degrees 

of freedom associated with (P12 - P l ) y ,  which is rank(P12 -PI) = trace(P12 -PI) 
(because P12 - PI is s i p . )  = trace P12 - trace PI = rank(P12) - rank(P1) = 

rank(XliX2) - rank(X1). 
We can abbreviate our naming of sources, clearly, to the following: 

a usage we shall find very handy. 

X2p2 first and then X1pl to the residuals. This corresponds to the identity 
Clearly, rather than fitting Xlpl first and then X2p2 to the residuals, we can fit 

I = Pz + (PlZ - P 2 )  + (I - P12) 



4.7. TWO-PART LINEAR MODEL 93 

Table 4.3 (Xl IX2)-ANOVA for the 

Ordered Model y = X2P2 + X1Pl 

Explanatory Source d.f. Sum of Squares 

and 
y = a2 + a1.2 + a0.12 

We then get from this decomposition the ANOVA of Table 4.3. 
We note that the residual sum of squares of Table 4.2 and 4.3, y’(1 - P12)y, is the 
same as (4.32). 

How do we use these ANOVAs? We suggest that this is rather obvious. If we need 
X2p2 after X1P1, then it is the case that 

is “large.” Just what we mean here by “large” will be clarified later (see Section 4.17). 

4.7.3 Orthogonal ANOVA 

A small question is “When are the two ANOVAs the same apart from naming?” This 
happens only if 

y’(P12 - P1)y = y’P2y3 

y’(P12 - P2)y = ylPly,  

P12 = P1+ P2 

for all y 

and 
for all y 

or 

or 
XiP12X2 = XiP1X2 + XiP2X2 

or, using the properties of P12, PI, P2, 

or 
xix2 = 0 
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Conversely, if XiX2 = 0, it is clear from (4.33) that 

P12 = P1+ Pz 

and we have just one ANOVA (see also Section 4.1 1). This is referred to as orthogonal 
ANOVA. 

Little addenda to the above are as follows: 

(a) P12 - PI is the orthogonal projector onto C[(I - Pl)X2], and 

(b) P12 - P2 is the orthogonal projector onto C[(I - P2)X1] 

4.8 SPECIAL CASE OF A PARTITIONED 
MODEL 

Consider the model: y = 3 p  + Xp, where 3’ = (1,1,. . . ,1) with n components. 
Then we see that 

(4.35) 
1 
n 

P3 = -3Y.  

The RNE for X p  is 

X’ I - -33’ Xb = X’ I - -33’ y. ( : )  (4.36) 

We obtain (4.36) merely by performing least squares fitting on y with the mean y 
subtracted from each y and with the mean of each column of X subtracted from the 
elements of that column. 

The sum of squares for the explanatory source 3p is y’P,y, which is nothing but 
iy’33/y, or :[square of total of y], a quantity commonly called the correction factor 
in ANOVAs “around the mean.” 

4.9 THREE-PART MODELS 

Here we consider 
Y = X l P l +  X2P2 + X3P3 

with six ordered three-part linear models, one for each of the six orderings of XI, X2, 

and X3. We have thus six ANOVAs, which we represent in Table 4.4. To explain 
what the associated sums of squares are we use PI. Pz. P3, PIZ. P13. P 2 3  and P123, 

extending in an obvious way the results of Section 4.7, and merely give an example: 

s s ( x 2 ~ X l x 3 )  = Y’(p123 - p 1 3 ) Y .  

It is rather easy to see that the matrix of any sum of squares is s i p .  The third ANOVA 
of Table 4.4 corresponds to the identity 

I = p 2  + ( P I 2  - p 2 )  + (p123 - p l 2 )  + (I - p 1 2 3 ) .  
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Table 4.4 The 6 ANOVAs with an Unordered Three-Part Model 

giving 

that is, the vector y has been decomposed additively into four vectors that are orthog- 
onal. 

Y = a 2  + a1.2 + a3.12 + a0.123, 

4.10 TWO-WAY CLASSIFICATION 
WITHOUT INTERACTION 

We have given earlier [see (4.2)] the data model structure 

y A 3p + X,r + X,c, (4.37) 

where X, and X, are incidence matrices with X,3 = 3, X,3 = 3, the 3-vectors hav- 
ing appropriate dimensions. This represents a special case of a three-part model, but a 
very important one in the context of comparative experiments (see Chapters 9 and 11.1). 
In this case we are interested, as we shall see, only in two ANOVAs. We are interested 
in the extent to which incorporation of X,r andlor X,c improve approximation of y 
by 3p. We then have only two relevant ANOVAs: 

3 3 

A very natural question is whether we shall have 

which then induces and is equivalent to 

SS(X, /3XC)  = SS(X,13). 

It is clear from Section 4.7 that if this is to happen we must have 

Y ’ P T C  - P r ) Y =  Y ’ P C  - P , ) Y ,  
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where P, is the orthogonal projector onto C ( 3 ) ,  P, is the orthogonal projector onto 

C(X,) = C(3!X,), P, is the orthogonal projector onto C(X,.X,) = C(3iX,fX,). 
The equality must hold for all y so we need 

P,, - P, = P, - P, 

This gives 

XLP,, - P,)X, = XL(P, - P,)X, 

or 

0 = x;x, - x;p,x, 
or, using (4.35), 

(4.38) 

Since the elements of XLX, are the numbers of observations for each row-column 
combination, (4.38) tells us that we have one ANOVA if the frequencies are propor- 
tional. Contrariwise, if XtX, = XkP,X,, then with P,, = X,B, + X,B,, where 

1 

n 
XLX, = -(Xb3)(3’X,). 

x;x, x;x, 
(x:x, x:x,) (9) = (C!) (4.39) 

with XbX,B, = Xh, X:X,B, = X;, P, = X,B,, P, = X,B,, we obtain from 
(4.39), premultiplying by BL and BL, respectively, 

x,B, + P,P.JX,B, = P, 

P,P,X,B, + xcB,  = P,. 

(4.40) 

(4.41) 

But 

P,P,= P,. P,P, = P, 

so, adding (4.40) and (4.41), 

p,, + P,P,, = P, + P,. 

Since P,,P, = P,, this implies 

p,, + P,= P, + P, 

or 

P,, - P, = P, - P, 

so that we have just one ANOVA. Hence, proportional frequencies are a necessary and 
sufficient condition for both ANOVAs to be identical. 



4.1 1, K-PART LINEAR MODEL 97 

4.11 K-PART LINEAR MODEL 

4.11.1 

Consider the linear model 

The General Model and Its Sums of Squares 

y = x l p l  + xzp2 + ,  . .  + xlcplc. 

Clearly, there are k !  associated ordered k-part linear models. Taking the original order, 
we have 

p1. P l 2 i  p 1 2 3 3 . .  , i p 1 2  . . .  k 

and 

1 = p1 + (PlZ - P1) + . . ’ + (P12 ... k - P 1 ~ . , , ~ )  + (1 - p12 ... k ) :  

giving 

and 

y = a1 + a2.1 + . ’ .  + ak .12 . . .E  + ao.12 ... k 

yfy=a:a1 +a;,,a2.1 + ~ ~ ~ + a ~ , , , , , , ~ a k . 1 2 , , , ~ + a  6.12., , lca0.12.. .k.  

This may be presented as an ANOVA: 

Explanatory Source 

XkIX1X2. . . Xk-1 

IJXlX2. .  . Xk 

in which degrees of freedom and sums of squares may be written down at sight. Every 
sum of squares is obtainable by considering for some Z1, Z2 

y = ZlYl 

y 2 ZlY, + Z2Y2 

with respective sums of squares 

where ZiZ1yY = Ziy, and 

where 

-fT’ZlY, 

9:z:y + y:z’,y. 

(4.42) 

(4.43) 
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and then taking (4.43) minus (4.42). For example, to obtain SS(X31X1X2) we take 

and 
2 2  = x3: 7 2  = P3. 

The difference (4.43) minus (4.42) can then be expressed as 

SS(Z2(Z1) = SS(Z1Z2) - SS(Z1) 

or, alternatively, as 

This shows that the sums of squares are obtained by fitting sequentially “larger” mod- 
els, that is, 

Y = XlPl 

Y A X l P l +  X2P2 

Y = X l P l +  X2P* + X3P3 

then 

and then 

etc., and obtain SS(X1), SS(XlX2), SS(X1X2X3) etc., respectively, and then 

SS(X2jX1) = SS(XlX2) - SS(X1) 

and 
SS(X3/XlX2) = SS(XlX2X3) - SS(XlX2) 

etc. It is for this reason that the sums of squares in the table above are often referred to 
as sequential sums of squares in the context of the Ic-part linear model. We emphasize 
again, that the use of P-matrices is particularly valuable for mathematical purposes. 

Among the k !  orderings for the k-part linear model we can identify k orderings 
such that for the ith ordering X,P, occurs in the last position ( i  = 1 ,2 ,  . . . . Ic). Then 
the last sum of squares of the sequential sums of squares is 

SS(Xilal1 other Xj)  = SS(XlX2.. . X,) - SS(al1 X j  except Xi) 

for i = 1: 2; . . . , k. These k sums of squares are referred to as partial sums of squares. 
These play an important role for nonorthogonal models, that is, models for which con- 
ditions corresponding to those given in Section 4.7.3 do not hold, for testing hypotheses 
involving XiPi (see, for instance, Sections 8.3.5, 8.8, 9.8, 9.10, and 13.4). 

For later reference we mention here that for the Statistical Analysis System (SAS) 
package (SAS Institute, Inc. 2002-2003) the sequential sums of squares correspond to 
the Type I sums of squares and the partial sums of squares correspond to the Type I11 
sums of squares. 
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4.11.2 The Means Model 

It is relevant to give a little detail of alternative modes of specification of models. 
The simple case which we have denoted by y = 3~ + Xlp (see Section 4.8) where 

XI is a n x p binary (0, 1) matrix, can be written as y = Xly, because 3 = 3, = 

X13,, so y = p + 3 , p .  When written in the latter mode, the rank of the model equals 
rank (XI) ,  and there are no dependences that the model y = 3 p  + X1p contains. This 
model without dependences is called a cell means model (e.g., Hocking 1985,2003) or 
means model for short, which we shall write as y = Xp. 

In the case of the two-way classification without interaction, we have written the 
model as y = 3 p  + Xlpl + X2pZ. We use this because it leads, automatically and 
directly, to the two relevant and interesting ANOVAs. Alternatively, we may write this 
in the form of a means model as 

with conditions on the model as 

P Z J - P L  - p J + p  = o  (4.45) 

for all i, j ,  or, as 
PZJ - P2J' - PLlJ + PL'J' = 0 

for all i, i', j, j ' .  
We have given earlier, modes of presentation of a conditional linear model. To 

write either of the alternative models in matrix form and then to construct the nor- 
mal equations is an unpleasant chore. Additionally, to go from the conditional means 
model, say 

(4.46) 

Y = W  
c p = o  

with C of the form appropriate to (4.45) or (4.46) to consideration of what linear forms 
in p1 and in p2 are identifiable is awkward. 

We want, of course, to write models for higher classification data structures. Con- 
sider a three-way structure with observations indicated by i = level of factor 1, j = 
level of factor 2 ,  k = level of factor 3, and 1 = level of observation within levels i ,  j, k 
of factors 1, 2 ,  and 3. We prefer the model written as 

y 31-1 + xlpl + XZpz + x3p3 + x12p12 + x13p13 + x23p23 + x123P123.  

in which we include the possibility of interactions between factors 1,2,  and 3. How are 
we to represent the case of no triple interaction? The only alternative way is to write 
the means model as 

Y a j k l  = h j k  (4.47) 

and then adjoin conditions, such as 

p t j k  - p t 3 k '  - P z 3 ' k  - p i ' j k  + p t l j ' k  + Paj 'k '  + p t ' g k '  - Ptl J k  ' I = 0 (4.48) 
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for all i, i', j, j ' ,  Ic ,  k'.  To write the model with no interactions we have to write (4.47) 
and (4.48) with, also. 

and 

To write this as 

y = x=p 

with conditions on p, given by C,LL = 0 is exceedingly awkward and space filling. 
We suggest, by way of this brief discussion, that using means models is, in general, 

not good data analysis procedure. Such models do not, without additional notation and 
commentary, reflect the structure of the data and hence are not suggestive concerning 
tests of hypothess or estimation of linear functions of interest to the researcher. For ex- 
ample, model (4.44) can just as well represent a data structure where factor 2 is nested 
within factor 1. Similarly, model (4.47) could represent, among several possibilities, a 
data structure where factor 3 is nested in factor 2, and factors 1 and 2 are crossed. Such 
ambiguity can lead easily to inappropriate inference and hence to erroneous conclu- 
sions and explanations of the data (see also Section 4.12.7), although the proponents of 
the means model argue contrariwise (Hocking and Speed, 1975). 

Models of the form we prefer are said to be overparameterized models. We discuss 
such models in more detail in Section 4.12.7. We shall show that for balanced classifi- 
catory data structures the perceived disadvantage of overparameterized models can be 
dealt with very easily. It is only for certain types of unbalanced data structures that the 
means model seems preferable (see Section 4.13.2). 

4.12 BALANCED CLASSIFICATORY 
STRUCTURES AND ANALYSIS OF 
VARIANCE 

In the previous sections we have considered linear models from a rather general point of 
view without distinguishing between what are usually referred to as regression models 
and classificatory or classification models. The reason, of course, is that the math- 
ematics associated with these different models is really the same. In the context of 
comparative experiments, however, classificatory models play a major role. It is useful 
then to digress briefly from the general discussion and introduce and illustrate some 
important concepts for classificatory models. More specifically we want to discuss 
certain data structures, how such structures lead to classificatory linear models, and 
associated analyses of variance. 
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4.12.1 Factors, Levels, and Partitions 

The analysis of variance (ANOVA) was first developed for what we call balanced clas- 
siJicatory structures. We have a set of individuals which can be partitioned or classified 
by one or more factors of classification. So human individuals can be classified by 
country of birth, by sex, by religion of ancestors, and so on. A factor of classijkation 
thus gives a partition of the set of individuals into disjoint subclasses. We denote a 
factor of classification by a capital letter, say, A, and we call the subsets produced by 
the factor the levels of the factor. So with any one factor every individual in the set 
possesses a level of each factor. Obviously, the set can be partitioned into subclasses 
by whatever number of factors is given by the data. So with two factors, which we de- 
note by A and B, every individual in the whole set possesses a level of each of the two 
factors. There is a critically important attribute of the relationship between two factors 
or two subsets of the totality of factors. Clearly, a combination of factors is itself a 
factor because, for example, we can partition the set of individuals by two factors, A 
and B, and every individual is at a particular level of factor A and a particular level 
of factor B, so every individual is at a particular level of the joint factor AB. So then 
with four factors A, B, C ,  and D ,  we have four single factors, A, B, C ,  and D and we 
have six factors involving two factors, AB, AC, AD, BC, BD, and CD, and we have four 
factors involving three factors, BCD, ACD, ABD, and ABC, with one factor involving 
all four simple factors which we denote, naturally, by ABCD. We call the constituent 
factors in any joint factor by the name of the single factors. 

4.12.2 Nested, Crossed, and Confounded Factors 

Now consider two factors. Let these be sex, S, and continent of birth, C. Then there 
are individuals in every subclass formed by the joint factor, SC. In contrast, let the two 
factors be county of residence and state of residence which we denote by C and S 
respectively. For exposition we assume that the states and counties of the USA have 
different names, which is not “quite true.” Then there is only one county called Story 
County and one state called Iowa, and Story County is in the State of Iowa. It is 
obvious then that all individuals in Story County, having the same level of the factor 
county, have the same level of state, namely IoRa. In this case we say that the factor C 
is nested by the factor S ,  or, equivalently, that the factor S nests the factor C.  Clearly, 
in this situation, we cannot have county Story in the state of Virginia so the combination 
(Story, Virginia) is not a possible combination. 

It is clear that in this case, the joint factor CS gives the same partition as the factor 
C.  The same type of relationship can be considered with joint factors, say AB and CD. 
So we can say, for example, that the joint factor AB nests the factor C,  or that the joint 
factor AB nests the joint factor CD. And so on. 

If two factors A and B or two joint factors, say, AB and CD are such that one does 
not nest the other, they are said to be crossed. 

There is a third type of relationship between two factors. Suppose we have t EUs 
and t treatments, and that we assign each of the treatments to one unit. Then it is 
clear that the factors, units and treatments, are not crossed and that one is not nested 
by the other. We say that units and treatments are completely confounded. We say this 
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because whatever difference we observe between the units receiving, say, treatment 1 
and treatment 2 can be explained by the difference caused by the difference between the 
treatments, or by the difference between the units on which treatment 1 and treatment 
2 fell. 

4.12.3 The Notion of Balance 

We now turn to the matter of balance. We have a data set consisting of a set of indi- 
viduals which may be humans, mice, pieces of engineering equipment, for example, 
which can be classified by a factor A. If the number of individuals at each level of A is 
the same for all levels, we say that the data set is balanced with respect to factor A. If 
we have two factors A and B, we say that the data set is balanced with respect to (joint) 
factor AB if the number of individuals at each level of AB is the same for all possible 
levels of A and B. 

With data in a classificatory factorial structure, it is natural to index individuals by 
the levels of the several factors which the individual possesses. So with only one factor, 
A, we may index individuals by i(j), or simply by ij without causing any confusion, 
in which i denotes the level of the factor A of the individual and j indexes individuals 
within the subclass of individuals having level i of A. We may note that i(j) indexes 
subclasses which each consists of one individual. 

4.12.4 Balanced One-way Classification 

We have just one factor of classification, A, and we index the levels of this factor 
by i = 1.2:  . . . % A. Our use of the letter A for two purposes should not cause any 
confusion. To use different letters is easy but very tedious. We suppose that there are r 
individuals in each subclass, we denote the totality of observations by 

{yij: i = 1.2 : .  . . ~ A:j = 1: 2 , .  . . ~ r } .  

Now we note that we can form an average within each i class, which we denote by j j i ,  

and an overall average which we denote by Y.. . Then, obviously, we have the identity 

Y i j  = Y..  + (Yi. - Y. . )  + ( Y i j  - Yi.). 

Then we can form 

y:j = C y2 + C(gZ - g l 2  + C(yzl - YJ2 plus sums of cross products. 
Z.7 23 Z J  23 

But the sums of cross products give zero: 
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Table 4.5 ANOVA for One-way Classification 

with Equal Numbers 

Source d.f. ss 
CF 1 rAg2 
A A - 1 rCz(gyi. - g..)2 

Total rA Cij yij 

Residual A(r - 1) C L j ( y i j  - g i . J 2  

2 

We have further 
C j j z  = ~A?r/2 = CF, 

l j  

where CF is referred to as the correction factor, and 

ij i 

c(yij - ?&)* = SS (Units within A )  
ij 

thus giving the ANOVA of Table 4.5. The d.f. can be obtained as follows: 

(i) CF is the square of one linear function so CF has 1 degree of freedom. 

(ii) rCi(y i ,  - g. . )*  is the sum of squares of A linear functions fi(& - g , , ) ,  i = 
l! .  . . , A, which are connected by one linear relation Ei&(fji. - g..) = 0. So 
this sum of squares is said to have ( A  - 1) degrees of freedom. 

(iii) Finally, Cij(yij - ~ i . ) ~  is the sum of squares of Ar linear functions that are 
connected by A linear relations, Cj(yij  - yi.) = 0, i = 1,. . . , A and hence is 
said to have Ar - A = A(r - 1) degrees of freedom. 

Usually the term CF is subtracted from Total without renaming so that 

new Total = y:j - rAp2 with d.f. = rA - 1 
i j  

4.12.5 

We have a data set classified by rows (R) and columns (C) with n(>l) observations 
within each row-column cell. The observations are indexed by i = 1, .  . . R; j = 
1, .  . . , c; and k = 1, . . . , n, that is, y i j k .  We can now have the identity: 

Two-way Classification with Equal Numbers 

'y 2 jk  = g ... + (g.  2 . .  - g . . . ) + ( g . j . - g . . . )  - 

+ (g i j .  - gi..  - g. j .  + y.. .)  + ( y i j k  - '&j.)> (4.49) 
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in which 

and so on. 

of (4.49) and summing over all indices 
Then just as in the simple case in Section 4.12.4 we obtain by squaring both sides 

i j  k i j  k 

The cross product terms in the square of the sum yield zero; for example, 

i j  k 

= 7 Z(t2.. - r.1 I ( t i j ,  - ti.. - y . j .  + g...) = 0 
k i  j 

because by the “equal numbers” C,(g,,, - gZ.. - g . j .  + y , , I  = 0.  
The constituent terms on the RHS of (4.50) are in order: CF, SS(Rows), SS(Cols), 

SS(Rows x Cols), and SS(within cells). We thus have the ANOVA as given in Table 4.6. 

4.12.6 Experimental versus Observational Studies 

We shall digress here briefly from our general development of classificatory structures 
and elucidate how these structures can occur in different contexts. We shall demon- 
strate later (Chapter 9) that this has certain consequences regarding inference obtained 
from the models of such structures. To keep the discussion focused on the essential 
idea we confine ourselves here to the two-way classification and use the following ex- 
amples. 

EXAMPLE 4.3: An experiment was conducted to determine the effects of three differ- 
ent fungicides (Al ,  A’, AY)  on the yield of fruit from four different cultivars of apple 
trees (Bl, B2, BY,  Bg). In an orchard six trees from each cultivar were available for 
the experiment. Each fungicide was applied, by random assignment, to two trees from 

n each cultivar. Yields of fruit were obtained at the end of the growing season. Y 

EXAMPLE 4.4: An experiment was conducted to determine the effect of ozonization 
at three reaction times (Al ,  A’, A3) and four pH levels (B1, B2, BY,  B4) on effluent 
decline. Each combination (At ,  B,)(i =1, 2, 3; j =1, 2, 3, 4) was applied to two 
samples of effluent. 0 
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A1 

A2 

A3 

105 

X, x X, x X. x X ,  x 

X, x X, x X, x X, x 

X, x X, x X, x X, x 

Table 4.6 ANOVA for Two-way Classification with 
Equal Numbers 

Source d.f. ss 
CF 1 RCny2 
Rows R - 1  CG(Y,  - t l 2  
Columns c-1 RnC,(k, - t  l 2  

Within Cells RC(n. - 1) C Z J k ( Y 2 J k  - kL, l 2  
Rows x Columns (R - 1)(C - 1) nC,,(& - y, - p ,  + ) 2  

Total RCn c 2, k Y?] k 

EXAMPLE 4.5: A study was conducted to investigate possible differences in milk 
butter fat for cows in three age groups (Al,  A2, As) from four breeds (BI, B2, BY, 
B4). For each combination (A,, B,)(i =1 ,2 ,3 ;  j =1 ,2 ,3 ,4 )  two cows were randomly 

0 selected and their butterfat percentages determined. 

The common feature of these three examples is that the observations y,,k ( i  = 1, 2, 
3,; j = 1, 2, 3 ,4;  k = 1, 2) are typically displayed in a two-way table as given below: 

I B1 B2 B3 B4 

where a, represents the effect of A,(i = 1,2 ,  3), b, represents the effect of B3(j = 1,2 ,  
3,4), and (ah),, represents the interaction between A, and B, (expressing, for example, 
differences among the effects of factor A depending on the levels of factor B). 
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The reader will have noticed that although there appears to be only one linear 
model, the situations leading to this model are quite different. More specifically, Ex- 
ample 4.3 represents a generalized randomized block design (Section 9.7), where the 
fungicides represent the levels of the treatment factor, and the cultivars represent the 
levels of the blocking (or intrinsic) factor. Example 4.4 describes a completely ran- 
domized design (Chapter 6) with a factorial treatment structure (Section 11.2), where 
reaction time and pH level represent the treatment factors. Thus Examples 4.3 and 4.4 
describe intervention or experimental studies. On the other hand, Example 4.5 repre- 
sents an observational study, and only data from such a study should be referred to, 
strictly speaking, as a ”two-way classification”. 

One may ask why we draw this distinction. The reason will become clear when 
we discuss the individual experimental designs and how statistical inferences can be 
drawn from such experiments (for Example 4.5 we do this in Section 4.17). We shall 
show that the distinction arises because of different properties for the error term e,?k, in 
model (4.5 1) as a consequence of the randomization of the treatments to experimental 
units. For Example 4.3 this will lead to an asymmetry for the treatment effects, a,, 
and the block effects, b,, a crucial distinction arising only in experimental but not 
in observational studies. This is another reason why we discourage the use of the cell 
means model like (4.52) for experimental studies since such a model implies symmetry 
of the various factors. 

4.12.7 General Classificatory Structure 

To develop a complete picture of the nesting and hence of the crossing relationship, the 
following is useful. Let the units or a set of individuals be indexed by a variable u. Let 
A be a factor. Then individual u lies in some level of A. Denote that level by ZA(U) .  

Take a subset S consisting of k factors. Then the joint level of u with respect to S will 
be a k-vector, S(u) .  Individuals u and u’ will be at the same level of S if S( u )  = S(u’). 
Let T be another subset of m factors. Then the level of u with respect to T will be an 
m-vector, T(u) .  If whenever S ( u )  = S(u’),  it is the case that T(u)  = T(u’) ,  we say 
that factor subset S is nested by factor subset T or equivalently that T nests S .  It is 
useful also to define what will be meant by the product of two sets of factors S and 
T. We define ST to be the set of factors that contains the factors in S andlor in T. 
So that if S = ADE and T = ABF.  ST = ABDEF. Let S and T be two sets of 
factors with associated partitions. Then S and T have the same associated partitions if 
S(u)  = S(u’) implies T(u)  = T(u’) and T ( u )  = T(u’) implies S ( u )  = S(u’). 

Suppose there are factors A, B and C. Then the totality of formal possible product 
factors are A, B ,  AB, C, AC, BC, and ABC. These will be different generalized factors 
only if there are no nestings. Suppose B is nested by A. Then B gives the same 
partition as does AB, and BC gives the same partitioning as ABC. The totality of distinct 
partitionings or factors is then 

A. AB. C, AC. and ABC. 

It is useful to name a partition by that name with the most letters. 
This leads to a useful indexing of levels of factors. If A nests B and if we index 

the levels of A by i, then we index the levels of B by ij. Then we index units in AB 
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subclasses by i j ,  the first index giving the level of A and the second index j indexing 
levels of B within A levels. And similarly for generalized factors. 

These ideas lead to the concept of admissible means. A mean is admissible if it 
is a mean of a subclass resulting from a particular partition. If, for instance, A nests 
B and B nests C with observations indexed by a = level of A, ij = level of B and 
i j k  = level of C ,  then the admissible means are t,,,, yi, , ,  yij. and yijk. If we have two 
factors A and B that are crossed, with factor C nested by AB combinations, and levels 
indexed by i ,  j ,  k ,  respectively, the admissible means are y ..,, ti.., vj,, gij. and yilk. 

We can transfer the idea of nesting of factors to the idea of nesting of subscripts. 
So, for example, if A nests B and B nests C and we index by ijk, we say that i nests j ,  
and j nests k .  

A useful idea given by Zyskind (1962) is that of the rightmost bracket of a set 
or a subset of subscripts. Suppose the full set of subscripts is i l ,  i 2 ,  . . . ! i " .  Then 
an admissible mean is defined as one in which whenever a nested index occurs, then 
all the subscripts that nest it must also appear. Let j 1  % j2. . . . , j' be a subset of the 
subscripts. Then the group of subscripts (in that subset) that nest no other subscripts is 
said to be the rightmost bracket of the subset. It is convenient to enclose the rightmost 
bracket of a subset of subscripts in parentheses. If, for example, we have a structure in 
which A nests B and C is crossed with A and B, with subscripts i, j, k ,  respectively, 
the admissible means are denoted by g. .. . t i . .  . . j j . k .  & .k ,  and yi ( jk) .  Alternatively, 
we say that a subscript belongs to the rightmost bracket of a group of subscripts if no 
subscript of the group is nested in it. 

We can now give the ANOVA of a balanced data structure, which is one such that 
when cross labeling is used for every factor, whether crossed or nested, the range of any 
subscript is the same for all possible combinations of values of all the other subscripts. 
Then with ij(uv), for example, we define the component associated with this group of 
subscripts to be 

Yij(,v) - yZj(u.)  - V Z j ( . T )  + t z j . .  

The sum of such components with fixed i j ,  and summing over u and/or 2' is zero because 
of the balance in the balanced data structure, The idea is that a component starts with 
an admissible mean and contains admissible means given by averaging over subscripts 
in the rightmost bracket with sign equal to -1 if averaging is over an odd number of 
subscripts and +l if averaging is over an even number of subscripts. 

For a balanced data structure, we can write an identity such as (see Section 4.12.4) 

and clearly C,(yz - p ) = 0, C,(Y~(~)  - yz ) = 0 for each 2 .  Also we have a sort of 
orthogonality in that we see that C,, ( j j z  - j j  )(yz(3) - jj, ) is zero by summing first 
on 3 .  

Hence 
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This expresses the total sum of squares of the data in the data structure as 

Total sum of squares = correction factor 

+ sum of squares between classes 

+ sum of squares within classes. 

We have a further property exemplified by the following: 

Identities for balanced data structures contain components associated with each admis- 
sible mean, each component being given by averaging over subscripts in the rightmost 
bracket with the sign chosen as explained above. Each component gives rise to a sum 
of squares by squaring the component and summing over all subscripts for a single 
observation. The totality of those sums of squares then constitutes the ANOVA. As an 
example, consider the structure in which A nests B and C is crossed with A and B. 
Following Zyskind (1962) we express this data structure symbolically as ( A  : B)(C) ,  
where : denotes the nesting relationship and (.) (.) indicates that factors in different 
parentheses are crossed. Six admissible means, the associated components and sums 
of squares are given in Table 4.7. 

Table 4.7 Admissible Means, Components, and Sums of 
Squares for Model (A : B)(C) 

Means Components Sums of Squares 

We note that the sum of the components is equal to the individual observation. 
Hence 

& ( J k )  = sum of components 

represents an identity which gives rise to an appropriate linear model for the given data 
structure. As a consequence of this representation and the assumed balancedness of the 
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data structure we also have that 

C 1 ~ $ , ~ )  = sum of sums of squares 
I J  k 

as exhibited in Table 4.7. 
To help understand data structures such as the one discussed above and others it 

is useful to use a diagrammatic representation as developed by Throckmorton (1961) 
(see also Kempthorne et al., 1961). To illustrate this we show the following examples 
in Figure 4.1 : 

(i) A (one-way classification). 

(ii) A : B (two-fold nested classification, that is, B nested in A), 

(iii) (A) (B) (two-way crossed classification), 

(iv) [(A)(B)]:  C ( A  and B crossed, C nested within AB), 

(v) (A : B ) ( C )  ( B  nested in A and C crossed with A and B).  

In these structure diagrams 1-1 indicates the overall population to be partitioned accord- 
ing to the structure and E indicates the fully indexed individual observation. 

4.12.8 The Well-Formulated Model 

In order to fully understand the concepts of crossed and nested factors (see Section 4.12.6) 
and to understand the impact of these notions on the formulation of appropriate linear 
models it is useful and important to present the idea of a well-formulated model. To do 
this in complete generality would be rather cumbersome, so we shall illustrate this idea 
in terms of examples. 

Suppose we have factors A, B, C ,  D ,  E where factors A, B ,  C are crossed. D 
is nested in ABC combinations, and E is nested in BC combinations. The structure 
diagram is given in Figure 4.2. Then the list of generalized factors is 

A. B .  AB.  C. AC. BC. ABC. ABCD. BCE. ABCE. ABCDE 

We index combinations by i, j ,  k ,  I ,  m, for levels of A, B, C ,  D ,  E and n for the 
individual in ABCDE subclasses. The admissible means are then 
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A A A B 

E E B 
Q 

Figure 4.1 Structure diagrams. 

For each mean we also give the rightmost bracket (note that some means contain 
two brackets; this is simply done for convenience to retain the order of the subscripts; 
in this case the combined brackets constitute the rightmost bracket). 

This leads to a scalar model of the following form: 

Model (4.53) may be called a full model, with a term for every subset of every 
partition. We have to consider models that arise by elimination of factors and combi- 
nations of factors. It may be that we should not include a term such as ( u c ) , ~ .  A simple 
idea is merely to remove the terms ( u c ) , ~ .  But if we remove the term ( U C ) ~ ~ ,  we are 
removing the partition AC. We then note that doing this leaves in the model the term 
(abc),,k which comes from the partition ABC. However, the partition ABC is nested by 
the partition AC, so if the partition AC is to be not included, then so must the partition 
ABC. We make the definition: 

A model is well-formulated if whenever a term corresponding to a partition ;TT is 
included, the terms associated with partitions that nest T are included. 

So for instance, with crossed factors A and B, the model 
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E 

Figure 4.2 Structure diagram for model (4.53). 

is not well-formulated. If, however, factor B is nested by factor A,  this model is well- 
formulated. 

We insert that discussion of the type above should make it clear why we think that 
using the means model (see Section 4.11.2) is not appropriate here and in general for 
more complex structures. The numbers of possible models can be substantial and our 
arguments spell out clearly how the various models can be derived. Moreover, in Chap- 
ters 9, 10, and 13, we shall show that in the context of intervention studies the factors 
for a given data structure are not always symmetric with respect to statistical inference. 
To be more specific, we show, for example, that even though the observations from a 
randomized complete block design (see Chapter 9) have the structure as given in Fig- 
ure 4.1 (iii) the factors A (treatments) and B (blocks) have to be treated differently due 
to the randomization procedure (see also Section 4.12.6). 

The normal equations for any well-formulated model and balanced data structure 
can be written down easily because they take the form 

Model value of RHS = Admissible sum 

for all admissible sums, corresponding to admissible means listed above, for example 
for model (4.53). To obtain an analysis of variance, we have to fit the successive models 
obtained by keeping terms providing that if a term is kept, the terms that nest that term 
must be kept, also. 

Models obtained in this way are not of full rank or, in other words, are over- 
parametrized. They can be made of full rank by adjoining appropriate conditions on 
parameters. The obvious choice of conditions is obtained by retaining rightmost brack- 
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ets. In the above somewhat complicated data structure (4.53), they are as follows: 

i 3 k 

a 2 k 

C ( b C ) j k  = 0. C(bC)$ = 0: 
3 k 

1 m 

7 m 1 m 

Note that, as indicated above, the conditions on any parameter involve single summa- 
tions over all indices in the rightmost bracket for that term (as given for the correspond- 
ing admissible mean). Therefore, it is easy to write out these conditions. We shall not 
pursue this example because to do so would involve a mass of equations which can be 
solved in reasonable form only if the whole data structure is factor balanced and data 
balanced. 

4.13 UNBALANCED DATA STRUCTURES 

We have seen in Section 4.12 that for balanced data structures we can easily derive 
a well-formulated model, obtain the normal equations and the ANOVA table. Much 
of the ease of doing this is a consequence of balancedness, in particular solving the 
NE and then writing out the ANOVA table. In practical situations, in particular for 
observational studies and to a lesser degree for intervention studies, we do encounter, 
however, unbalanced data structures. Such structures can lead to certain problems and, 
in fact, to different approaches for solving the NE and obtaining the ANOVA table. We 
shall not give a general discussion here, but rather consider some simple structures to 
illustrate the basic ideas. 

4.13.1 Two-Fold Nested Classification 

For the two-fold structure, a well-formulated model with natural indexing is 

y z j k  A f a2 f (ab)t,. (4.54) 
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Suppose i = 1.. . . .A:  j = 1:. . . Bi. k = 1 

n . . ~  + C ni.ai + C nij(ab) i j  = Y 

n,j . Then the normal equations are 

i ij 

n j , p  + n,i,az + C n j j ( u b ) j j  = yi , . ;  i = 1. 

i = 1, .  . . ~ A. 
j 

n i j p  + nijai + n i j (ub ) i j  = yjj,; j = 1:. . . . Bj  

where in an obvious notation nj ,  = C . n - ,  3 23 n " = Ci jn i j ,  yij. = C k Y z j k ,  yi.. = c .  . .  3 k Y z 3 k ,  Y... = C i j k  Y i j k .  These are easy to solve in that we may put p = 0, ai = 
, A), and a solution is 

p* = 0. a; = 0. (all),*, = gzj,;  

with sum of squares removed equal to &jfj i j ,yi j,. Then we have to fit the model in 
which the (ab)ij terms are deleted and a solution is px*  = 0: a;* = yi../nj.,  with sum 
of squares removed equal to Ciaf*yi..  = Cjy:,,/ni.. Finally we have to fit the model: 
Y i j k  = p, with NE solution equal to p*** = y , , , / n , ,  and sum of squares removed equal 
to y2, /n . , ,  the usual correction factor. The ANOVA is then 

Source d.f. ss 

4.13.2 Two-way Cross-Classification 

We now turn to the two-way data structure. We have two factors A and B such that 
neither nests the other. A well-formulated model is 

the ranges of the subscripts with such a structure being z = 1. . . . . A, J = 1. . . . . B .  k = 

0.1.2.  . . . . nt3. We specify that there are nzJ data points in cell ( i j ) ,  where nz3 can be 
0. This data structure is very important in the design and analysis of experiments area. 
A very important design is the incomplete block design in which A is the block factor 
and B is the treatment factor, and only some treatment levels occur with any particular 
block level (see Chapter 9). A commonly used model, but not necessarily an appropri- 
ate one, is that in which there is no interaction of blocks and treatments, so the terms 
( ~ b ) , ~  are zero and the efSect of a change from level z of A to level z' of A does not 
vary with the level J of B at which this change takes place. The absence of interaction 
of this type is critically important in analysis of experiments. 
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It is important for the reader to understand the difference between models (4.54) 
and (4.55) as they are associated with different data structures. For example, both 
models contain the term (ab) i j ,  but they have different meanings. In (4.54) (ab)ij  
denotes the effect of the j th  level of factor B nested in the ith level of factor A, whereas 
in (4.55) (ab),j  denotes the interaction between the ith level of factor A and the j t h  
level of factor B. 

The first important feature of the two-way classification is the matter of identifi- 
ability. It is useful here to invoke the cell means model, that is, to define pij to be 
the model value for y i j k .  The question then arises with a data structure that has some 
arbitrary set of cell occupancies, (nij) ,  what aspects of the model values are identi- 
fied. As in all cases of linear models, the question is that of linear identifiability. We 
may ask then if any particular linear function of p, { a i } ,  { b j } ;  { ( a b ) i j }  is identified. 
The answer to this question is easily seen by representing a linear function of { p i j }  
as Ci jc i jp i j  where necessarily summation is over cells (ij) which contain at least one 
observation. Consider then a linear function of the parameters in model (4.55): 

Here the summations extend over all i, all j ,  and all i j ,  respectively. This linear function 
of the parameters is identifiable if there exists a set { c i j  ij occupied} such that 

where C* denotes summation over occupied cells, and the equation holds identically 
when p,, is replaced by p + a, + b, + (ab),,. Comparing the left-hand side and right- 
hand side of (4.56) we must have 

Cxc , ,  = f, ( j  = 1.. . . . B), c,, = h,, for all cells. 
2 

Further, from these conditions it follows that we must have 

i 3 i 

Now, in order for p to be identifiable it follows from (4.56) that we must have do = 1, 
all d, = 0, all f, = 0, and all h,, = 0. But because Ed, = do, with do = 1, these 
conditions cannot be satisfied. Hence p is not identifiable. Also, no linear function 
of {a , }  is identifiable, no linear function of {b,} is identifiable, and a linear function 
C,, h,, ( ~ b ) , ~  is identifiable if and only if h,, is zero for unoccupied cells and C; h,, = 

0. CTh,, = 0, and Ct, h,, = 0. In fact, the only identifiable functions are Ct,c,,p,, = 

C,* ,C ,Jp+az+b ,  + (ab),J),forany{c,,}. 
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For model (4.55) the admissible means are g .. . t,.. . 1J.3 . GaJ.. According to the rule 
given earlier, the NE for this model can be written out easily as follows: 

n p + n, a, + 1 n ,b3 + c nZ3 (ab), ,  = y 

2 2 

nzjp + nzjat + nzjbj  + n,j(ab)23 = yZJ  ( i  = 1.. . . , A : j  = 1.. . . . B) 

Just as for model (4.54) it is easy to solve the NE by putting p = 0. a, = 0 (z = 

1.. . . , A ) .  b, = 0 (3 = 1.. . . . B). A solution then is 

To obtain the ANOVA table we need to fit successively smaller, that is, reduced models. 
In the context of Section 4.10 model (4.55) is a four-part model. Ordinarily a four-part 
model would have associated with it 4! = 24 ordered four-part models and hence 24 
associated ANOVAs. This, however, is not the case for the type of classificatory model 
we are considering here. This is a consequence of the fact that not all such models are 
well-formulated models. For example, the model 

y i j k  I-1 + '& + (ab) i j  

is not a well-formulated model for this case or, for that matter, the ordered four-part 
model 

y i j k  p + ai + (ab ) i j  + bj 

is not a well-formulated model. In fact, the only two well-formulated models are 

yiJlc 1.1 + ai + bj + ( 0 b ) i j  

and 

~ i j k  + bj + ai + ( a b ) i j .  

The issues of a well-formulated and overparametrized model point to some diffi- 
culties with the derivation of the ANOVA table, or better tables, for the model (4.55) 
with nij 3 0 and nij = 0 for some (2, j ) .  This would require a huge amount of writing. 
We shall point out, however, that it is in this context that the means model mentioned 
in Section 4.1 1.13 is useful. Indeed, it is for situations like this that the means model 
has received more attention. It allows us to spell out sets of identifiable or estimable 
functions of the pij which may be of interest in explaining data. Since /&j = piJ. and 
var(iiij) = a2/nij for nij > 0, it is easy to test hypotheses about CZjcijpz,. We 
emphasize, however, that it is the fact we are dealing here or in other more complex 
situations of this sort with the full model, that is, the model that includes all interactions 
and hence does not require any side conditions, that leads to this ease. Furthermore, we 
need to distinguish carefully between comparisons (of cell means) for experimental or 
observation studies (see Section 4.12.6). 
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4.13.3 Two-way Classification without Interaction 

A special case of model (4.55) occurs when there is no interaction. For such a no- 
interaction model we can write 

Y z j k  Pa3 = I* + az + b j .  (4.57) 

Just as with model (4.55) a linear function of the parameters in (4.57) is identifiable if 
there exists a set { ca3. ZJ occupied} such that 

c *ctgpzg = dop + &al + c f J b 3 .  (4.58) 
13 2 3 

From (4.58) we infer immediately that 

and furthermore 

a .i 

It is then obvious that, just as for model (4.53, p in model (4.57) is not identifiable. It 
is, however, possible now to choose the c13 such that C;,,C,~ = 0, not all d, = 0 but, 
of course, Cad, = 0, and all f J  = 0. Thus linear combinations of the a,. C,d,a,, are 
identifiable for different choices of the d,. These choices depend on the structures of 
the occupied cells. We shall illustrate this with some examples. 

EXAMPLE 4.6: 
cells, that is, identifiable p13 ,  are marked by x: 

We consider the following 4 x 4 two-way structure where occupied 

X X 

Then, with c21 = 1, ~ 3 1  = -1, all other czg = 0, a2 - a3 is identified. It is then easy to 
see, by simply looking at each column in this fashion, that a1 - a3, a1 - a4, a3 - a?, 
a1 - a2,  and a2 - a4 are also identified. Obviously, any a, -a,/ ( z  # i’: 2 ,  i’ = 1 .2 .3 .4 )  
is identifiable. We say that this data set is row-connected. Looking at the rows in the 
same way we see that bl - b2. bl - b y ,  and bl - bq, are identified, and hence all 
bg - b31 (1 # 1 ’ ; ~ .  j’ = 1.2.3.4) are identifiable, a property we refer to as column- 
connected. This exemplifies a rather obvious result: if a two-way data set is row- 
connected, it is column-connected and vice versa. 0 

EXAMPLE 4.7: The simplest example of a connected array is in the diagram: 
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The point is, simply, that in general, with y = XP, if a:@ and ahP are identified, 
then so are cla:P + cZa$ for any scalars c1 and c2. This is provable in that if a: = 

v : X ,  a: = v k X ,  then cla; + czai = (c1vi + c 2 v ; ) X .  Obviously, the result holds 
only with respect to rows and columns that are represented in the data set. 

EXAMPLE 4.8: 
that is not row-connected and equivalently not column-connected: 

It is useful to give a small, nontrivial example of a two-way data set 

B 
1 2 3 4 5  *I 

A 3 1  I I I X I X  

We see that columns 1,2,  and 3 are row-connected as are columns 4 and 5 ,  while rows 
1, 2, and 5 are column-connected as are rows 3 and 4. This data set consists of two 
disconnected subsets: rows (1, 2, 5 )  by columns (1, 2, 3), and rows (3, 4) by columns 
(4, 5) .  0 

The NE for model (4.57) are easy to write out following the recipe given earlier: 

n i L + ~ n , a z + ~ n J b ,  = Y  
z a 

n, p + n, a,  + n,,b3 = y, (z = 1.. . . ,A) 
a 

We recognize that for this set of 1 + A + B equations, summing equations 2 to (A + 1) 
yields equation 1 and so does summing equations (A + 2 )  to (1 + A + B). Hence 
the rank of the coefficient matrix is equal to A + B - 1. One way to solve the NE 
then is to use the method described in Section 4.4.4 [see 2(iii)]: Using the fact that 
individual at’s and b,’s are not identifiable, we set a.4 = 0 and b s  = 0 and solve 
the remaining A + B - 1 equations in p,  a,(z = 1. . . . . A - 1). b, ( j  = 1. . . . , B - 1). 
Following arguments described earlier it is then clear how to proceed further and obtain 
the ANOVA table or tables for model (4.57) (see also Section 4.7). 
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4.14 ANALYSIS OF COVARIANCE MODEL 

In previous sections we have discussed the linear model y = Xp in general terms. We 
then focused attention on classificatory models since they play a major role in modeling 
observations arising from comparative experiments. We now turn to models which 
incorporate elements from both classificatory and regression models. These models, 
too, play an important role in the design and analysis of comparative experiments (see 
Chapter 8). The analysis using such models is generally referred to as analysis of 
covariance. 

4.14.1 The Question of Explaining Data 

We place this in the context of approximative or explanatory or descriptive linear mod- 
els. We suppose that we have observations which arise from classificatory data struc- 
ture with what are called concomitant variables. We are interested in the value of 
classificatory variables and/or concomitant variables, towards explaining or describing 
the variation in the observation variable. 

We can define the questions that are of interest by first writing the linear model 

y = xp  + zy: (4.59) 

where X represents the values of classificatory variables and Z represents the concomi- 
tant variables. We then partition X into X1 and XZ, and Z into Z1 and Z2 so that the 
linear model is 

Y = XlPl+  X2P2 + ZlY, + Z2Y2. 

Because we are interested in describing or explaining the variation in y, we would 
normally include a term 35'0 so that a model with useful degree of generality is 

Here is one example (see Chapter 9): 

XI is a block incidence matrix, 

X2 is a treatment incidence matrix, 

Z 1 represents the observations on one concomitant scalar variable, 

22 represents the observations on another concomitant variable. 

We are interested, then, in the questions: 

(i) Do Z1,Z2 help explaining the data? 

(ii) Does Z1 help? 

(iii) Does 2 2  help? 

(iv) Do XI. Xz help? 
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(v) Does X1 help? 

(vi) Does X2 help? 

(vii) Do X2, Z2 help? 

plus other questions given by altering subscripts of Xs and Zs. 
To answer these questions, we have to ask what they mean. What should we mean 

by “HELP”? It is obvious that if we wish to describe or explain the variation in y, we 
can insert whatever explanatory variables that come to mind. If, for instance, we are 
trying to describe the variation in a test score over, say, 30 individuals, we might insert 
the variable SN, the social security number of each individual, and then consider a 
polynomial in SIV, ( SN)2, . . . ~ (SAr)zg .  We would describe the variation in test score 
perfectly because the residual sum of squares would be zero. 

We use least squares fitting to address these questions. As we have seen with y = 

Xlpl  + XZP2 (Section 4.7), we form a quantification of what X2 does by considering 
SS(X2IX1) and SS(IlX1X2). The former measures how much X2 helps after XI 
is used, and the latter measures the residual variation after using X1 and XZ. So we 
address the questions by computing the following: 

(ii) SS(Z113 X1X2Z2) 

(iii) SS(Z213 X1X2Z1) 

(vii) SS(XZZ213 XIZ1) 

We may note in passing that there are 14 possible interesting sums of squares with the 
formulation we are presenting, given by S(a1rest) where a is one of 

x1, x2. z1. z2> XlX2. x1 z1. x1 z2. X2Zl , x2zz. z1 z2. 

XlX2Zlr XlX2Z2. XlZlZZ. XZZlZZ 

We compare each of these sum of squares with SS(I13 X ~ X Z Z ~ Z ~ ) .  Just how we can 
compare these will be discussed in Section 4.17, in which we give an exposition of 
tests of significance. There is, in fact, simple arithmetic if the factors represented by 
X1 and X2 are orthogonal partitions. In that case we have a simple ANOVA that we 
shall describe now. 
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4.14.2 Obtaining the ANOVA Table 

The general situation is given by the model (4.59): 

y A x p  + z y .  

We suppose that fitting Xp and the ANOVA associated with Xp can be specified 
easily. We then know that the NE for (4.59) are 

X’Xb + X’Zg = X’y 

Z’Xb + Z’Zg = Z’y? 

with solution given by 

Xb = PX(Y - Zg) 

Z’[I - Px]Zg = Z”I - Pxly. (4.60) 

For purposes of identifiability we must have that Z’[I - Px]Z is of full rank. The sum 
of squares of y resulting from fitting y = Xp + Zy is equal to 

y/Pxy + g’Z”1- Pxly. (4.61) 

Suppose now that in (4.59) we have X = (X1;Xz) and, conformably, p’ = (pi? p;). 
And we wish to compare the models 

y = x p  + zy 

and 

y = X l P l f  zy. (4.62) 

To return to our introductory comments, we wish to assess how much XZ helps explain- 
ing the variability of y. In typical applications Xz represents a treatment incidence ma- 
trix and pz represents the vector of treatment effects, T (see Chapters 8 and 9). What 
is needed then is SS(X2 1x1. Z) which can be obtained by using the method explained 
in Section 4.7. To this end we need to determine the sum of squares from fitting model 
(4.62), and to determine the sum of squares we have the ANOVA of y, a sum of squares 
y’Pxly, and the RNE for y: 

z”1 - Px,]zg = Z”I - Px,]y (4.63) 

The result then is 

y’Px,y + g’Z”1- Px,jy. (4.64) 

To obtain SS(XpIX1. Z) we simply take the difference between (4.61) and (4.64). 
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4.14.3 The Case of One Covariate 

In order to illustrate the simple general structure of the arithmetic or algebra of the 
analysis of covariance we consider first the usual structure where Z is an n x 1 vector 
z and y is a scalar, *, . Using the solutions to the RNE for y, that is, (4.60) and (4.63), 
given by 

z"I - PXIY 
= z"I - Px]z  

and 
- z"I - PX,]Y 
= z/[I - PX,]Z? 

respectively, we obtain 

By inspection we see that (4.65) contains different types of sums of squares and sums 
of products in y and z. These can be represented as in Table 4.8(a). For brevity, the 
SS and SP of Table 4.8(a) are renamed in Table 4.8(b). The SS and SP for the model 
y = Xlpl  + z-, are obtained by simply amalgamating the X2/X1 and I/X1X2 lines 
in Table 4.8(b) as given in Table 4.8(c). Then (4.65) can be written as 

To form an opinion on whether X2P2 is useful after including X l p l  + zn/ we have to 
compare (4.66) with 

EiZ E --, 
Ez, YY 

which is the remainder sum of squares for the model y = X p  + zy. We shall discuss 
how this comparison may be made in Section 4.17 and give more details on this whole 
procedure in connection with specific experimental designs (see Chapters 8 and 9). 

4.14.4 The Case of Several Covariates 

To conclude this section we comment briefly on the case of more than one covariate, say 
m covariates. For this purpose we write Z = (z1. z2. . . . . zm),  y' = (-,I. 7 2 , .  . . . 
and g/ = (g1.gz. . . . , g m )  in (4.59). Then the RNE for y as given in (4.60) consists of 
m scalar equations 
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Table 4.8 Auxiliary ANOVAs 

(a)  Sums of Squares and Sums of Products for y X1pl + X2p2 + zy 
Source W Y )  WY,  z) SS(Z) 

X1 Y’PX,Y YIPX, z d P X l  z 

X2IX1 Y”PX - PX,lY Y”PX - PX,lZ Z / [ P X  - PX,lZ 

IIX1X2 y/[I - Px]y y/[I - Px]z z’[I - Px]z 

X1 A,, A,, A,, 
X2IX1 T,, TP T, z 

IlXlX2 E,, EP E Z Z  

x1 A,, A,, A,, 
11x1 T,, + E m  T y z  + E,, Tzz + Ezz 

(b )  Symbolic Expressions for SS(y), SP(y, z), and SS(z) 

(c)  Symbolic Expressions for SS(y), SP(y, z), and SS(z) for y = Xlpl  + zn, 

The ith equation (i = 1.2 .  . . . , m )  is given by 

C z : [ I  - Px]z,g, = z:[I - PXIY. 
3 

We note that all the arithmetic that is involved here can be represented by the ANOVA 
of y.  z1. z2. . . . . z, and partition of the sum of products of y and each z,. Furthermore, 
the partition of the sum of products of y and a particular z, say z3, is given by the 
ANOVA of y + z, with for any source in the ANOVA 

where SP(y, z3)  is defined by, or given by, this equation. For m = 2 ,  this is illustrated 
in Section 8.7. 

4.15 FROM DATA ANALYSIS TO 
STATISTICAL INFERENCE 

So far we have described some procedures for analyzing data, that is, looking at data. 
In that presentation, we start with the data and we adjoin no assumptions. A standard 
problem is that we wish to make inferences. In the area of the present book, our aim is 
to establish laws of uncertainty with regard to treatment effects. We shall discuss this 
in the chapter on randomization (see Chapter 5) .  This outlook and procedure stands 
outside the standard ideas of mathematical statistics. It is based, however, on ideas 
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coming out of general mathematical statistics. It is necessary therefore, to describe the 
general approach of that area. 

The approach uses the assumption exemplified in the standardly exposited case, 
that our data 21, 2 2 ,  . . ., 2 ,  is a realization of n random variables X I .  X z . .  . . , X, 
that are distributed independently according to N ( p ,  0’) (or whatever). One must ask 
where this assumption comes from. It permeates statistical theory and practice. It is the 
basis of all theory whether frequentist or Bayesian. The frequentist approach in general 
says the data set D ,  say, is a realization of some random entity that has a distribution 
Fo which depends on a parameter, scalar or vector, 0. The Bayesian approach adjoins 
the assumption that 0 is a realization of some random entity that has a distribution, say 
Go, which is fixed or depends on a parameter scalar or vector, y. And so on, leading 
to what is called hierarchical Bayes process. 

What are the problems? The obvious one is the assumption that observations are 
a realization of independent random variables. This is the initial assumption and it is 
surely of very doubtful status. To exemplify this we consider as a simple example the 
agronomic field experiment. 

Suppose one wishes to compare the yields of two varieties of, say, corn. One finds, 
by some process that can be described, a piece of agricultural land. One partitions this 
land into plots. We need not mention blocking because that idea is irrelevant to the 
point under discussion. We put variety one on some plots and variety two on other 
plots. We get observations { 0 1 ,  ) and { 0 2 3  ). It is easy, absurdly easy, to say that an 
appropriate model is 

o,, = p2 + e,, 

with { e,, ) being independent realizations of the mathematical random variable X 
which is distributed as N(0 .  .*). With this assumption one can apply the statistical 
tests, etc., the so-called inference procedures of a first course in statistics. But what is 
the justification for this assumption? The field plots are not a random sample of any 
population. 

It may be intuitively reasonable to take the view that the field plots chosen are the 
outcome of some stochastic process. In recent years, ideas of spatial statistics and 
spatial random-processes are being put forward for this experimental situation. The 
problem that immediately arises is that there is a huge number (indeed, an uncountable 
infinity) of such processes, each being described by a sentence. To use these ideas one 
has to make a choice of what assumptions to make. 

The approach followed by essentially every writer is to make use of the simple 
normal stochastic linear model. 

4.16 SIMPLE NORMAL STOCHASTIC 
LINEAR MODEL 

4.16.1 The Notion of Estimability 

We now turn to the basic case of a stochastic linear model: y = Xp + e,  in which Xp 
is a fixed unknown vector in C(X), e and hence y are random vectors in Rn. Rather 
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naturally we assume that the expectation of e,  E ( e ) ,  is null, because with E ( e )  = p, a 
nonnull vector, we would have 

y = p + X p  + [e - E ( e ) ]  

or 

with E ( 6 )  = 0 and then E(y)  = p + Xp is an unknown vector in the linear variate 
{ p  + Xp}. So we consider the stochastic model: y = X p  + e,  with E ( e )  = 0. We 
then have E(y)  = Xp. We suppose that p is some unknown fixed vector in RP which 
is not restricted a priori in any way. As discussed briefly in Section 14.4, we say that 
a parametric function, X’p, is estimable if there exists a vector a, such that E(a’y) = 

X’p. Obviously, this tells us that X’p is estimable if and only if there exists an a such 
that A’ = a’X, or X E R(X), recalling that R(X) = { E .  6’ = Y’X for some Y}. This 
tells us also that X’p is estimable if and only if X’(X’)-X = A. 

The general idea of estimability is useful in many contexts. Consider, for instance, 
the 2-part model: y = Xlpl  + X2p2 + e. We may ask if a parametric function, Xip,  
is estimable. For this to happen we must have that there exists an al such that 

y = p + x p + e .  

aiX1 = X i .  aiX2 = 0. 

We can write this in various ways, of which the following is informative. Using M-P 
inverses we need 

X’,al = XI .  

a1 = (X;)’X~ + [I - (X:)X:]y. 
which implies 

for some y. So we must have 

or 

a potentially useful statement of what must hold for Xip,  to be estimable. 
Rather clearly, we have gone as far as we can go without additional assumptions. 

The next natural step is to assume that the random vector e possesses a variance matrix, 
that is, E(ee’), an n x n matrix, the variance matrix of y, exists. 

x; = x;(x;)’x:. x;(x;)’X, = 0. 

4.16.2 Gauss-Markov Linear Model 

The natural initial assumption to consider is E(ee’) = 0’1. We give the following 
definition: 

Definition 4.1. The Gauss-Markov Linear Model (GMLM) is 

2 y = X p  + e.  E ( e )  = 0. 

where X is the known and fixed model matrix and p is an unknown p x 1 vector 
0 

E(ee’) = o I, 

parameter that may take any value in R P .  
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The following basic theorem is one of the most important results in linear model 
theory. 

Theorem 4.1 (The Gauss-Markov Theor=). With the GMLM, the best (minimum vari- 
ance) linear unbiased estimator (BLUE) X’p of an estimable X’p is given by X’b where 
b is any solution of the NE: X’Xb = X’y. 

Proof. We know A’ = a’X.X’P = a‘XP.Xb = Pxy ,  X‘b = a’Pxy. Consider 
the linear estimator (a’Px + 6’)y for arbitrary 6. For unbiasedness we must have 
(a’Px + 6’)Xp = X’p = a’Xp. With p free this tells us that 6’X = 0 or 6’Xb = 0 
or 6’Px = 0. Hence 

var[(a’Px + S’)y] = a2(a’Px + 6’)(Pxa + 6) 

= a2(a’Pxa + 2 6 ’ ~ x a  + 6’6) 

= a2(a’Pxa + 6’6). 

This is minimized with respect to 6, obviously, by taking 6 = 0. So the result is 
proved. 

The result of Theorem 4.1 implies, of course, that 

E X’p = E(X’b) = X’p. 

For later purposes it is useful to obtain also an expression for var X’p . Using results 

from Sections 4.4.2 and 4.4.4 we find 

(-1 
(-1 

var (6) = var(X’b) 

= var(a’Xb) 

= var [a%( X’X) -X’y] 

= a’x (X’X) - X’X(X’X) -1X’aa2 

= a’PxP(xa2 

= u’Pxaa2 

= a’X(X’X)-Xfaa2 

= X’(X’X)-Xa2 

In words: the g-inverse (X’X)- acts as the variance-covariance matrix (apart from g 2 )  

for estimable functions, independent of which g-inverse is used. 

We next give a very important generalization of the Gauss-Markov Theorem. 

Theorem 4.2 (The Aitken Theorem). Suppose y = X p  + e.  E ( e )  = 0. E(ee’) = 

Va2 with V invertible, then the BLUE X’p of an estimable X’p is X’b where b satis- 
fies the Aitkeiz equatioiz 

X’V-lXb = X‘V-ly. (4.67) 
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Proof. Since V is a real symmetric matrix, there exists an orthogonal matrix 0 such that 

Then because V is an invertible variance matrix, the elements d,(i = 1, . . . . n)  are 
positive and hence have square roots, so we can form D1/’ where we take the positive 
root always. Then 

V = ODO’ = OD1/20’OD1/20’ = V1/2V1/2 where (V1l2)’ = V1l2. 

Consider then 
v-1/2y = v-lI2xp + v-We.  

which is a linear model, and can be written (using obvious notation) as 

y* = X*p + e* 

with 

Hence the derived model is a GMLM. In this case X’p is estimable if and only if there 
exists an a* such that a*’X” = A’ or (a*’V-1/2)X = A’ which is equivalent to 
a‘X = A’ with a‘ = a*’V-1/2. We then apply the Gauss-Markov Theorem and we 
know that the BLUE of an estimable function X’p is X’b, where 

E ( e * )  = 0.  E(e*e*l)  = ~ - 1 / 2 ~ ~ - 1 / 2 g 2  = 102 .  

X*’X*b = X*’y 

or 
X ’ V I X b  = X’V-’y. 

4.16.3 Ordinary Least Squares and Best Linear 
Unbiased Estimators 

An interesting question is: When is the so-called ordinary least squares (OLS) esti- 
mator for an estimable X’p, obtained from (4.4), also BLUE, as obtained from (4.67), 
which is referred to as generalized least squares (GLS) estimator. 

We can address this very easily. If Xb = P x y  satisfies the Aitken equation (4.67) 
for all y, then the following equations result: 

x’v-lpx = x1v-1 
PxV-lPx  = pxv- 1 

pxv-1= V-lPx 

VPX = PXV. 
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Hence 
VX = XQ 

for some Q for the least squares estimator to be BLUE. Contrariwise, if VX = XQ 
for some Q, then 

VX = XQ 

implies 
VXB = XQB 

or 

(where X’XB = X’) and 

VPx = XQB 

PXVPX = VPX 

VPX = PXV 

V-lPx = Pxv-I  

X’V-lPxy = x ’ p x v - l y  

so 

and by transposition 

X’V-’X(By) = X’V-ly. 

So b = By satisfies the Aitken equation and Xb = XBy = Pxy satisfies the Aitken 
equation. Estimable X’p is a’XP with OLS estimator a’Pxy which is the same as 
what the Aitken equation gives. 

The result given above is particularly important in the context of linear models 
for data from intervention studies. We shall show, starting with Chapter 6, that the 
derived linear models associated with the various error-control designs have a variance- 
covariance structure of the form Va2 with V # I, but with V such that OLS estimators 
are, indeed, BLUE. 

In discussing the Aitken Theorem we have assumed that V is nonsingular. Without 
going into any detail we shall mention briefly the case where V is singular. Obviously, 
we cannot form the Aitken equation. It can be shown, however, that the BLUE of Xp 
is given by A‘y, where 

VA + XM = 0 

X’A = X 

for some matrix M. There is a considerable literature on this [Zyskind (1967), Rao 
(1967, 1971, 1973), Kempthorne (1971, 1972, 1973a,b, 1976), Watson (1967), and 
Kempthorne and Doerfler (1969)l. 

We shall merely state, without proof, 

(i) The OLS estimator and the BLUE are identical if and only if VX = XQ, and 

(ii) the class of matrices V such that the BLUE of an estimable X’p as given by OLS 
is 

where A and B are arbitrary matrices such that V is a variance matrix. 

V = COI + PxAPx + (I - Px)B(I - Px) .  
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4.16.4 Expectation of Quadratic Forms 

We can adjoin a few very useful ideas from our present basis. With the model: y = 
XP + e, with E(e) = 0 and E(ee’) = V, we have for a fixed vector a ,  E(a’y) = 
a’Xp. Also, we can obtain higher moments of the elements of y .  The simple one is 
E (y ’Ay) ,  the expectation of a fixed quadratic form. We have 

y’Ay = (XP + e)’A(XP + e) 

and with E(e) = 0, 

E(y ’Ay)  = E(XP)’A(XP) + E(e’Ae) 

= P’X’AXP + E[trace(e’Ae)] 

= P’X’AXP + E[trace(Aee’)] 

= P’X’AXP + trace[AE(ee’)] 

= P’X’ AXP + trace[ ( AV)] 

If now V = a21, (4.68) becomes 

P‘X’AXP + o2 trace A 

(4.68) 

(4.69) 

and if A is symmetric idempotent, (4.69) equals 

P’X’AXP + o2 rank A. 

This provides useful simple results on the vector of residuals, defined to be y - 
Fit(X0).  With least squares fitting this is y - P x y .  This residual vector has variance- 
covariance matrix equal to 

E(I - Px)ee’(I - Px) = (I - Px)V(I - P x ) .  (4.70) 

If V = 021, (4.70) is 02(I - P x ) .  The residual sum of squares is 

[(I - P ~ ) Y ] ’ ( I  - P X ) ~  = [(I - Px)e]’(I - Px)e 

with expectation equal to 

E trace[(I - Px)’(ee’)] = o2 trace(1 - Px) = a2(n  -rank X). 

4.17 DISTRIBUTION THEORY WITH 
GMNLM 

A 

4.17.1 Distributional Properties of X’p 

By Gauss-Markov Normal Linear Model (GMNLM), we mean the stochastic model: 

E(e) = 0. y = XP + e .  E(ee’) = a21 



4.17. DISTRIBUTION THEORY WITH GMNLM 129 

and e N Arn(0. 021), that is e and hence y follows the multivariate (n-variable) normal 
distribution (MVN). We shall throughout use the notation y - ni,(p. E) to mean that 
y is an n x 1 random vector that has a multivariate normal distribution with mean vector 
equal to p and with variance matrix equal to E. 

The distribution theory associated with GMNLM is rather straightforward: 
h 

(i) The estimator X’P of an estimable X’P = a’Xp is a’Pxy = X’(X’X)-X’y = 
p’X’y, where p satisfies X’Xp = A, and follows N(X ’P ,  c2p’X). Also p’X = 
X’(X’X)-X. The equations X’Xp = X are called the conjugate NE. 

(ii) Suppose we have k linearly independent estimable functions X:P. i = 1 . 2 .  . . . . k .  Th 

cov(X:p. X;p) = a2p:X, = o*x:p,, 

w = (P:X,) 

8 lvk(e. a2w) 

(8 - e)’w-’(8 - e)  
c9 

where X’Xp, = A, % X’Xp, = A,. If we write 

then with 8’ = (X ip .  . . . , A’,@) and corresponding 8, we have that 

Additionally, 

Xk. 

where 
of freedom. 

is a random variable having the chi-squared distribution with k degrees 

(iii) The estimator of any estimable function is p’X’y for some p. The residual vector 
is (I - P x ) ~ .  Then any set of linear functions {p’,X’y} and any set of linear 
functions {Y; (I - P x ) ~ }  being linear functions of multivariate normal random 
variables, have a joint multivariate normal distribution which is specified entirely 
by a mean vector and a variance matrix. But 

cov(p’X’y, ~ ’ ( 1 -  Px)y)  = E[p’X’ev’(I - Px)e] 

= E[p’X’ee’(I - Px)v]  

= a2p’X’(I - Px)Y = 0 

because P x X  = X, X’ = X’Px. So any linear function p’X’y and any linear 
function ~ ‘ ( 1  - Px)y  are uncorrelated and hence independent. 

It is then natural to use the following terminology: 

The estimation space is the set of linear functions {p’X’y : p E Rp},  and 

the error space is the set of linear functions ( ~ ’ ( 1 -  Px)y  : Y E Rn}. 

Then any function defined on the estimation space is independent of any function de- 
fined on the error space, So the estimators of any set of estimable functions is indepen- 
dent of (I - P x ) y  = (I - P x ) e  and hence independent of y’(1- P x ) y  which is the 
residual sum of squares. 
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4.17.2 Distribution of Sums of Squares 

We still have to think about the distribution of the residual sum of squares and of 
any sum of squares in an ANOVA and the joint distribution of linear and quadratic 
functions. We can accomplish this task rather easily. Every sum of squares in our 
ANOVA is of the form y’Siy, where Si = Si = Sg is s i p .  with roots that are 1 
or 0. More specifically, with s = k + 1 sources, we have, using the notation for the 
projection matrices in Section 4.1 1.1, 

s1 = PI. si = P 1 2 , , , = >  (i = 2 .  . . . > k ) :  s, = 1 - P 1 2 . . ,  k 3  

with 
I = s1 + s 2  + . . .  + S, 

sisj = 0 (i # J.1. 
and 

Hence by the standard theorem that with {S , :S ,S j  = SjSi} there exists a single or- 
thogonal matrix that diagonalizes every S i ,  with s sources in the ANOVA there exists 
a single n x n orthogonal matrix 

. . .  
0 = ( 0 1 : 0 2 : .  . . :O,), 

where 0, is n x r,. T,  = rank(S,), such that 

o;s,o, =ITt.  o:s,o, = 0. i # j .  

(see e.g. Harville, 1997, Section 21.13). The ANOVA comes from 

y = s l y  + s2y + ’ . ‘ + s,y 

and then, using the fact that 00’ = I,, 

(4.71) 

(4.72) 

O’y = (0’SlO)O’Y + (O’S20)O’y + .  . . + (O’S,O)O’y. (4.73) 

Because of 4.7 1 we have 

S 

c ( O ’ S , O )  = diag[0:01. 0 ’ , 0 2 .  . . . % Ol,O,]. 

where diag[. ] is a block diagonal matrix. Together with (4.73) this implies that 0: 0, = 
I,-%. Hence with z = O’y, z, = Oiy, we have, using (4.72) and (4.73), y’S,y = 

(Oiy)’(O:y) = z/,z,. Furthermore, z1, z2.. . . . z ,  are vectors that are distributed ac- 
cording to the multivariate normal distribution. Each will have a certain mean vec- 
tor; the variance of each vector is 0’1 of appropriate dimensions and the covariance 
matrix of different vectors is null. Hence the {z,} are independent. Clearly, then, 
{y‘S,y = z:z,} are independent. Finally, we know that if a vector z is N(V. V), that 
is, is multivariate normal with mean vector v and variance matrix V, then 

,=I 
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(i) (z - v)’V-l(z - v )  is distributed as x 2  with degrees of freedom equal to the 
dimensionality of z, 

(ii) z’V-lz is distributed as the noncentral chi-squared distribution with the same 
of this number of degrees of freedom and noncentrality parameter Y ’ V - ~ Y  [or 

with an alternative definition]. 

From this, we know the distribution under GMNLM of every sum of squares. In our 
case V = 021 of appropriate dimension. Hence, under GMNLM with sums of squares, 
SS1, SS2, . . . . S S ,  it is the case that SS,/a2 is distributed with its associated degrees 
of freedom, r,, according to the noncentral x 2  distribution. Also the separate such 
variables are independent. A particular sum of squares has notable behavior, namely, 
the residual sum of squares with y = XP+e: This is equal to [(I-Px)y]’[(I-Px)y] 
but (1-Px)y = ( I -Px)(Xp+e)  = ( I - P x ) e  which haszeroexpectation. Hence 
we have, under GMNLM, 

SS (residuals) 
0 2  

Xn-r .  N 

where T = rank(X) 

4.17.3 Testing of Hypotheses 

From the discussion above, we have the following as simple consequences: 

(i) The estimator of any set of estimable functions is distributed independently of 
the residual sum of squares. 

(ii) The estimator, X’p, of an estimable function X’p is such that 

N tn-r. 
G - x‘p 
Jp 

where, as usual, p satisfies X’Xp = A. s2 is [sum of squares of residualsl(n-r)] 
and t is a random variable that follows the t-distribution with (n - r )  degrees of 
freedom. 

A 

(iii) -Xf?- N tk-T where tk-r is a random variable that follows the noncentral &I2 
t-distribution with noncentrality equal to 

(iv) With 8’ = (X ip .  X2p;. . . . ALP), a vector of rn linearly independent estimable 

where 8 = (X’lp, A’@, . . ., X’,p), and 
A /  - - 

functions, with associated estimator 

h 

x‘zp = p:x‘y, 
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where X ' X p i  = Xi  and with 

it is the case that 
e - e ~ ( o ,  vg2) 

and 

where Fm,n-r follows the F distribution with numerator degrees of freedom 
equal to m and denominator degrees of freedom equal to ( n  - r ) .  

Furthermore, 
& - l a  

ms2 
is distributed according to the noncentral F distribution with the same degrees 
of freedom and with numerator noncentrality equal to (e'V-'6)/o2, or half of 
this with an alternative definition. 

For any sum of squares SS,( i  = 1 , 2 ,  . . . , k )  in the ANOVA table and SS(residua1s) 
we have 

SSJr, N 

SS(residuals)/(n - r )  F'z'n-r' 

where FLz,n-r denotes the non-central F-distribution with rt and n - r d.f. 

The random variables defined in (ii) and (iv) can be used to test hypotheses about a 
single estimable function and about a set of m estimable functions, respectively. And, 
finally, the statistic defined in (vi) can be used to test Ho: vt'v,/02 = 0, that is, the 
noncentrality parameter for SS,  equals zero (i = 1 . 2 . .  . . . k ) .  If Ho is true, then 

- - Frt,n-r,  the central F-distribution. 

4.18 MIXED MODELS 

4.18.1 

The general linear models that we have discussed so far are referred to, following 
terminology introduced by Eisenhart (1947), as fixed effects models or, for short, $xed 
models. This means that, rewriting model (4.1) as model (4.74), the individual terms 
in O* in the model 

The Notion of Fixed, Mixed and Random Models 

y = $J + X*p* + e (4.74) 

are (unknown) constants or fixed effects. This is the type of model most often used in 
explaining observations from experimental studies, as we shall describe in the follow- 
ing chapters. 
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There are, however, situations where we may want to partition p* and, conformably, 
X* and rewrite (4.74) as 

y = p3 +XrPT + XhP; + e (4.75) 

where the elements of PT represent fixed effects and the elements of ,B; are random 
variables having certain distributional properties. Model (4.75) is then referred to as 
a mixed effects model or, for short, mixed model. As an extreme case, model (4.75) 
with p; = p* is referred to as a random effects model since all the terms, except p, 
in (4.75) are random variables. The other extreme, of course, is PT = p*,  the fixed 
effects model. 

4.18.2 Aitken-like Model 

For ease of notation we now rewrite (4.75) as 

y = p3 + X p  + Z y  + e. (4.76) 

where Z y  represents the random part of the model. Since y and e represent vectors of 
random variables with E ( y )  = E ( e )  = 0 and 

and 

var(y) = E(yy’) = V ,  

var(e) = E(ee’)  = V, 
(4.77 ) 

we can rewrite (4.76) as 

y = p3 + Xp + e* (4.78) 

with E(e*)  = 0 and, using (4.77) and, assuming that y and e are uncorrelated, 

var(e*) = ZV,Z’ + V, = V*. (4.79) 

Obviously, V* of (4.79) is a real symmetric matrix and assuming that it is invertible 
it appears that we find ourselves in the situation of Theorem 4.2 (see Section 4.16.2). 
The difficulty, however, is that V* in (4.79) depends, generally, on more than one 
unknown parameter, namely in particular the variance and covariance components of 
y in (4.76). 

Under these circumstances we cannot, obviously, obtain the equations (4.67). An 
easy way out of this dilemma is to estimate the unknown variance and covariance com- 
ponents and substitute these estimates in(4.67). In other words, we estimate V* in 
(4.79) by ?*, say, and then solve the Aitken-like equation 

X’ (?*)-l Xb = X’ (?*)-l y. (4.80) 

The solution of (4.80) depends, of course, on the type of estimation used to obtain ?*, 
for instance, ANOVA-type estimation. Thus, the solution to (4.80) is no longer BLUE. 
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4.18.3 Mixed Models in Experimental Design 

We conclude this section by giving a brief discussion of the occurrence of mixed mod- 
els in the context of intervention studies. Generally speaking, they do not occur very 
often. Referring to (2.3), we recall that the essential parts of the linear model with 
respect to this question are the treatment effects, the design effects, and possibly treat- 
ment x design interaction effects. The design effects refer mainly to blocking effects 
as related to intrinsic or nonspecific factors (see Section 2.2.4). To the extent that the 
levels of a particular blocking factor can be considered to constitute a random sample 
from a larger population of such levels, the effects of that blocking factor may con- 
stitute random effects. As the treatment effects are always fixed effects, the above 
situation may thus lead to a mixed model, but never to a random effects model. We 
should emphasize here that if blocking effects are considered to be random effects, 
then also possible treatment x blocking interaction effects are also random effects. 

In its simplest form a mixed linear model can occur to describe data from a block 
design. In the model (see (9.5)) 

the block effects, Pz, may in certain situations be considered to represent random ef- 
fects. This is of particular importance for the so-called recovery of inter-block infor- 
mation in incomplete block designs, as described in detail in Section 11.1.7. The 3, 
are considered to be i.i.d. random variables with mean 0 and variance 0:. Different 
methods for estimating V* in (4.79) are described in Sections 11.1.10 and 11.1.1 1. 

A somewhat more complicated situation arises when in a block design the block ef- 
fects are considered to be random effects and block x treatment interaction is included 
in the model (see (9.75)), that is, we have 

The problem arises with defining the distributional properties of the interaction effects, 
(13~)~k. A commonly used approach is to consider them to be i.i.d. with mean 0 
and variance ugT. A different approach based on finite population and randomization 
theory is presented in Section 9.7.5. Both approaches lead to the same result concern- 
ing inferences about the treatment effects, ' Tk ,  but lead to different results concerning 
inferences about 0:. For a general discussion of the controversy in the context of ob- 
servational studies we refer the reader to, for example, Hocking (2003), Lencina et al. 
(2005), Nelder (1994, 1995) and Voss (1999). 
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EXERCISES 

4.1 Prove that the NE X’Xb = X’y is consistent in b for all y. 

4.2 Prove that there exists a p such that X’Xp = X implies A’ = a’X and vice 
versa. 

4.3 Prove that the shortest solution of a consistent set of equations Ax = b is 2 = 
Atb. 

4.4 Verify that A- of Example 4.1 satisfies the properties of a generalized inverse. 

4.5 Verify that A+ of Example 4.2 satisfies the properties of a Moore-Penrose in- 
verse. 

4.6 Prove that the NE for 

y - x p  

c p = c  

is given by (4.20). 

4.7 Prove the basic properties (i), (ii), (iii) and (iv) of the NE (4.20). 

4.8 Refer to Section 4.6.2 and prove that X’DX is s i p .  and equals X[X(I - 
Cf C ) ]  +. 

4.9 Prove that 
X’X C’ 

rank ( .) = rank (a) + rank( C ) .  

4.10 Prove that (4.22), with appropriate conditions on C, is a solution of (4.20). 

4.11 Consider the following balanced data structure: We have four factors A, B, C, 
D ,  where A and B are crossed, C is nested in AB and D is nested in C.  

(i) Draw a structure diagram. 

(ii) Give all admissible means. 

(iii) Write out an identity for the individual observation in terms of components 

(iv) Write a model in standard notation. 

(v) Impose side conditions on the parameters to remove overparameterization. 

(vi) Write out the ANOVA table. 

obtained from the admissible means. 

4.12 For the three-way cross-classification write out all possible well-defined models. 

4.13 (i) Give a definition for connectedness in a three-way cross-classification as- 
suming that all interactions are zero. 
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(ii) Consider the three-way classification with factors A,  B, C, where each 
factor has four levels. Denote a design point by (i, j .  k) where i . j ,  k = 

1 .2 .3 .4  indicate the levels of the factors A,  B, C ,  respectively. Suppose 
we have the following design points: 

( l , l , l ) .  ( 1 . 2 % 2 ) .  (1%3.3). (1.4.4)  
(2 ,1 .4) .  (2 .2 ,  1). (2 ,3 .2 ) .  (2 ,4 ,3 )  
(3,1,3). (3 ,2 .4 ) .  (3,3.1). (3.4.2) 
(4 .1 .2) .  (4 .2 .3 ) .  (4 ,3 .4 ) .  (4,4,1) 

Show that the design is connected. 

(iii) Write out and solve the NE for the design in (ii). 

(iv) Write out the model for the design in (ii) in matrix notation and show that 
the sum of squares for any factor is independent of the order of the factors 
in the model. 

4.14 A complete set of linearly independent functions for the linear model y = Xp + 
e is a set of rx linearly independent functions X’,,B(k = 1 , 2 .  . . . . rx), where rx 
is the rank of X, such that all estimable functions can be generated from this set. 

(i) For the linear model 

yij = 1-1 + ai + bj + eiJ 

(i = 1! 2, . . . . A;  j = 1; 2 ,  . . . ~ B )  obtain a complete set of linearly inde- 
pendent estimable functions. 

(ii) Obtain a complete set of linearly independent estimable functions involving 
only the a,  (i = 1 , 2 .  . . . , A) and show that the sum of squares associated 
with this set is identical to SS(A) = b C ( t i .  -y . . )2 ,  the usual sum of squares 
for factor A. 



CHAPTER 5 

Randomization 

5.1 INTRODUCTION 

We have seen (see Chapter 4) that if we use the GMNLM 

y = XP + e e - MVN(0, a21). 

then we can go through the panorama of conventional statistical ideas, that is, estima- 
tion of parametric functions, estimation of error, statistical tests, and statistical inter- 
vals. 

Insofar as we are merely studying mathematical statistics per se, we have completed 
the basic ideas. But our interest must surely be directed, in part, at least, to the use of 
the ideas in the “improvement of natural knowledge.” 

What are the problems in applying the mathematical material? First, we have to 
envisage a population of repetitions. Ordinarily, in substantive experimental science, 
the population of repetitions over which certain statistical or stochastic properties are 
to hold is defined by the experimental protocol. This will say something like the fol- 
lowing: If you do such and such, then such and such will happen. This is, of course, 
merely an assertion. In order to make the assertion one will have done “such and such” 
a number of times, one will have obtained results, and one will demonstrate that the 
data follow the model or class of models one asserts. Whether this will hold up for a 
new trial is. of course, mere speculation, hope or faith. The status is no better than our 
faith that the sun will rise tomorrow morning. This is the classical Humean problem of 
induction. 

5.1.1 Observational versus Intervention Studies 

Suppose now that we have observational data. To be specific, suppose we have ob- 
served two groups of humans. One group has been taking large doses of vitamin C 
for five years, and the other group has been taking no vitamin C over and above what 
is obtained in an “ordinary” diet. Suppose further, that we have a measure of the fre- 
quency, duration, and intensity of the common cold for each member of each group. 

137 
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Our problem is then to set up a model for the data. What population of repetitions 
are we to assume? What are we to assume about the behavior of deviations from true 
values in this population of repetitions? The answers to these questions are not at all 
obvious. We shall surely be involved in model search, and the outcome of our study 
can have no tighter outcome than the assertions, for which we give, of course, our 
basis, that the data are “like” a realization of a stochastic model, say y = Xp + e, 
with e N MVN(0. 021), and that given this basis our estimates are such and such, our 
statistical intervals are such and such, and so on. 

The purpose of the remarks is not to denigrate observational studies. There are 
huge areas of human interest, for instance, astronomy and cosmology, in which we can 
clearly do no experimentation, though we can experiment on many of the scientific 
bases for our theories. At a more human and “down to earth” level, we cannot set up an 
experiment to determine the effects of cigarette smoking in humans. We cannot do an 
experiment to show that thalidomide produced in humans the awful effects we believe 
it to produce. We do have, in this case, very strong evidence that it does so. And, 
we can do actual experiments with other organisms, which we have strong reason to 
believe mimic essentially perfectly what happens in humans. 

We now turn from observational studies to experimental (or intervention) studies. 
We take, for discussion, a “simple” experiment in which the material to be experi- 
mented on is humans and the treatments to be compared are interventions to overcome 
the problems of heart disease. These interventions will be taken to consist of no inter- 
vention, cardizem, procardia angioplasty, and bypass surgery. The point of the experi- 
ment is that there is a subset of our human population which suffers from heart disease, 
and the problem is to obtain information on what the effects of the four named inter- 
ventions will be. We prefer the name intervention experiment rather than the vague 
general term, experiment. The point of the study is that the experimental units alter 
over time, and we wish to intervene in the dynamical process of each unit to produce a 
good outcome. 

In attempting to assess the different interventions, we shall call on all the available 
opinions, especially scientific experience that is available. However, the dynamical 
situation is so complex that we shall be forced to do an experiment, or, indeed, many 
experiments. 

Obviously, we shall need a number of experimental units. We shall set up a protocol 
for selecting candidates for experimentation. Obviously, each treatment must be a 
somewhat appropriate treatment for each candidate. 

We suppose that 20 candidates are available. We then have the problem of decid- 
ing how to allocate treatments to candidates-with the obvious requirement that each 
candidate can receive one and only one treatment. Suppose we have decided on a treat- 
ment allocation and we have imposed that allocation and conducted our experiment. 
We suppose that a treatment period has been chosen before the experiment. Then at the 
end of the experiment we have 20 doublets of, say, (i, t ) ,  where i is the name (or num- 
ber) of the unit (person) and t is the name (or number) of the treatment, and for each 
doublet the outcome, y(i, t )  say, which we take to be a scalar. Our problem is easy to 
state: What conclusions can we draw about differences of treatments? It is obvious that 
treatment effects are confounded with unit effects. The problem is obvious in the case 
of two doublets (1, 1) and (2,2) with observations y(1, 1) and y(2,2). We do not know 
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what y(1, 2) or y(2, 1) could be. So, if our data triples are (1, 1, 20) and (2, 2,  lo), we 
can conclude only that we cannot determine whether the difference between the yields 
of 10 and 20 occurs because there is no treatment effect and that unit 1 gives a response 
greater by 10 than unit 2 ,  or that treatment 2 gives a yield 10 less than treatment 1, or 
that unit-treatment combination (1, 1) gives a yield of 20 and ( 2 ,  2 )  a yield of 10. How 
is one to get around this basic indeterminacy? 

5.1.2 Historical Controls versus Repetitions 

We can, perhaps, call on our past experience and say that a difference of 10 ( = 20 - 10) 
has occurred very frequently in observations on the same treatment. Or, we can say, 
from past experience, that a difference of 10 has never occurred under the same treat- 
ment. Perhaps we can condense our historical experience into a probability distribution, 
an empirical Bayes experience, that the difference between two individuals on the same 
treatment is distributed with mean p and variance, 4, say. We would then have to say 
that we have observed a random variable, 0 say, with mean p, the unknown treatment 
difference, and standard deviation equal to 2. We can then say that (0 - p )  is an ap- 
proximate pivotal so that, according to Tchebycheff’s inequality, Prob{ 10 - pl 2 k 2 )  
is less than or equal to l / k 2  for any k 2 1. 

The procedures of the previous paragraphs are in a general category called “use of 
historical controls.” Undoubtedly, this procedure has been used very widely through- 
out the development of science, certainly in physics and chemistry. In the absence of 
appropriate controls, there is no alternative to requiring that a study contain its own 
controls. 

So we now ask if there is an experimental protocol that contains within itself a 
population of repetitions, and such that we may apply our probabilistic models to the 
resulting data and obtain conclusions, as regards statistical tests and statistical intervals 
which we may have faith in because of the experimental protocol we have followed. 

The suggestion of R. A. Fisher (1935) in this respect is the use of randomization. 
We shall follow to some extent the sequence of ideas that Fisher used. 

5.2 THE TEA TASTING LADY 

R. A. Fisher wrote his classic, The Design of Experiments, in 1935. He opened his 
exposition with the most famous experiment in statistical thinking, the lady-tasting-tea 
experiment. The lady of the Rothamsted Experiment Station staff claimed that she 
could discriminate between a cup of tea made with milk and one with tea added first. 
Fisher’s experiment design consisted of making 8 cups of tea with 4 made in one way 
and 4 in the other. The lady was told of this structure. The 8 cups are presented to 
the lady in random order and she has to partition the 8 cups into two sets of 4. The 
interpretation will be made on the basis that there are 70 [= 8!/(4!4!)] partitions. So, if 
the assignment was random, the probability of the lady obtaining the correct partition 
is 1/70, ifshe can not discriminate. Because 1/70 is a small probability, it is rational to 
conclude that if she obtains the correct partition she has given evidence in favor of her 
claim. 
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Fisher then discusses the experimental technique that must be followed if the prob- 
ability of 1/70, under the null hypothesis, can be justified. He mentions temperature of 
infusion and the nature of the cups, as two possible differences, which would invali- 
date the probability. He says these are only two possibilities from an indefinitely large 
number of such. If the 8 cups are prepared and laid out for presentation to the lady in 
positions 1 to 8, in 8! ways, indexed by z and we number the possible partitions by 1 to 
70, indexed by J ,  then there will be probability p,, with C,p,, = 1 of the lady choosing 
partition J .  If the correct partition is chosen with probability of 1/70, the probability 
of the lady choosing the correct partition is $ [ = iC,,p,, $1. This probability will 
hold regardless of the nature of the cups, the method of preparation, and the method of 
presentation of the cups to the lady. The relevant part of the whole prescription is that 
the partition used has a probability of 1/70 regardless of the conduct of the experiment. 
So, if this partition is obtained after everything else has been done, the probability un- 
der the hypothesis of no discrimination ability is 1/70. This is true even if 4 cups are 
paper or bone china, or 4 cups inadvertently receive sugar, or whatever. 

The tea tasting experiment discussed above has a special structure in that the out- 
come of the experiment comes about because the taster has to make a comparison of 
the 8 cups of tea. The taster does not make a quantitative assessment of the properties 
of each cup. Fisher gives a discussion of the sensitivity of his design which is unsat- 
isfactory, as pointed out by Neyman (1950). Fisher uses a definition: One experiment, 
El, is more sensitive than another, Ez, if El “will allow the detection of a lower degree 
of sensory discrimination, or, in other words, a quantitatively smaller departure from 
the null hypothesis” (Fisher, 1937, p. 25). For this idea to be implemented, we must 
be able to compare El and E2 with respect to the deviations from the null hypothesis 
that they will express. In an attempt to convince us on Fisher’s ideas, he says that an 
experiment with 12 cups, 6 of each kind, is more sensitive than the one with 8 cups, 4 
of each kind. However, Fisher assumes that a difference from the null hypothesis will 
be the same in the two experiments. This is obviously not the case, because the task 
involves comparisons, and making a partition of 12 cups into two groups of 6, is more 
difficult than making a partition of 8 cups into two groups of 4, when there is the same 
difference between the two types of tea. In the tea tasting example, the only way to 
increase sensitivity is to repeat the study with the same design. So, for instance, with 
two repetitions, the probability of two successes is 114900 and of one success is .028, 
under the null hypothesis. 

5.3 TRIANGULAR EXPERIMENT 

It is also useful to mention a much smaller type of discriminatory test, the triangular 
test. The question is whether a “taster” can discriminate between two versions of a 
drink. The taster is presented with two specimens of drink A and one of drink B,  
and is asked to pick out the odd one. In this case, with the proper randomization and 
experimental technique, the probability of being correct in the absence of detection of 
a real difference is 1/3. This test has been used widely in the beer industry, for instance. 



5.3. TRIANGULAR EXPERIMENT 141 

5.3.1 Medical Example 

Let us now adapt the ideas of the triangular test experiment to a more serious matter. 
The experiment we shall consider is a very small one, and if considered useful, it should 
be repeated many times. Suppose we are considering a disease in humans. The disease 
could be a minor one such as “the common cold” or a very serious one such as cancer. 
Suppose, furthermore, that we have two possible treatments. In the case of the common 
cold, these could be 

1. Go to bed for three days. 

2. Take drug X according to a prescribed regimen for three days. 

In the case of cancer the two treatments could be 

1. Undergo a regimen of radiation plus a potential anticancer chemical. 

2. Do the same as 1 with a different potential anticancer chemical. 

The protocol will be that we decide to give one of the two treatments to one of three 
patients, and the other treatment to the other two patients. We will then have the patients 
examined by a doctor with a prechosen observation protocol and whatever additional 
observations he may choose, and this examining doctor is to specify which of the three 
patients received the odd treatment. The examining doctor will be given, of course, no 
information on which patients received which treatment. This example is interesting 
because of several features which contrast with the beer tasting situation. In that case, 
we can easily envisage obtaining three glasses which are so nearly identical that one 
glass would not be sufficiently different from the other two to cause it to be chosen 
as the odd one. In contrast, our three patients will be not “nearly identical” by any 
stretch of the imagination. They will surely differ in age, in their whole backgrounds, 
their weights, their dietary intakes, their personalities, and so on. We, the applier of the 
treatments, may have unconscious biases. The doctor who examines the patients at the 
end of the experimental period may have unconscious biases. He may think that the 
appearance of a particular symptom or reaction to treatment is significant. The situation 
is, formally, analogous to the beer-tasting situation, with the presence of a high amount 
of data which may be entirely irrelevant, but that may influence the judgment of the 
evaluator. It is obvious, we suggest, that the randomized triangular test is a candidate 
design for the study. The end result is, of course very simple. Did the evaluator pick 
out the odd treatment correctly? To assert the force of the whole experimental design, 
we adduce the simple probabilistic fact: the probability-and a frequency probability 
at that-that the evaluator makes the correct choice of the “odd” patient, under the 
hypothesis that he cannot really discriminate is 1/3. 

5.3.2 Randomization, Probabilities, and Beliefs 

Some will attempt to argue, perhaps, that with such a small experiment, randomization 
is unnecessary. To do so is to fail to see the nature of the logical argument that is being 
followed. It could be that the evaluator will pick one patient out of the three to be the 
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odd one for reasons related only to the patients. What then is the probability that he will 
pick out the odd one? There can be a probability only if there is a probability that any 
particular individual is in fact the odd one vis-h-vis treatment. One cannot determine 
probabilities without injecting probabilities. One can calculate a probability only on 
the basis of probabilities of elementary sets. 

The argumentation above has been criticized particularly by some representatives 
of the neo-Bayesian school of statistics. Their idea is, it seems, that without the slight- 
est use of randomization in the protocol, the rational person may have the belief prob- 
ability of 1/3 that the evaluator will pick out the odd one correctly in the absence of 
there being a treatment-induced basis for discrimination. An assertion of this sort is 
absurd. Who can formulate such a belief probability of 1/3 without an understanding 
of the psychophysical processes of the evaluator? It would seem that what is being 
called on is an assumption of ignorance, namely that with three possible decisions the 
evaluator will make any one of these with a probability of 1/3. One may mention a 
variety of problems. The medical evaluator knows, of course, the disease; he may have 
the idea that fair-haired people are different in their reactions to the disease from dark- 
haired people, and he may choose the odd one on this basis. In fact, the study of how 
the evaluator picks out the odd one could be a huge investigation per se. One would 
have to do the following sort of investigation of the evaluator. One would convince him 
that we have done a real experiment, when, indeed, we have not. The evaluator would 
then pick out the odd one, and we could collect a set of data, consisting of attributes of 
each triple of patients and of the patient he chooses as the odd one. One could then at- 
tempt to determine how he does, in fact, pick out the odd one. We close the discussion 
of this view with the remark that the force of randomization is accepted throughout 
experimental sciences in which there is unavoidable variability between experimental 
units. 

5.4 SIMPLE ARITHMETICAL 
EXPERIMENT 

5.4.1 Noisy Experiments 

We now consider a class of experiments of the following nature. We have N exper- 
imental units, which may be mice, men, plots of land, pieces of steel, 8-hour time 
segments of a functioning chemical reactor, “pieces” of the lower atmosphere, such as 
clouds, or whatever. We have t treatments, one of which can be imposed on any one 
experimental unit. A treatment will then be imposed on each experimental unit and 
after a chosen period an attribute of the experimental unit will be observed, and we 
suppose this attribute to be an arithmetical or interval measurement, such as height, 
weight, percent conversion, tensile strength, or whatever. Let us label our units by 
i ( 2  = 1 . 2 ,  . . . . Ar) and our treatments by j (3 = 1 . 2 .  . . . . t )  and our final observation 
by yv . Clearly for given i, we shall have only one 3 represented. We may represent 
our possible data by a two-way table: 
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Treatment 

t . . .  Unit 1 2 

1 

2 

N 

Now it is obvious that within any row of this table, we shall have only one cell occupied. 
Suppose that we have an observation ~ 1 3 ,  that is, unit 1 received treatment 3. Our task 
is to try to understand the observation ~ 1 3 .  Suppose y13 = 21. Then we know that 
this is a function of the unit and of the treatment. Consider, for example, the following 
additive model (see Chapter 6): 

21 = 5 + 16. 

by which we mean that the unit value is 5 and the treatment contributed 16. Or, for 
instance 

21 = 26 - 5. 

by which we mean that the unit contributed 26 and the treatment contributed minus 5. 
Obviously, we cannot distinguish among these possibilities, and indeed we can write 

21 = u1 + t 3 .  

and we can see that there is an infinity of values for u1, each with an associated value 
for t 3  which satisfy this equation. 

If, of course, one could assert that without treatment, unit 1 would have given an 
observation of 24, say, one could then assert that the observation ~ 1 3  = 21 tells us 
that t 3  equals minus 3. In non-noisy sciences one may well be able to be confident 
in taking such a view. But, suppose our observation is weight at age 6 of a child 
entering the experiment at age 5. Obviously, one cannot be assertive about what a 
child of age 5 will weigh at age 6. Or to take a harder example, suppose we have a 
strain of mice or men, such that say, 20% develop a certain disease by a certain age. 
Then our task, in order to use this sort of argument, is to state what the status of each 
particular individual will be with respect to the disease at the age of post-experiment 
observation. In the case of mice or men to consider doing this effectively is simply 
ludicrous. Contrariwise, if the experimental unit is a carefully prepared test tube with 
well-defined and well-determined contents, and the question of what the status of that 
test tube will be in, say, 30 minutes, presents no problems. This latter example is a case 
from a nonnoisy science. Though we have to realize that the deeper the investigation 
of any scientific field the more noisy it becomes. So the distinction is not between 
different fields of science in their basic natures, but between different fields of science 
at particular levels of noise. The noise level in basic physics and chemistry which is 
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now at high school or beginning college level, is very low. In the determination of the 
weight of an electron it is higher but controllable. In radioactive decay, it may be high 
and completely uncontrollable. 

5.4.2 Investigative Experiments and Beliefs 

Let us broaden our consideration of the data we might get. Suppose we have 6 units 
and 2 treatments and observe 

~ 1 2  = 22. 9 2 1  = 14. 932 = 30. ~ 4 1  = 18. y j l  = 24. ~ 6 2  = 42 

We see that the average for treatment 1 is 18; and for treatment 2 is 31;. Are we then 
to infer, surmise or guess, that treatment 2 gives a result greater than treatment 1 by 
12;? How indeed, may we make such a surmise? We may make the following sort of 
statement: We have looked at the set of 3 units which received treatment 1 and the set 
of 3 units which received treatment 2, and we believe that these two sets would give 
nearly the same means if, in fact, there were no treatment effect. Or one might surmise 
the following: We believe that the difference between the two means in the absence of 
a treatment difference would have been no more than 4; so we believe the effect of the 
treatment is somewhere between 8g and 16;. 

We suggest that while our beliefs should be given some weight, one simply does 
not know how much weight to give them. We have well-trained and well-intentioned 
investigators who exhibit a wide panorama of beliefs. The task of investigative experi- 
mental science is to remove the role of personal belief that cannot be validated in some 
way. And the fact that an individual has had a good record of his prior beliefs being 
sustained by investigation is a weak straw (but in many cases, let it be said, the only 
straw) on which to base our own outlook. Perhaps some examples, without possible 
citation, should be given: 

(a) Some years ago, a highly trained and successful medical worker had the very 
strong belief that stomach ulcers in humans could be cured by freezing the stom- 
ach for a period. 

(b) For several years, some high experts had the strong belief that birth control pills 
were entirely without risk. 

(c) For many years, some scientists with excellent records have had the strong belief 
that cloud seeding does, in fact, produce rain. 

(d) Some well-trained scientists have the strong belief that the eating of high-cholesterol 
foods does not increase the risk of heart disease. Other well-trained scientists are 
convinced of the opposite. 

(e) Some well-trained scientists believe strongly that present-day uses of weed killers 
and insecticides are not producing a poisonous environment for all organic life. 
Other very well-trained scientists believe totally the opposite. 
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To continue with such a list would be rather tedious, but we do suggest to the reader, 
and particularly any neo-Bayesian who happens to read the above material, to construct 
his or her own list of problems on which well-trained, seriously-intentioned scientists, 
who should be given some partial degree of credence, have widely opposing views. It is 
true, of course, that at the end, for example, after some tens, hundreds, and thousands 
of years, enough data will have been accumulated to cause scientists to agree. But 
after that passage of time, other questions will have arisen on which there is the same 
diversity of belief. So the neo-Bayesian answer that with infinite data, all reasonable 
people will agree has truth, but we must counter this with the fact that the essence of 
science is that the questions at issue change over time. The problem is not to reach the 
correct answer with infinite data: the problem is to make an approach to truth, and to 
avoid the prejudices and biases that we inevitably accumulate. 

5.4.3 Randomized Experiments 

How are we to tackle the dilemma of interpretation of the 6 observations we mention 
above? To some, and indeed to Fisher, the answer is obvious. We must use a random- 
ized design; we are to select from the 6 units at random 3 units which are to receive 
treatment 1 with the remaining 3 units to receive treatment 2 .  The basic idea is, after all, 
rather natural. Underlying our investigation is a 2 x 6 table of potential (or conceptual) 
observations: 

Unit 

1 2 3 4 5 6 Mean 

Treatment 1 911 Y2 1 Y3 1 Y4 1 Y5 1 Y6 1 g. 1 

Treatment 2 y12 Y22 Y32 Y42 Y52 Y62 g.2 

Our task is to form opinions about the difference between the average of the first row 
and the average of the second row, with the restriction that we can observe only one 
number in each column. It is natural, then, to select 3 elements from the first row 
and this then determines a set of 3 elements in the second row. We now do a little 
elementary mathematics of finite population sampling. Let us consider the total for 
treatment 1 under the sampling. There are in fact 6 numbers, ytl,  i = 1 , 2 .  . . . .6 ,  and 
we select at random 3 of these. Call the average of the sample 71. Then 71 is a random 
variable, and we know 

E(K) = 8.1 

Similarly, with Y2 equal to the average under treatment 2 ,  we have 

E(F2) = g.2 
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and 

var(Y2) = ( 6  - ; 3 )  (Yi2 ; ? I . z ) 2  

Here we use the basic formulae for the expectation which is obvious, and variance 
of a sample mean with sampling from a population of N finite numbers {z2. i = 

1 , 2 .  . . . , n r }  which is 

("; ") (zt - 2 . y  
N - 1  

We are not through, however. We cannot use 

because the samples under treatment 1 and under treatment 2 are not independent. 
This gives us a reason to exposit a little more elementary theory of finite sampling. 
Let 6, = 1 if unit i receives treatments 1: = 0 otherwise (i = 1 . 2 .  . . . .6). Then our 
estimator of the difference 3(jj - jj 2 )  is equal to 

Under random sampling we have the following properties: 

E(&) = i% E(6:) = i, var(6,) = i: i = 1 . 2 . .  . , . 6  (5.2) 

C O V ( 6 z . 6 2 ' )  = - 1 4 - - -1 20 ( i  # i'). (5 .3)  

E(S,S,,) = ( g  x g)  = $ 

We see this because 6,6i(, is 1 or 0 and is 1 only if treatment 1 falls on i, which has 
probability i, and then given that treatment 1 falls on i ,  treatment 1 falls on i' the 
probability of which is 2/5 .  So we have, using (5.1), (5.2), (5.3), 

Let 
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Then (5.4) can be written as 

z I . , ’  

Z f Z ’  

i 

i 

Now suppose that treatments have additive effects, that is, the number with unit i and 
treatment j ,  which we have denoted by y L J ,  is made up additively of a unit effect, u, 
and a treatment effect rJ (see also Section 6.3.1); that is, 

Then 

y,. = 2u, + ‘1 + ‘2 
Y ,  = 1 2 ~ .  + 671 -I- 6 ~ 2  

and we see that by substituting (5.6) and (5.7) into (5.5) 

= 6 C(U% - 6.)’/5 = 60 2 

if we define 
a2 = C ( U z  - q / 5 .  

2 

Finally, since 71 - p2 = i T ,  it follows that the variance of the difference of the 
treatment means is 

1 
var(Y1 - p2) = -60’ = 2(u2 /3 ) .  

9 
This result is formally the same as we get with the model 

YZJ = P + TJ + ezj 

with the ezJ having the Gauss-Markov properties. 
Also, elementary computation shows that the expectation under randomization of 

the mean square within treatments is equal to the quantity (or parameter) a’. 
A single such small experiment cannot, of course, tell us a lot. We can certainly 

imagine repeating this experiment a number of times. For each repetition we will have 
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an estimated mean difference and a standard error, an estimated standard deviation of 
this estimated difference. Then we will look at the collection of these results. Obvi- 
ously, we may apply the Central Limit Theorem to infer that the average of a number of 
such experiments will be normally distributed, and we may apply ordinary tests (using 
normality) on the average, with a standard error based on the variability between the 
mean differences for the separate experiments. 

As regards the assessment of the significance of an observed mean difference in 
a single such experiment we will use a procedure called the randomization test pro- 
cedure. Before we give a general description of the randomization test we shall trace 
briefly the ideas of randomization and the resulting test procedure as developed by 
R. A. Fisher. 

5.5 RANDOMIZATION IDEAS FOR 
INTERVENTION EXPERIMENTS 

The test procedure is an outgrowth by Fisher of his discussion entitled “The Arrange- 
ment of Field Experiments,” which was published in the Journal of the Ministry of 
Agriculture in 1926. The ideas are expressed in terms of agricultural experiments, nat- 
urally, because Fisher was then statistician of Rothamsted Experiment Station. This 
paper should be read by all students of experimental design. In the field experiment, 
treatments are applied to plots of land, and the questions considered are how this as- 
signment should be made and how results with different treatments should be evaluated. 
The reader should realize that the arguments apply to any interventional comparative 
experiment: for example, on humans, on animals, on engineering material, and so on. 

Fisher bases his whole argument on the use of tests of significance. He asks (Fisher, 
1926, p. 503): “When is a result significant?’ and then “What is meant by a valid 
estimate of error?” He discusses what may be called the use of historical controls, dis- 
missing them in the context of agricultural experiments (erroneously, to some extent, 
we judge). He states (p. 504): “A scientific fact should be regarded as experimen- 
tally established only if a properly designed experiment rarely fails to give this level of 
significance.” To obtain a valid estimate of error, he advocates the use of replication, 
that is, the occurrence of the same treatment on different plots. He says that we wish 
to quantify the differences between plots with different treatments. We do this by ob- 
taining the estimate of error from differences between plots that are treated alike. This 
estimate “will only be valid if we make sure that in the plot arrangement, pairs of plots 
treated alike are not distinguishable from pairs of plots treated differently” (p.506). 
This prescription is, however, not realizable. In the case of the field experiment, in 
addition to the positions of the plots, each plot will have many attributes, e.g., nature 
of soil, pH, amount of N, P, and K, and so on. Each plot thus will be representable as a 
point in a space with a large number of dimensions. The Fisher prescription described 
above requires “pairs of plots treated alike be not distinguishable from pairs of plots 
treated differently.” Fisher says: “An experiment either admits a valid estimate of error 
or it does not: whether it does so or not, depends not on the actual arrangement of plots, 
but only on the way that arrangement was arrived at” (p. 508). So “If the arrangement 
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ABBAABBA was arrived at by writing down a succession of sandwiches ABBA, it 
does not admit of any estimate of certain validity” (p. 508). Furthermore, according to 
Fisher: “If the same arrangement happened to occur subject to the condition that each 
pair of strips shall contain an A and a B, but that which came first shall be decided 
by the toss of a coin, then a valid estimate may be obtained from the four differences 
in yield in the four pairs of strips.” He continues: “Thus validity of estimation can be 
guaranteed by appropriate methods of arrangement . . .” (p. 508). Later, he says: “ex- 
periments capable of genuine tests of significance can” easily be designed to be very 
much more accurate than any experiments ordinarily conducted” (p. 508). 

We have found the early writings of Fisher discussed above at best obscure and not 
entirely coherent. 

The beginning of Fisher’s arguments lies with the use of significance tests. Unfor- 
tunately, Fisher never made clear his ideas on this: the obscurity on this has plagued 
statistics for the past 80 or more years. Fisher was fond of (obscure) classical theory of 
errors. He did not make a clear distinction between what we call observational studies 
and interventional (comparative experimental) studies. We are concerned in this book 
only with the latter. 

Fisher made his ideas of 1926 more clear in his book The Design of Experiments. In 
this book, he pursued his ideas on randomization and made the statement: “The purpose 
of randomization in this, as in the previous experiments exemplified, is to guarantee the 
validity of the test of significance, this test being based on an estimate of error model 
possible by replication” (Fisher, 1937, p. 71). Singularly, in connection with the Latin 
Square design (see Chapter 10) he says: “The purpose of randomization, necessary 
to ensure the validity of the test of significance applied to the experiment, consists in 
choosing one at random of the set of squares which can be generated from any chosen 
arrangement” (Fisher, 1937, p. 80). 

Fisher discusses estimation of error and tests of significance by means of analy- 
sis of variance. He continues his treatment by use of tests of significance based on 
the comparison of certain mean squares in the analysis of variance he considers to be 
appropriate. He continues his discussion with a treatment of “systematic squares” of 
which the prime example is the Knut Vik square: 

A B C D E  
D E A B C  
B C D E A  
E A B C D  
C D E A B  

The point of this square and of the name is that the positions occupied by any treatment 
are given (nearly) by the knight mode in chess. Actually, this is not achieved: consider 
A which is in the sequence of cells, (1, l),  (2,3), ( 3 , 5 ) ,  (4,2), (5,4). The move from (3, 
5) to (4, 2) is not a knight move. “In this arrangement, the areas bearing each treatment 
are nicely distributed over the experimental area,. . .” (Fisher, 1937, p. 87). He says: 
“The total . . . ascribed to treatments and to error” is “independent of the experimental 
arrangement.” He continues his discussion with the remark, “The failure of systematic 
arrangements came from not recognizing that the function of the experiment was not 
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only to make an unbiased comparison, but to supply at the same time a valid statement 
of its significance” (Fisher, 1937, p. 89). 

In fact, the Knut Vik square given above is one of two possible, apart from treatment 
names, so it will be seen that the only test by analysis of variance combined with 
randomization can give levels of significance of 50% or 100% only. 

The way out of the dilemmas was given by Fisher (1937, Section 21) without real 
understanding. He says: “In these discussions it seems to have escaped recognition that 
the physical act of randomization, . . ., affords the means . . . of examining the wider 
hypothesis in which no normality is implied‘’ (Fisher, 1937, p. 51). His procedure 
is the use of the randomization test, which is totally related to the randomization that 
was used. 

We now turn to this, which in Fisher’s words shows the possibility of an indepen- 
dent check on the more expeditious methods in common use. 

5.6 GENERAL IDEA OF THE 
EXPERIMENT RANDOMIZATION TEST 

We first describe the particular example of Fisher. He has 15 pairs of cross-fertilized 
and self-fertilized plants and the differences in yield between the former and the latter. 
On the assumption that the members of each pair have been applied to pairs of sites at 
random, the 15 differences would have occurred with equal frequency with a positive 
or with a negative sign. The observed total difference was 314 and in the total of 
215 possible (=32,768) arrangements this difference was equaled or exceeded in 863 
cases. The difference in absolute magnitude would be exceeded in 1,726 cases, so the 
significance level by this procedure is 1.726/32,768 = 5.267 percent. This may be 
compared with 5 percent given by the normal theory based t test. 

Turning now to comparative experiments, we suppose that we have t treatments that 
are to be compared using N experimental units. We decide that we shall have Art units 
for the ith treatment with C,,V, = N .  We wish to determine the acceptability of the 
hypothesis that the treatment differences (7, - rJ = B z 3 } .  We can, obviously, adjust the 
observations according to the hypothesis so that all observations arise under treatment 
1. For example, if the hypotheses are 7 1  - r2 = 3.71 - 7 3  = 5 ,  TI - r4 = -4, etc. (with 
r, being the treatment effects) then the original data yuz (u denoting the experimental 
unit and i the treatments) are adjusted as follows: 

etc. We then evaluate the resultant data y:, with respect to the null hypothesis that the 
treatment differences are null. 

The logical basis for the test is that if the hypothesis {r, - r3 = Q,,} is true, then 
after the adjustment the data should be a realization of the data we would observe if 
there were no differences in treatment effects. Hence, we can apply the test of this null 
hypothesis to the adjusted data. 
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What test criterion should we use? We suggest that a good criterion is given by least 
squares. We shall by randomization choose one of a set of experimental plans. We shall 
compute the test criterion for the actual plan, equal to C,, then we shall compute the 
criterion for each of the plans of the set and shall compute the significance level with 
respect to the hypothesis, { T ~  - r, = Q,,}, as 

(5.8) 
1 - [numbers of C 2 C,], 
S 

where s is the logical number of possible plans. 
A simple and instructive example of the randomization test for a design discussed 

above with t = 2 ,  N 1  = N2 = 4 is described by Kempthorne (1952, p. 130). Using 
(5.8) with s = 70, the significance level for the randomization was found to be .71 
which compares favorably with the significance level of .63 using the usual F-test for 
the one-way analysis of variance. This is an important point to which we shall return 
later (see Chapter 6). 

5.7 INTRODUCTION TO SUBSEQUENT 
CHAPTERS 

We have given above the basic ideas and philosophy of randomization in a comparative 
experiment illustrating some basic aspects with the completely randomized design. For 
further discussion of intervention experiments, randomization, and inference we refer 
the reader to Kempthorne (1992). 

We shall in Chapter 6 give more detailed theory of randomization for the com- 
pletely randomized design. We shall discuss estimation of differences of treatment 
effects, estimation of error, and tests of significance. This is in strong agreement with 
the views of Cox (2006, p. 192) who states: 

“Randomization has three roles in applications: as a device for eliminating 
biases, for example from unobserved explanatory variables and selection 
effects; as a basis for estimating standard errors; and as a foundation for 
formally exact significance tests.” 

We shall then give some mathematical and simulation results about the approxima- 
tion of the randomization test by the corresponding F-test in the analysis of variance. 

Then we shall repeat the same line of development for increasingly more com- 
plicated structures such as the randomized complete block design (Chapter 9), Latin 
square design (Chapter lo), and designs that are of split-plot nature (Chapter 13). One 
important feature of this approach will be to show how the physical act of randomiza- 
tion influences the statistical analysis of data from various experimental designs and 
how, as a consequence, randomization determines what statistical inferences can be 
drawn from such data and how it should be done. 
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CHAPTER 6 

Completely Randomized Design 

6.1 INTRODUCTION AND DEFINITION 

The simplest error-control design for comparative experiments is the completely ran- 
domized design. Its use and usefulness is predicated by the availability of a set of 
homogeneous experimental units (EU) (for the description of an EU see Section 2.3). 
The word “homogeneous” in this context should not be interpreted too narrowly. As 
explained earlier, there do not exist in nature identical EUs and hence homogeneous 
here means “alike to the extent possible.” Even that phrase is quite relative. The vari- 
ability among EUs that arise naturally, for instance, humans of a given gender, within 
a certain age range, with a certain disease, will be much higher than the variability 
among EUs that have been manufactured, for example, test tubes under controlled con- 
ditions. And yet, in both situations the use of a completely randomized design may be 
quite appropriate. The implications, however, will become evident as we discuss the 
nature of this design in more detail. 

We shall now give the formal definition of the completely randomized design and 
discuss in subsequent sections the randomization procedure, the derived linear model, 
tests of hypotheses, and ”sample size” considerations. 

Suppose we have t treatments and A’ = t r  homogeneous EUs. Let the tr EUs be 
partitioned randomly with equal probability into t sets of r EUs. Let the t treatments 
be assigned to the t sets such that the ith treatment is applied to each of the T EUs 
in the ith set (i = 1 . 2 . .  . . ~ t).  This procedure defines the completely randomized 
equal replication design for t treatments. A realization from this protocol is called a 
completely randomized equal replication experiment. In what follows we shall discuss 
mainly the equal replication situation and hence we shall refer to such a design simply 
as a completely randomized design (CRD). 

It is clear from this definition that one has a randomized design if and only if one 
has randomized the assignment of the treatments to the EUs. We shall now describe 
the randomization process more formally and show how such a mathematical charac- 
terization leads to the formulation of a linear model and to the analysis of data from 
such an experiment. 

153 
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6.2 RANDOMIZATION PROCESS 

6.2.1 Use of Random Numbers 

The randomization process for the CRD can be described in various ways which are 
equivalent to the following: 

Label the EUs 1 , 2 , .  . . .AT. Make up chips labeled by k = 1 , 2 . .  . . , N. Draw 
a chip after shaking and label it (11). Discard the chip. Draw a chip after shaking 
and label it (12). Discard the chip. Draw another chip after shaking and label it (13). 
Continue this process and thereby establish a random correspondence of 1 , 2 ,  . . . , N 
with the tr labels 11,12, .  . . , lr, 21.. . . , 2 r . .  , . , t l ,  t 2 , .  . . . tr .  If chip k ,  and hence EU 
k ,  is associated with the label (ij), apply treatment i to this EU. More precisely, this 
will be the j th  application of treatment i. 

This is, of course, equivalent to establishing a random association of the numbers 
1 ,2 .  . . . , AT = t r  to the set of tr labels 11.12, . . . . tr by using a table of so-called 
random numbers. As an example, suppose N = 24 and t = 6.7- = 4. Then with 
two-digit random numbers we may discard all the numbers except 01,02. . . . 24. This 
will prove very tedious. Instead, we may discard 00, 97, 98, 99. We then associate the 
random numbers 1, 2, 3, 4 with the EU number 1, the random numbers 5 ,  6, 7, 8 with 
the EU number 2, and so on. If we get a repetition of the associated EU number, we 
ignore it. So if our random numbers are 

07, 21. 34, 65, 43, 22. 05. 83, 77.. . . 

our associated EU numbers are (ignoring repetitions) 

2, 6, 9, 17. 11, 6, 2. 21. 20 , .  . . 

and the associated labels are then 

11. 12, 13. 14, 21. 22. 23. 24, 31, .  . 

Consequently, EUs 2, 6, 9, 17 receive treatment 1, EUs 11, 21, 20 receive treatment 
2, and so on. Even this process will become tedious, and one may have to alter the 
algorithm at one stage to pick a random member of the unselected subset. 

An alternative procedure is to use a computer program such as given, for example, 
by SAS PROC PLAN (SAS Institute, Inc., 2002-2003), as illustrated in the following 
example. 

EXAMPLE 6.1: For t = 4, r = 2 the SAS input statements are given in Table 6.la. 
and the actual design (presented in two different forms) is given in Table 6.lb. We note 

0 here that the seed number used in Table 6.la. can be chosen freely. 

6.2.2 Design Random Variables 

The whole randomization process can be expressed mathematically as follows. Let 
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1 

0 otherwise, 

such that the following probability statements, denoted by P(.), hold: 

if EU k is associated with label ij 

P(66 = 1) = 1/N, 

P(6: = l,S$;, = 1) = l /N(N - 1). k # k’, (ij) # ( i ’ ~ ’ )  

P(66 = 1. blc,;, = 1, 6$/ = 1) = l/N(A‘ - 1)(N - 2 ) ,  

k ,  k’. k”unequa1. (ij), (i’j’). (i”j”) unequal. 

and so on. 
The variables 6k ( k  = 1.2.  . . . . N = rt :  i = 1 , 2 .  . . . . t ;  j = 1 , 2 ,  . . . , r )  are called 

design random variables. There are (r t )*  such random variables. Obviously, these 
have many dependencies among them as illustrated in the following example. 

EXAMPLE 6.2: Consider t = 2 ,  r = 2 :  N = 4. Then we have 

If, for instance, 6f2 = 1, that is, EU 2 receives label 12 and hence treatment 1, then 
Sfl = 6z1 = 6z2 = 0 and also S!, = ~ 5 ; ~  = 6&, = 0. This is so because if EU 
2 receives label 12, then EU 2 cannot receive any other label and label 12 cannot be 

0 associated with any other EU. 

Hence, we have, in general, 

k ij 

expressing the fact that one EU receives label i j  and EU k receives only one such label. 
This implies, for example, 

P(6; = 1,6&, = 1) = 0 (ij) # (i’j’) 

P(6k. 23 = 1166 2 3  ’, = 1) = 0 (ij) # (i’j/) 
P(6‘“. = lid!! 23 = 1) = 0 k # k’. 

23 

Probabilities involving three random variables 6& 6$>, ,6$:>,, can also be derived eas- 
ily, and so on. All one needs to recognize is that the (6:) are simple Bernoulli (0, 1) 
random variables and that they are identically but not independently distributed. We 
have a peculiar, but highly structured dependence. 
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Table 6.1 Randomization Procedure for CRD 

a,) Input Statements: 

proc plan seed=17683; 
factors unit=8; 
treatments treat=8 cyclic (1 1 2 2 3 3 4 4); 
output out=CRD; 
title1 'COMPLETELY RANDOMIZED DESIGN (t=4, r=2, N=8)'; 
run; 
proc sort out=CRD; 
by unit; 
run; 

proc print; 
run; 

proc sort out=CRD; 
by treat; 
run; 

proc print; 
run; 

b.) Output: 

COMPLETELY RANDOMIZED DESIGN ( t = 4 ,  r = 2 ,  N=8) 

T h e  PLAN P r o c e d u r e  

P l o t  F a c t o r s  

F a c t o r  S e l e c t  L e v e l s  Order 

x n l c  8 8 Zandom 

T r e a t m e n t  F a c t o r s  

I n i t i a l  B l o c k  
F a c t o r  S e l e c t  L e v e l s  Order / I n c r e m e n t  

8 C y c l i c  ( 1 1 2 2 3 3 4 4 )  / 1  t r e a t  8 

t reat---- -  _ _ _ _ - -  unit----- ----- 

6 2 3 8 7 4 1 5  1 1 2 2 3 3 4 4  
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Table 6.1 (Continued) 

Obs - n i t  

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 

Obs u n i t  

1 2 
2 6 
3 3 
4 8 
5 4 
6 7 
7 1 
8 5 

t r e a t  

4 [hl 
1 
2 
3 
4 
1 
3 
2 

t r e a t  

1 
1 
2 
2 
3 
3 
4 
4 

We shall now use the mathematical formulation and the statistical properties of the 
randomization procedure to derive a linear model for the observations from a CRD 
together with their distributional properties, following Kempthorne (1952; 1955). 

6.3 DERIVED LINEAR MODEL 

6.3.1 Conceptual Responses and Observations 

If EU k receives the label i j ,  then treatment i is applied to EU k .  At the end of the 
experimental period an observation is made which we denote by yz3. It is, in fact, 
the observation on the j t h  occurrence of the ith treatment. We may suppose that if 
treatment i is applied to EU k the true (or conceptual) response is a number, T , k  say. 
We suppose that if we could, in fact, impose every treatment on every EU, we could 
observe the totality of numbers { T z k } .  But we cannot do this as we can apply only one 
treatment to each EU and that is determined by the randomization process. Using the 
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design random variables, 6&, we can then link the ytl and the T,k as 

This states that if EU k receives the label i j ,  then we observe T t k .  The { T i k }  are fixed 
numbers under repetitions of the randomization. This is just a t x N array of numbers, 
and we may write the identity 

where T.. is the overall average of the Tzk; T, is the average of all conceptual responses 
for the zth treatment; T I ,  is the average of all conceptual responses for EU k .  

We shall now assume that 
T z k  = Tz + u k .  (6.3) 

that is, the response of treatment i applied to EU k is made up additively from a contri- 
bution due to the zth treatment, T,, and a contribution due to the lcth EU, Uk. We refer 
to this as additivity in the strict sense. It follows then from (6.3) that 

and hence (6.2) reduces to 

which, using (6.3), we rewrite as 

T , k  = (T. + u.) + (T, - T.) + ( u k  - 0.) (6.4) 

with T. being the average of all treatment contributions T,, and 0. being the average 
of all EU contributions Uk. Letting 

p = T. + 0.. T, = T, - T., U k  = U k  - U 

we rewrite (6.4) as 

T z k  = p + 7% + U k .  

It follows immediately from the definitions that 

t '\ 

i=l k = l  

Substituting (6.5) into (6.1) we obtain 

(6.5) 

k k 
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where we have used the property that ck61“, = 1. Let 

k 

Then, finally, yLJ  can be written as 

Y 2 J  = P + 7, + UZJ. 

We refer to (6.8) as the derived linear model associated with the CRD. 

6.3.2 Distributional Properties 

In (6.8) the only random variable on the right-hand side is uZJ. Its distributional prop- 
erties are determined entirely by those of the 6:. Denoting the expectation operator E 
and the variance and covariance operator var and cov under the randomization model 
as ER. varR, and COVR, respectively, we obtain first 

1 

N2 
1 

iv2 

covR(6jc,,S~;,) = -- 

_- - - 

1 - - 
N2(N - 1) 

Using these results we obtain further 

k = k’, (ij) # (i’j’) 

Ic # k’, (ij) = (i’j’) 

k # k’. ( i j )  # (i’j’). 

k 

(6.9) 
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since C k + k , u k u k ~  = -Cku i .  Defining 

we then write (6.9) as 

(6.10) 

(6.11) 

Similarly, we find for i j  # i ’ j ’ 

(6.12) 

Recall that u k  = Uk - 0. denotes the deviation of the contribution of the kth EU from 
the average contribution of all EUs. Then 0: can be interpreted as a measure of the 
variability among the EUs, that is, the heterogeneity of the EUs. Also, LJ,~ may then be 
referred to as unit error. 

We note here parenthetically that the above covariance structure is interesting as 
an example for which the simple least squares estimators are best unbiased estimators 
(see Section 4.16.3). 

1 
cov~(do3.Lc11131) = -- Lv 4. 

From the results above and the model (6.8) we can easily derive 

= - 1 (1 - 5) 0, 2 

r 
(6.13) 

(6.14) 
1 

covR(yz.. y,,.) = -- ff: (i # i’). -Y 

If we consider a contrast among the treatment effects r,, say Zlctrt  with Cat, = 0, we 
find immediately that C,C,&. is an unbiased estimator for that contrast, that is, 

with 

(6.15) 

using (6.13) and (6.14). 
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6.3.3 Additivity in the Broad Sense 

Our discussion up to this point has been based entirely on the model (6.8) under the 
assumption of additivity in the strict sense. We have mentioned earlier (see Chapter 2) 
that associated with each observation are two error components: experimental error 
and observational error. The only error we have encountered so far is the unit error dZ3 

associated with the observation y a j .  The unit error is part of the experimental error, 
but in order to incorporate other error components we must broaden our model and our 
assumptions. Let 

(6.16) 

denote the conceptual observation from EU k to which treatment i has been applied. 
We shall refer to (6.16) as the model under additivity in the broad sense. The compo- 
nent kf& expresses what we might call technical error (Wilk and Kempthorne, 1956). 
This includes: 

Kk T z k  + n l t k  = Tz + u k  + AlItk 

(i) treatment error; that is, error due to our inability to replicate a treatment from 
one application to the next; 

(ii) state error; that is, error due to random changes in the physical state of an EU; 

(iii) selection error; that is, error due to the random selection of EUs for the experi- 
ment: 

(iv) measurement error; that is, error due to imprecision in our measurement or scor- 
ing procedure; 

(v) sampling error; that is, error due to the random selection of observational units 
(OUs) for the investigation. 

We may consider the errors (i), (ii) and (iii) as part of experimental error, and errors 
(iv) and (v) as observational error. Accordingly, it is convenient to partition ? I l L k  as 

to reflect these two components. Using (6.17) and (6.5) we then rewrite (6.16) as 

This is now the conceptual response of applying treatment i to EU k .  The actual obser- 
vation yij can then be modelled, following (6.1), as 

k 

k k k 

(6.19) - 
- p + 7% + W,J + uz3 + qz3. 
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k 

k 

As an illustration of the error structure as described above we consider the follow- 
ing example. 

EXAMPLE 6.3: Suppose we want to compare different spraying regimens for peach 
trees in an effort to increase the yield and improve the quality of the fruit. We have 
available an orchard consisting of trees of the same variety and same age. For each of 
the t regimens we randomly select T trees. The trees are then sprayed at a specified rate 
on several specified occasions throughout the growing season. We can then identify the 
various error components as follows: 

(i) treatment error: even though the rate is specified for each tree and occasion 
the rate may not be achieved exactly and/or the spray may not cover the tree 
uniformly; 

(ii) state error: the trees may grow differently during the growing season due to 
different micro climates such as wind, moisture, sun exposure; 

(iii) selection error: different trees could have been included in the experiment; 

(iv) measurement error: the judgement in assessing the quality of the individual 
peaches may not be quite uniform; 

(v) sampling error: typically only a few peaches per tree are judged for quality, they 
are picked at random and hence different peaches could have been selected. 0 

6.3.4 Error Structure 

The quantities E z k  and 0 , k  are random variables with mean zero. Furthermore, the 
6:. E , k ,  and O z k  are statistically independent. Hence 

and 

say. It then follows that 
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and 

Furthermore, as an extension of (6.13) and (6.14) we have 

1 
N u  cov(y,,. &/,)  = --o2 (i # i’) 

so that, corresponding to (6.15), we find, for C ,  c, = 0, 

(6.20) 

Expressions (6.15) and (6.20) for var(Cc,$, ) are the same as would have been ob- 
tained if the wZJ were uncorrelated with variance o:. We shall, therefore, from now 
on, mainly to facilitate the computation of variances and other functions of the obser- 
vations ya,, treat the w’,, as if they were independently, identically distributed (i.i.d.) 
random variables with mean zero and variance 0:. Since w,, and utJ are components 
of experimental error it is then also convenient to combine them into one term and 
define the random variable 

E,? = d,? + u,? 

to be the experimental error with 

and 
2 2 2  var(E,?) = oE = 0% + ou. 

that is, we may consider the E,,, for purely practical reasons, also as i.i.d. random 
variables. It follows then from (6.19) that 

and from our earlier discussion that 

var(y,,) = 02 + 0:. 
where 02 is referred to as the experimental error variance component, and o: as the 
observational (sampling) error variance component. To condense the notation even 
further we shall find it usually convenient to use a single error term 

(6.21) 
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6.3.5 Summary of Results 

We can summarize our discussion up to this point as follows: 

(i) Under the assumption of additivity in the strict sense, the randomization process 
leads to the derived linear model 

k 

k 

(ii) The d l j  have mean zero and a simple covariance structure 

(iii) A treatment contrast C C , ~ ,  is estimated unbiasedly by the same contrast in the 
treatment means, that is, Cc,jj7, with 

(iv) Under the assumption of additivity in the broad sense, the model in (i) is amended 
by technical error components to a partly derived, partly assumed model 

with 

(v) As an extension of (iii), for ci ci = 0, 
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(vi) Because of the result in (iii) and (v) we treat, in the appropriate context, qj as if 
they were i.i.d. (0.0;) and write the experimental error as 

with 

E(Eij) = 0 

C O V ( E z j t E t ’ j ’ )  = 0 (ij) # (i’j!). 

2 2  var(zij) = 02 + O~ = oE 

(vii) The overall error, experimental and observational, is 

ei3 = E i j  + rlij 
with 

and, as explained above, we can treat the ei.7 such that 

(viii) Useful expressions for var(Cc,tj, ) are 

To make further inferences about treatment comparisons beyond point estimation 
we need to consider questions of interval estimation or tests of significance (see Sec- 
tions 6.5-6.7). 

6.4 ANALYSIS OF VARIANCE 

6.4.1 Deriving the ANOVA Table 

As indicated earlier, one of the most important tools for analyzing data from designed 
experiments is the analysis of variance. For data from a CRD, the analysis of variance 
(ANOVA) is based on the model 

Y i j  = p + ‘ ~ i  + ez j  (6.22) 
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as developed in Sections 6.3.3 and 6.3.4. In linear models terminology this is a one- 
way classification model and the analysis of variance table is as given in Table 6.2 (see 
also Section 4.12). 

We shall comment in some detail, mainly to lay the groundwork for future chapters, 
on the ANOVA Table 6.2 and its various parts. 

The number of entries (sources) is determined by the number of components, apart 
from p, in the model. In this case the model is given by (6.22) and contains two terms, 
due to treatments (rz) and error (ezJ). We note here that even if we had written (6.22) 
in its more explicit form (6.19), the number of entries in the ANOVA table would have 
been two, since for an actual data set the various error terms cannot be separated (see 
also Section 2.6). The corresponding partition of the (corrected) total sum of squares, 
SS(Tota1) can be obtained by writing the following identity: 

ij ij ij 

or 
(6.24) 

z3 z 2.7 

which is indeed 
SS(Tota1) = S S ( T )  + SS(E) .  

where S S ( T )  and S S ( E )  refer to the treatment and error sum of squares, respectively. 
The partition (6.24) exhibits two things: 

(i) If we substitute in each term on the right-hand side of (6.24) for giI the model 
(6.22), we recognize that Cij(yij  - is a quadratic function in the ei3 only 
and Ci(jji.  - g..)2 is a quadratic function in the ‘ ~ i  and the eij ,  hence the names 
SS(Error) and SS(Treatments), respectively. 

(ii) Since Xi(& - y,.) = 0, this sum contains only t - 1 (mathematically) indepen- 
dent terms which accounts for the t - 1 degrees of freedom (d.f.) associated with 
S S ( T ) .  Similarly, in Ci[Cj(yij - $&.)I we have for every i, Cj(gij - gi.) = 0. 
Hence each such sum contains r - 1 independent terms and hence the number 
of d.f. associated with SS(E)  is t ( r  - 1). 
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Turning to the expected mean squares, E(MS), the reader will notice that we have 
given two forms: one based on the assumption of additivity in the strict sense [model 
(6.8)], and the other based on the assumption of additivity in the broad sense [models 
(6.19) and (6.22)]. From a practical point of view, that is, for real data sets from a 
CRD, only the latter is important, but by exhibiting both forms we want to demonstrate 
their similarity and show that whether we use the covariance structure (6.11) and (6.12) 
of the dZj  or treat the dt3 together with the vLJ and qZ3 as i.i.d. random variables, we 
obtain equivalent results, that is, of in the first form is simply substituted by o," = 
ot + o: + o i  = oz + 0;. This may be a subtle and philosophical point, but it is 
an important one in the transition from purely derived models to partly derived, partly 
assumed models. 

6.4.2 Obtaining Expected Mean Squares 

There are different methods of obtaining E(MS). One is to substitute for the ys in the 
expression for the mean square the linear model and then evaluate the expected value 
of that expression. We shall illustrate this for E[MS(T)]  under model (6.8). We have 

i 2 

Now, 

r, - = - lcrt=o 
t i  

and 

Then, (6.25) apart from the multiplier T can be expanded as follows: 
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1 1 

r2  
+ -tr(r - 1) 

= cr,'+ -(t  1 - 1)o;. 

r 
2 

where we have used the fact that AT = tr ,  C U k  = 0, and Cui / (Ar  - 1) = ~ 2 .  It then 
follows that 

as given in Table 6.2. 
Another method to find E(MS) is to use the fact that for any random variable X ,  

E(x') = var(X)  + [E(x)]'. 
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We shall illustrate this method also for E[MS(T)]  but this time under model (6.19). To 
this end, we consider 

Now 

r t 2  r 

(6.27) 

(6.28) 

where we have used the fact that the eij  can be treated as i i d .  with mean zero and 
variance 0,". It follows then immediately from (6.27) and (6.28) that 

r 
E { M S ( T ) }  = 0," + - 

t - 1  T,"! 

i 

as given in Table 6.2. 

Table 6.2 that an estimator for 0," is 
The expected value of MS(E) can be obtained similarly. It follows then from 

8: = MS(E). (6.29) 

And hence the standard error for the estimator of the treatment contrast Cci7-i is given by 

(6.30) 

As has been shown in Chapter 4, the ANOVA table can be used to test hypothe- 
ses about parametric functions in the context of the underlying linear model (see also 
Chapter 7). We shall examine the ideas of testing hypotheses about treatment effects 
using observations from the CRD in the next section. 
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6.5 STATISTICAL TESTS 

The mathematical description of the randomization process together with the assump- 
tion of treatment-unit additivity in the strict sense, has allowed us to derive a linear 
model the properties of which are determined by the very process. It also determines 
the properties of functions of the observation as we have seen, for example, in the anal- 
ysis of variance. We shall now go one step further and show how the randomization 
process, together with the analysis of variance, leads to a simple procedure for test- 
ing hypotheses about treatment effects. We shall give this development in some detail 
so that the reader can see immediately the application and extension to more complex 
designs to be discussed in later chapters. 

6.5.1 Enumerating Randomizations 

The outcome of our completely randomized assignment is that we have a plan associ- 
ating treatments to EUs. We then perform the experiment and obtain a data table which 
may look like this, for example, 

E U #  ~ 1 : :  
Response Y32 y13 y41 ” ’  Y74 

Treatment 

where yzl refers to the response for the j t h  application of treatment i. We wish to 
consider the hypothesis that the treatments have no differential effects, that is, we would 
observe the same response on an EU regardless of which treatment has been used. The 
experimental plan we have used is a random one of 

(6.31) 

possible plans (assignments). Let us name and index these plans by II,(? = 1 , 2 .  . . . . s). 
Then if treatments were without differential effects, we would have obtained exactly 
the same result, that is, the same responses, for each II?. We can thus visualize data 
sets for the s plans as given in Table 6.3. In sketching this table we have inserted 
treatment plans that could have been used (the numbering is arbitrary). One of these 
plans is, of course, the plan we have actually used, say II,. The observations from the 
experiment using 111 are labeled 21, 2 2 , .  . ., 2,. Under the null hypothesis that there are 
no differences among the treatment effects the same observations would have been ob- 
tained from any of the other plans. For purposes of the analysis the observations would 
then have to be relabeled indicating for each ze ( E  = 1, 2, . . ., N )  which treatment had 
been applied to the 1-th EU. For example for II1 we would have 21 = yzl, 2 2  = y j l ,  
2 3  = ~ 3 1 ,  . . ., z . ~  = ylr (assuming that the treatments are applied sequentially to the 
EU, starting with EU 1 and ending with EU N ) .  
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Table 6.3 Possible Outcomes for CRD 

Plan 1 2 5 3 . . .  1 
2 1 2 2 " '  4 
3 3 1 4 . ' '  2 

S 1 5 1 . . .  4 

6.5.2 Randomization Test 

We now construct a criterion that is determined by the treatment plan whether actual or 
potential. A criterion depends on the treatment plan if and only if when the observations 
are indexed by ( i j )  with z denoting the treatment and J the replication (application) 
within the treatment, it is invariant under permutations of J within 2 .  The variety of 
such criteria is, of course, essentially unlimited. In order to exposit the idea we give 
some examples: 

(i) the sum of squares for treatments, S S ( T ) ,  in the ANOVA table, 

(ii) MS (T)/MS (E), 

(iii) the range of treatment totals, 

(iv) the range of medians of the treatment groups (supposing there are no ties and an 
odd number of applications of each treatment), 

(v) the sum of squares (or range) of trimmed treatment means, 

(vi) the sum of squares (or range) of Winzorized treatment means. 

(vii) the sum of squares of robust estimates of treatment means. 

Having chosen a criterion C,  say, we are able to evaluate C for all possible plans 
IIAJ, giving us a set of numbers { C-, . y = 1.2 ,  . . . . s} .  Actually, there are only s* = 

s / ( t ! )  different values C, since each permutation of the treatment labels yields the 
same value for C.  We denote the s* different values by C7*. Amongst these is the 
number associated with our actual plan, which we denote by C,. Then we declare 
that the significance level (SL) against the null hypothesis of no differential treatment 
effects, with the chosen criterion, is 

1 
SL = -[number of C-,(? = 1.2 .  . . . . s )  2 Ca] (6.32a) 

S 

(6.32b) 
1 

SL = -[number of C7* (-,* = 1.2 . .  . . . s * )  2 Ca] 
S* 
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(Note that the number of C, on the right-hand side of (6.32a) and (6.32b) includes C,, 
so that always SL 2 l/s*). 

We then assert: Under the null hypothesis of no differential treatment effects if a is 
an achievable level, which will be a multiple of l/s*, the probability of obtaining a 
significance level less than or equal to a is a.  This assertion is obvious since under the 
null hypothesis we are observing with probability 1,'s" one of the numbers of the set 

The procedure just described is called the randomization test (see Chapter 5) .  We 
{C-,*.-/* = 1 .2 . .  . . . s*} .  

illustrate it with the following example. 

EXAMPLE 6.4: 
treatment. Let our plan, II1 say, and the observed responses be as follows: 

Suppose we have t = 3 treatments and r = 3 replications for each 

EU 1 2 3 4 . 5  6 7  8 9 
Trt 1 3 2 1 2 1 3 3 2 
y 7.58 11.61 9.97 8.56 11.03 8.82 10.32 11.73 10.06 

This plan is one out of s = 9!/(3!)3 = 1680. Using C = S S ( T )  as our test 
criterion we obtain C, = S S ( T ) l  = 13.2956. This is one of s* = 1680/6 = 280 
different values for all possible values. It is not difficult to write a computer program 
to enumerate all possible 1680 plans and their associated 280 different SS(T)-values. 
As a result we obtain for the significance level using (6.32a) or (6.32b) 

= .00714 
12 S L = -  ~ 

1680 280 
2 - - 

Inspection of the plan IIl above suggests that in this case it is not necessary to spell out 
all different plans in order to obtain SL: it is clear that the largest SS(T)-value, using 
the U-values above, is obtained from the plan 

EU 1 2  3 4 5 6 7 8 9 
Trt 1 3  2 1 3  1 2  3 2 

which has Treatment 1 associated with the 3 lowest observations and Treatment 3 with 
the 3 highest observations, providing thus the largest mean separation among the treat- 
ments and hence the highest S S ( T ) ,  namely 14.8623. The plan above is obtained 
from the plan II1 by simply interchanging the treatments assigned to EUs 5 and 7 and 
thereby interchanging the third and fourth highest observations. As a consequence II1 
then leads to the second largest mean separation and hence to the second largest S S ( T ) .  
Since each plan has five additional permutations with the same S S ( T )  the result for SL 

0 as given above follows immediately. 

Unfortunately, such simple arguments are not always possible. This means that 
usually all plans have to be enumerated and each C-value computed in order to obtain 
the significance level. 
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6.6 APPROXIMATING THE 
RANDOMIZATION TEST 

We saw in the previous section that even for small t and T the number of possible plans 
s under randomization is quite large. Further evidence of the rapid increase in s for 
moderate values o f t  and T is given in Table 6.4. 

These numbers indicate that even though it is possible today, in the computer age, 
to spin out all possible plans and proceed with the randomization analysis as described 
in Section 6.5, the procedure becomes rather cumbersome. It is in this context that 
we shall discuss an approximation to the randomization test by the F-test (see also 
Kempthorne, 1955) as suggested by the GMNLM theory (see Chapter 4). 

6.6.1 Moments of the Test Statistic 

We note first that under the null hypothesis, HO : 7-1 = 7-2 = . . . rt = 0 (remember 
from Section 6.3.1 that 7-L = 0), using the results of Sections 6.2.2, 6.3.1, and 6.4.2 

Table 6.4 Number of Experimental Plans 

Number of 
Treatments Replications Plans Different C-Values 

( t )  (s) (s* 1 

2 4 
5 
6 
7 

3 3 
4 
5 

4 2 
3 
4 

5 2 
3 

70 
210 
924 

3.432 

1,680 
34,650 

252.252 

2,520 
369,600 

63,063,000 

113,400 
168,168,000 

35 
105 
462 

1,716 

280 
5,775 

42,042 

105 
15,400 

2,627,625 

945 
1,401,400 
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S S ( T )  + SS(E)  = SS(Tota1) 

i j  k ij k j k '  

= X U ;  

k 

is a constant and, by definition, equal to ( N  - 1)a:. Instead of using S S ( T )  as our test 
criterion we could, therefore, just as well consider 

We know that under GMNLM theory the quantity 

is distributed as Ft-l,t(T-ll (see Chapter 4). It is then a fact that 

- - S S ( T )  =z (t - l)F 
t(' - 1) + ( t  - 1)F SS(T) + SS(E)  

follows a beta distribution with density 

(6.33) 

for 0 5 z 5 1, that is, a beta (a ,  B) with a = ( t  - 1)/2. /? = t ( r  - 1)/2 (see Johnson, 
Kotz and Balakrishnan, 1995, p.327). From the properties of the beta distribution we 
know that if a random variable X is beta (a, @), then 

B(cY+k./3) - (a+IC-l)! ( a + P - l ) !  E ( X k )  = - 
B(C2.P) ( a + @ + k - l ) !  ( a - l ) !  . 

In particular, we have 
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and 

(6.34) 
a 

E ( X )  = - a!+s 

a(a  + 1) 
( a + 3 ) ( a + 3 + 1 ) '  

E ( X 2 )  = (6.35) 

We now consider the first two moments of 2, our test criterion, under GMNLM theory 
and randomization theory. Since 2, as defined in (6.33), is beta [ ( t  - 1)/2; t ( r  - 1)/2)], 
it follows from (6.34) that 

t - 1  
tr  - 1 

E ( 2 )  = ~ 

and from (6.35) that 
( t  - l ) ( t  + 1) 

( tr  - l ) ( t r  + 1) .  
E ( Z 2 )  = 

(6.36) 

(6.37) 

We now consider ER(Z) and E R ( ~ ~ ) .  We have already shown (see Section 6.4) that, 
under the null hypothesis 

ER[SS(T)]  = ( t  - 1)o:. 

It follows then that 

(6.38) 

To work out E R [ S S ( T ) ] ~  and hence ER(Z~) is rather tedious and lengthy. We shall 
not give a derivation but use a result from Richards (1980) which yields 

t - 1  
ER(Z) = m. 

(6.39) 

For large r ,  in the sense that l / r  and hence ULV are small compared to 1, (6.39) can be 
approximated by 

It follows then that 
( t  - l ) ( t  + 1) 

t2r2 ' 
~ ~ ( 2 ~ )  E (6.40) 
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6.6.2 Approximation by the F-Test 

Comparing (6.38) with (6.36) and (6.40) with (6.37) we can say that the distributions 
of 2 under normal theory and under randomization theory are in good agreement with 
respect to the first two moments. We take this to mean that the randomization distri- 
bution of 2 is “fairly accurately” represented by the beta distribution. This implies 
that the randomization distribution of MS (T)/MS ( E )  is fairly accurately represented 
by the F-distribution with t - 1 and t ( r  - 1) d.f. It is in this sense that we consider 
the ordinary F-test for testing the hypothesis of no differences among the treatment 
effects as a good approximation to the randomization test discussed in Section 6.5. We 
mention here that these ideas and results go back to Fisher (1933, Pitman (1937), and 
Welch (1937). 

It should be pointed out that the preceding discussion was based entirely on the 
derived linear model based on the assumption of additivity in the strict sense. As 
discussed earlier (see Section 6.3) for practical applications the model obtained under 
the assumption of additivity in the broad sense is more realistic. The question then 
arises: How should we test the hypothesis of no treatment differences under this model? 
There does not seem to be an easy way, if any at all, to derive a result for model (6.22) 
analogous to the one just derived for model (6.8). Nevertheless, we take the results of 
this section as a strong indication that the usual F-test as suggested by the ANOVA is 
an appropriate test procedure. 

6.6.3 Simulation Study 

The arguments given above for suggesting that the randomization test can be approx- 
imated by the usual F-test is of course, not entirely satisfactory. The following ques- 
tions remain: (i) What happens for small r ,  and (ii) to what extent does agreement 
of the first two moments imply agreement of both distributions? Although we cannot 
provide an analytical solution, we can give some indication that, indeed, the agreement 
between both distributions is quite good in general. 

We shall illustrate the argument in terms of a simple example. Suppose we have 
t = 4.7- = 8. The total number of randomizations is s = 2.39 x lo2*. Except 
for very powerful computers it is a nearly impossible task to enumerate all possible 
randomizations as described in Section 6.5, hence approximation of the randomization 
test by the F-test appears to be the only practical solution. To demonstrate that this is, 
indeed, a reasonable approach we conduct the following simulation experiment. Out 
of all possible randomizations we select at random s’ = 500 randomizations of the 
4 treatments to the 32 EUs. Assigning the (arbitrarily chosen) responses 0, 1, 2, 3, 
to 8 EUs each we then compute for each of the s’ arrangements the quantity F = 
MS(T)/MS(E), denoted by F ( l ) .  F(’), . . . ~ F(’O0). For each F(‘) ( i  = 1 . 2 . .  . . .500) 
we then obtain the significance level in two ways: 

(i) based on the F-distribution with 3 and 28 d.f., 

(ii) based on the rank among all 500 F-values as explained in (6.32a). 

We denote these significance levels by NSL and RSL, respectively. A plot of RSL 
vs. NSL is given in Figure 6.1. It shows that both significance levels are in “close” 
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Table 6.5 Comparison of Significance Levels 

Rank F-Value* NSL RSL 

1 
2 

3 

5 

7 

11 

12 

16 

17 

19 

20 

21 

22 

28 

30 

8.65 863 
6.55319 

4.8 8 8 89( 2 )  

4.62305 (2) 

4.493 83 (4) 

4.36697 

4.12012(3) 

3.65217 

3.43020(2) 

3.32203 

3.2 1569 

3.00826 

2.80759( 6) 

2.70968(2) 

2.6 1 3 3 3 (6) 

0.00032 
0.00 170 

0.00740 

0.00949 

0.01073 

0.01211 

0.01537 

0.02436 

0.03045 

0.03399 

0.03788 

0.04691 

0.05781 

0.06406 

0.07091 

0.002 
0.004 

0.008 

0.012 

0.020 

0.022 

0.028 

0.032 

0.036 

0.038 

0.040 

0.042 

0.054 

0.058 

0.070 

*Values in parentheses indicate frequency of occurrence. 

agreement, but the line with slope 1 through the points indicates that RSL is (with 
some exceptions) always slightly larger than NSL. Some indication of the discrepancy 
for small significance levels is given in Table 6.5. Some of the “large” discrepancies 
are, of course, due to the discreteness of RSL and the fact that the same F-value may 
occur more than once. From a practical point of view, however, the agreement between 
NSL and RSL is quite remarkable. 

In the discussion above, the reader should keep in mind that this is only one example 
intended to illustrate a point, namely to support the theoretical result that, under certain 
conditions, the randomization distribution can be approximated by the F-distribution. 
This is, of course, only the beginning of what would have to be an extensive Monte 
Carlo study, using different values for t and T and for the responses y. Suffice it to say 
here that for a number of different values similar results were obtained giving plausible 
credence to the validity of our assertion (see also Kempthorne and Doerfler, 1969). 
Hence, from now on we shall use the F-test as an approximation to the randomization 

We conclude this discussion by pointing out that in most cases the null hypothesis 
of the equality of treatment effects is not the most important hypothesis to test. For a 

test for testing the hypothesis Ho : 71 = 7 2  = . . . = Tt . 
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Figure 6.1 Plot of Significance Levels of Randomization Test vs. Approximating 
F-Test. 

well designed interested experiment the researcher is often more interested in specific 
treatment comparisons. Such questions will be discussed in more detail in Chapter 7.  
This does not diminish the importance of the ANOVA as a data analysis technique, as 
one of its useful functions is the estimation of the error variance component a:, or as 
shown in Section 6.9 the error variance components 0: and a:. 

6.7 CRD WITH UNEQUAL NUMBERS OF 
REPLICATIONS 

Although in most applications of the CRD each treatment will be replicated the same 
number of times, namely T ,  it is not uncommon to have unequal numbers of replica- 
tions, say T,  for the ith treatment (i = 1 . 2 .  . . . . t) .  We may have, for example, the 
situation that one treatment, say treatment 1, is the control or standard with which we 
wish to compare the other treatments [see also Section 7.5.71. It seems then reasonable 
to obtain especially good information about treatment 1, that is, to have more repli- 
cations for treatment 1 than for the other treatments. Or, it may be that among the t 
treatments some are more important than others, suggesting different numbers of repli- 
cations for the two sets of treatments. Another reason for having unequal r2’s may 
simply be the fact that the observations from some EUs may be missing (independent 
of the treatments). 
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6.7.1 Randomization 

Just as for the case of the equireplicate CRD, the randomization procedure can be per- 
formed by using random numbers (see Section 6.2.1). From a practical point of view, 
the process can be implemented by using appropriate statistical software, e.g. SAS 
PROC PLAN (SAS Institute, Inc., 2002-2003). We illustrate this with the following 
example. 

EXAMPLE 6.5: Suppose we consider a CRD with t = 4, r1 = 4, r2 = 7-3 = 7-4 = 2. 
0 The SAS input statements and the output are given in Table 6.6. 

6.7.2 The Model and ANOVA 

It is obviously much more complicated to derive the randomization analysis for the 
situations described above. The basic model, however, is still model (6.22), 

Y 2 J  = I-1 + 7, + e2J 

with i = 1 , 2 .  . . . t :  j = 1 , 2 ,  . . . , r,. The ANOVA table for equal numbers of replica- 
tions (Table 6.2) is modified easily to accommodate unequal numbers of replications 
and is given in Table 6.7. 

Just as for the equal number case (Section 6.6) it can be illustrated through Monte 
Carlo studies that the randomization test for testing Ho : 71 = 7 2  = . . = Tt can be 
approximated by the F-test 

F=- MS (TI 
W E )  

with t - 1 and ( C r ,  - t)d.f. 

6.7.3 

To illustrate the general agreement between the significance levels for both tests, that 
is, RSL and NSL, we give below the result for a simulation run for t  = 4 and T I  = r2 = 
4.7-3 = i-4 = 2. In Figure 6.2 we show the relationship between RSL and NSL based 
on a random sample of 1000 randomizations, using the same procedure as described 
in Section 6.6. Obviously, a much broader simulation study would have to be done to 
give more support to our claim that for the unequal replication CRD the randomization 
test can be approximated by the F-test, but a small number of simulations have led to 
results similar to those given in Figure 6.2. We found, in general, a good agreement 
between RSL and NSL for random samples of 1,000 randomizations as illustrated in 
Figure 6.2. Note also that these results are similar to those given in Figure 6.1. Obvi- 
ously when the experiment is small the approximation may not be good, but then the 
randomization test can be done easily on a computer. 

Comparing Randomization Test and F-Test 

6.8 NUMBER OF REPLICATIONS 

One question that is being asked often, and it is an important question, is: How many 
replications are needed for each treatment? The reason for asking this question (which 
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Table 6.6 Randomization Procedure for CRD with UnequalReplications 

a. ) Input Statements : 

proc plan seed=13396; 
factors unit=lO; 
treatments treat=lO cyclic (1 1 1 1 2 2 3 3 4 4); 
output out=CRD; 
title1 'COMPLETELY RANDOMIZED DESIGN'; 
title2 'WITH UNEQUAL REPLICATIONS'; 
title3 ' (t=4, rl=4 r2=r3=r4=2, N=10) ' ; 
run; 

proc sort out=CRD; 
by unit; 
run; 

proc print; 
PJ. r. ; 

b.) Output: 

COMPLETELY RANDOMIZED DESIGN 

( t = 4 ,  rl=4 r2=r3=r4=2, N=10) 
WITH UNEQUAL REPLICATIONS 

The PLAN Procedure 

Plot Factors 

Factor Select Levels Order 

unit 10 10 Random 

Treatment Factors 

Factor Select Levels Order Initial Block / Increment 

treat 10 10 Cyclic (1 1 1 1 2 2 3 3 4 4) / 1 
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Table 6.6 (Continued) 

O b s  unit treat 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

2 
4 

3 
4 
3 
I 

2 
1 

Table 6.7 ANOVA for CRD with Unequal Numbers of Replications 

Source d.f. ss MS E ( W  

1 
Treatments t - 1 C rt(G2, - k , ) 2  MS(T) 0,” + - C rzr: 

2 t - 1  

Total 
7. i.j 

is often referred to - incorrectly - as a question of “sample size”) is to “assure” that 
the experiment is sensitive enough to detect differences among the treatments if there 
are any, that is, to reject the null hypothesis of no treatment differences in the ANOVA 
F-test. As it stands, however, the question cannot be answered without further input 
specific to the particular investigation at hand. 

6.8.1 Power of the F-Test 

Based on our discussion above we shall use the normal (Gaussian) independent error 
model and the associated central and noncentral F-distributions to examine this ques- 
tion, using the notion of the power of the F-test. More specifically, the sensitivity or 
power of the F-test, denoted by 1 - 0,  where 6 is the probability of a Type I1 error, 
depends on 
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O.Q 0 . 1  0.2 0 . 3  0.4 0.5 0.6 0.7 0.9 0 .9  1.0 

r s  I 

Figure 6.2 Plot of Significance Levels of Randomization Test (rsl) versus Approx- 
imating F-Test (nsl). 

(i) the size of the test, that is, probability of the Type I error, a; 

(ii) the degrees of freedom, t - 1 and t ( r  - 1); 

(iii) the noncentrality parameter 

r C r,” 

2u,z 
(6.41) A = - -  i 

of the noncentral F-distribution, where the 7% are the true values of the treatment effects 
as specified under the alternative hypothesis. The general procedure then is to specify 
a. 1 - 3, and X/r and ask: How many replications, T ,  are needed to detect, with 
probability 1 - ,4, treatment differences as specified by X / r  if we use a test of size a? 

It is, of course, not difficult to specify a and 8. We usually take (-v = .05 or cy = .10 
as those seem to be reasonable values for the risk of committing a Type I error, that is, 
concluding that there are differences among the treatments, when in fact there are none. 
A bit more difficult is the choice of ,!3 or rather 1 - 8, the probability for concluding that 
there are differences among the treatments when they indeed exist. From a practical 
point a reasonable choice is 1 - 3 = .80 although this choice, as all the others, depends 
on the particular problem under consideration. By far the most difficult choice is that 
of X/r,  because that, after all, represents the true state of nature, something we do not 
know. How does one get out of that dilemma? 
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6.8.2 Smallest Detectable Difference 

It is at this point that the subject matter knowledge of the investigator becomes very 
important. Since we do not know the true state of nature, we might ask: What mini- 
mum difference between the two extreme treatments, the best and the worst, is worth 
detecting with probability of at least 1 - 3, if such a difference exists? This question 
is best visualized for the simple case t = 2. Suppose we want to compare two drugs, 
an established drug A versus an experimental drug B expected to be better than A. 
How much greater has the therapeutic effect of B have to be before it is worth further 
development and marketing? There is obviously a minimum difference in therapeutic 
effects before B is worth developing, both from a medical as well as financial point 
of view. 

For the general case let us denote the difference between the largest treatment ef- 
fect, r,,,, and the smallest treatment effect, rmln, by 

A = rmax - r,,,. (6.42) 

For any set of rt (i = 1 ,2 .  . . . . t )  satisfying (6.42) the smallest X/r  is obtained when 
the remaining t - 2 treatment effects rt are equal to (rmax + rmln)/2.  Since the rz are 
defined such that Cr,  = 0, this means that 

rt = 0 otherwise. (6.43) 
A 

rmin = -- 
A 
2 '  2 '  
- rmax = 

It then follows from (6.41) that 

(6.44) 

It is well known that the power of the F-test is an increasing function of A. Hence 
the power of the F-test with X given by (6.44) has the smallest value for all situations 
subject to (6.42). Tables and charts for the power of the F-test in terms of X (or suitable 
functions of A) and d.f. v1 = t - 1 and v2 = t ( r  - 1) are available (Tang, 1938; Pearson 
and Hartley, 1970; Odeh and Fox, 1975) and can be used to obtain iteratively a suitable 
value for r ,  given a. 1 - 3. A, CT,". For a description of this procedure we refer the 
reader to Scheff6 (1959). 

A more convenient set of tables was developed specifically for the determination 
of the number of replications by Bowman and Kastenbaum (1975). They follow essen- 
tially the same arguments as given above but in terms of 

(6.45) ax = r m a x  - r m i n  - r m a x  - r m i n  - 
g e  @-q 

the standardized minimum difference between the two extreme treatment effects (this 
is sometimes referred to as the effect size). It is quite often easier to specify A- rather 
than A, and specifying A* absolves one from also specifying a,". Selected parts of the 
tables from Bowman and Kastenbaum (1975) are reproduced in Table 6.8 for t = 2, 
3 ,  4, 5, 6, 8, 9, 10, 11, 13, 15, 20, 25, 30, and Q. = .05, 1 - 6' = .7, .8, .9, and 
r = 2 ,3 ,  . . . , 25. 
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6.8.3 Practical Considerations 

To show the use of these tables and the sometimes surprising results concerning the 
magnitude of T ,  we consider the following example. 

EXAMPLE 6.6: Suppose we have t = 3, Q = .05. For different values of 1 - 3 = .7, 
.8, .9 and A* = 1.0, 1.5, 2.0, we obtain from Table 6.8 the following values for T given 
in Table 6.9 (since the exact values for Ax are not represented in Table 6.8 we choose 

0 the next smaller value for A* that is represented in Table 6.8). 

Table 6.9 illustrates a number of points: 

(i) In some cases the number of replications seems surprisingly large. This often 
leads to disappointment when an experiment has been carried out without prior 
consideration of the number of replications. Generally too few replications are 
chosen resulting in a low power of the F-test which means that much effort may 
have been wasted. 

(ii) To detect small differences requires relatively more replications, in fact it may 
require more replications than is practical. It is therefore important to arrive at a 
realistic value for A x .  

(iii) As the probability 1 - 3 of detecting an existing difference increases so does T ,  

and in certain situations at an appreciable rate. 

An alternative to using Table 6.8 is to use the Power Procedure in SAS (SAS In- 
stitute, Inc., 2002-2003). To use this procedure, rather than specifying A* of (6.45) 
we need to specify the 7, or p + r, ( i  = 1, 2 ,  . . ., t )  under the alternative hypothesis 
(referred to as group means in the procedure) and the standard deviation g e .  In order 
to obtain the same results as described above in connection with Table 6.8, we specify, 
for given Ax ,  the r, as in (6.43) with A = A* and ue = 1. We illustrate this procedure 
in the following example. 

EXAMPLE 6.6 (continued): Using t = 3, Q. = .05, 9 = .9, and A* = 1, the SAS 
PROC POWER input is given in Table 6.10a and the output in Table 6.10b. The result 
is T = 27 (labeled lV Per Group in the output), complementing the value (> 25)  in 
Table 6.9. 0 

The conclusion one should draw from this discussion is that it is important to 
present the investigator with a table like Table 6.9 prior to the experiment to explain 
the options available. It is not so important to decide whether one needs 20 or 21 
replications, but rather that one needs about 20 and not 10 replications, for example. 

If the investigator is more comfortable in assigning a value to A rather than A*, we 
need, of course, some information about 0," to determine T .  Sometimes this information 
is available from previous similar experiments. In other cases one may have to do a 
preliminary study to estimate 0:. This estimate may be the MS(E) from the ANOVA 
table for the preliminary study or simply an estimate of the variance using just one 
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Table 6.8 Values of A* to Determine Numbers of 
Replications CRD* 

t = 2  - 
1 - P  

t = 3  t = 4  - __ 
1-p 1 - P  

r 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

- 
.7 

4.863 
2.703 
2.104 
1.792 
1.590 
1.446 
1.335 
1.247 
1.175 
1.113 
1.061 
1.016 
0.975 
0.940 
0.908 
0.879 
0.852 
0.828 
0.806 
0.786 
0.767 
0.749 
0.733 
0.7 17 

.8 

5.653 
3.07 1 
2.381 
2.024 
1.796 
1.632 
1.507 
1.407 
1.325 
1.256 
1.197 
1.145 
1.100 
1.060 
1.024 
0.991 
0.961 
0.934 
0.909 
0.886 
0.865 
0.845 
0.826 
0.809 

.9 

6.796 
3.589 
2.767 
2.348 
2.081 
1.890 
1.745 
1.629 
1.534 
1.454 
1.385 
1.326 
1.273 
1.226 
1.185 
1.147 
1.1 12 
1.081 
1.052 
1.025 
1 .ooo 
0.977 
0.956 
0.936 

.7 .8 

4.883 5.570 
2.957 3.325 
2.335 2.618 
1.997 2.236 
1.775 1.987 
1.615 1.808 
1.492 1.670 
1.394 1.560 
1.313 1.469 
1.245 1.393 
1.186 1.327 
1.135 1.270 
1.090 1.220 
1.050 1.175 
1.015 1.135 
0.982 1.099 
0.953 1.066 
0.926 1.036 
0.901 1.008 
0.878 0.982 
0.857 0.959 
0.837 0.936 
0.819 0.916 
0.802 0.897 

.9 

6.548 
3.838 
3.010 
2.568 
2.280 
2.073 
1.915 
1.788 
1.684 
1.596 
1.521 
1.456 
1.398 
1.347 
1.301 
1.259 
1.222 
1.187 
1.155 
1.126 
1.099 
1.073 
1.050 
1.028 

.7 .8 

4.872 
3.094 
2.468 
2.119 
1.888 
1.719 
1.590 
1.486 
1.400 
1.328 
1.266 
1.21 1 
1.164 
1.121 
1.083 
1.049 
1.017 
0.988 
0.962 
0.938 
0.915 
0.894 
0.874 
0.856 

5.504 
3.460 
2.754 
2.362 
2.104 
1.916 
1.77 1 
1.655 
1.559 
1.479 
1.409 
1.349 
1.296 
1.249 
1.206 
1.168 
1.133 
1.101 
1.07 1 
1.044 
1.019 
0.996 
0.974 
0.953 

.9 

6.395 
3.967 
3.148 
2.698 
2.401 
2.186 
2.020 
1.888 
1.778 
I .686 
1.607 
1.538 
1.478 
1.424 
1.375 
1.331 
1.292 
1.255 
1.222 
1.191 
1.162 
1.135 
1.110 
1.087 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

187 

4.889 
3.197 
2.568 
2.211 
1.973 
1.798 
1.664 
1.556 
1.466 
1.391 
1.326 
1.269 
1.220 
1.175 
1.135 
1.099 
1.066 
1.036 
1.009 
0.983 
0.960 
0.938 
0.917 
0.898 

Table 6.8 (Continued) 

t = 5  t = 6  t = 7  - - - 
1 - p  1-13 1 - P  

r $7 .8 .9 .7 .8 .9 .7 .8 .9 

5.490 
3.562 
2.856 
2.457 
2.191 
1.997 
1.848 
1.728 
1.628 
1.544 
1.472 
1.409 
1.354 
1.305 
1.261 
1.221 
1.184 
1.151 
1.120 
1.092 
1.065 
1.041 
1.018 
0.997 

6.333 
4.065 
3.251 
2.795 
2.492 
2.271 
2.100 
1.963 
1.850 
1.755 
1.673 
1.602 
1.539 
1.483 
1.432 
1.387 
1.345 
1.307 
1.273 
1.240 
1.210 
1.183 
1.157 
1.132 

4.922 
3.283 
2.650 
2.287 
2.042 
1.863 
1.725 
1.613 
1.521 
1.443 
1.376 
1.317 
1.266 
1.220 
1.178 
1.141 
1.107 
1.076 
1.047 
1.021 
0.996 
0.973 
0.952 
0.932 

5.505 
3.647 
2.940 
2.535 
2.264 
2.065 
1.91 1 
1.787 
1.685 
1.599 
1.524 
1.459 
1.402 
1.35 1 
1.306 
1.264 
1.226 
1.192 
1.160 
1.131 
1.104 
1.078 
1.055 
1.033 

6.317 
4.149 
3.337 
2.876 
2.567 
2.341 
2.166 
2.026 
1.910 
1.812 
1.727 
1.654 
1.589 
1.53 1 
1.479 
1.433 
1.390 
1.35 1 
1.315 
1.282 
1.25 1 
1.222 
1.195 
1.170 

4.963 
3.358 
2.721 
2.352 
2.102 
1.919 
1.777 
1.662 
1.568 
1.488 
1.419 
1.358 
1.305 
1.258 
1.216 
1.177 
1.142 
1.110 
1.081 
1.053 
1.028 
1.004 
0.982 
0.962 

5.534 
3.723 
3.013 
2.602 
2.326 
2.123 
1.965 
1.839 
1.734 
1.645 
1.569 
1 SO2 
1.444 
1.391 
1.344 
1.302 
1.263 
1.228 
1.195 
1.165 
1.137 
1.111 
1.086 
1.064 

6.327 
4.224 
3.412 
2.945 
2.632 
2.401 
2.223 
2.080 
1.961 
1.861 
1.774 
1.699 
1.633 
1.573 
1.520 
1.472 
1.428 
1.388 
1.351 
1.317 
1.285 
1.256 
1.228 
1.203 
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Table 6.8 (Continued) 

t = 8  t = 9  t = 10 
1 - 3  1 - 3  1-3 
- - 

r 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

- 
.7 .8 .9 .7 .8 

5.009 
3.426 
2.784 
2.409 
2.155 
1.968 
1.823 
1.706 
1.609 
1.527 
1.457 
1.395 
1.340 
1.292 
1.248 
1.209 
1.173 
1.140 
1.110 
1.082 
1.056 
1.032 
1.009 
0.988 

5.572 6.350 
3.791 4.293 
3.078 3.479 
2.662 3.008 
2.381 2.689 
2.174 2.455 
2.014 2.274 
1.884 2.128 
1.777 2.006 
1.687 1.904 
1.609 1.816 
1.540 1.739 
1.480 1.671 
1.427 1.611 
1.379 1.556 
1.335 1.507 
1.295 1.462 
1.259 1.421 
1.226 1.384 
1.195 1.349 
1.166 1.316 
1.139 1.286 
1.114 1.258 
1.091 1.232 

5.056 5.613 
3.488 3.854 
2.841 3.136 
2.461 2.716 
2.203 2.431 
2.013 2.221 
1.865 2.057 
1.746 1.926 
1.647 1.816 
1.563 1.724 
1.491 1.644 
1.428 1.575 
1.372 1.513 
1.323 1.459 
1.278 1.410 
1.238 1.365 
1.201 1.325 
1.167 1.288 
1.136 1.253 
1.108 1.222 
1.081 1.193 
1.057 1.165 
1.033 1.140 
1.012 1.116 

.9 

6.382 
4.356 
3.540 
3.064 
2.741 
2.504 
2.319 
2.171 
2.048 
1.943 
1.853 
1.775 
1.706 
1.644 
1.589 
1.539 
1.493 
1.45 1 
1.413 
1.377 
1.344 
1.313 
1.285 
1.258 

.7 .8 

5.104 
3.545 
2.893 
2.509 
2.247 
2.054 
1.903 
1.782 
1.68 1 
1.596 
1.522 
1.458 
1.401 
1.35 1 
1.305 
1.264 
1.227 
1.192 
1.161 
1.131 
1.104 
1.079 
1.056 
1.033 

5.657 
3.913 
3.191 
2.766 
2.477 
2.263 
2.097 
1.963 
1.852 
1.758 
1.677 
1.606 
1 S44 
1.488 
1.438 
1.393 
1.35 1 
1.3 14 
1.279 
1.247 
1.217 
1.189 
1.163 
1.139 

.9 

6.419 
4.416 
3.596 
3.116 
2.789 
2.548 
2.361 
2.210 
2.085 
1.979 
1.888 
1.808 
1.738 
1.675 
1.619 
1.568 
1.52 1 
1.479 
1.440 
1.403 
1.370 
1.338 
1.309 
1.282 
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Table 6.8 (Continued) 

t = l l  t = 13 t = 15 
1 - 3  1 - 3  1 - 3  

r 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

- 
.7 .8 .9 .7 .8 

5.152 5.702 
3.599 3.968 
2.942 3.241 
2.553 2.812 
2.288 2.519 
2.091 2.303 
1.939 2.134 
1.815 1.998 
1.713 1.885 
1.626 1.790 
1.551 1.707 
1.486 1.635 
1.428 
1.376 
1.330 
1.288 
1.250 
1.215 
1.183 
1.153 
1.126 
1.100 
1.076 
1.053 

,572 
.515 
.464 
.418 
.376 
.338 

6.458 
4.472 
3.649 
3.164 
2.834 
2.590 
2.400 
2.247 
2.120 
2.012 
1.920 
1.839 
,767 
.704 
.646 
,595 
.547 
SO4 

.302 1.464 

.270 1.427 

.239 1.393 

.211 1.361 

.184 1.332 
,160 1.304 

.245 

.697 

.030 

.633 

.361 

.160 

.002 
'875 
.770 
.680 
.603 
.536 
.476 
.423 
.375 
.332 
.293 
.257 
.223 
.193 
.164 
,138 
.113 
.090 

5.792 
4.069 
3.333 
2.895 
2.596 
2.374 
2.201 
2.061 
1.945 
1.847 
1.762 
1.688 
1.622 
1,564 
1.512 
1.464 
1.421 
1.38 1 
1.345 
1.311 
1.279 
1.250 
1.223 
1.197 

.9 

6.541 
4.576 
3.744 
3.25 1 
2.914 
2.665 
2.470 
2.313 
2.183 
2.073 
1.977 
1.894 
1.821 
1.755 
1.696 
1.643 
1.594 
1.550 
1.509 
1.471 
1.436 
1.403 
1.373 
1.344 

.7 .8 .9 

5.334 
3.785 
3.109 
2.705 
2.426 
2.220 
2.059 
1.929 
1.820 
1.728 
1.649 
1.580 
1.519 
1.464 
1.415 
1.371 
1.330 
1.293 
1.259 
1.228 
1.198 
1.171 
1.145 
1.122 

5.879 
4.161 
3.415 
2.970 
2.664 
2.437 
2.260 
2.1 17 
1.998 
1.897 
1.810 
1.734 
1.667 
1.607 
1.554 
1.505 
1.460 
1.420 
1.382 
1.348 
1.315 
1.285 
1.257 
1.231 

6.625 
4.670 
3.830 
3.329 
2.986 
2.732 
2.533 
2.372 
2.239 
2.126 
2.029 
1.944 
1.868 
1.801 
1.741 
1.686 
1.636 
1.59 1 
1.549 
1.510 
1.474 
1.440 
1.409 
1.379 
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Table 6.8 (Continued) 

t = 20 t = 25 t = 30 

1 - 3  1 - P  1 - P  

r .7 .8 .9 .7 .8 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
- 

5.539 
3.977 
3.278 
2.856 
2.565 
2.349 
2.179 
2.042 
1.928 
1.831 
1.747 
1.674 
1.610 
1.552 
1 SO0 
1.453 
1.410 
1.371 
1.335 
1.302 
1.271 
1.242 
1.215 
1.189 

6.086 
4.359 
3.592 
3.129 
2.810 
2.572 
2.386 
2.236 
2.111 
2.005 
1.913 
1.833 
1.763 
1.700 
1.643 
1.591 
1.544 
1 SO2 
1.462 
1.425 
1.391 
1.360 
1.330 
1.302 

6.829 
4.877 
4.015 
3.497 
3.139 
2.874 
2.666 
2.498 
2.359 
2.240 
2.138 
2.048 
1.969 
1.899 
1.835 
1.778 
1.725 
1.677 
1.633 
1.592 
1.554 
1.519 
1.486 
1.455 

5.722 
4.138 
3.419 
2.983 
2.681 
2.455 
2.279 
2.136 
2.017 
1.916 
1.829 
1.752 
1.685 
1.625 
1.571 
1.521 
1.477 
1.436 
1.398 
1.363 
1.33 1 
1.300 
1.272 
1.246 

6.272 
4.527 
3.739 
3.261 
2.93 1 
2.684 
2.491 
2.335 
2.205 
2.094 
1.999 
1.916 
1.842 
1.776 
1.717 
1.663 
1.614 
1.569 
1.528 
1.490 
1.454 
1.421 
1.390 
1.361 

.9 

7.018 
5.053 
4.171 
3.637 
3.268 
2.993 
2.777 
2.603 
2.458 
2.335 
2.228 
2.135 
2.053 
1.980 
1.914 
1.854 
1.799 
1.749 
1.703 
1.661 
1.621 
1.584 
1.550 
1.518 

.7 

5.886 
4.279 
3.542 
3.092 
2.780 
2.548 
2.365 
2.217 
2.094 
1.989 
1.899 
1.820 
1.750 
1.687 
1.631 
1.580 
1.534 
1.491 
1.452 
1.416 
1.382 
1.351 
1.321 
1.294 

.8 .9 

6.441 
4.674 
3.868 
3.376 
3.036 
2.781 
2.582 
2.420 
2.286 
2.171 
2.073 
1.986 
1.910 
1.842 
1.78 1 
1.725 
1.674 
1.628 
1.585 
1.545 
1 SO9 
1.474 
1.442 
1.412 

7.191 
5.208 
4.307 
3.758 
3.379 
3.095 
2.874 
2.694 
2.544 
2.417 
2.307 
2.21 1 
2.126 
2.050 
1.98 1 
1.920 
1.863 
1.811 
1.764 
1.720 
1.679 
1.641 
1.605 
1.572 

*Reproduced from K. 0. Bowman and M. A. Kastenbaum, “Sample size requirement: Sin- 
gle and double classification experiments” in Selected Tables in Mathematical Statistics, 
Vol. 3 (1975), by permission from the authors and the American Mathematical Society. 
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Table 6.9 Number of Replications in CRD 

I A* 

treatment, for example the control treatment. Although preliminary studies are usually 
rather small, they should be sufficiently large to get a reliable estimate of a:, that is, an 
estimate based on a sufficient number of degrees of freedom. 

6.9 SUBSAMPLING IN A CRD 

As we have pointed out earlier (see also Section 2.3) ,  a careful distinction must be 
made between experimental units (EU) and observational (sampling) units (OU). Until 
now we have considered in this chapter the situation where EUs and OUs are identical. 
One consequence of this situation is that even though in the formulation of a linear 
model for observations from a CRD we distinguish between experimental error ( E , ~ )  

and observational error ( q z j ) ,  we cannot separate the two error terms in the analysis 
and hence we combine them usually into one error term ( e z j ) .  There are, however, 
situations where EUs and OUs are not identical. We refer to the example in Section 2.3, 
where a class of students is the EU and the individual students are the OUs. This 
situation is generally referred to as a CRD with subsampling. 

6.9.1 Subsampling Model 

Suppose then we have t treatments, each replicated T’ times, and each EU has n OUs, 
that is, n observations are obtained from each EU. An extension of model (6.19) can 
then be written as 

y z j k  = I-1 + Tz + E z j  + V z j k  (6.46) 

(i = 1.2 ,  . . . . t :  j = 1,2. . . . , T ’ :  k = 1 , 2 .  . . . , n)  where E , ~  represents the experimen- 
tal error and q z j k  the observational error. According to our convention, we treat the E , ~  

as i.i.d. (0.0:) and the q z 3 k  as i.i.d. (0. CT;). We note that 

2 2 2  var(yijk) = gE + on = o, 

just as before except that we can now separate the two variance components, or rather 
their estimates. This becomes obvious from the ANOVA table (see Table 6.1 1) asso- 
ciated with the linear model (6.46) which in linear model theory is referred to as a 
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Table 6.10 Determination of Number of Replications 

a. ) Input Statements : 

proc power; 
onewayanova test=overall 
groupmeans = -.51 01 .5 
stddev = 1 
npergroup = . 
power = .9 
alpha = .05; 
run; 

b.) Output: 

The SAS System 

The POWER Procedure 
Overall F Test for One-way ANOVA 

Fixed Scenario Elements 

Method Exact 
Alpha 0.05 
Group Means -0.5 0 0.5 
Standard Deviation 1 
Nominal Power 0.9 

Computed N Per Group 

Actual N Per 
Power Group 

0.908 27 
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two-fold nested classification: the EUs are nested within the treatments and the OUs 
are nested within the EUs (see also Section 4.12 for the definition of a nested classifi- 
cation). The ANOVA table can be obtained easily from the following identity 

Yajk  = t . . . + (pz - k ) + (yzj - gz ) + (kajli - kzj ) 

mimicking model (6.46) and proceeding along the same lines as indicated in Sec- 
tion 6.4. 

6.9.2 Inferences with Subsampling 

It follows from Table 6.11 that in order to test the null hypothesis of no treatment 
differences we use the F-test (again, as an approximation to the randomization test) 

(6.47) 

with t - 1 and t(r’ - 1) d.f. Also, as pointed out earlier, and as is obvious from the 
E(MS) in Table 6.1 1, the experimental and observational error variance components 
can be estimated separately, namely 

6: = MS(0E)  (6.48) 

and 
6: = [MS(EE) - MS(OE)]/n. (6.49) 

Since the use of several observations per EU, that is, subsampling, does not con- 
stitute replication of treatments, and since the d.f. for the F-test (6.47) are determined 
by t and T’ and not by n, we may ask: What are the benefits that arise from subsam- 
pling? We have already pointed out one benefit, namely the separation of the estimates 
for experimental and observational error variance components. This allows us a closer 
look at our experimental and measurement techniques or rather the quality of these 
techniques expressed in terms of their variability. If we find, for example, that 6; is 
unreasonably large, we may try to improve the reliability of our measurement process; 
or if 6: is quite large, we may take another look at the EUs and their “homogeneity” 
and decide that we could reduce the experimental error by using supplementary infor- 
mation (see Chapter 8) or another design such as a randomized complete block design 
(see Chapter 9). Reduction of error, and by that we mean reduction of c ~ f  = 0;” + c~;, 
is an important aspect of experimental design. 

6.9.3 Comparison of CRDs without and with Subsampling 

Another benefit of subsampling is that, even though it is not a substitute for replication, 
it may nevertheless lead to a reduction in the number of replications for the treatments, 
compared to a CRD without subsampling. 
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We have seen in Section 6.8 that the number of replications r required may be 
quite large, in fact larger than is possible for practical and economical purposes. We 
may ask: How can subsampling be of some help? Suppose we can choose between two 
situations: 

Plan I: CRD with r replications and no subsampling, that is, r’ = r ,  n = 1. 

Plan 11: CRD with T’ replications and subsampling of n > 1 OUs per EU with T’ < r.  

In plan I the F-test is based on t ( r  - 1) d.f. in the denominator and the noncentrality 
uarameter is 

r C r,? 
X I  = 

2(ff,2 + ff;) (6.50) 

whereas for plan I1 the F-test is based on t ( r ’  - 1) d.f. in the denominator and the 
noncentrality parameter is 

(6.51) 

Since the power of the F-test increases with the d.f. and the noncentrality parameter, 
plan I1 can be better than plan I only if XII > XI since t(r’ - 1) < t ( r  - 1). Exactly 
what this relationship should be is hard to tell in general since this depends obviously 
on the values of r ,  r’, n, a:, 0; in a complex way. One way to look at this somewhat 
constructively is to compare var(jji,, - j j i r , . ) ,  that is, the variance of a simple treatment 
comparison, for both situations. Specifically, this variance for plans I and I1 is given by 

= 2  (2 + $,  

(6.52) 

(6.53) 

respectively. One of the aims of experimental design is to reduce var(jjl , - j j t / . . )  
as much as possible. Expression (6.53) shows clearly that this cannot be done by 
increasing n alone; that reduces only one component and usually the less important 
one at that. We, therefore, have to consider both r’ and n carefully in our choice of the 
design. A useful relationship between r ,  r’, n can be obtained by equating (6.52) and 
(6.53) and letting 0; = 60:. We find then that 

or 

r6 
n =  

r ’ ( l+  6) - T 

r(S + n) r’ = ~ 

n(6 + 1) ‘ 

(6.54) 

(6.55) 

The way we may use these relationships is as follows: 
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(i> 

(ii) 

(iii) 

(iv) 
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Based on an appropriate choice of A* [see (6.45)], find r from the Bowman and 
Kastenbaum (1975) tables (see Table 6.8). We note that A* does not depend on 
the choice of the design, that is, the CRD without or with subsampling; in either 
case ne = (0: + 
choose an r’ in the neighborhood of r with r’ < r ;  

specify a value for 6 based on empirical or theoretical evidence; 

use (6.54) to determine an appropriate n, rounding up to integer values. 

We illustrate this procedure with the following example. 

EXAMPLE 6.7: Suppose t = 5, a = .05, 1 - 3 = .80, A. = 1.50. From Table 6.8 
we find r = 12. For 6 = .50, .75, 1.00 the possible choices of r’ and n are given in 
Table 6.12. 0 

The results of Table 6.12 show, that in general, 

(i) we only have a limited number of choices for r’; 

(ii) as r’ decreases, n increases rapidly; 

(iii) as 6 increases, more options for r’ are available; 

(iv) the total number of observations, tr’n, for the CRD with subsampling is always 
considerably larger than the total numbers of observations, tr, for the CRD with- 
out subsampling. 

The important point of this whole discussion is that we must carefully evaluate 
our options before embarking on an experiment, taking the investigator’s aims, the 
availability of experimental material, and limitation of resources into account. Only 
then can we avoid major disasters at the end of the experiment. 

6.10 TRANSFORMATIONS 

An important aspect of the analysis of experimental data is that of the scale of measure- 
ment. Problems can arise because of reasons mentioned below, namely nonadditivity 
of unit and treatment effects and nonconstancy of variances. Both phenomena are pos- 
sibly related and may be resolved by transformation of the data to a more appropriate 
scale. 

6.10.1 Nonadditivity in the General Sense 

The reader will have noted that throughout we have made critical use of the idea of 
additivity of treatment contribution and unit contribution [see (6.3) and (6.16)]. This 
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Table 6.12 Numbers of Replications and Size of Subsamples for 
r = 1 2  

6 = .50 6 = .75 6 = 1.00 

r' n r' n r' n 

11 2 11 2 11 2 
10 2 10 2 10 2 
9 4 9 3 9 2 

8 5 8 3 
7 36 7 6 

in essence amounts to a choice of scale of measurement. For example, if we have unit- 
treatment additivity for f i , that is, = T, + u k ,  then we obviously do not have 
additivity for 

T,k = T," + 2T,I;I, + u;l'. 

There has been extreme negligence with regard to this aspect of experimental inference. 
The problem was addressed by Neyman et al. (1935) and McCarthy (1937), but never 
by Fisher, which led to angry disagreements between Neyman and Fisher in the 1930s. 
Kempthorne (1952, Chapter 8) addressed this problem, but mainly in the context of 
the randomized complete block design. It is intrinsic in analyses of experimental data 
that additivity holds; otherwise different experiments will lead to the existence of in- 
teraction between experiments and treatments. It is, of course, not possible to establish 
for which scale of measurement additivity holds, but it is plausible to associate nonad- 
ditivity with nonconstancy of variances, and that can often be removed by a suitable 
transformation of the observations. 

6.10.2 Nonconstancy of Variances 

An essential aspect of the analysis of data from a CRD using model (6.19) or (6.46) is 
the constancy of variance of the observations. In general, this is not an unreasonable 
assumption. There exist, however, situations where this assumption is clearly not true. 
For example, in an experiment to compare different nutrients with respect to germi- 
nation rate of certain seeds we have n seeds in each pot (EU) and for each seed the 
observation is y = 1 if the seed germinates and y = 0 if it does not germinate. If for 
the ith treatment the probability (rate) for germination is P,, then obviously 
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Hence if there are differences among the treatments, then we do not have constancy 
of variances. This is an example where the variance is a function of the mean of the 
observations. More generally we can express this as follows. If y is the observation 
with E(y )  = p * ,  we then write 

v a r b )  = S 2 ( P * ) .  (6.56) 

where g ( p * )  is some function of p* (we note here that in our case p* = + ~i if 
the observation y is obtained for the ith treatment and that for this reason the g ( p * )  in 
(6.56) are possibly different). To equalize or stabilize the variance across treatments 
we use a transformation of the observations y, say f ( y ) ,  such that 

(6.57) 2 var[f(y)] = constant = c , say. 

6.10.3 Choice of Transformation 

To determine a suitable transformation we use the Taylor series expansion of f ( y )  
around 1-1- (in the statistical literature this is also referred to as the method of statis- 
tical differentials or the delta method) and write 

f ( y )  f(p") + f'(p*)(y - p * )  +remainder (6.58) 

Taking the expected value of both sides of (6.58) gives 

E[f(Y)l = f(P*) 
and hence, using (6.56) and (6.58), 

(6.59) 

It follows then from (6.57) and (6.59) that 

(6.60) 

For observations for which (6.56) holds (at least approximately) because of theoreti- 
cal considerations or because of empirical evidence (by plotting the residuals, for ex- 
ample), we can then determine an appropriate transformation f ( y )  from (6.60). Ex- 
amples of some well-known transformations (see Bartlett, 1947; Kempthorne, 1952, 
Section 8.5) are given in Table 6.13. 
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It is of course, obvious from (6.58) and (6.59) that the transformations given in 
Table 6.13 will not achieve complete constancy of variance. They serve, however, as 
basic transformations and are quite satisfactory from a practical point of view even if 
the form of g ( p * )  is not entirely correct. Modifications to some of the transformations 
in Table 6.13 have been proposed to enhance their performance, that is, come closer to 
achieving constancy. Freeman and Tukey (1950) proposed to replace transformation 1 
in Table 6.13 for n p *  3 1 by 

with var[ f (g)] 2 1, and transformation 4 for p* > 1 by 

f ( y )  = { arcsin/% + a r c s i n d z }  Y J - 1  

6.10.4 Power Transformations 

For situations where there does not necessarily exist a relationship between the mean 
and the variance as discussed in the previous section, Box and Cox (1964) have pro- 
posed a parametric family of transformations: 

(6.6 1) 

Because of the form of the transformations (6.61) they are also referred to as power 
transformations. The general idea here is to estimate X from the data and then use 
y ( i )  as the actual transformation, where i is the estimate of A. Since the scale of the 
transformed observation depends on A, that is, i, Box and Cox (1964) suggested to use 
the normalized transformation 

.(A) = (yA - l ) / ( X p ) ( X  # 0) 
z ( 0 )  = YlogQ 

instead, where 4: is the geometric mean of the observations y. 
Since the primary objective of the transformations (6.61) is to achieve normality the 

estimator for X is obtained by assuming a multivariate normal distribution for y(X) with 
constant variance, the secondary objective, for a “simple” linear model, the tertiary 
objective. With these assumptions, that is, objectives, 1 can then be obtained using 
the theory of maximum likelihood. Also, approximate confidence limits for X can be 
obtained giving the user a wider choice for i which may be helpful in interpreting 
the transformation, that is, rather than using, for example, X = -.9 a more suitable, 
and perhaps plausible, choice may be to use i = -1. As normality is not a crucial 
assumption in our discussions, we shall not pursue this topic further but refer the reader 
to the Box and Cox (1964) results. 
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6.11 EXAMPLES USING SAS@ 

The aim of this chapter is to explain and describe the nature, philosophy, and properties 
of the CRD together with the underlying linear model and the associated analysis. The 
reader will have noticed that we did not pay any attention to purely computational is- 
sues. The reason for this is, of course, that statistical packages are available to perform 
the analysis conveniently and without any difficulty. We shall not mention the various 
computer packages available (their number rises almost daily) as every user has his or 
her favorite. Instead we shall present some examples and make some comments about 
the analysis using the Statistical Analysis System (SAS) (SAS Institute, Inc., 2002- 
2003) as a representative of many suitable programs. It is assumed that the reader has 
some familiarity with the fundamentals of SAS. 

EXAMPLE 6.8: Consider an experiment to compare the efficiency of five different 
types of gasoline, measured in miles/gallon. Ten cars, all of the same make and model, 
are available. Each car is randomly assigned a particular type of gasoline such that 
each type is assigned to two cars. Each car is driven a specified route and the gas 
consumption, converted to miles/gallon, is recorded. 

This is a CRD with t = 5 treatments and T = 2 replications. Each car is the EU 
and OU. 

The analysis is performed using SAS PROC GLM. The input statements are given 
in Table 6.14a and the output is given in Table 6.14b. 

We comment briefly on some aspects of the output: 

(i) It is useful to have the data set printed out, since it provides an easy and con- 
venient way to detect obvious typographical errors that may have occurred in 
the data recording and/or input (we note here that in the following we may not 
always adhere to this suggestion in order to conserve space). 

(ii) The ANOVA table is of the form given in Table 6.2. For the CRD the Model SS 
and the Brand Type I and Type I11 SS are identical. 

(iii) The P-value of 0.0049 indicates that there are differences among the brands of 
gasoline. 

(iv) The brand least squares means are identical to the means. The P-values given 

0 
here are of no interest as they test Hot : ,u + r, = O ( i  = 1, 2, . . ., 5) .  

EXAMPLE 6.9: As an extension of the experiment described in Example 6.8 we con- 
sider now the situation where each car is driven three times and a measurement is 
obtained after each drive. We thus have a CRD with subsampling, the drives represent- 
ing the subsamples. More precisely we then have t = 5, T’ = 2 ,  n = 3.  The data 
are provided in Table 6.15a together with the SAS input statements using, mainly for 
purposes of comparison, SAS PROC GLM and SAS PROC MIXED. The output for 
both procedures is given in Table 6.15b. 
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Table 6.14 Data Analysis for CRD 

a.) inpuc StaKements: 

data crdgas; 
input brand miles @ @ ;  
datalines; 
1 25.8 1 23.9 
2 28.5 2 27.9 
3 22.3 3 24.0 
4 29.5 4 28.1 
5 26.0 5 25.8 

run: 

proc print data=crdgas; 
titlel 'DATA FOR CRD (t=5, r=2)'; 
run; 

proc glm data=crdgas; 
class brand; 
mode 1 mi le s=br and; 
lsmeans brand/stderr; 
titlel 'ANALYSIS OF CRD'; 
run; 

b. ) 3atp;lt : 

DATA FOR CRD (t=5, r=2) 

Obs brand miles 

8 
9 
10 

I 25.8 
23.9 
28.5 
21.9 
22.3 
24.0 
29.5 
28.1 
26.0 
25.8 
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Table 6.14 (Continued) 

ANALYSIS OF CRD 

The GLM Procedure 

Class Level Information 

Class Levels Values 

brand 5 1 2 3 4 5  

Number of Observations Read 
Number of observations Used 

10 

Dependent Variable: miles 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 4 47.23400000 11.80850000 15.66 0.0049 

Error 5 3.77000000 0.75400000 

Corrected Total 9 5i.00400000 

R- S qua r e Coeff Var Root MSE miles Mean 

0.926084 3.309191 0.868332 26.24000 

Source 

b r a d  

Source 

brand 

DF Type I S S  Mean Square F Value Pr > F 

4 47.23400000 11.80850000 15.06 0.0049 

DF Type I11 SS Mean Square F Value Pr > F 

4 47.23400000 11.80850000 15.66 0.0049 

Least Squares Mear.s 

Standard 
brand miles LSMEAN Error Pr > It1 

1 24.8500000 0.6140033 <. 0001 
2 28.2000000 0.6140033 <.0001 
3 23.15CCC90 0.6140033 < .  CCC1 
4 29.1000000 0.6140033 <. 0001 
5 25.9000000 0.6140033 <.0001 
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We make the following comments concerning the output: 
For PROC GLM: 

(i) The model SS contains both SS(brand) and SS(car within brand), the latter rep- 
resenting - in a technical sense - the experimental error; 

(ii) both sums of squares in (i) are separated in the Type I and Type I11 ANOVAs; 

(iii) the F-value and the P-value for brand under Type I11 ANOVA are incorrect and 
should be disregarded (see (iv) below): 

(iv) the correct F- and P-values for brand are provided after specifying in the in- 
put statement that, according to Table 6.1 1, F=MS(brand)lMS(car (brand)) = 
33.1311.36 = 24.48 with P = .0018; 

(v) a statement has to be provided in the input to obtain the correct standard error for 
the least squares means such that, just as in (iv) above, MS(car(brand)) should 
be used as the appropriate MS(experimenta1 error). 

For PROC MIXED: 

(vi) In the input statement the source car(brand) is recognized as the experimental 
error by declaring the effect as a random effect; 

(vii) as a consequence of the statement in (vi) above estimates for 0: and 0; will be 
obtained. The estimation method used is, by default, REML (REsidual Max- 
imum Likelihood) (for details about REML see Section 11.1.11.2). We obtain 
6: = .39 and 6; = .19. For balanced data the REML estimates are the same as 
those given in (6.49) and (6.48), respectively; 

(viii) the test for no differences among brands is now performed correctly without 
further input. The same holds for the standard errors of the least squares means; 

(ix) the above comments show that PROC MIXED appears to be the preferred method. 
Only if we like to obtain the ANOVA table as given in Table 6.11 should we use 
PROC GLM. 0 

6.12 EXERCISES 

6.1 Consider the following results from a CRD with t = 2 treatments and r = 4 
replications for each treatment: 

EU # 1 2 3 4 5 6 7 8  

Response 7 2 1 6 4 8 10 4 
Treatment 2 1 1 1 2 2 2 1 

(i) Using the ratio MS(T)IMS(E) as the test criterion perform the randomiza- 
tion test for Ho : TI = TZ.  
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Table 6.15 Data Analysis for CRD with Subsampling 

a.) Input Statements: 

d a t a  mileage; 
inpuE brand car miles @ @ ;  
dat a1 ines ; 
1 1 25.8 1 1 25.6 1 1 26.0 1 2 23.9 1 2 24.2 1 2 23.5 
2 1 28.5 2 1 28.0 2 1 28.4 2 2 27.9 2 2 28.1 2 2 28.4 
3 1 22.3 3 1 22.7 3 1 23.0 3 2 24.0 3 2 23.1 3 2 23.5 
4 1 29.5 4 1 27.5 4 1 29.1 4 2 25.7 4 2 29.0 4 2 28.8 
5 1 20.0 5 1 25.7 5 1 26.1 5 2 25.8 5 2 25.6 5 2 25.3 

run; 

proc gln data=mileage; 
class brand car; 
model rniles=brand caribrand); 
test H=brand E=car (brand) ; 
lsmeans brand/stderr E=car(brand); 

title; ‘ANALYSIS OF CRD WISUBSAMPLING‘; 
t~tle2 ’USING P2OC GLI.1’; 
run; 

proc mixed data=mileage; 
class brand car; 
model miles=brand; 
random car (brand) ; 
lsmeans brand; 
title2 ‘USING PROC MIXED’; 
r m ;  

b.) Output: 

ANALYSIS OF CRD W/SUBSAMPLING 
USING PROC GLM 

The SLM Procecicre 

Class Level Informat-on 

Class Levels Values 

brand 5 1 2 3 4 5  

car 2 1 2  

Number of Observations Read 30 
Number of Observations Used 30 
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Table 6.15 (Continued) 

Dependent V a r i a b l e :  mi les  

Source  DF 

Model 9 

E r r o r  20 

C o r r e c t e d  T o t a l  

R-Square 

0.973042 

Source  DF 

b r a n d  4 
c a r  ( b r a n d )  5 

Source  DF 

b rand  4 
c a r  ( b r a n d )  5 

Sum of 
Squa res  Mean Square  

140.0466667 15.5607407 

3.8800000 0.1940000 

29 143.9266667 

Coef f Var Root MSE 

1.683265 0.440454 

Type I SS Mean Square  

133.2433333 33.3108333 
6.8033333 1.3606667 

Type I11 SS Mean Square  

133.2433333 33.3108333 
6. a033333 1.3606667 

F Va lue  P r  > F 

80.21 <.COO1 

m i l e s  Mean 

26.16667 

F Value  P r  > F 

171.71 1.0001 
7.01 0.0006 

F Value  P r  > F 

171.71 <.0001 
7.01 0.0OC6 

Tests o f  Hypotheses  Using  t h e  Type I11 MS f o r  c a r ( b r a n d )  a s  an  E r r o r  T e r m  

Source  DF Type I11 SS Mean Square  F Value  P r  > F 

b r a n d  4 133.2433333 33.3108333 24.48 0.0018 

L e a s t  Squa res  Means 

c a r ( b r a n d )  a s  an E r r o r  T e r m  
S t a n d a r d  E r r o r s  and  P r o b a b i l i t i e s  C a l c u l a t e d  Using t h e  Type I11 MS f o r  

S t a n d a r d  
b r a n d  p i l e s  LSMEAN E r r o r  P r  > It1 

1 24.8333333 0.4762119 < .  0001 
2 28.2166667 0.4762119 < .  0001 
3 23.1000000 0.4762119 < .  0001 
4 28.7666667 0.4762119 <.0001 
5 25.9166667 0.4762119 <.0001 
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Table 6.15 (Continued) 

ANALYSIS GF CRD W/SUBSAMPLING 
USING PRGC MIXED 

The Mixed Procedure 

Model Information 

Data Set WGRK.MILEAGE 
Dependent Variable miles 
Covariance Structure Variance Components 
Estimation Method REML 
Residual Variance Method Profile 
Fixed Effects SE Method Model-Based 
Degrees of Freedom Method Containment 

Class Level Information 

Class Levels Values 

brand 5 1 2 3 4 5  
car 2 1 2  

Iteration History 

Iteration Evaluations -2 Res Log Like Criterion 

0 1 58.65095075 
1 48.64765549 0.00000000 

Convergence criteria met. 

Covariance Parameter 
Estimates 

Cov Parm Estimate 

car (brand) 0.3889 
Residual 0.1940 

Fit Statistics 

-2 Res Log Likelihood 
AIC (smaller is better) 
AICC (smaller is better) 
BIC (smaller is better) 

48.6 
52.6 
53.2 
53.3 
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Table 6.15 (Continued) 

Type 3 Tests  o f  Fixed E f f e c t s  

Nurn Den 
Z f f e c t  DF 3 F  F Value P r  > F 

brand 4 5 24.48 0.0019 

Least Squares Means 

Standard 
E f f e c t  oranc  Est imate  E r r o r  DF t Value Pr > It ,  

brand 1 24.8333 0.4762 5 52.15 <.OOOi 
bran6 2 28.2167 0.4762 5 59.25 <.0001 
brand 3 23.1000 0.4762 5 48.51 <.300i 
brand 4 29.7667 0.4762 5 60.41 <.0001 
hrand 5 25.9167 0.4762 5 54.42 < .  0001 

(ii) Compare the significance level achieved in (i) to that of the usual F-test. 

6.2 A researcher has done a preliminary study in the form of a CRD with subsam- 
pling to help him decide on the final design. He wants to compare five (5) treat- 
ments. In the preliminary study he has used two (2) experimental units for each 
treatment and two (2) observations per experimental unit. 

The partial ANOVA for the data from the preliminary study is given below: 

Source ss 
Treatments 43.58 
Expt. Error 55.00 
Sampling Error 30.00 

and the 5 treatment means are 10.00, 12.30, 11.80, 14.25, 13.56. 

In the final experiment the researcher wants to compare the same 5 treatments. 
He wants to use a CRD with or without subsampling. 

(i) Suppose he wants to detect, with probability .9, approximately the same 
difference between the best and worst treatment as observed in the study, 
using a test of size .05. Based on the information available from the pre- 
liminary study, how many replications does he need for a CRD without 
subsampling? 



6.12. EXERCISES 209 

(ii) Suppose the testing of hypotheses is not so important. He would like to 
consider possible CRDs with subsampling that achieve a variance of treat- 
ment comparisons no larger than the variance for the CRD obtained in (i). 
Give possible options of designs. 

6.3 An agronomist conducted a field trial to compare the relative effects of five par- 
ticular fertilizers on the yield of Trebi barley. Thirty homogeneous experimental 
plots are available and six were assigned at random to each fertilizer treatment. 
At harvest time, three sample quadrats were taken (at random) from each exper- 
imental plot and the yield was obtained for each of the 90 quadrats. 

(i) What is the name of the experimental design used? Give an appropriate 
model for analyzing the data from this experiment. 

(ii) The agronomist has consulted two “statisticians” for the analysis of the 
data. He wants to know whether there are differences among the fertilizer 
effects. He is confused by the three SAS printouts (see Tables 6.16 a, b, c) 
and he comes to you for help to find out which analysis is correct. Based on 
the information provided explain how an appropriate test should be carried 
out. 

(iii) What is the variance of a single observation [express as a formula based 
on your model statement in (i)] and how much of this variance is due to 
experimental error and to observational (sampling) error (use the numerical 
information provided). 

(iv) Give the standard error for a simple treatment comparison. 

6.4 A pharmaceutical company conducts an experiment to compare 5 drugs. 30 
animals are available for the trial. Each drug is injected into 6 randomly selected 
animals. All the animals are very similar. After an appropriate period of time 2 
blood samples are taken from each animal and duplicate analyses are made for 
each blood sample. The reading from each analysis represents the observation to 
be used for the statistical analysis of this experiment. 

(i) What kind of experimental design has been used? 

(ii) What feature does this design have which we have not encountered before? 

(iii) How many types of errors can you identify for this design? Give their 
names. 

(iv) Write out an appropriate model for this design. 

(v) Based upon this model, outline the ANOVA table, giving sources of varia- 
tion and degrees of freedom. 

there are no differences among the drugs. 
(vi) Using the ANOVA table. indicate how you would test the hypothesis that 
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6.5 For the CRD with t treatments, T’ replications per treatment and n observations 
per EU, show that 

Table 6.16 SAS Inputs and Outputs for Exercise 6.3 

a . )  SAS Code: 

p roc -g lm;  
c l a s s - f e r t ;  
model y = f e r t ;  
run ;  

SAS P r i n t o u t  (3A) : 

Genera l  L i n e a r  Models P r o c e d u r e  
C l a s s  Leve l  I n f o r m a t i o n  

Class  L e v e l s  Va lues  

FERT 5 1 2 3 4 5  

Number o f  o b s e r v a t i o n s  i n  d a t a  s e t  = 90 

Genera l  L i n e a r  Models P r o c e d u r e  

Dependent V a r i a b l e : - Y  
Sum of  Mean 

Source  9F Squares  Squa re  F Value  2 r  > F 

Model 4 65240.711 16310.178 242.72 0.0001 
E r r o r  85 5711.778 67.197 
C o r r e c t e d  T o t a l  89 70952.489 

R- S qua re C.V. Root MSE Y Mean 

0.919499 10.20988 8.1974 80.289 

Source  

FERT 

Source  

FERT 

DF Type I SS Mean Square  ? Value  P r  > F 

4 65240.711 16310.178 242.72 0.0001 

DF Type I11 S S  Mean Square  F Value  P r  > F 

4 65240.711 16310.178 242.72 0.0001 
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Table 6.16 (Continued) 

21 1 

b.) SAS Code: 

p r o c  glm; 
c l a s s e s  f e r t  r e p ;  
model y = f e r t  r e p  i f e r t )  ; 

r u n ;  

SAS P r i n t o u t :  

G e n e r a l  L i n e a r  Mode1s P r o c e d u r e  
Class Leve l  I n f o r m a t i o n  

C l a s s  L e v e l s  Va lues  

FERT 5 1 2 3 4 5  

REP 6 1 2 3 4 5 6  

Number o f  o b s e r v a t i o n s  i n  d a t a  s e t  = 90 

G e n e r a l  L i n e a r  Models P r o c e d u r e  

Dependent V a r i a b l e :  Y 

Source  DF Squa res  Squa re  F Va lue  
Sum o f  Mean 

Model 29 67139.822 2315.166 36.43 
E r r o r  60 3812.667 63.544 
C o r r e c t e d  T o t a l  89 70952.489 

Source  

FERT 
REP (FERT) 

Source  

FERT 
REP (FERT) 

R-Square 

0.946265 

DF 

4 
25 

DF 

4 
25 

C . V .  Root MSE 

9.928493 7.9715 

Type I SS Mean Square  F Va iue  

55240.711 16310.178 256.67 
1899.111 75.964 1.20 

Type I11 SS Mean S q u a r e  F Value  

65240.711 16310.178 256.67 
1899.111 75.964 1.20 

c . )  SAS Code: 

p r o c  glm; 
c l a s s e s  f e r t  r e p ;  
model y = f e r t  r e p ( f e r t ) ;  
t es t  h = f e r t  e = r e p ( f e r t ) ;  

run ;  

Pr > F 

0.0001 

Y Mean 

80.289 

P r  > F 

0.0001 
0.2811 

P r  > F 

0.0001 
0.2811 
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Table 6.16 (Continued) 

SAS P r i n t o u t :  

Gene ra l  L i n e a r  Models P r o c e d u r e  
C l a s s  Leve l  i n f o r m a t i o n  

C l a s s  L e v e l s  Va lues  

?ERT 5 1 2 3 4 5  

REP 6 1 2 3 4 5 6  

Number of o b s e r v a t i o n s  i n  data s e t  = 90 

Genera l  L i n e a r  Models P rocedure  

Dependent V a r i a b l e :  Y 

Source  DF Squa res  Squa re  
Sum of Mean 

Model 29 67139.822 2315.156 
E r r o r  60 3812.667 63.544 
C o r r e c t e d  T o t a l  89 70952.489 

R- S q,Ja r e  C . V .  Root MSE 

0.946265 9.928493 7.9715 

Source  DF Type I SS Mean Square  

FERT 4 65240.711 16310.178 
REP (FERT) 25 1899.111 75.964 

F Value  P r  > F 

36.43 0.0001 

Y Mean 

80.289 

F Value  P r  > F 

256.67 0.0001 
1.20 0.2811 

Source  DF Type 111 SS Mean Square  F Value  P r  > F 

FERT 4 65240.711 16310.178 256.67 0. 0001 
REP (FERT) 25 1899.111 75.964 1.20 0.281: 

Tests  of Hypotheses  c s i n g  Khe Type I11 MS f o r  REP (FERT) a s  an e r r o r  
cerm 

Source  3F Type I11 SS Mean Square  F Value  P r  > F 

FERT 4 65240.711 16310.178 214.71 0.0001 



CHAPTER 7 

Comparisons of Treatments 

7.1 INTRODUCTION 

We have mentioned earlier that the aim of any experiment is to compare treatments. 
One way to do this is in the context of the ANOVA by testing the hypothesis HO : TI = 

12 = . . = Tt = 0. In most situations, however, the result from such a test is not very 
informative. To arrive at the conclusion that there are differences among the treatments 
(typically associated with a small P-value) is generally no major surprise. The immedi- 
ate question then is: which treatments are different from each other, or how large is the 
difference between certain treatment effects, or is there a systematic pattern describing 
the magnitudes of treatment effects? As so often, the type of question(s) depends on 
the particular experiment and the kind of treatments used in the experiment. 

It is obviously impossible to anticipate all conceivable questions. There are, how- 
ever, certain kinds of comparisons that can be grouped into a number of categories 
based on the statistical methodology used to analyze such comparisons. We shall give 
a brief discussion of these methods in the context of the CRD, but the reader should 
have no difficulty adapting these methods to other designs, as described in later chap- 
ters, as well. 

- 

7.2 PREPLANNED COMPARISONS FOR 
QUALITATIVE TREATMENTS 

In many experiments the t treatments under investigation bear some relationship to 
each other which immediately suggests that certain comparisons are of more interest 
than others. These comparisons are indeed often the basis for the experiment. They are 
referred to as a priori comparisons or preplanned comparisons. 

213 
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7.2.1 Treatment Contrasts 

As an example consider the following experiment. We want to compare the effective- 
ness of two different pesticides, A and B say, both applied in two different forms: 
spray (A1 and B I )  and powder (A2 and B2). A control (that is, no pesticide), C say, 
is included in the experiment in order to establish any effectiveness of the pesticides at 
all. Thus we have altogether t = 5 treatments, C, Al , A2 B1, Bz, and each treatment 
is applied randomly to r more or less uniformly infested plots of land. The aim of the 
experiment and the “structure” of the treatments suggest the following comparisons: 

(i) control vs. pesticides, 

(ii) pesticide A vs. pesticide B, 

(iii) application A1 vs. A2, 

(iv) application B1 vs. B2, 

(v) spray vs. powder, 

(vi) A1 vs. B1. 

(vii) A2 vs. B2. 

Using model (6.22) for the observations from this experiment, we can express any 
of the comparisons above in terms of the treatment effects as 

( I  = 1 . 2 , .  . . . 7 ) ,  where the elz are constants such that C z c ~ z  = 0 for every 1 and the r, 
represent the treatment effects as indicated below: 

i 1 2 3 4 5  

Treatment C Al A2 B1 B2 

7.2.2 Orthogonal Contrasts 

The coefficients cli in (7.1) for the contrasts (i)-(vii) above are given in Table 7.1. A 
closer look at the coefficients for C1: C2, C3; C, reveals that 

z 

for 1,l‘ = 1 .2 .3 ,4  and 1 # 1‘. Any two contrasts, CI and Cl,, for which (7.2) is 
satisfied are called orthogonal contrasts. In this example then C1, Cz, C3, and C, are 
orthogonal contrasts and so are CI, Cs, Cg, and C7. Each of these two sets of contrasts 
are referred to as a complete set of orthogonal contrasts for the five treatments. 
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Table 7.1 Coefficients for Contrasts 

i 

Contrast 1 2 3 4 5 Divisor 

c1 4 -1 -1 -1 -1 rn 
c2 0 1 1 -1 -1 2 
c3 0 1 - 1  0 0 Jz 
c4 0 0 0 1 - 1  Jz 
c.5 0 1 -1 1 -1 2 

c6 0 1 0 - 1  0 Jz 
c7 0 0 1 0 - 1  Jz 

In general, for t  treatments there exist many (actually infinitely many) complete sets 
o f t  - 1 orthogonal contrasts each, but only few (if any) are useful for interpreting the 
results of the experiment. These are usually suggested by the structure of the treatments 
as in the example described above or as determined by the factorial structure of the 
treatments (see Chapter 11 and Chapter 11.7). 

7.2.3 Partitioning the Treatment Sum of Squares 

A special feature of orthogonal contrasts is that they can be incorporated easily in the 
ANOVA in the sense that the sums of squares for the individual contrasts in a complete 
set provide a partitioning of the treatment sum of squares, S S ( T )  in Table 6.1, into t - 1 
single d.f. sums of squares. To show this, consider the contrast Cl as given in (7.1). An 
estimator for CI is obviously 

i 

The sum of squares associated with Cl is then given by 

r 7 2  

We assume, without loss of generality, that C,cft = 1 for 1 = 1 . 2 ,  . . . . t - 1. We 
refer to such comparisons as standardized contrasts. These can be obtained by replac- 
ing the coefficient elz in (7.3) by cl*, = c l z / d m ,  for every i = 1, 2, . . ., t. We 
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then have C,(C~,)~ = 1 . For example, for the contrast coefficients in Table 7.1 the 
standardizing divisors are given in the last column of Table 7.1. For ease of notation 
we drop in the following the asterisk in c?,. 

Then (7.4) reduces to 
1 2  

or, if we write 

c; = (ell, c12, ‘ . . % C l t )  

y’ = (y1: y 2  3 . .  . . g t , )  

SS(C~) = rjc;y]’. 

and 

it follows that 

To show that 
t-1 

S S ( T )  = c SS(Cl) 
1=1 

(7.5) 

(7.6) 

we consider the following set o f t  orthogonal linear functions of y expressed in matrix 
notation as 

(7.7) 

that is, 
21 =c;y ( / = O . l  , . . .  > t - l )  

with 
1 1 ’  co=z3 

and 3 being a vector o f t  unity elements. It follows then that C’ is an orthogonal matrix, 
that is, 

c’c = I 

and hence 
c = (c’)-1. 

which implies that 
cc’ = I .  

We then have from (7.7) and (7.8) 
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Table 7.2 ANOVA for CRD with Orthogonal Contrasts 

Source d.f. ss E(MS) 

On the other hand, it follows from (7.7) that 

t - 1  t - 1  

z'z = c .I" = -y[c;y] '  

2 t - 1  

= 1 t [4 7. 
+ C [ c ; y ] 2  1=1 

= t g 2  + - y [ c / y ] 2  

1=1 

Equating the right-hand sides of (7.9) and (7.10) we obtain 

t - 1  

1=1 a 

(7.10) 

(7.11) 
z 

Multiplying both sides of (7.1 1) by r and making use of (7.5) we thus obtain (7.6) and 
hence Table 7.2. 

This result can be incorporated into the ANOVA table by amending Table 6.1 as 
given in Table 7.2. This shows that in order to test 

H0: C i T  = 0 

with T = ( T I .  T ~ .  . . . . T t ) ' ,  we use, as an approximation to the randomization test, the 
F-test 

(7.12) 

Alternatively, an approximate (1 - a )  100% confidence interval for C ~ T  is given by 

(7.13) 
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We conclude this section by emphasizing that, although the structure of the treat- 
ments often suggest a complete set of orthogonal contrasts, one should not insist on 
considering only orthogonal contrasts. Other contrasts, as long as they are preplanned, 
may be more informative for explaining the results from an experiment. 

7.3 ORTHOGONALITY AND ORTHOGONAL 
COMPARISONS 

Having discussed the concept of orthogonal comparisons for the equal replication CRD 
it seems appropriate and necessary to give some formal description of the basic ideas 
of and connection between orthogonality and orthogonal comparisons. 

Orthogonality is a concept that is usually and easily applied to vectors. Let z’ = 
( ~ 1 ~  z2,  . . . . z,) represent an m-vector. Linear forms in z may be represented by c:z 
where c: = (c ,~ .  c , ~ .  . . . , czm).  Two linear forms, ciz and ciz, are said to be orthogonal 
if tic, = 0, that is, if the vectors c1 and c:, are orthogonal vectors. 

This notion of orthogonality is used when we refer to orthogonal treatment contrasts 
as discussed in the previous section, for example, two contrasts, C ~ T  and C ~ T  with 
ci3 = ch3 = 0, are orthogonal if cic2 = 0. But these comparisons also bear on 
random variables, namely, when we consider the estimated comparisons. For this we 
need to consider comparisons of random variables. 

Let x’ = ( 2 1 ,  ~ 2 ,  . . . -2,) be random variables with variance-covariance matrix V. 
Let cix and ckx be linear functions of x, with c i3  = ck3 = 0. The two comparisons, 
cix and ckx, are said to be orthogonal if cov(cix, ckx) = 0, which is equivalent to 
ciVc2 = 0. The term orthogonal as used with random variables, z1 and z2 say, means 
that cov(zl.z2) = 0. It is unfortunate that the adjective orthogonal was taken over from 
the mathematics of inner product spaces to the lack of covariance of random variables 
(‘just as, indeed, the term independence was taken over and leads to confusion). 

Returning to estimated treatment comparisons, using observations from a CRD, 
we need to consider functions of random variables of the form ciy and cby, where 
y = (tl, p 2 , .  . . . p t ) ’ .  We have shown in Section 6.3 that the variance-covariance 
matrix for y, using (6.13) and (6.14), is given by 

for additivity in the strict sense, and 

v = -I(Gu 1 2  t ou 2 + oq) 2 - -33 1 1 2  Gu 

r N 

for additivity in the broad sense. It follows then immediately for the equal-replication 
CRD that if two treatment contrasts, C ~ T  and C ~ T ,  are orthogonal then the estimated 
contrasts, ciy and thy, are also orthogonal, that is, satisfy ciVc2 = 0. 



7.4. COMPARISONS FOR QUANTITATIVE TREATMENTS 219 

This result does, however, not hold for the unequal-replication CRD as considered 
in Section 6.7. The important change in V as given above is that (1lr)I has to be 
replaced by R-l ,  where 

R-' = 

It is then obvious that C ~ V C Z  # 0. 
The implications of these results are that for the equal-replication CRD the contrast 

SSs are orthogonal (see Table 7.21, but for the unequal-replication CRD they are not, 
that is, (7.6) does not hold. 

7.4 COMPARISONS FOR QUANTITATIVE 
TREATMENTS 

As mentioned earlier, orthogonal contrasts are often suggested a priori by the treatment 
structure. This should not, however, be taken as a general rule. Other preplanned (and 
hence nonorthogonal) comparisons may be more suitable for answering the investi- 
gator's questions. The only difference to the discussion above is that (7.6) does not 
hold, but tests of the form (7.12) and confidence interval estimation of the form (7.13) 
can still be carried out. The main point here is that the comparisons are preplanned 
in a meaningful way, that is, determined by the intent of the experiment and not by 
the outcome of the experiment, and that the number of such comparisons is generally 
small. 

7.4.1 Comparisons for Treatments with Equidistant 
Levels 

Another type of preplanned comparison arises if the treatments represent quantitative 
levels of some factor, for instance, increasing amounts of fertilizer. Rather than com- 
pare individual levels with each other, it is more informative to investigate whether 
there exist certain trends in response to the treatments, for example, whether the in- 
crease (decrease) is linear or whether there exists some curvature. 

Suppose 2 1 . 2 2 . .  . . . zt  represent the t levels such that 2 1  = 0.22 = d, 2 3  = 
2d.  . . . , zt  = ( t -  1)d with d > 0, that is, the levels are equidistant, with 1 = ( t - l ) d / 2 .  
Without loss of generality we may take d = 1 and obtain 

(7.14) 
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as the centered levels, with Ctzi = 0. We then consider the contrast 

(7.15) 

which is of the form (7.1) with C L ~  = z t / a .  The estimator for (7.15) is given by 

(7.16) 

Using the fact that Czi = 0 we recognize immediately that (7.16) is the estimate of the 
linear regression coefficient in the model 

tt = + 3m, + error 

with ZL', = z t / m ,  that is, = CL.  Alternatively, for the models 

Y,. = a + 3'2, + error (7.17) 

or 
gz. = a" + 3 * x Z  + error 

the estimator for 3" is 3' = C L / ~ .  Thus, in either case, CA is a measure of the 
linear increase (decrease) due to the increasing treatments. 

7.4.2 Use of Orthogonal Polynomials 

Model (7.17) may not describe adequately the relationship between treatments and 
responses. We may, for example, want to allow for curvature in the response by con- 
sidering a model of the form 

Yt .  = a 1. /31zt + &z,  2 + error. (7.18) 

This can be done by using the methods of regression analysis, that is, estimate a,  31, 3 2  

by the method of least squares (see Chapter 4). If the emphasis, however, is to find out 
whether curvature exists and of what kind it is, then it is more convenient to rewrite 
(7.18) in terms of so-called orthogonal polynomials as 

or, more generally, 
t - 1  

(7.19) 
1=0 
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Here the P/ (2,) are polynomials of degree I (1 = 0, I .  . . , . t - 1) such that 

t c 4 (ZL) = 0 ( 1  = 1 . 2 ,  . . . . t - 1) (7.20) 
i=l 

t 

(7.21) 

The Pl (2,) are, apart from a constant factor, Tchebycheff polynomials used in statistics 
first by Fisher (1921). Specifically, for 1 = 0. I ,  2, 3, 4 we have 

Po(%) = 1 

1 [ 2  112 
PZ(Zi) = A 1  zi - -(t - 1) 

1 1 
P3(z,) = A3 2; - -(t2 - 7 ) z ,  [ 20 

where the A1 are chosen such that the P / ( z 2 )  are positive or negative integers. These 
polynomials have been tabulated by, for example, Fisher and Yates (1957), Pearson 
and Hartley (1970), and Beyer (1991) for t = 3.4. . . ., and 1 = 2.3.4.5.6.  For 
t = 3 ,4 .5 .6 ,  the Pl(zL) are given in Table 7.3 (for 1 = 1, 2 .  3, 4 these values can be 
obtained by substituting the zz of (7.4) into the above expressions). 

The estimator for the regression coefficients nrl in (7.19) are obtained by the method 
of least squares as 

with 

(1 = 0.1 .2 .  . . . . t - 1) c P/ ( 2 2  11 
31 = 

2 

(7.22) 

(7.23) 

We can deduce easily, using (7.22) for 1 = 1 together with Pl(z i )  = Alzi, that 
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Since A1 a is a constant it follows then, of course, that 91, too, is a measure 
of the linear trend of the response variable. Just as y1 represents the linear trend or 
contrast, 7 2  represents the quadratic contrast, y3 the cubic contrast, and so on. One of 
the important properties of the formulation (7.19) in terms of orthogonal polynomials is 
that the estimates A/, are independent of the number of polynomials included in (7.19), 
for instance, -jl is the same whether (7.19) is a linear model or a quadratic model or a 
cubic model, and so on. 

7.4.3 Contrast Sums of Squares and the ANOVA 

Since the orthogonal polynomials represent the coefficients of a complete set of orthog- 
onal contrasts, it follows further that, as described earlier, this can be used to partition 
S S ( T )  into t - 1 single d.f. sums of squares associated with 71% y2 . . . . Tt-1, respec- 
tively. The sum of squares associated with nil. SS(y1) say, is 

(7.24) 
i 

( I  = 1 , 2 :  . . . , t - 1) using the rule for a single d.f. sum of squares. Then 

t-1 

S S ( T )  = c SS(y1). (7.25) 
1=1 

To investigate the trend of the treatment effects, we would typically fit a low order 
model first, then check for lack of fit (LOF), and, if necessary, add further terms. Sup- 
pose we fit first the model 

(7.26) 

with q < t - 1, then the ANOVA takes the form as given in Table 7.4, with 

0 

1=1 

Then 
M S ( L 0 F )  

4 - q - l . t ( r - 1 )  
= MS(E) 

(7.27) 

can be used to test whether (7.26) provides an adequate fit to the data. If the F-value in 
(7.27) is significant at a given level, then there is lack of fit and additional terms should 
be added to the model repeating the procedure just described. 

The method of fitting orthogonal polynomials is quite easy to carry out. It depends, 
however, heavily on the fact that the levels of the treatment factor are equidistant, be- 
cause this is the reason why orthogonal polynomials can be tabulated. For nonequidis- 
tant levels the method can be used also, except that one has to compute the polynomials 
sequentially, using the properties (7.20) and (7.21) (for a computational method see, for 
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Table 7.4 ANOVA for CRD Fitting Orthogonal Polynomials 

Source d.f. ss 
~ 

Treatments t - 1 S W )  
r̂ 1 1 W:1) 
22 1 s s ( 7 2  1 

I,? 1 SS(?,) .- 

Lack of fit t - q - 1  Difference = SS ( L O F )  
Error t ( r  - 1) W E )  

example, Narula, 1978). This is rather cumbersome and worthwhile only if the same 
experiment is being used repeatedly. It is for this reason that equidistant levels (actual 
levels or transformed levels such as log dose) should be used wherever possible. 

In concluding this section we should emphasize that fitting polynomials may not 
always be appropriate. One may, for example, be interested in finding an asymptote to 
the response curve and then a model of the form 

or some variation of it might be used. The important point is that the nature and aims 
of the experiment should provide guidance for the analysis (see Chapter 2). 

7.5 MULTIPLE COMPARISON 
PROCEDURES 

7.5.1 

It is rare that in a well thought out experiment the treatments do not have any struc- 
ture which would lead naturally to the types of comparisons discussed in Sections 7.2 
and 7.4 or Chapter 11. Occasionally, however, it may be desirable to make a large 
number of comparisons, for example, all possible pairwise comparisons, or compar- 
isons suggested by the data (data-snooping). Whether one talks in terms of hypothesis 
testing or interval estimation, great care must be taken to use correct inference proce- 
dures. The major problem here is the so-called multiplicity effect (Tukey, 1977) which 
may lead to too many significant tests if incorrect procedures are used. The problem 
revolves around the notions of comparisonwise error rate (CWE), familywise error 
rate (FWE), and per family error rate (PFE). Basically, the CWE is being used for 
situations discussed in Section 7.2, whereas the FWE or PFE are being controlled in 
the types of comparisons mentioned above. Both FWE and PFE take the number of 
comparisons to be made (these constitute the “family”), 1V say, into account. If we 

Multiple Comparisons and Error Rates 
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have t = 10 treatments, for example, we have N = ( y )  = 45 pairwise comparisons. 
The idea then is to control the error rate for this family rather than for each individual 
comparison, where error here refers to the Type I error in the context of hypothesis 
testing. The relationship between CWE and FWE can be expressed as (Hochberg and 
Tamhane, 1987; Westfall et al., 1999) 

1 - FWE = (1 - CWE)’” 

or 
FWE = 1 - (1 - CWE)”. (7.28) 

In order to achieve a certain FWE (say .lo), we can use (7.28) to determine the CWE 
to be used for each individual test. As an approximation for small CWE and not too 
large .V, we have 

FWE E K x CWE. (7.29) 

A number of multiple comparison procedures (MCPs), sometimes also referred to as 
post-hoc comparisons, have been developed which control the FWE either in the weak 
sense (under HO : rl = 7-2 = . . . = rt only) or in the strong sense (that is, under all 
configurations of the rz’s) (Hochberg and Tamhane, 1987). Most of these procedures 
have been available for some time and are widely used, but their acceptance is not 
universal. We, too, caution against their uncritical use but at the same time we feel that 
MCPs can play a useful role in data analysis. In what follows we describe briefly a few 
MCPs, but defer details to books on this subject such as Miller (1981), Hochberg and 
Tamhane (1987), Hsu (1996), Westfall et al. (1999). 

Although all MCPs test the same null hypothesis they use different methods for 
controlling the FWE. They also differ in their sensitivity to alternative hypotheses. 
For these reasons different MCPs applied to the same data may give different results. 
Studies have been undertaken to compare the different MCPs (see Carmer and Swan- 
son, 1973; Miller (1981); Stoline, 1981) but sometimes seemingly contradictory results 
make it difficult to give general recommendations which MCP to use in a given situa- 
tion. 

7.5.2 Least Significant Difference Test 

This test was first proposed by Fisher (1935) and is now often referred to as Fisher’s 
protected LSD test. It has two stages. At stage I we test Ho : r1 = 7-2 = . . = rt = 0 
by the F-test of size a.  If the F-test is nonsignificant, we terminate the analysis. If the 
F-test is significant, then at stage I1 we test each single comparison HO : r, = 7-,/ by an 
a-level t-test with t ( ~  - 1) d.f. 

7.5.3 Bonferroni t-Statistics 

This test is based on the Bonferroni inequality 

1 -FWE 2 1 - N x CWE. 
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Making use of (7.29), it uses a*-level t-tests with t ( r  - 1) d.f. for the individual tests 
H o :  ri = r,/ where 

Q* = a / N  

and a is the chosen W E .  Tables for the upper percentage point of the Bonferroni 
t-statistic, ta /2Ar , t (T- l )  are given by Miller (1981). 

7.5.4 Studentized Range Procedure 

This procedure was proposed by Tukey (1952, unpublished). To test the hypotheses 
H o :  r, = rzf(i # 2') we compare - Yz/,) with Qa.t,t(r-l)JW, where 
Qa.t,t(r-l) is the upper Q 100% point of the studentized range distribution for t inde- 
pendent, unit normal, random variables divided by the square root of an independent 
xz/u random variable with v = t ( r  - 1) d.f. If, for a given Q, 

(7.30a) 

then 7% and rit are considered to be different from each other. Tables for Qa,t , t (r- l )  

are given by e.g., Harter (1960), Hochberg and Tamhane (1987). 
The MCP described above has been extended by Kramer (1956) to accommodate 

unequal numbers of replications. This method is referred to as the Tukey-Kramer 
method. It simply replaces (7.30a) by 

(7.30b) 

where u = Cri - t .  
The test procedures given by (7.30a) and (7.30b) control the FWE at a given a.  It 

is then easy to see that simultaneous (1 - a )  100% confidence intervals for all compar- 
isons ri - rit can be obtained as 

7.5.5 Duncan's Multiple Range Test 

This test was developed by Duncan (1951, 1955) to specifically test all hypotheses 
HO : r, = r , ~  by considering different error rates depending on the range of the two 
corresponding treatment means Y, and Yz/ . If, among the ordered treatment means, 
Yz and Y t /  are p means apart, then an a,-level studentized range test is conducted 
comparing / j j z  - j j t !  I / v ' ~  with the critical value Qap, t , t (T- l ) ,  where 

Q p  = 1 - (1 - a)? 

We start by arranging the t treatment means in ascending order, say 



7.5. MULTIPLE COMPARISON PROCEDURES 221 

and compare grtl - Yrll with Qat , t , t ( r - l )  v‘-. If this difference is nonsignif- 
icant then all other differences are also nonsignificant; if the difference is significant, 
however, then ( t  - 1)-differences Qt] - @I and t[t-l~ - & l ~  are considered and com- 

pared with Qa,-, , t - l , t ( T - l )  d w .  This procedure is continued, reducing the 
critical value at each step, until no more differences can be declared significant. Tables 
for the critical values are given by Harter (1960) (see also Miller, 1981). 

7.5.6 Scheffh’s Procedure 

One of the most general MCPs is that proposed by Scheffd (1953) for judging all possi- 
ble contrasts in the analysis of variance setting. It is especially useful for data-snooping 
after the F-test for Ho : T~ = 72 = . . . = Tt has been found significant, because the 
FWE for all possible contrasts is equal to a,  the size of the F-test. 

To test the hypothesis 
t 

Ho:  c CZTZ = 0 
2 = 1  

for all (el. c2. . . . ~ ct) such that Cc, = 0, we compare 

with the critical value 

Alternatively, this procedure can be used to construct simultaneous (1 - a )  100% con- 
fidence intervals for all contrasts CC,T, in the form 

1 / 2 .  [( t  - 1)~1-a , t - l , t ( r - l )1  

7.5.7 Comparisons with a Control 

In some experiments the t treatments may consist of a control treatment and t - 1 what 
may be referred to as test treatments, and the aim of the experiment is to compare the 
test treatments against the control (see also Section 9.8.2 and 11.6.5). If treatment 1 is 
the control, then testing the hypotheses 

Ho: TI = T ,  ( i = 2 , 3  . . . . .  t )  

with FWE = Q can be achieved by a procedure due to Dunnett (1955, 1964). Rather 
than compare the usual t-statistic 

(7.31) 

against the critical value of the t-distribution, we compare (7.31) with the critical value 
lDla,t-l,t(T-l),p for two-sided tests and Da.t-l.t(r--l),p for one-sided tests. Tables 
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of these critical values are given by Hochberg and Tamhane (1987, Tables 5 and 4, 
respectively) using p = .5 (here p is the correlation between 81. - &, and 81, - &/.). 

So far we have discussed the CRD with the same number of replications for all 
treatments. The situation described above, that is, one control, t - 1 test treatments, is 
one where it may be advisable to have unequal numbers of replications for the treat- 
ments. Specifically, we may use r replications for the test treatments and r,(> r )  
replications for the control in order to estimate p + 7 1  as precisely as possible. For this 
case, the test procedure remains the same, except that the critical values change for two 
reasons: (i) The d.f. for MS(E)  are now v = r ,  - 1 + ( t  - 1)(r - l), and (ii) the 
correlation coefficient between g1, - jji, and - &! is now given by 

p*; = - < .3. 
r ,  + r 

Critical values lDla,t-l,v p-  and Da,t-l ,v ,,a are given by Hochberg and Tamhane 
(1987) for p* = .1 and .3. Dunnett (1964) also provides a method for approximat- 
ing the critical values for values of p* other than those given above and for values p z L /  
where treatment i is replicated r ,  times and not all r, equal. 

It should be clear, of course, that Dunnett’s procedure cannot only be used for 
testing but also for obtaining (1 - a )  100% simultaneous confidence intervals for 7 1  - 

q ( 2  = 2 . 3 . .  . . . t ) .  

7.5.8 Alternatives to Tests Based on Normality 

Throughout our discussion in Chapter 6 of the analysis of data from a CRD, we have 
not made any assumptions about the underlying distribution of the data. We have relied 
on the approximation of the F-test to the randomization test to carry out tests in the 
ANOVA and we have similarly used indications of a computational nature to use the t- 
test as an approximation to the corresponding randomization test for follow-up studies 
(such as discussed in Section 7.2). The implication, of course, is that the assumption of 
normality is not generally of crucial importance for such tests (see also Scheffi, 1959). 

The procedures discussed in this section all depend on the assumption of normality, 
and there are strong indications that they are not very robust against deviations from 
normality (Ringland, 1983). This is especially true for the Bonferroni procedure and 
less so for the Scheffk procedure. One alternative in such situations is to use non- 
parametric procedures. We shall not discuss this here any further, but nonparametric 
analogs to some of the procedures described here are presented and discussed by Miller 
(1981) and Hochberg and Tamhane (1987). One of the problems with MCPs is that in 
many cases they lead to results that are not easily interpreted (see also Section 7.4) and 
this problem may become even worse using nonparametric MCPs. In both cases the 
choice of the error rate a will be important, say Q: = .10 or even a = .20, certainly 
larger than the conventional a = .0.5. 

Another alternative to nonnormal situations is to use robust estimators for the treat- 
ment effects, such as M-estimators (Huber, 1981). This, however, leads to great diffi- 
culties in that the distributions of the test statistics will be difficult, if not impossible, 
to obtain and one would have to rely on Monte Carlo simulations or asymptotic results. 
These prospects together with the general difficulties of MCPs are not very promising. 
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8 5 1 6  2 3 4 
161 162 165 172 176 178 182 185 

7.6 GROUPING TREATMENTS 

One of the objectives of MCPs, apart from comparing every treatment with every other, 
is to arrive at groups of “homogeneous” treatments. This will facilitate the interpre- 
tation of the results from the experiment and help in making recommendations con- 
cerning further action. Unfortunately, the picture is not always clear. Often we find 
overlapping of groups of treatments which are judged (according to some MCP) to be 
not significantly different from each other. 

During cooking, doughnuts absorb fats in various amounts. An experiment was done to 
investigate whether the amount of fat absorbed is different for different fats used. Eight 
fats (treatments) were compared, each with six mixes (replications). The treatment (fat) 
means, that is, the average amount of fat (in grams) absorbed by 24 doughnuts, are as 
follows: 

To illustrate this phenomenon, consider the following example from Snedecor (1 946). 

1 2 3 4 5 6 7 8  

172 178 182 185 165 176 161 162 

If we order the treatment means and perform the studentized range test [see Sec- 
tion 7.5.41 with a = . lo ,  we obtain the following result (with MS(E) = 141.6 and 
Q.10.8.40 = 4.099, the critical value is 19.91). 

Here, underlined treatment means are not significantly different from each other. 
Based on these tests we can say, for example, that fats # 7,8 are different from fats 
# 3,4 with 7 and 8, and 3 and 4 not being different from each other. This does not 
mean, however, that (7,8) and (3,4) form two distinct groups, because 7 and 8 are not 
different from 5 ,  1, 6, 2, and 3 and 4 are not different from 1, 6, 2; in fact 3 is not 
different from 5 either. In summary, if one wants to establish groups of similar fats 
(for dietary purposes, for example) then it is clear that using the multiple range test 
(or other MCPs) will not accomplish that. What is needed is a procedure that uses, in 
combination with hypothesis testing, ideas of cluster analysis. 

Such methods were developed by Scott and Knott (1974) and by Calinski and 
Corsten (1985). We shall describe here one of the methods proposed by Calinski and 
Corsten (1985) which is based on an extension of the studentized range procedure (see 
Section 7.5.4). 

This procedure is a stepwise procedure and is referred to as a hierarchical, agglom- 
erative procedure which uses ordinary distance as a working criterion. The adjective 
“hierarchical” means that once a treatment mean is included in a homogeneous cluster 
it will not be deleted in a subsequent step, and the adjective “agglomerative” means 
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that at each step two adjacent clusters (each or both consisting possibly of one element 
only) are combined to form a new cluster. 

The algorithm starts with t clusters, namely the t treatments, represented by the 
treatment means, &. (i = 1,2.  . . . . t ) ,  arranged in increasing order. At the first step 
the two closest treatments, as measured by the smallest I&, - Y z t  1 ,  are combined to 
form one cluster and the range R1 = lji, - & / , /  is compared with the critical value 
C, = Qa, t . t ( r - l )  d w  for a given a. At each following step a new cluster is 
formed by combining two adjacent clusters with the smallest range. The range R, at 
step s(1 < s < t - 1) is then compared with the critical value C,. If R, > C, then the 
process stops and the clustering obtained at step s - 1 will be the accepted grouping of 
the treatments. The groups thus formed are considered to be internally homogeneous 
with the studentized range test at significance level a. 

We illustrate this procedure in Figure 7.1 for the example given above. Choosing 
01 = . lo,  the critical value is 

and from Figure 7.1 it can be seen that the process stops at step 7 since R7 = 24 > 
C 10 = 19.91. Hence the grouping arrived at prior to step 7 will be accepted, that is, 
fats 5, 7, 8 form one group and fats 1, 2, 3,4,  6 form another group. 

By using a fixed 01, the probability of terminating too early, and hence accepting 
too many homogeneous groups is bounded by a. For small 01 this may lead, in fact, 
to too few groups. Here, as with MCPs in general, the choice of a is important and 
an cy of .10 or .20 may not be unreasonable. Rather than choosing an a, Calinski and 
Corsten (1985) mention the possibility of computing at step s the probability 

that is, the smallest significance level at which the observed maximum range R, would 
lead to the rejection of the null hypothesis associated with the partition at step s.  These 
probabilities can be obtained by using the computer program given by Dunlap, Powell, 
and Konnerth (1 977). 

7.7 EXAMPLES USING SAS@ 

EXAMPLE 7.1: Consider the experiment described in Section 7.2 with t - 5  treatments 
and r = 2 replications in a CRD. The data are given in Table 7.5a. 

We use SAS PROC GLM to evaluate the following orthogonal comparisons from 
Section 7.2.1: (i), (ii), (iii), (iv), using contrast and estimate statements (see Table 
7.5a). The contrast statements are used to obtain the contrast SS. The estimate state- 
ments provide estimates of the contrasts and their standard error. We also perform 
Tukey’s multiple comparison procedure, providing tests for simple treatment compar- 
isons and simultaneous confidence intervals. We note that generally we would not 
consider orthogonal contrasts and multiple comparisons for the same experiment. 
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Fat # 

Yi, 
Step 

7 8 5 1 6 2 3 4 

161 162 

I 

165 172 176 178 182 185 

Rz = 2 

I 

Figure 7.1 Grouping of Snedecor data using the Calinski-Corsten procedure. 

One word of caution for the input of the contrast and estimate statements: Since we 
have used alpha-numeric labeling for the treatments, that is, C, Al ,  A2, B1, B2, SAS 
writes them in alphabetical order as Al ,  A2, B1, B2, C. This requires us to enter the 
contrast coefficients in this order. 

We now turn to the output in Table 7.5b and make the following comments: 

(i) The basic ANOVA provides 3: = .514. 

(ii) There are significant differences among the treatments ( P  = 0.0012). 

(iii) Writing the treatment LS means in increasing order and using LY = .05 the results 
from the Tukey multiple comparison procedure can be summarized as follows, 
where treatments not connected by the same line are significantly different from 

each other: Ls  mean: 13.15 13.35 15.90 18.20 19.10 
Treatment: A2 C B2 A1 B1 

Tukey (a  = .05): 

The table in the SAS output provides exact P-values for the comparisons. 
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(iv) The simultaneous 95 7c confidence intervals for the pairwise comparisons con- 
firm the results given in (iii), but provide additional information about the differ- 
ences. 

(v) The sum of the contrast SS equals, of course, the ,%(Treatments). 

(vi) All specified contrasts are significantly different from zero. 0 

EXAMPLE 7.2: Kuehl (1994) describes an experiment studying the relationship be- 
tween grain production and plant density. Using a CRD t = 5 plant densities (10, 20, 
30, 40, 50) were used, each density was replicated T = 3 times. The data are given in 
Table 7.6a. 

Since we have quantitative treatments we use the method of orthogonal polynomi- 
als (Section 7.4.2) to obtain the functional relationship (response curve) between yield 
and plant density. The input statements for SAS PROC GLM are given in Table 7.6b. 

We make a few comments: 

(i) Among the input statements we have included “contrast” and “estimate” state- 
ments. With the estimate statements we have given the divisor C , [ ~ ( Z , ) ] ~  of 
(7.22). 

(ii) The contrast coefficients are obtained from Table 7.3 for t = 5 .  

(iii) The output shows that the linear and quadratic coefficients are significant (P. ,0001). 

(iv) The relationship between yield and density can therefore be expressed as 

h u.* 

n,o = 16.40 = mean. = 1.19, = -1.01. 

- - -ro Po(&) + ?l Pl(.tz) + Tz Pz(.tz) 

with 
h h h 

Table 7.5 CRD with Orthogonal Contrasts and Multiple 
Comparisons 

a) Input statements: 

data pest: 
input trt 9 yield @ @ : 
datalines; 
C 12.8 C 13.9 
A1 18.5 A1 17.9 
A2 12.3 A2 14.0 
B I  19.5 BI 18.7 
B2 16.0B2 15.8 

run: 
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Table 7.5 (Continued) 
proc glm data=pest; 
class trt; 
model yield=trt: 
lsmeans trt/pdiff adjustdukey cl; 
contrast 'C vs trt' trt 1 1 1 1 -4; 
estimate 'C vs trt' trt 1 1 I 1 -4/divisor=4; 
contrast 'A  vs B' trt 1 1 -1 -1 0; 
estimate 'A vs B' trt 1 1 -1  -1 O/divisor=2; 
contrast 'A1 vs A2' trt 1 -1 0 0 0; 
estimate 'A1 vs A2' trt 1 - 1 0 0 0; 
contrast 'B 1 vs B2' trt 0 0 1 - 1  0: 
estimate 'B1 vs B2' trt 0 0 1 -1 0; 
title1 'COMPLETELY RANDOMIZED DESIGN (t=S, r=2)': 
title2 'ORTHOGONAL CONTRASTS AYD MULTIPLE COMPARISOKS'; 
run; 

b) Output: 
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C0MP:ETE:V RANDCYIZED DESZSN ( t = 5 ,  r = 2 )  
3RTHOGONAL. CONTRASTS AND M'JLTIPLS COMPARISONS 

T i e  GLM P r o c e d u r e  
C l a s s  :eve1 I n f o r m a t i o n  

Class  L e v e l s  V a l u e s  

t r t  5 A1 A2 Bl B2 C 

N n m b e r  of Cbse rva t ions  R e a d  1 0  
N u m b e r  of O b s e r v a t i o n s  U s e d  1 0  

ORTHOGONAL CONTRASTS AND MULTLFLE COKPARISONS 
T h e  GLM P r o c e d u r e  

D e 2 e n d e n t  V a r i a b l e :  y i e l d  

Sum of 
Source DF S q u a r e s  Mean S q u a r e  F V a l . L e  P r  > F 

Model 4 59.1740C000 14.7935CCC0 28.78 3.0012 

E r r o r  c 2.57000000 0.51400000 

C o r r e c t e d  T o t a l  9 51.74400300 

R - S q u a r e  C o e f f  V a r  h o z  M E  y i e l d  Mean 
15.94300 0.958377 4.497729 C ,  716938 

S o u r c e  

E r t  

S o u r c e  

t r z  

2F T y p e  I SS  Mean Square F V a l u e  F r  > F 

4 59.i7403003 14.79353CC0 23.78 0.0312 

CC Type I11 SS Mean S q u a r e  F Vaiue I r  > F 

4 59.17403C00 14.79350000 28.78 0.0012 

L e a s t  S q u a r e s  Means 
A c ; L s t m e n r  for M u L t i p l e  C o m p a r i s o n s :  T u k e y  

t r t  y i e l d  LSKEAN N u m b e r  

A1 18.i300000 1 
A2 13.1500030 2 

LSMEAN 
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i / j  

Table 7.5 (Continued) 

B1 19.1000000 3 
B2 15.9000000 4 
C 13.3500000 5 

L e a s t  Squa res  Means f o r  e f f e c t  t r t  
F r  > It1 f o r  HO: LSMean(i)=LSMean(]) 

Cependent V a r i a b l e :  y i e l d  
1 2 3 4 

0.0047 0.7260 0.1095 0.0057 
0.0047 0.0022 0.0590 0.9982 
0.7260 0.0022 0.0332 c .  0026 
0.1095 0.0590 0.0332 0.0773 
0.0057 0.9982 0.0026 0.0773 

t r t  y i e l d  LSMEAN 95% Conf idence  L i m i t s  

A1 18.200000 16,896839 19.503161 
A2 13.150000 11.846839 14.453161 
B1 19.100000 17.796839 20.403161 
BZ 15.900000 14.596839 17.203161 
C 13.350000 12.045839 14.553161 

L e a s t  Squa res  Means f o r  E f f e c t  t r t  

D i f f e r e n c e  S imul t aneous  95% 
Between Conf idence  L i m i t s  f o r  

i j  Means LSMean (i) -LSMean (1) 

5 

1 2  
i 3  
1 4  
1 5  
2 3  
2 4  
2 5  
3 4  
3 5  
4 5  

5.050000 
-0.900000 
2.300000 
4.850000 
-5.950000 
-2.750000 
-0.200000 
3.200000 
5.750000 
2.550000 

2.174000 
-3.776000 
-0,576000 
1.374000 

-8.82600C - 
-5.626000 
-3,076000 
0.324000 
2.874000 

-0,326000 

7.926000 
1. q76000 
5.176000 
7.726003 
-3.074300 
0.126OGO 
2.576300 
6.376000 
8.626000 
5.426000 

Dependent V a r i a b l e :  y i e l d  

C o n t r a s t  DF C o n t r a s t  SS Mean Square  F Va lue  F r  > F 

C vs t r i  
A vs B 
A1 vs A2 
B1 vs BZ 

1 16.77025000 16.77025000 32.63 0.0023 
1 6.66125000 6.66125000 12.96 0.0155 
1 25.50250000 25.50253000 49.62 0.0309 
1 10.24000000 10.24000000 19.92 0.0066 

S t a n d a r d  
Pa rame te r  E s t i m a t e  E r r o r  t Value F r  > ltl 

C vs t r t  
A vs B 
A1 vs A2 
B1 vs B2 

3.23750000 0.56678920 5.71 0.0023 
-1.82500090 0.50695167 -3.60 0.0155 
5.05000000 0.71693793 7.04 3.0009 
3.2~000000 0.71693793 4.46 3.0C66 
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Table 7.6 CRD with Quantitative Factors: Orthogonal Polynomials 

a) Input statements: 

data density; 
input density yield @ @; 
datalines; 
10 12.2 10 11.5 10 12.3 
20 16.1 20 15.3 20 16.6 
30 18.6 30 20.1 30 18.4 
40 17.1 40 19.3 40 17.0 
50 17.8 50 16.4 50 16.7 

run; 

proc glm data=density; 
model yield = density; 
class density; 
contrast 'linear' density -2 -1 0 1 2; 
estimate 'linear' density -2 -1 0 1 2/divisor=lO; 
contrast 'quadratic' density 2 -1 -2 -1 2; 
estimate 'quadratic' density 2 -1 -2 -1 2/divisor=14: 
contrast 'cubic' density -1 2 0 -2 1: 
estimate 'cubic' density -1 2 0 -2 l/divisor=lO; 
contrast 'quartic' density 1 -4 6 -4 1; 
estimate 'quartic' density 1 -4 6 -4 l/divisor= 70; 
title1 'CRD WITH QUANTITATIVE FACTORS'; 
title2 'CONTRASTS USING ORTHOGONAL POLYNOMIALS'; 
run; 
b) Output: 

CRD IWITI! QUANTITATIVE FACTORS 
CONTRASTS USING ORTHOGONAL POLYNOMIALS 

The GLM Procedure 
Class Level Information 

Class Levels Values 

density 5 10 20 30 40 50 

Number of Observations Read 15 
Number of Observations Used 15 

R-Square Coeff Var Root MSE yield Mean 

0.927949 5.040485 0.826640 16.40000 

source 
density 

Source 
density 

Cortrast 

11 r.e a. r 
quadratLC 
cubic 
quartic 

P aramet er 

lizear 
quadratic 
CUblC 
quartic 

3F Type I SS Meaz Square F Value Pr > F 
4 88.00666667 22.00166667 32.20 <.0001 

DF Type 111 SS Mean Square F Value Pr > F 
4 88.00666667 22.00166667 32.20 <.0001 

CF Contrast SS Mean Square F Value Pr > F 

1 42.72133333 42.72133333 62.52 <.0031 
1 42.80380952 42.80380952 62.64 <.go01 
1 0,28033333 0.28033333 0.41 0.5362 
1 2.20119048 2.20119048 3.22 0.1029 

Sranda rd  
Estimate Error t Value Pr > It1 

1.13333333 0.15092339 7.91 <.0001 
-1.00352381 0.12755329 -7.91 <.GOO1 
0.09566667 0.150923O9 0.64 0.5362 
0.10238095 0.05704356 1.79 0.102 
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7.8 EXERCISES 

7.1 Consider an experiment to investigate the effects of sugar on the length of pea 
sections grown in tissue culture. A CRD is used with 5 replications for each of 
the treatments: 

TI : Control (nothing added) 

Tz: 2% glucose added 

T3: 3% glucose added 

T4: 2% fructose added 

T5: l%glucose + l%fructose added 

each contrast means. 
(i) Obtain a compLte set of meaningful orthogonal contrasts and explain what 

(ii) Suppose we obtain the following results: 

Treatment 1 1 2 3 4 5  

Mean I 70.1 59.3 58.2 58.0 64.1 

and the following partial ANOVA table 

Source ss 
Treatments 538.66 
Error 245.50 

Total 784.16 

Partition the S S ( T )  into single d.f. sums of squares for the orthogonal 
contrasts obtained in (i) and test the hypotheses that each contrast is equal 
to zero. 

7.2 Consider a CRD with 5 treatments, 6 replications for each treatment and 4 obser- 
vations for every experimental unit. Suppose the treatments represent increasing 
amounts ( 2 , )  of fertilizer applied to a certain crop. 

The following (partial) results are obtained: 

4.9 10.0 13.9 15.7 16.3 

SS(EE) = 50.0, SS(0E) = 60.0 
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Using the method of orthogonal polynomials investigate whether 

(i) the data exhibit linear and quadratic trends; 

(ii) first and second order terms provide an adequate fit to the data. 

7.3 Consider the data in Example 7.1. Obtain a grouping of the treatments 
using the method described in Section 7.6. 

7.4 Consider the data in Example 7.1. Perform Dunnett’s procedure (Section 
7.5.7) comparing .41, A2, B1, B2 with C. 

7.5 Using the results from Example 7.2 obtain the prediction equation 

y  ̂= 5 0  + 2l density + &( density )’ 

using (i) the form of the Pl(z,) given in Section 7.4.2 and (ii) fitting the second 
degree polynomial directly. 
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CHAPTER 8 

Use of Supplementary 
Information 

8.1 INTRODUCTION 

As we have pointed out earlier, one of the main purposes of experimental design is the 
reduction of error. One important component of the overall error is the unit error, ex- 
emplified by .: (see Section 6.3), expressing a certain amount of heterogeneity among 
the EUs. Generally speaking, such variability among the EUs may be systematic or 
random. Consider the following examples for systematic variation: 

(i) a fertility trend exists in a piece of land used for an agronomic trial; 

(ii) animals used in a pharmaceutical experiment may come from different litters; 

(iii) the experimental material for an industrial experiment may come from different 
production processes; 

and for random variation: 

(iv) plants for a growth trial may be of different heights at the beginning of the trial; 

(v) animals for a dietary study may have different initial weights; 

(vi) individuals for an educational study may have different abilities as documented 
by I.Q. or earlier test scores. 

In the case of systematic variation, knowledge of the underlying reasons will lead 
to blocking and hence to more complex designs which will be discussed in subsequent 
chapters. For random variation the additional (supplementary) information can, under 
certain conditions, be used effectively to reduce the error in a CRD. This procedure, 
introduced by Fisher (1932) and referred to as analysis of covariance, is the topic of 
this chapter. For a general description see also Cochran (1957). 

239 
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8.2 MOTIVATION OF THE PROCEDURE 

In its simplest form we have two measurements for each EU (assuming that the EU and 
OU are identical): 

y : 

z : the supplementary information. 

the response to the treatment 

Examples for the cases (iv)-(vi) above might be 

(iv) y denotes the growth of the plant after exposure to a treatment, z denotes the 
initial height; 

(v) y denotes the final weight after the treatment, z denotes the initial weight; 

(vi) y denotes the test score after the treatment, z denotes a test score before the 
treatment. 

It is assumed that the supplementary information, or covariate, z is independent 
of the treatment. This is a rather crucial assumption with respect to the unbiased es- 
timation of differences among treatment effects (Rosenbaum, 1984). This means that 
covariates must be either obtained before the treatment assignment and/or application, 
or they must be known not to be influenced by the treatment, for example the outside 
temperature during a physical exercise in a clinical study. Also, it is known or suspected 
that there exists a functional relationship between the response y and the covariate z. 
We emphasize that this relationship may not be a causal relationship. The covanate z 
may be correlated with something, often unknown, which causes extraneous variation 
in the response y (Smith, 1957). To illustrate this point Smith (1957) describes an ex- 
ample where in a field experiment z represents the amount of weed present in a field 
plot. The weed itself may not have affected the crop yield, rather it may have been a 
surrogate for the soil acidity present in the plot, which is correlated with the growth of 
weed as well as the crop under investigation. For purposes of our present discussion 
we shall assume that the relationship between z and y is linear. In its simplest form, in 
the absence of treatment effects, the data may look as given in Figure 8.1. 

It is informative, for purposes of illustration and motivation, to consider the model 
(6.3) 

TZk = TZ + u k  

and write it in the form 

that is, the unit contribution U k  is modeled as 

Uk = 0 + 3(xk - x.) + ui. 
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0 ; y = a + ,3n: 

0 

X 
Figure 8.1 Relationship between covariate and response. 

where 0, 3 are constants and XI, is the value of a covariate for EU k .  Model (6.6) can 
then be rewritten as 

k k 

- 
- p* + Sr, + qz,, - E. . )  + wt*,. 

In the absence of treatment effects, (8.2) reduces to 

or 
z,, = yp3 - O(zz, - E. . )  = p* + d* 2 3  ’ (8.4) 

The form of (8.4) suggests that if we adjust the observations yt3 by the concomitant 
information C(xtJ - E . . ) ,  then the new “observations” ztJ are constant apart from noise 
dzj, where 

and 

E R ( 4 J  ) = 0 

and, most importantly, 
2 2 ou* < uu. 

In fact, o:* measures the variability of the EUs around the regression line. It seems then 
natural to obtain the adjusted observations (8.4) and perform the usual analysis on them. 
The problem, of course, is that usually we either do not know 3 or we think we know 
3 but it is not the correct value (in many cases p = 1 is used such as z = post-test- 
pretest scores, or z = final weight-initial weight). The question then arises: How do 
we use the supplementary information and how do we make adjustments? 
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8.3 ANALYSIS OF COVARIANCE 
PROCEDURE 

8.3.1 Basic Model 

Generalizing model (8.3), we now consider the model 

for the observations from a CRD where supplementary information of the form de- 
scribed above is available ( i  = 1 . 2 .  . . . , t ;  j = 1 , 2 ,  . . . , r ) .  The e:, are considered to 
be i.i.d. random variables with mean zero and variance 0,". (to relate e:J to our earlier 
discussion we can think of e:J being of the form 

with ~ , * 3  N (0, & )  and cr$ = 0,". + n:. A graph of the data ( g t J .  x , ~ )  may then be as 
illustrated in Figure 8.2 for t = 3,  T = 6, where the lines labeled T I .  T2, T3 represent 
the linear relationship between y and z for treatments 1, 2 ,  3, respectively, that is, (8.5) 
for i = 1, 2, 3. 

Our aim is to estimate contrasts among the treatment effects, that is, Ccz7;, and test 
hypotheses about treatment effects, such as Ho: 71 = 7-2 = . . .  = Tt = 0. Assuming 
again for a moment that we know 0, it follows easily from (8.5) and Figure 8.2 that, 
for example, 

Fl - ;i = 81. - 82. - a[(%,. - Z,,) - (ZZ, - Z,,)] 

(8.7) - 
- YAi - YA2. 

where YA, is the y-value at z = Z.. for treatment i. The estimator (8.7) is, of course, 
the corresponding difference between the treatment means plus an adjustment due to 
differences in the covariates for the two treatments. For that reason Y A ~  -YA~ is referred 
to as the adjusted treatment difference. 

8.3.2 Least Squares Analysis 

Let us now turn to the more important case with /? unknown. We shall use the method 
of least squares (for the arithmetic of analysis of covariance see also Section 4.13) to 
obtain estimates of estimable functions involving p, ~ i ,  and p. Using model (8.5) we 
obtain the normal equations (NE) by minimizing the expression 
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Figure 8.2 Graph of data (y, X) from CRD. 

with respect to p, q ( i  = 1: 2 , .  . . , t ) .  p. Differentiating (8.8) w.r.t. these parameters 
and equating the derivatives to zero leads to the NE 

(8.9) 

(8.10) 

trfi + T C -i, + 3 C(zij - z..) = y.. 

rfi + r.i, + f i  C ( x i j  - z..) = yi, 

- y ( Z i j  - Z . . ) p  + X ( X i j  - ...) ;Z + / ! ? X ( X i j  - 2 . y  = - y 2 / Z j ( X Z j  - Z..)> 

2 ij 

j 

(i = 1 , 2 , .  . . , t )  

ij i j  ij i j  

(8.11) 

where yi. = C,yij, y.. = C i j y i j .  With C i j ( z i j  - Z . . )  = 0 and putting Ci.i, = 0 (since 
Cri = 0) equations (8.9)-(8.11) can be simplified. From (8.9) we obtain 

p = g.. (8.12) 

and from (8.10) and (8.12) we obtain 

Fz = gi. - g.. - &i. - %.) 

Substituting (8.12) and (8.13) into (8.11) yields 

(8.13) 
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Table 8.1 Auxiliary ANOVA for CRD 

or 

= c ( ~ , ~  - Z . . ) ( y t J  - g..). (8.14) 
23 

It is useful to introduce some simplifying notation. In Table 8.1 we give symbols for 
the various sums of squares and sums of products for a CRD, using the yt3 and xt3 as 
“observations.” In Table 8.1, the SS(y) are the same as those in Table 6.1, the SS(2) 
are obtained analogously with the x,] substituted for the y,, , and the SP(x, y) are sums 
of products rather than sums of squares, for example, 

Tzy = r C ( Z t .  - Z. . ) ( j j t  - jj..). 
7 

Using this notation and using the algebraic fact that Tpq + Epq = Spq,  where p ,  q are 
replaced by z and/or y, we rewrite (8.14) as 

Tzy + W z z  - Tzz) = sz, 

(8.15) 

8.3.3 Least Squares Means 

Under our model assumptions it follows that 6, .f,, and 3 given by (8.12), (8.13), and 
(8.15), respectively, are the BLUES of p ,  T,, and 3, respectively. Hence 

f i  + ft = yz - 9(Z,, - 3, ) (8.16) 

is the BLUE for 1-1 + T ~ ,  the response for treatment i. The right-hand side of (8.16) 
is often referred to as the adjusted treatment mean, adjusted for differences in the co- 
variates. It is also called the least squares mean for treatment i, which we shall write, 
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for future references, as LSM(r,) [Searle, Speed, and Milliken (1980) refer to ,LL + rz 
as the population marginal mean (PMM) and to j2 + ?, as the estimated PMM; Lane 
and Nelder (1982) refer to 6 + T7 as the predictive margin]. It follows further that the 
BLUE for a treatment contrast Cc,ra with Cac, = 0 is given by 

a 2 2 

As a special case we have 

- . . -  r, - r,, = rt - r,/ = yz - gz/ - 3(2, - Zt !  ). 

which is, of course, (8.7) with ,3 replaced by 3. 

are uncorrelated. We then find 
To obtain the variances of the estimators given above we use the fact that yz and 8 

(8.18) 

(8.19) 

8.3.4 Formulation in Matrix Notation 

In order to estimate 0:- and to test Ho: T I  = r2 = . . . = rt and Ho:  3 = 0 we turn 
to the analysis of variance. For the derivation of the ANOVA table we make use of 
results in Sections 4.12.2 and 4.12.3 where we have discussed the general case. It is, 
therefore, useful to reformulate some of the results above in matrix notation. 

We write model (8.5) as 

y = 3 p +X, r  + X38+e*.  (8.22) 

where y = (1~11.7~12, . . . . ytr) '  is a t r  x 1 column vector of the observations, 3 is a 
t r  x 1 column vector of unity elements, X, is a tr x t matrix of known constants (zero 
or one), r = ( 7 1 .  rz. . . . . rt)' is a t x I vector of treatment effects, X3 = (211 - 

2 ,212 - Z , . . . , ;Ctr - 2 )' is a t r  x 1 vector of the covariates (expressed as deviation 
from the mean), and e' = (eIl .  e12.. . . . e&)' is a t r  x 1 vector of errors. The NE are 
then of the form 

3'3 3'x, 3'x 3' Y 

x',3 XkX, x',xs 
(8.23) 
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which can be rewritten as 

With 3: .i = 0 it follows from (8.23) and (8.24) that 

b = g.. 
1 
r 

.i = -XL(y - 3 g., - X,j) 

3 = (x&x,)-lx’,(y - 3 g.. - X,+), 

Evaluating these expressions leads, of course, to the estimators (8.12), (8.13), and 
(8.15). 

8.3.5 ANOVA Table 

We now turn to the ANOVA table. Since this is a nonorthogonal ANOVA, we use the 
notation established in Chapter 4 to indicate how the various sums of squares have been 
obtained. Specifically, we obtain the treatment SS as 

SS(X&J. X,) = SS(3, x,, XS) - SS(3, X,) (8.25) 

with 

SS(3, x,, X,) = by.. + +x:y + bxl,y 

= by.. + c %yz. + i ? c ( z v  - Z. . )Y i j  

= trg?. + r c(gi. - g..)’ 

2 i j  

i 

= trg?. + TYY + - E&! 
E z z  

(8.26) 

using the notation of Table 8.1. To obtain SS(3 .  X,) we use the model 

y = 3 p  + X B , ~  + e*> 

which leads to the NE 
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and the familiar solutions 

p = g.. 

p = (X&Xp)-lXby 

- y ( " i j  - Z..)(Yij - g..) 
t j  - - 

- y ( Z i j  - 3 . y  
i j  

S X Y  

s x x  
- 

using again the notation from Table 8.1. It follows then that 

SS(3, X,) = byY.. + PXby = try?. + -. 2, (8.27) 
SX, 

Substituting (8.26) and (8.27) into (8.25), we obtain 

s:y E:Y SS(X,l3, X,) = Tyy - - + -. 
Sxx  Ex, 

(8.28) 

We proceed in a similar fashion to obtain the regression SS as 

SS(XOl3, X,) = SS(3, x,. X,) - SS(3. X,). (8.29) 

In order to obtain SS(3, XT), we use the model 

y = 3p + X,T + e*, 

which leads to the NE 

and the solutions 

3'3 3'XT p = y.. 
[x13 x.x;l [+I [xlyl 



248 

Hence, 

CHAPTER 8. USE OF SUPPLEMENTARY INFORMATION 

SS(3. X,) = i y . .  + ?’x:y 
1 
r 

= try? + - (y  - 3y..)’x,x:y 

= trg? + 7- C(yz. - y..)* 
2 

= try?. + T,,. 

Substituting (8.26) and (8.30) into (8.29), we obtain 

Finally, the error sum of squares is obtained as 

SS(I13. X,, X,) = SS(Total),,,,jj - SS(3. X,. X,) 

Ef, = - try?. - T,, - - 
E , X  

i:, 

(8.30) 

(8.31) 

(8.32) 

We point out, in passing, the similarity between (8.32) and the form of the error sum 
of squares for a simple linear regression model, such as (8.3), which is our notation is 
given by S, , - Sq , ISx,. 

The complete ANOVA table is given in Table 8.2. 
It follows from E(MS) in Table 8.2 that an estimator for 0:. is given by 

= [.. - $1 / [t(r - 1) - I] (8.33) 

The form of (8.33) shows explicitly that, unless there is no or only a weak linear re- 
lationship between the observation y and the covariate 2, the variance estimator 6:* 
is smaller than the comparable variance estimator 6: of (6.29), that is, for the CRD 
without supplemental information (see also Section 8.5.1). 

The form of the E(MS) in Table 8.2 suggests immediately to test Ho: TI = TZ = 
. . . = rt = 0 by the F-test, as an approximation to the randomization test (Robinson, 
1973) for large r ,  

MS(X,13* X3) F =  
MS(II3. X,. X,) 

and Ho: 3 = 0 by 
MS(X313. X,) F =  

MS(I13. X,. X,) 
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using the appropriate d.f. as indicated in Table 8.2. For a numerical example see 
Section 8.8. 

8.4 TREATMENT COMPARISONS 

8.4.1 Preplanned Comparisons 

As discussed in Chapter 7, the overall null hypothesis 71 = 7 2  = . . . = 7 t  = 0 is often 
less important and less informative than specific hypotheses of the form C i c i ~ i  = 0 
with Cici = 0. We have shown in Section 8.3 that 

[see (8.21)] 

either in the context of the ANOVA by forming 
Using (8.21) and (8.33) we can then perform the usual tests on single d.f. contrasts 

and 

or, equivalently, by using 

(8 .35)  

(8.36) 

(We should mention here that for a complete set of orthogonal contrasts, C'r ,  satisfy- 
ing (7.7) and (7.8), we no longer have the result (7.6). The reason for this is that even 
though the contrasts are orthogonal, their estimators are not, that is, they are correlated 
as follows from (8.20).) In particular, we may be interested in testing hypotheses about 
simple treatment differences 7% - ri) and, if appropriate, use the multiple comparison 
procedures discussed in Chapter 7. Since we no longer can compare treatment means 
but rather have to use LS means, which not only may have different variances but are 
also correlated, this leads to certain complications and calls for modifications of the 
procedures discussed earlier. 
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8.4.2 Multiple Comparison Procedures 

Suppose we want to use Duncan's Multiple Range Test (see Section 7.5.5). We may 
begin by arranging the LS means in increasing order 

p + ?[l] > p + ?[2], . . . , p + ?[t].  

Following the established procedure we then compare p + ?[lj versus p + ?lt], that is, 
?lll versus ?l t ] ,  by considering 

+[,I - 711 = q t ] .  - ql]. - P(qt1. - q l ] . )>  (8.37) 

where Zit], is the mean of the z-variates corresponding to ~ J [ ~ I , ,  and so forth, and com- 
paring it with 

(8.38) 

where v = t ( r  - 1) - 1 are the d.f. for error (see Kramer, 1957; Miller, 1981). If 
(8.37) is larger than (8.38), then the effects of the corresponding treatments are judged 
to be different; if (8.37) is smaller than (8.38) then the treatments are judged to be not 
different from each other, and ordinarily the comparison procedure would stop (see 
Chapter 7) .  Such a property no longer holds in the present situation where the variance 
of the difference of LS means is not constant but does depend on the z-means for the 
treatments involved [see (8.38)]. For this reason treatments are compared with different 
precisions, more precise if the z-means are close together, less precise if the z-means 
are far apart. Hence the nonsignificance of ? I t ]  - ?i[l] may be due to the fact that, just 
by chance, Zl t ] .  - 31~;. is rather large. It can very well happen then that two other 
LS means, say LSM(rli1) and LSM(rli,j),  within the remaining set are significantly 
different from each other simply because their z-means are close together, that is, the 
quantity 

(with k < t )  is not only smaller than (8.38) but also smaller than ?ril - ?[iq. The 
important point of this discussion is that even after a nonsignificant result for LS means 
of range 1, we may have to continue comparing LS means of range less than 1. This 
may indeed lead to making all possible t ( t  - l ) / 2  comparisons. 

The procedure just described may be rather tedious. An alternative, much sim- 
pler but possibly less satisfactory, method is to make all comparisons by using a con- 
stant variance, namely the average variance of all simple treatment comparisons. We 
find that 

1+--1 1 Txz Ue* 2 

r t - 1 Ex, 
(8.39) 



252 CHAPTER 8. USE OF SUPPLEMENTARY INFORMATION 

Since we assume that the 2-values are not affected by the treatments, we would have 
that, on average, 

(8.40) 

that is, the treatment mean square and the error mean square for the covariate are equal. 
If we use (8.40) in (8.39). the expression for the average variance reduces to 

T z z  - E z z  
t -  1 t ( r -  1)' 
-~ - 

(8.41) 

independent of the actually observed s-values. (A slightly different result was obtained 
by Cox (1957) by considering the covariates as normally distributed random variables). 
We may then use any of the multiple comparison procedures with (8.40) or (8.41). By 
doing so we must, however, realize that this procedure favors certain comparisons, 
those that have a variance larger than (8.41), over others, those that have a variance 
less than (8.41). Hence, care should be used in interpreting the results. Obviously, this 
procedure works quite well if the s-means are not too different from each other. This 
is an ideal situation, one that has also been advocated by Cox (1982) for purposes of 
randomization analysis. 

Arguments similar to those above can be made for other multiple comparison pro- 
cedures, extending, for example, the Tukey procedure to the Tukey-Kramer procedure 
based on the result given by Kramer (1957). An example will be given in Section 8.8. 
For more details the reader is referred to Hochberg and Tamhane (1987). 

8.5 VIOLATION OF ASSUMPTIONS 

During our discussion so far we have made a number of assumptions, some implicit 
and some explicit. These assumptions can be summarized as follows: 

(i) There exists a linear relationship between the covariate 2 and the observation y. 

(ii) The relationship between y and 2 is the same for each treatment. 

(iii) The covariates are not affected by the treatments. 

(iv) The observations come from a normal distribution. 

In this section we shall consider these assumptions, how they may be checked in a 
given situation, and point to the implication of the violation of these assumptions. 

8.5.1 Linear Relationship between x and y 

Suppose two random variables x and y have a bivariate normal distribution with means 
ps. pv, variances 0;. D;,  and covariance pozoy. Then the conditional distribution of 
y, given 2,  is normal with mean p v  + ,3(2 - p z )  and variance gi(1 - p2) ,  where 
3 =  pa,/^,. The variance u i (1  - p 2 )  is the variance of about the regression line 
y = py + 3(2  - p z ) .  In our situation we have t regression lines of the form y = 
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put + 3(2 - p Z 1 ) ( i  = 1 , 2 , .  . . , t )  with pyz = p + r,, and the variance of y about each 
line is ci(1 - p2)  (see Figure 8.2), where in our notation 0; = 0,". This implies that 
the increase in precision using the covariate 2 is given by (1 - p 2 ) ,  or if we account 
for the fact that B has to be estimated and hence leads to an increase in the variance of 
comparisons, the increase in precision is on the average given by 

t ( r  - 1) - 1 
t ( r  - 1) - 2 

I = (1 - p2) (8.42) 

(Cochran, 1957; Cox and McCullagh, 1982). It follows then that an increase in preci- 
sion will be realized only if p is of a reasonable magnitude. If, for example, p = 0, 
that is, there does not exist a linear relationship between 17: and y, then I > 1 and, 
in fact, information has been lost rather than gained. In order to get some idea how 
large p would have to be for the analysis of covariance to be worthwhile we consider 
(8.42) in connection with (8.41), that is, we compare the average variance of treatment 
comparisons using the covariate 

(8.43) 
1 t ( r  - 1) - 1 2 

= 2 r (1 + -) t ( r  - 1) (1 - p*)  . t ( r  - 1) - 2 o e  

with the average variance without the covariate 

2 2  

r e '  
av. var(FZ - TI , )  = -c (8.44) 

For (8.43) to be smaller than (8.44) we require 

2 > 1 -  t ( r - 1 )  t ( r - 1 ) - 2  
t ( r -  1) + 1 t ( r -  1) - 1'  

In Table 8.3 we give minimal values of p for selected values o f t  and T .  These should be 
viewed as rough guidelines only, especially for small values o f t  and/or r ,  since there 
may be substantial variation in precision between different randomization patterns and 
between different comparisons within one randomization pattern (Cox, 1957). 

The general conclusion from Table 8.3 is that for lpl < .3, the use of covariates is 
of no real value. Substantial gains will be realized, however, if Ipl is large. 

8.5.2 Common Slope 

Implicit in model (8.5) and Figure 8.2 is the assumption that the linear relationship be- 
tween z and y is the same for all treatments, that is, the t regression lines are parallel. 
This is sometimes considered to be a serious and questionable assumption. This may 
be true for some situations in which the analysis of covariance is used, that is, observa- 
tional studies, but should generally not be a problem in a CRD if proper randomization 
has taken place. The assumption is, however, checked easily using the procedure de- 
scribed below. 

Consider the "full" model 

yz3 = ~t + 4(17:,3 - z ) + error. (8.45) 
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Table 8.3 Minimal Values for Correlation between 
Observations and Covariates in CRD 

t r lPl 

2 5 
10 
15 
20 

3 5 
10 
15 

4 5 
10 
15 

5 5 
10 

6 5 
10 

7 5 

.49 

.33 

.27 

.23 

.40 

.27 

.22 

.35 

.23 

.19 

.35 

.21 

.29 

.19 

.27 

where pz = p + rz (i = 1 . 2 , .  . . . t : j  = 1 . 2 . .  . . . r ) .  We wish to test the hypothesis 

We do this by fitting the model (8.45) and the "reduced" model (that is, assuming Ho 
is true) 

yzI) = pt + 3(xzI )  - 5 ) + error (8.46) 

and obtain the sums of squares for both models, say S S F  and S S R ,  respectively. We 
then test HO by considering the F-statistic 

with t - 1 and t ( r  - 2) d.f. The NE for model (8.45) are 

r b z + r ( Z z  - Z  ) b z = y z  ( i = 1 . 2  . . . . .  t )  

(8.47) 
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It then follows that 

and 

i ij 

0 2  

with 2t d.f. Similarly, for model (8.46) the NE are 

?"pi + r(G. - z..,p = yz, (i = 1 , 2 , .  . . , t )  

i 23 ij 

It follows then [see also (8.16) and (8.131 that 

Pi = Yi. - P(%. - Z..) 

(8.48) 

(8.49) 

(8.50) 

i 

(we mention here in passing that it follows from (8.48) and (8.50) that the estimate of 
/3 is obtained by weighted pooling of the estimates of the individual pi), and [see also 
(8.26)l 

i 
i 

with t + 1 d.f. The test statistic (8.47) then takes on the form 

(8.51) 

J i 

F =  

i sixx 

(8.52) 
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with v1 = 2t - ( t  + 1) = t - 1 and v2 = t r  - 2t = t ( r  - 2 )  as in (8.47). If 
F > Fl--cu,t-l,t(r-2) for a suitably chosen a ,  then we reject H,) and conclude that 
the slopes are not all the same. Since this is considered to be a preliminary test we 
may choose Q: = .25 rather than the customary Q: = .05 (see Bancroft, 1964). For a 
numerical example of this procedure see Section 8.8. 

If Ho is rejected it might be useful to investigate the data more closely, for example 
by plotting or by a formal test to see if the nonparallelism is due to perhaps one treat- 
ment. One then may delete that treatment and proceed with the analysis of the other 
treatments in the usual fashion. If no such simple explanation is plausible it is diffi- 
cult to prescribe what to do. In any case, model (8.5) is no longer appropriate, rather 
model (8.45) should then be used. In that case, however, treatment comparisons de- 
pend on the z-value at which they are compared and that may be rather unsatisfactory 
and misleading. 

8.5.3 Covariates Affected by Treatments 

To understand intuitively the problem that arises when the covariates are “affected’ by 
the treatments, consider Figure 8.3. 

In this case low y-values are associated with low cc-values for TI (that is, treatment 
1) and high y-values are associated with high z-values for T2 (that is, treatment 2), 
the two treatments we may want to compare. As an example, suppose the treatments 
are varieties of potatoes and we want to compare the yield of these varieties using as 
a covariate the size of the seed potatoes. It so happens that variety 1 has small seed 
potatoes and variety 2 has large seed potatoes. If we were to apply the analysis of 
covariance procedure we would compare the varieties at seed potato size x = 2,  a 
value which may not be achieved by either variety. Hence, this procedure is obviously 
of no value. Similar arguments apply to situations where the covariates are affected 
by the treatments in other ways. For an interesting discussion the reader is referred to 
Smith (1957). 

We mentioned earlier that if the covariates are observed before the treatments are 
assigned they are certainly not affected by the treatments. But even in that case a 
situation as described in Figure 8.3 could arise for two reasons: 

(i) due to a particular outcome of the randomization process and (ii) due to a lack of 
randomization. In situation (i) one should throw out the randomization pattern and 
repeat the randomization process; in situation (ii) one should expose the motives of the 
investigator. In practice, of course, one may not be able to distinguish between (i) and 
(ii). A method to protect oneself against this situation would be to subject the covariates 
x to an ANOVA for a CRD and consider F = T,,t(r - l)/[E,,(t - l)] and if F is 
“large,” say larger than F1-a,t-l , t(r-l)  with Q: = .25, assume that the covariates are 
“affected” by the treatments and proceed accordingly. 
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Figure 8.3 Covariates affected by treatments. 

8.5.4 Normality Assumption 

Even though we have not invoked the assumption of normality explicitly (we have 
instead argued that the tests based on normality are an approximation to randomization 
tests), we have used the method of least squares to estimate parameters of model (8.5). 
It is well known that the LS method is optimal only if the observations are normally 
distributed. Hence the question arises: What should one do if the observations are not 
normally distributed. The obvious answer is to replace the LS method by any of the 
available “robust” methods, e.g., M-estimation (Huber, 1964). A limited study along 
these lines was done by Birch and Myers (1982) for heavy-tailed error distributions. 
We quote from their conclusions: 

The least squares procedures, although lacking efficiency in estimation of the 
parameters, show strong affinity toward the normal size in tests concerning param- 
eter values. The t-like tests based on M-estimators can be studentized to follow the 
t-distribution. Due to the similarity of the test results for LS and M-estimators it is 
suggested that both procedures be used together to provide a basis of comparison 
and diagnostic examination of the data. If parameter estimates differ significantly 
then outliers in the data should be strongly suspected and may be examined. Tests 
on parameters can be performed based on least squares and/or M-estimates using 
the t-like or F-like procedures. 

We add that the tests referred to are those given in Section 8.3.5 and that given in 
(8.52). 
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Along similar lines Hocking (1982) suggested to use regression diagnostics such as 
the so-called hat matrix and residuals to detect deviations from normality through e.g., 
high-leverage observations. We shall not pursue these arguments here but rather refer 
the reader to some of the relevant literature in this area, for example, Belsley, Kuh and 
Welsch (1980), Myers (1990). For nonparametric procedures we refer to Conover and 
Iman (1982). 

8.6 ANALYSIS OF COVARIANCE WITH 
SUBSAMPLING 

As an extension of the analysis of covariance procedure presented so far, we now dis- 
cuss briefly the case involving subsampling (see Section 6.8). We can think of two 
situations: 

(i) The covariate is observable only for the EU; that is, x 1 3 .  

(ii) The covariate is observed for each OU, that is, x Z 3 k .  

As an example of (i), consider a study to compare different drugs for their effec- 
tiveness in reducing blood pressure. Each patient (from a specified population) is given 
one of the drugs at random. To account for some variability among the patients, the 
blood pressure reading at the beginning of the trial is used as a covariate. At the end 
of the study duplicate blood pressure readings are obtained for each patient. An ex- 
ample for (ii) is the previously considered air pollution study (see Table 2.5) where 
each growth chamber represents the EU and the initial height of each plant (OU) in 
each chamber is used as a covariate. Remembering that the analysis of covariance is 
used as a device for reducing the experimental error it is only proper to treat both sit- 
uations in the same way. For (i) we use the covariate z,] as observed, and for (ii) we 
use as the covariate the average of the supplementary observations for each EU, that is, 
xaj = 3’23 = ( l /n )Ckzz ,k .  

As an extension of (8 .5) ,  the model for such data can then be written as 

yijk = I-1 + Ti + p(xi j  - Z..) + ETj  + q i j k  (8.53) 

where i = 1, 2 ,  . . . t :  j = 1 . 2 :  . . . ! T ’ ;  k = 1 , 2 ,  . . . n and all the terms are as de- 
fined earlier (see Sections 8.3 and 6.8). Model (8.53) can be rewritten, for purposes of 
analysis, in terms of the average observation for the j t h  replication of treatment i as 

yij. = 1-1 + q + D(zij - Z..) + e** 2.7 (8.54) 

where e,*j. = E : ~  + f j i j , .  The form of the model suggests that the basic analysis can 
be carried out as described in Section 8.3, substituting t i j .  for yij j  02.. for 02. , and 
T’ for r.  More precisely, we obtain the entries in Table 8.4 using the j&,’s as the 
“observations.” For example, 

Tyy = T’ - y ( y i , ,  - ;y . . . ) 2  

a 
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Table 8.4 ANOVA for Model (8.53) 

Source d.f. ss 

x o ~ 3 , x T : x E *  I 

113, X,, Xa3 XE’ tr’(n - 1) OGy 

Total tr’n - I 

For purposes of the ANOVA table, however, we need to reconvert everything to a per- 
observation basis by simply defining 

TYy = nTyy. E;Y = nEY,. Oj, = S S ( 0 E )  

(see Table 6.8), and so on. The resulting ANOVA table is then as given in Table 8.4 
using obvious notation. It should be clear, from our earlier discussion, how Table 8.4 
can be used. For example, to test Ho: T~ = r2 = . . . = Tt = 0 we use 

MS(XJ3. Xp. X E * )  
F =  

MS(XE* 13, X,. X,) 

with t - 1 and t(r’ - 1) - 1 d.f. Furthermore, the sampling and experimental error 
variance components are estimated as 

6; = MS(Il3, X,. Xf .  Xc*) 

and 
~ 2 
OE* = 

MS(XE* 13. XT. X,) - MS(Il3, XT. XS. XE*) 
n 

8.7 CASE OF SEVERAL COVARIATES 

In our discussion of the analysis of covariance technique so far we have considered 
the simplest but most important situation, namely that of one covariate and a linear 
relationship between the covariate z and the observation y, There may, however, be 
situations where the relationship between z and y is of a polynomial form or it may 
be useful to consider several covariates 2 1  , 2 2 ,  . . . which have a linear or polynomial 



260 CHAPTER 8. USE OF SUPPLEMENTARY INFORMATION 

relationship with y. We have described and dealt with the general model involving both 
classificatory and regression parts in Section 4.14. Below we give a slightly different 
derivation following Cox and McCullagh (1982) (see also Scheffk, 1959). 

8.7.1 General Case 

Using matrix notation we write the general analysis of covariance model for the LY x 1 
vector of observations y as 

y = Xp + Z y  + e* ,  (8.55) 

where Xp represents the classificatory part (treatments in our case) and Zy represents 
the regression part (the covariates in our case), X and Z are matrices of known con- 
stants of dimensions N x d, and x d,, respectively, p and y are d, x 1 and d, x 1 
vectors, respectively, of unknown parameters, and e* is a N x 1 vector of errors with 
E(e*) = 0, and var(e*) = I&. If no covariates are included or, alternatively, if 
y = 0, then model (8.55) reduces to 

y = X p + e .  (8.56) 

We shall refer to (8.56) also as the design model. We know (see Chapter 4) that for 
(8.56) an orthogonal decomposition of y is given by 

y = X(X’X)-lX’y + [I - X(X’X)-lX’]y = P x y  A RXY? (8.57) 

where 

PX = X(X’X)-lX’ and Rx = [I - X(X’X)-lX’] = I - PX 

are lV x idempotent matrices (we assume here that the parameterization in (8.55) 
and (8.56) is such that rank(X) = d,). In (8.57) Rxy is the vector of residuals and 
y’Rxy is the residual sum of squares. We now rewrite (8.55) as 

y = Xp(o) + RxZy + e* 

= ~ [ p ( ~ )  - (x’x)-’x’z~] + zy + e* 

so that 
p = p(o) - (x’x) - lX’zy .  

Using (8.58) the NE are obtained as 

X’X X’RxZ ~ ( 0 )  - X’y 
[Z’RxX Z’RxZ] [^? ] - [Z’Rxy] ’ 

which reduces to 
X’X 0 P(0) - X’Y [ 0 Z’RxZ] [ ] - [Z’Rxy] ‘ 

From (8.60) we obtain immediately 

fi(q = (x’X)- lx’y ,  

(8.58) 

(8.59) 

(8.60) 

(8.61) 
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that is, the estimator for p under the design model, 

+ = ( Z ’ R ~ Z ) - ~ Z ’ R ~ Y  

and from (8.59) 
p = & )  - ( x ’ x ) - ’ x ’ z + .  

It also follows from the special form of (8.60) that 

var(p(o))  = (x’x)-’o,~, 

and 
\Tar(+) = (Z’RxZ)-la:. 

and, since j2(o) and + are uncorrelated, 

(8.62) 

(8.63) 

(8.64) 

var(p) = [(X’X)-’ + (Z’RxZ)-’]o:*. (8.65) 

We comment briefly on the form of (8.62). The elements of Z ’RxZ are the error sums 
of squares (diagonal elements) and error sums of products (off-diagonal elements) for 
the design model (8.56) when the columns of Z are used as the “observation” vectors. 
Similarly, the elements of the vector Z ’ R x y  are the corresponding error sums of prod- 
ucts using successively the columns of Z with the observation vector y. This presents 
an easy way of obtaining + and hence fi as we shall illustrate in Section 8.7.2. 

The error sum of squares, SS(1lX. Z) ,  is obtained in the usual way as 

SS(IlX, Z) = y’y - @L;olX’y - +’Z’Rxy. (8.66) 

It is instructive to write (8.66) as 

SS(IlX, Z) = SS(I1X) - +’Z’Rxy 

which shows that the error sum of squares for model (8.55) is smaller than the error 
sum of squares for model (8.56), and the reduction is given by T’Z’Rxy. From (8.66) 
we then obtain 

32. = MS(1IX. Z)  

= SS(I1X. Z ) / ( N  - d, - d,) 

Finally, to test any hypothesis about p or a subvector of 

say Ho: p( l )  = p* ,  we fit the model 

Y = x* (4;)) + zy + e* (8.67) 
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say, and obtain SS(IlX*, Z) in the same way as we obtained (8.66). Suppose HO is of 
rank d. We then form the F-statistic 

[SS(IlX*, Z) - SS(IlX, Z ) ] / d  
M S ( I / X ,  Z) 

F =  (8.68) 

or alternatively, 
[SS(X, Z) - SS(X*, Z ) ] / d  

MS(I1X. Z) 
F =  

with d and N - d, - d, d.f. For p; = 0 this procedure is derived explicitly in 
Section 4.14.2. 

8.7.2 Two Covariates 

We shall illustrate the procedure described above in terms of a simple example in the 
context of the CRD. Suppose we have t treatments, each replicated T times, and two 
covariates n: and z (for polynomial regression with one covariate x and a quadratic 
relationship, we can use this technique by taking the second “covariate” to be z = 2’). 

Then, in model (8.55) we have 

pf = (Pl.PZ.....PLt). 

where for the CRD we have pz = p + ~ ~ ( i  = 1 . 2 , .  . . . t ) ,  

where 3, is a T x 1 column vector of unity elements and X contains t such vectors, 

Y f  = ( n , r 2 )  

where x : ~  = xzJ - Z..? z,*3 = zt j  - Z..,  and xz3 and zt j  are the covariates for the 
j t h  replication of treatment i. In a practical setting the treatments may be different 
advertising strategies for a book of general interest, the EUs are comparable book stores 
in different cities, n: may be the sales volume of a bookstore in the previous month, z 
may be the price of the book established prior to the advertising campaign (there being 
slight differences in price due to local conditions), and y being the sales volume of this 
book during a specified period. 

We then find from (8.61) 
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and from (8.62) 

where Ex,, E,,, E,, are defined in an obvious way as an extension of the terms in 
Table 8.1 and as described above as error sums of squares and error sums of products 
for the CRD. Further, from (8.63) we obtain the ith component of f i  as 

Also, from (8.66) we find 

SS(Error) = SS(I1X. Z)  

= E,, - E x y %  - E z y T 2  

and 
(8.69) 

Finally, to test the equality of treatment effects Ho: p1 = p2 = . . . = pt = p, model 
(8.68) takes on the form 

y = 3p + Zy + e*.  

The NE then yield the estimators f i ,  71' 7 2  for p, 7 1 , 7 2 ,  respectively, as 

- 2  a,* = ( E y y  - E z y ? ~  - E z y % ) / [ t ( ~  - 1) - 21. 

= g.. 

( 2 :  ?I)( ;;)=( 2;) 
and hence 

SS(II3, Z )  = sy, - sx,yl - szy';/2 

SO that (8.68) becomes 

Tests for y1 and y2 can, of course, be derived in a similar fashion. 

It is shown there, as is somewhat intuitive from the case m = 2 above, that the arith- 
metic can be represented by the ANOVA of y, X1, .  . . , X, and the corresponding 
sums of products. 

Many of the problems discussed in Section 8.5 can arise in the multiple covariate 
situation as well and extra care must be taken to assure validity of the basic assump- 
tions. For example, problems of collinearity may arise and appropriate diagnostics 
and/or different estimators for the regression coefficients in y may have to be used as 
described for example by Myers (1990). The problem may become rather complicated 
and in the end not worth the effort as there may be only marginal reduction of error as 
the number of covariates increases. 

The general case with m covariates, 21.22. . . . , x, say, is discussed in Section 4.14.4. 
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8.8 EXAMPLES USING SAS@ 

Even though the analysis of covariance in its simplest form is easy to perform, com- 
puter programs have, nevertheless, led to a much wider and more common use of this 
method of reducing experimental error. In the following we shall give some examples 
and illustrate the use of SAS Proc GLM. 

EXAMPLE 8.1: Consider the experimental situation described in Exercise 8.3 with 
the data given also in Table 8.5a. The input statements for SAS PROC GLM are given 
in Table 8% There we have included several options such as “inverse”, “solution”, 
and “e” the reason for which we shall explain in the comments for the output, given in 
Table 8.5b: 

(i) The Type I11 SS in the ANOVA show that there are differences among the treat- 
ments ( P  < .0001) and that the regression coefficient is different from zero 
( P  = 0.0005). 

(ii) The solution vector (which is produced because of the “solution” option, required 
for classificatory models) gives 3 = .773 with standard error se(?) = 0.16. 

(iii) The se(  5) can also be obtained from the X ’ X  Generalized Inverse as 

se(3^) = (0.03358 x 0.7656)l” 

where .7656 = L?z* from the ANOVA table. 

(iv) The General Form of Estimable Functions (obtained because of the option “e” 
in the model statement) can be used to interpret the solutions for the treatment 
effects. For example, for treatment 1 we have - 

6.2245 = 7-1 - 7-3> 

which is obtained by putting L2 = 1 and all other Li = 0, with 

(v) The generalized inverse can also be used to obtain, for example, 

= [(.4735 + .4113 - 2 x .1711) x .7656]1/2. 

(vi) The “e” option for LSmeans shows us how to obtain the LSmeans. To do so, 
however, we need to mention that instead of model (8 .5 )  SAS uses the model 
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Table 8.5 Basic Analysis of Covariance 

a) Input statements: 

data ancova; 
input trt x y @@: 
datalines; 
1 1 57.0 1 2 55.0 1 3 62.1 1 4  74.5 1 5 86.7 1 6 42.0 
2 164.8 2 2 66.6 2 3 69.5 2461.1 2 5  91.8 2 6 51.8 
3 1 70.7 3 2 59.4 3 3 64.5 3 4 74.0 3 5 78.5 3 6 55.8 
4 1 68.3 4 2 67.1 4 3 69.1 4 4 72.7 4 5 90.6 4 6 44.3 
5 1 76.0 5 2 74.5 5 3 76.5 5 4 86.6 5 5 94.7 5 6 43.2 

run; 

proc print data=ancova; 
title 'DATA FOR CRD WITH SUPPLEMEXTARY INFORMATION'; 
run; 

proc glm data=ancova; 
class trt; 
model y=trt X I  inverse solution e: 
means trt; 
lsmeans tdrtderr e; 
title 'BASIC ANALYSIS OF COVARIANCE'; 
run; 

b) Output: 
~ 

DATA FOR CRD WITH SUPPLEMENTARY INFORMATION 

Obs trt x Y 

1 1 4.1 12.5 
2 1 2.9 10.3 
3 1  1.5 9.6 
4 1 4.3 12.6 
5 1 2.2 11.3 

6.8 11.5 6 2  
7 2 2.1 8.6 
8 2 3.8 7.2 
9 2  6.4 11.6 

13 2 5.6 8.9 
11 3 6.6 6.8 
12 3 2.2 4.8 
13 3 3.5 5.6 
14 3 5.5 7.5 
15 3 4.6 6.2 
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: 7.t e r cept 
trt 1 
trt 2 
trt 3 

Y 
X 

Inrercept 
trt 1 
trt 2 
trt 3 

Y 
X 
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Table 8.5 (Continued) 

BASIC ANALYSIS OF COVARIANCE 

The GLK Procedure 

Class Level IEformation 

Class Levels Values 

trt 3 1 2 3  

Number of Observations Read 15 
Number of Observations 'Jsed 15 

X'X Generalized Inverse ( 9 2 )  

Intercept trt 1 trt 2 

0.8739556749 -0.422646071 -0.11274681 
-0.422646071 C.4735527199 0.1711752854 
-0.11274631 0.1711752854 0.4112961719 

0 0 0 
-0.150436535 0.0496977837 -0.019476153 
2.7154466085 6.2245399597 2.9314640698 

X'X Generalized Inverse (92) 

trt 3 X Y 

0 -0.150436535 2.7154466035 
0 0.0496977837 6.2245399597 
0 -0.019476156 2.9314640698 
0 0 0 
0 0,0335795836 0.7733378106 
0 0.7733378106 8.4220302216 

General Form of Estimable Functions 

Effect Coefficients 

intercept L1 

t rt 1 L 2  
t rt 2 L3 
trt 3 Ll-L2-L3 

X L 5  
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Cependent V a r i a b l e :  y 

Source 

Model 

E r r o r  

Ccrrec ted  Total  

R- Squar e 

0.909538 

Source 

t r t  
X 

Source 

t r t  
X 

P arame1 e r  

Table 8.5 (Continued) 

BASIC ANALYSIS OF COVARIANCE 

The GLM Procedure 

Sum of  
DF Squares  Mean Square F Value P r  > F 

3 84.67796978 28.22598993 36.87 <.0001 

11 8.42203022 0,76563911 

14 93.10000000 

Coeff Var Root MSE y Mear. 

9.722312 0.875008 9.000000 

DF Type I SS Mean Square F Value Pr > F 

2 66.86800000 33.43400000 43.67 <.COO1 
1 17.80996978 17.80996978 23.26 0.0005 

3F Type 111 SS  Mean Square F Value F r  > F 

2 83.14658219 41.57329109 54.30 <.0001 
1 17.80996978 17.80996978 23.26 0.3005 

Standard  
Tstirnate E r r o r  t Value P r  > 151 

I n t e r c e p t  2.715446608 B 0.8180065; 3.32 0,0068 
t r t  1 6.224539960 B 0.60213826 10.34 < .  0c91 
t r t  2 2.93ii64070 B 0.56116347 5.22 0.0C03 
t rr 3 O.OOOCOGCOO a 
X 0.773337811 C.16034289 4.82 0. 0005 

NOTE: The X ' X  mat r ix  has  been fcund t o  be s i n g u l a r ,  and a g e n e r a l i z e d  1r.verse 
was used t o  s o l v e  t h e  normal e q j a t i o n s .  Terms whose est imaEes a r e  
fol lowed by t h e  l e t t e r  ' B '  a r e  n o t  uniquely  e s c i x a b l e .  
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Table 8.5 (Continued) 

The G;Y Frocedure 

- _ - - - - _ _ - - - - - -  y------------- --------------x------------- Level o f  
t r t  N Mean Std Dev Mean Std 3ev 

1 5 11 .2 6’3 0 C 0 3 1.324003.06 3.003C003C 1.2C4iJ946 
5 9.5630030 1.9269146? 5.C6000000 1.75157072 
3 6.1800030 1.04498804 4.48003000 1.713S4’74 

2 
3 

Least Squares Means 

Coeff ic ien ts  f o r  trt Least Square Yeans 

trt Level 
E f f e c t  1 2 7 

In te rcept  
trt 1 
:rt 2 
crt 7 

X 

1 1 
1 3 0 
3 C 
3 0 1 

4.i8 4.18 4.18 

Standard 
z r s  y LSMZAN S r r o r  Pr > 1: 

1 12.1725386 0.4346564 <.  0C31 
2 8.8-94627 0.4153’78 < .  c o o 1  
3 5.94’9987 C.394261C < .  0001 

Then the coefficients for trt Least Square Means tells us that, for example, 

LSmean(trt 1) = + F1 +g. 4.18 
= 2.7154 + 6.2245 + ,7733 4.18 

= 12.1723, 

which is, apart from rounding error, equal to the LSmean (trt 1) given in the SAS 

output. Here and ?I are part of the solutions to the NE obtained by SAS (using 
7 3 =  0), and 4.18 = J: . 
w 

(vii) The se[LS mean (trt l)] can be obtained by using the generalized inverse, Zz-,  
and the coefficients for the LS mean as 

se [LSmean(trt) 11 = [(.8740 + .4736 + (4.18)’~ 
,0336 - 2 x .4226 - 2 x ,1504 

+ 2  x 4.18 x ,0497) x .765611/’ = .435 

(viii) Just for comparison we give y-means in addition to the LS means to show that 
LS mean for trt 1 is adjusted upwards, whereas those for trt 2 and 3 are adjusted 
downwards as an illustration of Figure 8.2. 
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EXAMPLE 8.2: We consider the same data as in Example 8.1. In addition to the 
analysis of covariance we now consider post-hoc comparisons in the form of orthogo- 
nal contrast and illustrate the Tukey-Kramer procedure for multiple comparisons (see 
Section 8.4.2). The input statements are given in Table 8.6a and the output in Table 
8.6b. 

We make the following comments: 

(i) In the input statement, in order to perform the Tukey procedure for the LSmeans 
we have to specify “adjust=Tukey” (other multiple comparison procedures are 
available, but not Duncan’s multiple range test). 

(ii) The Tukey-Kramer adjustments apply, of course, only to the multiple compari- 
son tests and simultaneous confidence intervals. 

(iii) The low P-values, indicating highly significant differences between the treat- 
ments, correspond to lower and upper confidence limits having the same sign for 
each pairwise comparison. 

(iv) Note that the contrast sums of squares do not add up to the treatment sum of 
squares (see Section 7.3). 0 

EXAMPLE 8.3: Using the data from Example 8.1 we shall demonstrate the use of 
SAS PROC GLM to obtain separate regression coefficients for each treatment and then 
test for equality of slopes. This is done in two steps with the input statements given in 
Table 8.7a. 

For fitting separate regression lines we consider the regressions, technically speak- 
ing, to be nested within treatments, expressed as “z(trt)”. This is equivalent to model 
(8.45). The procedure for testing for equality of slopes is different than the method de- 
scribed in Section 8.5.2. The input statement “z z*trt” results in “fitting” first a single 
slope, indicated by “x”, and then considers deviations from the single slope, indicated 
by “z*trt”. Testing mt r t  = 0 is then equivalent to testing HO : 31 = 3 2  = . . . = Ot.  

The results of these two procedures are given in Table 8.7b: 

h h h 

(i) Using the “solution” option provides 31 = .976, 32 = .896, 33 = ,545 as the 
estimates of the three regression coefficients. 

(ii) The results in (i) may suggest that the regression coefficients may not be equal, 
but the test for “z*trt” is not significant ( P  = .5548), from which we conclude 
that the assumption of a common slope for the three treatments is reasonable. 

(iii) Looking at the solution vector for z and zatrt we recognize that the single slope 
mentioned above is actually 33 = ,5448 and mt r t  1 = 01 - $3 = .4311; 

h A h  

A h  

z*trt2= 3 2  - 3 3  = ,3509. 0 



Table 8.6 Analysis of Covariance with Post-Hoc 
Comparisons 

a) Input statements: 

data ancova; 
i n p u t t r t x y @ @ ;  
datalines; 
14 .1  12.5 12.9 10.3 11.5 9.6 14.3 12.6 12 .2  11.3 
26.8 11 .522 .18 .623 .87 .226 .411 .625.68 .9  
3 6.6 6.8 3 2.2 4.8 3 3.5 5.6 3 5.5 1.5 3 4.6 6.2 

run; 

proc glm data=ancova; 
class tn; 
model y=trt x; 
lsmeans tdstderr pdiff cl adjust=Tukey ; 
contrast '1+2 vs 3' trt 1 1 -2:  
estimate '1+2 vs 3' trt 1 1 -2/divisor=2; 
contrast ' 1 v s  2' trt 1 -1: 
estimate '1 v s  2' trt 1 -1; 
title1 'ANALYSIS OF COVARIANCE'; 
title2 'WITH POST-HOC COMPARISONS': 
run; 

b.) Output: 

ANALYSIS OF COVARIANCE 
WITH POST-HOC COMPARISONS 

The GLM Procedure 

Class Level Information 

Class Levels Values 

trt 3 1 2 3  

Nunber of Observations Read 
Nurnber of Observations Used 

Cependenz Variable: y 

S our ce DF 

Model 3 

Error 11 

Corrected Total i4 

Source 

trt 
X 

Source 

trt 
X 

DF 

2 
1 

DF 

2 

Sum Gf 
Squares 

84.67795978 

8.42203022 

93.10000000 

Type I SS 

66.86800000 
17.80396978 

Type I11 SS 

83.14658219 
17.80996978 

15 
15 

Mean Square F Value Pr > F 

28.22598993 36.87 <.00C1 

0.76563911 

Mean Square F Value Pr > F 

33.43400000 43.67 <.0001 
17.83995978 23.25 0,0005 

Mean Sq-are F Value Pr > F 

41.57329109 54.30 <.0031 
17.80996978 23.26 0.0005 
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t rt 

2 
3 

Table 8.6 (Continued) 

Least Squares Means 
AdSustment for Multiple Comparisons: Tckey-Kramer 

Standard LSMEAN 
y LSMEAN Error Pr > It1 Number 

12.1725386 0.4346564 <.0001 1 
8.8794527 0.4159778 <.0001 2 
5.9479987 0.3942610 <.0001 3 

Least Squares Means for effect i-rt 
Pr > It1 for HO: LSMean(i)=LSMean(j) 

2 
3 

trt 

2 
? 

L J  

1 2  
1 3  
2 3  

Dependent Variable 

Contrast 

1+2 vs 3 
1 vs 2 

Parameter 

1+2 vs 3 
1 vs 2 

Dependent Variable: y 

1 2 3 

0.0039 <.0001 
0.0009 0.0008 
<.0301 0.0008 

y LSMEAN 95% Confidence Limits 

12.172539 11.215865 13.1292i1 
8.879453 7.963902 9.795024 
5.947999 5.080235 6.815761 

Least Squares Means for Effect trt 

3ifference Simultaneous 95% 
Between Confidence Limits for 

Means LSMean (1) -LSMean (1) 

3.293075 1.552453 5.033699 
5.224540 4.598281 7.850799 
2.931464 1.415870 4.447058 

ANALYSIS OF COVARIANCE 
WITH POST-HOC COMPARISONS 

The GLM Procedure 

i 

CF Contrast SS Mean Sqdre F Value 2r > F 

1 65.31196748 68.31196748 89.22 <.3001 
1 19.98954494 19.98964494 26.11 0.0003 

Standard 
Estimate Error t Value ?r > It1 

4.57800201 0.48466275 9.45 <.0001 
3.29307589 0.64448259 5.11 0.3303 
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Table 8.7 Analysis of Covariance: Fitting Separate Regressions and Testing for 
Equality of Slopes 

a) Input statements: 

data ancova; 
input trt x y @ @: 
datalines: 
1 4 . 1  12.5 1 2.9 10.3 1 1.5 9.6 I 4.3 12.6 12 .2  11.3 
2 6.8 11.5 2 2.1 8 .62  3.8 1 .2  2 6.4 11.62 5.6 8.9 
3 6 . 6 6 . 8 3 2 . 2 4 . 8 3 3 . 5 5 . 6 3 5 . 5 7 . 5 3 4 . 6 6 . 2  

run; 

proc glm data=ancova: 
class trt; 
model y=trt x(trt)/solution; 
title1 'CRD WITH SUPPLEMENTARY INFORMATION'; 
title2 'FITTING SEPARATE REGRESSION LINES': 
run; 

proc glm data=ancova: 
class trt; 
model y=trt x x"trt/solution: 
title2 'TESTING FOR EQUALITY OF SLOPES'; 
run; 

b.) Output: 

CRD WIT3 SUPPLEMENTARY INFORMATION 
FITTING SEPARATE REGRESSION LINES 

;he GLM Procecure 

Dependen: Variable: y 

SUIT of 
Source CF Squares Mean Square F Value Pr > F 

Mooel 5 85.71133848 17.14226770 20.88 0.0301 

Error 9 7.38856152 0.82096239 

Correczed To-a1 14 93.13000000 

R-Sqcare Coeff Var R o C t  MSE y Mean 

0.920637 10.05744 0.906O70 9.000000 

Source 

tr t  
x (Lit) 

Source 

t rt 
x ( t r t )  

DF Type I S S  Mean Square F Value Pr > F 

2 55.85800000 33.434000C0 40.73 <.0001 
3 18.84333848 6.28111283 7.65 0.3075 

DF Type I11 SS Mean Square F Value Pr > 0 

2 5.13915023 3.06957511 3.74 0.0655 
3 18.34333348 6.28111283 7.65 0.3075 



Table 8.7 (Continued) 

S t a n d a r d  
Pa ra r r e t e r  E s t  m a t e  Error t VaLJe Pr > It1 

I n t e r c e p t  3.739494363 3 1.25360461 2.98 0.0154 
c r t  1 4.592919430 3 1.73182684 2.65 0.0266 
r r t  2 1.288276172 B 1.85702C75 0.69 C ,5054 
t rt 3 0.0300C00C0 E 
x ( t r t )  1 0.975862069 0.37622499 2.59 3 . 2 2 9 3  
x ( t r t )  2 3.895697523 0.25864492 3.46 3.2071 
x ( t r t )  3 3.544755723 0.2648314C 2.06 0.C698 

N O T Z :  :he X ' X  m a t r i x  has  been found t o  b e  s i n g u l a r ,  and  a g e c e r a l i z e d  
i n v e r s e  was u s e d  t o  s o l v e  =he n c r r a l  e q ; l a t i o n s .  Terms whose 
e s t i m a t e s  a r e  f o l l o w e d  by t k . e  l e t t e r  ' E '  a r e  nor  u n l q u e l y  e s t - m a b l e .  

C3D W I T H  SLPPLEMEKIARY INFORMATION 
T E S T I N G  FOR E Q J A L I T Y  OF SLOPES 

Dependent V a r i a b l e :  y 

s.Ir of 
Source  CF S q J a r e s  Yean Square  F Value P r  > F 

Yodel 5 85.71133848 i7.14226770 20.88 0.0001 

E r r o r  9 l.38866152 0.82095239 

C o r r e c t e d  T o t a l  1 4  93.1000000C 

R-Square Coeff V a r  Root MSE y Mean 

0. 920637 1 3 . 0 6 7 4 4  C .906070 9.C00000 

Source DF Type I SS Mean Sqiiare F Value  Pr > F 

t r t  

x * r r t  
X 

2 66.8683C000 33.4343C000 40.73 <.COO1 
1 17.80996978 17.80996978 21.69 3.CO12 
2 1,33336870 0.51668435 0.63 0.5548 

Source  DF Type I11 SS Mean Square  F Value Pr > F 

t r t  

x * t r t  
X 

2 5.13915323 3.0695'511 3.74 3.0658 
1 17.23712309 1?.23712309 23.96 0.0Cl3 
2 1.03336870 0.51668435 0.53 0.5548 

S t a n d a r d  
Para:,eter Esz ima te  Error t Value PI > 1x1 

I n t e r c e p t  3.739494363 B 1.2536C461 2.98 0.0134 
t r t  1 4.592919430 E 1.73452684 2.65 C .  C266 
t rt 2 1.288276172 E 1.85732075 0.69 0. 5054 
t r t  3 0.C00000000 E 
X 9.544755723 E 3 . 2 6 4 8 0 1 4 3  2 . C E  0 . 0 6 9 8  
x * t r t  1 0.131106346 E 0.46007067 C. 94 0.3732 
x * t r t  2 0.350941800 E 0.37C158C4 0.95 C.3678 
x x t r t  3 0.C0000COOC B 

NOTE: T t e  X ' X  m a t r i x  +.as beer. found t o  b e  s i n g u l a r ,  and  a g e n e r a l i z e d  
;r ,verse was used  t o  s o l v e  t h e  normal  e q u a t i o n s .  T e r m  whose 
e s t i m a t e s  a r e  f o l l o w e d  by t h e  l e t t e r  ' B '  a r e  n o t  u n i q u e l y  
e s t i m a b l e .  
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8.9 EXERCISES 

8.1 Consider the following data (y, x) from a CRD, where y represents the response 
after treatment, and x is a covariate. 

1: (7.5, 3.5) (6.2, 2.6) (6.8, 3.1) 
2: (10.0,3.0)(12.1,3.7)(11.3,4.1) 
3: 
4: (5.1,4.2) (4.6, 3.7) (7.1,4.9) 

(15.2, 5.1) (10.7,2.6) (12.9, 3.1) 
Treatment 

5:  (12.1,2.3) (14.2,2.9) (15.0, 3.5) 
6: (10.0, 3.2) (9.8, 3.0) (9.6, 2.5) 

Analyze the data, ignoring the covariate, that is, 

(a) obtain treatment means, 
(b) obtain ANOVA table and perform F-test, 

(c) perform Tukey’s Test ( a  = .05), 
(d) interpret the results. 

Using the experiment as a pilot study and, again ignoring the covariate, 
determine the number of replications per treatment needed to detect a dif- 
ference between the best and the poorest treatment of 3 units or more with 
probability .8, using a test of size a = .05. 

Do the same as in (i) using the covariate. 

Do the same as in (ii) using the covariate. 

Comment on the results from (i), (ii) vs. (iii), (iv). 

8.2 An experiment was conducted to compare six different management techniques 
(such as pruning, spraying and fertilizing) for apple trees with respect to yield. 
Each apple tree represents an experimental unit and the trial was layed out as 
a completely randomized design with 5 replications for each management tech- 
nique. All the trees underwent the same management practice before the trial. 
For each tree the yield in bushels (x) for the four-year period preceding the trial 
is available. At the end of the four-year experimental period, the yield in pounds 
of apples (y) is obtained for every tree. 

Suppose the partial SAS Proc GLM printout is as follows: 

Source Type I S S  TypeIIISS 
Treatments 40 60 
Prev. Yield 26 26 
Error 46 

Total 112 

Based on this information indicate how you would answer the following ques- 
tions: 
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(i) Are there differences among the management techniques (treatments)? 

(ii) Has the use of a covariate been successful in reducing the variance for 
treatment comparisons? 

(iii) Suppose the supplementary information were not available. How would 
you test Ho: 71 = 7-2 = . . . = 7 6 ?  

(iv) Suppose 21, = 10, 22. = 12, i ts ,  = 9, 2 4 .  = 10, 5 5 .  = 13, 2 6 .  = 
8, C(z,, - 2,,J2 = 20. What is the standard error of the comparison 
“treatment 1 vs. remaining treatments?” 

8.3 Suppose an engineer is interested in comparing three chemical processes for 
manufacturing a certain compound. She suspects that the impurity of the raw 
material used in the processes will affect the final product. She therefore wants 
to adjust for that in the final analysis. 

Using a CRD with 15 experimental units she records the following: 

Amount of 
Treatment Impurity Yield 

1 4.1 12.5 
2.9 10.3 
1.5 9.6 
4.1 12.6 
2.2 11.3 

2 6.8 11.5 
2.7 8.6 
3.8 7.2 
6.4 11.6 
5.6 8.9 

3 6.6 6.8 
2.2 4.8 
3.5 5.6 
5.5 7.5 
4.6 6.2 

(i) Plot the data. 

Using the methods and formulae described in Section 8.5.2, 

(ii) Estimate the regression line for each treatment. 

(iii) Test the hypotheses that the three slopes in (ii) are equal. 

(iv) Obtain the pooled estimate of the slope. 

(v) Obtain the unadjusted and the adjusted treatment means and compare them. 

(vi) Obtain the ANOVA table. 

(vii) Interpret the results obtained from the ANOVA table. 

Compare the results with those obtained in Examples 8.1 - 8.3. 
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[see (8.39)]. 

8.5 Show explicitly that 3 as given in (8.50) is the weighted average of the esti- 
where the weights are the reciprocals of var(&)(i = mates of the individual 

1,2 . . . . .  t ) .  



CHAPTER 9 

Randomized Block Designs 

9.1 INTRODUCTION 

As we have mentioned on several occasions, one of the major objectives of consid- 
ering designed experimentation is to reduce error in order to improve the sensitivity 
or precision of the investigation. Hence comes our use of the word error-reduction or 
error-control design (see Chapter 2 )  for an experimental plan which produces an error 
variance smaller than that for a comparable CRD for purposes of treatment compar- 
isons. In Chapter 8 we have already considered one method of reducing the error. This 
was not achieved through a more complex design but rather by making effective use of 
additional information. 

In this chapter we shall consider the situation referred to in Section 8.1 where the 
variability among the experimental units available for a study is systematic rather than 
“random.” Such variation may arise naturally or may be “induced” or introduced by 
the experimenter. Both situations are treated identically from the design point of view 
but may have to be treated differently from an analysis point of view. We shall discuss 
this later but shall give first some examples of both situations. 

In a field experiment there may be a fertility gradient (due to sloping land, or ex- 
ample) such that EUs on the same gradient level are more alike than those at different 
levels; or there may be a creek running through the field such that plots equidistant 
from the creek are more alike than those at different distances from the creek (Pearce, 
1983). In a clinical trial, to achieve adequate numbers of replications, several centers 
may be involved and patients (EUs) in the same center may be more alike than patients 
from different centers, not so much because of their own personal characteristics, but 
because of different treatment practices or management styles in different centers. 

Induced variability is often considered when one wants to broaden the scope of the 
validity of experimental findings. An investigator in an industrial experiment may de- 
cide to obtain experimental material from different suppliers who use different produc- 
tion processes. In a livestock feeding trial it may be important to include animals from 
different breeds; or in an experiment to test different brands of tires one may want to 
include cars from different manufacturers and different models for each manufacturer. 

277 
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It should be clear from these examples that there are many situations with system- 
atic variation among sets of EUs. In such situations it is obviously inappropriate to 
use a CRD and the aim of designing the experiment must be to take this variation into 
account and to “eliminate” the effect such variability would have on the precision of 
treatment comparisons. This leads us to the concept of local control or blocking alluded 
to in Chapter 2. This concept, introduced by R. A. Fisher (1926,1935), is indeed one of 
the most important concepts in the subject of experimental design and all error-control 
designs discussed in this chapter and the following chapters make use of it in one form 
or another. 

To conclude this section we shall relate our discussion above to our general de- 
velopment in Section 2.2.4, where we divided the set of blocking factors in intrinsic 
factors, denoted by 2, and non-specific factors, denoted by U. An example of an in- 
trinsic factor is given by the inclusion of different breeds in a feeding trial, whereas 
an example of a non-specific factor is the recognition of a fertility gradient due to 
sloping land in an agronomic trial. From the design point of view this distinction gen- 
erally is not important, but it may be important with regard to dealing with possible 
blockx treatment interactions (see Section 9.6) and considerations of practical infer- 
ence from an experiment involving blocking factors. 

9.2 RANDOMIZED COMPLETE BLOCK 
DESIGN 

9.2.1 Definition 

The simplest and perhaps most widely used block design is the randomized complete 
block design (RCBD) which we define as follows: The experimental material is divided 
into b sets o f t  EUs each, where t is the number of treatments, such that the EUs within a 
set are as homogeneous as possible and that differences among the EUs are accounted 
for as much as possible by differences between the sets. The sets are called blocks. 
Within each block the t treatments are randomly assigned to the EUs, each treatment 
occurring exactly once in a block. Independent randomizations are used in the b blocks. 

The physical act of randomization can be carried out for each block as described in 
Section 6.2.1 or by using SAS PROC PLAN as described in Table 9.1 for t = 6 and 
b = 3. 

As alluded to above the division of the EUs into blocks is based on a priori in- 
formation or what we have called the subject matter model (see Section 2.2), that is, 
identification of factors that may have an effect on the outcome of the experiment. It 
is important to identify these factors since otherwise, if only by chance, the treatments 
may be confounded, that is, not separable, from the “levels” of such extraneous or 
nuisance factors (for an example see Kempthorne, 1952). 

9.2.2 Derived Linear Model 

We shall now consider the analysis of data from an RCBD following the method of 
Kempthorne (1952, 1955) and using an approach similar to that in Chapter 6. This 
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Table 9.1 Randomization for Randomized Complete Block Design 

279 

a) Input statements: 

proc plan seed=23467; 
factors block=3 ordered trt=6; 
title1 ’RANDOMIZATION FOR RANDOMIZED COMPLETE BLOCK DESIGN’: 
title2 ’t=6, b=3’; 
run; 

b) Output: 

RANDOMIZATION FOR RANDOMIZED COMPLETE BLOCK DESIGN 
t = 6 ,  b=3 

T h e  PLAN P r o c e d u r e  

F a c t o r  S e l e c t  L e v e l s  O r d e r  

block 
t r t  

3 3 O r d e r e d  
6 6 R a n d o m  

trt---- _ _ _ _  block 

1 4 2 5 1 3 6  
2 1 3 5 4 6 2  
3 4 5 1 3 2 6  
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means we shall first derive a linear model and then describe the analysis of variance 
associated with that model. We consider first the case where EU and OU are identical. 
Let Tijk denote the true or conceptual yield of treatment k applied to the j th  EU in the 
ith block ( i  = 1 . 2 ,  , t ) .  We now assume, as we did 
in Section 6.3, treatment-unit additivity in the strict sense. Hence we write 

T i j k  = & j  4- T k  % (9.1) 

where Cij is the contribution from EU j in block i and Tk is the contribution from 
treatment k .  Using the fact that we have formed blocks and that randomization is 
performed within blocks, that is, we have restricted randomization, we rewrite (9.1) as 

Tijk = Bi + uig + Tk. (9.2) 

where Bi = EjU,,/t = ui, is the average unit contribution in block i and hence 
referred to as the block contribution, and ui3 = Cij - uE, with C j u i j  = 0 for every i. 
We rewrite (9.2) further as 

T i j k  = B. + (Bi - B.) + U i j  + T. + ( T k  - T . )  
= ( B .  $- T.) + ( B i  - B.) + ( T k  - T.) + ui j  

(9.3) - 
- p + 32 + Tk + u.. ZJ ; 

where the terms are defined in an obvious way. The physical interpretation of the 
quantities in (9.3) is as follows: 

p is the (conceptual) overall mean yield which would be obtained if each treatment 
were applied to every unit in every block, that is, p = p. . .; 

units in block i and p, that is, 13i = Ti,. - T 

all units in all blocks and p, that is, Tk = F , , k  - T . . .; and 

13i is the difference between the (conceptual) mean yield of all treatments on all 

Tk is the difference between the (conceptual) mean yield of treatment k applied to 

ui j  is the difference between the (conceptual) mean of the yields of all treatments 
on the j h  unit of block i and the mean yield over the whole block, that is, 

uiJ = Tij, - Ti.. . It measures the extent to which unit j deviates from the 
other units in block i. We shall refer to this quantity (as we did to a similar 
quantity in Section 6.3) as the unit error (the same results following a slightly 
different argument were given by Wilk, 1955). It follows, of course, from the 
definitions that 

- - 

= 0) Z T k  = 0. 
i k 

To characterize the randomization process we introduce the design random variable 
d& = 1 if treatment k is assigned to the j th unit in block i, and bfj = 0 otherwise. It 
follows then immediately that 

1 

t 
P(d; = 1) = - 
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for any i, j ,  k because each treatment is applied to only one unit in each block. The 
distributional properties of the S$ can be derived easily following the same arguments 
given in Section 6.2. 

Now let y i k  denote the observed yield of treatment k in block z. We can then write, 
linking the conceptual yield to the observed yield via the process of randomization, 

yik = c S , "T i j k ,  (9.4) 
j 

that is, the yik (i = 1 , 2 :  . . . . b; k = 1.2 .  . . . ~ t )  are a realization of bt observations from 
the population of b t2  conceptual observations Tijk. Using (9.3) in (9.4) we obtain 

Y i k  = + 3i + T k  + c St'uij 
j 

= I-1 + ,8i T T k  $- W i k  (9.5) 

as a derived linear model for the observations from an RCBD. The only random vari- 
able on the right-hand side of (9.5) is w i k .  Its distributional properties can be estab- 
lished easily with the help of the distributional properties of the S&. For example, we 
obtain 

E R ( W i k )  = c E R ( d t j ) U i j  

j 

1 
t 

= -cui3 = o  
j 

and 

where we define 

that is, o,", measures the variability of the EUs in block i. Also, for k # k ' ,  

that is, observations in the same block are correlated, and for i # i' 

COvR(Ld,k,  LU'Z!~) = 0. 

that is. observations in different blocks are uncorrelated. 
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9.2.3 Estimation of Treatment Contrasts 

It is obvious now that an unbiased estimator for a treatment contrast, C k C k T k ,  with 
Ckck = 0, is given by the same contrast in the treatment means, that is, 

r 1 

with 

varR 

Now 

k kfk' 

i i#i' 

using (9.6), (9.8), and (9.10), and 

r 1 

= ---cfl:u 1 1  
b2 t 

(9.1 1) 

(9.12) 
i 

using (9.8) and (9.9). Substituting (9.1 1) and (9.12) into (9.10) we obtain 

using (9.7). To estimate (9.13) it then remains to estimate Ciju$. This is achieved 
through the analysis of variance. 

9.2.4 Analysis of Variance 

The ANOVA table for the RCBD is obtained from the following identity, mimicking 
(9.51, 

Ytk = g.. $- ( g t .  - g..) + (g.k - g,.)  + ( Y z k  - gi. - g .k  + g..). (9.14) 
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Transferring g,,  to the left hand side of (9.14) and squaring both sides yields 

z.k 2 k z.k 

This is the partitioning of the total sum of squares into block, treatment, and error com- 
ponents as given in Table 9.2. It is easy to work out the expected values of the various 
sums of squares, where the expectation is taken over all possible randomizations. Since 
g,. - g .  = Bz is a constant (using (9.5)) we have 

ER[SS(B)] = S S ( B )  = t C 8;. 
1 

but y k - 8.. = r k  + C z j 6 b u z 3 / b  is not a constant and hence 

ER[SS(T)]  = bCr? + ; C U ~ .  1 

k z>3 

Also, SS(Tota1) is a constant and hence 

E~[SS(Total)l = SS(Tota1) = t c DL2 + b c ri + c z&. 
By subtraction we then find 

From these results the E(MS) under additivity in the strict sense are as given in Ta- 
ble 9.2. 

We comment briefly on these results: 

(i) We note the “asymmetry” of blocks and treatments as manifested in the different 
forms for ER[MS(B)] and ER[MS(T)]. We shall return to this point later (see 
Sections 9.2.6 and 9.3). 

(ii) It follows from (9.7) that 

that is, the average of the variabilities of the EUs within blocks. 
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(iii) It follows from Table 9.2 that C u?]/b(t - 1) is estimated by MS(E) so that 

(9.15) 

9.2.5 Randomization Test and F-Test 

For testing of the null hypothesis that there are no differences among treatment effects 
we turn as in Sections 6.5 and 6.6 to the randomization test and its approximation by 
the F-test. Let us define 

and consider the test statistic 

2 = SS(T)/[SS(T) + SS(E)]  (9.16) 

which under HO : r1 = r2 = . . . = rt = 0 is equal to 

2 = S S ( T ) / U .  (9.17) 

We want to compare the distribution, or more precisely the first and second moment, 
of 2 in (9.17) under randomization theory and normal theory. Since U is a constant we 
have to find ER[SS(T)]  and var~[SS(T)l .  From Table 9.2 we know that, under Ho, 

ER[SS(T)]  = U/b .  

It can be shown, after tedious and lengthy algebra (Kempthorne, 1952), that 

var~[SS(T)1 = (U2 - K ) .  
( t  - l ) b 2  

where 

If we assume that afu = 02% = . . = then C,u% = U / b  for every i and hence 

K = U 2 / b .  

Then 

U 2  
2 ( b  - 1 )  

var~[SS(T) l  = 
(t - i p 3  

and hence 
1 

ER(Z) = 

and 
2 ( b  - 1 )  

varR(2) = 
( t  - q b 3 .  

(9.18) 

(9.19) 
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If the q k ’ s  in (9.5) were normally and independently distributed with mean zero and 
constant variance, then MS(T)/MS(E) would follow an F-distribution with t - 1 and 
( b  - l ) ( t  - 1) d.f. or, equivalently, 2 as given in (9.16) follows the beta (a .  ,!?) distri- 
bution with cy = t - 1, 3 = ( b  - l ) ( t  - 1). It then follows (see Section 6.6) that 

1 
b 

E ( 2 )  = - (9.20) 

and 
2(b  - l ) ( t  - 1 ) 2  

[b ( t  - l ) ] * [ b ( t  - 1) + 21 var (2)  = 

or if 2 is small compared to b ( t  - l), 

2 ( b  - 1) 
b3(t  - 1 )  ’ 

var(2) E (9.21) 

It then follows from comparing (9.18) with (9.20) and (9.19) with (9.21) that the means 
of 2 are the same under randomization theory and normal theory and that the variances 
are approximately equal. We conclude from this that the F-test 

(9.22) 

is a reasonable approximation to the randomization test to test Ho: TI = 7-2 = . . . = 

Tt = 0, a result first obtained by Welch (1937) and Pitman (1937) following Fisher 
(1935). Just as in Chapter 6 this result can be further substantiated by computational 
methods, either by enumerating all possible randomizations or, if that proves to be 
prohibitive, through simulation (Monte Carlo) studies. 

Individual contrasts among treatment effects are tested by using a t-test (or equiv- 
alent tests for multiple comparisons; see Chapter 7) in connection with result (9.15). 
There is no theoretical justification for this approximation but empirical results, such 
as simulation studies, seem to indicate that such a procedure yields satisfactory results 
(see Kempthorne and Doerfler, 1969). 

9.2.6 Additivity in the Broad Sense 

Up to this point we have considered the case where the assumption of additivity in 
the strict sense holds. It is, of course, desirable and indeed necessary to broaden our 
assumptions and extend model (9.5) so as to include in addition to unit error, other 
errors such as treatment error and observational (sampling) error. This can be done by 
using the same arguments as given in Section 6.3. We shall not give details here except 
to state the model under the assumption of additivity in the broad sense as 

where uik is the treatment error and q i k  is the observational error with means zero and 
variances 0; and cr:, respectively. Using this model in the ANOVA table (Table 9.2) 



9.2. RANDOMIZED COMPLETE BLOCK DESIGN 287 

the E(MS) can be obtained easily and are as given in the right-hand column under 
E(MS). If we define 

23 

we recognize the similarity of the E(MS) under models (9.5) and (9.23) in that for 
E[MS(T)]  and E[MS(E)] ,  CT: has been replaced by 0: + 0; + 0: = a:, say, whereas 
for E [ M S ( B ) ]  only 0; + 0: has been added. Thus, under model (9.23) the “asym- 
metry” between blocks and treatments discussed earlier is still preserved. This implies 
three things: 

(i) Under Ho: TI  = ~2 = . . . = Tt ,  MS(T) and MS(E) have the same expected 

(ii) assuming equality of the unit error variances the statistic (9.22) can still be used 

value, that is, the design possesses the property of unbiasedness; 

to test Ho : TI = r2 = . . . = T t ;  

(iii) there does not exist a valid test for testing equality of block effects (we shall 

We shall elaborate briefly on the result (iii) above since we consider this to be an impor- 
tant and often not understood finding. It formalizes what should be intuitively obvious, 
namely that a distinction needs to be made between interventional and observational 
studies in general, and the RCBD and the two-factor observational study, specifically. 
With regard to the latter, in both situations the observations are expressed in terms of 
a two-way classificatory linear model (see Section 4.3.2). For the observational study 
the two factors in this model are equivalent (symmetric), whereas for the experimental 
study they are asymmetric: the treatments (levels of factor A) are randomly assigned 
to the EUs, but the blocks (levels of factor B) are not randomly assigned. That this 
should lead to different properties - related to statistical inference - for the treatment 
and block effects of model (9.23) becomes explicit only through careful consideration 
of the various error components as exhibited in (9.23) and subsequent application of 
randomization theory. This is in sharp contrast to the usual - and incorrect, we might 
add - discussion of this important and far reaching topic. 

To conclude and relate this discussion to that in Section 6.3 we note that && = 

Wzk + Vzk in (9.23) is referred to as the experimental error and that for all practical 
purposes, that is, for purposes of inferences about treatment contrasts, the &,k can be 
regarded as i.i.d. random variables with mean zero and variance of. We may write 
further ~~k + q,k = ezk, and hence model (9.23) as 

return to this point in Section 9.3). 

yzk = + pz -k Tk + e z k .  

where the e z k  can be considered also as i.i.d. random variables with mean zero and 
variance 

We then have for a contrast of treatment means, Ccky.k, 

2 2 2  
Oe = OE + O V .  

(9.24) 

and tests can be made in the familiar way, 



288 CHAPTER 9. RANDOMIZED BLOCK DESIGNS 

9.2.7 Subsampling in an RCBD 

Just as in a CRD (see Section 6.9) we can encounter in an RCBD (as, in fact, in any 
error-control design) the situation that EUs and OUs are not identical. For an illustra- 
tion consider Example 2: Experimental Situation IV in Table 2.6. We refer to this as 
an RCBD with subsampling. The important point here is that now model (9.23) can be 
written as 

Yzkl  = I-1 + 3% + Tk + f z k  + % k /  

with 1 = 1. 2 ,  . . . ~ n and n indicating the number of OUs for each EU. As a con- 
sequence we are able to estimate the experimental error variance component 0% = 
0: + cr: and observational error variance component 0: separately. This follows in an 
obvious way from the expected mean squares in Table 9.3, namely, 

ov = M S ( 0 E )  

?: = [MS(EE)  - MS(OE)] /n .  

And, most importantly, the hypothesis Ho : TI = TZ = . . . = rt = 0 can be tested by 
approximating the randomization test by the 8‘-test 

-2 

with t - 1 and ( b -  l ) ( t -  1) d.f. Also, since for a contrast of treatment means, c c k y , k , ,  

with c C k  = 0 we find 

and 0; + no: is estimated by MS(EE) it should be clear that MS(EE) plays now the 
important role in any inference concerning the treatment effects. 

9.3 RELATIVE EFFICIENCY OF THE 
RANDOMIZED COMPLETE BLOCK 
DESIGN 

9.3.1 

In many practical situations it is quite obvious that there are substantial differences 
between the blocks, and hence between the block effects, that is, the B,’s in terms of 
model (9.2) or the 9,’s in terms of model (9.3). In such cases there is no doubt that the 
naturally arising or created blocks should be utilized for purposes of reducing experi- 
mental error, leading to a “small” 0;. There are, however, situations where matters 

Question of Effectiveness of Blocking 
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are not as clear or only incomplete information about the blocks is available at the 
outset of the experiment. The investigator, relying on a subject matter model (see 
Chapter 2), may have used an ineffective blocking factor, that is, a blocking factor that 
leads to only a small reduction in error compared to a CRD. This reduction in error may, 
however, be offset by a loss of d.f. for SS(E)  for the same number of observations, that 
is, t ( r  - 1) for the CRD versus ( t  - 1)(r - 1) for the RCBD with b = T blocks. This 
then may result in a loss of power or sensitivity with respect to treatment comparisons. 

Even though, once an experiment has been conducted in a RCBD, one cannot ig- 
nore the blocking in the analysis one may ask the question: How much have we gained 
by using a RCBD rather than a CRD with the same number of experimental units? To 
answer this question may be useful if one were to conduct a similar experiment using 
the same or similar EUs in the future. 

To study this question Yates (1935) introduced the notion of relative eficiency (RE) 
in the context of estimation of treatment comparisons. For two designs, D1, and 0 2  

say, the RE of D1 to 0 2  is defined as 

Efficiency D1 
Efficiency 0 2  

RE(D1 to 0 2 )  = 

(9.25) 

where varDi refers to var(Cck?k) for design Dl(l = 1 ,2 ) .  In our case D1 is a RCBD 
with t treatments and T blocks and D2 is a CRD with r replications for each of the 
t treatments. The RE as defined in (9.25) depends on the true variances for the two 
designs which, of course, are unknown. The best we can do then is to obtain the 
estimated RE, which we shall denote by ERE. Moreover, we have available only the 
data (observations) from the RCBD. 

9.3.2 Use of Uniformity Trials 

Following Yates (1935) we consider a uniformity trial, that is, a trial with dummy 
treatments, with b blocks and t EUs in each block. Denote the observations from such 
a trial by y,, (i = 1.2. . . . . b; j = 1 , 2 ,  . . . . t ) .  The ANOVA table for data with such a 
structure is as given in Table 9.4. 

If the blocks were not used the estimated error variance would be 

S S ( B )  + S S ( R )  - ( b  - l )MS(B) + b(t  - l )MS(R) 
- 

bt - 1 bt - 1 

The estimated error variance with blocks is, of course, MS(R), so that 

(9.26) 
( b  - l )MS(B)  + b ( t  - l)MS(R) 

(bt  - l )MS(R) 
ERE(RCBD to CRD) = 

Since we have carried out an experiment with real treatments and not dummy treat- 
ments we do not know MS(R). Instead we only know MS(E) from Table 9.2. Hence 
substituting MS(E) for MS(R) in (9.26) yields 

(9.27) 
( b  - 1)MS(B) + b ( t  - l )MS(E)  

(b t  - l )MS(E) 
ERE(RCBD to CRD) = 
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Table 9.4 ANOVA for Uniformity Trial 

Source d.f. ss MS 

Blocks b - 1  S S ( B )  MS (B) 
Within Blocks (Error) b(t - 1) S S ( R )  MS(R) 

Total bt - 1 S S ( B )  + S S ( R )  

where MS(B) is also taken from Table 9.2. It is useful to mention that (9.27) can also 
be obtained by randomization arguments only, that is, by comparing restricted (RCBD) 
versus unrestricted (CRD) randomization (Kempthorne, 1955). 

To conclude this discussion we should mention that sometimes it may be quite 
feasible and appropriate to conduct a uniformity trial before actually using an RCBD. 
In that case we then know MS(R) from Table 9.4 and hence can use (9.26) to obtain 
the ERE. 

9.3.3 Interpretation and Use of Relative Efficiency 

In general MS (B) will be larger than MS ( E )  and hence ERE will be larger than one or, 
as it is usually presented, larger than 100%. Since the ERE is obtained when both the 
RCBD and CRD have the same number of replications, namely, b, expression (9.27) 
can then be rewritten as 

or 

The practical interpretation of ERE thus is that we require 

T = b x ERE (9.28) 

replications per treatment for a CRD to be as effective as the RCBD with b replications, 
that is, b blocks, using the same experimental material. We emphasize again that the 
ERE speaks only to the question of estimation, that is, precision of estimates, and not 
to the question of power, that is, sensitivity of the experiment. For this reason it may be 
advisable to consider only a RCBD with an ERE larger than, say, 125% to be “better” 
than the comparable CRD. Another interpretation of the ERE is given by Yates (1935), 
namely that (1 - 1/ERE) 100% is the percent variation among the EUs removed by 
blocking. 

We commented earlier (Section 9.2) that there does not exist a legitimate test for 
Ho: ,& = p2 = . . . = O b ,  at least not in the context of the ANOVA table, that is, 
H = MS(B)/MS(E) is not an appropriate test statistic. There exists, however, a 
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monotonic relationship between H and ERE which at least gives some meaning to H 
(Lentner, Arnold, and Hinkelmann, 1989). It follows from (9.27) that 

ERE = a+ (1 - Q) H ,  

where Q = b ( t  - l ) / ( b t  - 1). Hence ERE > 1 if and only if H > 1. This gives a 
certain usefulness to H, but referring to our earlier discussion, it tells only part of the 
story. 

Finally, some knowledge of ERE or ERE* = 1 - 1/ERE may be useful in determin- 
ing the number of blocks b to be used if one has determined T for a comparable CRD 
by using the tables of Bowman and Kastenbaum (1975) as discussed in Section 6.7. 
We have from (9.28) that 

m 

b = -  = ~ ( 1  -ERE*).  
ERE 

For example, if we have some idea that blocking will reduce variability by 25% then 
25% fewer replications than those required for the CRD are necessary. Bowman and 
Kastenbaum (1975) provide a limited set of tables for the number of blocks for the 
RCBD, but the above procedure may be quite satisfactory from a practical point of 
view. 

9.4 SUPPLEMENTARY INFORMATION 
AND ANALYSIS OF COVARIANCE 

9.4.1 The Model 

One method of generating blocks is to make use of supplementary information in the 
form of a covariate. The procedure is to rank the EUs with respect to the covariate 
(which of course must be available before the experiment) in increasing order of mag- 
nitude, often referred to as outcome groups, and then use the first t EUs as one block, 
the next t EUs as another block, and so on. Cox (1957) has shown that this method is 
preferable to a CRD with covariate unless the correlation between y and II: is at least .6. 
Using the same covariate for purposes of analysis in addition to its use as a blocking 
device will generally not provide much additional information. There may, however, 
be situations where in addition to blocking the use of some covariate will lead to further 
reduction of the error variance, that is, we may consider the model 

yik = I.1 f 3% + 7 k  + y ( Z , k  - ZC..) + e:k. (9.29) 

where the e,.l, can be considered as i.i.d. random variables with mean 0 and variance 
0,’. . This is, of course, an obvious extension of the analysis of covariance procedure 
discussed in Chapter 8. We shall now give a brief description of the technique for the 
RCBD without repeating the basic philosophy and assumptions set forth in Chapter 8. 
This discussion also serves as an example of extending this technique to other error- 
reduction designs as well (for a general discussion of the arithmetic of analysis of 
covariance see also Section 4.13). 
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b t x t  

9.4.2 Least Squares Analysis 

Model (9.29) is a special case of model (8.55) 

y = X p +  Z y  + e x ,  

where X p  represents the classificatory part 

for the RCBD with rt 3t 

I xg = 

and 

x, = 

(9.30) 

b t x b  

Then, using model (8.58) we have in the normal equations (8.60) 

with rank (X’X) = b + t - 1. A g-inverse of X’X is obtained by imposing the 
conditions X j l  = 0. C;i, = 0. Corresponding to (8.61) we then have 

b(,) = ( x ’ x ) - x ’ y  

k. .  
Yl. - Y.. 

k b .  - k. .  
Y.l - Y,, 

k.t - Y.. 

Furthermore, because of the definition of Rx as the matrix for the error sums of 
squares, we obtain 5 from (8.62) as 

(9.31) 
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where E,, and Ex, are the error sum of products for x and y and the error sum of 
squares for x for the RCBD, respectively. Finally, we have corresponding to (8.63), for 
example 

Fk = y . k  - g. .  - T ( 3 . k  - 3.,) (9.32) 

or 
f ‘?k = g . k  - T ( 3 . k  - z.,). 

All the other results follow similarly. 

9.4.3 The ANOVA Table 

We shall comment now briefly on the ANOVA table. It follows from (8.66) that the 
error sum of squares can be written as 

E&! SS(1jX: Z) = E,, - -. 
Ex, 

(9.33) 

where, again, E,,, Ex,, E,, refer to error sums of squares and error sum of products, 
respectively, for the RCBD. Hence 

(9.34) 

To test the hypothesis HO : T I  = 7 9  = . . . = Tt = 0, we obtain the SS(Treatments) as 

SS(X,13,XJ, Z) = SS(IlX*; Z) - SS(1jX. Z) ,  

or, if we write ,u + PL = ,uz, 

x* = 3t ... I] 
b t x b  

It then follows from the results for the CRD that 

SS(IlX*, Z) = (Tyy + E y y )  - (Tzy + Ex$ (9.35) 
Tzx + Ezx 

and hence, using (9.35) and (9.33) 

SS(X,13, xg. Z) = Tyy - P z y  + E,,)2 + -. E:, (9.36) 
Tzx + Exx Ezz 
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The test statistic for HO is then obtained by substituting (9.36) and (9.34) in (8.68) with 
d = t -  1. 

The reader should recognize that the right-hand sides of (9.36) and (8.28) are of the 
exact same form since for the CRD we have S,, = Txy + Ex, and S,, = T,, + Ex, 
see Table 8.1. Moreover, (9.31), (9.32), and (9.36) carry over to all other error-control 
designs in the following chapters keeping in mind only that. E,,, E,,, and Exy are 
the appropriate error sums of squares and products, respectively, for the error-control 
design under consideration. 

9.5 MISSING OBSERVATIONS 

Even in well-planned experiments it may happen that, for reasons that cannot be as- 
cribed to the effect of the treatments, one or several observations may not be available. 
This destroys the simplicity of the analysis of such data, but unless the missing ob- 
servations occur in a particular pattern the experiment is not a complete failure. With 
existing statistical software such data can be handled easily on any computer. Using 
a general linear models program the least squares analysis can be performed and all 
necessary information will be provided. In essence then the design becomes an incom- 
plete block design and methods for dealing with such designs are described explicitly 
in Chapter 11.1. 

Historically, this topic has received a great deal of attention, mainly for purely 
computational reasons. Yates (1933) developed a procedure for estimating missing 
observations, substituting the estimates for the missing observations and then analyzing 
the thus completed data set in the usual fashion. This leads to an approximate analysis 
which, however, is quite satisfactory for most purposes. As we mentioned above, there 
is today no particular reason to describe and use this method for the RCBD. Yet we 
shall describe a particular method of estimating missing values here for the following 
reasons: (i) It may not always be possible to perform the least squares analysis from 
first principles for complex and highly structured data sets because the large number 
of parameters leads to normal equations which cannot be solved on existing computers 
(see for example, Perry, 1986); (ii) the method to be described for estimating missing 
observations is generally applicable but easily described and illustrated for the RCBD; 
and (iii) the method is applicable to situations other than experimental designs (see 
Hinkelmann, 1968). 

9.5.1 Estimating a Missing Observation 

The method we shall describe now was originally proposed by M. S .  Bartlett and ex- 
panded by Coons (1957) and is based on analysis of covariance techniques (see Chap- 
ter 8). Consider then a RCBD with t treatments in b blocks and suppose that the 
observation for treatment k* in block i* is missing. We then write the model for the 
observations from this design as 
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where 
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0 fo r i  = z * ,  k = k" 
Y a k  otherwise 

-1  f o r i = i * .  k = k* { 0 otherwise 

Yak = 

x z k  = 

It follows then from (9.37) immediately that 5 is an estimate of 9z-k '  and from (9.31) 
we have 

(9.38) A E,, 
' E m  

" / =  -. 

Now, using the special nature of Yak and X &  above, 

i k  i k 

and 

ak 2 k 

Substituting the values for x , k  and y t k  as defined above we obtain 

1 1 1 
t b bt 

- - -Bz* + - T k +  - -G, 

where 

Bi* = total of all observations in block i* 

T k *  = total of all observations for treatment k* 

G = grand total 

and 

1 1 1  E,, = 1 - - - - + - 
b t bt 

( b  - l ) ( t  - 1) - - 
bt 

(9.39) 

(9.40) 

Substituting (9.39) and (9.40) into (9.38) yields 

~ ? =  bB,* + t T k *  - G 
( b  - l ) ( t  - 1) 

We can then substitute 
the RCBD as outlined in Section 9.2. 

for the missing observation and proceed with the analysis of 
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9.5.2 Using the Estimated Missing Observation 

As a consequence of the procedure advocated in Section 9.5.1 we have the following: 

(i) The comparison between treatment k* and any other treatment k is given by 

(ii) The same result is obtained by using the analysis of covariance model (9.37) and 
the procedure described in Chapter 8, namely, 

f k -  - ‘?k = y , k -  - g , k  - ‘ / ( z , k *  - 3 . k )  

with 
1 
b’  

2 . k -  = -- 5 . k  = O ( k  # k * ) .  

(5) It follows easily from the results of Chapter 8 that 

2 1  
* var(?k- - f k )  = ( + 

b - l ) ( t  - 1) 

= ( -+  2 
b b (b  - l ) ( t  - 1) 

(iv) For k ,  k’ # k* 

EE, SS(E)  = E,, - -. 
EX, 

where E,, is obtained with yZ*k* = 0 and E,, and Ex, are as given in (9.39) 
and (9.40), and 

MS(E) = S S ( E ) / [ ( b  - l ) ( t  - 1) - l)] = 6:., (9.41) 

that is, the d.f. are reduced by one for the one missing observation. We note here 
that MS(E) in (9.41) is the same as would be obtained from the least squares 
analysis for the incomplete data set (see also Chapter 11.1). 

(vi) The S S ( T )  with substituted for g z e k *  is positively biased (see Exercise 9.10) 
and hence the usual F-test for testing Ho : 7-1 = TZ = . . = rt will only be 
approximate. Only in borderline cases of significance, however, will one need 
to obtain the exact S S ( T )  from the least squares analysis (see Chapter 11.1) or 
correct for the bias (as found in Exercise 9.10). 
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9.5.3 Several Missing Observations 

If two observations or more are missing we can extend model (9.37) and include one 
covariate for each missing observation. The methods of Section 8.7 can then be em- 
ployed using the same ideas as outlined above. Explicit missing value formulas are 
given by Glenn and Kramer (1958). 

We shall conclude this section with a brief discussion of the general case, that is, 
the case of m missing values and error-control designs more general than the RCBD 
(for example, the Latin square design of Chapter 10). To facilitate the discussion we 
use notation of Chapter 4 (in particular Section 4.13). 

Let 
y = X p + e  (9.42) 

represent the model for a given error-control design where ,kJ represents all the parame- 
ters associated with that design. For the RCBD, for example, p represents the constant 
1-1, the block effects 191, P 2 ,  . . . , / 3b ,  and the treatment effects TI  7-2. . . . . rt. Let us now 
write (9.42) as 

(9.43) 

and let us suppose that y1 is being observed and y2, representing m observations, is 
missing. Corresponding to (9.37) we then introduce the model 

(9.44) 

that is, we replace in (9.43) the vector of the missing observations, y2, by 0 and intro- 
duce covariates in the form of the matrix 

= (_mI) 
with I = I,. The NE for model (9.44) are then 

h 

x‘xp - X’,? = X‘y* = x;yl  

-x,b + 9 = Z’y* = 0. (9.45) 

By the usual covariance argument (see Section 4.13) we obtain from (9.45) 

Z’[I- PX]Z? = Z’[I - Px]y*.  (9.46) 

We recognize, of course, that the elements of the coefficient matrix on the LHS of 
(9.46) are obtained as the error sums of squares and error sums of products for the 
given error-control design with the m columns of Z used as “observation” vectors. 
Similarly, the RHS of (9.46) is obtained as the error sums of products of the columns 
of Z and the vector y* as defined in (9.44). Solutions to the equations (9.46) for the 
RCBD are the missing value formulas given by Glenn and Kramer (1958) mentioned 
earlier. 
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Now let 
I - P x = ( v l  u v  w): 

where U, V, W are of order (n - m) x (n - m),  (n - rn) x m, and m x m, respectively, 
where n is the size of y*. Since I - PX is idempotent we have 

V' w 

and hence V'V + W2 = W. We also have 

Z/[I - Px]y* = -Vy1 

Z'[I - PX]Z  = v'v + w2 = w. 
The NE (9.46) for y then are 

and hence 

W? = -V'y1 

q = -W-lV'yl 

It follows then from (9.47) that 

var(?) = w-~v'vw- '~,~ 
= w-l(w - W2)w-la,2 

= (w-l - I)a,2. 

x/xp = x;y1+ x;? 
Returning now to the NE for p we have from (9.45) and (9.47) 

- - x;yl - x;W-w'yl. 

(9.47) 

(9.48) 

Since the model value of the LHS of (9.48) equals the model value of the RHS we have 

x'x = x:x1- x;w-1v/x1 

x;w-lv/xl = -[X'X - XiX,] = XkX2. 

var(x'xb) = (xi - X~W-lV/) (X1 - V W - ~ X ~ ) ~ , "  

and 
(9.49) 

It follows then from (9.48) and using (9.49) that 

= [X'X + x;w-1x21.,2. (9.50) 

In the context of our approach to the analysis of data from designed experiments, (9.50) 
should be used to obtain the variances of estimated treatment contrasts. It shows that 
if a treatment contrast does not involve a treatment with missing observations then the 
variance is the same as would have been obtained from the complete design. For other 
treatment contrasts, (9.50) shows how the variance will have to be adjusted, that is, 
increased. 
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9.6 NONADDITIVITY IN THE RCBD 

9.6.1 The Problem of Nonadditivity 

In our discussion of the RCBD so far we have made the assumption of treatment-unit 
additivity in the strict sense [see (9.1) and (9.3)] or, more realistically, additivity in 
the broad sense [see (9.23)]. In most cases such an assumption is not unrealistic, but 
we may, of course, conceive of situations where it does not hold. Such a situation we 
shall refer to as nonadditivity. An explicit formulation of this situation can be given by 
amending model (9.1) to 

Ttj k = utj + Tk + Rzj k * (9.51) 

where R z j k  refers to the nonadditivity which we also call unit-treatment interaction. 
Such interaction may arise in two ways: 

(i) The effect of the treatment depends on the EU to which it is applied in the sense 
that if we could apply two treatments, say k and k', to the same EU, then we 
would observe 

T z j k  - T t j k '  # T t j ' k  - T z j ' k '  

for two EUs 1 and 3' in block z .  

(ii) The effect of the treatment depends on the block in which it is applied in the 
sense that if the EUs in a block were identical 

for any two EUs in blocks i and i'. 

We may refer to the first type of interaction as the strict unit-treatment interaction, and 
to the second as block-treatment interaction. 

It should be clear from the description of the nature of strict unit-treatment inter- 
action that there is no way to investigate whether it exists (see Kempthorne, 1952, and 
Wilk, 1955) because in the RCBD we can apply only one treatment to each EU. Even 
the block-treatment interaction, and it surely is the more important of the two, cannot 
always be addressed satisfactorily. We shall distinguish here between two situations: 
(i) there is only one blocking factor, either a non-specific factor (U) or an intrinsic 
factor (2); (ii) there are several blocking factors involving factors from Z and U. For 
scenario (i) we shall describe two ad hoc procedures (Sections 9.6.3 9.6.5), and for sce- 
nario (ii) we shall outline appropriate analysis of variance procedures (Section 9.6.7). 
An alternate procedure, addressing design questions, will be discussed in Section 9.7. 

9.6.2 General Model for Nonadditivity 

In light of our discussion above, we can rewrite (9.51) as 

(9.52) 



9.6. NONADDITIVITY IN THE RCBD 30 1 

where Q l k  represents the block-treatment interaction and SIJk the strict unit-treatment 
interaction. Following (9.2) and (9.3), model (9.52) can be written as 

the terms of which are defined as functions of the T i J k  as follows (see Wilk, 1955) 

~ 

I-1 = T... 
4i = Ti,, - T... 

- - 

Tk = T . . k  - T... 

( 8 T ) i k  = (T2.k - Tz..) - (T..k - T... ) 
- - 

u., - T . .  - T .  
ZJ - 13. I . .  

S i j k  = ( T i j k  - TiJ.)  - ( T i , k  - Ti, , ) .  

The actual observations, I&, can then be expressed again as 

(9.53) 

where ( J ' T ) ~ ~  represents the block-treatment interaction with 

i k 

and wt3 and & J k  are random variables representing unit error and strict unit-treatment 
interaction, respectively. We shall assume now that all S I J k  = 0 and hence model (9.53) 
reduces to 

Yzk = I-1 + 3z + T k  + ( 3 T ) i k  -k d z k  

or, if we add [see model (9.23)] treatment and observational error, 

Y l k  = p +  3, + Tk  + ( ) 3 T ) z k  + e l k .  (9.54) 

It is clear from (9.54) that ( 3 ~ ) ~ k  and e l k  lead to the same entry in the ANOVA table, 
that is, cannot be separated, with 

E[MS(E)]  = 0," + C ( B r ) ? k / ( b  - l ) ( t  - 1). (9.55) 
z.k 

Since there is no mean square with expected value equal to a:, there does not exist a 
test for Ho : ( h ) i k  = 0 for all i and k .  
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9.6.3 One Blocking Factor: A Specific Model for 
Nonadditivity 

It is evident from (9.54) and (9.55) that the interaction as expressed by the ( b -  l ) ( t  - 1) 
independent ( 8 T ) & ’ S  must be modeled more specifically so that it accounts for some 
of the ( b  - l ) ( t  - 1) d.f. with the remaining d.f. attributable to random error. Such a 
procedure was first proposed by Tukey (1949) and more explicitly by Mandel (1961). 
We shall describe briefly Mandel’s procedure and show how it relates to Tukey’s pro- 
cedure. 

It follows from (9.54) that 

E ( % k  - Yz ) = Tk $. (f ir)& 

and under additivity, that is, all ( P T ) , ~  = 0, that 

E ( y z k  - t z  ) = T k +  

which is independent of a. One way to model the dependence of E(yZk - yz ) on a is to 
consider a linear function of PZ and write 

E ( ~ z k  - Y z  ) = ~k + Q k P z ,  (9.56) 

that is, assume 
( P T ) , k  = &k$i (9.57) 

We are then considering the model 

Yak = P + 8, f Tk + QkPz + ezk (9.58) 

with xz3, = Z k T k  = C k Q k  = 0. In order to give a concrete interpretation to model 
(9.581, let us write Qk = -/k - 1. Then (9.58) becomes 

(9.59) 

where pk = p + T k .  Thus the data from a RCBD can be expressed as a set of t 
regression lines where the b observations for treatment k ( k  = 1.2 ,  . . . . t )  are regressed 
on the block effects. It follows from C k Q k  = 0 that 

(9.60) 

If all -/k are equal and because of (9.60) equal to 1, then (9.58) reduces to the additive 
model, hence departure of some Y k  from 1 indicates block-treatment interaction. Since 
the 3,, the regressor variables, are not known, we replace them by ,!?z = y 2 ,  - g ,  and 
hence obtain in the usual way 

(9.61) 
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Using f i  = ii,,, +k = i i , k  - 1J.. we can then write the following identity as suggested by 
(9.58) 

(9.62) Y i k  = f i  + pi + .ik + ( ; ik  - I)& + 
with 

A i k  = ( u i k  - y . k )  - ' ' k a .  

9.6.4 Testing for Nonadditivity 

Using the properties of the various terms in (9.62), it follows easily that 

a,k i k k i i k  

provides a partitioning of the total sum of squares and gives rise to the basic ANOVA 
in Table 9.5. Mandel(1961), following arguments given by Scheffi (1959), has shown 
that, under Ho : y1 = 7 2  = . . . = yt = 1 and the assumption of normality, SS(S1opes) 
follows a scaled central X2-distribution with t - 1 d.f. Also, SS(Error) follows a scaled 
X2-distribution with ( b  - 2 ) ( t  - 1) d.f., the scales being the same for both sums of 
squares. Since both sums of squares are independently distributed it then follows that 

MS( Slopes) 
MS (Error) 

F =  (9.63) 

provides a test for Ho: y1 = 7 2  = . . . = -/t = 1 and hence a test for block-treatment 
interaction of the form specified by model (9.58). A derivation of this test based on 
randomization theory is provided by Roux (1984). 

9.6.5 Tukey's Test for Nonadditivity 

Tukey (1949) implicitly and Ward and Dick (1952) explicitly consider a special case 
of (9.58) by using 

&k = h (9.64) 

and hence the model 
y z k  = p + 4, + Tk + OpzTk + e z k  (9.65) 

to detect interaction. This may seem to be a very specialized and narrow model but 
Ward and Dick (1952) show that (9.65) arises from a multiplicative model of the form 

&k = (p' + p,' + & ) ( p "  + TL  + e l / k )  

with C,!?; = CrL  = 0. Following earlier arguments we can write (9.64) as 

y k  - 1 = OTk, 

that is, the regression coefficients are expressed as a linear function of the treatment 
effects. Writing 

T k  - 1 = Q?k + 6 k  
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Table 9.5 ANOVA for RCBD under Nonadditivity 

Source d.f. ss 

Blocks b - 1  

Treatments t - I  

Slopes t - 1  

Regression I 

Deviation t - 2  

Error 

Total bt - 1 

( b  - 2 ) ( t  - 1 )  

k i 

Subtraction 

Subtraction 

with C k 6 k  = 0, we obtain in the usual way the estimate of the regression coefficient 
Q as 

i b  

z k 

It follows then that in Table 9.5 

k i 

k k i 

can be partitioned into two components, 

SS(Regression) = O2 ?: c 3: 

(9.66) 

(9.67) 

(9.68) 
k i 
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and 
SS(Deviation) = c 8; $3,”. 

305 

(9.69) 
k Z 

where 
bk = ̂;k - Q?k - 1. 

To test the hypothesis of no interaction, that is, H0:O = 0, Tukey (1949) proposed the 
test statistic, 

S S (Regres sion) 
[SS(Deviation) + SS(Error)]/[(b - l ) ( t  - 1) - 11 

F =  

or, using the notation from Table 9.2, 

F =  (9.70) 
SS(Regression) 

[SS(E)  - SS(Regression)]/[(b - l ) ( t  - 1) - 11 ‘ 

which follows an F-distribution with 1 and ( b  - l ) ( t  - 1) - 1 d.f. (see Scheff6, 
19.59). Robinson (197.5) has shown that this test is a reasonable approximation to the 
corresponding test based on randomization theory. The test given by (9.70) is generally 
referred to as Tukey’s one-degree-offreedom test for  nonadditivity. 

An alternative derivation of (9.66) and (9.70) is given by Scheff6 (1959). It is based 
on the model 

Y z k  = I*. 3, + Tk + Q X z k  + ezk 

with 281, = (gZ - $i ) ( y  k - g ), that is, replacing 3 , ~ k  in (9.6.5) by j z ? k .  Using the 
analysis of covariance technique (see Section 9.4) we obtain 

since TZ, = 2 . k  = 2 . .  = 0. Hence takes on the form (9.66). 

9.6.6 Generalizations 

A generalization of Tukey’s test was proposed by Mandel (1971) and investigated in 
more detail by Johnson and Graybill (1972). They consider a model of the form 
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and derive a test for Ho : 0 = 0 by using the t x b matrix of residuals Z = ( z , k ) ,  where 
Z,k  = y t k  - y t ,  - Y,k + j j ,  , They derive the likelihood ratio test statistic 

where XI is the largest eigenvalue of Z’Z. The distribution of A* is then related to 
that of the eigenvalues of a Wishart matrix. For more details the reader is referred to 
Johnson and Graybill (1972), Corsten and van Eijnsbergen ( 1972), and Marasinghe 
(1985). 

We close this section with the following remarks: The Johnson-Graybill procedure 
outlined above and the extensions due to Mandel(l97 1) using more than just one term 
to model interaction, that is, using more than just the largest eigenvalue of Z’Z, were 
developed for two-way layouts with one observation per cell. Even though data from 
a RCBD can also be presented as a two-way array, we have pointed out earlier in this 
chapter that there exists a certain asymmetry between blocks and treatments. For this 
reason we prefer to test for nonadditivity in the RCBD by using (9.63) or (9.70). 

As models (9.58)and (9.65) indicate the type of interaction included in the model is 
of a very specific form. This limits, by necessity, our general inquiry into the possible 
existence of block-treatment interaction. Obviously, if the tests presented by (9.63) or 
(9.70) are significant then such interaction is present. If those tests, however, are not 
significant then this indicates only that interaction of the specific type is not present, 
but this does not preclude block-treatment interaction of a different type, except that 
we may be unable to detect it. 

9.6.7 Several Blocking Factors 

We now turn to the case of several blocking factors. Such cases can occur in different 
ways which are characterized by the different relationships of the factors with each 
other, that is, whether they are crossed or nested (see 4.12.2). We shall illustrate this 
first in terms of the following examples before we consider the question of block- 
treatment interaction. 

EXAMPLE 9.1 : An experiment was set up to study genetic parameters for radiata pine 
(Dean, et al., 2006). The full-sib families from a half-diallel cross with five parents 
represent the treatments which are evaluated for several growth traits, such as height 
and sectional area of stems, in a field trial using an RCBD at two different sites. More 
specifically, the basic arrangement consists of six blocks per site, each block containing 
ten plots to which the ten full-sib families are assigned at random. On each plot five 
trees from the assigned full-sib family are planted. Both sites are located on the North 
Island of New Zealand, but one site has colder climate than the other, being thus more 

0 prone to frost and needle blight. 
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EXAMPLE 9.2: The objective of an agricultural study was to determine the effect of 
each G. soja SCN resistance gene on yield and other agronomic traits in elite soybean 
backgrounds (Kabelka et al., 2006). One part of the field trial consists of growing 
plants from 100 derived genetic lines, representing the treatments, in 1.5 x 3.2 m two- 
row plots, representing the experimental units, in an RCBD with b = 2 blocks (repli- 
cations). This basic arrangement was repeated, using different randomizations in four 
different environments. More specifically, the environments represent combinations of 
two years and different sites. Plots were evaluated for days to maturity, plant height, 
lodging, and seed yield. 0 

EXAMPLE 9.3: A study is contemplated to examine the effectiveness of three meth- 
ods to memorize German vocabulary at the high school level (Kirk, 1982). It seems 
reasonable to take student ability, as measured by IQ, and gender into account. Thus, 
one approach would be to set up, say, five IQ classes, with three students for each class 
and gender, leading to ten blocks. In each block the three methods under investigation 

0 will then be assigned randomly to the three students. 

The above examples have one feature in common: They can be looked upon as 
replicated randomized block experiments, where one of the blocking factors can be 
considered the “replicating” factor, typically an intrinsic factor (Z). In Example 9.1 the 
basic RCBD is replicated at different sites, indicating different climates; in Example 
9.2 the replicates are the different environments, and in Example 9.3 we have an RCBD 
for each gender. What is different, however, is the relationship of the blocking factors 
to each other: In Examples 9.1 and 9.2 we have a nesting relationship, whereas in 
Example 9.3 we have a crossed relationship. More specifically, the blocks in the field 
are nested within the sites and environments, respectively, because the blocks at one 
site (environment) are different from the blocks at another site (environment) whereas 
the IQ classes are the same for both genders. 

This crucial difference in the blocking factor relationship is reflected in the linear 
models that describe the data from such experiments as we extend model (9.23) and 
exploit those relationships. To show this we begin with model (9.23) 

where in this form the ,Bi represent the “block” effects of the site-block (Example 9.1) 
or environment-block (Example 9.2) or the IQ class-gender (Example 9.3) combina- 
tions. It is advantageous, however, to explicitly represent the individual blocking fac- 
tors and their relationship to each other, because this will allow us to test certain aspects 
of ‘‘block’-treatment interaction which may be important for the analysis and interpre- 
tation of the experimental data. 

For the general development of extending model (9.72) we shall denote the two 
blocking factors by A and C ,  with A having a “levels” and C having c “levels”. Thus, 
the total number of blocks is b = ac. We then consider the following two cases: 
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(i) Nested blocking factors: 

For this case the 13i in (9.72) will be expanded as ai fyij, and the new model may 
contain an interaction term representing possible interaction between blocking 
factor A and the treatments. Thus, the model may be written as 

Y i j k  = p + ai + yij + Tk + ( 0 T ) i k  + e i j k  (9.73) 

with i = 1, 2, . . ., a;  j = 1, 2, . . ., c; k = 1, 2, . . ., t ;  ai representing the effect 
of the i-th level of A, and yij representing the effect of the j-th level of factor C 
at the i-th level of factor A. The interaction term ( a ~ ) i k  represents part of the 
block-treatment interaction, namely factor A-treatment interaction (A x T ) .  

The analysis of variance associated with model (9.73) is given in Table 9.6. A 
derivation based on randomization theory is given by Stewart (1980) and Hinkel- 
mann and Alcorn (1998). Table (9.6) indicates that 

MS(A x T) 

W E )  
F =  

with (a - l ) ( t  - 1) and a(c-  l ) ( t  - 1) d.f. provides a test for part of the possible 
block-treatment interaction, A x T .  

In Example 9.1 the blocking structure is the same as in Example 9.2, but the ex- 
perimental set-up provides an additional feature, namely subsampling (see Sec- 
tion 9.2.7) as each tree is an observational unit. An obvious extension of model 
(9.73) is given in (9.74), with the associated analysis of variance given in Table 
9.7, 

(9.74) 

with 1 = 1, 2, . . ., n. It is clear from Table 9.7 that now the experimental error 
plays the important role in testing for A x T interaction as the denominator of 

y i j k l  = p + ai + Y i j  + T k  + (a7)i.k + Ei jk  + q i j k l  

the F-ratio 
MS(A x T) 

MS(EE)  
F =  

with (a  - l ) ( t  - 1) and a ( c  - l ) ( t  - 1) d.f. 

(ii) Crossed blocking factors: 

Each combination of the levels of the factors A and C represents a block. This 
factorial structure (not to be confused with factorial treatment structure; see Sec- 
tion 11.2) leads to an expansion of ,!?% in (9.72) into a,  + -/j + and to 
inclusion of certain block-treatment interaction terms as given in model (9.75): 

Y z j k  = + az + -/J + (a?)zj + T k  + ( a T ) z k  + ( - / T ) j k  + e z j k  (9.75) 

with z = 1,2, . . ., a ;  j = 1 ,2 ,  . . ., c; k = 1,2, . . ., t .  The a,, T ~ ,  ( ~ y ) , ~  represent 
block effect components, and ( a ? ) ? k ,  ( y ~ ) ~ k  represent interactions between the 
blocking factors A, C and the treatments. Model (9.75) leads to an analysis of 
variance as given in Table 9.8. 
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In this situation it follows from Table 9.8 that we can isolate and test for two 
block-treatment interaction components, namely A x T and C x T by using the 
F-ratios 

with ( u  - l ) ( t  - 1) and ( u  - 1)(c - l ) ( t  - 1) d.f. and 

MS(C x 2’) 

MS (E) 
F =  

with (c - l ) ( t  - 1) and (a - 1)(c - l ) ( t  - 1) d.f., respectively. 

9.6.8 Dealing with Block-Treatment Interaction 

In the preceding sections we have explored methods of investigating, that is, detecting 
possible block-treatment interactions for various types of randomized complete block 
designs. If interactions do, indeed, exist then the question arises: What to do next? 
How can we or, even, can we at all make inferences about the treatment effects? There 
do not seem to exist general answers to these questions. 

What are the problems? The investigator wants to compare and make recommen- 
dations about treatments. But the existence of block-treatment interaction implies that 
such comparisons are not the same for all blocks. Hence making comparisons in the 
usual way, that is, by comparing treatment means, may present a wrong picture. Also, 
as Kempthorne (1952, Section 8.3) showed, with nonadditivity it is not possible to 
attach “reasonable” standard errors to treatment comparisons. And finally, nonaddi- 
tivity in a two-way table may be due to interaction or to nonhomogeneous variances 
as pointed out, for example, by Snee (1982) who also showed how knowledge of the 
subject matter can be important in explaining nonadditivity. And modeling such non- 
additivity may prove to be an important aspect of data analysis. 

It is here that the distinction between RCBDs with one blocking factor and two 
(or more) blocking factors becomes important. And beyond that, for the one blocking 
factor situation we distinguish between whether the blocking factor is a nonspecific 
(U) or an intrinsic (2) factor. 

The reason for making this distinction is that nonadditivity for these two types of 
RCBDs may lead to different actions. Clearly, for the first type any attempt of ex- 
plaining or modeling nonadditivity is of no value with regard to comparing treatments. 
Rather, it may be helpful to remove such nonadditivity through a suitable transforma- 
tion using methods described in Section 6.10. In this case it may be useful to plot 
residuals (ytk - yz - ) against the observations yLk to gain some insight into 
the form of nonadditivity and hence obtain an idea what type of transformation may be 
appropriate. 

With regard to RCBDs of the second type it may indeed be important to model 
possible nonadditivity as a means of interpreting differential treatment effects. In fact, 
in this case block-treatment interactions may be more important than treatment effects 
themselves. We argue that then, if at all possible, a different design should have been 
used, namely a generalized randomized block design as discussed in the next section. 

~c + 
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The situation is somewhat clearer and more options may be available if we have 
more than one blocking factor. Based on the analysis of variance for models (9.73), 
(9.74) and (9.75) we have displayed F-ratios that can be used to test whether certain 
components of block-treatment interaction, namely that between intrinsic blocking fac- 
tor and treatments, for example, A x T and/or C x T ,  are present. 

To discuss this in more detail let us first consider model (9.73) in the context of 
Example 9.1. 

EXAMPLE 9.1 (continued): The type of question that is often asked is: Are there 
differences between the two sites? We point out that not only is this the wrong question, 
but also that such a hypothesis cannot be tested since the factor “site” is a blocking 
factor (see Section 9.2.6). Rather, what is really meant is: Are the treatments (all or 
some) performing differently at the two sites? And this is to ask the question whether 
there exists site-treatment interaction, that is, A x T interaction. 

If the A x T interaction is significant further investigation is required to enunci- 
ate to what extent and in which way the full-sib families, or generally, the treatments, 
perform differently at the two sites. This can be done in what is referred to as an in- 
teraction plot by plotting the treatment means separately for each site (see also Section 
9.7.4). The two graphs are not essentially parallel (as they would be if interaction is not 
present), but can take on various forms. If they move essentially in the same direction 
then we have what we call codirectional interaction (see Section 9.7.4) or synergistic 
interaction (see van Belle et al., 2004). In this case it is still possible and informative 
to consider inference about the overall treatment effects either in the form of tests of 
hypotheses, including various types of comparisons, or confidence interval estimation. 
If the interaction is not codirectional then it will be more appropriate to consider infer- 
ence separately for each site. This can be done either in the context of model (9.73), 
that is, by using the error term from the ANOVA of Table 9.6 or or by analyzing the 
data from each site as separate RCBDs. 

Finally, if the A x T interaction is not significant then we may contemplate to 
delete the interaction term ( Q T ) , ~  from model (9.73) and reanalyze the data with the 
new model. This is largely a philosophical issue, and we take the point of view that 
if deleting the term at all it should be handled in the context of a preliminary test 
(Bancroft, 1964) and be dropped only if P > .25 ,  say. The effect of this will be, of 
course, an increase in the d.f. for error from a(c  - l ) ( t  - 1) to (ac - l ) ( t  - 1). 0 

We now turn to Example 9.3 and model (9.75). 

EXAMPLE 9.3 (continued): Much of what we have said for Example 9.1 holds also here. 
Instead of only one interaction term we now deal with two interaction terms and hence 
potentially two interaction plots, one for A x T and one for C x T. If both interactions 
are significant and not codirectional then we face the same problem discussed earlier 
for the case of one intrinsic blocking factor. Here, again, a generalized randomized 
block design may then be a better option to repeat this experiment. 

If one and/or the other interaction is not significant then we may contemplate pool- 
ing the non-significant interaction(s) with the error term in the ANOVA of Table 9.8. 

To summarize our discussion, we emphasize that it is important not to ignore the 
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possibility of block-treatment interaction, especially when intrinsic blocking factors are 
involved. In that case the interaction may be more important, and the subject-matter 
specialist may be able to provide important input and insight. And this should be 
reflected in the experimental design and the subsequent analysis. Many considerations 
come into play here, and it is impossible to provide specific directions for all cases. 

9.7 GENERALIZED RANDOMIZED 
BLOCK DESIGN 

9.7.1 Definition 

As mentioned in Sections 9.6.7 and 9.6.8 there exist situations where block-treatment 
interaction is strongly suspected a priori and where such interaction may be the major 
focus of the investigation and hence explicit characterization of its form is of utmost 
importance. This may occur, for example, when an intrinsic blocking factor is intro- 
duced by choice to broaden the inference from the experiment, for instance, different 
varieties of plants. The generalized randomized block design (GRBD) to be discussed 
in this section is the most appropriate design for such situations. 

We call a block design a GRBD if we have b blocks, each block containing s = rt 
EUs, such that each of the t treatments is applied to T EUs in each block (note that for 
T = 1 we have, of course, the RCBD). The treatments are assigned randomly to the 
EUs, and independent randomizations are used for different blocks. 

9.7.2 Derived Linear Model 

Let T i j k  denote the conceptual response if treatment k is applied to the j th  EU in the 
ith block. We can then write the following identity: 

The physical interpretation of most of the terms in (9.76) have been given in Sec- 
tion 9.2. In addition we now have the term 

( 3 T ) t k  = (Tz k - Tt ) - (T k - T ) 

the difference between the effect of treatment k in block z and the overall effect of 
treatment Ic .  To the extent that this term is different from zero, this is a measure of 
block-treatment interaction. Also, the term 

that is, the difference between the effect of treatment k on EU j in block i and the 
effect of treatment k in block i, is a measure of the unit-treatment interaction. We shall 
henceforth assume that such interaction is negligible. We can then write (9.76) as 
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with 

2 k 

2 ui j  = 0 for every i 
j=1 

i k 

The actual experiment then consists of randomly assigning each treatment to T EUs 
in each block using independent randomizations in different blocks. The procedure, 
using SAS PROC PLAN, is illustrated in Table 9.9, where in the output the treatment 
numbers are superimposed on the unit numbers within each block. 

The randomization process is characterized by the design random variables 

1 
0 otherwise. 

if treatment k is applied to the j th EU in block i d k .  = 
23 

Let YZk1 denote the observation for the Ith replication of treatment k in block i (i = 

1 , 2 , .  . . , b: k = 1 , 2 , .  . . , t :  1 = 1 . 2 , .  . . . r ) .  We then have 

and hence 
1 

ER(6k) = 7 

and other properties of the 6; can be established easily. The connection between the 
conceptual response T i j k  and the actually observed response yikl  is then given by 

1=1 3=1 

or 

(9.78) 
1 

This is a model based on randomization only and does not include technical errors. If 
we add technical errors the model (9.78) becomes (see Section 9.2) 

with the usual assumptions for the treatment errors, V&l,  and observational errors, ~ikl. 
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Table 9.9 Randomization for Generalized Randomized Block Design 

a,) Input statements: 

proc plan seed=73251, 
factors block=6 ordered units=% 
treatments treat=8 cyclic ( 1  1 2 2 3 3 4 4j8, 
titlel’RANDOMIZATION FOR GENERALIZED RANDOMIZED BLOCK DESIGN’, 
title2 ’(b=6, t=4, r=2j’, 
run; 

b.) Output: 
~ 

RANDOMIZATION FOR GENERALIZED RANDOMIZED BLOCK DESIGN 
(b=5, t=4, r = 2 )  

The PLAN Procedure 

Plot Factor 

Factor 

block 
units 

Select Levels Order 

6 6 Ordered 
8 8 Random 

Treatment Factors 

Initial Block 
Factor Select Levels Order / Increment 

treat 8 8 Cyclic ( 1 1 2 2 3 3 4 4 )  / o  

treat----- - - _ _ _  units----- _ _ _ _ _  block 

1 5 8 1 5 3 7 2 4  1 1 2 2 3 3 4 4  
2 4 2 8 1 3 7 5 6  1 1 2 2 3 3 4 4  
3 1 2 3 8 5 7 4 5  1 1 2 2 3 3 4 4  
4 1 2 5 8 7 5 3 4  1 1 2 2 3 3 4 4  
5 3 8 4 2 5 1 5 7  1 1 2 2 3 3 4 4  
5 2 4 6 3 1 8 7 5  1 1 2 2 3 3 4 4  
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9.7.3 The ANOVA Table 

Using the identity 

y z k i  = 1-1 + 3% + 7 k  + ( ~ T ) ~ I C  + e tk i  (9.80) 

we obtain the ANOVA as given in Table 9.10. The expected values of the mean squares 
as given in Table 9.10 can be obtained by using the distributional properties of the hz",s 
(see Wilk, 1955) and of the u,kl and the q , k ~ .  Here we have defined 

We remind the reader that 0; + 0; = 0," is the experimental error variance, 0; is the 
observational error variance, and 0," = 0: + 0; is the overall error variance. We note 
also that the GRBD is an unbiased design in Yates' sense, just as the RCBD, in that 
under Ho : 7 1  = 7-2 = . ' .  = T~ = 0 we have E[MS(T)]  = E[MS(E)] .  Further, again 
just as in the RCBD, the ANOVA does not lend itself to a legitimate test for block ef- 
fects because E[MS(B)]  # E[MS(E)]  for 31 = 3 2  = . . = 3 b  = 0. 

The form of the E(MS) in Table 9.10 suggests the following tests: 

(i) The test statistic for no block-treatment interaction, that is, Ho : ( 3 ~ ) ~ k  = 0 for 
every i, k is given by 

(9.81) 
MS(B x T )  

MS(E) 
F =  

with ( b  - l ) ( t  - 1) and bt(r - 1) d.f. 

(ii) The test statistic for no treatment differences, that is, Ho : 71 = 7 2  = . . . = rt = 

0 is given by 

(9.82) 

with t - 1 and bt (r  - 1) d.f., but see Section 9.7.4 

Wilk (1955) has shown that these F-tests are reasonably good approximations to the 
corresponding randomization tests. 
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9.7.4 Analyzing Block-neatment Interaction 

We shall comment briefly on the usefulness and appropriateness of testing Ho : = 
. . . = rt = 0 when the test for block-treatment interaction has been found significant. 
In such a case it is important to study, mainly by plotting, the nature of the interaction. 
Following the discussion in Section 9.6.8 it is useful to plot yik. versus t i . .  (or versus 
i) for each k .  Alternatively, we may plot gikl versus g , k ,  (or versus k )  for each i (see 
Section 9.6.8). Two examples are given in Figures 9.1 and 9.2 based on the (fictitious) 
data in Table 9.1 1. 

The important feature of Figure 9. la  and 9.2a is that the changes from block to 
block, though different for the various treatments, are in the same direction. We have 
referred to this type of interaction as codirectional interaction. If we define 

as the effect of treatment k in block i and 

as its estimator (i = 1 . 2 , .  . . . b; k = 1 . 2 , .  . . . t )  then codirectional interaction implies 

with similar statements for the ?&. Since the “trend” for each treatment is in the same 
direction, it may make sense and, in fact, it may be quite useful to compare “the” 
effects, that is, the 

that if T,k - T z / k  2 0, then ah0 TZk‘ - T z / k /  2 0 and (Tzk - T z / k )  # ( T Z p  - T 2 t k / )  

or, correspondingly, their estimators 

(9.83) 

Suppose, for example, that the blocks represent breeds of cattle and the treatments 
represent feeding regimens. In order to avoid unnecessary complications let us assume 
that the data given in Table 9.1 l a  actually are the I?, k ,  representing, for example, units 
of weight gain per week. Although the difference in gain between regimens 1 and 2 is 
small for breed 1, zero for breed 2, and quite substantial for breeds 3 and 4, it seems to 
be useful information that on average the gain due to regimen 2 is 2.5 units higher than 
that from regimen 1. This is the gain a farmer would realize using regimen 2 if he had 
(equal proportions of) cattle from all four breeds. 

The picture is obviously less clear if the outcome of the experiment is represented 
by the data in Table 9.1 l b  and presented in Figures 9.lb and 9.2b. Even though in this 
case regimen 3 is the best on average, it is clear that regimen 1 is best for breeds 3 and 
4 and regimen 3 is best for breeds 1 and 2. This form of what we might call antidirec- 
tional interaction or antagonistic interaction (see van Belle et al.. 2004), manifested by 
the fact that not only are the differences Tzk - T z / k  different for different k ,  but they also 
differ possibly in sign (direction), obviously dictates different action for the different 
breeds and hence makes consideration of the overall regimen effects meaningless. 
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Table 9.11 Block-Treatment Averages ( Y Z k . )  for GRBD 

Block 

1 2 3 4 0. k 

Treatment 1 2 6 8 10 6.50 

2 3  6 12 15 9.00 

3 4  8 13 20 11.25 

Yi.. 3 6.67 11.00 15.00 

(b) Block 

1 2 3 4 Y. k 

Treatment 1 2 6 8 10 6.50 

2 15 12 6 3 9.00 

3 16 13 7 4 10.00 

jji,. 11.00 10.33 7.00 5.67 

Comparisons of the Tik ' s  within block i are, of course, estimated by 

with 

and 

with 

k k \ k  

(9.84) 

(9.85) 

8; = MS(E). 

Using 6: = MS(E) from Table 9.10 shows that, even though we consider treatment 
comparisons (9.84) within blocks, we are using the overall (pooled) error variance 
estimate for purposes of inference. An alternative procedure is to consider the obser- 
vations in each block as the outcome of a CRD, say CRD1, CRD2, . . . , CRDb, and 
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analyze them accordingly. This means that rather than estimating the variance of an 
estimated contrast by (9.85) we would use 

(9.86) 
\ k  

for i = 1, 2 ,  . . ., b, where ?i(2) is the error mean square from the ANOVA of CRDi 
with t ( r  - 1) d.f. rather than bt(r - 1) d.f. as in (9.85). If the number of d.f. becomes 
an issue, that is, if t ( r  - 1) is rather small, we may consider pooling the variance 
estimators 8$z, (i = I, 2 ,  . . ., b )  by using a preliminary test for 

(9.87) 

for example, the F-max test of Hartley (1950). If (9.87) is not rejected at, say, CY = .25 
then we may choose to pool and hence return to (9.85). 

If meaningful, comparisons among the overall treatment effects r k  are estimated by 

2 2 
Ho : cT:(l) = Cr+) = . . . = g e ( b ) '  

with 

and 

(9.88) 

9.7.5 A More General Formulation 

The discussion so far assumes what is usually referred to as afuced effects model. By 
that we mean that the blocks used in the experiment are the only blocks available, 
that each block consisted of exactly tr EUs and that the treatments used are the only 
treatments of interest to the investigator. Such assumptions imply the way tests of 
hypotheses are performed as described above. It also defines the reference population 
to which the results of the experiment apply. For example, the assertion of treatment 
differences can, strictly speaking, only be made with respect to the blocks and the EUs 
that were part of the experiment. A somewhat wider reference population, however, 
can be considered and used to derive an appropriate model for the observations from a 
GRBD and also to derive appropriate statistical tests. Following Wilk and Kempthorne 
(1955, 1956) and Zyskind (1962) we shall describe briefly such a situation without 
providing all the details. 

Suppose we have a population of B blocks, each block containing S EUs, and a 
population of T treatments. The experiment then consists of selecting at random b 
blocks, s EUs in each block, and t treatments. The selected treatments are then ran- 
domly assigned to the EUs in each block such that each treatment occurs T times in each 
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Table 9.12 General Forms of E(MS) for GRBD 

Source d.f. E(MS) 

Blocks b - 1  

Treatments t - 1  

Block-Treatment In- ( b  - 1) ( t  - 1) 
teraction 

- s  o: + %To9, - t  2 + troo 2 
S 

B - b  2 
0; + 0; + of + - T o 9 ,  + rba: 

B 
o; + o: + of + r& 

Error bt(r - 1) o: + 0; + of 

Total btr - 1 

block, hence s = tr .  A derived linear model can be obtained by introducing sampling 
and design random variables to link the conceptual responses and linear functions of 
them to the observed responses much in the same way as we have described the general 
idea earlier. Such a model leads to the same partitioning of the total sum of squares as 
given in Table 9.10, but it leads to different E(MS). The E(MS), following Wilk and 
Kempthorne (1956) are given in Table 9.12. 
Here o: and o: are defined as before and 

B S  

B 7  

fs;, = x ( 3 r ! ? k  
z = 1  k=l 

( B  - 1)(T - 1) 

B 

o; = 
2=1 

B - 1  

k=1 

with the u,?, (37-)&. 3, ~ ?-k defined as before except now in the context of the popula- 
tions from which we sample. 

9.7.6 Random Block Effects 

We note that for the case b = B, s = S, t = T the E(MS) in Table 9.12 reduce to those 
of Table 9.10. Another extreme and important case is that where B is much larger than 
b (which we denote by b << B), s = S, t = T .  Then (B - b) /B  = 1, and the form of 
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the E(MS) in Table 9.12 suggests to test the hypothesis HO : TI = r2 = . . .  = ~t by 
using the F-test 

(9.89) 

with t - 1 and ( b  - l ) ( t  - 1) d.f., which is, of course, different from (9.82). This 
situation is referred to as a mixed model (see Section 4.18) situation with block effects 
as random effects and treatment effects as fixed effects. It follows then also that 

\ k  / k  

and 

var (c c ~ ? k )  = c;MS(B x T)/br. (9.90) 
\ k  / k  

where C k c k  = 0. 
The situation t << T ,  though not inconceivable, rarely occurs in the context of 

comparative experiments. Hence we shall neither discuss the mixed model with block 
effects fixed and treatment effects random, nor the random effects model with b << B 
and t  << T .  

We conclude this section with the following comments: 

(i) In practical situations it is sometimes not easy to decide whether block effects 
should be treated as random effects. For example, are the blocks in a field exper- 
iment randomly selected from a larger population of blocks? Most likely they 
were the only blocks available for the experiment. Or, if the experiment is repli- 
cated over two years (setting up a GRBD with nested blocking factors), are those 
years randomly selected? Certainly not, but still the researcher may want to con- 
sider them as “random” years. But if one year turns out to be a dry year and 
the other to be a wet year, then clearly we have an intrinsic blocking factor with 
fixed effects. There are obviously many variations of this discussion and thus 
this question becomes rather philosophical and often controversial. Generally, 
we prefer to consider the block effects as fixed effects. 

(ii) If the block effects are considered to be random effects, then this will affect the 
properties of the treatment least squares means, g k . We find from model (9.80) 
that, since E(&) = 0 and E [ ( 3 ~ ) , k ]  = 0, 

E ( g k ) = P + T k  (9.91) 

and 

(9.92) 

but, for C c k  = 0, 

(9.93) 
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or 

(see (9.90)). We note that it follows from (9.91), (9.92) and (9.93) that also for 
the RCBD with random block effects only var(y,k) will be affected, that is, the 
variance of a treatment least squares mean will be larger than the corresponding 
variance for the fixed effects case (see Example 9.16 in Section 9.10). 

9.7.7 Using Satterthwaite’s Procedure 

In many situations the “truth” lies between the two extremes; that is, the effects are 
neither “fixed” nor “random” in the Eisenhart (1947) sense. The E(MS) in Table 9.12 
give then some idea what the proper “error” term should be for testing hypotheses. For 
example, if b < B (but B < m), t = T ,  in order to test HO : TI = 7 2  = . . . = rt = 0, 
that is, HO : u: = 0, we construct a synthetic mean square 

MS(R) = d1 MS(E) + 4 2  MS(B x T )  

E[MS(R)]  = E[MS(T)] - rbu, 2 

(9.94) 

such that 

that is, 
E[MS(R)]  = E[MS(T)1aZ = 01. 

From Table 9.12 we infer immediately that 

dl + d2 = 1 

and 
B - b  

O2 = B 
Hence, (9.94) becomes 

B - b  
MS(R) = - MS(E) + - MS(B x T ) .  (9.95) 

b 
B B 

To test HO we then use a procedure due to Satterthwaite (1946) which in general can be 
described as follows: Suppose we have random variables X,(i = 1 . 2 .  . . . , rn) which 
are independently distributed as , U ~ X ~ ~ / U ,  where p2 = E ( X , )  and vz is the number of 
d.f. of X,(z = 1.2 .  . . . ~ rn). We then consider a random variable X defined as 

m 

x = - p 2 X 1 >  (9.96) 
i=l 

that is, a linear combination of independent X2-distributed random variables, with 

m 

2=1 
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and approximate X by a random variable of the form px ; /u  where u is determined 
such that X and px ; /u  have the same variance. It follows from (9.96) then that 

m 

or 

In our case we have m = 2 and X1 = MS(E).Xz = MS(B x T ) , X  = MS(R), 
01 = b/B, 452 = (B-b)/B,  v1 = bt(r-1). u2 = (b-l)(t-1). Sincep1 = E[MS(E)] 
and p z  = E[MS(B x T ) ]  are unknown, we approximate u by 

that is. 
2 [ % MS(E) + B - b  MS(B x T ) ]  

2 ’  U =  

B - b  MS(B x I ) ]  

bt(r - 1 )  ( b  - l ) ( t  - 1) 

The test statistic for an approximate F-test for testing HO is then given by 

(9.97) 

(9.98) 

with (t  - 1) and D d.f. 
The synthetic “error” mean square, MS(R), in (9.98)and as defined in (9.95) is 

also used in approximate tests concerning individual treatment contrasts C C k T k  with 
C Ck = 0. Specifically, we may use 

with 1 and D [see (9.97)] d.f. as the test statistic for testing HO : 
For the overall F-test as well as for the test concerning individual contrasts the 

inference space is that of the treatments used in the experiment and the population of 
blocks available for the experiment. Probability statements associated with the tests 
are valid only over this space. One should keep this in mind when extrapolating results 
to entities not in the population. This situation does indeed occur quite often when 
we want to apply the results of the experiment to entities that will arise in the future. 
For example, if the blocks are litters of mice then the results do not automatically 
carry over to litters to be born in the future. We may feel more comfortable with 

C k T k  = 0. 
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our extrapolation if the future litters bear some relationship to the current litters, for 
example, are obtained from the same strains. The reader will realize that applying the 
experimental results to other species, say humans, will compound the difficulties even 
further. In all of this subject matter knowledge is extremely important (see Chapters 1 
and 2). 

9.8 INCOMPLETE BLOCK DESIGNS 

9.8.1 General Notion of Designs with Incomplete 
Blocks 

In considering the RCBD and the GRBD we have assumed that the blocks contain 
enough homogeneous EUs so that each treatment can be applied once (for the RCBD) 
or r (  > 1) times (for the GRBD) in each block. Since the EUs in a block are rarely, 
if ever, homogeneous, large block sizes may be associated with large unit variances, 
0:. As a consequence, the precision of the experiment, that is, its sensitivity to detect 
treatment differences may be adversely affected. It is an empirical fact that, generally, 
smaller blocks are less heterogeneous than larger blocks. Hence the possibility of using 
“small” blocks needs to be explored and should be given consideration in designing an 
experiment. 

Often the experimenter is not given much of a choice in choosing an error-control 
design when blocks arise quite naturally with only few experimental units. As an ex- 
treme case, blocks of size two present themselves commonly, for example identical 
twins, half-leaves, the two sides of the body of an individual, such as both arms. Even 
litters of mice, parts of a field, or a batch of raw material may not have enough EUs to 
accommodate all treatments, especially if the number of treatments is large (examples 
of this we shall encounter when we discuss factorial experiments; see Chapter 11). 

These situations give rise to what are called incomplete blocks, and the correspond- 
ing error-control designs are referred to as incomplete block designs. The question of 
how one should assign the treatments to the EUs in such blocks becomes then an im- 
portant one. Obviously, different arrangements are possible, and some may be better 
than others. In this section we shall discuss, in general terms, several types of incom- 
plete block designs. This is meant as an overview to give the reader some familiarity 
with the existence and nature of such designs. Most of the technical details will be 
deferred to Chapters 11. 1-6. 

The general situation is as follows: We have t treatments and b blocks; the ith 
block has k ,  EUs (i = 1 . 2 . .  . . % b )  and the Ith treatment is replicated T I  times (1 = 
1 . 2 ,  . . . . t ) .  This implies obviously 

h t 

(9.99) 

and this number is denoted by n, the total number of EUs. From our earlier discussion 
it is also clear that not all treatments can occur equally often in each block, indeed in 
most situations not every treatment occurs in every block. The actual treatment-block 



9.8. INCOMPLETE BLOCK DESIGNS 329 

arrangement is characterized by the so-called incidence matrix N = (nli) which is a 
t x b matrix with elements 

nli = numer of times treatment 1 occurs in block i .  

As a consequence we have 

E nlL = k,  ( i  = 1.2.  . . . . b)  
/ 

and 

En,, = T ,  (1 = 1 . 2 . .  . . . t ) .  

The arrangement of the treatments in blocks cannot be done haphazardly, since this 
may lead to undesirable properties of the design. An important property of a design 
is that of connectedness (see Section 4.12.4) which allows us to estimate all simple 
treatment comparisons of the form 71 - ~ l r .  The designs described in the following 
subsections possess this property and, in addition, have some other desirable features. 

Before turning to these designs, however, we shall make a few general remarks 
about the analysis of incomplete block designs. Denoting the m-th observation for the 
1-th treatment in the i-th block by y,lm, we write, assuming unit-treatment additivity in 
the broad sense. 

Yalm = P + 9% t 7, + ezlm (9.1 OOa) 

with i = 1, 2, . . ., b; 1 = 1, 2,  . . ., t ;  m = 1, 2,  . . ., nll, or, in matrix notation, 

y = 9p + X3P + X,T + e (9.100b) 

(see model (4.2) in Section 4.3.2). This model has been referred to earlier as a three- 
part linear model (see Section 4.9) or as a two-way classification model (see Sections 
4.10 and 4.13.3). 

The general form of the normal equations (NE) for estimating the effects in (9.100) 
is given in Section 4.13.3. To solve these equations it is convenient and informative 
to reduce the NE to a set of linear equations involving only the ~ l ( l  = 1, 2 ,  . . ., t )  by 
absorbing the equations for ,u and the 3, into the equations for the 71. This leads to the 
so-called reduced normal equations (RNE) (for details see section 11.1.3). In matrix 
notation the RNE can be written as 

(R-N K-l N') -i = T-N K-l B, (9.101) 

where 

and K = 
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Table 9.13 ANOVA for Incomplete Block Design 

Source d.f. ss* EWS) 

&I3 b - I  

t 

5 Qi 
T’CT 

0,” + - 
t - 1  /=1 

Error n - b - t + 1 Difference 0: 

G2 
Total n - 1  EY?jm - ; 

i jm  

* G=grand total, n=total number of observations 

and ? = (71, 72,  . . ., Ft)’, T=(T1, T2, . . ., Tt)’, B=(B1, B2, . . ., BB)’ with Tl = 

yzlm = i-th block total. In a more succinct ytim = l-th treatment total, B, = 

1, m I .  m 

form the RNE in (9.101) are generally written as 

C ? = Q  (9.102) 

with C representing the coefficient matrix for ? and Q the right-hand side of the RNE. 
The so-called C-matrix above is also referred to as the information matrix as it contains 
all the information concerning the properties of the underlying design. 

The general form of the analysis of variance for an incomplete block design is given 
in Table 9.13. More precisely, the sums of squares given in Table 9.13 are the sequential 
sums of squares for the ordered model (9.100a,b) (Type I SS in SAS terminology). 
This is reflected in the expressions for the sources of variation, a notation established 
in Section 4.10. 

In the terminology of block designs the sum of squares SS(Xoi3) is called the 
SS(B1ocks ignoring treatments) and SS(X, 13, X,) is called SS(Treatments adjusted 
for blocks). For other details we refer to Section 11.1.3.6. 

We shall now turn our attention to some specific classes of incomplete block de- 
signs which can be described by the specific form of C in (9.102). 

9.8.2 Balanced Incomplete Block Designs 

The balanced incomplete block design (BIBD) is an equireplicate (that is, all T L  = T ) ,  

proper (that is, all k ,  = k ) ,  binary design (that is, nli = 1 or 0) introduced by Yates 
(1936). It has the additional and most important property that every pair of treatments 
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occurs together in a block the same number of times, this number being denoted by A. 
We shall refer to such a design as BIBD ( t ,  b, k ,  r ;  A) indicating thus the parameters of 
the design. For (9.99) we then have 

tr = bk = n 

and 

nL2 = k for every i 
1 

Cnli = r for every 1 .  

We also have the following relationship between the parameters 

X ( t  - 1) = r ( k  - 1). (9.103) 

The validity of this relationship can be seen as follows: Consider one treatment, say 
I* .  Since 1* occurs exactly X times together with the remaining t - 1 treatments, the 
number of EUs occupied by those treatments in the blocks in which I* occurs must be 
q = X ( t  - 1). On the other hand, since 1" occurs in T blocks and each block has k EUs, 
the same number q is equal to r (  k - 1). 

The relationship (9.103) implies 

r ( k  - 1) A = -  
t - 1  

(9.104) 

Since X must be an integer it is clear that a BIBD does not exist for all values of t ,  
k ,  and r.  Even for values o f t ,  k ,  and r yielding an integer A, a BIBD may not exist. 
In fact there exists only a limited number of BIBDs in the useful parameter range. A 
(incomplete) list of actual plans is given by Cochran and Cox (1957). Raghavarao 
(1971) and Mathon and Rosa (1966) provide a more complete list of parameters of 
existing designs (see also Chapter 11.3.4 for a listing of BIBDs for t 5 25 and k 5 11). 

We give an example of a BIBD below. 

EXAMPLE 9.4: 
each triplet representing the treatments in a block (before randomization): 

We consider BIBD (6, 10, 3, 5; 2) which can be written as follows, 

1 2 5  2 3 4  
1 2 6  2 3 5  
1 3 4  2 4 6  
1 3 6  3 5 6  
1 4 5  4 5 6  

Equivalently, this design can be expressed in terms of the incidence matrix N as 

N =  

-1 1 1  1 1  0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0  
0 0 1 1 0 1 1 0 1 0  
0 0 1 0 1 1 0 1 0 1  
1 0 0 0 1 0 1 0 1 1  
0 1 0 1 0 0 0 1 1 1  
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It can be seen easily from N that pairs of 1s occur exactly twice, according to X = 2 ,  
that is, C:=lniLnl~z = X = 2 for every pair I ,  l ’ ( l  # l’). The way we use this design is 
to randomly assign each triplet to a block and then randomly assign the treatments to 

0 the EUs within a block, using independent randomizations for the b blocks. 

The analysis of observations from a BIBD is based on model (9.100a) which we 
now write simply as 

Yd = I* + $1 + ‘% + ezz (9.105) 

assuming unit-treatment additivity in the broad sense using least squares analysis and 
the ANOVA in Table 9.13 with kt = k for all i .  One important point here is that if we 
rewrite (9.105) in matrix form as 

y = 3 p + X 3 P + X T T + e  

then we find for the BIBD (and the other incomplete block designs in this chapter) that 

ss(xT13x3) # ss(xT13)  

(see Section 4.11). This means that for incomplete block designs model (9.105) is a 
nonorthogonal model or, expressed alternatively, incomplete block designs are non- 
orthogonal designs. As a further consequence of the incomplete block arrangement 
comparisons among treatments can no longer be accomplished by comparing treatment 
means. Rather, the comparisons are made using LS means (see Chapters 11.1 and 2 ) ,  
because “adjustments” have to be made since not every treatment occurs in every block 
(this applies to all incomplete block designs). 

For the BIBD the C-matrix of (9.101) takes on the form 

(see Section 11.2.4.1) with a generalized inverse (see Section 4.4.4) given by 

c- = k 1  
r ( k  - 1) + X 

1 
r - X  

I .  - - 

It then follows that for a simple treatment comparison ?[ - ?l/ we obtain 
n 

2 L 

T - X X e  
var(?l - ?[,) = 

r - -  
k 

(9.106) 

(9.107) 

(9.108) 

where, using (9.104), 
t ( k  - 1) E = -  
k ( t  - 1) 
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is referred to as the eficiencyfactor of the BIBD. It follows from (9.108) that E < 1. 
This would imply that a BIBD is less efficient than the corresponding RCBD with the 
same number of replications r.  This ignores, however, the fact that usually 

2 2 
g e ( ~ ~ ~ ~ )  < g e ( ~ ~ ~ ~ ) .  

Hence a fair comparison of var(?l - ?")BIBD and var(?/ - ?/J)RCBD would depend 
on the relationship between a&IBD) /E and o$RCBD). Such information may not 
be available, in particular if a RCBD is not an available option. An estimate of 0,' is 
obtained from the ANOVA table (Table 9.13) as ?,' = MS(E) = MS(I/3X3X7) .  A test 
of the hypothesis Ho : 7 1  = 7 2  = . . = rt = 0 can also be derived from the ANOVA 
table, using F = MS(X,13 Xo)/MS(I13X,X,) with t - 1 and n - b - t + 1 d.f. 

9.8.3 Balanced Treatment Incomplete Block Designs 

In many kinds of experiments it is of primary importance to compare several treat- 
ments with an established procedure or a control, whereas the comparisons among the 
treatments are only of secondary importance or of no importance at all. As an exam- 
ple consider the efficacy of several drugs as compared to a placebo. The comparisons 
among the drugs may not be important as they control different side effects. Another 
example is mentioned by Pearce (1983): In a spraying experiment with insecticides it is 
useful to leave some EUs unsprayed to provide evidence that the infestation is present. 
Of primary interest then is to see to what extent the insecticides control the pest and 
comparisons among them may only be of secondary interest. Even though BIBDs 
can be used in these situations they are usually not the most appropriate designs since 
they consider all treatments as equally important. To emphasize and take into account 
the specific situations discussed above Pearce (1 960) considered designs through sup- 
plementation and in a more systematic and comprehensive approach Bechhofer and 
Tamhane (198 1, 1983) introduced and developed balanced treatment incomplete block 
designs (BTIBD). 

Suppose we have one control treatment and t test treatments, denoted by 0, and 
1 = 1.2.  . . . , t ,  respectively, with b blocks of size k ( k  < t + 1). An incomplete block 
design with these parameters is then called a BTIBD if for every 1 

var(?o - ~ L j l )  = a2a,2 (9.109) 

and for every pair I .  l ' ( 1  # 1 ' )  

(9.1 10) 

where a and p depend on the design employed. Bechhofer and Tamhane (1981) show 
that a necessary and sufficient condition for an incomplete block design to be a BTIBD 
is that every test treatment occurs together A0 times with the control in the same block 
and any pair of test treatments occur together XI times in the same block. In terms 
of the elements of the incidence matrix N = ( n J Z ) ( j  = 0 .1 .2 . .  . . . t :  i = 1 . 2 , .  . . . b)  
these conditions can be written as 

2 2  co.(?o - ?/.?(I - ?//) = pa oe. 

( I  = 1 , 2 ,  
i=l 
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and 
b c 7212n"2 = A1 (1.  I' = 1. 2. . . , . t :  1 # 1 ' )  

2 = 1  

We denote such a design by BTIBD ( t .  b. k :  XO, XI). In order for all TO - q ( I  = 
1.2 .  . . . , t )  to be estimable we obviously require XO > 0. 

To illustrate this type of design we consider three examples. 

EXAMPLE 9.5: BTIBD (4,6, 3; 3, 1) is given by 

0 1  2 
0 1  3 
0 1  4 
0 2  3 
0 2  4 
0 3  4 

We note that this design is derived by supplementing each block in the BIBD (4, 6, 2, 
3; 1) with the control 0. As a consequence 0 is replicated TO = 6 times, whereas the 

0 test treatments are replicated r = 3 times. 

EXAMPLE 9.6: BTIBD (4, 7, 3; 2 ,  2 )  is given by 

0 1  2 
0 1  4 
0 2  4 
0 0  3 
1 2  3 
1 3  4 
2 3 4. 

We note here that this design is not a binary design since 7204 = 2 .  Also, ro = 5; r = 4. 
0 

EXAMPLE 9.7: Another BTIBD (4, 7, 3; 2 ,  2 )  is given by 

0 1  3 
0 1  4 
0 2  3 
0 2  4 
1 2  3 
1 2  4 
3 4 4 .  

This is a design with unequal replication for the test treatments, that is, T O  = T I  = 
r2 = 7-3 = 4: 7-4 = 5, where rl denotes the number of replications for treatment I .  0 
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A list of BTIBDs is provided by Bechhofer and Tamhane (1985) together with their 

Least squares analysis based on model (9.100a) yields 
properties and methods of construction. 

2 k(X0 +A11 

XO(X0 + tX1) 

XI 

Xo + A1 

a ' =  

for (9.109) and 

p=- 

for (9.110). For the designs in Examples 9.6 and 9.7 above it follows then that they 
have the same a2 and p. These designs are said to be equivalent and considerations 
other than statistical may have to be used to decide which design to use in a practical 
situation. 

For a more extensive discussion of various types of BTIBDs see Section 11.6.5. 

9.8.4 Partially Balanced Incomplete Block Designs 

We have mentioned earlier that BIBDs exist only for a limited number of parameters 
and often with a large number of blocks. To provide practical alternatives Bose and 
Nair (1939) developed a large class of incomplete block designs, referred to as par- 
tially balanced incomplete block designs (PBIBD). Recall that the important property 
of BIBDs is that simple treatment comparisons are estimated with the same variance. 
An obvious relaxation of this requirement is to search for designs which allow two 
types of variances for all t ( t  - 1)/2 simple treatment comparisons. This property is 
achieved by an important subclass of all PBIBDs, namely the so-called 2-associate 
class PBIBDs. A list of such designs is given by Clatworthy (1973) and more details 
about PBIBDs are provided in Chapters 11.4 and 5. We shall give here just one example 
of such a design to give the reader some insight into the nature of these designs. 

EXAMPLE 9.8: Suppose we have t = 6 treatments and blocks of size k = 4. From 
the list of available BIBDs we see that b = 15 blocks are needed for a BIBD with these 
parameters. Suppose we do not have 15 blocks available and hence need an alternative 
design. From Clatworthy (1973) we obtain the following design (his design S l )  with 
only b = 3 blocks and T = 2 replications for each treatment (each row represents a 
block): 

1 4 2  5 
2 5 3  6 
3 6 1  4 .  

We notice, by inspection, that several pairs of treatments occur together twice in the 
same block (1 and 4, 2 and 5, 3 and 6) and the remaining pairs occur together once 
in the same block. This leads, for each treatment, to a classification of the remaining 
treatments into what are called associate classes. In this case this is done as follows: 
Write the treatments in a rectangular array 

1 4  
2 5  
3 6  
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and declare any two treatments occurring in the same row to be 1. associates and any 
two treatments not occurring in the same row to be 2. associates. This association 
scheme then leads to the following classification: 

Treatment 1. Associates 2. Associates 

Any two treatments which are 1. associates, for instance, 1 and 4, occur together A1 

times in the same block, and any two treatments which are 2. associates, for instance, 
1 and 2, occur together A2 times in the same block. We saw already that for our design 
given above we have A1 = 2. A2 = 1. If in general we write a PBIBD as PBIBD 
( t .  b. k .  T :  A1. A,) we have in particular here a PBIBD (6, 3 ,4 ,  2; 2, 1). 

Because of the fact that A 1  # A2 (if A1 = A2 we would have a BIBD), we have that 
any two treatments which are 1. associates are compared with one variance, say, 
and any two treatments which are 2 .  associates are compared with another variance, ~2 

say, for example, 
var(.il - .i4) = v1 

and 
var(-il - . i 2 )  = v 2 .  

The average variance for treatment comparisons then is 

n1c1 + n2v2 
av. var = 

t - 1  ’ 

where n, is the number of ith associates ( i  = 1: 2) with nl + 712 = t - 1. Analogously 
we can define two efficiency factors El and E2 by 

and the overall efficiency factor E as 

E =  nlEl + n2Ez 
t - 1  

These efficiency factors are useful for comparisons of competing designs. They are 
given together with other relevant parameters in Clatworthy’s (1973) tables. For our 
example we find (see Chapter 11.4) v1 = 02. v2 = 1.1602, av. var = 1.1402. El = 

1.00. E, = .86. E = .88. 0 
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The list of available and practically useful PBIBDs is rather extensive. Since the 
construction of PBIBDs requires in general a certain amount of mathematical machin- 
ery (see Chapter 11.5) this list is also very convenient to have as a tool for finding 
suitable designs for a given experimental situation. As we shall discuss in later chap- 
ters, the notion of PBIBDs in their general form is quite fundamental in other aspects 
of experimental design as well. This includes PBIBDs with more than two associate 
classes (see also Section 11.4.6). 

9.8.5 Extended Block Designs 

In the preceding sections we have considered situations in which the block size k is less 
than the number of treatments t .  It is, of course, also possible to encounter experimental 
situations in which y t  < k < (7 + l) t ,  with -i being a positive integer. Since the case 
y = 1 is of particular importance and interest we shall confine ourselves to this case 
here, but extensions should be quite obvious. 

Suppose then we have t treatments, b blocks of size k with t < k < 2t. It is obvious 
then that each treatment can occur in each block once but not twice. A reasonable 
approach would be to assign in each block t EUs to the t treatments and then fill in 
each block the remaining k - t EUs in an appropriate manner in concordance with the 
objective of the experiment. It is difficult to give any general rules, so we shall give 
only a few examples to illustrate the general idea: 

EXAMPLE 9.9: Suppose k = t + 1. If one treatment is of special importance, for 
example, a standard with which all other treatments should be compared, then it might 
be appropriate to assign that treatment to the additional EU in each block. Such a 
design would then have the same properties as a BTIBD (see Section 9.8.3). If no 
treatment is of special importance, then having equal or nearly equal replication for 

0 each treatment would seem to be appropriate. 

EXAMPLE 9.10: Suppose t + 1 < k < 2t. One possible approach is to adjoin to the 
RCBD part of the overall design one of the incomplete block designs discussed in the 
previous sections. Consider the case t = 4. k = 6. b = 6. Here we could combine 
a RCBD with a BIBD (4, 6, 2, 3; 1) so that the final design looks like this (before 
randomization) 

Block Treatments 

1 1 2 3 4  1 2  
2 1 2 3 4  1 3  
3 1 2 3 4  1 4  
4 1 2 3 4  2 3  
5 1 2 3 4  2 4  

1 2 3 4  3 4  
+ L /  

RCBD BIBD 
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EXAMPLE 9.1 1: 
tance. One possible design then is the following (before randomization) 

Suppose t = 4, k = 7, b = 6 and treatment 1 is of special impor- 

Block Treatments 
~ ~~ 

1 1 2 3 4  
2 1 2 3 4  
3 1 2 3 4  
4 1 2 3 4  
5 1 2 3 4  
6 1 2 3 4  

RCIBD 

1 2 1  
1 3 1  
1 4 1  
2 3 1  
2 4 1  
3 4 1  
v 
BIBD - 
BTIBD 

An important aspect of extended block designs is that they allow easy separation of 
block-treatment interaction and error if that is desirable. For Example 9.11 above the 
partitioning of the total number of d.f. in the ANOVA is as follows: 

Source d.f. 

Blocks 5 
Treatments 3 
B x T  15 
Error 18 

Total 41 

The error d.f. arise, of course, from comparisons among EUs treated alike in a 
block. 

9.8.6 Some General Remarks 

The classes of designs mentioned in the previous sections represent only a fraction of 
existing incomplete block designs. We have included them here because the designs in 
these classes (i) have certain structures which can be explained quite easily, (ii) are, for 
the most part, of practical value, (iii) are easily analyzed, and (iv) serve very often as 
foundation or building blocks for other designs. 

The fact that these designs have a structure, that is, certain combinatorial and statis- 
tical properties, leads to a fairly easy, albeit nonorthogonal analysis. This was certainly 
the major reason for the development of these designs. With today’s computing facil- 
ities this is no longer of great importance, but useful nonetheless. Other designs have 
been developed which do not have the kind of structure as BIBDs or PBIBDs but which 
still have certain properties. Among those are the pairwise balanced and variance bal- 
anced designs (see John, 1964; Hedayat and Federer, 1974). These are for the most 
part designs with unequal block sizes, unequal numbers of replications and unequal 
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- - 
1 1 0 0  
1 0 1 0  
0 1 1 0  
0 0 0 1  

- 0 0 0 1  

concurrences of treatments in the same block. Even though these designs possess cer- 
tain combinatorial properties they are much more difficult to describe in general and 
even more difficult to list. 

With respect to designs with unequal block sizes, care must be exercised in their 
use. One of the basic assumptions for the analysis of block designs is that of equal 
variances within blocks. As we mentioned earlier, the variance tends to increase as the 
block size increases. As long as the block sizes are not too unequal, this should not be 
a major problem. Situations of this type include different litter sizes, different numbers 
of leaves per plant, different block sizes due to irregular shape of experimental field, 
and so forth. 

The structure of the designs discussed ensures also that all treatment contrasts can 
be estimated, in particular all treatment differences can be estimated. We refer to such 
designs as connected designs, whereas designs which do not have this property are 
called disconnected designs (see also Section 4.12.4). To illustrate the generally unde- 
sirable property of disconnectedness, consider the following example. 

EXAMPLE 9.12: Consider the incomplete block design with t = 5 and b = 4 as given 
by its incidence matrix 

N =  

We see immediately that the treatments fall into two sets such that treatments in the first 
set, { 1.2,3}, do not occur together in the same block with treatments of the second set, 
(4,s). As a consequence, functions of the form T[ /  - TL / /  with 1’ = 1 . 2 , 3  and 1” = 4,s 
cannot be estimated unbiasedly since, using model (9.105) we cannot “eliminate” the 
block effects. Expressed differently, there does not exist a linear combination of the 
observations, Ct,lu21yzl say, such that its expected value is 71’ - 71” for some 1 ’ .  1”. Had 
the design instead been of the form 

with treatment 3 occurring also in block 4 we would have a connected design. Now 
all treatment differences can be estimated as can be seen simply by looking at the 
individual blocks and the treatment comparisons estimable within them and using the 
fact that if 71 - 71‘ and qf - T[/ ’  are estimable then also 

(71 - 71,) + (7” - 71”) = 71 - 71” 

is estimable. This brief discussion (for more detail see Chapter 11.1) is meant to point 
out that the assignment of treatments to blocks should generally not be done haphaz- 

0 ardly but always with a view towards achieving connectedness. 
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Generally, block designs are of major importance in experimental work. Careful 
attention must be given to the availability or formation of blocks and an appropri- 
ate arrangement of the treatments must be selected according to the objectives of the 
experiment. Often one blocking factor is not sufficient (we have given examples in 
Section 9.6.7) and in other situations “blocking in different directions” may be called 
for. Examples of that will be discussed in the following chapter. 

9.9 SYSTEMATIC BLOCK DESIGNS 

In our discussion of the various forms of block designs we have emphasized the random 
assignment of treatments to EUs, using independent randomizations for each block. 
The reason for such random assignment is, of course, to avoid any bias in the treat- 
ment comparisons (see Chapter 2). There exist, however, situations where it may be 
advantageous to employ allocations of the treatments to EU’s other than random alloca- 
tions. One such situation presents itself if the unit contributions U,, [see (9.1)] exhibit 
some sort of smooth trend within the ith block or if the status of the EUs in a block 
change in a gradient fashion as the treatments are applied sequentially. The question 
then arises: Can we utilize this knowledge and allocate the treatments such that this 
leads to “improved” estimation of treatment comparisons vis-a-vis the situation where 
this information is being ignored? 

9.9.1 Dealing with Trends 

Considering a complete block design, we assume that we can express the trend in 
terms of a polynomial of known degree, say p ,  with p < t ,  of some characteristic of the 
EUs, denoted by x. One obvious way to proceed is to use random allocation as in the 
usual RCBD and use the information about the trend as supplementary information in 
conjunction with an analysis of covariance model. Let yzJ denote the observation for 
the j th  EU in the ith block. Assume that the trend is the same in each block, that is, the 
trend is a function only of xJ ( j  = 1 . 2 . .  . . . b) .  We can then write 

k = l  1=1 

or, more conveniently, in terms of orthogonal polynomials (see Section 7.4) 

(9.1 11) 
k 1 

where dk = 1 if treatment k is applied to the j t h  EU in the zth block, and 0 other- 
Y 

wise. This model can be simplified even further by taking x3 = j and hence writing 
(9.111) as 

ySJ = I* + 9, + X6f j7k  + C-,~i(jj + e,., (9.112) 
k 1 

We rewrite (9.1 12) in matrix notation as 

y = 9p + X3P + X,T  + X , y  + e*. (9.113) 
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Block 1 
Block2 
Block3 

We can analyze the data, using model (9.113), in the usual fashion (see Section 9.4 
and Chapter 4). The important point to keep in mind here is that the sum of squares 
for treatments is of the form SS(X713X,) as compared to SS(X,l3) for the RCBD 
without covariate, and that for model (9.1 13) generally 

ss(x713x,) # ss(xT13).  

Cox (1951) has pointed out that if a model of the form (9.1 13) holds the method just 
described leads to a loss of information with regard to treatment comparisons. 

1 2 3 4 5 6 7 
6 4 2 7 5 3 1 
7 5 3 1 6 4 2 

9.9.2 Trend-free Designs 

An alternative method then is to use some systematic arrangement of the treatments 
in a block. Such possibilities were considered first, although in a somewhat different 
context, by e.g., Neyman (1929) and Cox (1951, 1952). One possibility, for exam- 
ple is, to repeat the treatments in the same order (if the EUs are layed out along a 
line), for example, TI. T2. T3. T I .  T2. T3. . . .; or in a mirror image fashion, for exam- 
ple, Tz. T2, T I ,  TI. T I ,  TI. T2. T2 for a linear trend. The idea is to construct what are 
now referred to as trend-jree designs, where a design is considered to be trend-free if, 
generally speaking, the sum of squares due to treatments is not affected by the covari- 
ate, that is, by the model for the trend. 

For complete blocks the design is trend-free if, in our earlier notation, 

S S ( X 7 ~ 3 X , )  = SS(X713) 

More generally, for incomplete blocks of size k ( <  t )  and p < k ,  Bradley and Yeh 
(1980) give the following definition: A block design modeled by (9.1 13) is trend-free 
relative to the trend in the model if 

SS(X,13XgXy) = S S ( X , ~ 3 X g ) .  (9.114) 

They show that a necessary and sufficient condition for a block design to be trend-free 
is that 

x;x, = 0. (9.115) 

The construction of such designs is not straightforward. For the important case of a 
linear trend the existence of trend-free block designs has been shown. For the complete 
block design Yeh and Bradley (1983) prove that a necessary and sufficient condition is 
that either b is even, or both b and t are odd, with b 2 3. 

EXAMPLE 9.13: Fo r t  = 7 and b = 3 the following design is trend-free: 

I Treatments 

Pl(jj I -3 -2 -1 0 1 2 3 
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Treatments 

This can be verified easily by adding for each treatment the coefficients of the orthog- 
onal polynomial of degree 1 (given below the design) corresponding to the positions in 

0 which the treatment occurs. They add to zero, hence satisfying (9.1 15). 

1 1 1 2 2 2 3 3 3 

4 5 6 4 5 6 4 5 6  

For the equireplicate, proper, binary block design Stufken (1988) has shown that a 
linear trend-free block design exists if and only if r ( k  + 1) is even with T 2 2 .  

EXAMPLE 9.14: 
1980): 

The following BIBD (5, 10, 3, 6; 3) is trend-free (Bradley and Yeh, 

Block 1 
Block 2 
Block 3 
Block 4 
Block 5 
Block 6 
Block 7 
Block 8 
Block 9 
Block 10 

Treatments 

1 2 3  
1 2 4  
1 2 5  
3 4 1  
3 5 1  
4 5 1  
4 2 3  
5 2 3  
5 2 4  
3 4 5  

The reader can verify easily that (9.1 15) is satisfied. 0 

It is quite obvious from this limited discussion that trend-free block designs do not 
exist for all situations and even if they do exist their construction is not obvious. For 
some construction methods and a generalization of the concept of trend-free to nearly 
trend-free designs we refer the reader to Yeh, Bradley and Notz (1985), and Bradley 
and Odeh (1988). 

The assumption that the trend is the same in each block may not always be re- 
alistic. Allowing for different linear trends in the blocks Jacroux et al. (1995) and 
Jacroux (1998) have provided methods of constructing efficient and optimal (see Sec- 
tion 11.1.13) designs. It is not surprising that many of these designs have as the basis a 
BIBD or PBIBD, as shown in the following example. 

EXAMPLE 9.15: 
the following PBIBD with t = 6, b = 9, k = 2:  

(Jacroux, 1998): For a trend-free design with t = 6, b = 9, k = 3 

Block 

1 1  2 3 4 5 6 7  8 9 
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Treatments 

is augumented by replicating the first row to form the final design for t = 6, b = 9, 
k = 3: 

Block 

1 1  2 3 4 5 6 7 8 9 

1 1 1 2 2 2 3 3 3  

4 5 6 4 5 6 4 5 6 

1 1 1 2 2 2 3 3 3  

It is easy to see how this design is trend-free with respect to possibly different linear 
trends within blocks. Obviously, it is also trend-free for a common trend, as we can 
verify easily following arguments given earlier. 

9.10 EXAMPLES USING SASs 

In this section we illustrate some of the analysis procedures described in this chapter, 
with numerical examples. In each case we describe an experimental situation and give a 
data set. The analysis is carried out with the help of SAS procedures (SAS Institute, Inc. 
2002-2003), in particular SAS PROC GLM and SAS PROC MIXED. We shall make 
some comments about the input statements and the output as a link to the developments 
in this chapter. 

EXAMPLE 9.16: Consider an experiment, using an RCBD, to study weight gain in 
rabbits due to five different diets: 1 = standard, 2 = 10 protein added, 3 = 20% protein 
added, 4 = additive A, 5 = additive B. We use six litters of rabbits, each litter contain- 
ing five animals. The litters represent the blocks and the individual animals represent 
the EUs. The data are given in Table 9.14a. 

We use SAS PROC GLM to analyze the data. The input statements are given in 
Table 9.14a: In addition to the ANOVA we perform Tukey’s multiple comparison test 
with Q. = .10 and we specify a complete set of orthogonal contrasts reflecting the 
structure of the treatments. 

The results of the analysis are given in Table 9.14b, and we comment briefly on 
some aspects of the output: 

(i) Since the data set is balanced the Type I and I11 SS are identical and equal to 
those obtainable from Table 9.2. 

(ii) Since PROC GLM is a general linear models program that cannot distinguish be- 
tween data from observational or intervention studies it automatically performs 
tests of significance for all effects specified in the model statement. We should, 
therefore, ignore the P-value for testing block (litter) effects. The P-value for 
diets (0.0282) indicates that there exist differences among the diets. 

(iii) Tukey’s test at a = .10 indicates a significant difference only between diet 1 and 
diet 5 .  
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Table 9.14 Randomized Complete Block Design ( t  = 5 ,  b = 6) 

a) Input statements: 

data weight: 
input diet litter gain @@: 
dataliner; 
1 1 57.0 1 2 55.0 1 3 62.1 1 4 74.5 1 5 86.7 1 6 42.0 
2 1 64.8 2 2 66.6 2 3 69.5 2 4 61.1 2 5 91.8 2 6 5 I .8 
3 1 70.7 3 2 59.4 3 3 64.5 3 4 74.0 3 5 78.5 3 6 55.8 
4 I 68.3 4 2 67.1 4 3 69.1 4 4 72.7 4 5 90.6 4 6 44.3 
5 1 76.0 5 2 74.5 5 3 76.5 5 4 86.6 5 5 94.1 5 6 43.2 

run; 

proc glm data=weight; 
class diet litter; 
model gain=litter diet: 
means diet/Tukey alpha=. 10; 
Ismeans dieustderr; 
contrast ' 1 vs rest' diet 4 -1 -1  - I  -1  ; 
estimate 'Ivsrest 'diet4-1 - 1 - 1 - 1 ;  
contrast ' 1  vs rest' diet 4 -1 -1 -1 -1 ;  
contrast '2c3 vs 4+5' diet 0 1 1 -1 - 1 ;  
contrast '2 vs 3' diet 0 1 -1 0 0; 
contrast '4 vs 5' diet 0 0 0 1 - I ;  
title1 'RANDOMIZED COMPLETE BLOCK DESIGN (t=5. b=6)': 
title2 'ANALYSIS OF VARIANCE WIPOST-HOC COMPARISONS'; 
run; 

proc mixed data-weight; 
class diet litter; 
model gain=diet; 
random litter: 
lsmeans diet; 
contrast ' I  YS rest' diet 4 -1  -1 - 1  -1: 
title2 'ASSUMING RANDOM BLOCK EFFECTS': 
run: 

b) Output: 

RANDCMIZED C 3 M P L E T E  BLOCK D E S I G N  (:=5, b=6) 
A N A L Y S I S  C F  V A R I A N C E  W / P O S T - H Z C  C C M P A R I S C N S  

I n e  GLM P r o c e d u r e  

C l a s s  L e v e l  I n f o r m a t i o r .  

C L a s s  L e v e l s  V a l u e s  

d-et  5 1 2 3 4 5  

l i t t e r  6 1 2 3 4 5 6  
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Dependent Variable: gain 

S c~. r c e 

Model 

Errcr 

Ccrrected Total 

R-Sq’are 

3.874919 

Source 

lizter 
diet 

S c r  r c e 

litter 
diet 

Table 9.14 (Continued) 

Number of Dbservations Read 3C 

The GIM Procedure 

Sum of 
DF Squares Mean Square F Value 

9 4915.622667 546.180296 15.54 

2 c  732.75200C 35.13760C 

29 5618.374667 

Coeff Var 3oct MSE gain Mean 

8,677219 5.927698 68.31333 

CF Type I SS Mean Square F Value 

5 4438.014657 887.602933 25.25 
4 477.60800C 119.40200C 3.40 

DF Type 111 SS Yean  Square 7 Value 

5 4438.014667 887.602933 25.26 
4 477.60800C 119.402000 3.40 

Tukey’s Studentlzed Range (HSD) Test for gain 

Alpha 0.; 
Error Degrees of ?reedon 23 
Error Yean Square 35.1375 
Critical Value of Studentized Range 3.73511 
Minixurn Significant Difference 9.042 

Yeans 91th the sime let-er are r.ot significan~ly different 

Tnkey Grouping Mean N diet 

A 75.250 6 5  
A 

B A  68.683 6 4  
B A  
B A  67.600 6 2  
B A  
B A  67.153 5 3  
3 
B 62.883 5 1  

Er > F 

<.  3001 

Pr > F 

<.0001 
0.0282 

Er > F 

<.0001 
3.0282 
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Table 9.14 (Continued) 

Least Squares Means 

Standard 
diet gain LSMEAN Error Dr > It1 

1 62.8833333 2.4199725 <.0001 
2 67.6000000 2.4199725 <.0001 
3 67.1500000 2.4199725 < .  0001 
4 68.6833333 2.4199725 < .  0001 
5 75.2500000 2.4199725 < .  0001 

Dependent Variable: gaip. 

Contrast DF Contrast SS Mean Square F Value Pr > F 

1 vs rest 
2+3 vs 4t5 
2 vs 3 
4 vs 5 

1 221.;367500 221.1367500 6.29 0.0208 
1 126.5004167 126.5004167 3.60 0.0723 
1 0.6075000 0.6075000 0.02 0.8967 
1 129.3633333 129.3633333 3.58 0.0694 

Standard 
Parameter Estimate Error t Valile Pr > It1 

1 vs rest -27.1500000 10.8224458 -2.51 C ,0208 

ASSUMING RANDOM BLOCK EFFECTS 

The Mixed ProcedLre 

Model 1r.formation 

Data Set WORK.WEIGHT 
Dependent Variable gain 
Covariance Structure Variance Components 
Estimation Method REML 
Xesidsai Variance Method Profile 
Fixed Effects SE Method Model-Eased 
Degrees of Freedom Kethod Containment 

Class Level Information 

Class Levels Values 

diet 5 1 2 3 4 5  
litter 6 1 2 3 4 5 6  

Dirrensions 

Covariance Parameters 
Colunns in X 
Columns in 2 

2 
6 
6 
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Table 9.14 (Continued) 

I t e r a t i o n  His tory  

I t e r a t i o n  Evalua t ions  -2 Res Log L i ~ e  C r i t e r i o n  

0 1 213.05776599 
1 1 185.03378213 0.00000000 

Convergence c r i t e r i a  met 

Covariance Parameter 
Es t imates  

Cov Parm Es t imate  

l i t t e r  170.49 
Residual  35.1376 

Fit Statistics 

-2 Res Log Likel ihood 185.0 
AIC ( s m a l l e r  is b e t t e r )  189.0 
A I C C  ( s m a l l e r  i s  b e t t e r )  1 8 9 . 6  
BIC ( s m a i l e r  i s  b e t t e r )  188.6 

Type 3 Yests of  Fixed E f f e c t s  

Num Den 
E f f e c t  DF DF F Value Pr > F 

d i e t  4 2 0  3 . 4 0  0.0282 

C o n t r a s t s  

Nun Den 
Label DF DF F Value P r  > F 

1 vs  r e s t  1 20 6.29 0.0208 

Least  Squares  Means 

S tandard  
E f f e c t  die; Es t lmate  C r r o r  3F t Value P r  > It1 

d i e t  1 62.8833 5.8542 20 10.74 <.0301 
d i e t  2 67.600C 5.8542 20 11.55 < .  0001 
d i e t  3 67.1500 5.8542 20 11.47 <.COO? 
d i e t  4 68.6833 5.8542 20 11.73 <.0001 
d i e t  5 75.2500 5.8542 20 12. a5 <.GO01 



348 CHAPTER 9. RANDOMIZED BLOCK DESIGNS 

(iv) The reader can verify easily that the sum of the contrast SSs is equal to the diet 
ss. 

(v) The tests concerning the set of orthogonal contrasts indicates that the difference 
among the diets is due mainly to the difference between diet 1 and the average 
of the new diets ( P  = 0.0208), the estimated difference between the weight gains 
being 27.15/4 grams. 0 

EXAMPLE 9.17: We consider the same experimental situation and data as given in 
Example 9.16, except that we now consider the litter (block) effects to be random 
effects (see Section 9.7.6). We use SAS PROC MIXED to analyze the data. The input 
statements are given in Table 9.14a and the output in Table 9.14b. 

We provide the following comments: 

(i) The variance component estimates are obtained as 5; = 170.49 and l?: = 35.14, 
the latter being the same as for the fixed effects model in Example 9.16. 

(ii) Tests of hypotheses for diets and contrasts among diets are the same as in Exam- 
ple 9.16. 

(iii) The LS means are the same as those in Example 9.16, but the standard errors are 
larger, 5.82 vs. 2.42 in Example 9.16, reflecting the wider inference space. 0 

EXAMPLE 9.18: This example describes an experiment using an RCBD with sub- 
sampling. Suppose we want to compare the effect of three exercise regimens, say no 
exercise and two different forms of exercise. We have five patients (subjects) and each 
subject performs all three exercises in random order (after appropriate resting periods). 
Immediately after the exercise the blood pressure is taken twice (one measurement 
right after the other). Suppose the data for the diastolic pressure are as given in Table 
9.15a. 

We use both PROC GLM and PROC MIXED. The main purpose of using PROC 

The input statements are provided in Table 9.15a and the output in Table 9.15b. We 
GLM is to obtain the ANOVA table as outlined in Table 9.3. 

make the following comments: 

(i) For both PROC GLM and PROC MIXED we have to describe the experimental 
error in technical terms, which is formally the (negligible) subject-exercise in- 
teraction. In addition, for PROC GLM this term has to be identified explicitly 
for any tests concerning the exercise effects, that is, overall test in the ANOVA, 
multiple comparison tests, contrast tests, as well as for obtaining the standard 
error for LS means. In PROC MIXED this will be achieved automatically by 
declaring the subject-exercise interaction as a random effect. 
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Table 9.15 Randomized Complete Block Design with Subsampling 

a) Input statements: 

data pressure: 
input subject exercise diast @ @ ;  
datalines: 
1 1126  1 1 129 1 2  137 1 2  135 1 3  135 1 3  136 
2 1  1 3 4 2 1  1 3 8 2 2  1 4 0 2 2 1 4 5 2 3  1 4 1 2 3  139 
3 1 1 2 0 3 1  1 1 9 3 2 1 3 0 3 2 1 3 4 3 3 1 3 0 3 3  129 
4 1 1 3 7 4 1 1 3 4 4 2 1 4 7 4 2  1 4 4 4 3  1 4 3 4 3  147 
5 1 1 2 3 5  1 1 2 3 5 2  1 3 6 5 2 1 3 5 5 3  1 3 4 5 3  136 

run; 

proc glm data=presaure: 
class subject exercise; 
model diast = subject exercise suject*exercise; 
test h=exercise e=subject*exercise: 
lsmeans exercise/stderr pdiff adjust=Tukey e=suhject"exerciss; 
contrast '1  vs 2+3'; 
exercire 2 - 1 -l/e=subject*exercise: 
title1 'RANDOMIZED COMPLETE BLOCK DESIGN': 
title2 'WITH SUBSAMPLING': 
title3 '(t=3, b=5, n=2)': 
run; 

proc mixed data-pressure; 
class subject exercise: 
model diast subject exercise: 
random subject*exercise: 
lsmeans exercise/pdiff adjust=Tukey: 
contrast ' I  vs 2+3' exercise 2 -1 -1: 
estimate '1 vs 2+3' exercise 1 -.5 -.5; 
run; 

b) Output: 

i i A N D C M I Z E 2  COXPLSTE 3LOCK CESIGX 
WI TH S LIB SAME L I NG 
(t=3, b=5; n=S) 

The C-LM Procedure 

Class Level Information 

Class Levels Values 

silb ject 5 1 2 3 4 5  

exercise 3 1 2 3  

Nurrber of Observations Reaa 
Number of Observations Zsed 

3 c  
3 c  
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Table 9.15 (Continued) 

The GLM Procedure 

Deperdent Variable: diast 

Soorce DF 

Model 14 

Error 15 

Correczed Total 29 

3-Square 

2.963738 

Source CF 

sobject 4 
exercise 2 
subjectkexercise 8 

Source DF 

suoject 4 
exercise 2 
sub:ect*exercise 8 

Sum of 
Squa re s 

1541.455657 

58.300300 

1599.465667 

Coeff Var 

1.461633 

Type I SS 

905.1333333 
591.2656667 
45.0656657 

Type 111 SS 

905.1333333 
591.2566567 
45.0565667 

Mean Square F Value Pr > F 

110.104752 28.48 <.0001 

3.865667 

Root MSE diast Mear. 

1.966384 134.5333 

Mean Square F Value Pr > F 

226.2833333 58.52 <.0001 
295.6333333 76.46 <.3001 

5.6333333 1.45 0.2522 

Mean Square F Value Pr > F 

225.2833333 58.52 <.000? 
295.5333333 76.46 <.GO01 

5.6333333 1.46 0.2522 

Tests of Fypozheses Using the Type 111 MS for subject-exercise as an Error Term 

Source DF Type III SS Mean Square F Vaiue Fr > F 

exercise 2 591.2665657 295.6333333 52.48 <.0001 

Least Squares Means 
Adlustmen: for Multiple Corparisons: Tukey 

Standard Errors and Probabili-ies Calculated Using the Type I11 YS for 
sub;ecz*exercise as ar. 

Error Term 

Standard LSMEAN 
exercise diast LSMEAN Error ?r > It1 Number 

1 
2 
3 

128.3COC00 0.750555 < .  0001 1 
138.3C0000 0.75C555 < .  0031 2 
137.000030 0.750555 < .  0091 3 
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Table 9.15 (Continued) 

Least Squares Means for effect exercise 
Pr > it1 for H@: LSMean(i)=LSMean(]) 

3ependent Variable: diast 

i/; 1 2 3 

1 <.OOOl <.@001 
2 <. 0001 0.4726 
3 <.OOOl 0.4725 

Dependent Variable: diast 

Tests of Hypotheses Using the Type 111 MS for subject*exercise as an Error Term 

Contrast DF Contrast SS Mean Square F Value Pr > F 

1 vs 2+3 1 582.8166667 582.8166657 103.46 <.00@1 

The Wixed Procedure 

Model Information 

DaLa Set WORX. PRESSURE 
Dependent Variable diast 
Covariance Structure Variance Components 
Estimation Method REML 
Residual Variance Method Profile 
Fixed Effects SE Metk.oc Kodel-Based 
Degrees of Freedom Method Contaicrnent 

Class 

s;b;ect 
exercise 

Class Level Information 

Levels Values 

5 1 2 3 4 5  
3 1 2 3  

Iteration History 

Iteration Evaluations -2 Res Log Like Criterion 

0 i12.23380945 
1 1 111.85203058 O.coc3Oco0 

Convergence criteria met. 
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Table 9.15 (Continued) 

C o v a r i a n c e  P a r a m e t e r  
E s t i i i a t e s  

Cov Parm E s t  m a t e  

s u b ] e c t * e x e r c i s e  3.6833 
Res :dua l  3 .  8 6 6 7  

Type 3 Tes ts  cf F i x e d  E f f e c t s  

N u m  Den 
E f f e c t  DF DF F V a l u e  P r  > 7 

s~b;ect 4 8 4C.17  <.COO1 
e x e r c i s e  2 8 5 2 . 4 8  <.OCO1 

E s t i r r , a t e s  

S t a n d a r d  
L a b e l  S s t i m a t e  E r r o r  DF t V a i d e  P r  > l z l  

1 v s  2+3 -9.350c 0 . 9 1 9 2  8 -10.17 < . 0 0 c 1  

C o n t r a s t s  

Nun Den 
L a b e l  C F  CF F V a l u e  P r  > F 

1 v s  21-3 1 8 103.46 <.0301 

L e a s t  S q u a r e s  Means 

S t a n d a r d  
Sf fecz  e x e r c i s e  E s t i r r d t e  Er ror  OF t V a l u e  Pr > It1 

e x e r c i s e  1 1 2 8 . 3 3  0.7536 8 1 7 0 . 9 4  <.O031 
e x e r c i s e  2 i 3 8 . 3 0  0.7506 8 184.25 <.0001 
e x e r c i s e  3 1 3 7 . 0 0  C.7506 S 182.53 < .  3c01 

D i f f e r e n c e s  o f  L e a s t  S q d a r e s  Mear.s 

S t a n d a r d  
D i f f e r e n c e s  o f  L e a s t  S q u a r e s  Y e a n s  

S t a l c a r d  
exBIz.se - E X B I z ~ s e  m t r n a t e  I1rc.7 J F  : '< 8 1 ~ e  ?: > I t 1  hi?>strren:  .Ad: ? 

- - -  = r : e z =  

e x e r c i s e  1 2 -1C.030C 1.0614 8 -9.42 1.0001 Tukey <.@OO: 
e x e r c i s e  1 3 -8.7000 1.0614 8 - 8 . 2 0  < . C O O 1  Tukey  <.0001 
e x e r c i s e  2 3 1.3000 1.C614 8 1.22 0.2555 Y'jkey 0.472 
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(ii) The output shows that there exist significant differences among the types of exer- 
cise (P < .OOOlO), but that exercises 2 and 3 are not significantly different from 
each other ( P  = .47). 

(iii) The standard errors for the LS means are the same for both PROC GLM and 
PROC MIXED, as they should be for balanced data (they may be different for 
unbalanced data due to difference estimation procedures for estimating variance 
components; see Section 11.1.1 1.2). 

(iv) The estimates for 0," and 0; are given by PROC MIXED as 5: = 0.8833 and 
L?; = 3.8667. 0 

EXAMPLE 9.19: The setting for this experiment using an RCBD with a nested block- 
ing structure and subsampling is described in Example 9.1 (we have changed the num- 
bers of half-sib families (HSF) and blocks per location in order to save space). Suppose 
we have obtained the data (height in cm) given in Table 9.16. 

In order to obtain the ANOVA table given in Table 9.6.8 we use SAS PROC GLM. 
The input statements and the results are given in Table 9.16. We also illustrate how to 
use SAS PROC MIXED with input statements given in Table 9.16a and the output in 
Table 9.16b. We make the following comments: 

(i) For PROC GLM we have to provide a technical expression for the experimental 
error, which in this case is equal to the HSFxblock (location) interaction. This 
term, that is, the corresponding MS is used to test hypotheses about HSF and 
HSF x location interaction. 

(ii) In PROC MIXED HSFxblock(1oc) is considered to be a random effect, and cor- 
rect tests about HSF and HSF x location interaction are performed automatically. 
Both tests are significant (P< 0.0001). A look at the locxHFS LS means shows 
that the interaction is codirectional. Hence the test about HSF (averaged over 
locations) seems appropriate. 

(iii) The SLICE option in the LS means input statement is one way to investigate a 
significant interaction, in particular, if the interaction turns out to be antidirec- 
tional. We have included it here to indicate this option to perform the ANOVA 
separately for each location and provide the F-test for HSF for each location. 
Note that Denominator DF= 12 indicates that the pooled experimental error has 
been used. 0 

EXAMPLE 9.20: We consider here a fertilizer study involving two small grain vari- 
eties. The fertilizer is nitrogen (N) at five increasing levels (by the same amount). The 
field experiment is laid out as a GRBD, with the varieties representing the blocks, and 
each nitrogen level being applied to two EUs for each variety, that is, we have t = 5, 
b = 2 ,  r = 2 .  Suppose we obtain the yield data given in Table 9.17a. 

We use SAS PROC GLM to analyze the data. The input statements and the output 
are given in Table 9.17. We make the following comments: 
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Table 9.16 RCBD with Nested Blocking Structure and Subsampling 

a) Input statements: 

data pine, 
input loc block HSF height @ @, 
datalines, 
1 1  1210 1 1  1221 1 1  2252 I 1 2 2 6 0  1 1 3  1971 1 3 1 9 0  
1 2 1 2 2 2 1 2 1 2 1 4 1 2 2 2 6 5 1 2 2 2 7 1 1 2 3  2 0 1 1 2 3 2 1 0  
1 3  1 2 2 0 1 3 1 2 2 5 1 3 2 2 7 1  1 3 2 2 7 7 1 3 3 2 0 5 1 3 3 2 0 4  
1 4 1 2 2 4 1 4 1 2 3 1 1 4 2 2 7 0 1 4 2 2 8 3  1 4 3 2 1 1  1 4 3 2 1 6  
2 1 1 178 2 1 1 175 2 1 2 191 2 1 2 193 2 1 3 182 2 1 3 179 
2 2 1 1 8 0 2 2 1 1 8 4 2 2 2 1 9 8 2 2 2 2 0 1 2 2 3 1 8 3 2 2 3  190 
2 3 1 1 8 9 2 3 1 1 8 3 2 3 2 2 0 0 2 3 2 1 9 5 2 3 3  1 9 7 2 3 3 2 0 5  
2 4 1 1 8 4 2 4 1 1 9 2 2 4 2 1 9 7 2 4 2 2 0 4 2 4 3  1 9 2 2 4 3  190 

run; 

proc glm data=pine; 
class Ioc block HSF; 
model heighkloc block(loc) HSF loc”block(1oc); 
test h=exercise e=subject*exercise; 
title1 ‘RCBD WITH NESTED BLOCKING STRUCTURE’; 
title2 ’AND SUBSAMPLING’; 
title3 ’[t=3, b=8 (A-2, C-4). n=2]’; 
run; 

proc mixed data=pine; 
class loc block HSF; 
model height=loc block(1oc) HSF loc*HSF: 
random HSF*block(loc); 
lsmeans HSF loc*HSF/ slice=loc; 
run; 

b) Output: 

RCEC WIiH NESTED BLOCKING STRUCTUFtE 
AND SUESAMPLING 

[ t = 3 ,  b=8 (a=2,c=4), n = 2 ]  

The GLM Procedure 

Class Level Information 

Class Levels Values 

ioc 2 1 2  

block 4 1 2 3 4  

HSF 3 1 2 3  

Number of Observations Read 
Number of Observations Used 

4 8  
4 8  
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Table 9.16 (Continued) 

The GLM P r o c e d u r e  

D e p e n d e n t  V a r i a b l e :  h e i g h t  

S o 2 r c e  

Model 

Error 

C o r r e c t e d  T o t a l  

R-Square  

0.987195 

S o u r c e  

loc 
b l o c 4  (loc) 
FiSF 
loc*HSF 
b lock*HSP ( l o c )  

S o u r c e  

&oc 
b l o c k  ( l a c )  
HSF 
loc*HSF 
block*HSF ( l o c )  

Sum of 
DF S q u a r e s  Mean S q u a r e  F V a l u e  

23 43781.66667 1773.11594 80.44 

24 529.00000 22.34167 

47 41313.66667 

Coeff Var  R o o t  MSE h e i g h t  Mean 

2.228571 4.694855 2 1 0 . 6 6 6 7  

DF Type  I SS Mean S q u a r e  F V a l u e  

1 20336.33333 20336.33333 922.63 
6 1462.33333 243.12222 11.06 
2 12i70.66667 6085.33333 276.08 
2 6511.i6667 3255.58333 147.70 

12 301.16567 25.09722 1.14 

DF Type 111 SS Mean S q u a r e  F V a l u e  

1 20336.33333 20336.33333 922.63 
6 1462.33333 243.72222 11.06 
2 12170.66667 6085.33333 276.C8 
2 6511.16667 3255.58333 L47.73 
12 301.1E667 25.09722 1.14 

355 

F r  > F 

< .  0001 

F r  > F 

<.0001 
<.0001 
<.0001 
<.0001 
0.3769 

P r  > F 

<.0001 
<.0001 
<.0001 
<.0001 
C ,3769 

Tests c f  H y p o t h e s e s  U s i n g  t h e  Type  I11 MS for b l o c k * H S F ( l o c )  a s  a n  E r r o r  T e r m  

S o u r c e  DF Type 111 SS Mean S q u a r e  F V a l u e  P r  > F 

RSF 
loc*HSE 

2 12170.66657 6585.33333 242.47 <.0001 
2 6511.16567 3255.58333 129.72 <.0001 

The Mixed  Froced..re 

C o v a  r 1 a n  c e P a r ame t e i 
Z s t i m a t e s  

Cov Parm E s t i r r a t e  

b lock*HSF ( l o c )  1.5278 
R e s i d u a l  22.0417 
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E f f e c t  

HSF 
;iSF 
HSF 
loc*HS? 
loc+HSF 
loc*HS? 
13c-HSF 
loc*HS?  
lcc-HSF 

Table 9.16 (Continued) 

iy?e 3 TSSSS of Fixed E f f e c t s  

Num Den 
Eftect DF I)? F Val.:€ 

1cc 1 2  81C.3C 
bloc .<c( loc)  5 12 9.71 
ECF 
l o c * H S F  

1oc HSF 

1 
2 
3 

1 1 
2 

1 3 
2 
2 i 
2 2 

2 12 242.47 
2 12 129.72 

Least  Squares Means 

Standard 
E s t  ilraze E r r c r  CF 

232. G O  
233.03 
197. CO  
2 2 c .  88 
266.53 
204.25 
i83.13 
197.38 
189.75 

1,2524 
1.2524 
1,2524 
1.7712 
1,7712 
1.7712 
1.7712 
1.7712 
1.7712 

12 
12 
12 
12 
12  i2 

12 
12 
12 

Pr > F 

< . 0 3 r , l  
O.CO05 
<.0301 
< . 0 3 c :  

t Value ?r > It 

161.29 <.O301 
185.04 <.3031 
15l.29 <.O301 
124.70 <.O001 
151.65 <.3c:1 
115.32 < .  3001 
103.39 < . 3 c 2 1  
111.44 <.0001 
107.13 <.GCCl 

Tests of E f f e c t  S l i c e s  

Nu?  Cen 
E f f e c t  lcc 3 F  DF 7 Value P r  > F 

l c c * i i S F  1 2 1 2  355.98 <.COG1 
lOC*?S? 2 2 12 16.21 3.0C34 

(i) The ANOVA is given as outlined in Table 9.10. The N effects are significantly 
different (P< .0001) and there is also significant varietyxN interaction (P< 
.0072). 

(ii) Since we have quantitative treatments here, a post-hoc analysis should be a trend 
analysis. For the overall N-levels we find a significant linear and quadratic trend 
(P= ,0006 and P< ,0001, respectively), and the N LS means indicate that level 
3 provides the highest yield at 149.0. 

(iii) However, since the varxN interaction is significant, it seems appropriate to per- 
form the trend analysis separately for each variety. The results show essentially 
the same trends as in (ii), but the linear trend for variety 2 is not significant 
(P< .3325).  As a result, the highest yields occur for different levels of N, namely 

0 level 4 (at 150.0) for variety 1 and level 2 (at 159.0) for variety 2 .  
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Table 9.17 Generalized Randomized Block Design 

a) Input statements: 

data fert: 
inputNcary @ @ ;  
datalines; 
1 I 104 1 1 1 1 4 1 2  109 I 2  124 
2 1 1 3 4 2  1 1 3 0 2 2  1 5 4 2 2  164 
3 1 146 3 I 142 3 2 152 3 2 156 
4 I 1504 I 1 5 0 4 2  1 4 0 4 2  135 
5 11335 1 1 4 6 5 2  I31 5 2  137 

run; 

proc glm data=fert; 
class var N: 
model y=\ar N var"N; 
lsmeans N varxWstderr: 
contrast 'N-linear' N -2 - 1  0 I 2; 
contrast 'N-quad' K 2 -1 -2 - I  2; 
contrast 'N-linear varl' N -2 -1  0 1 2 var-N -2 -1  0 1 20 0 0 0 0; 
contrast 'N-quad varl' K 2 -1  -2 -1 2 var*N -2 -1 0 1 2 0 0 0 0 0;  
contrast 'N-linear var2' N -2 -1 0 1 2 varXN 0 0 0 0 0 -2 -1 0 1 2; 
contrast 'N-quad var2' N 2 -1 -2 -1 2 var-N 0 0 0 0 0 2 - 1 -2 -1 2; 
title I 'GENERALIZED RANDOMIZED BLOCK DESIGN'; 
title2 '(t=5. b=2 ~ 2 ) ' ;  
title3 'ANOVA WITH POST-HOC TREND ANALYSIS'; 
run; 

b) Output: 

GSNERALIZE3 RANCCYIZED BLOCK DESIGK 
(t=5, 5 = 2  r = i )  

ANOVA KITH POST-HOC TREND ANALYSIS 

The ELM P r o c e o u r e  

C l a s s  Leve l  I n f o r r a t i o n  

Class L e v e l s  Va lues  

v a r  2 1 2  

N 5 1 2 3 4 5  

Number of  O b s e r v a t i o n s  3ead 2C 
Number cf O b s e r v a t i o n s  Used 2 3  
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Table 9.17 (Continued) 

The GLM Procedure 

Dependent Variable: y 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 9 4465.450000 496.161111 14.12 C.OOO1 

Error 10 351.500000 35.150000 

Corrected Total 19 4816.950000 

R-Square Cceff Var Root MSE y Mean 

0,927c29 4.310246 5.328744 137.5530 

Source 

V B S  

N 
varrN 

Source 

var 
N 
var*N 

Id 

1 
2 
3 
4 
5 

var 

1 

1 
1 

2 
2 
2 
2 
2 

I 

DF Type I SS Mean Square 

i 140.450003 140.450000 
4 3393.700000 848.425000 
4 931.300000 232.825000 

DF Type 111 SS Mean Square 

1 140.450000 140.450000 
4 3393.700000 848,425000 
4 931.300000 232.825000 

Least Squares Means 

y TSMEAN 

i12.750030 
145.500030 
149.000000 
143.750000 
136.750000 

Y y LSMEAN 

1 109.000000 
2 132.003000 
3 144.000000 
4 150.000000 
5 139.500000 
1 ?16.500000 
2 159.000000 
3 i54.0C0000 
4 137.500030 
5 134.000000 

Standard 
Error Pr > it1 

2.964372 <.3001 
2.964372 1.0031 
2. 364372 < .  0001 
2.964372 < .  0001 
2.964372 < .  0001 

F Value 

4.00 
24.14 
6.62 

F Value 

4.00 
24.14 
6.62 

Standard 
E r r o r  Pr > It1 

4.192255 <.0001 
4.192255 < .  0001 
4.192255 <.0331 
4.192255 <.3001 
4.192255 <.000: 
4.192255 <.0001 
4.192255 <.030i 
4.192255 <.000i 
4.192255 <.000? 
4.192255 <.0001 

Pr > F 

3 . 3 7 3 5  
<.0001 
0,0072 

Pr > F 

c .0735 
<.coo1 
C. 0072 
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Table 9.17 (Continued) 

Dependent Variable: y 

Contrast DF Contrast SS Mean Square F Value P r  > F 

N-linear 1 855.625000 855.625000 24.34 0.0006 
N-quad 1 2225.160714 2225.160714 63.30 <.0001 
N-linear varl 1 1248.200000 1248.200000 35.51 0.0001 
N-quad varl 1 761.285714 761.285714 21.66 0.0009 
N-linear v a r 2  1 36.450000 36.450000 1.04 0.3325 
N-quad var2 1 1530.321429 1530.321429 43.54 <.0001 

EXAMPLE 9.21: This example is intended to illustrate some features of the analysis 
of incomplete block designs, in particular the balanced incomplete block design. We 
consider here the BIBD (3, 3, 2,  2; 1) (which is not particularly useful from a practical 
point of view) with the data given in Table 9.18a. 

We comment below on the input statements given in Table 9.18a and the output 
contained in Table 9.18b: 

(i) As options in the model statement we include “inverse” and “solution”. The 7 x 7 
inverse given in the output is, of course, a g-inverse of the coefficient matrix of 
the NE. It is obtained by imposing the conditions /33 = 0, ?3 = 0. This is also 
reflected in the vector of solutions obtained in this way. For example, we have 

h 

= 16.0, ?2 = 3.0, ?3 = 0, so that we can obtain 

?I - ?2 = 16.0 - 3.0= 13.0 

?I - ?3 = 16.0 - O= 16.0 

7 2  - 7 3  = 3.0 - O= 3.0 
A h  

as the estimates of treatment differences. We emphasize here that the solution 
vector can only be used to obtain estimates of estimable functions, in particular 
treatment contrasts. 

(ii) The variance of the estimate of a treatment contrast can be obtained from the 
g-inverse matrix (see Section 4.16.2) as follows: Consider the 3 x 3 sub-matrix 
corresponding to the treatment effects 

1.333 0.667 0 
0.667 1.333 0 

We then obtain, for example, 

- 7.)  = (1.333 - 2 .  0.667 + 1.333) ?: 

= 1.333MS(E) 

= 1.333. 1.5 = 2 
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From this we obtain the standard error (se) as 

se(?l - ?2) = = 1.414 

which agrees with the value given in the output. 

(iii) Looking at all possible treatment differences we see also that they all have the 
same standard error (1.414), a property of the BIBD. 

(iv) In the LSmeans statement we have included the option “e”. The resulting “Co- 
efficients for trt Least Square Means” tells us how the LS mean for a particular 
treatment is obtained from the solution vector (since this is no longer simply the 
treatment mean). We illustrate this with the following example for treatment 1: 

LS mean (TI) = 1 j 2  + .333(21 + ,?2 + 23) + 1 . 

= 19.5 + .333(-12.0 - 6.0 - 0) + 16.0 

19.: - 6.0 + 16.0 = 29.5 = 

The g-inverse can then be used, as illustrated earlier, to obtain the standard error 
for the LS means. 0 

EXAMPLE 9.22: 
reduced normal equation (RNE) in analyzing data from an incomplete block design. 

We comment on both briefly as follows: 

This is a continuation of Example 9.21 to illustrate the use of the 

In Table 9.19a we give the input statements, and Table 9.19b contains the output. 

(i) The main feature in the input statement is the “absorb block” statement. This 
results in absorbing the equations for p and 31, 3 2 ,  03 into the equations for 7-1, 

7-2, 7-3 to obtain the RNE. 

(ii) The C-matrix (see (9.101)) can be displayed by including the “xpx” statement, 
and the “inverse” statement displays a g-inverse C-, obtained by imposing the 
condition ?3 = 0. Note that this g-inverse is different from the expression given 
in (9.105) which is obtained by imposing the condition ?I + ?* + ?3 = 0. But for 
both choices of a g-inverse estimates for treatment contrasts will be identical. 

(iii) The result of the test for Ho : 7-1 = 7-2 = 7 3  = 0 is the same as that given in 
Table 9.18b. 

(iv) By using the “absorb” option we cannot ask for treatment LS means because for 
0 

A h , . .  

this we need the solutions P, 61, $2, 03 which are not available now. 
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Table 9.18 Balanced Incomplete Block Design 

361 

a) Input statements: 

data BIBD; 
input block trt y ;  
datalines: 
1 1 2 4  

2 1 2 9  
2 3  14 
3 2 23 
3 3 1 9  

1 2  in 

run; 

proc glm data=BIBD; 
class block trt: 
model y=block trU inverse solution; 
lsmeans tdstderr e: 
estimate '1  vs 2' trt 1 -1 0; 
estimate ' I  \ s  3' trt 1 0  -1; 
estimate ' 1  \ I S  3' trt 0 1 -1; 
title1 'BALANCED INCOMPLETE BLOCK DESIGN'; 
title2 '(t-3, b=3, k=2. r=2. lambda-1)': 
title3 'ANALYSIS OF VARIANCE'; 
title4 'WIPOST-HOC ANALYSIS'; 
run: 

b) Output: 

BALANCED INCOKPLETE BLOCK DESIGN 
(t=3, b=3, k = 2 ,  r=2, larrbda=l)  

ANALYSIS OF VARIANCE 
K / P O S T - H O C  ANALYSIS 

The GL1.1 ProcedJre 

Clzss Level Informatior 

C-ass Levels Values 

bloc< 3 1 2 3  

t rt 3 1 2 3  

Number of Observations Read 
?dumber of Observations Used 

6 
6 
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Intercept 
b1ocK 1 
block 2 
block 3 
trt 1 
trt 2 
trt 3 
Y 

Table 9.18 (Continued) 

The GLM Procedure 

X’X Generalized Inverse ( 9 2 )  

Intercept block 1 block 2 block 3 

0.8333333333 -0.333333333 -0.666665667 
-0.333333333 1.3333333333 0,6666666667 
-3.666566667 0.6666666667 1.3333333333 

0 0 3 
-0.333333333 -0.666665667 -0.333333333 
-0.656666665 -0,333333333 0.3333333333 

0 0 0 
19.5 -12 -6 

X’X Generalized Inverse ( 9 2 )  

trt 1 

I-tercept -3.333333333 
block 1 -0.666666667 
block 2 -0,333333333 
block 3 0 
trt 1 1.3333333333 
trt 2 0.6666666667 
trt 3 
Y 

Cependent Variable: y 

Source 

Model 

Error 

CorrecLed Total 

S oi: r ce 

b;ock 
t rt 

R-Square 

0.993823 

Source 

block 
trt 

0 
16 

DF 

4 

1 

5 

tr: 2 trt 3 

-0.666666667 
-0.333333333 
0.3333333333 

0 
0.6666666667 
1.3333333333 

0 
3 

su7, of 
Squares Mean Square 

241.3333333 60.3333333 

1.5000000 1.5000000 

242.8333333 

F Value 

40.22 

Coeff Var Root MSE y Mean 

6.175184 1.224745 19.83333 

DE Type I SS Mean Square F Value 

2 24.3333333 12.1566667 8.11 
2 217.0000000 108.5000000 72.33 

DF Type I11 S S  Mean Square F Value 

2 108.0003000 54.0000030 36.00 
2 217.0000000 108.5030000 72.33 

0 
0 
0 
0 
0 
0 
0 
0 

Y 

19.5 
-12 
-6 
0 

16 
3 
0 

1.5 

Pr > F 

0.1176 

Pr > E 

0.2410 
0.0829 

Pr > F 

0.1150 
0.0829 
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Table 9.18 (Continued) 

Standard 
F aranet e r Estimate Error t Value Fr > It1 

Intercept 19.50000OC0 3 1.11803399 17.44 C.C365 
block 1 -?2.00000000 B 1.41421356 -8.49 0.0747 
Dlock 2 -6.00C000CO B 1.41121356 -4.24 C .  1474 
block 3 0.~C0000C3 3 
trt 1 16.00300C00 B 1.41421356 11.31 0.0561 
trt 2 3.00000000 3 1.41421356 2.12 0.2504 
trt 3 0.00303C00 B 

KOTE: The X'X matrix has been found to be singular, and a 
generalized inverse 

was used t3 solve the normal eqcations. Terms whose estinates are 
followed by the letter ' B '  are not uniquely estimable. 

Least Squares Means 

Coefficients for trt Least Square Yeans 

Effect 

Intercept 
block 1 
block 2 
block 3 
trt 1 
trt 2 
t rt 3 

trt 

2 

3epenaent Variable: y 

Paramere r 

1 v s  2 
1 v s  3 
2 v s  3 

trt Level 
1 2 3 

1 1 1 

0.33333333 C.33333333 0.33333332 
0.33333333 0,33333333 3.33333333 
0.33333333 0.33333333 0.33333333 

I U J 

C 0 
U L 

Standard 
y LSMEAN Errcr Pr > It1 

29.5000300 3.9574271 0.0207 
16.50000C3 0.9574271 0.C369 
13.5300000 0.957427: C. 0451 

Srandara 
Eszimate Error r Value Pr > ti 

13.00C3000 1.41421356 9.19 0.0693 
15.0C00C00 1.41421355 11.31 C.0561 
3.0C00000 1.a1421355 2.12 0.2504 
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Table 9.19 Balanced Incomplete Block Design (RNE) 

a) Input statements: 

data BIBD; 
input block trt y ;  
datalines: 
1 1 2 4  
1 2  10 
2 I 29 
2 3  14 
3 2 23 
3 3 1 9  

run; 
proc glm data=BIBD: 
absorb block; 
model y=trt/xpx inverse solution: 
title1 'BALANCED INCOMPLETE BLOCK DESIGN'; 
title2 '(t-3. b=3, k=2. r=2. lambda-I)'; 
title3 'USING REDUCED NORMAL EQUATIONS'; 
run: 

b) Output: 

BALANCEC ZNCOMFLETE BLOCK CESIGN 
(t=3, b=3, k = 2 ,  r = 2 ,  larrbda=lj 
USING REDUCED NORMAL 3QURTIONS 

The GLM Proceaure 

Class Level Information 

Class Levels I'alues 

trt 3 1 2 3  

trt 1 
;rt 2 
trt 3 
Y 

trt 1 
trt 2 
trt 3 
Y 

Nurnher of Observations Read 
Kuxker of Observations 2sed 

The X'X Mazrix 

6 
6 

z r t  1 trt 2 trt 3 

-0.5 
-0.5 
14.5 

- 3 . 5  

-0.5 
- c  

-3.5 
-0.5 

- 9 . 5  

X'X Generalized Inverse (92) 

trt 1 trz 2 trt 3 

1.3333333333 0.6656666667 
0.5565666667 1.3333333333 

0 C 
16 3 

Y 

14.5 
-5 

-3.5 
218.5 

Y 

16 

0 
1.5 

1 
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2e.sender.t V a r i a b l e :  y 

Source 

Vcdel 

Table 9.19 (Continued) 

S u n  of 
DF S q j a r e s  Mean Sguare F V s i u e  Zr > F 

4 241.3333233 60.3333333 40.22 C.1176 

E r r o r  1 1 .SCtOC:O 1.50oc30c 

Correc ted  Tora l  5 242.8333333 

R-Sq;are Coeff  V a r  Root MSE y Mean 

0.993823 6.175184 1.224745 19.83333 

Source 

Source 

t r t  

D? Type I SS Yean Square F Value P r  > F 

2 24.3333333 12.1666667 a.ii c.2410 
2 217.0000003 108.50C0000 72.33 0.0829 

DF i p e  III S S  Mean Sqilare F Vaiile P r  > F 

2 217.0C00030 108.500003C 72.33 C.0529 

Standard  
F aramet e r  E st m a t  e E r r o r  t \'alLe > r  > It 

:rt 1 lE.COOC3C00 B 1.41421356 11.31 0.0561 
t r t  2 3.C0300C00 E 1.41421356 2.12 0.2806 
t r t  3 O . O O O O , ^ O O C  B 

N O T E :  The X ' X  mat r ix  has  been found L O  be sing.;lar, and a g e n e r a l i z e d  inverse 
'was used  L O  s o l v e  tr.e nor r ,a l  equat1cr .s .  Terms wb.ose e s t i m a t e s  a r e  
fol lowed b y  t7.e l e t t e r  ' B '  are not  m i q u e i y  e s t z m a s l e .  
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9.11 EXERCISES 

9.1 Consider the following data from an experiment testing the effects of 5 levels 
of application of potash on the Pressley strength index of cotton (John and Que- 
nouille, 1977) 

Block 1 
Block 2 
Block 3 

Treatments* 

2 3 4 5 

7.62 8.14 7.76 7.17 7.46 
8.00 8.15 7.73 7.57 7.68 
7.93 7.87 7.74 7.80 7.21 

'Pounds K20 per acre, expressed as units. 

Obtain the ANOVA table and test the hypothesis that there are no differ- 
ences among the treatments. 

Since the treatments are quantitative, rather than making comparisons be- 
tween individual treatments, it is preferable to explore the response curve. 
Partition the treatment sum of squares into three components due to lin- 
ear effects, quadratic effects, and remainder. Test for linear and quadratic 
effects. 

Suppose the actual levels of the treatments are 36, 54, 72, 108, and 144 
pounds K20 per acre, respectively. Partition the treatment sum of squares 
into a component due to linear response and a component due to deviation 
from linear response. Test for linearity. 

Find the relative efficiency of this design and interpret the result. 

9.2 Consider an experiment with 5 treatments in a RCB design with 10 blocks. The 
partial ANOVA table is as follows: 

Source d.f. ss MS 

Blocks 135 
Treatments 100 
Residual 

Total 307 

(i) Complete the ANOVA table above. 

(ii) Give the test statistic for testing Ho : T~ = 7 2  = 7 3  = r4 = T~ = 0. 

(iii) Suppose a preplanned comparison of treatments is that of comparing treat- 
ment 1 against the average of treatments 2 and 3. Give the estimated vari- 
ance for the estimate of this treatment comparison. 
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(iv) Suppose you have supplementary information in the form of a variate 5 .  

Performing an analysis of covariance you obtain (among other quantities) 

x ( y z k - Y z  - y k + y  ) ( z z k - ? t  - ? k + %  ) = - 2 0  
1.k 

x ( 5 t k  - 3, - % k + ? )’ = 10 
t , k  

Obtain the estimate of 02,. 
(v) Under the analysis of covariance model what is the estimator for the con- 

trast in (iii) and its estimated variance (use numerical values where possible 
based on the information provided in this problem). 

9.3 A chemist wants to compare three treatments. The experimental material he 
plans to use comes from four different manufacturers. He expects systematic 
differences among the material from the different manufacturers. Moreover, he 
is interested in finding out whether differences between treatment effects depend 
on the manufacturer. There is sufficient experimental material from each manu- 
facturers for 12 experimental units. 

(i) What experimental design should he use for his experiment? 

(ii) Suppose he comes to you with the following partial ANOVA table: 

Source d.f. ss MS 

Manufacturers ( M )  
Treatments(T) 
M x T 
Error 

20 
25 
5 
2.3 

Total 

Fill in the ANOVA table. 

(iii) Give the SAS statements (classes, model) for the ANOVA in (ii). 

(iv) The chemist claims that he has used four replications per treatment, per 
manufacturer. After some questioning you find out that the four “repli- 
cations” are actually two replications and two duplicate measurements for 
each experimental unit. In this case what should the ANOVA really look 
like? Give sources of variation and d.f. 

(v) Give the SAS statements (classes, model) for the ANOVA in (iv). 

(vi) Unfortunately, the computer file with his original data was destroyed. In 
order to correct the situation and come up with a reasonable ANOVA table, 
you devise a small experiment which will allow you to obtain an estimate 
of the sampling (observational) error variance component. Suppose this 
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Amount of Alcohol 

0 oz. 1 oz. 2 oz. 

estimate equals 1. Assuming that this is a reasonable estimate for the actual 
experiment, that is, assuming that this value was obtained from the actual 
experiment, complete now the ANOVA table given in (iv) by filling in d.f., 
SSs and MSs. 

(vii) Based on the ANOVA in (vi), give the test statistic for testing the null hy- 
pothesis that there is no A1 x T interaction. 

(viii) Based on the ANOVA in (vi), give the standard error for a simple treatment 
comparison (that is, the differences between the estimates of two treatment 
effects). 

.45 .47 .60 

.39 .46 .70 

.40 .5 1 .66 

9.4 In a study of reaction time under the influence of alcohol, age is thought to 
be another factor that could affect the time. Test subjects (individuals) were 
classified into three age groups: 20-39, 40-59, 60 and over. In each age group 
each treatment (0 oz., 1 oz., 2 oz.) was randomly assigned to 4 individuals. The 
following results were obtained (the reaction time is measured in seconds): 

20-39 

40-59 .5 1 .70 1.05 
.55 .69 1.10 
.53 .73 .98 
S O  .75 1.12 

60 and Over .60 .85 1.25 
.59 .79 1.20 
.58 .88 1.30 
.6 1 .90 1.27 

(i) What kind of experimental design has been used? 

(ii) Give the appropriate ANOVA table. 

(iii) Investigate whether the differences in reaction time for the different amounts 
of alcohol depend on the age group. 

(iv) Is there a difference in reaction time for 1 oz. and 2 oz.? Does it make 
sense to consider this question? 

9.5 Suppose a researcher comes to you with a table of data, obtained from a block 
design, that looks as follows: 
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Block 1 
Block 2 
Block 3 
Block 4 

369 

Treatment 

1 2 3 

xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 

9.6 In studying the effects of pollution, seedlings are usually exposed to specified 
pollutants for a certain period of time (say 6 hours) during the day for several 
weeks after which an evaluation is made. The seedlings are put in a pollution 
chamber which then receives the pollutant. Consider a specific case in which an 
investigator wants to compare 4 pollutants: Po =filtered air, PI = 0 3 ,  P2 = 

NOz, and P3 = 0 3  + NO2 at specified levels of concentration. He has only 
limited resources. 

In particular, he has only 8 pollution chambers in each of which he can put 3 
seedlings. He feels that this is not adequate. So he decides to use the same 
chambers for 6 hours during the day and for 6 hours during the night, that is, 48 
seedlings are used for the experiment. He is sure that there will be systematic 
differences between the day and night results. 

(i) Describe an experimental plan for this experiment. What is the name for 
the experimental design that he is using? 

(ii) The investigator wonders whether certain comparisons among the pollu- 
tants will depend on whether one uses the results from day or night expo- 
sure. What kind of “effect” is he talking about and how can he investigate 
that? 

(iii) Give an appropriate linear model for analyzing data from this experiment. 

(iv) Outline the ANOVA table (source of variation, d.f., E(MS)) and indicate 
what hypotheses can be tested and how. In particular, what useful hypothe- 
ses about the treatment effects can be tested given the particular pollutants 
used in this experiment? 

where each x represents one observation. She asks you to analyze the data. 

(i) How would you determine how to analyze the data? 

(ii) Describe two experimental plans that could have given rise to this data set. 

(iii) For each of the plans (designs) you have identified in (ii) give 

(a) an associated linear model, 
(b) the ANOVA table based on this model, 
(c) the variance of a simple treatment comparison, 
(d) the estimator for the variance in (c). 

differences. 
(iv) Describe how you would do iii(b) in SAS, including the test of no treatment 
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9.7 A researcher comes to you with data from a block design. For comparing 4 treat- 
ments he has used 5 blocks each with 4 experimental units. He took 2 measure- 
ments on each experimental unit. He comes to you with the following ANOVA 
table: 

Source d.f. ss 
~~ ~ 

Blocks 4 S S ( B )  
Treatments 3 S S ( T )  
Error 32 SS(E) 

Total 39 

(i) What name would you give to the experimental design that he used. 

(ii) Give a linear model for the data from this design and outline the ANOVA 

(iii) Explain why or why not your ANOVA table in (ii) agrees with the re- 

(iv) Give the formula for the theoretical variance for the comparison between 

(source of variation, d.f.). 

searcher’s ANOVA table given above. 

two treatments using this design. 

9.8 Suppose a researcher comes to you for advice about the analysis of an experiment 
she has conducted. She has used 5 treatments and she has 9 observations for each 
treatment. She shows you the following ANOVA from a computer printout: 

Source d.f. ss F-value Pr > F 

Treatments 4 100 8.33 .0001 
Error 40 120 

The researcher wants to know from you whether the analysis is correct, and if 
so what it means. For each of the following scenarios answer the following 
questions: 

(i) What is the name of the design? 

(ii) What is the appropriate model? 

(iii) Based on the model in (ii) what is the corresponding ANOVA (include 
sources of variation, d.f., form of test for testing HO : 71 = 7-2 = . . . = TS).  

(iv) Is the ANOVA from the print-out above appropriate for testing Ho : 7 1  = 

(v) What are the SAS statements for doing (iii) and (iv)? 

. . .  - - Tj? 
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Block 1 
Block 2 
Block 3 
Block 4 

Scenario I: 
assigned to 9 animals at random; 

45 animals were used for the study and each treatment was 

5.2 7.3 6.8 10.0 
8.5 9.2 12.7 10.6 11.6 
4.1 6.3 9.3 7.1 9.8 
6.4 8.9 11.2 5.7 11.3 

Scenario 11: 45 animals were used but they came from 9 different litters of 
size 5 each and each treatment was assigned to one animal in each litter; 

Scenario 111: 15 animals were used, each treatment was assigned to 3 ani- 
mals at random, and 3 observations were obtained from each animal. 

9.9 Consider the following experimental data: 

I Treatment 

l 1  2 3 4 5 

(i) Do the exact analysis, obtaining the ANOVA table, LS means for treat- 
ments, and the estimated variance for simple treatment comparisons (use 
SAS PROC GLM). 

(ii) Estimate the missing value and obtain the approximate ANOVA. 

(iii) Using the analysis of covariance technique, obtain a general expression for 
the treatment LS means and the variance of differences of LS means. 

(iv) Obtain numerical values for the expressions in (iii) using the data above. 

(v) Compare the results for (i) and (iv). 

9.10 Obtain an expression for the bias of S S ( T )  when the estimate of the missing 
value is used as if it were the real observation. [Hint: Compare S S ( T )  with the 
SS obtained from the analysis of covariance.] 

9.11 Consider a RCBD with subsampling. Specifically, suppose t = 3 treatments, 
b = 4 blocks, and n = 2 observations per experimental unit. 

(i) Give a linear model for data from such an experiment. 

(ii) Outline the ANOVA table, giving sources of variation, d.f., E(MS). 

(iii) Write SAS statements to carry out the ANOVA in (ii). 

Now suppose we have supplementary information in the form of a covariate 
z for each experimental unit. 

(iv) Give a linear model for analyzing data from such an experiment. 
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(v) Outline the corresponding ANOVA table, giving sources of variation and 

(vi) Give a SAS statement for carrying out the ANOVA in (v). 

d.f. 

Using the following data set 

Treatment 

1 2 3 

Block 1 

Block 2 

Block 3 

Block 4 

(10, 11) (14, 13) (20, 22) 
4 5 3 

(12, 15) (18, 20) (24, 27) 
7 3 5 

(20, 18) (21, 24) (35,33) 
6 2 8 

(where the two numbers in parentheses represent the duplicate observations 
and the number underneath represents the covariate 2) perform the two 
ANOVAs as explained in (iii) and (vi). 

9.12 A researcher wants to do an experiment using mice as the experimental units. She 
comes to you for advice on how to set up the experiment. Here is the situation: 
She wants to compare the effects of feeding three levels of calcium, say 0, 1, 
2 units, on certain bone measurements (which can be observed only after the 
mice have been sacrificed). She has available 4 litters of 6 mice each, each litter 
containing 3 females and 3 males. Each litter comes from a different breed of 
mice. 

(i) Give two experimental designs that might be suitable for this experiment. 
For each design 

(a) state any assumptions that would have to be made. 
(b) Give the associated linear model. 

(c) Sketch the ANOVA (source of variation, d.f., E(MS)). 
(d) State what inferences can be made. 

(ii) Explain how you would investigate the question that the two sexes react 
differently to the calcium treatments. 

(iii) The experimenter plans to make duplicate measurements on each animal. 
For both designs [given in (i)] give the estimators for the linear and quadratic 
effect of calcium and their standard error. 



CHAPTER 10 

Latin Square Type Designs 

10.1 INTRODUCTION AND MOTIVATION 

To introduce a new and important type of blocking, using two or more blocking factors 
(intrinsic and/or nonspecific), let us consider the following example. 

EXAMPLE 10.1: Suppose a manufacturer wants to investigate and compare different 
production processes for ceramic cookware. Extraneous sources of systematic variabil- 
ity are identified as (i) different batches of raw material and (ii) different ovens used 
for baking the product. The batches of material are obtained from different sources 
and possibly at different times. The ovens available in the manufacturing plant are of 
different makes and different ages. If the raw material were indeed uniform, we would 
us a RCBD with the ovens as blocks. And if, on the other hand, the ovens were all 
of the same type, we would use a RCBD with the batches as blocks. In the present 
situation, however, we would like to use both batches and ovens as blocks in order to 
eliminate systematic variability and hence reduce the experimental error. 

Suppose we have T batches of experimental material, B1. B2. . . . , B, say, and c 
ovens 01 ~ 0 2 .  . . . . 0, say. One way to proceed then perhaps might be to divide each 
batch into c equal parts and “form” blocks of the type (B,O,), that is, combining each 
batch with each oven. If we have t treatments (processes) we would then mold t pieces 
of cookware, that is, t EUs, for each block (B,O,) and then bake each piece in the 
assigned oven at the assigned process (treatment). In this whole experiment we would 
then have rct EUs and the observations would be analyzed according to the RCBD 
analysis with rc blocks and t treatments (see Section 9.6.7 for crossed blocking factors). 
0 

The above procedure may be feasible for some experiments, but impossible for 
others since it may require too many EUs. In other cases such an arrangement may be 
physically impossible. An example of this is a field experiment where the experimental 
field exhibits a gradient in two (orthogonal) directions. This too is a situation where one 
may want to utilize simultaneously two blocking factors or, to use a common phrase, 

373 
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block in two directions. Error-control designs other than the one described above have 
been developed for that purpose. Such designs are referred to as designs for two-way 
elimination of heterogeneity, or row-column designs. We shall refer to them as Latin 
square type designs because in many cases the Latin square design, a special form of 
row-column design developed by R. A. Fisher (1925, 1926), is the basic building block 
of such designs. 

EXAMPLE 10.1 (continued): To complete the discussion of our example in the context 
of the preceding remarks we shall give appropriate error-control designs for three situ- 
ations: (i) t = 4. r = 4, c = 4; (ii) t = 4, r = 8 ,  c = 4; and ( 5 )  t = 4, r = 8. c = 5 .  
These designs using rc EUs are given in Table 10.1 where the processes (treatments) 
are designated by A, B, C ,  D.  To understand the schematic representation of these 
designs, let us look at design (i): A piece of cookware from batch 1 is produced ac- 
cording to process D and then baked in oven 1, a piece of cookware from batch 2 is 

0 

How these designs were obtained will be discussed in the following sections, but the 
reader should have no difficulty recognizing that these designs have certain structures 
and combinatorial properties: In design (i) each treatment (Latin letters) occurs once 
in each row and once in each column; in design (ii) each treatment occurs once in each 
row and twice in each column (rows 1 , 2 , 4 , 7  constitute in fact design (i) and rows 3, 5, 
6, 8 constitute design (i) with permuted columns); and design (iii) is an augmentation 
of design (ii) with column 5 being formed by columns 1 and 4 of design (i). We shall 
show in the following sections that these combinatorial structures make it possible to 
obtain estimates of treatment effect contrasts, which after all is the objective of the 
experiment. 

As in these introductory remarks we shall begin with the simplest design for hvo- 
way elimination of heterogeneity, the Latin square design, which is then used as the 
building block for more complex designs involving two or more blocking factors. 

produced according to process C and also baked in oven 1, and so on, 

10.2 LATIN SQUARE DESIGN 

10.2.1 Definition 

The Latin square design represents, in some sense, the simplest form of a row-column 
design. It is used for comparing t treatments in t rows and t columns, where rows 
and columns represent the two blocking factors. Latin squares and their combinatorial 
properties have been attributed to Euler (1782). They were proposed as experimental 
designs by Fisher (1925, 1926), although De Palluel(l788) already utilized the idea of 
a 4 x 4 Latin square design for an agricultural experiment (see Street and Street, 1987, 
1988). 

Mathematically speaking, the Latin square of order t is an arrangement o f t  Latin 
letters in a square o f t  rows and t columns such that every Latin letter occurs once in 
each row and once in each column (see design (i) in Table 10.1), or more generally, 
the arrangement of t symbols in a t x t array such that each symbol occurs exactly 
once in each row and column. In the context of experimental design, the Latin letters 
are the treatments. Latin squares exist for every t .  A reduced Latin square (or Latin 
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Table 10.1 Latin Square Q p e  Designs 

(i) t = ~ = c = 4 :  

(ii) t = c = 4: 'r = 8: 

D B C A  
C A B D  
B D A C  
A C D B  

D B C A  
C A B D  
A D B C  
B D A C  
D C A B  
C B D A  
A C D B  
B A C D  

D B C A D  
C A B D C  
A D B C B  
B D A C A  
D C A B A  
C B D A D  
A C D B C  
B A C D B  
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square in standard form) is one in which the first row and the first column are arranged 
in alphabetical order, for example, for t = 3, 

A B C  
B C A  
C A B  

this is the only reduced Latin square. The number of squares that can be generated from 
a reduced Latin square by permutation of the rows, columns, and letters is ( t ! )3 .  These 
are not necessarily all different. If all rows but the first and all columns are permuted, 
we generate t ! ( t  - l)! different squares. From the reduced Latin square of order 3 we 
can thus generate 12 squares. 

In general, if the number of reduced squares of order t is denoted by Tt and the 
total number of Latin squares of order t by Ut,  then Ut = t ! ( t  - l)!Tt (see DCnes and 
Keedwell, 1974). Below we give a list o f t ,  Tt for t = 2 . 3 . .  , . . 8  (see e.g., DCnes and 
Keedwell, 1974): 

t I Tt 

1 
1 

56 
9,408 

16,942,080 
535,281,401,856 

I 4 

10.2.2 Transformation Sets and Randomization 

An enumeration of all possible reduced Latin squares is facilitated through the notion 
of transformation sets which is defined as follows: One square of the transformation 
set may be obtained from the others by permutation of letters and subsequent rear- 
rangement into reduced or standard form. For t = 4 there exist two transformation sets 
as given below. 
Set 1: 

(1) ( 2 )  (3) 
A B C D  A B C D  A B C D  
B A D C  B C D A  B D A C  
C D B A  C D A B  C A D B  
D C A B  D A B C  D C B A  

Set 2: 
A B C D  
B A D C  
C D A B  
D C B A  
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In the first transformation set, square (2) can be obtained from square (1) by inter- 
changing A and D in (1) and rearranging, thus: 

D B C A  A B C D  A B C D  
B C D A  
C D A B  

C D A B  
D A B C  

B D A C  
C A B D  
A C D B  B C D A  D A B C  

On the other hand, in set 2 any interchange of letters and rearrangement into standard 
form leads to its reproduction. Thus the two transformation sets above account for all 
T4 = 4 reduced squares. 

For t = 5 there exist two transformation sets, one containing 50 reduced squares 
and the other containing 6 reduced squares, thus accounting for all Tj = 56 reduced 
squares. 

For t = 6 there exist 22 transformation sets which contain a total of T6 = 9.408 
reduced Latin squares. 

Fisher and Yates (1957) list examples of Latin squares fo r t  = 4.5.  . . . . 12. 
The actual randomization procedure for Latin square designs was given by Yates 

(1933) and is described by Fisher and Yates (1957) as follows. The first step is to 
select a reduced square at random. For squares of order 3 ,4 ,  or 5, the second step is to 
permute all rows except the first and all columns, or all rows and all columns except the 
first, and assign treatments at random to the letters A,  B ,  C. . . .. For squares of order 
6 permute all rows and columns, and then assign the letters to treatments at random. 
For larger squares, it is satisfactory to take any square and permute rows, columns, and 
treatments. 

The randomization procedure for a 4 x 4 Latin square using SAS PROC PLAN is 
illustrated in Table 10.2, where the treatments are represented by the numbers 1 ,2 ,3 ,4 .  

---f i 

10.2.3 Derived Linear Model 

We shall now examine the Latin square design (LSD) as an error-control design from 
the same point of view as that which we used for the RCBD. We suppose then that 
the subscripts (2 ,  j, k )  denote the row, column, and treatment of a particular EU. In 
all there are t3 possible responses, for each treatment can conceptually be applied to 
each EU, and from this population of true yields we draw a sample which is based on 
a random t x t Latin square as described above. Such a sample has obvious properties 
of balance, particularly when we are concerned with the comparison of treatments. 

Assuming unit-treatment additivity in the strict sense and following Kempthorne 
(1952) we write the conceptual response of treatment k in row i and column j as 

(10.1) 

where Uij is the contribution from the EU in the ith row and j th  column and Tk is the 
contribution from treatment k .  We rewrite (10.1) as 

Tijk = Uij + Tk. 

Tijk = U. ,  f (Ui, - D,,) + (U.j  - U , , )  
+ (Uij - U?, - U,]  + U , . )  + T + (Tk - T )  

- - + p i  + ' ) j  + Tk + uij .  (10.2) 
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rows 

B1 
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cols 

01 02 03 04 

tmts tmts tmts tmts 

Sum Sum Sum Sum 

1 2 4 3 

Table 10.2 Randomization for 4 x 4 Latin Square Design 

a) Input statements: 

factors rows=$ ordered cols=4 orderednoprint; 
treatments tmts=4 cyclic; 
output out=LS 

rows cvals= ( 'Bl '  'B2' 'B3' 'B4') random 
cols cvals= ('01' '02' '03' '04 ' )  random 
tmts rivals= (1 2 3 4) random; 

quit; 
proc tabulate data=LS; 
class rows cols; 
var tmts; 
table rows, cols*(tmts*f=6.) / rts=8; 
title 'RANDOMIZATION FOR 4x4 LATIN SQUARE DESIGN'; run; 
run; 

(b) Output: 

B4 4 3 1 2 
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where 

is the average conceptual response, 

p = u,. + T. 

pi = ui, - u 

" i j  = u . j  - u. 
is defined as the ith row effect, with Cpi = 0, 

is defined as the j th  column effect, with C:/j = 0, 

T k  = T k  - T .  

is defined as the kth treatment effect, with C T k  = 0, and 

ui3 = UZj - ui. - u,j + u,, 
- - (UZj - D,,) - (UZ, - a,,) - (0.j - O,,) (10.3) 

expresses the heterogeneity of the EUs in the sense that the contribution of EU ( i j )  is 
not made up additively of a row effect ( p i )  and a column effect (7~). In fact, technically 
we may refer to uij as a row-column interaction effect. 

We denote an actually observed response in the ith row and j t h  column by z t j .  Let 
6& be the design random variable which takes the value unity if treatment k occurs on 
EU (i, j )  and is zero otherwise. We can then write 

z , '  23 - - C6t.Tijk:. (10.4) 
k 

Substituting from (10.2) we obtain 

z i ~  = +pi f T j  + C 6fj.k + uij. (10.5) 

Alternatively, we can express an observation on a given EU in terms of the treatment it 
received. Let x k l  denote the observation from the Ith application of treatment k and let 
(&! denote a random variable with c t  = 1 if the Ith application of treatment k falls on 
EU ( 2 ,  j )  and $1 = 0, otherwise. Then 

k 

t 3  

We are mainly interested in treatment means and contrasts among them. From (10.6) 
we then have 

(10.7) 
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since 

The joint distribution of the 6FJ's is determined by the particular family of Latin 
squares from which the one actually used is chosen at random. If we use the random- 
ization procedure described earlier we have 

= 6:J and C,,6: = t .  

and 
1 

t 
P(Sf, = 0) = 1 - - .  

The Latin square structure implies that if 6& = 1 then 6$, = 0 and df,, = 0. This 
implies 

P(dk, = l.d$, = 1) = 0 

P(6fJ = 1. 6f,, = 1) = 0 

(i # i') 
( j  # j ' )  

We also have 

Having established some properties of the 6&'s we can now investigate the distri- 
butional properties of the models (10.5) and (10.6) or, more importantly, (10.7). Since 

it follows from (10.7) immediately that 

or, using (10.3) and the fact that &u,, = C3utJ = 0, 

(10.8) 

10.2.4 Estimation of Treatment Contrasts 

It follows from (10.8) that a contrast among the treatment effects, CkCk ' rk ,  with C k ~ k  = 
0, is estimated unbiasedly by the corresponding contrast among the treatment means, 
that is, 

(10.9) 
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In order to obtain vilrR(Ckckl);.k,) we consider first 

using the properties of the 6f7’s. Now 

using again (10.3). We then have, substituting into ( l O . l O ) ,  

Similarly, we can obtain for k’ # k 

Using (10.1 I )  and (10.12) it then follows that 

(10.1 I )  

(10.12) 

( 1  0.13) 
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If we define 

we can write (10.13) as 

(10.14) 

(10.15) 
\ k  / k '  

The problem then remains to estimate 02.  This is achieved again by means of the 
analysis of variance. 

10.2.5 Analysis of Variance 

To write out the ANOVA table it is convenient to write the observation on EU (i,j) 
which has received treatment k as g L j ( k )  where ( ) indicates that not all possible triplets 
(i, j ,  k )  occur in the array, only t2 out of t3.  With this notation we then have 

YZj(.) = zi j  

Bi.(.) = &., B.j(.) = f . j  

Y.,(.) = 2,.  = 5,;  

Y . . ( k )  = z k .  

The ANOVA as given in Table 10.3 is based on the identity for yij(k): 

Y i j ( k )  = Y..(., + b(.) - t..(.)) + (Y . J ( . )  - Y..(.)) 
+ ( Y , . ( k )  - Y . . ( . ) )  + (Yij(k) - Yi.(.) - Y . j ( . )  - Y..(k) + 2 t . . ( . ) )  

and is obtained by squaring both sides and summing over all occurring combinations 
ij(k). 

The E(MS) given in the left-hand column are based on the models (10.5) and (10.6) 
as established earlier and follow from randomization theory. The results show that the 
LSD is an unbiased design in Yates' sense and that MS(E) is an estimate of 0:. 

To test the hypothesis Ho : 71 = 7 2  = . . = rt = 0 we are led by the E(MS) in 
Table 10.3 to consider the ratio 

F = -  MS(T) 
M W )  

This ratio F will be evaluated for the square actually used and for all other squares 
that we could have obtained by the randomization procedure. If the value for the square 
actually used is equaled or exceeded by that of P percent of the possible arrangements 
(including the one used), we shall say that we have significance at the P percent level. 
The evaluation of the significance in a particular experiment could be somewhat labori- 
ous, and we rely on the fact that, similar to the result for the RCBD (see Section 9.2.5), 
the distribution of the criterion F will be closely approximated by the F-distribution 
with t - 1 and (t - l ) ( t  - 2 )  d.f. 
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The extent to which the distribution of the criterion F over the possible randomiza- 
tions may be represented by the F-distribution has been examined by Welch (1937). 
He showed that the quantity 

S S ( T )  
S S ( T )  + SS(E)  

U =  

has a mean value of l / ( t  - 1), and this is the mean value of the beta distribution which 
is a transform of the F-distribution. This was obtained with only the assumption that 

for i # i', j # j '  (see Section 10.2.3) and therefore holds for any transformation set. 
Welch (1937) also found that var(U) does depend on the transformation set, and also 
on the quantities 

where uz3 is as defined in (10.3). He examined var(U) for some constructed data 
and for some sets of uniformity data and found the proportion of times the 5 percent 
value of I: from the beta distribution was exceeded ranged from 2.7 to 6.2 percent. 
The approximation by the F-distribution is therefore not entirely satisfactory, but the 
evidence is not conclusive, in that the approximation depends on the quantities C ,  D ,  
G, H above, and, in a particular case. we do not know these values, nor do we know 
the values we shall meet in practice. The rules given above for the choice of a random 
Latin square are designed to give equal probability to all possible Latin squares of size 
less than 7 x 7, and this appears to be a desirable procedure. To conclude this aspect of 
the Latin square, we shall assume that normal theory gives satisfactory approximations 
to corresponding randomization tests, but some care needs to be taken with small Latin 
squares as noted below. 

We consider first the 2 x 2 Latin square, for which there are only 2 different ones: 
namely, 

B A  
A B  

A and 
B A  

This square has no degrees of freedom for error, as is obvious from the fact that, if we 
use one square and obtain the treatment difference, then the treatment difference given 
by the other square is the negative of the difference with the former square. If then we 
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wish to compare 2 treatments with 2 x 2 Latin squares, we must use many squares, and 
to make any test we must assume that the difference is constant from square to square 
(see Section 10.3). The randomization test is so simply performed in this case, that 
with a small number of squares, say 6 or less, it would probably be advisable to rely on 
the randomization test procedures rather than the usual F-distribution approximation. 

In the case of the 3 x 3 Latin square, it is important to note that there are, in fact, 
only 2 different partitions of the 9 cells into 3 sets of 3, in such a way that each set is 
represented in each row and in each column. There are 12 different 3 x 3 Latin squares, 
but these give the same partitioning in sets of 3. If we wish to test the null hypothesis 
that there are no differences among the 3 treatments, we shall use the ratio of treatment 
mean square to error mean square as the test criterion. If this takes the value R with 
the randomization we in fact used, it will take the same value for 5 of the other 11 
randomizations, and the value 1/R for the remaining 6. This happens because the sum 
of the treatment sum of squares with 2 degrees of freedom and the error sum of squares 
with 2 degrees of freedom is constant for all randomizations, and a randomization that 
gives a partitioning different from the one actually used will have the treatment and 
error sum of squares interchanged. We are, therefore, in the position of not being 
able to make a significance test, for which the chance of rejecting the hypothesis when 
true is less than 50 percent (or, in other words, of size less than .50). This fact is 
important because, if we use the normal theory model in which the errors in the model 
are assumed to be normally and independently distributed with mean zero and constant 
variance 02 ,  we shall use the F-test with 2 and 2 degrees of freedom and can make a 
test at any significance level we please. The distinction we make throughout this book 
between the derived and normal theory model is therefore extremely relevant. If we 
consider a particular treatment contrast, and evaluate it for the 12 possible 3 x 3 Latin 
squares, we shall find that there are 6 possible values which the criterion (mean square 
due to treatment comparison/error mean square) can take. We therefore only make a 
test of significance with level 1-in-6, of the hypothesis that the true comparison is zero, 
if we use a 2-tailed test. For these reasons, a single 3 x 3 Latin square experiment is 
virtually valueless, and, if we use a small number of replications (see Section 10.3), 
we should, as with the 2 x 2 square, probably use the randomization test procedures, 
although it is often found that the usual F-test gives a remarkably similar answer. 

There are in all 4(4!3!) or 576 different 4 x 4 Latin squares, but these lead to only 
24 different partitions of the 16 cells into 4 sets of 4, in such a way that each cell is 
represented in each row and in each column. It is therefore desirable to make the test 
strictly according to the randomization test procedure. 

Squares of side 5 and 6 were examined by Welch (1937). For squares of side 7 or 
more it seems reasonable to assume that the F-distribution is satisfactory. 

10.2.6 The Model under Additivity in the Broad Sense 

So far we have considered only the situation where unit-treatment additivity in the 
strict sense holds. To do so is useful to bring out some of the essential features of 
a LSD. From a practical point of view, however, the inclusion of technical errors is 
important, which leads us to the situation where unit-treatment additivity in the broad 
sense holds. We shall not go into all the details here but rather refer the reader to 
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our discussion of this topic in connection with the CRD (Chapter 6) and the RCBD 
(Chapter 9). The important point to remember here is that to the unit error, uzJ ,  we 
now add another component of experimental error, uzJ (k ) ,  and the observational error, 
v z J ( k ) ,  both with means zero and variances 0; and o:, respectively. The E(MS) in 
terms of these variance components are given in the right-hand column of Table 10.3. 

As we have argued earlier (Chapter 6 and 9), for purposes of making inference 
about the treatments, it is convenient to define the experimental error as E , ~ ( ~ )  and the 
observational error as qzJ ( k ) ,  which can be considered as i.i.d. random variables with 
means zero and variances 0: = 0: + 0; and o:, respectively. Going one step further 
we define the total error as e Z 3 ( k )  which can be considered as i i d .  random variables 
with mean zero and variance c," = 09 +D;.  We then write (following (10.5)) the model 
for an observation on EU (ij) to which treatment k was applied as 

Y z j ( k )  = + Pz + ̂/J + 7-k + e z g ( k ) .  (10.16) 

Its properties follow from our discussion above. In particular we obtain, as suggested 
by (10.15), that the treatment contrast CCk7-k is estimated as c C k y , , ( k )  with 

As is obvious from Table 10.3, MS(E) is an estimate of a:, and HO : 7-1 = 7-2 = . . = 
rt can be tested as before by considering F = MS(T)/MS(E) as an F-statistic with 
t - 1 and ( t  - l ) ( t  - 2 )  d.f. 

We point out that similar to our findings for the RCBD, the form of the E(MS) in 
Table 10.3 indicates that there do not exist legitimate tests for row and column effects. 
For an assessment of the effectiveness of blocking by rows or columns we refer to 
Section 10.2.9(iii). 

10.2.7 Consequences of Nonadditivity 

Just as in the case of the RCBD the assumption of unit-treatment additivity may not 
always hold. Wilk and Kempthorne (1957) discussed the LSD in its most general form. 
They considered the situation where the t rows are sampled from a population of R 
rows, the t columns are sampled from a population of C columns, and the t treatments 
are sampled from a population of T treatments. They also amended model (10.16) to 
include row x treatment, column x treatment, and row x column x treatment interactions. 
If o,"~ c:,, and czct denote the variance components due to these interactions (for a 
precise definition we refer the reader to Wilk and Kempthorne, 1957), then the relevant 
E ( M S )  from the ANOVA table can be written as follows: 

(10.17) 

(10.18) E[MS(E)] = 0: + @a&, + ozt + o:t 
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where 

For the special case R = C = T = t ,  which we have considered here, (10.17) and 
(10.18) reduce to 

and 

E[MS(E)]  = 0," + (1 - (10.20) 
\ 

The results (10.17) and (10.18) suggest that if R >> t and C >> t (corresponding 
essentially to the situation of random row and column effects) then the usual F-test 
suggested above is still appropriate even in the presence of interactions. This is, how- 
ever, not true for the fixed effects situation as illustrated by comparing (10.19) and 
(10.20). In this case MS(E) is on the average larger than MS(T) under the hypothesis 
of no treatment effects and hence the usual F-test will lead to fewer significant results. 
In this case the LSD is not an unbiased design. For more details the reader is referred 
to Wilk and Kempthorne (1957) and an interesting somewhat different discussion by 
Neyman et al. (1935). Another objection to the assumption of additivity is provided by 
Srivastava and Wang (1998). 

10.2.8 Investigating Nonadditivity 

The problem of unit-treatment interaction, mainly in the form of row-treatment and/or 
column-treatment interaction, is obviously an important one. There is, however, no 
easy method of detecting such interactions in a LSD. A partial solution has been sug- 
gested by Tukey (1955). His method was reformulated in terms of an analysis of co- 
variance by Rojas (1973) using an interaction model of the form 

y j i j ( k )  = +pi f rj f Tk + e ( p i T k  + TjTk f pi? / j )  + e i j ( k ) .  (10.2 1) 

Writing (10.21) alternatively as 

Y i j ( k )  = + pi + " / j  + Tk + d X i j ( k )  + % j ( k )  (10.22) 

and choosing 

X i 3 ( k )  = (Pi  + 9j + T k y  

= 2(Pi?k  + + /YiJ) + (6; + "/3' + ?i) (10.23) 

Rojas showed that, as a generalization of the method described in Section 9.6, testing 
for HO : 8 = 0 with model (10.22) is the same as Tukey's one-degree-of-freedom test 
for nonadditivity in the LSD. 

Model (10.21) is obviously only one of several ways in which interactions in the 
LSD can be characterized. Rather than including all two-factor interaction terms as in 
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model (10.21) it may be more useful to (i) include only treatment-row and treatment- 
column interactions and (ii) include them as separate terms in an analysis of covariance 
model, thus simply extending Scheffk’s (1959) derivation of Tukey’s (1949) test (see 
Section 9.6). We propose to model the interactions (pi-)& and ( - r ~ ) ~ k  as (p)& = pZ7k 

and (; ~ ) ~ k  = 7 j T k  and consider the model 

and 

(we have used the fact here that E,, = 0). We then obtain in the usual way 

To test Hot : Oz = 0 ( i  = 1 , 2 )  we use 

ss(0,) 
[SS(E)  - SS(Q1) - S S ( O , ) ] / [ ( t  - l ) ( t  - 2 )  - 21 

F, = 

as an F-statistic with 1 and ( t  - l ) ( t  - 2) - 2 d.f., where SS(E)  is obtained from 
Table 10.3. 

As an alternative to model (10.24) we may, of course, only want to include one 
interaction term, depending on our knowledge of the experimental situation at hand. 
The modification to the F-test given above is obvious. Whichever model we consider, 
however, if interaction is indicated there does not seem to be an easy solution to a 
meaningful analysis of the data. Search for a suitable transformation to additivity may 
be an option, but it may not be easily achievable. 
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10.2.9 Miscellaneous Remarks 

We conclude this section with a few remarks, concerning topics that were discussed in 
great detail in earlier chapters: 

(i) Analysis of covariance. In addition to the blocking by rows and columns sup- 
plementary information may be available on the EUs and further reduction in 
experimental error variance may be achieved by using analysis of covariance. 
The formal procedure is similar to that discussed in Section 9.4 with the obvious 
and by now familiar modifications. 

(ii) Missing observations. The method proposed by Coons (1957) as discussed in 
Section 9.5 can be applied here also. The formula for a missing value in row i*,  
columnj*, and treatment k * ,  corresponding to the development in Section 9.5.1, 
is now given by 

-, = (10.25) 

using obvious notation. Formulae for several missing values can be obtained 
using several covariates and the methods of Section 8.7. Explicit expressions are 
given by Kramer and Glass (1960). 

~ 
tR,* + tCJ* + tTk* - 2G 

( t  - l ) ( t  - 2 )  

(iii) Relative eficiency. It may be of interest to ask whether blocking in two directions 
has been useful compared to blocking in only one direction, either by rows or 
by columns, that is, using a RCBD with either rows as blocks or columns as 
blocks. Using the concept of a uniformity trial (see Section 9.3) and the resulting 
partition in the ANOVA, or randomization analysis, 

Source d.f. 

ROWS t -  1 
Columns t - 1 
Residual ( t  - 1)’ 

we obtain the following EREs: 

(a) Rows used as blocks 

(b) Columns used as blocks 

where MS(R), MS(C), and MS(E) are obtained from the ANOVA (see Ta- 
ble 10.3) of the completed experiment using an LSD. For another connection 
between the EREs and the ANOVA table see Lentner, Arnold, and Hinkelmann 
(1989). 
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It is sometimes argued that the LSD is not very useful from a practical point of view 
because of two limitations: (i) The numbers of rows, columns and treatments have to 
be the same, and (ii) for small values o f t  one has insufficient d.f. for error. We do 
not necessarily agree with such a strong viewpoint, but even critics agree that what we 
might call the Latin square principle, namely orthogonal blocking in two directions, 
is extremely important in the whole endeavor of experimental design. It gives rise 
to many more error-reduction designs as well as treatment designs which are of great 
practical value. Some such designs will be discussed in the next sections (see also 
Section 11.6.6). 

10.3 REPLICATED LATIN SQUARES 

10.3.1 Different Scenarios for Replication 

One way to increase the error d.f. is obviously to replicate a LSD. How such replica- 
tions are carried out depends on the particular experimental situation. We shall use the 
example of Section 10.1 and illustrate, in accordance with our discussion in Chapter 2 
and Section 9.6.7, how different methods of replication lead to different linear models 
and hence to different analyses. 

Referring to Example 10.1, consider the following situations: 

EXAMPLE 10.2: The basic experiment, using a LSD of order t ,  is replicated by the 
manufacturer T times as follows. Each of the t batches of experimental material is 
divided into T parts to be used in the T replications, respectively. The same t ovens are 
used in each replication. 0 

EXAMPLE 10.3: Different batches of experimental material are obtained for each 
replication, t batches for each replication. The same t ovens are used in each repli- 
cation. 0 

EXAMPLE 10.4: Rather than having the experiment replicated by one manufacturer, 
we may ask T different manufacturers to carry out the basic experiment. Each manu- 
facturer has his own suppliers of raw material and different ovens are available in the T 

different factories. 0 

In each of these experiments the randomization procedure, as described in Sec- 
tion 10.2, is carried out independently for each component Latin square. The major 
difference between the situations described above is whether, in classification termi- 
nology, the various blocking factors are crossed with each other or nested within each 
other (see Section 4.12). We shall discuss this now and show how that affects the 
analysis. 
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Table 10.4 ANOVA for Model (10.28) 

10.3.2 Rows and Columns Crossed with 
Replications 

In Example 10.2 the factor “batches” and the factor “ovens” are crossed with the factor 
“replications” since the batches and ovens are the same in each replication. We assume 
that there are systematic differences between replications simply because of the time 
lag. As an extension of model (10.16) an appropriate model for observations from this 
design is then 

+ at + pj + “/k + Tl + % j k ( l )  % (1 0.28) 

where p j l  y k .  are as defined before and aZ(i = 1 , 2 .  . . . , r )  represents the effect of 
the ith replicate. This model leads to the ANOVA of Table 10.4. 

We should point out that (10.28) is only one possible model. If desired and war- 
ranted this experimental setup allows us to separate out from the SS(Error) a sum of 
squares due to replication x treatment interaction with ( r  - l ) ( t  - 1) d.f. In fact, tech- 
nically, the d.f. for error as given in Table 10.4 are the sum of the error d.f. for the T 

individual Latin squares and the d.f. for the replication x row, replication x column, 
and replication x treatment interactions. 

Y t j k ( l )  = 

10.3.3 Rows Nested in and Columns Crossed with 
Replications 

Since in Example 10.3 new batches of material are obtained for each replication, 
the factor “batches” is nested within the factor “replications.” As before, the factors 
“ovens” and “replications” are crossed. This leads to a model of the form 

Y t j k ( l )  = + 0% + Pa3 f ̂ /k + Tl + % j k ( l ) -  (10.29) 

where the pZl (i = 1 . 2 . .  . . , r : j  = 1 , 2 , .  . . , t )  are now the row effects nested within 
replications. The ANOVA associated with model (10.29) is given in Table 10.5. Just as 
before, model (10.29) can be amended to include replication x treatment interaction. 



392 CHAPTER 10. LATIN SQUARE TYPE DESIGNS 

Table 10.5 ANOVA for Model (10.29) 

Source d.f. ss E(MS) 

Replications r - 1 t 2  C(YZ . (  ) - v .  (.)I2 

BatchesiReps r ( t  - 1) 

Ovens t - 1  

Error r ( t  - l ) ( t  - 2) f 2(r  - l ) ( t  - 1) Difference 

10.3.4 Rows and Columns Nested in Replications 

Since in Example 10.4 different manufactures are involved, the batches of material 
and the ovens will be different from one manufacturer (that is, replication) to the next. 
Hence the factors “batches” and “ovens” are nested within the factor “replications.” An 
appropriate model then is 

Y % j k ( l )  = p + Qz + P2J + ̂I &  + Tl + e z j k ( l ) ’  (10.30) 

which leads to the ANOVA given in Table 10.6. In this case it may very well be useful 
and advisable to amend model (10.30) and include a manufacturer x treatment interac- 
tion term if one wants to investigate whether differences among treatment effects are 
manufacturer specific due to different production processes employed by the different 
manufacturers. 

In all three cases the hypothesis 71 = TZ = . . = rt = 0 is tested in the usual way 
by using F = MS(T)/MS(E) with t - 1 and u d.f., where MS(E) and v are computed 
differently for the three situations. 

10.3.5 Replication x Treatment Interaction 

We have given as a rationale for replicating a basic LSD our desire to increase the 
number of d.f. for the error SS in order to increase the power of the F-test for treatment 
effects. But during our discussion in Sections 10.3.2, 10.3.3, 10.3.4 we have already 
alluded to the fact that such replication may enable us to investigate replication x 
treatment interaction. In fact, this may very well be the major reason for replicating the 
LSD, that is, including another blocking factor, most likely an intrinsic factor, in order 
to inquire whether the performance of the treatments is the same for the different levels 
of that intrinsic factor. For this purpose we need to modify the models given above. 

Specifically, model (10.28) changes to 

Y z j k ( l )  = p + az + PJ + Y k  -k rl + (aT)d + e z ~ k ( i ) .  (10.31) 
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Table 10.6 ANOVA for Model (10.30) 

Source d.f. ss E W S )  

Replications r - 1 

Batches/Reps r ( t  - 1) 

OvensiReps r ( t  - 1) 

Treatments t - 1 r t T ( ~  ( i )  - Y .  ( 0,’ + r t C T f / ( t  - 1) 

Error r ( t  - l ) ( t  - 2)  + ( r  - l ) ( t  - 1) Difference 4 

t C ( B z . k (  ) - Y , .  ( , I 2  
ik 

model 10.29 becomes 

Y Z J k ( l )  = p + 0 2  + p z j  + 7% + 7-l + (a.) 2 1  + % j k ( I )  1 
(10.32) 

and model 10.30 becomes 

yZ3ic(i) = P + Q, + p Z j  + 3 2 k  + 7-1 + ( Q T ) ~ L  + eZ3k( l ) .  (10.33) 

For each case we need to amend the ANOVA tables 10.4, 10.5, and 10.6 by the inter- 
action sum of squares (with A denoting the replication factor) 

S S ( A x T ) = t C ( Z i i . . ( q  - i i i . . .  - g , , , ( i ) + V  .... )*  
i l  

with (r-l)(t-1) d.f. As a consequence, the error d.f. will be changed to r(t-l)(t-2)+2(r-l)( 
r(t-l)(t-2)+(r- l)(t-l), and r(t- l)(t-2), respectively. 

To test for interaction we use the F-test 

MS(A x T )  

MS (El 
F =  

with the appropriate d.f. as given above. To deal with possible interaction we use the 
same approach as outlined in Section 9.6.8. 

10.4 LATIN RECTANGLES 

Another method of increasing the error d.f. but still maintaining the Latin square prin- 
ciple is to use a design with rt rows and t columns (or t rows and rt columns as rows 
and columns are obviously interchangeable). In our example, we may have rt batches 
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of material available at one time to carry out the experiment, rather than t batches at 
r different times. An appropriate error-reduction design is then obtained by “inter- 
mixing” T Latin squares generated by T independent randomizations. Example (ii) in 
Table 10.1 illustrates such a design. Because of its obvious geometrical appearance and 
its properties we refer to such a design as a Latin rectangle. Obviously each treatment 
occurs exactly once in each row and r times in each column. 

An appropriate linear model for this design is 

YZj(k) = I-1 + Pz + 7 3  + T k  + % j ( l C ) .  (10.34) 

that is, the same as for the LSD except that now i = 1 , 2 ,  . . . . rt. The ANOVA as- 
sociated with model (10.34) is given in Table 10.7. Inspection shows that this is very 
similar to the ANOVA in Table 10.4. Since there are no replications in the sense of 
Section 10.3 we, of course, cannot obtain a replications x treatment sum of squares. 

10.5 INCOMPLETE LATIN SQUARES 

As we have mentioned earlier, one disadvantage of a LSD is that the numbers of rows, 
columns, and treatments must be the same. This is especially true if the number of 
treatments is large, since then the heterogeneity of the EUs in the square array may be 
appreciable as measured by the uz j  in (10.3). There exist, however, designs with r = t 
rows and c( < t )  columns which combine the Latin square property of eliminating 
heterogeneity in two directions with the property of a BIBD of comparing treatments 
with the same variance. Such designs are referred to as Youden squares since they 
were introduced by Youden (1937) after Yates (1936) considered the special case of 
c = t - 1 .  

EXAMPLE 10.5: 
treatments numbered 1 , 2; . . . ,7): 

A Youden square for t = r = 7 ,  c = 3 is given below (with the 

Column 

3 4 6  

When using this design we would, of course, randomly assign the treatments to the 
numbers 1 ,2 ,  . . . ,7 and then randomize the rows and columns. It is not difficult to 
verify that this design with rows as blocks is indeed a special arrangement of the BIBD 
(7,7, 3, 3; 1). 
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Table 10.7 ANOVA for Model (10.34) 

Source d.f. ss E ( M S )  

Rows rt  - 1 tC(Y* ( . )  - Y .  ( , I 2  

Columns t - 1 

Treatments t - 1 

Error r ( t  - l ) ( t  - 2)  + 2(r  - l ) ( t  - 1) Difference 

More generally, Hartley and Smith (1948) have shown that for all BIBDs with 
t = b such arrangements exist. A listing of these is given in Cochran and Cox (1957). 
It should be clear from the description of these designs that the columns are orthogonal 
to the rows and treatments, but the rows are not orthogonal to the treatments since not 
every treatment occurs in every row. This implies that, using model (10.16) for the 
analysis, the estimates of the treatment effects have to be adjusted for row effects, that 
is, no longer can treatment means be used to estimate treatment effects but LS means 
must be obtained (see Chapter 11.2 and Section 11.6.5). 

Youden squares can also be used to generate designs with c > t using a method 
similar to that of constructing extended block designs (see Section 9.8). We simply 
adjoin to a Latin square (or multiples of Latin squares) a Youden square. Example (iii) 
in Table 10.1 provides a trivial application of this idea. We may refer to such designs 
as extended Latin square designs. 

Finally, the Latin square idea can be modified to include designs with r = at 
(a  integer), c < t such that the BIBD property holds with rows as blocks and each 
treatment occurs a times in each column. We call these designs extended incomplete 
Latin squares. A listing of such designs is provided by Cochran and Cox (1957). 

10.6 ORTHOGONAL LATIN SQUARES 

10.6.1 Graeco-Latin Squares 

An interesting and sometimes useful generalization of the LSD is obtained by con- 
sidering elimination of heterogeneity in more than two directions. For elimination of 
systematic variation in three directions consider the following example. 

EXAMPLE 10.6: We want to compare the “usefulness” of four different word pro- 
cessing softwares (A,  B ,  C ,  D )  using four different PCs, four secretaries, and four 
different texts (a .  3 .2 .6 ) .  We want to eliminate differences among PCs, secretaries, 
and types of text. A suitable arrangement may be as follows: 
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Secretary 

1 2  3 4  

1 

2 

3 

4 

Aa B-, C6 0 3  

B3  A6 D? Ca 

C-f DQ A3 B6 

D6 C3 Ba A;/ 

that is, secretary 1 types text Q on PC 1 with word processor A, and so forth. 0 

This design has interesting combinatorial properties: if we ignore the Greek letters 
we have a Latin square; if we ignore the Latin letters we also have a Latin square; 
in addition, each Greek letter occurs exactly once with each Latin letter. We have 
superimposed two Latin squares on each other with the resulting third property. We 
refer to such an arrangement as two orthogonal Latin squares, or more specifically, as 
a Graco-Latin square (the name is suggested by the use of Greek and Latin letters). 
Such designs exist for all t except t = 6. Grzco-Latin squares for t = 3, 4, 5, 7, 
8, 9, 11, 12 are given by Cochran and Cox (1957), for t = 10 by Bose, Shrikhande 
and Parker (1960), and Fisher and Yates (1957) list complete sets of orthogonal Latin 
squares for t = 3,  4, 5 ,  7, 8, 9. Pairs from these sets can be used to obtain different 
Grzco-Latin squares (superimposing three orthogonal Latin squares will yield a design 
suitable to eliminate heterogeneity in four directions, and so on). 

A model for analyzing data from a Graco-Latin square design is an obvious exten- 
sion of (10.16), that is, 

YZj(k1) = P + Pz 7- - j  bk + 71 + %J(k l )  (10.35) 

where p z  are the row effects, :J are the column effects, 61, represent the effects of 
the blocking factor associated with the Greek letters, and T[ are the treatment effects 
(i, J ,  k .  1 = 1 . 2 ,  . . . . t ) .  The fact that out of all possible t4 combinations ( 2 ,  J ,  k ,  I )  only 
t2  occur in a Grzco-Latin square is indicated in the subscript notation ij(kZ) for the 
observations in model (10.35). As a consequence, after accounting for t - 1 d.f. each 
for rows, columns, Greek letters, and treatments in the ANOVA table (see Table 10.8) 
only ( t  - l ) ( t  - 3) d.f. remain for error. For small t this is usually not sufficient, but 
matters may be improved through appropriate replication. Yet, the Grzco-Latin square 
suffers from the same (and more) restrictions than the LSD and that may impede its 
usefulness in practical applications somewhat. 

10.6.2 Mutually Orthogonal Latin Squares 

The process of superimposing orthogonal Latin squares, and thereby creating error- 
control designs to eliminate additional sources of variability, can be continued for most 
values o f t .  For example, when t is a prime number or a power of a prime number then 
there exists a t x t square with each cell containing a letter o f t  - 1 languages, such that 
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Table 10.8 ANOVA Table for Graeco-Latin Square 

Rows t - 1  tC(ii%.(.., - B..(.. j)2 

Columns t - 1  t E(V.j(..) - G . . ( . . , ) 2  

Greek Letters t - 1 tC(?j. .(k.)  - B,.(. . jY 

Treatments t - 1 ~C(V..(.l) -B. . ( . . j )2  0," + t D ? / ( t -  1) 

Error ( t  - 1) ( t  - 3) Difference 4 

i 

3 

k 

1 1 

Total t2 - 1 c (Ylij(k1) - B.. ( . . ) )2  
i ihl  

the letters of any two languages form a square with the Graeco-Latin square property 
(Bose, 1938; Stevens, 1938). Consider the following example. 

EXAMPLE 10.7: 
letters, and numerals, an arrangement of three orthogonalized squares is given by 

For t = 4 with the t - 1 = 3 languages being Latin letters, Greek 

A a l  B32 C33 0 6 4  
B?4 Ad3 Do2 C31 
CS2 Dn,1 A34 Ba3 
0 3 3  Ca4 Bdl A72 0 

Such squares are referred to as completely orthogonalized squares. In general the, 
say, k < t - 1 superimposed Latin squares with the property described above are called 
mutually orthogonal Latin squares (MOLS). As error-control designs they can be used 
to eliminate then k + 2 sources of variation. 

10.7 CHANGE-OVER DESIGNS 

The structure of a Latin square forms the basis for a variety of error-control designs. 
In this section we shall discuss briefly such a situation where individuals (subjects) 
are used as one blocking factor and time period as the other blocking factor. These de- 
signs have been used extensively in different kinds of experimental settings, but mainly 
in the pharmaceutical industry during the testing of new drugs, in animal science for 
feeding experiments, and in psychological studies. The basic idea is that each individ- 
ual receives (sequentially) all or some of the treatments, one at any given time period, 
and that for different individuals the order of the application of the treatments is being 
changed. And even though the designs for different applications have the same fea- 
tures, they are often referred to by different names, such as cross-over designs, change- 
over designs, carry-over designs, switch-over designs, counter-balanced designs, and 
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sometimes more generally and generically by repeated measurement designs (see also 
Chapter 14). Also, because there often exists considerable variability among subjects 
the fact that each subject is exposed to every treatment is described as “each subject 
being its own control.” 

10.7.1 Two-Treatment Change-Over Design 

In its simplest form a change-over design consists of n = 2r subjects to compare two 
treatments, A and B say, over two time periods. In this situation T subjects receive the 
treatments in the sequence A - B, that is, treatment A in period 1 and treatment B 
in period 2.  The remaining T subjects receive the treatments in sequence B - A, that 
is, in reverse order. With periods as “rows” and subjects as “columns” this design has 
obviously the form of a Latin rectangle (see Section 10.4), intermixing T 2 x 2 Latin 
squares. 

The usefulness of this design depends on whether: 

(i) we assume that because of a suitable “wash-out period” between periods 1 and 2 
the observations in period 2 are affected only by the treatment applied in period 
2, that is, the treatment applied in period 1 has no effect on the outcome, or 

(ii) there is a carryover effect from period 1 to period 2 ,  that is, the treatment applied 
in period 1 has an effect on the observation in period 2 ,  in addition to the effect 
of the treatment applied in period 2 .  

An appropriate model for situation (i) is 

Y z j ( k )  = I-1 + pz + S J  + Tk + e z ~ ( k ) .  (10.36) 

where p ,  is the effect of the ith period and sJ is the effect of the gth subject with 
i = 1, 2 :  j = 1. 2. . . . . 2r. Model (10.36) is, of course, the same as model (10.34). 

For situation (ii) model (10.36) has to be amended for observations in period 2 
to account for the carry-over or residual effects. Suppose that subject 1 receives the 
treatments in the sequence A - B, and subject 2 receives the treatments in the sequence 
B - A .  Then the observations ~ 1 1 ~ .  Y21B.  912B. ~ 2 2 . 4  can be modelled as follows: 

Y l l A  = p -k pl + s1 + TA + e l l A  

5 1 2 1 ~  = p +PZ 4 ~1 + TB + ;)A + e 2 1 ~  (10.37) 

Y l 2 B  = p + pl -k 3 2  + T B  + e12B 

Y22A = p + P2 + s2 + T A  + ̂ IB + e 2 2 A )  (10.38) 

where :A and YB represent the residual effects for treatments A and B, respectively. 
To make the distinction clear, 7-A and TB are also referred to as the direct effects of 
treatments A and B, respectively. More generally we may write models 10.37 and 
10.38 as 

(10.39) 

where T k  refers to the direct effect of the treatment assigned to subject j in period 1 ,  

and ^ / ( I )  represents the residual or carry-over effect of the treatment assigned to subject 

Yzg(k l )  = p + P I  + s3 + Tk ^ / ( l )  + e z ~ ( k / ) .  
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Period 

j in period i - 1, with 1(~) = 0 for i = 1, that is, there is no carry-over effect for 
observations in period 1. 

Returning to our basic design which is essentially of the form 

Sequence 

1 2 

A B  

2 l l  B A  

with the two sequences repeated T times. For purposes of parameter estimation it is 
sufficient to simply consider the case T = 1. We thus have four observations, that is, 
three degrees of freedom. We know already that under (i) above and model (10.36) we 
attribute one d.f. each to periods, subjects (sequences), and treatments (see Table 10.8). 
Repeating the sequences merely provides error d.f. (see Table 10.8). 

Considering now situation (ii) above and model (10.39) we recognize immediately 
that the suggested design does not provide enough d.f. to estimate unbiasedly con- 
trasts for all four sets of parameters. Thus, another type of design is required. One 
such design with two periods was proposed by Balaam (1968), although he originally 
considered situation (i) above with the possibility of including period x treatment inter- 
action. His design consists of T repeats of the following sequences: 

Sequence 

Period ~ 1 2 3 4 

A B A B  

2 B A A B  

Using model (10.39) the expected values of the eight means from this design can 
be written as 

Contrasts among these p i j k  can then be used to obtain functions of r A  -TB and -YB 
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only. Specifically, if we write 

p l l A - P 2 1 B  0 
p 1 2 B - p 2 2 A  @ 

p 1 3 A P p 2 3 A  @ 

p l 4 B p p 2 4 B  @ 

we then find that 

and 

Other possible designs may use three or more periods rather than two. Examples 
of three-period designs are 

repeating each sequence 'r times. For still other designs and more details see Jones and 
Kenward (2003) or Section 11.19.5.8. 

For analysis purposes we may rewrite model 10.39 in matrix form as 

Y = p3 + X,p + X,s + X,T + X,y + e (10.40) 

using obvious notation and apply the general methods discussed in Chapter 4. More 
precisely, (10.40) is a 5-part linear model and we can write down the full set of NEs 
or obtain the reduced NE for T and y and solve for the desired effects. Furthermore, 
we can obtain SS(X,l3, X,. X,. X,) and SS(X, (3.  X,, X,, X,) to test hypotheses con- 
cerning the direct and residual treatment effects, respectively. 

Lucas (1957) and Cochran and Cox (1957) have pointed out that, because of the 
nonorthogonality of change-over designs, residual effects are estimated less precisely 
than direct effects. To alleviate this problem and to achieve orthogonality between 
direct and residual effects Lucas (1957) suggested to add an extra-period, referred to 
as preperiod, to the basic design, that is, change, for example 
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Period 

40 1 

Sequence 

1 2 

2 
B 

1 

2 

3 

B A  
A R 

2 

Period 

A B  

A B  

B A  

A B  

Subject 

1 2 3 4 5 6 

without taking observations in period 0, the preperiod. In the augmented design each 
combination of direct and residual effects occur exactly once (or r times for the entire 
design), namely (TA.  ;/A). (TA. 7 1 ~ ) .  (TB. YA). (TB. ;/B), implying orthogonality. This 
in turn simplifies the analysis as sketched above. 

10.7.2 Change-Over Designs for More than 
Two Treatments 

For the general case of t (> 2) treatments in a change-over design Williams (1949, 
1950) showed how Latin squares can be used to obtain what he called balanced resid- 
ual effects designs. The basic properties of these designs are that each treatment occurs 
the same number of times, XI say. and each treatment is preceded by every other treat- 
ment the same number of times, say Xz (this is actually a special case of the more 
general definition of a balanced repeated measurement design given by Hedayat and 
Afsarinejad, 1975). These designs consist of one cyclic Latin square if t is even and of 
two cyclic Latin squares if t is odd. 

EXAMPLE 10.8: 
(designating the treatments by numbers rather than Latin letters): 

For t = 6 the design with t periods and t subjects is as follows 

1 2 3 4 5 6  

6 1 2 3 4 5  

2 3 4 5 6 1  

5 6 1 2 3 4  

3 4 5 6 1 2  

4 5 6 1 2 3  0 

This example illustrates the general method of constructing these designs. For subject 
1 the treatments 1 . 2 .  . . . . t /2  occur in the periods 1.3, . . . % t - 1, respectively, and the 
treatments t / 2  + 1. t / 2  + 2. . . . . t occur in the periods t ,  t - 2. . . . , 2 ,  respectively. The 
assignments for the remaining subjects are obtained by simply adding 1 . 2 .  . . . % t - 
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Period 

1 to the treatments for subject 1 (with reduction modulo t )  for subjects 2 , 3 ;  . . . . t ,  
respectively. 

Fort  odd we use two cyclic Latin squares for 2t subjects and t periods. 

Subject 

1 2 3 4 5 6 7 8 9 10 

EXAMPLE 10.9: Fort  = 5 the design is as follows: 

1 

2 

3 

4 

5 

1 2 3 4 5 2 3 4 5  1 

5 1 2 3 4 3 4 5 1 2  

2 3 4 5 1 1 2 3 4 5  

4 5 1 2 3 4 5 1 2 3  

3 4 5 1 2 5 1 2 3 4  0 

Here treatments 1.2. . . . . ( t  + 1)/2 occur in periods 1.3. . . . , t ,  respectively, and treat- 
ments ( t  + 1)/2 + 1, ( t  + 1)/2 + 2..  . . . t in periods t - 1, t - 3 . .  . . , 2 ,  respectively, 
for subject 1. The assignments for subjects 2 ,3 ,  . . . . t are obtained through a cyclic 
development of the arrangement for subject 1 as described previously. The arrange- 
ment for subject t + 1 is the mirror image, that is, reverse order, of the arrangement 
for subject t ,  and the assignment for the remaining subjects is again obtained through 
cyclic development. For a more general discussion see Section 11.19.5.1. 

In the behavioral science literature these designs are often referred to as completely 
counterbalanced Latin squares (Wagenaar, 1969) (see also Section 13.4). This does not 
mean, however, that for these designs the direct and residual effects are orthogonal to 
each other. Orthogonality can be achieved, as discussed earlier, by adding a preperiod 
with the same treatment arrangement as in period 1, so that every treatment is also 
preceded A2 times by itself. With or without the preperiod an appropriate model is of 
the form of (10.39). 

10.7.3 Some Variations and Extensions 

There exist, obviously, many variations and extensions of these designs. For example 
we may have p ,  the number of periods, less than t ,  the number of treatments. This may 
occur when the number of treatments is large and, because of fatigue, not each partic- 
ipant can be assigned each treatment, or assigning each treatment to each participant 
may simply take too much time, in particular if a sufficient number of participants is 
available for the experiment. In this situation the subjects may represent some form 
of incomplete block, and the basic building block may be incomplete Latin squares 
(Patterson, 1950, 1951, 1952). Afsarinejad (1990) has extended the algorithm for the 
Williams designs (Examples 10.8 and 10.9) to construct balanced designs for the case 
p < t (see also Section 11.19.5.2). We shall not provide details here, but give the 
following example. 
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Period 

EXAMPLE 10.10: For t = 5 and p = 3 the following design is a balanced design with 
10 subjects in which each treatment is preceded and followed by every other treatment 
exactly once: 

Subject 

1 2 3 4 5 6 7 8 9 10 

1 

2 

3 

1 2 3 4 5 3 4 5 1  2 

5 1 2 3 4 5 1 2 3  4 

3 4 5 1 2 1 2 3 4 5  0 

Period 

We may not have enough subjects for a balanced design as described above. This 
has led to the development of partially balanced designs (Patterson and Lucas, 1962) 
using PBIB designs for purposes of construction (see also Blaisdell and Raghavarao, 
1980) (see Sections 11.19.5.2 and 19.5.3). 

An alternative design, proposed by Balaam (1968), uses only two periods but t 2  
subjects for t treatments. The basic idea is to assign all t ( t  - 1) ordered pairs of 
treatments to t(  1 - 1) subjects for periods 1 and 2 and use t subjects receiving the same 
treatment in both periods, as illustrated in the following example. 

Subjects 

1 2 3 4 5 6 7 8 9 

EXAMPLE 10.1 1: For t = 3 the Balaam (1968) design is given by 

1 A A B B C C A B C  

2 I B C C A A B A B C  
0 

An extension of the designs discussed so far leads to designs balanced for second 
order residual effects (Williams, 1949, 1950). In this case we consider carry-over ef- 
fects not just from the immediately preceding treatment but also from the treatment 
applied two periods prior to the present application. For such a situation model (10.40) 
needs to be amended by an additional term representing the second order residual ef- 
fect. Obviously the construction of such designs becomes more complicated. Williams 
(1949, 1950) showed, for example, how mutually orthogonal Latin squares can be used 
to achieve the goal. 

EXAMPLE 10.12: 
design: 

For t = 4, p = 4 and s = 12 subjects Williams gives the following 
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Period 

Subjects Subjects Subjects 

1 2 3 4  5 6 7 8  

4 3 2 1  

1 2 3 4  

2 1 4 3  

3 4 1 2  

4 3 2 1  

3 4 1 2  

1 2 3 4  

2 1 4 3  

9 10 11 12 

4 3 2  1 

2 1 4 3  

3 4  1 2  

1 2 3 4  

The distinctive feature of this design is that each treatment is preceded exactly once 
0 by each ordered pair of treatments. For more details see Section 11.19.8.5. 

10.8 EXAMPLES USING SAS@ 

EXAMPLE 10.13: Consider an agricultural experiment with t = 5 treatments in a 
Latin square design layout due to fertility gradients in two directions. The design and 
the data are given in Table 10.9a. 

Treatment 1 represents a control and the main objective is to compare treatments 
2, 3, 4, 5 versus treatment 1. The input statements using SAS PROC GLM are given 
in Table 10.9a. In addition to considering the comparison of treatment 1 versus the 
average of the remaining four treatments, we want to perform Dunnett’s procedure 
(see Section 7.5.7). 

The results are given in Table 10.9b: 

(i) The overall treatment differences are significant at P = ,0523. 

(ii) Dunnett’s procedure shows treatments 2 and 5 are clearly significantly different 
from treatment 1 ( P  = ,0459 and P = ,0218, respectively), whereas treatment 
3 is marginally significantly different from treatment 1 (P = .1138) 

(iii) Having specified Q = . lo ,  90% simultaneous confidence intervals for 7, - 7-1 

( i  = 2 ,  3, 4, 5 )  are provided. 

(iv) The estimate for ( 7 2  + 7-3 + 7-4 + 7-5)/4 - 71 is 20.15, indicating that on the average 
0 the new treatments provide a higher yield than the control. 

EXAMPLE 10.14: A multi-farm trial was performed to evaluate the effectiveness of 
different doses, low (L), medium (M), high (H), of a food additive on growth of cattle. 
In addition to the three doses a control (C) was included in the experiment. The inves- 
tigator decided to block on farms and weight classes, leading to a 4 x 4 Latin square 
design. Two breeds were included in the experiments, using four farms for each breed. 
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Table 10.9 Latin Square Design 

a) Input statements: 

data weight; 
data LatinSq; 
input row column trt y GZ @; 
datalines: 
1 1 1 9 4 1  2 3  1 0 0 1 3 4 9 8 1 4 2 1 0 1 1 5 5  112 
2 1 3  1 0 3 2 2 2 1 1 1 2 3  1 5 1 2 4 5  1 1 0 2 5 4 9 0  
3 1 4  1 1 4 3 2  1 7 5 3 3 5 9 4 3 4 3  8 5 3 5 2 1 0 7  
4 1 5 100 4 2 4 7 4 4  3 2 70 4 4 1 93 4 5 3 106 
5 1 2  1065 2 5  95 5 3 3 81 5 4 4 9 0 5  5 1 7 3  

run; 

proc glm data=LatinSq: 
class row column trt; 
model y=row column trt; 
lsmeans trtlstderr pdiff cl adjust=Dunnett alpha=. 10: 
estimate ' I  vs (2+3+4+5)' trt -4 1 1 1 1 /divisor=4: 
title1 'LATIN SQUARE DESIGN': 
title2 'ANALYSIS OF VARIANCE'; 
title3 'WPOST-HOC ANALYSIS': 
run; 

b.) Output: - 

LATIN SQUAX DZSIGN 
ANALYSIS O? V A 3 I A N C E  
W/FZST-:IOC ASALYSIS 

The GL?! Procedure 

Class Level Znformatian 

Class  Levels ValJes 

row 5 1 2 3 4 5  

column 

t rz 

5 1 2 3 4 5  

5 1 2 3 1 5  

Number c f  Zbserva t ions  Read 25 
Number of Saserva t -ons  Used 25 

Depenaent Variaole: y 

sun  of 
Saurce D F  Squares  Mean S q u s r e  F V a l L e  Ir > P 

Mcde: 12 4094.720000 341.226557 2.34 0.C774 

E r r o r  12 1748.7200CO 143.726667 

C o r r e c t e c  Total 24 5843.440300 

R-Square Coeff V a r  Raot MSE y Xear. 

0 .70C738 12.93584 12.C7i73 93.32003 
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S o u r c e  

row 
coiumn 
t r t  

S o u r c e  

I O W  

column 
; r t  

Table 10.9 (Continued) 

D? Type I S S  Yean Square F V a l u e  

4 514.240000 128.560003 0.88 
4 1711.440300 427.863C00 2.94 
4 1869.C43C03 467.250000 3.21 

DF Type 111 SS Mean S q u a r e  F V a l u e  

4 514.240030 i28.560000 0.88 
4 1711.440000 427.860000 2.94 
4 1869.040000 467.26030C 3.2: 

P r  > F 

0.5033 
3.0661 
0.0523 

P r  > F 

0.5333 
0.0651 
0. C523 

L e a s t  S q u a r e s  Means 
A c i j ~ ~ s t m e n t  for M u l t i p l e  C o m p a r i s o n s :  D u r n e t t  

HO : LSMear.= 
S t a n d a r d  HC:LSMEAN=O C o n t r o l  

t r t  y SSYEAN E r r o r  P r  > It1 P r  > It1 

1 77 ,200000 5.398642 <.03Ci 
2 99.003000 5.398642 <.0001 0.0459 

35.00C030 5.398642 < .  3C0i 0. i138 
4 93.200000 5.398642 <.OCOl 0.1680 
c ;c2.20c0oc 5.398642 <.000? 0. C218 

t r t  y LSMEAN 9 0 %  C o c f i d e n c e  L i m i t s  

77.200300 67.578068 86.821932 
2 99.000000 89.378068 108.621932 
2 95.000300 85.378068 104.621932 
r 93.2C30C3 33.578068 i32.821932 

132.203000 92.578068 111.821932 

L e a s t  S q u a r e s  Means for E f f e c L  t r t  

3 i f f e r e n c e  S i m u l t a n e o u s  9C% 
B e t  we e n  C o n f i d e n c e  L i m i t s  for 

1 1  Means LSMean (1) -LSMean ( j) 

2 1  21. 800OC0 3.415333 40.184697 
3 :  17.800000 -0,584697 36.184697 
4 1  ;6.000000 -2.384697 34.384697 
5 1  2 5 .  00oc00 6.615303 43.384697 

C e p e r d e r t  V a r i a b l e :  y 

S c a n d a r d  
P a r a r r e t e r  E s t  i n a t e  E r r o r  t V a l u e  P r  > It 

1 vs (2+3+4L5) 20.1500000 6.03586503 3.34 0.0359 
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Thus, we have a replicated LS design with farms nested in breeds and weight classes 
crossed with breeds. 

The design and the data are given in Table 10.10a and the results of the analysis, 
using SAS PROC GLM, are given in Table 10.1 Oh: 

(i) Differences among dosages and interaction between breed and dosage were highly 
significant ( P  < .0001). 

(ii) The LS means for breed*dosage indicate that for both breeds growth remains 
nearly the same for C ,  L,  M ,  but increases for H ,  with a substantially higher 
increase for breed 2 ,  leading to the significant interaction. The interaction is, 
however, co-directional. Hence it is meaningful to assert that on average, dosage 
H leads to higher growth by about 10 kg, 153 vs 163. 

(iii) The slice operator performs separate analyses (but using the same error term, 
MS(Error)= 1.93) and concludes that for both breeds the differences among 

0 dosages are highly significant, due, of course, to the performance of H .  

EXAMPLE 10.15: Consider the following crossover design with t = 3 treatments and 
p = 3 periods. There are six possible sequences of assigning the treatments over the 
three periods used in the experiment. Each sequence is replicated twice. The plan and 
the data are given in Table 10.1 la. 

We use SAS PROC GLM to analyze the data. The input statements are given in 
Table 10.1 la. Since for the observations in period 1 there are carry-over effects we put 
a “0” in the column for carry-over effects. Since this will result in “non-estimable” 
LS means for treatments we follow Ratkowsky, Evans and Alldredge (1993) to insert 
the statement “if carry = ‘0’ then carry = ‘3’ ” to alleviate this problem (we shall 
comment on this below). 

The analysis of the data is given in Table 10.1 1 b: 

(i) The general form of estimable function shows that differences between treatment 
and carry-over effects are estimable. 

(ii) There are highly significant differences among the treatments ( P  < .0001). 

(iii) Differences among carry-over effects are not significant ( P  = .41). 

(iv) The coefficients for trt and carry LS means show how those LS means are ob- 
tained from the solution vector (not shown here). 

(v) The treatment LS means together with their standard errors: 

56.71 i 1.05 

52.69 i 1.05 

47.14 i .85 
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Table 10.10 Replicated Latin Square Design 

a) Input statements: 

1 1  
1 2  
1 3  
1 4  
2 1  
2 2  
2 3  
2 4  

data repLS 
input breed farm wclass dosage $ response @ @: 
datalines. 

H 1421 1 2 L  144 1 1  3 C  148 1 1 4 M 1 5 0  
M 138 I 2  2 C  143 1 2  3 L 145 I 2 4 H  154 
C 138 1 3 2 M  144 1 3 3 H  153 1 3 4 L  149 
L 1 3 9 1 4 2 H  149 1 4 3 M 1 4 4 1 4 4 C  150 
L 1582 1 2 C  161 2 1 3  M 165 2 1 4 H  180 
C 155 2 2 2 L  160 2 2 3 H I78 2 2 4 M  167 
M 158 2 3 2 H 175 2 3  3 L 163 2 3 4 C  167 
H 1 7 4 2 4 2 M 1 6 1 2 4 3 C 1 6 4 2 4 4 L 1 6 8  

run: 

proc glm data=repLS: 
class breed farm uclass dosage: 
model response= breed farm(breed) wclars dosage breed*dosage; 
lsmeans dosageistderr; 
Ismeans breed*dosage/stderr slice=breed; 
title 1 'REPLICATED LATIN SQUARE DESIGN': 
title2 '(r=2, t=4, Rows Nested in Replications)': 
title3 'ANALYSIS OF VARIANCE'; 
run; 

b.)Output: 

RE?iICATEa LATIN S Q J A R E  3ESISN 
( r = 2 ,  t = 4 ,  ROWS Kested ir. Repl ica t ic? , s )  

ANALYSIS O F  VARIANCE 

T?.e G:M Procedure 

Class  Level Inforna t ion  

Class  Levels Values 

breed 

farm 

wc 1 a s  s 

2 l i  

4 1 2 3 4  

4 1 2 3 4  

Kurber  of Observat ions Read 32  
Kurrber of 0Sservat ior .s  Used 32 

3epeEder.t Variabie: r e sponse  

Sum cf 
Source CF Squares Mear Square F Value P r  > F 

Model 16 4470.253000 279.390625 140.57 <.3C31 

E r r c r  15 29.750030 1 . a 8 3 3 3 3  

Corrected Tota l  31  45CO. 30CO0C 
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Table 10.10 (Continued) 

R-Square Coeff Var ROSS MSE response Mean 

0.993389 0 . 9 0 4 2 1 1  i.408309 155.7500 

Source 

breed  
farm ( b r e e d )  
wclass  
dcsage 
breed*dosaae 

Source 

breed  
f a r r , ( b r e e d )  
wclass 
dosage 
breed-dosage 

DF :y?e I S S  Mean Square F Value P r  > F 

1 3280.500600 3286.503000 1554.03 <.0001 
9.03COOC 1.530OC0 0.76 3.5146 

3 466.750C00 35.583333 78.45 <.0001 
3 583.253C00 193,416667 97.52 <.COCl 
3 -33.750063 44.583333 22.48 <.COO? 

DF 

dosage 

c 
Y 
L 
v 

breed dosage 

1 C 
1 

1 M 
2 C 
2 H 
2 L 
2 b” 

T - 

Ty?e I:I SS Mean S q ~ a r e  

3260.500030 3286.503C00 
9.063C00 1.50000C 

466.-50C3C 155.533333 
583.250600 193.416667 
133.7500C3 44.283333 

Least  Squares  Means 

response S tandard  
I S M E A N  Error 

123.256000 0.497912 
163.125330 3 .  i 9’912 
153.250000 3.49’912 
153.375030 0.497912 

F Value P r  > F 

1654.03 <.0001 
0.’6 0.6146 

78.45 <.000i 
97.52 <.C3C1 
22.48 <.0001 

P r  > It1 

1.0361 
< . c 3 c :  
<.COC1 
< . C 3 0 1  

reslsonse 
ZSKEAN 

144.750000 
149.506006 
1 4 i . 2 5 0 C 3 0  
144.006000 
151.75000C 
176.750C00 
162.253003 
;62.7500C0 

Szazcard 
Z r r o r  

0.704154 
0.734154 
0.704154 
0.704154 
0.70a154 
0.704154 
0 .1C415C 
0 . 7 C 4 1 5 4  

P r  > It1 

< .  0c01 
<.0001 
<.0001 
< .  0001 
<.0co1 
<.0001 
<.000; 
< . c 3 0 1  

breed*dosage Xffeci S l i c e d  b y  breed f o r  response  

Sum of 
breed  DF Squares  Mean S q ~ a r e  F V a l ~ e  ? r  > F 

1 ? 81.250000 27 .C83333 13.66 0.3001 
2 3 632.750000 210.915667 106.34 <.0c01 
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Table 10.11 Crossover Design 

a) Input statements: 

data cross; 
input period sequence steer trt carry y 62 @; 
if cmy='O'  then carry= '3': 
datalines; 
1 1  1 1 0 5 0 2 1  1 2 1 6 1 3 1  1 3 2 5 3  
1 1  2 1 0 5 5 2 1  2 2 1 6 3 3 1  2 3 2 5 7  
1 2  3 2 0 4 4 2 2  3 3 2 4 2 3 2  3 1 3 5 7  
1 2  4 2 0 5 1 2 2  4 3 2 4 6 3 2  4 1 3 5 9  
1 3  5 3 0 3 5 2 3  5 1 3 5 5 3 3  5 2 1 4 7  
1 3  6 3 0 4 1 2 3  6 1 3 5 6 3 3  6 2 1 5 0  
1 4  7 1 0 5 4 2 4  7 3 1 4 8 3 4  7 2 3 5 1  
1 4  8 1 0 5 8 2 4  8 3 1 5 1 3 4  8 2 3 5 4  
1 5  9 2 0 5 0 2 5  9 1 2 5 7 3 5  9 3 1 5 1  
1 5  1 0 2 0 5 5 2 5 1 0 1 2 5 9 3 5 1 0 3 1 5 5  
1 6 1 1 3 0 4 1 2 6 1 1  2 3 5 6 3 6 1 1  1 2 5 8  
1 6 12 3 0 46 2 6 12 2 3 58 3 6 12 1 2 61 

run; 

proc glm data=cross; 
class period sequence steer trt carry: 
model y=period sequence steer(sequence) trt carryie; 
lsmeans trt carry/stderr e: 
estimate '1-2' trt 1 -1 0; 
estimate '1-3' trt 10-1 :  
estimate '2-3' trt 0 1 -1; 
title1 'CROSSOVER DESIGN'; 
title2 'USING COUNTERBALANCED LATIN SQUARES'; 
Nil; 

b.) Output: 

CROSSOVER DESIGN 
USING COUNTERSALANCED LATIN SQUARZS 

The GLM Frocedure 

Class Level Information 

Class Levels Va1,es 

period 3 1 2 3  

s e gu e n c e 6 1 2 3 4 5 6  

s t e e r  12 1 2  3 4 5 6 7 8 3 10 li 12 

trt 3 1 2 3  

carry 3 1 2 3  

Nurber of Observations Read 3 6  
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Table 10.11 (Continued) 

Genera; Form of Estimable Functions 

Effect 

Intercept 

period 1 
period 2 
period 3 

sequence 1 
sequence 2 
sequence 3 
sequence 4 
sequence 5 
sequence 6 

steer(sequence) i 1 
steer(sequence1 2 1 
steer(sequence1 3 2 
steer(sequence) 4 2 
steer(sequence) 5 3 
steer(sequence1 5 3 
steer (seqilence) 7 4 
steer(sequence1 8 4 
steer(seqJence) 9 5 
steer (sequence) 10 5 
steer (sequence) 11 6 
steer (sequence) 12 6 

t rt 
trt 2 
t rt 7 

carry 1 
carry 2 
carry 3 

Dependent Variabie: y 

ScJrce CF 

Xodel 

Error 

Correc-ed Total 

Coefficients 

L1 

L2 
L3 
Ll-LZ-L3 

L5 
L6 
LI 

L8 
L9 
Ll-L5-L6-Li-LE-L9 

L l i  
L5-Lll 
L13 
T6-Ll3 
L?5 
T7-Ll5 
L17 
L8-Ll7 
L19 
L9-L?9 
L21 
Ll-L5-L6-L7-LE-L9-L21 

L2 3 
L24 
Ll-L23-L24 

L2 6 
L27 
Ll-L26-L27 

Sum of 
Sq-ares Yean Square F Value Pr > F 

i7 1302.513839 76.618464 8.74 <.0001 

18 157.791567 5.765204 

35 1463.3C5555 

R-Square Coeff Var Root MSE y Mean 

3.891946 5.654535 2.960778 52.36111 
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Cc,rce 

period 
sequence 
steer (sequence) 
trL 
carry 

S o u r c e  

p e r i o d  
s e en ce 
s z e e r ( sequence ) 
trt 
czrry 

3' 

2 
5 
6 
2 
2 

DF 

2 
5 
6 
2 
2 

Table 10.11 (Continued) 

T y p e  I C S  

292.0555556 
326.4722222 
1 1 8 . 5 0 C 0 0 0 0  
549.3555556 
16.43C5356 

:y?e I11 SC 

172.3072917 
318.6916657 

4 4 c .  CC83333 
16.4305556 

i:e.5oono3o 

Xean Sq'lare ? Vaiue Pr > F 

:c~.nz77778 16.66 <.ncoi 
65.2944444 7.45 C.OCO6 
19.750OC30 2.25 0.C849 

274.5277778 31.32 <.03Ci 
8.2152778 3.94 3 . ~ i n o  

Mean Sq-are F Value Fr > F 

86.i536458 9.83 3.5313 
63.7383333 7.27 n . 3 0 0 7  
19.i500003 2.25 c.3849 

22C.3241667 25.13 <.0031 
8.2152778 0.94 C.4130 

Coefficients for tri Least Square Means 

Effect 

Intercept 
period 
period 2 
period 3 
seq-ence 
sequence 2 
s e que T. ce 
sequence r 
sequence 5 
s eq^enc e 6 
steer(sequence1 1 1 
szeer(sequence1 2 L 
steer(sequence) 3 2 
steer(seqience1 4 2 
s:eer(seqience) 5 3 
sceer(sequence1 6 3 
steer(seq2ence) 1 i 
szeer(sequence) 8 4 
steer (sequer.ce) 9 5 
steer (sequence) 13 5 
steer (sequence) 11 6 
steer (sequence) 12 6 
trt 1 
t rt 2 
t rt 3 
carry 1 
carry 2 
carry 3 

trz Level 

1 
C.33333333 
C.33333333 
5.33333333 
0.16666667 
3.16666667 
C.16666667 
0.16566667 
3.16666657 
0 . 1 6 6 6 6 6 6 7  
3.08333333 
0.~8333333 
0.08333333 
3.C8333333 
0.08333333 
0.08333333 
0.08333333 
0.08333333 
C.38333333 
0.08333333 
0.08333333 
3.C8333333 

1 
0 

3.33333333 
0.33333333 
c.33333333 

n 

2 

0.33333333 
0.33333333 
0.33333333 
0.16666567 
0.16656667 
0.16566667 
0.16666667 
0.16666667 
0.16656667 
0.08333333 
0.38333333 
2.08333333 
0.08333333 
3.38333333 
0.08333333 
0.38333333 
2.08333333 

0.63333333 

0.08333333 
0 
1 
0 

0.33333333 
0.33333333 
0.33333333 

0.08333333 

0.08333333 

3 

1 
0.33333333 
3.33333333 
0.33333333 
C.16666657 

0.-6566657 
0.16666667 

C.15665667 
0.C8333333 
C.08333333 
0.08333333 

0,08333333 
0.C8333333 
C.C8333333 
C.08333333 
0.38333333 

0.38333333 
0,08333333 

3 

1 

3.33333333 
2.33333333 

n.16566667 

0 . 1 6 6 6 6 6 6 7  

0.~9333333 

3.08333333 

n 

0.33333333 
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Table 10.11 (Continued) 

413 

Standard  
t r t  y LSMEAN E r r o r  P r  > :tl 

1 5 6 . 7 C 8 3 3 3 3  1 . 0 4 6 7 9 2 9  <.GCOi 
2 5 2 . 6 8 7 5 3 C 0  1.0467929 <.000i 
3 1 7 . 1 6 6 6 6 6 7  3 . 8 5 4 7 0 2 9  < . o c o ;  

C o e f f i c s e n t s  f o r  c a r r y  Leas t  Square Means 

E f f e c t  

I i. t e r cept 
p e r i o d  
p e r i o d  
p e r i o d  
sequence 
sequence 
sequence 
sequence 
sequence 
s eqaence 
s t e e r  ( sequence)  
s t e e r  ( sequence)  
s t e e r  (seq;ence) 
s z e e r  (sequence) 
s t e e r  ( sequence ) 
s t e e r  (sequence)  
s t e e r  ( s e qTien ze  ) 
s t e e r  ( sequence ) 
s t e e r  (sequence)  
s t e e r ( s e que I: c e ) 
s t e e r ( s e que?. c e 
s t e e r  ( s e q u e n c e )  
t r t  
t r t  
‘ir: 
c a r r y  
c a r r y  
c a r r y  

1 
2 
3 
1 
2 
3 
4 

6 
l i  
2 1  
3 2  
4 2  
5 3  
6 3  
7 1  
8 4  
9 5  
i c  5 
;1 6 
1 2  6 
1 
2 

c 

7 

2 
3 

c a r r y  

2 
3 

Depender-t V a r i a b l e :  y 

Pararneter 

1-2  
i-3 
2-3  

c a r r y  Level 
1 

1 
0 . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  
S.;6666657 
C . 1 6 6 6 6 6 6 7  
0.1656666’ 
0 . 1 6 6 6 6 6 6 7  
0 . 1 6 6 6 6 6 6 7  
3 . 1 6 6 6 6 6 6 7  
3 . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
0 . 3 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
3 . 0 8 3 3 3 3 3 3  
3 . 3 8 3 3 3 3 3 3  
0 . 3 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
C . 0 8 3 3 3 3 3 3  
C . 0 8 3 3 3 3 3 3  
0 . C 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
0 , 3 3 3 3 3 3 3 3  
c . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  

1 
0 
J 

2 

1 
C . 3 3 3 3 3 3 3 3  
c . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  
C . 1 6 6 6 6 6 6 7  
C . 1 6 5 6 6 6 6 7  
0 . 1 5 5 6 E 6 5 7  
0 . 1 6 6 6 E 6 6 7  
0 . 1 6 5 6 6 5 5 7  
0 . 1 6 6 6 6 6 6 7  
3 . 0 8 3 3 3 3 3 3  
3 . 0 8 3 3 3 3 3 3  
0 . 3 8 3 3 3 3 3 3  
0 . C 8 3 3 3 3 3 3  
3 . 0 8 3 3 2 3 3 3  
0 . 0 8 3 3 3 3 3 3  
0 . 3 8 3 3 3 3 3 3  
0 . 3 8 3 3 3 3 3 3  

C . 3 8 3 3 3 3 3 3  
C . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  
c . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  

0 
1 
3 

c . 3 3 3 3 3 3 3 3  

Sta-dard  
y LSMEAN E r r o r  P r  > It1 

5 3 . 3 8 3 3 3 3 3  1 . 3 5 1 4 0 3 9  <.33CI 
5 C . 7 7 0 8 3 3 3  1.3514039 <.0001 
5 2 . 7 0 8 3 3 3 3  3.8547029 <.000i 

3 

1 
0 . 3 3 3 3 3 3 3 3  
c . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  
0 . 1 6 6 6 6 6 6 7  
0 . 1 6 6 6 6 5 6 7  
0 . 1 6 6 6 6 6 6 :  
0 . 1 6 6 5 6 6 6 7  
0 . 1 6 6 6 6 6 6 7  
C.16665667 
0 . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
3 . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
! l .C8333333 
0 . 0 8 3 3 3 3 3 3  
0 . 0 5 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
C . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
0 . 0 8 3 3 3 3 3 3  
C . 0 8 3 3 3 3 3 3  
2 . 3 3 3 3 3 3 3 3  
3 . 3 3 3 3 3 3 3 3  
0 . 3 3 3 3 3 3 3 3  

0 
0 
1 

Standard  
Es t imate  E r r o r  : ‘Value P r  > ti 

4 . C 2 0 8 3 3 3 3  1 . 3 5 1 4 C 3 8 8  2 . 9 8  0.308; 
9 . 5 4 1 6 6 5 6 7  1 . 3 5 1 4 0 3 8 8  7 . 0 6  <.a001 
5 . 5 2 0 8 3 3 3 3  1 . 3 5 1 4 0 3 8 8  4 . 0 9  0. c 0 3  
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intuitively confirm the differences among the treatment effects. The values for 
the LS means are, however, not unique because of the arbitrary choice to replace 
carry= 0 by carry= 3 (see above). This also affects the standard errors (that is, 
1.05 vs. .85). In spite of this, differences between LS means are unique. 

(vi) Differences between treatment are all significantly different from zero. And the 
estimates of those differences have the same standard error. 

10.9 EXERCISES 

10.1 A marketing expert for a publishing house wants to measure reader preference 
for three different covers of the same paperback novel. She has chosen 10 cities 
and 3 newsstands in each city which are going to sell the novel. She wants to use 
one of two experimental setups described below. 

(a) In each city each cover is assigned randomly to one of the 3 newsstands. 
The number of books sold during a three-week period following the assign- 
ment is used to compare the effect of the covers on sale of the novel. 

(b) In each city each of the 3 newsstands will sell the book using each cover 
for one week (that is, the trial extends over 3 weeks) in such a way that 
during a given week the 3 newsstands in a city will display the book with 
a different cover. The same 3-week period will be used in all cities. Sales 
figures for each week will be used for the analysis. 

For each of the two scenarios described above: 

(i) Give the name of the experimental design used. 

(ii) Identify the experimental units. 

(iii) Give the model for each of the designs and the ANOVA table, including 
sources of variation and d.f. 

(iv) Indicate how you would test whether the covers had the same effect on 
sales. 

(v) Which of the two designs would you prefer in this situation and why? 

10.2 A study is planned to investigate (a) whether four gasoline additives differ with 
respect to the reduction in oxides of nitrogen and (b) if such differences exist 
whether they depend on the makes of the cars used in the study. 

The investigator has selected three makes (models) of cars, Ford, Honda, and 
Porsche. For each model he has four cars available, and he uses four different 
drivers. He believes that for each model systematic differences are likely to occur 
in the cars’ performance. Also, even though the drivers may do their best to drive 
the car in a manner required by the test, systematic differences can occur from 
driver to driver. 
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In planning the study the investigator would like to have an experimental 
design that eliminates the car-to-car variation and the driver-to-driver variation. 
He wants to use the same four drivers for the whole experiment. 

(i) Give the name for an appropriate experimental design. 

(ii) Write out the actual assignment of the additives to car-driver combinations 

(iii) Give a linear model and outline the ANOVA table for this experiment, giv- 

(iv) Give the SAS statements (classes, model) for the model in (iii). 

(v) Indicate how you would use the ANOVA to investigate the questions (a) 

for the three models. 

ing sources of variation and d.f. 

and (b) raised above. 

10.3 Suppose a poultry scientist comes to you to help him set up an experiment. He 
wants to compare the effects of 3 different diets (treatments) on eggshell prop- 
erties. He has available 6 strains of chickens. Each chicken included in the 
experiment will be housed in a separate pen during the duration of the trial. He 
has 30 pens available which are arranged in stacks of 5 side-by-side (see diagram 
below). 

For each chicken, measurements are taken on 5 randomly selected eggs. 

(i) What kind of experimental design would you use? Give its parameters (that 

(ii) Give a suitable arrangement of the diets (A ,  B, C) to the chickens. 

( 5 )  For the design proposed in (ii) give an appropriate linear model and outline 
the ANOVA, giving sources of variation and d.f. 

(iv) Upon further questioning you find out that the height of the pen in the 
stack may have an effect on the outcome of the experiment (because of 
differences in the temperature). Would you change the arrangement of the 
treatments given in (ii)? If your answer is “no”, give reasons for it; if your 
answer is “yes”, give the new arrangement. 

is, t ,  b, etc.)? 
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Column 

1 2  3 4 5 6 7 8 

(v) For the new situation described in (iv) give an appropriate linear model and 
outline the ANOVA giving sources of variation and d.f. 

10.4 A paint company wants to compare the abilities of four (4) white house paints 
to withstand environmental conditions. Eight (8) square houses, each with one 
side facing exactly north, are available in each of three states: Florida, Michigan, 
and California (that is, there are 24 houses altogether). Each side of a house is 
possibly exposed to different types of weather. Also, the houses are different 
from each other (because of different building materials, different ages, etc.). 
The company wants to paint each side of each house with a different paint. In 
addition to comparing the 4 paints the company is also interested in finding out 
whether differences among the paints vary from state to state. 

1 
2 
3 
4 

(i) Describe how you would set up the experiment, that is, what error-control 
design would you use. Explain the reasons for choosing the design. 

(ii) Give an appropriate linear model for analyzing data from the experiment 
described in (i). 

(iii) Outline the ANOVA table associated with the model given in (ii) (giving 
source of variation, d.f.) and indicate how you would investigate the ques- 
tions the company is interested in. 

(iv) Describe how you would perform the analysis in (iii) by using SAS or some 
other statistical package. 

C? A a  BS A,3 B? CS Dol D 3  
Aa B,O D 3  CS AS Dy  B-, Ca 
D6 Cy Ay Ba D o  A 9  CO BS 
B3 0 6  Ca D y  C8 Ba A6 Ay 

10.5 Derive the missing value formula (10.25). 

10.6 Obtain the ANOVA table for the analysis of covariance for the Latin square de- 
sign. 

10.7 Derive expressions (10.26) and (10.27) for the estimated relative efficiencies of 
the Latin square design relative to the RCBD. 

10.8 Extend model (10.30) to include replicate x treatment interaction and obtain the 
ANOVA table for this model. 

10.9 A Grzco-Latin square in its pure form may not be very useful, but extension and 
replications of it often prove to be quite useful. Consider the following design: 

where rows, columns and Greek letters are blocking factors. 
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(i) What would you call this design? Give an appropriate linear model and 
outline the ANOVA table, giving sources of variation, d.f., and sums of 
squares. 

(ii) Give the SAS statements for analyzing data from such an experiment. 

(iii) Suppose you find out that for the experiment under consideration the “columns’ 
represent animals. More specifically, columns 1 4  represent animals from 
one breed and columns 5-8 animals from a different breed. The researcher 
is interested in finding out whether differences among treatments are breed- 
specific. 

Is the design given above appropriate for investigating this question? If yes, 
explain why; if no, indicate what you would have done differently. 

(iv) For the design in (iii) give an appropriate linear model and outline the 
ANOVA table, giving sources of variation and d.f. 

(v) Give the SAS statements for the analysis suggested in (iv). 

10.10 Write out a linear model for the error-control design using the 4 x 4 completely 
orthogonalized square (Section 10.6.2) and obtain the ANOVA table for this de- 
sign. 

10.11 Suppose a t x t completely orthogonalized square is replicated T times. Write 
out one possible linear model for such an error-control design and obtain the 
associated ANOVA table. 

10.12 Using the data of Example 10.15 show numerically that differences between 
treatment LS means do not depend on the choice of 17: in “if carry=‘O’ then 
carry=‘x’ ”. 

10.13 Analyze the data of Example 10.15 without carry-over effects and compare the 
results with those of Table 10.1 lb. 
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CHAPTER 11 

Factorial Experiments: 
Basic Ideas 

11.1 INTRODUCTION 

Our discussion so far has centered on error-reduction designs. As we have pointed 
out earlier (see Chapter 2), however, another component of experimental design is the 
treatment design. Here we shall be concerned especially with the situation where the 
treatments have a structure, more specifically, a factorial structure. 

Suppose we have several factors, denoted by A, B. C. . . .. Each factor has a number 
of different expressions, or levels. For example, factor A may be “insecticide” and the 
levels represent different commercially available insecticides, labeled a1 . a2 % . . . , a,; 
factor B may be “amount of insecticide” with the levels representing the specific 
amounts, say 1 .2 .3 . .  . ., units, generally denoted by bl.  b 2 . .  . . . bb;  factor C may be 
“type of application” with the levels “manually” and “mechanically,” generally de- 
noted by c1. c2, . . . . c,. In this example the levels of factors A and C are qualitative, 
whereas the levels of factor B are quantitative. A treatment now consists of level com- 
binations, one level from each factor, which we denote by (a,b,ck).  These treatments 
are then applied in any of the error-control designs we have discussed earlier. The ob- 
ject is not so much to compare the treatments as such but to make statements about 
the “behavior” of the various factors, singly or jointly. We may ask, for example, “Is 
there a difference among the insecticides generally, that is, averaged over the levels of 
factors B and C?”, or “Do the differences in the efficacies of the insecticides depend 
on the type of application?” The first question is one about the main effects of factor 
A, whereas the second question is concerned with the interaction between factors A 
and C. It is these types of questions and the fact that we can provide answers to them 
that make factorial experiments particularly valuable. 

Factorial experiments can be used in various forms (for instance, Kempthorne, 
1952): One procedure would be to estimate the effect of, say, factor A, keeping all 
the other factors at a constant level in one experiment; then estimate the effect of factor 
A after changing the level of factor B, and keeping the remaining factors at a constant 

419 



420 CHAPTER 1 1. FACTORIAL EXPERIMENTS: BASIC IDEAS 

level in the next experiment; and so on. This procedure of varying one factor at a time 
would generally be used when the purpose is to establish a fundmental law as it would 
lead to detailed knowledge of the effect of one factor when the others are held constant. 
No information is, however, obtained on the dependence of the effects of a factor on 
the levels at which the other factors were held constant. To obtain such information 
we might use another experimental procedure, namely to vary the levels of each of the 
factors and consider all possible level combinations simultaneously. This would allow 
us to obtain information about main effects and, more importantly, about interactions 
among the various factors. These ideas and their practical applications in agronomic 
experimentation and more generally in scientific experimentation were introduced by 
Fisher (1935) and Yates (1937). 

The value of factorial experiments lies in the fact that we look at several factors 
simultaneously which allows us to estimate the various effects and interactions and at 
the same time provides us with a wider inductive basis, that is, drawing conclusions 
over a wide range of conditions. Fisher (1935) has referred to this property as greater 
comprehensiveness. And even though, in general, we can estimate all possible inter- 
actions among factors, it is an empirical fact that the interactions among many factors 
(the so-called higher order interactions) are negligible for all practical purposes. This 
leads to a considerable reduction in the number of parameters, that is, main-effects and 
lower order interactions, and hence to an easier interpretation of data from a factorial 
experiment. It is for these reasons that factorial experiments are used widely in scien- 
tific and industrial experimentation. In the following sections we shall present some 
basic ideas about certain types of factorial experiments. A much more detailed and 
technical discussion will be given in Chapters 11.7-16. 

11.2 INFERENCES FROM FACTORIAL 
EXPERIMENTS 

Suppose we have n factors AI ,  A2, . . ., A,, where factor Ai has mi levels a i l ,  ai2, 

. . ., ai,*(i = 1, 2 ,  . . ., n). A treatment combination is denoted by (a l ia2 ja3k  . . . a,l) 

and there are nyz1mi such treatment combinations. We write the effect of a treatment 
combination as r i j k . . , l  and define the various main effects and interactions through an 
expansion of the type as illustrated for n = 3: 

r i j k  = f ( a l i a Z j a 3 k )  = T.. .  + (T i . ,  - T. . . )  + (T , j ,  - T. . , )  
+ ( T . .  - ;t. 

+ ( T , j k  - T.3. - T, ,k  + T... ) 

23. 2 . .  - ?.j. + T, , . )  + (T..k - T. . . )  

+ (7z.k - Ti . .  - T , , k  + T , , , )  

+ ( r i j k  - rij. - Ti.k - F . j k  + Ti.. + 7 . 3 ,  + ? , , k  - T , , , ) .  (11.1) 

This is, of course, an identity in T i j k  which gives rise to a model statement of the form 

~ i j k  = 1-1 + Ali + A2J + (A1A2)iJ + A31i 

+(AiA3)ik + ( A 2 A 3 ) j k  + (AiA~A3)ijli.  (11.2) 
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where p represents the overall mean; Al,, A2J, A3k represent the main effects as- 
sociated with the factors A l ,  A2, A,; ( A ~ A z ) ~ ~ ,  ( A I A ~ ) ~ ~ ,  ( A Z A ~ ) ~ ~  represent the 
two-factor interactions associated with those factors, and (A1A2A3)z3k represents the 
three-factor interaction. From (1 1.1) it follows immediately that 

i=l j=1 k = l  

We have thus exploited the factorial structure of the treatments and decomposed the 
treatment effects into meaningful components. Of these the main effects and two-factor 
interactions (or first order interactions) are of major importance for the interpretation 
of data from such an experiment. The existence of higher order interactions of appre- 
ciable magnitude (relative to the main effects) makes the interpretation, unfortunately, 
much more difficult. As mentioned earlier, it is, however, an established fact that the 
importance, that is, magnitude, of higher order interactions tends to decrease as the 
number of factors involved increases (somewhat analogous to a Taylor series expan- 
sion). This fact will actually be exploited in later chapters (see also Chapters 11.8-16) 
to construct useful incomplete block designs for factorial experiments. 

Model (1 1.2) leads to a corresponding partitioning of the treatment sum of squares 
into main effect and interaction sums of squares as follows: 

Source d.f. 

Treatments 
A1 

A2 

A1 x A2 

A3 
A1 x A3 
A2 x A3 

x A2 x A3 

If the error-control design is an orthogonal design (CRD, RCBD, GRBD, LSD) then 
the various components in (1 1.2) are estimated by replacing in (1 1.1) the T , ~ ~ ’ s  by 
the corresponding treatment means. The partitioning of the treatment sum of squares 
is then obtained by squaring each term on the right-hand side of (1 1. l ) ,  with the 7’s 
replaced by the treatment means, and summing each term over all subscripts. Tests of 
hypotheses are performed in the usual manner by using MS ( E )  from the error-control 
design as the denominator in the F-statistic and the individual main effect or interaction 
sums of squares in the numerator. 
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For nonorthogonal designs (for example, incomplete block designs) we may set up 
a correspondence between ordinary treatments and factorial treatments to assign the 
treatment combinations to the various blocks. To estimate the main effects and interac- 
tions we replace in (1 1.1) the r t J k 7 s  by the corresponding LS means. The (partial) sums 
of squares associated with main effects and interactions must be obtained by using the 
methods of Chapter 4, that is, by fitting full and reduced models. 

Factorial experiments are most useful in exploratory work where the researcher is 
interested in investigating the effects of possibly a large number of factors over a certain 
range of levels and to find out whether the factors act additively, that is, independently, 
or whether they exhibit interaction. It is the broad picture here that is of primary interest 
and the researcher will have to use his subject-matter knowledge to select the treatment 
factors and determine their levels to be included in the experiment. Once a broad 
picture has been obtained then a more detailed study of factors judged to be important 
may be appropriate as a follow-up. 

11.3 EXPERIMENTS WITH FACTORS AT 
TWO LEVELS 

One of the disadvantages, from a practical point of view, of factorial experiments is 
the fact that the number of treatment combinations increases rapidly as the number 
of factors and/or levels increases. One way out of this dilemma is to consider only 
a subset of all possible treatment combinations, a so-called fractional factorial (see 
Section 11.5 and Chapters 11.13, 14). Another possibility is to consider a reasonable 
number of factors and restrict for each factor the number of levels to 2.  Those two 
levels may be chosen so that they cover, in some sense, the practical range of levels, 
whereas for other factors they represent the only possible levels. Suppose we have n 
such factors. Then we refer to this experiment as a 2" factorial. 

Although a 27L factorial is commonly used we should emphasize that it is most 
useful as an exploratory experiment. This is particularly true if a factor admits more 
than two levels. If we restrict ourselves to two levels only, then we cannot examine 
the nature of the main effects and interactions in any detail, for example, in the case 
of quantitative factors we cannot examine trends other than linear, thus our earlier 
recommendation of follow-up studies of a smaller nature. 

11.3.1 Definition of Main Effects and Interactions 

We shall now consider briefly the definition of effects and interactions for a 2" factorial 
as well as the estimation and testing of such effects. To keep the notation simple we 
shall illustrate the concepts for the special case n = 3. Extension to the general case 
should then be obvious. 

Let us denote the three factors by A, B, C,  and their levels by ao. a l ,  bo ~ b l .  CO. el,  
respectively. The eight treatment combinations can then be written (in standard or- 
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der) as 

It is convenient to use the same notation also for the true response of those treatment 
combinations (from the context it should always be clear what is meant). We then 
define the following simple effects of A ,  denoted by A(b,. c k ) ,  as the effect of factor 
A when changing A from level a0 to level al  with factor B at level b, and factor C at 
level C k :  

A(b0.  C O )  = alboco - aoboco 
A(b l . co )  = alblco - aoblco 
A(bo .c i )  = albocl - aobocl 
A ( b 1 , c l )  = alblcl  - aoblcl. 

(11.3) 

Using the definitions (1 1.3) we define the main effect A as 

A = $ C A(b, ,  ck )  
3 . k  

(11.4) 

that is, A represents the average change in response when a0 is changed to a1 . Sym- 
bolically, we express (1 1.4) as 

A = ;(a1 - ao)(bi  + bo)(cl + C O ) ,  (11.5) 

where this expression is meaningful only when the right-hand side is multiplied out 
formally and the terms in that expression are interpreted as the true responses from the 
respective treatment combinations. 

We can also define the effect of A when B is kept at level b, and C is averaged 
over levels co and c1 as 

A(b,,C) = $[A(b , .co)  + A ( b j . c i ) ]  
r 1 

k 

or, symbolically, 
A ( b j ,  C) = - ao)bj(cl  + C O )  (11.6) 
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for j = 0, 1. To the extent that A(b0. C) and A(b1. C) are different from each other, half 
the difference between them is defined as the interaction between the factors A and B, 
denoted by A x B or simply AB, that is, 

or symbolically, 

AB = L(a1 4 - ao)(b l  - bo)(cl + C O ) .  (11.8) 

The factor 4 in (1 1.7) is merely a convention so that the denominator in (1 1.8) repre- 
sents, as in (1 1 S) ,  the number of simple differences among treatment responses. 

Note that AB as defined in (1 1.8) is the interaction between factors A and B aver- 
aged over the levels of factor C.  We could, similar to (1 1.3) consider simple interuc- 
tions between A and B, defined as 

The difference (apart from the factor a)  between these two interactions is a measure of 
the threefactor interaction A x B x C,  or simply ABC, that is, 

In a similar manner we can also define the main effects B and C, and the interac- 
tions AC and BC. 

The reader can verify easily that each main effect and interaction represents a con- 
trast among the treatment combinations and that these contrasts are orthogonal to each 
other. Apart from the factor 1/4 the contrast coefficients are as given in Table 1 1.1. The 
reader will notice also that, for example, the coefficients for AB are the products of the 
corresponding coefficients for A and B ,  and so forth. 

The general rule for writing down expressions like (1 1 . 9 ,  (1 1.8), (1 1.9) and hence 
defining the main effects and interactions for the general 2" factorial is as follows. Any 
effect or interaction X say, can be represented as 

where the sign in each bracket is positive if the corresponding capital letter is not con- 
tained in X and negative if it is contained in X ,  and the whole expression on the 
right-hand side of (1 1.10) is to be expanded algebraically and interpreted in terms of 
treatment combination responses. Just as illustrated in Table 1 1.1 for the 23 case, the 
main effects and interactions represent here, too, a set of 2" - 1 orthogonal contrasts. 
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Table 11.1 Contrast Coefficients for Main Effects and Interactions in z3 
Factorial 

A -1 $1 -1 $1 -1 +1 
B -1 -1 +1 $1 -1 -1 
AB +1 -1 -1 +1 +1 -1 
C -1 -1 -1 -1 +1 +1 
AC +1 -1 $1 -1 -1 $1 
BC +1 +1 -1 -1 -1 -1 
ABC -1 +1 +1 -1 +1 -1 

-1 $1 
+1 +1 
-1 $1 
+1 $1 
-1 +1 
+1 +1 
-1 +1 

11.3.2 Estimation of Main Effects and Interactions 

To estimate the main effects and interactions we first estimate the treatment effects 
from the error-reduction design used. In the case of orthogonal designs these are, of 
course, simply the treatment means, and this is the only case we shall discuss here. Let 
us denote for n = 3, the treatment mean for the treatment combination (a,b,ck) by 
jj(a,b,ck). In the expressions defining the main effects and interactions, such as (1 1.4) 
or (1 1 . 3 ,  (1 1 .S), (1 1.9), we then replace the true responses by the estimated responses, 
that is, the treatment means based on say T observations, where T is the number of 
replications in a CRD, r = b is the number of blocks in a RCBD, T = t is the number 
of rows and columns in a LSD, etc. We then obtain, for example, 

A = i[y(aiboco) + y(aibico) + y(aiboci) + l/(aibici) 

- y(aoboc0) - t(aob1co) - t(aoboc1) - y(aob1cl)l. (11.11) 

Assuming unit-treatment additivity in the broad sense and using the arguments as 
exposited in previous chapters we obtain immediately 

(11.12) 

The other main effects and interactions are estimated analogously and each is estimated 
with variance given by (1 1.12). 

These results are extended easily to the general case of n factors. Using (1 1.10) we 
then find 

1 
X = 2n-l [sum of 2"p1 treatment means - sum of remaining 

2"-l treatment means] (11.13) 
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and consequently, 

(11.14) 

11.3.3 Sums of Squares for Main Effects and Interactions 

Since each main effect and interaction represents a contrast among treatments, it is easy 
to obtain for the ANOVA the sum of squares associated with that contrast, say S S ( X ) .  
We know (see Chapter 7, equation (7.4)) that 

S S ( X )  = [XI 
var ( X )  /0," 

using (11.14). Each S S ( X )  has 1 d.f. and 

E [ S S ( X ) ]  = 0," + r 2 n - 2 [ X ] 2  (11.16) 

It is, of course, obvious then how the hypothesis Ho: X = 0 can be tested in the 
ANOVA. 

The right-hand side of (1 1.16) also shows that if X is assumed to be negligible then 
S S ( X )  may be pooled with SS(E) to provide additional d.f. for error. 

11.4 INTERPRETATION OF EFFECTS AND 
INTERACTIONS 

The interpretation of effects and interactions follows closely from the definitions given 
in Section 11.3. For example, for the 23 factorial with factors A, B, and C, the main 
effect A is the effect of increasing factor A from the amount a0 to the amount al, 
averaging over all possible level combinations of factors B and C. 

Now suppose we wish to obtain the effect of factor A, averaging over the low and 
high levels of factor B, that is, bo. b l ,  but with factor C at the low level, that is, at level 
CO. Similar to (1 1.6) this effect is defined as 

A(b,co) = $ ( U I  - ~ o ) ( b l + b o ) c o  = ~ [ a l b l c o + a l h o c o - a o b l c o - ~ o b o ~ o ] .  (11.17) 

From the definition of the main effect A, that is, 

A = I (  4 a1 - ao)(b1  + bO)(Cl + co) (11.18) 

and the interaction AC, that is, 

AC = ~ ( U I  - a o ) ( b i  + bo)(ci - CO) (11.19) 

it follows easily, by treating the right-hand sides of (1 1.18) and (11.19) as algebraic 
quantities, that A($, CO) of (11.17) can be expressed alternatively as 

(11.20) A(b, cO) = A - AC. 
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In a similar way we obtain the following: 

A(b. ~ 1 )  = A + AC 
A(bo> C) = A - AB 
A(bl> C )  = A + AB 

and for the simple effects defined in (1 1.3) 

A(b0, C O )  = A - AB - AC + ABC 
A(b1, C O )  = A + AB - AC - ABC 
A(b0. ~ 1 )  = A - AB + AC - ABC 
A(b1, ~ 1 )  = A + A B  + AC + ABC. 

Algebraically, the expressions above can be written as 

A(b. C O )  = A ( l  - C) 
A(b. ~ 1 )  = A ( l  + C) 
A(b0, C) = A ( l  - B) 

A(b1,C) = A ( l + B )  

A(bo.co) = A ( l  - B)(1 - C) 

A(b1.c") = A ( l  + B)(1 - C) 
A(bo.cl) = A ( l  - B)(1 + C) 
A(bl.cl) = A ( l  + B)(1 + C). 

(11.21) 

This gives an easy way of remembering them and of writing down the effect of any 
factor for any situation with regard to the other factors. 

Another consequence of having expressions like (1 1.20) and (1 1.21) is that we 
can obtain easily estimates of these effects and the variances of these estimates. For 
example, we have 

A ( b .  co) = A - AC. 
Since A and AC are orthogonal contrasts among the treatment effects it follows that A 
and AC are uncorrelated and hence 

var[A(b. co)] = var(A) + var(AC) 

and, similarly, 
A ( b 0 .  co) = A - A> - AC + ABC 

with 
var[A(bo,co)] = 4-a 1 2 = -ae. 2 2  

r23-2 r 
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11.5 INTERACTIONS: A CASE STUDY 

We have mentioned earlier that every treatment design needs to be imbedded in error- 
control design. We have also discussed the possibility of interaction between treatment 
and blocking factors (see Section 9.6.7), that is, between factors from the set X and the 
sets 2 and U (see Section 2.2.4). In this chapter we are considering the situation where 
the set X consists of several factors, say X = {A l ,  Az ,  . . ., An}.  These factors give 
rise to main effects Al ,  A*, . . . , A, and interactions of the form A, x A,(i. 1 = 1, 
2, . . . ,  n; i # I ) ,  A, x A, x Ak(i. 1. k = 1, 2, . . . ,  n; i, j ,  k not equal, and so 
on. As a consequence, we now can also envision interactions of the form A, x 2, 
A, x U, A, x A, x 2, A, x A, x U. This list can be extended, of course, but as we 
have mentioned earlier, typically higher order interactions are negligible, or negligible 
from a practical point of view. Rather than discuss these possibilities in generalities we 
shall consider a particular experiment and point out some strategies for exploring the 
existence of the types of interactions mentioned above. 

11.5.1 The Experiment 

The following experiment was discussed by Pearce (1953, 1983) (see also Hinkelmann, 
2004), but for the purpose of this discussion we have made slight modifications and 
have constructed the data (yield) based on summary data given in the article. 

EXAMPLE 11.1: The objective is to study the effect of different pruning methods on 
the yield of varieties of pears. There are two treatment factors: A1 = A = type of 
pruning, A2 = B = amount of pruning, each with two levels. For factor A the two 
levels are: F = pruning with few leaders, JU = pruning with many leaders, and for 
factor B the two levels are: H = hard pruning, L = light pruning. In order to broaden 
the scope of the study, the investigator included five varieties of pears: Am=BeurrC 
d’ Amanlis, Ha=BeurrC Hardy, Co=Conference, Fe=Fertility, Pi=Pitmaston. These 
constitute the five levels of the intrinsic factor z1 = V = variety. The experiment was 
set up as a randomized complete block design with six blocks for each variety (see 
Figure ??). Thus there is one non-specific factor u1 = /? = block with six levels (the 
original experiment had eight blocks for each variety). 

Thus, in summary, the experiment is a 22 factorial experiment with treatments ( F ,  
H ) ,  (M, H ) ,  (F, L) ,  (AbI, L )  in a randomized complete block design with a nested 
blocking structure 3(V)  with 5 x 6 = 30 blocks of size four each. The four treat- 
ments were randomly assigned to four experimental units (trees) in each block (see an 
example in Figure 1 1.1). 

11.5.2 The Model 

Denoting the response to the treatment by y, we can write out a linear model analo- 
gous to (2.2) reflecting the treatment and block structures and the type of interactions 
mentioned above, as follows: 
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Block 

1 2 3 4 5 6 

Am 

Figure 11.1 Experimental Layout (Schematic). 

where 

V ,  = effect of i-th variety (i = 1. 2 ,  . . . . 5 )  

nt3 = effect of j-th block for i-th variety ( j  = 1. 2 .  . . . , 5) 

Ak = effect of k-th type of pruning ( k  = 1(F), 2 ( A l )  
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Bl = effect of -th amount of pruning([ = l(H), 2(L) )  

(AB)kl = A x B interaction component 

(VA).,k = A x 2 interaction component 

(VB),l = B x 2 interaction component 

(VAB),kl = A x B x 2 interaction component 

(3A).,Jk = A x U interaction component 

($B)231 = B x U interaction component 

(OAB),,k[ = A x B x U interaction component 

Based on model (1 1.22) we can partition the total number of degrees of freedom, 
119 = 120 - 1, in the ANOVA table as given in Table 11.2. We note here that the 
effect terms contained in model (11.22) account for all the d.f., leaving no d.f. for 
error. We have done this on purpose and, in fact, encourage the reader to always write 
out what we might call a full model, that is, accounting for all possible effects and 
interactions and their associated d.f. This will provide a check whether in particular 
we have accounted for all interactions and what, if any, assumptions we need to make 
to obtain an adequate number of d.f. for error (in addition to possibly existing d.f. for 
pure error, such as exist for example in the GRBD (see Section 9.7). 

11.5.3 The Analysis 

We now consider the analysis of the data for the experiment described above. The data 
are given in Table 11.3. (The reader may notice that we have included a factor C, the 
meaning of which will be made clear in comment (iv) regarding Table 11 S) .  

Based on model (1 1.22) and the breakdown of the total d.f. we assume for the 
preliminary analysis that the interaction AB3 is negligible and hence used as the error 
term. We note that the d.f. associated with A x B x 3 represent only part of the block 
x treatment interaction d.f. 

The analysis is performed using SAS PROC GLM. The input statements and the 
output are given in Table 11.4. We comment on the results as follows: 

(i) The BxBlock(V) interaction is clearly non-significant (P = .29). 

(ii) The AxBlock(V) interaction is most likely also negligible (P = .16). 

(iii) Based on the results in (i) and (ii) we may thus pool both interaction terms with 
the A x B x 3 “interaction” to form the error term with 75 d.f. for future analysis 
purposes. 

(iv) Our new model then becomes 
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Table 11.2 ANOVA for Model (11.22) 

Source of Variation Degrees of Freedom 

V 

P 
A 

B 

A x B  

V x A  

V x B  

V x A x B  

P x A  

8 x B  
P x A x B  

4 

25 = 5(6 - 1) 

1 

1 

1 

4 

4 

4 

25 

25 

25 

Total 119 

The SAS input statements for the ANOVA using model (1 1.23) and for some 
follow-up procedures are given in Table 11.5. Among these are the slice options 
‘LSMEANS A * B/SLICE = B SLICE = A’ and ‘LSMEANS A * V A * B * 
V/SLICE = V’. With regard to the A * B interaction, the slice option tests whether 
the simple effects for A and B, respectively, are significant. In general, the slice option 
tests the equality of the LS means for one factor at the different levels of the other fac- 
tor. With regard to the V * A and V * B interactions, the option ‘SLICE = V’ enables 
us to test whether the simple effects of A and B are significant for each level of V. We 
note that we did include the option ‘LSMEANS A * B * V/SLICE = V’ only to show 
that this would result in testing whether the four LS means for ( F ,  H ) ,  ( F ,  L ) ,  (Ad, H ) ,  
and ( M ,  L )  are different from each other for every level of V, and that is of no interest 
to us. 

We now turn to the analysis as presented in Table 11.5 and make the following 
comments: 

(i) The P-values for V and Block(V) should be ignored, since under randomization 
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Table 11.3 A Case Study (Data) 

data pruning; 
input VS Block A$ B$ C Y @ @; 
datalines; 
Am 1 F H 1 530 Am 1 F L 2 581 Am 1 M H 3 548 
Am 2 F H 1 523 Am 2 F L 2 570 Am 2 M H 3 532 
Am 3 F H 1 528 Am 3 F L 2 585 Am 3 M H 3 539 
Am 4 F H 1 515 Am 4 F L 2 504 Am 4 M H 3 553 
Am 5 F H 1 558 Am 5 F L 2 539 Am 5 M H 3 563 
Am 6 F H 1 582 Am 5 F L 2 657 Am 5 M H 3 580 
Ha 1 F H 1 534 Ha 1 F L 2 582 Ha 1 M H 3 554 
Ha 2 F H 1 538 Ha 2 F L 2 578 Ha 2 M H 3 543 
Ha 3 F H 1 563 Ha 3 F L 2 599 Ha 3 M H 3 567 
Ha 4 F H 1 567 Ha 4 F L 2 501 Ha 4 M H 3 501 
Ha 5 F H 1 547 Ha 5 F L 2 500 Ha 5 M H 3 507 
Ha 6 F H 1 582 Ha 5 F L 2 636 Ha 6 M H 3 502 
Co 1 F H 1 551 Co 1 F L 2 504 Co 1 M H 3 572 
Co 2 F H 1 545 Co 2 F L 2 591 Co 2 M H 3 584 
Co 3 F H 1 558 Co 3 F L 2 500 Co 3 M H 3 587 
Co 4 F 3 1 559 Co 4 F L 2 514 Co 4 M H 3 597 
Co 5 F H 1 598 Co 5 F L 2 548 Co 5 M H 3 518 
Co 6 F H 1 612 Co 6 F L 2 551 Co 5 M H 3 538 
Fe 1 F H 1 575 Fe 1 F L 2 610 Fe 1 M H 3 590 
Fe 2 F H 1 554 Fe 2 F L 2 630 Fe 2 M H 3 605 
Fe 3 F H 1 575 Fe 3 F L 2 548 Fe 3 M H 3 605 
Fe 4 F H 1 595 Fe 4 F L 2 653 Fe 4 M H 3 531 
Fe 5 F H 1 609 Fe 5 F L 2 652 Fe 5 M H 3 641 
Fe 6 F H 1 597 Fe 6 F L 2 552 Fe 6 M H 3 560 
Pi 1 F H 1 500 Pi 1 F L 2 651 Pi 1 M H 3 625 
Pi 2 F H 1 505 Pi 2 F L 2 541 Pi 2 M H 3 635 
Pi 3 F H 1 510 Pi 3 F L 2 543 Pi 3 M H 3 542 
Pi 4 F H 1 509 Pi 4 F L 2 572 Pi 4 M H 3 553 
Pi 5 F H 1 532 Pi 5 F L 2 694 Pi 5 M H 3 569 
Pi 6 F H 1 655 Pi 6 F L 2 114 Pi 5 M H 3 576 

Am 1 M L 4 572 
Am 2 M L 4 571 
Am 3 M L 4 508 
Am 4 M L 4 587 
Am 5 M L 4 515 
Am 6 M L 4 640 
Ha 1 M L 4 619 
Ha 2 M 5 4 602 
Ha 3 M L 4 518 
Ha 4 M L 4 629 
Ha 5 M L 4 555 
Ha 6 M L 4 671 
Co 1 M L 4 544 
Co 2 M L 4 547 
Co 3 M L 4 542 
Co 4 M L 4 655 
Co 5 M L 4 560 
Co 6 M L 4 599 
Fe 1 M L 4 555 
Fe 2 M L 4 638 
Fe 3 M L 4 543 
Fe 4 M L 4 555 
Fe 5 M L 4 586 
Fe 6 M L 4 589 
Pi 1 M L 4 702 
Pi 2 M L 4 675 
Pi 3 M L 4 670 
Pi 4 M L 4 684 
Pi 5 M i 4 723 
Pi 6 M L 4 727 

run; 



Table 11.4 A Case Study (Preliminary ANOVA) 

a) Input statements: 

proc glm data=pruning: 
class V Block A B C: 
model Y=V Block(V) A B A*B V*A V*B V*A*B A*Block(V) B*Block(V); 
run: 

The GLM Procedure 

C l a s s  Level Infarnation 

Class Levels  Vzlues 

V 5 Am Co Fe Ha P i  

31ock 6 L 2 3 4 5 6  

9 2 E M  

9 2 ?I: 

C 4 1 2 3 4  

Number o f  Observa t iors  3ead 
N.xnber o f  Cbserva t icns  Used 

120 
120 

Cepencient V a r i a b l e :  Y 

SLrn of 
Source 2F  Squares  Kean Square F Value 

Model 94 261663.3833 2753.5530 3 0 . 5 3  

E r r o r  2 5  2275.416- 9 1 .  C167 

Correc ted  T o t a l  1 1 9  263933.800C 

; i -Sqmre Cceff Var Root MSE Y Mean 

c .  3913’9 1.5565?8 9.543266 612.90C0 

Source D F  T y ~ e  111 SS Mean Sauaze F Value 

17 

A 
B 
A*E 
V*A 
V*E 
V*A*E 

3loCk-E ( 1 7 )  

Bloc< (11) 

BlCCk*k (\I) 

4 
2 5  

1 
4 
4 
i 

25 
25 

132’43.C50C 
5c319.25c0 
18451.2003 
7 3 5 4 3 . S 3 3 3  

-C8.3000 
375:. 7167 
30% ,5833 

1494.’833 
3415.5533 
2 8 3 3 . C 8 3 3  

23685.7625 
2 c c 0 . 7 7 c 0  
i8451.20C3 
7354c.5333 

108.30CO 
a37.6792 
76.6458 

373.6958 
i36.6233 
1L3.3233 

282.21 
21.38 

2C2.72 
862.93 

1.13 
10.30 
0.84 
4.11 
1.50 
1.25 

Pr > P 

i. 0001 

P r  > F 

c.0031 
c.0001 
c .  0 0 c l l  
c.0001 
0.2558 
c.000: 
0.5117 
C.0108 
0.1582 
c . 2 9 3 9  
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Table 11.5 A Case Study (ANOVA and Post-hoc Analysis) 

a) Input statements: 

proc glm data=pruning: 
class V Block A B: 
model Y=V Block(V) A B A*B A*V B*V A*B*V/SS3; 
lsmeans A B A*B/slice=B slice=A: 
estimate 'Main effect A' A -1 1: 
estimate 'Main effect B' B -1 1; 
lsmeans V A*V B*V A*B*V/slice=V 
run: 

b) Output: 
~ 

The GLM Procedure 

Dependent Variable: Y 

Sum of 
Source CF Squares Mean Square F Value 

Model 44 255414.7167 5804.8799 5i. 07 

Error 75 8524.0833 113.6544 

Corrected Total 119 263938.8000 

Source 

V 
Block (V) 
A 
3 
A*B 
V*A 
V*B 

TI*A.E 

R-Square Coeff Var Root MSE Y Mean 

C .  a67704 1.739417 10.66083 612.90C0 

DF Type 111 SS Mean Square F Value 

4 102743.C530 
25 5C019.2500 
1 :8451.2000 
1 78543.8333 
1 108.3000 
4 3750.7167 
4 305.5333 

4 1434.7833 

Least Squares Means 

A Y LSMEAN 

F 600.500003 
M 625.330000 

25685.7625 
2000.7700 
18451.2000 
78543.8333 

108.300C 
937.6792 
76.6458 

373.6958 

226.00 
17.60 

162.34 
69:. C5 

3.95 
6.25 
0.67 

3.29 

Pr > F 

<.03c1 

Pr > F 

<.0001 
< . c o o ;  
<.0001 
<.00C1 
0.3321 
<.0001 
0.6118 

0.0154 



Table 11.5 (Continued) 

L e a s t  S q u a r e s  M e a n s  

B Y LSMEAN 

H 587.316567 
L 638.483333 

A 

- 
M 

V 

Am 
CO 
F e  
FIa 
P i  

a B  Y LSMEAN 

F H  573.966667 
F L  627.033333 
M I !  630.666667 
M L 649.933333 

A*B Z f f e c t  S l i c e d  by B f o r  Y 

Sum of 
3 F  S q u a r e s  Mean S q u a r e  F V a l u e  P r  > F 

1 13693 10693 94.39 <.0001 
1 7866.150C00 7866.153003 69.21 <.0001 

DF 

A*Y E f f e c t  Siiced by A for Y 

Sum of 
S q u a r e s  

42241 
36408 

V 

Am 
CO 
Fe 
33. 

P i  

V A 

Am F 
Am M 
Co F 
co M 
F e  F 
F e  PI 
H a  F 
P a  M 
P i  F 
P i  M 

Mean Square F V a l u e  F r  > F 

42241 371.66 <.0001 
36408 320.34 <.0001 

V LSMZAN 

574.250000 
612.25003C 
527.238333 
591.’08333 
659.083333 

Y LSMEAN 

572.833333 
575.6666G7 
535.083333 
629.416667 
612.583333 
641.833333 
577.250003 
6C6.166667 
644.750000 
673.416667 

V*A Z f f e c t  S l i c e d  by  V f o r  Y 

SUIT o f  
DF S q u a r e s  Mean S q u a r e  F V a l u e  F r  > F 

1 48.166667 48.166657 0.42 0.5170 
1 7372.666657 7072.665667 62.23 <.OC01 

5133.375000 5133.375000 45.17 <.300; 
1 5017.041667 5017.041667 44.14 < . D O 0 1  
1 4930.666667 4930.666657 43.38 <.0001 



Table 11.5 (Continued) 

V E  Y LSXEAX 

Am H 5 4 6. '3 3 C 0 0 0 
Am L 632.500030 
Co H 585.7503C0 
co L 638.75C000 
F e  H SC3.4i6567 
Fe L 551.0003C0 
Ha 3 567.083333 
tia L 616.333333 
21 H 634.333333 
P I  L 683.833333 

v 

Am 
co 
F e  
Ha 
P i  

7 

Am 
co 
F e  
Ha 
P i  

Cependent ' Ja r iab le :  Y 

Parameter 

Main e f f e c t  A 
Vain e f f e c t  3 

V*3 EffecL S l i c e d  by V f o r  Y 

S u r  o f  
3F Squares  

1 
1 
1 
1 

V 

Am 
Am 
Am 
A m  
CO 
CO 
CO 
CO 
Fe 
?e 
F e  
?e 
Ha 
Fa 
Ha 
Ha 
P i  
Pl 
F 1  
P1 

!9154 
!6854 
13585 
:4553 
147C2 

4 

F 
F 
M 
M - 
M 
M 
F 
F 

M 
F 
F 
M 
v 
F 
F 
M 
hl 

N 

DF 

3 
3 
3 
3 
3 

Mean Scjuare F Valce Pr > F 

19154 168.52 <.OC31 
15854 148.23 <.00c1 
13585 119.53 <.COO1 
14553 128.05 <.00C1 
14702 129.35 <.03C1 

B Y LSMEAN 

9 539.500C30 
L 606.166667 
r. 552.50000C 
L 538.833333 
H 572.165667 
L 618.30003C 
H 599.333333 
- 559.50COC0 
H 584.333333 
i 64C.833333 
H 622.503003 
i 661.156667 
H 555.165667 
L 599.333333 
H 570.003000 
L 633.333333 
H 618.666657 
L 670.833333 
Y 653.003C30 
L 695.833333 

VrAt3 Effec: S l i c e d  by  V for 'r 

Sum of 
Squares Mean Sq-are  F .Val-e Pr > 7 

19822 5607.277778 58.13 <.3CO1 
24235 8078.277778 71.08 <.0031 
19195 6398.486111 56.30 <.OC01 
19725 6575.152778 57.85 <.COO1 
19675 6558.277778 57.73 <.oc31 

Standard  
Es t imate  Error t V a l u e  P r  > It1 

24.8000030 1.9464C213 12.74 <.0001 
5:.i6%6567 1.94610219 26.29 <.3C31 
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theory no significance tests for block effects, that is, effects of intrinsic and non- 
specific factors, are permissible. 

(ii) The A * B interaction is non-significant ( P  = .33). Thus there is no real need to 
invoke the slice option. We have included it, however, for purposes of illustra- 
tion. Using the A * B LS means and the definition of simple effects in Section 
1 1.3.1 we find the estimates of the simple effects to be 

A^(H) = 600.67 - 573.97 = 26.7 

A^(L) = 649.93 - 627.03 = 22.9 

and 
g ( F )  = 627.03 - 573.97 = 53.06 

E ( M )  = 649.93 - 600.67 = 49.26 

and all are significantly different f rop  zero ( P  < ,0001) and so are the estimates 
of the main effects A = 24.8 and B = 51.17 with standard error 1.95. At the 
same time, the test for A * B interaction indicates that the simple effects for A 
as well as those for B are not different from each other, leading to near-parallel 
lines in the interaction plot. 

(iii) The interactions A * V and A * B * V are significant (P < .000l) and P = 

.015, respectively). The results for the A * V interaction sliced by V indicate 
that only the simple A-effects for variety Am are not different from each other, 
whereas the estimates of the simple A-effects for the other four varieties are of 
the same order of magnitude, around 30, as can be seen from the A* V LS means. 
This interaction is clearly a codirectional interaction, and hence considering the 
overall A main effect is appropriate. Furthermore, the slice operation shows also 
that the A x V interaction comes about only because of the different behaviour 
of variety Am. If we were to drop Am from the analysis, there would be no 
A x V interaction. Since the B x V interaction is not significant, the B * V slice 
operation is not really needed. The B * V LS means show that the estimators of 
the simple B-effects are all about the same order of magnitude, around 50. 

(iv) Concerning the A x B x V interaction, we have included the slice operation 
with A * B * V effect sliced by V only to demonstrate that this operator does 
not produce the desired results for three-factor interactions. We would like to 
compare the simple A x B interactions (as defined in Section 11.3.1), but the 
results of the slice operation indicate that this procedure tests, for each variety, 
the equality to the four A * B LS means, as indicated by D F  = 3. To achieve 
our objective we now use the factor C introduced earlier, noting that the contrast 
vector (1, -1, -1, 1) for C describes the A x B interaction. More specifically, 
we use the SAS input statement and the results in Table 11.6 as follows. 

We note that from Tables 11.5 and 11.6 it follows that the following relationships 
among sums of squares exist: 

S S ( C )  = S S ( A )  + S S ( B )  + S S ( A  * B) 
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Table 11.6 A Case Study (Additional Post-hoc Analysis) 

a) Input statements: 

proc glm data=pruning; 
class V Block C; 
model Y=V Block(V) C V*C/SS3: 
lsmeans V*C; 
estimate 'A*B for Am' C 1 - I  -1 1 V*C 1 - I  -1 l/divisor=2: 
estimate 'A*B for Co' C 1 -1 -1  1 V*C 0 0 0 0 I -1  -1  l/divisor=2; 
estimate 'A*B for Fe' C 1 -1 -1  1 V*C 0 0 0 0 0 0 0 0 1 - I  - 1  
l/divisor=2: 
estimate 'A*B for Ha' C 1 -1 -1 1 V*C 0 0 0  0 0 0  0 0 0 0  0 0  1 -1 -1 
1 /divisor=2; 
estimate 'A*B for Pi' C 1 -1 -1 1 V*C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
- 1  -1 l/divisor=2; 
run: 

b) Output: 
~ 

The GLM Procedure 

Cependent Variable: Y 

Source 

Model 

Error 

Correctecl Yctal 

S u m  of 
C F  Squares Xean Square F Value Pr > F 

44 255414.7167 5834.8799 51.07 <.3C01 

75 8524.3833 113.6544 

119 263938.8000 

R-Square Coeff Var Root MSE Y Yean 

3. a67704 1.739417 ic. 65088 612.900C 

Source 

V 
Block (V) 
C 
v*c  

JF Type I11 SS Near. Square F Value Pr > F 

4 102743.0500 25685.7625 226.30 <.0001 
25 5C019.2530 2003.7700 17.50 <.C301 
3 97100.3333 32366.7778 284.78 <.000; 

12 5552.0833 462.6136 4.07 <.0001 

Least Squares P e m s  

v c  Y LSMEAN 

Am 1 
An 2 
Am 3 
Am 4 
co 1 
co 2 
co 3 
co 4 
Fe 1 

539.500000 
606.366667 
552.500000 
598.833333 
572.166667 
618.000003 
599.333333 
659.500000 
584.333333 
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Table 11.6 (Continued) 

Fe 2 640.833333 
Fe 3 622.500C00 
Ce 4 661.166667 
Ha 1 555.166667 
Ha 2 599.333333 
Ha 3 579.000000 
Ha 4 633.333333 
P l  1 618.666667 
P 1  2 670.833333 
P1 3 650.000000 
P1 4 696.833333 

Dependent V a r i a b l e :  Y 

S t a n d a r d  
Pa rame te r  C s t  m a t e  E r r o l  t Va lue  P r  > It1 

A*E for Am -10,1666667 4.35228761 -2.34 0.0222 
A*E for Co 7.1666667 4.35228761 1.65 0. 1038 
A*E f o r  Fe -8.9166667 4.35228761 - 2 . 0 5  C ,0440 
A*E f o r  Ha 5.0833333 4.35228761 1.17 0.2465 
A*E f o r  P1 -2.6666667 4.35228761 -0.61 0.5419 

439 

and 
SS(V * C )  = SS(V * A )  + SS(V * B )  + SS(V * A * B) 

with 3 and 12 d.f., respectively. From S S ( C )  + SS(V * C) with 15 d.f. the 
estimate statements in Table 11.6a isolate 5 d.f. which specify the simple A * B 
interactions for each variety. The results in Table 11.6 indicate that only the A*B 
interaction for Am is clearly significant (= ,022). The A * B interaction for Fe is 
borderline significant ( P  = .044), whereas the other A * B interactions are not 
significant. This shows again that the variety Am behaves somewhat differently 
than the other varieties. A closer look at the V * A * B LS means confirms this 
finding as the highest yield for all varieties except Am is achieved for the ( M ,  
L )  treatment combination. For Am the highest yield is obtained for the ( F ,  L )  
treatment combination, but the difference between the yields for ( M ,  L )  and ( F ,  
L )  is relatively small. 

(v) Thus, the overall conclusion from this study shows that over a wide range of 
pear varieties the method of light pruning with many leaders will lead to the best 
results. Possible exceptions are for varieties similar to Am, where light pruning 

0 with few leaders may produce slightly better results. 

11.5.4 Separate Analyses 

The follow-up procedures as described above are done within the context of the overall 
analysis using model 11.23. And this is the method we recommend in general. One 
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reason for proceeding in this way is that all inferences are based on the same error term, 
namely MS(Error) from the overall ANOVA, usually based on a sufficient number of 
degrees of freedom. 

An alternative procedure, however, might be to perform separate analyses for each 
level of one intrinsic factor or for each level combination of several intrinsic factors. 
Since in our example the V x A x B interaction is significant, we might be led to five 
analyses, each based on the model 

for i = 1, 2, . . ., 5. Although we would be able to make then recommendations 
separately for each variety, it becomes more difficult to arrive at statistically sound 
overall conclusions. We shall not provide the details of the five analyses here, but only 
report that the overall result would have been the same as obtained in (v) above. 

11.5.5 Blocking by Intrinsic Factor Only 

The experiment described and analyzed in the preceding sections uses an RCBD with 
a nested blocking structure and a factorial treatment structure. We have used these 
structures to investigate various forms of interactions. Generally speaking, we have 
considered interactions of the form X x X x U, X x U, X x X x Z, X x Z, X x X. 
The absence of the X x X x U and X x U interactions provided us with an appropriate 
error term to perform the analysis in Section 11.5.3. 

EXAMPLE 11.2: 
In this section we shall consider the situation if the experiment had consisted of just 

one block for each variety. In that case “variety” is the only blocking factor. In other 
words, the intrinsic factor is the only blocking factor. 

The typical approach to analyzing data from such an experiment would be to as- 
sume that the treatment x block interaction is negligible and then to use the model 

K31i = 1-1 + V,  + A, + Bk + (AB),k + ez31c. (11.24) 

We know, however, from the analysis of he larger experiment that the V x A and 
V x A x B interactions were significant there. Thus, the assumptions that lead to 
model (1 1.24) may not be appropriate. 

In general, we do not have this kind of insight, but whenever an intrinsic factor is 
used as a blocking factor careful consideration must be given to possible existence of 
X x Z interactions. Usually such considerations have to be based on subject matter 
knowledge rather than on statistical arguments since there may only exist limited test- 
ing for the X x Z interaction as given by, for example, Tukey (1949) and Mandel(l961) 
(see Section 9.6). 

In our example, the treatments have a factorial structure. Therefore the X x Z 
interaction can be divided into A x V, B x V, and A x B x V interactions. This 
provides us with a choice whether to assume that all three interaction components or 
only one or two of them are negligible. 
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An obvious choice would be to assume that A x B x V is negligible and to use 
SS(A x B x V )  as the error sum of squares, SS(E),  with 4 d.f. In our case we happen 
to know, however, that A x B x V may not be negligible and hence we may not be 
willing to follow this route. Instead we shall propose here an ad-hoc approach to this 
potential problem. 

11.5.6 Using the Half-normal Plot Technique 

We shall adapt the method of half-normal plots which was proposed by Daniel (1959) 
to identify non-zero effects in a saturated fraction of a 2” factorial. Saturated in this 
context means that the design does not provide any d.f. for error. This is the same 
situation here if we are not willing, a priori, to assume that some of the X x Z inter- 
actions are negligible. The method essentially consists of plotting the absolute values 
of the estimates of interactions and main effects with increasing magnitude on half- 
normal probability paper, and if the values are all zero they should lie on a straight line. 
Estimates with “large” deviations from this line are considered to be non-zero, that 
is, nonnegligible (for a description see Daniel (1959), Zahn (1975), and also Section 
11.13.9). In order to use this method for our purpose we need to partition the X x Z 
interaction into single-d.f.-contrasts. In general, if X has u, d.f. and Z has u, d.f., then 
X x Z has u, . v, d.f. Thus, there will be u, . u, contrasts which will have to be or- 
thonormal, that is, orthogonal and normalized, for this procedure to work. We shall use 
our example to describe how this can be accomplished. The general procedure should 
then become obvious. 

We have u, = 3 and I/, = 4, where the 3 d.f. for X are represented by those for 
A, B,  and AB, and the 4 d.f. for Z by four comparisons among the five varieties, 
denoted by V1, V2, V3, V4 say. For V1, V2, V3, V4 we choose the complete set 
of four orthogonal polynomials among the five varieties. The contrast coefficients for 
these orthogonal polynomials are given in Table 11.7 (see Section 7.4). We should 
note that these contrasts have no particular meaning here since the levels of V are 
nominal, but that they were chosen conveniently for mathematical purposes only; other 
contrasts could have been chosen just as well as long as they are orthogonal. The 
seven sets of contrast coefficients are given in Table 11.7, labelled V1, V2, V3, V4, 
A, B ,  AB. The coefficients for the 12 contrasts belonging to the X x Z interactions 
are then simply obtained by multiplying the coefficients for the corresponding X and Z 
contrasts. For example, the coefficients for the contrast V1A is obtained by multiplying 
elementwise the coefficients for V1 and A. For the set of contrasts labelled V l A ,  V2A, 
. . ., V4AB we also give the normalizing divisor (ND), which is the square root of the 
sum of the squared coefficients. We then obtain the contrast estimates and plot their 
absolute values on half-normal probability paper. The results, using for each variety 
the observations given in block 5 ,  are given in Figure 11.2. 

Inspection of Figure 11.2 shows that the absolute values for V l A ,  V2A, V3A, 
V4A, and V2B do not lie on the line going through the smaller contrast values. This 
implies that, at least informally, these contrasts may not be negligible and, hence, prob- 
ably should not be included in the error term. 
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Figure 11.2 Half-normal Plot for V*A*B Single-df Contrasts. 

However, since the contrast V2B represents only one d.f. of the 4 d.f. for the 
interaction B x V, it may be quite appropriate from a practical point of view to declare 
B x V negligible and use the error term 

SS(Error*) = S S ( B  x V) + SS(AB x V) . (11.25) 

The form of the error term (1 1.25) implies that the data should be analyzed according 
to the model 

11.5.7 The Analysis 

The analysis of the data using model 11.26 is presented in Table 11 3. We comment 
briefly on the SAS PROC GLM output: 

(i) The main effects A and B are significant with P < .0001. 

(ii) The interaction A * B is not significant (P = .2023). 

(iii) The A * V interaction is significant (P = ,0031) as suggested already by the 
half-normal plot of Figure 1 1.2. 
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Table 11.8 Blocking by Variety Only 

a) Input statements: 

Data block5: 
r n p u t V B l o c k A B C Y @ @ ' :  
datalines: 

Ar 5 F 3 1 558 Am 5 F L 2 6 3 9  Am 5 ?I H 3 563 Am 5 M L 4 615 
Ya 5 F H 1 547 Ha 5 F L 2 600 Ha 5 M H 3 637 Ya 5 M L 4 655 
Co 5 F H 1 598 Co 5 ? L 2 648 Cc 5 M H 3 618 Cc 5 !! L 4 560 
F e  5 ? H 1 639 F e  5 F : 2 652 Fe 5 Y Y 3 641 Fe 5 M L. 4 686 
Pi 5 F H 1 632 31 5 F L. 2 694 Pi 5 M Z 3 669 Pi 5 M L 4 723 

r a n ;  

proc glm data=block5; 
class V A B: 
model Y = V A B AXB VXA/SS3: 
lsmeans A B A-Bistderr; 
lsmeans V*A/stderr slice=V, 
run: 

b) Output: - 

The GLI4 Frocedlire 

Class  Level Information 

Class  Levels  ValJ-es 

V 5 Am C o  Fe Ha P i  

A 

9 

2 F M  

2 HL, 

Nu-nber cf  Observa t ions  Read 20 
Number cf Observa t ions  Used 20 

Cependent V a r i i b i e :  il 

Sum o f  
Source 3F Squares  Mear. Square F Value Pr > F 

Model 11 392'8.4C03C 35-0.76364 59.79 <.COO1 

Z r r c r  8 47'.80300 59.72500 

Correc ted  Tota l  19 39756.20000 

R-Square Coeff bar Root MS? Y Mea-, 

3.987982 1.225336 7.728195 63C.70C3 
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S o c r c e  

v 
A 
B 
A*3 
V*A 

A 

F 
F 
M 
M 

1’ 

Am 
ar. 
co 
C3 
Fe 
F e  
tia 
H a  
‘1 

P: 

a 

H 
L 
H 
L 

A 

F 
x 
F 
M 

P4 
F 
>, 
F 
M 

- 

v DF 

AT, 1 
C3 1 
Fe 
H a  1 
P i  1 

Table 11.8 (Continued) 

DF Type iIZ SS Mean Sq-uare F Val;e I r  > F 

4 19287.73000 4821.92500 80.74 <.GOO1 
1 3380.00030 3383.30000 56.59 <.0001 
1 14045.3000C 14045.00300 235.16 < . D O 0 1  
1 ?15.20000 l15.20003 1.93 0.2023 

) .  i 2450.50033 61; 

L e a s t  Squares Means 

625OC 10.26 0.0031 

Y LSMZAN 

617.700000 
643.70C003 

Y LSMEAN 

504.20300C 
657.200203 

Y LSMEAN 

583.800300 
646.600003 
619.500C00 
667.803030 

Y ZSVEAN 

598.53C00C 
589.CO0030 
623.030030 
639.000300 
630.503003 
563.SOOC30 
573.503C00 
631.500C30 
663.00COOC 
696.030300 

S t a n d a r d  
Error 

2.443870 
2.443870 

S t a n d a r d  
E r r o r  

2.443P’O 
2 . 4 4 3 8 7 3  

S t a d a r d  
E r r o r  

3.45613L 
3.456154 
3 . 1 5 6 L 5 4  
3.456154 

P r  > It1 

<.03C1 
<.0001 
<.0c31 
< .  3001 

S t a n d a r d  
E r r o r  P I  

5.464659 
5.464659 
5.464659 
5.454659 
5.464659 
5.464659 
5.464659 
5.464650 
5.464659 
5.464659 

> I Z I  

<.03c1 
< .  c031 
<.0301 
< .  3001 
<.  0031 
<. 0001 
< .  3601 
1.0001 
<.0301 
<.000; 

V*A E f f e c z  SLiced by  ‘J f o r  Y 

Sum of 
S q u a r e s  Yean Square  F Va1L.e F r  > F 

9 0 . 2 5 c 0 0 3  9C.25COOC 1.51 0.2539 
256.300C00 256.OOC300 4.29 0,0722 
,989.003000 1089.0C0000 18.23 C.3C2’ 
3306.250300 3306.250000 55.36 <.0001 
1CS9.300003 1089.000030 18.23 0.C027 
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(iv) Slicing the A * V interaction indicates that the simple A-effects for variety Am 
are not significantly different from each other. Inspection of the V * A LS means 
shows that the A x V interaction is codirectional. 

11.5.8 Summary 

It is virtually impossible to discuss all the possible ramifications that a complex treat- 
ment and blocking structure may have on the data model, assumptions about the terms 
in the model, the ensuing analysis, the implications of existing interactions, and the 
interpretation of the results. The two experiments discussed above serve as examples 
of some strategies we may apply. 

First of all we suggest to write out a model including all possible interactions as 
determined by the treatment and blocking structure of a given design. Based on subject 
matter knowledge or previous results we may then decide to drop certain treatment- 
block factor interactions (we can never drop interactions between blocking factors, 
whether they are real or not), which then become part of the experimental error. In 
doing so we should always withstand the temptation of convenience or the desire to 
obtain additional d.f. for error. The latter may be accomplished through a preliminary 
test in the context of the ANOVA. 

For the remaining interactions we have indicated different approaches, such as 
looking at LS means via interaction plots, using the SLICE operator in SAS PROC 
GLM, considering simple two-factor interactions and sets of orthogonal contrasts. Not 
always is it possible to arrive at a simple answer, especially if the structure is very com- 
plicated. The most important point is to stay within the objective of the experiment and 
perhaps formulate new objectives for a follow-up experiment. 

11.6 2" FACTORIALS IN INCOMPLETE 
BLOCKS 

As mentioned earlier the number of treatment combinations in a factorial experiment 
may be quite large. If an error-reduction design with blocking has to be used we may 
not be in a position to have sufficiently homogeneous blocks large enough to accom- 
modate all the treatment combinations. Hence some form of incomplete block design 
is called for. Obviously, any of the incomplete block designs we have described earlier 
can be used. For factorial experiments there exist, however, special methods of con- 
structing incomplete block designs based on the assumption or knowledge that certain 
interactions are negligible or of lesser importance. We shall illustrate this for the 2n 
factorial, specifically for the 23 factorial. Generalizations are discussed in detail in 
Chapters 11.8-12. 

11.6.1 

Suppose we have three factors A, B,  C ,  and we have available blocks of size 4. If we 
assume that the three-factor interaction ABC is negligible we can then arrange the treat- 
ment combinations in such a way that ABC becomes nonestimable or, as we say, ABC 

23 Factorial in Blocks of Size 4 
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is confounded with blocks. The idea is to assign those treatment combinations which 
enter positively into ABC to one block and those that enter negatively into another block 
and then replicate this basic arrangement T times. Recall now (or see Table 11 . l )  that 

ABC = - ao)(bl - bo)(cl - CO) 

1 = ;I[alblcl - a1b1co - U l b O C l  + a1boco - aoblcl 

+ aob1co + aoboc1 - aoboco]. 

Hence, the basic block arrangement is then as follows: 

Block 1: alblcl .  alboco. aoblco? aobocl 
Block 2: alblco. albocl. aoblci, aoboco. 

Using the familiar model (suppressing subscripts) 

y = p + O + r + e  

for each observation, we see immediately that for our arrangement 

(11.27) 

E(ABC) = B1 - 8 2  + ABC. (1 1.28) 

This illustrates the phrase that ABC is nonestimable, namely that for this design ABC 
is a biased estimator for ABC, the bias being 01 - 32, the difference of block effects. 
Thus also the phrase: ABC is confounded with blocks, that is, ABC and p1 - P 2  

cannot be separated. 
We see, however, from arrangement (1 1.27) that all other main effects and interac- 

tions are estimable in the usual way. The reason for that is that for every other effect 
each block contains two treatment combinations which enter positively into the effect 
and two which enter negatively so that the block effects cancel each other. Consider, 
for example, main effect A: 

- 

Block 1: positively: alblcl ,  alboco 
negatively: aoblco? aobocl 

Block 2: positively: alblco, albocl 
negatively: aoblcl, aoboco. 

Suppose we replicate the arrangement (1 1.27) r times, that is, we have 27- blocks of 
size 4 altogether. If we denote the block totals by B,(i = 1.2.  . . . . 2 r )  and the grand 
total by G, we can then write the ANOVA as given in Table 11.9. 

The important point to note here is that because of the confounding of ABC there 
are only 6 d.f. for treatments rather than the usual 7. This design is thus an example of 
what we have called earlier (see Section 9.8) a disconnected design, except that this is 
the result of a deliberate choice on our part. 

11.6.2 23 Factorial in Blocks of Size 2 

This method of constructing incomplete block arrangements or, as they are also called, 
systems of confounding, can be used for blocks with size equal to a power of 2 (the 
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Table 11.9 ANOVA for 23 Factorial in Blocks of Size 4 
and ABC Confounded 

Source d.f. ss E(MS) 

Blocks 

Treatments 
A 

B 

AB 

C 

AC 

BC 

Error 

2 r -1  

6 
1 

1 

1 

1 

1 

1 

6 ( r  - 1) 

2r[A]2 0," + 2r[AI2 

2r[B12 0," + 2r[B12 

2r[AB]* c," + 2r[ABI2 

2r[C]2 0,' + 2r[C]2 

2r [ AC] 0,' + 2r[ACI2 

2r[BCI2 0," + 2r[BC12 
2 

Difference 0 e  

Total 8 r -  1 Cy2 - L G 2  8r 

disadvantage, of course, is that it can only be used for blocks with size equal to a 
power of 2). For our example we shall now also consider the situation where we have 
available blocks of size 2. 

The general idea is to first partition the treatment combinations into two sets based 
upon the sign with which they enter into a certain interaction, say ABC as above: 

+ : a l b l c l .  a1boco. aob1co. aoboc1 

alblco. U l b O C l ,  aob1c1. aoboco - : 

Then each set above is partitioned again into sets of two based upon the sign with which 
they enter into another main effect or interaction, say BC. We then obtain the following 
partition: 

Sign for 

Block ABC BC Treatment Combination 

(11.29) 

These four sets then constitute the basic arrangement in blocks of size 2, and this 
arrangement will be replicated r times, giving us 4 r  blocks. 
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The way in which arrangement (1 1.29) was constructed implies that ABC and BC 
are confounded with blocks. By inspection we also see that the main effect A is con- 
founded with blocks, because 

E ( A )  = i(31 - 132 - 3 3  + 3 4 )  + A  

but all other effects are estimable, that is, not confounded. This is a consequence of 
our method of construction: Since we have four blocks with three d.f. among them, we 
have to confound three main effects or interactions (each with 1 d.f.) with blocks. Two 
of these three effects are chosen independently (ABC and BC in our case). The third 
effect is then determined automatically and can be obtained formally from 

ABC x BC = AB2C2 = A (1 1.30) 

that is, by formally multiplying the confounded effects into each other and then drop- 
ping any letter raised to the second power (for the mathematics behind this see Chap- 
ter 11.7). We also refer to A in this case as the generalized interaction between ABC and 
BC. The general rule concerning confounding then says: if two effects are confounded 
with blocks, then their generalized interaction is also confounded with blocks. 

11.6.3 Partial Confounding 

It is generally undesirable to confound main effects and two-factor interactions with 
blocks. In our simple (but not unrealistic) example this is unavoidable. We can see this 
by simply listing all possible systems of confounding: 

(i) ABC, AB.  ABC x A B  = C 

(ii) ABC, AC. ABC x AC = B 

(iii) ABC. BC. ABC x BC = A 

(iv) AB,  AC. AB x AC = BC 

( v ) A . B . A x  B = A B  

(vi) A,  C,  A x C = AC 

(vii) B.  C,  B x C = BC. 

(1 1.31) 

Clearly, (v), (vi) and (vii) are the most undesirable systems, and only system (iv) 
avoids confounding main effects but at the price of confounding all three 2-factor in- 
teractions. To avoid complete loss of information about the effects in one of the sets in 
(1 1.31) (and thereby obtaining full information about the remaining effects), we may 
use a compromise solution by constructing a design based on several systems of con- 
founding dictated largely by the requirements of the experiment. This may result in 
complete loss of information for some effects, partial information (to varying degrees) 
on other effects, and full information on the remaining effects. Such a method is re- 
ferred to as partial confounding (as compared to complete confounding as described 
above). We shall now give a simple example. 
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EXAMPLE 11.3: Suppose the requirements of our experiment for the 23 factorial are 

(a) We would like as much information about main effects as possible. 

(b) All 2-factor interactions are equally important and we need some information 
about them. 

(c) The 3-factor interaction is most likely negligible. 

(d) We have available 16 blocks of size 2. 

Since each of the systems of confounding listed in (1 1.3 1) gives rise to four blocks, one 
possibility then is to use four of those systems, each giving rise to a complete replicate. 
To satisfy the requirements of the experiment, we choose systems (i), (ii), (iii), (iv) and 
label the resulting arrangements Rep. I, Rep. 11, Rep. 111, Rep. IV, respectively, with 
the following confounded and estimable effects: 

Effects 

Replicate Confounded Estimable 

I C, AB, ABC A, B ,  AC, BC 

I B, AC, ABC A, C ,  AB, BC 

I11 A, BC, ABC B, C,  AB, AC 

IV AB, AC, BC A, B ,  C ,  ABC 

Over the whole experiment the amount of information for the individual effects is 
then as follows: 

Effect Amount of Information 

A 314 

B 314 

AB 1 /2 

C 314 

AC 1 /2 

BC 112 

ABC 114 

This seems to be a reasonable arrangement, in that it gives equal information about the 
main effects (314) and about the 2-factor interactions (112), and it gives some informa- 
tion about the 3-factor interaction. 

The actual layout, that is, the assignment of the treatment combinations to the 
blocks can be obtained following the rule given above. The result is presented in Ta- 
ble 11.10. 

As discussed above, all effects are estimable only from some of the replicates, 
namely those in which they are not confounded. This can be displayed as follows: 
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Estimable from Effective # 
Effect Replicates of replications ( T )  

A I, 11, IV 3 

B I, 111, IV 3 

AB 11, I11 2 

C 11, 111, IV 3 

AC I, I11 2 

BC I, I1 2 

ABC IV 1 

The difference in the effective number of replications implies that the effects are esti- 
mated with different precision, that is, in the general formula (1 1.14) for the variance 
of the estimate of an effect, T now takes on the values given above, that is, 

h 1 h h 

var(A) = var(B) = var(C) = -0: 
3 . 2  

1 2  h h h 

var(AB) = var(AC) = var(BC) = -ge 
2 . 2  

1 

1 . 2  
var(ABC) = -0,". 

This unequal replication is, of course, also reflected in the ANOVA as given in Ta- 
ble 11.1 1. Here, for example, A,,J,,J, indicates that the main effect A is estimated 

ci from the observations in replicates I, 11, IV only. 

The examples discussed above are meant to be an introduction to the notion of con- 
founding and partial confounding as well as the construction and analysis of appropri- 
ate designs. Using these examples the reader should have no difficulty applying these 
ideas to other 2n factorials in appropriate incomplete blocks. The task will be made 
easier, however, by applying the mathematical tools provided in Chapters 11.8 and 9. 
Extensions to other factorial experiments are discussed in detail in Chapters 11.10-12. 
A convenient tool to generate systems of confounding is provided by SAS PROC FAC- 
TEX (SAS Institute, Inc. 2002 - 2003). For an illustration see Examples 11.11 and 
11.12inSection 11.11. 

11.7 FRACTIONS OF 2" FACTORIALS 

11.7.1 Rationale for Fractional Replication 

In our discussion so far we have used designs in which all treatment combinations have 
been used the same number of times. This may not always be very practical, in partic- 
ular if the number of factors, n, is quite large. And as we have mentioned earlier, 2n 
factorial experiments are very valuable for exploratory experiments involving a large 
number of factors. 
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Table 11.10 Partial Confounding of a z3 
Factorial in Blocks of Size 2 

Replicate Block Treatment Combinations 

I 1 

2 

3 

4 

I1 5 

6 

7 

8 

I11 9 

10 

11 

12 

IV 13 

14 

15 

16 

The main reason for imposing the restriction that each of the treatment combina- 
tions is to be tested an equal number of times is that it results in the estimates of main 
effects and interactions having maximum precision and being uncorrelated. These, of 
course, are two reasonable and desirable properties. But is maximum precision really 
always necessary? Under what conditions can we achieve a precision that we may 
consider to be “suflcient” from a practical point of view? 

The question we then ask here is whether it is always necessary to test all factorial 
combinations equally frequently or whether we can omit some of them. To get some 
insight into this question let us consider the following example. 

EXAMPLE 1 1.4: Consider a 28 factorial, yielding 256 treatment combinations, but of 
the 255 d.f. only 36 account for the main effects (8) and the 2-factor interactions (28), 
with the remaining d.f. belonging to higher order interactions. Even if every treatment 
combination is tested only once, that is, T = 1, in blocks of size 16, say, and assuming 
that all interactions involving three or more factors are negligible, the breakdown of the 
d.f. in the ANOVA is as follows: 



1 1.7. FRACTIONS OF 2” FACTORIALS 453 

Table 11.11 ANOVA for Partially Confounded 23 
Factorial of Table 11.10 

Source d.f. ss E(MS) 
16 

Blocks 15 acB;-$ 
? = 1  . _  

Treatments 7 

A 

B 

AB 

C 

AC 

BC 

ABC 

Error 

Total 31 Cy’- 

uf + 6[Aj2 

0,’ + 6[B]’ 

5,’ + 4[AB]’ 

02 + 6[C]’ 

0,” + 4[AC]’ 

0: + 4[BC]2 

0,’ + 2[ABC]’ 

5: 

Source d.f. 

Blocks 15 

Main effects 8 

2-factor interactions 28 

Error 204 

Total 255 

The large number of d.f. for error (stemming from the negligible higher order inter- 
actions) may be more than is necessary and the precision that would result for the 
estimation of main effects and 2-factor interactions, given by a variance of 02/64, may 
well be unnecessarily high. We shall see later that under the assumptions made above 
64 carefully chosen treatment combinations may indeed provide sufficient information. 
Such a design is called a fractional factorial or fractional replication, in this case a 114 

13 replication of a 2* factorial. 
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U l b l C l  

a1boco 

aob1co 

aoboc1 

11.7.2 1/2 Fraction of the 23 Factorial 

We shall now explain the concept of a fractional factorial, that is, the choice of the 
treatment combinations to be used, in terms of a simple (but not practical) example. 
Suppose we have n = 3 factors, A, B, C, and we can use only four treatment combina- 
tions. How should we choose them and, having chosen them, what kind of information 
can we obtain? 

We are interested then in a 1/2 fraction of the 23 factorial. If we assume that the 
interaction ABC is negligible, we might choose as the 1/2 fraction either those treatment 
combinations which enter positively into ABC or those that enter negatively into ABC, 
that is, 

+ + + + + + 
+ - - - - + 
- + - - + - 

- - + + -  - 

Suppose we choose the "+" fraction. Let us then examine how we would use these 
four treatment combinations to estimate main effects and 2-factor interactions. We can 
deduce this easily from the following table (which is obtained from Table 11.1): 

1 A B AB C AC BC 

The use of SAS PROC FACTEX to generate this design is illustrated in Example 1 1. I 3 
(See Section 11.1 1). Substituting the treatment means jj(a,b,ck) for the treatment com- 
binations (a,b,ck) we see, by inspection, that A is estimated in the same way as BC, B 
in the same way as AC, and C in the same way as AB; that is, 

11.7.3 The Alias Structure 

Equations (1 1.32)-( 1 1.34) show that there is no way of estimating individually A, B, 
AB, etc., but only linear combinations of them. This can also be deduced intuitively 
by noticing that there are only three orthogonal contrasts among the four treatment 
combinations and those correspond to (1 1.32), (1 1.33), and (1 1.34). We then say that 
A and BC, B and AC, and C and AB are confounded with each other or aliased, that 
is, we cannot estimate them separately. Formally we can obtain the so-called alias 
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structure by realizing that the mean and ABC are confounded with each other which 
we express in the form of an algebraic identity as 

I = ABC. (11.35) 

This relation is known as the defining relation (contrast) or the identity relationship. It 
determines the type of fraction we are choosing and the alias structure by interpreting 
I as unity and formally multiplying each effect into both sides of (1 1.35) and deleting 
any letter raised to the power 2; thus 

A = A(ABC)  = A2BC = BC (1 1.36) 

B = B ( A B C )  = AB2C = AC (11.37) 

C = C(ABC)  = ABC2 = AB. (11.38) 

Interpreting the equality sign as “confounded with,” then (1 1.32) and (1 1.36), (1 1.33) 
and (1 1.37), and (1 1.34) and (1 1.38) express the same results. In this sense relation 
(1 1.35) also means that ABC is confounded with the mean. If we want to indicate that 
we have chosen the “+” fraction we may write (1 1.35) more explicitly as 

I = +ABC 

or if we have chosen the (complementary) “-” fraction, 

I = -ABC. 

In that case, rather than estimating A + BC we would be able to estimate A - BC, 
etc. The end result remains the same: the main effects are confounded with 2-factor 
interactions. 

For this fraction, or other fractional factorials in general to be useful we must make 
additional assumptions. In our case we assume that all 2-factor interactions are negli- 
gible. Then all main effects become estimable. This 1/2 fraction is therefore referred 
to as a main effectplan, also as a resolution ZZZ design (Box and Hunter, 1961), because 
the interaction (word) in (1 1.35) consists of three letters and as a consequence main 
effects are aliased with 2-factor interactions. 

If instead of (1 1.35) we had chosen the defining relation 

I = A B  

to select a 1/2 fraction, the alias structure would have been 

A = B  

C = ABC 
AC = BC. 

This seems a less desirable fraction, if only for the reason that two main effects are 
confounded. 

This simple example has brought out several properties of fractional factorials: 
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(i) Information is being “lost.” 

(ii) The fraction has to be chosen carefully to “minimize” the loss. 

(iii) Assumptions about higher order interactions have to be made in order to obtain 
(unbiased) estimates of main effects (and possibly low-order interactions). 

11.7.4 1/4 Fraction of the 28 Factorial 

It is clear from our discussion so far that the defining relation for a 1/2 fraction includes 
the highest-order interaction. But even a 1/2 fraction may still contain too many treat- 
ment combinations. Hence fractions of a high degree, such as 1/4, 1/8, etc., may have 
to be considered as viable designs. To illustrate this we now return to Example 11.4, a 
114 fraction of a 28 factorial with factors A, B, C ,  D ,  E ,  F ,  G, H. 

In principle we can proceed as follows: 

(i) divide the set of the 2* treatment combinations into two sets based upon the sign 
with which they enter into a chosen interaction, El say; 

(ii) choose one of those two sets; 

(iii) divide the chosen set again into two sets based upon the sign with which the 
treatment combinations enter into another designated interaction, E2, say. 

Since interactions are orthogonal contrasts we know that this will result in a set of 26 = 
64 treatment combinations. However, just as in constructing systems of confounding 
(Section 11.6) we must be careful in our choice of El and E2 for the following reason. 
Since all 64 chosen treatment combinations have the same sign in El and the same sign 
in E2. El and E2 are confounded with the mean. It is easy to see, however, that the 
generalized interaction E3 = ElE2 is then also confounded with the mean, that is, the 
64 chosen treatment combinations also have the same sign in E3 (see Chapter 11.13). 
The question then is: How should we choose El and E2 and hence E3 to obtain a 
fraction with the “most reasonable” alias structure knowing that this will be determined 
from the defining relation 

I = El = E2 = EY.  (1 1.39) 

An intuitive approach might be to start with the highest-order interaction for El and 
some other interaction for Ez, but this may lead to a low-order interaction for E3 and 
hence to an undesirable alias structure in that effects which we would like to estimate 
are confounded with each other. In order to approach this problem more systemati- 
cally, we first have to decide which effects we want to estimate and which interactions 
we may assume to be negligible. Suppose we want to estimate (if possible) all main 
effects and 2-factor interactions and we assume that all other interactions are negligi- 
ble. This means that main effects and 2-factor interactions cannot be confounded with 
other main effects and/or 2-factor interactions. To be assured of this we must have in 
(1 1.39) that El. E2 and E3 are at least 5-factor interactions. Suppose then we choose 
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El = A B C D E :  E2 = A B F G H ,  then E3 = ( A B C D E ) ( A B F G H )  = C D E F G H ,  
which obviously is of the required form. Hence we have 

I = A B C D E  = ABFGH = CDEFGH.  (11.40) 

This defining relation indicates that main effects will be confounded with interactions 
involving four or more factors, and 2-factor interactions are confounded with interac- 
tions involving three or more factors, for instance, 

A = B C D E  = BFGH = ACDEFGH 

AC = B D E  = BCFGH = ADEFGH.  

In addition, (1 1.40) determines the 1/4 fraction. Suppose we decide to choose all treat- 
ment combinations which enter negatively into ABCDE and ABFGH, we see from the 
definitions 

1 
A B C D E  = -(a1 - ~ o ) ( b l  - bo)(cl - co)(dl  - do)  

27 

(el - eo)(fi + fo)(gi + go)(hl + ho) 

27 

1 
ABFGH = -(a1 - ao)(bl  - bo)(cl + co)(dl + d o )  

(el + eo)(fl - fo)(gI - go)(hi - ho) 

that the selected treatment combinations must have an odd number of factors from A, 
B ,  C, D ,  E and A ,  B ,  F ,  G ,  H at the low (zero) level. Those treatment combinations 
are given in Table 11.12 (in order to simplify the notation we write a treatment combi- 
nation as ( 2 1 . 2 2 .  . . . ,x8) where 2, = 0. l ( i  = 1 . 2 .  . . . .8) indicating the low and high 
level of the ith factor, respectively). 

This fractional factorial is also called a resolution V design since the lowest-order 
interaction contained in (1 1.40) has five factors (letters) and consequently main effects 
are aliased with 4-factor interactions and 2-factor interactions are aliased with 3-factor 
interactions. In many situations a resolution V design is the most desirable fraction 
since it allows the estimation of all main effects and 2-factor interactions, assuming 
that all other interactions are negligible. But even such a fractional factorial may be 
too large, hence the need for resolution I11 and resolution IV designs. Resolution IV 
designs are fractions in which main effects are confounded with 3-factor interactions 
and 2-factor interactions are confounded with other 2-factor interactions (see Section 
11.13.3.2). 

11.7.5 Systems of Confounding for Fractional Factorials 

As mentioned earlier it may not be possible to arrange the 64 treatment combinations 
in a CRD with T = 1. Instead we may consider, an incomplete block design with b = 4 
blocks and k = 16 EUs per block. To do so we make use of the method described in 
Section 11.6. 
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Table 11.12 1/4 Fraction of the 28 Factorial 

1 . 0 0 0 0 0 0 0 0  3 3 . 1 0 1  1 1 0 0 0  
2 . 1 1 0 0 0 0 0 0 3 4 . 0 1 1 1 1 0 0 0  
3. 0 0 1 1  0 0 0 0 3 5 . 1 0  0 0 1 0  0 0 
4 . 1 1 1 1 0 0 0 0 3 6 . 0 1 0 0 1 0 0 0  
5 . 0 0 1 0  1 0 0 0  3 7 . 1 0 0  1 0 0 0 0  
6 . 1 1 1 0 1 0 0 0  3 8 . 0 1 0 1 0 0 0 0  
7 . 0 0 0 1 1 0 0 0  3 9 . 1 0 1 0 0 0 0 0  
8 . 1 1 0 1 1 0 0 0 4 0 . 0 1 1 0 0 0 0 0  
9. 0 0 0 0 0 1  1 0  4 1 . 1 0 1  1 1  1 1 0  

10. 1 1  0 0 0 1 1  0 42. 0 1 1  1 1  1 1  0 
11. 0 0 1 1  0 1 1  0 4 3 . 1 0  0 0 1 1  1 0  
1 2 . 1 1 1 1 0 1 1 0 4 4 . 0 1 0 0 1 1 1 0  
1 3 . 0 0 1 0 1 1 1 0  4 5 . 1 0 0 1 0 1 1 0  
14. 1 1  1 0  1 1  1 0  46. 0 1 0  1 0  1 1  0 
15. 0 0 0 1 1  1 1  0 47. 1 0  1 0  0 1 1  0 
16. 1 1  0 1 1  1 1  0 48. 0 1 1  0 0 1 1  0 
17. 0 0 0 0 0 1 0  1 49. 1 0  1 1  1 1  0 1 
18. 1 1  0 0 0 1 0  1 50. 0 1 1  1 1  1 0  1 
19. 0 0 1 1  0 1 0  1 51. 1 0  0 0 1 1  0 1 
2 0 . 1 1 1 1 0 1 0 1  5 2 . 0 1 0 0 1 1 0 1  
2 1 . 0 0 1 0 1 1 0 1  5 3 . 1 0 0 1 0 1 0 1  
2 2 . 1 1 1 0 1 1 0 1  5 4 . 0 1 0 1 0 1 0 1  
23. 0 0 0 1 1  1 0  1 55. 1 0  1 0  0 1 0  1 
2 4 . 1 1 0 1 1 1 0 1  5 6 . 0 1 1 0 0 1 0 1  
25. 0 0 0 0 0 0 1 1  57. 1 0  1 1  1 0  1 1  
26. 1 1  0 0 0 0 1 1  58. 0 1 1  1 1  0 1 1  
2 7 . 0 0 1 1 0 0 1 1  5 9 . 1 0 0 0 1 0 1 1  
28. 1 1  1 1  0 0 1 1  60. 0 1 0  0 1 0  1 1  
29. 0 0 1 0  1 0  1 1  61. 1 0  0 1 0  0 1 1  
3 0 . 1 1 1 0 1 0 1 1  6 2 . 0 1 0 1 0 0 1 1  
31. 0 0 0 1 1  0 1 1  63. 1 0  1 0  0 0 1 1  
3 2 . 1 1 0 1 1 0 1 1  6 4 . 0 1 1 0 0 0 1 1  
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EXAMPLE 11.5: For a 2 = $ fraction of a 2* factorial, that is, a 28-2 fractional 
factorial we obviously do not want to confound main effects and 2-factor interactions. 
These account for only 36 estimable functions of effects out of the 63 available. We 
therefore need to find two estimable functions of effects which were assumed to be 
negligible earlier. We then confound these effects and their generalized interaction 
with blocks. It follows from (1 1.40) that, for example, 

ACF = BDEF = BCGH = ADEGH (11.41) 

and 
BDG = ACEG = ADFH = BCEFH (1 1.42) 

are such functions and their generalized interaction 

ABCDFG = EFG = CDH = ABEH (1 1.43) 

is also of such form. The four blocks are then obtained by considering the signs with 
which each of the 64 treatment combinations obtained from (1 1.40) and given in Table 
11.12 enters into ACF (11.41) and BDG (11.42) as follows: 

In Table 11.13 we give those signs for each treatment combination and in Ta- 

The main effects and 2-factor interactions can then be estimated in the usual way. 
ble 1 1.14 we give the final design. 

For an effect X we have 

[sum of 25  obs. - sum of remaining 25 obs.] X = -  1 
28-2-1 

with 

We also have for the ANOVA (as outlined earlier) 

S S ( X )  = 2 4 [ x ] 2 .  

The sums of squares associated with higher order interactions, except those given in 
0 (1 1.41), (1 1.42), and (1 1.43), are, of course, part of the SS(Error). 

The methods of obtaining the 1/4 fraction and the block arrangements may ap- 
pear rather tedious, but they illustrate the underlying principles. More expeditious 
methods are described in Chapters 11.13 and 14 together with methods of obtaining 
fractional factorials for other factorial experiments. See also Section 11.11 illustrating 
SAS PROC FACTEX (SAS Institute, Inc. 2002 - 2003). 



460 CHAPTER 1 1. FACTORIAL EXPERIMENTS: BASIC IDEAS 

Table 11.13 Signs with Which Treatment Combinations 
in Table 11.12 Enter into ACF and BDG 

T.C.# ACF BDG T.C.# ACF BDG 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 

33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
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Table 11.14 1/4 Fraction of 28 Factorial in Blocks of Size 16 

Block 1 Block 2 

1 1 0 0 0 0 0 0  0 0 1 0 1 0 0 0  
0 0 1 1 0 0 0 0  1 1 0 1 1 0 0 0  
0 0 0 0 0 1 1 0  1 1 1 0 1 1 1 0  
1 1 1 1 0 1 1 0  0 0 0 1 1 1 1 0  
1 1 1 0 1 1 0 1  0 0 0 0 0 1 0 1  
0 0 0 1 1 1 0 1  1 1 1 1 0 1 0 1  
0 0 1 0 1 0 1 1  1 1 0 0 0 0 1 1  
1 1 0 1 1 0 1 1  0 0 1 1 0 0 1 1  
1 0 0 1 0 0 0 0  0 1 1 1 1 0 0 0  
0 1 1 0 0 0 0 0  1 0 0 0 1 0 0 0  
0 1 0 1 0 1 1 0  1 0 1 1 1 1 1 0  
1 0 1 0 0 1 1 0  0 1 0 0 1 1 1 0  
1 0 1 1 1 1 0 1  0 1 0 1 0 1 0 1  
0 1 0 0 1 1 0 1  1 0 1 0 0 1 0 1  
0 1 1 1 1 0 1 1  1 0 0 1 0 0 1 1  
1 0 0 0 1 0 1 1  0 1 1 0 0 0 1 1  

Block 3 Block 4 

1 1 1 0 1 0 0 0  0 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0  1 1 1 1 0 0 0 0  
0 0 1 0 1 1 1 0  1 1 0 0 0 1 1 0  
1 1 0 1 1 1 1 0  0 0 1 1 0 1 1 0  
1 1 0 0 0 1 0 1  0 0 1 0 1 1 0 1  
0 0 1 1 0 1 0 1  1 1 0 1 1 1 0 1  
0 0 0 0 0 0 1 1  1 1 1 0 1 0 1 1  
1 1 1 1 0 0 1 1  0 0 0 1 1 0 1 1  
1 0 1 1 1 0 0 0  0 1 0 1 0 0 0 0  
0 1 0 0 1 0 0 0  1 0 1 0 0 0 0 0  
0 1 1 1 1 1 1 0  1 0 0 1 0 1 1 0  
1 0 0 0 1 1 1 0  0 1 1 0 0 1 1 0  
1 0 0 1 0 1 0 1  0 1 1 1 1 1 0 1  
0 1 1 0 0 1 0 1  1 0 0 0 1 1 0 1  
0 1 0 1 0 0 1 1  1 0 1 1 1 0 1 1  
1 0 1 0 0 0 1 1  0 1 0 0 1 0 1 1  
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11.8 ORTHOGONAL MAIN EFFECT PLANS FOR 
2" FACTORIALS 

Among the fractional factorials discussed in the previous section, resolution I11 designs 
or main effect plans are of particular importance. We shall give a brief discussion here 
but defer details to Chapter 11.14. 

As mentioned earlier, the value of factorial experiments in general lies in the fact 
that higher order interactions are usually negligible. This leads to a considerable re- 
duction in the number of parameters, that is, treatment effects or, more specifically, 
treatment effect contrasts, that need to be considered in the analysis of the data from 
such experiments. This, in turn, also leads to a reduction in the number of treatment 
combinations to be used in an experiment and hence to a reduction in the number of 
observations to be taken. It is in this sense that factorial experiments can be very eco- 
nomical. 

The extreme situation is obviously achieved if all interactions can be considered 
negligible, so that the treatment effects can be represented in terms of main effects 
only. 

EXAMPLE 1 1.6: For n = 3. we can rewrite model (1 1.2) as 

For the 23 situation, which is of concern here, (1 1.44) can be rewritten in terms of the 
main effects as defined in (1 1.5) and Table 11.1 as follows (replacing A1 by A. A2 by 
B, and A3 by C): 

'TtJk = P * i  +A& iB* ?jC (1 1.45) 

where 2 . 3 ,  k = 0.1  and the signs on the right-hand side of (1 1.45) depend on the values 
of 2 ,  j ,  and k in that the minus sign is used if the corresponding subscript is 0 and the 
plus sign is used if the corresponding subscript is 1. For example, 

The equivalence of (1 1.44) and (1 1.45) can be verified easily by using the definition 
of the main effects for the 2" factorial and taking ,u = C ~ , b , c k / 2 ~  (for details see 
Chapter 11.7). The model (1 1.45) can obviously be extended to the general 2" factorial. 

0 

In general then, if the assumption of no interactions is reasonable, we need to be 
able to estimate only 1 + n parameters (the mean and n main effects) for an experiment 
with n factors each at two levels. We have seen in Section 11.6.2 that, for example, 
for n = 3 this can be achieved with 4 treatment combinations, that is, a ;-fraction of 
the 23 experiment. The treatment combinations (runs) used are listed below where the 
levels of the factors A, B, C for runs 1, 2, 3 , 4  are given in the body of the table: 
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Factor 

Factor 

Level 

0 1 

Run# A B C Observation 

1 1 1 1  Y1 

2 1 0 0  Y2 

3 0 1 0  Y3 

4 0 0 1  Y4 

Inspection of the table shows that for each pair of factors, that is, (A,  B), ( A ,  C), 
(B, C), each possible ordered combination of zeros and ones occurs the same number 
of times, in this case once. Such arrangements are called orthogonal arrays (more 
precisely, orthogonal arrays of strength two) and in connection with fractional factorials 
the design is called an orthogonal main effect plan. As the name suggests these plans 
allow the estimation of main effects (under the assumption of no interactions), and the 
estimators for the main effects are uncorrelated. For example, with the observations 
for the design above denoted by y1 y2, y3, y4, we have 

A = i ( Y l  + Y 2  - Y3 - Y4) 

B = + ( Y l - Y 2 + Y 3 - Y 4 )  

and 

2 2  , . A  

with 
cov(A, B )  = $(o: - 0,’ - oe + g e )  = 0 

and so on. 
The main effect plans described above have been given considerable prominence 

in industrial and process development, associated with the name Taguchi (for example, 
Taguchi, 1986). An interesting example of applying a main effect plan in product 
development is a tile experiment described by Taguchi (1986, pp. 80-83): 

~ 

A: Lime additive content 
B: Granularity of additive 
C: Agalmatolite content 
D: Type of agalmatolite 
E: Charge quantity 
F: Waste return content 
G: Feldspar content 

1% 5% 
coarse fine 
53% 43 % 
current mixture less expensive mixture 
1,300 kg 1,200 kg 
4% 0% 
5% 0% 
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The design used was an orthogonal main effect plan for 7 factors using the following 8 
treatment combinations: 

Factor 

0 0 0 0 0 0 0  
0 0 0 1 1 1 1  
0 1 1 0 0 1 1  
0 1 1 1 1 0 0  
1 0 1 0 1 0 1  
1 0 1 1 0 1 0  
1 1 0 0 1 1 0  
1 1 0 1 0 0 1  

The data consisted of the percent defective tiles. After estimating the main effects 
and using a model of the form (1 1.45) the optimum set of conditions was found to be 
a lb lcodoe l f lgo .  (Taguchi uses a slightly different argument and the reader is referred 

0 to his account (Taguchi, 1986 p. 83).) 

The same design as given above can also be used for fewer than 7 factors, say 5, 
by simply omitting factors F and G, say. This allows us to estimate the experimental 
error by using the contrasts that would otherwise have been the estimates of the main 
effects F and G. 

This last remark points out a potential difficulty with what are called saturated 
main effect plans, for example, a main effect plan for a 2 3  factorial in 4 runs or for a 
27 factorial in 8 runs, do not allow estimation of error. Such information must then be 
obtained from external sources or the experiment must be enlarged by replication of at 
least some treatment combinations. 

In the same way as described above we can examine 11 or fewer factors with 12 
runs in a plan originated by Plackett and Burman (1946) or 15 or fewer factors with 
16 runs using an orthogonal array, and so on. Construction of such designs will be 
discussed in Chapter 11.14. 

11.9 EXPERIMENTS WITH FACTORS AT 
THREE LEVELS 

We have mentioned earlier the usefulness of 2" factorial experiments, especially for 
exploratory studies. We have, however, pointed out also that 2n factorials allow us to 
study relatively simple effect structures only. To be more specific, in studying quan- 
titative factors we can make inferences only about linear (main) effects and linear x 
linear-type interactions. This can easily be understood by writing the linear model as a 
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regression model. For example, for a 23 factorial in a CRD we write 

y(212223)L = $0 + 01x1 + 0 2 2 2  + 3323 

+ e ( ~ 1 2 2 2 3 ) 1  ( I  = I ,  2 , .  . . ~ T ) .  (1 1.46) 

where 21, 2 2 ,  2 3  represent the (coded) levels of factors A, B, C, respectively, with 
2,  = - 1, 1 ( i  = 1 ~ 2 , 3 ) .  In this model the regression coefficients, 131, 0 2 ,  and 33, are 
then (apart from a constant) the main effects of A, B, C, respectively, 012, &3, and 
323 are the two-factor interactions between A and B, A and C, and B and C, respec- 
tively, and 3123 is the 3-factor interaction between A, B ,  C. These seven regression 
coefficients account for the seven d.f. among the eight treatment combinations. There 
is, therefore, no opportunity to explore possible curvature in the main effects. For this 
we need at least three levels for each factor so that we have at least two d.f. for each 
main effect. 

11.9.1 The 32 Factorial 

Suppose then we have n factors A, B. C.. . . each at three levels. This is referred to 
as a 3” factorial which can be used in conjunction with any error control design. Let 
us consider specifically the case n = 2 for purposes of illustration. Model (1 1.1) then 
reduces to 

or 

7 2 1  = P + A, + B, + (AB),, (11.47) 

with i. j = 0 . 1 , 2  representing the levels of the factors A and B. The main effects 
for A and B account for two d.f. each and the interaction between factors A and B 
accounts for four d.f. making up the eight d.f. among the nine treatment combinations. 
These d.f. can be partitioned further (see Section 7.2) depending on the nature (that is, 
qualitative or quantitative) of the factors. We shall consider here the case where both 
factors are quantitative. 

Let XI1 and X21 (1 = 0.1.2) denote the equally spaced levels of factors A and B, 
respectively. Then 

are the coded levels, with X,O = -1. ~~1 = 0, zt2 = +l(i  = 1 , 2 ) .  Similar to (11.46) 
we can then write a model of the form 
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Table 11.15 Design-Model Matrix X for 32 Factorial 

(51;Q) Q00 a 1 0  a01 0 2 0  Q 0 2  Q11 0 1 2  Q 2 1  Q 2 2  

(-1.-1) 1 -1 -1 1 1 1 -1 -1 1 
(-1.0) 1 -1 0 1 -2 0 2 0 - 2  
(-1.1) 1 -1 1 1 1 -1 -1 1 1 
(0,-1) 1 0 - 1 - 2  1 0  0 2 - 2  
(090) 1 0 0 - 2 - 2  0 0 0 4 
(0, 1) 1 0 1 - 2  1 0  0 - 2 - 2  
( L l )  1 1 - 1  1 1 - 1  1 - 1  1 
(130) 1 1 0  1 - 2  0 - 2  0 - 2  
(1, 1) 1 1 1 1 1 1 1 1 1  

( 2 . 2 ’  = 0.1.2;  m = 1 ,2 .  . . . . T ) .  This is an explicit model accounting for all d.f. for 
main effects and two-factor interactions. Using the method of least squares, estimates 
of the regression coefficients can be obtained. Tests of hypotheses can be performed 
concerning these regression coefficients (see Chapter 4). Although this is straightfor- 
ward, the interpretation is not always easy since the estimators are correlated. A more 
convenient way sometimes is to use a representation in terms of orthogonal polynomi- 
als (see Section 7.2). 

Let Po(x), Pl(x), and P ~ ( Z )  be the zero-th, first, and second order polynomials, 
respectively, for t = 3 (see Table 7.3). We can then rewrite (1 1.48) as 

To make this representation more explicit it is useful to write (1 1.49) in matrix nota- 
tion as 

y = X a + e ,  (1 1 S O )  

where y is the column vector of observations, X is the design-model matrix of known 
constants, a is the column vector of regression coefficients, and e is the column vector 
of errors. To simplify the notation we consider the case r = 1. The matrix X is then as 
given in Table 11.15 (for T > 1, each row of X is repeated r times). Since the columns 
of X are orthogonal to each other, X’X is a diagonal matrix, and it is then easy to obtain 

&! = (x’x)-1x’y 
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Table 11.16 ANOVA for Model (11.49) 

Source d.f. ss E ( M S )  

Treatments 

AL 

BL 

AQ 

BQ 
AL x BL 

AL x BQ 

AQ x BL 

AQ BQ 
Error 

8 

1 

1 

1 

1 

1 

1 

1 

1 

9(r  - 1) 

Total 9r - 1 SS(Tota1) 

For example, 

6 1 0  = i [ Y ( l ,  .) - Y(-L .)] 

where Y(1. ,) = Ef,=oy(l,z21,), and so on. Obviously, 810 is the estimator for the 
linear effect of factor A, AL say. Similarly, 

620 = &[Y(-l .  ,) - 2Y(O, .) + Y(1. .)] 

is the estimator for the quadratic effect (that is, curvature) of factor A, AQ say. To 
mention one of the interaction parameters, consider 

611 = i { [ y ( l .  1) - y(1, -1)] - [y(-1. 1) + y ( - l *  -l)]}; 

that is, a comparison of the linear effect of B at z1 = 1 versus the linear effect of B at 
2 1  = -1. We denote this interaction by AL x BL. Other interaction effects are defined 
and estimated similarly. 

Test of hypotheses about the regression coefficients in (1 1.49) can be made in con- 
junction with the ANOVA by partitioning S S ( T )  into eight single d.f. sums of squares 
each accounting for one of the regression coefficients. Details are given in Table 1 1.16. 
We note that the sums of squares are given for a CRD with r > 1 replications, with the 
appropriate changes in the estimated regression coefficients, for example, 

1 
6r 

6 1 0  = - [Y(l ,  .). - Y(-1. .).I 



468 CHAPTER 1 1. FACTORIAL EXPERIMENTS: BASIC IDEAS 

where 
2 7  

l '=O m = l  

is the sum of all the observations with 5 1  = 1, etc. The method of computing the sums 
of squares is, of course, that given in (7.24). 

11.9.2 Extensions 

Extensions of this method to the general case of n factors each at three levels should 
now be obvious. As more factors are included in the experiment many more d.f. 
become available for interactions, not only for interactions between two factors, but 
three factors, four factors, and so on. For higher order interactions partitions into 
AL x BL x CL,  AL x BL x CQ, and so forth may not be particularly useful as these 
components will become difficult to interpret except that they are part of the A x B x C 
interaction. Moreover, just as with 2n factorials, it is entirely likely that interactions 
involving three or more factors are negligible and that their sums of squares may be 
pooled with SS(E) .  

11.9.3 Formal Definition of Main Effects and 
Interactions 

Our discussion of 3" factorials so far has concentrated on quantitative factors with 
equally spaced levels. A more general representation dealing with other situations and 
in particular qualitative factors is obviously needed. We shall discuss such a method 
here briefly, deferring a more in-depth discussion to Chapter 11.10. 

We have seen in Section 11.3 that for the 2" factorial each main effect and each 
interaction can be expressed as a contrast among all 2" treatment combinations or, 
more precisely, among the true responses of all 2" treatment combinations. Thus each 
main effect and interaction is represented by a single d.f. contrast. Moreover, these 
contrasts are mutually orthogonal. 

For the 3" factorial we have seen above that each main effect, A say, consists of 
two comparisons, AL and AQ. And each 2-factor interaction, A x B say, consists 
of four contrasts, AL x BL. AL x BQ. AQ x BL and AQ x BQ. Extending this, 
each 3-factor interactions consist of 8 comparisons, and so on. Expressed alternatively, 
each main effect is represented by or accounts for 2 d.f., each 2-factor interaction for 
4 d.f.. each 3-factor interaction for 8 d.f., and so on. To partition the 4 d.f. for 2- 
factor interactions into two orthogonal sets of 2 d.f. each and the 8 d.f. for 3-factor 
interactions into 4 mutually orthogonal sets of 2 d.f. each, Yates (1937) introduced 
what we might call interaction components. This notion and the mathematics of the 
method were formalized by Kempthorne (1952) and can be described as follows. 

EXAMPLE 11.8: Let us consider the 33 factorial. We write a treatment combination 
as x = (21. ~ 2 . 5 3 )  where 5 ,  denotes the level of the ith factor with 5, = 0 , l .  2 ( z  = 

1.2.3).  To simplify the notation we denote the three factors by A, B, and C.  Further, 
let T(X) represent the true effect of the treatment combination x. 
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We know from Section 11.9.1 that the 2 d.f. corresponding to main effect A, say, 
are represented by comparisons among the treatment means with 21 = 0.21 = 1, and 
21 = 2, that is, T ( 0 .  '. .) vs. T ( 1 .  .% .) vs. T ( 2 .  . 3  .). Here ?(XI, .% .) for 21 = 0 . 1 , 2  
is a mean of 9 effects averaging over the 9 treatment combinations (51. 2 2 . 2 3 )  with 
x2> x3 = 0. 1 . 2  and fixed 2 1 .  Similarly, the main effects for B and C are represented 
by comparisons among treatment means with 2 2  = 0.22 = 1 ,x2  = 2, and 2 3  = 
0.23 = 1 . 2 3  = 2, respectively. 

This idea of two comparisons among three treatment means or, alternatively, among 
three sets of treatment combinations can be carried over to the various interactions. As 
mentioned above the 2-factor interaction A x B is partitioned into two components. 
These components are denoted by AB and AB2 and are defined as follows: AB is rep- 
resented by comparisons among the three means of treatments satisfying the equations 

2 1  + 2 2  = 0 vs. 2 1  + 2 2  = 1 vs. 2 1  + 2 2  = 2 ,  

where 21. 2 2  = 0.1 ,2  and all arithmetic is modulo 3. The second component, AB2, is 
represented by comparisons among means of treatments satisfying the equations 

2 1  + 222 = 0 vs. 2 1  + 2x2 = 1 vs. 2 1  + 222 = 2 

all mod 3. The remaining 2-factor interaction components, AC and AC2 for A x C ,  and 
BC and BC2 for B x C ,  are defined similarly. Finally, the four interaction components 
of the 3-factor interaction A x B x C are denoted by ABC. AB2C, ABC2. AB2C2, 
and are represented by comparisons among sets of treatment combinations satisfying 
the following equations 

ABC : 
AB2C : 
ABC2 : 
AB2C2 : 

x1 + 2 2  + z3 = 0.1 .2 .  mod 3 
21 + 2x2 + x 3  = 0.1.2. mod 3 
21 + 2 2  + 2x3 = 0 ,1 ,2 .  mod 3 
s1 + 2x2 + 2x3 = 0 , l .  2.  mod 3. 

We summarize the above definition of the various main effects and interactions for the 
33 factorial in Table 11.17, giving the names of the effectshteractions, and interaction 
components together with their d.f. and the left-hand sides of the equations defining 
the partitions of the 33 treatment combinations (the right-hand sides are always 0, 1, 2 
mod 3). The reader should have no difficulties extending the procedure to 3" factorials 
with n > 3. 

To motivate these definitions of main effects and interaction components we re- 
ferred to contrasts defining linear and quadratic contrasts as parts of main effects, for 
example, AL and AQ as parts of the main effect for factor A. In the context of the 
above discussion AL is represented by the comparison of treatment combinations sat- 
isfying x1 = 0 vs. 2 1  = 2. Similarly, AQ is represented by the comparison of the form 
+{XI = 0 and 2 1  = 2} vs. x1 = 1. We know, of course, that the two contrasts are 
orthogonal. For the formal definition as given above this does not have to be the case. 
For example, the two comparisons for main effect A could be (21 = 0 vs. x1 = l} and 
( 2 1  = 0 vs. 2 1  = 2). Another point we need to make here is that the comparisons for, 
say, AB and AB2 bear no relationship to AL x BL.  AL x BQ. AQ x BL,  and AQ x BQ. 
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Table 11.17 Main Effects and Interactions for the 33 Factorial 

Main Effect/Interaction d.f. Equation 

A 
B 

A x B  

AB 

A B ~  

C 

A x C  

AC 

AC2 

B x C  

BC 

BC2 

ABC 

A x B x C  

A B ~ C  

A B C ~  
A B ~ C ~  

These two representations simply refer to different partitions of the 4 d.f. for A x B .  
0 

The formal definitions of main effects and interaction components as presented in 
this section are most valuable in considering suitable arrangements for 3n factorials in 
incomplete blocks or in choosing suitable fractions of 3n factorials. We shall illustrate 
this with a few simple examples. 

11.9.4 

Let us consider the 33 factorial and blocks of size 9 (= 3'). To accommodate all 27 
treatment combinations in blocks of size 9 we need 3 blocks. The idea then is, just as in 
the case of 2n factorial (see Section 11.6), to confound certain interactions with blocks. 
In our case we have 2 d.f. among 3 blocks, which means that we need to confound an 
interaction with 2 d.f. with blocks. More precisely, we shall choose an interaction 
component which does account for 2 d.f. as we have just explained. If, for example, 
the 3-factor interaction A x B x C is assumed to be negligible or unimportant we can 

Systems of Confounding for the 3" Factorial 
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Table 11.18 Partition of 33 Treatment Combinations 

Set 2: Set 3: Set 1: 

5 1  + 5 2  + 5 3  = 0 5 1  + 2 2  + Z 3  = 1 x1 + 52 + 5 3  = 2 

0 0 0  
1 1 1  
2 2 2  
1 2 0  
2 1 0  
1 0 2  
2 0 1  
0 1 2  
0 2 1  

1 0 0  
2 1 1  
0 2 2  
2 2 0  
0 1 0  
2 0 2  
0 0 1  
1 1 2  
1 2 1  

2 0 0  
0 1 1  
1 2 2  
0 2 0  
1 1 0  
0 0 2  
1 0 1  
2 1 2  
2 2 1  

choose any one of the four interaction components ABC, AB2C, ABC2,  or AB2C2 
to confound with blocks. They are all equally important or, in our case, unimportant. 
Suppose we choose ABC. We then partition the 33 treatment combinations into three 
sets according to the equations for ABC, namely: 

Set 1: 

Set 2: 

Set 3: 

51 + x2 + I C Y  = 0 mod 3 

2 1  + 5 2  + 5 3  = 1 mod 3 

21 + 5 2  + 5 3  = 2 mod 3. 

Each set contains, of course, exactly 9 treatment combinations. These sets are given 
in Table 11.18. The treatment combinations in a given set are then all assigned to the 
same block thus generating what we shall refer to as the basic arrangement in 3 blocks 
of size 9 each. For the actual experiment the basic arrangement may then be replicated 
r times giving us 3r  blocks. 

Using the formal definitions of Section 11.9.3 we can verify easily that only ABC 
is confounded with blocks and that all other main effects and interactions can be esti- 
mated from this arrangement. For example, in each set (block) there are exactly three 
treatment combinations with x1 = 0, x1 = 1, and 5 1  = 2 which implies that any 
comparison among these three sets of treatment combinations is free of block effects. 

A consequence of this system of confounding is that although full information is 
obtained on all main effects and 2-factor interactions, only limited information on the 
3-factor interaction A x B x C is available through the interaction components AB2C, 
ABC2,  and AB2C2. This means that in the ANOVA table the 3-factor interaction 
A x B x C has only 6 d.f. 

This may be sufficient to get some idea whether 3-factor interaction is present. If, 
on the other hand, one is not willing to make the assumption that there is no interaction 
(as we did above) an obvious solution would be to use partial confounding (see Sec- 
tion 11.6.3). This can be done in various ways. We shall mention only two to illustrate 
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the general idea: 

(i) Use two basic replicates by confounding two of the 3-factor interaction compo- 
nents, say ABC and AB2C, one in each of the basic replicates. This allows 112 
information on ABC and AB2C and full information on ABC2 and AB2C2,  
thus restoring the 8 d.f. for A x B x C .  

(ii) If sufficient experimental material is available we could use four basic replicates 
confounding ABC, AB2C, ABC2, and AB2C2 in one of the four basic repli- 
cates, respectively. This will yield then 314 information on all four components 
and hence on the 8 d.f. for A x B x C .  

The general ideas presented in Section 11.6.2 to construct systems of confounding for 
2" factorials in blocks of size 2' ( 1  < n )  can be extended to 3" factorials in blocks of 
size 3'. For example, we may consider a 33 factorial in blocks of size 3. Obviously, 
several main effects or interaction components will have to be confounded with blocks; 
in this case four to be exact since we have 9 blocks and hence 8 d.f. among the blocks. 
These have to be chosen carefully. We shall not pursue this here any further but defer 
description of the general procedure to Chapter 11.10. 

11.9.5 Fractions of 3" Factorials 

Even more so than for the 2" factorial the number of treatment combinations for the 
3" factorial may be far too large for practical applications. And again, if higher order 
interactions are considered to be negligible it may be entirely satisfactory to consider 
only a fraction of all possible treatment combinations and still obtain most if not all 
of the information needed. The easiest method is to consider 1/3' fractions of the 
3" factorial ( I  < n) .  We shall give a simple example here and defer a more general 
description to Chapters 11.13 and 14. 

EXAMPLE 11.9: Let us consider a 113 fraction of the 33 factorial, that is, 9 out of the 
possible 27 treatment combinations. As in Section 11.7 the general idea is to assume 
that the highest-order interaction, in this case the 3-factor interaction, is negligible and 
use that fact to choose the treatment combinations to be included in the fraction. Recall 
that for each interaction component the set of all treatment combinations is partitioned 
into three subsets. For example for the component ABC the subsets will be obtained by 
satisfying the equations 

51 + 2 2  + 2 3  = 0, 1 , 2  mod 3. 

Any one of these subsets constitutes a 113 fraction which obviously does not allow 
estimation of contrasts belonging to ABC. What are other consequences? 

Since we are considering only 9 treatment combinations we have 8 d.f. for treat- 
ments, that is, there are 8 linearly independent comparisons among treatment effects 
that can be estimated. How can we identify these? Let us consider set 1 in Table 1 1.18 
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which constitutes the 113 fraction under consideration here: 

0 0 0  1 2 0  2 0 1  
1 1 1  2 1 0  0 1 2  
2 2 2  1 0 2  0 2 1  

The 2 d.f. associated with the main effect for factor A result from the comparisons of 
treatment combinations satisfying 

( 2 1  = O )  vs. ( 2 1  = 1) vs. ( 2 1  = a > .  (11.51) 

that is. 

A close look at the three sets of treatment combinations given in (1 1.52) shows that in 
addition to satisfying the equations in (1 1.5 1) they also represent comparisons satisfy- 
ing the equations 

( 2 2  + 2 3  = 0) vs. {.2 + 2 3  = 2) vs. {.2 + 2 3  = 1) (11.53) 

and 
{xl + 222 223 = 0} vs. {xl + 2x2 + 223 = 2 )  

vs. ( 2 1  + 2 2 2  + 223 = 1). (11.54) 

This means that the contrasts belonging to A also belong to the interaction compo- 
nents BC and AB2C2 as indicated by (11.53) and (11.54), respectively (see also Ta- 
ble 11.17). In the terminology of Section 11.7 we thus say that A, BC and AB2C2 are 
confounded or aliased with each other. 

Using similar arguments we can also show that B, AC, and AB2C are confounded 
with each other, and so are C ,  AB, ABC2 and, finally, AB2, AC2, BC2. To sum- 
marize, the alias structure for this fraction can be written as (using the convention of 
Section 11.7): 

A = B C =  AB2C2 

B = A C = A B 2 C  

c = A B = A B C ~  

AB2 = AC2 = B C 2 .  

(11.55) 

We have thus identified four sets of comparisons, each accounting for 2 d.f. In ad- 
dition these four sets are linearly independent of each other which means that we have 
indeed identified the 8 comparisons accounting for the 8 d.f. among the 9 treatment 
combinations. 
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Formally, (1 1.55) can be derived by a mathematical argument similar to that de- 
scribed in Section 11.7. We start with the identity relationship which determines the 
fraction, that is, the treatment combinations to be chosen as well as the alias structure. 
For our example the identity relationship is 

I = ABC (11.56) 

or if we want to determine the fraction uniquely 

which means that we choose the treatment combination satisfying z1 + x2 + 2 3  = 0 
rather than the other two possibilities, that is, x1 + x2 + 5 3  = 1 or x1 + x2 + x 3  = 2 .  
To obtain the alias structure we proceed as follows: 

(i) We consider (1 1 S6)  as a mathematical equation with I being the identity. 

(ii) We multiply each effect, that is, main effect or interaction component, formally 
into both sides of (1 1 S6);  

(iii) The power for each letter is reduced mod 3 if necessary and any letter raised to 
power 0 is deleted from the expression. 

(iv) If the first letter with nonzero power is raised to the power 2 then the entire 
expression is squared and again reduced mod 3 (this is done to adhere to the 
convention for having a unique enumeration of all possible effects such as given 
in Table 11.17). 

(v) In addition each effect is multiplied in the same way into (ABC)2 to obtain the 
second alias. 

To illustrate these steps we shall find the aliases of A, namely, 

A = A(ABC) = A(ABC)2 

= A2BC = A3B2C2 

= (A2BC)2 = B2C2 

= A4B2C2 = (B2C2)' 

= AB2C2 = B4C4 

= AB2C2 = BC. (11.57) 

In Section 11.6.2 we have referred to the generalized interaction, X Y  say, for two 
effects X and Y in the 2n system. In the 3" system we have for any two effects X 
and Y ,  say, not only one but two generalized interactions, denoted by XY and X Y 2 .  
Using the concept of the generalized interaction we can then also say that, for example, 
A is aliased with the generalized interactions of A and ABC, as given in (1 1 S7).  The 
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remaining aliases in (1 1.56) can be obtained in the same way. Finally, we note that 
together with ABC in (1 1 S 6 )  all possible effects for the 33 factorial (see Table 1 1.17) 
are accounted for in (1 1.55). 0 

The fractional factorial design we have discussed above is clearly of no practical 
value unless in addition to the assumption of zero 3-factor interaction we can also 
assume that all 2-factor interactions are zero or negligible. Then we can obtain infor- 
mation about main effects. This is another example of a main-effect plan or a resolution 
I11 design. 

11.9.6 Highly Fractionated 3" Factorials 

The reader should have no difficulty extending the ideas of the previous section and 
consider, for example, a 1/3 fraction of the 34 factorial leading to a resolution IV design 
or a 113 fraction of the 3' factorial leading to a resolution V design, and so on. But even 
a 1/3 fraction of a 35 factorial may be impractical as it leads still to too many treatment 
combinations. The problem becomes even more critical for 3" factorials with larger 
n. And it is not uncommon to have many factors in an experiment, in particular in 
an exploratory experiment. The need for highly fractionated factorials becomes then 
obvious, such as a 1/9 fraction of a 3' or 36, or a 1/27 fraction of a 36 factorial, and so 
on. 

Designs of the form mentioned above can be developed by combining and extend- 
ing the ideas and rules given in Sections 11.7.4 and 11.9.5. In particular, the identity 
relationship now contains several interaction components; some are chosen indepen- 
dently and others represent the generalized interactions of those chosen interaction 
components. For example, for a 1/32 fraction we can choose two interactions freely, 
say X and Y ,  so that 

I = x = Y = XY = X Y  2 

determines the treatment combinations to be included and also the alias structure. It is, 
of course, important to have an alias structure which allows us, under certain assump- 
tions, to estimate the effects and interactions in which we are interested. This is not 
always easy to do and care must be used to choose X and Y appropriately, or X ,  Y ,  2, 
say, for a 1/33 fraction, etc. We shall not pursue this any further here, but some rules 
will be developed in Chapters 11.13 and 14. 

11.9.7 Systems of Confounding for Fractions of 3" 
Factorials 

Even for a reasonable fractional factorial the number of treatment combinations may 
be too large for a suitable error-control design. For example, for the 1/3 fraction of the 
33 factorial we have 9 treatment combinations but the error-control design available 
may call for blocks of size 3. It becomes then necessary to use an incomplete block 
design and confound some effects with blocks, that is, use a system of confounding as 
described in Section 11.9.4. 
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To obtain a reasonable, that is, useful system of confounding we have to choose 
carefully the effect or effects to be confounded with blocks in order not to sacrifice 
needed information. To make that choice we have to consult the alias structure to see 
which effects can be estimated (if there were no blocking) and which of these are least 
important. These would be typically higher order interactions. Let us consider our 
example of Section 11.9.5 and suppose we have available blocks of size 3. We then 
need three blocks for a basic replicate. That means we need to confound 2 d.f. with 
blocks and since each effect in a 3" factorial accounts for 2 d.f. we need to confound 
one effect with blocks. Inspection of the alias structure (1 1.55) shows that if we do not 
want to confound a main effect with blocks the only choice is to confound AB2 (and 
its aliases) with blocks. Using the procedure of Section 11.9.4 we construct the blocks 
by finding the treatment combinations (among the 9 chosen for the fraction) satisfying 
the equations 

2 1  + 2x2 = 0 : 000.111,222 

2 1  + 2x2 = 1 : 210,102.021 

21 + 2x2 = 2 : 120,201.012 

and assign them to blocks 1, 2,  3, respectively. Suppose we have r replications of this 
basic arrangement, that is, 3r blocks altogether. Then the structure of the ANOVA 
is as given in Table 11.19. The important point is that there are now only 6 d.f. for 
treatments which are partitioned into the main effects A, B, and C each with 2 d.f. 

This simple example should convey the general idea that the construction of sys- 
tems of confounding for fractional factorials follows the same rules as for full facto- 
rials. The effects to be confounded are obtained from the alias structure. With each 
effect its aliases are also confounded with blocks. And if several effects need to be 
confounded with blocks then all their generalized interactions are confounded with 
blocks too. This makes this process not always easy and as a consequence sometimes 
confounding of desirable effects cannot be avoided. Systems of partial confounding 
may be helpful. 

11.10 EXPERIMENTS WITH FACTORS 
AT TWO AND THREE LEVELS 

11.10.1 Asymmetrical Factorial Experiments 

So far we have discussed two extreme types of factorial experiments: On the one ex- 
treme we have n factors all with possibly different numbers of levels; on the other 
extreme we have n factors all having the same number of levels, for instance, 2 or 3. 
These two types are referred to as asymmetrical (mixed) factorials and symmetrical 
(pure) factorials, respectively. 

In practical applications special kinds of asymmetrical factorials are often used. We 
may have two or three groups of factors where all factors in the same group have the 
same number of levels. Of particular interest are 2m x 3n experiments, that is, m factors 
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Table 11.19 Outline of ANOVA for 1/3 Fraction of 
33 Factorial in Blocks of Size 3 

Source d.f. 

Blocks 3r - 1 

A 2 

B 2  

c 2  

Error 6 ( r  - 1) 

Total 9r - 1 

with 2 levels each and n factors with 3 levels each. Their use has been advocated and 
promoted by Taguchi (1986, 1987) (see also Roy, 1990) in his parameter designs for 
off-line quality control. Of special importance in these applications are fractions of 
2m x 3" factorials (see Section 11.17.4.1. 

The construction of such fractions and of systems of confounding borrows heavily 
from the methods we have discussed in earlier sections. We shall give a few examples 
to illustrate the main ideas, but leave a more thorough discussion for Chapters 11.12 and 
13. 

11.10.2 Confounding in 2" x 3" Factorials 

To use the methods of constructing systems of confounding described in Sections 11.6 
and 11.9.4 we need to confine ourselves to blocks of size 2p x 34 with p < m, q < n. 
The general idea is to either combine a system of confounding for the 2m factorial 
with the complete 3" factorial, or a system of confounding for the 3" factorial with the 
complete 2" factorial or, as a third possibility, combine systems of confounding for 
both factorials. We shall illustrate this for the 22 x 32 factorial with blocks of size 18, 
12, 9, 6, and 4. 

Let us denote the treatment combinations by ( 2 1 ,  2 2 %  2 1 . 2 2 )  where 2 1 ,  2 2  = 0 . 1  
represent the levels of the 2' factorial with factors A, B and 21, 2 2  = 0 . 1 . 2  those of 
the 3' factorial with factors C ,  D.  Further, let S, denote the ith set of treatment combi- 
nations for a system of confounding for the 2* factorial and S; the j t h  set of a system 
of confounding for the 3' factorial. Combining sets S, and 5"; in an appropriate way, 
referred to as a Kroneckerproduct design, constitutes then a system of confounding for 
the 22 x 3' factorial. These can be described briefly as follows. 
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Blocks of Size 18: 

Confounding AB with blocks of size 2 gives S1 = ( (0 ,  0), (1, 1)}, Sz = ((1, 0), (0, 
1)). With S’ = ( (0 ,  01, (1, 01, ( 2 ,  01, (0, 11, (1, 11, ( 2 ,  11, (0, 2 ) ,  (1, 21, ( 2 ,  2 ) )  we 
then consider 5’1s’ and 5’2s’. This means we adjoin every treatment combination in 
S, (i = 1 . 2 )  with every treatment combination in S’, giving us two sets of 18 treatment 
combinations (Z~.XZ.Z~. z z ) .  Each set represents a block. These two blocks form the 
basic arrangement which can then be replicated T times. Except for the interaction AB 
(1 d.f.) the main effects for A, B,  C ,  D and all other interactions are estimable. 

An alternative to replicating the basic arrangement is to use partial confounding of 
A,  B, and AB. Such a plan yields then partial information about these three effects and 
full information about all other effects. 

Blocks of Size 12: 

For this situation we generate three sets S;  , Sa, 5’; by confounding, for example, CD. 
We then have 5’: = ((0.0).  (1 ,2) ,  (2, l)}, Sk = { ( l , O ) ,  (0.1). (2,2)}, and Si = 
( (2 .0) , (0 .2) , (1 .1)} .  WithS={(0,0).(1.0).(0.1),(1.1)}weformSS~,SS~.SS~ 
which yields three blocks of size 12. This basic arrangement needs to be replicated T 

times. Alternatively, some system of partial confounding for the 32 factorial may be 
used so that information about all main effects and interactions may be obtained. 

Blocks of Size 9: 

The only design in this class is obtained by confounding A,  B ,  and AB, that is, by 
forming S1 = {(O%O)} ,  S2 = { ( l . O ) } ,  S3 = ((0. I)}, S, = ((1.1)). These sets are 
then combined with S’ = {all treatment combinations for 32 factorial}. This arrange- 
ment is obviously of no practical value unless the 22 factorial itself is not important but 
only the 32 factorial and interactions between factors with 2 and 3 levels, for example, 
A x C ,  B x C ,  A x B x C ,  etc. 

Blocks of Size 6: 

This is the only situation where we combine systems of confounding for both the 22 and 
3’ factorials. One possibility is to confound AB generating S1 = ((0.0). (1.1)) and 
SZ = { (1.0). (0. l)}, and to confound CD, say, generating S: = { (0,O). (1 .2) .  (2. l)}, 
Sh = ( (1 .0) ,  (0. l), (2, a)} and 5’; = ( (2 ,0) ,  (0.2),  (1.1)). The six combinations 
SLSi (i = 1 ,2 :  j = 1.2 .3)  then yield six blocks of size 6. We should note here that in 
addition to AB and CD also the generalized interaction AB x CD is confounded with 
blocks. There exist, obviously, other possibilities of forming the S, and S; and various 
system of partial confounding can be used to obtain the desired amount of information 
about main effects and interactions. 

Blocks of Size 4: 

As with the case of blocks of size 9, this design is generally of no practical value as 
all effects of the 32 are confounded with blocks. We combine S1 = { (0, 0), (1.0), 
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(0. l),  (1.1)) with 5'; ( j  = 1 . 2 , .  . . ,9)  where each S; contains only one treatment 
combination from the 3' factorial. 

The method just described is obviously quite simple and can be extended easily 
to other factorials. It does, however, not always lead to the most practical or suitable 
arrangements. Using a different notion of partial confounding and employing other 
types of incomplete block designs we shall discuss other methods in Chapter 11.12 (for 
a listing of some useful designs see 11. Appendix D). 

11.10.3 Fractions of 2" x 3" Factorials 

The idea of considering the symmetrical factorials separately and then adjoining treat- 
ment combinations from those factorials in an appropriate manner can also be used to 
construct useful fractions of asymmetrical factorials. Connor and Young (1961) have 
devised such a method for 2m x 3" factorials. Their designs are such that they al- 
low the estimation of all main effects and 2-factor interactions assuming that all other 
interactions are negligible. 

We shall give only one example here to illustrate the method and refer the reader to 
the catalog of designs provided by Connor and Young (1961) as reprinted in McLean 
and Anderson (1984). We consider a 1/2 fraction of the 23 x 3' factorial with factors A, 
B, C having 2 levels and D ,  E having 3 levels. To this end we consider a 1/2 fraction 
of the 2 3  factorial based on the identity relationship 

I = ABC.  

This leads to a partition of the 8 treatment combinations into two sets, S1 and 5'2, ac- 
cording to the sign with which the treatment combinations into ABC (see Section 11.6) 
or, alternatively, according to whether they satisfy the equations 

SI : 2 1  + zz + z3 = 0 mod 2 

or 
S2 : z1 + 2 2  + x 3  = 1 mod 2. 

We thus obtain Each set represents a 1/2 fraction of the 23 factorial. 

0 0 0  1 0 0  
1 1 0  0 1 0  
1 0 1  0 0 1  
0 1 1  1 1 1  

For the 3* factorial we consider 1/3 fractions based on the identity relationship 

I = DE. 
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This leads to a partition into three sets S:, Si, Si based on the equations 

Si : z1 + z2 = 0 mod 3 

that is, 

s: s; s; 

0 0  1 0  2 0  
1 2  0 1  0 2  
2 1  2 2  1 1  

The 1/2 fraction for the 23 x 32 factorial is then obtained by adjoining the two types of 
sets as follows: 

s1s:, s2s;, s2s; 
Each set S2S; consists of 4 x 3 = 12 treatment combinations. The final design is given 
in Table 1 1.20. 

Since both 1/2 fractions of the 23 factorial and all three 1/3 fractions of the 32 fac- 
torial are used to obtain the final design it is possible to estimate all main effects and all 
2-factor interactions. As a consequence these types of designs are still quite large and 
other designs may have to be considered for practical applications. Of particular inter- 
est then are main effect plans as developed, for example, by Addelman and Kempthorne 
(1961) and Addelman (1962). Such methods are discussed in Chapter 11.14. 

Table 11.20 1/2 Fraction of 23 x 32 Factorial 

s1 s: s 2  s: 
00000 
000 12 
0002 1 
1 1000 
11012 
11021 
10100 
101 12 
10121 
01 100 
01112 
01121 

10010 
1000 1 
10022 
01010 
01001 
01022 
001 10 
00101 
00122 
11110 
11101 
11 122 

s 2  s; 
10020 
10002 
1001 1 
01020 
01002 
0101 1 
00120 
00102 
00111 
11120 
11 102 
11111 
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11.11 EXAMPLES USING SASs 

EXAMPLE 1 1.10: We consider here a purely numerical example to illustrate the roles 
of error-control, treatment and sampling design. We use a design of partial confounding 
of a 2’ factorial in blocks of size 2 with subsampling (two observations per EU). The 
design and the data are given in Table 11.21b. 

We use both SAS PROC GLM and SAS PROC MIXED to analyze the data. The 
main reason for using PROC GLM is to obtain an ANOVA table. The results of both 
analyses are given in Table 11.21b, based on the input statements given in Table 11.21a. 

We make the following comments on the input and output: 

(i) In order to obtain the correct test for A, B ,  A * B we have to specify in PROC 
GLM E = block * A * B as the correct error term, that is, the experimental error. 
In PROC MIXED this is done correctly automatically by declaring block*A * B 
as a random effect. 

(ii) The observational error variance component is estimated as 8; = 1.2917 (in 
GLM in the basic ANOVA and in MIXED as Residual). 

(iii) The experimental error variance component is estimated in MIXED as $: = 
block * A * B = 1.7292 We can obtain the same value in GLM from MS (block * 
A * B)as 

82 = [MS(block * A * B) - MS(ERROR)]/2 

= (4.75 - 1.2917)/2 = 1.7292 

(iv) Both analyses produce the same results for testing hypotheses about A, B and 
A * B. 

(v) The estimates for A, B, and A * B are obtained in MIXED by specifying the 
appropriate contrasts. Since all effects are confounded in one (out of three) repli- 
cates, they are all estimated with the same variance, namely, 

where r* is the effective number of replications and n is the size of the subsam- 
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ple. As a consequence, 

h h 

se(A) = s e ( B )  = s e ( A * B )  

MS(EE) 'I2 
= ( r*n ) 

MS(block*A * B) = (  4 

1 /2  

- - (Y)  = 1.0897. 

(vi) The LS means (which are not available in GLM) can also be used to obtain the 
estimates for A, B, and A * B. 

(vii) The d.f. for testing hypotheses about A, B, and A * B are the d.f. for experimen- 
tal error. They are obtained as 

# of EUs - # of treatments - # of blocks +1 

= 12 - 4 - 6 +1 

= 3 (see Table9.13). 0 

Table 11.21 2' Factorial in Blocks of Size 2 

a) Input statements: 

data factorial; 
input block A B y @ @; 
datalines; 
1 0 0 4  1 0 0 5  1 1 1 7  1 1 1 6  
2 1 0 6  2 1 0 8  2 0 1 1 0 2 0 1 1 1  
3 1 0 7  3 1 0 7  3 0 0 3  3 0 0 5  
4 0  1 9  4 0  1 124 1 1 124 1 1 14 
5 0 1 1 0 5 0 1 1 1 5 0 0 6  5 0 0 5  
6 1 0 7  6 1 0 6  6 1 1 8  6 1 1 1 0  

run; 

proc print data=factorial; 
title1 'DATA FOR 2**2 FACTORIAL'; 
title2 'IN INCOMPLETE BLOCKS'; 
title3 'WITH SUBSAMPLING'; 
run; 
proc glm data=factorial; 
class block A B; 
model y = block A B A*B block*A*B; 
test H = A B A*B E = block*A*B; 
title1 'ANALYSIS OF 2**2 FACTORIAL'; 
run: 
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Table 11.21 (Continued) 
proc mixed data=factorial; 
class block A B; 
model y = block A B A*B; 
random blockXA*B; 
lsmeans A B A*B; 
estimate ' A  A -1 1; 
estimate 'B' B -1 1; 
estimate 'A*B' A*B -1 1 1 -l/divisor=2; 
run; 

b.) Output: __ 

3ATA FOR 2 * * 2  FACTORIAL 
IN TNCCMPLETE BLOCKS 
WITH SUESAMPLING 

Obs 

i 
2 
3 
4 
5 
6 
7 
8 
9 

13 
11 
12 
13 
14 
15 
16 
17 

19 
20 
21 
22 
23 
24 

:a 

blcck 

1 
1 

2 
2 
2 
2 
3 
3 
3 

4 
4 
4 
4 
5 

5 
5 
6 
6 
6 
6 

7 

c 

A 

0 
3 

1 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
3 
3 
0 
0 
1 
1 
1 
1 

E 

0 
C 
1 

0 
0 
1 

C 
3 
0 
0 
i 

1 
1 

i 
3 
0 
0 
3 

1 

Y 

4 

7 
5 
6 
8 
10 
11 
7 
7 
3 
5 
9 

;2  
12 
14 
;0 
11 
6 
5 

6 
8 
10 

c 

7 

ANALYSIS OF 2 * * 2  FACTOZTAL 

The GLX Procedure 

Class Level Information 

Class Levels Va1,es 

blcck 6 1 2 3 4 5 6  

A 2 0 1  

3 2 3 1  

NJmber of Observations Read 
Number of Observations Used 

483 

24 
24 
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Table 11.21 (Continued) 

D e p e n d e n t  V a r i a b l e :  y 

SEm of 
S o u r c e c z  S q u a r e s  Mean S q c a r e  F V a l u e  Pr > F 

Mode; 11 ISi.1250C00 15.5568182 i2.04 <.0001 

E r r c r  12 15.500c030 I. 2916667 

C o r r e c t e d  T o r a l  23 186.6250300 

R-Square  C o e f f  Var 3 o o t  MSE y Mear. 

0 . 9 1 6 9 4 6  14.431?4 1.135515 7.8?5000 

s o u r c e  

b l o c k  
A 
E 
A*F? 
ElOck*A.B 

S o u r c e  

b l o c k  
A 
B 
AXE 
blockxA.*E 

DF 

5 
1 
1 
1 
3 

DF 

5 

1 

1 
3 

Type I SS 

108.375030C 
4.0000000 

12.25C0000 
2.2503000 
14.2500cc3 

Type 111 SS 

3L.41666667 
4.300c0000 

42.2500000C 
2.25000000 
14.25300300 

Mean S q u a r e  F ValJe Ir > F 

21.6750C00 1 6 . - 8  <.030i 
4.300C00C 3.10 0.1039 

42.2530C3C 32.71 <.00C1 
2.2500000 1.74 0.2115 
4.75C0300 3.68 C.0436 

Xean S q u a r e  F '<aide 3r > F 

6.28333333 4.86 0.C116 
4.00330C00 3.10 9.1039 

42.25003000 32.71 <.COO: 
2.2500000C 1.54 0.2115 
4.75000000 3.68 0.C436 

T e s t s  o f  Hypotb-eses  Us1r.g tb.e Yype I11 MS f o r  biocX*A*E a s  a n  E r r o r  T e r m  

S c'; r c e DF Type 111 SS Mean S q u a r e  F V a l u e  P r  > F 

A 
B 
A*3 

i 4.00003000 4.0300C00C 0.84 0.4265 
1 42.25030000 42.250C00C0 8.89 0.0585 
i 2.25003000 2.250000OC 0.47 5.5407 

The Mixed  P r o c e d u r e  

Model I n f o r m a t i o n  

C a t a  S e t  WORK. FACTORIAL 

C o v a r i a n c e  S t r u c t u r e  V a r i a n c e  Ccrnpenents 
E s r i m a t i c r .  Xezhoc REML 
3 e s i d u a l  V a r i a n c e  Method P r o f i l e  
F;xed E f f e c z s  SE Method P o d e l - B a s e d  
D e g r e e s  of F r e e d o r ,  Method C o n t a i n m e n t  

DeFer.denr V a r i a b l e  Y 
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Table 11.21 (Continued) 

I z e r a t i o n  . ? i s to ry  

I t e r a t i o n  E v a l u a t i o n s  -2 Res Log Like C r i t e r i o n  

0 1 63.93019485 
i L Ei ,40414523 c.00030000 

Convergence c r i t e r i a  met .  

ANALYSIS CF 2**2 FACTORIAL 

The Yixed P rocedure  

Covariance Pa rame te r  
Estimates 

Cov P a m  E s t i r . a t  e 

blocX*A*B 1.7292 
2e s i d.2 a i 1.2917 

C f f e c t  

b l o c k  
A 
B 
h*E 

Type 3 T e s t s  of F ixed  E f f e c t s  

Nur Den 
C F  DF F ValLe P r  > F 

c 3 1.32 0.4353 
1 3 0.84 0.4263 
1 7 e.89 0.0585 
1 3 0.47 0.5407 

E s t i m a t e s  

S tanda rd  
Label E s t i m a t e  E r r o r  DF t Value P r  > lti 

A 1 . 0 0 0 0  1.0897 3 0.92 0.4265 
B 3.2500 1.0897 7 2.98 0.0585 
h*B C ,7500 1.0897 7 0.59 0.5407 

L e a s t  

EffecL A 3 E s t i m a t e  

A 
A 
B 
E 
A*E 
A*B 
A*B 
A*3 

0 
1 

0 
1 

0 0  
0 1  
1 0  
1 :  

7.3753 
8.3750 
6.2500 
9.5000 
5.3750 
9.3750 
7.1250 
9.6250 

Squares  Means 

S t a n d a r d  
E r r o r  3F t Value P r  > It1 

0.7C34 
0.7034 
c .  7034 
0.7034 
1.0433 
1.0433 
1. C433 
1.0433 

10.48 0.0019 
11.9: 0.0013 
8.89 O.OC30 

13.51 0.00C9 
5.15 0.0142 
8.99 0.0029 
6.83 0 . 0 0 F 4  
9.23 0,0027 
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EXAMPLE 11.1 1: Using SAS PROC FACTEX we generate the 23 factorial design 
in blocks of size 4 as given in Section 11.6.1 The input statements are given in Table 
1 1.22a. We make the following comments: 

(i) The “factors” statement gives the names of the factors. The default is that these 
factors have 2 levels. 

(ii) The “blocks” input specifies the size of the blocks. 

(iii) The “model” statement indicates which effects and interactions we want to esti- 
mate; in this example we specify the main effects and two-factor interactions as 
indicated. If we specify too many effects and interactions no suitable system of 
confounding may exist. 

The output is given in Table 1 1.22b: 

(iv) The design is given in two forms, first in the standard order of the treatment com- 
binations, second (because of the output statement) in the order of the blocks. We 
note here that the levels of the factors are labeled as - 1 and 1, which corresponds 
to our notation of 0 and 1. 

(v) The “Block Pseudo-factor Confounding Rules” gives in general the names of the 
interactions which were chosen to generate the system of confounding. In our 

0 example it is the three-factor interaction ABC. 

EXAMPLE 1 1.12: We use SAS PROC FACTEX to generate a system of confounding 
for the 25 factorial in blocks of size 8. The input statements and the output are given in 
Table 11.23a. b, respectively: 

(i) We denote the factors by fl, . . ., f j .  

(ii) We want to estimate all main effects and two-factor interactions. 

(iii) The interactions to be confounded with blocks are given as f 2  * f3  x f4 * f 5  and 
fl * f 4  * f s ,  and consequently their generalized interaction f l  x f 2  * f3, thus 
achieving the stated objective. 0 

EXAMPLE 11.13: Here we use SAS PROC FACTEX to generate a fractional facto- 
rial design. Specifically, we consider the 1/2 fraction of the 23 factorial (see Section 
11.7.2). We comment briefly on the input statements and the output given in Table 
11.24: 

(i) We have given two equivalent input statements which will generate the same 
design: 
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Table 11.22 23 Factorial Design in Blocks of 4 

a) Input statements: 

proc factex: 
factors A B C; 
blocks size=4: 
model estimate=(AIBlC @ 2 ) :  
examine design confounding; 
output out=design hlockname=hlock rivals=( 1 2 ) :  
title '2**3 FACTORIAL IN BLOCKS OF SIZE 4'; 
run; 

proc print data=design; 
run; 

b.) Output: 

2**3 FACTORIAL I N  BLOCKS OF S I Z E  4 

T h e  FACTEX P r o c e d u r e  

D e s i g n  P o i n t s  

E x p e r i m e n t  
N u m b e r  A B C B l o c k  

1 -1 -1 -1 1 
2 -1 -1 1 2 
3 -1 1 -1 2 
4 -1 1 1 1 
5 1 -1 -1 2 
6 1 -1 1 1 
7 1 1 - 1  1 
8 1 1 1 2 

B l o c k  Pseudo-factor C o n f o u n d i n g  R u l e s  

[El] = A*B*C 

2 * * 3  FACTORIAL I N  BLOCKS OF S I Z E  4 

Obs block A 9 C 

1 -1 -1 -1 
2 1 -i 1 1 
3 1 1 -1 1 
4 1 1 1 -1 
5 2 -1 -1 1 
6 2 -1 1 -1 
7 2 1 -1 -1 
8 2 1 1 1  
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Table 11.23 2' Factorial Design in Blocks of 4 

a) Input statements: 

proc factex; 
factors fl-f5; 
blocks size=& 
model estimate=(fl If2 1 f3 1 f4 If5 @2): 
examine design confounding; 
title ' 2**5  FACTORIAL DESIGN IN BLOCKS OF SIZE 8'; 
run; 

b) Output: 
~ 

2**5 FACTORYA: CESIGN I N  SIOCXS OF SIZE 8 

The F'ACTEX Proced-re  

C e s i g n  ?oinEs 

Experimen: 
Nu.-,ber fl f 2  f 3  f 4  f 5  91CC'< 

1 -i -1 -1 -1 -1 
2 -1 -1 -1 -1 1 
3 -1 -1 -1 1 -1 
4 -1 -1 -1 1 1 
5 -1 -1 1 -1 -1 
6 -1 -1 1 -1 1 

-1 1 1 -1 
8 -1 -1 1 1 1 
9 -1 1 -1 -1 -1 

10 -1 1 -1 -1 1 
11 -1 1 -1 1 -1 
12 -1 1 -1 1 
13 -1 1 1 -1 -1 
14 -1 1 1 -1 1 

-1 1 5  -1 1 
1 6  -1 1 1 1 1 

-1 1: 1 -1 -1 -I 

18 1 -1 1 
19 1 -1 -1 1 -1 

1 20 1 -1 -I 

- -1 21 -1 
-1 1 --I 1 

1 -I 

22 1 
23 i 

1 -1 1 1 1 
-1 

2 4  
2 5  
2 6  1 -1 -1 

-1 2 7  1 
2 6  -1 1 1 
29 1 1 1 -1 

1 
1 1 -i 

30 
31 
32 1 1 1 1 

- 

- 
, - 

Elock Pseuao- fac ro r  C o n i o u n d i n g  R u l e s  

[31] = f2*:3wf4*f5 
[ 3 2 j  = f l * f 4 i f 5  

4 
4 

4 
3 
2 
2 
3 
3 
2 
2 
3 
4 

4 
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Table 11.24 1/2 Fraction of 23 Factorial 

489 

a) Input statements: 

proc factex: 
factors A B C; 
size design4; 
model estimate=(A B C): 
examine design aliasing confounding: 
title '112 FRACTION OF 2**3 FACTORIAL; 
run; 

proc factex; 
factors A B C; 
size fraction=2; 
model res=3; 
run: 

b.) Output: - 

1/2 FRACTION OF 2 * - 3  FACTORIAL 

The FACTEX P r o c e d u r e  

3es:gn P o i n t s  

E x p e r i m e n t  
Number A E L, 

-i 1 
-1 

-1 -1 
2 
3 
4 1 1 1 

-1 

i 

F a c t o r  C o n f o u c d i n g  R u l e s  

C = A*B 

A l i a s i n g  S r r u c t u r e  

A = 9*2 
E = A * C  
C = A*B 
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The size of the design can be stated either as “size design = # of design points 
(runs)” or as “size fraction = denominator of fraction”. 

The model statement can be given either in terms of effects and interactions to 
be estimated or in terms of the resolution of the design (see Section 11.7.4). 

(ii) The design points are given in Table 11.24b. 

( 3 )  The “Factor Confounding Rules” gives an expression equivalent to the defining 
relationship (see (1 1.35). The expression 

can be interpreted as the method of constructing the design: Starting with the 
full 2’ factorial with factors A and B the levels of factor C are obtained by 
multiplying for each run the corresponding levels of A and B. 

(iv) The “Aliasing Structure” is obtained as explained in Section 11.7.3. 0 

EXAMPLE 11.14: In this example we use SAS PROC FACTEX to combine fraction- 
ation and confounding. Specifically, we consider the 1/16 fraction of the 28 factorial 
in blocks of size 8 in the form of a resolution IV design. 

The input statements and the output are given in Table 11.25: 

(i) The 16 design points are given in Table 11.25b, assigning them to two blocks. 

(ii) The factor confounding rules specifies four interactions in the defining relation- 
ship, each consisting of four factors, that is, 

I = f 2 * f 3 * f 4 * f 5 =  fl * f 3  * f 4  * f 6  

= f l  * f 2  * f 4  * f7 = fl  * f 2  * f 3  * f 8  

to which should be added all their generalized interactions. 

(iii) The block pseudo-factor rule specifies one (“estimable”) four-factor interaction 
to generate the system of confounding. 

(iv) The alias structure indicates that all main effects are estimable (assuming that 
three-factor interactions are negligible) and which two-factor interactions are 
aliased with each other. 

(v) The two-factor interactions indicated by [ B ]  are confounded with blocks since 
0 they are aliased with f l  * f 2  * f 3  f4  in [Bl]. 
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Table 11.25 Fractional Replication with Confounding 

a) Input statements: 

proc factex; 
factors fl-f8; 
size design=16; 
blocks size=8; 
model res=4; 
examine design aliasing confounding; 
title1 '1116 FRACTION OF 2**8 FACTORIAL': 
title2 'IN BLOCKS OF SIZE 8': 
run; 

b.) Output: __ 

1 / 1 6  FRACTION OF 2**8 FACTORIAL 
IN BLOCKS OF S I Z E  8 

T h e  FACTEX P r o c e d u r e  

D e s i g n  P o i n t s  

E x p e r i m e n t  
N u m b e r  fl f 2  f 3  f 4  f 5  f 6  f 7  f8 B l o c k  

1 -1 -1 -1 -1 -1 -1 -1 
2 -1 -1 -1 1 1 1 1 
2 -1 -- i -1 i 1 -1 
4 -1 -1 1 1 -1 -1 1 
5 -1 1 -1 -1 1 -1 1 
6 -1 1 -1 1 - Y  1 -1 
7 -1 1 1 -1 -1 1 1 
8 -1 1 1 1  l - .  I -1 
9 1 -  1 -1 -1 -1 1 

1 -1 -1 13 1 -1 -1 1 
11 1 -1 1 -1 1 1 

1 -1 12 1 -1 1 1 -1 
13 1 1 -1 -1 1 
14 1 1 -1 1 -1 -1 1 

1 1 1 -1 -1 -1 -1 
16 1 1 1 1 1 
15 

- 1  

-1 

F a c t o r  C o n f o u n d i n g  R u l e s  

f5 = f 2 * f 3 * f 4  
f 6  = fl*f3*f4 
f 7  = f l * f 2 * f 4  
f 8  = f l * f 2 * f 3  

B l o c k  2 s e u a c - f a c t o r  C o n f o u n d i n g  R l ; l e s  

:B1] = f l * f i * f 3 * f 4  

-1 
-1 

-1 
-1 

1 

-1 
-1 
-1 
-1 
1 

2 
1 

2 

2 
1 

2 
2 

2 

1 
2 



492 CHAPTER 11. FACTORIAL EXPERIMENTS: BASIC IDEAS 

Table 11.25 (Continued) 

Aliasing S t r u c t - x e  

fl 
52 
f 3  
f 4  

i 6  
f i  
f 8  
f h f 2  = f ? + f 8  = f 4 x f 7  = f5*f6 
f l * f 3  = f2*fS = f 4 x f E  = f5*f7 
fl*f4 = ' 2* f?  = f3*f5 = f 5 * f Z  

[E: = f l x f 5  = f2*f6 = f?*f7 = f4 .58 
flXf5 = f2*f5 = f ? * f 4  = f 7 * f S  
f l * f i  = f2*f4 = f ? * f 5  = f6*f8 

4 5  _ -  

fi*fe = f 2 * f ?  = i 4 * f 5  = i6zfi 

11.12 EXERCISES 

11.1 Show that for the 24 factorial the main effects and interactions represent a com- 
plete set of orthogonal contrasts among the 16 treatment combinations. 

11.2 Consider a 2' factorial experiment in a randomized complete block design with 
b blocks. 

(i) Define, in terms of the true treatment effects, the main effects and two- 

(ii) Show that the main effects and the two-factor interaction are orthogonal 
contrasts among the treatment effects. 

(iii) Suppose each experimental unit has 3 observational units. Give an expres- 
sion for the variance of the estimators for the main effects and interaction. 

(iv) Outline the ANOVA table for the design with b blocks and 3 observational 
units per experimental unit giving source of variation, d.f., E(MS), and the 
F-ratios for testing hypotheses about the main effects and interaction. 

factor interaction. 

11.3 Consider the following block designs with 5 blocks and with treatments having 
a 2' factorial structure (with factors A and B, say): 

(a) randomized complete block design with 2 samples per EU, and 2 measure- 

(b) generalized randomized block design with 4 replications for each treatment 

(c) generalized randomized block design with 2 replications for each treatment 

ments per sample; 

per block; 

per block, and 2 observations per EU. 

For each design: 
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(ii) Write out an appropriate linear model. 

(ii) Outline the ANOVA table, giving sources of variation, d.f. (for the d.f. give 
numbers not formulas), and E(MS). 

(iii) Indicat how you would test for main effects and interactions. 

(iv) Give the variance for Â  and give its estimator, that is, i%r(.;). 

11.4 Consider a 2* factorial experiment in a completely randomized design with r 
replications for each treatment combination. Suppose that for each observation, 
y, information on a covariate, 2, is available. 

(i) Using the supplementary information, give the general expression for the 
(adjusted) estimator for the main effect A. 

(ii) Let A,,, B,,, (AB),, and E,, be the sums of squares for A, B, AB 
and Error, respectively, in the ANOVA table without the covariate. Using 
similar notation, give general expressions for the corresponding sums of 
squares when the covariate is included in the analysis. 

11.5 Suppose you are consulted to help design an esperiment involving two factors 
at two levels each. A sufficient number of blocks of size two are available for 
the experiment. The investigator wishes to obtain equal information on the main 
effects and the two-factor interaction. 

(i) Give the name of the method used for constructing a suitable experimental 
design. 

(ii) Write out explicitly the design for this study and explain how you obtained 
it. 

(iii) Outline the ANOVA table for the design given in (ii), including source of 
variation, d.f., and sums of squares. 

(iv) Suppose only 6 blocks of size 2 are available for the experiment. What 
method could one use to construct the design. Explain and give the design. 
What kind of design is this? 

11.6 A horticultural experiment conducted in a green house was laid out as a Latin 
square design, where the blocking factors represent temperature and light inten- 
sity, respectively. The treatments have a 2* factorial structure, that is, 2 factors 
A and B each at 2 levels. The layout of the design and the results from the ex- 
periment (in parentheses) are given below: 
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Light Intensity 

Temperature 

(i) Give a linear model for analyzing the data from this experiment and sketch 

(ii) Obtain the ANOVA table. 

(iii) Give a numerical expression for the estimate of the interaction A x B. 

(iv) The experiment is to be repeated at different times, so that in the end data 
from 3 different times, T I ,  Tz, T3 say, will be available (the experiment 
above represents TI). Even though the temperature and light intensity 
trends remain, they may be assumed to differ from one time period to the 
next. It is expected that there is interaction between the time factor and the 
treatment factors. 

Give a linear model for data from this experiment and sketch the ANOVA 
table, giving sources of variation and d.f. 

(v) For the experiment described in (iv) what is the variance of the estimated 
main effects, Â , B̂ , and interaction, z? 

the ANOVA giving sources of variation and d.f. 

11.7 Suppose a dermatologist wants to study the effectiveness of two (2) different 
preparations of a skin lotion using two (2) different forms of application (for 
example, one vs. two applications per day). He has available 12 patients with 
a certain skin disease and he can apply one form of medication (that is, combi- 
nation of preparation and frequency of application) to each arm of each patient. 
Even though the patients have the same disease, there exists considerable varia- 
tion among them, but the two arms of a patient are quite homogeneous. 

(i) What type of experimental design would be appropriate for this study? 

(ii) What are the experimental units? 

(iii) Give a suitable experimental plan for this study and describe how you ob- 

(iv) For the design given in (iii), outline the ANOVA table, giving sources of 

tained this plan. 

variation, d f . ,  and sums of squares. 
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(v) For the plan given in (iii), what is the variance of the estimates of the main 
effects and the interaction? 

11.8 Consider a 26 factorial experiment and suppose that the experimenter has only 
enough resources to handle just a fraction of all possible treatment combinations. 
Let this fraction be chosen by the identify relationship 

I = +ABCD = +CDEF = +ABEF 

(i) Give the treatment combinations that make up this fraction. 

(ii) Assuming that all interactions involving 3 or more factors and all 2-factor 
interactions not involving factor B can be estimated from this fractional 
factorial. 

(iii) Suppose we have 2 replications (that is, 2 EUs) for each treatment com- 
bination in a CRD; outline the ANOVA table (giving sources of variation, 
d.f. and E(MS)) based on the assumptions given in (ii). 

(iv) Suppose we need to use blocks of size 8 and we have 4 blocks available; 
under the assumptions in (ii) give a suitable arrangement without sacrific- 
ing information about the main effects and 2-factor interactions involving 
factor B. 

(v) For the design in (iv) outline the ANOVA table, giving sources of variation 
and d.f. 

(vi) Describe how you would obtain the ANOVA table in (v) with SAS. 

11.9 Use SAS PROC FACTEX to construct designs equivalent to those given in (i) 
and (iv) in Exercise 11.8. 

11.10 Show that for the 33 factorial contrasts belonging to A and ABC' are orthogonal 
to each other. 

11.11 Construct a system of partial confounding for the 32 factorial in blocks of size 
3 with 6 blocks so that at least partial information can be obtained about the 
2-factor interaction components and full information about the main effects. 

11.12 Obtain the treatment combinations and the alias structure for a 1/3 fraction of the 
34 factorial (assuming that 3- and 4-factor interactions are negligible). 

11.13 For the fraction obtained in Exercise 11.12, obtain a system of confounding using 
blocks of size 9. State what assumptions need to be made for this design to be 
useful. 

11.14 Consider the 23 x 32 factorial. Obtain a suitable system of confounding for 
blocks of size 6. 
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CHAPTER 12 

Response Surface Designs 

12.1 INTRODUCTION 

We have mentioned earlier that much of the topic on experimental design, and cer- 
tainly most of this book, is concerned with what we call comparative experiments. The 
emphasis and, in fact, the whole purpose of the experiment here is the comparison of 
treatments. We have explored this topic in detail in Chapter 7 for the CRD, with obvi- 
ous extensions to other error-control designs. In our discussion we have distinguished 
between qualitative and quantitative treatments, but in both cases the aim has been 
the same: to detect structure of some form among the treatment effects. In the case 
of quantitative treatments this can be done by using methods of regression analysis. 
If, for example, a straight line (with a nonzero slope) can be fitted to characterize the 
dependence of the estimated treatment effects on the treatments then this tells us not 
only that the treatment effects are different from each other, but also that there exists a 
simple relationship among them. 

More generally, the dependence of treatment effects on treatments can be rep- 
resented as a response curve (if the treatments are represented by the levels of one 
treatment factor, for example, amount of fertilizer) or a response surface (if the treat- 
ments are level combinations of two or more treatment factors, for example, amount 
of fertilizer and rate of application). And such curves or surfaces can be used to make 
judgments not only about treatment structure but also about the relationship between 
treatments and responses, or between input variables and output variables. Knowledge 
of this relationship is important if one wants, for example, to find the treatment combi- 
nation which gives the optimal (highest or lowest) response. We shall never know the 
exact relationship but we can try to approximate it. This is done, often sequentially, 
by using methods of experimental design and regression analysis. Methods that are 
directed towards this kind of investigation, using tools from experimental design and 
regression analysis, are usually referred to as response surface methodology (RSM). 

RSM was developed mainly with a view towards industrial experimentation and 
production (see Box and Wilson, 1951) but it has found application also in agriculture 
(see Mead and Pike, 1975), in medical settings (see Carter, Wampler, and Stablein, 
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1983), and more recently in connection with off-line quality control (see Vining and 
Myers, 1990). And even though RSM has proven to be useful in practice, it suffers 
from a serious defect, namely that the form of the response surface depends on the 
choice of units for the input variables. To illustrate this point we consider a simple 
example. The relationship y = xy + x: can be pictured as a two-dimensional surface 
in a three-dimensional space giving the dependence of y on x1 and 2 2 .  If we change the 
units for the input variables to xT = 221 and xz = 322,  then the relationship becomes 

While y is constant on the curves ~9 + x! = constant, that is, on circles in the ( 2 1 ,  x2) 

-plane, it is constant on the curves :xTz + i x ; 2  = constant, that is, on ellipses in the 
(2: .  x;)-piane. Obviously, these surfaces are quite different from each other illustrating 
the point that there is a surface only with a choice of units of plotting, a point that must 
be kept in mind in the following discussion. 

12.2 FORMULATION OF THE PROBLEM 

Suppose we have k quantitative factors F1, F2 ~ . . . . Fk which are known or suspected 
to have an effect on a particular response. Each factor has continuous levels within a 
certain interval; for example, F, has levels X ,  with X,L 5 X ,  5 X%LT (i = 1 . 2 ,  . . . , k ) .  
The hypercube { X , L  I X ,  5 X , r :  i = 1 , 2 ,  . . . , k }  contains the so-called operational 
region (OR) in which every level combination ( X I .  X2 . . . . , X,)  is a feasible operating 
condition. We assume that each such setting can be controlled (essentially without 
error) by the experimenter. To each setting (XI, X 2 ,  . . . , X, )  belongs a response, 17, 
which is some function of the levels, that is, 

7 = o(X1.  X z . .  . . , X k :  81.82.. . . . Q q ) %  (12.1) 

where 81.82. . . . . Qs are parameters. We write (1 2.1) for short as 

17 = o(x: 0) (12.2) 

with X = ( X I .  X z . .  . . %X,)’  and 0 = (81, 8 2 . .  . . , Q q ) ’ .  Now both the true yield, 
q = q(X1,  X z ,  . . . . X k ) ,  at any given point in OR and the form of the functional 
relationship 0 are unknown. Instead, we will have available only observed responses 
y = y(X) and we shall attempt to approximate d(X.0)  by a polynomial function 
f ( X .  P )  in X. We then consider in place of (12.2) a model of the form 

!AX) = f ( X .  P )  + e(X), (12.3) 

where P = (31, 02. . . . . 3m)’ are unknown parameters and e(X) represents error. 
Ideally we would like to have y(X) available for a sufficiently fine grid in OR in 

order to approximate 4 ,  or rather a realization of 4, sufficiently well. From a practical 
point of view this is clearly impossible. Instead we will be restricted to a relatively 
small number of points (these are sometimes referred to as runs or experiments) which 
will typically be confined to a region which is called the experimental region (ER) or 
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region of interest. Obviously, ER is contained in OR. The basic idea, due to Box and 
Wilson (195 l), here is then the following: Based on our limited knowledge about the 
process under study we choose an ER. We assume that the response surface for ER 
is sufficiently smooth and hence can be approximated by a low-order polynomial, for 
example, of first or second degree. We then choose an appropriate treatment and error- 
control design to estimate the coefficients of the polynomial. From this we predict 
the response for any point in ER. If one of these points attains the optimal response 
then presumably our goal is achieved (we may, however, have reached a local optimum 
rather than a global optimum); if the fitted response surface indicates that the optimum 
may be outside ER then we would have to choose a new ER and repeat the whole 
process until the (predicted) optimum can be located. 

As Box and Wilson (1951) point out, the procedure described above leads to two 
sources of error: (i) experimental and sampling error in estimating the function f ( X ;  p)  
of (12.3) and (ii) bias due to the inadequacy of f ( X ;  p) approximating 4(X; 6 )  of 
(12.2). To minimize these errors, singly or jointly, is essentially the focus of response 
surface designs. To this end, Box and Hunter (1957), suggested the following basic 
requirements for such designs: 

(i) Assuming that a polynomial f ( X ;  0) of degree d approximates d(X; 6 )  suffi- 
ciently well, the design should allow f ( X ;  p)  to be estimated with satisfactory 
precision in ER. 

(ii) The design should allow to check whether the chosen f(X;  p) provides a satis- 
factory fit to the response surface or whether a different polynomial may be more 
appropriate. 

(iii) The design should not contain an excessively large number of experimental 
points. 

(iv) The design should lend itself to adequate blocking of the experimental points. 

(v) One should be able to amend the design in case the polynomial of degree d 
proves to be inadequate and a polynomial of degree d + 1 needs to be fitted. 

These requirements were refined and expanded by Box (1968) and Box and Draper 
(1975) (see also Box and Draper, 1987). We shall not go into the details here but rather 
concentrate in the following on the five fundamental points above. 

In the following we shall describe the basic tools and designs of RSM and point out 
connections to treatment and error-control designs discussed elsewhere in this book. 
For details and further developments of RSM we refer the reader to specialized texts 
on this subject, for example, Box and Draper (1987), Khuri and Cornell (1996), Myers 
and Montgomery (2002). 
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12.3 FIRST-ORDER MODELS 
AND DESIGNS 

12.3.1 First-Order Regression Model 

Within a small region it is often not unreasonable to approximate the response surface, 
that is, the function 0, by a first-order polynomial in the k input variables X I ,  X Z .  . . . . xk: 

k 

Y = 30 f c 3,X,  + e .  (12.4) 
2 = 1  

In this model the regression coefficient 13, is a measure of the change in the response 
y due to a change in the input variable X I .  This is, of course, the kind of information 
provided by the main effects from a factorial experiment where each factor has two 
levels (see Section 11.3). A natural choice of a response surface design for this situation 
is therefore a 2 k  factorial, or a fraction of it. 

Suppose then we have 2k experimental points ( X I .  X z ,  . . . , X k ) ]  say, with J = 1 
2, . . ., 2k. With each level combination being replicated T times in a CRD we have 
-Y = r2k experimental runs. Denote the low and high level of the zth factor by X,o 
and Xzlr respectively. If we use instead of X I  the coded levels 

(12.5) 

then the low and high levels become x , ~  = -1 and xzl = 1, respectively. We rewrite 
(12.4) now as 

k 

y(x1. x2..  . . . x k ) l  = 3; + c 3;x2 + e ( 1 1 . 2 2 . .  . . . x k ) l .  (12.6) 
2=1 

where x ,  = *l, or in matrix notation as 

y = (3. D)P* + e, 

where y is the JV x 1 vector of observations, 3 is an N x 1 vector of unity elements, D 
is the N x k design-model matrix of -1's and l 's, P* = (3:. 3;. 3;. . . . .3;)' ,  and e 
is the S x 1 vector of errors. More specifically, if we write 

D = (dl, dz. .  . . . dk) 

as I;  AV x 1 column vectors, we know that each d, has 7-2"' elements equal to -1 and 
7-2"' elements equal to 1. This implies that 3'd, = 0 for every i. Moreover, we have 
did,! = 0 for every i. 2' with z # i', that is, the d,'s are orthogonal to each other. 

12.3.2 Least Squares Analysis 

Using the properties given above, the normal equations for the 0: of (12.6), 

(3, D)'(3. D),h* = (3. D)'y 
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simplify to 

.vb* = (Z) 
501 

(1 2.7) 

It then follows that 

and 

1 
iv 
- (sum of all observations with xi = -11. 

= -[(sum of all observations with xi = 1) 

(12.8) 

We note that 3: is half the corresponding main effect given in Section 11.3. It follows 
further from (12.7) that 

(12.9) 
1 
,2r 

Tc3r(s;) = -.," 
cov(3:. 3;) = 0. 

and 

Hence,foranygivenpointz= ( z l . z 2  . . . . .  zk) ' intheERgivenby{-1 5 zz  5 1:i = 
1 . 2 ,  . . . . k }  we obtain the predicted response 

with 

( 1 2.1 0) 

(12.1 1) 

In order to evaluate which factors are influential and to investigate the response 
surface [as given by the $(z)] in more detail we need to obtain an estimate of 0,'. This 
is achieved, as usual, through the ANOVA as given in Table 12.1, where 

X 2 1  ,X* .. . . .Xk 

k 

D1 = SS(Tota1) - N z(j:i2 
i= 1 

0 2  = D1 - S S ( P E )  
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Table 12.1 ANOVA for First-Order Response Surface Design 

Source d.f. ss 

Regression k 

3;: 1 AT( j;: ) 2 

4 1 N(3,”I2 

3; 1 N ( bi) 2 

Error r2k - k - 1 D1 = SS(E)  

Lack-of-fit error 2k - k - 1 DZ = S S ( L 0 F )  

Pure error 2“(r - 1) c C ( Y ( X ) l  - y(x).)2 = SS(PE) 
x 1  

We mention here that SS(E) consists of two parts, the usual error sum of squares 
for a CRD, denoted here by SS(PE), that is, sum of squares for pure error, and the 
sum of the sums of squares for all interactions for the 2k factorial denoted here by 
S S ( L 0 F ) .  As in regression analysis this sum of squares can be used to test whether 
the postulated model (12.6) provides a sufficiently good enough fit to the data, a point 
to which we shall return later. To test whether the ith factor contributes to explaining 
the response we use the F-test 

(i = 1 . 2 , .  . . . k )  SS(SZ*) F-----  
* - MS(E) 

with 1 and u = N - k - 1 d.f. Suppose we consider, without loss of generality, only the 
first k l  factors to be important. We may then reconsider model (12.6) and use instead 

and 

with 

k i  

2= 1 

(12.13) 

(12.14) 
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We may then compare the responses for two different sets of input variables, say z = 
( 2 1 . 2 2 . .  . . , zkl)' and w = (WI .  wz, . . . . W k l ) ' ,  by considering 

ki 

$(z) - $(w) = c 3:(zz - w,) 
z = 1  

( 1 2.1 5) 

and 

(12.16) 

Similarly, we may consider differences in responses if some of the input variables 
are kept constant at a desired level and the remaining input variables are varied to 
achieve optimum response if indeed it can be achieved in ER. Due to the fact that we 
are approximating the true response surface and due to experimental error there may, 
of course, not exist a single level combination which achieves the optimum response 
but rather the estimated responses in the neighborhood of an optimum may not be 
significantly different from each other. 

1 '"I 

Sri.[$(z) - ~ ( w ) ]  = nr - w'2)2 MS(E). 
2 = 1  

12.3.3 Alternative Designs 

The use of a full 2 k  factorial to estimate the parameters of a first-order response surface 
will usually be wasteful, especially if it is used in a CRD with T replications for each 
level combination. There are basically two ways to reduce the number of experimental 
points. One way is to replicate each design point ( 2 1 . 2 2 .  . . . % 5'") only once, that is, 
T = 1. In that case we have SS(PE)  = 0 and SS(E)  = S S ( L 0 F )  (see Table 12.1). 
Another way is to use only a fraction of a 2'" factorial (see Section 11.7) either as a 
single replicate or as a CRD with T > 1 replications. In either case we need to choose 
a fraction such that all k main effects are estimable and that sufficient d.f. for error 
will be available so that comparisons of the type (12.15) can be made with satisfactory 
statistical power as measured by the variance (12.16). This means that if we were 
to choose a very small fraction, such as a resolution I11 fractional factorial, we need 
several replications for each design point. Even if we were to choose a fractional 
factorial of resolution IV or V we may need some replication. Methods for constructing 
fractional factorials are discussed in Chapters 11.13 and 14. 

An important property of a 2'" factorial is that blocking can be accommodated eas- 
ily without sacrificing estimation of the main effects, that is, the 3;. Such blocking 
may become necessary for a number of reasons, mainly determined by practical and 
experimental considerations. For example, it may not be possible to complete all exper- 
imental runs with one batch of raw material and one suspects systematic batch-to-batch 
variation. For a full factorial appropriate blocks can be obtained (by using the methods 
indicated in Section 11.6 and more fully developed in Chapter 11.8) as long as the block 
size, 2',  is larger than the number of factors, k ,  for example, a 23 in blocks of size 4, 
a 24 in blocks of size 8, a 2 j  in blocks of size 8 or 16, and so on. Similar blocking 
arrangements can also be constructed for fractions of a 2 k  factorial, for example, a 1/2 
fraction of a 2' in blocks of size 8, a 1/4 fraction of a 26 in blocks of size 8, and so on. 
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An alternative to the factorial designs described above is a class of designs referred 
to as simplex designs (Box, 1952). These are orthogonal designs, that is, the columns 
of the design-model matrix D satisfy dtd,) = 0 for i # i' with k + 1 design points, 
which are then replicated T times in a CRD or a RCBD. The design points are located 
at the vertices of a regular k-dimensional simplex, which for k = 2 is an equilateral 
triangle, for k = 3 is a tetrahedron, and so on. For r = 1 the matrix D can in general 
be written as (see Khuri and Cornell, 1996) 

D =  

-a1 -a2 -a3 . . .  -ak '  

a1 -a2 -a3 . .  . - a k  

0 2a2 -a3 

0 0 3a3 

- a k  

0 0 0 . . .  kak, 

where a, = c , [ ( k  + l ) / i ( i  + l)]'/' and c, are scaling factors (it is common practice to 
choose c, = c for every i). Since the simplex design contains only k + 1 experimental 
points to estimate k + 1 regression coefficients it has zero d.f. for S S ( L 0 F )  (see 
Table 12.1). 

12.4 SECOND-ORDER MODELS 
AND DESIGNS 

12.4.1 Second-Order Linear Regression 

One advantage of using a 2k factorial with r replications over a simplex design with T 

replications is that the factorial design provides an opportunity to check the adequacy 
of the model (12.4) through the F-test 

MS (LO F )  
MS(PE) F L O F  = 

(see Table 12.1). This test allows us to check whether interactions among the factors 
are present and if so the design enables us to obtain the various sums of squares for 
two-factor interactions, three-factor interactions, and so on (see Section 1 1.3). This, 
however, may provide only part of the answer, why (12.4) is not a good approximation 
to the true response surface & ( X I  % X2.  . . . . X k ) .  Another reason for an inadequate 
fit may be that curvature due to various factors is present. This, however, cannot be 
detected with a 2k experiment. We shall now consider an extension of model (12.4) 
incorporating some form of curvature and interaction and suitable designs to estimate 
the parameters of such models. 
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Table 12.2 ANOVA for Second-Order Response Surface Design 

Source d.f. 

Regression 2k + $ k ( k  - 1) 

Linear effects k 
Quadratic effects k 
Linear x linear effects 

Lack of fit 
Pure 3'(r - 1) 

+ k ( k  - I) 
r3k - 2 k  - + k ( k  - 1) - I Error 
3 k  - 2k - + k ( k  - 1) - 1 

A second-order model for k input variables is defined as 

12.4.2 Possible Designs 

An obvious but usually not the best design for estimating the parameters of this model 
is a 3k factorial. If we choose the levels for each factor to be equidistant we can 
reparameterize (12.17) in terms of orthogonal polynomials (see Section 11.9.1) and 
obtain estimates of the linear, quadratic and linear x linear effects for all factors and 
two-factor combinations, that is, of apq with p. q = 0 . 1 . 2  and p + q 5 2 (see model 
(1 1.49). For r replications of each design point in a CRD a sketch of the ANOVA is 
given in Table 12.2 (for other details see Table 11.16). Here again we can partition the 
d.f. for error into d.f. for lack of fit (accounting for interactions other than linear x 
linear) and d.f. for pure error (arising from replications). Even for small k the number 
of d.f. for lack of fit is quite substantial, stemming from a large number of experimental 
points and the (assumed) absence of most interaction effects. There are several ways 
in which we can reduce the excessive number of experimental points: 

(i) We can eliminate replication of experimental points, that is, choose r = 1. 

(ii) We can use fractional factorials with or without replication, but we have to re- 
strict ourselves now to resolution V designs so that main effects (linear and 
quadratic) and two-factor interactions can be estimated, for example a 1/3 frac- 
tion of a 35 or 36, or a 1/9 fraction of a 37 (see Sections 11.9.5, 11.9.6, and 
Chapter 11.13). Even in these cases the number of experimental points is gener- 
ally excessive for the number of parameters (regression coefficients) to be esti- 
mated. 
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(iii) We may try to construct designs which are more suited for the specific situation 
with a limited number of design points. Several such classes of designs have 
been proposed. We shall consider briefly two-central composite designs and 
Box-Behnken designs. 

12.4.3 Central Composite Designs 

The central composite design (CCD) was introduced by Box and Wilson (1951). Each 
factor is used at five different levels, but not all level combinations occur. Rather, the 
CCD is composed of three parts: 

(a) a factorial or “cube” part consisting of 2 k - P  points from a full 2 k  factorial ( p  = 
0) or a 1 / 2 P  fraction of the 2k factorial of at least resolution V (see above), each 
point being replicated rf times; the levels of each factor are coded as -1 and 
i-1: the number of experimental runs is n f  = 2”-Prf; 

(b) an axial or “star” part consisting of 2k points on the axis of each factor at a 
distance Q from the center of the design, each point being replicated r,  times; 
this gives rise to n, = 2kr,  experimental runs; 

(c )  no replications of the center point (0, 0, . . ., 0). 

The total number of experimental runs then is AT = n f  + n, + no. 

EXAMPLE 12.1: 
matrix for this design, D* say, with rf = 1. r, = 1. no = 1 can be written as 

For k = 2, the basic CCD is as given in Figure 12.1. The design 

-1 -1‘ 
1 -1 

-1 1 
1 1  
a 0  

-a 0 
o o l  

0 -0 
0 0  

( 12.1 8) 

0 

The values for 0 .  rf. r,, and no can be chosen to obtain certain properties of the de- 
sign and to satisfy economic requirements. One such property, that of rotatability, was 
introduced by Box and Hunter (1957). A design is said to be rotatable if the prediction 
variance, for a level combination z = ( 2 1 . 2 2 . .  . . . zk)’ in ER, that is, var[$(z)], is the 
same for all points that are equidistant from the design center. This property is satisfied 
for the first-order designs discussed in Section 12.3 (see (12.11) which depends only 
on C zf) and it is satisfied simply because the columns of D are orthogonal (and hence 
the design is orthogonal) and because of the scaling used. For second-order designs 
the conditions are more complex in general having to do with the so-called design mo- 



12.4. SECOND-ORDER MODELS AND DESIGNS 507 

x2 
4 

Figure 12.1 CCD for k = 2.  

ments [see Box and Hunter (1957), Box and Draper (1996), Khuri and Cornell (1996), 
Myers and Montgomery (2002)l. For the CCD the conditions are satisfied by choosing 

114 

a =  (x) (12.19) 

For example, for k = 2 ,  rf = r,, we have a = 4. 

12.4.4 Blocking in Central Composite Designs 

An important property for CCDs is that of orthogonal blocking as discussed by Box 
and Hunter (1957). This idea is similar to that of systems of confounding in factorial 
experiments (see Section 11.6) which also leads to orthogonal blocking, except that we 
have to deal here with the different components of the CCD. If we denote the levels of 
the ith factor for the N experimental runs by 2 , ~  (1 = 1 , 2 .  . . . . N ) ,  each z,l being one 
of -a, -1.0.1. a, then Box and Hunter (1957) give the following two conditions for 
orthogonal blocking: (i) Each block must itself be a first-order orthogonal design, and 
(ii) the fraction of the total sum of squares of each input variable contributed by every 
block must equal the fraction of the total observations in the block. Suppose we have 
b blocks and the size of the 21th block is nu, that is, Xk,ln, = N .  Then, according to 
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(i) we must have 

C T , ~ x ~ ~  = 0 ( i . j  = 0 , 1 , .  . . % k ;  i # j )  (12.20) 

l ( u )  

for every u = 1 , 2 . .  . . . b, where El(,) means summation over all 1 in block u. Condi- 
tion (ii) can be written as 

c x:, 
: k )  (12.21) 

1=1 

for every u = 1.2.  . . . , b. 
Different blocking schemes satisfying (12.20) and (12.21) can be derived from con- 

sidering first the case of b = 2 blocks. One block consists of all n f  runs from the 
factorial part plus  no^ center runs; the other block consists of all n, runs from the axial 
part plus noa center runs, where nof + no, = no. It is obvious by just looking at D" 
that condition (12.20) is satisfied for all pairs (i, j )  and both blocks. Condition (12.21) 
for the first block is 

and for the second block 

(1 2.22) 

(12.23) 

which is the same for every i = 1.2 .  . . . . k .  Combining (12.22) and (12.23) yields 

Thus (12.24) gives us the value of a such that (12.21) holds, that is, 

a 2 = - .  knf "a +nos 
n a  nf +nof 

1 + n o a / n a  

1 + nof /" f .  
= k  

(12.24) 

(12.25) 

Typically noa/na and nof/nS are quite small, so that cy 2 

axial points have about the same distance from the center as the factorial points. 

tained, using similar arguments, in a number of ways. We mention just a few: 

which means that the 

Orthogonal blocking with smaller blocks than those discussed above can be ob- 

(i) If T S  > 1, each block may consist of one or more replicates of all 2k points plus 
some center runs. 

(ii) Systems of confounding as discussed in Section 11.6 and in Chapters 11.8 and 9 
may be used together with some center runs. 
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(iii) If ra > 1, each set of axial points plus some center runs may form a block. 

(iv) One block may consist of half of the axial points, say all points with +a, plus 
some center runs, and the other blocks have all axial points with -a plus some 
center runs. 

Methods (i) and (ii) may be combined with methods (iii) and (iv). Similar methods can 
be used if a fractional factorial is used for the factorial part of the CCD, remembering 
that those fractions have to be at least of resolution V .  

Box and Draper (1987) give some recommendations for the choice of T S  and r a ,  
and Draper (1982) discusses criteria for deciding on no = nof + noa, the number of 
center runs. If more experimental runs are needed, for example to increase d.f. for 
pure error, it is often convenient to increase no without sacrificing other properties of 
the CCD. 

12.4.5 Box-Behnken Designs 

We have mentioned earlier that using a 3k factorial for a second-order response surface 
usually results in too many experimental points. The CCDs discussed above correct 
this situation, but they use five levels for each factor. An interesting class of designs 
using only three levels of each factor and at the same time resulting in a “reasonable” 
number of experimental points was proposed by Box and Behnken (1960). These de- 
signs can be constructed by combining ideas from incomplete block designs (BIBD or 
PBIBD; see Section 9.8 and Chapters 11.1-5) and factorial experiments, specifically 2 k  
factorials. The method can be described as follows. 

Suppose we have t input variables ~ 1 ~ x 2 .  . . , . xt and an incomplete block design 
with t treatments and b blocks of size k .  This design is characterized by its incidence 
matrix N = (nl,) with n12 = 1 if treatment 1 occurs in block i and nll. = 0, other- 
wise. We now identify the t treatments with the t input variables and consider N’. Each 
row of N’ contains k unity elements. Suppose in the first row they occur in columns 
11.12. . . . . 1k. We then replace these k unity elements successively by the level combi- 
nations of the 2k factorial where the k factors are the input variables 11.12% . . . . l k .  The 
t - k zeros in the first row are replaced by 2‘“ x 1 vectors of zeros. This procedure is 
repeated for each row of N’ resulting in b2k experimental points to which we add no 
center runs (see Jo and Hinkelmann, 1993). 

EXAMPLE 12.2: 
Clatworthy, 1973) with blocks of size k = 3 is given by 

Consider the case t = 6. The matrix N’ of a PBIBD (design R42 in 

\ 1 0 1 0 0 1 /  
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Table 12.3 Box-Behnken Design For t = 6 

-1 -1 0 -1 0 0 
1 - 1  0 - 1  0 0 

-1 1 0 - 1  0 0 
1 1  0 - 1  0 0 

- 1 - 1  0 1 0  0 
1 - 1  0 1 0  0 

- 1 1 0 1 0 0  
1 1 0 1 0 0  
0 -1 -1 0 -1 0 
0 1 - 1  0 - 1  0 
0 - 1  1 0 - 1  0 
0 1 1  0 - 1  0 
0 - 1 - 1  0 1 0  
0 1 - 1  0 1 0  
0 - 1  1 0  1 0  
0 1 1 0 1 0  
0 0 -1 -1 0 -1 
0 0 1 - 1  0 - 1  
0 0 - 1  1 0 - 1  
0 0 1 1  0 - 1  
0 0 - 1 - 1  0 1 
0 0 1 - 1  0 1 
0 0 - 1  1 0  1 
0 0 1 1 0 1  

-1 0 0 -1 -1 0 
1 0  0 - 1 - 1  0 

-1 0 0 1 - 1  0 
1 0  0 1 - 1  0 

-1 0 0 - 1  1 0  
1 0  0 - 1  1 0  

- 1 0 0 1 1 0  
1 0 0 1 1 0  
0 -1 0 0 -1 -1 
0 1 0  0 - 1 - 1  
0 - 1  0 0 1 - 1  
0 1 0  0 1 - 1  
0 - 1  0 0 - 1  1 
0 1 0  0 - 1  1 
0 - 1  0 0 1 1  
0 1 0 0 1 1  

-1 0 -1 0 0 -1 
1 0 - 1  0 0 - 1  

-1 0 1 0  0 - 1  
1 0  1 0  0 - 1  

-1 0 - 1  0 0 1 
1 0 - 1  0 0 1 

- 1 0 1 0 0 1  
1 0 1 0 0 1  
0 0 0 0 0 0  

The level combinations for the 23 factorial are 

211 2 l 2  2 1 3  

-1 -1 -1 
1 -1 -1 

-1 1 -1 
1 1 -1 

-1 -1 1 
1 -1 1 

-1 1 1 
1 1  1 .  

Substituting xi1. xi2,  and xl3 for the 1’s in each row and adding one center run we 
0 obtain the Box-Behnken design of Table 12.3. 
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To obtain economical designs we need to choose incomplete block designs with k 
and b small so that N = b2k + no does not become too large. For larger k we may 
use a fractional factorial of resolution V instead of the complete factorial. For partic- 
ular choices of incomplete block designs (that is, resolvable designs, see Chapter 11.2) 
orthogonal blocking is possible. This may also be achieved by using a system of con- 
founding such that no main effects and no two-factor interactions are confounded with 
blocks. Box and Behnken (1960) give a list of designs for some values o f t  together 
with possibilities for orthogonal blocking. 

12.4.6 Hard-to-Change versus Easy-to-Change Factors 

We have mentioned earlier that the response surface designs, for instance, the CCD of 
(12.18), are embedded in some form of error control design, in most cases a CRD or 
RCBD. This means, of course, that the treatment combinations are randomly assigned 
to the experimental units. In industrial experimentation it is often the case that the 
runs are performed sequentially. Random assignment then means random order of 
application. This implies that the factors have to be reset for each run, whether there is 
a level change or not. In practice the resetting is often not done if a factor remains the 
same between two or more runs, either because of convenience or because the factor in 
question is hard to change. This has led to the notion of hard-to-changefactors (HTC) 
and eas~-to-changefactors (ETC). 

Webb, Lucas and Borkowski (2004) report on an example with one HTC factor and 
two ETC factors: 

EXAMPLE 12.3: An experiment was performed to investigate three factors in the 
operation of a wrapper machine: spacing of the seal crimper, speed of the machine, 
temperature of the seal crimper. Spacing was recognized as a HTC factor, whereas 
speed and temperature were thought to be ETC factors. The experiment, using a Box- 
Behnken design (see Section 12.4.5), was set up in “blocks” of levels of the HTC 
factor, that is, in each “block’ the HTC factor, was at the same level and no resetting 
took place. Within the “blocks” the ETC factor levels were randomized according to 
the chosen design, except when the experiment was actually performed it was found 
that speed also turned out to be a HTC factor. As a consequence, this factor was not 
reset when the same level occurred in consecutive runs. As a result, the experiment 
was conducted as illustrated in Table 12.4 , where the lines indicate the “blocks” of not 

0 reset levels for spacing and speed. 

We shall not pursue this example here further, referring the reader to Webb, Lucas 
and Borkowski (2004), except to say that this is an example of a split-split-plot type 
experiment (see Section 13.6) which is highly unbalanced and generally undesirable. 
Because of the split-split-plotting two additional errors will be induced and, as a con- 
sequence, an analysis using generalized least squares (GLS) (see Section 4.16.2) needs 
to be performed instead of ordinary least squares (OLS) with model (12.17). 

To avoid some of the complications associated with such an unbalanced design it 
is advisable to construct designs that show a certain amount of balance. In addition it 
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Table 12.4 Wrapper Machine Example 
~~~ 

Spacing Speed Temp 

0 1 -1 

0 1 1 

0 0 0 

1 0 1 

1 0 -1 

1 -1 0 

1 1 0 

-1 1 0 

-1 - 1  0 

-1 0 -1 

-1 0 1 

0 0 0 

0 -1 -1 

0 -1 1 

0 1 1 

would be desirable to be able to estimate the parameters in the model 

y = xp + Z e A  + eB,  ( 1 2.26) 

such that the estimates are identical under GLS and OLS. In (1 2.26) X and Z are known 
matrices, where Z is determined by “blocking” of the HTC factors. In the terminology 
of split-plot designs (see Chapter 13) the HTC factors are called whole-plot factors and 
the ETC factors are the split-plot factors. Thus, e A  and e B  are referred to as whole-plot 
and split-plot errors, respectively. 

Parker, Kowalski and Vining (2007) refer to designs that satisfy the properties men- 
tioned above as equivalent estimation designs. They provide techniques for construct- 
ing such designs, of which the following is an example. 

EXAMPLE 12.4: Suppose we want to use a CCD for two factors A and B say, as 
given in (12.18). We identify A as a HTC factor and B as a ETC factor. An equivalent 
estimation CCD consists then of T(>. 2 )  replicates of the design given in Table 12.5. 
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Z =  

513 

3 2  0 

3 2  

3 2  

0 32 

0 

If there are more than one HTC factors, then each of these factors individually is 
kept at the same level for each whole plot. For example, if we have two HTC factors, 
A1 and A2, two whole plots of the design may look as follows: 

Whole plot A1 A2 

1 1 -1 

1 -1 

2 -1 -1 

-1 -1 

It is important to remember that A2 has to be reset in whole plot 2 even thought the 
levels are the same in whole plots 1 and 2. 

12.5 INTEGRATED MEAN SQUARED 
ERROR DESIGNS 

In our discussion of first-order and second-order designs we have made the assumption 
that the first-order and second-order models, respectively, are satisfactory approxima- 
tions to the true response surfaces. If this is true then the designs discussed are ap- 
propriate. Often, however, there is the fear that the assumption may not be right. We 
refer to such a situation as model misspec$cation. We may suspect, for example, that 
instead of a first-order model a second-order model may provide a better approxima- 
tion to the true situation, but we are not sure. An obvious reaction would be to use a 
second-order design so that we can estimate all second-order effects. The drawback of 
this approach is that if our suspicion is not true then we have wasted valuable resources 
by using too many experimental points. One must, therefore, find some compromise 
for the choice of an appropriate design; firstly, it must enable estimation of the parame- 
ters of the specified model sufficiently well; secondly, it must provide some protection 
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Table 12.5 Basic Replicate of Equivalent Estimation CCD 

A B 

-1 -1 

-1 1 

1 -1 

1 1 

0 0 

ff 0 

- 

-a 0 

-a 0 

0 0 

0 -a 

0 0 

0 0 

- 

against model misspecification; and thirdly, it must be economical. We shall explain 
this for a very simple situation and then make some more general comments. 

12.5.1 Variance and Bias for the One-Factor Case 

Consider the case of one factor X and suppose we approximate d ( X .  Q) by 

f (X.  B )  = 30 + 31x 
Suppose further that ER is defined by XL 5 X 5 Xu, or in the coded variable x by 
-1 I x 5 1. For a given set of N x-values, 2 1 . 5 2 . .  . . . x1v with I = 0, we then fit 
the model 

y = 8; + 3;x + e (12.27) 

and obtain the predicted (estimated) response curve 

G(z) = 3; + 3;z  (12.28) 

for any z in [ - 1.11. Denote the true value of the response curve at z by Q( 2 ) .  Then the 
mean squared error associated with estimating ~ ( z )  by y(z) is given by 

E[Y(z) - + ) I 2  = E{G(z) - E[i+)l + E[ixz)l - d.)}2 
= var[c(z)] + { E [ G ( ~ ) ]  - o(z)}’.  (12.29) 
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For purposes of comparison it is useful to normalize (12.29) for the number of experi- 
mental points, N ,  and the error variance, a:, as 

(12.30) ,VE[jj(z) - o(z)I2 - N var[y(z)] + N{E[jj(z)] - O(z)} '  - 
0," 0," 

which we write for short as 

M ( z )  = V ( z )  + B(z ) .  (12.31) 

where V ( z )  is the variance at z and B ( z )  is the squared bias at z .  For the special case 
here we find [see (12.1 I)] 

2 2  
V ( z )  = 1 + -. (12.32) 

where a: = (l/A')Clx;. 02 is also referred to as the second design moment and 
denoted by [l 11 (analogously, ( l /N)C  xl is referred to as the first design moment, 
denoted by [ 11, which equals zero in our case, and [ 1 11 = ( l /N)C$  is the third 
design moment). The bias portion of M ( z )  depends, of course, on @ ( z ) .  Suppose that 

4 

1 

E[y(x)] = o(x)  = s; + d;. + g x 2 .  (12.33) 

In order to evaluate E[jj (z)]  we shall write (12.33) in matrix notation as 

where 

X I =  

71 

1 x2 = 

Now 
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E[?(z)]  = (1. z)(X:Xl)-lX:E(Y) 

= (1. z)(x:xl)-lx:(x,fx,) 

= (1. z)(x:xl)-lx:(xlyl + X2^J2) 

= 3; + 3;. + (l.z)(x;x1)-1x:x*^/2 (12.34) 

In (12.34), the matrix (X:X,)-lX:X2 is called the alias matrix. Using the moment 
notation, B ( t )  can now be written as 

(12.36) 

Rather than consider the mean squared error just for an arbitrary point, z ,  it is more in- 
formative to consider some sort of average mean squared error, referred to as integrated 
mean squared error (IMSE) and defined as 

Performing this operation for V(z) and B ( z ) ,  we obtain for the IMSE 

1 For our example we have ER = [-1.11 and hence SER dz  = J-, dt = z .  Substituting 
(12.32) and (12.36) in (12.38), we obtain 

[l 1 112 2[1 I] 
3[1 11, 3 5 

- ~ -+ 1) . (12.39) 

One would like to choose a design that minimizes AU and from (12.39) it can be seen 
that this has to be done by affecting the design moments [l I] and [l 1 11. Unfor- 
tunately, such a choice will also be influenced by the unknown parameter 32+/oe, the 
standardized measure of the true curvature. Furthermore, the choice of the design will 
depend on the relative magnitude of V and B and how important they appear, relative 
to each other, to the investigator. 
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12.5.2 Choice of Design 

There are two extreme cases: (i) V is much larger than B and (ii) B is much larger 
than V. For all practical purposes we can think of (i) as V > 0. B = 0. To minimize 
111 then means to minimize V and that, in turn, means to maximize [l 11. For Ar 
even, this is achieved by choosing YI2 experimental runs at z = -1 and z = +1, 
respectively. For IY odd, we choose (-V - 1)/2 runs at z = -1 and 2 = +1 each and 
one run at z = 0, with [l 11 = (A' - l) /N. Such designs (which assume B = 0) are 
referred to as all-variance designs. 

Case (ii) above can be characterized essentially by V = 0. B > 0. To minimize jL1 
then is to minimize B. The first step might be to choose a design with [l 1 11 = 0. 
It follows then from (12.39) that now 

and hence minimizing B requires a design with [l 11 = i. Such a design (which 
assumes V = 0) is referred to as an all-bias design. Comparing the values for [I 11 
for the all-variance and all-bias designs shows that the spread of the experimental points 
for the all-bias design is much smaller than that for the all-variance designs. In fact, 
the conditions for [l 11 for these two types of design are in conflict with each other 
and hence minimizing 

For the general problem of minimizing dl one may start again by choosing [ 1 1 11 = 

0 and then minimize the resulting expression for A1 with respect to [l 11 for different 
values of IV,3;*/0,2. Alternatively, one can minimize 111 with respect to [l 11 as a 
function of N!?;2/0,2 and then choose the value of [l 11 which forces V/B to be a 
certain value a which expresses the experimenter's opinion about the relative values 
of V and B. For example, ct = 1 implies that V and B are equally important. In that 
case the optimal value of [l 11 is .388 (for m3;'/oe = 4.49), comparable to that 
for the all-bias design (Box and Draper, 1959). Computations for other cases show that 
when curvature is suspected the optimal design is closer to the all-bias design than to 
the all-variance design (Box and Draper, 1959; Khuri and Cornell, 1996). 

It is apparent from this simple example that choosing a design which minimizes 
IMSE is rather complex and becomes even more so if we consider a first-order model 
or a second-order model and want to protect against second-order effects or third-order 
effects, respectively. General considerations for a specific class of designs indicate, 
however, that optimal designs tend to be close to all-bias designs. More specific results 
are provided by Box and Draper (1963) (see also Box and Draper, 1987, and Khuri 
and Cornell, 1996). It must be emphasized, however, that many of these results are 
somewhat subjective in that they are not always invariant to the scaling of the input 
variables. Hence those results may be taken as general guidelines only when choosing 
an appropriate design. 

cannot be achieved by minimizing V and B separately. 



518 CHAPTER 12. RESPONSE SURFACE DESIGNS 

12.6 SEARCHING FOR AN OPTIMUM 

As we have pointed out earlier, RSM is a sequential process based on subject matter 
and statistical input. Experiments are performed using the investigator’s best knowl- 
edge about the process under study and the statistician’s recommendations how to best 
perform the experiment (see also Chapter 2). After having decided which factors (input 
variables) should be studied and in which range of levels, usually a first-order design 
is used to approximate the response surface in the chosen ER. In the search for an op- 
timum response and the levels of the factors at that optimum response one can imagine 
many scenarios leading to a sequence of experiments and statistical decisions. It is, 
of course, impossible to describe every situation that might possibly arise, instead we 
shall mention briefly some of the steps in the sequence of events. 

Following each experiment it is important to study the estimated response surface 
in some detail. This requires that the underlying design has been chosen with those 
goals in mind. We may, for example, want to 

(i) investigate which factors are important, 

(ii) examine whether the chosen polynomial provides an adequate approximation to 
the response surface, 

(iii) plot the contours of the response surface, 

(iv) decide on a new ER, 

(v) locate the optimum response as quickly as possible. 

Some of these goals are relatively easy to obtain by using designs of the type we have 
discussed in Sections 12.3 and 12.4. We can test hypotheses about the regression coeffi- 
cients in the model to check (i). Assuming that the design chosen allows the estimation 
of pure error (constituting experimental and observational error) or if such information 
is available from other sources, we can examine (ii) through a lack-of-fit test as ex- 
emplified in the ANOVAs given in Tables 12.1 and 12.2. But even drawing a contour 
map, that is, a map of equal responses, y(x), for different input variables x is not al- 
ways easy. Even if we could draw in a k-dimensional space the shape of the contours 
depend crucially on the scaling used for the input variables. 

The reason why we mention this is the fact that, loosely speaking, the contour map 
is used to locate new ERs in the pursuit of locating the optimum response. Different 
mathematical techniques have been proposed and are used to find the most direct path 
to the optimum. They all depend on the contour map as established from the results 
of the initial experiment and updated by subsequent experiments as determined by the 
optimization procedure used. 

The procedure most often discussed is the method of steepest ascent which was 
introduced in RSM by Box and Wilson (195 1). (For a detailed discussion see also Box 
and Draper, 1987, and Khuri and Comell, 1996). A direction perpendicular to the con- 
tour planes as established by a first-order model or contour surfaces for a second-order 
model is the direction of steepest ascent, pointing towards higher responses. Along 
this path further experiments are performed until a best value or apparent maximum 
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is reached. Such a point may serve as the center point for a new ER in which then a 
more comprehensive experiment will be performed, continuing this cycle as long as 
necessary, changing most likely from first-order designs to second-order designs as the 
situation warrants. The virtues and value of the method of steepest ascent have been 
put into question when Johnson in the discussion of the Box and Wilson (1951) paper 
pointed out that the method suffers from dependence on the scale (that is, choice of 
units) of the input variables. As a consequence, a certain amount of care must be used 
when applying it. Subjective scaling will lead to subjective directions of experimen- 
tation and only through checks can a potentially misleading direction be avoided. A 
perhaps more useful method would be to scale the input variables such that the change 
of one unit for one variable is as important as the change of one unit in another variable. 
But even that is not entirely objective and may depend on the location in the OR. 

To avoid the problem of scale-dependence, other optimization procedures have 
been proposed. The method of parallel tangents (PARTAN) was introduced by Shah, 
Buehler, and Kempthorne (1964) and further discussed by Buehler, Shah, and Kempthorne 
(1964). Another approach, using simplex designs, was proposed by Spendley, Hext, 
and Hinsworth (1962). Any discussion of these methods is beyond the scope of this 
chapter and the reader is referred to the pertinent literature. 

12.7 EXPERIMENTS WITH MIXTURES 

12.7.1 Defining the Problem 

A special and yet quite distinct application of response surface methodology occurs 
in experiments with mixtures. The special feature of these experiments is that the re- 
sponse (12.1) does not depend on the actual values (amounts) of the input (represented 
by the input variables X I ,  X 2  ~ . . . , X,)  but rather on the proportions relative to each 
other, that is, for a mixture of three ingredients we might have X I  = 50%.X2 = 

25%, X3 = 25% with, of course, X1 + X2 + X3 = 100%. An example of such a mix- 
ture experiment may be the blending of three gasoline stocks to determine the blend 
which will give the best mileage. 

The pioneering work in this area was done by Scheffk (1958) who introduced 
simplex-lattice designs and appropriate polynomial models to investigate the type of 
question mentioned above. An excellent account of current methodology and thinking 
is given by Cornell, (2002). We shall give here only a very brief discussion of some 
of the design aspects in this area, to what extent they are different from designs for 
comparative experiments and to what extent they make use of the designs we have dis- 
cussed in other chapters. For details the reader should refer to Cornell, (2002) and the 
references therein. 

Let X I .  X 2 ,  . . . . X I ,  be the input variables which are constrained by the condition 

E X i  = 1 (12.40) 

This condition introduces a dependence among the Xi’s which means that they cannot 
take on all values in R i  but only in the k-dimensional simplex. The coordinate system 
used for these values is called the simplex coordinate system. For k = 3, for example, 
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(1.0; 0) 
2 1  = 1 

x2 = 1 
(0.1,O) 

ICQ = 1 

( O , O ,  1) 
(0. ;% ;) 

Figure 12.2 Triangular Coordinate Paper. 

this coordinate system can be plotted on triangular graph paper with lines parallel to 
the sides of the equilateral triangle as given in Figure 12.2 

In order to fit an approximate model of the form (12.3), usually a linear or quadratic 
model, we need to conduct an experiment in order to obtain appropriate observations, 
y(X). Three types of designs are used most often: simplex-lattice designs, simplex- 
centroid designs, and axial designs. 

12.7.2 Simplex-Lattice Designs 

The name simplex-lattice design refers to a collection of uniformly spaced points on 
a simplex. For a k-dimensional simplex there exist different simplex-lattice designs 
depending on the spacing of the levels, that is, the proportions for each component 
X ,  (i = 1 , 2 .  . . . ~ k )  may take the m + 1 equally spaced values 

1 2  x, = 0.m. m . . . .  . I  

subject to (12.40). Such a lattice is referred to as a ( k ,  m) lattice. For example, the (3. 
2) lattice consists of the points 
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and these points lie all on the vertices and sides of the simplex, that is, triangle (see 
Figure 12.2). For the (3, 3) lattice the points are 

(Xl,X2.X3) = {(1.0.0), (0.1.0).  (0.0.  l), ($. +>0). ($,0, i). (i\  Z.0).  
1 2  2 1  1 2  1 1 1  (3 .0 .3 ) ’ (0 .3 .3 ) .  (0.3,Tj). ( 3 . 3 5 3 ) )  

Here we have in addition to points on the boundary of the simplex also a design point 
at the centroid of the simplex. 

12.7.3 Simplex-Centroid Designs 

For a k-component simplex-centroid design, the design points are such that either one, 
or two, or three, . . ., or k components are included in the mixture and if 1 (1 < 1 < 
k )  components are included in the mixture they are included in equal proportions, 
that is, 111. Thus the simplex-centroid design consists of 2 k  - 1 points: k permu- 

tations of (1.0. . . . . 0); permutations 

of ( T .  7. . . . . T ,  0. . . . , 0). . . ., and the centroid ( i .  i ,  . . . , i ) .  The points are located 
at the centroid of the (k - 1)-dimensional lattice and at the centroids of all lower- 
dimensional simplexes contained in the ( k  - 1)-dimensional simplex. 

permutations of (i, i. 0. . . . . 0). . . . . 
1 1  1 G) C) 

12.7.4 Axial Designs 

Whereas for the simplex-lattice design and the simplex-centroid design, the design 
points (with the exception of the overall centroid) are located on the boundaries of 
the simplex, the design points for the axial design are located on the component axes 
(see Figure 12.2 for k = 3). This implies that for every such point all k components 
are included in the mixture. A simple form of such a design was suggested by Cornell 
(1975). In it the points are located at equal distances, say A,. A,. . . ., from the centroid 
( ic. ic, . . . . i )  toward each of the vertices. 1 1  

12.7.5 Canonical Polynomials 

For all three types of designs, and combinations of them, the number of points (runs) 
depends to some extent on the degree of the polynomial to be fitted to the data. Typi- 
cally, the polynomials are of the first or second degree, that is, 

(12.41) 

or 
k k k 

Y(x) = 30 + &x, + c 3azx: f c 3,,X,XJ 4- e.  (12.42) 

The number of points, obviously, has to be at least as large as the number of parameters 
to be estimated in (12.41) or (12.42) or any other model that might be appropriate. We 

a = l  2 = 1  Z<3 
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could proceed then as usual, except that for the situation described in this section we 
have to take condition (12.40) into account and because of it the parameters associated 
with the various X-terms are not unique. To remove the dependence among the X -  
values we could write, for example, 

k-1 

XI, = 1 - E X 2  (12.43) 
i=l 

and substitute (12.43) in (12.41) and (12.42). In (12.41) this would lead to a model 
with parameters Dl - P k  (i = 1,2.  . . . , k - 1) obscuring the separate effects of the 
individual components. The effects on model (12.42) are even more complex. 

The preferred way of removing the effect of the dependence among the X ,  is to ob- 
tain the so-called canonical polynomial. For the linear polynomial this form is obtained 
by multiplying PO in (12.41) by C X i  ( = 1) and then simplifying, that is, 

/ k  \ k 

2 = 1  

with b,* = PO + ,$ (i = 1 ,2 .  . . . , k ) .  Model (12.44) retains the symmetry in the k 
components and the 0; have a clear meaning. 

To achieve the canonical form for model (12.42) we proceed in the same way as 
above and use in addition 

Collecting terms leads to the canonical model 

k k 

2=1 2 <3 

with P,* = DO + P, + P,, and Pz", = 4, - P,, - /$,(z.J = 1 , 2 , .  . . , k ;  z < J ) .  Model 
(12.45) can be simplified still further by multiplying C b,*X, by C X ,  which yields 

(12.46) 

with 6,, = 0; and 6,, = B:J + P,* + /3; ( i . 3  = 1 , 2 , .  . . , k ;  a < J ) .  Models (12.45) and 
(12.46) are, of course, equivalent and contain the same number of parameters. 

With data obtained from an appropriate design, models (12.44) or (12.45) or (12.46) 
can be fitted using the method of least squares. Appropriate tests of hypotheses includ- 
ing lack of fit can then be performed in the usual fashion. From the estimated regression 
coefficients the response surface can be predicted and standard errors can be obtained 
using familiar procedures (for details see Cornell, 2002). 
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12.7.6 Including Process Variables 

So far we have discussed the situation where the response q of (12.1) depends only on 
the mixture variables X,.  In many practical situations there may, however, be other 
variables, not connected with the blending process itself, which influence 7. Such 
variables are referred to as process variables. In the example of blending gasoline 
stocks such process variables may, for example, be type of car (light, heavy) and speed 
of driving (slow, fast). If we denote the process input variables by Z1,22. . . . , 2, then 
model (12.1) may be generalized to 

(12.47) 

and (12.47) will be approximated by a (low degree) polynomial in X ,  2, and XZ. 
This will be used to assess not only the effects of the blending variables ( X ) ,  but 
also the additive effects of the various “levels” of the process variables (2) and, quite 
importantly, the possible interactions (XZ)  between the blending and process variables. 

The added problem then is to augment the design for the blending variables (as 
discussed above) with a design for the process variables. The latter will typically be a 
factorial design. In its simplest form this may be a 2 P  factorial or, in order to keep the 
number of runs at a reasonable level, it may be a fractional factorial (see Sections 11.6 
and 1 1.7). The total number of runs is then determined by the number of design points 
for the mixture experiment and the number of treatment combinations used for the 
process variables in that each mixture experiment is performed at each process variable 
combination included in the factorial or fractional factorial design. To make the entire 
experiment more manageable the device of blocking may have to be used. Also, it 
may be possible to reduce the number of runs by combining the design points for 
the two component designs (that is, blending and process) in a way different from 
that described above. This provides an example how mixture designs and designs for 
comparative experiments can be combined in a useful way, and how elements from 
response surface methodology and design of comparative experiments can be brought 
to bear on problems that arise in several types of industries, such as chemical, food, 
textile industries and others. 

q(x, z) = @ ( X I . x 2 . .  . . .Xk: z1, z2. . . . . z p :  81,02.. . . , 8,) 

12.8 EXAMPLES USING SAS@ 

Since analyzing data from response surface experiments involves regression models 
the most appropriate SAS procedure to use for the analysis are PROC REG or PROC 
RSREG. However, for certain purposes and in certain situations, also PROC GLM and 
PROC MIXED prove to be useful. We shall illustrate the use of these procedures in the 
following examples. 

EXAMPLE 12.5: Consider a first-order design for k = 3 Variables with the treatment 
combinations for the 23 factorial as the design points, each replicated twice in a CRD. 
The design and the observations are given in Table 12.6a. 

For the analysis we use PROC REG to estimate and test the regression coefficients. 
The results are given in Table 12.6b, with all three regression coefficients significant at 
P < .0001. 



524 CHAPTER 12. RESPONSE SURFACE DESIGNS 

In order to obtain explicitly S S ( L 0 F )  we use PROC GLM with 21, 2 2 ,  2 3  as 
classification variables. In addition to specifying in the model statement zl, 2 2 ,  2 3  we 
also include the 3-factor interaction term 21 * 2 2  * 2 3 .  This is a device for collecting all 
interaction terms, three 2-factor and one 3-factor interaction, into one sum of squares, 
which constitutes S S ( L 0 F )  with 4 d.f. of Table 12.1. The P-value 0.4233 indicates 
that there is no lack of fit. 

Finally, we point out that the test statistics for testing significance of the regression 
coefficients are not identical since in the first analysis [SS(LOF)  + S S ( P E ) ] / l 2  = 

0.1725 is used as the error term, whereas in the second analysis S S ( P E ) / 8  = 0.1673 
is used. 

EXAMPLE 12.6: Consider the CCD in two variables as given in Table 12.7a. To 
analyze the data we use PROC RSREG. The output is given in Table 12.7b. We make 
the following comments: 

(i) Simply inputting the two variables, A and B, in the model statement leads to a 
second-order model and analysis. 

(ii) Including the option “lackfit” in the model statement leads to a partitioning 

SS(E)  = S S ( L 0 F )  + SS(PE)  

The results indicate that there is no lack of fit (P = .42). 

(iii) The first-order regression coefficients are significant (P = .05, and .04, respec- 
tively), whereas the second-order coefficients are not significant with P = .15, 
.14, and .11, respectively. 

EXAMPLE 12.7: Consider the CCD as given in Table 12.8a and two situations under 
which this experiment could have been performed: (a) as a CRD in which case the 
block classification is ignored, or (b) as a split-plot type design, where factor A is the 
hard-to-change factor (see Section 12.4.6) and we have “blocks” of size 2. 

We comment on both analyses as given in Table 12.8b: 

(i) The number of d.f. for error equals 6 with 3 d.f. due to LOF and 3 d.f. due to 
pure error, and MS(E) = 1.05. 

(ii) The linear regression coefficients are significant with P = .016 and .013, respec- 
tively, whereas the quadratic and mixed regression coefficients are marginally 
significant with P = ,061 , .064, .087, respectively. 
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Table 12.6 First-order Design and Analysis 

a) Input statements: 

data first: 
input x l  x2 x3 y @ @ ;  
datalines: 

-1 -1 -1 13.1 -1 -1 -1 11.3 
1 -1 -1 12.0 1 -1 -1 11.7 

-I ~ -: 13.2 -1 1 -1 12.9 
1 1 -1 14.5 1 1 -1 14.7 

-1 -1 1 1 3 . 1  -1 -1 i 13.9 

. .  

. .  - -_  1 1 5 . 3  1 -1 1 14.9 
-1 1 1 1 6 . 6  -1 1 1 1 6 . 0  
1 1 1 18.2 1 1 i 18.7 

rur.; 

proc reg data=first: 
model y = X I  x2 x3: 
title1 'FIRST-ORDER DESIGN': 
title2 'REGRESSION ANALYSIS'; 
run: 

proc glm data=first: 
class X I  x2 x3: 
model y = X I  x2 x3 X I  *x2*x3/ss3: 
title2 'TESTING FOR LACK OF FIT': 
run: 

b) Output: ___ 

PIF\ST-C9.399. 9 . r S I G K  
REGRESSICN AKALYSIS 

The REG F r o c e d i r e  
Model:  MOD9:l 

Depe7.der.t : i a r i ab le  : y 

Number o f  O b s e r v a T i o n s  Reaa 
X m b e r  o f  O b s e r v a t i o n s  Jsed  

15 
1 5  

A n a l y s l s  c f  V a r i z c e  

Sum o f  Mean 
Sc ; rce  DF Squares  Square F Va lue  F r  > 7 

Model ? 8 4 . 9 4 7 5 0  2 8 . 3 1 5 8 3  1 6 4 . 1 5  <.COO1 
E r r o r  12 2,37030 3 . 1 7 2 5 3  
C o r r e c t e d  Totil 15 87.0175C 

Root MSE 0.41533 R-Square C.9762 
DesendenL M e i n  14.2125C Ad? R-Sq C.9703 
Coef f Var  2.9223c 
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Table 12.6 (Continued) 

ParaFeter Estimates 

Parameter Standard 
Variable DF E s t :mat e Error t Value Pr > It 1 

intercept 1 14.21250 0,10383 136.88 <.00c1 
3.78750 0.10383 7.58 <.00c1 
1.38750 0.10383 13.36 <.3CO1 x2 

x3 1 1.6625C 0.10383 15.01 < ,  OCOl 

X -  

FIRST-ORDER CESIGN 
TESTIKG F3R LF.CK CF F I T  

The GLM Procedcre 

Class Level Information 

Class Levels Val-es 

xl 2 -1 1 

x2 2 -1 1 

x3 2 -1 1 

NuTber of Observations Read 
N-mber of Observations Used 

16 
16 

Ceperaent Variable: y 

SUIT 0: 

S 0; r c e DF Squares Kear. Square F Value Pr > F 

Model 7 85.67750000 12.23964286 73.07 <.COO1 

Error 8 1.34000COC 0.15750000 

Corrected Tctal 15 87.Cl750O00 

R-Square Coeff T’ar Root MSE y Mear, 

0.984601 2.8’9632 0.403268 14.21250 

S-.. --rce 

X -  

Xi 
X3 
xl*x2*x3 

DF T y p e  IiI SS Xear. Square F -1alue Pr > F 

1 9.92250000 9.92250000 59.24 <.GO31 
1 30.8C250000 30.8C25COOO 183.90 <. O C O l  
1 44.2225C000 44.22250000 264.01 <.3001 
4 0.73030030 0.182500C3 1.09 0.4233 



Table 12.7 Regression Analysis for CCD 

a) Input statements: 

data second; 
input A B y;  
datalines; 

-1 -1 3.0 
-1 1 4.5 
1 -1 4.1 
1 1 9.8 

1.4 0 6.7 
-1.4 0 4.8 

0 1.4 7.0 
0 -1.4 5.0 
0 0 3.0 
0 0 4.1 

run; 

proc rsreg data=second; 
model y=A Bllackfit predict; 
title1 'CENTRAL COMPOSITE DESIGN'; 
title2 'REGRESSION ANALYSIS'; 
run; 

b) Output: 

CENTRAL COMPOSITE DESIGN 
REGRESSION ANALYSIS 

The RSREG Procedure 

Coding Coefficients for the Independent Variables 

Factor Subtracted off Divided by 

A 
B 

0 1.400000 
0 1.400000 

Response Surface for Variable y 

Response Mean 5.200000 
Root MSE 1.146902 
R-Square 0.8666 
Coefficie-t of Variat:on 22.0558 

Regression 

Linear 
Quadratic 
Crossproduct 
Total Model 

Xes idual 

Lack of Fit 
Pure Error 
Total Error 

Type I Sum 
DF of Squares R-Square F Value Pr > E 

CF 

3 

4 

2 22.990354 0.5829 8.74 0.0347 
2 6.778105 0.1719 2.58 0.1910 
1 4.410000 0.1118 3.35 0.1411 
5 34.178459 0.8666 5.20 0.0677 

Sum of 
Sqcares Mean Square F Value Pr > F 

1.552180 2.57 0.4233 4.656541 
0.605000 0.605000 
5.261541 1.315385 
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Table 12.7 (Continued) 

S L c d a r d  
Farameter DF E s t  x a t e  E r r o r  

Intercept 1 3.561442 3.813917 
A 1 1.143339 3.4'37534 
B 1.262626 0.4'37534 
A*A 1 0.9'0668 0.54332'3 
3 * A  1 ; . c 5 c 3 0 c  3.573451 
3.B 1 l.C382>9 3.54332C 

f 
: Value F r  > It 

4.39 3.0.13 
2.81 3.0485 
3.10 3.C363 
1.73 0.1LB5 
1.83 0.1411 
i.ci 3.1133 

Farameter  
Es?irr.ate 

irom Coded 
Data  

3.561442 
1.601515 
1.767677 
1.932533 
2.C58C30 
2.152539 

C'.m cf 
Faczor  DF S q z a r e s  Year, S q ~ i r e  F Val.Je F r  > F 

A 3 18.?'2482 6.324151 4.81 0.3817 
3 3 22.4:0532 7.473177 5.6s C.0633 

Predicred Val-e a t  s z a t i o c a r y  paint: 3.C37:C8 

Sta? io? . a ry  point i s  a m i n i m x  

Split-plot: 

(iii) The estimates of the regression parameters are the same as for the CRD, but the 
standard errors are different: they are larger for A, A * A, and B * B and smaller 
for B and A * B (see (iv) below). 

(iv) Since factor A is the whole-plot factor, the regression coefficients A and A s A  are 
evaluated against the whole-spot error MS, which is equal to .8472 + 2 x .3065 
as obtained from the covariance parameter estimates. Factor B is the split-plot 
factor and hence the regression coefficient B is evaluated against the split-plot 
error, which is 3472. However, the regression coefficient B * B is confounded 
with the whole-plot (because the squared values of the levels for factor B do 
not change within a whole-plot), hence the larger standard error. The regression 
coefficient A*B is associated with the split-plot and hence has a smaller standard 
error. 

(v) The comments about the various standard errors in (iv) are also reflected in the 
different d.f. associated with the tests about the regression coefficients. We have 
2 d.f. for the whole-plot error and 4 d.f. for the split-plot error. 

(vi) Only the regression coefficient B is clearly significant ( P  = .02), whereas A 
and A * B are marginally significant ( P  = .ll) and P = .08, respectively). 0 



Table 12.8 Central Composite Design 

a) Inout statements: 

data ccd: 
input A B block y; 
datalines; 
- 1  - 1  13.0 
-1  1 14.5 

1 - 1  2 4 . 1  
1 1 2 9 . 8  
1.4 0 3 6.2 
1.4 0 3 7.1 

-1.4 0 4 4 . 9  
-1.4 0 44 .6  
0 1 .457 .0  
0 -1.45 5.0 
0 0 63.0 
0 0 64 .1  

run; 

proc glm data=ccd: 
model y= A B A*A B*B A*B/solution: 
title1 'CENTRAL COMPOSITE DESIGN'; 
title2 'AS  COMPLETELY RADOMIZED DESIGN': 
run; 

proc mixed data=ccd; 
class block; 
model y=A B A*A B*B A*B/solution ddfmSatterth; 
title2 'AS SPLIT-PLOT DESIGN': 
random block: 
run; 

b) Output: 

CENTRAL CCk!POSITE CESIGN 
AS COMPLETELY RADOMIZEC 33SIGN 

T h e  GLM T r o c e c u r e  

N u n b e r  o f  O b s e r v a t i o n s  R e a d  
N u m b e r  of O a s e r v a t r o n s  U s e d  

12 
-, 2 

D e p e n a e z t  V a r i a b l e :  y 

Sum of 
S cu r ce DF S q ' d a r e s  M e a n  S q u a r e  F V a l u e  ? r  > F 

Y c d e l  5 35.71341263 7.14258254 6.79 0.0186 

E r r o r  6 6.30308'31 1.35151455 

C o r r e c t e d  T o t a l  11 42.C225300C 

i i - S q L a r e  Coe f f  Var Root MSE y M e a n  

2.849864 19.4395C 1 .C25434 5.275303 

S 2.i r ce 

A 
3 
A*A 
B*B 
A*B 

CF Yype I S S  Mean S q u a r e  F V a i u e  P r  > F 

1 11.60121622 11.60121622 li.03 C.0163 
1 12.62626563 12.62626263 12.C1 0.C134 
1 1.71667952 1.71667962 1.63 0.2486 
1 5.35925423 5.35925423 5.10 0.3648 
1 4.41C00C00 4.41000000 4.19 0.0865 



Table 12.8 (Continued) 

Source 

A 
B 
A*A 
5 * B  
A*B 

DF Type I11 S S  Mean Square F Value P r  > F 

1 11.60121622 11.60121622 11.03 0.0160 
1 12.62626263 i2.62626263 12.31 0.0134 
1 5.54678825 5.54678825 5.28 0.0614 
1 5.35925423 5.35925423 5.10 0.0648 
1 4.41000000 4.41030000 4.19 0.0855 

S t ar.dar d 
Parameter E s t  imate  E r r o r  t Value Pr > it1 

I n t e r c e p t  3.562529219 0.7249217: 4.91 0.0027 
A 0.989864865 0.29801066 3.32 0.0160 
a 1.262625263 0.36437205 3.47 0.0134 
A*A 1.010640582 0.44003131 2.30 0.0614 
E*E 1.083796071 0.48006831 2.26 0.0648 
A*B 1.05000000C 0.51271692 2 . 0 5  0.0865 

CENTRAL COMPOSITE D E S I G N  
A S  SPLIT-PLOT DESIGN 

The Mixed Procedure 

Model Information 

Data Se t  WORK. CCD 

Dependent Var iab le  Y 
Ccvariance S t r u c t u r e  Variance Components 
Es t imat ion  Method R E M i  
Residual  Variance Method P r o f i l e  
Fixed E f f e c t s  SE MeLhod Mode;-Based 
Cegrees of Freedon Method S a t t e r t h w a i t e  

Ciass  Level Informat ion  

Class  Levels  Values 

block 6 1 2 3 4 5 6  

I t e r a t i o n  His tory  

I t e r a Z i o n  EvaLnaZicns -2 Res Log Like C r i t e r i o n  

0 1 29.29778783 
1 1 29.09015318 0.00000000 

Convergence c r i t e r i a  met. 

Cov P a m  Est imate  

block 0.3065 
Residua 1 0.8472 

S o l u t i o n  f o r  Fixed E f f e c i s  

S tandard  
E f f e c t  Es t imate  E r r o r  DF t Value P r  > It1 

I n t e r c e p t  3.5625 0.8543 2 4.17 0.0530 
A 0.9899 0.3512 2 2.82 0. i062 
B 1.2626 0.3271 4 3.86 0.0151 
A * 4  I. 3106 0.5185 2 1.95 0,1906 
B-B 1.0838 3.5657 2 1.92 0.1955 
A*E 1.0500 0.4602 4 2.28 0.0846 

3 
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Treatment 

1 

2 

3 

4 

53 1 

1 2 3 4 5 6 

x x x  

X x x  

X X X 

X x x  

12.9 EXERCISES 

12.1 Consider an experiment with 5 input variables. 

(i) Obtain an appropriate 1/2 fraction of the 2’ factorial to fit a first-order 

(ii) For the design chosen in (i) sketch the ANOVA table assuming that each 
design point is replicated twice. 

(iii) Suppose we need to run the expefiment in blocks of size 8. Write out an 
appropriate plan, give the associated linear model and outline the ANOVA 
table. 

model. 

12.2 Consider a simplex design with k = 4 input variables. 

(i) Write out explicitly the design-model matrix D. 

(ii) Outline the ANOVA table with r = 2 replications for each design point. 

12.3 Consider a central composite design for an experiment with five input variables. 
Show that with a 1/2 fraction of resolution V of the 2’ as the factorial part of the 
design all linear, quadratic and linear x linear effects [see model (12.131 can be 
estimated. 

12.4 For an experiment with four input variables, construct a Box-Behnken design 
using the following BIBD with four treatments and six blocks of size 2: 
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CHAPTER 13 

Split-Plot Type Designs 

13.1 INTRODUCTION 

In all the error-control designs discussed so far we have had one type of EU for all the 
treatments and one randomization process to assign the treatments to the EUs. There 
exist, however, many situations where for a factorial experiment different types of EUs 
are being used and where the levels of some factors are applied sequentially, necessi- 
tating separate randomization procedures. We have already pointed to such situations 
in Sections 12.4.6 and 2.3.2. In the simplest case we have EUs of one size for the levels 
of one of two factors. Those EUs are then subdivided into smaller EUs to which the 
levels of the second factor are applied. This procedure is referred to as the split-unit 
principle. The following is an example of such a situation. 

EXAMPLE 13.1: Suppose we want to investigate the breaking strength of dinnerware 
manufactured by using different chemical compounds and baking it at different temper- 
atures. Let temperature be factor A with three levels, say a1 = 400". a2 = 500". a3 = 
600", and let factor C denote chemical compounds with levels ~ 1 %  c2. c3. c4, say, each 
being a specified chemical compound. We have three furnaces available. Each fur- 
nace will be set at one of the randomly assigned temperatures. In each furnace we 
then place four dinner plates each individually produced using a different (randomly 
assigned) chemical compound for each plate. This process is repeated on several days. 
For each plate the breaking strength is then determined using a suitable machine. 

The large EUs are furnaces and the smaller EUs are the dinner plates: 

Furnace 

Day1 

Day2 -1 
etc. 

533 
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whole-plot i 1 

If we repeat this process on r days we have r replications of each temperature, but 37- 
0 replications for each chemical compound. 

* 

Not only will this type of arrangement lead to different precisions for the compar- 
isons among the levels of the A-factor and among those of the C-factor, but the fact 
that the two factors are associated with different types of EUs leads to different experi- 
mental error variances associated with these comparisons. This is the reason why these 
types of experiments must be distinguished very carefully from the factorial experi- 
ments described in Chapter 11 (from a purely technical point of view there exists a link 
between these two types of experiments through the notion of interblock information, 
which is discussed in Chapters 11.7 - 11). 

We shall now describe some specific forms of designs which use different types of 
experimental units. 

13.2 SIMPLE SPLIT-PLOT DESIGN 

This design was developed and used first and foremost for agricultural, mainly agro- 
nomic experiments (see Yates, 1935 and 1937), but its applicability goes now across 
all fields of experimental research. Even so, the terminology for this design still makes 
references to plots of various types, but the reader should have no difficulty translating 
this into any other subject matter area. 

13.2.1 Superimposing Two Randomized Complete Block Designs 

We have two treatment factors A and B, with levels al, a2, . . ., a, and b l ,  b2, . . ., bb,  

respectively. Factor A is referred to as the whole-plot factor and the EUs to which the 
levels of A are applied are the whole-plots. Factor B is the split-plot factor and the 
EUs to which the levels of B are applied are the split-plots, each whole-plot having b 
split-plots as illustrated below for b = 4: 

split-plot 

A replicate consists then of one application of each level a1 . a2. . . . . a, and within each 
of the a whole-plots of one application of each level bl . b2, . . . . bb. And the design 
consists then of T such replications. 

It is useful to think of this arrangement as superimposing one RCBD on top of an- 
other RCBD. For the first RCBD, involving the whole-plots and the whole-plot factor, 
we have 

RCBDA : t = a. number of blocks = T 

and for the second RCBD, involving the split-plots and the split-plot factor, we have 

RCBDB : t = b: number of blocks = ru 

This brings out the fact that two independent randomizations are being used. 
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This structure suggests the partitioning of the r u b  - 1 d.f. available from the rub 
observations in the following way. If we consider first the RCBDB we have the parti- 
tion 

Source d.f. 

Blocks (whole plots) ru - 1 

B-factor b - 1  

Residual (B) (TU - l ) ( b  - 1) 

Total rub - 1 

We realize, however, that the systematic differences among blocks in a replicate are 
due only to the different levels of factor A. This and the fact that the replicates form 
the blocks for the RCBDA implies that we have the following partition of the ru - 1 
d.f. for whole-plots 

Source d.f. 

Replicates r - 1  

A-factor a - I  

Error (A) 

Whole-plots ra - 1 

( r  - 1)(u - 1) 

It follows from this partitioning that the ( ru  - l ) ( b  - 1) d.f. for Residual (B) can be 
partitioned further into 

Source d.f. 

Replicates x B (T - l)(b - 1) 

A x B  ( U  - l ) ( b  - 1) 

Error(A) x B 

Residual (B) 

( r  - 1)(u - l ) ( b  - 1) 

( ru  - 1) ( b  - 1) 

Assuming no replicate x B interaction (since we are assuming unit-treatment addi- 
tivity), we then have the complete partitioning of the d.f. as given in the ANOVA 
of Table 13.1. The associated sums of squares and their properties can be derived as 
follows, based on the observations arising from the rub split-plots. 
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13.2.2 Derived Linear Model 

We denote the conceptual response of the 25th split-plot in the uth whole-plot of the 
ith replicate to which the j th level of the whole-plot factor .4 and the kth level of the 
split-plot factor B have been applied by X , u z l g k .  Assuming unit-treatment additivity we 
write 

xauu jk  = Uauu + T j k .  (13.1) 

where uZu, is the unit contribution and T j k  is the treatment contribution. We then write 
further, using obvious notation, 

and 

T 3 k  = T + (T, - T ) + ( T k  - ) + ( T , k  - Tj - T k  + T ) .  (13.3) 

Substituting (13.2) and (13.3) into (13.1) and defining 

the effect of the ith replicate, 

the effect of the j th  level of A, 

the effect of the kth level of B, 

T j k  - TI. - T k  + T,. = (CY$)jk 

the interaction effect between the j th  level of A and the kth level of B, we obtain 

x i u v j k  = p + T i  + N j  + (Uiu, - G'i,,) + ,6k  + ( 0 8 ) j k  + ( u i u u  - Oiu, ) .  (13.4) 

We actually observe y i g k ,  the response of the Uk)  treatment combination in replicate 
i. The observed and conceptual responses are linked to each other by two design ran- 
dom variables associated with the randomization processes of factors A and B, respec- 
tively. Let 

1 if level j of factor A is applied to the uth whole-plot in replicate i i 0 otherwise 
s;, = 

and 

1 if level k of factor B is applied to the zth split-plot in the uth 
whole-plot of replicate i given that the j th  level of A has been applied to 
that whole-plot 

0 otherwise. 

(p2, = 
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Then 

(13.5) 

Substituting (13.4) into (13.5) we obtain 

where 

U 

and 

The qtj and < t j k  are the two errors arising from the fact that we have two types of EUs 
and two independent randomization processes. Following arguments similar to those 
given for the RCBD (Chapter 9) we can derive easily the distributional properties of 
these errors. For example, it is obvious that 

ER(%j)  = 0, E R ( C t j k )  = 0 

and that the qrj’s are correlated and the C z j k ’ s  are correlated. Both types of errors con- 
stitute only unit errors to which we may add the technical errors, in this case treatment 
errors for factors A and B, respectively, and observational error. We indicate this by 
rewriting (13.6) to obtain the final model 

(13.7) 

For all purposes of inference about the treatment effects we may treat the e$ and eGk 
as if they were i.i.d. with means 0 and variances and oZB, respectively. This leads 
to the E(MS) in Table 13.1. 

B 
e t j k .  Y z j k  = + ri + Qj + e t  + P k  + ( a 3 ) j k  

13.2.3 Testing of Hypotheses 

The forms of the E(MS) indicate the appropriate tests of significance. Relying on the 
approximation of the randomization test by the F-test we test 

(i) Ho: a1 = 0 2  = . . . = CY, = 0 by 

(ii) Ho: 01 = P2 = . . . = pb = 0 by 

MS(A x B )  
F =  F( a - 1 ) (b- 1 ) , ( T - 1 )a (b- 1) . 

W E B )  
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13.2.4 Estimating Treatment Contrasts 

Since the split-plot design is an orthogonal design, treatment contrasts are estimated 
simply by the corresponding contrasts of appropriate treatment means and their vari- 
ances are obtained by using model (13.7) and its properties: 

(i) The contrast C,c,a, (C,c, = 0) among whole-plot treatment effects is esti- 
mated by C, c, g . Since 

1 2  
var(g,, 1 = ;(% + b d )  

for every a = 1 ,2 .  . . . . r: j = 1.2,  . . . . a ,  we have 

and hence, from Table 13.1, 

(13.8) 

(13.9) 

(ii) The contrast C k d k &  ( C k d k  = 0) among the split-plot treatment effects is esti- 
mated by C k d k g .  k .  Now 

r 1 

(1 3.10) 

and 

(13.11) 

(iii) We now consider a contrast among split-plot effects averaged over a set of p ( p  < 
a )  whole-plot treatments. If we write 
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and 

(to simplify notation we have averaged over the first p whole-plot treatments), 
we then consider C k d k J ? )  with C d k  = 0. The estimator for this contrast is 

r 7 

with 

and 

(13.13) 

(13.14) 

(iv) We may also consider a contrast among whole-plot treatment effects averaged 
over a set of q ( 4  < b)  split-plot treatments. If we write, using (13.12), 

(to simplify notation we have averaged over the first q split-plot treatments), we 
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are then interested in EJc3a:‘I) with C,c, = 0. The estimator for this contrast is 

with 

We know from Table 13.1 that 

62s = MS(EB) (13.16) 

and 

(13.17) - 2  1 
GeA = - [MS(EA) - M S ( E B ) ]  b 

(if M S ( E B )  > M S ( E A )  we take 8zA = 0). 

We then estimate (13.15) as 
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with 

var(.i,k - = - ueA + - 2 2  ueB (13.19) 
2 
r r 

and, using (13.16) and (13.17), 

(13.20) 

13.2.5 Testing Hypotheses about Treatment Contrasts 

Of the contrasts described above, (i) and (ii) are usually of most interest. Tests of 
significance about or confidence intervals for them can be obtained by referring to t- 
statistics with the appropriate d.f., ( r  - 1 ) ( u  - 1) for (i) and ( r  - l ) a ( b  - 1) for (ii). 
We should mention, however, that inferences about the a3’s or the 3 k ’ s  may not always 
be meaningful when the A x B interaction is significant. Careful examination of the 
kind of interaction present is necessary before proceeding to the inference about main 
effects. If such inferences are not appropriate contrasts of the form described in (iii) 
and (iv) may be more useful, often with p = 4 = 1. There is no difficulty in dealing 
with (iii) using the t-statistic with ( r  - l ) a ( b  - 1 )  d.f. However, there does not exist 
an exact test for the contrast given in (iv). A reasonable method to use is to form the 
t-statistic in the usual way, that is, 

(13.21) 

and then compare (13.21) with the following weighted critical t-value: 

b - 4  
MS(EA)t(~-l)(a-l) .a + - M S ( E B ) t ( r - i ) a ( b - i ) . a  

M S ( E , 4 )  + - M S ( E B )  
t, = 4 (13.22) 

4 

where tu.a refers to the a-percentage point of the t-distribution with v d.f. (for exam- 
ple, Cochran and Cox, 1957). 

Another method to use is that suggested by Satterthwaite (1947), that is, to compute 
(13.21) and approximate its distribution by that of a t-statistic with v d.f. where 
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The same procedure can be used for inference about a contrast of type (v), using q = 1. 
As mentioned earlier, this comparison is only occasionally of interest, for example to 
compare a control treatment with a particular treatment combination. 

We conclude this section by pointing out that the whole-plot treatments themselves 
can have a factorial structure and the same is possible for the split-plot treatments. The 
reader should have no difficulty modifying the ANOVA and hence making use of the 
factorial structures to analyze such an experiment. 

13.3 RELATIVE EFFICIENCY OF 
SPLIT-PLOT DESIGN 

Under most circumstances the split-plot design is used for purely technical and prac- 
tical reasons, as the levels of some factor can be applied only to large EUs which can 
then be “split” into smaller EUs for application of the levels of the other factor. This 
includes also the distinction between hard-to-change and easy-to-change factors in in- 
dustrial experimentation (see Section 12.4.6). It is, however, of interest to evaluate the 
efficiency of the split-plot design relative to the RCBD with r blocks. The question 
then is: Given that we have carried out a split-plot experiment, what would have been 
MS(E) for the RCBD? This, of course, determines how much information would have 
been available for all treatment comparisons. We see from Table 13.2, using a unifor- 
mity trial for both situations, that is, pooling treatment sums of squares with appropriate 
error sums of squares, that 

r (ab  - l )MS(E)  = r ( a  - ~ ) M S ( E A )  + ra(b  - l)MS(EB) 

and hence 

(a - ~ ) M S ( E A )  + a(b  - l )MS(EB) 
ab - 1 

MS(E) = (13.24) 

The information on all treatment comparisons in a RCBD would then have been pro- 
portional to l/MS(E), whereas in the split-plot design information on whole-plot treat- 
ment comparisons is proportional to ~ / M S ( E A )  and on split-plot treatment compar- 
isons and interaction proportional to l /MS(EB).  Since MS(E) is a weighted average 
of MS(EA) and MS(EB), and since MS(EA) is usually greater than MS(EB) (ex- 
cept for sampling errors), MS(E) will be intermediate in size between MS(EA) and 

We can then state the results concerning relative efficiencies of the split-plot design 
MS ( E B  1. 

versus the RCBD as follows: For A-factor comparisons we have 

W E )  < 1 EREA (Split-plot design vs. RCBD) = ~ 

M S ( E A )  
(13.25) 

and for B-factor and A x B comparisons we have 
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Table 13.2 ANOVA for Uniformity Trial 

(a) Split-plot design 

Source d.f. MS 

Replicates r - 1 

Error ( A )  r ( u  - 1) MS(EA) 

Error ( B )  ra(b - 1) MS(EB) 

Total rab - 1 

(b) RCBD 
Source d.f. MS 

Blocks T -  1 

Error r ( a b -  1) MS(E) 

Total rub - 1 

EREB (Split-plot design vs. RCBD) = M W )  > 1. 
MS(EB) 

(13.26) 

Results (13.25) and (13.26) express the obvious: Although the average information 
is the same for both designs, the information on whole-plot treatment comparisons is 
less s precise in the split-plot design than in the RCBD, whereas the opposite is true 
for split-plot treatment and interaction comparisons. Hence, unless practical reasons 
dictate the use of a split-plot design or one is more interested in one factor than the 
other, use of a RCBD seems preferable. 

13.4 OTHER FORMS OF 
SPLIT-PLOT DESIGNS 

We mentioned in Section 13.2 that in order to better understand the structure of the 
simple split-plot design it is advantageous to view it as superimposing one RCBD (for 
the split-plot treatments) on top of another RCBD (for the whole-plot treatments). We 
shall refer to this as a SPD(RCBD, RCBD). Variations of this form of split-plot design 
are possible by using different component designs, other than both RCBD. Some useful 
combinations are indicated below (where IBD refers to incomplete block design) and 
discussed in the section indicated. 
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Error-control design for Error-control design for 

whole-plot treatment split-plot treatment Section 

CRD 
CRD 
LSD 
CRD 
GRBD 
GRBD 
IB D 

RCBD 
LSD 
RCBD 
IBD 
RCBD 
IBD 
RCBD 

3.4.1 
3.4.3 
3.4.4 
3.4.5 
3.4.6 
3.4.7 
3.4.8 

RCBD GRBD 13.4.9 

13.4.1 SPD(CRD, RCBD) 

Each level of the A-factor is randomly assigned to r whole-plots and within each 
whole-plot the b levels of the B-factor are randomly applied to the split-plots. In this 
situation the whole-plots are often subjects. Each subject is given a certain treatment, 
that is, one of the levels of the whole-plot factor (A-factor) such that each level of the 
A-factor is applied at random to r subjects. Then each subject will receive, in random 
order, sequentially all b levels of the B-factor. It is for this reason that this type of de- 
sign is often referred to as a between-and-within-subjects design, where the A-factor is 
referred to as the between-subjects factor and the B-factor is referred to as the within- 
subjects factor. A diagram of the structure of the data from such an experiment is given 
in Figure 13.1 (ignoring randomization). 

A suitable model is of the form 

or 
Y z j k  = + 0, + S,J + 31, + ( 0 3 ) z k  + e:k. 

where s , ~  represents the effect of the j t h  subject receiving the ith level of the A-factor, 
( i =  1 . 2  . . . . .  a : j = 1 . 2 ,  . . . .  r ; k = 1 , 2  , . . . .  b).TheANOVAisgiveninTable13.3. 

13.4.2 Split-Plot Design in Time 

In some types of experiments subjects (EUs) are given a certain treatment, a dietary 
regimen for example. Observations (say weight) are then made at specified times (for 
instance, every month for one year). The design for such an experiment is usually of the 
form of an SPD(RCBD, RCBD) or SPD(CRD, RCBD) and is, therefore, often referred 
to as a “split-plot design in time,” where the treatment is the A-factor and the times 
are considered to be the “levels of the B-factor.” There are a number of problems with 
this viewpoint. First, the “B-levels” are obviously not randomized. Secondly, and even 
more importantly, there exists a covariance structure for the observations and hence 
for the errors other than the one ordinarily induced by the randomization procedure. 
This may invalidate the analysis outlined above, and only if the covariance structure 
satisfies the Huynh-Feldt conditions (Huynh and Feldt, 1970) do MS(B)/MS(EB) 
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A-factor 

s 1 2  
1 

s 1  T 

s 2  1 

8 2 2  
2 

Sa 1 

S a 2  
a 

s a r  

B-factor 

b 2 . . .  1 

Y l l l  Y112 Y l l b  

Y121 Y122 Y l Z b  

Ylrl Y l r 2  Y l r b  

Y211 Y212 Y21b 

Y221 Y222 Y22b 

Yall Y a l 2  Y a l b  

Y a 2 1  Ya22 Ya2b  

Figure 13.1 Between-and-within-subjects design. 

Table 13.3 ANOVA for SPD(CRD, RCBD) 

Source d.f. ss 

Total rab  - 1 c ( Y v k  - 8 . . . )2  
z . 3 . k  
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Order 

Factor A 

s11 

a1 s 1 2  

s 1 3  

s 1 4  

s 2  1 

s 2 2  

a 2  s2 3 

s 2 4  

Figure 13.2 Schematic representation of a SPD(CRD, LSD) with a = 2, b = 4. 

and MS(A x B ) / M S ( E B )  have F-distributions. These designs are called repeated 
measures designs (for a discussion see Chapter 14). 

13.4.3 SPD(CRD, LSD) 

Experiments in psychology and human factors engineering are often performed using 
this kind of design or variations of it. Rather than assign the levels of the split-plot 
factor randomly to the split-plots within each whole-plot as in the SPD(CRD, RCBD), 
they are assigned according to a Latin square design as follows. First, each level of the 
A-factor is randomly assigned to T = b whole-plots. If it is suspected that the order 
of application of the B-levels within each whole-plot has a systematic effect on the 
outcome then a Latin square arrangement of the following type may be used. For each 
A-level the b whole-plots form the rows of an LSD and the orders of application form 
the columns of the LSD. For each A-level we thus have an LSD of size b and the b2 
row-column combinations represent the split-plots to which the B-levels are assigned 
according to a randomly selected b x b LSD. For a = 2 and b = 4 the design can be 
represented as in Figure 13.2. 

The LSDs given in Figure 13.2 are actually of a specific type. They are sometimes 
referred to as completely counter-balanced or diagram-balanced (Wagenaar, 1969) 
and are constructed following a method due to Williams (1949) (see Section 10.7.2). 
The special feature of such an LSD is that each treatment precedes and follows every 
other treatment exactly once in the order of application. This is useful when learning 
effects or carry-over effects are suspected. 

An example of the design described here might be a psychological experiment in 
which subjects (St,) are given different types of training (education), represented by 
the A-levels, and following that each subject performs sequentially a number of tasks 
(tests), the same for each subject and represented by the B-levels. It is suspected that 
a learning effect takes place. This means that subjects may respond differently to the 
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Table 13.4 ANOVA for SPD(CRD, LSD) 

Source d.f. SS E(MS) 

Afactor 

Error (A)  

Order (0) 

B-factor 

.4 x B 

4 x 0  

Error ( B  j 

a - 1  

a ( b  - 1) 

b - 1  

b - 1  

( Q  - l ) ( b  ~ 1) 

( a  - l)(b - 1) 

a ( b  - l ) ( b  - 2 )  

Total ab2 - 1 

same task given at different times (order). 
An appropriate model for this design can be written as 

g t I k ( l )  = P + a, + e i  + ntli + 31 + ( ~ 3 ) , 1  + ( q ) , r c  + e B  Z J k ( / ) ’  (13.28) 

where : k  represents the kth order effect ( z  = 1 , 2 . .  . . , a : j .  k .  1 = 1 . 2 . .  . . , b) .  This 
leads to the ANOVA given in Table 13.4. Model (13.28) includes a term for factor 
A x order interaction, ( Q A , ) , ~ .  It reflects differences among the “learning curves” for 
the different levels of the A-factor. If such differences are assumed to not exist then 
SS(A x 0 )  in Table 13.4 can be pooled with SS(EB). 

Just as the SPD(CRD. RCBD) the SPD(CRD, LSD) is sometimes also referred to as 
a between-and-within-subjects design or mixed factorial design (for example, Keppel 
and Zedeck, 19891, where the A-factor is the between-subjects factor and the B-factor 
is the within-subjects factor. 

The SPD(CRD, LSD) bears a certain resemblance to the replicated LSDs except 
that we have here two different randomization procedures. As explained for the SPD(RCBD, 
RCBD) this leads to two error terms rather than one for the repeated LSD (see Sec- 
tion 10.3). 

13.4.4 SPD(LSD, RCBD) 

The whole-plots are arranged in an a x a Latin square and the levels of the A-factor 
are assigned in accordance with the randomization procedures for the LSD (see Chap- 
ter 10). In each whole-plot the levels of the B-factor are applied to the split-plots 
according to a RCBD. A suitable model is of the form 
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Table 13.5 ANOVA for SPD(LSD, RCBD) 

source d f.  ss 

RON5 

Columns 

A-tacror 

Error (A) 

B-fuccor 

A x B  

Error ( B )  

0 - 1  

0 - 1  

a - I  

(a ~ l ) ( a  - 2 )  

h - 1  

( a  - l)(b ~ I) 

.(a - l ) ( b  - 1) 

Total u 2 b  ~ 1 

(i. j .  k = 1.2,  . . . . a: 1 = 1.2,  . . . . b) .  The ANOVA is given in Table 13.5. Where 
applicable this is rather effective in increasing the precision for whole-plot treatment 
comparisons (Yates, 1935). 

As an example for this design we can envision an agronomic experiment where the 
experimental material (for example, field) requires blocking in two directions (rows and 
columns). The A-factor may represent different soil treatments such as no-till, shallow 
plowing, deep plowing (a = 3). The B-factor could be different types of fertilizer. 
The layout for b = 2 is given in Figure 13.3. 

13.4.5 SPD(CRD, IBD) 

This design is useful if the number of split-plots in a whole-plot is less than b, say 
K .  A suitable arrangement might then be that the r replications for each whole-plot 
treatment form an IBD for the split-plot treatments, the IBD (apart from randomization) 
being the same for each level of the A-factor. For example, Robinson (1967) considers 
the specific case of a BIBD (b .  r. K .  R: A), that is, each split-plot treatment occurs 
R(< T )  times with each whole-plot treatment, and each pair of split-plot treatments 
occurs together X times with each whole-plot treatment. 

As an example consider a = 3, b = 4. And suppose each whole-plot contains only 
K = 2 split-plots. Suppose further that each level of the A-factor is replicated P = 6 
times. We can then use the following BIBD (4, 6, 2, 3; 1) for the B-factor: 

1 1 1 2 2 3  
2 3 4 3 4 4  

(where each column represents a block) in such a way that the two treatments in a 
block are assigned randomly to the split-plots in a whole-plot and for each level of the 
A-factor the six blocks are assigned at random to the six replicates. The layout (apart 
from randomization) is given in Figure 13.4. 

The model for this design is the same as (13.27) except that not all combinations 
( i jk)  occur, but the analysis becomes now more complicated since the A-factor and 
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Columns 

1 

a2 

b2 : bl 

2 

a3 
b2 1 bl 

3 

a2 

b2 1 bl 

Figure 13.3 Layout for SPD(LSD, RCBD) for a = 3, h = 2. 

the B-factor are no longer orthogonal to each other. Partial sums of squares have to 
be obtained using the methods of Chapter 9 and Chapter 11.1. We shall not go into 
the details here, but refer to Robinson (1 967). A sketch of the ANOVA is given in 
Table 13.6. 

We mention here that the IBD as the split-plot design needs to be chosen carefully. 
By that we mean that each level of the B-factor must occur with each level of the A- 
factor. Otherwise we cannot estimate all the interaction terms, and hence the d.f. for 
A x B will be less than (a - l ) ( b  - 1). 

13.4.6 SPD(GRBD, RCBD) 

This design is similar to the SPD(CRD, RCBD) with T’ replications of each of the 
whole plot factor levels in that each replicate constitutes a SPD(CRD, RCBD). The 
main advantage of this design is that we can now test for Rep x A, Rep x B and Rep x A x 
B interaction, using the following model 

(i = 1 2, . , ., r ;  j = 1, 2, . . ., a ;  k = 1, 2 ,  . . ., r’; 1 = 1, 2,  . . ., h). This is, of course, 
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Factor A 

s11 

S l 2  

a1 s 1 3  

s 1 4  

s15 

s16 

s 2  1 

s 2 2  

a 2  s 2  3 

s 2 4  

s 2  5 

s 2  6 

s3 1 

s3 2 

a3 s 3 3  

834 

8 3 5  

8 3 6  

Factor B 

Figure 13.4 Layout of SPD(CRD, IBD). 

Table 13.6 Outline of ANOVA for 
SPD(CRD, BIBD) 

Source d.f. 

A-factor a - 1 

Error (A) a ( r  - 1) 

B-factor b - 1 

A x B ( U  - l ) ( b  - 1) 

Error(B) 

Total abR - 1 

a(Rb - b - T + 1) 
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Table 13.7 Outline of ANOVA for 
SPD(GRBD, RCBD) 

Source d.f. 

Rep 
A 

Rep x A 

Error(A) 

B 

A x B  

Rep x B 

Rep x A x B 
Error ( B )  

r - 1  

a - 1  

(a - l)(r - 1) 

ar(r’ - 1) 

b - 1  

( a  - l ) ( b  - 1) 

(1. - l ) ( b  - 1) 

( r  - 1)(a - l ) ( b  - 1) 

UT(T’  - l ) ( b  - 1) 

Total rr‘ab - 1 

important if the replication factor is an intrinsic factor and if the type of interactions 
mentioned above are important. The outline of the ANOVA is given in Table 13.7. 

13.4.7 SPD(GRBD, IBD) 

This design is similar to the SPD(CRD, IBD) in that each replicate constitutes a SPD 
(CRD, IBD). In each replicate each whole-plot treatment is applied to, say, r’ whole- 
plots and superimposed upon these is then an IBD, for example, a BIBD or PBIBD, for 
the split-plot treatments. This, too, is a nonorthogonal design and sums of squares in the 
ANOVA must be obtained from first principles (see Chapter 4 and also Chapter 11.1). 
An outline of the ANOVA is given in Table 13.8 for the SPD(GRBD, BIBD(b, T ’ ,  K ,  
R; A)). 

A special application of a SPD(GRBD, IBD) arises, for example, when the B-factor 
(that is, the split-plot factor) itself has a factorial structure and a system of confounding 
has to be used. To illustrate such a procedure we give a simple example. 

Suppose we have three levels a l .  a2> a3 for the A-factor and a 2 3  factorial for the 
B-factor. Let us denote those factors by C with levels co ~ c 1 ~  D with levels do. dl, and 
E with levels eo. el.  Suppose now we have r’ = 2 applications of each level of A in 
each replicate and we have whole-plots with only four split-plots. Using the methods 
discussed in Chapter 11 the procedure to use is quite straightforward, namely to con- 
found the 3-factor interaction CDE with whole-plots, assuming that this interaction is 
of less importance than main effects and 2-factor interactions. This leads (apart from 
randomization) to the following arrangement for one replicate: 



13.4. OTHER FORMS OF SPLIT-PLOT DESIGNS 553 

Table 13.8 Outline of ANOVA for 
SPD(GRBD, BIBD) 

Source d.f. 

Replicates r - 1 
A-factor a - 1 
Error ( A )  
B-factor b - 1 

Error(B) 

Total urbR - 1 

(a - l ) ( r  - 1) + ar(r’ - 1) 

A x B ( U  - l ) ( b  - 1) 
a ( r R b  - b - rr’ + 1) 

The ANOVA for this design is given in Table 13.9. This is an orthogonal design 
and hence all sums of squares are easily obtainable using the usual procedures. The 
important feature of this design is that the five d.f. among whole-plots within a replicate 
can be partitioned into d.f. for A, CDE (since it is confounded with whole plots), and 
A x CDE. This is an example of “recovery of interblock information,” a procedure 
discussed in Chapters 11.1 and 8-1 1. 

13.4.8 SPD(IBD,RCBD) 

This situation may arise in the following context: Suppose we want to investigate and 
compare different therapeutic treatments consisting of a combination of inoculation 
and ointment. We propose to use identical twins for this study. We have three different 
substances, say a l ,  a2, u3, for the inoculation, each individual receiving one substance, 
and we have two ointments, say b l  , b2, each being applied to one arm of each individ- 
ual. In other words, the whole-plots are the individuals and the split-plots are the arms 
of each individual. Schematically the arrangement of the treatment combinations may 
be represented as follows: 
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Arm 

Twin pair Individual Innoculate Left Right 

This basic pattern may be replicated r times, using proper randomization. The IBD 
used here is obviously a BIBD (3, 3, 2, 1; 1) or, for the entire experiment, a BIBD (3, 
3r,  2, 2r; r).  The ANOVA for this design is outlined in Table 13.10. Again, this is a 
nonorthogonal design. 

Table 13.9 ANOVA for SPD(GRBD, IBD), 
Using a System of Confounding 

Replicates 
A 
CDE 
A x CDE 
Error ( A )  
C. D, E 
CD, C E ,  DE 

A x C . A x  D , A x  E ,  
A x  C D , A  x C E ,  
A x  DE 
Error ( B )  

12 

1 q r -  1) UZB 

Total 247- - I 

13.4.9 SPD(RCBD, GRBD) 

If the whole-plots can be divided into more than B sub-plots then the design for the 
split-plot factor B may be a GRBD with r' replicates for each of its b levels, or some 
form of extended block design as discussed in Section 9.8.5 
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Table 13.10 Outline of ANOVA for SPD(BIBD, 
RCBD) using BIBD (3 ,3r ,  2 , 2 r ;  T )  

Source d.f. 

Replicates r - 1  
Pairsheplicates 27- 
A-factor 2 
Error (A) 
B-factor 1 
A x B  2 
Error( B) 

Total 12r - 1 

6r - 3 - 3r + 1 = 3r - 2 

( 6 ~  - 1) - 2 = 3(2r - 1) 

An outline of the ANOVA for the SPD(RCBD, GRBD) is given in Table 13.11. We 
have included here Rep x B and Rep x A x B as separate sources of variation. They 
may, of course, be pooled with the Error(B) if these interactions are considered to be 
negligible. 

13.4.10 Summary 

The designs given in this section represent obviously only a few examples of different 
forms of split-plot designs. The reader should have no difficulty thinking of other 
examples or of considering the examples given above more generally. The important 
point is that it is useful to represent split-plot designs as superimposing two suitable 
error-reduction designs. Those component designs should be chosen to best suit the 
experimental situation present. 

13.5 SPLIT-BLOCK DESIGN 

Unfortunately, the terminology for error-reduction designs using the split-unit principle 
is not quite uniform. The design we shall discuss now is known as a split-block design 
and also as a split-plot design in strips. It represents a variation of the simple split-plot 
design discussed in Section 13.2. 

13.5.1 The Layout 

The basic difference, and it is an important one, between the simple split-plot design 
and the split-block design is the way in which the levels of the two treatment factors 
are assigned to EUs. In this case both factors are applied to whole-plots which are 
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Table 13.11 Outline of ANOVA for 
SPD(RCBD, GRBD) 

Source d.f. 

Rep 
A 
Error(A) 
B 
A x B  
Repx B 
RepxA x B 
Error ( B ) 

r - 1  
a - 1  
( r  - 1 ) ( a  - 1 )  
b - 1  
( a  - l ) ( b  - 1 )  
(T - l ) ( b  - 1) 
(T - l)(a - l ) ( b  - 1) 
rab(r’ - 1 )  

Total rar’b - 1 

“orthogonal” to each other. Schematically, this can be represented as follows, for factor 
A with levels a l ,  a 2 . .  . . . a,(a = 8) and factor B with levels b l ,  b2.. . . , bb(b = 5 ) :  

B 

An example of such an arrangement, where the levels of both factors are applied ran- 
domly to two types of whole-plots and the observations are obtained on the split-plots 
(determined by the intersection of the whole-plots) is the following agronomic exper- 
iment. We want to compare the yield of a certain crop under different systems of soil 
preparation and different density of seeding. Both operations (tilling and seeding) are 
done mechanically and it is impossible to perform both on small pieces of land. The 
arrangement shown above is then replicated r times, each time using different random- 
izations for A and B. 
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13.5.2 Linear Model and ANOVA 

It is clear from our earlier discussion and from the nature of this arrangement, that we 
should have a separate error variance for comparisons among the levels of the A-factor, 
for comparisons among the levels of the B-factor, and for interaction comparisons. A 
model reflecting this structure is of the form 

&k = p + rt + a3 + e t  + 31, + e,B, + (an),k + e t f  (13.31) 

with E = 1 . 2 . .  . . r ; j  = 1 , 2 . .  . . .a: k = 1 . 2 . .  . . , b and the e $ .  e z ,  and e t i  can be 
considered as i.i.d. random variables with means 0 and variances ozA. &, and oeAB, 
respectively. The ANOVA for this model is given in Table 13.12. 

2 

13.5.3 Estimating Treatment Contrasts 

The ANOVA table suggests immediately how tests of hypotheses can be performed, us- 
ing different error terms for tests about main effects and the interaction. Different error 
terms are also involved in obtaining the variances of estimable functions involving dif- 
ferent kinds of treatment effects. We shall outline this briefly for the same comparisons 
discussed in Section 13.2: 

(i) C,c,a, is estimated by 
r 1 

r 

with 

It follows then from Table 13.12 that 

(13.32) 

(13.33) 
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(13.34) 

following the arguments given for (13.32). It follows, again from Table 13.12, that 

(13.35) 

(iii) C, c3 a?) is estimated by 

A B  

with 

We know from Table 13.12 that 

8,"AB = M S ( E A B )  

and 
1 

?:A = ; [ M S ( E A )  - M S ( E A B ) ]  

and hence we find the estimator for (13.36) to be 

(13.36) 
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and 

(13.38) 

and 

There can occur, obviously, also various forms of incomplete split-block designs. 
For example, we may have less than b column whole-plots. For a discussion of the 
analysis of such designs see Hering and Mejza (1997). 

13.6 SPLIT-SPLIT-PLOT DESIGN 

An extension of the simple split-plot design and its variations can be obtained by using 
the split-unit principle a second time, this time for the split-plots to obtain what are 
called split-split-plots: 

split-split-plot 

split-plot 

( b k )  

This allows us to accommodate a third factor C with levels (split-split-plot treatments) 
el .  c2. . . . ~ cc. Using three independent randomizations we assign the whole-plot treat- 
ments (u,)  to one whole-plot in each of T replicates, the split-plot treatments ( b k )  to 
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Table 13.13 ANOVA for Split-Split-Plot Design 

Replicates 

A-factor 

Error ( A )  

B-factor 

A x B  

Error (B)  

C-factor 

A x C  

B x C  
A x B x C  

Error ( C )  

r - 1  

a - 1  

( r  - l ) ( u  - 1) 

( u  - l ) ( b  - 1) 

b - 1  

( r  - l ) a ( b  - 1) 

c - 1  

(a - l ) ( c  - 1) 

( b  - l ) ( c  - 1) 
(fl  - l ) ( b  - l ) ( c  - 1) 
( r  - l)ab(c - 1) 

Total rabc - 1 

one split-plot within each whole-plot, and the split-split-plot treatments (e l )  to one 
split-split-plot within each split-plot. The observation for a split-split-plot is then the 
observation for the treatment combination a3 b k q .  

Extending the arguments used in Section 13.2 an appropriate model for observa- 
tions from a split-split-plot experiment can be written as 

The error terms can be considered as i.i.d. random variables with means 0 and variances 
crzA. c rZB ,  a&, respectively. An outline of the ANOVA is given in Table 13.13. 

The form of the E(MS) in Table 13.13 indicates how tests of hypotheses should 
be performed using the three different error terms. The number of different types of 
treatment comparisons becomes now quite large. The estimators and variances of such 
comparisons can be worked out easily using methods similar to those given in Sec- 
tions 13.2 and 13.5. The estimated variances for some types of simple comparisons 
are given in Table 13.14. Here 7 jk i  denotes the effect of the treatment combination 
a,bkcl. Comparisons involving only the factors A and B are essentially as given in 
Section 13.2. For variances involving several MS the d.f. for a t-test have to be esti- 
mated using Satterthwaite's (1947) procedure (see also Section 13.2). 
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Table 13.14 Estimated Variances of Treatment Comparisons 
in a Split-Split-Plot Design 

~~~ 

Comparison 

13.7 EXAMPLES USING SAS@ 

EXAMPLE 13.2: 
with a = 3 whole-plot treatments, b = 2 split-plot treatments and r = 4 replicates. 
The data are given in Table 13.15a. 

We consider here the simple split-plot design, the SPD(RCBD, RCBD), 

To analyze the data we use both PROC GLM and PROC MIXED. The preferred 
procedure is PROC MIXED, but we include PROC GLM only for obtaining the ANOVA 
as given in Table 13.1. The input statements for both analyses are given in Table 13.15a: 

(i) The technical description for Error(A) is given by the (assumed to be negligible) 
interaction, rep*A. 

(ii) In the GLM analysis we have to specify the correct test for A by the test state- 
ment. 

(iii) In the MIXED analysis the rep*A interaction is declared to be random, thus 
enabling the correct test for A. 

(iv) In PROC MIXED we choose the Satterthwaite procedure to determine the correct 
d.f. for testing various hypotheses. 

The results of both analyses are given in Table 13.1%: 

(v) In the type I11 ANOVA the P-values for rep, A, and rep*A should be ignored. 
The P-values for B and A * B are correct. The correct P-value for A (.0438) is 
given as a result of specifying the correct test (see (ii) above). 
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(vi) Note that the d.f. for Error, our Error(B), are 9 and the d.f. for rep*A, our 
Error(A), are 6. 

(vii) In the MIXED analysis the tests for A, B, and A * B are performed correctly, 
that is, with the correct error terms and the correct d.f. The results agree with 
those obtained with GLM. 

(viii) The d.f. for the three treatment comparisons specified in the input statement 
are given as 9, 9, 9.24, respectively. This agrees with our discussion in Section 
13.2.5. 0 

Table 13.15 Split-Plot Design 

a) Input statements: 

data spltplot; 
input rep A B y @GO; 
data1 ines ; 
1 I 1 5 6  1 1 2 4 1  1 2  1 5 0  1 2 2 3 6  1 3  1 3 9  1 3 2 3 5  
2 1 1 3 6 2  1 2  25 2 2  1 3 6 2  2 2 2 8  2 3 1 3 3  2 3 2 30 
3 1  1 3 2 3  1 2 2 4 3 2 1 3 1 3 2 2 2 7 3 3  1 1 5 3 3 2 1 9  
4 1 1 3 0 4  1 2  25 4 2 1 3 5  4 2 2 3 0 4  3 1 17 4 3 2 18 
run; 

proc glmdata=spltplot: 
class rep A B; 
model y = rep A rep*A B A"B; 
test H=A E=rep*A; 
title1 'SPD(RCBD, RCBD)'; 
title2 'BASIC ANOVA': 
run; 

proc mixed data=spltplot; 
class rep A B: 
model y = rep A B A*B/ddfm=Satterth: 
random rep*A; 
lsmeans A B A*B; 
contrast '(alca2) vs a3' A 1 1 -2: 
contrast 'bi-b2' B 1 - 1 ;  
estimate 'bl-b2' B 1 - 1 ;  
estimate 'albl-alb2'  B 1 -1 A*B 1 -1 0 0 0 0; 
estimate 'albl-a2bl '  A 1 -1 0 A*B 1 0 - I  0 0 0; 
title2 'ANOVA RESULTS AND POST-HOC ANALYSIS'; 
Nn; 

b) Output: 

SPD (RCBD, RCBD) 
BASIC ANOVA 

Tke GLM ProcedLre 

Class Level Infornation 

Class Levels Values 
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Table 13.15 (Continued) 

rep 4 1 2 3 4  

A 3 1 2 3  

E 2 1 2  

Number of  0bse rva t ion . s  Read 24 
Number of  3bservaz ions  'Jsed 24 

3e3encer. t  V a r i a b l e :  y 

Sum of 
S c ' ~  r c e CF Squares Mean Sqca re  F Value F r  > F 

Mode; 14 2397.C83333 119.791667 17.23 <.3001 

E r r o r  9 78.2503C0 8. 5a4441 

C o r r e c t e d  T o t a l  23 2175.333333 

R-Square Coeff  Var Root MSE y Mean 

0.964029 9.460859 2.948634 31.16667 

Source 3? Type I SS Mean Square  F Value P r  > F 

rep  
A 
rep*A 
E 
A x 5  

3 1241.3030C0 413.666667 47.58 <.0001 

6 192.253000 32.041657 3.69 0.0394 
1 2;6.003000 2~6.03C006 24.84 0.0008 
2 94.753000 47.375006 5.45 0.028: 

z 353.083333 176.541667 20.31 0.3005 

Source 35 Type I11 SS Mean Square  F Va i Je  Zr > F 

r e p  
a 
rep*>. 

A*B 
a 

3 1241.00030C 413.566557 47.55 <.Cog1 
2 353.083333 176.541667 23.31 0.C035 
6 192.25030C 32.041667 3.69 0.0394 
1 215.0C030C 216.900003 24.84 0.C038 
2 94.75033C 47.375C03 5.45 0.0281 

i e s t s  o f  l y p o z h e s e s  J s i n g  t h e  T y p e  ;I1 MS ;or rep*A a s  a r  Zrror Tern 

Source DF Type III S S  Mean Square  F Value P r  > F 

A 2 333.3833333 176.5416667 5.51 3.0438 

SPD (XCBD, RCBD) 
AYAOVA XESIILTS AND POST-5OC ANALYSIS 

The Mixed P rocedure  

Mode1 I n f o r m a t i o n  

Casa S e t  WORK.SPLTPLOT 
Dependen't V a r i a b l e  Y 
Covar i ance  Structure V a r i a n c e  Compcr.ents 
Es t ima t io r .  MeLhod REML 
R e s i d u a l  Var i ance  Method P r o f i l e  
F ixed  S f f e c z s  SC Metbcd Xodel-Based 
Degrees of  Freedom Method S a t t e r t h w a i t e  
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Table 13.15 (Continued) 

SFD (RCEC, R C E D )  
ANAO'JA RESULTS AND POST-HOC ANALYSIS 

The Mixed Procedure 

Covariance Parameter 
E st imat es 

Cov Parm Estinate 

r e p * A  11.6735 
Residual 8.6944 

Fit Statistics 

-2 Res Log Likelihood 95.1 
AIC (smaller is better) 99.1 
AICC (smaller is better) 100.1 
EIC (smaller 1 s  better) 103.1 

Type 3 ?es-,s of ?ixed Effec-s 

Effect 

rep 
A 
E 
A*9 

Label E s  t irate 

nl-b2 S.OC30 
albl-alb2 9.7503 
albl-a251 0.5000 

Label 

(al+a2) vs a3 
bl-b2 

Num Deri 
DF DF F Value Pr > F 

3 6 12.91 0.0G5S 
2 6 5.51 0.C438 
1 3 24.84 C.0008 
2 9 5.45 3.0281 

Zstimates 

SEandara 
Error DF t Valce Pr > ti 

1.2338 9 4.98 0.9098 
2. C853 9 4.68 3.0012 
3.1912 9.24 3.16 0.8789 

Cortrasts 

&urn Den 
CF DF F Value Pr > F 

6 10.99 0.161 
1 9 24.84 0.0008 

SPD (RCBD, R C E 3 )  
ANAOVP RES'JLTS AK3 PCST-HOC ANALYSIS 

The Mixed Procedure 

Least Square Means 

Standard 
Effect A B Estimate Error DF t value Pr > 121 

A 1 33.6250 2.0013 6 15.80 <.000: 
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A 
A 
E 
E 
A*B 
A*E 
A*B 
A*E 
A*E 
A*B 

2 
3 

2 
1 1  
1 2  
2 1  
2 2  
3 1  
3 2  

Table 13.15 (Continued) 

34.1250 
25.7500 
34.1567 
28.1657 
38.5000 
28.7500 
35.C000 
30.2500 
26.0030 
25.5000 

2.0013 
2.0013 
1.3028 
1.3025 
2.2565 
2.2565 
2.2565 
2.2565 
2.2565 
2 . 2 5 6 5  

6 17.05 <.0031 
6 12.87 <.0C01 

9.24 26.23 <.0001 
9.24 21.62 1.3c01 
9.24 17.05 < .  0001 
9.24 12.74 <.0001 
9.24 16.84 i. 0001 
9.24 13.41 <.0031 
9.24 11.52 <.0001 
9.24 11.30 < .  0001 

EXAMPLE 13.3: Consider the SPD(CRD, RCBD) or between and within subjects 
design with a = 3, b = 2 with unequal numbers of subjects (T I  = 4, r2 = 3, 7-3 = 2 ) .  
The data are given in Table 13.16a together with the input statements for the analysis: 

(i) In the model statement we add the option “Satterth” in order to obtain the correct 
d.f. for treatment comparisons. 

(ii) Error(A) is specified as the random effect “subject(A)”. 

( 5 )  Error(A) and Error(B) both have 6 d.f. 

(iv) For the comparison “albl  - a ~ b l ”  the d.f. are computed according to (13.23) as 
7.99. 

Table 13.16 Between and Within Subjects Design 

a) Input statements: 

data spdcrd; 
input A subject B y CZ @: 
datalines: 
1 1  1 2 5  1 1  2 2 8  1 2  127  1 2 2 3 1  
1 3  1 2 8  I 3  232  1 4  1 3 0  1 4 2 3 2  
2 5 1 30 2 j 2 35 2 6 1 33 2 6 2 39 
2 7  133 2 7  2 35 3 8 149  3 8 2 55 
3 9 149  3 9 254  
; run; 

proc mixed data=spdcrd; 
class subject A B; 
model y = A  B A“B/ddfm=Satterth; 
random subject(A); 
lsmeans A B A*B; 
estimate ’al-a3‘ A 1 0 -1;  
estimate ‘bl-b2’ B 1-1; 
estimate’albl-aIb2’B 1 - 1  A*B I - I  0 0 0 0 :  
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Table 13.16 (Continued) 
estimate 'albl-a3bl' A 1 0 -1 A*B 1 0 0 0 -1 0; 
title1 'BETWEEN AND WITHIN SUBJECTS DESIGN'; 
title2 'WITH UNEQUAL NUMBERS OF SUBJECTS': 
run; 

b) Output: 

BETWEEN AND WITHIN S'JSJECTS DESIGN 
WITH UNEQUAL NUMBERS OF SUBJECTS 

The Mixed Procedure 

Model Information 

Data Set WORK.SPDCRD 

Covariance Structure Variance Components 
Estimation Method REML 
Residual Variance Method Profile 
Fixed Effects SE Me-hod Model-Based 
Degrees of Freedom Kethod Satterthwaite 

Dependent Variable Y 

Class Level Information 

Class Levels Values 

subject 9 1 2 3 4 5 6 7 8 9  
A 3 1 2 3  
B 2 1 2  

Number of Observations 

Number of Observations Read 18 

Number of Ojservations Not Used 0 
Covariance Parameter 

E sr- imat e s 

Cov Parm Es-imate 

subject (A) 2.4167 
Sesiaual 0.9931 

Number of Observations Used ia 

Type 3 rests of Fixed Effects 

Num Den 
Effect DF DF P Value Pr > F 

A 
B 
A*3 

2 6 119.29 <.0001 
1 6 79.56 3.0OC1 
2 6 1.76 0.2511 

Estimates 

Standard 
Label Estimate Error 33 t Value Pr > It, 

al-a? -22,6250 i.iiai 6 -15.31 <.0001 
bl-b2 -4.3611 0.4889 6 -a. 92 0.0001 
albl-alb2 -3.25C0 3.7046 6 -4.61 0.0036 
a l b l - a ? b l  -21.5CC0 1.5992 7.99 -13.44 <.00c1 
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Table 13.16 (Continued) 

Least Squares Means 

Standard 
Effect F. B Zszixate E r r o r  3 F  t Valse  P r  > It1 

9 1 29.1250 0.8534 6 34.13 <.!lo01 
P 2 34.1667 3.9854 6 34.67 <.3001 
A 3 51.75C0 1.2069 6 42.88 <.0001 
B 1 36.1667 0.6406 7.99 56.45 <.0031 
B 2 40.5278 0.6406 ?.99 63.26 <.COO1 
A*a 1 1 27.5030 0.9233 7.99 29.79 <.COO1 
AX3 1 2 33.7533 C.9233 7.90 33.31 <.OC31 
A*B 2 1 32.0COO L.066: 7.99 30.02 < .  0091 
A*3 2 2 36.3333 1.3661 7.99 34.CS <.0031 
A*B 3 1 49.0000 1.3057 7.99 37.53 <.COO1 
A*B 3 2 54.5000 1.3C57 7.99 41.74 <.0001 

For the other split-plot designs mentioned in Section 13.4 we give below the input 
statements for PROC MIXED. 

SPD(CRD, LSD) [Model (13.28)]: 

CLASS Subject Order A B; 

MODEL Y = A Order B A * B A* Order/ddfm=satterth; 

RANDOM Subject(A); 

SPD(LSD, RCBD) [Model (13.29)]: 

CLASS Row Column A B; 
MODEL Y = Row Column A B A * B/ddfm=satterth; 

RANDOM Row*Column*A; 

SPD(CRD, IBD): [Model (13.27)]: 

CLASS Subject A B; 
MODEL Y = A B A * B/ddfm=satterth; 

RANDOM Subject(A); 
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SPD(GRBD, RCBD) [Model (13.30)]: 

CLASS Block A Rep B; 

MODEL Y = Block A Block* A B A * B  

Block * B 
RANDOM Rep(A * Block); 

Block * A * B/ddfm=satterth; 

where Rep refers to the replication of a treatment within a block. 

SPD(RCBD, GRBD) 

CLASS Rep A B; 
MODEL Y = Rep A B A * B Rep*B/ddfm=satterth; 

RANDOM Rep*A; 

SPLIT-BLOCK DESIGN [Model (13.31)]: 

CLASS Rep A B; 
MODEL Y = Rep A B A * B /ddfm=satterth: 

RANDOM Rep*A Rep*B; 

SPLIT-SPLIT-PLOT DESIGN [Model (13.42)] 

CLASS Rep A B; 
MODEL Y = R e p  A B A * B  C A * C  B*C 

A * B * C/ddfm=satterth; 

RANDOM Rep*A Rep*A * B; 

13.8 EXERCISES 

13.1 Consider the SPD(RCBD, RCBD) with a levels for the whole-plot factor, b levels 
for the split-plot factor, T replications, and subsampling, that is, n observations 
for each split-plot. 
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(i) Write out an appropriate model for the observations. 

(ii) Write out the corresponding ANOVA table. 

(iii) Indicate how you would test hypotheses about the A-factor, the B-factor 

(iv) Give the SAS commands for performing the analysis. 

(v) Using the notation of Section 13.2.4, obtain expressions for viir(8j - Gj/) 

and the A x B interaction. 

and viir(kk - f i k , ) .  

13.2 Consider the SPD (CRD, RCBD) and suppose that the A-factor itself has a fac- 
torial structure, that is, the a levels of A are the a1 . a2 combinations of the a1 
levels of factor A1 and the a2 levels of factor A2. Similarly, the b levels of the 
B-factor are the bl . b2 combinations of the bl levels of factor B1 and the b2 

levels of factor Bz. 

(i) Write out a model for observations from this experiment. 

(ii) Write out the corresponding ANOVA table. 

(iii) Explain how you would test hypotheses about all main effects and interac- 

(iv) Give the SAS commands for performing the analysis. 

tions. 

13.3 Suppose that in Exercise 13.2 the A- and B-factors are 2’ factorials with factors 
Al.  A2 and B1. B2, respectively. 

(i) Give expressions for the estimates of the main effects A1 and A2, and for 

(ii) Give expressions for var(Al),  var(A2). var(AlA2) and for the estimators 

(iii) Do the same for B1. B2. B1 B2. 

(iv) Give an expression for the estimator for the interaction A1B1, its variance, 

the interaction A1A2. 

of these variances. 

------- 

and the estimator for this variance. 

13.4 Consider an experiment where the amount of dry matter is measured on wheat 
plants grown in different levels of moisture and with different fertilizers (Mil- 
liken and Johnson, 1984). The experimental material consists of 60 peat pots 
and 15 plastic trays; four (4) peat pots can be put in one tray. The moisture treat- 
ment consists of adding 10, 20, 30,40, or 50 ml of water to the tray, where it will 
be absorbed by the pots. The experiment is being conducted at 3 different green- 
houses such that 5 trays are used in each greenhouse and in each greenhouse 
each moisture level is assigned randomly to one tray. The fertilizer treatments 
are represented by a 22 factorial of low and high levels of nitrogen and phos- 
phate. Each fertilizer combination is applied (at random) to individual pots in a 
tray such that each combination occurs once in each tray. In each pot 5 plants 
are grown, and observations are made on the individual plants. 
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(i) Give a schematic (that is, graphical) representation of the layout of the 

(ii) Give the name of the error-control design for this experiment. 

(iii) Give an appropriate linear model for the design described in (ii), which 
reflects the structures of the error-control design, the treatment design, and 
the sampling design. 

(iv) Outline the ANOVA table based on the model given in (iii), giving sources 
of variation, d.f., and E(MS). 

(v) Explain how you would test whether there exists interaction between nitro- 
gen and the moisture treatment. 

(vi) The researcher is interested in finding out whether there exists a linear trend 
for the effect of moisture on dry matter. Give an expression for the estimate 
of the linear trend and give its standard error. 

experiment. 

13.5 Consider an experiment where the amount of dry matter is measured on wheat 
plants grown in different levels of moisture and with different fertilizers using a 
split-plot-type design (Milliken and Johnson, 1984).There are 48 different peat 
pots and 12 plastic trays; four (4) pots can be put in each tray. The moisture 
treatment consists of adding 40, 80, 120, or 160 ml of water to the tray, where 
it will be absorbed by the pots. The levels of moisture are assigned randomly to 
the trays such that each moisture level occurs 3 times. The fertilizer treatments 
are represented by all possible combinations of 0 and 1 unit of nitrogen, and 0 
and 1 unit of phosphate. The fertilizer is applied individually to each pot in a 
tray such that each combination occurs once in each tray. 

(i) What are 

(a) the whole-plots, 
(b) the split-plots, 
(c) the whole-plot treatment, 
(d) the split-plot treatment? 

model. 

scription of the experiment (give sources of variation and d.f.). 

(ii) What kind of split-plot-type design is this? Write out an appropriate linear 

(iii) Outline the ANOVA table in as much detail as possible based on the de- 

(iv) Explain how you would test whether nitrogen has an effect on dry matter. 

(v) The researcher is interested in finding out whether there exists a linear trend 
for the effect of moisture on dry matter. Give an expression for the estimate 
of the linear trend and its standard error (= square root of the estimated variance). 

13.6 Discuss the layout and analysis of a SPD (BIBD, RCBD) and describe a possible 
application for this design. 

13.7 Suppose a researcher comes to you to get some help on the analysis of the fol- 
lowing data set: 
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Factor B 

Factor A I bl bz b3 b4 

x x x x  
x x x x  

5 x 5 2  

2 2 x 2  

2 x 2 2  

2 x 2 2  

where each x represents an observation. 

What questions would you ask the investigator before you can analyze the 
data? 

Describe three scenarios (analogous to Study 2 in Section 2.6.2) which 
could have given rise to this data set. 

For each scenario write out an appropriate linear model and the correspond- 
ing ANOVA table. 

For each case explain how you would make statistical inferences about the 
main effects A and B and the interaction A x B. 



CHAPTER 14 

Designs with Repeated 
Measures 

14.1 INTRODUCTION 

For the title of this chapter we have, quite deliberately, not chosen the phrases repeated 
measures designs or repeated measurement designs, which, unfortunately, mean differ- 
ent things to different people. For Hedayat and Afsarinejad (1973, for example, they 
refer mainly to cross-over designs (see Section 10.7 and Chapter 11.19), whereas for 
Hand and Crowder (1996), for example, they refer to designs with longitudinal data; 
that is, measurements repeated over time. This is the point of view we take here, too. 
In that sense then this aspect of experimental design is not so much an aspect of error- 
control or treatment design even though they play a role, as we shall see, but mainly 
an aspect of the observation design. As such repeated measures can be associated with 
any of the error-control designs we have discussed in previous chapters, for example a 
CRD with repeated measures. 

We encounter repeated measures most often in medical, parmaceutical, agricultural 
or psychological applications, where it is intended to study the efficacy of treatments 
over a certain time period. 

EXAMPLE 14.1: (Frison and Pocock, 1992): A randomized trial of 152 patients with 
coronary heart disease compared an active drug with a placebo with respect to a pos- 
sible adverse drug effect on the liver. The liver enzyme CPK was measured in each 
patient before treatment, at the time of randomization and every 1.5 months after treat- 
ment. 

573 
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14.2 METHODS FOR ANALYZING 
REPEATED MEASURES DATA 

There exist several methods of analyzing such data. For an overview see Everitt (1993, 
and Keselman, Algina and Kowalchuk (2001). We shall mention here some methods 
and provide some more details in the following sections. 

In order to keep the discussion simple let us consider the situation where t treat- 
ments are applied randomly to T experimental units (for instance, patients, animals, 
pieces of land), and measurements are being taken on each EU at p times after ad- 
ministration of the treatment, say t l ,  t 2 ,  . . ., t,. In some situations a measurement at 
or immediately preceding the time of administration, say t o ,  may be taken. We, thus, 
have a CRD with p or p + 1 repeated measures. The time points may or may not be 
equidistant. The reader should have no difficulty extending the following discussion 
to other error-control designs. Also, Finney (1990) points out that repeated measures 
may not be confined to a temporal situation, but may involve also spatial situations 
as measurements are taken at different distances from the point of application of the 
treatment, for example, different depths of soil in a compaction study. 

14.2.1 

A commonly used approach is to consider the data at each time point arising from a 
separate “experiment”. Let us write a model for the observations as 

Comparisons at Separate Time Points 

Yaj k = Pzj k + etj k 

withi = 1, 2 , .  . ., t ; j  = 1, 2 , .  . ., r ;  k = 1, 2 , .  . . , pand  

(14.1) 

with q = i-th treatment effect 

s , ~  = effect of the j-th subject (EU) for i-th treatment 

T k  = k-th time effect 

( f f ) , k  = treatment-time interaction effect. 

We should point out that model (14.2) is essentially equivalent to model (13.27) 
under the following correspondence: 
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and the eZ3k have the following covariance structure. If we write 

e23 = (e231. e232.  . . . . e z 3 p ) ’  (14.3) 

(14.4) 

for all i, j ,  and k ,  k’ = 1, 2, . . ., p .  
For each time k we then consider contrasts of the form c, p 2 . k  with c, = 0, 

by looking at the observations at each time point as arising from a CRD. We see from 
(14.2) that 

2 

(14.5) 
i i 

that is, the contrasts at different time points are possibly different because of treatment- 
time interactions. This is, of course, the main reason for looking at different time points 
as we want to find out whether the treatments have different effects over time, and if 
so, when the differences appear first. 

A word of caution is in order here because the tests performed at each time point 
are not independent since the errors in (14.1) are now correlated. These correlations 
may become smaller as the time points are further apart. We may therefore choose time 
points which are not too “close” together, depending, of course, on the subject matter 
context. 

14.2.2 Use of Summary Measures 

Rather than performing several tests as described above, another approach may be to 
perform just one analysis based on a summary measure or performance feature for 
each subject over the entire set of time points. Such summary measures will have to 
be determined by the type of question we are investigating. For example, if we are in- 
terested in comparing the growth curve due to different treatments, then the area under 
the growth curve may be an appropriate summary measure. On other occasions the 
average response to treatment may be the most relevant summary measure (Matthews 
et al., 1990; Frison and Pocock, 1992). 

14.2.3 Trend Analysis 

In many situations it is important to detect trends over time or profiles or, perhaps even 
more importantly, to see whether the trends are the same for the different treatments. 
One way to approach these questions is as follows (see Rowel1 and Walters, 1976). 
Suppose we characterize the trends by a set of contrasts among the T k  in model (14. I), 
denoted by ciT with 

c1 = (ell. C Z .  . . . , C P J  (14.6) 
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Table 14.1 ANOVA for Model (14.7) 

Source d.f. ss E(MS) 

t r  

Totall tr 5 i: Z f i j  
i=l  J=1 

and 

c;3 = 0 (1 = 1 . 2 , .  . . . q ) .  

and 

T = (Ti. Tz.. . . , Tp)' 

In many cases the time points will be equally spaced, for instance, in intervals of 15 
minutes, in which case it is useful and convenient to characterize the trend as a polyno- 
mial over time and take the cl of (14.6) as the orthogonal polynomials of order p and 
degree 1 = 1 . 2 . .  . . . q (see Chapter 7). From (14.1) we then derive sequentially the 
models (that is, for 1 = 1.2 .  . . . . q )  

k k k k 

= p; + + erLj (14.7) 

with 

k 

k 

and E(e?,,) = 0, var(e?,,) = c{Ccl = 0; say. Model (14.7 )leads to the ANOVA 
given in Table 14.1. 
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Hence, to test for an overall trend defined by (14.4), that is, Ho: ck c k l T k  = pr = 
0, we use the test 

with 1 and U ( T  - 1) d.f., and to test whether this trend is the same for all the treatments, 
that is, HO : -/TI = yT2 = . . . = */Tt, we use the test statistic 

with a - 1 and U ( T  - 1) d.f. We perform this analysis for every I = 1 , 2 ,  . . . . q.  These 
tests generally provide an informative picture about the behavior of the treatments over 
time. 

14.2.4 The ANOVA Method 

In Section 13.4.2 we have referred to the design with repeated measures as a split- 
plot design in time. We have pointed out, however, that there is no randomization for 
the B-factor, that is, for time, and that the e:k = e t J k  in model (13.27) and (14.1), 
respectively, have a correlation structure, which we now have acknowledged explicitly 
in (14.4). For these reasons the testing procedures derived from the ANOVA in Table 
13.3 may be invalid. 

However, if in (14.4) satisfies the so-called Huynh-Feldt condition (Huynh and 
Feldt, 1970) given as 

c = XI, + 73; + 3,yf, (14.8) 

where X is a constant and y = (71% 7 2 .  . . . . yp)‘ is a vector of constants, then the 
usual F-test for testing Ho: TI = T2 = . . . = Tp [model (13.27) and 14.11 is valid. 
The condition (14.8) which can be written alternatively as 

where bkk’ = 1 if k = k f  and = 0 otherwise, contains as a special case a structure 
referred to as compound symmetry, characterized by 

u2 fork = k‘ 
for k # k‘ ‘ o k k ’  = { pu2 (14.9) 

that is, equal variances and covariances for the e:;). For the case of compound sym- 

metry (CS) for the eif’ in (14.3) Geisser and Greenhouse (1958) already proved that 
the usual analysis for the split-plot design is valid. The case we need to consider here 
then in connection with repeated measures designs is when neither (14.9) nor (14.8) 
are satisfied. 
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14.2.5 Mixed Model Analysis 

Recall that the data from a CRD with repeated measures (often also referred to as a 
between- and within-subjects design) are described by the model (see (14.1), (14.2), 
(14.4)) 

y t j k  = P + T k  + 3 2 3  + T k  + (7T)tk + e z j k ,  (14.10) 

where p + 7% + T k  + (rT)%k is the fixed part and s Z j  is the random part of a mixed 
model. More specifically, concerning the random part, the st j  are i.i.d. (0,  as) random 
variables, and the e t j k  have a covariance structure given by (14.4). As a consequence 
the variance-covariance matrix for the vector of n = trp observations, y, is given by 

var(y) = Ina,2 + It, x c = v: (14.11) 

where “x”  indicates a Kronecker product. 
It is V of (14.1 1) that we would need to use to estimate and make inference about 

the fixed effects in model (14.10) (see Sections 4.6.2 and 4.18). Unfortunately, we 
do not know the variance and covariance components in (14.1 1) and, indeed, we do 
not even know the covariance structure represented by c. Hence, in order to analyze 
repeated measures data we need to make an assumption about the structure and then 
use a suitable estimation procedure to estimate the variance and covariance component 
to obtain c, say, and then solve the Aitken-like equations (4.80) using c. This is, 
generally speakmg, not an easy task and for the average user possible only with the 
availability of suitable software, such as SAS PROC MIXED (SAS Institute, 2002- 
2003). 

We shall not go into the details of SAS PROC MIXED but mention the form of 
some of the possible covariance structures (using p = 4) that this program can use and 
that we consider to be relevant for this situation: 

h 

Compound Symmetry (CS): 

0 2  pa2 pa2 pa2 

pa2 a2 pa2 pa2 

pa2 pa2 0 2  pa2 

pa2 pa2 pa2 a2 

that is, all the variances (diagonal) are the same, and all covariances (off-diagonal) are 
the same, regardless of the distance between time points (see (14.9)). 

First-order Autoregressive (AR( 1)): 
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-0: 0 2 1  0 3 1  041 

0 2 1  02’ 0 3 2  042 

0 3 1  032 03” 0 4 3  

041 0 4 2  u 4 3  04” 

- 

- 

that is, the variances are the same, and, since 1 p 1 < 1, the covariance diminishes as the 
time points become further apart. 

Spatial Power (SP(POW)(C)): 

that is, just like AR( 1) the correlations depend on the distance between time or spatial 
points, except that the power of p is now determined by a measure, d i j ,  of the actual 
distance between points i and j .  

As we have mentioned before, it is unlikely that the CS is appropriate for repeated 
measures data, but if this structure holds then the analysis is equivalent to the ANOVA 
given in Table 13.3. This is the reason why the CS structure is appealing and frequently 
used. Even though we do not go as far as Finney (1990) who says that it should never 
be used (unless p = 2), we caution the user to be very careful with its use. 

We prefer, in general, the AR( 1) structure because it seems to reflect an intuitive 
amount of correlation between observations at different time points and to allow for the 
correlation to become smaller as the times of observation are farther apart. The same 
comments apply to SP(POW)(C), in particular if the distances between points are not 
the same. 

is certainly UN. But the drawback is that it re- 
quires the estimation of many parameters in V which will make it not a very powerful 
procedure. 

SAS PROC MIXED allows for other covariance structures, but the ones mentioned 
above will generally suffice from a practical point of view, and we shall illustrate their 
use in Section 14.3. 

To conform somewhat to the SAS PROC MIXED notation we shall rewrite model 
(14.1) for the general situation (in matrix notation) as 

The safest assumption about 

y = X a  + Up + e:  (14.12) 
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where X a  refers to the fixed part, and Up refers to the random part, with X and U 
known matrices and 

E ( 0 )  = 0; 

E(e) = 0; 

var(0) = G 

var(e) = R 

so that (14.1 1) becomes 
var(y) = UGU’ + R 3 V. 

(14.13) 

(14.14) 

In our situation the fixed part of (14.12) represents parameters associated with the treat- 
ment, time, and treatment x time interaction effects as well as possibly some blocking 
factor effects for error-control designs other than the CRD. In addition, we may also 
have other treatment effects in connection with a real split-plot structure, which would 
then contribute further error terms to Up. Thus model (14.12) represents the most 
general case. 

The fitting of model (14.12) in SAS PROC MIXED can be done by specifying one 
of several procedures. The default option is the residual maximum likelihood procedure 
(REML). For a description see Section 11. 1.1 1.2. 

14.3 EXAMPLES USING SASs 

EXAMPLE 14.2: Consider an experiment comparing different drugs with respect to 
their efficacy to control the heart rate of certain patients. We have t = 3 drugs, each 
drug being given to r = 5 patients, and the heart rate is measured at p = 4 different 
(equispaced) times. The data are given in Table 14.2a. 

We perform several analysis mainly to illustrate different procedures as described 
in Section 14.2.4 and 14.2.5 and show their similarities and differences. 

The SAS PROC GLM and MIXED for the ANOVA method and the mixed model 
analysis using the covariance structures CS, AR( l), and UN are given in Table 14.2a. 
In each case we perform the basic analysis. Only for the AR(1) method (which is our 
preferred method) do we follow up with a post-hoc analysis. The results for all analysis 
are given in Table 14.2b. 

We comment as follows: 

(i) For the ANOVA method we need to specify the correct error term for testing 
hypothes about drugs. This error term corresponds to error(A) in the SPD(CRD, 
RCBD) (see Section 13.4.1) and is given in technical terms by “person(drug)”. 

(ii) The results show that there are no significant differences among drugs (P = .29), 
but we shall return to this point later in light of the fact that there are significant 
changes over time (P < ,0001) and, most importantly, significant interaction 
between drugs and time (P < ,0001). 

(iii) For the CS method we obtain the same test results as mentioned in (ii) above. 
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Table 14.2 CRD with Repeated Measures 

a) Input statements: 

data heart; 
input drug person time rate @ 63; 
datalines: 
1 1 172 I 1 2 8 6  1 1 3  81 1 1 4 7 7  
1 2  1 7 8  I 2 2 8 3  1 2 3 8 8  1 2 4 8 1  
1 3 1 71 1 3 2 82 1 3 3 81 1 3 4 75 
1 4  1 7 2  1 4 2  83 1 4  3 83 1 4 4 6 9  
I 5  1 6 6  1 5  279  1 5  3 77 1 5 4 6 6  
2 1 1 8 5  2 I 2  86 2 1 3  83 2 I 4  80 
2 2 1 82 2 2 2  86 2 2 3 8 0 2  2 4  84 
2 3  171 2 3 2 7 8 2 3 3 7 0 2 3 4 7 5  
2 4 1  8 3 2 4 2 8 8 2 4 3 7 9 2 4 4 8 1  
2 5 1 86 2 5 2 85 2 5 3 7 6 2  5 4 76 
3 1 1 6 9 3  1 2 7 3  3 1 3  7 2 3  1 4 7 4  
3 2 1 6 6 3  2 2 6 2  3 2 3 67 3 2 4 7 3  
3 3 1 8 4 3  3 2 9 0  3 3 3 88 3 3 4 87 
3 4 1 8 0 3  4 2  81 3 4 3  77 3 4 4 7 2  
3 5 172  3 5 2 72 3 5 3 69 3 5 4 7 0  

run: 

proc glm data=heart: 
class drug person time; 
model rate=drug person(drug) time drug*time/SS3; 
test h=drug e=person(drug); 
title1 'CRD WITH REPEATED MEASURES'; 
title2 'ANALYZED AS SPD(CRD,RCBD)'; 
run; 

proc mixed dafa=heart: 
class drug person time; 
model rate=drug time drug*time: 
repeated/type=cs subject=person(drug~ rcorr: 
title2 'WITH COMPOUSD SYMMETRY'; 
run; 

proc mixed data=heart; 
class drug person time: 
model rate=drug time drug*time: 
repeated/type=ar.r( I )  subject=person(drug) rcorr; 
estimate 'drugllin' time -3 -1 1 3 drug"time -3 -1 1 3 0 0 0 0 0 0 0 0: 
estimate 'drug2lin' time -3 -1 1 3 drug*time 0 0 0 0 -3 - I  1 3 0 0 0 0; 
estimate 'drug3lin' time -3 -1 1 3 drug*time 0 0 0 0 0 0 0 0 -3 -1 1 3; 
estimate 'druglqua' time 1 -1 - 1  1 drug"time 1 -1 -1 1 0 0 0 0 0 0 0 0: 
estimate 'drug2qua' time 1 - I  - 1 1 drug-time 0 0 0 0 1 - 1  - 1  1 0 0 0 0; 
estimate 'drug3qua' time 1 -1 -1 1 drug*tirne 0 0 0 0 0 0 0 0 1 -1 - I  1; 
estimate 'druglcub' time - 1  3 -3 1 drug*time -1 3 -3 1 0 0 0 0 0 0 0 0; 
estimate 'drug2cub' time -1 3 -3 1 dmg*time 0 0 0 0 -1 3 -3 1 0 0 0 0: 
estimate 'drug3cub' time -1 3 -3 1 drug*time 0 0 0 0 0 0 0 0 -1 3 -3 1; 
title? 'WITH AUTOREGRESSIVE ERRORS'; 
run; 
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Table 14.2 (Continued) 
proc mixed data=heart; 
class drug person time; 
model rate=drug time drug*time; 
repeated/type=un subject=person(drugj rcorr: 
title2 ‘WITH UNSPECIFIED CORRELATION STRUCTURE’: 
run; 

pmc sort data=heart; 
by drug time; 
proc means mean noprint; 
by drug time; 
var rate; 
output out=meandata mean=mJate; 
title2 ’PLOT OF MEAN HEART RATE OVER TIME’; 
run; 
proc plot data=meandata; 
plot mJate*time=drug; 
label m-rate=’Mean Heart Rate’; 
run; 

quit; 

b.j Output: 

CRD WITH REPEATED MZASURES 
A N A L Y Z E C  AS ~ P D  (CRD,RCED) 

The GLM Proced;lre 

Class  Level Ic format ion  

Class  Levels  Values 

drug 3 1 2 3  

person  5 1 2 3 4 5  

i ime 4 1 2 3 4  

Nurrber of Observat ions Read 60 
Nurrber of Observat ions Used 60 

Dependent Var iab le :  r a t e  

Sou r ce 

F o d e l  

Error  

Sum of 
DF Squares  Mear. Square F Vaiue I r  > F 

23 2 4 4 9 . 5 0 0 0 0 0  1 0 5 . 5 0 0 0 0 0  1 2 . 7 3  < . C O O 1  

3 6  3 3 1 . 1 0 3 0 0 0  5 . 3 6 3 8 8 9  

Correc ted  T o t a l  5 9  275G.6GOOC0 
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Table 14.2 (Continued) 

583 

R-Square Coeff Var Root MSE rate Mean 

0.890533 3.722058 2.892039 77.70000 

Source 

drug 
person (drug) 
time 
drug * t ime 

Source 

drug 

DF Type I11 SS Mean Square F Value Pr > F 

2 337.500000 ?68.800000 20.18 <.0001 
12 1498.500000 124.875000 14.93 <.0001 
3 256.333333 85.444444 10.22 <.0001 
5 357.066567 59.511111 7.12 <.0001 

Tests of Hypotheses Using the Type I11 
MS for person(drug) as an Error Term 

DF Type I11 SS Mean Square F Value Pr > F 

2 337.5000000 158.8000000 1.35 0.2955 

The Mixed Procedure 

Model Information 

Data Set 
Dependent Variable 
Covariance Structure 
Sublect Effect 
Estimation Method 
Residual Variance Method 
Fixed Effects SE Method 
Degrees of Freedom Method 

WORK.HEART 
rate 
Compound Symmetry 
person (drug) 
REML 
Profile 
Model-Based 
Between-Within 

Iteratior, History 

Iteration Evaluations -2 Res Log Like Criterion 

0 1 329.48905107 
1 289.92035887 0.00000000 

Convergence criteria met. 

CRD WITH REPEATED MEASURES 
WITH COMPOUND SYMMETRY 

The Mixed Procedure 

Estimated R Correlation Matrix for person(drug) 1 1 

Row COll co12 Co13 Co14 

1 1.0000 0.7759 0.7769 0.7759 
2 0.7769 1.0000 0.7769 0.7769 
3 0.7769 0.7769 1.0000 0.7769 
4 0.7769 0.7769 0.7769 1.0000 
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Table 14.2 (Continued) 

C o v a r i a n c e  P a r a m e t e r  E s z i m a t e s  

Cov P a r m  S u b l e c t  E s t i n a t e  

CS p e r s o n  ( d r u g )  2 9 . 1 2 7 8  
R e s  i d a a l  8 . 3 6 3 9  

F i t  S t a t i s t i c s  

-2 R e s  Log L i k e l i h o o d  2 8 9 . 9  
Alc (srraller i s  b e t t e r )  2 9 3 . 9  
AICC ( s m a l l e r  IS b e t t e r )  2 9 4 . 2  
EIC  ( s m a l i e r  is b e t z e r )  2 9 5 . 3  

N l l i  Model i i k e i i h o o d  R a t i o  i e s t  

CF Z h i - S q J a r e  P r  > ChiSq 

1 3 9 . 5 7  <.GOGi 

T y p e  3 Tesrs o f  F i x e d  3 f f e c t s  

N i i m  3 e n  
E f f e c t  DF OF F Vai;e P r  > ? 

drug 2 12 1 . 3 5  0 . 2 9 5 5  

driic;x:ime 6 3 5  7 . 1 2  < . 3 c 3 :  
t >me 3 3 6  1 3 . 2 2  <.3CG1 

CRD WITH REDEATEC 1.IEASURES 
WITH AJTORZGRESSIVE ERRORS 

The  M i x e d  P r o c e d u r e  

M o d e l  I n f o r m a t i o n  

Data S e t  
D e p e n d e n t  V a r i a b L e  
C c v a r i a n c e  Str3;;cture 
S, :bject  E f f e c t  
E s t i n a z i o n  Met;-.od 
R e s i d u a l  V a r i a n c e  Ne-hod 
F i x e d  E f f e c t s  SE Y e t h o d  
Degrees of F r e e d o m  P e t h o d  

M O M .  HEAFT 
r a t e  
A u t o r e g r e s s i v e  
person (dr,;g) 
REMZ 
P r o f i l e  
M o d e l - B a s e d  
B e t w e e n - W i t h i n  

I t e r a t  i or. H i  s t o r y  

I t e r a t i o n  E v a l - a ; i o n s  -2 Res Log L i k e  C r i t e r i o n  

3 
1 
2 
3 

1 3 2 3 . 4 8 9 0 5 1 0 7  
2 2 8 5 . 9 4 8 9 5 0 4 6  3 . 0 0 0 0 6 3 7 2  
1 2 8 5 . 9 4 2 5 4 3 2 5  0.30000004 
1 2 8 5 . 9 4 2 5 3 8 9 2  G.00000GCO 

C o n v e r g e n c e  cri:eria ne t  
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Table 14.2 (Continued) 

E s t - m a t e o  3 C o r r e l a t i o n  Yatrix f o r  p e r s o n ( d r u g 1  1 1 

RC n‘ COLl c o i 2  C o 1 3  c014 

1 1.0C00 C .  8278 C .  6832 C.5672 
2 0.8278 1.300c C .  8278 0,6552 

4 C .56’2 C .  6 8 5 2  0.82’8 1. 0 0 c 3  
3 0.6852 0.8278 1.3003 3 .  8278 

C o v a r i a r . c e  F a r a n e t e r  E s t i n a t e s  

Cov F a r m  Subjecz Estinaze 

A R ( 1 )  p e r s o n  ( d r u g )  0 . 8 2 7 8  
3e s i dua 1 36.0137 

F i t  S t a t L s t i c s  

-2  R e S  L o g  L i k e l i h o o d  2 8 5 . 9  

A I C C  ( s r n a l l e r  is b e ~ t e r l  2 9 c . 2  
B I C  (snaller i s  b e t t e r )  2 9 1 . 4  

A I C  ( s m a l l e r  is b e t t e r )  289.3 

N u l l  Mode; L i k e L L h o o d  R a r i c  T e s t  

Label  

d r u g l l i n  
crug211r. 
drug311r.. 
d r u g l q u a  
drug2q:a 
dr uq 3 q:a 
drJglcub 
d r u g 2 c u b  
drug3cub 

DF 

E f f e c t  

drug 
L iTe  
d r u g  *t i m e  

E s t l r n a t e  

4.803C 
-13.63C0 

2.0300 
-19.200c 
-1.6000 
-0.8000 

3 . 6 3 C 0  
15.8000 
4.C003 

CR3 

C h i - s q u a r e  F r  > ChiSq 

43.55 <.0C01 

3 T e s r s  sf T i x e c  S f f e c t s  

Nut- Den 
DF DF F V a l d e  F r  > F 

2 12 1.46 C.2’37 
3 36 14.53 <.COO1 
6 36 8.57 <.0031 

E s t  i r n a z e s  

S t a n d a r d  
E r r o r  CF t Value P r  > It1 

8.42C6 
8.4206 
8.4206 
2 . 3 C 5 4  
2.3054 
2.3054 
4.0236 
4. ci9a 
4. c i 9 a  

36 3 . 5 7  
36 -1.62 
36 0.24 
36 -8.33 
36 -0.69 
36 -0 . 3 5  
36 0.89 
36 4.67 
36 0.99 

N I T H  REDEATED MEASJXES 

0 . 5 7 2 2  
0.i150 
0.8136 
<.0001 
C.4921 
0.73C5 
3.3775 
<.0001 
0,3275 

I2‘ITH J N S F E C I F I E D  CORRELATION S I 3 U C X R E  

Tke  Mixed DroceSure 
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Table 14.2 (Continued) 

Model Information 

Data Set 
Dependent Variable 
Covariance Structure 
Sublect Effect 
Estimation Method 
Residual Variance Method 
Fixed Effects SE Method 
Degrees of Freedom Method 

WORK.HEART 
rate 
Unstructured 
person (drug) 
REML 
None 
Model-Based 
Between-Within 

Iteration History 

Iteratio?. Evaluations -2  Res Log Like Criterion 

0 1 329,48905107 
1 278.84809316 0.00000000 

Estimated R Correlation Matrix for person(drug) 1 1 

ROW COll co12 Cc13 Ca14 

1 1.0000 0.8498 0.8889 0.6246 
2 0.8498 1.0000 0.8697 0.6315 
3 0.8889 0.8697 1.0000 0.7945 
4 0.6246 0.6315 0.7945 1.0000 

Covariance Parameter Escimates 

Cov Parm Subject Estimate 

person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 
person (drug) 

37.2333 
34.3167 
43.8000 
32.9333 
34.9500 
36.8667 
21.5833 
23.6667 
27.3167 
32.0667 

?it Statistics 

-2 Res Log Likelihood 278.8 
AIC (smaller is better) 298.8 
AICC (smaller is better) 304.8 
BIC (smaller is better) 305.9 

Null Model Likelihood Ratio rest 

DF Chi-square Pr > C h i S q  

9 50.64 <.0001 
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Table 14.2 (Continued) 
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72 
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Type 3 Tests of Fixed Effects 

Num Den 
Effect D7 DF F Value Pr > F 

drug 2 12 1 . 3 5  0 . 2 9 5 5  
t m e  3 1 2  l 2 . 3 5  0.0006 
drug*time 6 1 2  17.31 <.OOCl 

CRD WITH REPEATED MEASURES 
PLOT OF MEAN HEAXT RATE OVER TIME 

Plot of m-rate*time. Symbol is value of drug. 

i 

1 2 3 4 

Time 
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(iv) The option “rcorr” in the input statements for all mixed model procedures results 
in printing out the correlation matrix for one person (subject). 

(v) For the CS method the correlation matrix is given by .22313 + .776933’, that 
is, the correlation between two observations for the same person is estimated as 
r = ,7769. This value is obtained as the intra-class correlation 

where 
-2 oe(B) = (MS[Person(drug)] - MS(E))/4 

= (124.875 - 8.364)/4 = 29.1278. 

(vii) The correlation between the observations at two adjacent time points is estimated 
as r = ,8278. 

(viii) For the UN method the test results, again, are essentially the same as for the 
other analyses. 

(ix) The estimated correlation structure, in fact, shows that at least for the first three 
time points the correlations are almost equal, that is, exhibiting a CS structure. 

(x) Looking at the drug-time interaction plot it seems worthwhile to look at the in- 
dividual trends. To do that we fit linear, quadratic and cubic polynomials. The 
results show that there is a significant quadratic trend for drug 1 ( P  < ,0001) 
and a significant cubic trend for drug 2 ( P  < ,0001). The interaction is clearly 
not codirectional and hence it may not be appropriate to consider a test for the 

0 overall drug effects (see (ii) above). 

EXAMPLE 14.3: The basic design for this pollution study is a SPD(CRD, RCBD) 
(see Section 13.4.1). We have a = 2 pollutants (P) as whole-plot treatments, r = 2 
replications, b = 4 split-plot treatments with a 22 factorial structure (two varieties, Vl, 
V2, and two growth enhancing treatments, Al,  A*,). The pollutants are applied to four 
pots in a growth chamber (CH), each pot containing a plant from either VI or V, treated 
with either Al or A2 such that all four combinations of (K, A3) are represented in each 
growth chamber. Each pollutant is assigned randomly to two growth chambers. The 
four pots are randomly arranged in the growth chambers. Each plant is measured at 
three times, the measurements constituting the repeated measures. The data are given 
in Table 1 4 . 3 ~  

(i) We include in the model statement the main effect P, V, A, TIME and all in- 
teractions among the corresponding factors up to three-factor interactions (as 
indicated by ‘‘03”).  
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Table 14.3 Repeated Measures in SPD(CRD, RCBD) 
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a) Input statements: 

data pollutn; 
input P CH V A TIME PLA 
datalines: 
I I 1  1 1  1 2 3  1 1  1 1 2 1  24 
I 1 1 2  1 2 2 0  1 1 I 2 2  2 2 4  
1 1 2 1 1 3 2 6 1 1 2 1 2 3 2 9  
1 1 2 2  I 4 31 I I 2 2 2 4  35 
1 2  1 1 1 5  25 1 2  1 1 2 5 26 
1 2 1 2 1 6 3 0 1 2 1 2 2 6 3 5  
1 2 2  1 1 7  28 1 2 2  1 2 7  30 
I 2 2 2 1 8  32 1 2  2 2 2  8 33 
2 3 1  1 1 9 4 0 2 3 1  1 2 9 4 3  

r @ @ ;  

1 1  I 3  I 2 6  
1 1 2 3 2 2 5  
1 2  1 3  3 33 
1 2 2 3 4 3 8  
2 1  I 3 5 2 7  
2 1 2 3 6 3 6  
2 2  1 3 7  34 
2 2 2 3 8 36 
3 1  1 3 9 4 5  

2 3 1 2 I 10 44 2 3 1 2 2 10 47 2 3 1 2 3 10 48 
2 3 2 1  I 1 1 4 8 2 3 2 1 2 1 1 5 0 2 3 2 1  3 1155 
2 3 2 2 1  I 2 5 2 2 3 2 2 2 1 2 5 7 2 3 2 2 3 1 2 6 0  
2 4 1 1 1 13 45 2 4 I 1 2 13 47 2 4 1 1 3 13 50 
2 4  1 2  I 1445 2 4  1 2 2  1 4 4 9 2 4  1 2 3  1452 
2 4 2 1 1 I5 56 2 4 2 I 2 15 57 2 4 2 1 3 15 60 
2 4 2 2 1  1 6 5 3 2 4 2 2 2 1 6 5 7 2 4 2 2 3 1 6 5 9  

run; 

proc print data=pollutn: 
title1 'POLLUTIOX DATA': 
run; 

proc mixed data=pollutn: 
class P CH V A TIME PLANT; 
model y=P1 V 1 A i TIh4E @ 3/ddfm=satterth; 
random CH(P) V*A*CH(P); 
repeated/type=ar( I )  subject=PLANT(P*V*A) rcom: 
lsmeans P V A TIME V*TIME A*TIME; 
title2 'REPEATED MEASURES ANALYSIS': 
title3 'WITH AUTOCORRELATED ERRORS'; 
run: 
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Table 14.3 (Continued) 

b.) Output: 

POLLUTION DATA 

Obs P CH V A TIME PLANT y 

1 1  1 1 1  1 
2 1  1 1 1  2 
3 1  1 1 1  3 
4 1  1 1 2  1 
5 1  1 1 2  2 
6 1  1 1 2  3 
7 1  1 2 1  1 
8 1  1 2 1  2 
9 1  1 2 1  3 
10 1 1 2 2  1 
11 1 1 2 2  2 
12 1 1 2 2  3 
1 3 1  2 1 1  i 
1 4 1  2 1 1  2 
1 5 :  2 1 1  3 
1 6 1  2 1 2  1 
1 7 1  2 1 2  2 
1 8 i  2 1 2  7 

1 9 1  2 2 1  1 
2 3 1  2 2 1  2 
2 1 1  2 2 1  3 
2 2 1  2 2 2  1 
2 3 1  2 2 2  2 
2 4 1  2 2 2  3 
2 5 2  3 1 1  1 
26 2 3 1 1  2 
27 2 3 1 1  3 
2 8 2  3 1 2  1 
2 9 2  3 1 2  2 
3 0 2  3 1 2  3 
3 1 2  3 2 1  1 
3 2 2  3 2 1  2 
3 3 2  3 2 1  3 
3 4 2  3 2 2  1 
3 5 2  3 2 2  2 
3 6 2  3 2 2  3 
3 7 2  4 1 1  1 
3 8 2  4 1 1  2 
3 5 2  4 1 1  3 
4 0 2  4 1 2  1 
4 1 2  4 1 2  2 
4 2 2  4 1 2  3 
43 ' 2  4 2 1 1 
4 4 2  4 2 1  2 
45 2 4 2 1  3 
46 2 4 2 2  1 
4 1 2  4 2 2  2 
4 8 2  4 2 2  7 

1 23 
1 24 
1 26 
2 20 
2 24 
2 25 
3 26 
3 29 
3 33 
4 31 
4 35 
4 38 
5 25 
5 26 
5 27 
6 3C 
6 35 
6 36 
7 28 
7 30 
7 34 

8 33 
8 36 
9 40 
9 43 
9 45 

10 44 
13 41 
10 48 
11 48 
11 53 
11 55 
12 52 
12 57 
12 60 
13 45 
13 47 
13 50 
14 45 
14 49 
14 52 
15 56 
15 57 
I 5  60 
;6 53 
16 57 
i6 59 

a 32 
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Table 14.3 (Continued) 

POLLUTION DATA 
REPEATED MEASURES ANALYSIS 
WITH AUTOCORRELATED ERRORS 

The Mixed Procedure 

Model Information 

Data Set 
Dependent Variable 
Covariance Structures 

Subject Effect 
Estimation Method 
Residual Variance Method 
Fixed Effects SE Method 
Degrees of Freedom Method 

WORK.POLLUTN 
Y 
Variance Components, 
Autoregressive 
PLANT (P*V*A) 
REML 
Profile 
Model-Based 
Satterthwaite 

Class Level Information 

Class Levels Values 

P 2 1 2  
CU 4 1 2 3 4  
V 2 1 2  
A 2 1 2  
TIME 3 1 2 3  
PLANT 1 6  1 2 3 4 5 6 7 8 9 1 0  11 1 2  1 3  

1 4  1 5  1 6  

Iteration History 

Iteration Evaluations - 2  Res Log Like Criterion 

0 

2 
3 
4 

1 1 5 7 . 9 7 6 6 8 9 0 7  
3 1 1 5 . 0 2 5 8 1 9 3 8  0 . 0 2 4 2 2 3 1 4  
3 1 1 4 . 5 7 0 7 9 1 0 7  0 . 0 0 0 1 5 9 9 5  
1 1 1 4 . 5 6 5 2 7 2 7 3  0 . 0 0 0 0 0 0 4 5  
1 1 1 4 . 5 6 5 2 5 7 6 3  0.0c000000 

Convergence criteria me1. 

Estimated R Correlation Matrix 
for PLANT(P*V*A) 1 1 1 1 

Row Coil c o 1 2  Coi3 

1 1 . 0 0 0 0  0 . 9 3 5 5  0 . 8 7 5 1  
2 0 . 9 3 5 5  1 . 0 0 0 0  0 . 9 3 5 5  
3 0 . 8 7 5 1  0 . 9 3 5 5  1 . 0 0 0 0  

Covariance Parameter Estimates 

Cov Farm Subject Estimate 

C H ( P )  3 . 5 9 8 9  
CH*V*A(F) 1 . 6 6 E - 1 5  
AR(1) PLANT (P*V*A) 0 . 9 3 5 5  
Res idual 8 . 8 6 6 0  
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E f f e c :  

F 
p 
TJ 

J 
A 
I 
TIME 
TIME 
TIME 
\'*TIME 
V*:IME 
\'*TIME 
V - T I MS 
V*TIME 
V*TIME 
A*:IME 
A* T I ME 
A*;IME 
AXTIME 
AXTIYE 
A * T I Y Z  

P V  

1 
2 

2 

1 
1 
1 
2 
2 
2 
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EfffCt 

3 

v 
PXV 
A 
F*A 
V*A 
F*V*A 
TIYE 
P*:IME 
V * T I M E  
F*V*TIME 
A * T I?:€ 
P *A* : IME 
V- A* T I ME 

Table 14.3 (Continued) 

T y s e  3 Tes:s o f  Fixed E f f e c t s  

A TIME 

1 
2 

1 
2 
3 
1 
2 
3 
1 
2 
3 

i 2  
1 3  
2 1  
2 2  
2 3  

I .  - -  

Nurn D e n  
EF DF F i - a l u e  

1 2.01 
1 6.14 
1 6.i4 
1 6.14 
1 6 . L 4  
1 6.14 
1 6.07 
2 ;8 1 
2 18 
2 18 
2 18 
2 18 

2 18 
2 ia 

8C.29 
24.84 
1.68 
4.18 
0.24 
0.01 
0.17 

04.55 
0.5; 
4.62 
0.70 
7.3C 
0.05 
0.51 

F r  > F 

0.c120 
0.0323 
3.2414 
0.0857 
0.6il3 
0.9339 
C.6908 
<.0001 
0.6102 
0.0240 
C ,5088 
0.0048 
0.9486 
3.6102 

L e a s t  Squares Keans 

Scandard 
E s t  m a t e  Error 

29.4167 1.6865 
50.7917 ;.6868 
36.5000 1.3948 
43.7083 1.3948 
38.6250 1.3948 
41.5833 1.3948 
37.3750 1.2C58 
4C.1875 1.2038 
42.7503 1.2058 
34 . O C O O  1.417C 
36.8730 1,417C 
38.6230 1.4170 
40.7500 1.4170 
43.5C03 1.4i70 
46.8750 1.417C 
36.3750 1.417C 
38.2500 1.4170 
41.2500 1.1170 
38.375C 1.4173 
42.1250 1.4170 
44.25C0 1.4170 

3F L Value Pr > 1:' 

2.C1 17.44 0.0332 
2.Cl 30.11 0.0311 
3.6 26.17 <.0001 
3.5 31.34 <.0001 
3.6 27.69 <.COO: 
3.6 29.81 <.0301 
2.1 3i.00 3.0008 
2.1 33.33 0.0007 
2.1 35.45 0.0006 

3.83 23.99 <.OC01 
3.83 26.C2 <.00C1 
3.83 27.26 C.0031 
3.83 28.76 <.0001 
3.83 30.7C <.3001 
3.83 33.08 <.3C01 
3.83 25.67 <.3CO1 
3.83 26.99 <.00C1 
3 . 8 3  29.11 <.0001 
3.83 27.08 <.COO1 
3.83 29.73 <.COO1 
3.83 31.23 <.GO0 
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(ii) We use the option “ddfm=satterth” to determine appropriate d.f. 

(iii) The random terms “CH(P)” and “V*A*CH(P)” describe in technical terms the 
errors E(A) and E(B), respectively, where V*A*CH(P) includes V*CH(P) and 
A*CH(P). 

(iv) We specify AR( 1) as the covariance structure for the repeated measures. 

(v) “PLANT(P*V*A)” specifies the subject for the repeated measures. 

The results of the analysis are given in Table 14.3b: 

(vi) The correlation between adjacent observations is obtained as T = ,9355. 

(vii) The estimates of the variance components o $ ~ ) ,  a:(B,, 

(viii) Since with the inclusion of TIME, that is, repeated measures in the design (see 
Section 13.6), there will be three different error terms for testing hypotheses 
about fixed effects: E(A) for P with 2 d.f, E(B) for V, A, V*A, P*V, P*A, P*VV”A 
with 6 d.f. (determined by SAS to be 6.14 or 6.07), and E(C) for all terms involv- 
ing TIME with 18 d.f. (these include 2 d.f. from the P*V*A*TIME interaction) 

are obtained as 
CH(P)=3.60, V*A*CH(P) = 0, Residual = 8.87, respectively. 

(ix) P, V, A, TIME, V*TIME, A*TIME are found to be significant. 

(x) A look at the LS means indicate that the significant interactions are co-directional. 
0 Hence, testing hypotheses about main effects is meaningful. 

14.4 EXERCISES 

1. Using the data from Example 14.3 perform the trend analysis as described in 
Section 14.2.3 and compare the results with those obtained in Table 14.2b. 

2. Using the data from Example 14.3 perform the analysis by making comparison 
at each time point. Compare the results with those obtained in Exercise 1 and 
those in Table 14. lb. 

3. Using the data from Example 14.3 perform the mixed model analysis using the 
assumption of compound symmetry. Compare the results to those obtained in 
Table 14.3b. 

4. Consider a CRD with subsampling and repeated measures for each subsample. 
Discuss how you would analyze the data and how you would perform the analy- 
sis using SAS PROC MIXED. 

5. Consider an RCBD with repeated measures. Discuss how you would analyze the 
data and how you would perform the analysis using SAS PROC MIXED. 
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Epilogue 

Let us now return to the conversation between the statistician (S) and the research sci- 
entist (R) described in the Preface. 

Several weeks after this conversation R and his research assistant (RA) pay a visit 
to S who also has one of his graduate students (GS) in his office. 

R: “Thank you for taking the time to talk to us. Our paper has been tentatively ac- 
cepted for publication, but the editor asked, among other things, for some clarification 
on our experimental design and the analysis. And this is where we hope you can help 
us. Since RA has done most of the work I’ll let her tell you what we did. ” 

RA: “I made five separate preparations for each of the three types of growth medium. 
Each preparation contained enough material to fill four pots. On a bench in the green- 
house I arranged 15 rows of 4 pots each. I randomly assigned the 15 preparations to 
the 15 rows of pots and filled each pot in a row with the assigned growth medium., In 
each row I then planted one flower from each of the four varieties in a separate pot. 
The plants were randomized separately in each row.” 

S: “That is very good. What can you tell me about the environmental conditions 
in the greenhouse. For example, is the amount of light different at both ends of the 
bench?’ 

RA: “I understand what you mean, but the bench is arranged such that the light 
and temperature conditions are uniform over the entire bench. Also, all the plants were 
treated identically. For example, they all received the same amount of water, all at the 
same times. So, there should be no environmental differences.” 

S: “Fine. Now, for the analysis, what kind of data do you have?” 
R: “To evaluate the effectiveness of the growth media we developed an index which 

combined various aspects of growth, such as height, development of foliage, formation 
of buds and flowers. We made these observations every two weeks for 12 weeks. For 
the publication we reported only the results for week 12, because that is most important 
from an economical point of view, that is, from the producer’s point of view. From a 
scientific point of view it would also be informative to analyze the entire data set over 
the course of the 12 weeks, that is, using the 6 measurements (indexes) that we have.” 

S: “I see. GS has just completed a course on experimental design. I’ll ask him to 
help you with the analysis of the data, which will be different from the one you have 
performed, because the design is different from the one on which you have based your 
analysis. He can then help you with the interpretation of the results and explain to what 
extent they may differ from what you presented in the paper. He can also help you with 
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the analysis of the 12 weeks data.” 
GS: “Yes, I know how to do that.” 
R and RA: “Thank you very much for your help.” 

And you, the reader, are being challenged to consider this as an additional exercise 
and prepare a report on the type of design used in this experiment and how the analyses 
of the data should be performed. 
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unbiased, 382, 387 
variance balanced, 59,338 
Williams, 402 
Youden square, 34, 394-395 

Dewey, 19 
Diagrammatic representation, 109 
Difference( s) 

390,419,499,573 

nearly, 342 

minimum, 184 

smallest detectable, 184 
treatment, 184, 242 

standardized, 184 

adjusted, 242 
Distribution 

beta, 175-177 
chi-squared, 129, 303 

noncentral, 13 1 
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F-,  132, 177 
central, 132 
noncentral, 132, 183 

joint, 26, 72, 130 
mathematical, 10 
noninformative prior, 26 
normal (Gaussian), 10,72 

posterior, 25-26 
prior, 26 
probability, 26, 139 
randomization, 177. See also 

studentized range, 226 
of sum of squares, 130 

multivariate, 129-130 

Randomization 

t-,  131, 542 
noncentral, 13 1 

theory, 129 
Effect(s) 

block, 37-38, 134 
random, 324 

carry-over, 398,403 
design, 37,40, 134 
direct, 398-400 
error, 37,40,57 
fixed, 325 
interaction, 37-38,419, 468 
learning, 545 
linear, 505 
linear x linear, 505 
main, 37-38,419-425,468-470 
multiplicity, 224 
order, 548 
quadratic, 505 
random, 57,134 
residual, 398-400 

second order, 513,517 
simple, 423 
size, 184 
systematic, 57 
treatment, 37,40,46-47 

second-order, 403 

differential, 171-173 
Efficiency, 59 

factor, 333, 336 
relative (RE), 288-291, 389,543 

estimated (ERE), 290-292, 
389,543 

Einstein, 13 
Equation( s) 

Aitken, 125-127 

linear, 81 
normal (NE), 77, 80-83, 87, 115- 

117, 125 242, 246, 254, 293, 
329,500 

-like, 133,578 

conjugate, 77, 129 
reduced (RNE), 90, 121, 

329,360 
theory of, 81 

components, 162 
estimation of, 137, 148 
experimental, 37-48,68, 163-165, 

mean squared, 5 14 

measurement, 10, 14, 23, 39-40, 

observational, 24, 39-48, 68, 191, 
315 

pure, 430, 502, 505 
rates, 224 

Error 

191,258 

integrated (IMSE), 516 

161-162 

comparisonwise, 224-225 
familywise, 224-225 

sampling, 39,42,48, 68, 161-162 
selection, 161 - 162 
space, 129 
split-plot, 5 12 
standard (se), 151 
state, 161-162 
structure, 162 
technical, 161, 164 
treatment, 38, 161-162, 315 
unit, 40, 160, 239 
variance, 5 15 
whole-plot, 5 12 

Estimability, 77, 123 
Estimate 

ANOVA-type, 133 
best linear unbiased (BLUE), 125- 

27, 160,242 
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of error, 137, 148 
generalized least squares (GLS), 

126 
interval, 165 

ordinary least squares (OLS), 126- 

point, 165 
Estimation, see also Estimate 

space, 129 
Estimator, see Estimate 
Expectation, posterior, 25 
Experiment( s), see also Experimentation, 

L I I - ,  228, 257 

127, 160 

Studies 
absolute, 22, 65, 73 
agricultural, 148 
agronomic, 65,420, 549, 556 
arithmetical, 142 
comparative, 14-15, 19-24, 65, 71- 

confirmatory, 29-30 
design of, 16, 20-22, 26, 29 
exploratory, 29-30,475 
factorial, 59, 64,419-422, 533 

73,151,497,523 

asymmetrical, 64 
fractional, see Factorial(s) 
symmetrical, 64 

investigative, 144 
Lady tasting tea, 139-140 
mixture, 519, 523 
noisy, 142 
psychological, 545 
randomized, 145 
replicated randomized block, 307 
triangular, 140 
types of, 23 

industrial, 30,420,497, 5 1 1, 543 
scientific, 30, 46 
sequential, 43 

Experimentation 

Explanation, 18 

Factor( s) 
between-subjects, 545 
blocking, 32, 35, 106, 278, 306, 

313,373,440,580 

crossed, 308 
nested, 308 

classification, 32 
confounded, 101 
correction, 94 
crossed, 101 
easy-to-change, 5 11-512,543 
efficiency, 333, 336 
hard-to-change, 51 1-513,524,543 
intrinsic, 35, 38-42,45, 5 1-53, 56, 

106, 134, 278, 313-314, 325, 
373,440,552 

level, 54 
nested, 106 
nonspecific, 35, 38-42, 45, 56, 134, 

278,373 
qualitative, 52 
quantitative, 52 
split-plot, 534 
treatment, 32-35,42, 51-53,422 
whole-plot, 534 
within-subjects, 545 

Factorial(s), see also Design, 
Experiment(s) 

asymmetrical, 66, 476,479 
complete, 5 1 1 
fractional, 64-66, 453-455, 462-, 

463,472,475,479,505-506 
of resolution 111, 503 
of resolution IV, 503 
of resolution V, 503, 5 1 1 

full, 503 
highly fractionated, 475 
mixed, 476,548 
pure, 476 
symmetrical, 66, 476 
2n ,  422,446,462,503,509 
3n, 465,472,505,509 

Faraday, 13 
Fit 

badness of, 76 
lack of, 223, 502,505, 524 

proportional, 96 
relative, 10 

Frequency (ies) 

Frequentist approach, 123 
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Function(s) loss of, 478 
estimable, 78, 81, 125, 131, 242, supplementary, 59, 239-242, 248, 

459,557 
identifiable, 8 1 
likelihood, 26 
linear, 130 
parametric, 137 
polynomial, 498 
quadratic, 130, 166 

Games of chance, 25 
Gauss -Markov 

linear model (GMLM), 124- 125 
normal linear model (GMNLM), 

properties, 147 
theorem, 124 

128-131, 137, 147 

Half-normal plot, 441-443 
Heisenberg uncertainty principle, 2, I I 
Heraclitus, 12 
Heterogeneity, 239 

elimination of, 395 
of experimental units, 160 

of groups, 229 
Homogeneity, 193 

Hume, 9 
Huynh-Feldt condition, 545, 577 
Hypothesis, 6-7 

falsification of, 7 
reductionist, 14 
research, 32,41-44, 53 
statistical, 32, 43 
working, 32 

Identifiability, 76, 1 14, 120 
Induction, 4, 6-7 
Inequality 

Bonferroni. 225 
Tchebycheff, 139 

Bayesian, 26 
statistical, 24, 57, 122, 151 

Inference, 16 

types of, 7 ,36 
Information 

inter-block, 134, 553 

292 
Interaction(s), 419, 470, 475 

antidirectional, 319 
antagonistic, 3 19 
block-treatment, 278, 300-302, 306 

codirectional, 313, 319 
components, 468-470, 475 
effects, see Effects, interaction 
firs t-order, 42 1 
generalized, 449, 456, 474-475 
higher order, 420-42 1, 428 
linear x linear, 505 
lower order, 420 

replication x treatment, 39 1-392 
row-column, 379 
simple, 424 
synergistic, 313 
three-factor, 457, 47 1, 504 
treatment x design, 134 
treatment-time, 575, 580 
two-factor, 421,456,47 1, 504 
unit-treatment, 300-301, 3 14 

confidence, 27,217 

-308, 312-314, 317-319, 338 

plot, 320-321 

Interval(s) 

estimation, 37 
simultaneous, 226-227 

Intervention, see Studies, intervention 
statistical, 137 

Jeffreys, 26 

Kant, 9. 17 
Keeton, 17 
Kepler, 4, 13 
Knut Vik square, 149-150 

Lagrange multipliers, 87 
Latin rectangle, 393-394 
Latin square(s), 62, 376, 548 

completely counterbalanced, 402 
complete orthogonalized, 397 
cyclic, 402 
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design (LSD), see Design, Latin 
square 

diagram-balanced, 547 
Graeco-, 396 
incomplete, 394,402 
mutually orthogonal (MOLS), 397, 

403 
orthogonal, 395 
principle, 62-64, 390, 393 
reduced, 376 

Lavoisier, 13 
Law(s) 

Kepler’s, 4 
Mendel’s, 4 
of succession, 25 

analysis, 293-297, 335, 500 
fitting, 76, 80,86, 119 
generalized (GLS). 126, 512 
mean (LSM), 244, 325-326, 

method of, 37,57,77,220-221, 

ordinary (OLS), 126, 512 

Least squares 

332,422 

242,466 

Leucippus, 132 
Level( s) 

coded, 500 
equidistant, 219 
significance, 172-173, 177-179, 183 

function, 26 
residual maximum (REML), 580 

affine, 85-86 
approximative, 77 
classificatory, 74-75 
conditional, 85, 99 
derived, 68, 127, 159, 164, 278, 

3 14,537 
functional, 74 
Gaussian, 26 
Gauss-Markov (GMLN), 124-125 

k-part, 97 
ordered, 90-94 
stochastic, 74, 77, 123 

Likelihood, 11 

Linear model, 37-38,44-46, 71-73 

128-131, 137, 147 

theory, 7 1 

3-part, 94,329 
Locke, 9 
Logic, Aristotelian, 9 
Loss 

2 - p ~ t ,  90 

of degrees of freedom, 290 
of information, 253 
of power, 290 
of sensitivity, 290 

Mathematics, foundations of, 6 
Matrix 

design, 506 
design-model, 466, 504 
generalized inverse, 81-83, 125,332 
idempotent symmetric (s ip) ,  78, 
84,87 
incidence, 118, 329,333, 339, 509 
information, 330 
model, 73 
Moore-Penrose (M-P) inverse, 

orthogonal, 126, 216 
projection, 91 
variance-covariance, 124- 125, 578 

84-86, 124 

Maxwell, 13 
Mean, admissible, 107-108, 115 
Mean square(s) 

expected, 168 
synthetic error, 326-327 

repeated, 23, 573-574, 578 
summary, 575 

process, 10,22-24 
repeated, 23-24, 573 
scale of, 34, 197 
variability, 24 

Measure(s), 

Measurement(s) 

Mendel, 4 
Method(s) 

ANOVA, 580 
delta, 198 
of parallel tangents (PARTAN), 5 19 
of statistical differentials, 198 
of steepest ascent, 518 



SUBJECT INDEX 627 

Mill, 18 
Model(s), see also Linear model 

approximate, 71, 74 
classificatory, 34, 74 
conditioned, 85-87 
first-order, 500 
fitting a, 76 
fixed, 132-133, 323 
full, 430 
means, 99, 114 
misspecification, 5 13 
mixed, 132- 134,325 
multiplicative, 303 
nonlinear, 34 
nonorthogonal, 332 
overparameterized, 100, 115 
partitioned, 94 
polynomial, 5 19 
probability, 10 
random, 132-133, 325 
randomization, 159 
regression, 34 

first-order, 500 
second-order, 504 

relative frequency, 10 
statistical, 30, 34 

testing of, 7 
stochastic, 74, 128, 138 
subject matter, 32, 35, 51, 54 
subsampling, 191 
three-part, 94 
two-way classification, 329 
well-formulated, 109-1 10, 115 

Monte Car10 studies, 178 
Multicollinearity, 74-75 

Newton, 17 
Nonadditivity, 196, 300-302, 312, 386- 

387 
testing for, 303 

195 
Noncentrality parameter, 131-132, 183, 

Nonorthogonality, 400 
Normality assumption, 257 

adjusted, 241 
high-leverage, 258 
missing, 55, 295-298, 389 

multivariate, 34 
process, 1-2, 10 
supplementary, 258 
types of, 3 
univariate, 34 
validation of, 2 

estimated, 297 

Optimality, 59 
A-,  59 
D-,  59 
E-, 59 

Orthogonal array, 463-464 
Orthogonality, 59, 218, 400-402 

Period, 
extra, 400 
pre-, 400 
wash-out, 398 

main effect, 455,480 
Plan 

orthogonal, 462-463 
saturated, 464 

Plato, 12-13 
Plot(s) 

half-normal, 44 1-443 
interaction, 320-321 
split, 534, 537, 548, 556 
split-split, 560 
whole, 534, 537, 548, 556 

PoincarC, 8, 25 
Points, 

axial, 506-508 
center, 506-508 
factorial, 506-508 

canonical, 521-522 
first-order, 499-500 
low-order, 499 
orthogonal, 220-222, 342, 441, 
505,576 
Tchebycheff, 221 

Polynomial(s) 

Popper, 7-8 
Observation(s) Population, 
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marginal mean, 245 
reference, 323 
target, 32, 60 

explanatory 15 
of F-test, 182 
loss of, 290 
transformation, 200 

increase in, 253 
of treatment comparisons, 278 

Power 

Precision 

Predictive margin, 245 
Principle(s) 

of blocking, 34 
of experimentation, 29 
of indifference, 25 
Latin square, 62-64, 390, 393 
split-unit, 533 

conditional, 25 
continuous, 10 
degrees of, 25 
frequency theory of, 25-26 
joint, 24 
structure, 25 
theory, 72 

Bonferroni, 225,228 
Calinski-Corsten, 23 1 
Dunnett’s, 228 
hierarchical agglomerative, 229 
hypothesis falsification, 7 
Johnson-Graybill, 306 
Mandel’s, 302 
multiple comparison, 224, 250-25 1 
nonparametric, 228 
optimization, 5 18 
Satterthwaite, 326, 561 
Scheffk, 227-228 
stepwise, 229 
studentized range, 226, 229 
Tukey, 226,252 
Tukey-Kramer, 226,252,269 

control, 30 
evolutionary, 1 

Probability, 141 

Procedure( s) 

Process 

manufacturing. 24 
measurement, 10, 34 
observational, 1-2, 10 
production, 30 
randomization, see Randomization, 

of science, 1 
sequential, 30 
stochastic, 26, 72 

matrix, 91 
orthogonal, 9 1 

Projector, orthogonal, 91 
Protocol 

process 

Projection(s) 

experimental, 55, 139 
measurement, 10 
observation, 2 

Pythagoras, 12 

Quadratic form, 128 
Quality control, off-line, 477 

Ramsey, 26 
Randomization, 26, 34,45, 55-56, 6 1, 

106, 137, 140-141, 147-151, 278, 
376 
analysis, 68-69, 180 
distribution, 26 
independent, 534,538 
procedures, 27, 68, 111, 156-157, 

180,377,380,533,548 
process, 154, 157, 164, 171, 280-, 

281,315,533,537 
repetitions of, 158 

restricted, 280, 291 
test, 26,69, 150, 172-173, 180, 285, 

385 
approximation to the, 69, 

173-174, 193,217, 
248,286-288,317, 
538 

theory, 134, 177, 287, 303, 382 
unrestricted, 29 1 

Random numbers, 154 
Random variable(s), 22-24 

Bernoulli, 155 
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design, 68, 154-155, 158, 280, 379, 

Gaussian, 22 Sartre, 9 
normal, 129 SAS, 69 

Rotatability, 506 
537 

multivariate, 129 PROC FACTEX, 451,459,486-491 
Range of validity, 60 PROC GLM, 201,230-232,264, 
Region 269, 343, 348, 353, 404, 407, 

430, 443, 446, 481, 523, 562, experimental (ER), 498,503 
operational (OR), 498 580 

analysis, 220,497, 502 
coefficient, 221, 304, 466-467, 505, 

Regression PROC IML, 86 
PROC MIXED, 201,343,348,353, 
483,523, 562, 568,578-580 

528 PROC PLAN, 154, 180,278-279, 
line, 302 315-316, 377-378,481 
polynomial, 262 PROC POWER, 185 

second-order linear, 504 PROC REG, 523 

Relation, see Relationship PROC RSREG, 523-524 
Relationship Science(s) 

defining, 455-456 descriptive, 9 

functional, 498 
identity, 455,475,479 general, 14 

exact, 12 

Reparameterization, 8 1 history, 5 
Repetition(s), 139 physical, 14 

process of, 1 
type of, 9 Replication(s), 45, 61 

Scientific objective, 58 
Scope of validity, 277 

Simplex 

population of, 137-138 

fractional, 451-453 
number of 180, 184, 186-190, 193- Sensitivity of experiment, 45 

195 

coordinate system, 5 19 
design, 504 
k-dimensional, 504, 51 9 

common, 253 

effective, 45 1 
unequal, 179-180 

Residual, see Error 
Response( s )  Slope( s) 

conceptual, 157-158, 161,281,315, 

379,537 equality of, 269 
curve, 497,514 

observed, 315, 379 Space 
optimum, 499,503 column, 91 
predicted, 501 error, 129 

Response surface, 497-500 estimation, 129 
design, 497-499 row, 76 
first-order, 503 
methodology (RSM), 497-499,5 19, 

second-order, 509 Structure(s) 

Socrates, 6, 12 

Statistical Analysis System, see SAS 
Statistical software, see SAS 

523 Statistical triangle, 46 

Rightmost bracket, 107, 11 1 alias, 454-455,473-475 
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blocking, 45 

classificatory, 100, 106 

correlation, 577 

covariance, 127, 160, 164, 168,545, 

compound symmetry, 577- 

first-order autoregressive, 

spatial power, 579 
unstructured, 579-580 

balanced, 107-108, 11 1- 
112, 

classificatory, 99, 118 
unbalanced, 112 

nested, 353, 428, 440 

balanced, 100-101 

estimated, 588 

575,578 

580 

578-580 

data, 100 

diagram(s), 110-1 11 
error, 56 
factor balanced, 112 
factorial, 42, 64, 106, 419-421, 

440,543,552. See also 
Factorial (s) 

asymmetrical, 64 
symmetrical, 64 

Latin square, 380 
variance-covariance, 127 

Studies, see also Experiment(s) 
experimental, 104-106, 138, 149, 
intervention, 106, 137-138, 149 
observational, 104-106, 134, 137- 

138, 149 
preliminary, I 85, 191 
simulation, 177, 286. See also 

Subject matter knowledge, 328,422 
Subsample, size of, 195 
Subsampling, 34,40,67-68, 191-193, 

Sub-subsampling, 67-68 
Sum(s) of squares, 37,426 

partial, 98, 550 
sequential, 98 
Type I, 98,330 

Monte Carlo studies 

288,353 

Type 111, 98 

basic, 5-6 
Syllogism, 5-6 

Symmetry, compound, 577-580 
Synergism, 43 

Taylor series expansion, 42 1 
Test(s) 

Bonferroni, 225 
criterion, 151, 172 
Duncans multiple range, 226, 25 1 
F- ,  151, 174, 177, 217, 285, 502, 

538 
power of, 182 

Fishers protected LSD, 225 
F-max, 323 
of hypotheses, 7, 37, 57, 131, 171 
lack-of-fit, 223,502-505 
preliminary, 313, 323 
randomization, 69, 177, 285. See 

also Randomization, test 
randomized triangular, 140 
significance, 7, 37, 148-151, 165, 

542 
size of, 183 
statistical, 137 
studentized range, 226 
t-like, 257 
treatment, 226-227 
Tukey’s, 303-305, 388 

Tetrahedron, 504 
Thales of Miletus, 12 
Theorem 

Aitken, 125-127 
central limit, 148 
Gauss-Markov, 125- 126 

axiom, 13 
development of, 4, 10 
falsifiable, 14 
Gauss-Markov normal linear model 

mathematical, 11 
normal, 285-286 

Theory 

(GMNLM), 174-176 
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randomization, 176-177, 285-286. Tycho Brahe, 13 

63 1 

See also Randomization, 
theory 

scientific, 8 
statistical, 11 
types of, 11 

Time series, 17 
Transformation(s), 196- 199, 3 12 

to additivity, 388 
power, 200 
sets, 376-377, 384 

combinations, 420 
control, 227 
design, see Design, treatment 
factorial. 64 
mean, 

qualitative, 52, 213, 497 
quantitative, 52, 219,497 
split-plot, 539-540, 543, 560 

effect, 539 
split-split-plot, 560, 561 
test, 227 
whole-pIot, 539-540, 543, 560 

Treatment(s) 

adjusted, 244 

effect, 539-540 
Trend, 340 

analysis, 575 
linear, 223, 34 1-343 
overall, 577 

agronomic, 278 
Bernoulli, 25 
binomial, 24 
randomized clinical, 32, 35 
uniformity, 290-291, 543 

Trial 

Triangle, equilateral, 504 

Unbiasedness, 59 
Unit(s) 

error, 160 
experimental (EU), 20, 34, 38, 
68, 138,153, 533 
observational (OU), 34, 38, 68 
sampling, 68 

Variability, see Variation 
Variable(s) 

classificatory, 1 18 
coded, 514 
concomitant, 15, 76, 118 
explanatory, 35-38, 74, 151 
function of, 71 
mathematical, 1 1 - 12, 22 
process, 523 
random, see Random variable(s) 
regressor, 302 
response, 35-36, 52 

average, 251-252, 336 
estimator, 248, 562 
experimental error, 317,557 

nonconstancy of. 197 
observational error, 3 17 

prediction, 506 

induced, 277 
random, 38,239 
sources of, see Analysis of variance, 

table 
systematic, 45, 62, 239 

Variance(s), 514 

component, 163, 193,288 

component, 163, 193,288 

Variation, 26 
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