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Preface

The project of revising Kempthorne’s 1952 book Design and Analysis of Exper-
iments started many years ago. Our desire was to not only make minor changes
to what had become a very successful book but to update it and incorporate new
developments in the field of experimental design. Our involvement in teaching
this topic to graduate students led us soon to the decision to separate the book
into two volumes, one for instruction at the MS level and one for instruction and
reference at the more advanced level.

Volume 1 (Hinkelmann and Kempthorne, 1994) appeared as an Introduction
to Experimental Design. It lays the philosophical foundation and discusses the
principles of experimental design, going back to the ground-breaking work of the
founders of this field, R. A. Fisher and Frank Yates. At the basis of this devel-
opment lies the randomization theory as advocated by Fisher and the further
development of these ideas by Kempthorne in the form of derived linear mod-
els. All the basic error control designs, such as completely randomized design,
block designs, Latin square type designs, split-plot designs, and their associated
analyses are discussed in this context. In doing so we draw a clear distinction
among the three components of an experimental design: the error control design,
the treatment design, and the sampling design.

Volume 2 builds upon these foundations and provides more details about cer-
tain aspects of error control and treatment designs and the connections between
them. Much of the effort is concentrated on the construction of incomplete block
designs for various types of treatment structures, including “ordinary” treatments,
control and test treatments, and factorial treatments. This involves, by necessity,
a certain amount of combinatorics and leads, almost automatically, to the notions
of balancedness, partial balancedness, orthogonality, and uniformity. These, of
course, are also generally desirable properties of experimental designs and aspects
of their analysis.

In our discussion of ideas and methods we always emphasize the historical
developments of and reasons for the introduction of certain designs. The devel-
opment of designs was often dictated by computational aspects of the ensuing
analysis, and this, in turn, led to the properties mentioned above. Even though

xix



xx PREFACE

in the age of powerful computers and the wide availability of statistical com-
puter software these concerns no longer play the dominant feature, we remind
the reader that such properties have general statistical appeal and often serve as
starting points for new developments. Moreover, we caution the reader that not
all software can be trusted all the time when it comes to the analysis of data
from completely unstructured designs, apart from the fact that the interpretation
of the results may become difficult and ambiguous.

The development and introduction of new experimental designs in the last 50
years or so has been quite staggering, brought about, in large part, by an ever-
widening field of applications and also by the mathematical beauty and challenge
that some of these designs present. Whereas many designs had their origin in
agricultural field experiments, it is true now that these designs as well as modifica-
tions, extensions, and new developments were initiated by applications in almost
all types of experimental research, including industrial and clinical research. It
is for this reason that books have been written with special applications in mind.
We, on the other hand, have tried to keep the discussion in this book as general
as possible, so that the reader can get the general picture and then apply the
results in whatever area of application is desired.

Because of the overwhelming amount of material available in the literature, we
had to make selections of what to include in this book and what to omit. Many
special designs or designs for special cases (parameters) have been presented
in the literature. We have concentrated, generally speaking, on the more gen-
eral developments and results, providing and discussing methods of constructing
rather large classes of designs. Here we have built upon the topics discussed in
Kempthorne’s 1952 book and supplemented the material with more recent top-
ics of theoretical and applications oriented interests. Overall, we have selected
the material and chosen the depth of discussion of the various topics in order to
achieve our objective for this book, namely to serve as a textbook at the advanced
graduate level and as a reference book for workers in the field of experimen-
tal design. The reader should have a solid foundation in and appreciation of
the principles and fundamental notions of experimental design as discussed, for
example, in Volume 1. We realize that the material presented here is more than
can be covered in a one-semester course. Therefore, the instructor will have to
make choices of the topics to be discussed.

In Chapters 1 through 6 we discuss incomplete block and row–column designs
at various degrees of specificity. In Chapter 1 we lay the general foundation for
the notion and analysis of incomplete block designs. This chapter is essential
because its concepts permeate through almost every chapter of the book, in
particular the ideas of intra- and interblock analyses. Chapters 2 through 5 are
devoted to balanced and partially balanced incomplete block designs, their spe-
cial features and methods of construction. In Chapter 6 we present some other
types of incomplete block designs, such as α-designs and control-test treatment
comparison designs. Further, we discuss various forms of row–column designs
as examples of the use of additional blocking factors.
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In Chapters 7 through 13 we give a general discussion of the most fundamental
and important ideas of factorial designs, beginning with factors at two levels
(Chapters 7 through 9), continuing with the case of factors with three levels
(Chapter 10) through the general case of symmetrical and asymmetrical factorial
designs (Chapters 11 and 12), and concluding with the important concept of
fractional factorial designs (Chapter 13). In these chapters we return often to the
notion of incomplete block designs as we discuss various systems of confounding
of interaction effects with block effects.

Additional topics involving factorial designs are taken up in Chapters 14
through 17. In Chapter 14 we discuss the important concept of main effect plans
and their construction. This notion is then extended to supersaturated designs
(Chapter 15) and incorporated in the ideas of search designs (Chapter 16) and
robust-design or Taguchi experiments (Chapter 17). We continue with an exten-
sive chapter about lattice designs (Chapter 18), where the notions of factorial and
incomplete block designs are combined in a unique way. We conclude the book
with a chapter on crossover designs (Chapter 19) as an example where the ideas
of optimal incomplete row–column designs are complemented by the notion of
carryover effects.

In making a selection of topics for teaching purposes the instructor should
keep in mind that we consider Chapters 1, 7, 8, 10, and 13 to be essential for the
understanding of much of the material in the book. This material should then be
supplemented by selected parts from the remaining chapters, thus providing the
student with a good understanding of the methods of constructing various types
of designs, the properties of the designs, and the analyses of experiments based
on these designs. The reader will notice that some topics are discussed in more
depth and detail than others. This is due to our desire to give the student a solid
foundation in what we consider to be fundamental concepts.

In today’s computer-oriented environment there exist a number of software
programs that help in the construction and analysis of designs. We have chosen
to use the Statistical Analysis System (SAS) for these purposes and have provided
throughout the book examples of input statements and output using various pro-
cedures in SAS, both for constructing designs as well as analyzing data from
experiments based on these designs. For the latter, we consider, throughout,
various forms of the analysis of variance to be among the most important and
informative tools.

As we have mentioned earlier, Volume 2 is based on the concepts developed
and described in Volume 1. Nevertheless, Volume 2 is essentially self-contained.
We make occasional references to certain sections in Volume 1 in the form
(I.xx.yy) simply to remind the reader about certain notions. We emphasize again
that the entire development is framed within the context of randomization theory
and its approximation by normal theory inference. It is with this fact in mind
that we discuss some methods and ideas that are based on normal theory.

There exist a number of books discussing the same types of topics that we
exposit in this book, some dealing with only certain types of designs, but per-
haps present more details than we do. For some details we refer to these books
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in the text. A quite general, but less detailed discussion of various aspects of
experimental design is provided by Cox and Reid (2000).

Even though we have given careful attention to the selection of material for
this book, we would be remiss if we did not mention that certain areas are
completely missing. For example, the reader will not find any discussion of
Bayesian experimental design. This is, in part, due to our philosophical attitude
toward the Bayesian inferential approach (see Kempthorne, 1984; Hinkelmann,
2001). To explain, we strongly believe that design of experiment is a Bayesian
experimentation process, not a Bayesian inference process, but one in which the
experimenter approaches the experiment with some beliefs, to which he accom-
modates the design. It is interesting to speculate whether precise mathematical
formulation of informal Bayesian thinking will be of aid in design. Another area
that is missing is that of sequential design. Here again, we strongly believe and
encourage the view that most experimentation is sequential in an operational
sense. Results from one, perhaps exploratory, experiment will often lead to fur-
ther, perhaps confirmatory, experimentation. This may be done informally or
more formally in the context of sequential probability ratio tests, which we do
not discuss explicitly. Thus, the selection and emphases are to a certain extent
subjective and reflect our own interests as we have taught over the years parts
of the material to our graduate students.

As mentioned above, the writing of this book has extended over many years.
This has advantages and disadvantages. My (K.H.) greatest regret, however, is
that the book was not completed before the death of my co-author, teacher, and
mentor, Oscar Kempthorne. I only hope that the final product would have met
with his approval.

This book could not have been completed without the help from others. First,
we would like to thank our students at Virginia Tech, Iowa State University, and
the University of Dortmund for their input and criticism after being exposed to
some of the material. K.H. would like to thank the Departments of Statistics at
Iowa State University and the University of Dortmund for inviting him to spend
research leaves there and providing him with support and a congenial atmosphere
to work. We are grateful to Michele Marini and Ayca Ozol-Godfrey for providing
critical help with some computer work. Finally, we will never be able to fully
express our gratitude to Linda Breeding for her excellent expert word-processing
skills and her enormous patience in typing the manuscript, making changes after
changes to satisfy our and the publisher’s needs. It was a monumental task and
she did as well as anybody possibly could.

Klaus Hinkelmann

Blacksburg, VA
May 2004



C H A P T E R 1

General Incomplete Block Design

1.1 INTRODUCTION AND EXAMPLES

One of the basic principles in experimental design is that of reduction of experi-
mental error. We have seen (see Chapters I.9 and I.10) that this can be achieved
quite often through the device of blocking. This leads to designs such as ran-
domized complete block designs (Section I.9.2) or Latin square type designs
(Chapter I.10). A further reduction can sometimes be achieved by using blocks
that contain fewer experimental units than there are treatments.

The problem we shall be discussing then in this and the following chapters is
the comparison of a number of treatments using blocks the size of which is less
than the number of treatments. Designs of this type are called incomplete block
designs (see Section I.9.8). They can arise in various ways of which we shall
give a few examples.

In the case of field plot experiments, the size of the plot is usually, though
by no means always, fairly well determined by experimental and agronomic
techniques, and the experimenter usually aims toward a block size of less than
12 plots. If this arbitrary rule is accepted, and we wish to compare 100 varieties
or crosses of inbred lines, which is not an uncommon situation in agronomy,
we will not be able to accommodate all the varieties in one block. Instead, we
might use, for example 10 blocks of 10 plots with different arrangements for
each replicate (see Chapter 18).

Quite often a block and consequently its size are determined entirely on bio-
logical or physical grounds, as, for example, a litter of mice, a pair of twins,
an individual, or a car. In the case of a litter of mice it is reasonable to assume
that animals from the same litter are more alike than animals from different lit-
ters. The litter size is, of course, restricted and so is, therefore, the block size.
Moreover, if one were to use female mice only for a certain investigation, the
block size would be even more restricted, say to four or five animals. Hence,
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2 GENERAL INCOMPLETE BLOCK DESIGN

comparing more than this number of treatments would require some type of
incomplete block design.

Suppose we wish to compare seven treatments, T1, T2, T3, T4, T5, T6, T7, say,
using female mice, and suppose we have several litters with four females. We
then could use the following incomplete block design, which, as will be explained
later, is a balanced incomplete block design:

Animal

Litter 1 2 3 4

1 T1 T4 T7 T6
2 T3 T6 T5 T7
3 T7 T1 T2 T5
4 T1 T2 T3 T6
5 T2 T7 T3 T4
6 T5 T3 T4 T1
7 T2 T4 T5 T6

Notice that with this arrangement every treatment is replicated four times, and
every pair of treatments occurs together twice in the same block; for example,
T1 and T2 occur together in blocks 3 and 4.

Many sociological and psychological studies have been done on twins because
they are “alike” in many respects. If they constitute a block, then the block
size is obviously two. A number of incomplete block designs are available
for this type of situation, for example, Kempthorne (1953) and Zoellner and
Kempthorne (1954).

Blocks of size two arise also in some medical studies, when a patient is
considered to be a block and his eyes or ears or legs are the experimental units.

With regard to a car being a block, this may occur if we wish to compare
brands of tires, using the wheels as the experimental units. In this case one may
also wish to take the effect of position of the wheels into account. This then
leads to an incomplete design with two-way elimination of heterogeneity (see
Chapters 6 and I.10).

These few examples should give the reader some idea why and how the need
for incomplete block designs arises quite naturally in different types of research.
For a given situation it will then be necessary to select the appropriate design
from the catalogue of available designs. We shall discuss these different types
of designs in more detail in the following chapters along with the appropriate
analysis.

Before doing so, however, it seems appropriate to trace the early history
and development of incomplete block designs. This development has been a
remarkable achievement, and the reader will undoubtedly realize throughout the
next chapters that the concept of incomplete block designs is fundamental to the
understanding of experimental design as it is known today.
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The origins of incomplete block designs go back to Yates (1936a) who intro-
duced the concept of balanced incomplete block designs and their analysis utiliz-
ing both intra- and interblock information (Yates, 1940a). Other incomplete block
designs were also proposed by Yates (1936b, 1937a, 1940b), who referred to these
designs as quasi-factorial or lattice designs. Further contributions in the early his-
tory of incomplete block designs were made by Bose (1939, 1942) and Fisher
(1940) concerning the structure and construction of balanced incomplete block
designs. The notion of balanced incomplete block design was generalized to that
of partially balanced incomplete block designs by Bose and Nair (1939), which
encompass some of the lattice designs introduced earlier by Yates. Further exten-
sions of the balanced incomplete block designs and lattice designs were made
by Youden (1940) and Harshbarger (1947), respectively, by introducing balanced
incomplete block designs for eliminating heterogeneity in two directions (gener-
alizing the concept of the Latin square design) and rectangular lattices some of
which are more general designs than partially balanced incomplete block designs.
After this there has been a very rapid development in this area of experimental
design, and we shall comment on many results more specifically in the following
chapters.

1.2 GENERAL REMARKS ON THE ANALYSIS OF INCOMPLETE
BLOCK DESIGNS

The analysis of incomplete block designs is different from the analysis of com-
plete block designs in that comparisons among treatment effects and comparisons
among block effects are no longer orthogonal to each other (see Section I.7.3).
This is referred to usually by simply saying that treatments and blocks are not
orthogonal. This nonorthogonality leads to an analysis analogous to that of the
two-way classification with unequal subclass numbers. However, this is only
partly true and applies only to the analysis that has come to be known as the
intrablock analysis.

The name of the analysis is derived from the fact that contrasts in the treat-
ment effects are estimated as linear combinations of comparisons of observations
in the same block. In this way the block effects are eliminated and the estimates
are functions of treatment effects and error (intrablock error) only. Coupled with
the theory of least squares and the Gauss–Markov theorem (see I.4.16.2), this
procedure will give rise to the best linear unbiased intrablock estimators for treat-
ment comparisons. Historically, this has been the method first used for analyzing
incomplete block designs (Yates, 1936a). We shall derive the intrablock analysis
in Section 1.3.

Based upon considerations of efficiency, Yates (1939) argued that the intra-
block analysis ignores part of the information about treatment comparisons,
namely that information contained in the comparison of block totals. This analysis
has been called recovery of interblock information or interblock analysis.
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Yates (1939, 1940a) showed for certain types of lattice designs and for the
balanced incomplete block design how these two types of analyses can be com-
bined to yield more efficient estimators of treatment comparisons. Nair (1944)
extended these results to partially balanced incomplete block designs, and Rao
(1947a) gave the analysis for any incomplete block design showing the similarity
between the intrablock analysis and the combined intra- and interblock analysis.

The intrablock analysis, as it is usually presented, is best understood by assum-
ing that the block effects in the underlying linear model are fixed effects. But for
the recovery of interblock information the block effects are then considered to
be random effects. This leads sometimes to confusion with regard to the assump-
tions in the combined analysis, although it should be clear from the previous
remark that then the block effects have to be considered random effects for both
the intra- and interblock analysis. To emphasize it again, we can talk about intra-
block analysis under the assumption of either fixed or random block effects. In
the first case ordinary least squares (OLS) will lead to best linear unbiased esti-
mators for treatment contrasts. This will, at least theoretically, not be true in the
second case, which is the reason for considering the interblock information in
the first place and using the Aitken equation (see I.4.16.2), which is also referred
to as generalized (weighted ) least squares.

We shall now derive the intrablock analysis (Section 1.3), the interblock
analysis (Section 1.7), and the combined analysis (Section 1.8) for the general
incomplete block design. Special cases will then be considered in the following
chapters.

1.3 THE INTRABLOCK ANALYSIS

1.3.1 Notation and Model

Suppose we have t treatments replicated r1, r2, . . . , rt times, respectively, and
b blocks with k1, k2, . . . , kb units, respectively. We then have

t∑
i=1

ri =
b∑

j=1

kj = n

where n is the total number of observations.
Following the derivation of a linear model for observations from a random-

ized complete block design (RCBD), using the assumption of additivity in the
broad sense (see Sections I.9.2.2 and I.9.2.6), an appropriate linear model for
observations from an incomplete block design is

yij� = µ + τi + βj + eij� (1.1)

(i = 1, 2, . . . , t; j = 1, 2, . . . , b; � = 0, 1, . . . , nij ), where τi is the effect of the
ith treatment, βj the effect of the j th block, and eij� the error associated with the
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observation yij�. As usual, the eij� contain both experimental and observational
(sampling) error, that is, using notation established in Volume 1,

eij� = εij� + ηij�

with εij� representing experimental error and ηij� representing observational
error. Also, based on previous derivations (see I.6.3.4), we can treat the eij�

as i.i.d. random variables with mean zero and variance σ 2
e = σ 2

ε + σ 2
η . Note that

because nij , the elements of the incidence matrix N , may be zero, not all treat-
ments occur in each block which is, of course, the definition of an incomplete
block design.

Model (1.1) can also be written in matrix notation as

y = µI + Xττ + Xββ + e (1.2)

where I is a column vector consisting of n unity elements, Xβ is the observation-
block incidence matrix

Xβ =


Ik1

Ik2

. . .

Ikb


with Ikj

denoting a column vector of kj unity elements (j = 1, 2, . . . , b) and

Xτ = (x1, x2, . . . , xt )

is the observation-treatment incidence matrix, where xi is a column vector with
ri unity elements and (n − ri) zero elements such that x′

ixi = ri and x ′
ixi′ = 0

for i �= i′(i, i′ = 1, 2, . . . , t).

1.3.2 Normal and Reduced Normal Equations

The normal equations (NE) for µ, τi , and βj are then

nµ̂ +
t∑

i=1

ri τ̂i +
b∑

j=1

kj β̂j = G

riµ̂ + ri τ̂i +
b∑

j=1

nij β̂j = Ti (i = 1, 2, . . . , t) (1.3)

kj µ̂ +
t∑

i=1

nij τ̂i + kj β̂j = Bj (j = 1, 2, . . . , b)



6 GENERAL INCOMPLETE BLOCK DESIGN

where
Ti =

∑
j�

yij� = ith treatment total

Bj =
∑
i�

yij� = j th block total

G =
∑

i

Ti =
∑
j

Bj = overall total

Equations (1.3) can be written in matrix notation as
I′

nIn I′
nXτ I′

nXβ

X′
τIn X′

τXτ X′
τXβ

X′
βIn X′

βXτ X′
βXβ




µ̂

τ̂

β̂

 =


I′

ny

X′
τy

X′
βy

 (1.4)

which, using the properties of I, Xτ , Xβ , can be written as


I′

nIn I′
τR I′

bK

RIt R N

KIb N ′ K

 ·


µ̂

τ̂

β̂

 =


G

T

B

 (1.5)

where
R = diag (ri) t × t

K = diag
(
kj

)
b × b

N = (
nij

)
t × b (the incidence matrix)

T ′ = (T1, T2, . . . , Tt )

B ′ = (B1, B2, . . . , Bb)

τ ′ = (τ1, τ2, . . . , τt )

β ′ = (β1, β2, . . . , βb)

and the I’s are column vectors of unity elements with dimensions indicated by
the subscripts. From the third set of equations in (1.5) we obtain

µ̂Ib + β̂ = K−1(B − N ′τ̂ ) (1.6)
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Substituting (1.6) into the second set of (1.5), which can also be expressed
as NIbµ̂ + Nβ̂ + Rτ̂ = T (since NIb = RIt ), leads to the reduced normal
equations (RNE) (see Section I.4.7.1) for τ

(R − NK−1N ′)̂τ = T − NK−1B (1.7)

Standard notation for (1.7) is

Cτ̂ = Q (1.8)

where
C = R − NK−1N ′ (1.9)

and
Q = T − NK−1B (1.10)

the (i, i′) element of C being

cii′ = δii′ri −
b∑

j=1

nijni′j
kj

with δii′ = 1 for i = i′ and = 0 otherwise, and the ith element of Q being

Qi = Ti −
b∑

j=1

nijBj

kj

And Qi is called the ith adjusted treatment total, the adjustment being due to
the fact that the treatments do not occur the same number of times in the blocks.

1.3.3 The C Matrix and Estimable Functions

We note that the matrix C of (1.9) is determined entirely by the specific design,
that is, by the incidence matrix N . It is, therefore, referred to as the C matrix
(sometimes also as the information matrix ) of that design. The C matrix is
symmetric, and the elements in any row or any column of C add to zero, that
is, CI = 0, which implies that r(C) = rank(C) ≤ t − 1. Therefore, C does not
have an inverse and hence (1.8) cannot be solved uniquely. Instead we write a
solution to (1.8) as

τ̂ = C−Q (1.11)

where C− is a generalized inverse for C (see Section 1.3.4).
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If we write C = (c1, c2, . . . , ct ), where ci is the ith column of C, then the
set of linear functions

{c′
iτ , i = 1, 2, . . . , t}

which span the totality of estimable functions of the treatment effects, has dimen-
sionality r(C). Let c′τ be an estimable function and c′τ̂ its estimator, with τ̂

from (1.11). Then

E(c′τ̂ ) = E
(
c′C−Q

)
= c′C−E(Q)

= c′C−Cτ

For c′τ̂ to be an unbiased estimator for c′τ for any τ , we then must have

c′C−C = c′ (1.12)

Since CI = 0, it follows from (1.12) that c′I = 0. Hence, only treatment con-
trasts are estimable. If r(C) = t − 1, then all treatment contrasts are estimable.
In particular, all differences τi − τi′(i �= i′) are estimable, there being t − 1 lin-
early independent estimable functions of this type. Then the design is called a
connected design (see also Section I.4.13.3).

1.3.4 Solving the Reduced Normal Equations

In what follows we shall assume that the design is connected; that is, r(C) =
t − 1. This means that C has t − 1 nonzero (positive) eigenvalues and one zero
eigenvalue. From

C


1
1
...

1

 = 0 = 0


1
1
...

1


it follows then that (1, 1, . . . , 1)′ is an eigenvector corresponding to the zero
eigenvalue. If we denote the nonzero eigenvalues of C by d1, d2, . . . , dt−1
and the corresponding eigenvectors by ξ1, ξ2, . . . , ξ t−1 with ξ ′

iξ i = 1 (i =
1, 2, . . . , t − 1) and ξ ′

iξ i′ = 0(i �= i′), then we can write C in its spectral decom-
position as

C =
t−1∑
i=1

diξ iξ
′
i (1.13)
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or with dt = 0 and ξ ′
t = 1/

√
t(1, 1, . . . , 1), alternatively as

C =
t∑

i=1

diξ iξ
′
i (1.14)

We note that ξ ′
tξ t = 1 and ξ ′

iξ t = 0 for i = 1, 2, . . . , t − 1.
We now return to (1.8) and consider a solution to these equations of the

form given by (1.11). Although there are many methods of finding generalized
inverses, we shall consider here one particular method, which is most useful
in connection with incomplete block designs, especially balanced and partially
balanced incomplete block designs (see following chapters). This method is based
on the following theorem, which is essentially due to Shah (1959).

Theorem 1.1 Let C be a t × t matrix as given by (1.9) with r(C) = t − 1.

Then C̃ = C + aII′, where a �= 0 is a real number, admits an inverse C̃
−1

, and
C̃

−1
is a generalized inverse for C.

Proof

(a) We can rewrite C̃ as

C̃ = C + aII′ = C + a


1
1
...

1

 (1, 1, . . . , 1) = C + at ξ tξ
′
t

and because of (1.13)

C̃ =
t−1∑
i=1

diξ iξ
′
i + at ξ tξ

′
t (1.15)

Clearly, C̃ has nonzero roots d1, d2, . . . , dt−1, dt = at and hence is non-
singular. Then

C̃
−1 =

t−1∑
i=1

1

di

ξ iξ
′
i + 1

at
ξ tξ

′
t (1.16)

(b) To show that C̃
−1 = C− we consider CC̃

−1
C. From (1.13), (1.15), and

(1.16) we have

C̃C̃
−1 = I =

t∑
i=1

ξ iξ
′
i
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and

CC̃
−1 =

t−1∑
i=1

ξ iξ
′
i = I − ξ tξ

′
t = I − 1

t
II′ (1.17)

CC̃
−1

C = C

which implies

C̃
−1 = C−

We remark here already that determining C− for the designs in the following
chapters will be based on (1.17) rather than on (1.14).

Substituting C̃
−1

into (1.13) then yields a solution of the RNE (1.8); that is,

τ̂ = C̃
−1

Q (1.18)

We note that because of (1.8) and (1.16)

E (̂τ ) = E
(
C̃

−1
Q

)
= C̃

−1
E (Q)

= C̃
−1

E (Cτ̂ )

= C̃
−1

Cτ

=
(

I − 1

t
II′

)
τ

=


τ1 − τ

τ2 − τ
...

τt − τ


with τ = 1/t

∑
i τi ; that is, E(̂τ ) is the same as if we had obtained a generalized

inverse of C by imposing the condition
∑

i τ̂i = 0. �

1.3.5 Estimable Functions of Treatment Effects

We know from the Gauss–Markov theorem (see Section I.4.16.2) that for any
linear estimable function of the treatment effects, say c′τ ,

E(c′τ̂ ) = c′τ (1.19)

is independent of the solution to the NE (see Section I.4.4.4). We have further

var(c′τ̂ ) = c′ C̃−1
c σ 2

e (1.20)
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with a corresponding result (but same numerical value) for any other solution
obtained, using an available software package (see Section 1.14). We shall elab-
orate on this point briefly.

Let us rewrite model (1.2) as

y = µI + Xββ + Xττ + e

= (I Xβ Xτ )

µ

β

τ

 + e

≡ X� + e (1.21)

with
X = (I : Xβ : Xτ ) (1.22)

and
�′ = (µ, β ′, τ ′)

The NE for model (1.21) are

X′X�∗ = X′y (1.23)

A solution to (1.23) is given by, say,

�∗ = (X′X)−X′y

for some (X′X)−. Now (X′X)− is a (1 + b + t) × (1 + b + t) matrix that we
can partition conformably, using the form of X as given in (1.22), as

(X′X)− =
Aµµ Aµβ Aµτ

A′
µβ Aββ Aβτ

A′
µτ A′

βτ Aττ

 (1.24)

Here, Aττ is a t × t matrix that serves as the variance–covariance matrix for
obtaining

var(c′τ ∗) = c′ Aττ c σ 2
e (1.25)

For any estimable function c′τ we have c′τ̂ = c′τ∗ and also the numerical

values for (1.20) and (1.25) are the same. If we denote the (i, i′) element of Ĉ
−1

by cii′ and the corresponding element of Aττ in (1.24) by aii′ , then we have, for
example, for c′τ = τi − τi′

var (̂τi − τ̂i′) =
(
cii − 2cii′ + ci′i′

)
σ 2

e =
(
aii − 2aii′ + ai′i′

)
σ 2

e (1.26)

For a numerical example and illustration of computational aspects, see
Section 1.13.
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1.3.6 Analyses of Variance

It follows from general principles (see Section I.4.7.1) that the two forms of
analysis of variance are as given in Tables 1.1 and 1.2. We shall henceforth refer
to the analysis of variance in Table 1.1 as the treatment-after-block ANOVA or
T | B-ANOVA as it is associated with the ordered model

y = µI + Xββ + Xττ + e

whereas the analysis of variance in Table 1.2 is associated with the ordered model

y = µI + Xττ + Xββ + e

and hence shall be referred to as the block-after-treatment ANOVA or B | T-
ANOVA. To indicate precisely the sources of variation and the associated sums
of squares, we use the notation developed in Section I.4.7.2 for the general case
as it applies to the special case of the linear model for the incomplete block

Table 1.1 T|B-ANOVA for Incomplete Block Design

Source d.f.a SS E(MS)

Xβ |I b − 1
b∑

j=1

B2
j

kj

− G2

n

Xτ |I,Xβ t − 1
t∑

i=1

τ̂iQi σ 2
e + τ ′Cτ

t − 1

I |I,Xβ,Xτ n − b − t + 1 Difference σ 2
e

Total n − 1
∑
ij�

y2
ij� − G2

n

ad.f. = degrees of freedom.

Table 1.2 B|T-ANOVA for Incomplete Block Design

Source d.f. SS

Xτ |I t − 1
t∑

i=1

T 2
i

ri
− G2

n

Xβ |I, Xτ b − 1 Difference

I |I,Xβ,Xτ n − b − t + 1 From Table 1.1

Total n − 1
∑
ij�

y2
ij� − G2

n
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design, thereby avoiding the commonly used but not always clearly understood
terms blocks ignoring treatments for (Xβ |I), treatments eliminating blocks for
(Xτ |I, Xβ), and blocks eliminating treatments for (Xβ |I, Xτ ).

The T | B-ANOVA follows naturally from the development of the RNE for the
treatment effects. It is the appropriate ANOVA for the intrablock analysis as it
allows to test the hypothesis

H0: τ1 = τ2 = · · · = τt

by means of the (approximate) F test (see I.9.2.5)

F = SS(Xτ |I, Xβ)/(t − 1)

SS(I |I, Xβ, Xτ )/(n − b − t + 1)
(1.27)

Also MS(Error)= SS(I |I,Xβ, Xτ )/(n − b − t + 1) is an estimator for σ 2
e to

be used for estimating var(c′τ̂ ) of (1.20).
The usefulness of the B | T-ANOVA in Table 1.2 will become apparent when

we discuss specific aspects of the combined intra- and interblock analysis in
Section 1.10. At this point we just mention that SS(Xβ |, I, Xτ ) could have been
obtained from the RNE for block effects. Computationally, however, it is more
convenient to use the fact that SS(I |I, Xβ, Xτ ) = SS(I |I, Xτ ,Xβ) and then
obtain SS(Xβ |I,Xτ ) by subtraction.

Details of computational procedures using SAS PROC GLM and SAS PROC
Mixed (SAS1999–2000) will be described in Section 1.14.

1.4 INCOMPLETE DESIGNS WITH VARIABLE BLOCK SIZE

In the previous section we discussed the intrablock analysis of the general incom-
plete block design; that is, a design with possibly variable block size and possibly
variable number of replications. Although most designed experiments use blocks
of equal size, k say, there exist, however, experimental situations where blocks of
unequal size arise quite naturally. We shall distinguish between two reasons why
this can happen and why caution may have to be exercised before the analysis
as outlined in the previous section can be used:

1. As pointed out by Pearce (1964, p. 699):

With much biological material there are natural units that can be used as blocks and
they contain plots to a number not under the control of the experimenter. Thus, the
number of animals in a litter or the number of blossoms in a truss probably vary
only within close limits.

2. Although an experiment may have been set up using a proper design, that
is, a design with equal block size, missing plots due to accidents during
the course of investigation will leave one for purpose of analysis with a
design of variable block size.
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In both cases there are two alternatives to handle the situation. In case 1 one
may wish to reduce all blocks to a constant size, thereby reducing the number of
experimental units available. If experimental units are at a premium, this may not
be the most desirable course of action. The other alternative is to use the natural
blocks and then use the analysis as given in the previous section. Before doing
so we mention that its validity will depend on one very important assumption,
and that is the constancy of the variance σ 2

e for all blocks. In general, the size
of σ 2

e will depend on the size of the blocks: The larger the blocks, the larger σ 2
e

will be since it is in part a measure of the variability of the experimental units
within blocks (see I.9.2.4). In fact, this is the reason for reducing the block size
since it may also reduce the experimental error. Experience shows that such a
reduction in σ 2

e is not appreciable for only modest reduction in block size. It is
therefore quite reasonable to assume that σ 2

e is constant for blocks of different
size if the number of experimental units varies only slightly.

In case 2 one possibility is to estimate the missing values and then use the
analysis for the proper design. Such a procedure, however, would only be approxi-
mate. The exact analysis then would require the analysis with variable block size
as in case 1. Obviously, the assumption of constancy of experimental error is
satisfied here if is was satisfied for the original proper design.

1.5 DISCONNECTED INCOMPLETE BLOCK DESIGNS

In deriving the intrablock analysis of an incomplete block design in Section 1.3.4
we have made the assumption that the C matrix of (1.9) has maximal rank t − 1,
that is, the corresponding design is a connected design. Although connectedness
is a desirable property of a design and although most designs have this property,
we shall encounter designs (see Chapter 8) that are constructed on purpose as
disconnected designs. We shall therefore comment briefly on this class of designs.

Following Bose (1947a) a treatment and a block are said to be associated if
the treatment is contained in that block. Two treatments are said to be connected
if it is possible to pass from one to the other by means of a chain consisting alter-
nately of treatments and blocks such that any two adjacent members of the chain
are associated. If this holds true for any two treatments, then the design is said to
be connected, otherwise it is said to be disconnected (see Section I.4.13.3 for a
more formal definition and Srivastava and Anderson, 1970). Whether a design is
connected or disconnected can be checked easily by applying the definition given
above to the incidence matrix N : If one can connect two nonzero elements of
N by means of vertical and horizontal lines such that the vertices are at nonzero
elements, then the two treatments are connected. In order to check whether a
design is connected, it is sufficient to check whether a given treatment is con-
nected to all the other t − 1 treatments. If a design is disconnected, it follows
then that (possibly after suitable relabeling of the treatments) the matrix NN ′
and hence C consist of disjoint block diagonal matrices such that the treatments
associated with one of these submatrices are connected with each other.
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Suppose C has m submatrices, that is,

C =


C1

C2
. . .

Cm


where Cν is tν × tν

(∑m
ν=1 tν = t

)
. It then follows that rank (Cν) = tν − 1(ν =

1, 2, . . . , m) and hence rank(C) = t − m. The RNE is still of the form (1.8)
with a solution given by (1.11), where in C− = C̃

−1
we now have, modifying

Theorem 1.1,

C̃ = C +


a1II′

a2II′
. . .

amII′



Table 1.3 T|B-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS

Xβ |I b − 1
∑
j

B2
j

kj

− G2

n

Xτ |I,Xβ t − m
∑

i

τ̂iQi

I |I,Xβ,Xτ n − b − t + m Difference

Total n − 1
∑
ij�

y2
ij� − G2

n

Table 1.4 B|T-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS

Xτ |I t − 1
∑

i

T 2
i

ri
− G2

n

Xβ |I,Xτ b − m Difference

I |I, Xτ , Xβ n − t − b + m From Table 1.3

Total n − 1
∑
ij�

y2
ij� − G2

n
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with aν(ν = 1, 2, . . . , m) arbitrary constants (�= 0) and the II′ matrices are of
appropriate dimensions. Following the development in Section 1.3.6, this then
leads to the ANOVA tables as given in Tables 1.3 and 1.4.

1.6 RANDOMIZATION ANALYSIS

So far we have derived the analysis of data from incomplete block designs using
a Gauss–Markov linear model as specified in (1.1). We have justified the appro-
priate use of such an infinite population theory model in our earlier discussions
of error control designs (see, e.g., Sections I.6.3 and I.9.2) as a substitute for
a derived, that is, finite, population theory model that takes aspects of random-
ization into account. In this section we shall describe in mathematical terms the
randomization procedure for an incomplete block design, derive an appropriate
linear model, and apply it to the analysis of variance. This will show again, as
we have argued in Section I.9.2 for the RCBD, that treatment effects and block
effects cannot be considered symmetrically for purposes of statistical inference.

1.6.1 Derived Linear Model

Following Folks and Kempthorne (1960) we shall confine ourselves to proper
(i.e., all kj = k), equireplicate (i.e., all ri = r) designs. The general situation is
then as follows: We are given a set of b blocks, each of constant size k ; a master
plan specifies b sets of k treatments; these sets are assigned at random to the
blocks; in each block the treatments are assigned at random to the experimental
units (EU). This randomization procedure is described more formally by the
following design random variables:

αu
j =

{
1 if the uth set is assigned to the j th block

0 otherwise
(1.28)

and

δuv
j� =


1 if the uv treatment is assigned to the

�th unit of the j th block

0 otherwise
(1.29)

The uv treatment is one of the t treatments that, for a given design, has been
assigned to the uth set.

Assuming additivity in the strict sense (see Section I.6.3), the conceptual
response of the uv treatment assigned to the �th EU in the j th block can be
written as

Tj�uv = Uj� + Tuv (1.30)
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where Uj� is the contribution from the �th EU in the j th block and Tuv is the
contribution from treatment uv. We then write further

Tj�uv = U.. + (Uj. − U..) + (Uj� − Uj.) + T .. + (Tuv − T ..)

= µ + bj + τuv + uj� (1.31)

where
µ = U.. + T .. is the overall mean

bj = Uj. − U.. is the effect of the j th block
(j = 1, 2, . . . , b)

τuv = tuv − T .. is the effect of the uv treatment
(u = 1, 2, . . . , b; v = 1, 2, . . . , k)

uj� = Uj� − Uj. is the unit error
(� = 1, 2, . . . , k)

with
∑

j bj = 0 = ∑
uv τuv = ∑

� uj�. We then express the observed response
for the uv treatment, yuv , as

yuv =
∑
j

∑
�

αu
j δuv

j� Tj�uv

= µ + τuv +
∑
j

αu
j bj +

∑
j

∑
�

αu
j δuv

j� uj�

= µ + τuv + βu + ωuv (1.32)

where
βu =

∑
j

αu
j bj (1.33)

is a random variable with

E(βu) = 0 E(β2
u) = 1

b

∑
j

b2
j E(βuβu′) = 1

b(b − 1)

∑
j

b2
j (u �= u′)

Also,
ωuv =

∑
j

∑
�

αu
j δuv

j� uj� (1.34)
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is a random variable with

E(ωuv) = 0 E(ω2
uv) = 1

bk

∑
j�

u2
j�

E(ωuvωuv′) = − 1

bk(k − 1)

∑
j

∑
�

u2
j� (v �= v′)

E(ωuvωu′v′) = 0 (u �= u′)

In deriving the properties of the random variables βu and ωuv we have used, of
course, the familiar distributional properties of the design random variables αu

j

and δuv
j� , such as

P(αu
j = 1) = 1

b

P (αu
j = 1 |αu

j ′ = 1) = 0 (j �= j ′)

P (αu
j = 1 |αu′

j ′ = 1) = 1

b(b − 1)
(u �= u′, j �= j ′)

P (δuv
j� = 1) = 1

k

P (δuv
j� = 1) | (δuv

j�′ = 1) = 0 (� �= �′)

P (δuv
j� = 1) | (δuv′

j�′ = 1) = 1

k(k − 1)
(� �= �′, v �= v′)

P (δuv
j� = 1) | (δu′v′

j ′�′ = 1) = 1

k2
(j �= j ′, u �= u′)

and so on.

1.6.2 Randomization Analysis of ANOVA Tables

Using model (1.32) and its distributional properties as induced by the design
random variables αu

j and δuv
j� , we shall now derive expected values of the sums

of squares in the analyses of variance as given in Tables 1.1 and 1.2:

1. E(SS Total) = E
∑
uv

(yuv − y..)
2

= E
∑
uv

(τuv + βu + ωuv)
2

=
∑
uv

τ 2
uv + k

∑
j

b2
j +

∑
j�

u2
j�
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2. E[SS(Xβ |I)] = E
∑
uv

(yu. − y..)
2

= k E
∑
u

(τu. + βu + 1

k

∑
v

ωuv)
2

= k
∑
u

τ 2
u. + k

∑
j

b2
j

3. E[SS (I |I,Xβ, Xτ )] = n − t − b + 1

b(k − 1)

∑
j�

u2
j�

since the incomplete block designs considered are unbiased.
4. E[SS(Xτ |I, Xβ)] can be obtained by subtraction.
5. To obtain E[SS(Xτ |I)] let

γ w
uv =


1 if the wth treatment corresponds to the

uv index (w = 1, 2, . . . , t)

0 otherwise

γ w
u =

{
1 if the wth treatment occurs in the uth block

0 otherwise

where ∑
ν

γ w
uv = γ w

u

and ∑
u

γ w
u = r

Then

E[SS(Xτ |I)] = E

1

r

∑
w

(∑
uv

γ w
uvyuv − 1

t

∑
w

∑
uv

γ w
uvyuv

)2


= E

1

r

∑
w

(
rτw +

∑
u

γ w
u βu +

∑
uv

γ w
uv ωuv

)2


= r
∑
w

τ 2
w + 1

r

∑
w

E

(∑
u

γ w
u βu

)2

+ 1

r

∑
w

E

(∑
uv

γ w
uv ωuv

)2
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= r
∑
w

τ 2
w + 1

r

∑
w

E

∑
u

γ w
u β2

u +
∑
uu′

u �=u′

γ w
u γ w

u′ βuβu′


+ 1

r

∑
w

E

∑
uv

γ w
uv ω2

uv +
∑
u

∑
vv′

u �=v′

γ w
uvγ

w
uv′ ωuvωuv′

+
∑
uu′

u �=u′

∑
vv′

γ w
uvγ

w
u′v′ ωuvωu′v′


Now

E

[∑
u

γ w
u β2

u

]
= r

1

b

∑
j

b2
j

E

 ∑
uu′

u �=u′

γ w
u γ w

u′ βuβu′
 = −

∑
uu′

u �=u′

γ w
u γ w

u′
1

b(b − 1)

∑
j

b2
j

= −
∑
u

γ w
u (r − γ w

u )
1

b(b − 1)

∑
j

b2
j

= − r(r − 1)

b(b − 1)

∑
j

b2
j

E

[∑
uv

γ w
uv ω2

uv

]
= r

1

bk

∑
j�

u2
u�

E

∑
u

∑
νν′

ν �=ν′

γ w
uvγ

w
uv′ ωw

uvωuv′
 = 0 since γ w

uvγ
w
uv′ = 0

E

 ∑
uu′

u �=u′

γ w
uvγ

w
u′v′ ωuvωu′v′

 = 0

and hence

E[(Xτ |I] = r
∑
w

τ 2
w + t (b − r)

b(b − 1)

∑
j

b2
j + t

bk

∑
j�

u2
j�

Thus, we have for the mean squares (MS) from Tables 1.1 and 1.2 the expected
values under randomization theory as given in Tables 1.5 and 1.6, respectively.
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Table 1.5 E(MS) for T|B-ANOVA

Source E(MS)

Xβ |I k

b − 1

∑
u

τ 2
u. + k

b − 1

∑
j

b2
j

Xτ | I, Xβ
1

b(k − 1)

∑
j�

u2
j� +

(∑
uv

τ 2
uv − k

∑
u

τ 2
u.

)/
(t − 1)

I | I, Xβ,Xτ
1

b(k − 1)

∑
j�

u2
j�

Table 1.6 E(MS) for B|T-ANOVA

Source E(MS)

Xτ | I t

bk(t − 1)

∑
j�

u2
j� + t (b − r)

b(b − 1)(t − 1)

∑
j

b2
j + r

t − 1

∑
w

τ 2
w

Xβ |I,Xτ

t − k

b(b − 1)k(k − 1)

∑
j�

u2
j� + bk − t

(b − 1)2

∑
j

b2
j

I | I, Xβ, Xτ

1

b(k − 1)

∑
j�

u2
j�

If we define
1

b(k − 1)

∑
j�

u2
j� = σ 2

u

and
1

b − 1

∑
j

b2
j = σ 2

β

we can then express the expected values for the three important mean squares in
ANOVA Tables 1.5 and 1.6 as

E
[
MS(Xτ |I, Xβ)

] = σ 2
u +

∑
uv τ 2

uv − k
∑

u τ 2
u.

t − 1
(1.35)

E
[
MS(Xβ |I, Xτ )

] = t − k

(b − 1)k
σ 2

u + n − t

b − 1
σ 2

β (1.36)

E
[
MS(I |I, Xβ, Xτ )

] = σ 2
u (1.37)



22 GENERAL INCOMPLETE BLOCK DESIGN

We make the following observations:

1. The quadratic form in the τuv in (1.35) is just a different way of writing τ ′Cτ

in Table 1.1. Both expressions indicate that the quadratic form depends on the
particular design chosen, and both equal zero when all the treatment effects
are the same.

2. It follows from (1.35) and (1.37) that, based on the equality of the E(MS)
under H0 : τ1 = τ2 = · · · = τt , the ratio

MS(Xτ |I, Xβ)/MS(I |I, Xβ,Xτ ) (1.38)

provides a test criterion for testing the above hypothesis. In fact, Ogawa
(1974) has shown that the asymptotic randomization distribution of (1.38) is
an F distribution with t − 1 and n − t − b + 1 d.f. We interpret this again
to mean that the usual F test is an approximation to the randomization test
based on (1.38).

3. Considering (1.36) and (1.37), there does not exist an exact test for testing
the equality of block effects. This is in agreement with our discussion in
Section I.9.2 concerning the asymmetry of treatment and block effects.

4. For k = t and r = b, that is, for the RCBD, the results of Tables 1.5 and 1.6
agree with those in Table 9.1 of Section I.9.2.

5. With treatment-unit additivity in the broad sense (see Section I.6.3.3) the
expressions in (1.35), (1.36), and (1.37) are changed by adding σ 2

ν + σ 2
η to

the right-hand sides (recall that σ 2
u + σ 2

ν + σ 2
η ≡ σ 2

ε + σ 2
η ≡ σ 2

e ). Remarks
(2) and (3) above remain unchanged.

6. For the recovery of interblock information (to be discussed in Section 1.7),
we need to estimate σ 2

β (or a function of σ 2
β ). Clearly, under the assumption

of additivity in the broad sense, this cannot be done considering that

E
[
MS

(
Xβ |I,Xτ

)] = σ 2
ν + σ 2

η + t − k

(b − 1)k
σ 2

u + n − t

b − 1
σ 2

β

It is for this reason only that we shall resort to the approximation

E
[
MS

(
Xβ |I, Xτ

)] ≈ σ 2
ν + σ 2

η + σ 2
u + n − t

b − 1
σ 2

β = σ 2
e + n − t

b − 1
σ 2

β

(1.39)

which is the expected value based on an infinite population theory model
[see (1.49) and (1.50)].

For a different approach to randomization analysis, see Calinski and Kageyama
(2000).
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1.7 INTERBLOCK INFORMATION IN AN INCOMPLETE
BLOCK DESIGN

1.7.1 Introduction and Rationale

As mentioned earlier, Yates (1939, 1940a) has argued that for incomplete block
designs comparisons among block totals (or averages) contain some information
about treatment comparisons, and he referred to this as recovery of interblock
information. The basic idea is as follows.

Consider, for purposes of illustration, the following two blocks and their obser-
vations from some design:

Block 1: y51, y31, y11

Block 2: y22, y42, y32

Let
B1 = y51 + y31 + y11

and
B2 = y22 + y42 + y32

represent the block totals. Using model (1.1) we can write

B1 − B2 = (τ5 + τ2 + τ1) − (τ2 + τ4 + τ3)

+ 3β1 − 3β2 + (e51 + e31 + e11)

− (e22 + e42 + e32)

Assuming now that the βj are random effects with mean zero, we find

E(B1 − B2) = τ1 + τ5 − τ2 − τ4

It is in this sense that block comparisons contain information about treatment
comparisons. We shall now formalize this procedure.

1.7.2 Interblock Normal Equations

Consider the model equation (1.1)

y = µI + Xττ + Xββ + e

where β is now assumed to be a random vector with E(β) = 0 and var(β) =
σ 2

β I . As pointed out above the interblock analysis is based on block totals rather
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than on individual observations, that is, we now consider

X′
βy =


k1
k2
...

kb

µ + N ′τ + Kβ + X′
β e (1.40)

We then have

E(X′
βy) =


k1
k2
...

kb

µ + N ′τ (1.41)

and the variance–covariance matrix under what we might call a double error
structure with both β and e being random vectors

var(X′
βy) = K2σ 2

β + Kσ 2
e

= K

(
I +

σ 2
β

σ 2
e

K

)
σ 2

e

= Lσ 2
e (say)

and

L = diag{�j } = diag

{
kj

(
1 +

σ 2
β

σ 2
e

kj

)}
= diag

{(
kj

w

w′
j

)}
= diag{kjρj }

with
w = 1

σ 2
e

(1.42)

and
w′

j = 1

σ 2
e + kjσ

2
β

(1.43)

and

ρj = w

w′
j

=
σ 2

e + kjσ
2
β

σ 2
e

(1.44)

The quantities w and w′
j of (1.42) and (1.43) are referred to as intrablock and

interblock weights, respectively, as w is the reciprocal of the intrablock variance,
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σ 2
e , and w′

j is the reciprocal of the interblock variance, that is, var(Bj ) on a per

observation basis, or var(Bj /kj ) = σ 2
e + kjσ

2
β . We then use as our “observation”

vector
z = L−1/2X′

βy (1.45)

which has
var(z) = Iσ 2

e

and hence satisfies the Gauss–Markov conditions.
If we write (1.41) as

E(X′
βy) = (k N ′)

(
µ

τ

)

with k = (k1, k2, . . . , kb)
′, we have from (1.45) that

E(z) = L−1/2(k N ′)
(

µ

τ

)

The resulting NE, which we shall refer to as the interblock NE, is then given by

(
k′

N

)
L−1(k N ′)

(
µ∗

τ ∗

)
=

(
k′

N

)
L−1X′

βy (1.46)

or explicitly as



∑
j

k2
j

�j

∑
j

n1j

kj

�j

· · ·
∑
j

ntj

kj

�j∑
j

n1j

kj

�j

∑
j

n2
1j

�j

· · ·
∑
j

n1j ntj

�j

...
...

...∑
j

ntj

kj

�j

∑
j

n1j ntj

�j

· · ·
∑
j

n2
tj

�j




µ∗

τ ∗
1
...

τ ∗
t

 =



∑
j

kj

�j

Bj∑
j

n1j

�j

Bj

...∑
j

nt j

�j

Bj


(1.47)

It can be seen easily that the rank of the coefficient matrix in (1.47) is t . To solve
the interblock NE, we take µ∗ = 0 and hence reduce the set to the following t
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equations in τ ∗
1 , τ ∗

2 , . . . , τ ∗
t where we have used the fact that �j = kjρj :



∑
j

n2
1j

ρ−1
j

kj

∑
j

n1j n2j

ρ−1
j

kj

· · ·
∑
j

n1jntj

ρ−1
j

kj∑
n2j n1j

ρ−1
j

kj

∑
n2

2j

ρ−1
j

kj

· · ·
∑

n2jntj

ρ−1
j

kj

...
...

...∑
ntjn1j

ρ−1
j

kj

∑
ntjn2j

ρ−1
j

kj

· · ·
∑

n2
tj

ρ−1
j

kj




τ ∗

1

τ ∗
2
...

τ ∗
t



=



∑
j

ρ−1
j

kj

n1jBj

∑
j

ρ−1
j

kj

n2jBj

...∑
j

ρ−1
j

kj

ntjBj


(1.48)

The solution to the equations (1.48) is referred to as the interblock information
about the treatment effects, with

E(τ ∗
i ) = µ + τi + const. ·

t∑
i′=1

(µ + τi′)

Hence

E

(∑
i

ciτ
∗
i

)
=

∑
i

ciτi for
∑

ci = 0

We note here that typically (see Kempthorne, 1952) the interblock analysis
is derived not in terms of the “observations” z [as given in (1.45)] but rather
in terms of the block totals X′

βy. The resulting NE are then simply obtained
by using L = I in (1.46) and subsequent equations. The reason why we prefer
our description is the fact that then the intra- and interblock information can be
combined additively to obtain the so-called combined analysis (see Section 1.8)
rather than in the form of a weighted average (see Kempthorne, 1952).
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1.7.3 Nonavailability of Interblock Information

We conclude this section with the following obvious remarks:

1. For the special case kj = t for all j, ri = b for all i and all nij = 1, we
have, of course, the RCBD. Then the elements in the coefficient matrix of
(1.48) are all identical, and so are the right-hand sides. Consequently, (1.48)
reduces to a single equation

b
∑

i

τ ∗
i =

∑
j

Bj

and no contrasts among the τi are estimable. Expressed differently, any con-
trast among block totals estimates zero, that is, no interblock information is
available.

2. For a design with b < t (and such incomplete block designs exist as we shall
see in Chapter 4; see also the example in Section 1.7.1), the rank of the
coefficient matrix of (1.48), NL−1N ′, is less than t . Hence not all µ + τi

are estimable using block totals, which means that interblock information is
not available for all treatment contrasts.

1.8 COMBINED INTRA- AND INTERBLOCK ANALYSIS

1.8.1 Combining Intra- and Interblock Information

The two types of information about treatment effects that we derived in Sections
1.3.2 and 1.7.2 can be combined to yield the “best” information about estimable
functions of treatment effects. All we need to do is to add the coefficient matrices
from the intrablock RNE (1.8) and the interblock NE (1.48) and do the same
for the corresponding right-hand sides. This will lead to a system of equations
in τ ∗∗

1 , τ ∗∗
2 , . . . , τ ∗∗

t , say, and the solution to these equations will lead to the
combined intra- and interblock estimators for treatment contrasts.

In the following section we shall derive the equations mentioned above more
directly using the method of generalized least squares, that is, by using the Aitken
equations described in Section I.4.16.2

1.8.2 Linear Model

In order to exhibit the double error structure that characterizes the underlying
assumptions for the combined analysis, we rewrite model (1.1) as

yj� = µ + τj� + βj + ej� (1.49)

where j = 1, 2, . . . , b; � = 1, 2, . . . , kj ; τj� denotes the effect of the treatment
applied to the �th experimental unit in the j th block, the βj are assumed to
be i.i.d. random variables with E(βj ) = 0, var(βj ) = σ 2

β , and the ej� are i.i.d.
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random variables with E(ej�) = 0, var(ej�) = σ 2
e . We then have

E(yj�) = µ + τj� (1.50)

and

cov
(
yj�, yj ′�′

) =


σ 2

β + σ 2
e for j = j ′, � = �′

σ 2
β for j = j ′, � �= �′

0 otherwise

(1.51)

To use matrix notation it is useful to arrange the observations according to blocks,
that is, write the observation vector as

y = (
y11, y12, . . . , y1k1, y21, y22, . . . , yb1, yb2, . . . , ybkb

)′
Letting

X = (I Xτ )

we rewrite (1.50) as

E(y) = X

(
µ

τ

)
(1.52)

and the variance–covariance (1.51) as

var(y) =


V 1

V 2 0
. . .

0 V b

 σ 2
e ≡ V σ 2

e (1.53)

where V j is given by

V j = I kj
+

σ 2
β

σ 2
e

Ikj
I′

kj
(1.54)

1.8.3 Normal Equations

Applying now the principles of least squares to the model (1.52) with covariance
structure (1.53) yields the Aitken equations (see Section I.4.16):

(X′V −1X)

( ̂̂µ̂̂τ
)

= X′V −1y (1.55)

where

V −1 = diag
(
V −1

1 , V −1
2 , . . . , V −1

b

)
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and

V −1
j = I kj

−
σ 2

β

σ 2
e + kjσ

2
β

Ikj
I′

kj
(1.56)

With
1

σ 2
e

= w
1

σ 2
e + kjσ

2
β

= w′
j

and
w′

j

w
= ρ−1

j

Eq. (1.56) can be written as

V −1
j = I kj

−
1 − ρ−1

j

kj

Ikj
I′

kj

and hence

V −1 = In − diag

(
1 − ρ−1

1

k1
Ik1I

′
k1

,

1 − ρ−1
2

k2
Ik2I

′
k2

, . . . ,
1 − ρ−1

b

kb

Ikb
I′

kb

)
(1.57)

Further, if we let
(

1 − p−1
j

)
/kj = δj (j = 1, 2, . . . , b), we have

X′V −1 = X′ −



(
1 − ρ−1

1

)
I′

k1

(
1 − ρ−1

2

)
I′

k2
· · ·

(
1 − ρ−1

b

)
I′

kb

δ1n11I
′
k1

δ2n12I
′
k2

· · · δbn1bI
′
kb

· · · · · · · · · · · · · · ·
δ1nt1I

′
k1

δ2nt2I
′
k2

· · · δbntbI
′
kb


and

X′V −1X

=



∑
kjρ

−1
j

∑
n1j ρ

−1
j

∑
n2j ρ

−1
j · · ·

∑
ntjρ

−1
j∑

n1jρ
−1
j r1 −

∑
δjn

2
1j −

∑
δjn1jn2j · · · −

∑
δjn1j ntj

· · · · · · · · · · · · · · ·∑
ntjρ

−1
j −

∑
δjn1j ntj −

∑
δjn2jntj · · · rt −

∑
δjn

2
tj


(1.58)
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X′V−1y =



∑
ρ−1

j Bj

T1 −
∑

δjn1jBj

...

Tt −
∑

δjNtjBj


(1.59)

By inspection one can verify that in the coefficient matrix (1.58) the elements
in rows 2 to t + 1 add up to the elements in row 1, which shows that (1.55) is
not of full rank; in fact, it is of rank t . The easiest way to solve these equations
then is to impose the condition ̂̂µ = 0. This means that we eliminate the first
row and first column from (1.58) and the first element in (1.59) and solve the
resulting system of t equations in the t unknowns ̂̂τ 1,̂̂τ 2, . . . ,̂̂τ t . If we define
S = diag(ρj ), then this system of equations resulting from (1.58) and (1.59) can
be written as[

R − NK−1
(
I − S−1

)]̂̂τ = T − NK−1
(
I − S−1

)
B (1.60)

which we write for short as

Â̂τ = P (1.61)

with A and P as described above. The solution then is

̂̂τ = A−1P (1.62)

or, in terms of a generalized inverse for the original set of NE (1.55)[̂̂µ̂̂τ
]

=
[

0 0′
0 A−1

]
X′V −1y (1.63)

with

E
(̂̂τ i

) = µ + τi (i = 1, 2, . . . , t)

If we denote the (i, i′) element of A−1 by aii′ , then

var

(
̂̂

τi − τi′

)
= var

(̂̂
τ i − ̂̂τ i′

) =
(
aii + ai′i′ − 2aii′

)
σ 2

e (1.64)

More generally, the treatment contrast c′τ is estimated by c′̂̂τ with variance

var
(
c′̂̂τ) = c′A−1cσ 2

e (1.65)
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Expression (1.65) looks deceptively simple, but the reader should keep in mind
that the elements of A−1 depend on σ 2

β and σ 2
e . We shall return to estimating

(1.65) in Section 1.10.
Finally, we note that the equations (1.60) show a striking similarity to the

intrablock NE (1.7), except that the system (1.60) is of full rank and the elements
of its coefficient matrix depend on the unknown parameters σ 2

β and σ 2
e .

1.8.4 Some Special Cases

As a special case of the above derivations we mention explicitly the equireplicate,
proper design, that is, the design with all ri = r and all kj = k. We then define

w′ = 1

σ 2
e + kσ 2

β

(1.66)

and

ρ = w

w′ (1.67)

and write (1.60) as[
rI − 1

k

(
1 − ρ−1

)
NN ′

]̂̂τ = T − 1

k

(
1 − ρ−1

)
NB (1.68)

We shall comment briefly on the set of equations (1.68) for two special cases:

1. If ρ−1 = 0, that is, σ 2
β = ∞, then (1.68) reduces to the NE (1.7) for the

intrablock analysis. This means, of course, that in this case no interblock
information is available. This is entirely plausible and suggests further that
for “large” σ 2

β the interblock information is very weak and perhaps not worth-
while considering.

2. If ρ−1 = 1, that is, σ 2
β = 0, the solution to (1.68) is the same as that obtained

for the completely randomized design (CRD) with the restriction µ̂ = 0. This,
of course, is a formal statement and should not imply that in this case the
observations should be analyzed as if a CRD had been used.

1.9 RELATIONSHIPS AMONG INTRABLOCK, INTERBLOCK, AND
COMBINED ESTIMATION

On several occasions we have pointed out that there exist certain relationships
among the different types of analysis for incomplete block designs. It is worth-
while to exposit this in a little detail.
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1.9.1 General Case

For the full model

y = Inµ + Xττ + Xββ + e

with the double error structure we have

E(y) = Iµ + Xττ

and

var(y) = XβX′
βσ 2

β + Iσ 2
e

= (I + γXβX′
β)σ 2

e

≡ V σ 2
e

as in (1.53) with γ = σ 2
β/σ 2

e . Then, as explained in Section 1.8, the estimators
of estimable functions are obtained from the Aitken equations by minimizing

(y − Iµ − Xττ )′V −1(y − Iµ − Xττ ) (1.69)

with respect to µ and τ . To simplify the algebra, let � = Iµ + Xττ and then
write ψ = y − �. Expression (1.69) can now be written simply as ψ ′V −1ψ . We
then write

ψ = Pψ + (I − P )ψ

where, again for brevity, we write

P = P xβ = Xβ(X′
βXβ)−1X′

β

= XβK−1X′
β (1.70)

Then

ψ ′V −1ψ = [ψ ′P + ψ ′(I − P )]V −1[Pψ + (I − P )ψ] (1.71)

In order to expand the right-hand side of (1.71) we make use of the following
results. From

(I − P )V = (I − P )(I + γXβX′
β) = (I − P )

[using (1.70)] it follows that

(I − P )V −1 = (I − P )
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and hence

(I − P )V −1P = (I − P )P = 0

Thus, (1.71) reduces to

ψ ′V −1ψ = ψ ′PV −1Pψ + ψ ′(I − P )ψ (1.72)

To handle the term ψ ′PV −1Pψ we note that V −1 in (1.57) can be rewritten as

V −1 = I − γXβ(I + γX′
βXβ)−1X′

β

so that

PV −1P = P − γXβ(I + γX′
βXβ)−1X′

β

= Xβ

[
K−1 − γ (I + γK)−1

]
X′

β

= Xβ diag

[
1

kj (1 + γ kj )

]
X′

β

= Xβ(K + γK2)−1X′
β

Hence

ψ ′PV −1Pψ =
(
X′

βψ
)′ (

K + γK2
)−1 (

X′
βψ

)
(1.73)

Then we note that X′
βψ is the vector of block totals of the vector ψ . Since

ψ = y − �, we have

var
(
X′

βψ
)

= var
(
X′

βy
)

=
(
X′

βXβ

)2
σ 2

β + X′
βXβσ 2

e

= σ 2
e

(
K + γK2

)
Hence ψ ′PV −1Pψ is equal to

Q2 ≡ [B − E(B)]′
(
K + γK2

)−1
[B − E(B)] (1.74)

with B = X′
βy being the vector of block totals.
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The second expression in (1.72) is actually the quadratic form that needs to be
minimized to obtain the RNE for � (see Section I.4.7.1), and this is equivalent
to minimizing

Q1 ≡ (y − Xττ )′(I − P )(y − Xττ ) (1.75)

We thus summarize: To obtain the intrablock estimator, we minimize Q1; to
obtain the interblock estimator, we minimize Q2; and to obtain the combined
estimator, we minimize Q1 + Q2.

1.9.2 Case of Proper, Equireplicate Designs

We now consider the case with R = rI and K = kI . The intrablock NE are [see
(1.7)] (

rI − 1

k
NN ′

)
τ̂ = Q

For the interblock observational equations

B = kIµ + N ′τ + error

or, absorbing µ into τ , that is, replacing Iµ + τ by τ ,

B = N ′τ + error

we have the interblock NE [see (1.47)]

NN ′τ ∗ = NB

As we have pointed out earlier (see Section 1.8) and as is obvious from (1.72),
the combined NE are[(

rI − 1

k
NN ′

)
+ 1

k(1 + γ k)
NN ′

]̂̂τ = Q + 1

k(1 + γ k)
NB (1.76)

The form of (1.76) shows again two things:

1. The intrablock and interblock NE are related.
2. The matrix NN ′ determines the nature of the estimators, both intrablock and

interblock.
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The properties of NN ′ can be exploited to make some statements about
estimable functions of treatment effects. Being real symmetric, NN ′ is orthogo-
nally diagonalizable. We know that(

rI − 1

k
NN ′

)
I = 0

or

NN ′I = rkI

so that one root of NN ′ is rk ≡ δt , say, with associated eigenvector (1/
√

t) I ≡
ξ t , say. Suppose ξ1, ξ2, . . . , ξ t−1 complete the full set of orthonormal eigenvec-
tors with associated eigenvalues δ1, δ2, . . . , δt−1. Then with

O = (ξ1, ξ2, . . . , ξ t )

and

NN ′ξ i = δiξ i

the NE are equivalent to

O ′
(

rI − 1

k
NN ′

)
OO ′ τ̂ = O ′Q (1.77)

and

O ′NN ′OO ′τ ∗ = O ′NB (1.78)

respectively. If we write

ν =


ν1
ν2
...

νt

 = O ′τ

then Eq. (1.77) and (1.78) reduce to(
r − δi

k

)
ν̂i = ai

and

δiν
∗
i = bi

respectively, where

a = (a1, a2, . . . , at )
′ = O ′Q



36 GENERAL INCOMPLETE BLOCK DESIGN

and

b = (b1, b2, . . . , bt )
′ = O ′NB

We see then that we have both intrablock and interblock estimators of νi if δi

is not equal to 0 or to rk. For the component νt , only the interblock estimator
exists. If other roots are equal to rk, then the intrablock estimators for the corre-
sponding treatment parameters do not exist. Similarly, if other roots are equal to
zero, then the interblock estimators for the corresponding treatment parameters
do not exist. The treatment parameters ν1, ν2, . . . , νt−1 are necessarily treatment
contrasts. If the design is connected, then no δi(i = 1, 2, . . . , t − 1) will equal rk.

The combined NE (1.76) are now transformed to[(
r − δi

k

)
+ 1

k(1 + γ k)
δi

]̂̂νi = ai + bi

k(1 + γ k)
(i = 1, 2, . . . , t) (1.79)

We know that

var(Q) =
(

rI − 1

k
NN ′

)
σ 2

e

and

var(NB) = N var(B)N ′

= N
k

σ 2
e

(1 + γ k)IN ′

Hence

var(a) = σ 2
e diag

(
r − δi

k

)
and

var(b) = σ 2
e k(1 + γ k)diag(δi)

So we see from (1.79) that combined estimation of the parameter vector ν consists
of combining intrablock and interblock estimators of components of ν, weighting
inversely as their variances.

1.10 ESTIMATION OF WEIGHTS FOR THE COMBINED ANALYSIS

The estimator for the treatment effects as given by (1.61) depends on the weights
w and w′

j as can be seen from (1.58) and (1.59). If these weights were known,
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or alternatively as is apparent from (1.68), if the ratios of the interblock variance
and the intrablock variance,

ρj = w

w′
j

=
σ 2

e + kjσ
2
β

σ 2
e

were known, then the solution (1.63) to the NE (1.55) would lead to best linear
unbiased estimators for estimable functions of treatment effects. Usually, how-
ever, these parameters are not known and have to be estimated from the data. If
the estimators are used instead of the unknown parameters, then the solutions to
the normal equations (1.55) lose some of their good properties. It is for this rea-
son that the properties of the combined estimator have to be examined critically,
in particular with regard to their dependence on the type of estimator for the
ρj ’s, and with regard to the question of how the combined estimator compares
with the intrablock estimator. Before we discuss these questions in some more
detail, we shall outline the “classical” procedure for estimating the ρj . Since
this method was proposed first by Yates (1940a) we shall refer to it as the Yates
procedure or to the estimators as the Yates estimators.

1.10.1 Yates Procedure

One way to estimate w and w′
j is to first estimate σ 2

e and σ 2
β and then use these

estimators to estimate w and w′
j . If the estimators are denoted by σ̂ 2

e and σ̂ 2
β ,

respectively, then we estimate w and w′
j as

ŵ = 1

σ̂ 2
e

ŵ′
j = 1

σ̂ 2
e + kj σ̂

2
β

(j = 1, 2, . . . , b) (1.80)

Obviously, from Table 1.1

σ̂ 2
e = MS(I |I, Xβ, Xτ ) (1.81)

To estimate σ 2
β we turn to Table 1.2. Under model (1.50) with covariance structure

(1.51) we find [see also (1.39)]

E[SS(Xβ |I,Xτ )] = (b − 1)σ 2
e +

n −
∑
ij

1

ri
n2

ij

 σ 2
β (1.82)

Hence it follows from (1.81) and (1.82) that

σ̂ 2
β = b − 1

n − ∑ 1
ri

n2
ij

[
SS(Xβ |I, Xτ ) − SS(I |I, Xβ, Xτ )

]
(1.83)
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The estimators (1.81) and (1.83) are then substituted into (1.80) to obtain ŵ and
ŵj (j = 1, 2, . . . , b). If in (1.83) σ̂ 2

β ≤ 0 for a given data set, we take

ŵ′
j = ŵ = 1

MS(I |I, Xβ, Xτ )

In either case ŵ and ŵ′
j are substituted into (1.58) and (1.59) and hence into

the solution (1.61). Also, var
(̂̂
τ i − ̂̂τ i′

)
is estimated by substituting ŵ, ŵ′

j and

σ̂ 2
e into (1.62) and (1.64).

For alternative estimation procedures see Section 1.11, and for a numerical
example see Section 1.14.3.

1.10.2 Properties of Combined Estimators

As we have already pointed out, the fact that the unknown parameters in (1.61)
are replaced by their estimators will have an effect on the properties of the
estimators for treatment effects. The two properties we are concerned about here
are unbiasedness and minimum variance.

Let c′τ be an estimable function of the treatment effects, let t = c′τ̂ be its
intrablock estimator, t (ρ) = c′̂̂τ its combined (Aitken) estimator with ρ known
(for the present discussion we shall confine ourselves to proper designs), and
t (ρ̂) = c′τ̃ the combined estimator when in (1.68) ρ is replaced by ρ̂ = ŵ/ŵ′.

Roy and Shah (1962) have shown that for the general incomplete block design,
although the Yates procedure leads to a biased estimator for ρ, the estimators for
treatment contrasts obtained by the method just described are unbiased, that is,

E [t (ρ̂ )] = c′τ

With regard to var[t (ρ̂ )], it is clear that due to sampling fluctuations of ρ̂ we
have

var[t (ρ)] < var[t (ρ̂ )]

that is, the combined estimators no longer have minimum variance. The crucial
question in this context, however, is: When is var[t (ρ̂)] < var(t)? In other words:
When is the combined estimator more efficient than the intrablock estimator?

The answer to this question depends on several things such as (1) the true
value of ρ, (2) the type of estimator for ρ, and (3) the number of treatments and
blocks. It is therefore not surprising that so far no complete answer has been
given.

The most general result for the Yates estimator (and a somewhat larger class
of estimators) is that of Shah (1964) based upon some general results by Roy
and Shah (1962) [see also Bhattacharya (1998) for proper designs]. It is shown
there that the combined estimator for any treatment contrast in any (proper)
incomplete block design has variance smaller than that of the corresponding
intrablock estimator if ρ does not exceed 2, or, equivalently, if σ 2

β ≤ σ 2
e /k. This
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is a condition that, if blocking is effective at all, one would not in general expect
to be satisfied. The problem therefore remains to find methods of construct-
ing estimators for ρ such that the combined estimator for treatment contrasts is
uniformly better than the corresponding intrablock estimator, in the sense of hav-
ing smaller variances for all values of ρ. For certain incomplete block designs
this goal has been achieved. We shall mention these results in the following
chapters.

The only general advice that we give at this point in conjunction with the use of
the Yates estimator is the somewhat imprecise advice to use the intrablock rather
than the combined estimator if the number of treatments is “small.” The reason
for this is that in such a situation the degrees of freedom for MS(I |I,Xβ, Xτ )

and MS(Xβ |I, Xτ ) are likely to be small also, which would imply that σ 2
e and

σ 2
β , and hence ρ, cannot be estimated very precisely.

1.11 MAXIMUM-LIKELIHOOD TYPE ESTIMATION

In this section we discuss alternatives to the Yates procedure (see Section 1.10)
of estimating the variance components σ 2

β and σ 2
e for the combined analy-

sis. These estimators are maximum-likelihood type estimators. This necessi-
tates the assumption of normality, which is not in agreement with our under-
lying philosophy of finite population randomization analysis. The reason for
discussing them, however, is the fact that they can easily be implemented in
existing software, in particular SAS PROC MIXED (SAS, 1999–2000) (see
Section 1.14).

1.11.1 Maximum-Likelihood Estimation

It is convenient to rewrite model (1.49) with its covariance structure (1.51) in
matrix notation as follows:

y = µI + Xττ + Xββ + e

= Xα + Uβ + e (1.84)

where Xα represents the fixed part, with X = (I Xτ ), α′ = (µ, τ ′), and Uβ + e

represents the random part. Thus

E(y) = Xα
and

var(y) = UU ′σ 2
β + Inσ

2
e

= V σ 2
e (1.85)
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with V = γUU ′ + In and γ = σ 2
β/σ 2

e [see also (1.53), (1.54)]. We then assume
that

y ∼ Nn(Xα, V σ 2
e ) (1.86)

that is, y follows as a multivariate normal distribution (see I.4.17.1).
The logarithm of the likelihood function for y of (1.86) is then given by

λ = − 1
2n log π − 1

2nσ 2
e − 1

2 log|V | − 1
2 (y − Xα)′V −1(y − Xα)/σ 2

e (1.87)

Hartley and Rao (1967) show that the maximum-likelihood (ML) estimator of α,
γ , and σ 2

e are obtained by solving the following equations:

1

σ 2
e

(X′V −1y − X′V −1Xα) = 0 (1.88)

−1

2
tr(V −1UU ′) + 1

2σ 2
e

(y − Xα)′V −1UU ′V −1(By − Xα) = 0

− n

2σ 2
e

+ 1

2σ 4
e

(y − Xα)′V −1(y − Xα) = 0

where tr(A) represents the trace of the matrix A.
The basic feature of this method is that the fixed effects and the variance com-

ponents associated with the random effects are estimated simultaneously in an
iterative procedure. We shall not go into the details of the numerical implemen-
tation (see, e.g., Hemmerle and Hartley, 1973), but refer to the example given in
Section 1.14.4 using SAS.

1.11.2 Restricted Maximum-Likelihood Estimation

Specifically for the estimation of weights for the purpose of recovery of interblock
information, Patterson and Thompson (1971) introduced a modified maximum-
likelihood procedure. The basic idea is to obtain estimators for the variance
components that are free of the fixed effects in the sense that the likelihood does
not contain the fixed effect. Operationally this is accomplished by dividing the
likelihood function (1.87) into two parts, one being based on treatment contrasts
and the other being based on error contrasts, that is, contrasts with expected value
zero. Maximizing this second part will lead to estimates of functions of σ 2

β and

σ 2
e . Because of the procedure employed, these estimates are by some referred

to as residual maximum-likelihood estimates (REML), by others as restricted
maximum likelihood estimates (REML). The latter name is derived from the
fact that maximizing the part of the likelihood free of the fixed effects can be
thought of as maximizing the likelihood over a restricted parameter set, an idea
first proposed by Thompson (1962) for random effects models and generalized
for the general linear mixed model by Corbeil and Searle (1976), based on the
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work by Patterson and Thompson (1971). We shall give below a brief outline of
the basic idea of REML estimation following Corbeil and Searle (1976).

Consider model (1.84) and assume that the observations are ordered by treat-
ments, where the ith treatment is replicated ri times (i = 1, 2, . . . , t). Then the
matrix X can simply be written as

X =


Ir1

Ir2 0
. . .

0 Irt

 ≡
t∑+

i=1

Iri
(1.89)

To separate the log-likelihood function (1.87) into the two parts mentioned above,
we employ the transformation (as proposed by Patterson and Thompson, 1971)

y′[S
...V −1X] (1.90)

where

S = I − X(X′X)−1X′

=
t∑+

i=1

(
I ri − 1

ri
IriI

′
ri

)
(1.91)

is symmetric and idempotent. Furthermore, SX = 0, and hence Sy is distributed
N(0, SV Sσ 2

e ) independently of X′V −1y.
It follows from (1.91) that S is singular. Hence, instead of S we shall use

in (1.90) a matrix, T say, which is derived from S by deleting its r1th, (r1 +
r2)th, (r1 + r2 + r3)th, . . ., (r1 + r2 + · · · + rt )th rows, thereby reducing an n × n

matrix to an (n − t) × n matrix (with n − t representing the number of linearly
independent error contrasts). More explicitly, we can write T as

T =
t∑+

i=1

[
I ri−1

... 0ri−1 − 1

ri
Iri−1I

′
ri

]

=
t∑+

i=1

[
I ri−1 − 1

ri
Iri−1 I′

ri−1

... − 1

ri
Iri−1

]
(1.92)

It follows from (1.89) and (1.92) that

T X = 0 (1.93)
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Considering now the transformation

z =
(

T

X′V −1

)
y

it follows from (1.86) and (1.93) that

z ∼ N

[(
0

X′V −1Xα

)
,

(
T V T ′σ 2

e 0

0 X′V −1Xσ 2
e

)]
(1.94)

Clearly, the likelihood function of z consists of two parts, one for T y, which
is free of fixed effects, and one for X′V −1y pertaining to the fixed effects. In
particular, the log likelihood of T y then is

λ1 = 1
2 (n − t)log 2π − 1

2 (n − t)log σ 2
e

− 1
2 log |T V T ′ | − 1

2y ′T ′(T V T ′)−1y/σ 2
e (1.95)

The REML estimators for γ = σ 2
β/σ 2

e and σ 2
e are obtained by solving the

equations

∂λ1

∂γ
= 0 (1.96)

∂λ1

∂σ 2
e

= 0 (1.97)

The resulting equations have no analytic solutions and have to be solved itera-
tively. We denote the solutions, that is, estimates by γ̃ and σ̃ 2

e , respectively.
The fixed effects, represented by α in (1.84), can be estimated by considering

the log likelihood of X′V −1y, which is given by

λ2 = − 1
2 t log 2π − 1

2 t log σ 2
e

− 1
2 log |X′V −1X|

− 1
2 (y − Xα)′ V −1X(X′V −1X)−1X′V −1(y − Xα)/σ 2

e (1.98)

Solving

∂λ2

∂α
= 0

leads to the estimator

α̂ = (X′V −1X)−1X′V −1y (1.99)
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This, of course, assumes that V is known. Since it is not, we substitute γ̃ from
(1.96) and (1.97) for γ in (1.99) and obtain the estimate

α̃ = (X′Ṽ −1
X)−1X′Ṽ −1

y (1.100)

where Ṽ denotes V with γ replaced by γ̃ .
An approximate estimate of the variance of α̃ is given by

ṽar(̃α) ∼= (X′Ṽ −1
X)−1σ̃ 2

e (1.101)

For a numerical example using REML see Section 1.14.4.

1.12 EFFICIENCY FACTOR OF AN INCOMPLETE BLOCK DESIGN

We have seen in Sections I.9.3 and I.10.2.9, for example, how we can compare
different error control designs with each other by using the notion of relative
efficiency. In this case, we compare two error control designs after we have per-
formed the experiment using a particular error control design. For example, after
we have used an RCBD we might ask: How would we have done with a corre-
sponding CRD? In other cases, however, we may want to compare error control
designs before we begin an experiment. In particular, we may want to compare
an incomplete block design (IBD) with either a CRD or an RCBD, or we may
want to compare competing IBDs with each other. For this purpose we shall use
a quantity that is referred to as the efficiency factor of the IBD. It compares,
apart from the residual variance, σ 2

e , the average variance of simple treatment
comparisons for the two competing designs.

1.12.1 Average Variance for Treatment Comparisons for an IBD

Let us now consider

av.
i �=i′

var(̂τi − τ̂i′) (1.102)

for a connected IBD. We know, of course, that (1.102) is a function of C−, a
generalized inverse of the C matrix. Suppose now that all the block sizes are
equal to k. Then we have

C = R − 1

k
NN ′
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and we know that C has one zero root, dt = 0 say, with associated normalized
eigenvector ξ t = (1/

√
t)I. Let the other roots be d1, d2, . . . , dt−1 with associated

orthonormal eigenvectors ξ1, ξ2, . . . , ξ t−1. Then

ξ ′
iC = diξ

′
i (i = 1, 2, . . . , t − 1)

and from

ξ ′
iCτ = diξ

′
iτ

it follows that

ξ̂ ′
iτ = 1

di

ξ ′
iQ

and

var(ξ ′
i τ̂ ) = 1

d2
i

ξ ′
iCξ iσ

2
e = 1

di

σ 2
e (1.103)

Using the fact that ξ t = (1/
√

t)I, that ξ1, ξ2, . . . , ξ t−1 are mutually perpendic-
ular and perpendicular to ξ1, and that

t∑
i=1

ξ i ξ ′
i = I

we have with z′ = (z1, z2, . . . , zt )

t−1∑
i=1

(ξ ′
iz)

2 = z′
(

t−1∑
i=1

ξ i ξ ′
i

)
z

= z′(I − ξ t ξ ′
t )z

=
t∑

i=1

z2
i − 1

t

(
t∑

i=1

zi

)2

=
t∑

i=1

(zi − z)2 (1.104)

It is also easy to verify that

1

t (t − 1)

∑
i �=i′

(zi − zi′)
2 = 2

t − 1

t∑
i=1

(zi − z)2 (1.105)
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Taking zi = τ̂i − τi , substituting into (1.105) using (1.104) and then taking expec-
tations and using (1.103), yields for (1.102)

av.
i �=i′

var(̂τi − τ̂i′) = 2

t − 1

t−1∑
i=1

1

di

σ 2
e (1.106)

1.12.2 Definition of Efficiency Factor

It is natural in attempting to evaluate the efficiency of an IBD to compare it
with a CRD since this is always a possible competing design. For a CRD with
ri replications for treatment i, the average variance of treatment differences is

av.
i �=i′

var(̂τi − τ̂i′) = av.
i �=i′

(
1

ri
+ 1

r ′
i

)
σ 2

e(CRD) = 2

rh

σ 2
e(CRD) (1.107)

where rh is the harmonic mean of the ri , that is,

1

rh

= 1

t

∑
i

1

ri

We shall digress here for a moment and show that the best CRD is the one
with all ri = r , and that is the design with which we shall compare the IBD. For
this and later derivations we need the “old” result that the harmonic mean of a
set of positive numbers is not greater than the arithmetic mean. It seems useful
to give an elementary proof of this.

Let the set of numbers be {xi, i = 1, 2, . . . , m}. Consider the quadratic

q(β) =
m∑

i=1

(√
xi − β

1√
xi

)2

Clearly q(β) ≥ 0 for all β. The minimizing value of β is obtained by using least
squares which gives the NE ∑

i

1

xi

β̃ = m

The minimum sum of squares is ∑
i

xi − β̃m

Hence ∑
i

xi − m2∑
i

1

xi

≥ 0
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or (
1

m

∑
i

xi

)(
1

m

∑
i

1

xi

)
≥ 1

or

x

xh

≥ 1

with equality if and only if xi = x for all i.
This result implies that the best CRD will have ri = r and r = n/t where n is

the total numbers of EUs. This can happen, of course, only if n/t is an integer.
If n/t is not an integer so that n = pt + q (0 < q < t), then the best CRD will
have q treatments replicated p + 1 times.

Consider now the case of an IBD with b blocks of size k and ri replications
for the ith treatment. Then the total number of EUs is n = bk = ∑

ri . Suppose
also that n = rt , so that an equireplicate CRD is possible. The average variance
for such a design is 2σ 2

e(CRD)
/r , whereas the average variance for the IBD is

2σ 2
e(IBD)

/c where, as shown in (1.106), c is the harmonic mean of the positive
eigenvalues of

(
R − (1/k) NN ′) (see Kempthorne, 1956). It is natural to write

c = rE, so that with σ 2
e(CRD) = σ 2

e(IBD) we have

av. var(̂τi − τ̂i′)CRD

av. var(̂τi − τ̂i′)IBD
= 2/r

2/rE
= E (1.108)

The quantity E thus defined is called the efficiency factor of the IBD. It is
clearly a numerical property of the treatment-block configuration only and hence
a characteristic of a given IBD.

We add the following remarks:

1. The same definition of E in (1.108) could have been obtained by using the
average variance for an RCBD with b = r blocks instead of the average
variance for an equireplicate CRD assuming that σ 2

e(RCBD)
= σ 2

e(IBD)
.

2. Although E is a useful quantity to compare designs, it does not, of course,
give the full story. It compares average variances only under the assump-
tion of equality of residual variances, whereas we typically expect σ 2

e(IBD)
<

σ 2
e(CRD)

and σ 2
e(IBD)

< σ 2
e(RCBD)

.
3. The efficiency factor pertains only to the intrablock analysis and ignores the

interblock information.
4. Each IBD will have associated with it an efficiency factor E. In order to

compare two competing IBDs with the same n and with efficiency factors
E1 and E2, respectively, we would typically choose the one with the higher
E value.



EFFICIENCY FACTOR OF AN INCOMPLETE BLOCK DESIGN 47

1.12.3 Upper Bound for the Efficiency Factor

Using again the fact that the harmonic mean of positive numbers is not greater
than the arithmetic mean, we have

(t − 1)c ≤
t−1∑
i=1

di = trace

(
R − 1

k
NN ′

)

=
t∑

i=1

ri − 1

k

∑
ij

n2
ij

= n − 1

k

∑
ij

n2
ij (1.109)

The largest value of the right-hand side of (1.109) is obtained for the smallest
value of

∑
ij n2

ij . Since nij is one of the numbers 0, 1, 2, . . . , k, the minimum

value of
∑

n2
ij will be achieved when n of the nij ’s are 1 and the remaining are

zero. Since then n2
ij = nij and

∑
j nij = ri , it follows from (1.109) that

(t − 1)c ≤
∑

i

ri − 1

k

∑
i

ri = k − 1

k
tr

or, since c = rE,

E ≤ (k − 1)t/(t − 1)k

r/r

But since tr = n = tr , we have finally

E ≤ (k − 1)t

(t − 1)k
(1.110)

Since for an IBD k < t , we can write further

E ≤ (k − 1)t

(t − 1)k
< 1 (1.111)

We shall see later (see Chapter 2, also Section I.9.8.2) that the upper bound given
in (1.110) will be achieved for the balanced incomplete block design.

Sharper upper bounds for certain classes of IBDs are given by Jacroux (1984),
Jarrett (1983), Paterson (1983), and Tjur (1990); see also John and Williams
(1995).
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1.13 OPTIMAL DESIGNS

We have argued in the previous section that in order to compare two designs, d1
and d2 say, we may consider their efficiency factors E1 and E2, respectively, and
choose the design with the higher efficiency factor. In particular, if the efficiency
factor of one of those designs achieves the upper bound for that class of designs,
we would consider that design to be optimal in some sense. Such considerations
have led to the development of the notion of optimal designs and to various
criteria for optimality. We shall describe briefly some of these criteria.

1.13.1 Information Function

Initial contributions to the formal discussion of optimal designs were made by
Wald (1943) and Ehrenfeld (1953). Extending their results, Kiefer (1958) pro-
vided a systematic account of different optimality criteria. These can be discussed
either in terms of maximizing a suitable function of the information matrix or
minimizing a corresponding function of the dispersion matrix of a maximal set
of orthonormal treatment contrast estimates.

In the context of our discussion the information matrix is given by C in (1.9).
Let P ′τ represent a set of t − 1 orthonormal contrasts of the treatment effects.
Using intrablock information from a connected design d , the estimator for P ′τ is
given by P ′τ̂ with τ̂ from (1.18). The dispersion matrix for P ′τ̂ is then given by

V d σ 2
e = P ′C−

d Pσ 2
e = (P ′CdP )−1σ 2

e (1.112)

[see (1.20)], where C−
d and hence Cd refer to the specific design d used. The

information matrix for the design d is then defined as

C∗
d = (P ′C−

d P )−1 (1.113)

which shows, of course, the connection between C∗
d and Cd .

An information function or optimality criterion is then a real-valued function
φ that has the following properties (see Pukelsheim, 1993):

1. Function φ is a monotonic function; that is, an information matrix C∗ is at
least as good as another information matrix D∗ if φ(C∗) ≥ φ(D∗);

2. Function φ is a concave function, that is, φ[(1 − α) C∗ + αD∗] = (1 −
α)φ(C∗) + α φ(D∗) for α ∈ (0, 1);

3. Function φ is positively homogeneous, that is, φ(δC∗) = δ φ(C∗).

Condition (2) says that information cannot be increased by interpolation. And
condition (3) says that even if we define the information matrix to be directly
proportional to the number of observations, n, and inversely proportional to σ 2

e ,
that is, the information matrix is of the form (n/σ 2

e )C∗, we need to consider
only C∗.
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Let D be the set of competing designs. The problem of finding an optimal
design d in D can then be reduced to finding a design that maximizes φ(C∗

d)

over d in D (see Cheng, 1996). Such a design is called φ-optimal.
As indicated above, an alternative, and historically original, approach to find-

ing an optimal design is to consider minimization of some convex and non-
increasing function � of dispersion matrices, as indicated by the relationship
between (1.112) and (1.113). Accordingly, we shall then talk about a �-optimal
design.

1.13.2 Optimality Criteria

Several optimality criteria, that is, several functions φ or � have been considered
for studying optimal designs. These criteria can be expressed conveniently in
terms of the eigenvalues of C∗

d or, equivalently, the nonzero eigenvalues of Cd ,
say µd1 ≥ µd2 ≥ · · · ≥ µd,t−1.

The most commonly used optimality criteria are D-, A-, and E-optimality,
which maximize the following information functions:

1. D-optimality: Determinant criterion or

φ(C∗
d) =

t−1∏
i=1

µdi

2. A-optimality: Average variance criterion or

φ(C∗
d) =

(
1

t − 1

t−1∑
i=1

µ−1
di

)−1

3. E-optimality: Smallest eigenvalue criterion or

φ(C∗
d) = µd,t−1

In terms of the corresponding � function, these optimality criteria can be
expressed as minimizing

1. �(Vd) = det Vd =
t−1∏
i=1

µ−1
di (1.114)

2. �(Vd) = tr Vd =
t−1∑
i=1

µ−1
di (1.115)

3. �(Vd) = maximum eigenvalue of Vd = µ−1
d,t−1 (1.116)
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The statistical meaning of these criteria is that minimizing (1.114) minimizes
the generalized variance of P ′τ̂ , (1.115) minimizes the average variance of the
set P ′τ̂ , and (1.116) minimizes the maximum variance of a single normalized
contrast.

1.13.3 Optimal Symmetric Designs

There exist special classes of designs for which all the nonzero eigenvalues of
the information matrix Cd are equal. Such designs are called symmetric designs.
Examples of symmetric designs are balanced incomplete block designs (Chapter
2), Latin square designs (Section I.10.2), Youden squares (Section I.10.5), and so
forth. The information matrix of a symmetric design is of the form aI + b II′,
which is referred to as a completely symmetric matrix.

In general, if a design is �1 optimal, it may not be �2 optimal for two
different optimality criteria �1 and �2. However, for symmetric designs Kiefer
(1958) showed that they are A-, D-, and E-optimal. This led to the definition of
universal optimality (Kiefer, 1975a) or Kiefer optimality (Pukelsheim, 1993).

Definition 1.1 (Kiefer, 1975a) Let Bt,0 be the set of all t × t nonnegative
definite matrices with zero row and column sums, and let � be a real-valued
function on Bt,0 such that

(a) � is convex,
(b) �(δC) is nonincreasing in the scalar δ ≥ 0, and
(c) � is invariant under each simultaneous permutation of rows and columns.

A design d∗ is called universally optimal in D if d∗ minimizes �(Cd) for every
� satisfying conditions (a), (b), and (c). �

To help identify universally optimal designs we have the following fundamen-
tal theorem.

Theorem 1.2 (Kiefer, 1975a) Suppose a class C = {Cd , d ∈ D} of matri-
ces in Bt,0 contains a Cd∗ for which

(a) Cd∗ is completely symmetric, and
(b) tr Cd∗ = maxd ∈ D tr Cd ,

Then d∗ is universally optimal in D.

1.13.4 Optimality and Research

We have just discussed the notion of design optimality and some of the avail-
able optimality criteria. Other criteria have been introduced in other contexts, in
particular, in the area of regression or response surface designs (see, e.g., Atkin-
son and Donev, 1992). And thus optimality has become a powerful concept, but
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we need to remember that, although it has statistical meaning, it is a mathemat-
ical concept. It has a definite and restricted connotation and it may be difficult
to apply it in the larger context of designing a “very good” experiment for a
researcher who has a scientific or technological problem.

An immediate difficulty is that there is no simple classification of real prob-
lems. There are discovery problems, for example, finding the point in factor
space at which yield is maximum. There are exploration problems, for example,
to obtain a “good” representation of the nature of the dependence of a noisy
dependent variable on a given set of independent variables. There is the math-
ematical problem in that same context that the dependence is known to be of
a definite functional form with some specified but unknown parameters, which
are to be determined from observations at some locations in the factor space.
A common problem in technology and some scientific areas is what is called
screening of factors. It is useful and important to think about this overall picture
because there is a tendency to interpret the term “optimality of design” in a very
limited context, a context that is very valuable, but misleading, in the sphere of
total human investigation.

The moral of the situation is multifold: (1) Researchers have to make a choice
about problems and often work on unrealistic ones as the closest workable approx-
imation to real live problems and should not be criticized for so doing; (2) almost
any optimality problem is to some extent artificial and limited because criteria
of value of designs must be introduced, and in almost any investigative situation
it is difficult to map the possible designs valuewise into the real line; and (3)
a solution to a mathematically formulated problem may have limited value, so
to promote one design that is optimal only with respect to a particular criterion
of value, C1, and to declare another design to be of poor value because it is
not optimal may be unfair because that design may be better with respect to a
different criterion of value, C2 say. And for one researcher C1 may be irrelevant,
whereas C2 may be more appropriate.

Considerations of optimality involve, of course, comparison of designs. But
how does one do this when error reduction needs to be taken into account?
For example, how does one compare the randomized complete block and the
Latin square design? Or how does one compare designs when different aspects
of statistical inference are involved? This was at the basis of heated discussion
between Neyman, who was interested in hypothesis testing, and Fisher and Yates,
who were interested in precision of estimation (see Neyman, Iwaszkiewicz, and
Kolodziejczyk, 1935).

Informal optimality considerations early on gave probably rise to the heuristic
(or perhaps mathematical) idea of symmetry and balancedness, and we shall
encounter these characteristics throughout much of the book. Even though these
properties do not always guarantee optimality in many cases they lead to near
optimality. And from a practical point of view that may be good enough. On the
other hand, if a balanced design is an optimal design, but we cannot use that
design because of practical constraints and need to use instead a near-balanced
design, then we have a way to evaluate the efficiency of the design we are going
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to use. For example, we know that a balanced incomplete block design (Chapter
2) is optimal. However, we cannot use the design and need to use a partially
balanced incomplete block design (Chapter 4). We may then choose, if possible,
a design with efficiency “close” to that of the optimal design.

Thus, the insistence on an optimal design may be frustrating for the user
because practical reasons may dictate otherwise and because an experimenter
rarely has one criterion of value. Rather, he has many criteria of value and is
in a mathematical programming situation in which he wishes the design to have
“reasonable” efficiencies with respect to criteria C1, C2, . . . , CK . The dilemma is
often that the design that is optimal with respect to C1 is completely nonoptimal
with respect to C2.

In summary, mathematical ideals and requirements of empirical science do
not always meet, but it is worth trying to find common ground. In the end, prac-
tical considerations may dictate compromises in many instances of experimental
research.

1.14 COMPUTATIONAL PROCEDURES

In this section we shall discuss some computational aspects of performing the
intrablock analysis and the combined intra- and interblock analysis, mainly in the
context of SAS procedures (SAS, 2000). For the intrablock analysis (see Section
1.3) we shall use SAS PROC GLM, and for the combined analysis (see Section
1.8) we shall use SAS PROC MIXED.

1.14.1 Intrablock Analysis Using SAS PROC GLM

Consider the following data set IBD (Table 1.7) with t = 4 treatments in b = 5
blocks of size k = 2, such that treatments 1 and 4 are replicated 3 times, and
treatments 2 and 3 are replicated 2 times. An example might be 5 pairs of
identical twins representing the blocks, each twin being an experimental unit to
whom different drugs are assigned according to the given plan.

The SAS PROC GLM input statements for the intrablock analysis and the
results are given in Table 1.8. We shall comment briefly on some aspects of the
SAS output (see Table 1.8):

1. The coefficient matrix as well as the right-hand side (RHS) of (1.5) are given
under the heading “The X′X Matrix.”

2. A generalized inverse for the coefficient matrix X′X is obtained by first
eliminating the rows and columns for β5 and τ4 from X′X as a consequence
of imposing the conditions β∗

5 = 0 and τ ∗
4 = 0 (we shall denote the SAS

solutions to the NE by β∗ and τ ∗). The reduced matrix is of full rank and
thus can be inverted. The inverted matrix is restored to the original dimension
by inserting zeros in the rows and columns corresponding to β∗

5 and τ ∗
4 . This

matrix, together with σ̂ 2
e =MS(Error) from the ANOVA table, can be used to

find the standard errors for the estimators of estimable functions for treatment
effects.
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Table 1.7 Data for Incomplete Block Design (t = 4, b = 5, k = 2, r1 = 3,
r2 = r3 = 2, r4 = 3)

options pageno=1 nodate;
data IBD;
input TRT BLOCK Y @@;
datalines;
1 1 10 2 1 12
3 2 23 4 2 28
1 3 13 3 3 27
2 4 14 4 4 20
1 5 15 4 5 32
;
run;

proc print data=IBD;
title1 'TABLE 1.7';
title2 'DATA FOR INCOMPLETE BLOCK DESIGN';
title3 '(t=4, b=5, k=2, r1=3, r2=r3=2, r4=3)';
run;

Obs TRT BLOCK Y

1 1 1 10
2 2 1 12
3 3 2 23
4 4 2 28
5 1 3 13
6 3 3 27
7 2 4 14
8 4 4 20
9 1 5 15
10 4 5 32

3. The general form of an estimable function for treatment effects is given by

L7τ1 + L8τ2 + L9τ3 − (L7 + L8 + L9)τ4

for any values of L7, L8, and L9; that is, only contrasts are estimable.
4. The general form of estimable functions can also be used to identify the

solutions to the NE by putting sequentially (and in order) each Li = 1 and
the remaining Lj = 0, (j �= i). For example, the “Estimate” of “Intercept”
is actually the estimate of µ + β5 + τ4; that is, L1 = 1, Lj = 0, (j �= 1).
Expressed in terms of the SAS solutions we thus have

µ∗ = µ+̂ β5+ τ4 = 31.125

Another example, putting L7 = 1, Lj = 0(j �= 7), yields

τ ∗
1 = τ̂1 − τ4 = −15.25
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Table 1.8 Intrablock Analysis with Post-hoc Comparisons

proc glm data=IBD;

class BLOCK TRT;

model Y = BLOCK TRT/XPX inverse solution e;

1smeans TRT/stderr e;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.8';

title2 'INTRA-BLOCK ANALYSIS';

title3 'WITH POST-HOC COMPARISONS';

run;

The GLM Procedure

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Number of observations 10

The X'X Matrix

Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 10 2 2 2 2 2

BLOCK 1 2 2 0 0 0 0

BLOCK 2 2 0 2 0 0 0

BLOCK 3 2 0 0 2 0 0

BLOCK 4 2 0 0 0 2 0

BLOCK 5 2 0 0 0 0 2

TRT 1 3 1 0 1 0 1

TRT 2 2 1 0 0 1 0

TRT 3 2 0 1 1 0 0

TRT 4 3 0 1 0 1 1

Y 194 22 51 40 34 47
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Table 1.8 (Continued )

The X’X Matrix

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept 3 2 2 3 194
BLOCK 1 1 1 0 0 22
BLOCK 2 0 0 1 1 51
BLOCK 3 1 0 1 0 40
BLOCK 4 0 1 0 1 34
BLOCK 5 1 0 0 1 47
TRT 1 3 0 0 0 38
TRT 2 0 2 0 0 26
TRT 3 0 0 2 0 50
TRT 4 0 0 0 3 80
Y 38 26 50 80 4300

X’X Generalized Inverse (g2)

Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 0.75 -0.375 -0.625 -0.375 -0.625 0
BLOCK 1 -0.375 1.3125 0.4375 0.5625 0.6875 0
BLOCK 2 -0.625 0.4375 1.3125 0.6875 0.5625 0
BLOCK 3 -0.375 0.5625 0.6875 1.3125 0.4375 0
BLOCK 4 -0.625 0.6875 0.5625 0.4375 1.3125 0
BLOCK 5 0 0 0 0 0 0
TRT 1 -0.5 -0.25 0.25 -0.25 0.25 0
TRT 2 -0.25 -0.625 0.125 -0.125 -0.375 0
TRT 3 -0.25 -0.125 -0.375 -0.625 0.125 0
TRT 4 0 0 0 0 0 0
Y 31.125 -7.6875 -4.0625 -1.9375 -9.3125 0

X’X Generalized Inverse (g2)

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept -0.5 -0.25 -0.25 0 31.125
BLOCK 1 -0.25 -0.625 -0.125 0 -7.6875
BLOCK 2 0.25 0.125 -0.375 0 -4.0625
BLOCK 3 -0.25 -0.125 -0.625 0 -1.9375
BLOCK 4 0.25 -0.375 0.125 0 -9.3125
BLOCK 5 0 0 0 0 0
TRT 1 1 0.5 0.5 0 -15.25
TRT 2 0.5 1.25 0.25 0 -9.625
TRT 3 0.5 0.25 1.25 0 -3.125
TRT 4 0 0 0 0 0
Y -15.25 -9.625 -3.125 0 18.1875
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Table 1.8 (Continued )

General Form of Estimable Functions

Effect Coefficients

Intercept L1

BLOCK 1 L2

BLOCK 2 L3

BLOCK 3 L4

BLOCK 4 L5

BLOCK 5 L1-L2-L3-L4-L5

TRT 1 L7

TRT 2 L8

TRT 3 L9

TRT 4 L1-L7-L8-L9

The GLM Procedure

Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 518.2125000 74.0303571 8.14 0.1137

Error 2 18.1875000 9.0937500

Corrected Total 9 536.4000000

R-Square Coeff Var Root MSE Y Mean

0.966093 15.54425 3.015585 19.40000

Source DF Type I SS Mean Square F Value Pr > F

BLOCK 4 261.4000000 65.3500000 7.19 0.1259

TRT 3 256.8125000 85.6041667 9.41 0.0975

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 4 79.1458333 19.7864583 2.18 0.3388

TRT 3 256.8125000 85.6041667 9.41 0.0975
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Table 1.8 (Continued )

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 31.12500000 B 2.61157280 11.92 0.0070
BLOCK 1 -7.68750000 B 3.45478608 -2.23 0.1560
BLOCK 2 -4.06250000 B 3.45478608 -1.18 0.3607
BLOCK 3 -1.93750000 B 3.45478608 -0.56 0.6314
BLOCK 4 -9.31250000 B 3.45478608 -2.70 0.1145
BLOCK 5 0.00000000 B . . .
TRT 1 -15.25000000 B 3.01558452 -5.06 0.0369
TRT 2 -9.62500000 B 3.37152599 -2.85 0.1039
TRT 3 -3.12500000 B 3.37152599 -0.93 0.4518
TRT 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B' are not

uniquely estimable.

Least Squares Means

Coefficients for TRT Least Square Means

TRT Level

Effect 1 2 3 4

Intercept 1 1 1 1
BLOCK 1 0.2 0.2 0.2 0.2
BLOCK 2 0.2 0.2 0.2 0.2
BLOCK 3 0.2 0.2 0.2 0.2
BLOCK 4 0.2 0.2 0.2 0.2
BLOCK 5 0.2 0.2 0.2 0.2
TRT 1 1 0 0 0
TRT 2 0 1 0 0
TRT 3 0 0 1 0
TRT 4 0 0 0 1

TRT Y LSMEAN Standard Error Pr > |t|

1 11.2750000 1.9774510 0.0294
2 16.9000000 2.6632921 0.0239
3 23.4000000 2.6632921 0.0127
4 26.5250000 1.9774510 0.0055

Dependent Variable: Y

Parameter Estimate Standard Error t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.8750000 2.61157280 -3.40 0.0768
TRT1 - TRT4 -15.2500000 3.01558452 -5.06 0.0369
TRT2 - TRT3 -6.5000000 4.26468053 -1.52 0.2670
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5. The top part of the ANOVA table provides the partition

SS(MODEL) + SS(ERROR) = SS(TOTAL)

and from that produces

MS(ERROR) = σ̂ 2
e = 9.094

6. The lower part of the ANOVA table provides type I SS (sequential SS for
ordered model; see I.4.7.2) and type III SS (partial SS). From the latter we
obtain the P value (.0975) for the test of

H0: τ1 = τ2 = · · · = τt

versus

H1: not all τi are the same

We stress that the P value for blocks should be ignored (see I.9.2).
7. The e-option of LSMEANS gives the coefficients for the solution vector to

compute the treatment least squares means, for example,

LSMEAN(TRT 1) = µ∗ + .2
∑

β∗
i + τ ∗

1

= 31.125 + .2(−7.6875 − 4.0625 − 1.9375

− 9.3125 + 0) − 15.25

= 11.275

The standard error is computed by making use of the G inverse (see item 2)
and MS(ERROR).

8. The t tests are performed for the prespecified contrasts among the least-
squares means; for example,

TRT2-TRT3 = τ ∗
2 − τ ∗

3 = 9.625 + 3.125 = − 6.5

se(τ∗
2 − τ ∗

3 ) = [(1.25 + 1.25 − 2 × .25) × 9.094]1/2 = 4.265

t = − 6.5

4.265
= −1.52

1.14.2 Intrablock Analysis Using the Absorb Option in SAS PROC GLM

A computational method as described in Section 1.3 using the RNE can be imple-
mented in SAS PROC GLM by using the ABSORB OPTION. This is illustrated
in Table 1.9.
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Table 1.9 Intra Block Analysis Using Reduced Normal Equations
With Post-hoc Comparisons

proc glm data=IBD;

class BLOCK TRT;

absorb BLOCK;

model Y = TRT/XPX inverse solution e;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.9';

title2 'INTRA-BLOCK ANALYSIS USING REDUCED NORMAL EQUATIONS';

title3 'WITH POST-HOC COMPARISONS';

run;

The GLM Procedure

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Number of observations 10

The X'X Matrix

TRT 1 TRT 2 TRT 3 TRT 4 Y

TRT 1 1.5 -0.5 -0.5 -0.5 -16.5

TRT 2 -0.5 1 0 -0.5 -2

TRT 3 -0.5 0 1 -0.5 4.5

TRT 4 -0.5 -0.5 -0.5 1.5 14

Y -16.5 -2 4.5 14 275

The GLM Procedure

X'X Generalized Inverse (g2)

TRT 1 TRT 2 TRT 3 TRT 4 Y

TRT 1 1 0.5 0.5 0 -15.25

TRT 2 0.5 1.25 0.25 0 -9.625

TRT 3 0.5 0.25 1.25 0 -3.125

TRT 4 0 0 0 0 0

Y -15.25 -9.625 -3.125 0 18.1875

General Form of Estimable Functions

Given that the coefficients for all absorbed effects are zero
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Table 1.9 (Continued )

Effect Coefficients

TRT 1 L1
TRT 2 L2
TRT 3 L3
TRT 4 -L1-L2-L3

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 518.2125000 74.0303571 8.14 0.1137

Error 2 18.1875000 9.0937500

Corrected Total 9 536.4000000

R-Square Coeff Var Root MSE Y Mean

0.966093 15.54425 3.015585 19.40000

Source DF Type I SS Mean Square F Value Pr > F

BLOCK 4 261.4000000 65.3500000 7.19 0.1259
TRT 3 256.8125000 85.6041667 9.41 0.0975

Source DF Type III SS Mean Square F Value Pr > F

TRT 3 256.8125000 85.6041667 9.41 0.0975

Standard
Parameter Estimate Error t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.8750000 2.61157280 -3.40 0.0768
TRT1 - TRT4 -15.2500000 3.01558452 -5.06 0.0369
TRT2 - TRT3 -6.5000000 4.26468053 -1.52 0.2670

Standard
Parameter Estimate Error t Value Pr > |t|

TRT 1 -15.25000000 B 3.01558452 -5.06 0.0369
TRT 2 -9.62500000 B 3.37152599 -2.85 0.1039
TRT 3 -3.12500000 B 3.37152599 -0.93 0.4518
TRT 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B' are not

uniquely estimable.



COMPUTATIONAL PROCEDURES 61

We make the following comments about the SAS output:

1. The X′X matrix is now the C-matrix of (1.9).
2. The X′X generalized inverse is obtained by the SAS convention of setting

τ ∗
4 = 0. This g inverse is therefore different from C̃

−1
of (1.16).

3. The ANOVA table provides the same information as in Table 1.8, except that
it does not give solutions for the intercept and blocks. Hence, this analysis
cannot be used to obtain treatment least-squares means and their standard
error.

1.14.3 Combined Intra- and Interblock Analysis Using the
Yates Procedure

Using SAS PROC VARCOMP illustrates the estimation of σ 2
β according to the

method described in Section 1.10.1. The result is presented in Table 1.10. The
option type I produces Table 1.2 with

E[MS(BLOCK)] = E
[
MS(Xβ |I,Xτ )

]
as given in (1.82). This yields σ̂ 2

e = 9.09 (as in Table 1.8) and σ̂ 2
β = 7.13.

Substituting ρ̂ = 9.09 + 2 × 7.13

9.09
= 2.57 into (1.60) we obtain

Ã =


2.0814 −0.3062 −0.3062 −0.3062

−0.3062 1.3877 0.0000 −0.3062
−0.3062 0.0000 1.3877 −0.3062
−0.3062 −0.3062 −0.3062 2.0814


and

Ã
−1 =


0.541654 0.146619 0.146619 0.122823
0.146619 0.785320 0.064704 0.146619
0.146619 0.064704 0.785320 0.146619
0.122823 0.146619 0.146619 0.541654


and

P̃ =


4.6242
8.8528

22.1358
39.5816


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We then obtain

τ̃ = Ã
−1

P̃ =


11.9097
14.8659
24.4379
26.5510


We note that the elements of τ̃ are actually the treatment least-squares means.
Their estimated variances and the estimated variances for the treatment contrasts
are obtained from Ã

−1 × 9.09 (see Tables 1.13 and 1.14).

1.14.4 Combined Intra- and Interblock Analysis Using SAS
PROC MIXED

We illustrate here the numerical implementation of the ML and REML proce-
dures as described in Sections 1.11.1 and 1.11.2, respectively, using SAS PROC
MIXED. The results of the ML estimation are given in Table 1.11.

It takes four interations to obtain the solutions, yielding σ̂ 2
β = 7.45 and σ̂ 2

e =
4.14 and hence γ̂ = 1.80 (Notice that these are quite different from the estimates
obtained by the Yates procedure (Section 1.14.3) and the REML procedure as
given below).

Since SAS uses a different parametrization than the one used in (1.84) it
obtains “estimates” of µ and τi(i = 1, 2, 3, 4) separately. The type 3 coefficients
indicate that the solutions for µ, τi(i = 1, 2, 3, 4) are actually estimates of µ +
τ4, τ1 − τ4, τ2 − τ4, τ3 − τ4, respectively. From these solutions the least-squares
means are then obtained as

LSMEAN(TRT 1) = µ̂ + τ̂1 = 11.65 = α̂1

LSMEAN(TRT 2) = µ̂ + τ̂2 = 15.63 = α̂2

LSMEAN(TRT 3) = µ̂ + τ̂3 = 24.09 = α̂3

LSMEAN(TRT 4) = µ̂ = 26.53 = α̂4

where the α̂i denote the solutions to (1.87).
The REML procedure is illustrated in Table 1.12. It takes three iterations to

obtain the estimates σ̃ 2
β = 6.35 and σ̃ 2

e = 10.17, and hence γ̃ = 0.62. We note
that the REML and ML least-squares means are numerically quite similar even
though γ̂ and σ̂ 2

e are substantially different from γ̃ and σ̃ 2
e , respectively.

1.14.5 Comparison of Estimation Procedures

For a small proper incomplete block design we have employed the above four
methods of estimating treatment least-squares means and treatment comparisons:

M1: Intrablock analysis

M2: Combined analysis: Yates
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Table 1.11 Combined Analysis Using Maximum Likelihood
With Post-hoc Comparisons

proc mixed data=IBD method=ML;

class BLOCK TRT;

model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.11';

title2 'COMBINED ANALYSIS USING MAXIMUM LIKELIHOOD';

title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK.IBD

Dependent Variable Y

Covariance Structure Variance Components

Estimation Method ML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Dimensions

Covariance Parameters 2

Columns in X 5

Columns in Z 5

Subjects 1

Max Obs Per Subject 10

Observations Used 10

Observations Not Used 0

Total Observations 10
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Table 1.11 (Continued )

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 51.13433487

1 2 50.29813032 0.00396161

2 1 50.22541829 0.00030283

3 1 50.22033455 0.00000230

4 1 50.22029773 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

BLOCK 7.4528

Residual 4.1426

Fit Statistics

-2 Log Likelihood 50.2

AIC (smaller is better) 62.2

AICC (smaller is better) 90.2

BIC (smaller is better) 59.9

Solution for Fixed Effects

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

Intercept 26.5329 1.7767 8.87 14.93 <.0001

TRT 1 -14.8822 1.9330 4.75 -7.70 0.0007

TRT 2 -10.9029 2.1495 4.82 -5.07 0.0043

TRT 3 -2.4380 2.1495 4.82 -1.13 0.3099

TRT 4 0 . . . .

Type 3 Coefficients for TRT

Effect TRT Row1 Row2 Row3

Intercept

TRT 1 1

TRT 2 1

TRT 3 1

TRT 4 -1 -1 -1
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Table 1.11 (Continued )

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

TRT 3 4.76 23.37 0.0028

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.2117 1.7085 4.3 -4.81 0.0072

TRT1 - TRT4 -14.8822 1.9330 4.75 -7.70 0.0007

TRT2 - TRT3 -8.4650 2.6087 5.86 -3.24 0.0182

Least Squares Means

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

TRT 1 11.6506 1.7767 8.87 6.56 0.0001

TRT 2 15.6299 2.0786 9.98 7.52 <.0001

TRT 3 24.0949 2.0786 9.98 11.59 <.0001

TRT 4 26.5329 1.7767 8.87 14.93 <.0001

M3: Combined analysis: ML

M4: Combined analysis: REML

In Tables 1.13 and 1.14 we present the estimates and their standard errors (exact
or approximate) for these methods for purely numerical comparisons.

Based on the numerical results, we make the following observations, which
should not necessarily be generalized:

1. For the least-squares means, M1 produces slightly smaller standard errors
than M2, but the result is reversed for the contrast estimates.

2. The results for M2 and M4 are very similar, both with respect to estimates
and standard errors.

3. In both tables M3 produces the smallest standard errors.

1.14.6 Testing of Hypotheses

To test the hypothesis

H0:τ1 = τ2 = · · · = τt
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Table 1.12 Combined Analysis Using Residual Maximum Likelihood With
Post-hoc Comparisons

proc mixed data=IBD;

class BLOCK TRT;

model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.12';

title2 'COMBINED ANALYSIS USING RESIDUAL MAXIMUM LIKELIHOOD';

title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK.IBD

Dependent Variable Y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Dimensions

Covariance Parameters 2

Columns in X 5

Columns in Z 5

Subjects 1

Max Obs Per Subject 10

Observations Used 10

Observations Not Used 0

Total Observations 10
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Table 1.12 (Continued )

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 37.32907360

1 2 37.14557447 0.00022052

2 1 37.14253025 0.00000186

3 1 37.14250585 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

BLOCK 6.3546

Residual 10.1681

Fit Statistics

-2 Res Log Likelihood 37.1

AIC (smaller is better) 41.1

AICC (smaller is better) 45.1

BIC (smaller is better) 40.4

Solution for Fixed Effects

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

Intercept 26.5596 2.2615 5.93 11.74 <.0001

TRT 1 -14.5682 2.8843 2.68 -5.05 0.0196

TRT 2 -11.9152 3.2045 2.66 -3.72 0.0415

TRT 3 -2.0305 3.2045 2.66 -0.63 0.5766

TRT 4 0 . . . .

Type 3 Coefficients for TRT

Effect TRT Row1 Row2 Row3

Intercept

TRT 1 1

TRT 2 1

TRT 3 1

TRT 4 -1 -1 -1
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Table 1.12 (Continued )

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

TRT 3 2.42 10.82 0.0615

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -7.5953 2.5979 2.2 -2.92 0.0891

TRT1 - TRT4 -14.5682 2.8843 2.68 -5.05 0.0196

TRT2 - TRT3 -9.8847 3.7522 3.82 -2.63 0.0607

Least Squares Means

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

TRT 1 11.9914 2.2615 5.93 5.30 0.0019

TRT 2 14.6444 2.7365 5.52 5.35 0.0023

TRT 3 24.5291 2.7365 5.52 8.96 0.0002

TRT 4 26.5596 2.2615 5.93 11.74 <.0001

versus

H1: not all τi are equal

we consider a set of t − 1 linearly independent contrasts, say Cτ , and test equiv-
alently

H0: Cτ = 0

Table 1.13 Comparison of Least-Squares Means

TRT M1 M2 M3 M4

i LSM(TRTi) SE LSM(TRTi) SE LSM(TRTi) SE LSM(TRTi) SE

1 11.28 1.98 11.91 2.22 11.65 1.78 11.99 2.26
2 16.90 2.66 14.87 2.67 15.63 2.08 14.64 2.74
3 23.40 2.66 24.44 2.67 24.09 2.08 24.53 2.74
4 26.53 1.98 26.55 2.22 26.53 1.78 26.56 2.26
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Table 1.14 Comparison of Contrast Estimates

M1 M2 M3 M4

CONTRASTa Ĉ SE C̃ SE C̃ SE C̃ SE

C1 −8.88 2.61 −7.75 2.47 −8.21 1.71 −7.59 2.60
C2 −15.25 3.02 −14.64 2.76 −14.88 1.93 −14.57 2.88
C3 −6.50 4.26 −9.57 3.62 −8.47 2.61 −9.88 3.75

aC1 = TRT1 − (TRT2 + TRT3)/2
C2 = TRT1 − TRT4
C3 = TRT2 − TRT3

Table 1.15 Comparison of Testing H0:τ1 = τ2 = τ3 = τ4

Denominator

Method F Ratio d.f. P Value Source

M1 9.41 2 .0975 Table 1.8
M2 11.73 2 .0796 See below
M3 23.37 4.76 .0028 Table 1.11
M4 10.82 2.42 .0615 Table 1.12

versus

H1: Cτ �= 0

We then compute the test statistic

F = (Cτ̃ )′[CÃ
−1

C]−1Cτ̃/[(t − 1) MS(E)]

which follows approximately an F distribution with t − 1 and n − t − b + 1 d.f.
For the data set in Table 1.7, using

C =
1 −1 0 0

1 0 −1 0
1 0 0 −1


with the Yates procedure we obtain F = 11.73 with 3 and 2 d.f.

A comparison of the four methods of analysis [as described in (Section 1.13.5)]
concerning the test of treatment effects is given in Table 1.15

It is interesting to note that the results for M1, M2, and M4 are in close
agreement, whereas the result for M3 is quite different. This appears due to the
fact that the estimate of σ 2

e for M3, namely 4.1426, is quite different from the
corresponding estimates using M2, namely, 9.09375, and M4, namely 10.1681.
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Balanced Incomplete Block Designs

2.1 INTRODUCTION

In the previous chapter we were concerned with incomplete block designs in
very general terms, mainly with the analyses of these designs. But as men-
tioned earlier, there exist, among the totality of all incomplete block designs,
several special types that have evolved in the process of refining the art of
experimental design, these types being characterized by some common feature
or property.

One such type of design is the balanced incomplete block (BIB) design intro-
duced by Yates (1936a) (see also Section I.9.8.2). This is a proper, equireplicate,
binary design such that each elementary treatment contrast, that is, the difference
between two treatment effects, is estimated with the same variance.

2.2 DEFINITION OF THE BIB DESIGN

In this section we shall give a more precise and more formal definition of the
BIB design. First we note that for a binary design the incidence matrix N = (nij )

has elements

nij =
{

1 if treatment i occurs in block j

0 otherwise

Furthermore, for an equireplicate design

b∑
j=1

nij = r for all i (2.1)

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
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and for a proper design

t∑
i=1

nij = k for all j (2.2)

where r is the number of replications for each treatment and k is the block size.
We denote the (i, i′) element of NN ′ by λii′ ; that is,

∑
j nijni′j = λii′ , where

λii′ denotes simply the number of blocks in which treatments i and i′ appear
together (it is for this reason that NN ′ is referred to as the concordance or
concurrence matrix ; see Pearce, 1963). Then, with (2.1) and (2.2) and the fact that
all differences between treatment effects are estimated with the same variance,
we must have λii′ = λ for all i, i′(i �= i′), as was shown by Thompson (1956)
and Rao (1958). We thus have the following definition.

Definition 2.1 An incomplete block design is said to be a balanced incom-
plete block (BIB) design if it satisfies the following conditions:

i. The experimental material is divided into b blocks of k units each, different
treatments being applied to the units in the same block.

ii. There are t treatments each of which occurs in r blocks.
iii. Any two treatments occur together in exactly λ blocks.

The quantities t, b, r, k, and λ are called the parameters of the BIB design.
We note here that for a given set of parameters there may or may not exist a
BIB design. �

2.3 PROPERTIES OF BIB DESIGNS

The following relations hold among the parameters, and even these are only
necessary conditions for the existence of a BIB design:

rt = kb (2.3)

λ(t − 1) = r(k − 1) (2.4)

r > λ (2.5)

b ≥ t (2.6)

Relationship (2.3) follows immediately from the fact that the total number of
observation for the BIB design is

n =
∑

i

∑
j

nij

 =
∑
j

(∑
i

nij

)

and to this we apply (2.1) and (2.2).
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To establish (2.4) we consider a fixed treatment that is replicated r times and
in each of these r blocks there are k − 1 other treatments. On the other hand,
because of (iii) in Definition 2.1, each of the remaining t − 1 treatments must
occur in these blocks exactly λ times. This leads immediately to (2.4).

Condition (2.5) follows from (2.4) and the fact that for an incomplete block
design k < t .

Fisher (1940) first proved (2.6) to be a necessary condition for the existence of
a balanced incomplete block design. The following proof is based on a property
of the matrix NN ′. From the definition of the BIB design it follows that

NN ′ =



r λ λ

λ r ·
· · · ·
· · λ

· · · ·
λ λ r


= (r − λ)I + λII′ (2.7)

Then

NN ′I = (r − λ)I + tλI

= (r − λ + λt)I

So (1/
√

t)I is a normalized eigenvector with root r − λ + λt . If ξ is another
eigenvector of NN ′, which is orthogonal to (1/

√
t)I, then we have from

(2.7) that

NN ′ξ = (r − λ)ξ

and hence (r − λ) is an eigenvalue with multiplicity t − 1. It follows then that

detNN ′ = (r − λ)t−1(r − λ + λt)

or, using (2.4),

detNN ′ = (r − λ)t−1rk (2.8)

Because of (2.5), this determinant is positive definite of rank t . Now t = rank
NN ′ = rank N ≤ min(t, b). Hence b ≥ t .

In connection with the above necessary conditions for the existence of a BIB
design, we shall mention briefly the special case when t = b and hence r = k.

Definition 2.2 An incomplete block design (IBD) with the same number of
treatments and blocks is called a symmetrical incomplete block design.



74 BALANCED INCOMPLETE BLOCK DESIGNS

For a symmetrical BIB design, (2.8) will be of the form

detNN ′ = (detN)2 = (r − λ)t−1r2

This implies, for example, that if t is even then r − λ must be a perfect square
for a symmetrical BIB design to exist. This is only one of several necessary
conditions (Shrikhande, 1950) for the existence of a symmetrical BIB design.

Nonexistence theorems and methods of actually constructing BIB designs for
a given set of parameters have become an important subject in itself, and we
shall treat some aspects of this in Chapter 3.

Before we consider the analysis of BIB designs, we give as an example the
design mentioned in Section 1.1. �

Example 2.1 We have t = 7, b = 7, r = 4, k = 4, λ = 2 and denoting the
treatments now by 0, 1, . . . , 6 the design is listed as

(0, 3, 6, 5)

(2, 5, 4, 6)

(6, 0, 1, 4)

(0, 1, 2, 5)

(1, 6, 2, 3)

(4, 2, 3, 0)

(1, 3, 4, 5)

where each row represents a block, the treatments in each block being randomly
assigned to the experimental units. �

2.4 ANALYSIS OF BIB DESIGNS

2.4.1 Intrablock Analysis

Using the results of Section 1.3.2 the RNE (1.7) take on the form

r
k − 1

k
−λ

k
−λ

k

−λ

k
r
k − 1

k

...

...
... −λ

k

−λ

k
−λ

k
r
k − 1

k




τ̂1

τ̂2

...

τ̂t

 =


Q1

Q2

...

Qt


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or [(
r
k − 1

k
+ λ

k

)
I − λ

k
II′

]
τ̂ = Q (2.9)

A solution to (2.9) is obtained by using Theorem 1.1 with a = λ/k. Then

C̃
−1 = 1

r
k − 1

k
+ λ

k

I (2.10)

Using (2.4) in (2.10) we can write

r
k − 1

k
+ λ

k
= r

k

(
k − 1 + k − 1

t − 1

)
= r

(k − 1)t

k(t − 1)

and hence

C̃
−1 = 1

r
(k − 1)t

k(t − 1)

I (2.11)

Recall that C̃
−1

σ 2
e is the variance–covariance matrix for estimable functions of

treatment effects. Thus, from (2.11) we have

var (̂τi − τ̂i′) = 2

r
(k − 1)t

k(t − 1)

σ 2
e

for all i �= i′. Therefore also

av.
i �=i′

var(̂τi − τ̂i′) = 2

r
(k − 1)t

k(t − 1)

σ 2
e

It follows then from (1.89) that (k − 1)t/k(t − 1) is the efficiency factor E of the
BIB design and according to (1.91) the upper bound for any IBD. We then write

C̃
−1 = 1

rE
I (2.12)

Hence

τ̂ = Q

rE
(2.13)
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is a solution to (2.9). Furthermore, it follows from (2.13) and (1.20) that any
linear estimable function c′τ = ∑

i ciτi with
∑

ci = 0 is estimated by

∑
i

ci

Qi

rE
(2.14)

with variance, using (2.12),

∑
i

c2
i

σ 2
e

rE
(2.15)

The intrablock error variance σ 2
e is estimated in the usual way by using the

analysis of variance given in Table 1.2.

2.4.2 Combined Analysis

It follows from the definition of the BIB design and the form of NN ′ as given
in (2.7) that the coefficient matrix, A say, in (1.60) is now of the form

A =
[
r − (1 − ρ−1)

(
r

k
− λ

k

)]
I − (1 − ρ−1)

λ

k
II′ (2.16)

By a familiar result in matrix algebra (e.g., Graybill, 1969) we find

A−1 = 1

r − (1 − ρ−1)

(
r

k
− λ

k

)
I +

(1 − ρ−1)
λ

k

r − (1 − ρ−1)

[
r

k
+ (t − 1)

λ

k

]II′


(2.17)

Denoting the (i, i′) element of A−1 by aii′ , it follows from (1.62) and (1.63) that
the linear function of treatment effects, c′τ , with

∑
ci = 0 is estimated by c′̂̂τ

with variance

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i a

iiσ 2
e +

∑
i,i′
i �=i′

cici′a
ii′σ 2

e (2.18)

Substituting the elements of (2.17) into (2.18) yields

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i

σ 2
e

r − (
1 − ρ−1

) ( r

k
− λ

k

) (2.19)
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or, substituting (1.65) in (2.19),

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i

(
σ 2

e + kσ 2
β

)
σ 2

e

rσ 2
e + (rk − r + λ)σ 2

β

(2.20)

The following special familiar cases can be deduced easily from (2.19):

1. r = λ (i.e., RCBD):

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i

σ 2
e

r

2. ρ−1 = 0:

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i

σ 2
e

rE

which is the same as (2.15), implying that no interblock information exists.
3. ρ−1 = 1:

var

(∑
i

ci
̂̂τ i

)
=

∑
i

c2
i

σ 2
e

r

which is the same as the variance for a CRD. We note that σ 2
e here refers to

the error variance in a CRD, whereas σ 2
e in case 1 refers to the within-block

variance.

2.5 ESTIMATION OF ρ

As we already know from the discussion in the previous chapter and as is obvious
from (2.17), the combined estimator c′̂̂τ for c′τ depends on w = 1/σ 2

e and w′ =
1/

(
σ 2

e + kσ 2
β

)
through ρ = w/w′. Since, in general, these parameters are not

known, they will have to be estimated from the data; the estimates will have to
be substituted into (2.17) in order to obtain the estimator for c′τ , which we shall
denote by c′τ̃ . Note that in our notation ci

̂̂τ depends on ρ and c′τ̃ depends on
ρ̂, where ρ̂ is an estimator for ρ.

In the previous chapter we described one method of estimating ρ, the Yates
procedure, which estimates σ 2

e and σ 2
β from the intrablock analyses of variance

with the model assuming the block effects to be random variables. This is a
general procedure and as such applicable also to BIB designs. However, we also
mentioned the problem that arises when using the Yates estimators, since one is
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not assured that the combined estimator for c′τ is better than the corresponding
intrablock estimator.

The following theorem, which is a special case of a more general theorem
given by Shah (1964), deals with this problem and gives a solution under a
nonrestrictive condition.

Let

Z = t (t − 1)k(k − 1)

(t − k)2

[
SS(Xτ |I) − 2T ′τ̂ + 1

E
SS(Xτ |I,Xβ)

]
(2.21)

where SS(Xτ |I) and SS(Xτ |I, Xβ, ) are given in Tables 1.2 and 1.1, respectively,
T ′ = (T1, T2, . . . , Tt ) is the vector of the treatment totals and τ̂ is given by (2.13).

Theorem 2.1 For t ≥ 6 and

ρ̂ =


t − k

t (k − 1)

[
Z

(t − 1)MSE

− 1

]
if

Z

MSE

>
k(t − 1)

t − k

1 otherwise

(2.22)

with Z defined by (2.21) and MSE = MS(I |I,Xβ, Xτ ) being the residual mean
square as given in Table 1.1, the combined estimator, c′τ̃ , for c′τ is uniformly
better than the intrablock estimator, c′τ̂ , that is,

var(c′τ̃ ) < var(c′τ̂ )

For the proof we refer to Shah (1964).

Similar estimators for ρ have been developed by Seshadri (1963) and still
others by Graybill and Weeks (1959) and Graybill and Deal (1959).

We shall comment briefly on the nature of these estimators without going
into any detail. Of particular interest is, of course, their relationship to the Yates
estimator and the comparison of the performance of all the estimators with regard
to estimating differences of treatment effects.

We note that the Yates estimator utilizes all b − 1 d.f. between blocks as
does the estimator proposed by Graybill and Weeks (1959), which, however, was
shown by Seshadri (1963) to be not as good as the Yates estimator. All the other
estimators utilize only part of the b − 1 d.f., either t − 1 or b − t . Under certain
conditions these estimators have been shown to give rise to estimators for treat-
ment differences uniformly better than the corresponding intrablock estimators.
Such a property has not yet been proved for the Yates procedure, but the fact that
it uses more information than the other estimators may lead one to suspect that
it might actually be better than the estimators mentioned above that enjoy this
property. To some extent this aspect was investigated by Shah (1970) along the
following lines.
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Let V be the average variance for treatment comparisons. Then V can be
expressed as

V = 2σ 2
e

r∗

where r∗ is defined as the effective number of replications. For example, r∗ cor-
responding to the intrablock estimator is given by r∗

I = rE. The largest possible
value for r∗ is that corresponding to the combined estimator when ρ is known.
Denote this value by r∗

c . Since usually ρ is not known and hence has to be esti-
mated from the data, some loss of information is incurred; that is, r∗(ρ̂) < r∗

c ,
where r∗(ρ̂) is the effective number of replications when an estimator ρ̂ is used
instead of ρ in the combined analysis. Shah (1970) shows that for his estimator
(given in Theorem 2.1) the difference between r∗

c and r∗(ρ̂) is not appreciable
for moderate values of ρ. This implies that the loss of information is not great
and not much improvement, if any, can be expected from any other estimation
procedure, including the Yates procedure. On the other hand we know that for
Shah’s estimator r∗(ρ̂) > r∗

I when t ≥ 6 (see Theorem 2.1), which is not guar-
anteed for the Yates procedure. For large values of ρ the difference between r∗

c

and r∗
I is fairly small, so that not much is gained by using a combined estimator.

The conclusion from this discussion then is that the Shah procedure leads in
general to quite satisfactory results and should therefore be used in the combined
analysis.

2.6 SIGNIFICANCE TESTS

As mentioned in Section 1.13.4 significance tests concerning the treatment effects
are performed as approximate F test by substituting ρ̂ for ρ in the coefficient
matrix A of (1.60), using any of the previously described methods of estimating
ρ. Such tests are mostly conveniently performed by choosing any option in SAS
PROC MIXED.

An exact test, based, however, on the assumption of normality, for

H0: τ1 = τ2 = · · · = τt

against

H1: not all τi equal

was developed by Cohen and Sackrowitz (1989). We shall give a brief descrip-
tion here, but the reader should refer to the original article for details. The test
is based on invariance properties and utilizes information from the intrablock
analysis (as described in Sections 2.4.1 and 1.3) and the interblock analysis (as
described for the general case in Section 1.7.2) by combining the P values from
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the two respective independent tests. In order to define the test we establish the
following notation:

τ̂ = solution to the intrablock normal equations, (2.13)

τ ∗ = solution to the interblock normal equations, (1.48),

with L = I

O = matrix of t − 1 orthonormal contrasts for treatment effects

U1 = Oτ̂

U2 = Oτ ∗

‖U1 ‖2 = U ′
1U1

‖U2 ‖2 = U ′
2U2

V 1 = U1/ ‖U1 ‖
V 2 = U2/ ‖U2 ‖
R = V ′

1V 2

S2 = SS(Error from intrablock analysis)

S∗2 = SS(Error from interblock analysis)

=
b∑

j=1

(
Bj − kµ∗ −

t∑
i=1

nij τ
∗
i

)2

T1 = S2 + λt

k
‖U1‖2

T2 = S∗2 + r − λ

k
‖U2‖2

a = min(T1/T2, 1)

γ = 1/(a + 1)

P = P value for testing H0 using intrablock analysis

P ∗ = P value for testing H0 using interblock analysis, based on

F statistic

F ∗ = (b − t)(r − λ)

k(t − 1)

‖U2‖2

S∗2 with t − 1 and b − t d.f.

Z1 = −�nP

Z2 = −�nP
∗

z = γZ1 + (1 − γ )Z2
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Then, for γ �= 1
2 , the P value for the exact test is given by

P ∗∗ =
[
γ e−z/γ − (1 − γ )e−z/(1−γ )

]
/[(2γ − 1)(1 + R)]

and for γ = 1
2 by

[
(2z + 1)e−2z

]
/(1 + R). Cohen and Sackrowitz (1989) per-

formed some power simulations and showed that the exact test is more powerful
than the usual (approximate) F test. For a more general discussion see also
Mathew, Sinha, and Zhou (1993) and Zhou and Mathew (1993).

We shall illustrate the test by using an example from Lentner and Bishop
(1993).

Example 2.2 An experiment is concerned with studying the effect of six
diets on weight gain of rabbits using 10 litters of three rabbits each. The data are
given in Table 2.1A. The parameters of the BIB design are t = 6, b = 10, k =
3, r = 5, λ = 2.

The intrablock analysis using SAS PROC GLM is presented in Table 2.1A
yielding F = 3.16 and P = 0.0382. In addition, Table 2.1A gives the SAS solu-
tions to the normal equations, which are then used to compute the set of five
orthonormal contrasts based on


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

The linear, quadratic, cubic, quartic, and quintic parameter estimates represent
the elements of U1, yielding ‖U1 ‖2 = 39.6817.

A solution to the interblock normal equations [using L = I in (1.48)] is given
in Table 2.1B.

The estimates τ∗ are then used to obtain U2 and ‖U2 ‖2 = 537.5284. We also
obtain from Table 2.1B F ∗ = 2.23 and P ∗ = 0.2282.

Using S2 = 150.7728 from Table 2.1A and S∗2 = 577.9133 from Table 2.1B,
all other values needed for the test can be computed. With γ = 0.7828 we obtain
Z = 2.8768, and finally P ∗∗ = 0.03. This result is in good agreement with the P

value of 0.0336 obtained from the combined analysis using SAS PROC MIXED
with the REML option (see Table 2.1A). �
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Table 2.1A Data, Intrablock, and Combined Analysis for BIB Design
(t = 6, b = 10, r = 5, k = 3, LAMBDA=2)

options nodate pageno=1;
data rabbit1;
input B T Y @@;
datalines;
1 6 42.2 1 2 32.6 1 3 35.2
2 3 40.9 2 1 40.1 2 2 38.1
3 3 34.6 3 6 34.3 3 4 37.5
4 1 44.9 4 5 40.8 4 3 43.9
5 5 32.0 5 3 40.9 5 4 37.3
6 2 37.3 6 6 42.8 6 5 40.5
7 4 37.9 7 1 45.2 7 2 40.6
8 1 44.0 8 5 38.5 8 6 51.9
9 4 27.5 9 2 30.6 9 5 20.6
10 6 41.7 10 4 42.3 10 1 37.3
;
run;

proc print data=rabbit1;
title1 'TABLE 2.1A';
title2 'DATA FOR BIB DESIGN';
title3 '(t=6, b=10, r=5, k=3, LAMBDA=2)';
run;

proc glm data=rabbit1;
class B T;
model Y=B T/solution;
estimate 'linear' T -5 -3 -1 1 3 5/divisor=8.3667;
estimate 'quad' T 5 -1 -4 -4 -1 5/divisor=9.1652;
estimate 'cubic' T -5 7 4 -4 -7 5/divisor=13.4164;
estimate 'quartic' T 1 -3 2 2 -3 1/divisor=5.2915;
estimate 'quintic' T -1 5 -10 10 -5 1/divisor=15.8745;
title2 'INTRA-BLOCK ANALYSIS';
title3 'WITH ORTHONORMAL CONTRASTS';
run;

proc mixed data=rabbit1;
class B T;
model Y=T/solution;
random B;
lsmeans T;
title2 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
title3 '(USING METHOD DESCRIBED IN SECTION 1.8)';
run;
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Table 2.1A (Continued )

Obs B T Y

1 1 6 42.2

2 1 2 32.6

3 1 3 35.2

4 2 3 40.9

5 2 1 40.1

6 2 2 38.1

7 3 3 34.6

8 3 6 34.3

9 3 4 37.5

10 4 1 44.9

11 4 5 40.8

12 4 3 43.9

13 5 5 32.0

14 5 3 40.9

15 5 4 37.3

16 6 2 37.3

17 6 6 42.8

18 6 5 40.5

19 7 4 37.9

20 7 1 45.2

21 7 2 40.6

22 8 1 44.0

23 8 5 38.5

24 8 6 51.9

25 9 4 27.5

26 9 2 30.6

27 9 5 20.6

28 10 6 41.7

29 10 4 42.3

30 10 1 37.3

The GLM Procedure

Class Level Information

Class Levels Values

B 10 1 2 3 4 5 6 7 8 9 10

T 6 1 2 3 4 5 6
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Table 2.1A (Continued )

Number of observations 30

Dependent Variable: Y

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 14 889.113889 63.508135 6.32 0.0005
Error 15 150.772778 10.051519
Corrected
Total 29 1039.886667

R-Square Coeff Var Root MSE Y Mean

0.855010 8.241975 3.170413 38.46667

Source DF Type I SS Mean Square F Value Pr > F

B 9 730.3866667 81.1540741 8.07 0.0002
T 5 158.7272222 31.7454444 3.16 0.0382

Source DF Type III SS Mean Square F Value Pr > F

B 9 595.7352222 66.1928025 6.59 0.0008
T 5 158.7272222 31.7454444 3.16 0.0382

Standard
Parameter Estimate Error t Value Pr > |t|

linear 0.68326421 1.58518760 0.43 0.6726
quad 2.35674071 1.58519809 1.49 0.1578
cubic 3.14664639 1.58520742 1.99 0.0657
quartic 4.74975590 1.58520728 3.00 0.0090
quintic 1.09504761 1.58520728 0.69 0.5002

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 42.61111111 B 2.24182052 19.01 <.0001
B 1 -3.29722222 B 2.79604144 -1.18 0.2567
B 2 0.83611111 B 2.79604144 0.30 0.7690
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Table 2.1A (Continued )

Standard
Parameter Estimate Error t Value Pr > |t|

B 3 -5.10000000 B 2.69433295 -1.89 0.0778
B 4 5.49722222 B 2.79604144 1.97 0.0681
B 5 -0.99166667 B 2.79604144 -0.35 0.7278

B 6 2.11111111 B 2.79604144 0.76 0.4619
B 7 2.48055556 B 2.69433295 0.92 0.3718
B 8 6.13055556 B 2.69433295 2.28 0.0380
B 9 -10.77777778 B 2.79604144 -3.85 0.0016
B 10 0.00000000 B . . .
T 1 -3.30000000 B 2.24182052 -1.47 0.1617
T 2 -5.04166667 B 2.24182052 -2.25 0.0400
T 3 -2.90000000 B 2.24182052 -1.29 0.2154
T 4 -3.23333333 B 2.24182052 -1.44 0.1698
T 5 -8.52500000 B 2.24182052 -3.80 0.0017
T 6 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and
a generalized inverse was used to solve the normal
equations. Terms whose estimates are followed by the
letter 'B' are not uniquely estimable.

COMBINED INTRA- AND INTERBLOCK ANALYSIS
(USING METHOD DESCRIBED IN SECTION 1.8)

The Mixed Procedure

Model Information

Data Set WORK.RABBIT1
Dependent Variable Y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

B 10 1 2 3 4 5 6 7 8 9 10
T 6 1 2 3 4 5 6
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Table 2.1A (Continued )

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 10
Subjects 1
Max Obs Per Subject 30
Observations Used 30
Observations Not Used 0
Total Observations 30

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 160.26213715
1 2 150.36288495 0.00010765
2 1 150.35691057 0.00000054
3 1 150.35688183 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate

B 21.6953
Residual 10.0840

Fit Statistics

-2 Res Log Likelihood 150.4
AIC (smaller is better) 154.4
AICC (smaller is better) 154.9
BIC (smaller is better) 155.0

Solution for Fixed Effects

Standard
Effect T Estimate Error DF t Value Pr > |t|

Intercept 42.3454 2.1303 9 19.88 <.0001
T 1 -2.8100 2.2087 15 -1.27 0.2227
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Table 2.1A (Continued )

Solution for Fixed Effects

Standard
Effect T Estimate Error DF t Value Pr > |t|

T 2 -5.3172 2.2087 15 -2.41 0.0294
T 3 -2.9941 2.2087 15 -1.36 0.1953
T 4 -3.6952 2.2087 15 -1.67 0.1150
T 5 -8.4560 2.2087 15 -3.83 0.0016
T 6 0 . . . .

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

T 5 15 3.28 0.0336

Least Squares Means

Standard
Effect T Estimate Error DF t Value Pr > |t|

T 1 39.5354 2.1303 15 18.56 <.0001
T 2 37.0282 2.1303 15 17.38 <.0001
T 3 39.3513 2.1303 15 18.47 <.0001
T 4 38.6502 2.1303 15 18.14 <.0001
T 5 33.8894 2.1303 15 15.91 <.0001
T 6 42.3454 2.1303 15 19.88 <.0001

Table 2.1B Data of Block Totals and Interblock Analysis

options nodate pageno=1;
data rabbit2;
input y x1 x2 x3 x4 x5 x6;
datalines;
110.0 0 1 1 0 0 1
119.1 1 1 1 0 0 0
106.4 0 0 1 1 0 1
129.6 1 0 1 0 1 0
110.2 0 0 1 1 1 0
120.6 0 1 0 0 1 1
123.7 1 1 0 1 0 0
134.4 1 0 0 0 1 1
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Table 2.1B (Continued )

78.7 0 1 0 1 1 0

121.3 1 0 0 1 0 1

;

run;

proc print data=rabbit2;

title1 'TABLE 2.1 B';

title2 'DATA OF BLOCK TOTALS';

proc glm data=rabbit2;

model y=x1 x2 x3 x4 x5 x6;

title2 'INTER-BLOCK ANALYSIS';

run;

Obs y x1 x2 x3 x4 x5 x6

1 110.0 0 1 1 0 0 1

2 119.1 1 1 1 0 0 0

3 106.4 0 0 1 1 0 1

4 129.6 1 0 1 0 1 0

5 110.2 0 0 1 1 1 0

6 120.6 0 1 0 0 1 1

7 123.7 1 1 0 1 0 0

8 134.4 1 0 0 0 1 1

9 78.7 0 1 0 1 1 0

10 121.3 1 0 0 1 0 1

INTERBLOCK ANALYSIS

The GLM Procedure

Number of observations 10

The GLM Procedure

Dependent Variable: y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 1613.246667 322.649333 2.23 0.2282

Error 4 577.913333 144.478333

Corrected Total 9 2191.160000
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Table 2.1B (Continued )

R-Square Coeff Var Root MSE y Mean

0.736252 10.41587 12.01991 115.4000

Source DF Type I SS Mean Square F Value Pr > F

x1 1 1044.484000 1044.484000 7.23 0.0547

x2 1 89.792667 89.792667 0.62 0.4746

x3 1 10.454444 10.454444 0.07 0.8012

x4 1 407.075556 407.075556 2.82 0.1685

x5 1 61.440000 61.440000 0.43 0.5499

x6 0 0.000000 . . .

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 131.1000000 B 19.38152901 6.76 0.0025

x1 11.8000000 B 9.81421871 1.20 0.2955

x2 -13.5333333 B 9.81421871 -1.38 0.2400

x3 -5.8000000 B 9.81421871 -0.59 0.5863

x4 -17.4666667 B 9.81421871 -1.78 0.1497

x5 -6.4000000 B 9.81421871 -0.65 0.5499

x6 0.0000000 B . . .

2.7 SOME SPECIAL ARRANGEMENTS

In some cases it is possible to arrange the treatments in the blocks of a BIB
design in a special way that may lead to a reduction of either σ 2

e or σ 2
β or both.

These arrangements lead therefore to more efficient designs.

2.7.1 Replication Groups Across Blocks

Designs of this type are characterized by the fact that the first s positions in the
b blocks form a group of r ′ replications of all t treatments, the same being true
for the next s positions, and so forth. If there are s′ such groups, then s′r ′ = r .

We illustrate this type of arrangement in Example 2.3.

Example 2.3 Consider the BIB design with parameters t = 10, r = 6, b =
15, k = 4, λ = 2 given by the following plan:
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Replication Group

Block I II

1 1 2 3 4
2 1 5 2 6
3 1 3 7 8
4 4 9 1 10
5 5 7 1 9
6 6 8 1 10
7 3 9 2 6
8 2 4 7 10
9 5 10 2 8

10 2 7 8 9
11 3 10 5 9
12 6 10 3 7
13 4 8 3 5
14 6 7 4 5
15 8 9 4 6

It can be verified easily that for this design s = 2, s′ = 2, r ′ = 3. �

The analysis is based on the following model:

y = µI + Xττ + Xββ + Xγ γ + e (2.23)

or

yij� = µ + τi + βj + γ� + eij�

where τi and βj are as defined previously and γ� is the (fixed) effect of the �th
replication group (� = 1, 2, . . . , s′). Since the replication groups are orthogonal to
blocks and to treatments, the procedure for estimating linear contrasts of treatment
effects is the same as before. More specifically, the RNE (2.9) are unchanged
and the combined estimators are obtained by using (2.17).

The only change occurs with regard to the estimation of σ 2
e . This is reflected

in the analysis of variance according to model (2.23) as given in Table 2.2. The
form of this analysis of variance table shows a certain similarity to that of the
Latin square design except that treatments and blocks are not orthogonal. But
having sources of variation due to blocks and replication groups orthogonal to
blocks achieves elimination of heterogeneity in two directions and hence leads
to a reduction of the residual variance.

As can be seen from Example 2.3 and model (2.23), the replication groups
play the same role as the columns in a Latin square type of design. It is for this
reason that such designs have also been referred to as Latinized incomplete block
designs (Harshbarger and Davis, 1952; John and Williams, 1995).
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Table 2.2 ANOVA for BIB Design with Replication
Groups Across Blocks

Source d.f. SS

Xβ |I, Xγ b − 1
1

k

∑
j

B2
j − G2

n

Xγ |I,Xβ,Xτ s′ − 1
1

r ′t
∑

�

R2
� − G2

n

Xτ |I,Xβ, Xγ t − 1
∑

i

τ̂iQi

I |I,Xβ, XτXτ n − t − b − s′ + 2 Subtraction

Total n − 1
∑
ij�

y2
ij� − G2

n

R� = total of �th replicate.

As a special case of designs described in this section we mention the following
definition.

Definition 2.3 A BIB design that can be arranged in replication groups across
blocks, each group containing a complete replicate (i.e., r ′ = 1, s′ = r = k), is
called a Youden square design (see I.10.5).

These designs, which for obvious reasons are also called incomplete Latin
square designs, were first introduced by Youden (1937, 1940). They overcome
the most severe objection to Latin square designs, namely that the number of
replications (of each treatment) is the same as the number of treatments, t , which
for large t is difficult to achieve from a practical point of view. Also, the block
size in a Latin square design will then usually become too large.

It was shown by Hartley and Smith (1948) that for all incomplete block designs
in which the number of treatments is equal to the number of blocks, such arrange-
ments exist. Their proof provides, in fact, a general procedure of constructing a
Youden square from a given symmetrical BIB design. This is accomplished by
repeatedly interchanging the positions of pairs of treatments in the same block.
A list of Youden squares is given by Cochran and Cox (1957, 1992). �

2.7.2 Grouped Blocks

Designs of this type are characterized by the fact that the first b′ blocks form a
group of α replicates of the t treatments, so do the next b′ blocks, and so on,
these groups of blocks being thereby orthogonal to treatments. If there are q of
such groups, then qb′ = b and qα = r .
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Following Shrikhande and Raghavarao (1963) we formalize this in the fol-
lowing definition.

Definition 2.4 A BIB design with parameters t , b, k, r , λ that can be arranged
in groups of blocks, each group containing α replicates of the t treatments, is
said to be α-resolvable.

This concept of α-resolvability is an extension of the concept of resolvability
given by Bose (1942), which refers to the case α = 1.

The following design is an example of a 3-resolvable design. �

Example 2.4 Consider the following design with parameters t = t, b = 10,

k = 3, 4 = 6, λ = 3:

Replication
Block Treatment Group

1 1 2 3

2 1 2 5

3 1 4 5 I

4 2 3 4

5 3 4 5

6 1 2 4

7 1 3 4

8 1 3 5 II

9 2 3 5

10 2 4 5

We find b′ = 5, q = 2, α = 3. �

For α-resolvable BIB designs inequality (2.6) can be improved as follows.

Theorem 2.2 If a BIB design with parameters t , b, k, r , λ is α-resolvable,
then the following inequality must hold:

b ≥ t + q − 1 (2.24)

Proof Since for an α-resolvable BIB design there exist q − 1 linearly inde-
pendent relationships between the columns of N , we have

t = rank(NN ′) = rank(N) ≤ b − q + 1

which implies (2.24). �
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Definition 2.5 An α-resolvable BIB design is called affine α-resolvable if
any pair of blocks in the same replication group have q1 treatments in common
and if any pair of blocks from two different replication groups have q2 treatments
in common. �

For affine α-resolvable BIB designs the following results are due to Shrikhande
and Raghavarao (1963).

Theorem 2.3 In an affine α-resolvable BIB design k2/t is an integer.

Proof Without loss of generality consider the first block in the first replication
group, B11 say. By definition, B11 has q2 treatments in common with every block
in the remaining q − 1 replication groups, each group consisting of b/q blocks.
Hence

(q − 1)
b

q
q2 = k(r − α)

which, since αq = r , yields q2 = k2/t . Since q2 is an integer, k2/t is an integer.
�

Theorem 2.4 For an affine α-resolvable BIB design, the equality

b = t + q − 1 (2.25)

holds.

Proof We shall give here the proof for α = 1 following Bose (1942) and
refer to Shrikhande and Raghavarao (1963) for the general case.

Consider a resolvable BIB design. We then have

t = b′k b = b′r (2.26)

since the b blocks are divisible into r sets of b′ blocks each, each set containing
each treatment exactly once. Let the blocks belonging to the ith set, Si , be denoted
by Bi1, Bi2, . . . , Bib′ for i = 1, 2, . . . , r . Consider now a particular block, B11
say. Let �ij be the number of treatments common to blocks B11 and Bij (i =
2, . . . , r; j = 1, 2, . . . , b′). Further, let m denote the average and s2 the variance
of the b′(r − 1) numbers �ij .

Now each of the k treatments in B11 is replicated r times, and since the
design is resolvable, that is, 1-resolvable, a given treatment in B11 will occur in
exactly one block each in the r − 1 other sets, S2, S3, . . . , Sr . This is true for all
k treatments in B11, and hence∑

ij

�ij = k(r − 1) (2.27)
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and therefore

m = k

b′ = k2

t
(2.28)

using (2.26) for the last expression.
Further, the k(k − 1)/2 pairs of treatments in B11 each occur λ − 1 times

together in the sets S2, S3, . . . , Sr . Hence

1

2

∑
ij

�ij (�ij − 1) = 1

2
(λ − 1)k(k − 1)

and therefore, using (2.27)∑
ij

�2
ij = k[r − 1 + (λ − 1)(k − 1)] (2.29)

Since

λ = r(k − 1)

t − 1
= r(k − 1)

b′k − 1

we rewrite (2.29) as

∑
ij

�2
ij = k[(b′k − 1)(r − k) + r(k − 1)2]

b′k − 1

Then we find after some algebra, using (2.28), (2.29), and (2.26),

s2 =

∑
ij

(�ij − m)2

b′(r − 1)

=

∑
ij

�2
ij

b′(r − 1)
− m2

= k(t − k)(b − t − r + 1)

b′2(r − 1)(t − 1)
(2.30)

Since s2 ≥ 0, (2.30) implies, of course, the earlier result (2.24), with q = r for
α = 1.

We now consider an affine resolvable BIB design. Then, by definition, �ij = q2

for all i, j . Hence s2 of (2.30) equals zero, which implies (2.25) with q = r for
a 1-resolvable BIB design. �
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Corollary 2.1 If the parameters of a BIB design satisfy (2.25) and k2/t is
not an integer, then the design is not resolvable.

Example 2.5 An example of an affine resolvable BIB design is given by
the following design with parameters t = 8, b = 14, k = 4, r = 7, λ = 3, b′ =
2, q = 7, q1 = 0, q2 = 2, α = 1:

Replication
Block Treatments Group

1 1 2 3 4

2 5 6 7 8
I

3 1 2 7 8

4 3 4 5 6
II

5 1 3 6 8

6 2 4 5 7
III

7 1 4 6 7

8 2 3 5 8
IV

9 1 2 5 6

10 3 4 7 8
V

11 1 3 5 7

12 2 4 6 8
VI

13 1 4 5 8

14 2 3 6 7
VII

A natural model for the analysis of such a design is

y = µI + Xττ + Xηη + Xβ∗β∗ + e (2.31)

or

yij� = µ + τi + ηj + β∗
j� + eij�

where ηj is the (fixed) effect of the j th replication group (j = 1, 2, . . . , q) and
β∗

j� is the effect of the �th block in the j th group (� = 1, 2, . . . , b′). This brings
out the point that the blocks are nested in the replication groups and, hence, in the
case of the β∗

j� being random variables (as assumed for the combined analysis),

that σ 2
β∗ now measures the variability of the blocks within groups. Since b′ < b,
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it can then usually be concluded that σ 2
β∗ for this design will be smaller than the

corresponding σ 2
β in the BIB design without grouping of blocks. Consequently,

only the part of the analysis of variance that deals with the estimation of σ 2
β∗

(to be used for the combined analysis, in particular, using the Yates estimator)
is affected when using this design and model (2.31). This is shown in Table 2.3,
where Rj refers to the total of the j th replication group, and Bj� refers to the
total of the �th block within the j th replication group. �

2.7.3 α-Resolvable BIB Designs with Replication Groups Across Blocks

The designs of this type combine the properties of the designs discussed in
Sections 2.7.1 and 2.7.2 and hence lead to a possible reduction in both σ 2

e and σ 2
β .

Example 2.6 As an example we consider the following BIB design with
parameters t = 6, b = 15, k = 4, r = 10, λ = 6:

Replication Groups
Across Blocks

Replication
Block I II Group

1 1 2 3 4
2 1 5 4 6 I
3 2 3 5 6

4 1 2 3 5
5 1 2 4 6 II
6 3 5 4 6

7 1 3 2 6
8 4 5 1 3 III
9 4 6 2 5

10 2 4 1 5
11 5 6 1 3 IV
12 3 6 2 4

13 5 6 1 2
14 4 6 1 3 V
15 3 4 2 5

We find that r ′ = 5, s′ = 2, α = 2, q = 5 in the notation of Sections 2.7.1
and 2.7.2. �

A natural model for this type of design is

y = µI + Xττ + Xγ γ + Xηη + Xβ∗β∗ + e (2.32)
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Table 2.3 Analysis of Variance for Resolvable BIB Design

Source d.f. SS E(MS)

Xτ |I,Xη t − 1
1

r

∑
i

T 2
i − G2

n

Xη|I, Xτ q − 1
1

b′k
∑
j

R2
j − G2

n

Xβ∗ |I,Xτ , Xη b − q Difference σ 2
e + n − t − k(q − 1)

b − q
σ 2

β∗

I |I,Xτ ,Xη,Xβ∗ n − t − b + 1
∑
ij�

y2
ij� −

∑
i

τ̂iQi

−1

k

∑
j�

B2
j� σ 2

e

Total n − 1
∑
ij�

y2
ij� − G2

n

or

yij�u = µ + τi + γj + η� + β∗
�u + eij�u

where all the parameters are as previously defined.
The analysis of variance associated with (2.32) follows easily from those

presented in Tables 2.2 and 2.3 with the partitioning of the total d.f. as given in
Table 2.4.

Table 2.4 Outline of Analysis of Variance
for Model (2.32)

Source d.f.

Xτ |I, Xγ , Xη t − 1

Xγ |I,Xτ , Xη s′ − 1

Xη|I, Xτ , Xγ q − 1

Xβ∗ |I,Xτ ,Xγ , Xη b − q

I |I,Xτ ,Xγ , Xη,Xβ∗ n − t − b − s′ + 2

Total n − 1
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2.8 RESISTANT AND SUSCEPTIBLE BIB DESIGNS

2.8.1 Variance-Balanced Designs

The class of BIB designs belongs to the class of variance-balanced designs, that
is, designs for which every normalized estimable linear function of the treatment
effects is estimated with the same variance. It is easy to establish the following
theorem.

Theorem 2.5 A necessary and sufficient condition for a connected design to
be variance balanced is that its C matrix is of the form

C = c1I + c2II′ (2.33)

Proof For an IBD with rank C = t − 1 let ξ1, ξ2, . . . , ξ t−1, ξ t = (1/
√

t)I

be a set of orthonormal eigenvectors of C. If we write

O =
(

O1
...

1√
t
I

)
then

O ′CO =
(

D 0′

0 0

)

where D = diag(di). Then the RNE

Cτ̂ = Q

can be written as

O ′COO ′τ̂ = O ′Q

or (
D 0′

0 0

)(
O ′

1τ̂

0

)
=

(
O1Q

0

)

Hence

O ′
1τ̂ = D−1O1Q

with

var(O ′
1τ̂ ) = D−1O ′

1CO1D
−1σ 2

e

= D−1σ 2
e
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For a variance-balanced design we must then have D = dI . It then follows
that

C = O

(
dI 0

0′ 0

)
O ′

= dO1O
′
1 − d

(
I − 1√

t
II′

)
[see (1.17)] which we can write as

C = c1I + c2II′

which is (2.33). Obviously, if C is of the form (2.33), the design is variance
balanced. �

Further, among all binary, equireplicate, proper designs the BIB designs are
the only variance-balanced designs. There do exist, however, variance-balanced
designs with unequal block sizes, for example.

2.8.2 Definition of Resistant Designs

An interesting question then is: If from a BIB design one or several treatments are
deleted, is the resulting design still variance balanced? In general the answer will
be negative, but for some designs the answer will be, more or less, positive. Such
designs have been called resistant BIB designs by Hedayat and John (1974) who
have also given a characterization of such designs and have shown their existence.
We shall give some results.

Let D be a BIB design with parameters t, b, k, r, λ and let D∗ be the design
obtained from D by deleting all experimental units that received a certain subset
L of ν(≤ t − 2) treatments. Following Hedayat and John (1974) we then consider
the following definitions.

Definition 2.6 The design D is said to be globally resistant of degree ν if
D∗ is variance balanced when any subset L of ν treatments is deleted. �

Definition 2.7 The design D is said to be locally resistant of degree ν if D∗
is variance balanced only with respect to certain subsets L of ν treatments. �

Definition 2.8 The design D is said to be susceptible if there exist no subsets
L such that D∗ is variance balanced. �
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2.8.3 Characterization of Resistant Designs

Of particular interest, from a practical point of view, are resistant designs (locally
and globally) of degree 1. It may happen that the researcher feels that a particular
treatment, say a drug, may have to be discontinued before the termination of the
experiment. If a BIB design had been chosen for this experiment to achieve
equal precision for treatment comparisons, then such a course of action might
destroy this feature, unless the BIB design is globally resistant of degree 1 or
locally resistant of degree 1 with respect to treatment θ , say, and the treatment
in question has been assigned the number θ .

To characterize suitable designs, let D denote a BIB design with parameters t ,
b, k, r , λ and let D be divided into two parts Dθ and Dθ . Design Dθ consists of
all the blocks of D that contain the treatment θ , and Dθ consists of the remaining
blocks of D that do not contain the treatment θ . If N , Nθ , N θ are the incidence
matrices of D, Dθ , and Dθ , respectively, then

N = (N θ ,N θ ) (2.34)

with

NN ′ = N θN
′
θ + N θN

′
θ

= (r − λ)I + λII′

Now suppose that treatment θ has been deleted from D, that is, from Dθ . Call
the resulting designs D∗ and D∗

θ , respectively, and their corresponding incidence
matrices N∗ and N∗

θ . Also, let N∗
θ

be the incidence matrix obtained from N θ

in (2.34) by deleting the row (of zeros) corresponding to θ , and call the corre-
sponding design D∗

θ
. We then have the following theorem due to Hedayat and

John (1974).

Theorem 2.6 The BIB design D is locally resistant with respect to θ if and
only if Dθ is a BIB design.

Proof Let C∗ denote the C matrix for D∗. Then, with

N∗ = (N∗
θ , N

∗
θ
)

a (t − 1) × b incidence matrix, we have

C∗ = rI t−1 − 1

k − 1
N∗

θN
∗′
θ − 1

k
N∗

θ
N∗′

θ
(2.35)

Since D∗
θ and D∗′

θ
are derived from the BIB design D, we know that if the general

(off-diagonal) element in N∗
θ
N∗′

θ
is λij , the corresponding element in N∗

θN
∗′
θ must

be λ − λij . Hence, the diagonal and off-diagonal elements of C∗ are

c∗
ii = r − λ

k − 1
− r − λ

k
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c∗
ij = −λ − λij

k − 1
− λij

k

= −λij

(
1

k
− 1

k − 1

)
− λ

k

Hence C∗ of (2.35) is of the form (2.33) if and only if all λij are equal, that is, if
D∗

θ
and hence Dθ is a BIB design (with parameters t1 = t − 1, b1 = b − r, k1 =

k, r1 = r − λ, λ1). �

We illustrate this theorem with the following example.

Example 2.7 The following plan, D, is a BIB design with parameters t =
8, b = 14, k = 4, r = 7, λ = 3:

1 2 3 4

5 6 7 8

1 2 7 8

3 4 5 6

1 3 6 8

2 4 5 7

1 4 6 7

2 3 5 8

1 2 5 6

3 4 7 8

1 3 5 7

2 4 6 8

1 4 5 8

2 3 6 7

Let θ = 1; then D1 is given by

5 6 7 8

3 4 5 6

2 4 5 7

2 3 5 8

3 4 7 8

2 4 6 8

2 3 6 7
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This is a BIB design with t1 = 7, b1 = 7, k1 = 4, r1 = 4, λ1 = 2. Hence D is
resistant w.r.t. treatment 1.

The design D∗ obtained from design D in Example 2.7 provides an illustration
of the construction of an equireplicate, variance-balanced incomplete block design
for t∗ = 7 treatments with unequal block sizes. In particular, we have here b∗ =
14 blocks, with 7 blocks of size k∗

1 = 3 and 7 blocks of size k∗
2 = 4. �

Corollary 2.2 The BIB design D is globally resistant of degree 1 if and
only if Dθ is a BIB design for all θ of D.

Corollary 2.3 The property of being a resistant BIB design depends not only
on the parameters of D but also in the way D has been constructed.

An interesting example of this is provided by Hedayat and John (1974).

Corollary 2.4 The BIB design D is locally resistant w.r.t. θ if and only if
every triple containing θ appears the same number of times in D.

Proof From the proof of Theorem 2.6 it follows that if D∗
θ

is a BIB design,
then also D∗

θ is a BIB design, that is, every pair of treatments (other than θ )
appears together the same number of times. Hence in Dθ (and therefore in D)
every triple containing θ appears together the same number of times. �

This leads one to another characterization of globally resistant designs of
degree 1. Before we state this we give the following definition.

Definition 2.9 An incomplete block design in which each triple of treatments
occurs together the same number of times, δ, is referred to as a doubly balanced
incomplete block (DBIB) design.

This definition is due to Calvin (1954), and such designs and their properties
have been discussed by Calvin (1954) and Raghavarao and Thartare (1967, 1970).
The design given in Example 2.7 is a DBIB design with δ = 1. �

Based on Definition 2.9 and the proof of Corollary 2.4 we then have the
following theorem.

Theorem 2.7 A BIB design D is globally resistant of degree 1 if and only
if it is a DBIB design.

Existence, construction, and properties of resistant BIB designs have been
discussed by Hedayat and John (1974) and John (1976), and we shall not go into
this, except for the following theorem.

Theorem 2.8 Every symmetric BIB design with blocks of size k is locally
resistant of degree k.
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The proof follows immediately from the construction procedure of BIB designs
described in Section 3.2.

An interesting follow-up to Theorem 2.8 is provided by Baksalary and Puri
(1990). They show that the symmetry of the design is both necessary and suf-
ficient for the local resistance of degree k with respect to L consisting of k

treatments that occur in exactly one block of the design if we demand D∗ to be
a BIB design (rather than just a variance-balanced design).

2.8.4 Robustness and Connectedness

Another form of robustness of BIB designs is concerned with the question to what
extent the unavailability of observations, such as missing or lost observations,
affects the property of connectedness of the BIB design.

Following Ghosh (1982) we give the following definition.

Definition 2.10 A BIB design is said to be robust against unavailability of
any s observations if the block design obtained by omitting any s observations
remains a connected design. �

Using the notion of a bipartite graph, consisting of the subsets T =
(1, 2, . . . , t) and B = (1, 2, . . ., b), and the notion of connectedness (see
Section 1.5) Ghosh (1982) then proves the following theorems.

Theorem 2.9 A BIB design is robust against the unavailability of any s ≤
r − 1 observations.

Theorem 2.10 A BIB design is robust against the availability of all obser-
vations in b0 ≤ r − 1 blocks.

With regard to Theorem 2.10, of particular interest is the case b0 = 1. This
case is considered by Srivastava, Gupta, and Dey (1990) who show that the
efficiency factor for the resulting design relative to the original BIB design is
given by

E = (λt − k)(t − 1)/(λt2 − λt − tk + k2)

Considering many of the existing BIB designs, they found that for most designs
E > .80.
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Construction of Balanced
Incomplete Block Designs

3.1 INTRODUCTION

In Chapter 2 we discussed at great length the nature of BIB designs and their
associated analyses. Although extensive lists of actual plans of such designs are
available (see Cochran and Cox, 1957; Fisher and Yates, 1957; Beyer, 1991),
these lists do not cover all presently existing BIB designs. Also, it is desirable
to have some understanding of the combinatorics of design and of the result-
ing algebras. The actual structure has, naturally, an impact on the analysis of
resulting data.

Several methods of constructing BIB designs have been introduced (for refer-
ences, see Raghavarao, 1971) using such mathematical tools as finite Euclidian
and projective geometries. We shall present here a very powerful and at the same
time a quite simple method, the method of cyclical development of initial blocks,
which is due to Bose (1939). With this method one can construct most of the
existing BIB designs (Rao, 1946b) as one can see from the essentially complete
listing of BIB designs given by Raghavarao (1971). Mainly from a historical
point we shall also discuss some other methods.

3.2 DIFFERENCE METHODS

3.2.1 Cyclic Development of Difference Sets

The basic ideas of this method of constructing BIB designs are as follows:

1. We have a set of t treatments that we denote by T = {t0, t1, . . . , tt−1}.

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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2. We have a set of s initial blocks, each containing k treatments. Suppose
we denote these initial blocks by

Bj0 = (tj1, tj2, . . . , tjk) (j = 1, 2, . . . , s)

where the tj i (i = 1, 2, . . . , k) are elements in T . The Bj0 are chosen in
a particular way such that they satisfy certain properties (which we shall
discuss below).

3. Each initial block Bj0 is then developed cyclically, that is, by forming

Bjθ = (tj1 + tθ , tj2 + tθ , . . . , tjk + tθ )

for θ = 1, 2, . . . , t − 1 assuming that we have an addition rule such that
with tj i , tθ ∈ T also tj i + tθ ∈ T (θ = 0, 1, . . . , t − 1) and tj i + t0 = tj i .

4. The set of blocks {Bjθ ; j = 1, 2, . . . , s; θ = 0, 1, . . . , t − 1} forms then a
BIB design with parameters t, b = st, k, r = sk, λ.

The crucial part of this method is obviously the choice of T and the initial
blocks Bj0 (j = 1, 2, . . . , s). To discuss their properties we shall confine our-
selves at first to the case s = 1, that is, one initial block, B0 say. Extensions to
other situations will then become fairly obvious.

We start with the following definition.

Definition 3.1 Let G = 0, 1, . . . , t − 1 be an Abelian group under addition,
that is, for g1, g2 ∈ G define g1 + g2 to be g1 + g2 mod t and define g1 − g2 to
be g, where g2 + g = g1 mod t . Let A be a subset (of G) of k elements such that
the k(k − 1) differences (mod t) between members of A comprise all nonzero
elements of G exactly λ times. Then A is called a difference set of size k. �

Example 3.1 Let t = 7, G = {0, 1, 2, 3, 4, 5, 6},A = {0, 1, 3}. The differ-
ences between members in A are 0 − 1 ≡ 6, 0 − 3 ≡ 4, 1 − 0 ≡ 1, 1 − 3 ≡
−2 ≡ 5, 3 − 0 ≡ 3, 3 − 1 ≡ 2, and hence λ = 1. �

Taking T = G, we now state the main result of this chapter in the form of the
following theorem.

Theorem 3.1 Let A be a difference set of size k for a group G of t elements
such that each nonzero difference occurs λ times. If the set A is taken as the
initial block B0 and developed cyclically, it generates a symmetrical BIB design
with parameters t, b = t, r = k, λ.

Proof Let A = B0 = {g1, g2, . . . , gk} with gi ∈ G(i = 1, 2, . . . , k). By cycli-
cally developing B0, each element in G occurs exactly once in each of the k posi-
tions; hence each element occurs in the b sets (blocks) Bθ (θ = 0, 1, . . . , t − 1)

exactly k times. The only property of a BIB design that needs to be shown then
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to hold is that any two elements (treatments) occur together in λ blocks. To see
this, consider without loss of generality gu, gv, ∈ G. Suppose that for gu′, gv′ ∈ A

we have
gu = gu′ + θ

(3.1)
gv = gv′ + θ

that is, gu and gv occur together in Bθ . Then

gu − gu′ = gv − gv′

or
gu − gv = gu′ − gv′

Now gu − gv = c with c ∈ {1, 2, . . . , t − 1}. Since A is a difference set, we
know that there exist λ differences of the form gu′ − gv′ with the same constant
c. Hence there exist exactly λ solutions to (3.1) as equations in θ . Call these
solutions θ1, θ2, . . . , θλ. It then follows that gu and gv appear together in blocks
Bθ1, Bθ2, . . . , Bθλ

, which proves the theorem. �

As an illustration reconsider the following example.

Example 3.2 Let t = 7,G = {0, 1, 2, 3, 4, 5, 6, }, A = B0 = {0, 1, 3}, λ = 1.
The BIB design then is

(0, 1, 3)

(1, 2, 4)

(2, 3, 5)

(3, 4, 6)

(4, 5, 0)

(5, 6, 1)

(6, 0, 2)

where each row represents a block. �

It is now easy to generalize this procedure to the case of several initial blocks.
We do this in the next theorem.

Theorem 3.2 Let A = {B10, B20, . . . ,Bs0} consist of s sets of k elements
each such that among the sk(k − 1) differences between the elements in each set
each nonzero element of G occurs exactly λ times. Developing each set cyclically
yields a BIB design with parameters t, b = st, k, r = sk, λ.

The proof follows along the same lines as that of Theorem 3.1.
To illustrate Theorem 3.2 we consider the following example.
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Example 3.3 Let t = 11,G = {0, 1, . . . , 10}, and

B10 = (0, 1, 10)

B20 = (0, 2, 9)

B30 = (0, 4, 7)

B40 = (0, 8, 3)

B50 = (0, 5, 6)

The differences resulting from

B10 are 10, 1, 1, 2, 10, 9

B20 are 9, 2, 2, 4, 9, 7

B30 are 7, 4, 4, 8, 7, 3

B40 are 3, 8, 8, 5, 3, 6

B50 are 6, 5, 5, 10, 6, 1

Inspection shows that λ = 3 and hence A = {B10, . . . , B50} satisfies the condi-
tion of Theorem 3.2. The resulting BIB design with 11 treatments in 55 blocks
of size 3 and 15 replicates per treatment is then as follows:

(0, 1, 10) (0, 2, 9) (0, 4, 7) (0, 8, 3) (0, 5, 6)
(1, 2, 0) (1, 3, 10) (1, 5, 8) (1, 9, 4) (1, 6, 7)
(2, 3, 1) (2, 4, 0) (2, 6, 9) (2, 10, 5) (2, 7, 8)
(3, 4, 2) (3, 5, 1) (3, 7, 10) (3, 0, 6) (3, 8, 9)
(4, 5, 3) (4, 6, 2) (4, 8, 0) (4, 1, 7) (4, 9, 10)
(5, 6, 4) (5, 7, 3) (5, 9, 1) (5, 2, 8) (5, 10, 0)
(6, 7, 5) (6, 8, 4) (6, 10, 2) (6, 3, 9) (6, 0, 1)
(7, 8, 6) (7, 9, 5) (7, 0, 3) (7, 4, 10) (7, 1, 2)
(8, 9, 7) (8, 10, 6) (8, 1, 4) (8, 5, 0) (8, 2, 3)
(9, 10, 8) (9, 0, 7) (9, 2, 5) (9, 6, 1) (9, 3, 4)
(10, 0, 9) (10, 1, 8) (10, 3, 6) (10, 7, 2) (10, 4, 5)

We note that this design could be used as a Youden square with 5 replication
groups of 11 blocks each (see Section 2.6.1) �

3.2.2 Method of Symmetrically Repeated Differences

So far the procedure of cyclic development has led to BIB designs with the
number of blocks being a multiple of the number of treatments. As exemplified
in Example 3.3, this can mean a rather large number of blocks. This number can
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possibly be reduced, however, if the number t can be factored, say t = pq. For
this situation the notion of a difference set and hence the construction procedure
can be modified as follows (Bose, 1939).

Consider a finite additive group G containing p elements, G = {a(0), a(1), . . . ,

a(p−1)} say. To each element of the group G let there correspond q symbols, the
symbols associated with a(u) being denoted by a

(u)
1 , a

(u)
2 , . . . , a

(u)
q . Symbols with

the subscript j are said to belong to the j th class, that is, a
(0)
j , a

(1)
j , . . . , a

(p−1)
j

belong to the j th class. We consider differences of the form a
(u)
i − a

(v)
j , which

are called differences of type (i, j), and their value is given by a(u) − a(v) = d ,
say, where d ∈ G. When i = j , the differences are called pure, when i �= j the
differences are called mixed, there being q types of pure differences and q(q − 1)

types of mixed differences.
We then have the following definition.

Definition 3.2 Let A = {B10,B20, . . . ,Bs0} be a collection of s sets satis-
fying the following conditions:

1. Each set contains k symbols with

k = n1� + n2� + · · · + nq� (� = 1, 2, . . . , s)

and nj� denoting the number of symbols of the j th class in set �.
2. Among the

∑s
�=1 ni�(ni� − 1) pure differences of type (i, i) arising from

the s sets, every nonzero element of G is repeated exactly λ times for each
i = 1, 2, . . . , q.

3. Among the
∑s

�=1 ni� nj� mixed differences of type (i, j) arising from the s

sets, every element of G is repeated exactly λ times for every (i, j); i, j =
1, 2, . . . , q; i �= j .

If conditions 1–3 are satisfied, the differences are said to be symmetrically
repeated in G, with each difference occurring λ times. �

To illustrate Definition 3.2 we consider the following example.

Example 3.4 Let t = 10, p = 5, q = 2, G = {0, 1, 2, 3, 4},
A : B10 = (02, 12, 22) B20 = (11, 41, 02)

B30 = (21, 31, 02) B40 = (11, 41, 22)

B50 = (21, 31, 22) B60 = (01, 02, 22)

that is,
n11 = 0 n21 = 3
n12 = 2 n22 = 1
n13 = 2 n23 = 1
n14 = 2 n24 = 1
n15 = 2 n25 = 1
n16 = 1 n26 = 2
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Pure differences of type (1, 1): 1 − 4 = −3 ≡ 2
4 − 1 = 3 ≡ 3
2 − 3 = −1 ≡ 4
3 − 2 = 1 ≡ 1
1 − 4 = −3 ≡ 2
4 − 1 = 3 ≡ 3
2 − 3 = −1 ≡ 4
3 − 2 = 1 ≡ 1 : λ = 2

Pure differences of type (2, 2): 0 − 1 = −1 ≡ 4
0 − 2 = −2 ≡ 3
1 − 0 = 1 ≡ 1
1 − 2 = −1 ≡ 4
2 − 0 = 2 ≡ 2
2 − 1 = 1 ≡ 1
0 − 2 = −2 ≡ 3
2 − 0 = 2 ≡ 2 : λ = 2

Mixed differences of type (1, 2): 1 − 0 = 1 ≡ 1

4 − 0 = 4 ≡ 4

2 − 0 = 2 ≡ 2

3 − 0 = 3 ≡ 3

1 − 2 = −1 ≡ 4

4 − 2 = 2 ≡ 2

2 − 2 = 0 ≡ 0

3 − 2 = 1 ≡ 1

0 − 0 = 0 ≡ 0

0 − 2 = −2 ≡ 3 : λ = 2

Mixed differences of type (2, 1) are the negative values of the differences of type
(1, 2): λ = 2. Hence A satisfies conditions 1–3. �

Now we let the pq symbols a
(u)
j (u = 1, 2, . . . , p, j = 1, 2, . . . , q) represent

the t treatments. The method of cyclic development is then used again to generate
BIB designs as described in the following theorem.

Theorem 3.3 Let it be possible to find a collection of s sets A = {B10,B20,

. . . ,Bs0} satisfying the following conditions:

i. Among the ks symbols (treatments) occurring in the s sets (blocks), exactly
r symbols belong to the j th class (j = 1, 2, . . . , q), that is, ks = qr .

ii. The differences in A are symmetrically repeated, each occurring λ times.
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Then, if each set in A is cyclically developed, obtaining B�θ by adding θ ∈
G to each element in B�0(� = 1, 2, . . . , s) and retaining the class number, the
resulting ps sets B�θ (� = 1, 2, . . . , s; θ ∈ G) form a BIB design with parameters
t = pq, b = ps, k, r = ks/q, λ.

The proof follows arguments similar to those used in the proof of Theorem
3.1 (for more details see Raghavarao, 1971).

We shall illustrate this procedure with a continuation of Example 3.4.

Example 3.4 (Continued) Let t = 10 = 5 × 2, G = {0, 1, 2, 3, 4}. Develop-
ing the initial blocks given earlier, we obtain the following BIB design with
t = 10, b = 30, k = 3, r = 9, λ = 2:

(02, 12, 22) (11, 41, 02) (21, 31, 02)

(12, 22, 32) (21, 01, 12) (31, 41, 12)

(22, 32, 42) (31, 11, 22) (41, 01, 22)

(32, 42, 02) (41, 21, 32) (01, 11, 32)

(42, 02, 12) (01, 31, 42) (11, 21, 42)

(11, 41, 22) (21, 31, 22) (01, 02, 22)

(21, 01, 32) (31, 41, 32) (11, 12, 32)

(31, 11, 42) (41, 01, 42) (21, 22, 42)

(41, 21, 02) (01, 11, 02) (31, 32, 02)

(01, 31, 12) (11, 21, 12) (41, 42, 12)

We can then identify the symbols with the treatments in any way we want to,
such as

Symbol 01 02 11 12 21 22 31 32 41 42

Treatment 1 2 3 4 5 6 7 8 9 10 �

Further modifications of the procedures discussed so far can be achieved
by considering the set of treatments T∞ = {t1, t2, . . . , tv,∞} where G = {t1, t2,
. . . , tv} represents an additive group and the element ∞ is such that ∞ + x = ∞
for any x ∈ G. As an extension of Theorem 3.2 we then have the following
theorem.

Theorem 3.4 Let G be an additive Abelian group with v elements. Let A

represent a collection of s + u initial blocks A = {B10, B20, . . . , Bs0,B
′
10,B

′
20,

. . . , B′
u0}, each of size k, subject to the following conditions:

i. The blocks Bi0(i = 1, 2, . . . , s) contain k elements of G.
ii. The blocks B′

j0(j = 1, 2, . . . , u) contain ∞ and k − 1 elements of G.
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iii. Ignoring ∞, the sk(k − 1) + u(k − 1)(k − 2) differences in A contain
each nonzero member of G the same number, λ, of times.

iv. λ = u(k − 1).

Then developing the blocks in A cyclically by means of the elements in
G (mod v) yields a BIB design with parameters t = v + 1, b = (s + u)v, k, r =
uv, and λ = u(k − 1).

We illustrate this theorem with the following example.

Example 3.5 Let v = 11, T∞ = {0, 1, . . . , 10, ∞}, G = {0, 1, . . . , 10}, s =
1, u = 1, and

B10 = (0, 1, 3, 7, 8, 10)

B′
10 = (∞, 0, 5, 6, 8, 10)

The 30 + 20 = 50 differences yield each nonzero element of G five times,
that is, λ = 5. The resulting BIB design with parameters t = 12, b = 22, k = 6,

r = 11, λ = 5 is given by

(0, 1, 3, 7, 8, 10) (∞, 0, 5, 6, 8, 10)
(1, 2, 4, 8, 9, 0) (∞, 1, 6, 7, 9, 0)
(2, 3, 5, 9, 10, 1) (∞, 2, 7, 8, 10, 1)
(3, 4, 6, 10, 0, 2) (∞, 3, 8, 9, 0, 2)
(4, 5, 7, 0, 1, 3) (∞, 4, 9, 10, 1, 3)
(5, 6, 8, 1, 2, 4) (∞, 5, 10, 0, 2, 4)
(6, 7, 9, 2, 3, 5) (∞, 6, 0, 1, 3, 5)
(7, 8, 10, 3, 4, 6) (∞, 7, 1, 2, 4, 6)
(8, 9, 0, 4, 5, 7) (∞, 8, 2, 3, 5, 7)
(9, 10, 1, 5, 6, 8) (∞, 9, 3, 4, 6, 8)
(10, 0, 2, 6, 7, 9) (∞, 10, 4, 5, 7, 9) �

Theorem 3.4 can be generalized in much the same way that Theorem 3.2
was generalized by defining pq symbols of the form a

(w)
j (w = 1, 2, . . . , p; j =

1, 2, . . . , q) with the a(w) forming an additive group G. These pq symbols are
now referred to as finite symbols to which we adjoin the symbol ∞, so that
T∞ = {a(w)

j (w = 1, 2, . . . , p; j = 1, 2, . . . , q), ∞}. We then have the following
theorem.

Theorem 3.5 Let A = {B10, B20, . . . , Bs0, B
′
10, B

′
20, . . . , B′

u0} satisfy the
following conditions:

i. Each set Bi0(i = 1, 2, . . . , s) contains k different finite symbols.
ii. Each set B′

j0(j = 1, 2, . . . , u) contains ∞ and (k − 1) different finite
symbols.
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iii. Of the finite symbols of the �th class, (pu − λ) occur in the sets {Bi0, i =
1, 2, . . . , s} and λ occur in the sets {B′

j0, j = 1, 2, . . . , u} for each � =
1, 2, . . . , q, implying ks = q(pu − λ), (k − 1)u = qλ.

iv. The differences from the finite symbols in A are symmetrically repeated,
each occurring λ times.

Then developing each set (block) in A cyclically (as in Theorem 3.3) yields
a BIB design with parameters t = pq + 1, b = (s + u)p, k, r = up, λ.

As an illustration consider the following example.

Example 3.6 Let p = 7, q = 2, t = 15, s = 3, u = 2, with

B10 = (01, 11, 31, 02, 22, 62)

B20 = (01, 11, 31, 12, 52, 62)

B30 = (01, 41, 51, 02, 12, 32)

B′
10 = (∞, 01, 02, 12, 22, 42)

B′
20 = (∞, 01, 31, 51, 61, 02)

The reader can check easily that conditions (iii) and (iv) are met with λ = 5.
Hence the resulting design is a BIB design with parameters t = 15, b = 35, k =
6, r = 14, λ = 5. �

3.2.3 Formulation in Terms of Galois Field Theory

In all the examples given so far, the additive group G has been written as G =
{0, 1, . . . , t − 1} or G = {0, 1, . . . , v − 1}, representing the residues mod t or
mod v, respectively. If t or v is prime or prime power, the elements of G can be
expressed also in terms of the powers of a primitive root of the Galois field GF(t)

or GF(v), respectively. For a discussion of Galois fields we refer to Appendix A.
Since G can be expressed in terms of all powers of a primitive root of GF(t),

then also A can be represented in terms of certain powers of such a primitive
root. It is this fact that makes this representation useful. The reader will have
noticed that the construction procedures presented in Theorems 3.1–3.5 depend
upon the existence of difference sets, but we have not yet said how these can be
obtained. One way, certainly, is by trial and error, but that is feasible only for
small t and not very satisfactory in general. A more direct way is to make use of
mathematical results that for certain forms of t give general explicit expressions
for certain types of difference sets in the form of powers of primitive roots.
For example, if t = 10� + 1 is a prime or prime power and x is a primitive
root of GF(10� + 1), then the � sets Bi0 = (xi , x2�+i , x4�+i , x6�+i , x8�+i), i =
0, 1, . . . , � − 1 form a difference set A with λ = 2. As an illustration consider
the following example.
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Example 3.7 Let t = 11, � = 1, then A = B00 = (x0, x2, x4, x6, x8), which,
with x = 2 being a primitive root of GF(11), translates into

B00 = (1, 4, 5, 9, 3)

and that can then be used in Theorem 3.1 to construct a BIB design with t =
11, b = 11, k = 5, r = 5, λ = 2. �

We shall not pursue this any further here, but refer the reader to Raghavarao
(1971) for an extensive list of such results and further references.

3.3 OTHER METHODS

To complete this chapter we mention briefly four other methods that give rise
to quite a number of BIB designs. Of these methods, one is a simple direct
construction procedure, two derive new BIB designs from existing BIB designs,
and the last is based on notions of factorial experiments.

3.3.1 Irreducible BIB Designs

This method is applicable mainly for small t and consists of taking of the t

symbols all possible combinations of k symbols. This leads to a BIB design with
parameters t, b = (

t
k

)
, k, r = (

t−1
k−1

)
, λ = (

t−2
k−2

)
.

3.3.2 Complement of BIB Designs

If the collection of blocks D = {B1,B2, . . . , Bb} represents a BIB design with
parameters t, b, k, r , and λ, then, if we let B∗

i = T − Bi , the collection of blocks
D1 = {B∗

1,B
∗
2, . . . ,B

∗
b} represents a BIB design with parameters t1 = t, b1 =

b, k1 = t − k, r1 = b − r, λ1 = b − 2r + λ.
That this is true can be seen as follows: If N denotes the incidence matrix of

the existing BIB design, and N denotes the incidence matrix of its complement,
then

N + N = ItI
′
b

that is,

N = ItI
′
b − N

and hence
N N

′ = (ItI
′
b − N)(ItI

′
b − N)′

= bItI
′
t − ItI

′
bN

′ − NIbI
′
t + NN ′

= (b − 2r)ItI
′
t + NN ′

= (b − 2r)ItI
′
t + (r − λ)I + λItI

′
t

= (r − λ)I + (b − 2r + λ)ItI
′
t
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which implies that N is the incidence matrix of a BIB design, and

r1 = (r − λ) + (b − 2r + λ) = b − r

λ1 = b − 2r + λ

3.3.3 Residual BIB Designs

If the collection of blocks D = {B1, B2, . . . ,Bb} represents a symmetrical BIB
design with parameters t, b = t, k, r = k, λ, then one can consider the design
D2, which is obtained as follows: Select any block from D, say B1, and delete
from each of the remaining blocks B2,B3, . . . , Bb the λ elements it has in com-
mon with B1. Call those sets B∗

2, B
∗
3, . . . , B∗

t . Then D2 = {B∗
2, B

∗
3, . . . , B∗

t } is
the residual BIB design with parameters t2 = t − k, b2 = b − 1, k2 = k − λ, r2 =
k, λ2 = λ.

To see that this is true we show that in a symmetrical BIB design any two
blocks have λ treatments in common. This follows from

N ′NN ′ = N ′[(r − λ)I + λItI
′
t ]

= [(r − λ)I + λItI
′
t ]N

′ (3.2)

since N ′It = I′
bN

′ = rIt ; and since N ′ is nonsingular, (3.2) implies

N ′N = (r − λ)I + λItI
′
t

which is the desired result. The rest is then obvious.

3.3.4 Orthogonal Series

This method is actually the oldest method. These designs are due to Yates (1936b)
and are referred to as quasi-factorial or lattice designs, since their construction is
based on concepts of factorial experiments. The designs generated by these meth-
ods have parameters t = K2, k = K, b = K(K + 1), r = K + 1, λ = 1 with K

prime or prime power. This series of designs is also called orthogonal series 1
(OS1). We shall deal with the construction of OS1 designs in Section 18.3.

An alternative method of constructing these designs is given by Khare and
Federer (1981). This algorithm can be described as follows:

1. Write the treatment numbers 1, 2, . . . , t consecutively in a square array of
K rows and K columns to yield replicate 1 of the resolvable design, with
rows constituting the blocks.

2. Transpose the rows and columns of replicate 1 to obtain replicate 2.
3. Take the main right diagonal of replicate 2 to form the first row of replicate

3, and write the remaining elements in each column of replicate 2 in a cyclic
order in the same column for replicate 3.
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4. Repeat step 3 for replicate 3 to generate replicate 4.
5. Continue this process on the just generated replicate until K + 1 replicates

have been obtained.

As an illustration consider the following example.

Example 3.8 Let t = 16 = 42, k = 4, b = 20, r = 5:

Replicate 1 Replicate 2

1 2 3 4 1 5 9 13
5 6 7 8 2 6 10 14
9 10 11 12 3 7 11 15

13 14 15 16 4 8 12 16

Replicate 3 Replicate 4

1 6 11 16 1 7 9 15

2 7 12 13 2 8 10 16

3 8 9 14 3 5 11 13

4 5 10 15 4 6 12 14

Replicate 5

1 8 11 14

2 5 12 15

3 6 9 16

4 7 10 13

Because of the repeated application of step 3 above, this method has been re-
ferred to as the successive diagonalizing method (Khare and Federer, 1981). �

3.4 LISTING OF EXISTING BIB DESIGNS

Raghavarao (1971) provides a complete list of existing BIB designs with param-
eters t, b ≤ 100, r, k ≤ 15 together with their method of construction. A similar
table with difference sets is given by Takeuchi (1962). Another extensive list
of parameters and references concerning construction of BIB designs for r ≤ 41
and k ≤ t/2 is given by Mathon and Rosa (1996). Table 3.1 gives a list of BIB
designs with t ≤ 25 and k ≤ 11, which can be constructed using the methods
discussed in this chapter. For each design we give the parameters t, b, r, k, λ and
the method by which the design can be constructed. If t is a prime power the ele-
ments in the difference sets are given in terms of powers of the primitive element
x for the primitive polynomials, P(x), given in Table A2 (see Appendix A).
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Table 3.1 BIB Designs with t ≤ 25, k ≤ 11

Design t b r k λ Method

1 3 3 2 2 1 Irreducible

2 4 6 3 2 1 Irreducible

3 4 4 3 3 2 Irreducible

4 5 10 4 2 1 Irreducible

5 5 5 4 4 3 Irreducible

6 5 10 6 3 3 Irreducible

7 6 15 5 2 1 Irreducible

8 6 10 5 3 2 Residual of design 25

9 6 6 5 5 4 Irreducible

10 6 15 10 4 6 Irreducible

11 7 21 6 2 1 Irreducible

12 7 7 6 6 5 Irreducible

13 7 21 15 5 10 Complement of design 11

14 8 28 7 2 1 Irreducible

15 8 14 7 4 3 Difference set:
(∞, 1, 2, 4); (0, 3, 6, 5) mod 7

16 8 8 7 7 6 Irreducible

17 9 36 8 2 1 Irreducible

18 9 18 8 4 3 Difference set:
(x0, x2, x4, x6); (x, x3, x5, x7);
x ∈ GF(32)

19 9 9 8 8 7 Irreducible
20 9 18 10 5 5 Complement of design 18

21 10 45 9 2 1 Irreducible

22 10 30 9 3 2 Difference set: (02, 12, 22, );
(11, 41, 02)(21, 31, 02);
(11, 41, 22, ); (21, 31, 22);
(01, 02, 22) mod 5

23 10 18 9 5 4 Residual of design 42

24 10 10 9 9 8 Irreducible

25 11 11 5 5 2 Difference set:
(1, 4, 5, 9, 3) mod 11

26 11 11 6 6 3 Complement of design 25

27 11 55 10 2 1 Irreducible

28 11 11 10 10 9 Irreducible
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Table 3.1 (Continued )

Design t b r k λ Method

29 11 55 15 3 3 Difference set: (0, 1, 10);
(0, 2, 9) (0, 4, 7)

(0, 8, 3); (0, 5, 6) mod 11

30 12 44 11 3 2 Difference set:
(0, 1, 3); (0, 1, 5);
(0, 4, 6); (∞, 0, 3) mod 11

31 12 33 11 4 3 Difference set:
(0, 1, 3, 7); (0, 2, 7, 8);
(∞, 0, 1, 3) mod 11

32 12 22 11 6 5 Difference set:
(0, 1, 3, 7, 8, 10);
(∞, 0, 5, 6, 8, 10) mod 11

33 13 26 6 3 1 Difference set: (1, 3, 9);
(2, 6, 5) mod 13

34 13 26 12 6 5 Difference set:
(1, 4, 3, 12, 9, 10);
(2, 8, 6, 11, 5, 7) mod 13

35 13 39 15 5 5 Difference set: (0, 1, 8, 12, 5);
(0, 2, 3, 11, 10);
(0, 4, 6, 9, 7) mod 13

36 15 35 7 3 1 Difference set:
(11, 41, 02, ); (21, 31, 02);
(12, 42, 03); (22, 32, 03, );
(13, 43, 01); (23, 33, 01);
(01, 02, 03) mod 5

37 15 35 14 6 5 Difference set:
(∞, 01, 02, 12, 22, 42);
(∞, 01, 31, 51, 61, 02);
(01, 11, 31, 02, 22, 62);
(01, 11, 31, 12, 52, 62);
(01, 41, 51, 02, 12, 32) mod 7

38 16 24 9 6 3 Residual of design 50

39 16 80 15 3 2 Different set:
(x0, x5, x10); (x1, x6, x11);
(x2, x7, x12); (x3, x8, x13);
(x4, x9, x14); x ∈ GF(24)

40 16 48 15 5 4 Difference set:
(x0, x3, x6, x9, x12);
(x1, x4, x7, x10, x13);
(x2, x5, x8, x11, x14);
x ∈ GF(24)
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Table 3.1 (Continued )

Design t b r k λ Method

41 19 57 9 3 1 Difference set:
(1, 7, 11); (2, 14, 3);
(4, 9, 6) mod 19

42 19 19 9 9 4 Difference set:
(1, 4, 16, 7, 9, 17, 11, 6, 5)

mod 19

43 19 19 10 10 5 Complement of design 42

44 19 57 12 4 2 Difference set:
(0, 1, 7, 11); (0, 2, 14, 3);
(0, 4, 9, 6) mod 19

45 21 70 10 3 1 Difference set:
(11, 61, 02); (21, 51, 02);
(31, 41, 02); (12, 62, 03);
(22, 52, 03); (32, 42, 03);
(13, 63, 01); (23, 53, 01);
(33, 43, 01); (01, 02, 03) mod 7

46 21 42 12 6 3 Difference set:
(01, 51, 12, 42, 23, 33);
(01, 11, 31, 02, 12, 32);
(02, 52, 13, 43, 21, 31);
(02, 12, 32, 03, 13, 33);
(03, 53, 11, 41, 22, 32);
(03, 13, 33, 01, 11, 31) mod 7

47 22 77 14 4 2 Difference set:
(11, 61, 32, 42); (31, 41, 22, 52);
(21, 51, 62, 12); (12, 62, 33, 43);
(32, 42, 23, 53); (22, 52, 63, 13);
(13, 63, 31, 41); (33, 43, 21, 51);
(23, 53, 61, 11); (∞, 01, 02, 03);
(∞, 01, 02, 03) mod 7

48 23 23 11 11 5 Difference set:
(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)

mod 23

49 25 50 8 4 1 Difference set:
(0, x0, x8, x16);
(0, x2, x10, x18);
x ∈ GF(52)

50 25 25 9 9 3 See Fisher and Yates (1957)

51 25 100 12 3 1 Difference set:
(x0, x8, x16); (x1, x9, x17);
(x2, x10, x18); (x3, x11, x19);
x ∈ GF(52)
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Partially Balanced Incomplete
Block Designs

4.1 INTRODUCTION

It can be seen very easily from the list of existing BIB designs [see Raghavarao
(1971), Mathon and Rosa (1996), and also Table 3.1] that such designs exist for
certain parameters only and often with an inordinately large number of replicates,
the main reason being that condition (2.4) has to be satisfied with λ being an
integer. For example, using (2.4), with 8 treatments and blocks of 3 units, the
lower limit for the number of replicates is 21, and with this number of replicates
the blocks would consist of all combinations 3 at a time of the treatments. In
fact, Yates himself recognized that BIB designs are “rare” and then developed
different types of quasi-factorial or lattice designs (see Chapter 18). Although
some of the lattice designs are special cases of BIB designs (see Section 3.3.4),
others are special cases of a much larger class of designs, namely partially
balanced incomplete block (PBIB) designs. These were introduced by Bose and
Nair (1939).

Recall that BIB designs have the property that all treatment differences are
estimated with the same accuracy. For PBIB designs this property will not be
sacrificed completely, but only to the extent that, loosely speaking, pairs of treat-
ments can be arranged in different sets such that the difference between the
treatment effects of a pair, for all pairs in a set, is estimated with the same
accuracy.

4.2 PRELIMINARIES

Before giving the definition of a PBIB design, we shall take a look at the reduced
normal equations (1.7) for a general incomplete block design, investigate the

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
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ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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structure of these equations in light of the remarks made in the introduction, and
see what that might imply.

4.2.1 Association Scheme

Recall that the RNE for a proper equireplicate incomplete block design are of
the form [see (1.7)] (

rI − 1

k
NN ′

)
τ̂ = T − 1

k
NB

where

NN ′ =
∑

j

nij ni′j

 = (λii′) (say)

For the BIB design λii′ = λ for all i, i′ (i �= i′) and λii = r for all i. The term
λii′ denotes the number of times that treatments i and i′ appear together in the
same block. We now wish to consider the case that for a given treatment i, the
numbers λii′ are equal within groups of the other treatments. Suppose that over
all i and i′ the λii′ take on the values λ1, λ2, . . . , λm. For the sake of argument we
shall assume that the λu(u = 1, 2, . . . , m) are different although it will become
clear later that this is not necessary. The set of treatments i′ for which λii′ = λ1
will be denoted by S(i, 1) and called the first associates of treatment i. The
set of treatments i′ for which λii′ = λ2 will be denoted by S(i, 2) and called
the second associates of treatment i, and so forth. For any given i then the
remaining treatments fall into one of the sets S(i, 1), S(i, 2), . . . , S(i, m). The
question now is: Under what conditions does this association scheme imply that,
for example, treatment i and all the treatments i′ in S(i, u) are compared with
the same precision and when is this the same for all pairs of uth associates
independent of the treatment i?

4.2.2 Association Matrices

In order to investigate this question we shall use the concept of an association
matrix, which was introduced by Thompson (1958) and investigated in more
detail by Bose and Mesner (1959). Define the uth association matrix, a t × t

matrix, as

Bu = (bu
αβ) (u = 1, 2, . . . , m)

with

bu
αβ =

{
1 if treatment α and β are uth associates

0 otherwise
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At this point it is convenient to introduce B0 = I and λ0 = r . It follows then
from what has been said earlier that

m∑
u=0

Bu = II′ (4.1)

Furthermore,

NN ′ =
m∑

u=0

λuBu (4.2)

and hence

C = rI − 1

k
NN ′ = r

k − 1

k
B0 −

m∑
u=1

λu

k
Bu (4.3)

or in words: The coefficient matrix C of the RNE is a linear combination of the
association matrices.

4.2.3 Solving the RNE

To solve the RNE, we know from (1.17) that

CC̃
−1 = I − 1

t
II′ (4.4)

where C̃ = C + aII′ and a �= 0, real. Using (4.1) and (4.3) we can rewrite (4.4)
in terms of association matrices as follows:(

m∑
u=0

cuBu

)(
m∑

u=0

c∗
uBu

)−1

= t − 1

t
B0 − 1

t

m∑
u=1

Bu (4.5)

where

c0 = r
k − 1

k
cu = −λu

k
(u = 1, 2, . . . , m) c∗

u = cu + a

Now, let (
m∑

u=0

c∗
u Bu

)−1

= G = (gii′) (4.6)

Then we know that for any two pairs (i, i′) and (i, i′′)

var (̂τi − τ̂i′) = (gii + gi′i′ − 2gii′)σ
2
e (4.7)

var (̂τi − τ̂i′′) = (gii + gi′′i′′ − 2gii′′)σ
2
e (4.8)
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Suppose that i′ and i′′ are uth associates of i. Then we would like to have that
(4.7) and (4.8) are equal. One way that this can happen is if

gii = gi′i′ = gi′′i′′

and
gii′ = gii′′ (4.9)

Furthermore, we would like var(̂τj − τ̂j ′) to be equal to the right-hand side of
(4.7) for any pair (j, j ′) that are uth associates. It is obvious that this can be
achieved if G is of the form

G =
m∑

u=0

guBu (4.10)

Substituting (4.10) into (4.5) yields

m∑
u,v=0

cugv BuBv = t − 1

t
B0 − 1

t

m∑
u=1

Bu (4.11)

Since the right-hand side of (4.11) is a linear combination of the Bu’s, the
left-hand side also must be one. This would imply that BuBv is of the form

BuBv =
m∑

k=0

pk
uv Bk (4.12)

that is, BuBv is itself a linear combination of the Bu’s.

4.2.4 Parameters of the Second Kind

It will turn out that the coefficients pk
uv in (4.12) play an important role in

the definition of PBIB designs. It is for this reason that they are referred to as
parameters of the second kind. To understand what they really are and to grasp
the full meaning of (4.12), let us consider two treatments, α and β say. Consider
then the (α, β) element of BuBv and of

∑
k pk

uv Bk . The (α, β) element of
BuBv is of the form

t∑
γ=1

bu
αγ bv

γβ

Since Bu is symmetric (follows from the fact that if α is the �th associate of β,
then β is also the �th associate of α), this is the same as

t∑
γ=1

bu
αγ bv

βγ (4.13)
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which equals the number of unity elements the αth row of Bu and βth row
of Bv have in common, or expressed differently, which equals the number of
treatments that S(α, u) and S(β, v) have in common. The corresponding element
of the right-hand side of (4.12) is

m∑
k=0

pk
uv bk

αβ (4.14)

Because of (4.1) there is only one element bk
αβ equal to one, namely b�

αβ if α

and β are �th associates. Hence

p�
uv =

t∑
γ=1

bu
αγ bv

βγ (4.15)

The left-hand side of (4.15) does not depend explicitly on α and β but only
on the type of association between α and β and hence is the same for any two
treatments that are �th associates. In particular for α = β and u = v we obtain

p0
uu =

t∑
γ=1

(bu
αγ )2 =

t∑
γ=1

bu
αγ = nu (say)

which is the number of elements in S(α, u). This implies that every treatment
has nu uth associates. In summary then, if there exists an association scheme
such that (4.15) holds, then (4.10) and hence (4.9) can be achieved.

4.3 DEFINITION AND PROPERTIES OF PBIB DESIGNS

We now give the formal definition of a PBIB design based on the definition given
by Bose and Shimamoto (1952) and derive some of its properties in terms of its
various parameters.

4.3.1 Definition of PBIB Designs

With the motivation provided in Section 4.2 we now have the following definition.

Definition 4.1 An incomplete block design is said to be a PBIB design, if it
satisfies the following conditions:

1. The experimental material is divided into b blocks of k units each, different
treatments being applied to the units in the same block.

2. There are t treatments each of which occurs in r blocks.



124 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

3. Any two treatments are either 1st, 2nd, . . ., mth associates; each treatment
is the 0th associate of itself and of no other treatment.

4. Each treatment has nu uth associates (u = 0, 1, . . . , m).
5. If any two treatments are kth associates, then the number of treatments

common to the uth associates of the first and the vth associates of the
second is pk

uv, independent of the pair of kth associates.
6. Any two treatments that are uth associates appear together in λu blocks.

The terms t, b, r, k, λ1, λ2, . . . , λm, n1, n2, . . . , nm are called the parameters
of the first kind, and the pk

uv are called parameters of the second kind.
The parameters of the second kind are generally exhibited in matrix form as

P k = (pk
uv)(k = 0, 1, . . . , m), and in our notation these are (m + 1) × (m + 1)

matrices (this deviates from the original notation by Bose and
Nair, 1939). �

As an illustration of a PBIB design we consider the following PBIB design
with three associate classes.

Example 4.1 Let t = 8, b = 6, r = 3, k = 4

Block Treatments

1 1, 2, 3, 4
2 1, 2, 5, 6
3 1, 3, 5, 7
4 2, 4, 6, 8
5 3, 4, 7, 8
6 5, 6, 7, 8

The association scheme is as follows:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 3, 5 4, 6, 7 8
2 1, 4, 6 3, 5, 8 7
3 1, 4, 7 2, 5, 8 6
4 2, 3, 8 1, 6, 7 5
5 1, 6, 7 2, 3, 8 4
6 2, 5, 8 1, 4, 7 3
7 3, 5, 8 1, 4, 6 2
8 4, 6, 7 2, 3, 5 1

Hence n1 = 3, n2 = 3, n3 = 1, and, from inspection of the design, λ1 =
2, λ2 = 1, λ3 = 0, and
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P 0 =


1

3 0
0 3

1

 P 1 =


0 1 0 0
1 0 2 0
0 2 0 1
0 0 1 0



P 2 =


0 0 1 0
0 2 0 1
1 0 2 0
0 1 0 0

 P 3 =


0 0 0 1
0 0 3 0
0 3 0 0
1 0 0 0


�

4.3.2 Relationships Among Parameters of a PBIB Design

The following relationships exist among the various parameters of a PBIB design:

tr = bk (4.16)
m∑

u=0

nu = t (4.17)

m∑
u=0

nuλu = rk (4.18)

pk
uv = pk

vu (4.19)
m∑

u=0

pk
uv = nv (4.20)

nkp
k
uv = nup

u
kv = nvp

v
uk (4.21)

Relationships (4.16), (4.17), and (4.18) follow immediately from the definition
of a PBIB design.

To verify (4.19) we note that the relation of association is symmetric and that
therefore the association matrices Bu are symmetric. Hence

BuBv = B ′
uB

′
v = (BvBu)

′ =
(∑

k

pk
vu Bk

)′

=
∑

k

pk
vuB

′
k =

∑
k

pk
vu Bk = BvBu

which implies (4.19).
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To verify (4.20) consider(
m∑

u=0

Bu

)
Bv = II′Bv = nvII′ = nv

m∑
k=0

Bk

and

m∑
u=0

BuBv =
∑
u

∑
k

pk
uv Bk =

∑
k

(∑
u

pk
uv

)
Bk

Comparing coefficients yields (4.20).
Finally, to derive (4.21) we use (4.12) twice and consider

(BuBv)B� =
m∑

s=0

(
m∑

k=0

pk
uv ps

k�

)
Bs

and

(B�Bv)Bu =
m∑

s=0

(
m∑

k=0

pk
�v ps

ku

)
Bs

Comparing coefficients yields∑
k

pk
uvp

s
k� =

∑
k

pk
�vp

s
ku (4.22)

which for s = 0 reduces to

n�p
�
uv = nup

u
�v

since p0
k� = n� for k = � and zero otherwise as follows easily from the, trivial,

definition of 0th associates. Concerning the parameters of the second kind, we
have already mentioned that

p0
uv =

{
nu for u = v

0 otherwise
(4.23)

Also,

pk
0v =

{
1 for k = v

0 otherwise
(4.24)
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which follows immediately from

Bv = B0Bv =
∑

k

pk
0v Bk

Equations (4.23) and (4.24) hold for any PBIB design, whereas the remaining
pk

uv are determined by the particular association scheme for a given PBIB design,
as will be shown later. For this reason we refer to a PBIB design as defined
above as an m-associate class PBIB design, which henceforth we shall denote
by PBIB(m) design.

4.4 ASSOCIATION SCHEMES AND LINEAR
ASSOCIATIVE ALGEBRAS

In the motivation and derivations given in Sections 4.2 and 4.3 we have made
use of some results given by Bose and Mesner (1959), in particular, relationship
(4.12), which leads to the introduction of the parameters of the second kind. There
exists, indeed, a much more mathematical relationship between the association
matrices, Bu, and certain matrices with elements pk

uv . This relationship provides
some further insights into the structures of PBIB designs. We shall give a brief
account of the major results but refer the reader to Bose and Mesner (1959) for
details.

4.4.1 Linear Associative Algebra of Association Matrices

Consider the association matrices Bu(u = 0, 1, 2, . . . , m) defined in Section
4.2.2. We have seen [see (4.1)] that

B0 + B1 + · · · + Bm = II′

It follows then that the linear form

c0B0 + c1B1 + · · · + cmBm (4.25)

is equal to zero if and only if

c0 = c1 = · · · = cm = 0

Hence the linear functions (4.25) of the Bu’s form a vector space with
B0, B1, . . . , Bm as basis.

We also know [see (4.12)] that

BuBv =
m∑

k=0

pk
uv Bk (4.26)
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If A and B are two matrices of the form (4.25), then the product AB is,
because of (4.26), again of the form (4.25). The set of matrices of the form
(4.25) is, therefore, closed under multiplication. It also forms an Abelian group
under addition. Also, because of (4.19), multiplication is commutative. As a
consequence, the set of matrices of the form (4.25) constitute a ring with unit
element, B0. It will be a linear associative algebra if the coefficients cu range
over a field.

4.4.2 Linear Associative Algebra of P Matrices

We have introduced in Section 4.3.1 matrices P k = (pk
uv) whose elements are

the parameters of the second kind (k = 0, 1, . . . ,m). Following Bose and Mesner
(1959) we introduce matrices

Pv =


p0

0v p1
0v . . . pm

0v

p1
1v p1

1v . . . pm
1v

· · ·
p0

mv p1
mv . . . pm

mv

 (4.27)

with v = 0, 1, . . . , m. We note that in (4.27), the superscript k is the column
index, and the first subscript u is the row index. Also note that although the P k

are symmetric, the Pv are not necessarily symmetric.
We now consider equation (4.22), that is,∑

k

pk
uvp

s
k� =

∑
k

pk
�vp

s
ku

which follows from the associative and commutative laws of multiplication for
the Bu’s, and that, because of (4.19), can be written as∑

k

pk
uvp

s
k� =

∑
k

pk
v�p

s
uk (4.28)

The left-hand side of (4.28) is the element in the uth row and sth column of PvP�.
Since the element in the uth row and sth column of Pk is ps

uk , the right-hand
side of (4.28) is the element in the uth row and sth column of

p0
v�P0 + p1

v� P1 + · · · + pm
v� Pm

It follows then that we have the representation

Pv P� =
m∑

k=0

pk
v� Pk (4.29)
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This corresponds to (4.12) and shows that the P matrices multiply in the same
way as the B matrices.

Since pk
0v = 1 for k = v and 0 otherwise [see (4.24)], the 0th row of Pv

contains a 1 in column v and 0’s in the other positions. This implies immediately
that the linear form

c0P0 + c1P1 + · · · + cmPm (4.30)

is zero if and only if c0 = c1 = · · · = cm = 0. Thus the P matrices are linearly
independent and hence form the basis of a vector space. Since they combine
in exactly the same way as the B matrices under addition and multiplication,
they provide a regular representation in terms of (m + 1) × (m + 1) matrices of
the algebra of the B matrices, which are t × t matrices with t > m + 1. The P

matrices behave in the same way as the B matrices. Hence, the set of matrices
of the form (4.30) also constitute a linear associative algebra with unit element
P0 = Im+1.

4.4.3 Applications of the Algebras

Bose and Mesner (1959) describe in detail applications of the algebras to com-
binatorial problems and algebraic properties. We have touched on some of these
in Section 4.3. We shall mention here only one further application, namely the
determination of the eigenvalues of the C matrix for PBIB(2) designs.

We have seen in our earlier discussion (see, e.g., Sections 1.3.3 and 1.10) that
the eigenvalues of the C matrix of a given design or, alternatively, of its NN ′
matrix play a major role in describing properties, for example, the efficiency
factor, of the design. We have seen that NN ′ has one eigenvalue equal to rk. To
obtain the other eigenvalues we make use of the following arguments.

Let B = ∑
cu Bu and let f (φ) be a polynomial. Then f (B) can be

expressed as

f (B) =
m∑

u=0

�u Bu

If P = ∑
cu Pu is a representation of B, then

f (P) =
m∑

u=0

�u Pu

If f (λ) is the minimum function of B and 	(λ) the minimum function of P,
it can be shown that

f (λ) = 	(λ)

which implies that B and P have the same eigenvalues.
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We can apply this result to the specific case where

B = NN ′ = λ0B0 + λ1B1 + · · · + λmBm

and

P = λ0P0 + λ1P1 + · · · + λmPm

It follows then that NN ′ has at most m + 1 distinct eigenvalues. We know
already that rk is one eigenvalue of NN ′ with multiplicity 1, and it is the largest
eigenvalue of NN ′. The eigenvalues are determined from |P − θI | = 0. Specif-
ically for m = 2 and after removal of θ = rk, the remaining two eigenvalues are
determined from

(λ0 − θ)2 + [(λ1 − λ2)(p
2
12 − p1

12) − (λ1 + λ2)] (λ0 − θ)

+ (λ1 − λ2)(λ2p
1
12 − λ1p

2
12) + λ1λ2 = 0

which yields [see Bose and Mesner (1959), Connor and Clatworthy (1954), and
Street and Street (1987) for an explicit derivation]

θu = λ0 − 1
2 [(λ1 − λ2)(−λ + (−1)u

√
� + (λ1 + λ2)] (4.31)

for u = 1, 2, and

γ = p2
12 − p1

12 � = γ 2 + 2β + 1 β = p1
12 + p2

12

and, of course, λ0 = r . We then have

|NN ′ − θI | = (rk − θ)(θ1 − θ)α1(θ2 − θ)α2

where α1, α2 are the multiplicities of θ1 and θ2, respectively. To determine α1
and α2 we use the fact that

trace I = 1 + α1 + α2 = t

and

trace NN ′ = rk + α1θ1 + α2θ2 = tr

Solving these equations and substituting (4.31) yields

αu = n1 + n2

2
+ (−1)u

(n1 − n2) + γ (n1 + n2)

2
√

�
(4.32)
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for u = 1, 2. These results imply that the matrix

C = rI − 1

k
NN ′

has eigenvalues

du = r − θu

k
(4.33)

with multiplicities αu(u = 0, 1, 2), where θ0 = rk, α0 = 1, and θ1, θ2 and α1, α2
are given by (4.31) and (4.32), respectively.

Similar results can, of course, be obtained for PBIB designs with m > 2 asso-
ciate classes.

The eigenvalues given in (4.33) together with their multiplicities for u = 1, 2
can be used to obtain the efficiency factor of a given design (see Section 1.11).
We shall also make use of them in Section 4.7 in connection with the combined
analysis of PBIB designs.

4.5 ANALYSIS OF PBIB DESIGNS

4.5.1 Intrablock Analysis

The analysis of PBIB(m) designs can be derived easily from the general analysis
of incomplete block designs as presented in Section 1.3. In order to solve the
RNE [see (1.8)]

Cτ̂ = Q

where C is given in (4.3) and Q is the vector of adjusted treatment totals, we
shall find a generalized inverse C− for C satisfying (1.17); that is,

CC− = I − 1

t
II′

by utilizing (4.11) and (4.12) as outlined previously. This leads to the following
system of m + 1 equations in m + 1 unknowns g0, g1, . . . , gm:

m∑
u=0

m∑
v=0

cup
k
uvgv = 1 − 1

t
for k = 0

= −1

t
for k = 1, 2, . . . , m (4.34)
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Since

m∑
u=0

m∑
v=0

cup
k
uv =

m∑
u=0

cunu = 0

it follows that this system of equations is not of full rank. Therefore any m of
the equations in (4.34) can be taken and solved with an additional convenient
restriction like

∑
gu = 0 or

∑
nugu = 0, or for some v, gv = 0.

We shall illustrate this procedure for a PBIB(2) design. The system (4.34) is
then of the form

c0g0 + c1n1g1 + c2n2g2 = 1 − 1

t

c1g0 + (c0 + c1p
1
11 + c2p

1
12)g1 + (c1p

1
12 + c2p

1
22)g2 = −1

t

c2g0 + (c1p
2
11 + c2p

2
12)g1 + (c0 + c1p

2
12 + c2p

2
22)g2 = −1

t

(4.35)

with

c0 = r(k − 1)

k
c1 = −λ1

k
c2 = −λ2

k

Letting g0 = 0 and omitting the first equation then yields

(c0 + c1p
1
11 + c2p

1
12)g1 + (c1p

1
12 + c2p

1
22)g2 = −1

t

(c1p
2
11 + c2p

2
12)g1 + (c0 + c1p

2
12 + c2p

2
22)g2 = −1

t

(4.36)

Example 4.2 Consider the following PBIB(2) design (SR 36 in Clatworthy,
1973) with parameters t = 8, r = 4, k = 4, b = 8, λ1 = 0, λ2 = 2:

Block Treatments

1 1, 2, 3, 4
2 5, 6, 7, 8
3 2, 7, 8, 1
4 6, 3, 4, 5
5 3, 8, 1, 6
6 7, 4, 5, 2
7 4, 1, 6, 7
8 8, 5, 2, 3



ANALYSIS OF PBIB DESIGNS 133

which has the following association scheme:

0th Associate 1st Associates 2nd Associates

1 5 2, 3, 4, 6, 7, 8
2 6 1, 3, 4, 5, 7, 8
3 7 1, 2, 4, 5, 6, 8
4 8 1, 2, 3, 5, 6, 7
5 1 2, 3, 4, 6, 7, 8
6 2 1, 3, 4, 5, 7, 8
7 3 1, 2, 4, 5, 6, 8
8 4 1, 2, 3, 5, 6, 7

giving n1 = 1, n2 = 6, and

P 0 =
1

1
6

 P 1 =
0 1 0

1 0 0
0 0 6

 P 2 =
0 0 1

0 0 1
1 1 4


Hence c0 = 3, c1 = 0, c2 = − 1

2 , and (4.36) becomes

3g1 − 3g2 = − 1
8

− 1
2g1 + g2 = − 1

8

yielding g1 = −0.3333 and g2 = −0.2917.
Having solved (4.34) or its reduced form for g0, g1, . . . , gm, we obtain the

intrablock estimates of treatment effects as

τ̂ =
(

m∑
v=0

gvBv

)
Q (4.37)

or, equivalently,

τ̂i = g0Qi + g1

∑
jεS(i,1)

Qj + g2

∑
kεS(i,2)

Qk + · · · + gm

∑
�εS(i,m)

Q� (4.38)

(i = 1, 2, . . . , t) where S(i, u) is, as defined earlier, the set of uth associates of
treatment i. It follows further from (4.37) and the definition of the association
matrices that

var(̂τi − τ̂i′) = 2(g0 − gu)σ
2
e (4.39)
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if treatments i and i′ are uth associates. There are, therefore, m types of compar-
isons which, however, in certain cases may not all be distinct. Correspondingly,
there are also at most m types of efficiency factors, Eu. Since

var(̂τi − τ̂i′) = 2σ 2
e

r

for a CRD or RCBD, we have

Eu = 1

r(g0 − gu)
(4.40)

(u = 1, 2, . . . , m) (see Section 1.11). The overall efficiency factor of a PBIB(m)
design relative to the CRD or the RCBD is then given by

E = 1

t − 1

m∑
u=1

nuEu (4.41)

For the PBIB(2) design discussed in Example 4.2, we find (since g0 = 0)

var(̂τi − τ̂i′) = .6666σ 2
e

for 1st associates and
var(̂τi − τ̂i′) = .5834σ 2

e

for 2nd associates. Also, from (4.40) and (4.41)

E1 = − 1

rg1
= .750

E2 = − 1

rg2
= .875

E = 1
7 (E1 + 6E2) = .842 �

4.5.2 Combined Analysis

As developed in Section 1.8.3, the set of normal equations for the combined
analysis is of the form

Â̂τ = P (4.42)

with

A = rI − 1 − ρ−1

k
NN ′ (4.43)
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and

P = T − 1 − ρ−1

k
NB (4.44)

In order to obtain ̂̂τ we use the same type of argument as in Section 4.2.1,
that is, make use of the special form of A as expressed in terms of association
matrices; that is,

A =
m∑

u=0

auBu (4.45)

with

a0 = r

(
1 − 1 − ρ−1

k

)
(4.46)

au = −1 − ρ−1

k
λu (u = 1, 2, . . . , m) (4.47)

Writing A−1 as

A−1 =
m∑

u=0

auBu

we obtain, equivalent to the set of equations (4.34) for the intrablock analysis,
the following system of equations:

AA−1 =
(

m∑
u=0

auBu

) (
m∑

v=0

avBv

)
=

∑
uv

m∑
k=0

aua
v pk

uvBk = I (4.48)

or equivalently,

m∑
u=0

m∑
v=0

aup
k
uva

v = δ0k (k = 0, 1, . . . , m) (4.49)

where δ0k is the Kronecker symbol. This set of equations is of full rank and
hence we have (m + 1) equations in (m + 1) unknowns.

It follows then that

̂̂τ i = a0Pi + a1
∑

jεS(i,1)

Pj + a2
∑

kεS(i,2)

Pk + · · · + am
∑

�εS(i,m)

P� (4.50)

where the Pu(u = 1, 2, . . . , t) are the elements of P in (4.44).
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For any two treatments that are uth associates we have consequently

var
(̂̂
τ i − ̂̂τ i′

) = 2(a0 − au)σ 2
e (4.51)

We shall illustrate the procedure by using Example 4.2 given in Section 4.4.1.

Example 4.2 (Continued) We have t = 8, r = λ0 = 4, k = 4, b = 8, λ1 =
0, λ2 = 2.

P 0 =

1

1

6

 P 1 =

0 1 0

1 0 0

0 0 6



P 2 =

0 0 1

0 0 1

1 1 4


Then, from (4.46) and (4.47),

a0 = 4

(
1 − 1 − ρ−1

4

)
= 3 + ρ−1

a1 = 0

a2 = −(1 − ρ−1) 1
2

and hence Eqs. (4.49) are given as

(3 + ρ−1) a0 − 3(1 − ρ−1) a2 = 1

(3 + ρ−1) a1 − 3(1 − ρ−1) a2 = 0

− 1
2 (1 − ρ−1) a0 − 1

2 (1 − ρ−1) a1 + [3 + ρ−1 − 2 (1 − ρ−1)] a2 = 0

There remains, of course, the problem of estimating ρ or ρ−1. Substitu-
ting such an estimator in the equations above, or more generally equations
(4.49), will then yield solutions for a0, a1, a2 which we denote by â0, â1, â2

and which, in turn, are used in Eqs. (4.50) and (4.51). One such estimator is
the Yates estimator as described in Section 1.10.1. For certain types of PBIB(2)
designs we shall present in Section 4.7 other estimators for ρ similar to the one
given for BIB designs (see Section 2.5), which will lead to uniformly better
estimators (than the intrablock estimators) for treatment contrasts under certain
conditions. �
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4.6 CLASSIFICATION OF PBIB DESIGNS

Since their introduction by Bose and Nair (1939) and Bose and Shimamoto (1952)
different types of PBIB designs have evolved. These can be classified according
to the number of associate classes and type of association scheme. (We mention
here parenthetically that the association scheme and the parameters of a PBIB
design do not lead immediately to the actual experimental layout or field plan;
see also Chapter 5). In this section we shall give a brief survey (without being
complete) of types of PBIB designs.

The designs perhaps most often used are PBIB(2) designs. The reason, of
course, is that they constitute the simplest extension of the BIB design. They have
been tabulated (for certain ranges of parameters) extensively by Bose, Clatworthy,
and Shrikhande (1954) and Clatworthy (1956, 1973) and are classified according
to which of the following association schemes (to be explained in the following
sections) is being used:

1. Group-divisible PBIB(2) designs
2. Triangular PBIB(2) designs
3. Latin square type PBIB(2) designs
4. Cyclic PBIB(2) designs

We then mention the association schemes and parameters for some PBIB(3)
designs:

1. Rectangular PBIB(3) designs
2. Generalized group-divisible PBIB(3) designs
3. Generalized triangular PBIB(3) designs
4. Cubic PBIB(3) designs

Finally, we discuss some rather general classes of PBIB designs with m > 3
associate classes:

1. Extended group-divisible PBIB designs
2. Hypercubic PBIB designs
3. Right-angular PBIB(4) designs
4. Cyclic PBIB designs

4.6.1 Group-Divisible (GD) PBIB(2) Designs

Suppose that t can be written as t = t1t2 and that the treatments are divided into
t1 groups of t2 treatments each by arranging them in a rectangular array of t1
rows and t2 columns (t1, t2 > 1), the rows constituting the t1 groups. Then two
treatments are called first associates if they are in the same group and they are
called second associates otherwise.
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This association scheme implies n1 = t2 − 1 and n2 = (t1 − 1)t2. Further

P 1 =

0 1 0

1 t2 − 2 0

0 0 (t1 − 1)t2

 P 2 =

0 0 1

0 0 t2 − 1

1 t2 − 1 (t1 − 2)t2



Example 4.3 Let t = 8, t1 = 2, t2 = 4.

Association scheme:

1 3 5 7

2 4 6 8

0th Associate 1st Associates 2nd Associates

1 3, 5, 7 2, 4, 6, 8
2 4, 6, 8 1, 3, 5, 7
3 1, 5, 7 2, 4, 6, 8
4 2, 6, 8 1, 3, 5, 7
5 1, 3, 7 2, 4, 6, 8
6 2, 4, 8 1, 3, 5, 7
7 1, 3, 5 2, 4, 6, 8
8 2, 4, 6 1, 3, 5, 7 �

The factorization of t is, of course, not always unique. For Example 4.3 we
could just as well have t1 = 4, t2 = 2, in which case the rectangular array is

1 5

2 6

3 7

4 8

and hence n1 = 1, n2 = 6.
Bose and Connor (1952) have shown that for GD-PBIB(2) designs the fol-

lowing inequalities hold:

r ≥ λ1 rk − λ2t ≥ 0

Accordingly, they have divided the GD designs further into three subclasses:

1. Singular if r = λ1

2. Semiregular if r > λ1, rk − λ2t = 0
3. Regular if r > λ1, rk − λ2t > 0
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4.6.2 Triangular PBIB(2) Designs

Suppose that t can be written as t = q(q − 1)/2 and that the treatments are
arranged in triangular form above the main diagonal of a q × q array and repeated
symmetrically below the main diagonal leaving the main diagonal blank. Then
two treatments are called first associates if they lie in the same row (or column)
of the q × q array and are second associates otherwise.

This association scheme implies

n1 = 2q − 4 n2 = (q − 2)(q − 3)/2

P 1 =

0 1 0

1 q − 2 q − 3

0 q − 3 (q − 3)(q − 4)/2



P 2 =

0 0 1

1 4 2q − 8

1 2q − 8 (q − 4)(q − 5)/2


Example 4.4 Let t = 10, q = 5.

Association scheme:

∗ 1 2 3 4
1 ∗ 5 6 7
2 5 ∗ 8 9
3 6 8 ∗ 10
4 7 9 10 ∗

0th Associate 1st Associates 2nd Associates

1 2, 3, 4, 5, 6, 7 8, 9, 10
2 1, 3, 4, 5, 8, 9 6, 7, 10
3 1, 2, 4, 6, 8, 10 5, 7, 9
4 1, 2, 3, 7, 9, 10 5, 6, 8
5 1, 2, 6, 7, 8, 9 3, 4, 10
6 1, 3, 5, 7, 8, 10 2, 4, 9
7 1, 4, 5, 6, 9, 10 2, 3, 8
8 2, 3, 5, 6, 9, 10 1, 4, 7
9 2, 4, 5, 7, 8, 10 1, 3, 6

10 3, 4, 6, 7, 8, 9 1, 2, 5 �
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4.6.3 Latin Square Type PBIB(2) Designs

Suppose that t can be written as t = q2 and that the treatments are arranged in
a square array of size q.

For a Latin square type PBIB(2) design with two constraints [L2-PBIB(2)
design], two treatments are called first associates if they occur together in the
same row or the same column of the square array and are second associates
otherwise.

For the Latin square type design with i constraints (i > 2) [Li-PBIB(2) design]
the association scheme is used in conjunction with i − 2 mutually orthogonal
Latin squares (if they exist) (see I.10.6.2). Then two treatments are called first
associates if they both occur in the same row or column or correspond to the same
letter of the superimposed Latin squares. Hence we obtain for the Li -PBIB(2)
design

n1 = i(q − 1) n2 = (q − 1)(q − i + 1)

P 1 =
0 1 0

1 i2 − 3i + q (i − 1)(q − i + 1)

0 (i − 1)(q − i + 1) (q − i)(q − i + 1)



P 2 =
0 0 1

0 i(i − 1) i(q − 1)

1 i(q − i) (q − i)2 + i − 2


Example 4.5 Let t = 9, q = 3.

L2-association scheme:

1 2 3
4 5 6
7 8 9

0th Associate 1st Associates 2nd Associates

1 2, 3, 4, 7 5, 6, 8, 9
2 1, 3, 5, 8 4, 6, 7, 9
3 1, 2, 6, 9 4, 5, 7, 8
4 1, 5, 6, 7 2, 3, 8, 9
5 2, 4, 6, 8 1, 3, 7, 9
6 3, 4, 5, 9 1, 2, 7, 8
7 1, 4, 8, 9 2, 3, 5, 6
8 2, 5, 7, 9 1, 3, 4, 6
9 3, 6, 7, 8 1, 2, 4, 5 �
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Example 4.6 Let t = 9, q = 3.

L3-association scheme:
1A 2B 3C

4C 5A 6B

7B 8C 9A

0th Associate 1st Associates 2nd Associates

1 2, 3, 4, 5, 7, 9 6, 8
2 1, 3, 5, 6, 7, 8 4, 9
3 1, 2, 4, 6, 8, 9 5, 7
4 1, 3, 5, 6, 7, 8 2, 9
5 1, 2, 4, 6, 8, 9 3, 7
6 2, 3, 4, 5, 7, 9 1, 8
7 1, 2, 4, 6, 8, 9 3, 5
8 2, 3, 4, 5, 7, 9 1, 6
9 1, 3, 5, 6, 7, 8 2, 4 �

Other examples are mentioned in Section 18.7.

4.6.4 Cyclic PBIB(2) Designs

Suppose the treatments are denoted by 0, 1, 2, . . . , t − 1. Then the first associates
of treatment i are i + d1, i + d2, . . . , i + dn1 (mod t) where the dj are integers
satisfying the following conditions:

1. The dj are all different with 0 < dj < t for each j .
2. Among the n1(n1 − 1) differences dj − dj ′ (mod t) each of the integers

d1, d2, . . . , dn1 occurs α times, and each of the integers e1, e2, . . . , en2

occurs β times, where d1, d2, . . . , dn1 , e1, e2, . . . , en2 are all the different
integers 1, 2, . . . , t − 1.

The second associates of treatment i obviously are i + e1, i + e2, . . . , i + en2

(mod t). We then have, as a consequence of condition 2,

n1α + n2β = n1(n1 − 1)

and

P 1 =
0 1 0

1 α n1 − α − 1
0 n1 − α − 1 n2 − n1 + α + 1


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P 2 =
0 0 1

0 β n1 − β

0 n1 − β n2 − n1 + β − 1


Example 4.7 Let t = 5, d1 = 2, d2 = 3, α = 0, β = 1. With n1 = 2, the pos-

sible differences dj − dj ′ are d1 − d2 = −1 = 4 and d2 − d1 = 1; that is, d1 and
d2 occur α = 0 times among these differences and e1 = 1, e2 = 4 occur β = 1
time. Hence condition 2 is satisfied. We then have

0th Associate 1st Associates 2nd Associates

0 2, 3 1, 4
1 3, 4 0, 2
2 4, 0 1, 3
3 0, 1 2, 4
4 1, 2 0, 3 �

4.6.5 Rectangular PBIB(3) Designs

This association scheme was first proposed by Vartak (1959). Suppose that t =
t1t2 and that the treatments are arranged in a rectangular array with t1 rows
and t2 columns. Two treatments are said to be first associates if they occur
together in the same row of the array; they are said to be second associates
if they occur together in the same column; they are third associates otherwise.
Hence

n1 = t2 − 1, n2 = t1 − 1 n3 = (t1 − 1)(t2 − 1)

and

P 1 =


0 1 0 0
1 t2 − 2 0 0
0 0 0 t1 − 1
0 0 t1 − 1 (t1 − 1)(t2 − 2)



P 2 =


0 0 1 0

0 0 0 t2 − 1
1 0 t1 − 2 0
0 t2 − 1 0 (t1 − 2)(t2 − 1)



P 3 =


0 0 0 1
0 0 1 t2 − 2
0 1 0 t1 − 2

t2 − 2 t1 − 2 (t1 − 2)(t2 − 2)


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Example 4.8 Let t = 6, t1 = 2, t2 = 3.

Association scheme:

1 3 5

2 4 6

0th Associate 1st Associates 2nd Associates 3rd Associates

1 3, 5 2 4, 6
2 4, 6 1 3, 5
3 1, 5 4 2, 6
4 2, 6 3 1, 5
5 1, 3 6 2, 4
6 2, 4 5 1, 3 �

4.6.6 Generalized Group-Divisible (GGD) PBIB(3) Designs

In a more general way this association scheme was proposed by Roy (1953–1954)
and described in more detail by Raghavarao (1960).

Suppose that t = t1t2t3 and that the treatments are arranged in a three-
dimensional array with t1 rows, t2 columns, and t3 layers. Two treatments are
said to be first associates if they occur together in the same row and column,
but in different layers; they are said to be second associates if they occur in the
same row but in different columns (and the same or different layers); they are
third associates otherwise. Hence

n1 = t3 − 1 n2 = (t2 − 1)t3 n3 = (t1 − 1)t2t3

and

P 1 =


0 1 0 0

1 t3 − 2 0 0

0 0 (t2 − 1)t3 0

0 0 0 (t1 − 1)t2t3



P 2 =


0 0 1 0

0 0 t3 − 1 0

1 t3 − 1 (t2 − 2)t3 0

0 0 0 (t1 − 1)t2t3



P 3 =


0 0 0 1

0 0 0 t3 − 1

0 0 0 (t2 − 1)t3

1 t3 − 1 (t2 − 1)t3 (t1 − 2)t2t3


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Example 4.9 Let t = 12, t1 = 2, t2 = 3, t3 = 2.

Association scheme:

Layer 1 Layer 2

1 3 5 7 9 11
2 4 6 8 10 12

0th Associate 1st Associates 2nd Associates 3rd Associates

1 7 3, 5, 9, 11 2, 4, 6, 8, 10, 12
2 8 4, 6, 10, 12 1, 3, 5, 7, 9, 11
3 9 1, 5, 7, 11 2, 4, 6, 8, 10, 12
4 10 2, 6, 8, 12 1, 3, 5, 7, 9, 11
5 11 1, 3, 7, 9 2, 4, 6, 8, 10, 12
6 12 2, 4, 8, 10 1, 3, 5, 7, 9, 11
7 1 3, 5, 9, 11 2, 4, 6, 8, 10, 12
8 2 4, 6, 10, 12 1, 3, 5, 7, 9, 11
9 3 1, 5, 7, 11 2, 4, 6, 8, 10, 12

10 4 2, 6, 8, 12 1, 3, 5, 7, 9, 11
11 5 1, 3, 7, 11 2, 4, 6, 8, 10, 12
12 6 2, 4, 8, 10 1, 3, 5, 7, 9, 11 �

4.6.7 Generalized Triangular PBIB(3) Designs

John (1966) has shown that the triangular association scheme discussed in Section
4.5.2 can be described equivalently by representing the treatments by ordered
pairs (x, y) with 1 ≤ x < y ≤ q and calling two treatments first associates if
they have one integer in common, second associates otherwise.

This can then be generalized (John, 1966) for the case that t = q(q − 1)(q −
2)/6 (q > 3) and that the treatments are represented by ordered triplets (x, y, z)

with 1 ≤ x < y < z ≤ q. Two treatments are said to be first associates if they
have two integers in common, second associates if they have one integer in
common but not two, and third associates otherwise. Hence

n1 = 3(q − 3) n2 = 3(q − 3)(q − 4)/2 n3 = (q − 3)(q − 4)(q − 5)/6

and

P 1 =


0 1 0 0

1 q − 2 2(q − 4) 0

0 2(q − 4) (q − 4)2 (q − 4)(q − 5)/2

0 0 (q − 4)(q − 5)/2 (q − 4)(q − 5)(q − 6)/6


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P 2 =


0 0 1 0

1 4 2(q − 4) q − 5

1 2(q − 4) (q + 2)(q − 5)/2 (q − 5)(q − 6)

0 q − 5 (q − 5)(q − 6) (q − 5)(q − 6)(q − 7)/6



P 3 =


0 0 0 1

0 0 9 3(q − 6)

0 9 9(q − 6) 3(q − 6)(q − 7)/2

1 3(q − 6) 3(q − 6)(q − 7)/2 (q − 6)(q − 7)(q − 8)/6



Example 4.10 Let t = 20, q = 6. The treatments are represented as

1 ≡ (1, 2, 3) 2 ≡ (1, 2, 4) 3 ≡ (1, 2, 5) 4 ≡ (1, 2, 6)

5 ≡ (1, 3, 4) 6 ≡ (1, 3, 5) 7 ≡ (1, 3, 6)

8 ≡ (1, 4, 5) 9 ≡ (1, 4, 6)

10 ≡ (1, 5, 6)

11 ≡ (2, 3, 4) 12 ≡ (2, 3, 5) 13 ≡ (2, 3, 6)

14 ≡ (2, 4, 5) 15 ≡ (2, 4, 6)

16 ≡ (2, 5, 6)

17 ≡ (3, 4, 5) 18 ≡ (3, 4, 6)

19 ≡ (3, 5, 6)

20 ≡ (4, 5, 6)

and the association scheme follows:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 3, 4, 5, 6, 7, 11, 12, 13 8, 9, 10, 14, 15, 16, 17, 18, 19 20
2 1, 3, 4, 5, 8, 9, 11, 14, 15 6, 7, 10, 12, 13, 16, 17, 18, 20 19
3 1, 2, 4, 6, 8, 10, 12, 14, 16 5, 7, 9, 11, 13, 15, 17, 19, 20 18
4 1, 2, 3, 7, 9, 10, 13, 15, 16 5, 6, 8, 11, 12, 14, 18, 19, 20 17
5 1, 2, 6, 7, 8, 9, 11, 17, 18 3, 4, 10, 12, 13, 14, 15, 19, 20 16
6 1, 3, 5, 7, 8, 10, 12, 17, 19 2, 4, 9, 11, 13, 14, 16, 18, 20 15
7 1, 4, 5, 6, 9, 10, 13, 18, 19 2, 3, 8, 11, 12, 15, 16, 17, 20 14
8 2, 3, 5, 6, 9, 10, 14, 17, 20 1, 4, 7, 11, 12, 15, 16, 18, 19 13
9 2, 4, 5, 7, 8, 10, 15, 18, 20 1, 3, 6, 11, 13, 14, 16, 17, 19 12

10 3, 4, 6, 7, 8, 9, 16, 19, 20 1, 2, 5, 12, 13, 14, 15, 17, 18 11
11 1, 2, 5, 12, 13, 14, 15, 17, 18 3, 4, 6, 7, 8, 9, 16, 19, 20 10
12 1, 3, 6, 11, 13, 14, 16, 17, 19 2, 4, 5, 7, 8, 10, 15, 18, 20 9
13 1, 4, 7, 11, 12, 15, 16, 18, 19 2, 3, 5, 6, 9, 10, 14, 17, 20 8
14 2, 3, 8, 11, 12, 15, 16, 17, 20 1, 4, 5, 6, 9, 10, 13, 18, 19 7
15 2, 4, 9, 11, 13, 14, 16, 18, 20 1, 3, 5, 7, 8, 10, 12, 17, 19 6
16 3, 4, 10, 12, 13, 14, 15, 19, 20 1, 2, 6, 7, 8, 9, 11, 17, 18 5
17 5, 6, 8, 11, 12, 14, 18, 19, 20 1, 2, 3, 7, 9, 10, 13, 15, 16 4
18 5, 7, 9, 11, 13, 15, 17, 19, 20 1, 2, 4, 6, 8, 10, 12, 14, 16 3
19 6, 7, 10, 12, 13, 16, 17, 18, 20 1, 3, 4, 5, 8, 9, 11, 13, 15 2
20 8, 9, 10, 14, 15, 16, 17, 18, 19 2, 3, 4, 5, 6, 7, 11, 12, 13 1

�
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4.6.8 Cubic PBIB(3) Designs

This association scheme, described by Raghavarao and Chandrasekhararao
(1964), is an extension of the L2-association scheme discussed in Section 4.5.3,
which can be described equivalently as follows: Denote the t = q2 treatments
by pairs (x, y) with 1 ≤ x, y ≤ q. Define the distance δ between two treatments
(x, y) and (x′, y′) as the number of nonzero elements in (x − x′, y − y′). For
the L2-association scheme then two treatments are said to be first associates if
δ = 1, and second associates if δ = 2.

For the cubic association scheme we have t = q3, each treatment being rep-
resented by a triplet (x, y, z) with 1 ≤ x, y, z ≤ q. If the distance δ between any
two treatments (x, y, z) and (x′, y′, z′) is the number of nonzero elements in
(x − x′, y − y′, z − z′), then two treatments are said to be first, second, or third
associates if δ = 1, 2, or 3, respectively.

This can be interpreted geometrically by realizing that the above representa-
tion of the treatments corresponds to an arrangement in a cube of side q. Two
treatments are then first associates if they are lying on the same axis, second
associates if they are lying on the same plane (but not on the same axis), and
third associates otherwise. The design given in Example 4.1 has this association
scheme with q = 2.

The cubic association scheme implies immediately

n1 = 3(q − 1) n2 = 3(q − 1)2 n3 = (q − 1)3

and

P 1 =


0 1 0 0

1 q − 2 2(q − 1) 0

0 2(q − 1) 2(q − 1)(q − 2) (q − 1)2

0 0 (q − 1)2 (q − 1)2(q − 2)



P 2 =


0 0 1 0

0 2 2(q − 2) q − 1

1 2(q − 2) 2(q − 1) + (q − 2)2 2(q − 1)(q − 2)

0 q − 1 2(q − 1)(q − 2) (q − 1)(q − 2)2



P 3 =


0 0 0 1

0 0 3 3(q − 2)

0 3 6(q − 2) 3(q − 2)2

1 3(q − 2) 3(q − 2)2 (q − 2)3


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Example 4.11 Let t = 8, q = 2. The treatments are represented as

1 ≡ (1, 1, 1) 2 ≡ (1, 1, 2)

3 ≡ (1, 2, 1) 4 ≡ (1, 2, 2)

5 ≡ (2, 1, 1) 6 ≡ (2, 1, 2)

7 ≡ (2, 2, 1) 8 ≡ (2, 2, 2)

Association scheme:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 3, 5 4, 6, 7 8
2 1, 4, 6 3, 5, 8 7
3 1, 4, 7 2, 5, 8 6
4 2, 3, 8 1, 6, 7 5
5 1, 6, 7 2, 3, 8 4
6 2, 5, 8 1, 4, 7 3
7 3, 5, 8 1, 4, 6 2
8 4, 6, 7 2, 3, 5 1 �

Other examples are mentioned in Section 18.7.

4.6.9 Extended Group-Divisible (EGD) PBIB Designs

These designs, which we shall abbreviate as EGD/(2ν − 1)-PBIB, were first intro-
duced by Hinkelmann and Kempthorne (1963) as an extension of the rectangular
PBIB(3) design of Vartak (1959), and described in more detail by Hinkelmann
(1964). The association scheme for these designs is as follows:

Let there be t = t1t2, . . . , tν treatments denoted by (i1, i2, . . . , iν), where
i� = 1, 2, . . . , t� and � = 1, 2, . . . , ν, and i� is called the �th component of the
treatment. Two treatments are said to be γ th associates, γ = (γ1, γ2, . . . , γν)

and γ� = 0 or 1(� = 1, 2, . . . , ν), if the treatments differ only in the compo-
nents that correspond to the unity components of γ . We then have m = 2ν − 1
associate classes as each component in γ takes on the possible values 0, 1, and
γ = (0, 0, . . . , 0) represents the trivial association corresponding to the 0th asso-
ciate class of other PBIB designs. The number of associates in the γ th associate
class is denoted by n(γ ) and

n(γ ) = n(γ1, γ2, . . . , γν) =
ν∏

�=1

(t�−1)
γ� (4.52)

If we write the associate classes in lexicographic order, for example, for ν = 3:
000, 001, 010, 011, 100, 101, 110, 111, and if we denote by
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P
(t�)
0 =

(
1 0

0 t� − 1

)

P
(t�)
1 =

(
0 1

1 t� − 2

)
the P matrices for a BIB design with t� treatments, then we can write the P matri-
ces for the EGD/(2ν − 1)-PBIB design recursively as the following Kronecker
product:

P γ1γ2...γν−10 = P γ1γ2...γν−1 × P
(tν )
0 (4.53)

P γ1γ2...γν−11 = P γ1γ2...γν−1 × P
(tν )
1 (4.54)

where P γ1γ2...γν−1 are the P matrices for an EGD/(2ν−1 − 1) design with t =
t1t2, . . . , tν−1 treatments. In particular then for ν = 2:

P 00 =


1 ∅

t2 − 1
t1 − 1

∅ (t1 − 1)(t2 − 1)



P 01 =


0 1

∅
1 t2 − 2

0 t1 − 1
∅ t1 − 1 (t1 − 1)(t2 − 2)



P 10 =


1 0

∅
0 t2 − 1

1 0 t1 − 2 0
0 t2 − 1 0 (t1 − 2)(t2 − 1)



P 11 =


0 1

∅
1 t2 − 2

0 1 0 t1 − 2
1 t2 − 2 t1 − 2 (t1 − 2)(t2 − 2)


which are, apart from the order of rows and columns, the same as those given
for the rectangular PBIB(3) design (see Section 4.5.5).
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Example 4.12 Let t = 36, t1 = t2 = 3, t3 = 4. The treatments are

1 ≡ (1, 1, 1) 2 ≡ (1, 1, 2) 3 ≡ (1, 1, 3) 4 ≡ (1, 1, 4)

5 ≡ (1, 2, 1) 6 ≡ (1, 2, 2) 7 ≡ (1, 2, 3) 8 ≡ (1, 2, 4)

9 ≡ (1, 3, 1) 10 ≡ (1, 3, 2) 11 ≡ (1, 3, 3) 12 ≡ (1, 3, 4)

13 ≡ (2, 1, 1) 14 ≡ (2, 1, 2) 15 ≡ (2, 1, 3) 16 ≡ (2, 1, 4)

17 ≡ (2, 2, 1) 18 ≡ (2, 2, 2) 19 ≡ (2, 2, 3) 20 ≡ (2, 2, 4)

21 ≡ (2, 3, 1) 22 ≡ (2, 3, 2) 23 ≡ (2, 3, 3) 24 ≡ (2, 3, 4)

25 ≡ (3, 1, 1) 26 ≡ (3, 1, 2) 27 ≡ (3, 1, 3) 28 ≡ (3, 1, 4)

29 ≡ (3, 2, 1) 30 ≡ (3, 2, 2) 31 ≡ (3, 2, 3) 32 ≡ (3, 2, 4)

33 ≡ (3, 3, 1) 34 ≡ (3, 3, 2) 35 ≡ (3, 3, 3) 36 ≡ (3, 3, 4)

The associate classes and the numbers of associates are

0 ≡ (0, 0, 0) n(0, 0, 0) ≡ 1
1 ≡ (0, 0, 1) n(0, 0, 1) ≡ 3
2 ≡ (0, 1, 0) n(0, 1, 0) ≡ 2
3 ≡ (0, 1, 1) n(0, 1, 1) ≡ 6
4 ≡ (1, 0, 0) n(1, 0, 0) ≡ 2
5 ≡ (1, 0, 1) n(1, 0, 1) ≡ 6
6 ≡ (1, 1, 0) n(1, 1, 0) ≡ 4
7 ≡ (1, 1, 1) n(1, 1, 1) ≡ 12

and the (partial) association scheme is given in Table 4.1 �

4.6.10 Hypercubic PBIB Designs

These designs, first indicated by Shah (1958) and more formally defined by
Kusumoto (1965), are extensions of cubic PBIB designs (see Section 4.5.8). Sup-
pose we have t = qν treatments, which are again denoted by (i1, i2, . . . , iν) where
i� = 1, 2, . . . , q and � = 1, 2, . . . , ν. The association scheme for this design is
then as follows: Two treatments are said to be j th associates if they differ in
exactly j components. Hence we have m = ν associate classes, and the number
of j th associates is

nj =
(

ν

j

)
(q − 1) (j = 1, 2, . . . , ν)

Following Shah (1958), the general element of the P k matrix (k = 0, 1, . . . , ν)

is given as

pk
ij =

∑
u

(
ν − k

u

)(
k

ν − i − u

)(
u + k + i − ν

ν − j − u

)

× (q − 1)ν−k−u(q − 2)k+i+j+2u−2ν (4.55)
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where i, j = 0, 1, . . . , ν and the summation extends over all integer values of u

such that
u ≤ min(ν − i, ν − j, ν − k)

and
u ≥ 1

2 (2ν − i − j − k)

and if for a given combination i, j, k no such u value exists, then pk
ij = 0. Specif-

ically, from (4.55) we obtain for ν = 3 the P matrices for the cubic association
scheme of Section 4.5.8.

Example 4.13 Let t = 16, q = 2, ν = 4. The treatments are

1 ≡ (1, 1, 1, 1) 2 ≡ (1, 1, 1, 2) 3 ≡ (1, 1, 2, 1) 4 ≡ (1, 1, 2, 2)

5 ≡ (1, 2, 1, 1) 6 ≡ (1, 2, 1, 2) 7 ≡ (1, 2, 2, 1) 8 ≡ (1, 2, 2, 2)

9 ≡ (2, 1, 1, 1) 10 ≡ (2, 1, 1, 2) 11 ≡ (2, 1, 2, 1) 12 ≡ (2, 1, 2, 2)

13 ≡ (2, 2, 1, 1) 14 ≡ (2, 2, 1, 2) 15 ≡ (2, 2, 2, 1) 16 ≡ (2, 2, 2, 2)

and the association scheme follows:

0th Associate 1st Associates 2nd Associates 3rd Associates 4th Associates

1 2, 3, 5, 9 4, 6, 7, 10, 11, 13 8, 12, 14, 15 16
2 1, 4, 6, 10 3, 5, 8, 9, 12, 14 7, 11, 13, 16 15
3 1, 4, 7, 11 2, 5, 8, 9, 12, 15 6, 10, 13, 16 14
4 2, 3, 8, 12 1, 6, 7, 10, 11, 16 5, 9, 14, 15 13
5 1, 6, 7, 13 2, 3, 8, 9, 14, 15 4, 10, 11, 16 12
6 2, 5, 8, 14 1, 4, 7, 10, 13, 16 3, 9, 12, 15 11
7 3, 5, 8, 15 1, 4, 6, 11, 13, 16 2, 9, 12, 14 10
8 4, 6, 7, 16 2, 3, 5, 12, 14, 15 1, 10, 11, 13 9
9 1, 10, 11, 13 2, 3, 5, 12, 14, 15 4, 6, 7, 16 8

10 2, 9, 12, 14 1, 4, 6, 11, 13, 16 3, 5, 8, 15 7
11 3, 9, 12, 15 1, 4, 7, 10, 13, 16 2, 5, 8, 14 6
12 4, 10, 11, 16 2, 3, 8, 9, 14, 15 1, 6, 7, 13 5
13 5, 9, 14, 15 1, 6, 7, 10, 11, 16 2, 3, 8, 12 4
14 6, 10, 13, 16 2, 5, 8, 9, 12, 15 1, 4, 7, 11 3
15 7, 11, 13, 16 3, 5, 8, 9, 12, 14 1, 4, 6, 10 2
16 8, 12, 14, 15 4, 6, 7, 10, 11, 13 2, 3, 5, 9 1

�

4.6.11 Right-Angular PBIB(4) Designs

The right-angular association scheme was introduced by Tharthare (1963) for t =
2sq treatments. The treatments are arranged in q right angles with arms of length
s, keeping the angular positions of the right angles blank. The association scheme
is then as follows: Any two treatments on the same arm are first associates; any
two treatments on different arms of the same right angle are second associates;
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any two treatments on the same (i.e., parallel) arm but in different right angles
are third associates; any two treatments are fourth associates otherwise.

It follows then that

n1 = s − 1 n2 = s n3 = (q − 1)s = n4

and

P 1 =


0 1 0 0 0
1 s − 2 0 0 0
0 0 s 0 0
0 0 0 s(q − 1) 0
0 0 0 0 s(q − 1)



P 2 =


0 0 1 0 0
0 0 s − 1 0 0
1 s − 1 0 0 0
0 0 0 0 s(q − 1)

0 0 0 s(q − 1) 0



P 3 =


0 0 0 1 0
0 0 0 s − 1 0
0 0 0 0 s

1 s − 1 0 s(q − 2) 0
0 0 s 0 s(q − 1)



P 4 =


0 0 0 0 1
0 0 0 0 s − 1
0 0 0 s 0
0 0 s 0 s(q − 2)

1 s − 1 0 s(q − 2) 0


Example 4.14 Let t = 12, q = 3, s = 2.

Treatments:

43

1

2

87

5

6

1211

9

10
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The association scheme follows:

0th Associate 1st Associates 2nd Associates 3rd Associates 4th Associates

1 2 3, 4 5, 6, 9, 10 7, 8, 11, 12
2 1 3, 4 5, 6, 9, 10 7, 8, 11, 12
3 4 1, 2 7, 8, 11, 12 5, 6, 9, 10
4 3 1, 2 7, 8, 11, 12 5, 6, 9, 10
5 6 7, 8 1, 2, 9, 10 3, 4, 11, 12
6 5 7, 8 1, 2, 9, 10 3, 4, 11, 12
7 8 5, 6 3, 4, 11, 12 1, 2, 9, 10
8 7 5, 6 3, 4, 11, 12 1, 2, 9, 10
9 10 11, 12 1, 2, 5, 6 3, 4, 7, 8

10 9 11, 12 1, 2, 5, 6 3, 4, 7, 8
11 12 9, 10 3, 4, 7, 8 1, 2, 5, 6
12 11 9, 10 3, 4, 7, 8 1, 2, 5, 6 �

Tharthare (1965) extended this association scheme to what he called the gen-
eralized right-angular association scheme for t = pqs treatments with p > 2. To
describe the association scheme succinctly, it is useful to denote the treatment
by triplets (x1, x2, x3) with x1 = 1, 2, . . . , q; x2 = 1, 2, . . . , p; x3 = 1, 2, . . . , s.
Then, two treatments (x1, x2, x3) and (y1, y2, y3) are said to be

1st Associates: if x1 = y1, x2 = y2, x3 �= y3

2nd Associates: if x1 = y1, x2 �= y2

3rd Associates: if x1 �= y1, x2 = y2

4th Associates: otherwise

This, obviously, leads to n1 = s − 1, n2 = (p − 1)s, n3 = (q − 1)s, n4
= (q − 1)(p − 1)s.

4.6.12 Cyclic PBIB Designs

Cyclic PBIB designs represent a rather large and flexible class of incomplete
block designs. They were introduced by Kempthorne (1953) and Zoellner and
Kempthorne (1954) for blocks of size k = 2. Further developments are due to
for example, David (1963, 1965), David and Wolock (1965), John (1966, 1969),
and Wolock (1964).

Let us denote the treatments by 0, 1, 2, . . . , t − 1. The association scheme can
then be defined as follows, where we need to distinguish between t even and
t odd:

t even: For a fixed treatment θ , the uth associates are (θ + u, θ − u)mod
t(u = 1, 2, . . . , t/2 − 1) and the t/2th associate is θ + t/2 (mod t). Thus we have
m = t/2 associate classes with nu = 2 (u = 1, 2, . . . , t/2 − 1) and nt/2 = 1.
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t odd : The uth associates of θ are (θ + u, θ − u)mod t for u = 1, 2, . . . , (t −
1)/2. Thus we have m = (t − 1)/2 associate classes with nu = 2 [u = 1, 2, . . . ,

(t − 1)/2].

Example 4.15 Let t = 6.

0th Associate 1st Associates 2nd Associates 3rd Associates

0 1, 5 2, 4 3
1 2, 0 3, 5 4
2 3, 1 4, 0 5
3 4, 2 5, 1 0
4 5, 3 0, 2 1
5 0, 4 1, 3 2

We draw the reader’s attention to the cyclic development of the treatments in a
given associate class, hence the name of the association scheme. The P matrices
are as follows:

P 1 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0



P 2 =


0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0



P 3 =


0 0 0 1
0 0 2 0
0 2 0 0
1 0 0 0


�

4.6.13 Some Remarks

We conclude this section with the following remarks:

1. As we have mentioned earlier, the list of association schemes given here
is not exhaustive. Other association schemes with m > 2 associate classes
were given by for example, Roy (1953–1954), Raghavarao (1960), Oga-
sawara (1965), Yamamoto, Fuji, and Hamada (1965), and Adhikary (1966,
1967). In most cases they represent generalizations of existing association
schemes.
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2. We have chosen our list of association schemes because they lead to a
rather large class of existing and practical PBIB designs [in particular the
PBIB(2) designs and the cyclic PBIB designs are well documented (see
Chapter 5)] and/or are particularly useful in the construction of systems
of confounding for symmetrical and asymmetrical factorial designs (see
Chapters 11 and 12).

3. We emphasize that an association scheme does not constitute a PBIB
design, nor does it lead automatically to a PBIB design. Methods of con-
structing designs with a certain association scheme is the subject of Chapter
5. It will turn out that certain association schemes are connected with certain
construction methods.

4.7 ESTIMATION OF ρ FOR PBIB(2) DESIGNS

Recall from Sections 1.10 and 2.5 that the general problem with utilizing the
combined intra- and interblock information is that of finding an estimator for ρ,
ρ̂, such that

var[t (ρ̂ )] ≤ var(t) (4.56)

where t is the intrablock estimator for the estimable function c′τ and t (ρ̂) is the
combined estimator for the same function using ρ̂ as the estimate of ρ.

Shah (1964) has derived as estimator for ρ for a certain class of designs such
that (4.56) holds. We shall state his result without proof and then apply it to the
various types of PBIB(2) designs as in Section 4.6.

4.7.1 Shah Estimator

Let D1 be the class of proper, equireplicate, binary incomplete block designs for
which the concordance matrix NN ′ has only one nonzero eigenvalue (other than
rk). Let θ denote this eigenvalue with multiplicity α = rank(NN ′) − 1. Further,
define

Z = c (1 + c){SS(Xτ |I) − (2T ′ − r τ̂ ′)̂τ } (4.57)

where c = (rk/θ) − 1 and all the other terms are as defined in earlier sections.
We now state the following theorem.

Theorem 4.1 Consider an incomplete block design belonging to the class
D1. When

ρ̂ =


θ

rk − θ

(
Z

αMSE

− 1

)
if

Z

MSE

>
rkα

θ

1 otherwise
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with Z as given in (4.57), is used in the combined analysis, then for any treatment
contrast c′τ ,

var[t (ρ̂)] < var(t)

for all values of ρ provided that

(α − 4)(n − t − b − 1) ≥ 8 (4.58)

4.7.2 Application to PBIB(2) Designs

We have already used the result of Theorem 4.1 in connection with BIB designs
(see Section 2.5) that clearly belong to D1. We have mentioned earlier that among
all PBIB designs the PBIB(2) designs are quite numerous and most useful from
a practical point of view. As we have seen in Section 4.4.3, they have two
distinct eigenvalues other than rk and expressions for these and their multiplicities
are given in (4.31) and (4.32), respectively. Using these results we shall now
investigate which PBIB(2) designs belong to the class D1 and give for them the
corresponding condition (4.58).

1. Group-Divisible Designs Using the explicit expressions for P 1 and P 2
as given in Section 4.6.1, we find that

θ1 = r − λ1 α1 = t1(t2 − 1)

θ2 = r − λ1 + t2(λ1 − λ2) α2 = t1 − 1

In particular, we have, following Bose and Connor (1952), for
a. Singular GD designs: r − λ1 = 0. Hence the designs belong to D1, with

θ = θ2 and α = α2. Condition (4.58) then becomes (t1 − 5)(n − b − t −
1) ≥ 8.

b. Semiregular GD designs: r − λ1 + t2(λ1 − λ2) = 0. Hence these
designs also belong to D1, with θ = θ1 and α = α1. Condition (4.58)
can, therefore, be written as [t1(t2 − 1) − 4](n − b − t − 1) ≥ 8.

c. Regular GD designs: They do not belong to D1 since θ1 > 0 and θ2 > 0.
2. Triangular Designs Using the results of Section 4.6.2 we obtain

θ1 = r + (q − 4)λ1 − (q − 3)λ2 α1 = q − 1

θ2 = r − 2λ1 + λ2 α2 = q(q − 3)/2

They belong to D1 if either one of these eigenvalues is zero, which is
possible.
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3. Latin Square Type Designs For the Li-association scheme (see Section
4.6.3) we have

θ1 = r − (i − q)(λ1 − λ2) − λ2 α1 = i(q − 1)

θ2 = r − i(λ1 − λ2) − λ2 α2 = (q − 1)(q − i + 1)

they belong to D1 if either θ1 or θ2 is zero, which is possible.
4. Cyclic Designs Neither the expressions for the eigenvalues or their mul-

tiplicities reduce to simple expressions. To check whether a given design
belongs to D1, we need to work out (4.31) and check whether either θ1 or
θ2 equals zero.
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Construction of Partially Balanced
Incomplete Block Designs

In the previous chapter we discussed several types of association schemes for PBIB
designs with two or more associate classes. There exists a very large number of
PBIB designs with these, and other, association schemes. But as we have pointed
out earlier, the association schemes themselves do not constitute or generate the
actual plan, that is, the assignment of treatment to blocks. To obtain such plans,
different methods of construction have been developed and used. It is impossible
to mention all of them as the literature in this area is immense. Rather, we shall
discuss in some detail only a few methods with emphasis mainly on three types
of PBIB designs, namely PBIB(2) designs, in particular, group-divisible PBIB(2)
designs, cyclic PBIB designs, and EGD-PBIB designs. The first class is important
because it constitutes the largest class of PBIB designs. The second class also
represents a rather large class, and the designs are easy to construct and are widely
applicable. The last class is important with respect to the construction of systems
of confounding for asymmetrical factorial experiments (see Chapter 12).

5.1 GROUP-DIVISIBLE PBIB(2) DESIGNS

We shall give a brief discussion of the basic methods for constructing group-
divisible designs. These methods are (i) duals of BIB designs, (ii) method of
differences, (iii) finite geometries, and (iv) orthogonal arrays, as developed mainly
by Bose, Shrikhande, and Bhattacharya (1953).

5.1.1 Duals of BIB Designs

Let N be the incidence matrix of a design D with parameters t, b, k, r . Then N ′
denotes the incidence matrix of a design D′, with parameters t ′, b′, k′, r ′, which

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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has been obtained from D by interchanging treatments and blocks. This implies
that D′ has parameters t ′ = b, b′ = t, k′ = r, r ′ = k. The design D′ is referred
to as the dual of the design D (and, of course, vice versa). If the design D has
a certain structure, such as being a BIB or PBIB design, then the dual design
D′ very often also has a particular recognizable structure. It is this relationship
between D and D′ that we shall now utilize to construct certain GD-PBIB(2)
designs from existing BIB designs. Consider the following theorem.

Theorem 5.1 Let D be a BIB design with parameters t = s2, b = s(s + 1),
k = s, r = s + 1, λ = 1, where s is prime or prime power (see Sections 3.34
and 18.7). Then the dual D′ is a GD-PBIB(2) design with parameters t ′ = (s +
1)s, t1 = s + 1, t2 = s, b′ = s2, k′ = s + 1, r ′ = s, λ1 = 0, λ2 = 1.

Proof As can be seen from the construction in Section 3.7, D is a resolvable
(α = 1) BIB design, consisting of s + 1 replication groups with s blocks each
and containing each treatment once. Denote the blocks by Bj� where j denotes
the replication group (j = 1, 2, . . . , s + 1) and � denotes the block within the
j th replication group (� = 1, 2, . . . , s). Now consider a treatment θ , say, and
suppose it occurs in blocks B1�1, B2�2 , . . . , Bs+1,�s+1. Then in D′ block θ con-
tains the treatments 1�1, 2�2, . . . , s + 1�s+1. Further, let θ1, θ2, . . . , θs−1 be the
treatments that occur together with θ in B1�1 in D. Since {θ, θ1, θ2, . . . , θs−1}
appear all in different blocks in the remaining s replication groups (since λ = 1),
it follows then that in D′ treatment 1�1 occurs together exactly once with all
j�(j = 2, . . . , s + 1; � = 1, 2, . . . , s), but not at all with the s − 1 treatments
1�(� �= �1). This implies the association scheme

11 12 . . . 1s

21 22 . . . 2s

s + 1 1 s + 1 2 . . . s + 1 s

where treatments in the same row are 1st associates and 2nd associates otherwise,
which is, in fact, the GD association scheme, and since the GD association is
unique (Shrikhande, 1952), the resulting design is the GD-PBIB(2) design. �

Example 5.1 Consider the BIB design D with t = 32, b = 12, k = 3, r =
4, λ = 1, given by the plan [denoting the treatments by (x1, x2), x1, x2 = 0, 1, 2]:

Block Treatments

11 (0, 0) (0, 1) (0, 2)
12 (1, 0) (1, 1) (1, 2)
13 (2, 0) (2, 1) (2, 2)

21 (0, 0) (1, 0) (2, 0)
22 (0, 1) (1, 1) (2, 1)
23 (0, 2) (1, 2) (2, 2)
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Block Treatments

31 (0, 0) (1, 2) (2, 1)
32 (1, 0) (0, 1) (2, 2)
33 (2, 0) (0, 2) (1, 1)

41 (0, 0) (1, 1) (2, 2)
42 (1, 0) (0, 2) (2, 1)
43 (2, 0) (0, 1) (1, 2)

The dual D′ is then given by

Block Treatments

(0, 0) 11, 21, 31, 41
(0, 1) 11, 22, 32, 43
(0, 2) 11, 23, 33, 42

(1, 0) 12, 21, 32, 42
(1, 1) 12, 22, 33, 41
(1, 2) 12, 23, 31, 43

(2, 0) 13, 21, 33, 43
(2, 1) 13, 22, 31, 42
(2, 2) 13, 23, 32, 41

The reader can verify easily that this is indeed the plan for a GD-PBIB(2)
design with the parameters as indicated. It is isomorphic to plan SR41 given
by Clatworthy (1973). �

5.1.2 Method of Differences

We denote and write the t = t1t2 treatments now as follows:

01 02 . . . 0t2

11 12 . . . 1t2

(t1 − 1)1 (t1 − 1)2 . . . (t1 − 1)t2 (5.1)

that is, the (i + 1)th group in the association scheme for the GD design consists
of the treatments (i1, i2, . . . , it2) with i = 0, 1, . . . , t1 − 1, these treatments being
1st associates of each other. The treatments in the �th column are referred to as
treatments of class �.

The method of differences as described for BIB designs (Section 3.2) can now
be extended for purposes of constructing GD-PBIB(2) designs as stated in the
following theorem.
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Theorem 5.2 Let it be possible to find s initial blocks B10, B20, . . . , Bs0
such that

i. Each block contains k treatments.
ii. Treatments of class �(� = 1, 2, . . . , t2) are represented r times among the

s blocks.
iii. Among the differences of type (�, �) arising from the s blocks, each

nonzero residue mod t1 occurs the same number of times, λ2, say, for
all � = 1, 2, . . . , t2.

iv. Among the differences of type (�, �′) arising from the s blocks, each
nonzero residue mod t1 occurs λ2 times and 0 occurs λ1 times, say, for
all (�, �′)(�, �′ = 1, 2, . . . , t2, � �= �′).

Then, developing the initial blocks B10, B20, . . . , Bs0 cyclically, mod t1 yields a
GD-PBIB(2) design with parameters t = t1t2, b = t1s, k, r = ks/t2, λ1, λ2.

The proof is quite obvious as it is patterned after that of Theorem 3.1. By
looking at array (5.1), it is clear that through the cyclic development of the initial
blocks, any two treatments in the same row occur λ1 times together in the same
block, and any two treatments not in the same row occur λ2 times together in
the same block. This then satisfies the association scheme for the GD-PBIB(2)
design.

We shall illustrate this with the following example.

Example 5.2 Let t = 14, t1 = 7, t2 = 2; that is, array (5.1) is

01 02
11 12
21 22
31 32
41 42
51 52
61 62

Let the initial blocks of size 4 be

B10 = (01, 02, 11, 12)

B20 = (01, 02, 21, 22)

B30 = (01, 02, 31, 32)

To verify conditions 2–4 of Theorem 5.2 we see that treatments of class 1 and
2 occur r = 6 times. Further, the differences of type (1, 1) are

B10: 01 − 11 ≡ 6 11 − 01 ≡ 1

B20: 01 − 21 ≡ 5 21 − 01 ≡ 2

B30: 01 − 31 ≡ 4 31 − 01 ≡ 3
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and the same holds for differences of type (2, 2); similarly, differences of type
(1, 2) are

B10: 01 − 02 ≡ 0 01 − 12 ≡ 6 11 − 02 ≡ 1 11 − 12 ≡ 0

B20: 01 − 02 ≡ 0 01 − 22 ≡ 5 21 − 02 ≡ 2 21 − 22 ≡ 0

B30: 01 − 02 ≡ 0 01 − 32 ≡ 4 31 − 02 ≡ 3 31 − 32 ≡ 0

and the same is true for differences of type (2, 1). Hence λ1 = 6, λ2 = 1. The
plan for the GD-PBIB(2) design with b = 21 blocks is then

(01, 02, 11, 12) (01, 02, 21, 22) (01, 02, 31, 32)

(11, 12, 21, 22) (11, 12, 31, 32) (11, 12, 41, 42)

(21, 22, 31, 32) (21, 22, 41, 42) (21, 22, 51, 52)

(31, 32, 41, 42) (31, 32, 51, 52) (31, 32, 61, 62)

(41, 42, 51, 52) (41, 42, 61, 62) (41, 42, 01, 02)

(51, 52, 61, 62) (51, 52, 01, 02) (51, 52, 11, 12)

(61, 62, 01, 02) (61, 62, 11, 12) (61, 62, 21, 22)

which is the same as plan S13 of Clatworthy (1973). We note that this PBIB
design is, of course, resolvable and that it lends itself to two-way elimination of
heterogeneity in that each treatment occurs exactly three times in the first two
and the last two positions of the 21 blocks. �

5.1.3 Finite Geometries

We shall first consider a method of using a projective geometry, PG(K,pn),
to construct GD-PBIB(2) designs. The result can then be applied similarly to a
Euclidean geometry, EG(K,pn). (See Appendix B for details about projective
and Euclidean geometries). The basic idea in both cases is to omit one point
from a finite geometry and all the M-spaces containing that point. The remaining
M-spaces are then taken as the blocks of a PBIB design. More specifically we
have the following theorem.

Theorem 5.3 Omitting one point from a PG(K,pn) and all the M-spaces
containing that point, gives rise to a GD-PBIB(2) design, if one identifies the
remaining points with the treatments and the remaining M-spaces with the blocks.
Any two treatments are 1st associates if the line joining them goes through the
omitted point, they are 2nd associates otherwise.

Proof The PG(K,pn) has 1 + pn + p2n + · · · + pKn points. Omitting one
point leads to

t = pn + p2n + · · · + pKn

=
(

1 + pn + · · · + p(K−1)n
)

pn

≡ t1t2 (5.2)
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treatments. In the PG(K,pn) there are ψ(M, K, pn) M-spaces, of which
ϕ(0,M, K,pn) contain the omitted point. Hence there are

b = ψ(M, K, pn) − ϕ(0, M, K,pn) (5.3)

M-spaces left that constitute the blocks, each M-space (block) containing

k = ψ(0, M, pn) = 1 + pn + p2n + · · · + pMn (5.4)

points (treatments). Since each point is contained in ϕ(0, M, K,pn) M-spaces
and since each line joining a given point and the omitted point is contained in
ϕ(1,M, K,pn) M-spaces, it follows that each retained point (treatment) occurs in

r = ϕ(0,M, K, pn) − ϕ(1, M, K,pn) (5.5)

retained M-spaces (blocks). Further

n1 = ψ(0, 1, pn) − 2 = pn − 1 = t2 − 1 (5.6)

n2 = t − n1 − 1 =
(
pn + p2n + · · · + p(K−1)n

)
pn

= (t1 − 1)t2 (5.7)

and
λ1 = 0, λ2 = ϕ(1, M, K,pn) (5.8)

Thus, we are obviously led to the association scheme for the GD-PBIB(2) design.
Because of the uniqueness of the association scheme, the design constructed in
this manner is a GD-PBIB design. �

As an illustration we consider the following example.

Example 5.3 Let p = 3, K = 2, n = 1. The points of the PG(2, 2) are given
by triplets (u1, u2, u3) with u1, u2, u3 = 0, 1 except (u1u2u3) = (000). Suppose
we omit the point (100), then the remaining points are: 010, 110, 001, 101, 011,
111, that is, t = 6. The lines (i.e., M = 1) not passing through 100 constitute the
blocks of the design and are given by

001 010 011

110 001 111

010 101 111

110 101 011 (5.9)

that is, b = 4, k = 3, r = 2. The association scheme is obtained by determining
for each point which other points lie on the line going through it and the omitted
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point. For example, the only point on the line going through (001) and (100) is
obtained from (µ0 + ν1, µ0 + ν0, µ1 + ν0) with µ = ν = 1, that is, the point
(101). Doing this for all six points leads to the following association scheme:

0th Associate 1st Associates 2nd Associates

010 110 001, 101, 011, 111
110 010 001, 101, 011, 111
001 101 010, 110, 011, 111
101 001 010, 110, 011, 111
011 111 010, 110, 001, 101
111 011 010, 110, 001, 101

This is, of course, the GD-PBIB association scheme if we write the treatments
in the following array:

010 110
001 101
011 111

Inspection of the plan (5.9) shows that λ1 = 0, λ2 = 1. With suitable labeling
this is plan SR18 of Clatworthy (1973). �

5.1.4 Orthogonal Arrays

Orthogonal arrays (for a description see Appendix C) play an important role
in the construction of experimental designs (see also Chapters 13 and 14). Of
particular interest are orthogonal arrays of strength 2. This is the type we shall
employ here to construct GD-PBIB designs. More specifically we shall employ
orthogonal arrays OA[N,K,p, 2; λ], where p is prime. Their relationship to the
GD-PBIB(2) design is as follows: Replace any integer x appearing in the ith
row of the array by the treatment (i − 1)p + x. The ith row contains then the
treatments

(i − 1)p, (i − 1)p + 1, . . . , (i − 1)p + p − 1

each occurring r = N/p times since each symbol occurs equally often in each
row. The total number of treatments is t = Kp and we have t1 = K, t2 = p. The
columns of this derived scheme form the blocks of the PBIB design, that is,
there are b = N blocks, each of size k = K . Treatments in the same row are 1st
associates, that is, each treatment has n1 = p − 1 1st associates and since these
treatments do not appear in any other row, it follows that λ1 = 0. Treatments
in different rows are 2nd associates, giving n2 = (K − 1)p. Since we have an
OA[b, k, p, 2; λ], that is, each possible 2 × 1 column vector appearing λ times,
we have λ2 = λ. This is, of course, the association scheme of a GD-PBIB(2)
design with the parameters as stated above.
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We illustrate this with the following example.

Example 5.4 Consider the following OA[8, 4, 2, 2, 2]:

A =


0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 1 1 0 1 0 0 1


This leads to the derived GD-PBIB(2) design (with columns representing blocks):

Block
1 2 3 4 5 6 7 8

0 1 0 1 0 1 0 1
2 2 3 3 2 2 3 3
4 4 4 4 5 5 5 5
6 7 7 6 7 6 6 7

with t = 8, b = 8, k = 4, r = 4, λ1 = 0, λ2 = 2. This design is isomorphic to
plan SR36 of Clatworthy (1973). �

For further specialized methods of constructing GD-PBIB(2) designs the reader
is referred to Raghavarao (1971). An essentially complete list of existing plans
for GD-PBIB(2) designs is given by Clatworthy (1973) together with references
and methods concerning their construction.

5.2 CONSTRUCTION OF OTHER PBIB(2) DESIGNS

We shall mention here only a few methods but otherwise refer the reader to the
pertinent literature.

5.2.1 Triangular PBIB(2) Designs

Recall that the number of treatments is t = q(q − 1)/2 and that for the association
scheme the treatments are arranged in a triangular array and its mirror image
(see Section 4.6.2). One method of constructing triangular designs can then be
described as follows.

If we let each row of the association scheme be a block, then the resulting
design is a triangular PBIB design with parameters:

t = q(q − 1)/2 b = q k = q − 1 r = 2 λ1 = 1 λ2 = 0

Example 5.5 Let t = 6 = 4 × 3
2 . The association scheme is

* 1 2 3
1 * 4 5
2 4 * 6
3 5 6 *



166 CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

The design then is given by

1: 1 2 3
2: 1 4 5

Block
3: 2 4 6
4: 3 5 6

that is, b = 4, k = 3, r = 2, λ1 = 1, λ2 = 0. �

Other methods given by Shrikhande (1960, 1965) and Chang, Liu, and Liu
(1965) are based on the existence of certain BIB designs and considering, for
example, the dual of the BIB design as omitting certain blocks from the BIB
design. Still other methods are given by Clatworthy (1955, 1956), Masuyama
(1965), and Ray-Chaudhuri (1965). A listing of practically useful designs is
given by Clatworthy (1973).

5.2.2 Latin Square PBIB(2) Designs

Similar to the procedure described in the previous section, the following method
of constructing L2-PBIB designs is closely connected to the square treatment
array for the L2-association scheme.

We have t = q2, and suppose q is prime or prime power. We know that
there exist then q − 1 mutually orthogonal Latin squares (MOLS) of order
q (see Section I.10.6.2). The languages for these q − 1 MOLS are then
superimposed on the treatment array, that is, each treatment has associated
with it q − 1 letters, one from each of the q − 1 MOLS. Collecting the
treatments that have the same letter from each of the q − 1 languages and
calling those sets blocks, leads to an L2-PBIB design with the following
parameters:

t = q2 b = q(q − 1) k = q r = q − 1 λ1 = 0 λ2 = 1

Example 5.6 Let t = 16, q = 4. The 4 × 4 association scheme with the
superimposed three MOLS is as follows:

1 2 3 4

A α I B β II C γ III D δ IV

5 6 7 8

B γ IV A δ III D α II C β I

9 10 11 12
C δ II D γ I Aβ IV B α III

13 14 15 16

D β III C α IV B δ I A γ II
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The blocks are then

Block Treatments

1(A) 1, 6, 11, 16
2(B) 2, 5, 12, 15
3(C) 3, 8, 9, 14
4(D) 4, 7, 10, 13
5(α) 1, 7, 12, 14
6(β) 2, 8, 11, 13
7(γ ) 3, 5, 10, 16
8(δ) 4, 6, 9, 15
9(I) 1, 8, 10, 15

10(II) 2, 7, 9, 16
11(III) 3, 6, 12, 13
12(IV) 4, 5, 11, 14

It is, of course, obvious from the method of construction that this PBIB design
is a resolvable design with the blocks from each language forming a complete
replicate. �

Other methods of construction, some based on the existence of certain BIB
designs, have been given by for example, Bose, Clatworthy, and Shrikhande
(1954), Chang and Liu (1964), Clatworthy (1955, 1956, 1967), and, as lattice
designs, by Yates (1936b) (see Section 18.7). A list of these designs can be
found in Clatworthy (1973).

5.3 CYCLIC PBIB DESIGNS

We shall now turn to the rather large class of cyclic PBIB designs we
introduced in Section 4.6.12. These designs are quite useful since (1) they are
easy to construct, namely as the name suggests through cyclic development
of initial blocks, (2) they exist for various combinations of design parameters,
and (3) they are easy to analyze, that is, their analytical structure is easy to
derive.

5.3.1 Construction of Cyclic Designs

As mentioned earlier, the construction of cyclic designs is based on the cyclic
development of a set of initial blocks. We can distinguish basically between four
types of cyclic designs according to whether the number of blocks b is (1) b = t ,
(2) b = st , (3) b = t/d , or (4) b = t (s + 1/d), where d is a divisor of t . It
is then obvious that

For (1) we need one initial block of size k;
For (2) we need s distinct (nonisomorphic) initial blocks of size k;
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For (3) we need one initial block of size k such that, if cyclically developed,
block b + 1 = t/d + 1 is the same as the initial block and each treatment
is replicated r times. This means that if the initial block contains treat-
ment i, it also must contain treatments i + b, i + 2b, . . . , i + (d − 1)b. This
implies that d is also a divisor of k, say k/d = k′. Then any k′ treatments
i1, i2, . . . , ik′ can be chosen and the remaining treatments in the initial block
are determined;

For (4) we combine initial blocks from type (1) if s = 1 or (2) if s > 1 with
an initial block from type (3).

The choice of initial blocks for (1), (2), and hence (4) above is quite arbitrary
since any choice will lead to an appropriate design. There is, however, one other
consideration that plays an important role in choosing initial blocks and that is
the efficiency E of the resulting design. Efficiency here is defined in terms of
the average variance of all treatment comparisons (see Section 1.10), and high
efficiency is closely related to a small number of associate classes. Whereas the
number of associate classes for a cyclic design is, in general, m = t/2 for t even
and m = (t − 1)/2 for t odd, this number can sometimes be reduced by a proper
choice of initial blocks, in some cases even to m = 1, that is, BIB designs, or
m = 2, that is, PBIB(2) designs. For example, consider t = 6, k = 3, r = 3, b =
6: If the initial block is (1, 2, 3), then the plan is

1 2 3
2 3 4
3 4 5
4 5 6
5 6 1
6 1 2

and by inspection we can establish the following association scheme:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 6 3, 5 4
2 3, 1 4, 6 5
3 4, 2 5, 1 6
4 5, 3 6, 2 1
5 6, 4 1, 3 2
6 1, 5 2, 4 3

with λ1 = 2, λ2 = 1, λ3 = 0, and

P 1 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 P 2 =


0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0

 P 3 =


0 0 0 1
0 0 2 0
0 2 0 0
1 0 0 0


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Hence we have a PBIB(3) design. If, on the other hand, the initial block is
(1, 2, 4), then the resulting plan is

1 2 4
2 3 5
3 4 6
4 5 1
5 6 2
6 1 3

and, by inspection, we can speculate on the association scheme as being

0th Associate 1st Associates 2nd Associates

1 2, 3, 5, 6 4
2 3, 4, 6, 1 5
3 4, 5, 1, 2 6
4 5, 6, 2, 3 1
5 6, 1, 3, 4 2
6 1, 2, 4, 5 3

with λ1 = 1, λ2 = 2, and

P 1 =
0 1 0

1 2 1
0 1 0

 P 2 =
0 0 1

0 4 0
1 0 0


Hence we have in fact a PBIB(2) design. For the first design we obtain E =

0.743 [see (5.14)], whereas for the second design we find E = 0.784. Hence the
second design is slightly preferable from an efficiency point of view, and this
design is therefore listed by John, Wolock, and David (1972). One can convince
oneself that no better cyclic design for this combination of parameters exists.

The association scheme for the second design is, indeed, the association
scheme for a cyclic PBIB(2) design as discussed in Section 4.6.4, except that we
have to relabel the treatments as 0, 1, . . . , 5. We then have d1 = 1, d2 = 2, d3 =
4, d4 = 5, e1 = 3, α = 2, β = 4.

An extensive list of initial blocks for cyclic designs for various parameters with
6 ≤ t ≤ 30, k ≤ 10, r ≤ 10, and fractional cyclic designs for 10 ≤ t ≤ 60, 3 ≤
k ≤ 10 is given by John, Wolock, and David (1972). A special group in this
collection of plans are those with k = 2, which are often referred to as paired
comparison designs.

5.3.2 Analysis of Cyclic Designs

The general methods of analyzing incomplete block designs (see Chapter 1)
apply, of course, also to the cyclic designs just described, or even more specif-
ically, the methods of analyzing BIB designs (where appropriate) or PBIB(m)
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designs can be used. However, as pointed out earlier, for many cyclic designs the
number of associate classes, m, is rather large and hence the system of equations
(4.34) becomes rather large. Instead, another method of solving the RNE

Cτ̂ = Q

for cyclic designs can be used. This method is interesting in itself as it makes
use of the particular construction process that leads to a circulant matrix C and
hence to a circulant matrix C−, the elements of which can be written out explicitly
(Kempthorne, 1953).

Let us denote the first row of C by (c1, c2, . . . , ct ). The second row is then
obtained by shifting each element of the first row one position to the right (in a
circulant manner), and so forth so that C is determined entirely by its first row.
The same is true for C−, so all we need to know in order to solve the RNE
and to obtain expressions for variances of estimable functions λ′τ , is the first
row of C−, which we denote by c1, c2, . . . , ct . Let dj (j = 1, 2, . . . , t) denote
the eigenvalues of C where (Kempthorne, 1953)

dj =
t∑

�=1

c�(� − 1)(j − 1)θ (5.10)

and θ = 2π/t . Note that d1 = 0; hence d2, d3, . . . , dt are the nonzero eigenvalues
of C. Then, as shown by Kempthorne (1953), the elements ci(i = 1, 2, . . . , t)

are given as

c1 = 1

t

t∑
j=2

1

dj

ci = 1

t

t∑
j=2

cos(j − 1)(i − 1)θ

dj

(i = 2, 3, . . . , t)

(5.11)

Expressions (5.10) and (5.11) can actually be simplified somewhat. Because of
the construction of the designs and the resulting association scheme, we have for
the λ1i′ in NN ′

λ12 = λ1t , λ13 = λ1,t−1,

λ14 = λ1,t−2, . . . ,

{
λ1,t/2 = λ1,t/2+2 for t even

λ1,(t+1)/2 = λ1,(t+3)/2 for t odd

and hence we have for C

c1 = r
k − 1

k

c2 = ct = −λ12

k
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c3 = ct−1 = −λ13

k

c4 = ct−2 = −λ14

k

c(t+1)/2 = c(t+3)/2 = −λ1,(t+1)/2

k
for t odd

or

c(t+2)/2 = −λ1,(t+2)/2

k
for t even

As a consequence, also the maximum number of different ci values is (t + 1)/2
for t odd or (t + 2)/2 for t even. With the ci values given in (5.11) we can find
the variances of treatment comparisons in general via comparisons with treatment
1 as follows:

var(̂τi − τ̂i′) = var(̂τ1 − τ̂i′−i+1)

= 2(c1 − ci′−i+1)σ 2
e for i′ > i (5.12)

This is, of course, a consequence of the circulant form of C−. The average
variance of all such treatment comparisons then is

av. var = 1

t (t − 1)

∑
ii′

i �=i′

var(̂τi − τ̂i′)

= 1

t − 1

∑
i �=1

var(̂τ1 − τ̂i )

and using (5.12),

av. var = 2

t − 1

∑
i �=1

(c1 − ci)σ 2
e

= 2

t − 1

(
tc1 −

t∑
i=1

ci

)
σ 2

e

= 2t

t − 1
c1σ 2

e (5.13)

since
∑t

i=1 ci = 0 as can be verified directly by using (5.11). From (5.12) it
follows then that the efficiency factor for the treatment comparison between the
ith and the i′th treatment is

Eii′ = 2σ 2
e /r

2(c1 − ci′−i+1)σ 2
e

= 1

r(c1 − ci′−i+1)
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and from (5.13) that the overall efficiency factor is

E = 2σ 2
e /r

2tc1σ 2
e /(t − 1)

= t − 1

rtc1 (5.14)

5.4 KRONECKER PRODUCT DESIGNS

In previous sections we have used the fact that incomplete block designs can
sometimes be generated from some other existing incomplete block design, for
example, the residual design of a BIB design is also a BIB design, the duals
of certain BIB designs are PBIB(2) designs. In this section we shall use another
widely applicable and useful technique to generate new incomplete block designs
from existing designs. This method and hence the resulting designs are referred
to as Kronecker product designs. These designs were first introduced by Vartak
(1955) and later put on a more formal basis by Surendran (1968).

5.4.1 Definition of Kronecker Product Designs

Suppose we have two PBIB designs, D1 and D2, with m1 and m2 associate
classes, respectively [in what follows we consider a BIB design as a PBIB(1)
design] defined by their respective incidence matrices N1 and N2 with the fol-
lowing parameters:

D1: t1, r1, k1, b1, nu, λu P k = (pk
uv) (u, v, k = 0, 1, . . . ,m1)

(5.15)
D2: t2, r2, k2, b2, n

∗
f , λ∗

f P ∗
f = (q

f
gh) (f, g, h = 0, 1, . . . ,m2)

Consider now the Kronecker product

N = N1 × N2 (5.16)

where N is obtained by multiplying each element in N1 by the matrix N2.
It is immediately obvious that N is an incidence matrix of dimension t × b

with t = t1t2 and b = b1b2. Furthermore, each row of N contains r = r1r2 unity
elements and each column contains k = k1k2 unity elements. Hence the design
D, defined by its incidence matrix (5.16), is an incomplete block design with t

treatments, b blocks, r replicates per treatment, and k units per block. It remains
for us to show that this Kronecker product design is indeed a PBIB design and
to establish its association scheme and the remaining parameters.

5.4.2 Properties of Kronecker Product Designs

Let us denote the treatments of D1 by the vector θ ′ = (θ1, θ2, . . . , θt1) and the
treatments of D2 by the vector φ′ = (φ1, φ2, . . . , φt2). The treatments for design
D can then be defined by what Kurkjian and Zelen (1962, 1963) have called the
symbolic direct product between θ and φ.
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Definition 5.1 Let θ ′ = (θ1, θ2, . . . , θq) and φ′ = (φ1, φ2, . . . , φs) be two
arrays of size q and s, respectively. Then a new array x of size q · s is created
by the symbolic direct product (SDP) of θ and φ as follows:

x = θ ⊗ φ =



x11
x12
...

x1s

x21
...

xqs


(5.17)

�

It is convenient to enumerate the rows of the matrix N in (5.16) in the same way
as the array in (5.17). We shall now prove the following theorem.

Theorem 5.4 Let D1 and D2 be two PBIB designs with parameters as given
in (5.15). Then the Kronecker product design D as defined by its incidence
matrix N = N1 × N2 is a PBIB design with m = (m1 + 1)(m2 + 1) − 1 asso-
ciate classes and the following association scheme: If treatments θν and θν′ are
uth associates in D1 and if treatments φµ and φµ′ are gth associates in D2
then the treatments xνµ and xν′µ′ are said to be (u : g)th associates in D with
(u : g) = (0 : 0), (0 : 1), . . . , (0 : m2), (1 : 0), . . . , (m1 : m2).

Proof We shall prove the theorem by establishing that the concordance matrix
and the association matrices satisfy certain conditions as established by Bose and
Mesner (1959) and as used in Chapter 4.

Let Bu(u = 0, 1, . . . , m1) and B∗
g(g = 0, 1, . . . , m2) be the association matri-

ces for designs D1 and D2, respectively. We then have

N1N
′
1 =

m1∑
u=0

λuBu (5.18)

and

N2N
′
2 =

m2∑
g=0

λ∗
gB

∗
g (5.19)

Then, using (5.16), (5.18), and (5.19), we obtain

NN ′ = (N1 × N2)(N1 × N2)
′

= (N1N
′
1) × (N2N

′
2)
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=
 m1∑

u=0

λuBu

 ×
 m2∑

g=0

λ∗
gB

∗
g


=

m1∑
u=0

m2∑
g=0

λuλ
∗
g

(
Bu × B∗

g

)
(5.20)

Now let

Bu:g = Bu × B∗
g (5.21)

It can be seen easily that the Bu:g are association matrices since

(i) B0:0 = B × B∗
0 = I t

(ii)
m1∑
u=0

m2∑
g=0

Bu:g =
∑
u

∑
g

Bu × B∗
g

=
(∑

u

Bu

)
×

(∑
g

B∗
g

)
= It1I

′
t1

× It2I
′
t2

= ItI
′
t

(iii) Bu:gBv:h =
(
Bu × B∗

g

) (
Bv × B∗

h

) = (BuBv) ×
(
B∗

gB
∗
h

)
=

(
m1∑
k=0

pk
uvBk

)
×

 m2∑
f =0

q
f
ghB

∗
f


=

m1∑
k=0

m2∑
f =0

pk
uvq

f
gh

(
Bk × B∗

f

)

=
m1∑
k=0

m2∑
f =0

pk
uvq

f
gh Bk:f

=
m1∑
k=0

m2∑
f =0

p
k:f
u:g,v:h Bk:f

with

p
k:f
u:g,v:h = pk

uvq
f
gh

and

p
k:f
u:g,v:h = p

k:f
u:h,u:g

Further, the association scheme defined by the association matrices (5.21) is
indeed the same as that stated in the theorem, which is immediately obvious
from the way the treatments of N have been enumerated in (5.17).

This completes the proof of the theorem. �
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By way of proving the theorem, we also obtain the remaining parameters of
the Kronecker product design D as

nu:f = nun
∗
f

λu:f = λuλ
∗
f

P k:f =
(
p

k:f
u:g,v:h

)
=

(
pk

uv · pf
gh

)
= P k × P ∗

f

with (u : f ) = (0 : 0), (0 : 1), . . . , (0 : m2), (1, 0), . . . , (m1 : m2).
As a simple application we consider the following example.

Example 5.7 Let D1 be a BIB design with parameters t1 = 4, b1 = 4, k1 =
3, r1 = 3(= λ0), λ1 = 2, and incidence matrix

N1 =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


and let D2 be a BIB design with t2 = 3, b2 = 3, k2 = 2, r2 = 2(= λ∗

0), λ
∗
1 = 1,

and incidence matrix

N2 =
1 1 0

1 0 1
0 1 1


Then D has the parameters t = 12, b = 12, k = 6, r = 6(= λ0:0), λ0:1 = 3;
λ1:0 = 4, λ1:1 = 2, and incidence matrix

N =


N2 N2 N2 0
N2 N2 0 N2
N2 0 N2 N2
0 N2 N2 N2


With

B0 = I t1 B1 = It1I
′
t1

− I t1

B∗
0 = I t2 B∗

1 = It2I
′
t2

− I t2

as the association matrices for D1 and D2, respectively, the association matrices
for D are

B0:0 = I t1 × I t2 = I t

B0:1 = I t1 × (
It2I

′
t2

− I t1

) = I t1 × It2I
′
t2

− I t
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B1:0 = (
It1I

′
t1

− I t1

) × I t2 = It1I
′
t1

× I t2 − I t

B1:1 = (
It1I

′
t1

− I t1

) × (
It2I

′
t2

− I t2

)
= ItI

′
t − It1I

′
t1

× I t2 − I t1 × It2I
′
t2

+ I t

Obviously

B0:0 + B0:1 + B1:0 + B1:1 = ItI
′
t

Any treatment in D is denoted, according to (5.17), by (i, j) where i =
1, 2, 3, 4, j = 1, 2, 3, and these treatments are arranged in the order as given
by (5.17). The association scheme for this PBIB(3) design can then be expressed
in two ways, both of which are useful:

1. Any two treatments (i, j) and (i′, j ′) are

0:0 associates if i = i′ j = j ′
0:1 associates if i = i′ j �= j ′
1:0 associates if i �= i′ j = j ′
1:1 associates if i �= i′ j �= j ′

or

2. If the treatments are arranged in the 4 × 3 array

(1, 1) (1, 2), (1, 3)
(2, 1) (2, 2), (2, 3)
(3, 1) (3, 2), (3, 3)
(4, 1) (4, 2), (4, 3)

then each treatment is the 0:0th associate of itself, and any two treatments
are

0:1 associates if they are in the same row
1:0 associates if they are in the same column
1:1 associates if they are in different rows and columns

This association scheme has been referred to as the extended group-divisible
association scheme for an EGD(3)-PBIB design by Hinkelmann and Kemp-
thorne (1963) using representation 1 above, and as the rectangular associ-
ation scheme by Vartak (1955) using representation 2 (see Sections 4.6.9
and 4.6.5).

Finally, the P matrices for the design D are obtained from those for design D1:

P 0 =
(

1 0
0 3

)
P 1 =

(
0 1
1 2

)
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and design D2:

P ∗
0 =

(
1 0
0 2

)
P ∗

1 =
(

0 1
1 1

)
as

P 0:0 =


1

φ

2
3

φ

6

 P 0:1 =


0 1

φ

1 1
0 3

φ

3 3



P 1:0 =


1 0

φ

0 2
1 0 2 0
0 2 0 4

 P 1:1 =


0 1

φ

1 1
0 1 0 2
1 1 2 2


�

The method of constructing PBIB designs as Kronecker product designs can,
obviously, be extended to Kronecker products of incidence matrices for three or
more existing PBIB designs, for example,

N = N1 × N2 × N3

and the reader should have no difficulties working out the parameters of the result-
ing PBIB design with (m1 + 1)(m2 + 1)(m3 + 1) − 1 associate classes, where
m1, m2, m3 are the numbers of associate classes of the component designs.

5.4.3 Usefulness of Kronecker Product Designs

It is, of course, clear that the usefulness of Kronecker product designs is somewhat
limited as even for two component designs, that is, for N = N1 × N2 they may
require rather large block sizes and/or large numbers of replications depending on
the corresponding parameters for the underlying designs N1 and N2. In general,
therefore, only those designs N1 and N2 with moderate values for k and/or r

will be useful in this connection.
Also, the number of associate classes for Kronecker product PBIB designs may

be quite large since the maximum number of associate classes for N = N1 × N2
is m1m2 + m1 + m2. Vartak (1955) and Kageyama (1972) have shown, however,
that under certain conditions this number can be reduced considerably, thereby
actually inducing a different association scheme. Kageyama (1972), for example,
proves that a necessary and sufficient condition for an EGD-(2ν − 1)-PBIB design
(see Section 4.6.9) based on the ν-fold Kronecker product of BIB designs to
reduce to PBIB(ν) designs having the hypercubic association scheme (see Section
4.6.10) is that the ν BIB designs have the same number of treatments and the same
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block size. This not only makes Kronecker product PBIB designs more attractive
from a practical point of view but it also provides methods of constructing PBIB
designs with different association schemes.

5.5 EXTENDED GROUP-DIVISIBLE PBIB DESIGNS

We have mentioned earlier that the EGD-PBIB designs play a major role in
connection with systems of confounding for asymmetrical factorial experiments
and balanced factorial experiments (see Chapter 12). Knowing how to construct
EGD-PBIB designs therefore means knowing how to construct such systems
of confounding. It is for this reason that we shall present a few methods of
constructing EGD-PBIB designs.

5.5.1 EGD-PBIB Designs as Kronecker Product Designs

As illustrated already by Example 5.7, the EGD-PBIB(3) design can be con-
structed as the Kronecker product of two BIB designs. It is then quite obvious
that a ν-fold Kronecker product of BIB designs will lead to an EGD-PBIB(2ν − 1)
design. More formally, we state the following theorem.

Theorem 5.5 Let there be ν designs Di with parameters ti , bi, ki, ri , λ(i) and
incidence matrix N i (i = 1, 2, . . . , ν), respectively. Then the Kronecker product
design D as given by its incidence matrix

N = N1 × N2 × · · · × Nν

is an EGD/(2ν − 1)-PBIB design with parameters

t =
ν∏

i=1

ti b =
ν∏

i=1

bi k =
ν∏

i=1

ki r =
ν∏

i=1

ri

λγ1γ2,...,γν =
ν∏

i=1

r
1−γi

i λ
γi

(i)

where the power γi = 0 or 1.

Proof For the proof we simply refer to the definition of the Kronecker prod-
uct design (Section 5.4) and the definition of the EGD/(2ν − 1)-PBIB design
(Section 4.6.9). �

5.5.2 Method of Balanced Arrays

The second method of constructing EGD-PBIB designs is due to Aggarwal
(1974). It is based on balanced arrays. Before we give the corresponding theorem
we need first the following definition.
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Definition 5.2 Let α′ = (α1, α2, . . . , αq) and β ′ = (β1, β2, . . . , βq) be two
arrays of q elements, then the symbolic inner product (SIP), α′ � β ′, of these
arrays is the array defined as

α′ � β ′ = (α1 β1, α2β2, . . . , αqβq) �

We then state the following theorem.

Theorem 5.6 The existence of an EGD/(2ν − 1)-PBIB design with param-
eters t = ∏ν

i=1 ti , b = ∏ν
i=2 ti (ti − 1), k = ti , r = ∏ν

i=2(ti − 1), and

λγ1γ2...γν =
{

1 if γ1 = γ2 = . . . = γν = 1

0 otherwise

where t1 ≤ ti (i = 2, 3, . . . , ν), is implied by the existence of ν − 1 balanced
arrays BAi[ti (ti − 1), t1, ti , 2](i = 2, 3, . . . , ν), that is, with Ni = ti (ti − 1)

assemblies, t1 constraints, strength 2, ti levels, and for each i

λ(x1, x2) =
{

0 if x1 = x2

1 otherwise

[for a definition of balanced array (BA) see Appendix C].

Proof This proof actually gives the construction of the EGD-PBIB design,
assuming that the BAi exist. Denote the columns of BAi by ai1, ai2, . . . , ai,(ti−1)

and the elements in BAi by 0, 1, . . . , ti − 1. Then construct successively the
following EGD-PBIB designs:

1. Take the SIP of the array [0, 1, 2, . . . , (t1 − 1)] and each a ′
2j [j =

1, 2, . . . , t2(t2 − 1)] of BA2. If each SIP is taken as a block with treatments
of the form (x1x2), then this yields an EGD(3)-PBIB design with the fol-
lowing parameters: t = t1t2, b = t2(t2 − 1), k = t1, r = t2 − 1, n01 = t2 −
1, n10 = t1 − 1, n11 = (t1 − 1)(t2 − 1), λ01 = 0, λ10 = 0, λ11 = 1. This
can be verified easily by noting that (a) each element of BA2 must occur
t2 − 1 times in each row of BA2, hence each element in (0, 1, . . . , t1 − 1)

is combined with each element of (0, 1, . . . , t2 − 1), implying r = t2 − 1;
(b) each SIP forms a block of size k = t1 and hence b = t2(t2 − 1); (c)
because of the BA property concerning the λ(x1, x2), no two pairs of ele-
ments, that is, no two treatments (i, j) and (i′, j ′), say, occur together in
the same block if i = i′ or j = j ′, implying λ01 = λ10 = 0, and two pairs
of elements (i, j) and (i′, j ′) occur together exactly once if i �= i′ and
j �= j ′, implying λ11 = 1. This establishes the EGD(3)-PBIB property of
this design. We denote the blocks, that is, SIP arrays, of this EGD-PBIB
design by b′

21, b
′
22, . . . , b′

2,t2(t2−1).
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2. Then take the SIP of the b′
2j [j = 1, 2, . . . , t2(t2 − 1)] with the a′

3�[� =
1, 2, . . . , t3(t3 − 1)] of BA3. This leads to an EGD/7-PBIB design
with parameters t = t1t2t3, b = t2(t2 − 1)t3(t3 − 1), k = t1, r = (t2 − 1)

(t3 − 1), λ001 = λ010 = λ011 = λ100 = λ101 = λ110 = 0, λ111 = 1, n100 =
t1 − 1, n010 = t2 − 1, n001 = t3 − 1, n110 = (t1 − 1)(t2 − 1), n101 =
(t1 − 1)(t3 − 1), n011 = (t2 − 1)(t3 − 1), n111 = (t1 − 1)(t2 − 1)(t3 − 1).
This can be verified by repeating the arguments given in item 1.

3. Continue the process of forming the SIP of the blocks of the EGD/(2q − 1)-
PBIB design with the columns of BAq+1 until q = ν − 1. The resulting
design is then an EGD/(2ν − 1)-PBIB design with parameters as stated in
the theorem. �

Example 5.8 Let t = 36 = 3 × 3 × 4, that is, t1 = 3, t2 = 3, t3 = 4. The two
required BAs are (see Appendix C for construction)

BA2 =
 0 1 2 0 1 2

2 0 1 1 2 0
1 2 0 2 0 1



BA3 =
 0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0
2 3 0 1 3 2 1 0 1 0 3 2


The SIP of (0, 1, 2) with the columns of BA2 yields

b′
21 = (00, 12, 21)

b′
22 = (01, 10, 22)

b′
23 = (02, 11, 20)

b′
24 = (00, 11, 22)

b′
25 = (01, 12, 20)

b′
26 = (02, 10, 21)

The SIP of the b′
2j ’s with the columns of BA3 yields the final plan with 72

blocks of size 3 as given in Table 5.1. �

5.5.3 Direct Method

The methods described in Sections 5.5.1 and 5.5.2 depend both on the avail-
ability of appropriate BIB designs or BAs, respectively. The method to be
described in this section, which is due to Chang and Hinkelmann (1987), is
a direct method in the sense that it is based ab initio on simple combinatorial
operations.
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Table 5.1 EGD-PBIB Design for
t = 36, b = 72, k = 3, and r = 6

(000, 121, 212) (010, 101, 222)
(001, 120, 213) (011, 100, 223)
(002, 123, 210) (012, 103, 220)
(003, 122, 211) (013, 102, 221)
(000, 122, 213) (010, 102, 223)
(001, 123, 212) (011, 103, 222)
(002, 120, 211) (012, 100, 221)
(003, 121, 210) (013, 101, 220)
(000, 123, 211) (010, 103, 221)
(001, 122, 210) (011, 102, 220)
(002, 121, 213) (012, 101, 223)
(003, 120, 212) (013, 100, 222)

(020, 111, 202) (000, 111, 222)
(021, 110, 203) (001, 110, 223)
(022, 113, 200) (002, 113, 220)
(023, 112, 201) (003, 112, 221)
(020, 112, 203) (000, 112, 223)
(021, 113, 202) (001, 113, 222)
(022, 110, 201) (002, 110, 221)
(023, 111, 200) (003, 111, 220)
(020, 113, 201) (000, 113, 221)
(021, 112, 200) (001, 112, 220)
(022, 111, 203) (002, 111, 223)
(023, 110, 202) (003, 110, 222)

(010, 121, 202) (020, 101, 212)
(011, 120, 203) (021, 100, 213)
(012, 123, 200) (022, 103, 210)
(013, 122, 201) (023, 102, 211)
(010, 122, 203) (020, 102, 213)
(011, 123, 202) (021, 103, 212)
(012, 120, 201) (022, 100, 211)
(013, 121, 200) (023, 101, 210)
(010, 123, 201) (020, 103, 211)
(011, 122, 200) (021, 102, 210)
(012, 121, 203) (022, 101, 213)
(013, 120, 202) (023, 100, 212)

Before we state the main result, we introduce, for ease of notation, the fol-
lowing definition.

Definition 5.3 For x and y intergers and x > y, let

x(y) = x!

(x − y)!
= x(x − 1) · · · (x − y + 1) (5.22)

�
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We then have the following theorem.

Theorem 5.7 For t = ∏ν
i=1 ti treatments with t1 ≤ t2 ≤ · · · ≤ tν there exists

an EGD/(2ν − 1)-PBIB design with parameters

t =
ν∏

i=1

ti b =
ν∏

i=2

t
(t1)
i

r =
ν∏

i=2

(ti − 1)(t1−1) k = t1

λ(0, 0, . . . , 0) = r λ(1, . . . , 1) =
ν∏

i=2

(t1 − 2)(t1−2)

all other λ(γ ) = 0

The proof is rather elementary but quite lengthy. We shall not go through all
the details here and instead refer the reader to Chang and Hinkelmann (1987).
Just as for Theorem 5.6, however, the proof is based on the actual construction
of the design, and the individual steps of the method will be described now. To
do so, it is useful to introduce some notation.

Let (x1, x2, . . . , xν) denote a treatment with xiε{1, 2, . . . , ti} for i =
1, 2, . . . , ν and xi is called the ith component of the treatment (see Section
4.6.9). We then define a matrix

P =


P (1)

P (2)

...

P (t1)

 (5.23)

of dimension
(∏ν−1

i=1 ti

)
× tν with the submatrix P (�) of dimension

(∏ν−1
i=2 ti

)
×

tν . (In what follows we shall abbreviate
∏ν−1

i=1 by
∏

and
∏ν−1

i=2 by
∏∗). The

elements of P are the treatments (x1, x2, . . . , xν), and P (�) has the following
properties:

1. The first component of any element is � for � = 1, 2, . . . , t1.
2. The last component of any element in the sth column is s (1 ≤ s ≤ tν).
3. The remaining components of any element are changed from one row to

the next by first changing the (ν − 1)th component from 1 through tν−1,
then the (ν − 2)th component from 1 through tν−2, and so on.
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For example, for ν = 3 the submatrix P (�) is of the form
(�, 1, 1) (�, 1, 2) . . . (�, 1, t3)

(�, 2, 1) (�, 2, 2) . . . (�, 2, t3)

. . . . . .

(�, t2, 1) (�, t2, 2) . . . (�, t2, t3)

 (5.24)

for � = 1, 2, . . . , t1.
The next step is to define a matrix derived from P ,

Q(P ) =


q1

q2

...

q t1

 (5.25)

of order t1 × tν such that q� is a row vector from P (�) (� = 1, 2, . . . , t1) and
any two vectors, q(�) and q(�′), do not have the same row number in P (�) and

P (�′), respectively. Denote the possible choices of Q(P ) by Q1, Q2, . . . , QN

(suppressing P ), where

N = �∗t (t1)i

Example 5.9 Let t = 24, t1 = 2, t2 = 3, t3 = 4. The P matrices as given by
(5.24) are

P (1) =
(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4)

(1, 2, 1) (1, 2, 2) (1, 2, 3) (1, 2, 4)

(1, 3, 1) (1, 3, 2) (1, 3, 3) (1, 3, 4)



P (2) =
(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 1, 4)

(2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 2, 4)

(2, 3, 1) (2, 3, 2) (2, 3, 3) (2, 3, 4)


With N = 3(2) = 6 we then have

Q1 =
[
(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4)

(2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 2, 4)

]

Q2 =
[
(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4)

(2, 3, 1) (2, 3, 2) (2, 3, 3) (2, 3, 4)

]

Q3 =
[
(1, 2, 1) (1, 2, 2) (1, 2, 3) (1, 2, 4)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 1, 4)

]
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Q4 =
[
(1, 2, 1) (1, 2, 2) (1, 2, 3) (1, 2, 4)

(2, 3, 1) (2, 3, 2) (2, 3, 3) (2, 3, 4)

]

Q5 =
[
(1, 3, 1) (1, 3, 2) (1, 3, 3) (1, 3, 4)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 1, 4)

]

Q6 =
[
(1, 3, 1) (1, 3, 2) (1, 3, 3) (1, 3, 4)

(2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 2, 4)

]
The PBIB design is now obtained by forming, for each Q�(� = 1, 3, . . . , N),

arrays

B�j
= (

b�j1, b�j2, . . . , b�jt1

)
(5.26)

such that

1. b�ji is an element of the ith row of Q�.
2. For i �= i′, b�ji and b�ji′ are selected from different columns of Q�.

Thus for any given �, there are t
(t1)
ν such B�j . The total number of arrays then is

b = N × t (t1)ν =
(∏∗

t
(t1)
i

)
× t (t1)ν =

ν∏
i=2

t
(t1)
i (5.27)

Each array (5.26) represents a block of size t1 and (5.27) gives the total number
of blocks. Hence the collection of all B�j

’s is the desired EGD/(2ν − 1)-PBIB
design.

From Q1 we obtain the following 12 B1j :

B11: (1, 1, 1) (2, 2, 2) B14: (1, 1, 2) (2, 2, 1)

B12: (1, 1, 1) (2, 2, 3) B15: (1, 1, 2) (2, 2, 1)

B13: (1, 1, 1) (2, 2, 4) B16: (1, 1, 2) (2, 2, 4)

B17: (1, 1, 3) (2, 2, 1) B10: (1, 4, 2) (2, 2, 1)

B18: (1, 1, 3) (2, 2, 2) B11: (1, 1, 4) (2, 2, 2)

B19: (1, 1, 3) (2, 2, 4) B12: (1, 1, 4) (2, 2, 3)

The other blocks can be constructed in a similar way. �

It is, of course, obvious from the design above that only treatments that differ
in all three components appear together in the same block. In general, this is
assured by the definition of the P matrices in (5.24), the Q matrices in (5.25)
and the B arrays in (5.26). Hence, only λ(1, 1, . . . , 1) > 0.
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Finally, we point out that if t1 = 2 (as in Example 5.9) the method just
described yields the same design as Aggarwal’s (1974) method described in
Section 5.5.2.

5.5.4 Generalization of the Direct Method

As stated in Theorem 5.7 the direct method leads to EGD-PBIB designs with
block size k = t1. Following Chang and Hinkelmann (1987) we shall now show
that the theorem can be modified and used to construct certain EGD-PBIB designs
with blocks of size k = ti where 2 ≤ i ≤ ν.

Suppose we have t = t1 × t2 × · · · × tν treatments with t1 ≤ t2 ≤ · · · ≤ tν . Let
A = {i1, i2, . . . , in} be a subset of 1, 2, . . . , ν with 2 ≤ n ≤ ν. For ease of nota-
tion we take A = {1, 2, . . . , n}, but the reader should have no difficulty replacing
in actual applications 1, 2, . . . , n by i1, i2, . . . , in. The main result can then be
stated as in the following theorem.

Theorem 5.8 Consider an experiment with t = ∏ν
i=1 ti treatments with t1 ≤

t2 ≤ · · · ≤ tν . Let A = {1, 2, . . . , n}. Then there exists an EGD/(2ν−1)-PBIB
design with parameters

t =
ν∏

i=1

ti b =
(

n∏
i=2

t
(t1)
i

) ν∏
j=n+1

tj


r =

n∏
i=2

(ti − 1)(t1−1) k = t1

λ(1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0) =
n∏

i=2

(ti − 2)(t1−2)

all other λ(γ ) = 0

Before we prove the theorem we introduce the notation in the following defi-
nition.

Definition 5.4 Let a′
i = (1, 2, . . . , ti) be 1 × ti vectors for i = 1, 2, . . . , ν.

The symbolic direct multiplication (SDM) of ap and aq(1 ≤ p, q ≤ ν), denoted
by ap � aq is given by an array of tq vectors:

ap � aq =





(1, 1)

(2, 1)

...

(tp, 1)

 ,



(1, 2)

(2, 2)

...

(tp, 2)

 , . . . ,



(1, tq)

(2, tq)

...

(tp, tq)




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where each vector has tp elements and the second components in a given vector
are identical and equal to 1, 2, . . . , tq , respectively. �

Proof of Theorem 5.8 We first construct an EGD/(2n − 1)-PBIB design for
t∗ = ∏n

i=1 ti treatments according to Theorem 5.7. Let the parameters of this
design be b∗, r∗, k∗, λ∗ say, as given in Theorem 5.7. Let B∗

j (j = 1, 2, . . . , b∗)
be a block in the EGD/(2n − 1)-PBIB design. Further, let d ′

i = (1, 2, . . . , ti)(i =
1, 2, . . . , ν), and let A = {1, 2, . . . , ν} − A = {n + 1, n + 2, . . . , ν} (because we
have chosen A = {1, 2, . . . , n}). We then define the SDP

DA = dn+1 ⊗ dn+2 ⊗ · · · ⊗ dν

and consider the SDM

Bj = B∗
j � DA

for j = 1, 2, . . . , b∗. Each B∗
j consists of

∏ν
j=n+1 tj vectors, each vector having

t1 elements, each element being an ν-tuple and representing a treatment. We thus
have

b = b∗ ×
ν∏

j=n+1

tj =
(

n∏
i=2

t
(t1)
i

) ν∏
j=n+1

tj


vectors and each such vector is taken as a block for the EGD/(2ν − 1)-PBIB
design. From the construction it is obvious that any two elements in the same
block (vector) of Bj are different in the first n positions and identical in the
last (ν − n) positions. Hence λ(1, . . . , 1, 0, . . . , 0) = λ∗(1, . . . , 1) and all other
λ(γ ) are zero. The other properties of the EGD/(2ν − 1)-PBIB design follow
easily. �

We shall illustrate this procedure to construct a design with blocks of size 3
for t = 24 treatments.

Example 5.10 Let t = 24, t1 = 2, t2 = 3, t3 = 4. To construct an EGD-PBIB
design with blocks of size k = 3, we take A = {2, 3} and construct an EGD/3-
PBIB design for t∗ = 12 = 3 × 4 according to Theorem 5.7. For this case we
define

∏ν−1
i=2 ti (for ν = 2) to be 1, so that the matrix P of (5.23) becomes

P =

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)


and Q(P ) = P . Then the B∗

j are of the form(1, 1)

(2, 2)

(3, 3)


(1, 1)

(2, 2)

(3, 4)


(1, 1)

(2, 3)

(3, 2)


(1, 1)

(2, 3)

(3, 4)


(1, 1)

(2, 4)

(3, 2)


(1, 1)

(2, 4)

(3, 3)


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plus 18 more blocks. Now A = {1} and hence

D{1} =
(

1

2

)
Then, for any B∗

j above we obtain

Bj = B∗
j � D{1}

that is, the Bj ’s are of the form

(1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 2)

(2, 2, 1) (2, 2, 2) (2, 2, 1) (2, 2, 2) · · ·
(3, 3, 1) (3, 3, 2) (3, 4, 1) (3, 4, 2)

and we have a total of 48 blocks. All we need to do now to obtain the final result
is to interchange the elements in each triplet above so that they are in the “right”
order, that is,

(1, 1, 1) (2, 1, 1) (1, 1, 1) (2, 1, 2)

(1, 2, 2) (2, 2, 2) (1, 2, 2) (2, 2, 2) · · ·
(1, 3, 3) (2, 3, 3) (1, 3, 4) (2, 3, 4)

The parameters for this design then are t = 24, b = 48, k = 3, r = 6, and
λ(0, 1, 1) = 1. �

We conclude this section to point out that the EGD-PBIB designs thus con-
structed are disconnected except when A = {1, 2, . . . , ν} which, of course, is
the design of Theorem 5.7. Though disconnectedness is not desirable in gen-
eral, it can be useful in connection with asymmetrical factorial experiments (see
Chapter 12).

5.6 HYPERCUBIC PBIB DESIGNS

Using the result due to Kageyama (1972) that an EGD/(2ν − 1)-PBIB design
constructed as a ν-fold Kronecker product of BIB designs reduces to a hypercubic
PBIB design with ν associate classes if and only if the ν BIB designs have the
same number of treatments and the same block size, we can state the following
corollary to Theorem 5.5.

Corollary 5.1 Let there be ν BIB designs Di with parameters
ti , bi, ki, ri , λ(i) and incidence matrix N i such that ti = q and ki = k∗(i =
1, 2, . . . , ν). Then the Kronecker product design D given by its incidence matrix

N = N1 × N2 × · · · × Nν
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is a hypercubic PBIB(ν) design with parameters t = qν, b = ∏ν
i=1 bi, k =

(k∗)ν, r = ∏ν
i=1 ri , and λj = ∏j

i=1 ri
∏ν

i=j+1 λ(i) for j = 1, 2, . . . , ν.

Proof We refer simply to the definition of the hypercubic association scheme
(Section 4.6.10). Concerning the expression for λj , we note that because the ti’s
and ki’s are identical it follows that ri/λ(i) = constant for each i and hence all the
λ(γ1, γ2, . . . , γν) of the EDG-PBIB with the same number of unity components
are identical. �

Similarly, for a second method of constructing hypercubic PBIB designs, we
consider a special case of Theorem 5.6 and state the following corollary.

Corollary 5.2 (Aggarwal, 1974) A hypercubic PBIB design with the param-
eters t = qν , b = qν−1(q − 1)ν−1, k = q, r = (q − 1)ν−1, λ1 = λ2 = · · · =
λν−1 = 0, λν = 1 can be constructed if q is a prime or a prime power.

For the proof we refer to the proof of Theorem 5.6 and the definition of the
hypercubic association scheme (see Section 4.6.10).

For another method of constructing hypercubic designs, see Chang (1989).



C H A P T E R 6

More Block Designs and
Blocking Structures

6.1 INTRODUCTION

In Chapters 3 and 5 we described the construction of two rather large classes
of incomplete block designs with desirable statistical and mathematical proper-
ties. Yet, these designs do not cover the need for incomplete block designs for
many practical applications, such as variety, environmental, medical, sensory, and
screening trials. It is impossible to create a catalogue with all possible designs
because of the large number of combinations of design parameters. Hence there
is a need for simple methods of constructing designs. Of particular interest often
are resolvable designs (see Section 2.7.2) as they allow a certain amount of flex-
ibility with respect to spatial and/or sequential experimentation. In this chapter
we shall present three quite general algorithms to construct resolvable incomplete
block designs allowing equal or unequal block sizes.

Although in general comparisons among all treatments are of primary interest,
there are situations where this is only of secondary importance. In such situations
the forms of the experiment is on comparing so-called test treatments versus a
control (the word control is used here in a general sense with different mean-
ing in different areas of practical applications). Any of the designs discussed in
previous chapters can be used for that purpose by simply declaring one of the
t treatments as the control. Because of the special nature of the desired infer-
ence, however, special designs have been developed, and we shall discuss them
briefly here.

So far we have only considered designs with one blocking factor. In most
practical situations this is clearly sufficient to develop an efficient experimental
protocol. There are, however, situations where it is useful to take into account
additional blocking factors to further reduce experimental error. We shall consider

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.

189



190 MORE BLOCK DESIGNS AND BLOCKING STRUCTURES

here briefly one additional blocking factor, one that leads us to the notion
of row–column designs as generalization of the Latin-square-type designs of
Chapter I.10.

6.2 ALPHA DESIGNS

These designs, called α-designs, were introduced by Patterson and Williams
(1976) and further developed by John and Williams (1995) to be used mainly in
the setting of variety trials in agronomy.

6.2.1 Construction Method

The general ideas and steps of constructing an α-design are as follows:

1. Denote the t treatments by 0, 1, . . . , t − 1.
2. Let t = ks, where k is the desired block size and s is the number of blocks

in each replicate, there being r replicates in the final design.
3. Select as the generating array a k × r array α with elements a(p, q) in the

set of residues mod s (p = 0, 1, 2, . . . , k − 1; q = 1, 2, . . . , r).
4. Develop each column of α cyclically mod s to generate an intermediate

k × rs array, α∗.
5. Add i · s to each element in the (i + 1)th row of α∗(i = 1, 2, . . . , k − 1) to

obtain the final array, α∗∗, containing elements 0, 1, 2, . . . , t − 1.
6. Separate α∗∗ into r sets, where the j th set is formed by the columns,

(j − 1)s + 1, (j − 1)s + 2, . . . , (j − 1)s + s(j = 1, 2, . . . , r), each column
representing a block.

Example 6.1 We shall illustrate this construction method by adapting an
example from John and Williams (1995) for t = 12 = 4 × 3; that is, k = 4, s = 3.
In Table 6.1 we give the generating array α, for r = 2, the intermediate array
α∗, the final array α∗∗, and the final design.

The generating array α in Table 6.1 is called a reduced array, having zeros in
the first row and first column. All arrays can be represented in the reduced form
by adding suitable elements to individual rows and columns, always reducing
mod s. This is convenient for the search of optimal α-designs; that is, designs
with the highest efficiency factor E [see (1.108)]. For more details see Williams
and John (2000).

The efficiency factor itself is closely tied to the concurrence matrix NN ′. It
is easy to verify that NN ′ for the design in Table 6.1 has off-diagonal elements
equal to 0, 1, 2, implying that some treatment pairs never occur together in a
block, other pairs occur together once, and still others occur together twice.
To indicate this property the design will be called a α(0, 1, 2)-design. Just as,
in general, 2-associate class PBIB designs are more efficient than 3-associate
class PBIB designs for the same parameters (t, b, k, r), so are 2-occurrence class
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Table 6.1 Construction of Design for t = 12,
s = 3, k = 4, and r = 2

α Array

0 0

0 1

0 2

0 0

α∗ Array

0 1 2 0 1 2

0 1 2 1 2 0

0 1 2 2 0 1

0 1 2 0 1 2

α∗∗ Array

0 1 2 0 1 2

3 4 5 4 5 3

6 7 8 8 6 7

9 10 11 9 10 11

Final Design

Replicate 1 2

Block 1 2 3 1 2 3

0 1 2 0 1 2

3 4 5 4 5 3

6 7 8 8 6 7

9 10 11 9 10 11

α-designs preferred over 3-occurrence class α designs (Patterson and Williams,
1976). For example, the generating array

0 0

0 2

0 1

0 1
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leads to an α(0, 1)-design. The efficiency factor for this design can be computed
to be .71, which, in this case, is about the same as that for the α(0, 1, 2)-design.
For purposes of comparison we mention that the upper bound (1.110) for the
efficiency factor is .82. �

6.2.2 Available Software

Williams and Talbot (1993) have provided a design generation software package,
called ALPHA+, which produces α-designs in the parameter ranges

2 ≤ r ≤ 10 2 ≤ k ≤ 20 t ≤ 500

A more general software package, called CyDesigN, has been provided by
Whitaker, Williams, and John (1997). Both packages are able to construct designs
with high efficiency factors relative to the upper bounds for such design thus
leading to near-optimal designs.

6.2.3 Alpha Designs with Unequal Block Sizes

The construction of α-designs is quite flexible and able to accommodate most
any desirable, practical block size for a given t , or to deal with the situation
when t cannot be written as t = ks(s > 1). In either case we may write

t = s1k1 + s2k2

and construct a design with s1 blocks of size k1 and s2 blocks of size k2. Of
particular interest is the case where k2 = k1 − 1, that is, where the block sizes
are not too different, differing only by one unit. For this situation an appropriate
design can be derived from an α-design as follows:

1. Construct an α-design for t + s2 treatments in s = s1 + s2 blocks of size k1
in each replicate.

2. Delete from this design the treatments labeled t, t + 1, . . . , t + s2 − 1.

Example 6.2 Consider

t = 11 = 2 × 4 + 1 × 3

that is, s1 = 2, s2 = 1, k1 = 4, k2 = 3. The α-design in Table 6.1 is a design for
t + s2 = 11 + 1 = 12 treatments in blocks of size 4. Deleting treatment 11 yields
the derived design with two blocks of size 4 and one block of size 3. �
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6.3 GENERALIZED CYCLIC INCOMPLETE BLOCK DESIGNS

We have seen in Section 5.3 that cyclic PBIB designs are easy to construct and
encompass a large class of useful designs. Jarrett and Hall (1978) extended the
idea underlying these designs and introduced the notion of generalized cyclic
incomplete block designs. Basically, for t = m × n, the designs are obtained by
cyclic development of one or more initial blocks, but rather than adding 1 to the
element in the initial blocks(s) we now add successively m to each element and
reduce mod t .

Example 6.3 Consider t = 12 = 3 × 4; that is, m = 3, n = 4. Let the initial
blocks be

(0, 2, 3, 7)3 and (1, 4, 5, 9)3

where the subscript indicates the incrementing number. Cyclic development then
leads to the following design with b = 8, k = 4:

(0, 2, 3, 7) ( 1, 4, 5, 9)

(3, 5, 6, 10) ( 4, 7, 8, 0)

(6, 8, 9, 1) ( 7, 10, 11, 3)

(9, 11, 0, 4) (10, 1, 2, 6)

Inspection shows that r0 = r2 = r3 = r5 = r6 = r8 = r9 = r11 = 3, r1 = r4 =
r7 = r10 = 2. The reason for the two different number of replications can be
explained as follows. The treatments can be divided into m = 3 groups of n = 4
elements by considering the residue classes mod m, that is,

Si = {i, i + m, . . . , i + m(n − 1)}

for i = 0, 1, . . . , m − 1. For our example we have

S0 = {0, 3, 6, 9}
S1 = {1, 4, 7, 10}
S2 = {2, 5, 8, 11}

It follows that when an initial block is developed the elements in each residue
class are equally replicated as each initial block contributes n blocks to the design.
Now, the two initial blocks contain three elements each from S0 and S1, and two
elements from S2.

From this argument it follows immediately that in order to construct an
equireplicate design we need three initial blocks such that each residual class



194 MORE BLOCK DESIGNS AND BLOCKING STRUCTURES

is represented the same number of times in these three blocks. One possible set
of initial blocks is

(0, 2, 3, 7)3 (1, 4, 5, 9)3 (6, 8, 10, 11)3

It is easy to select initial blocks to construct an incomplete block design with
desired parameters. There is, however, no guarantee that this would lead to a
design with a high efficiency factor. One would need a search algorithm to find
the “best” design. In general, though, aiming for nearly equal numbers of concur-
rences of all pairs of treatments will yield a design with a high efficiency factor.

Cyclic development can also be used to construct incomplete block designs
with unequal block sizes by specifying initial blocks of different sizes. �

6.4 DESIGNS BASED ON THE SUCCESSIVE
DIAGONALIZING METHOD

Khare and Federer (1981) have presented several methods of constructing resolv-
able incomplete block designs for various factorizations of t , the number of
treatments. In Section 3.3.4 we have discussed their method when t = K2 and
K is a prime or prime power. Here we shall discuss a few other cases.

6.4.1 Designs for t = Kk

For K prime or prime power and k < K , where k is the block size, we can
use the method described in Section 3.3.4 for t = K2. We then consider only
replicates 2, 3, . . . , K + 1 and delete in each replicate the treatments numbered
Kk + 1, . . . , K2. This leads to a binary design with r = K replications and rK

blocks of size k. These designs are also called rectangular lattice designs (see
Section 18.11).

Example 6.4 For t = 12 = 4 × 3 we use the design given in Example 3.8
and delete treatments 13, 14, 15, 16 from replicates 2, 3, 4, and 5. �

Example 6.5 For t = 8 = 4 × 2 we can again use the design from
Example 3.8 and delete treatments 9, 10, . . . , 16 from replicates 2, 3, 4, and
5 to obtain a design with b = 16, k = 2, and r = 4. �

6.4.2 Designs with t = n2

We consider here the situation where t is a square but not a square of a prime
number or prime power. The n can be written as n = mps , where ps is the small-
est prime in n. The first ps + 1 replicates from the n + 1 replicates obtained by
the successive diagonalizing method on n2 treatments in blocks of size n yield an
incomplete block design with (0, 1)-concurrences for treatment pairs. For addi-
tional replicates one can either repeat some of the original ps + 1 replicates or
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develop further replicates continuing with the successive diagonalizing method.
In the latter case the numbers of concurrences increase, however, in groups of ps .

The above method can also be used to generate a design for t = nk(k < n). We
first obtain the design for t = n2 and then delete from replicates 2, . . . , ps + 1 the
treatments numbered nk + 1, . . . , n2. The versatility of this method is illustrated
by the following example.

Example 6.6 Fichtner (2000) considered the case of t = 400 varieties (treat-
ments) in blocks of size k = 10 with r = 2 replicates for an agronomic trial. In
the context discussed above, we have t = 40 × 10. Rather than writing out the
40 × 40 array for replicate 2 (of the generating design) one only needs to write
out the 40 × 10 array. Thus the first block would contain the varieties

(1, 41, 81, 121, 161, 201, 241, 281, 321, 361)

Adding 1, 2, . . . , 39 to each element produces the remaining 39 blocks. From
this it is easy to see that the first block in replicate 2 contains the varieties

(1, 42, 83, 124, 165, 206, 247, 288, 329, 370)

The remaining blocks can then be filled in easily using replicate 1. We thus obtain
the following replicate:

Block Treatments

1 1 42 83 124 165 206 247 288 329 370
2 2 43 84 125 166 207 248 289 330 371
3 3 44 85 126 167 208 249 290 331 372
...

...

39 39 80 81 122 163 204 245 286 327 368
40 40 41 82 123 164 205 246 287 328 369

If a third replicate were desired, the method of successive diagonalizing would
yield the initial block as

(1, 43, 85, 127, 169, 211, 253, 295, 337, 379)

The remaining blocks are obtained by columnwise cyclic substitution (as descri-
bed in Section 3.3.4) using the replicate given above. �

For other cases of constructing (0, 1)-concurrence resolvable incomplete block
designs, we refer the reader to Khare and Federer (1981), where methods are
discussed for t = p2k , t = n3, t = n2k .

6.5 COMPARING TREATMENTS WITH A CONTROL

In some experimental situations one of the treatments, often referred to as the
control or standard, may play a major role in that the focus is not so much the
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comparisons among all treatments but rather the comparisons of the remaining
treatments, often referred to as the test treatments, with the control. The function
of the controls might simply be to provide an indication whether the treatments are
even worth consideration or to show their superiority to established procedures,
such as comparing new drugs against an established medication, or new varieties
against an old variety.

Obviously, any of the designs we have discussed so far would be suitable if
we simply declare one of the t treatments as the control. However, because of the
limitation on the inference space the designs may not be a good choice and more
specialized designs may be called for that are more efficient for this particular
purpose. Some of these designs will be described in the following sections.

6.5.1 Supplemented Balance

Suppose we have t test treatments and one control treatment. Let us denote
the t + 1 treatments by T0, T1, T2, . . . , Tt , where T0 represents the control. In
the context of block designs, a natural way to construct suitable designs for
comparing T1, T2, . . . , Tt with T0 is to consider a block design for T1, T2, . . . , Tt

and augment or reinforce each block with q(≥ 1) replications of T0. This idea
was suggested by Cox (1958) using a BIB design as the generating block design.
Das (1958) referred to such designs as reinforced BIB designs.

A more general class of designs, referred to as supplemented balance designs,
was introduced by Hoblyn, Pearce, and Freeman (1954) and more formally by
Pearce (1960). These designs are characterized by the following form of the
concurrence matrix:

NN ′ =


s0 λ0 . . . λ0

λ0 s . . .
λ1

...

... λ1
. . .

...

λ0 s

 (6.1)

implying that the self-concurrence is the same for all the test treatments. Further,
T0 occurs together λ0 times with each of T1, T2, . . . , Tt , and Ti and Tj (i �= j ,
i, j �= 0) occur together λ1 times.

The example below of a supplemented balance design was given by Pearce
(1953) for t = 4, b = 4, k = 7, r0 = 8, r = 5, λ0 = 10, λ1 = 6:

0 0 1 2 3 4 1
0 0 1 2 3 4 2
0 0 1 2 3 4 3
0 0 1 2 3 4 4

where each row represents a block. We note here in passing that the design
above is an example of what we have called an extended block design (see
Section I.9.8.5). And for the reinforced BIB design we have λ0 = qr .
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For incomplete blocks an obvious way to construct a supplemented balance
design is to augment each block in a BIB design with t treatments by one or more
replications of the control. Under certain conditions such designs are A-optimal
(see Hedayat, Jacroux, and Majumdar, 1988; Stufken, 1987).

6.5.2 Efficiencies and Optimality Criteria

Clearly, there exist many ways to construct suitable augmented designs for given
parameters t, b, and k. It is, therefore, important to distinguish between competing
designs and choose the one that is “best” for the purpose at hand, which may
not only depend on statistical but also on practical considerations.

From the statistical, that is, inferential, point of view we would like to obtain
maximum information with respect to comparing T0 versus Ti (i = 1, 2, . . . , t).
To formulate this more precisely, we consider the usual model for observations
from a block design, that is,

yij = µ + βi + τj + eij (6.2)

or, in matrix notation

y = µI + Xββ + Xττ j + e (6.3)

The information matrix [see (1.9)], assuming equal block sizes, is given by

C = R − 1

k
NN ′ (6.4)

where R = X′
τXτ = diag(r0, r1, . . . , rt ) and N = X′

τXβ . We know [see (1.20)]
that for an estimable function c′τ of the treatment effects

var(c′τ̂ ) = c′C−c σ 2
e

For the designs discussed in this section the estimable functions of primary
interest are of the form τj − τ0(j = 1, 2, . . . , t). If we denote by

P =


−1 1 0 . . . . . . . . . 0
−1 0 1 0 . . . . . . 0
−1 0 0 1 0 . . . 0

...

−1 0 0 . . . . . . 0 1

 = (−1I, I t ) (6.5)

the coefficient matrix for the above contrasts, then the variance–covariance
matrix for the estimators for those contrasts is given by PC−P ′σ 2

e .
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If we write C of (6.4) as

C =
(

c0 c′
1

c1 C11

)
(6.6)

then a generalized inverse of C is given by

C− =

0 · · · 0
...

0 C−1
11

 (6.7)

which is equivalent to solving the reduced NE Cτ̂ = Q [see (1.8)] by imposing
the condition τ̂0 = 0 (recall that SAS PROC GLM, e.g., obtains a generalized
inverse equivalently, by assuming τ̂t = 0 rather than τ̂0 = 0). Using C− of the
form (6.7) implies that

PC−P ′ = C−1
11

and further that (1) the information matrix for treatment control contrasts is given
by C11 of (6.6) [see also Majumdar (1996)] and (2) with C−1

11 = (cii)

av. var (τ̂j − τ̂0) = 1

t

t∑
j=1

cjjσ 2
e = 1

t

t∑
j=1

1

dj

σ 2
e (6.8)

where dj (j = 1, 2, . . . , t) are the eigenvalues of C11 [see (1.106) and Constantine
(1983)].

For a CRD with rj (j = 0, 1, 2, . . . , t) replications for the j th treatment we
have, for j �= 0,

av. var (τ̂j − τ̂0) =
(

1

r0
+ 1

rh

)
σ 2

e(CRD) (6.9)

where

1

rh

= 1

t

t∑
j=1

1

rj

The ratio of (6.9) over (6.8)
(

assuming σ 2
e = σ 2

e(CRD)

)
can then be defined

as the efficiency factor E for a treatment control comparison design (see also
Section 1.12.2), that is,

E = 1/r0 + 1/rh

(1/t)

t∑
j=1

(1/dj )

(6.10)

can be used to compare competing designs.
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Another way to compare designs is to make use of (6.8) and find, for a given
set of parameters t, b, k, the design D∗, say, with minimum value of

1

t

t∑
j=1

1

dj

where D∗ is referred to as an A-optimal design (see Hedayat, Jacroux, and
Majumdar, 1988, and Section 1.13).

An alternative criterion, called MV-optimality, is to minimize

max
1≤j≤t

(1/dj )

for competing designs (see Hedayat, Jacroux and, Majumdar, 1988).
A different approach to optimal designs is suggested and explored by Bech-

hofer and Tamhane (1981, 1985). They propose to maximize the confidence
coefficient for simultaneous confidence intervals for all τj − τ0(j = 1, 2, . . . , t),
thereby linking the designs to Dunnett’s procedures (see I.7.5.7) for comparing
treatments with a control (Dunnett, 1955, 1964). In addition to assuming model
(6.2), this method has to make distributional assumptions about the eij ’s, which
for practical purposes amounts to assuming normality (see Section 6.5.5).

6.5.3 Balanced Treatment Incomplete Block Designs

An important and useful class of treatment control designs was introduced by
Bechhofer and Tamhane (1981), a class they refer to as balanced treatment incom-
plete block designs (BTIBD).

6.5.3.1 Definition and Properties

Definition 6.1 A treatment control design with t test treatments and one
control treatment in b blocks of size k < t + 1 is called a balanced treatment
incomplete block design, denoted by BTIBD(t, b, k; λ0, λ1), if (1) each test treat-
ment occurs together with the control λ0 times in a block and (2) any two test
treatments occur together λ1 times in a block. �

The concurrence matrix of a BTIBD is then of the form

NN ′ =


s0 λ0 . . . . . . λ0
λ0 s1 λ1 . . . λ1

λ0 λ1 s2 . . .
...

... . . .
. . . λ1

λ0 λ1 . . . λ1 st

 (6.11)
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Comparing (6.11) and (6.1) shows that some designs with supplemented balance
are special cases of BTIBDs.

Since the BTIBDs are, by definition, connected designs, it follows that
rank(C) = t , where C is given in (6.4). It follows then from (6.4), with N =
(nji), and (6.11) that

r0 − 1

k

b∑
i=1

n2
oi − tλ

k
= 0

and

rj − 1

k

b∑
i=1

n2
j i − λ0

k
− (t − 1)λ1

k
= 0 (j = 1, 2, . . . , t) (6.12)

It follows from (6.12) that

rj − 1

k

∑
i

n2
j i = [λ0 − (t − 1)λ1]/k

and hence C11 of (6.6) has the form

C11 = aI + bII′ (6.13)

with

a = λ0 + tλ1

k
b = −λ1

k
(6.14)

Using (6.13) and (6.14) it is then easy to obtain C−1
11 , which is of the same form

as C11, say

C−1
11 = cI + dII′ (6.15)

We find

c = k

λ0 + tλ1
and d = kλ1

λ0(λ0 + tλ1)
(6.16)

and hence from our discussion above this implies that

var(τ̂j − τ̂0) = k(λ0 + λ1)

λ0(λ0 + tλ1)
σ 2

e (j = 1, 2, . . . , t) (6.17)

and

cov(τ̂j − τ̂0, τ̂j ′ − τ̂0) = kλ1

λ0(λ0 + tλ1)
σ 2

e (j �= j ′) (6.18)
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Expressions (6.17) and (6.18) explain, of course, in what sense these designs are
balanced.

6.5.3.2 Construction Methods
There exist different methods of constructing BTIB designs, and we shall mention
a few without going into all the details.

One obvious method, mentioned already in Section 6.5.1, is to augment each
block of a BIBD(t, b, k, r, λ1) with n copies of the control. This is a special case
of a more general class of BTIB designs, which we denote (following Hedayat,
Jacroux, and Majumdar, 1988) by BTIBD(t, b, k∗;u, s; λ0, λ1) and which is char-
acterized by the following form of the incidence matrix:

nji = 0 or 1 for j = 1, 2, . . . , t i = 1, 2, . . . , b

and

n01 = n02 = · · · = n0s = u + 1

n0,s+1 = n0,s+2 = · · · = n0b = u

The special case mentioned above has s = 0 and hence k∗ = k + u. Such a design
is of rectangular or R-type, and the general form is depicted in Figure 6.1, where
D1 represents the BIBD(t, b, k, r, λ1).

For s > 0 the design is said to be of step or S-type. Its general form is shown
in Figure 6.1.

One method to construct an S-type BTIB(t, b, k∗, λ0, λ1) is to choose BIB
designs for D2 and D3, more specifically

D2 = BIBD(t, s, k − 1, r(2); λ(2)) (6.19)

and

D3 = BIBD(t, b − s, k, r(3); λ(3)) (6.20)

so that k∗ = k + u, λ0 = (u + 1)r(2) + ur(3), and λ1 = λ(2) + λ(3).
For this particular method of construction we make the following comments:

1. Let us denote by D∗
2 and D∗

3 the two component designs of the S-type
BTIB design (see Fig. 6.1). Then D∗

2 and D∗
3 with D2 and D3 as given in

(6.19) and (6.20), respectively, are themselves BTIB designs. They constitute
what Bechhofer and Tamhane (1981) have called generator designs (see
Definition 6.2).

2. As a special case of S-type designs we can have u = 0; that is, the blocks
in D∗

3 do not contain the control, which means that D∗
3 = D3.

3. For u = 0 the design D3 can be a RCBD, possibly with b − s = 1.
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Figure 6.1 General form of (a) R- and (b) S-type BTIB designs.

4. As a trivial case (but only in the context of BTIB designs) the design D2
may have blocks of size 1 with s = mt ; that is, each treatment occurs m

times. An important case in this context is k∗ = 2, m = 1 with

D2 = {1, 2, . . . , t} (6.21)

and

D3 =
{

1 1 t − 1
2 3 . . . t

}
(6.22)

Hedayat and Majumdar (1984) denote D2 of (6.21) and D3 of (6.22) by t
∑

1
and t

∑
2, respectively, where t

∑
p in general denotes all

(
t
p

)
distinct blocks

of size p for t treatments.
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Let us now return to the notion of generator designs (GD) and their function
in constructing BTIB designs. Bechhofer and Tamhane (1981) give the following
definition.

Definition 6.2 For t test treatments and blocks of size k∗ a generator design
is a BTIB design no proper subset of whose blocks forms a BTIB design, and
no block of which contains only one of the t + 1 treatments.

To illustrate this notion we use the following example. �

Example 6.7 For t = 3 and k∗ = 3 consider

GD1 =
0 0 0

0 0 0
1 2 3

 λ0 = 2 λ1 = 0

GD2 =
0 0 0

1 1 2
2 3 3

 λ0 = 2 λ1 = 1

GD3 =
1

2
3

 λ0 = 0 λ1 = 1

GD4 =
0 0 0 1

0 0 0 2
1 2 3 3

 λ0 = 2 λ1 = 1

Of these four designs GD1, GD2, and GD3 are generator designs, but GD4 is
not, because GD4 = GD1

⋃
GD3. �

The design GD4 illustrates the construction of a BTIB design, D say, in terms
of the generator designs:

D = f1GD1

⋃
f2GD2

⋃
f3GD3 (6.23)

with fi ≥ 0(i = 1, 2, 3) and at least f1 or f2 ≥ 1 for an implementable BTIB
design. We note that the design D in (6.23) with fi ≥ 1(i = 1, 2, 3) represents
another form of S-type BTIB design, which we might refer to as a S2-type design
because it has two steps. In general, we might have a Sq -type design

D =
q⋃

i=1

fi GDi

with GDi having bi blocks and b = ∑
i fibi . Apart from the control the GDi

represent BIB/RCB designs with increasing block size k(1 ≤ k ≤ k∗).
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The above then represents a method of constructing generator designs. Another
method is to start with a BIBD(t∗, b, k, r; λ) with t∗ > t and identify the treat-
ments t + 1, t + 2, . . . , t∗ with the control, that is, treatment 0 (Bechhofer and
Tamhane, 1981). Any block with 0’s only would be deleted. We illustrate this
method with the following example.

Example 6.8 Starting with the BIBD(7, 7, 4, 4; 2)

3 1 1 1 2 1 2
5 4 2 2 3 3 4
6 6 5 3 4 4 5
7 7 7 6 7 5 6

and replacing 7 by 0 leads to the BTIBD(6, 7, 4; 2, 2):

3 1 1 1 2 1 2
5 4 2 2 3 3 4
6 6 5 3 4 4 5
0 0 0 6 0 5 6

(6.24)

Replacing 6 and 7 by 0 leads to the BTIBD(5, 7, 4; 4, 2):

3 1 1 1 2 1 2
5 4 2 2 3 3 4
0 0 5 3 4 4 5
0 0 0 0 0 5 0

(6.25)

Replacing 5, 6, and 7 by 0 leads to the BTIBD(4, 7, 4; 6, 2):

3 1 1 1 2 1 2
0 4 2 2 3 3 4
0 0 0 3 4 4 0
0 0 0 0 0 0 0

(6.26)

Suppose we want to construct a BTIBD(4, 8, 4; λ0, λ1). We could adjoin to
the GD1 given by (6.26) the GD2 = 4

∑
4 and obtain the following BTIBD(4,

8, 4; 6, 3):

3 1 1 1 2 1 2 1
0 4 2 2 3 3 4 2
0 0 0 3 4 4 0 3
0 0 0 0 0 0 0 4

(6.27)
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We should mention that instead of replacing 5, 6, 7, by 0 we could have
replaced, for example, 6, 7, and 2 by 0, yielding

0 0 0 0 0 0 1
0 0 0 0 0 0 3
3 1 1 1 3 4 4
5 4 5 3 4 5 5

Other methods of constructing generator designs are given by Bechhofer and
Tamhane (1981). �

6.5.4 Partially Balanced Treatment Incomplete Block Designs

To further enrich the class of treatment control designs, an obvious step is to
generalize BTIB designs to PBTIB, or partially balanced treatment incomplete
block designs, just as BIB designs were generalized to PBIB designs. Rashed
(1984) introduced two types of PBTIB designs, and we shall give some of his
results below. Another form of PBTIB design was defined by Jacroux (1987)
(see also Stufken, 1991).

6.5.4.1 Definitions and Structures

Definition 6.3 (Rashed, 1984) A treatment control design for t test treat-
ments and one control is said to be a PBTIB type I design if it satisfies the
following conditions:

1. The experimental units are divided into b blocks of size k(k ≤ t).
2. Each test treatment occurs in r blocks, but at most once in a block, and the

control is replicated r0 times with possibly multiple applications in a block.
3. The set of test treatments T = {1, 2, . . . , t} is divided into two disjoint sub-

sets, T1 and T2, with q and t − q treatments, respectively. Each test treatment
occurs together in a block with the control λ01 or λ02 times, where

λ01 =
b∑

i=1

njin0i for j ∈ T1

λ02 =
b∑

i=1

njin0i for j ∈ T2

4. Any two treatments in T� occur together in a block λ�� times (� = 1, 2).
5. Any two treatments, one from T1 and the other from T2, occur together in a

block λ12 times.
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It follows then that the matrix C11 of (6.6) is of the form

C11 =
aI q + bIqI′

q eIqI′
q

eI′
qI′

q cI ′
q + dI′

qI′
q

 (6.28)

with q = t − q and a = r − r/k + λ11/k, b = −λ11/k, c = r − r/k + λ22/k,
d = −λ11/k, and e = −λ12/k. �

Since C−1
11 is of the same form as C11 of (6.28) we can state the following

theorem.

Theorem 6.1 For a PBTIB type I design the variance–covariance structure
of the estimators τ̂j − τ̂0 for τj − τ0 is given by

var(̂τj − τ̂0) =


α2

1σ 2
e for j ∈ T1

α2
2σ 2

e for j ∈ T2

cov(̂τj − τ̂0, τ̂j ′ − τ̂0) =


ρ1σ

2
e for j, i′ ∈ T1

ρ2σ
2
e for j, i′ ∈ T2

ρ3σ
2
e for j ′ ∈ T1, j

′ ∈ T2

where α2
1, α2

2, ρ1, ρ2, ρ3 are functions of the design parameters (see Rashed,
1984).

An illustration of a PBTIB type I design is given in the following example.

Example 6.9 For t = 5, b = 8, k = 3, r = 3, r0 = 9 the two groups are
T1 = {2, 3, 4}, T2 = {1, 5} with λ01 = 2, λ02 = 3, λ11 = 1, λ22 = 0, λ12 = 1. The
design is given by

D =

0 0 0 0 0 0 1 2

0 0 0 1 3 4 2 3

1 2 5 3 4 5 4 5


and

C−1
11 =


.619 .19 .19 .166 .166

.19 .619 .19 .166 .166

.19 .19 .619 .166 .166

.166 .166 .166 .583 .083

.166 .166 .166 .083 .583


that is, α2

1 = .619, α2
2 = .583, ρ1 = .19, ρ2 = .083, and ρ3 = .166. �
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Another type of PBTIB design that retains the feature of two variances but
allows for up to six different covariances for comparison estimators is described
in the following definition.

Definition 6.4 (Rashed, 1984) A treatment control design for t test treat-
ments and one control is said to be a PBTIB type II design if it satisfies the
following conditions. Conditions 1, 2, and 3 are as in Definition 6.3:

4. Each group Ti considered by itself has either a BIB or a PBIB association
structure, with at least one of these groups having PBIB design properties;
that is, any two treatments in Ti occur together in either λ

(1)
ii or λ

(2)
ii blocks

with λii(1) �= λ
(2)
ii for at least one i = 1, 2.

5. Any two treatments, one from T1 and the other from T2, occur together in
λ12 blocks with λ12 = λ

(1)
ii or λ

(2)
ii (i = 1, 2). �

We note that, if in condition 4 above both groups have BIB association struc-
ture, then the PBTIB type II design reduces to a PBTIB type I design. This gives
an indication how much more general type II designs are compared to type I
designs.

For type II designs Rashed (1984) proved the following theorem.

Theorem 6.2 For a PBTIB type II design the variance–covariance structure
of the estimators τ̂j − τ̂0 for τj − τ0 is given by

var(̂τj − τ̂0) =


α2

1σ 2
e for j ∈ T1

α2
2σ 2

e for j ∈ T2

cov(̂τj − τ̂0, τ̂j ′ − τ̂0) =


ρ11σ

2
e or ρ12σ

2
e for j, j ′ ∈ T1

ρ21σ
2
e or ρ22σ

2
e for j, j ′ ∈ T2

ρ31σ
2
e or ρ32σ

2
e for j ∈ T1, j

′ ∈ T2

We shall illustrate this structure with the following example.

Example 6.10 For t = 6, b = 8, k = 3, r = 3, r = 3, r0 = 6, the two groups
are T1 = {1, 2, 5, 6} and T2 = {3, 4}, and the design is given by

D =
1 2 3 0 0 0 0 0

2 3 4 4 5 1 0 1
4 5 6 5 6 6 2 3


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with λ01 = 2, λ02 = 1, λ
(1)
11 = 1, λ

(2)
11 = 0 (for a PBIB association structure):

0th Associate 1st Associates 2nd Associates

1 2, 6 5
2 1, 5 6
5 2, 6 1
6 1, 5 2

and λ
(1)
22 = 1 (for a BIB association structure) and λ12 = 1. The vari-

ance–covariance matrix (if the treatments are written in the order 1, 2, 5, 6,
3, 4) is found to be

C−1
11 =


.66 .22 .16 .22 .25 .25
.22 .66 .22 .16 .25 .25
.16 .22 .66 .22 .25 .25
.22 .16 .22 .66 .25 .25
.25 .25 .25 .25 .71 .29
.25 .25 .25 .25 .29 .71


that is, α2

1 = .66, α2
2 = .71, ρ11 = .22, ρ12 = .16, ρ21 = .20, ρ31 = .25. �

6.5.4.2 Construction of PBTIB Designs
We shall describe briefly one method of constructing PBTIB designs as developed
by Rashed (1984). It is an extension of one of the methods described by Bechhofer
and Tamhane (1981) to construct BTIB designs (see Section 6.5.3.2). Generally
speaking, in order to construct a PBTIB design with t treatments in b blocks of
size k(≤t), we start with a PBIB design with t∗(>t) treatments in b∗(≤b) blocks
of size k∗ = k, and then replace the t∗ − t “excess” treatments by 0, deleting any
resulting blocks which contain only the control. This is a very general recipe and
may not necessarily lead to a PBTIB design unless we impose further conditions.
Therefore, to be more precise, we start with a GD-PBIB design (see Section 4.6.1)
and proceed as follows:

1. Write out the GD association scheme for t∗ = t∗1 × t∗2 treatments, that is, an
array of t∗1 rows and t∗2 columns, which we denote by T .

2. For

t = (t11 × t12) + (t21 × t22)

form two nonoverlapping subarrays T1(t11 × t12) and T2(t21 × t22) within T

such that T1 and T2 each form a GD association scheme.
3. Denote the remaining set of treatments by T0 and replace those treatments

by 0 (these are the excess treatments mentioned above).
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Schematically this procedure can be depicted as follows:

t12

t11 T1
T0

t22

t21 T2


t∗1

︸ ︷︷ ︸
t∗2

This implies that

t11 + t21 ≤ t∗1
t12 ≤ t∗2
t22 ≤ t∗2

Following steps 1–3 and returning to the starting PBIB design yields the
required PBTIB design in which each treatment is replicated r times and the
control is replicated r0 times where

r0 = (t∗1 t∗2 − t11t12 − t21t22)r = (t∗ − t)r

Furthermore, the remaining parameters of the PBTIB design are related to those
of the PBIB design as follows:

λ
(1)
ii = λ1 λ

(2)
ii = λ2 (i = 1, 2)

(λ(1)
ii exists only if Ti has more than one treatment in the same row of T , and

λ
(2)
ii exists only if Ti has treatments in more than one row of T ),

λ0i = aiλ1 + biλ2 (i = 1, 2)

where ai equals the number of treatments that are replaced by zeros and are 1st
associates of a treatment in Ti , that is, ai = t∗2 − ti2, and bi equals the number
of treatments that are replaced by zeros and are 2nd associates of a treatment in
Ti , that is, bi = t∗ − t − (t∗2 − ti2) = t∗ − t − ai(i = 1, 2), and

λ12 = λ2

We shall illustrate the construction of a PBTIB design with the following
examples.
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Example 6.11 Suppose t = 8, k = 3. We start with design SR 23 from Clat-
worthy (1973) with t∗ = 9, k = 3, r = 3, b∗ = 9, λ1 = 0, λ2 = 1:1 4 7 1 2 3 1 2 3

2 5 8 5 6 4 6 4 5
3 6 9 9 7 8 8 9 7


and association structure T :

1 4 7
2 5 8
3 6 9

If we replace 9 by 0, that is, T0 = {9}, then

T1 =
{

1 4 7
2 5 8

}
T2 = {

3 6
}

and the PBTIB design is given by1 4 7 1 2 3 1 2 3
2 5 8 5 6 4 6 4 5
3 6 0 0 7 8 8 0 7

 (6.29)

The association schemes for T1 and T2 follow from the association scheme for
T as

0th Associate 1st Associates 2nd Associates

T1 1 4, 7 2, 3, 5, 6, 8
2 5, 8 1, 3, 4, 6, 7
4 1, 7 2, 3, 5, 6, 8
5 2, 8 1, 3, 4, 6, 7
7 1, 4 2, 3, 5, 6, 8
8 2, 5 1, 3, 4, 6, 7

T2 3 6 1, 2, 4, 5, 7, 8
6 3 1, 2, 4, 5, 7, 8

It follows, therefore, that the design (6.29) is a PBTIB type II design with param-
eters r = r0 = 3, λ01 = 1, λ02 = 0, λ

(1)
11 = 0, λ

(2)
11 = 1, λ

(1)
22 = 0, λ12 = 1. �

Example 6.12 Suppose t = 7, k = 3. We start again with design SR 23 as
given in Example 6.11. We now replace 8 and 9 by 0, that is, T0 = {8, 9} and
then have

T1 = {
1 4 7

}
T2 =

{
2 5
3 6

}
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or, schematically,

1 4 7 ←− T1

2 5 8
←− T0

3 6 9
↑
T2

The resulting PBTIB design is1 4 7 1 2 3 1 2 3

2 5 0 5 6 4 6 4 5

3 6 0 0 7 0 0 0 7

 (6.30)

with parameters r0 = 6, λ01 = 2, λ02 = 1, λ
(1)
11 = 0, λ

(1)
22 = 0, λ

(2)
22 = 1, λ12 = 1.

It is easy to verify that the design (6.30) is a PBTIB type II design.
Since there exist many GD-PBIB designs (see Clatworthy, 1973) the method

described above will yield a rather rich class of PBTIB designs, most of them
being of type II. �

6.5.5 Optimal Designs

In the preceding sections we have described the construction of various types of
treatment control designs. For a prespecified value of the number of test treat-
ments t and block size k, different methods may lead to different designs, some
more efficient than others. In deciding which design to choose among competing
designs and to use in a practical application, one consideration may be to com-
pare their efficiencies and look, if possible, for the optimal design. In this context
different optimality criteria have been used (see Section 6.5.2), based on different
philosophies [for a discussion see Hedayat, Jacroux, and Majumdar (1988), and
the comments following their article]. Unfortunately, different optimality criteria
may lead to different optimal designs, but often the optimal design using one
criterion is near optimal under another criterion.

Using the A-optimality criterion Hedayat and Majumdar (1984) provide for the
class of BTIB designs a catalogue of optimal R- and S-type designs for block
sizes 2 ≤ k∗ ≤ 8. Optimal R-type designs are also given by Stufken (1987).
These results are based on a theorem by Majumdar and Notz (1983), which can
be stated as in the following theorem (Hedayat and Majumdar, 1984).

Theorem 6.3 For given (t, b, k∗) a BTIBD(t, b, k∗, u, s; λ0, λ1) (see
Section 6.5.3.2) is A-optimal if for x = u and z = s the following function is
minimized:

g(x, z) = (t − 1)2[btk∗(k∗ − 1) − (bx + z)(k∗t − t + k) + (bx2 + 2xz + z)]−1

+ [k∗(bx + x) − (bx2 + 2xz + z)]−1
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among integers x = 0, 1, . . . , [k∗/2], z = 0, 1, . . . , b − 1, with [k∗/2] the largest
integer not greater than k∗/2, and z positive when x = 0 and z = 0 when x =
[k∗/2].

A different approach to constructing optimal BTIB designs has been provided
by Bechhofer and Tamhane (1983a, 1983b, 1985). Their criterion is maximiza-
tion of the confidence coefficient for the joint confidence intervals of prescribed
allowance (or length) for τj − τ0(j = 1, 2, . . . , t), namely, for � > 0,

P1 = P {τj − τ0 ≥ τ̂j − τ̂0 − �; j = 1, 2, . . . , t} (6.31)

for one-sided confidence intervals, and

P2 = P {̂τj − τ̂0 − � ≤ τj − τ0 ≤ τ̂j − τ̂0 + �; j = 1, 2, . . . , t} (6.32)

for two-sided confidence intervals. This requires that additional assumptions have
to be made about the error eij in model (6.2). Assuming that the eij are i.i.d.
N(0, σ 2

e ) and denoting the right-hand sides of (6.17) and (6.18) by α2σ 2
e and

ρα2σ 2
e , respectively, then expressions for P1 in (6.31) and P2 in (6.32) can be

written as

P1 =
∞∫

−∞

[
�

(
x
√

ρ + �/ασe√
1 − ρ

)]t

d�(x) (6.33)

and

P2 =
∞∫

−∞

[
�

(
x
√

ρ + �/ασe√
1 − ρ

)
− �

(
x
√

ρ − �/ασe√
1 − ρ

)]t

d�(x) (6.34)

where � (·) denotes the standard normal cumulative distribution function (cdf).
We note here, parenthetically, that the assumption about the eij does not agree

with our underlying framework of randomization theory (see Sections 1.6 and
I.10). We, therefore, consider the confidence coefficients in (6.33) and (6.34) to
be approximate confidence coefficients. Nevertheless, the proposed procedures
of finding optimal designs based on maximizing P1 or P2 are useful. We note
also that for design purposes σ 2

e is assumed to be known, based on prior experi-
ences or theoretical subject matter considerations. But as Bechhofer and Tamhane
(1985) suggest, for analysis purposes an estimate of σ 2

e , based on the analysis
of variance, should be used in connection with Dunnett’s procedure (Dunnett,
1955; see also I.7).

Tables of optimal BTIB designs for one-sided and two-sided comparisons
for 2 ≤ t ≤ 6), k∗ = 2, 3 and a wide range of values for b and �/σe are given
by Bechhofer and Tamhane (1985). The procedure is, for a desired confidence
coefficient, to combine one or more replicates from a table of minimal complete
sets of generator designs.
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6.6 ROW–COLUMN DESIGNS

6.6.1 Introduction

For purposes of error control or error reduction the principle of blocking is of
primary importance. So far we have considered only one blocking factor, and
for most situations this is quite satisfactory. There are, however, situations where
blocking in more than one dimension may be needed. For example, in an agro-
nomic or forestry trial it is not uncommon to compare a large number of hybrid
varieties (which represent the treatments), which leads to a large experimental
area, and it may be important to account for or eliminate the effects of fertility
trends in the land in two directions. This implies that one needs to block or elim-
inate heterogeneity in two directions. The two blocking systems are referred to
generally (borrowing terminology from field experiments) as row blocking and
column blocking, and the resulting designs are referred to as row–column designs.
Examples of such designs are the Latin square type designs of Chapter I.10, but
other designs may be needed with incomplete blocks in both directions. As an
example consider the following design given by John and Williams (1995) with
t = 12 treatments in r = 4 rows and c = 9 columns:

Column
1 2 3 4 5 6 7 8 9

1 4 8 5 9 11 3 2 1 7
2 12 11 2 3 5 10 4 8 6

Row 3 7 10 9 4 6 5 1 12 8
4 11 9 12 6 1 7 10 3 2

Both rows and columns represent incomplete blocks, and the row design and
column design, which we refer to as the component designs, are characterized
by their respective incidence matrices, Nρ and Nγ say. We shall see later (see
Section 6.6.2) that the properties of the row–column design depend on Nρ and
Nγ , but that it is not straightforward how to combine the component designs to
produce a “good” final design. We shall return to this point in Section 6.6.3 after
discussing the analysis of a row–column design in Section 6.6.2.

6.6.2 Model and Normal Equations

Consider a row–column design with r rows, c columns, and t treatments where
treatment k is replicated rk times (k = 1, 2, . . . , t). Let yijk denote the observation
for the experimental unit in the ith row and j th column to which treatment k has
been applied. Based on the assumption of unit treatment additivity (see Section
I.10.2.3), a model for yijk can be derived [despite criticism by Srivastava (1993,
1996), and Srivastava and Wang (1998)] and written as

yijk = µ + ρi + γj + τk + eijk (6.35)
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where ρi(i = 1, 2, . . . , r), γj (j = 1, 2, . . . , c), τk(k = 1, 2, . . . , t) represent the
row, column, and treatment effects, respectively, which are defined such that∑

ρi = 0,
∑

γj = 0,
∑

τk = 0 (see Section I.10.2.3). The eijk represent the
combined experimental and observational error. Let us rewrite (6.35) in the usual
fashion in matrix notation as follows:

y = µI + Xρρ + Xγ γ + Xττ + e (6.36)

where ρ, γ , τ represent the row, column, and treatment effect vectors, respec-
tively, and Xρ, Xγ ,Xτ are known matrices linking the row, column, and treat-
ment effects to the observations. If we write, for example, the observation y such
that the first c components are the observation in row 1, the next c from row 2,
and so forth, then we have

Xρ =


Ic

Ic

. . .

Ic

 (6.37)

of dimension rc × r , and

Xγ =


I c

I c

. . .

I c

 (6.38)

of dimension rc × c. Further, the relationships between Xρ,Xγ , and Xτ are

X′
τXρ = Nρ X′

τXγ = Nγ (6.39)

Using (6.37), (6.38), and (6.39), it is then easy to write the NE for model (6.36) as
rc cI′

r rI′
c r′

cIr cI r IrI
′
c N ′

ρ

rIc IcI
′
r rI c N ′

γ

r Nρ Nγ rδ




µ̂

ρ̂

γ̂

τ̂

 =


I′

rcy

X′
ρy

X′
γ y

X′
τy

 (6.40)

where r ′ = (r1, r2, . . . , rt ) and rδ = diag(r1, r2, . . . , rt ).
Similar to Section 1.3.2 we shall derive from (6.40) the reduced NE as follows:

Using
∑

ρ̂i = 0 and
∑

γ̂j = 0 (as suggested by
∑

ρi = 0 and
∑

γj = 0), we
obtain from the first equation of (6.40)

µ̂ = G

n
− r ′τ̂

n
(6.41)
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where we are using the following obvious notation for the right-hand side of
(6.40): 

I′
rcy

X′
ρy

X′
γ y

X′
τy

 =


G

P

�

T

 (6.42)

and rc = n. From the second and third set of the NE (6.40) we obtain

cρ̂ = P − cµ̂Ir − N ′
ρ τ̂ (6.43)

and

r γ̂ = � − rµ̂Ic − N ′
γ τ̂ (6.44)

Substituting (6.41), (6.43), and (6.44) into the fourth set of equations in (6.40)
and simplifying, we obtain the RNE for τ as(

rδ − 1

c
NρN ′

ρ − 1

r
Nγ Nγ ′ + rr ′

n

)
τ̂ =

(
T − 1

c
NρP − 1

r
Nγ � + r

G

n

)
(6.45)

which we write in abbreviated form as

Cτ̂ = Q (6.46)

with C and Q as defined in (6.45). A solution to (6.46) can be written as

τ̂ = C−Q (6.47)

where C− is a generalized inverse of C.
Any statistical inference about the treatment effects is then derived, similar

to the developments in Chapter 1, from (6.46) and (6.47), in conjunction with
information from the analysis of variance (see Section 6.6.3). For example, rank
(C)(≤t − 1) determines the number of linearly independent estimable functions,
c′τ , of the treatment effects. For any estimable function c′τ we have ĉ′τ = c′τ̂ ,
with τ̂ from (6.47), and

var(c′τ̂ ) = c′C−cσ 2
e

6.6.3 Analysis of Variance

Following general principles (see, e.g., Sections I.4.11 and 1.3.6), it is easy to
write out the analysis of variance table for a row–column design that will enable
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Table 6.2 Analysis of Variance for Row–Column
Design

Source d.f. SS

Xρ |I r − 1 c

r∑
i=1

(yi·· − y...)
2

Xγ |I, Xρ c − 1 r

c∑
j=1

(y ·j · − y...)
2

Xτ |I,Xρ,Xγ t − 1a τ̂ ′Q
I |I, Xρ, Xγ ,Xτ Difference ≡ νE Difference ≡ SS(E)

Total rc − 1
∑
i,j,k

(yijk − y...)
2

aAssuming a connected design.

us to (i) estimate σ 2
e and (ii) obtain an (approximate) F test for testing H0: τ1 =

τ2 = · · · = τt = 0. Such an ANOVA table is given in Table 6.2, using an earlier
established notation. We then have

σ̂ 2
e = MS(E) = SS(E)

νE

and

F = τ̂ ′Q/(t − 1)

MS(E)

provides an approximate test for testing H0: τ1 = τ2 = · · · = τt = 0.
It should be mentioned (as is, of course, obvious from the notation used) that

the ANOVA in Table 6.2 is a sequential (or type I in SAS terminology) ANOVA.
The nature of the design implies immediately that SS(Xγ |I, Xρ) = SS(Xγ |I),
and hence the simple expression for SS(Xγ |I,Xρ) given in Table 6.2.

6.6.4 An Example

We shall illustrate the analysis of data from a row–column design, using the
design of Section 6.1 and using SAS PROC GLM. The data and analysis are
given in Table 6.3. We make the following comments about the analysis and the
SAS output in Table 6.3:

1. The inv-option in the model statement provides a generalized inverse to the
coefficient matrix of the NE (6.40), and the 12 × 12 submatrix given by the
rows and columns T1, T2, . . . , T12 serve as a C− for the RNE (6.46).
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2. The e-option in the model statement provides a list of linearly independent
estimable functions. The output shows that this design is a connected design,
that is, all treatment comparisons are estimable.

3. The P -values for R and C should be ignored (see Section I.10.2.5).
4. All treatment least-squares means have the same standard error because of

the same number of replications.
5. Not all simple treatment comparisons have the same standard error. This has

to do with the fact that Nρ and Nγ represent incomplete block designs. For
example, treatment 1 occurs together with treatments 7 and 9 three times in
the same row, whereas it occurs together twice in the same row with all other
treatments; but treatment 1 never occurs together with treatments 7 and 9 in
the same column, whereas it occurs together once in the same column with
all other treatments. Hence there are two different variances and, hence, two
different standard errors for simple treatment comparisons, for example, 4.81
and 4.68. We add here, however, that, in spite of their appearance, neither
Nρ nor Nγ represent PBIB(2) designs.

6.6.5 Regular Row–Column Designs

As we have already seen in the previous sections, a row–column design consists
of the amalgamation of two component designs, characterized by Nρ and Nγ ,
the row and column designs, respectively. For example, the row–column designs
in Table 6.4 can be characterized (prior to an appropriate rearrangement of the
treatments) easily in terms of well-defined error-control designs. We might refer
to these designs as regular row–column designs.

6.6.6 Doubly Incomplete Row–Column Designs

One feature that all the designs in Table 6.4 have in common is that the number
of columns, that is, the number of experimental units in each row, is equal to
a multiple of the number of treatments. Of considerable interest, however, are
designs for which the number of rows and columns is less than the number of
treatments. A natural way to construct such designs would be to amalgamate two
PBIB designs.

Example 6.13 For t = 8, r = 4, c = 4 Eccleston and Russell (1975) give the
following design:

Column
1 2 3 4

1 1 2 5 6
2 3 4 7 8

Row
3 7 6 2 3
4 5 8 4 1
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Table 6.4 Regular Row–Column Designs

Row–Column
Row Design Column Design Design Reference

RCBD RCBD Latin square I.10.2
RCBD GRBD Latin square I.10.4
GRBD GRBD Frequency square Hedayat and

Seiden (1970);
Hedayat,

Raghavarao, and
Seiden (1975)

RCBD BIBD Youden square I. 10.5
RCBD PBIBD Youden square I.10.5
RCBD Extended block

designa
Incomplete Latin

square
Cochran and Cox

(1957)
BBD BBDb Generalized

Youden design
Kiefer (1975a, b)

aSee I.9.8.5.
bSee Definition 19.9.

By inspection we find that both row and column designs are PBIB(3) designs
with the following association schemes:

Row design:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 4, 6, 8 5 3, 7
2 3, 5, 7, 1 6 4, 8
3 4, 6, 8, 2 7 5, 1
4 5, 7, 1, 3 8 6, 2
5 6, 8, 2, 4 1 7, 3
6 7, 1, 3, 5 2 8, 4
7 8, 2, 4, 6 3 1, 5
8 1, 3, 5, 7 4 2, 6

with λ1 = 1, λ2 = 2, λ3 = 0, and

P 1 =


0 1 0 0
1 0 1 2
0 1 0 0
0 2 0 0

 P 2 =


0 0 1 0
0 4 0 0
1 0 0 0
0 0 0 2

 P 3 =


0 0 0 1
0 4 0 0
0 0 0 1
1 0 1 0


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Column design:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 5, 6, 7, 8 3 2, 4
2 5, 6, 7, 8 4 1, 3
3 5, 6, 7, 8 1 2, 4
4 5, 6, 7, 8 2 1, 3
5 1, 2, 3, 4 7 6, 8
6 1, 2, 3, 4 8 5, 7
7 1, 2, 3, 4 5 6, 8
8 1, 2, 3, 4 6 5, 7

with λ1 = 1, λ2 = 2, λ3 = 0, and P matrices the same as for the row
design. �

6.6.7 Properties of Row–Column Designs

We shall restrict ourselves to designs for which each treatment is replicated the
same number of times, say r0. Moreover, we shall consider a subclass of designs,
denoted by D0 by Shah (1977), with the property that each row of the design
has r0 treatments in common with each column (this holds for all the designs
discussed so far). In terms of the component design incidence matrices, this
condition can be expressed as

N ′
ρNγ = r0IrI

′
c (6.48)

The condition (6.48) is equivalent to the property of adjusted orthogonality
for the row–column design (John and Eccleston, 1986). For the type of design
considered here Eccleston and Russell (1975, 1977) define adjusted orthogonality
to mean that using model (6.35) the contrast estimators for row effects adjusted
for treatment effects are uncorrelated with the contrast estimators for column
effects adjusted for treatment effects. This property is important because it has
implications with respect to the connectedness of a row–column design. Thus
Eccleston and Russell (1975) show that a row–column design is connected if it
satisfies the property of adjusted orthogonality and if both the row and column
designs are connected. This, in turn, means that for any design in D0 its properties
are determined by the properties of the component designs.

One important characteristic of an incomplete block design is its efficiency fac-
tor, which is related to the properties of the information matrix C (see
Section 1.12.2). For the row–column design the information matrix as given
in (6.37) can be written in terms of the information matrices for the component
designs as follows:

C =
(

rδ − 1

c
NρN ′

ρ

)
+
(

rδ − 1

r
Nγ N ′

γ

)
−
(

rδ − rr ′

n

)
= Cρ + Cγ −

(
rδ − rr ′

n

)
(6.49)
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where Cρ and Cγ denote the information matrices for the row and column
designs, respectively. More specifically, for the class D0 (6.49) can be written as

C =
(

r0I − 1

c
NρN ′

ρ

)
+
(

r0I − 1

r
Nγ N ′

γ

)
− r0

(
I − II′

t

)
(6.50)

In addition, for any design in D0 C satisfies the condition

C = CρCγ /r0 (6.51)

(John and Eccleston, 1986). The relationships (6.50) and (6.51), together with
the fact that C, Cρ , and Cγ have the same eigenvectors and that the eigenvalues
of C are those of Cρ or Cγ or 0 (John and Eccleston, 1986), it is possible to
express the efficiency factor Eργ of a row–column design in D0 in terms of
the efficiency factors Eρ and Eγ of the row and column component designs,
respectively, as

Eργ = EρEγ

Eρ + Eγ − EρEγ

(6.52)

(see Eccleston and McGilchrist, 1986; John and Eccleston, 1986). For designs not
in D0 the right-hand side of (6.52) represents an upper bound for Eργ (Eccleston
and McGilchrist, 1986).

We shall illustrate the relationship (6.52) numerically in terms of the design
of Example 6.13.

Example 6.13 (Continued) Inspection shows that the design belongs to D0
with r0 = 2. The SAS output in Table 6.5 confirms that the design is connected.

To obtain Eρ and Eγ (which in this case are identical) we use the system of
equations (4.34) and solve for g0, g1, g2, g3 to be used in

var(τ̂k − τ̂k′) = 2(g0 − gu)σ
2
e

[see (4.39)] for the three types of associates. We find g0 = 0, g1 = − 5
8 , g2 =

− 1
2 , g3 = − 3

4 with n1 = 4, n2 = 1, n3 = 2, and hence

av. var(τ̂k − τ̂k′) = 9
7 σ 2

e = 1.2857 σ 2
e

Thus, from (1.108) Eρ = Eγ = 1/1.2857 = .7778 [we should point out that this
value is slightly different from what would have been obtained from (4.41), which
is defined as the weighted average of the three efficiencies E1, E2, E3]. Using
(6.52) we obtain

Eργ = (.7778)2

2 × .7778 − (.7778)2 = .6364
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Table 6.5 Data and Analysis for Row-Column Design With PBIB (3) Row and
Column Designs (t = 8, r = 4, c = 4)

options nodate pageno=1;
data rcpbib;
input R C T Y @@;
datalines;
1 1 1 20 1 2 2 23 1 3 5 25 1 4 6 21
2 1 3 30 2 2 4 29 2 3 7 25 2 4 8 31
3 1 7 34 3 2 6 35 3 3 2 30 3 4 3 35
4 1 5 33 4 2 8 38 4 3 4 34 4 4 1 31
;
run;

proc print data=rcpbib;
title1 'TABLE 6.5';
title2 'DATA FOR ROW-COLUMN DESIGN';
title3 'W/PBIB(3) ROW AND COLUMN DESIGNS';
title4 't=8, r=4, c=4';
run;

proc glm data=rcpbib;
class R C T;
model Y=C R T/e;
estimate '1-2' T 1 -1;
estimate '1-3' T 1 0 -1;
estimate '1-4' T 1 0 0 -1;
estimate '1-5' T 1 0 0 0 -1;
estimate '1-6' T 1 0 0 0 0 -1;
estimate '1-7' T 1 0 0 0 0 0 -1;
estimate '1-8' T 1 0 0 0 0 0 0 -1;
title2 'ANALYSIS OF DATA';
title3 'FROM ROW-COLUMN DESIGN';
title4 'W/SIMPLE TREATMENT CONTRASTS';
run;

Obs R C T Y

1 1 1 1 20
2 1 2 2 23
3 1 3 5 25
4 1 4 6 21
5 2 1 3 30
6 2 2 4 29
7 2 3 7 25
8 2 4 8 31
9 3 1 7 34
10 3 2 6 35
11 3 3 2 30
12 3 4 3 35
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Table 6.5 (Continued )

13 4 1 5 33
14 4 2 8 38
15 4 3 4 34
16 4 4 1 31

ANALYSIS OF DATA FROM ROW-COLUMN
DESIGN W/SIMPLE TREATMENT CONTRASTS

The GLM Procedure

Class Level Information

Class Levels Values

R 4 1 2 3 4
C 4 1 2 3 4
T 8 1 2 3 4 5 6 7 8

Number of observations 16

General Form of Estimable Functions

Effect Coefficients

Intercept L1
C 1 L2
C 2 L3
C 3 L4
C 4 L1-L2-L3-L4
R 1 L6
R 2 L7
R 3 L8
R 4 L1-L6-L7-L8
T 1 L10
T 2 L11
T 3 L12
T 4 L13
T 5 L14
T 6 L15
T 7 L16
T 8 L1-L10-L11-L12-L13-L14-L15-L16

Dependent Variable: Y
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Table 6.5 (Continued )

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 13 426.5000000 32.8076923 7.09 0.1302
Error 2 9.2500000 4.6250000
Corrected
Total 15 435.7500000

R-Square Coeff Var Root MSE Y Mean

0.978772 7.259346 2.150581 29.62500

Source DF Type I SS Mean Square F Value Pr > F

C 3 16.2500000 5.4166667 1.17 0.4913
R 3 357.2500000 119.0833333 25.75 0.0376
T 7 53.0000000 7.5714286 1.64 0.4305

Source DF Type III SS Mean Square F Value Pr > F

C 3 10.2500000 3.4166667 0.74 0.6189
R 3 285.5000000 95.1666667 20.58 0.0467
T 7 53.0000000 7.5714286 1.64 0.4305

Standard
Parameter Estimate Error t Value Pr > |t|

1-2 0.50000000 2.84495167 0.18 0.8767
1-3 -4.75000000 2.63391344 -1.80 0.2131
1-4 -3.25000000 2.84495167 -1.14 0.3716
1-5 -3.50000000 2.40442301 -1.46 0.2828
1-6 -1.00000000 2.63391344 -0.38 0.7407
1-7 -1.75000000 2.84495167 -0.62 0.6011
1-8 -6.25000000 2.63391344 -2.37 0.1410

This value can be confirmed by making use of the SAS output in Table 6.5,
in particular the standard errors of simple treatment contrasts and the fact that,
because of the combinatorial structure of the design, there are three different
standard errors with frequency 3, 3, and 1, respectively. Thus, using the general
definition of E given in (1.108),

Eργ = 2/2

[3 × (2.8449)2 + 3 × (2.6339)2 + (2.4044)2]/(7 × 4.625)
= 0.6364

It follows, of course, from (6.52) that if, say, Eρ = 1, then Eργ = Eγ . �
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6.6.8 Construction

From our discussion in the previous sections concerning the information matrix
and the efficiency factor of a row–column design, it comes as no surprise that
the construction of an efficient row–column design starts with efficient row and
column component designs. This is, of course, easy to do for regular row–column
designs for which at least one of the component designs has efficiency equal to
1. There are, however, no general rules for amalgamating two PBIB designs.
Rather, we shall describe one construction method due to John and Eccleston
(1986), which is based on the generalized cyclic incomplete block designs of
Jarrett and Hall (1978) (see Section 6.3).

To construct a design for t = r × s treatments such that each treatment is
replicated r0 times (with r0 ≤ r) in r rows and c = r0s columns, we consider
the r residue classes Si = {i, i + r, . . . , i + r(s − 1)} for i = 0, 1, . . . , r − 1, and
form an r × r0 array where each column contains one element from each of the r

residue classes Si . We shall refer to this array as the generator array. From each
such column we generate s − 1 further columns by adding successively r mod t

to each element in that column. Thus each initial column generates a complete
replicate of the t treatments, and the columns of the r × r0s array represent the
blocks of the generalized cyclic incomplete block design with r0 replications for
each treatment.

In order to obtain a design in D0 we need to ensure that each row in the
generator array contains at most one element from each residue class. Then each
row will consist of elements from r0 residue classes and hence each row and
each column will have exactly r0 elements in common. Thus the final design
satisfies the condition of adjusted orthogonality.

To illustrate this method we consider the following example.

Example 6.14 Suppose t = 12 = 3 × 4, r = 3, s = 4, r0 = 2, c = 8. The
residue classes are

S0 = {0, 3, 6, 9} S1 = {1, 4, 7, 10} S2 = {2, 5, 8, 11}

Choose the generator array as

0 7
1 11
2 3

Then the final row–column design is

Column
1 2 3 4 5 6 7 8

1 0 3 6 9 7 10 1 4
Row 2 1 4 7 10 11 2 5 8

3 2 5 8 11 3 6 9 0
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Closer inspection shows that both row and column designs are actually PBIB(2)
designs. �

As pointed out by John and Williams (1995), the method described above
may not always lead to the most efficient row–column designs. Alternatively,
computer algorithms have been proposed that rely on iterative improvements of
a starting design or a starting component design by using exchange algorithms.
The aim is to construct a design with as high an efficiency factor as possible.
The criterion used most often in this context is that of (M , S) optimality since it
is most amenable to computational procedures. We shall not go into details, but
rather refer the reader to the appropriate literature, such as Russell, Eccleston, and
Knudsen (1981), Nguyen and Williams (1993), Venables and Eccleston (1993),
and John and Williams (1995).

6.6.9 Resolvable Row–Column Designs

It is sometimes desirable, especially when the number of treatments is large or
when the experiment is done sequentially, to have the treatments arranged in a
resolvable design. This means that the design consists of several replicates such
that each replicate constitutes a row–column design and each treatment occurs
exactly once in each replicate. An example of a resolvable design for t = c2 are
the lattice square design of Yates (1940b) (see Chapter 18).

For a resolvable row–column design with R distinct replications model (6.1)
needs to be changed to

yijk� = µ + Ri + ρij + γik + τ� + eijk� (6.53)

with i = 1, 2, . . . , R; j = 1, 2, . . . , r; k = 1, 2, . . . , c; � = 1, 2, . . . , t , and where
Ri are the replicate effects, ρij , γik are the row and column effects, respectively,
nested within replicates, and τ� are the treatment effects. Because of the nesting
structure these designs are a special case of what has been referred to as nested
row–column designs (see, e.g., Morgan, 1996; John and Williams, 1995).

In matrix notation model (6.53) can be written as

y = µI + XRR + Xρρ + Xγ γ + Xττ + e (6.54)

where, in contrast to (6.2), Xρ is of dimension n × Rr , and Xγ is of dimen-
sion n × Rc, where n = Rrc = Rt . Using (6.54) we can write out the normal
equations and then the reduced normal equations. In terms of the design matrices
in (6.54) the information matrix can be written as (see Morgan and Bailey, 2000)

C = X′
τ

(
I − 1

c
XρX′

ρ − 1

r
Xγ X′

γ + 1

rc
XRX′

R

)
Xτ (6.55)



ROW–COLUMN DESIGNS 239

With X′
τXρ = Nρ,XτXγ = Nγ , and X′

τXR = NR we can rewrite (6.55) as

C = RI − 1

c
NρN ′

ρ − 1

r
Nγ N ′

γ + 1

rc
NRN ′

R

or, since the replicate design is an RCBD,

C = RI − 1

c
NρN ′

ρ − 1

r
Nγ N ′

γ + R

rc
II′ (6.56)

When constructing resolvable row–column designs care must be taken to
ensure that rank (C) = t − 1. This holds for the method of constructing lattice
square designs (see Chapter 18). The method described in Section 6.6.7 can be
used here also in conjunction with the interchange algorithm of Nguyen and
Williams (1993) to produce connected and efficient designs.

Variations of the model (6.53) may be considered as dictated by the experimen-
tal conditions. For example, if in an industrial experiment the rows are different
batches of raw material, the columns are different machines, the replicates are
different times, and the experiment is conducted in the same factory, then the
machines may be the same for the different replicates. Or, in an agriculture the
replicates may be contiguous pieces of land so that, for example, the columns are
the same for all the replicates. In those cases the columns are no longer nested in
replicates but rather crossed with replicates, and hence model (6.53) changes to

yijk� = µ + Ri + ρij + γk + τ� + eijk� (6.57)

(this is similar to the various forms of replicated Latin squares in I.10.3).
Finally, a further modification, or restriction, of the above design is considered

by John and Williams (1995). In addition to having each treatment occur once
in each replicate, each treatment should not occur more than once (or nearly
equally often) in each column as, for example, in the design given below for
t = 12 = 3 × 4, R = 3, r = 3, c = 4:

Replicate
1 0 3 6 9

1 4 7 10
2 5 8 11

2 4 8 9 0
5 6 10 1
3 7 11 2

3 7 10 0 5
8 11 1 3
4 9 2 4



240 MORE BLOCK DESIGNS AND BLOCKING STRUCTURES

This arrangement may be useful in, for example, an agronomic experiment to pro-
vide some protection against the loss of an entire column. This design is referred
to as a Latinized row–column design (using terminology of Harshbarger and
Davis, 1952). John and Williams (1995) recommend to modify model (6.57) to

yijk� = µ + Ri + ρij + γk + (Rγ )ik + τ� + eijk� (6.58)

so that the effects Ri and (Rγ )ik account for the R(c − 1) d.f. of the γij in model
(6.53). Obviously, subject matter knowledge may determine whether model (6.53)
or (6.57) is appropriate.

From the above discussion it should be clear that the original row–column
design may have to be modified in various ways to accommodate practical con-
siderations and requirements, leading to still other forms of row–column designs.



C H A P T E R 7

Two-Level Factorial Designs

7.1 INTRODUCTION

In the preceding chapters we have discussed various aspects of error control
designs. Another component of an experimental design is, however, the treat-
ment design (see Section I.2.2.3), in particular, designs with a factorial treatment
structure (see I.11.1 and I.11.2).

In this chapter we shall consider in great detail the situation where an exper-
iment involves several factors, each having two levels. Such experiments are
generally referred to as 2n factorials, where n denotes the number of fac-
tors, and hence 2n denotes the total number of level combinations or treatment
combinations.

Although the 2n factorial represents only a special case of the general pn

factorial experiment, that is, n factors with p levels each, it deserves spe-
cial consideration because of its practical importance and its special algebraic
and combinatorial representation. At the same time, however, we shall use the
2n case to lay the foundation for the discussion of the more general case by
introducing appropriate notation and mathematics suitable for generalization in
later chapters.

7.2 CASE OF TWO FACTORS

7.2.1 Definition of Main Effects and Interaction

Let us denote the two factors by A and B, where factor A has levels a0 and a1,
and factor B has levels b0 and b1. We shall refer to a0 and b0 as 0 levels and to
a1 and b1 as 1 levels of the two factors, respectively. The four possible treatment

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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combinations may be represented as

a0b0

a1b0

a0b1

a1b1

(7.1)

We can then define the effect of factor A, that is, the effect of changing A from
a0 to a1, at each of the two levels of factor B. Denoting these effects by A(b0)

and A(b1), respectively, we define

A(b0) = a1b0 − a0b0

A(b1) = a1b1 − a0b1
(7.2)

where aibj now denotes the true response of the treatment combination aibj . We
shall use this dual meaning of aibj throughout, but from the context it should
always be clear whether we mean the treatment combination or the response of
that treatment combination. The effect of A, also referred to as the main effect
A, is now defined as the average of the so-called simple effects A(b0) and A(b1)

of (7.2), denoted by A, that is,

A = 1
2 [A(b0) + A(b1)] (7.3)

or, by using (7.2),

A = 1
2 [a1b0 − a0b0 + a1b1 − a0b1] (7.4)

or, symbolically,

A = 1
2 (a1 − a0)(b1 + b0) (7.5)

where the expression is to be expanded algebraically.
If the two factors are acting independently, we would expect A(b0) and A(b1)

of (7.2) to be equal, but, in general they will be different, and their difference is a
measure of the extent to which the two factors A and B interact. This interaction
is denoted by AB (or A × B), and defined as

AB = 1
2 [A(b1) − A(b0)]

AB = 1
2 [a1b1 − a0b1 − a1b0 + a0b0]

(7.6)

or, symbolically,

AB = 1
2 (a1 − a0)(b1 − b0) (7.7)
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The factor 1
2 here is a matter of convention and is used to express the interaction

effect on a per-unit-difference basis, there being two differences in (7.6). We
shall use this convention throughout.

Along the same lines we may also obtain the effect of factor B by first defining
the simple effects:

B(a0) = a0b1 − a0b0

B(a1) = a1b1 − a1b0
(7.8)

and then

B = 1
2 [B(a0) + B(a1)]

= 1
2 [a0b1 − a0b0 + a1b1 − a1b0] (7.9)

= 1
2 (a1 + a0)(b1 − b0)

B(a0) and B(a1) from (7.8) can also be used to define the interaction between
factors B and A as

BA = 1
2 [B(a1) − B(a0)]

= 1
2 [a1b1 − a1b0 − a0b1 + a0b0]

= 1
2 (a1 − a0)(b1 − b0) = AB

which shows that in defining the interaction we need not bother with the order
in which we write down the letters.

7.2.2 Orthogonal Contrasts

We note that the effects A,B and the interaction AB are three mutually orthog-
onal contrasts of the true responses of the four treatment combinations:

a0b0 a1b0 a0b1 a1b1

2A − + − +
2B − − + +
2AB + − − +

which follows immediately from (7.4), (7.9), and (7.6). If we denote the mean
response of the four treatment combinations by M , we have the following trans-
formation of the response vector (a0b0, a1b0, a0b1, a1b1)

′:
4M

2A

2B

2AB

 =


1 1 1 1

−1 1 −1 1
−1 −1 1 1

1 −1 −1 1




a0b0
a1b0
a0b1
a1b1

 (7.10)
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It is interesting to note that the transformation matrix in (7.10) can be written as
the Kronecker product (

1 1
−1 1

)
×

(
1 1

−1 1

)
where the matrix

T =
(

1 1
−1 1

)
(7.11)

can be considered as the transformation matrix for the one factor situation, that
is, (

2M

A

)
=

(
1 1

−1 1

)(
a0
a1

)
Hence, by using (7.11), we can write (7.10) as

4M

2A

2B

2AB

 = (T × T )


a0b0
a1b0
a0b1
a1b1

 (7.12)

7.2.3 Parameterizations of Treatment Responses

Relationship (7.10) and hence (7.12) may be inverted, that is,
a0b0
a1b0
a0b1
a1b1

 = (T × T )−1


4M

2A

2B

2AB


and since (T × T )−1 = T −1 × T −1 and

T −1 = 1

2

(
1 −1
1 1

)
we obtain 

a0b0
a1b0
a0b1
a1b1

 = 1

4


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1




4M

2A

2B

2AB

 (7.13)
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that is,

a0b0 = M − 1
2A − 1

2B + 1
2AB

a1b0 = M + 1
2A − 1

2B − 1
2AB

a0b1 = M − 1
2A + 1

2B − 1
2AB

a1b1 = M + 1
2A + 1

2B + 1
2AB

(7.14)

Parameterizations of type (7.14) will become very useful in later discussions
of the 2n factorial. At this point it may be of interest to relate representation
(7.14) to the usual parameterization of a factorial structure in linear model terms.
If µij denotes the true response of the treatment combination aibj , the usual
parametric model (see Section I.4.13.2) is given as

µij = µ + αi + βj + (αβ)ij (7.15)

It is obvious that we cannot relate M, A,B,AB uniquely to the parameters in
(7.15) without defining them more precisely. For that reason we write (7.15) as
the identity

µij = µ.. + (µi. − µ..) + (µ.j − µ..) + (µij − µi. − µ.j + µ..) (7.16)

where, in the present context with i, j = 0, 1,

µi. = 1
2 (µi0 + µi1) (i = 0, 1)

µ.j = 1
2 (µ0j + µ1j ) (j = 0, 1)

µ.. = 1
4

∑
ij

µij = µ

so that

αi = µi. − µ..

βj = µ.j − µ..

(αβ)ij = µij − µi. − µ.j + µ..

with

α0 + α1 = 0

β0 + β1 = 0

(αβ)00 + (αβ)10 = 0

(αβ)01 + (αβ)11 = 0

(αβ)00 + (αβ)01 = 0

(αβ)10 + (αβ)11 = 0

(7.17)
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It follows then from (7.10) that

M = µ

A = α1 − α0

B = β1 − β0

AB = 1
2 [(αβ)00 − (αβ)10 − (αβ)01 + (αβ)11]

or, using the relationships (7.17),

M = µ

A = 2α1

B = 2β1

AB = 2(αβ)11

that is, 
2M

A

B

AB

 = 2


µ

α1
β1

(αβ)11


Hence we obtain from (7.14)

a0b0 = µ − α1 − β1 + (αβ)11

a1b0 = µ + α1 − β1 − (αβ)11

a0b1 = µ − α1 + β1 − (αβ)11

a1b1 = µ + α1 + β1 + (αβ)11

This again can be expressed as a linear transformation using the matrix T of
(7.11) as 

a0b0
a1b0
a0b1
a1b1

 = 4(T × T )−1


µ

α1
β1

(αβ)11


Hence 

µ

α1
β1

(αβ)11

 = 1
4 (T × T )


a0b0
a1b0
a0b1
a1b1


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We can, therefore, easily relate the parameters customarily used in factorial
experiments to those commonly used in classificatory linear models and relate
both, in turn, to the true responses.

7.2.4 Alternative Representation of Treatment Combinations,
Main Effects, and Interaction

We now return to Eqs. (7.10) and (7.14) using two alternative ways of repre-
senting the treatment combinations and hence the responses, one that is peculiar
to the 2n factorial and simplifies the previous notation in a very useful way,
and one that leads to a more formal, mathematical definition of main effects and
interaction, which can be generalized for other factorials as well.

Instead of writing the treatment combinations as in (7.1), we shall now write
them as (1) a, b, ab, respectively, that is, in each combination the letter corre-
sponding to a 0 level is replaced by 1 and the subscript is dropped in a letter
corresponding to a 1 level. With this notation (7.5), (7.9), and (7.7) can be written
formally as

A = 1
2 (a − 1)(b + 1)

B = 1
2 (a + 1)(b − 1) (7.18)

AB = 1
2 (a − 1)(b − 1)

each of which is then multiplied out as if these were mathematical quantities. We
note that in the expressions above terms like (a − 1) do not have any meaning
in themselves, only the quantities (1) a, b, ab after multiplication are meaning-
ful. A simple rule for writing down the expressions in (7.18) is as follows:
A minus sign appears in any factor on the right if the corresponding letter is
present on the left, otherwise a plus sign appears. It is crucial in this nota-
tion to adhere to the rule that we have used, that effects and interactions are
denoted by capital letters and treatment combinations and responses are denoted
by small letters.

Still another way of representing the treatment combinations is by pairs
(x1, x2), where x1 represents the level of factor A and x2 represents the level
of factor B, with xi = 0, 1(i = 1, 2). The four treatment combinations are then
written as (0, 0), (1, 0), (0, 1), (1, 1). By looking at (7.10) we notice that, apart
from a constant, main effect A is a comparison of treatment combinations with
x1 = 1 versus those with x1 = 0. Similarly, B is a comparison of treatment com-
binations with x2 = 1 versus those with x2 = 0. And finally, AB is a comparison
of treatment combinations satisfying x1 + x2 = 0 mod 2, that is, (0, 0) and (1, 1),
versus those satisfying x1 + x2 = 1, that is, (1, 0) and (0, 1). Each of the three
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basic equations for
A: x1 = i

B: x2 = j

AB: x1 + x2 = k

where i, j, k take on the values 0 and 1, and where the equations are always
reduced mod 2, represents a partitioning of the set of four treatment combinations
into two sets of two treatment combinations each, that is,

x1 = 0: (0, 0), (0, 1)

= 1: (1, 0), (1, 1)

x2 = 0: (0, 0), (1, 0)

= 1: (0, 1), (1, 1)

x1 + x2 = 0: (0, 0), (1, 1)

= 1: (1, 0), (0, 1)

A unified way to express these partitions is to write them as

α1x1 + α2x2 = 0, 1 mod 2

where α1, α2 = 0, 1 but (α1, α2) �= (0, 0). These partitions are orthogonal in the
sense that for a given α1x1 + α2x2 = i the set of treatment combinations contains
one from α′

1x1 + α′
2x2 = 0 and one from α′

1x1 + α′
2x2 = 1 where (α′

1, α
′
2) �=

(α1, α2). This, of course, is equivalent to our earlier statement that A,B and AB

represent orthogonal comparisons of the treatment combination responses.

7.3 CASE OF THREE FACTORS

We now consider three factors A,B, and C, say, with levels a0, a1, b0, b1, c0, c1,
respectively. The eight possible treatment combinations can be represented, in
the standard order, in the following three ways:

a0b0c0 (1) (0, 0, 0)

a1b0c0 a (1, 0, 0)

a0b1c0 b (0, 1, 0)

a1b1c0 ab (1, 1, 0)

or or
a0b0c1 c (0, 0, 1)

a1b0c1 ac (1, 0, 1)

a0b1c1 bc (0, 1, 1)

a1b1c1 abc (1, 1, 1)
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7.3.1 Definition of Main Effects and Interactions

Denoting the true response by the same symbol as the treatment combination,
we define now four simple effects associated with factor A:

A(b0, c0) = a1b0c0 − a0b0c0

A(b1, c0) = a1b1c0 − a0b1c0

A(b0, c1) = a1b0c1 − a0b0c1

A(b1, c1) = a1b1c1 − a0b1c1

(7.19)

where A(bi, cj ) is the effect of factor A with factor B at level bi(i = 0, 1) and
factor C at level cj (j = 0, 1). The average of the four simple effects of (7.19)
is then defined as the effect of factor A, denoted by A, that is,

A = 1
4

∑
ij

A(bi, cj )

= 1
4 (a1b0c0 + a1b1c0 + a1b0c1 + a1b1c1

−a0b0c0 − a0b1c0 − a0b0c1 − a0b1c1)

or, symbolically,

A = 1
4 (a1 − a0)(b1 + b0)(c1 + c0) (7.20)

and using the alternative notation

A = 1
4 (a + ab + ac + abc − (1) − b − c − bc)

= 1
4 (a − 1)(b + 1)(c + 1) (7.21)

Next we define the interaction between factors A and B, denoted by AB, by
considering the difference between the following average effects:

A(b0, c) = 1
2 [A(b0, c0) + A(b0, c1)]

and

A(b1, c) = 1
2 [A(b1, c0) + A(b1, c1)]

Then

AB = 1
2 [A(b1, c) − A(b0, c)]

= 1
4 (a1b1c0 − a0b1c0 + a1b1c1 − a0b1c1

−a1b0c0 + a0b0c0 − a1b0c1 + a0b0c1)

= 1
4 (a1 − a0)(b1 − b0)(c1 + c0) (7.22)
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or, using the alternative notation

AB = 1
4 [ab + abc + (1) + c − a − b − ac − bc]

= 1
4 (a − 1)(b − 1)(c + 1) (7.23)

We can also evaluate the simple interaction between factors A and B for each
level of factor C, using an obvious modification of (7.6), as

AB(c0) = 1
2 (a1b1c0 + a0b0c0 − a1b0c0 − a0b1c0) (7.24)

and

AB(c1) = 1
2 (a1b1c1 + a0b0c1 − a1b0c1 − a0b1c1) (7.25)

Obviously,

AB = 1
2 [AB(c0) + AB(c1)]

The two interactions given by (7.24) and (7.25) may be different, and, as a
measure of the extent to which they are different, we define the three-factor
interaction of factors A,B, and C, denoted by ABC, as

ABC = 1
4 [AB(c1) − AB(c0)]

= 1
4 (a1b1c1 + a0b0c1 − a1b0c1 − a0b1c1

− a1b1c0 − a0b0c0 + a1b0c0 + a0b1c0)

= 1
4 (a1 − a0)(b1 − b0)(c1 − c0) (7.26)

or

ABC = 1
4 [abc + a + b + c − (1) − ab − ac − bc]

= 1
4 (a − 1)(b − 1)(c − 1) (7.27)

Similar arguments can be used to define the remaining main effects and two-factor
interactions. We summarize them below:

B = 1
4 (a1 + a0)(b1 − b0)(c1 + c0)

C = 1
4 (a1 + a0)(b1 + b0)(c1 − c0)

AC = 1
4 (a1 − a0)(b1 + b0)(c1 − c0)

BC = 1
4 (a1 + a0)(b1 − b0)(c1 − c0)
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or alternatively,

B = 1
4 (a + 1)(b − 1)(c + 1)

C = 1
4 (a + 1)(b + 1)(c − 1)

AC = 1
4 (a − 1)(b + 1)(c − 1)

BC = 1
4 (a + 1)(b − 1)(c − 1)

Just as in the two-factor case we can express the effects and interactions defined
above as a transformation of the treatment responses:

8M

4A

4B

4AB

4C

4AC

4BC

4ABC


=



1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





a0b0c0

a1b0c0

a0b1c0

a1b1c0

a0b0c1

a1b0c1

a0b1c1

a1b1c1


(7.28)

where M is the mean response of the 8 treatment combinations. We shall com-
ment briefly on the transformation matrix in (7.28): (i) It can be verified easily
that, with the standard order of writing the symbols for the treatment combina-
tions and the effects (main effects and interactions) that we have adopted, the
matrix can be expressed as the threefold Kronecker product T × T × T , where
T is given by (7.11); (ii) the rows of the transformation matrix are orthogo-
nal to each other; (iii) except for the first row, the rows of the transformation
matrix represent comparisons of the treatment responses; (iv) it is easy to write
down the elements in any given row: for A, B, and C we have a +1 if the
corresponding factor appears at the 1 level in a treatment combination, and a
−1 if the corresponding factor appears at the 0 level; for interactions we just
multiply the corresponding elements for the main effects involved; for the alter-
nate representation of treatment combinations this rule can be formulated as
follows: Let X be any effect symbol; if X consists of an odd (even) number
of factor symbols, then an element in the row corresponding to X is +1 if the
associated treatment combination has an odd (even) number of letters in com-
mon with X, and it is −1 if the associated treatment combination has an even
(odd) number of letters in common with X, where zero is considered to be an
even number.
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7.3.2 Parameterization of Treatment Responses

Inverting (7.28) leads to a representation of treatment responses in terms of the
overall mean, main effects, and interactions:

a0b0c0

a1b0c0

a0b1c0

a1b1c0

a0b0c1

a1b0c1

a0b1c1

a1b1c1


=



1 −1 −1 1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1





8M

4A

4B

4AB

4C

4AC

4BC

4ABC


(7.29)

The rule for writing down the elements in the matrix in (7.29) corresponding to
the treatment combination aibj ck is: The coefficient for M is +1; the coefficient
for the main effects is +1 if the corresponding factor appears at the 1 level and
−1 if it appears at the 0 level; the coefficient for an interaction is the product
of the coefficients for the main effects involved. An alternative way of writing
(7.29) then is

2aibj ck = 2M + (−1)1−iA + (−1)1−jB + (−1)[1−i)+(1−j)]AB

+ (−1)1−kC + (−1)[(1−i)+(1−k)]AC

+ (−1)[(1−j)+(1−k)]BC + (−1)[(1−i)+(1−j)+(1−k)]ABC (7.30)

where i, j, k = 0, 1.

7.3.3 The x-Representation

To conclude this section, we shall discuss briefly the formal definition of main
effects and interactions in terms of orthogonal partitions, using what we shall
henceforth call the x representation of treatment combinations. A treatment
combination is given by x ′ = (x1, x2, x3) with xi = 0, 1(i = 1, 2, 3). We then
consider all partitions of the form

α1x1 + α2x2 + α3x3 = 0, 1 mod 2

where αi = 0, 1(i = 1, 2, 3) but (α1, α2, α3) �= (0, 0, 0). Each partition divides
the set of treatment combinations into two sets of four treatment combinations



GENERAL CASE 253

each. The comparison of the average response for these two sets defines then a
main effect or interaction. Specifically these sets are

A: α1 = 1, α2 = α3 = 0 i.e. x1 = 0
vs. x1 = 1

B: α2 = 1, α1 = α3 = 0 i.e. x2 = 0
vs. x2 = 1

AB: α1 = α2 = 1, α3 = 0 i.e. x1 + x2 = 0
vs. x1 + x2 = 1

C: α3 = 1, α1 = α2 = 0 i.e. x3 = 0
vs. x3 = 1

AC: α1 = α3 = 1, α2 = 0 i.e. x1 + x3 = 0
vs. x1 + x3 = 1

BC: α1 = 0, α2 = α3 = 1 i.e. x2 + x3 = 0
vs. x2 + x3 = 1

ABC: α1 = α2 = α3 = 1 i.e. x1 + x2 + x3 = 0
vs. x1 + x2 + x3 = 1

where every equation is reduced mod 2. We refer to each α = (α1, α2, α3)
′ as a

partition of the factor space X = {x = (x1, x2, x3)
′; xi = 0, 1; i = 1, 2, 3}.

7.4 GENERAL CASE

We now have n factors and hence 2n treatment combinations. It is convenient
to denote the factors by A1, A2, . . . , An where factor Ai has levels ai0 and
ai1(i = 1, 2, . . . , n), or simply xi = 0 and 1. Then a treatment combination can
be represented again in three different forms: (1) the explicit form:

a1j1
a2j2

· · · anjn

where ji = 0 or 1(i = 1, 2, . . . , n); (2) the condensed form:

a
xi

1 a
x2
2 · · · axn

n (7.31)

where xi = 0 or 1 with a0
i = 1 and a1

i = ai and all unity terms in (7.31) are
ignored; (3) the x representation

(x1, x2, . . . , xn)

where, as in (2), xi = 0 or 1.
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7.4.1 Definition of Main Effects and Interactions

Conforming to the general expression for a partition of the 2n treatment combi-
nations into two sets of 2n−1 treatment combinations each, that is,

α1x1 + α2x2 + · · · + αnxn = 0, 1 mod 2 (7.32)

with αi = 0, 1, xi = 0, 1(i = 1, 2, . . . , n), we write the effects and interactions
in the general form

A
α1
1 A

α2
2 · · · Aαn

n (7.33)

with A0
i = 1, A1

i = Ai , and we ignore all unity elements in this expression. If all
αi = 0, then (7.33) is written as M , the mean of the 2n treatment combinations.

Using (7.31) and (7.33) we now generalize the symbolic expressions given in
the previous sections for main effects and interactions and write

A
α1
1 A

α2
2 · · ·Aαn

n = 1

2n−1

n∏
i=1

[ai + (−1)αi ] (7.34)

and

M = 1

2n

n∏
i=1

(ai + 1)

We know that in (7.34) 2n−1 treatment combinations enter positively into
A

α1
1 A

α2
2 · · · Aαn

n and the remaining 2n−1 treatment combinations enter negatively.
For the case n = 3 we have given an even–odd rule to determine which treatment
combinations enter positively and which enter negatively, a rule due to Fisher
(1949). We shall use (7.34) to derive such a rule for the general case.

First we rewrite (7.34) as

A
α1
1 A

α2
2 · · ·Aαn

n = 1

2n−1

n∏
i=1

[a1
i + (−1)αi a0

i ] (7.35)

We then note that each treatment combination contains either a1
i or a0

i (i =
1, 2, . . . , n). To determine the sign of a

x1
1 a

x2
2 · · · axn

n we therefore have to deter-
mine the sign with which a

xi

i enters into this “product”: If αi = 0, then the sign
for a

xi

i is +1 whether xi = 0 or 1; if αi = 1, then the sign for a
xi

i is +1 for
xi = 1 and −1 for xi = 0 as is obvious from (7.35). Both statements can be
combined into the statement that the sign for a

xi

i is (−1)αi(1−xi ). Hence the sign
of a

x1
1 a

x2
2 · · · axn

n is

n∏
i=1

[(−1)αi(1−x1)] = (−1)
∑

i αi (1−xi) = (−1)
∑

αi−
∑

αixi (7.36)
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Now
∑

i αi is the number of letters in A
α1
1 A

α2
2 · · · Aαn

n after deletion of terms
of the form A0

j . Also, αixi = 1 if ai and Ai are present in (7.31) and (7.33),
respectively. With (7.36) this establishes then the following rules.

Rule 1 The treatment combination a
x1
1 a

x2
2 · · · axn

n enters positively into
A

α1
1 A

α2
2 · · · Aαn

n if δ = [number of letters in A
α1
1 A

α2
2 · · ·Aαn

n − number of letters
in common between A

α1
1 A

α2
2 · · · Aαn

n and a
x1
1 a

x2
2 · · · axn

n ] is even, and it enters
negatively if δ is odd.

This leads immediately to the alternative formulation in rule 1′.

Rule 1′ If A
α1
1 A

α2
2 · · ·Aαn

n has an odd (even) number of letters, then the
treatment combination a

x1
1 a

x2
2 · · · axn

n enters positively into A
α1
1 A

α2
2 · · ·Aαn

n if it
has an odd (even) number of letters in common with A

α1
1 A

α2
2 · · · Aαn

n , and it
enters negatively if it has an even (odd) number of letters in common with
A

α1
1 A

α2
2 · · · Aαn

n .

Based on the method of orthogonal partitioning as given in (7.32) and rule
1′, we can give yet another expression for A

α1
1 A

α2
2 · · · Aαn

n that will prove to be
useful for further discussion of the general factorial experiment. We know that
A

α1
1 A

α2
2 · · · Aαn

n is, apart from a constant, a comparison of responses of treatment
combinations satisfying the equation

α1x1 + α2x2 + · · · + αnxn = 0 mod 2 (7.37)

versus those satisfying the equation

α1x1 + α2x2 + · · · + αnxn = 1 mod 2 (7.38)

Now, if in A
α1
1 A

α2
2 · · · Aαn

n the sum
∑

i αi is odd, then all treatment combi-
nations with

∑
i αixi odd, that is, satisfying Eq. (7.38), enter positively into

A
α1
1 A

α2
2 · · · Aαn

n and those with
∑

i αixi even, that is, satisfying Eq. (7.37), enter
negatively into A

α1
1 A

α2
2 · · · Aαn

n . If on the other hand
∑

i αi is even, then all treat-
ment combinations satisfying (7.37) enter positively, and those satisfying (7.38)
enter negatively. Let

(A
α1
1 A

α2
2 · · ·Aαn

n )0 = [mean response of all treatment

combinations satisfying
∑

i

αixi = 0] − M (7.39)

and
(A

α1
1 A

α2
2 · · ·Aαn

n )1 = [mean response of all treatment

combinations satisfying
∑

i

αixi = 1] − M (7.40)
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We can then write

A
α1
1 A

α2
2 · · · Aαn

n = (A
α1
1 A

α2
2 · · · Aαn

n )1 − (A
α1
1 A

α2
2 · · ·Aαn

n )0 if
∑

αi is odd

= (A
α1
1 A

α2
2 · · · Aαn

n )0 − (A
α1
1 A

α2
2 · · ·Aαn

n )1 if
∑

αi is even

or, combining both cases,

A
α1
1 A

α2
1 · · ·Aαn

n = (−1)
∑

αi (A
α1
1 A

α2
2 · · ·Aαn

n )0 − (A
α1
1 A

α2
2 · · · Aαn

n )1] (7.41)

7.4.2 Parameterization of Treatment Responses

We shall use this result now to derive an expression, due to Kempthorne (1952),
for the parameterization of treatment combination responses in terms of main
effects and interactions, that is, the generalization of (7.30) for the 2n case. To
abbreviate the notation, let α′ = (α1, α2, . . . , αn), x ′ = (x1, x2, . . . , xn), a(x) =
a

x1
1 a

x2
2 , . . . , a

xn
n , Eα = A

α1
1 A

α2
2 · · · Aαn

n , Eα
i = (A

α1
1 A

α2
2 · · ·Aαn

n )i (i = 0, 1).
First, we establish the following identity: For a fixed x

a(x) = M +
∑
α

Eα
α′x (7.42)

where summation is over all α �= (0, 0, . . . , 0), and α′x is reduced modulo 2.
Expression (7.42) in itself is useful as a parameterization of a(x), and we shall
return to it in connection with the general factorial experiment (see Chapter
11). For the 2n case, however, (7.42) can be rewritten in terms of effects and
interactions as we shall see.

Now, to prove (7.42), we make use of (7.39) and (7.40), the definitions of Eα
0

and Eα
1 , and we observe that

1.
∑

α Eα
α′x contains 2n − 1 terms.

2. Each Eα
α′x contains the term −M .

3. Each Eα
α′x contains the sum of 2n−1 treatment combinations divided by

2n−1.
4. Each Eα

α′x contains a(x).
5. If y′ = (y1, y2, . . . , yn), with y �= x, satisfies the same equation as x, then

α′(x − y) = 0, and there are exactly 2n−1 − 1 distinct solutions α, that is,
each a(y) �= a(x) occurs in exactly 2n−1 − 1 different Eα

α′x .

Collecting terms on the right-hand side of (7.42) we then obtain

M − (2n − 1)M + 2n − 1

2n−1
a(x) + 2n−1 − 1

2n−1

∑
y �=x

a(y)

= 2(2n−1 − 1)M + 2n − 1

2n−1
a(x) + 2n−1 − 1

2n−1
[2nM − a(x)] = a(x)

which proves (7.42).
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We now use (7.42) to derive an expression of the form

a(x) = M +
∑
α

φ(α, x)Eα (7.43)

where the coefficients φ(α, x) are either + 1
2 or − 1

2 . Let δα′x
i = 1 if α′x = i and

= 0 if α′x �= i(i = 0, 1). We can then write (7.42) as

a(x) = M +
∑
α

[δα′x
0 Eα

0 + δα′x
1 Eα

1 ] (7.44)

From (7.41) we have

Eα = (−1)
∑

αi (Eα
0 − Eα

1 )

and hence
Eα

0 − Eα
1 = (−1)

∑
αiEα (7.45)

Also, from (7.39) and (7.40), we have

Eα
0 + Eα

1 = 0 (7.46)

so that from (7.45) and (7.46) it follows that

Eα
0 = 1

2 (−1)
∑

αiEα Eα
1 = −

(
1
2

)
(−1)

∑
αiEα (7.47)

Substituting (7.47) into (7.44), we obtain

a(x) = M + 1
2

∑
α

[
δα′x

0 (−1)
∑

αi − δα′x
1 (−1)

∑
αi

]
Eα

= M + 1
2

∑
α

(−1)
∑

αi

(
δα′x

0 − δα′x
1

)
Eα (7.48)

Now
δα′x

0 − δα′x
1 = 1 if α′x = 0

= −1 if α′x = 1

that is,

δα′x
0 − δα′x

1 = (−1)α
′x = (−1)−α′x

and hence (7.48) becomes

a(x) = M + 1
2

∑
α

(−1)
∑

i αi (1−xi )Eα (7.49)

With regard to the contribution of Eα to a(x), we can state the following rules.
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Rule 2 The effect or interaction A
α1
1 A

α2
2 · · ·Aαn

n enters positively into the
treatment combination response a

x1
1 a

x2
2 · · · axn

n if δ (defined in rule 1) is even and
it enters negatively if δ is odd.

The reader may verify that for n = 3 this rule agrees with the expressions
given in (7.29) and that (7.49) does indeed agree with (7.30). Also, the reader will
notice that rule 2 is an exact analog to rule 1. Hence rule 2 can be reformulated
as rule 2′.

Rule 2′ If A
α1
1 A

α2
2 · · ·Aαn

n has an odd (even) number of letters, then it will
enter positively into a

x1
1 a

x2
2 · · · axn

n if both have an odd (even) number of letters
in common, and it will enter negatively into a

x1
1 a

x2
2 · · · axn

n if both have an even
(odd) number of letters in common.

This rule will become important in our discussion of systems of confounding
(see Section 8.6) and fractional replication (see Section 13.3).

7.4.3 Generalized Interactions

To conclude this section we shall introduce the concept of a generalized interac-
tion, a concept that also will take on great importance in connection with systems
of confounding and fractional replication. To motivate this concept we return
briefly to the 22 case and arrange the treatment combinations in the following
2 × 2 table:

B

b0 b1

a0 a0b0 a0b1

1 2
A

a1 a1b0 a1b1

3 4

The contrast defining main effects A, B and the interaction AB can then be
written down symbolically in terms of the cell labels 1 , . . . , 4 as

A: 3 + 4 − 1 − 2

B: 2 + 4 − 1 − 3

AB: 1 + 4 − 2 − 3

Returning to the 2n case, let X and Y denote two interactions, that is,

X = A
α1
1 A

α2
2 · · · Aαn

n
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and
Y = A

β1
1 A

β2
2 · · ·Aβn

n

which are defined by the partitions
∑

i αixi = 0, 1 and
∑

i βixi = 0, 1, respec-
tively. Now, any pair of equations∑

i

αixi = k

∑
i

βixi = �

with k, � = 0, 1 is satisfied by 2n−2 treatment combinations. Accordingly, we
can arrange the 2n treatment combinations in a 2 × 2 table as follows:∑

βixi =
0 1

0 1 2∑
αixi =

1 3 4

There are three orthogonal comparisons among the four cells, namely

X: 3 + 4 − 1 − 2

Y : 2 + 4 − 1 − 3

The remaining contrast

1 + 4 − 2 − 3 (7.50)

corresponds to that of the AB interaction in the 22 case above. We shall therefore
denote the contrast (7.50) by XY and call it the generalized interaction (GI)
of X and Y . From the table above it follows immediately that the treatment
combinations in the four cells satisfy the following equations:

1 :
∑

i

αixi = 0
∑

i

βixi = 0 hence also
∑

i

(αi + βi)xi = 0

2 :
∑

i

αixi = 0
∑

i

βixi = 1 hence also
∑

i

(αi + βi)xi = 1

3 :
∑

i

αixi = 1
∑

i

βixi = 0 hence also
∑

i

(αi + βi)xi = 1

4 :
∑

i

αixi = 1
∑

i

βixi = 1 hence also
∑

i

(αi + βi)xi = 0
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According to (7.50), the generalized interaction XY can then also be defined in
terms of the partition ∑

i

(αi + βi)xi = 0, 1 mod 2

This is the reason why we shall write the GI between X = A
α1
1 A

α2
2 · · · Aαn

n and

Y = A
β1
1 A

β2
2 · · · Aβn

n formally as

XY = A
α1+β1
1 A

α2+β2
2 · · ·Aαn+βn

n (7.51)

where the superscripts in (7.51) are reduced modulo 2, letters with superscript 0
being deleted and letters with superscript 1 being retained following previously
established rules.

7.5 INTERPRETATION OF EFFECTS AND INTERACTIONS

The main effects and interactions are the building blocks of the theory of facto-
rial experiments, a fact that will become more and more obvious in subsequent
chapters. We have introduced the notion of main effects and interactions in such a
way that they can be readily interpreted (see Sections 7.2 and 7.3). For example,
the main effect A is the effect of changing factor A from the 0 level to the 1
level, averaging over all other factors, or the interaction AB is a measure of the
extent that the simple effects of A at both levels of B, averaged over all other
factors, are different from each other.

In addition to main effects and interactions, however, there may be other
effects that are of interest to the experimenter. For example, in the presence of
interaction AB, the simple effects A(b0) and A(b1) may be of interest, or we
may ask: What is the effect of factor A when factor C is at the 0 level and we
average over the levels of factor B? Using the previously established notation,
we denote this effect by A(b, c0), and it is given by

A(b, c0) = 1
2 (a1b1c0 − a0b1c0 + a1b0c0 − a0b0c0)

= 1
2 [ab − b + a − (1)] (7.52)

Alternatively, (7.52) can be expressed as

A(b, c0) = A − AC (7.53)

which follows immediately from the definition of A and AC, namely

A = 1
4 (a − 1)(b + 1)(c + 1)

AC = 1
4 (a − 1)(b + 1)(c − 1)
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so that

A − AC = 1
4 (a − 1)(b + 1)

which is (7.52). More formally, we write (7.53) as the symbolic product

A(b, c0) = A(1 − C)

As another example we may ask: What is the interaction between factors A and
B if factor C is at the 1 level and we average over the levels of factor D? The
answer, of course, is

AB(c1, d) = 1
4 (a1b1c1d0 − a1b0c1d0 − a0b1c1d0 + a0b0c1d0)

+ a1b1c1d1 − a1b0c1d1 − a0b1c1d1 + a0b0c1d1

= 1
4 (abc − ac − bc + c + abcd − acd − bcd + cd)

= 1
4 (a − 1)(b − 1)c(d + 1)

= AB + ABC

= AB(1 + C) (7.54)

We shall refer to effects and interactions such as (7.52) and (7.54) as partial
interactions. For notational purposes in the 2n case we partition the set N =
(A1, A2, . . . , An) of n factors into four disjoint sets:

N1 = Ai1 , Ai2 , . . . , Ain1

N2 = Aj1 , Aj2, . . . , Ajn2

N3 = Ak1 , Ak2 , . . . , Akn3

N4 = A�1 , A�2, . . . , A�n4

with N1
⋃

N2
⋃

N3
⋃

N4 = N, n1 + n2 + n3 + n4 = n and N1 is always
nonempty. We then write the partial interaction of all factors in N1 with all
factors in N2 at the 0 level, all factors in N3 at the 1 level, and averaging over
both levels of all factors in N4 as

Ai1Ai2 · · · Ain1

(
aj1,0, . . . , ajn2 ,0; ak1,1, . . . , akn3 ,1; a�1, . . . , a�n4

)
(7.55)

By definition, (7.55) is given in terms of treatment combinations as

1

2n1+n4−1

∏
iεN1

(ai − 1)
∏
kεN3

ak

∏
�εN4

(a� + 1) (7.56)
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For purposes of expressing (7.55) in terms of effects and interactions, we
rewrite (7.56) as

1

2n1+n4−1

∏
iεN1

(ai − 1)
∏
jεN2

1

2
[(aj + 1) − (aj − 1)]

∏
kεN3

1

2
[(ak + 1) + (ak − 1)]

∏
�εN4

(a� + 1)

Using (7.34) this product can then be written as the symbolic product∏
iεN1

Ai

∏
jεN2

(1 − Aj )
∏
kεN3

(1 + Ak) (7.57)

In other words: After expansion (7.57) provides a representation of the partial
interaction (7.55) in terms of effects and interactions. This representation rather
than (7.56) may prove to be useful if (estimates of) effects and interactions are
available, but the individual responses are not (see also Section 13.8).

We illustrate this result by the following example.

Example 7.1 Let n = 7, that is, we have factors A1, A2, . . . , A7. Suppose
N1 = (A1, A2), N2 = (A3, A4), N3 = (A5), and N4 = (A6, A7). Then

A1A2(a30, a40, a51, a6, a7) = A1A2 − A1A2A3 − A1A2A4 + A1A2A3A4

+ A1A2A5 − A1A2A3A5 − A1A2A4A5

+ A1A2A3A4A5 �

7.6 ANALYSIS OF FACTORIAL EXPERIMENTS

So far we have considered main effects and interactions as contrasts among the
true treatment combination responses. These true responses are, of course, not
available, but rather estimates of the true responses as the treatment combinations
are used with a particular error control design. Consequently, we obtain estimates
of the true effects and interactions.

7.6.1 Linear Models

In order to obtain such estimates, we utilize the fact that under additivity the
observed yields will be given by a general linear model that characterizes the
error control design that has been used. In its most general form such a model
can be written as (using the notation of Section I.4.2)

y
.= µI + Xδδ + Xττ (7.58)
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where y is the vector of observations, δ is the vector of blocking effects, τ is the
vector of treatment combination effects (by which we mean the true treatment
combination response expressed as deviation from the true mean response), and
Xδ and Xτ are known design-model matrices. For example, for the completely
randomized design (see I.6) (7.58) is of the form

y
.= µI + Xττ (7.59)

For a randomized complete block design (see I.9) it is of the form

y
.= µI + Xββ + Xττ (7.60)

or for a Latin square design (see I.10) it is of the form

y
.= µI + Xρρ + Xγ γ + Xττ (7.61)

The effects and interactions, as defined earlier, are then expressible as linear
contrasts among the treatment combination effects, and we know that under the
GMNLM (see I.4.17) the best estimate of such a contrast is the same contrast
of the estimates of the treatment effects. For models (7.59), (7.60), and (7.61)
with the same number, r say, of replications for each treatment combination,
the best estimate of any treatment contrast is given by the same contrast of the
treatment means, that is, to obtain the estimate of the interaction A

α1
1 A

α2
2 · · · Aαn

n

we substitute for a(x) = A
x1
1 A

x2
2 · · · Axn

n its observed mean, a(x) say, into (7.34),
using rule 1 of Section 7.4.1.

7.6.2 Yates Algorithm

A convenient way of obtaining those estimates is to apply the Yates algorithm
(Yates, 1937b) which consists of adding and subtracting the treatment means in
an appropriate way through several steps. Mainly for historical reasons we shall
illustrate this algorithm for the 23 factorial. The steps are as follows:

Step 0: Write down the observed treatment means in standard order. (This is
important since otherwise the algorithm will not work.)

Step 1: Starting from the top, add adjacent pairs of treatment means and record
them in the first 4 (= 2n−1) positions; for the same pairs, subtract the
first from the second treatment mean and record those differences in
the next 4 (= 2n−1) positions.

Step 2: Repeat step 1 with the numbers recorded in step 1 (column 1).
Step 3: Repeat step 1 with the numbers obtained in step 2 (column 2); the

numbers obtained are 8M̂, 4Â, 4B̂, . . . , 4AB̂C, that is, apart from
a constant the estimates of the mean response and of effects and
interactions.
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The three steps in terms of the formal expressions of the treatment means (leaving
off the bar for convenience) are indicated below:

Step

0 1 2 3 Estimate

(1) a + 1 (a + 1)(b + 1) (a + 1)(b + 1)(c + 1) 8M̂

a b(a + 1) (a + 1)(b + 1)c (a − 1)(b + 1)(c + 1) 4Â

b ac(a + 1) (a − 1)(b + 1) (a + 1)(b − 1)(c + 1) 4B̂

ab bc(a + 1) (a − 1)(b + 1)c (a − 1)(b − 1)(c + 1) 4ÂB

c a − 1 (a + 1)(b − 1) (a + 1)(b + 1)(c − 1) 4Ĉ

ac b(a − 1) (a + 1)(b − 1)c (a − 1)(b + 1)(c − 1) 4ÂC

bc ac(a − 1) (a − 1)(b − 1) (a + 1)(b − 1)(c − 1) 4B̂C

abc bc(a − 1) (a − 1)(b − 1)c (a − 1)(b − 1)(c − 1) 4ÂBC

For the 2n factorial this algorithm requires n steps and at the last step we
obtain an estimate of 2n−1A

α1
1 A

α2
2 · · ·Aαn

n in standard order.
An inverse algorithm (Good, 1958) can be used to express the treatment com-

bination responses in terms of effects and interactions. The mean, effects, and
interactions are arranged in reverse standard order, and then we proceed exactly
as in the Yates algorithm. We shall illustrate this again for the 23 factorial:

Step

0 1 2 3

(a − 1)(b − 1)(c − 1) = 4ABC 2a(b − 1)(c − 1) 4ab(c − 1) 8abc

(a + 1)(b − 1)(c − 1) = 4BC 2a(b + 1)(c − 1) 4ab(c + 1) 8bc

(a − 1)(b + 1)(c − 1) = 4AC 2a(b − 1)(c + 1) 4b(c − 1) 8ac

(a + 1)(b + 1)(c − 1) = 4C 2a(b + 1)(c + 1) 4b(c + 1) 8c

(a − 1)(b − 1)(c + 1) = 4AB 2(b − 1)(c − 1) 4a(c − 1) 8ab

(a + 1)(b − 1)(c + 1) = 4B 2(b + 1)(c − 1) 4a(c + 1) 8b

(a − 1)(b + 1)(c + 1) = 4A 2(b − 1)(c + 1) 4(c − 1) 8a

(a + 1)(b + 1)(c + 1) = 8M 2(b + 1)(c + 1) 4(c + 1) 8(1)

This shows that if we start at step 0 with 1
2ABC, 1

2 BC, . . . , 1
2A,M we obtain

the treatment combination response averages in reverse standard order. This
method thus provides an easy way of estimating the residuals.

A modification of the Yates algorithm has been given by Riedwyl (1998) with
a view toward applications for systems of confounding (Chapters 8 and 9) and
fractional factorials (Chapter 13).
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7.6.3 Variances of Estimators

Returning now to the estimation of effects and interactions, we know that each
effect and interaction is estimated as

1

2n−1
[(sum of 2n−1 response means)

− (sum of 2n−1 response means)]

where each response mean is based on r replications. Since each observation has
variance σ 2

e and since all the observations can be treated as being uncorrelated
(see the argument in I.6.3.4), we obtain

var(Êα) = 1

r2n−2
σ 2

e (7.62)

for all Eα = A
α1
1 A

α2
2 · · · Aαn

n . Since all the effects and interactions are orthogonal
to each other, so are their estimates, and hence the variance of a partial inter-
action (see Section 7.5) consisting of a linear combination of m interactions is
m σ 2

e /r2n−2.

7.6.4 Analysis of Variance

To estimate the variance (7.62) and that of partial interactions we need to estimate
σ 2

e . This is accomplished through the ANOVA associated with the basic model
(7.58) as outlined in Chapter I.4. Such an ANOVA can, of course, be written out
explicitly for models (7.59), (7.60), and (7.61) according to the general rules for
such error control designs discussed in Chapters I.6, I.9, and I.10, respectively.
In any case, MS(Error) is an estimate of σ 2

e .
We shall comment briefly on the sum of squares due to treatments,

SS(Treatments) say, which in the present situation has t − 1 = 2n − 1 d.f. Using
the fact that effects and interactions represent 2n − 1 orthogonal comparisons
of the treatment effects, we can partition SS(Treatments) into 2n − 1 orthogonal
1-d.f. sums of squares associated with these comparisons (see Chapter I.7). We
denote the sum of squares associated with Eα = A

α1
1 A

α2
2 · · · Aαn

n by SS(Eα), and
according to the general rules (see I.7.2.3)

SS
(
Eα

) =
(
Êα

)2

var
(
Êα

)
/σ 2

e

= r2n−2
[
Êα

]2
(7.63)

using (7.62).
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Another way of writing SS(Eα), a generalization of which will be used in
later chapters, is as follows. We recall from (7.41) that

Eα = (−1)
∑

αi
(
Eα

0 − Eα
1

)
In terms of observed quantities we then write

Êα = (−1)
∑

αi
(
Êα

0 − Êα
1

)
It follows then from (7.63) that

SS
(
Eα

) = r2n−2 (
Êα

0 − Êα
1

)2
(7.64)

Using the fact that Êα
0 + Êα

1 = 0 we can rewrite (7.64) as

SS
(
Eα

) = r2n−2 [
Êα

0 − Êα
1 + Êα

0 + Êα
1

]2

= r2n
(
Êα

0

)2

or
SS

(
Eα

) = r2n−2 [
Êα

0 − Êα
1 − Êα

0 − Êα
1

]2

= r2n
(
Êα

1

)2

or
SS

(
Eα

) = 1
2r2n

[(
Êα

0

)2 + (
Êα

1

)2
]

= r2n−1
[(

Êα
0

)2 + (
Êα

1

)2
]

(7.65)

Now

E
[
Êα

]2 = var
(
Êα

) + [
E

(
Êα

)]2

= 1

r2n−2
σ 2

e + r2n−2 [
Eα

]2 (7.66)

so that, using (7.63) and (7.66),

E
[
SS

(
Eα

)] = σ 2
e + r2n−2 [

Eα
]2 (7.67)

Under the GMNLM we can then test

H0: Eα = 0

by means of the F test (as an approximation to the randomization test)

F = SS(Eα)

MS(Error)
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Table 7.1 ANOVA for 23 Factorial in RCBD

Source d.f. SS E(MS)

Blocks r − 1 8
∑

i

(yi... − y····)2

Treatments 7 r
∑
jk�

(y ·jk� − y····)2

A 1 2r[Â]2 σ 2
e + 2r[A]2

B 1 2r[B̂]2 σ 2
e + 2r[B]2

AB 1 2r[ÂB]2 σ 2
e + 2r[AB]2

C 1 2r[Ĉ]2 σ 2
e + 2r[C]2

AC 1 2r[ÂC]2 σ 2
e + 2r[AC]2

BC 1 2r[B̂C]2 σ 2
e + 2r[BC]2

ABC 1 2r[ÂBC]2 σ 2
e + 2r[ABC]2

Error 7(r − 1)
∑
ijk�

(yijk� − yi··· − y·jk� + y····)2 σ 2
e

Total 8r − 1
∑
ijk�

(yijk� − y...)
2

As an example of the present discussion we give in Table 7.1 the ANOVA of
a 23 experiment in a RCB design with r blocks, using the model equation

yijk� = µ + βi + τjk� + eijk� (7.68)

7.6.5 Numerical Examples

To illustrate some aspects of the theoretical developments in the previous sections,
we shall consider two numerical examples. The analysis will be performed by
using SAS PROC GLM and PROC MIXED (SAS Institute, 1999–2001), and we
shall provide some comments on the output.

Example 7.2 Consider a 23 factorial in an RCBD with r = 2 blocks. The
data and the analysis, using the model equation (7.68), are given in Table 7.2.

Although most of the output is self-explanatory we shall make the following
comments:

1. Estimates of the main and interaction effects can be obtained by using the
ESTIMATE option. The coefficients for the contrasts are obtained by uti-
lizing the relationship between the various parameterizations, as explained
in Section 7.2.3.

2. The estimates of the effects are, of course, obtained as linear contrasts
among the LSMEANS using the coefficients as specified in the ESTIMATE
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Table 7.2 Data and Analysis for 23 Factorial in a RCBD

options pageno=1 nodate;

data example1;

input block A B C y @@;

datalines;

1 0 0 0 13 1 1 0 0 20 1 0 1 0 14 1 1 1 0 17

1 0 0 1 21 1 1 0 1 25 1 0 1 1 19 1 1 1 1 22

2 0 0 0 24 2 1 0 0 27 2 0 1 0 28 2 1 1 0 31

2 0 0 1 35 2 1 0 1 39 2 0 1 1 34 2 1 1 1 40

;

run;

proc print data=example1;

title1 'TABLE 7.2';

title2 'DATA FOR 2**3 FACTORIAL';

title3 'IN A RCBD';

run;

proc glm data=example1;

class block A B C;

model y=block A|B|C;

lsmeans A B C A*B A*C B*C A*B*C/stderr;

contrast 'Main effect A' A -1 1;

estimate 'Main effect A' A -1 1;

contrast 'Interaction AB' A*B .5 -.5 -.5 .5;

estimate 'Interaction AB' A*B .5 -.5 -.5 .5;

contrast 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25 -.25 -.25 .25;

estimate 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25 -.25 -.25 .25;

title1 'ANALYSIS OF 2**3 FACTORIAL';

title2 'IN A RCBD';

run;

Obs block A B C y

1 1 0 0 0 13

2 1 1 0 0 20

3 1 0 1 0 14

4 1 1 1 0 17

5 1 0 0 1 21

6 1 1 0 1 25

7 1 0 1 1 19

8 1 1 1 1 22

9 2 0 0 0 24

10 2 1 0 0 27

11 2 0 1 0 28

12 2 1 1 0 31

13 2 0 0 1 35

14 2 1 0 1 39
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Table 7.2 (Continued )

15 2 0 1 1 34

16 2 1 1 1 40

ANALYSIS OF 2**3 FACTORIAL

IN A RCBD

The GLM Procedure

Class Level Information

Class Levels Values

block 2 1 2

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 16

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 8 1026.000000 128.250000 24.98 0.0002

Error 7 35.937500 5.133929

Corrected Total 15 1061.937500

R-Square Coeff Var Root MSE y Mean

0.966159 8.863833 2.265817 25.56250

Source DF Type I SS Mean Square F Value Pr > F

block 1 715.5625000 715.5625000 139.38 <.0001

A 1 68.0625000 68.0625000 13.26 0.0083

B 1 0.0625000 0.0625000 0.01 0.9152

A*B 1 0.5625000 0.5625000 0.11 0.7503

C 1 232.5625000 232.5625000 45.30 0.0003

A*C 1 0.0625000 0.0625000 0.01 0.9152

B*C 1 7.5625000 7.5625000 1.47 0.2642

A*B*C 1 1.5625000 1.5625000 0.30 0.5983
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Table 7.2 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

block 1 715.5625000 715.5625000 139.38 <.0001

A 1 68.0625000 68.0625000 13.26 0.0083

B 1 0.0625000 0.0625000 0.01 0.9152

A*B 1 0.5625000 0.5625000 0.11 0.7503

C 1 232.5625000 232.5625000 45.30 0.0003

A*C 1 0.0625000 0.0625000 0.01 0.9152

B*C 1 7.5625000 7.5625000 1.47 0.2642

A*B*C 1 1.5625000 1.5625000 0.30 0.5983

Least Squares Means

Standard

A y LSMEAN Error Pr > |t|

0 23.5000000 0.8010874 <.0001

1 27.6250000 0.8010874 <.0001

Standard

B y LSMEAN Error Pr > |t|

0 25.5000000 0.8010874 <.0001

1 25.6250000 0.8010874 <.0001

Standard

C y LSMEAN Error Pr > |t|

0 21.7500000 0.8010874 <.0001

1 29.3750000 0.8010874 <.0001

Standard

A B y LSMEAN Error Pr > |t|

0 0 23.2500000 1.1329087 <.0001

0 1 23.7500000 1.1329087 <.0001

1 0 27.7500000 1.1329087 <.0001

1 1 27.5000000 1.1329087 <.0001

Standard

A C y LSMEAN Error Pr > |t|

0 0 19.7500000 1.1329087 <.0001

0 1 27.2500000 1.1329087 <.0001

1 0 23.7500000 1.1329087 <.0001

1 1 31.5000000 1.1329087 <.0001
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Table 7.2 (Continued )

Standard

B C y LSMEAN Error Pr > |t|

0 0 21.0000000 1.1329087 <.0001

0 1 30.0000000 1.1329087 <.0001

1 0 22.5000000 1.1329087 <.0001

1 1 28.7500000 1.1329087 <.0001

Standard

A B C y LSMEAN Error Pr > |t|

0 0 0 18.5000000 1.6021749 <.0001

0 0 1 28.0000000 1.6021749 <.0001

0 1 0 21.0000000 1.6021749 <.0001

0 1 1 26.5000000 1.6021749 <.0001

1 0 0 23.5000000 1.6021749 <.0001

1 0 1 32.0000000 1.6021749 <.0001

1 1 0 24.0000000 1.6021749 <.0001

1 1 1 31.0000000 1.6021749 <.0001

Dependent Variable: y

Contrast DF Contrast SS Mean Square F Value Pr > F

Main effect A 1 68.06250000 68.06250000 13.26 0.0083

Interaction AB 1 0.56250000 0.56250000 0.11 0.7503

Interaction ABC 1 1.56250000 1.56250000 0.30 0.5983

Standard

Parameter Estimate Error t Value Pr > |t|

Main effect A 4.12500000 1.13290871 3.64 0.0083

Interaction AB -0.37500000 1.13290871 -0.33 0.7503

Interaction ABC 0.62500000 1.13290871 0.55 0.5983

statements. Recall that for an orthogonal design the least-squares means
are just the ordinary means. Thus, we have, for example,

ÂB = 1
2 [LSMEAN(a0b0) − LSMEAN(a0b1)

− LSMEAN(a1b0) + LSMEAN(a1b1)]

= 1
2 (y·00· − y · 01· − y ·10· + y·11·)

= 1
2 (23.25 − 23.75 − 27.75 + 27.5)

= −.375 (7.69)
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3. The Êα
i terms, as introduced in Section 7.4.2, can easily be obtained from

the LSMEANS. For example,

E
(110)
0 = 1

2 [LSMEAN(a0b0) + LSMEAN(a1b1)]

− overall mean

= 1
2 (y ·00· + y·11·) − y ····

= 1
2 (23.25 + 27.50) − 25.5625

= −.1875

and

E
(110)
1 = .1875

4. From the estimate in comment 2 and (7.63)we obtain

SS(AB) = 2 · 2 · (−.375)2 = .5625

The same value is, of course, obtained in the ANOVA table and through
the CONTRAST statement.

5. The standard error (SE) for the estimate of an effect is provided through the
ESTIMATE statement. It can also be obtained directly from the information
provided for the LSMEANS. For example, making use of (7.69), we obtain

v̂ar(ÂB) = 1
4 · 4 v̂ar [LSMEAN(a0b0)]

= (1.133)2 = 1.283

and hence

SE(ÂB) =
√

v̂ar(ÂB) = 1.133

The same result can be obtained by substituting in (7.62) the estimate for
σ 2

e , namely σ̂ 2
e = MS(Error) = 5.134 from the ANOVA table,

SE(ÂB) =
√

1
4 · 5.134 = 1.133 �

Example 7.3 The following is an example of combining all three elements
of an experimental design, namely error control design, treatment design, and
sampling design (see I.2.23 and I.3). More specifically, we consider a 23 factorial
in an RCBD with r ′ = 2 blocks and subsampling (n = 2). The data and the
analysis are given in Table 7.3.
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Table 7.3 Data and Analysis for 23 Factorial in a RCBD With Subsampling

options pageno=1 nodate;

data example2;

input block A B C y @@;

datalines;

1 0 0 0 13 1 0 0 0 14 1 1 0 0 20 1 1 0 0 22

1 0 1 0 14 1 0 1 0 11 1 1 1 0 17 1 1 1 0 17

1 0 0 1 21 1 0 0 1 22 1 1 0 1 25 1 1 0 1 23

1 0 1 1 19 1 0 1 1 20 1 1 1 1 22 1 1 1 1 23

2 0 0 0 24 2 0 0 0 26 2 1 0 0 27 2 1 0 0 26

2 0 1 0 28 2 0 1 0 27 2 1 1 0 31 2 1 1 0 32

2 0 0 1 35 2 0 0 1 37 2 1 0 1 39 2 1 0 1 39

2 0 1 1 34 2 0 1 1 35 2 1 1 1 40 2 1 1 1 42

;

run;

proc print data=example2;

title1 'TABLE 7.3';

title2 'DATA FOR 2**3 FACTORIAL';

title3 'IN A RCBD WITH SUBSAMPLING';

run;

proc glm data=example2;

class block A B C;

model y=block A|B|C block*A*B*C;

test H=A B C A*B A*C B*C A*B*C E=block*A*B*C;

title1 'ANALYSIS OF 2**3 FACTORIAL';

title2 'IN A RCBD WITH SUBSAMPLING';

run;

proc mixed data=example2;

class block A B C;

model y=block A|B|C;

random block*A*B*C;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B .5 -.5 -.5 .5;

estimate 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25 -.25 -.25 .25;

run;

Obs block A B C y

1 1 0 0 0 13

2 1 0 0 0 14

3 1 1 0 0 20

4 1 1 0 0 22

5 1 0 1 0 14

6 1 0 1 0 11

7 1 1 1 0 17
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Table 7.2 (Continued )

8 1 1 1 0 17

9 1 0 0 1 21

10 1 0 0 1 22

11 1 1 0 1 25

12 1 1 0 1 23

13 1 0 1 1 19

14 1 0 1 1 20

15 1 1 1 1 22

16 1 1 1 1 23

17 2 0 0 0 24

18 2 0 0 0 26

19 2 1 0 0 27

20 2 1 0 0 26

21 2 0 1 0 28

22 2 0 1 0 27

23 2 1 1 0 31

24 2 1 1 0 32

25 2 0 0 1 35

26 2 0 0 1 37

27 2 1 0 1 39

28 2 1 0 1 39

29 2 0 1 1 34

30 2 0 1 1 35

31 2 1 1 1 40

32 2 1 1 1 42

ANALYSIS OF 2**3 FACTORIAL

IN A RCBD WITH SUBSAMPLING

The GLM Procedure

Class Level Information

Class Levels Values

block 2 1 2

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 32

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 15 2244.968750 149.664583 129.44 <.0001
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Table 7.3 (Continued )

Error 16 18.500000 1.156250

Corrected Total 31 2263.468750

R-Square Coeff Var Root MSE y Mean

0.991827 4.170824 1.075291 25.78125

Source DF Type I SS Mean Square F Value Pr > F

block 1 1498.781250 1498.781250 1296.24 <.0001

A 1 132.031250 132.031250 114.19 <.0001

B 1 0.031250 0.031250 0.03 0.8715

A*B 1 1.531250 1.531250 1.32 0.2667

C 1 504.031250 504.031250 435.92 <.0001

A*C 1 0.781250 0.781250 0.68 0.4232

B*C 1 3.781250 3.781250 3.27 0.0894

A*B*C 1 2.531250 2.531250 2.19 0.1584

block*A*B*C 7 101.468750 14.495536 12.54 <.0001

Source DF Type III SS Mean Square F Value Pr > F

block 1 1498.781250 1498.781250 1296.24 <.0001

A 1 132.031250 132.031250 114.19 <.0001

B 1 0.031250 0.031250 0.03 0.8715

A*B 1 1.531250 1.531250 1.32 0.2667

C 1 504.031250 504.031250 435.92 <.0001

A*C 1 0.781250 0.781250 0.68 0.4232

B*C 1 3.781250 3.781250 3.27 0.0894

A*B*C 1 2.531250 2.531250 2.19 0.1584

block*A*B*C 7 101.468750 14.495536 12.54 <.0001

Tests of Hypotheses Using the Type III MS for block*A*B*C as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

A 1 132.0312500 132.0312500 9.11 0.0194

B 1 0.0312500 0.0312500 0.00 0.9643

C 1 504.0312500 504.0312500 34.77 0.0006

A*B 1 1.5312500 1.5312500 0.11 0.7547

A*C 1 0.7812500 0.7812500 0.05 0.8231

B*C 1 3.7812500 3.7812500 0.26 0.6252

A*B*C 1 2.5312500 2.5312500 0.17 0.6886
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Table 7.3 (Continued )

The Mixed Procedure

Model Information

Data Set WORK.EXAMPLE2

Dependent Variable y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

block 2 1 2

A 2 0 1

B 2 0 1

C 2 0 1

Dimensions

Covariance Parameters 2

Columns in X 29

Columns in Z 16

Subjects 1

Max Obs Per Subject 32

Observations Used 32

Observations Not Used 0

Total Observations 32

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 116.43092171

1 1 99.48076616 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

block*A*B*C 6.6696

Residual 1.1563
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Table 7.3 (Continued )

Fit Statistics

-2 Res Log Likelihood 99.5

AIC (smaller is better) 103.5

AICC (smaller is better) 104.1

BIC (smaller is better) 105.0

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

block 1 7 103.40 <.0001

A 1 7 9.11 0.0194

B 1 7 0.00 0.9643

A*B 1 7 0.11 0.7547

C 1 7 34.77 0.0006

A*C 1 7 0.05 0.8231

B*C 1 7 0.26 0.6252

A*B*C 1 7 0.17 0.6886

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

Main effect A 4.0625 1.3461 7 3.02 0.0194

Interaction AB 0.4375 1.3461 7 0.33 0.7547

Interaction ABC 0.5625 1.3461 7 0.42 0.6886

The analysis is based on the model

yijk�m = µ + βi + τjk� + εijk� + ηijk�m

(see I.6.9.1).
The following comments are intended to relate the output to the theoretical

developments:

1. SAS PROC GLM is being used only to obtain an ANOVA table. Because
of subsampling it is necessary to explicitly define the experimental error
as block ∗ A ∗ B ∗ C in order to perform the correct tests about all effects,
using MS(X)/MS(block ∗ A ∗ B ∗ C), where X represents any of the seven
effects and MS(Experimental error) = MS(block ∗ A ∗ B ∗ C) represents
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technically speaking, the 7 d.f. associated with the seven 1-d.f. interactions
block ∗ X.

2. Specifying the correct error term is not necessary when using SAS PROC
MIXED because the random term block ∗ A ∗ B ∗ C automatically assumes
that role. This can be verified by comparing the tests performed by PROC
GLM and PROC MIXED (note, however, that the test about block effects
should be ignored; see I.9.2.6).

3. PROC MIXED provides REML estimates of σ 2
ε and σ 2

η (PROC GLM
provides an estimate of σ 2

η only). We obtain

σ̂ 2
ε = 6.6696 σ̂ 2

η = 1.1563

4. In estimating the various effects, and their standard errors as illustrated
here for A, AB, and ABC, by means of the ESTIMATE statement, PROC
MIXED uses the correct error term, namely MS(Experimental error).

5. The above statement is true also for the LSMEANS, and their standard
error. �

7.6.6 Use of Only One Replicate

In the previous section we have assumed that each treatment combination is repli-
cated r times in a certain error control design such as a CRD or a RCBD. In any
case we usually have r > 1, according to the general principles of experimental
design. One can visualize, however, that in a 2n factorial experiment (particularly
an exploratory-type experiment) the number of treatment combinations can be
rather large, in fact so large that the experimenter cannot afford to replicate the
treatments. How should we deal with such a situation?

Even with only one replicate, that is, r = 1, we can, of course, estimate all
effects and interactions in the usual way. We cannot, however, estimate their
variances as there are no d.f. left for error in the ANOVA. We then recall (see
Chapter I.11) that many-factor, that is, higher order, interactions are often negli-
gible. Assuming that they are actually zero, it follows then from (7.67) that the
expected value of their sums of squares is σ 2

e . The idea then is to pool all sums
of squares associated with interactions assumed (a priori) to be negligible and
treat the resulting sum of squares as SS(Error) for analysis purposes. Even if the
interactions are not zero (and they seldom are), this procedure will result in a
conservative F test for the remaining effects and interactions.
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Confounding in 2n Factorial Designs

8.1 INTRODUCTION

It is well known that the experimental error variance is related to the size of the
block, increasing to a greater or lesser degree as the block size increases. If we
were testing 5 factors each at 2 levels, we would have 32 treatment combinations
and hence, if we were to use a randomized complete block design, we would
require blocks of size 32 in order to compare them. In field experiments it is
generally acknowledged that, if at all possible, the size of the block should
not be greater than 16 and if possible 8, though, of course, there are no hard
and fast rules, and one experiment with blocks of 16 EUs may well give a
lower experimental error than another on similar material with blocks of 8 EUs.
In other situations, as, for example, in industrial experimentation, it may be
impossible to have blocks as large as this without randomizing over factors that
contribute considerable variation, thereby causing large experimental error. Or in
experiments with animals (e.g. mice), the litter size determines and hence limits
the block size. It is desirable, therefore, to have some means of reducing the block
size or of making use of blocks of smaller size (i.e., incomplete blocks), and for
this purpose the device of confounding has been introduced. It is a fundamental
concept in the theory and application of factorial experiments.

8.1.1 A Simple Example

We have introduced the concept of confounding certain interactions (or effects,
in general) with block effects in Section I.11.5. The basic idea is that information
about unimportant, that is, usually negligible interactions is sacrificed in the sense
that only biased estimates of the confounded interactions are available, and the
bias is a linear function (contrast) of block effects. For example, for the 23

factorial (with factors A, B, C) with blocks of size 4, we might confound the

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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3-factor interaction, ABC, with blocks that lead to the arrangement

Block 1 (1), ab, ac, bc

Block 2 a, b, c, abc
(8.1)

Since for each observation we have derived a linear model of the form

Observation = mean + block effect + treatment effect + error (8.2)

(see Sections I.9.2 and 1.3) and since block 1 contains all the treatment combi-
nations that enter negatively into ABC (see Section 7.3) and block 2 contains
those entering positively, we have

E(ÂBC) = ABC + (β2 − β1) (8.3)

where β1, β2 are the block effects, in other words, the interaction ABC and the
difference of block effects, β2 − β1, cannot be separated. We say, for short, that
ABC is confounded with blocks.

8.1.2 Comparison of Information

As we have mentioned earlier (see Section I.11.2) the main value of the facto-
rial structure lies in the fact that in many situations the high-order interactions
are of inappreciable magnitude. If in the situation described above the 3-factor
interaction can be assumed to be negligible, then the basic arrangement (8.1) is
quite satisfactory since it allows the unbiased estimation of all main effects and
2-factor interactions. For practical purposes, however, one would have to repeat
the basic arrangement (8.1), say r times (using, of course, a different randomiza-
tion every time). Thus, with r replications for each treatment combination, we
can compare the information on each effect and interaction obtained from the
present design with that obtained from a design without confounding, that is, the
RCBD. Using the reciprocal of the true variance of each estimator as a measure
of the information on each effect and interaction, and denoting by σ 2

k the true
error variance [of the error in model (8.2)] with blocks of size k, we have the
results of Table 8.1. Since generally σ 2

4 < σ 2
8 , we have increased the information

on main effects and 2-factor interactions in the ratio σ 2
8 /σ 2

4 by using blocks of
size 4 at the expense of obtaining zero information on the 3-factor interaction
instead of 2r/σ 2

8 units.

8.1.3 Basic Analysis

Before discussing the problem of confounding and appropriate systems of con-
founding more generally and more formally, we shall conclude this introductory
section by outlining briefly the analysis of the experiment discussed above. As
indicated earlier, all main effects and 2-factor interactions are estimated in the
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Table 8.1 Comparison of Information

Effect or Information with Blocks of
Interaction 8 Units 4 Units

A


2r

σ 2
8


2r

σ 2
4

B
AB
C
AC
BC
ABC Zero

usual way based upon the average responses from the r replicates. We can, for
example, use the Yates algorithm and obtain the estimates Â, B̂, ÂB, Ĉ, ÂC, B̂C.
We also obtain ÂBC, but we know already that it is an estimate of ABC plus
a function of block effect differences. In order to distinguish it from unbiased
estimates we shall denote it by ÃBC rather than ÂBC.

For purposes of writing out the analysis of variance we rewrite model (8.2)
more explicitly as

yijk�m = µ + βij + τk�m + eijk�m (8.4)

where βij is the effect of the j th block in the ith replicate (i = 1, 2, . . . , r; j =
1, 2), τk�m is the effect of the treatment combination akb�cm(k, �, m = 0, 1), and
eijk�m is the usual error, that is, experimental and observational error.

We then have the usual breakdown of the total sum of squares into the block
sum of squares, the treatment sum of squares, and the error sum of squares as
exhibited in Table 8.2. The treatment sum of squares is partitioned in the usual
way (as explained in Chapter 7), except that there is no SSABC .

We close this section with a few remarks about some of the features of
Table 8.2:

1. Due to the confounding of ABC we have only 6 d.f. for treatments, which
means that this incomplete block design is a disconnected design (see
Section 1.5). It is, of course, disconnected by choice.

2. The sums of squares for estimable (and unconfounded) main effects and
interactions are obtained as if an RCBD had been used, that is, by linear
combinations of treatment means. This is contrary to what would have
happened had we assigned the treatment combinations in other ways to
existing incomplete block designs, for example, BIB or PBIB designs. In
that case the method described in Section 1.3 would have to be used, that
is, treatment means would have to be replaced by least-squares means.

3. The statement above implies that the estimable effects are orthogonal to
block effects; that is, we have, for example, that SS(A|Blocks) = SS(A).
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Table 8.2 Analysis of Variance Table for 23 Factorial in Blocks of Size 4

Source Sum Expected
of Variation d.f. of Squares Mean Squares

Blocks 2r − 1
1

4

∑
ij

y2
ij ··· − y2·····

8r

Replicates r − 1
1

8

∑
i

y2
i···· − y2·····

8r

ABC 1 2r[ÃBC]2

Remainder r − 1 Difference

Treatments 6
A 1 2r[Â]2 σ 2

e + 2r[A]2

B 1 2r[B̂]2 σ 2
e + 2r[B]2

AB 1 2r[ÂB]2 σ 2
e + 2r[AB]2

C 1 2r[Ĉ]2 σ 2
e + 2r[C]2

AC 1 2r[ÂC]2 σ 2
e + 2r[AC]2

BC 1 2r[B̂C]2 σ 2
e + 2r[BC]2

Error 6(r − 1) Difference σ 2
e

Total 8r − 1
∑

ijk�m

y2
ijk�m − y2·····

8r

4. Although it is not important at this point but will become important later
(see Section 8.7), SS(Blocks) can be partitioned in various ways. Recall
that we have r replicates, each consisting of two blocks. We therefore have

SS(Blocks) = SS(Replicates) + SS(Blocks/Replicates)

with r − 1 and r d.f., respectively. Now, the makeup of the two blocks
in each replicate is the same, that is, one block contains the treatment
combinations (1), ab, ac, bc and the other block contains a, b, c, abc.
Apart from block effects, the comparison between the two blocks is an
“estimate” of the (confounded) interaction ABC. Hence we can write

SS(Blocks/Replicates) = SS(ABC) + SS(Remainder)

where SS(ABC) is obtained in the usual way (see remark 2 above).
5. Although we indicate that SS(Error) and SS(Remainder) can be obtained

by subtraction, there is also a direct way of computing them. Each main
effect and 2-factor interaction can be estimated (unbiasedly) from the r

replicates and comparisons among the r estimates of a particular effect
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provide a measure of the interaction between replicates and the effect.
These interactions are, at least for our current discussion, assumed to be
negligible. Hence, these comparisons “belong to error” (see I.4.17.1) and
the corresponding sums of squares, for example, SS(A × reps), are part of
SS(Error). Each such “interaction” sum of squares has r − 1 d.f. Since we
have six unconfounded effects we have six such sums of squares and hence
6(r − 1) d.f. for SS(Error). The same comment applies to SS(Remainder),
which, technically speaking, is equal to SS(ABC × reps). For a more pre-
cise discussion see Section 8.5.3.

8.2 SYSTEMS OF CONFOUNDING

In this section we present a formal method of constructing systems of con-
founding when the block sizes are equal to a power of 2. Such systems will be
obtained by considering different partitions of the factor space as represented by
corresponding systems of equations.

8.2.1 Blocks of Size 2n−1

The general feature of the example discussed in the previous section is that the
block size is 1

2 the number of treatment combinations. As a consequence two
blocks are necessary to accommodate all possible treatment combinations, and
hence not all treatment contrasts are estimable. Through proper arrangement of
the treatment combinations in the blocks, it can be achieved that the nonestimable
contrast (i.e., the lost degree of freedom) is of minor or no importance.

For the 2n factorial with blocks of size k = 2n−1 this means that we can
confound any interaction A

α1
1 A

α2
2 · · · Aαn

n with blocks, and the basic arrangement
is obtained by assigning the set of treatment combinations satisfying

α1x1 + α2x2 + · · · + αnxn = 0 mod 2

to one block and the set satisfying

α1x1 + α2x2 + · · · + αnxn = 1 mod 2

to the other block. Typically, one would choose the interaction with all αi =
1(i = 1, 2, . . . , n), that is, the highest-order interaction.

8.2.2 Blocks of Size 2n−2

In many practical situations blocks of size 2n−1 may still be too large or may
not be available. From a factorial point of view the next smaller block size is
then k = 2n−2. In this case four blocks are needed for the 2n treatment combi-
nations. It is obvious then that the 3 d.f. due to block comparisons are “lost”
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as far as treatment comparisons are concerned. With a proper allocation of the
treatment combinations to the blocks this means that three interactions will not
be estimable, that is, will have to be confounded with blocks. To obtain an appro-
priate arrangement, we assume first that the interaction Eα = A

α1
1 A

α2
2 · · · Aαn

n is
negligible, that is, can be confounded with blocks. Based on the equations

α1x1 + α2x2 + · · · + αnxn = 0 mod 2 (8.5)

α1x1 + α2x2 + · · · + αnxn = 1 mod 2 (8.6)

we divide the 2n treatment combinations into two sets of 2n−1 treatment combi-
nations each. We now assume further that the interaction Eβ = A

β1
1 A

β2
2 · · · Aβn

n

is also negligible. We can then subdivide the set of treatment combinations into
two sets of 2n−1 based on the equations

β1x1 + β2x2 + · · · + βnxn = 0 mod 2 (8.7)

β1x1 + β2x2 + · · · + βnxn = 1 mod 2 (8.8)

Because of orthogonality, we know that among the 2n−1 treatment combinations
that satisfy (8.5), exactly 2n−2 satisfy also (8.7) and the remaining 2n−2 satisfy
(8.8). The same statement can be made for the treatment combinations satisfying
(8.6). This then gives us a method of dividing the treatment combinations into 4
sets of 2n−2 treatment combinations, which are then assigned to the four blocks,
that is, we consider

Block 1:
∑

i

αixi = 0

∑
i

βixi = 0

Block 2:
∑

i

αixi = 0

∑
i

βixi = 1

Block 3:
∑

i

αixi = 1

∑
i

βixi = 0

Block 4:
∑

i

αixi = 1

∑
i

βixi = 1
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where all equations are reduced modulo 2 as usual. In terms of block comparisons
Eα and Eβ are defined (apart from a constant) as follows:

Block
1 2 3 4

A
α1
1 A

α2
2 · · · A

αn
n + + − −

A
β1
1 A

β2
2 · · · A

βn
n + − + −

The third orthogonal comparison is

Block
1 2 3 4

A
α1+β1
1 A

α2+β2
2 · · · A

αn+βn
n + − − +

which we recognize immediately as the GI of Eα and Eβ satisfying the equations∑
i

(αi + βi)xi = 0

and ∑
i

(αi + βi)xi = 1

The block contrasts given above also indicate at the same time with which
linear function of block effects each of the three interactions is confounded.

The main result of this discussion, however, is that if two interactions Eα

and Eβ are each confounded with blocks then also their GI Eα+β is confounded
with blocks. This imposes a certain restriction on the choice of the design, that
is, the allocation of the treatment combinations to the blocks. It may very well
be the case that, although Eα and Eβ are negligible, Eα+β is not; in fact it may
be a main effect or a low-order interaction. Hence care has to be exercised in
choosing Eα and Eβ .

8.2.3 General Case

The problem described above becomes even more acute if we have to resort
to still smaller block sizes. Suppose then that we have available blocks of size
k = 2p(p < n) that require 2n−p blocks for the basic arrangement and hence the
confounding of 2n−p − 1 interactions with blocks. To find a suitable system of
confounding, we choose n − p interactions Eαs represented by the n-tuples

α′
s = (αs1, αs2, . . . , αsn) (8.9)

with s = 1, 2, . . . , n − p, such that no α′
s can be obtained as a linear combina-

tion of the remaining n-tuples. We refer to this set of interactions as independent



286 CONFOUNDING IN 2n FACTORIAL DESIGNS

interactions . Each set of equations associated with these n − p interactions,
namely

α11x1 + α12x2 + · · · + α1nxn = δ1

α21x1 + α22x2 + · · · + α2nxn = δ2

... (8.10)

αn−p,1x1 + αn−p,2x2 + · · · + αn−p,nxn = δn−p

for a fixed right-hand side with δs = 0, 1(s = 1, 2, . . . , n − p) is satisfied by
2p treatment combinations (x1, x2, . . . , xn). Since each δs can take on two dif-
ferent values, there are altogether 2n−p equations of the form (8.10) (with the
α′

s, s = 1, 2, . . . , n − p, remaining constant, of course). Any treatment combi-
nation satisfying one set of equations cannot satisfy another set. Hence the
2n−p sets of 2p treatment combinations comprise together all 2n treatment com-
binations and, moreover, each set makes up the treatment combinations for
one block.

Because of the nature of the equations (8.10), the interactions Eαs are obvi-
ously confounded with blocks. We have shown earlier that if two interactions
are confounded with blocks then so is their GI. Similarly if three interactions,
Eα1, Eα2, Eα3 say, are confounded with blocks, then any treatment combination
(x1, x2, . . . , xn) that satisfies the equations∑

i

α1ixi = δ1

∑
i

α2ixi = δ2

∑
i

α3ixi = δ3

also satisfies the equations

∑
i

(α1i + α2i )xi = δ1 + δ2

∑
i

(α1i + α3i )xi = δ1 + δ3

∑
i

(α2i + α3i )xi = δ2 + δ3

∑
i

(α1i + α2i + α3i )xi = δ1 + δ2 + δ3
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which define the GIs Eα1+α2 , Eα1+α3, Eα2+α3 , and Eα1+α2+α3 , respectively,
which are then also confounded with blocks. By induction it is then easy to
see that if n − p interactions are confounded with blocks so are their(

n − p

2

)
+

(
n − p

3

)
+ · · · +

(
n − p

n − p

)

= 2n−p −
(

n − 1

1

)
−

(
n − p

0

)
= 2n−p − (n − p) − 1 (8.11)

GIs. It follows then from (8.11) that altogether 2n−p − 1 interactions (including
the set of n − p independent ones) are confounded with blocks, which is equal
to the number of linearly independent comparisons among the 2n−p blocks.

This result emphasizes the important role played by the original set of n − p

independent interactions. They must be chosen so that their GIs do not result in
main effects and/or low-order interactions that are possibly nonnegligible.

We shall illustrate this procedure with the following example.

Example 8.1 Suppose we have six factors A, B,C,D, E,F and we consider
blocks of size 8, that is, we have n = 6, 26 = 64 treatment combinations, 2p =
8, n − p = 3, 2n−p = 8. A possible set of three independent interactions is

ABCD, CDE,BDF

Their GIs are

(ABCD)(CDE) = ABC2D2E = ABE

(ABCD)(BDF) = AB2CD2F = ACF

(CDE)(BDF) = BCD2EF = BCEF

(ABCD)(CDE) = AB2C2D3EF = ADEF

Hence the seven interactions ABCD, CDE,BDF,ABE,ACF, BCEF , and
ADEF will be confounded with blocks. �

We give in Table 8.3 typical examples of systems of confounding for up to 8
factors. Only those systems are given that result in a block size of 16 or less. The
allocation of letters to the factors is a matter for the experimenter, and the type
exemplified by ABC∗, ABD∗, CD for 4 factors in blocks of 4 experimental units
includes 5 additional systems, namely, AB∗, ACD∗, BCD; AC∗, ABD∗, BCD;
AD∗, ABC∗, BCD; BC∗, ABD∗, ACD; BD∗, ABC∗, ACD. If the experi-
menter wishes to use this type of confounding, he should decide which of the six
2-factor interactions is least important and choose the system involving that one.
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Table 8.3 Types of Confounding for 2n Factorial Systems in Blocks of Size k

n k Confounded Effectsa

2 2 Any one effect or interaction

3 4 Any one effect or interaction
2 AB∗, AC∗, BC

A∗, BC∗, ABC

4 8 Any one effect or interaction
4 A∗, BCD∗, ABCD

AB∗, CD∗, ABCD

AB∗, ACD∗, BCD

2 A∗, B∗, AB, C∗, AC,BC, ABC

A∗, BC∗, ABC, BD∗, ABD, CD,ACD

AB∗, AC∗, BC, AD∗, BD,CD, ABCD

5 16 Any one effect or interaction
8 A∗, BCDE∗, ABCDE

AB∗, CDE∗, ABCDE

ABC∗, CDE∗, ABDE

4 A∗, B∗, AB, CDE∗, ACDE,BCDE,ABCDE

A∗, BC∗, ABC, DE∗, ADE,BCDE,ABCDE

A∗, BC∗, ABC, CDE∗, ACDE,BDE,ABDE

AB∗, AC∗, BC, DE∗, ABDE,ACDE,BCDE

AB∗, CD∗, ABCD, BDE∗, ADE,BCE,ACE

2 AB∗, AC∗, AD∗, AE∗, and all GIs
A∗, BC∗, AD∗, BE∗, and all GIs

6 16 ABCD∗, CDEF ∗, ABEF

8 ACE∗, BDE∗, ABCD, BCF ∗, ABEF,CDEF,ADF

4 AB∗, CD∗, ABCD, EF ∗, ABEF,CDEF,ABCDEF

ACE∗, BCE∗, ADE,BDE∗, ACF, BCF, ADF,BDF

2 AB∗, AC∗, AD∗, AE∗, AF ∗, and all GIs
[not particularly useful except with partial
confounding (see Chapter 9)]
A∗, BC∗, BD∗, BE∗, BF ∗, BG∗, and all GIs

7 16 ACEG∗, BDE∗, ABCDG, BCF ∗, ABEFG,CDEF,ADFG

8 ABC∗, ADE∗, BCDE,BDF ∗, ACDF, ABEF,CEF,ABCDEFG∗
DEFG,BCFG, AFG,ACEG, BEG,CDG, ABDG

4 AB∗, AC∗, AD∗, AE∗, AF ∗, AG∗, and all GIs
[again not particularly useful]
A∗, BC∗, BD∗, BE∗, BF ∗, BG∗, and all GIs

8 16 As for 7 factors in blocks of 8
ABC∗, ADE∗, AFG∗, BDG∗, CH ∗, and all their GIs;
CH is the only 2-factor interaction confounded.

aEffects with an asterisk (*) are the independent effects of (8.10).
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In general one would like to avoid confounding of main effects and 2-factor
interactions. There is a remarkable theorem obtained by Fisher (1942) that this
is possible only if the number of units in a block is larger than the number of
factors. We shall return to this theorem in Section 11.7.

8.3 COMPOSITION OF BLOCKS FOR A PARTICULAR SYSTEM
OF CONFOUNDING

Once it has been decided which effects and interactions are to be confounded
with blocks, that is, once the set of independent interactions has been chosen, the
composition of the individual blocks is (apart from randomization) completely
determined. In fact, varying the right-hand side of the system of equations (8.10)
in all possible ways yields the sets of treatment combinations that are to be
allocated to the various blocks. We shall now describe a more systematic way of
determining these sets.

8.3.1 Intrablock Subgroup

We consider the general case of a 2n factorial in blocks of size 2p. Suppose we
confound the interactions Eαs (s = 1, 2, . . . , n − p) with αs defined in (8.9). Out
of the 2n−p possible sets of equations (8.10) we then consider the set

α11x1 + α12x2 + · · · + α1nxn = 0
α21x1 + α22x2 + · · · + α2nxn = 0

...

αn−p,1x1 + αn−p,2x2 + · · · + αn−p,nxn = 0

(8.12)

As pointed out earlier, Eqs. (8.12) are satisfied by 2p treatment combinations
x′

j = (xj1, xj2, . . . , xjn)(j = 1, 2, . . . , 2p). We shall now exhibit the structure
of this set, which will prove to be useful for the construction of all blocks.

We note that (i) the treatment combination φ′ = (0, 0, . . . , 0), often referred
to as the control, satisfies (8.12); and (ii) if two treatment combinations, xk and
x� say, satisfy (8.12), then the treatment combination

x′
k + x′

� = (xk1 + x�1, xk2 + x�2, . . . , xkn + x�n) (8.13)

also satisfies (8.12), where each component in (8.13) is reduced mod 2. Hence, if
we define “addition” of treatment combinations by (8.13), then the 2p treatment
combinations satisfying (8.12) form an Abelian group with respect to this addition
operation and with φ′ as the zero element. More precisely, it forms a subgroup
of the group of all 2n treatment combinations. In the context of systems of
confounding this subgroup is referred to as the intrablock subgroup (IBSG).
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In terms of the reduced representation of treatment combinations, that is, (1),
a, b, ab, c, . . ., the operation for this subgroup is the ordinary algebraic multipli-
cation with the square of any letter replaced by unity. The symbol (1) acts as the
unity element of the group.

If we examine Eq. (8.12), we see immediately that associated with the nonzero
αsi for each s = 1, 2, . . . , n − p there can be only an even number of xi(i =
1, 2, . . . , n) equal to unity. This implies that each treatment combination in the
IBSG has an even number of letters in common with each confounded interaction.
Because of the group property of the IBSG, one only needs to find, in addition
to the control, p “independent” treatment combinations that satisfy (8.12). The
remaining ones are then determined automatically.

We shall illustrate this procedure by continuing Example 8.1.

Example 8.1 (Continued) Equations (8.12) are of the form

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0

x2 + x4 +x6 = 0 .

The following treatment combinations satisfy these equations; that is, consti-
tute the IBSG:

1. (0, 0, 0, 0, 0, 0)

2. (1, 1, 1, 1, 0, 0)

3. (1, 0, 1, 0, 1, 0)

4. (0, 1, 0, 1, 1, 0) (by adding 2 and 3)
5. (1, 0, 0, 1, 1, 1)

6. (0, 1, 1, 0, 1, 1) (by adding 2 and 5)
7. (0, 0, 1, 1, 0, 1) (by adding 3 and 5)
8. (1, 1, 0, 0, 0, 1) (by adding 4 and 5)

In terms of the reduced representation these treatment combinations are (1),
abcd, ace, bde(= abcd × ace), adef , bcef (= abcd × adef ), cdf (= ace ×
adef ), abf (= bde × adef ).

8.3.2 Remaining Blocks

So far we have described the composition of one block. Rather than change the
right-hand side of (8.10) and solve the resulting equations to obtain the remaining
2n−p − 1 blocks, we make use of the IBSG and construct the blocks in the
following way. Suppose the treatment combinations in the IBSG are denoted by

x′
j = (xj1, xj2, . . . , xjn) (j = 1, 2, . . . , 2p)
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and suppose further that y′ = (y1, y2, . . . , yn) is a treatment combination not in
the IBSG. Then the treatment combinations

{x′
j + y′; j = 1, 2, . . . , 2p} (8.14)

form a new set of 2p treatment combinations. Obviously, these treatment combi-
nations satisfy some set of equations (8.10) with (δ1, δ2, . . . , δn) �= (0, 0, . . . , 0)

and hence are different from the treatment combinations in the IBSG. Thus these
treatment combinations form another block.

This process is now repeated, replacing y ′ in (8.14) by a treatment combination
z′, where z′ is neither in the IBSG nor in a previously constructed set (block).
This gives an easy and systematic way of constructing all blocks. We illustrate
this again with a continuation of Example 8.1.

Example 8.1 (Continued) Let block 1 be the IBSG. The first treatment com-
bination of each subsequent block takes the role of y′ in (8.14). The eight blocks
then are given in Table 8.4.

In terms of the reduced representation for a treatment combination the method
just described means that the treatment combinations in any one block may be
obtained from those in the IBSG by multiplying the symbols of the treatment
combinations in the IBSG by the symbol of a treatment combination not contained
in any previous block, replacing the square of any letter by unity.

Also, as a consequence of the procedure, we have that when an effect or
interaction is confounded with blocks, all treatment combinations in a block
have either an even number of letters in common with the effect or interaction
or an odd number. No two treatment combinations in the same block can have
an odd number of letters and the other an even number of letters in common with
any effect or interaction that is confounded. This serves as a convenient check.

8.4 DETECTING A SYSTEM OF CONFOUNDING

Occasionally we may be confronted with the problem of analyzing an experiment
that we have not designed. It may then be necessary to discover the system of
confounding on which the plan for the experiment is based. This can be done by
reversing the procedure outlined in the previous section.

To illustrate, consider the plan given for Example 8.1. Take the IBSG, that is,
the block containing the control. We then know that each treatment combination in
that block must have an even number of letters in common with each confounded
interaction. Inspection shows that no 2-factor interaction meets that requirement;
hence no 2-factor interaction can be confounded with blocks. Next going through
the 3-factor interactions in a systematic fashion one finds that ABE and ACF meet
the requirement. Hence they and their GI, BCEF, are confounded with blocks.
Finally, BDF is found to be confounded with blocks, and so then are all GIs of
BDF with the previously identified interactions. Thus the system of confounding
has been determined completely.
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Table 8.4 Basic Plan for 26 Factorial in Blocks of Size 8

Block 1 Block 2 Block 3

(0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0)

(1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 0, 0) (1, 0, 1, 1, 0, 0)

(1, 0, 1, 0, 1, 0) (0, 0, 1, 0, 1, 0) (1, 1, 1, 0, 1, 0)

(0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1) (1, 1, 0, 1, 1, 1)

(0, 1, 1, 0, 1, 1) (1, 1, 1, 0, 1, 1) (0, 0, 1, 0, 1, 1)

(0, 0, 1, 1, 0, 1) (1, 0, 1, 1, 0, 1) (0, 1, 1, 1, 0, 1)

(1, 1, 0, 0, 0, 1) (0, 1, 0, 0, 0, 1) (1, 0, 0, 0, 0,1)

Block 4 Block 5 Block 6

(0, 0, 1, 0, 0, 0) (0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 1, 0)

(1, 1, 0, 1, 0, 0) (1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 1, 0)

(1, 0, 0, 0, 1, 0) (1, 0, 1, 1, 1, 0) (1, 0, 1, 0, 0, 0)

(0, 1, 1, 1, 1, 0) (0, 1, 0, 0, 1, 0) (0, 1, 0, 1, 0, 0)

(1, 0, 1, 1, 1, 1) (1, 0, 0, 0, 1, 1) (1, 0, 0, 1, 0, 1)

(0, 1, 0, 0, 1, 1) (0, 1, 1, 1, 1, 1) (0, 1, 1, 0, 0, 1)

(0, 0, 0, 1, 0, 1) (0, 0, 1, 0, 0, 1) (0, 0, 1, 1, 1, 1)

(1, 1, 1, 0, 0, 1) (1, 1, 0, 1, 0, 1) (1, 1, 0, 0, 1, 1)

Block 7 Block 8

(0, 0, 0, 0, 0, 1) (1, 1, 1, 1, 1, 1)

(1, 1, 1, 1, 0, 1) (0, 0, 0, 0, 1, 1)

(1, 0, 1, 0, 1, 1) (0, 1, 0, 1, 0, 1)

(0, 1, 0, 1, 1, 1) (1, 0, 1, 0, 0, 1)

(1, 0, 0, 1, 1, 0) (0, 1, 1, 0, 0, 0)

(0, 1, 1, 0, 1, 0) (1, 0, 0, 1, 0, 0)

(0, 0, 1, 1, 0, 0) (1, 1, 0, 0, 1, 0)

(1, 1, 0, 0, 0, 0) (0, 0, 1, 1, 1, 0)

This then exemplifies the general procedure that should be used in a case like
this: Start with main effects, then 2-factor interactions, and so forth and find
n − p independent interactions that satisfy the even-or-odd-number-of-letters-in-
common requirement for a given block. This presupposes, however, that a proper
system of confounding has been used except that one does not know which. If
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one is not sure, one should check other blocks to see whether they too conform
to the even-or-odd-numbers-of-letters-in-common requirement.

8.5 USING SAS FOR CONSTRUCTING SYSTEMS
OF CONFOUNDING

In this section we shall illustrate briefly how the SAS procedure PROC FACTEX
can be used to generate systems of confounding.

Example 8.2 In Table 8.5 we present the SAS input and output for the 23

factorial in blocks of size 4, assuming that the 3-factor interaction is negligible.
The keys to generating the system are (1) specification of the block size and
(2) specification of the effects to be estimated, in this example A, B, C, AB,
AC, BC. The “Block Pseudo-factor Confounding Rules” give then the effect(s)
confounded with blocks, in this example ABC. �

Example 8.3 This example is to illustrate how, in the 23 factorial with blocks
of size 4, any effect can be confounded with blocks. For example, we may know
already something about the A effect from a previous experiment, but we are
mainly interested in the other main effects and all interactions. Table 8.6 gives
such a plan. �

Example 8.4 Consider the 24 factorial in blocks of size 4. It is intended to
estimate all the main effects and as many 2-factor interactions as possible, and
then as many 3-factor interactions as possible. From Table 8.3 we see that design
3 for n = 4, k = 4 seems an appropriate choice, since it sacrifices information
on one 2-factor interaction, AB, and two 3-factor interactions, ACD and BCD.
This knowledge determines the model statement in Table 8.7 and yields the
basic arrangement given in Table 8.7 The two independent interactions to be
confounded with blocks are listed as BCD and ACD, which implies, of course,
that the generalized interaction, AB, is also confounded with blocks. �

8.6 ANALYSIS OF EXPERIMENTS WITH CONFOUNDING

8.6.1 Estimation of Effects and Interactions

We consider the 2n experiment with blocks of size 2p, replicating the basic block
arrangement r times. A linear model appropriate for this design is of the form
(7.60), which we write more specifically as

yij (x) = µ + βij + τ(x) + eij (x) (8.15)

or, equivalently,

yij (x) = µ + ρi + β∗
ij + τ(x) + eij (x) (8.16)
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Table 8.5 23 Factorial in Blocks of Size 4 (Confounding ABC)

options nodate pageno=1;
proc factex;
factors A B C;
size design=8;
blocks size=4;
model estimate=(A|B|C @2);
examine design confounding;
output out=design blockname=block nvals=(1 2);
title1 'TABLE 8.5';
title2 '2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'CONFOUNDING ABC';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 1
2 -1 -1 1 2
3 -1 1 -1 2
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 1
7 1 1 -1 1
8 1 1 1 2

Block Pseudofactor Confounding Rules

[B1] = A*B*C

Obs block A B C

1 1 -1 -1 -1
2 1 -1 1 1
3 1 1 -1 1
4 1 1 1 -1
5 2 -1 -1 1
6 2 -1 1 -1
7 2 1 -1 -1
8 2 1 1 1
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Table 8.6 23 Factorial in Blocks of Size 4 (Confounding Main Effect A)

options nodate pageno=1;
proc factex;
factors A B C;
blocks size=4;
model est=(B A*B C A*C B*C A*B*C);
examine design confounding;
output out=design blockname=block nvals=(1 2);
title1 'TABLE 8.6';
title2 '2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'CONFOUNDING MAIN EFFECT A';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 2
7 1 1 -1 2
8 1 1 1 2

Block Pseudofactor Confounding Rules

[B1] = A

Obs block A B C

1 1 -1 -1 -1
2 1 -1 -1 1
3 1 -1 1 -1
4 1 -1 1 1
5 2 1 -1 -1
6 2 1 -1 1
7 2 1 1 -1
8 2 1 1 1
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Table 8.7 24 Factorial in Blocks of Size 4

options nodate pageno=1;
proc factex;
factors A B C D;
model est=(A B C A*C B*C D A*D B*D C*D A*B*C A*B*D);
blocks size=4;
examine design confounding;
output out=design blockname=block nvals=(1 2 3 4);
title1 'TABLE 8.7';
title2 '2**4 FACTORIAL IN BLOCKS OF SIZE 4';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1 1
2 -1 -1 -1 1 4
3 -1 -1 1 -1 4
4 -1 -1 1 1 1
5 -1 1 -1 -1 2
6 -1 1 -1 1 3
7 -1 1 1 -1 3
8 -1 1 1 1 2
9 1 -1 -1 -1 3

10 1 -1 -1 1 2
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 4
14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = B*C*D
[B2] = A*C*D
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Table 8.7 (Continued )

Obs block A B C D

1 1 -1 -1 -1 -1
2 1 -1 -1 1 1
3 1 1 1 -1 1
4 1 1 1 1 -1
5 2 -1 1 -1 -1
6 2 -1 1 1 1
7 2 1 -1 -1 1
8 2 1 -1 1 -1
9 3 -1 1 -1 1

10 3 -1 1 1 -1
11 3 1 -1 -1 -1
12 3 1 -1 1 1
13 4 -1 -1 -1 1
14 4 -1 -1 1 -1
15 4 1 1 -1 -1
16 4 1 1 1 1

where ρi = effect of the ith replicate (i = 1, 2, . . . , r)
β∗

ij or βij = effect of j th block in ith replicate (j = 1, 2, . . . , 2n−p)
τ(x) = effect of treatment combination x′ = (x1, x2, . . . , xn)

(x� = 0, 1; � = 1, 2, . . . , n)

eij (x) = error associated with treatment combination x in the
j th block of the ith replicate,

or in matrix notation
y = µI + Xρρ + Xβ∗β∗ + Xττ + e (8.17)

with the obvious definition of all terms in this model equation. Let E1 = {Eα� , � =
1, 2, . . . , q(= 2n−p − 1)} be the set of interactions confounded with blocks, and
let E2 = {Eγ m, m = 1, 2, . . . , s[= 2n−p(2p − 1)]} be the set of interactions not
confounded with blocks. (We note that we use here the word interaction in a
general sense that includes also main effects as 1-factor interactions.) We then
obtain in the usual way, using the Yates algorithm for example, estimates Êγ m

for each Eγ m ∈ E2 and Ẽα� for each Eα� ∈ E1, such that Êγ m is BLUE and Ẽα�

is a biased estimate. From the general discussion in Chapter 7 it also follows that

var(Êγ m) = 1

r2n−2
σ 2

e (8.18)

8.6.2 Parameterization of Treatment Responses

It is clear from the discussion above that only the Eγ m ∈ E2 are estimable.
It is also obvious from the construction of a confounded design that certain
treatment combinations never occur together in the same block and hence cannot,
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ordinarily, be compared with each other. We thus have a disconnected design,
which generally is an undesirable situation. In the factorial setting this negative
feature may be overcome, however. If we can assume that all Eα� ∈ E1 are
negligible, then the reparameterization (7.42) and (7.43) may be rewritten as

a(x) = M +
∑
γ m

Ex
γ ′

mx

or
a(x) = M +

∑
γ m

φ(γ m, x)Eγ m

respectively, where
∑

γ m
is summation over all γ m such that Eγ m ∈ E2. For any

two treatment combinations x and z, we can then obtain

â(x) − â(z) =
∑
γ m

[φ(γ m, x) − φ(γ m, z)] Êγ m

where φ(γ m, x) − φ(γ m, z) is either 0, 1, or −1. Using (8.18) we can then
evaluate var [̂a(x) − â(z)].

As an illustration of this procedure consider the following example.

Example 8.5 Suppose we have a 23 experiment in blocks of size 4, con-
founding ABC. We have the basic arrangement

Block 1: (1), ab, ac, bc

Block 2: a, b, c, abc

which is replicated r times. Suppose a(x) = abc, a(z) = (1). Then, assuming
ABC to be negligible, we can write

âbc = M̂ + 1
2 Â + 1

2 B̂ + 1
2 ÂB + 1

2 Ĉ + 1
2 ÂC + 1

2 B̂C

and
( 1̂ ) = M̂ − 1

2 Â − 1
2 B̂ + 1

2 ÂB − 1
2 Ĉ + 1

2 ÂC + 1
2 B̂C

and hence

âbc − ( 1̂ ) = Â + B̂ + Ĉ
and

var
[
âbc − ( 1̂ )

] = 3

r2n−2
σ 2

e �

8.6.3 ANOVA Tables

The ANOVA table for a system of confounding as described in this section
follows the basic outline of the ANOVA table for incomplete block designs (see
Table 1.3) and is as given in Table 8.8a. A partitioning of the various sums of
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Table 8.8 ANOVA Tables for System of Confounding

Source d.f. SS

a. Basic T|B-ANOVA

Xβ |I r2n−p − 1
1

2p

∑
ij

y2
ij (·) − 1

r2n
y2
··(·)

Xτ |I,Xβ 2n−p(2p − 1) r2n−2
∑
m

[Êγ m ]2

I |I,Xβ,Xτ (r − 1) 2n−p (2p − 1) Subtraction

Total 2n − 1
∑
ij

∑
x

y2
ij (x) − 1

r2n
y2
··(·)

b. Detailed T|B-ANOVA

Xβ |I r2n−p − 1
1

2p

∑
i

∑
j

y2
ij (·) − 1

r2n
y2
··(·)

Xρ |I r − 1
1

2n

∑
i

y2
i·(·) − 1

r2n
y2
··(·)

Xβ∗ |I,Xρ r(2n−p − 1) = rq
1

2p

∑
i

∑
j

y2
ij (·) − 1

2n

∑
i

y2
i·(·)

Eα1 1 r2n−2 [Ẽα1 ]2

...
...

...

Eαq 1 r2n−2 [Ẽαq ]2

Remainder (r − 1)(2n−p − 1) = (r − 1) q Subtraction

Xτ |I,Xβ 2n−p(2p − 1) = s

Eγ 1 1 r2n−2 [Êγ 1 ]2

Eγ 2 1 r2n−2 [Êγ 2 ]2

...
...

...

Eγ s 1 r2n−2 [Êγ s ]2

I |I,Xβ,Xτ (r − 1) 2n−p (2p − 1) = (r − 1)s Subtraction

Total r2n − 1
∑

i

∑
j

∑
x

y2
ij (x) − 1

r2n
y2
··(·)
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squares is then given in Table 8.8b. Although quite self-explanatory we shall
comment on these partitionings briefly.

The partitioning

SS(Xβ |I) = SS(Replicates) + SS(Blocks/reps)

follows immediately from model (8.16) and can be written more precisely as

SS(Xβ |I) = SS(Xρ |I) + SS(Xβ∗ |I, Xρ) (8.19)

Since each treatment combination occurs exactly once in each replicate,
SS(Xρ |I) is orthogonal to treatments in the same sense that blocks and treatments
are orthogonal to each other in a randomized complete block design. However,
SS(Xβ∗ |I, Xρ) is not orthogonal to treatments. This fact becomes evident from
the partitioning

SS(Xβ∗ |I, Xρ) =
q∑

�=1

SS(Eα� ) + SS(Remainder) (8.20)

where

SS(Eα� ) = r2n−2 [Ẽα� ]2 (8.21)
with

ESS(Eα� ) = r2n−2 [Ẽα� ]2 + Q�(β
∗
ij ) + σ 2

e (8.22)

and Q�(β
∗
ij ) a quadratic function of block effects corresponding to the block

contrast defining Eα� in the chosen system of confounding.
There is another way of writing (8.20) that is informative. Let Ẽ

α�

i be the
estimate of Eα� in the ith replicate (i = 1, 2, . . . , r) and let

SS(E
α�

i ) = 2n−2 [Ẽα�

i ]2 (8.23)

be the sum of squares associated with that estimate. It is clear then that

SS(Xβ∗ |I, Xρ) =
r∑

i=1

q∑
�=1

SS(E
α�

i )

=
q∑

�=1

SS(Eα�)

+
q∑

�=1

[
r∑

i=1

SS(E
α�

i ) − SS(Eα�)

]
(8.24)

Hence, in (8.20)

SS(Remainder) =
q∑

�=1

[
r∑

i=1

SS(E
α�

i ) − SS(Eα�)

]
(8.25)
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The purpose of writing SS(Xβ∗ |I, Xρ) in the form (8.24) is to partition it
into what is sometimes referred to as a treatment component and a pure block
component. Obviously,

∑
� SS(Eα�) depends both on treatment effects, namely

the Eα� , and on block effects. As we shall show below SS(Remainder) does not
depend on treatment effects, hence

∑
� SS(Eα�) is the treatment component of

the block sum of squares mentioned above.
We now consider SS(Remainder) and derive (8.25) in a different way, which

will show that SS(Remainder) is algebraically equivalent to a sum of squares
associated with the replicate × Eα� (� = 1, 2, . . . , q) interactions. Let

X
α�

δi = {average observed response in replicate i

of all treatment combinations satisfying
α′

�x = δ (δ = 0, 1)
}

We note that X
α�

δi is the mean of 2n−1 observations and that E
α�

δi = X
α�

δi − yi·(·).
We then consider the following two-way table:

Replicate (i)

1 2 . . . r

0 X
α�

01 X
α�

02 . . . X
α�

0r X
α�

0·
δ =

1 X
α�

11 X
α�

12 . . . X
α�

1r X
α�

1·

X
α�

·1 X
α�

·2 . . . X
α�·r X

α�··

The interaction sum of squares in this table (on a per-observation basis) is

SS(I )� = 2n−1
∑

i

∑
δ

[
X

α�

δi − X
α�

·i − X
α�

δ· + X
α�

··
]2

= 2n−1
∑

i

∑
δ

[
Ẽ

α�

δi − Ẽ
α�

δ

]2

since X
α�

·i = y2
i (·) and X

α�

·· = y·(·). The expression above for SS(I )� shows that
it is free of treatment effects as those cancel within each square bracket. Further,

SS(I )� = 2n−1

{∑
i

∑
δ

[
Ẽ

αi

δi

] + r
∑

δ

[
Ẽ

α�

δ

] − 2
∑

i

∑
δ

Ẽ
α�

δi Ẽ
α�

δ

}

= 2n−1

{∑
i

∑
δ

[
Ẽ

αi

δi

] − r
∑

δ

[
Ẽ

α�

δ

]2

}
(8.26)

=
∑

i

(
E

α�

i

) − SS
(
Eα�

)
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using (7.65). Hence

q∑
�=1

SS(I )� = SS(Remainder)

as given in (8.25).
Turning now to SS(Xτ |I, Xβ) the treatment sum of squares adjusted for block

effects with s = 2n−p(2p − 1) d.f., we can partition it into s single-d.f. sums
of squares associated with the unconfounded interactions Eγ m(m = 1, 2, . . . , s),
given by

SS(Eγ m) = r2n−2 [
Êγ m

]2
(8.27)

We then use the F test (as an approximation to the randomization test)

F = SS(Eγ m)

MS(Residual)

to test the hypothesis H0:Eγ m = 0.
Finally, corresponding to SS(Remainder) in (8.25) we can partition SS(Error)

as s sums of squares with r − 1 d.f. each, that is,

SS(Error) =
s∑

m=1

[
r∑

i=1

SS
(
E

γ m

i

) − SS
(
Eγ m

)]
(8.28)

where
SS

(
E

γ m

i

) = 2n−2 [
Ê

γ m

i

]2

and Ê
γ m

i is the BLUE of Eγ m in the ith replicate. Obviously, then, (8.28) is a
function of the eij (x) only and

E

[
r∑

i=1

SS
(
E

γ m

i

) − SS
(
Eγ m

)] = (r − 1)σ 2
e (8.29)

for m = 1, 2, . . . , s. Hence we have s independent estimates of σ 2
e , a fact that

may be useful for testing homogeneity of error.
To complete this discussion about the various sums of squares in Table 8.8b,

we mention that just as

SS(I )� =
∑

i

SS(E
α�

i ) − SS(Eα� )

in (8.25) is algebraically the (replicate × Eα�) interaction sum of squares with
r − 1 d.f. (� = 1, 2, . . . , q),

SS(I )m =
∑

i

SS(E
γ m

i ) − SS(Eγ m)
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in (8.28) is algebraically the (replicate ×Eγ m ) interaction sum of squares with
r − 1 d.f. (m = 1, 2, . . . , s).

8.7 INTERBLOCK INFORMATION IN CONFOUNDED
EXPERIMENTS

In discussing the problem of confounding and the analysis of confounded exper-
iments we have assumed that the block effects are fixed effects, as is evident
from Eq. (8.3), for example. If, however, we consider block effects as random
effects, then it becomes clear that, again referring to (8.3),

1
4E[block 2 − block 1] = ABC

that is, the block difference is an unbiased estimate of ABC. The only difference
between this estimator, ÃBC say, and the estimators for the other effects and
interactions, Â, . . . , B̂C is that with r replications

var(Â) = · · · = var(B̂C) = 1

2r
σ 2

e (8.30)

whereas

var(ÃBC) = 1

2r
(σ 2

e + 4σ 2
β ) (8.31)

From the nature of the estimators it is clear that Â, . . . , B̂C are intrablock esti-
mates and that ÃBC is an interblock estimate as it is a linear function of block
totals only (see Section 1.7).

For the general case of a 2n factorial in blocks of size k = 2p, using an
appropriate system of confounding, we are then able to estimate all interactions as

Table 8.9 ANOVA for Interblock Analysis

Source d.f. SS

Replicates r − 1

Eα1 1 σ 2
e + 2pσ 2

β + r2n−2[Eα1 ]2

Eα2 1 σ 2
e + 2pσ 2

β + r2n−2[Eα2 ]2

...
...

...

Eαq 1 σ 2
e + 2pσ 2

β + r2n−2[Eαq ]2

Remainder (r − 1)(2n−p − 1) σ 2
e + 2pσ 2

β



304 CONFOUNDING IN 2n FACTORIAL DESIGNS

Table 8.10 Data and Intrablock Analysis for 23 Factorial in Blocks of Size 4 With
ABC Confounded with Blocks

options nodate pageno=1;
data example;
input rep block A B C y @@;
datalines;
1 1 0 0 0 14 1 1 0 1 1 25
1 1 1 0 1 17 1 1 1 1 0 20
1 2 0 0 1 13 1 2 0 1 0 16
1 2 1 0 0 14 1 2 1 1 1 26
2 3 0 0 0 24 2 3 0 1 1 34
2 3 1 0 1 27 2 3 1 1 0 29
2 4 0 0 1 24 2 4 0 1 0 26
2 4 1 0 0 25 2 4 1 1 1 35
;
run;

proc print data=example;
title1 'TABLE 8.10';
title2 'DATA FOR 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'WITH ABC CONFOUNDED WITH BLOCKS';
run;

proc glm data=example;
class rep block A B C;
model y=rep block(rep) A|B|C@2;
estimate 'A' A -1 1;
estimate 'A*B' A*B 1 -1 -1 1/divisor=2;
title2 'INTRA-BLOCK ANALYSIS OF 2**3 FACTORIAL';
title3 'IN BLOCKS OF SIZE 4';
title4 'WITH ABC CONFOUNDED WITH BLOCKS';
run;

Obs rep block A B C y

1 1 1 0 0 0 14
2 1 1 0 1 1 25
3 1 1 1 0 1 17
4 1 1 1 1 0 20
5 1 2 0 0 1 13
6 1 2 0 1 0 16
7 1 2 1 0 0 14
8 1 2 1 1 1 26
9 2 3 0 0 0 24

10 2 3 0 1 1 34
11 2 3 1 0 1 27
12 2 3 1 1 0 29
13 2 4 0 0 1 24
14 2 4 0 1 0 26
15 2 4 1 0 0 25
16 2 4 1 1 1 35
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Table 8.10 (Continued )

INTRABLOCK ANALYSIS OF 2**3 FACTORIAL
IN BLOCKS OF SIZE 4

WITH ABC CONFOUNDED WITH BLOCKS

The GLM Procedure

Class Level Information

Class Levels Values

rep 2 1 2

block 4 1 2 3 4

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 16

Dependent Variable: y

Source DF Sum of Squares Mean Square F Value Pr > F

Model 9 699.0625000 77.6736111 248.56 <.0001

Error 6 1.8750000 0.3125000

Corrected Total 15 700.9375000

R-Square Coeff Var Root MSE y Mean

0.997325 2.423922 0.559017 23.06250

Source DF Type I SS Mean Square F Value Pr > F

rep 1 390.0625000 390.0625000 1248.20 <.0001
block(rep) 2 8.1250000 4.0625000 13.00 0.0066
A 1 18.0625000 18.0625000 57.80 0.0003
B 1 175.5625000 175.5625000 561.80 <.0001
A*B 1 0.0625000 0.0625000 0.20 0.6704
C 1 68.0625000 68.0625000 217.80 <.0001
A*C 1 0.0625000 0.0625000 0.20 0.6704
B*C 1 39.0625000 39.0625000 125.00 <.0001

Source DF Type III SS Mean Square F Value Pr > F

rep 1 390.0625000 390.0625000 1248.20 <.0001
block(rep) 2 8.1250000 4.0625000 13.00 0.0066
A 1 18.0625000 18.0625000 57.80 0.0003
B 1 175.5625000 175.5625000 561.80 <.0001
A*B 1 0.0625000 0.0625000 0.20 0.6704
C 1 68.0625000 68.0625000 217.80 <.0001
A*C 1 0.0625000 0.0625000 0.20 0.6704
B*C 1 39.0625000 39.0625000 125.00 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|
A 2.12500000 0.27950850 7.60 0.0003
A*B 0.12500000 0.27950850 0.45 0.6704
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Table 8.11 Data and Combined Analysis for 23 Factorial in Blocks of Size 4 With
ABC Confounded with Blocks

options nodate pageno=1;
data example;
input rep block A B C y @@;
datalines;
1 1 0 0 0 14 1 1 0 1 1 25
1 1 1 0 1 17 1 1 1 1 0 20
1 2 0 0 1 13 1 2 0 1 0 16
1 2 1 0 0 14 1 2 1 1 1 26
2 3 0 0 0 24 2 3 0 1 1 34
2 3 1 0 1 27 2 3 1 1 0 29
2 4 0 0 1 24 2 4 0 1 0 26
2 4 1 0 0 25 2 4 1 1 1 35
;
run;
proc print data=example;
title1 'TABLE 8.11';
title2 'DATA FOR 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'WITH ABC CONFOUNDED WITH BLOCKS';

proc mixed data=example;
class rep block A B C;
model y=rep A|B|C/ddfm=satterth;
random block(rep);
estimate 'A' A -1 1;
estimate 'A*B' A*B 1 -1 -1 1/divisor=2;
estimate 'A*B*C' A*B*C -1 1 1 -1 1 -1 -1 1/divisor=4;
title1 'TABLE 8.11';
title2 'INTRA- AND INTER-BLOCK ANALYSIS';
title3 'OF 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title4 'WITH ABC CONFOUNDED WITH BLOCKS';
run;

Obs rep block A B C y

1 1 1 0 0 0 14
2 1 1 0 1 1 25
3 1 1 1 0 1 17
4 1 1 1 1 0 20
5 1 2 0 0 1 13
6 1 2 0 1 0 16
7 1 2 1 0 0 14
8 1 2 1 1 1 26
9 2 3 0 0 0 24
10 2 3 0 1 1 34
11 2 3 1 0 1 27
12 2 3 1 1 0 29
13 2 4 0 0 1 24
14 2 4 0 1 0 26
15 2 4 1 0 0 25
16 2 4 1 1 1 35
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Table 8.11 (Continued )

INTRA- AND INTERBLOCK ANALYSIS
OF 2**3 FACTORIAL IN BLOCKS OF SIZE 4

WITH ABC CONFOUNDED WITH BLOCKS

The Mixed Procedure

Model Information

Data Set WORK.EXAMPLE
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

rep 2 1 2
block 4 1 2 3 4
A 2 0 1
B 2 0 1
C 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 29
Columns in Z 4
Subjects 1
Max Obs Per Subject 16
Observations Used 16
Observations Not Used 0
Total Observations 16

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 19.41205069
1 1 19.24234227 0.00000000
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Table 8.11 (Continued )

Convergence Criteria met.

Covariance Parameter
Estimates

Cov Parm Estimate

block(rep) 0.06250
Residual 0.3125

Fit Statistics

-2 Res Log Likelihood 19.2
AIC (smaller is better) 23.2
AICC (smaller is better) 26.2
BIC (smaller is better) 22.0

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

rep 1 1 693.44 0.0242
A 1 6 57.80 0.0003
B 1 6 561.80 <.0001
A*B 1 6 0.20 0.6704
C 1 6 217.80 <.0001
A*C 1 6 0.20 0.6704
B*C 1 6 125.00 <.0001
A*B*C 1 1 13.44 0.1695

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

A 2.1250 0.2795 6 7.60 0.0003
A*B 0.1250 0.2795 6 0.45 0.6704
A*B*C -1.3750 0.3750 1 -3.67 0.1695

follows (using the notation from the previous section): Eα� (� = 1, 2, . . . , 2n−p −
1) from interblock information only and with variance 1/r2n−2 (σ 2

e + 2pσ 2
β ),

Eγ m[m = 1, 2, . . . , 2n−p(2p − 1)] from intrablock information only and with
variance (1/r2n−2) σ 2

e . The fact that either intrablock or interblock informa-
tion only is available for a particular interaction is a major difference between
the block arrangements we have been discussing in this chapter and the block
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Table 8.12 Auxiliary Analysis of 23 Factorial With Blocks of Size 4 and ABC
Confounded with Blocks

options nodate pageno=1;

proc glm data=example;

class rep block A B C;

model y=rep|A|B|C;

title1 'TABLE 8.12';

title2 'AUXILIARY ANALYSIS OF 2**3 FACTORIAL';

title3 'WITH BLOCKS OF SIZE4 AND ABC CONFOUNDED WITH BLOCKS';

run;

The GLM Procedure

Class Level Information

Class Levels Values

rep 2 1 2

block 4 1 2 3 4

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 16

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 15 700.9375000 46.7291667 . .

Error 0 0.0000000 .

Corrected Total 15 700.9375000

R-Square Coeff Var Root MSE y Mean

1.000000 . . 23.06250
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Table 8.12 (Continued )

Source DF Type I SS Mean Square F Value Pr > F

rep 1 390.0625000 390.0625000 . .

A 1 18.0625000 18.0625000 . .

rep*A 1 0.0625000 0.0625000 . .

B 1 175.5625000 175.5625000 . .

rep*B 1 1.5625000 1.5625000 . .

A*B 1 0.0625000 0.0625000 . .

rep*A*B 1 0.0625000 0.0625000 . .

C 1 68.0625000 68.0625000 . .

rep*C 1 0.0625000 0.0625000 . .

A*C 1 0.0625000 0.0625000 . .

rep*A*C 1 0.0625000 0.0625000 . .

B*C 1 39.0625000 39.0625000 . .

rep*B*C 1 0.0625000 0.0625000 . .

A*B*C 1 7.5625000 7.5625000 . .

rep*A*B*C 1 0.5625000 0.5625000 . .

Source DF Type III SS Mean Square F Value Pr > F

rep 1 390.0625000 390.0625000 . .

A 1 18.0625000 18.0625000 . .

rep*A 1 0.0625000 0.0625000 . .

B 1 175.5625000 175.5625000 . .

rep*B 1 1.5625000 1.5625000 . .

A*B 1 0.0625000 0.0625000 . .

rep*A*B 1 0.0625000 0.0625000 . .

C 1 68.0625000 68.0625000 . .

rep*C 1 0.0625000 0.0625000 . .

A*C 1 0.0625000 0.0625000 . .

rep*A*C 1 0.0625000 0.0625000 . .

B*C 1 39.0625000 39.0625000 . .

rep*B*C 1 0.0625000 0.0625000 . .

A*B*C 1 7.5625000 7.5625000 . .

rep*A*B*C 1 0.5625000 0.5625000 . .

arrangements we have discussed in connection with incomplete block designs in
Chapters 1, 2, and 4.

Although the choice of a particular system of confounding is no longer as
crucial as it is in the case of fixed block effects, it is important nevertheless
as is evident from the statement about the variances of the different estimators,
interblock estimators having generally larger variance than the intrablock esti-
mators. This is emphasized also by the way in which hypotheses about the Eα�

can be tested in the ANOVA. To show this we give in Table 8.9 the appropriate
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E(MS) in the ANOVA table pertaining to the interblock analysis. The hypothesis
H0: Eα� = 0 is then tested using an approximate F test by

F = SS(Eα� )

MS(Remainder)

with (r − 1)(2n−p − 1) d.f. in the denominator, as compared to (r − 1)2n−p(2p −
1) for testing H0: Eγ m = 0 in the intrablock analysis.

8.8 NUMERICAL EXAMPLE USING SAS

The following example illustrates how SAS PROC GLM and PROC MIXED can
be used to analyze the data from systems of confounding.

Consider again the 23 factorial in blocks of size 4 and with ABC confounded
with blocks (see Example 8.2). The data are given in Table 8.10 together with
the intrablock analysis, using PROC GLM.

The combined analysis, using intrablock information for A, B, AB, C, AC,
BC and interblock information for ABC, is obtained with PROC MIXED and
is given in Table 8.11.

We note here that in order to obtain the correct interblock information; that
is, test of ABC, it is not sufficient to declare the block effects as random effects,
but also amend the model statement by the option DDFM = SATTERTH (Note:
It is always useful to check the d.f. of each F test as at least a partial assurance
that the correct test has been performed). A check that the correct test for ABC

has been performed is provided in Table 8.12
As explained in Section 8.7 (see also Table 8.8b), the denominator for testing

H0: ABC = 0 is given by MS(Remainder) [see (8.25)], which algebraically is
given by MS(Rep × ABC) with r − 1 = 1 d.f. From Table 8.12 we obtain

SS(ABC) = 7.5625 and SS(rep × ABC) = 0.5625

and hence

F = 7.5625

0.5625
= 13.38

which is approximately the same as the F value given in Table 8.11, namely
13.44.

As a final note we mention that estimates for σ 2
e and σ 2

β∗ are given in Table
8.11 as

σ̂ 2
e = 0.3125 and σ̂ 2

β∗ = 0.0625

from which we can also reconstruct MS(Remainder) as

MS(Remainder) = σ̂ 2
e + 4 σ̂ 2

β∗ = 0.5625

which agrees with the value given in Table 8.12.



C H A P T E R 9

Partial Confounding in 2n

Factorial Designs

9.1 INTRODUCTION

In the previous chapter we have seen how the treatment combinations of a 2n

experiment can be accommodated in blocks of size 2p, where p < n, and what
consequences this has with regard to the estimation of effects and interactions.
The price we have to pay for being able to reduce the error variance is the loss
of information on certain interactions and possibly main effects. As long as only
high-order interactions are confounded, the price may not be too high, but as
is evident from Table 8.3, this may not always be possible; that is, in certain
cases we may have to confound low-order interactions and/or main effects. This
is clearly undesirable. We would like to obtain at least partial information on all
essential effects and interactions. Since most experiments are replicated, it seems
quite reasonable to use different systems of confounding in different replicates,
which may achieve the objective just stated. This is known as partial confounding
(as compared to the complete confounding of Chapter 8).

9.2 SIMPLE CASE OF PARTIAL CONFOUNDING

9.2.1 Basic Plan

Consider the simplest possible factorial scheme, that involving two factors A,
B, each at two levels, and suppose that it is necessary to use blocks of two
experimental units. The necessity of blocks of this size might arise, for example,
in an experiment on young cattle, because it is possible to obtain a number of
identical twins, that is, twins of the same genetic constitution and each pair of
twins forming a block. Or it may be that the experimenter can handle only two

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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Replicate I

Block
1

2

a ab

(1) b

Replicate II

Block
1

2

b ab

(1) a

Replicate III

Block
1

2

(1) ab

a b

Figure 9.1 Partial confounding of a 22 experiment.

experimental units at a time and that, if units were treated in random order, the
experimental error introduced by randomizing over “times” would be consider-
able. Another possible use of blocks of two EUs could arise in plant pathological
work, the block being a leaf and the EUs the two halves. Other examples in other
fields of experimental research (e.g., medicine, engineering, psychology) can be
found easily.

Given such a situation, suppose also that the experimenter wishes to obtain
equal information on both main effects and the 2-factor interaction. This implies
immediately that A, B, and AB should be confounded equally often with blocks.
The basic pattern of the design would then consist of three replicates arranged
as in Figure 9.1. The main effect A is confounded in replicate I, B in replicate
II, and the interaction AB in replicate III. Each effect and interaction is then
“partially confounded” with blocks. In view of this, we shall estimate the effects
and interaction from the replicates in which they are unconfounded with blocks,
namely

Effect A estimated from replicates II, III
Effect B estimated from replicates I, III
Effect AB estimated from replicates I, II.

These estimates will be subject to an error based on the variance of units within
blocks of two units treated alike, and, in order to obtain a reasonably precise
estimate of this error variance, we shall need several repetitions of the basic
pattern given in Figure 9.1. Suppose we have q repetitions (i.e., 3q replicates in
all); then the ANOVA will have the structure shown in Table 9.1.

9.2.2 Analysis

The ANOVA is based on the three-part model

yijk� = µ + ρi + β∗
ij + τk� + eijk� (9.1)

where ρi is the effect of the ith replicate (i = 1, 2, . . . , 3q), β∗
ij is the effect of

the j th block (j = 1, 2) in the ith replicate, and τk� is the effect of the treatment
combination akb�(k, � = 0, 1). The reader will recognize that the basic pattern of
this design, given in Figure 9.1, is actually a BIB design (see Chapter 2). Hence
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Table 9.1 Structure of T|B-ANOVA for Partially
Confounded Design

Source d.f. SS

Xρ |I 3q − 1 4
∑

i

(yi··· − y····)2

Xβ∗ |I, Xρ 3q 2
∑
ij

(yij ·· − yi···)2

Xτ |I, Xρ, Xβ∗ 3

A 1 2q
[
ÂII, III

]2
B 1 2q

[
B̂I, III

]2
AB 1 2q

[
ÂBII, II

]2
I |I, Xρ, Xβ∗ , Xτ 3(2q − 1) Difference

Total 12q − 1
∑
ijk�

(yijk� − y····)2

the complete design is a resolved BIB design and could be analyzed as such (see
Section 9.3). It is, however, much simpler to use the factorial structure of the
treatments and the particular system of confounding that has been employed.

As mentioned earlier, the effects and the interaction can be estimated (unbi-
asedly) only from those types of replicates in which they are not confounded.
To emphasize this point, we write ÂII,III, B̂I,III, ÂBI,II indicating that A is esti-
mated from replicates of types II and III, that is, from r = 2q replicates; B is
estimated from replicates of types I and III; and AB is estimated from replicates
of types I and II. Consequently, the associated sums of squares are based on
these estimates, as given in Table 9.1. Also, using the general formula (7.62),
with r = 2q, n = 2, we have

var(ÂII,III) = var(B̂I,III) = var(ÂB I,II) = 1

2q
σ 2

e

Following the procedure outlined in Section 8.5 we can partition SS(Blocks/
replicates) = SS(Xβ∗ |I, Xρ) and SS(Residual)=SS(I |I, Xρ , Xβ∗ , Xτ ) of
Table 9.1 as given in Table 9.2. The SS(Blocks/replicates) is further partitioned
into a treatment component, associated with the estimates of A, B, AB from those
types of replicates in which they are confounded, and SS(Remainder), which is
algebraically equal to the interactions between the effects and the replicates in
which the effects are confounded. The actual computation of the various sums
of squares is indicated explicitly in Table 9.2a. Here, for example, ÃI is the esti-
mate of A obtained from observations in the q replicates of type I in which A
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Table 9.2 Partitioning of Sums of Squares

Source d.f. SS

a. SS(Blocks/Replicates)

A 1 q
[
ÃI
]2

B 1 q
[
B̃II
]2

AB 1 q
[
ÃBIII

]2
A × repsI

B × repsII

AB × repsIII


Remainder

q − 1
q∑

�=1

[
Ã�I

]2 − q
[
ÃI
]2

q − 1
q∑

�=1

[
B̃�II

]2 − q
[
B̃II
]2

q − 1
q∑

�=1

[
ÃB�III

]− q
[
ÃBIII

]2
b. SS(Residual)

A × repsII, III 2q − 1
2q∑

m=1

[Âm, II, III]
2 − 2q[ÂII, III]

2

B × repsI, III 2q − 1
2q∑

m=1

[B̂m, I, III]
2 − 2q[B̂I, III]

2

AB × repsI, II 2q − 1
2q∑

m=1

[ÂBm, I, II]
2 − 2q[ÂBI, II]

2

is confounded. Similarly, Ã�I is the estimate of A obtained from observations in
the �th replicate of type I.

With regard to SS(Residual) it can be partitioned into three components each
one algebraically equal to the interaction between an effect and replicates, in
this case the replicates in which the corresponding effect is not confounded.
The form of the sums of squares is given in Table 9.2b. The notation should be
obvious now.

9.2.3 Use of Intra- and Interblock Information

In concluding the discussion of this introductory example of partial confounding,
we point out that in this case we have both intra- and interblock information about
A, B, and AB. If the block effects in model (9.1) were considered to be random
effects, we could obtain combined estimates of the effects and interaction. We
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know from our previous discussion that

var(ÂII,III) = var(B̂I,III) = var(ÂB I,II) = 1

2q
σ 2

e

and, as follows from Section 8.6,

var(ÃI) = var(B̃II) = var(ÃB III) = 1

q
(σ 2

e + 2σ 2
β )

Hence the combined estimate of A, for example, is the weighted average of
ÂII, III and ÃI , that is, letting w = 1/σ 2

e and w′ = 1/(σ 2
e + 2σ 2

β ),

̂̂
A = 2qwÂII, III + qw′ÃI

2qw + qw′ (9.2)

with similar expressions for B and AB. (For a proof of this result we refer to
Section 11.6.) Since w and w′ or ρ = w/w′ are usually not known, the quantities
have to be estimated and then substituted into (9.2). We know that

σ̂ 2
e = MS(Residual)

and we also know that (see Section 8.6)

̂σ 2
e + 2σ 2

β = MS(Remainder)

There is, however, another way of estimating σ 2
e + 2σ 2

β . This is accomplished
through the B|T-ANOVA as given in Table 9.3 by utilizing all 3q d.f. for
SS(Xβ∗ |I, Xρ,Xτ ) and not just the 3(q − 1) d.f. for SS(Remainder). We com-
ment briefly on how SS(Xβ∗ |I, Xρ, Xτ ) is obtained in a way other than the
usual as indicated in Section 1.3.

As mentioned above, SS(Remainder) from the T|B-ANOVA is part of
SS(Xβ∗ |I, Xρ,Xτ ) because it is free of treatment effects. Since this SS accounts
for 3(q − 1) d.f., there remain 3 d.f. to be accounted for. These are obtained by
realizing that for each effect and interaction we have two estimates, namely one
from replicates in which the effect is not confounded and one from replicates in
which the effect is confounded. Specifically, we have ÂII,III and ÃI, B̂I,III and
B̃II, and ÂBI,II and ÃBIII. Obviously, the comparison of these two types of esti-
mates is a function of block effects and error only, and hence the associated sum
of squares belongs to SS(Xβ∗ |I, Xρ,Xτ ). Since, for example, ÃII,III is obtained
from 2q replicates and ÃI from q replicates and these estimates are uncorrelated,
we have

SS(ÂII,III − ÃI) = [ÂII,III − ÃI]2

1/2q + 1/q
= 2q

3
[ÂII,III − ÃI]

2 (9.3)
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Table 9.3 Structure of B|T-ANOVA for Partially Confounded Design

Source d.f. SS E(MS)

Xρ |I 3q − 1 From Table 9.1

Xτ |I,Xρ 3 3q
∑
k�

(y··k� − y····)2

Xβ∗ |I,Xρ,Xτ 3q

ÂII,III vs. ÃI 1
2q

3

(
ÂII,III − ÃI

)2
σ 2

e + 4

3
σ 2

β

B̂I, III vs. B̃II 1
2q

3

(
B̂I,III − B̃II

)2
σ 2

e + 4

3
σ 2

β

ÂBI,II vs. ÃIII 1
2q

3

(
ÂBI,II − ÃBIII

)2
σ 2

e + 4

3
σ 2

β

Remainder 3(q − 1) From Table 9.2a σ 2
e + 2σ 2

β

Residual 3(2q − 1) From Table 9.2b σ 2
e

Total 12q − 1 From Table 9.1

Similarly

SS(B̂I,III − B̃II) = 2q

3
[B̂I,III − B̃II]

2 (9.4)

SS(ÂB I,II − ÃBIII) = 2q

3
[ÂBI,II − ÃBIII]

2 (9.5)

Since the comparisons ÂII,III − ÃI, B̂I,III − B̃III, and ÂBI,II − ÃBIII are orthog-
onal to each other, the SS (9.3), (9.4), and (9.5) are orthogonal. Also, the 3 d.f.
associated with (9.3), (9.4), and (9.5) are not accounted for in SS(Remainder)
since the comparisons leading to SS(Remainder) involve only comparisons among
blocks from those replicates in which the respective effects are confounded, as
is evident from Table 9.2a.

Returning now to the estimation of σ 2
e + 2σ 2

β , to be used in (9.2), we evaluate
as usual E[MS(Xβ∗ |I, Xρ, Xτ )] assuming that the β∗

ij are i.i.d. random variables

with mean zero and variance σ 2
β . We do this by obtaining the expected value

of each component of SS(Xβ∗ |I, Xρ, Xτ ) as given in Table 9.3. We already
know that

E[SS(Remainder)] = 3(q − 1)(σ 2
e + 2σ 2

β ) (9.6)

Now

E[SS(ÂII,III − ÃI)] = 2q

3
var(ÂII,III − ÃI) (9.7)

= σ 2
e + 4

3
σ 2

β
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since

var(ÂII,III) = 1

2q
σ 2

e

and

var(ÃI) = 1

q
(σ 2

e + 2σ 2
β )

The same result (9.7) is, of course, obtained also for SS(B̂I,III − B̃II) and
SS(ÂBI,II − ÃIII). Hence,

E[(MS(Xβ∗ |I,Xρ, Xτ )] = 1

3q

[
3

(
σ 2

e + 4

3
σ 2

β

)
+ 3(q − 1)(σ 2

e + 2σ 2
β )

]
= σ 2

e + 2
3q − 1

3q
σ 2

β (9.8)

An estimator for σ 2
e + 2σ 2

β is then

̂σ 2
e + 2σ 2

β = 1

3q − 1
[3q MS(Xβ∗ |I, Xρ, Xτ ) − MS(Residual)] (9.9)

We note here that if q is large, MS(Remainder) may actually be a quite satisfac-
tory estimator for σ 2

e + 2σ 2
β .

9.3 PARTIAL CONFOUNDING AS AN INCOMPLETE
BLOCK DESIGN

In the previous section we have presented a simple example of partial con-
founding together with the analysis based entirely on reasoning suggested by the
factorial structure of the treatments and the corresponding allocation of the treat-
ments to blocks. The design given in Figure 9.1, replicated q times, is, of course,
an example of an incomplete block design, in fact a resolvable BIB design in this
case as we pointed out earlier. As such, data from this design can be analyzed
according to the general principles discussed in Chapter 1, or, more specifically,
as in Chapter 2. We shall do this now and show that the resulting analysis agrees
with that given in the previous section.

9.3.1 Two Models

Without loss of generality and for purpose of ease of notation only, we assume
that the arrangement of treatments in blocks is the same for each repetition of
the basic design of Figure 9.1. Using the model for an incomplete block design,
we have

y = µI + Xββ + Xττ + e (9.10)
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with y = (yijk�m), i = 1, 2, . . . , q indicating the repetition, j = 1, 2, 3 indicating
the replication within repetition (as labeled in Fig. 9.1), k = 1, 2 denoting the
block within replication, and �, m = 0, 1 denoting the levels of factors A and
B. The observation vector y consists then of q segments (yi1110, yi1111, yi1200,
yi1201, yi2101, yi2111, yi2200, yi2210, yi3100, yi3111, yi3210, yi3201)

′ (i = 1, 2, . . . , q)

following Figure 9.1. Further, it can be deduced easily that

Xβ = I 6q ×
(

1

1

)
(9.11)

Xτ = Iq ×



0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


and τ ′ = (τ00, τ10, τ01, τ11).

Alternatively, we may write (9.1) as

y = µI + Xββ + Xτ ∗τ∗ + e (9.12)

where

Xτ ∗ = Iq ×



1 1 −1 −1
1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 −1 1 −1
1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1
1 −1 1 −1



(9.13)
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and τ∗′ =
(
M, 1

2A, 1
2B, 1

2AB
)

. The “factorial incidence matrix” NF = X′
τ ∗Xβ

is then of the form

NF = I′
q ×


2 2 2 2 2 2
2 −2 0 0 0 0
0 0 2 −2 0 0
0 0 0 0 2 −2


or

NF = 2I′
q ×


1 1 1 1 1 1
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (9.14)

9.3.2 Normal Equations

We consider now the RNE for τ ∗, that is,

(X′
τ ∗Xτ ∗ − NF (X′

βXβ)−1N ′
F )τ ∗ = X′

τ ∗y − NF (X′
βXβ)−1X′

βy (9.15)

or (
12qI 4 − 1

2NF N ′
F

)
τ ∗ = T ∗ − 1

2NF B (9.16)

where

T ∗ =


12qM̂

6qÃ

6qB̃

6qÃB

 , B =


B111

B112

...

Bq32

 (9.17)

are the effect totals and block totals, respectively. With

NF N ′
F = 4q


6 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


and

NF B = 2


B···
B·11 − B·12

B·21 − B·22

B·31 − B·32


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Eq. (9.16) reduces to
8q · 1

2 Â

8q · 1
2 B̂

8q · 1
2 ÂB

 =


6qÃ − (B·11 − B·12)

6qB̃ − (B·21 − B·22)

6qÃB − (B·31 − B·32)

 =


4qÂII,III

4qB̂I,III

4qÂBI,II


and hence to 

Â

B̂

ÂB

 =


ÂII,III

B̂I,III

ÂBI,II


since B·11 − B·12 = 2qÃI, B·21 − B·22 = 2qB̃II , B·31 − B·32 = 2qÃBIII, Ã =
1
3 (ÃI + 2ÂII,III), B̃ = 1

3 (B̃II + 2B̂I,III), ÃB = 1
3 (ÃBIII + 2ÂBI,II).

Turning to the RNE for β, we consider

(X′
βXβ − N ′

F (X′
τ ∗Xτ ∗)−1NF )β = X′

βy − N ′
F (X′

τ ∗Xτ ∗)−1X′
τ ∗y (9.18)

or (
2I 6q − 1

12q
N ′

F NF

)
β = B − 1

12q
N ′

F T ∗ (9.19)

with B and T ∗ as defined in (9.17). With

N ′
F NF = 4(IqI′

q) ×


2 0 1 1 1 1
0 2 1 1 1 1
1 1 2 0 1 1
1 1 0 2 1 1
1 1 1 1 2 0
1 1 1 1 0 2


= 4(IqI′

q) × H say

we see that the coefficient matrix for β, that is,

1

3q

(
6qI − IqI′

q × H
)

(9.20)

is of rank 6q − 1.
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9.3.3 Block Contrasts

From the form of (9.20) we can write out 6q − 1 identifiable functions of β,
namely 3q − 1 of the form

S1: {2(βij1 + βij2 − βq31 − βq32); i = 1, 2, . . . , q; j = 1, 2, 3; (ij) �= (q3)}
3(q − 1) of the form

S2: {2(βij1 − βij2 − βqj1 + βqj2); i = 1, 2, . . . , q − 1; j = 1, 2, 3}
and 3 of the form

S3:

{
4

3

q∑
i=1

(βij1 − βij2); j = 1, 2, 3

}

These three sets of identifiable functions are orthogonal to each other in the sense
that any function in Sν is orthogonal to any function in Sν′(ν, ν′ = 1, 2, 3; ν �= ν′).

The corresponding RHSs are obtained by writing the RHS of (9.19) in the form

B − Iq ×



2M̂ + Ã

2M̂ − Ã

2M̂ + B̃

2M̂ − B̃

2M̂ + ÃB

2M̂ − ÃB


We then find the following RHSs for

S1:
{
Bij · − Bq3·; i = 1, 2 . . . , q; j = 1, 2, 3; (ij) �= (3q)

}
S2:

{
Bij1 − Bij2 − Bqj1 + Bqj2; i = 1, 2 . . . , q − 1; j = 1, 2, 3

}
S3:

{
B·11 − B·12 − 2qÃ, B·21 − B·22 − 2qB̃, B·31 − B·32 − 2qÃB

}
Within the context of the factorial calculus we can rewrite these for S2 and S3 as

S2:
{
2(Ãi − Ãq) (for j = 1)

2(B̃i − B̃q) (for j = 2)

2(ÃBi − ÃBq) (for j = 3); i = 1, 2 . . . , q − 1
}

S3:

{
4q

3
(ÃI − ÃII,III),

4q

3
(B̃II − B̃I,III),

4q

3
(ÃBIII − ÃBI,II)

}
since Bi11 − Bi12 = 2ÃiI, Bi21 − Bi22 = 2B̃iII, Bi21 − Bi32 = 2ÃBiIII.
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We recognize that the comparisons S1 represent comparisons among replicates
and the associated sum of squares is SS(Replicate) in Table 9.1. The comparisons
of S2 and S3 are comparisons of block effects within replicates and hence belong
to (Xβ∗ |I,Xρ, Xτ ). The sum of squares associated with S2 is SS(Remainder) of
Table 9.2, each set for j = 1, 2, 3 leading to a sum of squares with q − 1 d.f.
Finally, the three functions of S3 give rise to the remaining three single d.f. sums
of squares belonging to (Xβ∗ |I, Xρ, Xτ ) as given in Table 9.3.

We have thus shown that a system of partial confounding can be analyzed
using the general principles of incomplete block designs. Although we have only
considered the intrablock analysis of a particular case, this line of argument can,
of course, be carried over to the combined analysis and to the general case. It is
hoped, however, that the reader realizes that the analysis can be described and per-
formed much easier via the concepts of factorial experiments as the factorial struc-
ture of the treatments determines the structure of the incomplete block design.

9.4 EFFICIENCY OF PARTIAL CONFOUNDING

In general, reduction of block size will lead to a reduction of experimental error
variance. On the other hand, this forces the experimenter to use a system of
partial confounding, which may offset this gain. Therefore, if the experimenter
has a choice of using blocks either of size 4 or of size 2, he or she needs a
criterion on which to base the choice. For the simple case discussed so far, this
is obtained by comparing the information provided by both designs (using the
same number of replicates) as given in Table 9.4.

The information of the partially confounded scheme relative to that of the
scheme with no confounding is

2q/σ 2
2

3q/σ 2
4

= 2

3

σ 2
4

σ 2
2

(9.21)

where the subscript on σ 2 denotes the number of units per block. If σ 2
4 is greater

than 3/2σ 2
2 (or σ 2

2 less than 2/3σ 2
4 ), the information is greater with the partially

confounded design. Equivalently, we say then that the efficiency of the partially
confounded design relative to the unconfounded design, as given by (9.21), is

Table 9.4 Information on Effects with Equal
Confounding

Partial Confounding
No Confounding of Section 9.2

A


3q

σ 2
4

2q

σ 2
2

B

AB
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Table 9.5 Information on Effects with Unequal
Confounding

No Confounding Partial Confounding

A


4q

σ 2
4

}
3q

σ 2
2B

AB
2q

σ 2
2

larger than 1. In general, σ 2
4 will be greater than σ 2

2 , but whether it will be suffi-
ciently greater to give the advantage to the partially confounded design depends
on the experimental material. In many cases this may prove to be a difficult
question.

We have considered a scheme of partial confounding that results in equal
information on main effects and the 2-factor interaction. In some cases it may
be more appropriate to obtain greater information on main effects. This would
entail greater representation of replicates of type III, to an extent depending on
the relative amounts of information required. Suppose that a basic repetition
consists of one replicate each of types I and II and 2 replicates of type III and
that there are q such repetitions, that is, 4q replicates all together. The amounts
of information to be compared then are as given in Table 9.5.

Since the emphasis is on main effects, it seems reasonable to use the partial
confounding scheme if σ 2

2 < 3
4σ 2

4 .
The design utilizing partial confounding that we have just mentioned is obvi-

ously only one of many choices. The number of choices becomes even larger
as the number of factors increases. Some such cases will be discussed in the
following sections.

9.5 PARTIAL CONFOUNDING IN A 23 EXPERIMENT

As we have mentioned earlier, the arrangements utilizing partial confounding
that are best for any given situation depend on the information the experimenter
wishes to obtain. Suppose, for example, with an experiment of three factors
A,B, C, each at two levels, the experimenter desires maximum possible accuracy
on main effects and equal information on the 2-factor and 3-factor interactions.

9.5.1 Blocks of Size 2

A suitable system of partial confounding will consist of a number of repetitions,
q say, of the following types of replicates:

Type I: Confound AB,AC, BC

Type II: Same as type I
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Type III: Confound A, BC,ABC

Type IV: Confound B,AC, ABC

Type V: Confound C, AB,ABC

This design requires 5q replicates, that is, 20q blocks, which may not always be
feasible. The information that this design yields as compared to the unconfounded
design is given in Table 9.6.

For an example using SAS PROC FACTEX see Table 9.14, Section 9.10.1.

9.5.2 Blocks of Size 4

In this case the experimenter will use a number of repetitions of the following
basic pattern (with each column representing a block):

I II III IV

(1) a (1) b (1) b (1) a

ab b ac c bc c ab b

c ac b ab a ab ac c

abc bc abc bc abc ac bc abc

confounding AB,AC, BC, ABC in replicates of types I, II, III, IV, respectively.
Suppose we use q repetitions, the positions of replicates, and blocks within

replicates and treatment combinations within blocks being randomized. The infor-
mation from this design and the corresponding unconfounded design is given in
Table 9.7. It follows then that the partially confounded design will yield more
information on interactions than the unconfounded design and substantially more
information on main effects if σ 2

4 is less than 3
4σ 2

8 .

Table 9.6 Information Given by Design for 23 System in Blocks of Size 2

No Confounding Partial Confounding of Section 9.5.1

Estimate from
Information Estimate From Information Replicate of Types

A


10q

σ 2
8

8q/σ 2
2 I, II, IV, V

B 8q/σ 2
2 I, II, III, V

AB 4q/σ 2
2 III, IV

C All replicates 8q/σ 2
2 I, II, III, IV

AC 4q/σ 2
2 III, V

BC 4q/σ 2
2 IV, V

ABC 4q/σ 2
2 I, II
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Table 9.7 Information Given by Design for 23 System in Blocks of 4

No Confounding Partial Confounding of Section 9.5.2

Estimate from
Information Estimate From Information Replicate of Types

A 8q/σ 2
4 All

B 8q/σ 2
4 All

AB 6q/σ 2
4 II, III, V

C
8q

σ 2
8

All replicates 8q/σ 2
4 All

AC 6q/σ 2
4 I, III, V

BC 6q/σ 2
4 I, II, V

ABC 6q/σ 2
4 I, II, III

Table 9.8 Structure of T|B-ANOVA

Source of Variation d.f.

a. Replicates 4q − 1
Blocks/replicates 4q

A 1
B 1
AB 1
C 1
AC 1
BC 1
ABC 1
Residual 24q − 7

Total 32q − 1

b. Blocks/replicates 4q

AB 1
AC 1
BC 1
ABC 1
AB × repsI q − 1
AC × repsII q − 1
BC × repsIII q − 1
ABC × repsIV q − 1
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Table 9.8 (Continued )

Source of Variation d.f.

c. Residual 24q − 7
A × reps (all) 4q − 1
B × reps (all) 4q − 1
AB × reps (II, III, IV) 3q − 1
C × reps (all) 4q − 1
AC × reps (I, III, IV) 3q − 1
BC × reps (I, II, IV) 3q − 1
ABC × reps (I, II, III) 3q − 1

The partition of the degrees of freedom in the analysis of variance is given in
Table 9.8a with a breakdown of the degrees of freedom for blocks in Table 9.8b
and residual in Table 9.8c.

The computation of the various sums of squares follows the general procedure
as indicated in Tables 9.1 and 9.2 using the observations from the respective
replicates according to Tables 9.7 and 9.8.

9.6 PARTIAL CONFOUNDING IN A 24 EXPERIMENT

9.6.1 Blocks of Size 2

In this situation each replicate will consist of eight blocks. With s types of
replicates, each utilizing a different system of confounding, there will be 8s − 1
d.f. for blocks, 15 d.f. for treatments if no effect is completely confounded, and
therefore 8s − 15 d.f. for residual. In order to have an error based on a reasonable
number of d.f., it seems that we need at least s = 4 replicates. It follows from
Table 8.3 that under these circumstances the best system of confounding appears
to be as follows:

Replicate Effects and Interactions Confounded

I A, BC, ABC, BD, ABD, CD, ACD

II B, AC, ABC, AD, ABD, CD, BCD

III C, AB, ABC, AD, ACD, BD, BCD

IV D, AB, ABD, AC, ACD, BC, BCD

These four replicates give 3
4 relative information on main effects (in the sense that

all main effects are estimated from three out of four replicates), 1
2 relative infor-

mation on 2-factor interactions, 1
4 relative information on 3-factor interactions,

and full information on the 4-factor interaction.
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Since the number of observations is already quite large for one set of repli-
cates, it does not seem to be practical to have repetitions of the basic pattern
given above.

9.6.2 Blocks of Size 4

Referring again to Table 8.3, we find that a reasonable pattern of confounding is
obtained by combining two systems of confounding as follows:

Replicate Interactions Confounded

I AB, CD, ABCD

II AC, BD, ABCD

III AD, ABC, BCD

IV BC, ABD, ACD

This yields full information on main effects, 3
4 relative information on 2- and

3-factor interactions, and 1
2 relative information on the 4-factor interaction. It

also provides a sufficient number of degrees of freedom for residual.
For a design using replicates of types I and II see Section 9.10.2.
Another pattern of confounding, yielding equal information on all effects and

interactions, is based on the completely orthogonalized 4 × 4 square given in
Table 9.9. If we insert into each cell of this square the treatment combinations
obtained by multiplying the treatment combinations listed for the correspond-
ing row and column and then make up blocks of size 4 according to columns,
rows, Latin letters, Greek letters, and numerals, we find the following pattern of
confounding:

Blocks Effects and Interactions
Replicate Obtained From Confounded

I Columns A, B,AB

II Rows C, D, CD

III Latin letters AC, BD, ABCD

IV Greek letters AD, ABC, BCD

V Numerals BC, ABD,ACD

The reader will realize that this design is in fact a resolvable BIB design with
parameters t = 16, b = 20, r = 5, k = 4, λ = 1.

9.6.3 Blocks of Size 8

Most likely one would use here a system of complete confounding, namely con-
founding ABCD. If some information is wanted on all interactions, a reasonable
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Table 9.9 Completely Orthogonalized 4 × 4
Square

(1) a b ab

(1) Aα1 Bβ2 Cγ 3 Dδ4

c Bγ 4 Aδ3 Dα2 Cβ1

d Cδ2 Dγ 1 Aβ4 Bα3

cd Dβ3 Cα4 Bδ1 Aγ 2

system of confounding would be to confound some or all of ABC, ABD, ACD,
BCD, and ABCD, one in each replicate.

For all the examples discussed in this section it should be clear what the
structure of the analysis is. Also, these examples should serve as an illustration
for more general systems of partial confounding for 2n experiments.

9.7 GENERAL CASE

The discussion in the preceding sections should have given an indication of how
the concept of partial confounding can be utilized very effectively for obtaining
information about most or all effects and interactions using blocks of small size.
It also has pointed out that there exist many different designs, that is, patterns
of confounding, for a given situation. There does not seem to be a reasonable
way of discussing the various designs in general. A careful choice must be
made for each specific experiment based on the objectives of the experiment and
prior knowledge or expectations about the experimental situation. All designs,
however, have certain properties in common, and we shall comment on these as
they affect various parts of the analysis.

Suppose we have a 2n factorial in blocks of size 2p. We then have 2n−p

blocks in each replicate; that is, 2n−p − 1 interactions are confounded in each
replicate. Let a basic pattern of partial confounding consist of s types of repli-
cates and let there be q repetitions of the basic pattern. We can then divide
the totality of the 2n − 1 interactions into three mutually exclusive sets
as follows:

E1 = {Eαk , k = 1, 2, . . . , n1; completely confounded}
E2 = {Eγ � , � = 1, 2, . . . , n2; partially confounded}
E3 = {Eδm, m = 1, 2, . . . , n3; not confounded}

with n1 + n2 + n3 = 2n − 1. With regard to E2, let Eγ � be confounded in c(γ�)

replicates and not confounded in u(γ�) = s − c(γ�) replicates. Finally, let N =
2nsq denote the total number of observations.
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9.7.1 Intrablock Information

Each Eδm ∈ E3 is estimated from all replicates, and

var
(
Êδm

)
= 1

sq2n−2 σ 2
e

and hence

SS
(
Eδm

)
= sq2n−2

[
Êδm

]2
(9.22)

Eγ� ∈ E2 is estimated from qu(γ�) replicates with

var
(
Êγ �

) = 1

qu(γ�)2n−2
σ 2

e (9.23)

and
SS
(
Eγ �

) = qu(γ�)2
n−2 [Êγ �

]2
(9.24)

9.7.2 The ANOVAs

The basic partitioning of the total sum of squares and its d.f. in the T|B-ANOVA
is given in Table 9.10a, with a further partitioning of the block and residual sum
of squares indicated symbolically in Tables 9.10b and 9.10c. The ANOVA is
based on model (9.1).

In Table 9.10a SS(Eγ �) and SS(Eδm) for Eγ � ∈ E2 and Eδm ∈ E3 are obtained
from (9.22) and (9.24), respectively, and νR is obtained by subtraction. In
Table 9.10b SS(Eαk )c and SS(Eγ �)c for Eαk ∈ E1 and Eγ � ∈ E2 are obtained
from the replicates in which these interactions are confounded, that is,

SS
(
Eαk

)
c

= sq2n−2 [Ẽαk
]2

and
SS
(
Eγ �

)
c

= qc(γ�2n−2)
[
Ẽγ �

]2
Similarly

SS
(
E

αk

ij

)
c

= 2n−2
[
Ẽ

αk

ij

]2

and

SS
(
E

γ �

ij

)
c

= 2n−2
[
Ẽ

γ �

ij

]2

where (ij) denotes the replicate j in repetition i and
∑′

ij denotes summation
over all replicates in which a given Eγ � is confounded, that is, qc(γ�) replicates.

Also, in Table 9.10c SS(E
γ �

ij ) and SS(E
δm

ij ) are obtained from those replicates
in which the corresponding effects are not confounded, that is,

SS
(
E

γ �

ij

)
= 2n−2

[
Ê

γ �

ij

]2
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Table 9.10 T|B-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

Xρ |I sq − 1 Usual

Xβ∗ |I, Xρ sq(2n−p − 1) Usual

Xτ |I, Xρ, Xβ∗ n2 + n3

∑
�

SS(Eγ � ) +
∑
m

SS(Eδm)

I |I, Xρ, Xβ∗ , Xτ νR Difference

Total N − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I, Xρ sq(2n−p − 1)

{Eαk } n1

∑
k

SS(Eαk )c

{Eγ �} n2

∑
�

SS(Eγ � )c

{Eαk × reps} n1(sq − 1)
∑

k

∑
ij

SS(E
αk

ij )c −
∑

k

SS(Eαk )c

{Eγ � × reps} q
∑

�

c(γ�) − n2

∑
�

∑
ij

′ SS(E
γ �

ij )c −
∑

�

SS(Eγ � )c

c. Partitioning of Residual Sum of Squares

I |I, Xρ, Xβ∗ , Xτ νR

{Eγ � × reps} q
∑

�

u(γ�) − n2

∑
�

∑
ij

′′ SS(E
γ �

ij ) −
∑

�

SS(Eγ � )

{Eδm × reps} n3(sq − 1)
∑
m

∑
ij

SS(E
δm

ij ) −
∑
m

SS(Eδm)

and

SS
(
E

δm

ij

)
= 2n−2

[
Ê

δm

ij

]2

and
∑′′ denotes summation over all replicates (ij) in which a given Eγ � is not

confounded, there being qu(γ�) such replicates.
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Table 9.11 B|T-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

Xρ |I sq − 1 Usual

Xτ |I,Xρ 2n − 1 Usual

Xβ∗ |I, Xρ, Xτ sq(2n−p − 1) − n1 Difference

I |I,Xρ, Xτ , Xβ∗ νR From Table 9.10

Total N − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I, Xρ, Xτ sq(2n−p − 1) − n1

Êγ � vs. Ẽγ � n2
q2n−2

s

∑
�

c(γ�)u(γ�)
[
Êγ � − Ẽγ �

]2
{Eαk × reps} n1(sq − 1) From Table 9.10b

{Eγ � × reps} q
∑

�

c(γ�) − n2 From Table 9.10b

The B|T-ANOVA in its basic form is given in Table 9.11a and a partitioning
of the block sum of squares is given in Table 9.11b. Here

SS
(
Êγ � vs. Ẽγ �

) =
(
Êγ � − Ẽγ �

)2
var

(
Êγ � − Ẽγ �

)
/σ 2

e

with

var
(
Êγ � − Ẽγ �

) =
(

1

qu(γ�)2n−2 + 1

qc(γ�)2n−2

)
σ 2

e

= s

qu(γ�)c(γ�)2n−2
σ 2

e

9.7.3 Interblock Information

Assuming β∗ to be a vector of i.i.d. random variables with E(β∗) = φ, E(β∗β∗′)
= σ 2

βI , we can obtain interblock information on the Eαk ∈ E1 and Eγ � ∈ E2,
namely

E
(
Ẽαk

) = Eαk with var
(
Ẽαk

) = 1

sq2n−2

(
σ 2

e + 2pσ 2
β

)
and

E
(
Ẽγ �

) = Eγ � with var
(
Ẽγ �

) = 1

qc(γ�)2n−2

(
σ 2

e + 2pσ 2
β

)
(9.25)
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9.7.4 Combined Intra- and Interblock Information

Combined information is available for Eγ � ∈ E2. Using (9.23) and (9.25), we
obtain the combined estimator

̂̂
Eγ � = u(γ�)wÊγ � + c(γ�)w

′Ẽγ �

u(γ�)w + c(γ�)w′ (9.26)

where, as usual, w = 1/σ 2
e , w′ = 1/(σ 2

e + 2pσ 2
β ). Letting w′/w = ρ, we have

var
(̂̂Eγ �

)
= 1[

u(γ�)w + c(γ�)w′] q2n−2

= σ 2
e[

u(γ�) + c(γ�)ρ
]
q2n−2

(9.27)

9.7.5 Estimation of Weights

As always, we estimate σ 2
e and hence w from the T|B-ANOVA, and using the

Yates procedure, we estimate σ 2
β and hence w′ from the B|T-ANOVA. From

Table 9.10 we obtain

σ̂ 2
e = SS(I ,Xρ, Xβ∗, Xτ )

νR

= MS(I |I,Xρ, Xβ∗, Xτ ) (9.28)

and hence ŵ = 1/σ̂ 2
e .

In order to estimate w′ we consider the expected values of the sums of squares
that form SS(Xβ∗ |I, Xρ, Xτ ) as given in Table 9.11b. Under the mixed model
assumption given in Section 9.7.3 above we find, for each Eγ � ∈ E2,

E
(
Êγ � − Ẽγ �

)2 = var
(
Êγ � − Ẽγ �

)
= 1

q2n−2

[
1

u(γ�)
σ 2

e + 1

c(γ�)

(
σ 2

e + 2pσ 2
β

)]
= s

q2n−2u(γ�)c(γ�)

[
σ 2

e + u(γ�)2p

s
σ 2

β

]
(9.29)

and hence, from (9.29) and Table 9.11b,

ESS
(
Êγ � vs. Ẽγ �

) = σ 2
e + u(γ�)2p

s
σ 2

β (9.30)

Since
ESS

(
Eαk × reps

) = (sq − 1)
(
σ 2

e + 2pσ 2
β

)
(9.31)

and
ESS

(
Eγ � × reps

) = [
qc(γ�) − 1

] (
σ 2

e + 2pσ 2
β

)
(9.32)
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we obtain, by using (9.30), (9.31), and (9.32) in Table 9.11b,

EMS
(
Xβ∗ |I,Xρ, Xτ

) = σ 2
e + �2pσ 2

β (9.33)

where

� =
(1/s)

∑
�

u(γ�) + n1(sq − 1) + q
∑

�

c(γ�) − n2

sq(2n−p − 1) − n1
(9.34)

From (9.33), (9.34), and (9.28) we then obtain

σ̂ 2
e + 2pσ̂ 2

β = 1

ŵ′ =
(

1 − 1

�

)
MS(I |I,Xρ, Xβ∗, Xτ )

+ 1

�
MS(Xβ∗ |I, Xρ,Xτ ) (9.35)

An interesting consequence of our derivation of EMS(Xβ∗ |I,Xρ, Xτ ) is that
because of (9.30), that is, the heterogeneous expected values of the components
of SS(Xβ∗ |I, Xρ,Xτ ), it follows that even under the assumption of normal-
ity SS(Xβ∗ |I,Xρ, Xτ ) does not follow a scaled χ2 distribution but rather is
distributed as a linear combination of scaled χ2 distributions.

Of course, as we have discussed earlier (see Section 1.11), other estimation
procedures can be used to obtain estimates of σ 2

e and σ 2
β (see Section 9.10 for

numerical examples using such procedures).

9.7.6 Efficiencies

Under a system of no confounding with r = qs replicates per treatment com-
bination (= number of blocks of size 2n) and a particular pattern of partial
confounding, we can compare the following amounts of information:

No Confounding Partial Confounding

Eαk ∈ E1 sq2n−2/σ 2
n 0

Eγ � ∈ E2 sq2n−2/σ 2
n u(γ�)q2n−2/σ 2

p

Eδm ∈ E3 sq2n−2/σ 2
n sq2n−2/σ 2

p

where σ 2
n denotes σ 2

e for blocks of size 2n and σ 2
p denotes σ 2

e for blocks of size
2p. From this we can compute the efficiency for each interaction and determine
when the information on interactions in E2 and E3 under confounding is at least
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as good as that without confounding depending on the ratio σ 2
p / σ 2

e . Excepting
interactions in E1 we can express the average efficiency as[∑

�

u(γ�) + n3s

]/
(n2 + n3)s

σ 2
n /σ 2

p

9.8 DOUBLE CONFOUNDING

In certain experimental situations it may be necessary to use more sophisticated
systems of confounding than we have discussed up to this point. Consider, for
example, a 25 experiment, where each treatment is applied to a certain material
that is then processed by a machine. Homogeneous batches of material, sufficient
for four runs (treatment combinations), are available and, in order to complete the
experiment in a reasonable time, four machines will be used; that is, each machine
will handle eight pieces of material from eight different batches, each piece of
material being treated differently (by one of the 25 treatment combinations). In
order to eliminate batch-to-batch variation we might consider each batch as a
block of size 4. Elimination of possible systematic differences among machines
suggests to consider each machine as a block of size 8. Combining these two
types of blocking and their corresponding systems of confounding leads to an
arrangement of the treatment combinations in a rectangular array that is referred
to as a system of double confounding. For the present example this is illustrated
in Table 9.12.

This arrangement is obtained by confounding ABC, CDE, ABDE with rows
(machines) and AB, CD, ABCD, BDE, ADE, BCE, ACE with columns
(batches) (see Table 8.3) and then constructing the intrablock subgroup for each
system of confounding. These subgroups represent the first row and first col-
umn, respectively, in Table 9.12. The remaining treatment combinations are then
filled in by taking products of appropriate treatment combinations according
to the usual rules. In the actual experiment rows and columns are, of course,
randomized.

Table 9.12 25 Experiment in 4 × 8 Pattern

Batches
1 2 3 4 5 6 7 8

Machines

1
2
3
4

(1) ab ace bce abde de bcd acd

abe e bc ac d abd acde bcde

cde abcde ad bd abc c be ae

abcd cd bde ade ce abce a b
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Table 9.13 Analysis of Variance
for Double Confounding Scheme

Source of Variation d.f.

Replicates 1
Rows/replicates 6
Columns/replicates 14
A,B, ABII, C, ACI, BC,

D,AD, BD,CDII, E,AE, 15
BEI, CE,DE

Residual 27

The observation in the j th row and kth column receiving the �th treatment is
represented by the model

yjk� = µ + ρj + γk + τ� + ejk� (9.36)

where the terms have the obvious meaning. However, this particular design is of
little value unless repeated, for the only means of estimating the error variance
is to use unconfounded interactions involving three or more factors, so that only
8 d.f. are available. In replications it would be well to use different schemes
of confounding (i.e., partial confounding) so that some within-row-and-column
information could be obtained on all important effects and interactions. If different
sets of machines are used in different replicates, model (9.36) will be extended
as follows:

yijk� = µ + αi + ρij + γik + τ� + eijk� (9.37)

where αi is the effect of the ith replicate, ρij the effect of the j th row (machine)
in the ith replicate, γik the effect of the kth column (batch) in the ith replicate, τ�

the effect of the �th treatment combination, and eijk� the error associated with the
unit in the j th row and kth column of the ith replicate receiving the �th treatment.
The structure of the ANOVA for model (9.37) is exhibited in Table 9.13 using
two replicates and confounding in the second replicate ACD, BCE, ABDE

with rows, AC, BE, ABCE, BCD, ABD, CDE, ADE with columns. We
assume that interactions involving three or more factors are negligible. The d.f.
for error in Table 9.13 can be broken down into 12 d.f. from unconfounded
or partially confounded higher order interactions and 15 d.f. from comparisons
of unconfounded effects and interactions in the two replicates, for example, ÂI
versus ÂII.

9.9 CONFOUNDING IN SQUARES

In the previous section we have discussed systems of confounding in a rectangular
array utilizing in general columns as blocks of size 2p and rows as blocks of size
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2n−p. A special case, p = n/2, would lead to a square array. More generally,
however, confounding in squares refers to any type of square array with blocks
of size 2p in both directions. Then every treatment combination appears 22p−n

times in the array. We shall consider a few specific examples illustrating the
procedure (Kempthorne, 1952, Chapter 15).

9.9.1 23 Factorial in Two 4 × 4 Squares

We need to confound one interaction with columns and one interaction with rows,
and since two replicates are necessary to get an adequate estimate of the error
variance, we may completely confound these two interactions, or we may partially
confound four interactions, or we may partially confound two interactions (say,
two 2-factor interactions) and completely confound one interaction (say, the 3-
factor interaction). Examples of each follow.

1. If ABC is confounded with columns and BC with rows, both replicates will
be randomizations of one of the squares

(1) a bc abc

ab b ac c

ac c ab b

bc abc (1) a

or

(1) a bc abc

ab c ac b

ac b bc c

bc abc (1) a

Note that the first square is constructed by the method described in Section
9.8. Also, the ANOVA has a structure similar to that given in Table 9.13.

2. If ABC and BC are confounded with columns and rows, respectively, in one
square, and AB and AC are confounded with columns and rows, respectively,
in the second square, we obtain the following result:

(1) a bc abc

ab b ac c

ac c ab b

bc abc (1) a

and

(1) a abc ac

ab b c bc

abc bc (1) b

c ac ab a

Here we obtain full information on main effects and 1
2 relative information

on interactions. As a result, however, the error d.f. are reduced from 13 to
11 compared to the previous design.

3. If we confound ABC with columns in both squares, BC with rows in one
square, and AB with rows in the second square, we obtain

(1) a bc abc

ab b ac c

ac c ab b

bc abc (1) a

and

(1) c ab abc

ab abc (1) c

ac a bc b

bc b ac a
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9.9.2 24 Factorial in 8 × 8 Squares

An interesting alternative to completely confounding two interactions with rows
and columns is the following: Partially confound four 3-factor interactions with
row pairs and completely confound the 4-factor interaction with the four column
pairs. This leads to the following design, where ABC, ABD, ACD, BCD are
confounded with row pairs I, II, III, IV, respectively:

(1) d ab abd ac acd bc bcd

I
ad a bd b cd abc abcd c

ab c (1) abc ad bcd bd acd

II
ac b bc a abcd abd cd d

cd abc ac bcd (1) b ad abd

III
bc acd abcd c bd d ab a

bd abd cd acd bc a (1) abc

IV
abcd bcd ad d ab c ac b

This design will provide 3
4 relative information on the 3-factor interactions

ABC, ABD, ACD, and BCD, no information on ABCD, and full information
on main effects and 2-factor interactions. If replications can be done, other sys-
tems of partial confounding may be used. The structure of the ANOVA is similar
to that given in Table 9.13.

Yates (1937a) has given arrangements for the 25 and 26 experiment in 8 × 8
squares. Through the process of randomizing rows and columns, these arrange-
ments may lead (with considerable frequency) to undesirable configurations.
Grundy and Healy (1950) have provided solutions to this problem by using the
concept of restricted randomization.

9.10 NUMERICAL EXAMPLES USING SAS

In this section we shall illustrate the use of PROC FACTEX to construct designs
with partial confounding and PROC GLM and PROC MIXED to analyze data
from such designs.

9.10.1 23 Factorial in Blocks of Size 2

Using one replicate each of types III, IV, and V as defined in Section 9.5.1 leads
to a design with partial confounding of A, B, C, AB, AC, BC and complete
confounding of ABC. The SAS input and output are given in Table 9.14.
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Table 9.14 23 Factorial in Blocks of Size 2 Using Partial Confounding

options nodate pageno=1;
proc factex;
factors A B C;
blocks size=2;
model est=(A B A*C B*C);
examine design confounding;
output out=replicate1 blockname=block nvals=(1 2 3 4);
title1 'TABLE 9.14';
title2 '2**3 FACTORIAL IN BLOCKS OF SIZE 2';
title3 'USING PARTIAL CONFOUNDING';
title4 '(CONFOUNDING ABC, AB AND C IN REP 1)';
run;

proc factex;
factors A B C;
blocks size=2;
model est=(A C A*B B*C);
examine design confounding;
output out=replicate2 blockname=block nvals=(5 6 7 8);
title4 '(CONFOUNDING ABC, AC AND B IN REP 2';
run;

proc factex;
factors A B C;
blocks size=2;
model est=(B C A*B A*C);
examine design confounding;
output out=replicate3 blockname=block nvals=(9 10 11 12);
title4 '(CONFOUNDING ABC, BC, AND A IN REP 3)';
run;

data combine;
set replicate1 replicate2 replicate3;
run;

proc print data=combine;
title4 '(PARTIALLY CONFOUNDING A, B, AB, C AC, BC';
title5 'AND COMPLETELY CONFOUNDING ABC)';
run;
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Table 9.14 (Continued )

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING

(CONFOUNDING ABC, AB AND C IN REP 1)

The FACTEX Procedure
Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 1
2 -1 -1 1 4
3 -1 1 -1 2
4 -1 1 1 3
5 1 -1 -1 2
6 1 -1 1 3
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = A*B*C
[B2] = C

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING

(CONFOUNDING ABC, AC AND B IN REP 2)

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 3
2 -1 -1 1 2
3 -1 1 -1 4
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 3
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = A*B*C
[B2] = A*C
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Table 9.14 (Continued )

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING

(CONFOUNDING ABC, BC, AND A IN REP 3)

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 3
2 -1 -1 1 2
3 -1 1 -1 2
4 -1 1 1 3
5 1 -1 -1 4
6 1 -1 1 1
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = A*B*C
[B2] = B*C

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING

(PARTIALLY CONFOUNDING A, B, AB, C, AC, BC
AND COMPLETELY CONFOUNDING ABC)

Obs block A B C

1 1 -1 -1 -1
2 1 1 1 -1
3 2 -1 1 -1
4 2 1 -1 -1
5 3 -1 1 1
6 3 1 -1 1
7 4 -1 -1 1
8 4 1 1 1
9 5 -1 1 1

10 5 1 1 -1
11 6 -1 -1 1
12 6 1 -1 -1
13 7 -1 -1 -1
14 7 1 -1 1
15 8 -1 1 -1
16 8 1 1 1
17 9 1 -1 1
18 9 1 1 -1
19 10 -1 -1 1
20 10 -1 1 -1
21 11 -1 -1 -1
22 11 -1 1 1
23 12 1 -1 -1
24 12 1 1 1
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Note that there are three input statements, one for each replicate, and that
the ESTIMATE statement specifies which effects should be estimable and hence
which effects should be confounded in a given replicate.

Various aspects of the analysis of data from the design of Table 9.14 are
illustrated in Table 9.15

The intrablock analysis is performed with PROC GLM and the combined anal-
ysis with PROC MIXED. The output is fairly self-explanatory, but we shall make
the following comments, mainly to relate the numerical output to the theoretical
developments in this chapter:

1. For the intrablock analysis, that is, the GLM procedure, estimates of all
effects are obtained from the replicates in which they are not confounded
with blocks. For example, the main effect A is estimated from replicates 1
and 2, that is, blocks 1–8, yielding Â = 3.0.

2. The standard error for Â is obtained from

v̂ar(Â) = 1

2 · 23−2 σ̂ 2
e = 1

4
· 7.5833 = 1.8958

as

se(Â) =
√

v̂ar(Â) = 1.3769

3. Concerning the combined analysis using PROC MIXED, we notice that the
estimate for σ 2

e obtained here, namely σ̂ 2
e = 8.0297, is different from the

estimate obtained from PROC GLM. The reason for this is that σ 2
e and σ 2

β

are estimated jointly using the REML procedure (see Section 1.11.2) rather
than the ANOVA procedure as outlined in Section 9.7.

4. With σ̂ 2
e = 8.027 and σ̂ 2

β = 2.4656 the weights w and w′ (see Section 9.7.5)
are estimated as

ŵ = 1

σ̂ 2
e

= .1245

ŵ′ = 1

σ̂ 2
e + 2σ̂ 2

β

= 1

12.96
= .0772

5. To illustrate the combining of intra- and interblock information, we consider
estimation of A. From the intrablock analysis we have ÂI,II = 3.0. From
replicate 3 we find ÃIII = 5.50. Then [see (9.26)]

̂̂
A = 2 × .1245 × 3.0 + .0772 × 5.50

2 × .1245 + .0772
= 3.5916

which is (apart from rounding error) the value given in the output.
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Table 9.15 Analysis of 23 Factorial With Partial Confounding

options nodate pageno=1;
data confound;
input rep block A B C y @@;
datalines;
1 1 0 0 0 8 2 5 0 1 1 22 3 9 1 0 1 39
1 1 1 1 0 13 2 5 1 1 0 25 3 9 1 1 0 32
1 2 0 1 0 15 2 6 0 0 1 20 3 10 0 0 1 28
1 2 1 0 0 9 2 6 1 0 0 18 3 10 0 1 0 26
1 3 0 1 1 11 2 7 0 0 0 20 3 11 0 0 0 30
1 3 1 0 1 18 2 7 1 0 1 21 3 11 0 1 1 33
1 4 0 0 1 7 2 8 0 1 0 17 3 12 1 0 0 27
1 4 1 1 1 19 2 8 1 1 1 21 3 12 1 1 1 41
;
run;

proc print data=confound;
title1 'TABLE 9.15';
title2 '2**3 FACTORIAL WITH PARTIAL CONFOUNDING';
run;

proc glm data=confound;
class rep block A B C;
model y= rep block(rep) A|B|C@2;
estimate 'Main effect A' A -1 1;
estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;
title3 'INTRA-BLOCK ANALYSIS';
run;

proc mixed data=confound;
class rep block A B C;
model y= rep A|B|C/ddfm=satterth;
random block(rep);
estimate 'Main effect A' A -1 1;
estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;
estimate 'Interaction ABC' A*B*C 1 -1 -1 1 -1 1 1 -1/divisor=4;
title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
run;

proc glm data=confound;
class rep block A B C;
model y= rep A|B|C block(rep);
title3 'AUXILIARY ANALYSIS';
run;
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Table 9.15 (Continued )

Obs rep block A B C y

1 1 1 0 0 0 8
2 2 5 0 1 1 22
3 3 9 1 0 1 39
4 1 1 1 1 0 13
5 2 5 1 1 0 25
6 3 9 1 1 0 32
7 1 2 0 1 0 15
8 2 6 0 0 1 20
9 3 10 0 0 1 28

10 1 2 1 0 0 9
11 2 6 1 0 0 18
12 3 10 0 1 0 26
13 1 3 0 1 1 11
14 2 7 0 0 0 20
15 3 11 0 0 0 30
16 1 3 1 0 1 18
17 2 7 1 0 1 21
18 3 11 0 1 1 33
19 1 4 0 0 1 7
20 2 8 0 1 0 17
21 3 12 1 0 0 27
22 1 4 1 1 1 19
23 2 8 1 1 1 21
24 3 12 1 1 1 41

INTRABLOCK ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values

rep 3 1 2 3
block 12 1 2 3 4 5 6 7 8 9 10 11 12
A 2 0 1
B 2 0 1
C 2 0 1
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Table 9.15 (Continued )

Number of observations 24

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 17 1889.833333 111.166667 14.66 0.0016
Error 6 45.500000 7.583333
Corrected Total 23 1935.333333

R-Square Coeff Var Root MSE y Mean

0.976490 12.70978 2.753785 21.66667

Source DF Type I SS Mean Square F Value Pr > F

rep 2 1537.333333 768.666667 101.36 <.0001
block(rep) 9 127.000000 14.111111 1.86 0.2316
A 1 36.000000 36.000000 4.75 0.0722
B 1 36.000000 36.000000 4.75 0.0722
A*B 1 12.250000 12.250000 1.62 0.2508
C 1 56.250000 56.250000 7.42 0.0345
A*C 1 81.000000 81.000000 10.68 0.0171
B*C 1 4.000000 4.000000 0.53 0.4950

Source DF Type III SS Mean Square F Value Pr > F

rep 2 1537.333333 768.666667 101.36 <.0001
block(rep) 9 119.833333 13.314815 1.76 0.2539
A 1 36.000000 36.000000 4.75 0.0722
B 1 36.000000 36.000000 4.75 0.0722
A*B 1 12.250000 12.250000 1.62 0.2508
C 1 56.250000 56.250000 7.42 0.0345
A*C 1 81.000000 81.000000 10.68 0.0171
B*C 1 4.000000 4.000000 0.53 0.4950

Standard
Parameter Estimate Error t Value Pr > |t|

Main effect A 3.00000000 1.37689264 2.18 0.0722
Interaction AB 1.75000000 1.37689264 1.27 0.2508
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Table 9.15 (Continued )

2**3 FACTORIAL WITH PARTIAL CONFOUNDING
COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set WORK.CONFOUND
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

rep 3 1 2 3
block 12 1 2 3 4 5 6 7 8 9 10 11 12
A 2 0 1
B 2 0 1
C 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 30
Columns in Z 12
Subjects 1
Max Obs Per Subject 24
Observations Used 24
Observations Not Used 0
Total Observations 24

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 83.94834175
1 2 83.76036493 0.00000969
2 1 83.76008026 0.00000000
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Table 9.15 (Continued )

Convergence criteria met.

Covariance Parameter
Estimates

Cov Parm Estimate

block(rep) 2.4656
Residual 8.0297

Fit Statistics

−2 Res Log Likelihood 83.8
AIC (smaller is better) 87.8
AICC (smaller is better) 88.9
BIC (smaller is better) 88.7

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

rep 2 4.56 59.31 0.0005
A 1 9.98 8.41 0.0158
B 1 9.98 4.57 0.0584
A*B 1 9.98 0.63 0.4464
C 1 9.98 7.79 0.0191
A*C 1 9.98 6.19 0.0321
B*C 1 9.98 0.11 0.7481
A*B*C 1 4.56 1.85 0.2370

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Main effect A 3.5913 1.2380 9.98 2.90 0.0158
Interaction AB 0.9814 1.2380 9.98 0.79 0.4464
Interaction ABC 2.0000 1.4697 4.56 1.36 0.2370
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Table 9.15 (Continued )

2**3 FACTORIAL WITH PARTIAL CONFOUNDING
AUXILIARY ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values

rep 3 1 2 3
block 12 1 2 3 4 5 6 7 8 9 10 11 12
A 2 0 1
B 2 0 1
C 2 0 1

Number of observations 24

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 17 1889.833333 111.166667 14.66 0.0016
Error 6 45.500000 7.583333
Corrected Total 23 1935.333333

R-Square Coeff Var Root MSE y Mean

0.976490 12.70978 2.753785 21.66667

Source DF Type I SS Mean Square F Value Pr > F

rep 2 1537.333333 768.666667 101.36 <.0001
A 1 88.166667 88.166667 11.63 0.0143
B 1 37.500000 37.500000 4.95 0.0678
A*B 1 2.666667 2.666667 0.35 0.5748
C 1 66.666667 66.666667 8.79 0.0251
A*C 1 37.500000 37.500000 4.95 0.0678
B*C 1 0.166667 0.166667 0.02 0.8870
A*B*C 1 24.000000 24.000000 3.16 0.1256
block(rep) 8 95.833333 11.979167 1.58 0.2973
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Table 9.15 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

rep 2 1537.333333 768.666667 101.36 <.0001
A 1 36.000000 36.000000 4.75 0.0722
B 1 36.000000 36.000000 4.75 0.0722
A*B 1 12.250000 12.250000 1.62 0.2508
C 1 56.250000 56.250000 7.42 0.0345
A*C 1 81.000000 81.000000 10.68 0.0171
B*C 1 4.000000 4.000000 0.53 0.4950
A*B*C 0 0.000000 . . .
block(rep) 8 95.833333 11.979167 1.58 0.2973

Using (9.27), we obtain

v̂ar
(̂
Â
)

= 8.0297

(2 + 0.6201) 2
= 1.5323

and hence

se
(̂
Â
)

= 1.2379

which is (apart from rounding error) the value given in the output.
6. Using all three replicates, we find

ÃBC = 2.0

with

v̂ar
(
ÃBC

)
= 1

3 × 2
12.96 = 2.16

and

se
(
ÃBC

)
= 1.4697

7. We use the results of Table 9.15—auxiliary analysis—to illustrate the numer-
ical implementation of some of the results of Sections 9.7.4 and 9.7.5 The
reader will recognize that the type I SS are those of the B|T-ANOVA in
Table 9.11. Its main purpose is the estimation of w and w′. Obviously,

ŵ = 1

7.5833
= .1319
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and with � = 0.75 in (9.34), we obtain

ŵ′ = (−0.3333 × 7.5833 + 1.3333 × 11.9792)−1 = 0.0744.

The values for ŵ and ŵ′ are used to obtain, for example,

̂̂
A = 0.1319 × 3.0 + 0.0744 × 5.5

0.1319 + 0.0744
= 3.9016

[see (9.26) and from (9.27)],

v̂ar
(̂
Â
)

= 7.5833

(2 + 0.5641) 2
= 1.4787

se
(̂
Â
)

= 1.2160

which is in good agreement with the results obtained in 5.

9.10.2 24 Factorial in Blocks of Size 4

Assuming that the 4-factor into action ABCD is negligible and that we want full
information on all main effects, using eight blocks of size 4, a suitable design
(from inspection of Table 8.3) is to confound AB and CD and, hence, ABCD in
one replicate and AC and BD and, hence, ABCD in the other replicate. Such a
design is given in Table 9.16, generated by PROC FACTEX. This design results
in the following three sets (see Section 9.7):

E1 = {ABCD} n1 = 1

E2 = {AB,AC, BD, CD} n2 = 4

E3 = {A, B,C,D, AD, BC,ABC, ABD, ACD, BCD} n3 = 10

with zero information on E1, 1
2 information on E2, and full information on E3.

The analysis of a data set using the design of Table 9.16 is given in Table 9.17
using PROC GLM for intrablock analysis and PROC MIXED for the combined
analysis.

The same comments made in Section 9.10.1 apply here also, and the reader is
encouraged to perform the computations using previously described methodology
in order to verify agreement with the computer output. We only make one addi-
tional comment concerning unconfounded effects, for example, main effect A.
Since A is unconfounded, only intrablock information exists. This is reflected in
the fact that the estimates for A are the same, namely Â = 4.6250, in the PROC
GLM and PROC MIXED outputs. However, the standard errors are slightly dif-
ferent, 0.8705 for PROC GLM versus 0.8722 for PROC MIXED, due to the fact
that the estimation procedures for variance components and hence the estimates
are different (due to unbalancedness) for the two procedures, σ̂ 2

e = 6.0625 for
PROC GLM and σ̂ 2

e = 6.0857 for PROC MIXED. The difference in this case is,
of course, negligible.
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Table 9.16 24 Factorial in Blocks of Size 4 Using Partial Confounding

options nodate pageno=1;
proc factex;
factors A B C D;
blocks size=4;
model est=(A B C A*C B*C D A*D B*D A*B*C A*B*D A*C*D B*C*D);
examine design confounding;
output out=replicate1 blockname=block nvals=(1 2 3 4);
title1 'TABLE 9.16';
title2 '2**4 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'USING PARTIAL CONFOUNDING';
run;

proc factex;
factors A B C D;
blocks size=4;
model est=(A B A*B C B*C A*B*C D A*D C*D A*B*D A*C*D B*C*D);
examine design confounding;
output out=replicate2 blockname=block nvals=(5 6 7 8);
run;

proc print data=replicate1;
title3 '(PARTIALLY CONFOUNDING AB AC BD CD';
title4 'AND COMPLETELY CONFOUNDING ABCD)';
run;

proc print data=replicate2;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1
3 -1 -1 1 -1 1
4 -1 -1 1 1 4
5 -1 1 -1 -1 3
6 -1 1 -1 1 2
7 -1 1 1 -1 2
8 -1 1 1 1 3
9 1 -1 -1 -1 3

10 1 -1 -1 1 2
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 4
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Table 9.16 (Continued )

14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudo-factor Confounding Rules

[B1] = A*B*C*D
[B2] = C*D

Design Points

Experiment
Number A B C D Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1
3 -1 -1 1 -1 3
4 -1 -1 1 1 2
5 -1 1 -1 -1 1
6 -1 1 -1 1 4
7 -1 1 1 -1 2
8 -1 1 1 1 3
9 1 -1 -1 -1 3

10 1 -1 -1 1 2
11 1 -1 1 -1 4
12 1 -1 1 1 1
13 1 1 -1 -1 2
14 1 1 -1 1 3
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudo-factor Confounding Rules

[B1] = A*B*C*D
[B2] = B*D

2**4 FACTORIAL IN BLOCKS OF SIZE 4
(PARTIALLY CONFOUNDING AB AC BD CD
AND COMPLETELY CONFOUNDING ABCD)

Obs block A B C D
1 1 -1 -1 -1 1
2 1 -1 -1 1 -1
3 1 1 1 -1 1
4 1 1 1 1 -1
5 2 -1 1 -1 1
6 2 -1 1 1 -1
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Table 9.16 (Continued )

7 2 1 -1 -1 1
8 2 1 -1 1 -1
9 3 -1 1 -1 -1

10 3 -1 1 1 1
11 3 1 -1 -1 -1
12 3 1 -1 1 1
13 4 -1 -1 -1 -1
14 4 -1 -1 1 1
15 4 1 1 -1 -1
16 4 1 1 1 1

1 5 -1 -1 -1 1
2 5 -1 1 -1 -1
3 5 1 -1 1 1
4 5 1 1 1 -1
5 6 -1 -1 1 1
6 6 -1 1 1 -1
7 6 1 -1 -1 1
8 6 1 1 -1 -1
9 7 -1 -1 1 -1

10 7 -1 1 1 1
11 7 1 -1 -1 -1
12 7 1 1 -1 1
13 8 -1 -1 -1 -1
14 8 -1 1 -1 1
15 8 1 -1 1 -1
16 8 1 1 1 1

Table 9.17 Analysis of 24 Factorial With Partial Confounding

options nodate pageno=1;
data partial;
input rep block A B C D y @@;
datalines;
1 1 0 0 0 1 15 2 5 0 0 0 1 40
1 1 0 0 1 0 19 2 5 0 1 0 0 43
1 1 1 1 0 1 12 2 5 1 0 1 1 47
1 1 1 1 1 0 22 2 5 1 1 1 0 45
1 2 0 1 0 1 21 2 6 0 0 1 1 45
1 2 0 1 1 0 25 2 6 0 1 1 0 49
1 2 1 0 0 1 28 2 6 1 0 0 1 52
1 2 1 0 1 0 30 2 6 1 1 0 0 53
1 3 0 1 0 0 27 2 7 0 0 1 0 55
1 3 0 1 1 1 31 2 7 0 1 1 1 59
1 3 1 0 0 0 30 2 7 1 0 0 0 54
1 3 1 0 1 1 34 2 7 1 1 0 1 58
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Table 9.17 (Continued )

1 4 0 0 0 0 14 2 8 0 0 0 0 45
1 4 0 0 1 1 20 2 8 0 1 0 1 50
1 4 1 1 0 0 22 2 8 1 0 1 0 55
1 4 1 1 1 1 27 2 8 1 1 1 1 63
;
run;

proc print data=partial;
title1 'TABLE 9.17';
title2 '2**4 FACTORIAL WITH PARTIAL CONFOUNDING';
run;

proc glm data=partial;
class rep block A B C D;
model y=rep block(rep)A|B|C|D@3;
estimate 'Main effect A' A -1 1;
estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;
title3 'INTRA-BLOCK ANALYSIS';
run;

proc mixed data=partial;
class rep block A B C D;
model y= rep A|B|C|D/ddfm=satterth;
random block(rep);
estimate 'Main effect A' A -1 1;
estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;

title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
run;

Obs rep block A B C D y

1 1 1 0 0 0 1 15
2 1 1 0 0 1 0 19
3 1 1 1 1 0 1 12
4 1 1 1 1 1 0 22
5 1 2 0 1 0 1 21
6 1 2 0 1 1 0 25
7 1 2 1 0 0 1 28
8 1 2 1 0 1 0 30
9 1 3 0 1 0 0 27

10 1 3 0 1 1 1 31
11 1 3 1 0 0 0 30
12 1 3 1 0 1 1 34
13 1 4 0 0 0 0 14
14 1 4 0 0 1 1 20
15 1 4 1 1 0 0 22
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Table 9.17 (Continued )

16 1 4 1 1 1 1 27
17 2 5 0 0 0 1 40
18 2 5 0 1 0 0 43
19 2 5 1 0 1 1 47
20 2 5 1 1 1 0 45
21 2 6 0 0 1 1 45
22 2 6 0 1 1 0 49
23 2 6 1 0 0 1 52
24 2 6 1 1 0 0 53
25 2 7 0 0 1 0 55
26 2 7 0 1 1 1 59
27 2 7 1 0 0 0 54
28 2 7 1 1 0 1 58
29 2 8 0 0 0 0 45
30 2 8 0 1 0 1 50
31 2 8 1 0 1 0 55
32 2 8 1 1 1 1 63

2**4 FACTORIAL WITH PARTIAL CONFOUNDING
INTRABLOCK ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values

rep 2 1 2

block 8 1 2 3 4 5 6 7 8
A 2 0 1

B 2 0 1

C 2 0 1

D 2 0 1

Number of observations 32

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 21 7132.250000 339.630952 56.02 <.0001

Error 10 60.625000 6.062500

Corrected Total 31 7192.875000
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Table 9.17 (Continued )

R-Square Coeff Var Root MSE y Mean

0.991572 6.621081 2.462214 37.18750

Source DF Type I SS Mean Square F Value Pr > F

rep 1 5940.500000 5940.500000 979.88 <.0001
block(rep) 6 777.375000 129.562500 21.37 <.0001
A 1 171.125000 171.125000 28.23 0.0003
B 1 18.000000 18.000000 2.97 0.1156
A*B 1 1.562500 1.562500 0.26 0.6227
C 1 120.125000 120.125000 19.81 0.0012
A*C 1 0.562500 0.562500 0.09 0.7669
B*C 1 2.000000 2.000000 0.33 0.5784
A*B*C 1 4.500000 4.500000 0.74 0.4091
D 1 6.125000 6.125000 1.01 0.3385
A*D 1 1.125000 1.125000 0.19 0.6758
B*D 1 5.062500 5.062500 0.84 0.3823
A*B*D 1 0.500000 0.500000 0.08 0.7798
C*D 1 1.562500 1.562500 0.26 0.6227
A*C*D 1 10.125000 10.125000 1.67 0.2253
B*C*D 1 72.000000 72.000000 11.88 0.0063

Source DF Type III SS Mean Square F Value Pr > F

rep 1 5940.500000 5940.500000 979.88 <.0001
block(rep) 6 406.875000 67.812500 11.19 0.0006
A 1 171.125000 171.125000 28.23 0.0003
B 1 18.000000 18.000000 2.97 0.1156
A*B 1 1.562500 1.562500 0.26 0.6227
C 1 120.125000 120.125000 19.81 0.0012
A*C 1 0.562500 0.562500 0.09 0.7669
B*C 1 2.000000 2.000000 0.33 0.5784
A*B*C 1 4.500000 4.500000 0.74 0.4091
D 1 6.125000 6.125000 1.01 0.3385
A*D 1 1.125000 1.125000 0.19 0.6758
B*D 1 5.062500 5.062500 0.84 0.3823
A*B*D 1 0.500000 0.500000 0.08 0.7798
C*D 1 1.562500 1.562500 0.26 0.6227
A*C*D 1 10.125000 10.125000 1.67 0.2253
B*C*D 1 72.000000 72.000000 11.88 0.0063

Parameter Estimate Standard Error t Value Pr > |t|

Main effect A 4.62500000 0.87052427 5.31 0.0003
Interaction AB −0.62500000 1.23110723 −0.51 0.6227
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Table 9.17 (Continued )

2**4 FACTORIAL WITH PARTIAL CONFOUNDING
COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set WORK.PARTIAL
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

rep 2 1 2
block 8 1 2 3 4 5 6 7 8
A 2 0 1
B 2 0 1
C 2 0 1
D 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 83
Columns in Z 8
Subjects 1
Max Obs Per Subject 32
Observations Used 32
Observations Not Used 0
Total Observations 32

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 107.26388086
1 2 97.51296909 0.01846419
2 1 96.69150852 0.00679576
3 1 96.40491364 0.00138264
4 1 96.35086623 0.00008239
5 1 96.34791369 0.00000036
6 1 96.34790114 0.00000000
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Table 9.17 (Continued )

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate

block(rep) 36.8465
Residual 6.0857

Fit Statistics

-2 Res Log Likelihood 96.3
AIC (smaller is better) 100.3
AICC (smaller is better) 101.3
BIC (smaller is better) 100.5

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

rep 1 4.62 38.71 0.0021
A 1 9.92 28.12 0.0004
B 1 9.92 2.96 0.1164
A*B 1 10.7 0.63 0.4452
C 1 9.92 19.74 0.0013
A*C 1 10.7 0.02 0.8817
B*C 1 9.92 0.33 0.5792
A*B*C 1 9.92 0.74 0.4101
D 1 9.92 1.01 0.3396
A*D 1 9.92 0.18 0.6764
B*D 1 10.7 0.41 0.5366
A*B*D 1 9.92 0.08 0.7803
C*D 1 10.7 0.39 0.5438
A*C*D 1 9.92 1.66 0.2264
B*C*D 1 9.92 11.83 0.0064
A*B*C*D 1 4.62 0.01 0.9139

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Main effect A 4.6250 0.8722 9.92 5.30 0.0004
Interaction AB -0.9587 1.2097 10.7 -0.79 0.4452



C H A P T E R 10

Designs with Factors at Three Levels

10.1 INTRODUCTION

In discussing the 2n factorial design in Chapter 7 we saw that main effects and
interactions can be defined simply as linear combinations of the true responses,
more specifically as the average response of one set of 2n−1 treatment combi-
nations minus the average response of the complementary set of 2n−1 treatment
combinations. And even more specifically, the main effect of a certain factor is
the average response with that factor at the 1 level minus the average response
with that factor at the 0 level. Turning now to the situation where each factor
has three levels, which we shall refer to as 0 level, 1 level, and 2 level, such a
simple definition of main effects and interactions no longer exists. We can no
longer talk about the main effect of a factor or the interaction between two or
more factors but shall talk instead about main effect components or comparisons
belonging to a certain factor and about interaction components. We shall see how
all this can be developed as a generalization of the formal approach described
for the 2n experiment in Section 7.4.

10.2 DEFINITION OF MAIN EFFECTS AND INTERACTIONS

10.2.1 The 32 Case

To introduce the concepts we shall consider first the simplest case, namely that
of two factors, A and B say, each having three levels, denoted by 0, 1, 2. A
treatment combination of this 32 factorial is then represented by x ′ = (x1, x2)

where xi = 0, 1, 2(i = 1, 2), with x1 referring to factor A and x2 to factor B.

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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We now partition the set of nine treatment combinations into three sets of
three treatment combinations each according to the levels of factor A:

set I: {(0, 0), (0, 1), (0, 2)}
set II: {(1, 0), (1, 1), (1, 2)}

set III: {(2, 0), (2, 1), (2, 2)}

More formally, we can define these three sets by the three equations:

set I: x1 = 0

set II: x1 = 1

set III: x1 = 2

(10.1)

Comparisons among the mean true responses for these three sets are then said
to belong to main effect A. Since there are three sets, there are two linearly
independent comparisons among these three sets (i.e., their mean responses),
and these comparisons represent the 2 d.f. for main effect A. For example, the
comparisons could be (set I − set II) and (set I − III), or (set I − set II) and
(set I + set II − 2 set III).

Similarly, we can divide the nine treatment combinations into three sets corre-
sponding to the levels of factor B or, equivalently, corresponding to the equations:

x2 = 0: {(0, 0), (1, 0), (2, 0)}
x2 = 1: {(0, 1), (1, 1), (2, 1)}
x2 = 2: {(0, 2), (1, 2), (2, 2)}

(10.2)

Comparisons among the mean responses of these three sets then constitute main
effect B.

As in the 2n case, the interaction between factors A and B will be defined in
terms of comparisons of sets (of treatment combinations), which are determined
by equations involving both x1 and x2. One such partitioning is given by

set I: x1 + x2 = 0 mod 3: {(0, 0), (1, 2), (2, 1)}
set II: x1 + x2 = 1 mod 3: {(1, 0), (0, 1), (2, 2)}

set III: x1 + x2 = 2 mod 3: {(2, 0), (0, 2), (1, 1)}
(10.3)

Comparisons among these three sets account for 2 of the 4 d.f. for the A × B

interaction. The remaining 2 d.f. are accounted for by comparisons among the
sets based on the following partition:

set I: x1 + 2x2 = 0 mod 3: {(0, 0), (1, 1), (2, 2)}
set II: x1 + 2x2 = 1 mod 3: {(1, 0), (0, 2), (2, 1)}

set III: x1 + 2x2 = 2 mod 3: {(2, 0), (0, 1), (1, 2)}
(10.4)
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To see what our development so far means with respect to the usual factorial
representation, we consider (see also Section I.11.8.1)

τij = µ + Ai + Bj + (AB)ij (10.5)

with

2∑
i=0

Ai = 0
2∑

j=0

Bj = 0
2∑

i=0

(AB)ij = 0

for each j ,

2∑
j=0

(AB)ij = 0

for each i, where τij is the true response for the treatment combination (x1 =
i, x2 = j). With the model (10.5), a contrast among sets (10.1), that is,∑

i

ciτ i· =
∑

i

ciAi

(∑
ci = 0

)
is the corresponding contrast among A main effects. A contrast among sets (10.2),
that is, ∑

j

cj τ ·j =
∑
j

cjBj

(∑
cj = 0

)
it is the corresponding contrast among B main effects. A contrast among sets
(10.3) can be written as

c1(τ00 + τ12 + τ21) + c2(τ10 + τ01 + τ22) + c3(τ20 + τ02 + τ11)

(c1 + c2 + c3 = 0)

which, using (10.5), reduces to the same contrast in the (AB)ij ’s. The same is
true for comparisons among sets (10.4), that is,

c1(τ00 + τ11 + τ22) + c2(τ10 + τ02 + τ21) + c3(τ20 + τ01 + τ12)

(c1 + c2 + c3 = 0)

The reader will notice that the last two comparisons have no particular meaning
or interpretation for any choice of the ci’s, except that they each belong to the 2-
factor interaction A × B, and that each represents 2 d.f. of that interaction. This is
in contrast to the parameterization given in Section I.11.8.1 in terms of orthogonal
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polynomials. One difference, of course, is that the parameterization given there is
in terms of single degree of freedom parameters, and a second difference is that
it is meaningful only for quantitative factors, whereas the definitions in terms of
the partitions as summarized in (10.6) below hold for quantitative and qualitative
factors. But the most important point is that the current definitions of effects and
interactions will prove to be important in the context of systems of confounding
(see Section 10.5) and fractional factorials (see Section 13.4).

To sum up our discussion so far, the effects and interactions for a 32 experiment
are given in pairs of degrees of freedom by comparisons among three sets of
treatment combinations as follows:


mod 3

A: x1 = 0, 1, 2

B: x2 = 0, 1, 2

A × B:

{
x1 + x2 = 0, 1, 2

x1 + 2x2 = 0, 1, 2

(10.6)

It is convenient to denote the pairs of degrees of freedom corresponding to
x1 + x2 = 0, 1, 2 by the symbol AB and the pair corresponding to x1 + 2x2 =
0, 1, 2 by AB2.

It is easy to see that the groups given by the symbols AB2 and A2B are
the same. It is, therefore, convenient, in order to obtain a complete and unique
enumeration of the pairs of degrees of freedom, to adopt the rule that an order
of the letters is to be chosen in advance and that the power of the first letter in a
symbol must be unity. This latter is obtained by taking the square of the symbol
with the rule that the cube of any letter is to be replaced by unity, that is, if the
initial letter of the symbol occurs raised to the power 2, for example, A2B, we
then obtain

A2B ≡ (A2B)2 ≡ A4B2 ≡ AB2

This procedure follows from the fact that the partitioning produced by

2x1 + x2 = 0, 1, 2

is the same as that produced by

2 · 2x1 + 2x2 = 0, 2, 1

that is,

x1 + 2x2 = 0, 2, 1

which is the partitioning denoted by AB2.



DEFINITION OF MAIN EFFECTS AND INTERACTIONS 363

Table 10.1 Effects and Interactions for 33

Experiment

Left-Hand Side of
Effect/Interaction Defining Equation

A x1
B x2

A × B

{
AB

AB2

x1 + x2

x1 + 2x2

C x3

A × C

{
AC

AC2

x1 + x3

x1 + 2x3

B × C

{
BC

BC2

x2 + x3

x2 + 2x3

A × B × C


ABC

ABC2

AB2C

AB2C2

x1 + x2 + x3

x1 + x2 + 2x3

x1 + 2x2 + x3

x1 + 2x2 + 2x3

10.2.2 General Case

The procedure of formally defining effects and interactions, illustrated for the 32

experiment, can be extended easily to the 3n case. We shall have then (3n − 1)/2
symbols, each representing 2 d.f. For example, for the 33 experiment there will
be 13 symbols as given in Table 10.1 together with their defining equations of
the form α1x1 + α2x2 + α3x3 = 0, 1, 2 mod 3.

For the general case of the 3n experiment, denoting the factors by
A1, A2, . . . , An, the (3n − 1)/2 symbols can be written as A

α1
1 , A

α2
2 , . . . , A

αn
n

with αi = 0, 1, 2 (i = 1, 2, . . . , n) and the convention that (1) any letter Ai with
αi = 0 is dropped from the expression, (2) the first nonzero α is equal to one
(this can always be achieved by multiplying each αi by 2), and (3) any αi = 1
is not written explicitly in the expression. (This is illustrated in Table 10.1 by
replacing A by A1, B by A2, and C by A3.)

The n-tuple α′ = (α1, α2, · · · , αn) associated with A
α1
1 A

α2
2 · · · Aαn

n is referred
to as a partition of the 3n treatment combinations into three sets according to
the equations

α1x1 + α2x2 + · · · + αnxn = 0, 1, 2 mod 3 (10.7)
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We now list some properties of such partitions:

1. Each partition leads to three sets of 3n−1 treatment combinations each as
is evident from Eqs. (10.7).

2. If α′ = (α1, α2, . . . , αn) and β ′ = (β1, β2, . . . , βn) are two distinct parti-
tions, then the two equations

α1x1 + α2x2 + · · · + αnxn = δ1 mod 3 (10.8)

and

β1x1 + β2x2 + · · · + βnxn = δ2 mod 3 (10.9)

are satisfied by exactly 3n−2 treatment combinations x′ = (x1, x2, . . . , xn).
This implies that the set of treatment combinations determined by α′x = δ1
has exactly 3n−2 treatment combinations in common with each of the
three sets determined by the equations β ′x = 0, 1, 2 mod 3, respectively.
It is in this sense that the two partitions α and β are orthogonal to
each other.

3. If a treatment combination x′ = (x1, x2, . . . , xn) satisfies both Eqs.
(10.8) and (10.9) for a particular choice of δ1, δ2, then x also satisfies
the equation

(α1 + β1)x1 + (α2 + β2)x2 + · · · + (αn + βn)xn = δ1 + δ2 mod 3
(10.10)

Equation (10.10) is, of course, one of the three equations associated
with the partition α′ + β ′ = (α1 + β1, α2 + β2, . . . , αn + βn), in which
each component is reduced mod 3, and hence with the interaction
A

α1+β1
1 A

α2+β2
2 · · ·Aαn+βn

n . In agreement with the definition in Section 7.4

we refer to Eα+β = A
α1+β1
1 A

α2+β2
2 · · ·Aαn+βn

n as generalized interaction

(GI) of Eα = A
α1
1 A

α2
2 · · ·Aαn

n and Eβ = A
β1
1 A

β2
2 · · · Aβn

n .
In addition to satisfying (10.10), the treatment combination x, which sat-
isfies (10.8) and (10.9), also satisfies the equation

(α1 + 2β1)x1 + (α2 + 2β2)x2 + · · · + (αn + 2βn)xn = δ1 + 2δ2 mod 3
(10.11)

which is associated with the partition α′ + 2β ′ and hence the interaction
Eα+2β = A

α1+2β1
1 A

α2+2β2
2 · · · Aαn+2βn

n . This interaction is therefore another
GI of Eα and Eβ . To summarize then, any two interactions Eα and Eβ

have two GIs Eα+β and Eα+2β , where α + β and α + 2β are formed
mod 3 and are subject to the rules stated earlier. We illustrate this by the
following example.
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Example 10.1 Consider AB and ABC2 in the 33 case, that is, α′ = (1, 1, 0)

and β ′ = (1, 1, 2). Then

(α + β)′ = (2, 2, 2) ≡ (1, 1, 1)

and
(α + 2β)′ = (3, 3, 4) ≡ (0, 0, 1)

and hence the GIs of AB and ABC2 are ABC and C. Another way of obtaining
this result is through formal multiplication and reduction mod 3, that is,

(AB)(ABC2) = A2B2C2 = (A2B2C2)2 = ABC

and

(AB)(ABC2)2 = A3B3C4 = C �

10.3 PARAMETERIZATION IN TERMS OF MAIN EFFECTS
AND INTERACTIONS

The symbols used in the previous section to denote pairs of degrees of freedom
will also be used to denote the magnitude of effects and interactions in the fol-
lowing way (see also Section 10.4). Each symbol represents a division of the set
of 3n treatment combinations into three sets of 3n − 1 treatment combinations
each. The symbol, with a subscript that is the right-hand side of the equation
determining the particular one of the three sets in which the treatment combina-
tions lie, will denote the mean response of that set as a deviation from the overall
mean, M . If Eα = A

α1
1 A

α2
2 · · · Aαn

n represents an interaction, then

Eα
i = (

A
α1
1 A

α2
2 · · · Aαn

n

)
i
=
(

mean of treatment combinations
satisfying α′x = i mod 3

)
− M (10.12)

We shall also use the notation Eα
α′x for given α and x to denote one of the

quantities Eα
0 , Eα

1 , Eα
2 depending on whether α′x = 0, 1, 2 mod 3, respectively.

We note that a comparison belonging to Eα is, of course, given by

c0E
α
0 + c1E

α
1 + c2E

α
2 (c0 + c1 + c2 = 0) (10.13)

Also, it follows from (10.12) that

Eα
0 + Eα

1 + Eα
2 = 0 (10.14)

so that any comparison of the form (10.13) could be expressed in terms of only
two Eα

i . Such a procedure was, in fact, adopted for the 2n factorial, but as we
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shall see below, in the present situation this would only lead to a certain amount
of asymmetry.

As an extension of (7.42) we can now state and prove the following result,
which expresses the response a(x) of a treatment combination x as a linear
combination of interaction components. This parameterization of a(x) is given by

a(x) = M +
∑
α

Eα
α′x (10.15)

where summation is over all α′ = (α1, α2, . . . , αn) �= (0, 0, . . . , 0), subject to
the rule that the first nonzero αi equals one, and α′x is reduced mod 3. The
proof of (10.15) follows that of (7.42) and will be given for the general case in
Section 11.5.

We illustrate (10.15) with the following example.

Example 10.2 Consider the 33 factorial with factors A, B, C and denote
the true response of the treatment combination (i, j, k) by aibj ck . Then (10.15)
can be written as

aibj ck = M + Ai + Bj + ABi+j + AB2
i+2j

+ Ck + ACi+k + AC2
i+2k + BCj+k

+ BC2
j+2k + ABCi+j+k + ABC2

i+j+2k

+ AB2Ci+2j+k + AB2C2
i+2j+2k

For i = 1, j = 1, k = 2, for example, this becomes

a1b1c2 = M + A1 + B1 + AB2 + AB2
0 + C2 + AC0

+ AC2
2 + BC0 + BC2

2 + ABC1 + ABC2
0

+ AB2C2 + AB2C2
1 �

We emphasize again that the parameterization (10.15), which because
of (10.14) is a non-full-rank parameterization, becomes important in connec-
tion with systems of confounding (Section 10.5) and fractional factorials
(Section 13.4).

10.4 ANALYSIS OF 3n EXPERIMENTS

Suppose that each treatment combination is replicated r times in an appropriate
error control design, such as a CRD or a RCBD. Comparisons of treatments are
then achieved by simply comparing the observed treatment means, and tests for
main effects and interactions are done in an appropriate ANOVA.
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Table 10.2 ANOVA for 33 Experiment in Randomized Complete
Block Design

Source d.f. SS

Blocks r − 1 27
r∑

i=1

(
yi··· − y····

)2

Treatments 33 − 1 = 26

A 2 9r

2∑
j=0

(
y·j ·· − y····

)2

B 2 9r

2∑
k=0

(
y··k· − y····

)2

A × B 4 3r
∑
jk

(
y·jk· − y·j ·· − y··k· + y····

)2

C 2 9r

2∑
�=0

(
y···� − y ····

)2

A × C 4 3r
∑
j�

(
y·j ·� − y·j ·· − y···� + y····

)2

B × C 4 3r
∑
k�

(
y··k� − y··k· − y···� + y····

)2

A × B × C 8 r
∑
jk�

(
y·jk� − y·jk· − y·j ·� − y··k� + y·j ··

+y··k· + y···� − y····
)2

Residual 26(r − 1)
∑
ijk�

(
yijk� − yi··· − y·jk� + y····

)2

For purposes of illustration we consider a 33 experiment in an RCBD with r

blocks. With the usual model

yijk� = µ + βi + τjk� + eijk�

or
y = µI + Xββ + Xττ + e

where (jk�) denotes the level combinations for the three factors A, B, C, and
with the factorial structure of the treatments, we obtain the usual ANOVA given
in Table 10.2.

An alternative way of computing the various components of the treatment sum
of squares is based upon the definition of the 2-d.f. components of any interaction
and the corresponding symbols defined in Section 10.3. Let Eα denote any such
interaction component, such as AB or AB2C, and let Êα

0 , Êα
1 , Êα

2 be the mean
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Table 10.3 Partitioning of 3-Factor Interaction
Sum of Squares

Source d.f. SS

ABC 2 9r
{

[ÂBC0]2 + [ÂBC1]2 + [ÂBC2]2
}

ABC2 2 9r
{

[̂ABC2
0 ]2 + [̂ABC2

1 ]2 + [̂ABC2
2 ]2

}
AB2C 2 9r

{
[ÂB2C0]2 + [ÂB2C1]2 + [ÂB2C2]2

}
AB2C2 2 9r

{
[ ̂AB2C2

0 ]2 + [ ̂AB2C2
1 ]2 + [ ̂AB2C2

2 ]2
}

observed responses (as a deviation from the overall mean) of the three sets
defining Eα. The sum of squares associated with Eα, accounting for 2 d.f., is
then given by

SS(Eα) = r3n−1
{[

Êα
0

]2 + [
Êα

1

]2 + [
Êα

2

]2
}

(10.16a)

with

E
[
SS(Eα)

] = 2σ 2
e + r3n−1

{[
Eα

0

]2 + [
Eα

1

]2 + [
Eα

2

]2
}

(10.16b)

Specifically, for the 33 experiment the sum of squares due to 3-factor interaction,
for example, can be broken down as given in Table 10.3. The usefulness of this
procedure will become apparent when we consider systems of confounding in
Section 10.5. The SS given in (10.16a) is simply the SS (among sets) for the
sets defined by α′x = 0, 1, 2. Since the various partitions are orthogonal to each
other, so are their associated SSs. It is not difficult to show that the sum of the
four SSs in Table 10.3 is the same as SS(A × B × C) in Table 10.2.

Generally, it is also useful to list the quantities Êα
0 , Êα

1 , Êα
2 for main effects and

interactions as they can be used to estimate the yield of any treatment combination
or comparisons among treatment combinations (see Section 10.3).

10.5 CONFOUNDING IN A 3n FACTORIAL

The necessity for using incomplete blocks for a 3n factorial is even more obvious
than for a 2n factorial. Even for small n the number of treatment combinations
is often too large for complete blocks, either because such large blocks are not
available or they are no longer homogeneous. The use of smaller blocks will
then lead to confounding of effects and interactions with blocks, a notion that we
have discussed extensively for the 2n factorials. We shall see that the basic ideas
encountered there can be modified easily for 3n factorials. We shall illustrate this
with a simple example before discussing useful systems of confounding more
generally.
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10.5.1 The 33 Experiment in Blocks of Size 3

Suppose we wish to arrange a 33 experiment in blocks of size 3. This will result in
nine blocks with 8 d.f. among them. Hence, we need to confound with blocks four
pairs of degrees of freedom, each pair representing a main effect or an interaction
component. Suppose we first choose to confound AB and AC2. Recall that AB

is represented by comparisons among the sets satisfying the equations

x1 + x2 = 0, 1, 2 mod 3

and that AC2 is similarly represented by the equations

x1 + 2x3 = 0, 1, 2 mod 3

It is obvious then that considering jointly

x1 + x2 = k mod 3

x1 + 2x3 = � mod 3 (10.17)

for all possible combinations of k, �,= 0, 1, 2, we partition the 27 treatment
combinations into 9 sets of 3 treatment combinations each, these sets being the
blocks for the desired system of confounding. Now, any treatment combination
which satisfies (10.17) for given (k, �), also satisfies

2x1 + x2 + 2x3 = k + � mod 3

or, equivalently,
x1 + 2x2 + x3 = 2(k + �) mod 3

and since 2(k + �) ≡ 0, 1, 2 mod 3 it follows that there are three sets of three
blocks which satisfy the equation

x1 + 2x2 + x3 = 0, 1, 2 mod 3

respectively. Comparisons among these sets, however, define the interaction com-
ponent AB2C. Hence AB2C is also confounded with blocks, and we recognize
immediately that AB2C is a GI of AB and AC2; that is,

(AB) × (AC2) = A2BC2 = A4B2C4 = AB2C

Similarly, any treatment combination that satisfies (10.17) also satisfies the
equation

(x1 + x2) + 2(x1 + 2x3) = k + 2� mod 3
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Table 10.4 Plan for 33 Experiment in Blocks of Size 3

1 2 3 4 5 6 7 8 9

000 002 001 010 012 011 020 022 021
121 120 122 101 100 102 111 110 112
212 211 210 222 221 220 202 201 200

or
x2 + x3 = k + 2� mod 3

Hence the other GI
(AB)(AC2)2 = A3BC4 = BC

is also confounded with blocks. These four interactions, AB,AC2, AB2C, and
BC, then account for the 8 d.f. for comparisons among blocks.

The composition of the blocks for the above system of confounding can be
obtained from Eqs. (10.17) with (k, �) assuming all possible values. Alternatively,
we can construct first the intrablock subgroup (IBSG) from

x1 + x2 = 0 mod 3

x1 + 2x3 = 0 mod 3

and then, using the x representation for treatment combinations, add (componen-
twise and mod 3) a treatment combination, not already contained in the IBSG, to
each element in the IBSG. This process is continued as described in Section 8.3,
until all blocks have been constructed in this manner as given in Table 10.4.

10.5.2 Using SAS PROC FACTEX

A similar design can be obtained by using SAS PROC FACTEX and is given in
Table 10.5.

We shall comment briefly here on some aspects of the SAS output and how
it relates to our discussion in this chapter:

1. We note that rather than using 0, 1, 2 for the factor levels, SAS uses −1,
0, 1, respectively, as commonly used in response surface and regression
methodology.

2. The single degree of freedom associated with the main effects and interac-
tions are listed formally akin to the linear-quadratic effects representation
for quantitative factors (see I.11.8.1), for example,

A −→ A linear

2 ∗ A −→ A quadratic
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Table 10.5 33 Factorial in Blocks of Size 3

options nodate pageno=1;
proc factex;
factors A B C/nlev=3;
blocks size=3;
model est=(A B C);
examine design confounding aliasing;
output out=design blockname=block nvals=(1 2 3 4 5 6 7 8 9);
title1 'TABLE 10.5';
title2 '3**3 FACTORIAL IN BLOCKS OF SIZE 3';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 1
2 -1 -1 0 9
3 -1 -1 1 5
4 -1 0 -1 6
5 -1 0 0 2
6 -1 0 1 7
7 -1 1 -1 8
8 -1 1 0 4
9 -1 1 1 3

10 0 -1 -1 3
11 0 -1 0 8
12 0 -1 1 4
13 0 0 -1 5
14 0 0 0 1
15 0 0 1 9
16 0 1 -1 7
17 0 1 0 6
18 0 1 1 2
19 1 -1 -1 2
20 1 -1 0 7
21 1 -1 1 6
22 1 0 -1 4
23 1 0 0 3
24 1 0 1 8
25 1 1 -1 9
26 1 1 0 5
27 1 1 1 1

Block Pseudofactor Confounding Rules

[B1] = (2*A)+(2*B)+(2*C)
[B2] = B+(2*C)



372 DESIGNS WITH FACTORS AT THREE LEVELS

Table 10.5 (Continued )

Aliasing Structure

A
(2*A)

B
(2*B)

C
(2*C)

A + B
[B] = (2*A) + B
[B] = A +(2*B)

(2*A) +(2*B)
A + C

[B] = (2*A) + C
[B] = A +(2*C)

(2*A) +(2*C)
B + C

[B] = (2*B) + C
[B] = B +(2*C)

(2*B) +(2*C)

Obs block A B C

1 1 -1 -1 -1
2 1 0 0 0
3 1 1 1 1
4 2 -1 0 0
5 2 0 1 1
6 2 1 -1 -1
7 3 -1 1 1
8 3 0 -1 -1
9 3 1 0 0
10 4 -1 1 0
11 4 0 -1 1
12 4 1 0 -1
13 5 -1 -1 1
14 5 0 0 -1
15 5 1 1 0
16 6 -1 0 -1
17 6 0 1 0
18 6 1 -1 1
19 7 -1 0 1
20 7 0 1 -1
21 7 1 -1 0
22 8 -1 1 -1
23 8 0 -1 0
24 8 1 0 1
25 9 -1 -1 0
26 9 0 0 1
27 9 1 1 -1
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and
A + B −→ A linear × B linear

2 ∗ A + B −→ A quadratic × B linear

A + 2 ∗ B −→ A linear × B quadratic

2 ∗ A + 2 ∗ B −→ A quadratic × B quadratic

We should point out, however, that these representations are not identical
[see also (4) below].

3. The confounding rules are essentially the same as those we have explained
earlier. In this example the block compositions are obtained by satisfying
the equations

2 ∗ A + 2 ∗ B + 2 ∗ C = δ1

B + 2 ∗ C = δ2

for some δ1, δ2(= 0, 1, 2 mod 3), where A, B, and C are the levels of those
factors. In our notation this is equivalent to satisfying the equations

2x1 + 2x2 + 2x3 = γ1

x2 + 2x3 = γ2

or
x1 + x2 + x3 = γ ∗

1

x2 + 2x3 = γ2

Hence, in this example we confound ABC and BC2 and, hence, AB2 and
AC2 with blocks. We only need to remember that −1 ≡ 2 mod 3 and
−2 ≡ 1 mod 3.

4. The aliasing structure gives a list of the main effects and 2-factor interac-
tions that are either estimable or confounded with blocks, the latter being
identified by [B]. More precisely, we should really say that the aliasing
structure represents a list of the number of degrees of freedom associ-
ated with estimable and confounded effects, respectively. For example,
the output identifies A + B and 2 ∗ A + 2 ∗ B as estimable. This does not
mean, however, that A linear ×B linear, or A quadratic ×B quadratic are
estimable since there is no relationship between these components and the
2-d.f. component AB.
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10.5.3 General Case

Following the example from Section 10.5.1 it is easy to see that for the general
case of a 3n factorial in blocks of size 3p we then have the following:

1. 3n−p − 1 d.f. are confounded with blocks, that is, (3n−p − 1)/2 main
effects and/or interactions are confounded with blocks.

2. If two interactions Eα and Eβ are confounded with blocks, then their GIs
Eα+β and Eα+2β are also confounded with blocks.

3. To find a system of confounding, one needs to specify only q = n − p

independent main effects and/or interactions Eα1 , Eα2 , . . . , Eαq since the
q interactions have

2

(
q

2

)
+ 22

(
q

3

)
+ 23

(
q

4

)
+ · · · + 2q−1

(
q

q

)
= 1

2
3q − 1

2
− q

GIs among them. Hence altogether (3q − 1)/2 interactions are confounded
with blocks.

4. The composition of the blocks is obtained by means of the IBSG, which
is composed of the treatment combinations satisfying the equations

αj1x1 + αj2x2 + · · · + αjnxn = 0

(j = 1, 2, . . . , q = n − p) as determined by the independent confounded
interactions Eα1, Eα2, . . . , Eαq in (3). The remaining blocks are then
obtained as described in Section 10.5.1.

10.6 USEFUL SYSTEMS OF CONFOUNDING

As we have mentioned earlier, the number of treatment combinations is quite
large even for a moderate number of factors. This would call in most cases for
incomplete blocks and hence for a system of confounding. But even this may
lead to certain difficulties since at this time we are only considering blocks the
size of which is a power of 3, so that the choice is quite limited. (For other
block sizes we refer to Section 11.14.4.) To complicate matters, according to
Fisher’s (1942, 1945) theorem (see Section 11.7) confounding of main effects
and/or 2-factor interactions can be avoided only if the block size is larger than
twice the number of factors, that is, k > 2n. For purposes of reference we list
in Table 10.6 possible types of confounding involving up to five factors and
various block sizes. Further systems can be obtained from this list by permuting
the letters.
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Table 10.6 Types of Systems of Confounding for 3n Experiments

Number of Size of
Factors Blocks Confounded Effects/Interactionsa

2 3 Any main effect or interaction

3 3 A∗, B∗, AB, AB2

A∗, BC∗, ABC,AB2C2

A∗, BC2∗
, AB2C,ABC2

AB∗, AC∗, BC2, AB2C2

AB∗, AC2∗
, BC,AB2C

AB2∗
, AC∗, BC,ABC2

AB2∗
, AC2∗

, BC2, ABC

9 Any main effect or interaction

4 3 A∗, BC∗, ABC,AB2C2, BD∗, ABD,AB2D2,

BC2D2, CD2, AB2CD, ACD2, AC2D, ABC2D2

B∗, AC∗, ABC,AB2C, AD2∗
, ABD2, AB2D2,

AC2D,CD, AB2C2D,BCD, ABC2D, BC2D2

C∗, AB∗, ABC,ABC2, AD∗, ACD, AC2D,

AB2D2, BD2, AB2C2D2, BCD2, AB2CD2, BC2D2

D∗, AB2∗
, AB2D, AB2D2, AC2∗

, AC2D,AC2D2,

ABC,BC2, ABCD2, BC2D2, ABCD, BC2D

9 A∗, B∗, AB, AB2

A∗, BC∗, ABC,AB2C2

A∗, BCD∗, ABCD, AB2C2D2

AB∗, AC∗, BC2, AB2C2

AB∗, CD∗, ABCD, ABC2D2

AB∗, ACD∗, BC2D2, AB2C2D2

ABD∗, ACD2∗
, AB2C2, BC2D2

27 Any main effect or interaction

5 9 BE∗, ABC∗, AB2CE,ACE2, CDE∗
BCDE2, BC2D2, ABC2DE,ABD2E2

AB2C2DE2, AB2D2, AC2D,AD2E

27 ABC∗, AB2DE∗, AC2D2E2, BC2DE

aEffects with an asterisk (∗) are the independent effects.

Generally not all components of a particular interaction are confounded with
blocks and, hence, limited intrablock information on that interaction is still avail-
able (see also Sections 10.7.2 and 10.7.3). Even so, in most practical cases it will
be useful to resort to partial confounding. These can be obtained easily from the
systems provided in Table 10.6. In the following we shall comment briefly on
some such systems.
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10.6.1 Two Factors

Since we can confound any pair of effect or interaction degrees of freedom, the
following systems suggest themselves: (1) Use a basic pattern of two replicates,
confounding AB and AB2, giving full information on main effects and 1

2 infor-
mation on the interaction. (2) Use a basic pattern of four replicates, confounding
A, B, AB, and AB2, each in one of the four replicates, giving equal information
on main effects and interactions. The arrangement of the treatment combinations
in blocks and the structure of the analysis of variance with q repetitions of the
basic pattern are given in Table 10.7.

10.6.2 Three Factors

1. Blocks of Size 3 Consulting Table 10.6 suggests that a suitable system of
confounding consists of a basic pattern of four replicates of the following
types:

Type I confound AB,AC, BC2, AB2C2

Type II confound AB,AC2, BC,AB2C

Type III confound AB2, AC, BC,ABC2

Type IV confound AB2, AC2, BC2, ABC

This will yield full information on main effects, 1
2 relative information on

2-factor interactions, and 3
4 relative information on 3-factor interactions.

2. Blocks of Size 9 The most useful design consists of one or more repetitions
of a basic pattern of four replicates confounding ABC, ABC2, AB2C,
and AB2C2, respectively. This will result in full information on all main
effects and 2-factor interactions and 3

4 relative information on the 3-factor
interaction components. The arrangement of the blocks is given in Table
10.8, each column (level of C) combined with the levels of A and B giving
a block and each set of three columns a replicate.

10.6.3 Treatment Comparisons

At this point we comment briefly on evaluating the amount of information on
any treatment comparison provided by the confounded design relative to the
unconfounded design. To do so we make use of the fact that the yield of a
treatment combination can be represented in terms of main effect and interac-
tion components (see Section 10.3). For purposes of illustration suppose that we
are interested in the comparison (a0b0c0 − a0b0c1), using q repetitions of the
basic pattern given in Table 10.8. Notice that a0b0c0 and a0b0c1 never occur
together in the same block, so that a simple comparison among their mean yields



USEFUL SYSTEMS OF CONFOUNDING 377

Table 10.7 32 Experiment in Blocks of Size 3

Replicate Effect/Interaction
Type Confounded Blocks

a. Arrangement in Blocks

I A 00, 01, 02; 10, 11, 12; 20, 21, 22
II B 00, 10, 20; 01, 11, 21; 02, 12, 22
III AB 00, 12, 21; 01, 10, 22; 02, 20, 11
IV AB2 00, 11, 22; 10, 02, 21; 01, 12, 20

Source d.f.

b. Analysis of Variance

Replicates 4q − 1
Blocks/reps 8q

A 2
B 2
AB 2
AB2 2

Residual 24q − 8
A × reps 2(3q − 1)

II, III, IV
B × reps 2(3q − 1)

I, III, IV
AB × reps 2(3q − 1)

I, II, IV
AB2 × reps 2(3q − 1)

I, II, III

Table 10.8 Design for 33 Experiment in Blocks of Size 9

Confounded Interaction

ABC ABC2 AB2C AB2C2

Level of
A B Level of C

0 0 0 1 2 0 2 1 0 1 2 0 2 1
1 0 2 0 1 1 0 2 2 0 1 1 0 2
2 0 1 2 0 2 1 0 1 2 0 2 1 0
0 1 2 0 1 1 0 2 1 2 0 2 1 0
1 1 1 2 0 2 1 0 0 1 2 0 2 1
2 1 0 1 2 0 2 1 2 0 1 1 0 2
0 2 1 2 0 2 1 0 2 0 1 1 0 2
1 2 0 1 2 0 2 1 1 2 0 2 1 0
2 2 2 0 1 1 0 2 0 1 2 0 2 1
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will not provide any useful information. Instead, we make use of the fact that
[see (10.15)]

a0b0c0 = M + A0 + B0 + AB0 + AB2
0 + C0

+ AC0 + AC2
0 + BC0 + BC2

0 + ABC0

+ ABC2
0 + AB2C0 + AB2C2

0

and
a0b0c1 = M + A0 + B0 + AB0 + AB2

0 + C1

+ AC1 + AC2
2 + BC1 + BC2

2 + ABC1

+ ABC2
2 + AB2C1 + AB2C2

2

so that the estimator for (a0b0c0 − a0b0c1) is

â0b0c0 − â0b0c1 = (
Ĉ0 − Ĉ1

)+ (
ÂC0 − ÂC1

)
+
(
ÂC0 − ÂC

2
2

)
+ (

B̂C0 − B̂C1
)

+
(
B̂C

2
0 − B̂C

2
2

)
+
(
ÂBC0 − ÂBC1

)
+
(
ÂBC

2
0 − ÂBC

2
2

)
+
(
ÂB2C0 − ÂB2C1

)
+
(

ÂB2C
2

0 − ÂB2C
2

2

)
Each quantity in parentheses is statistically independent of the others (because
of the orthogonality of the partitions), with a variance depending on the sys-
tem of confounding used. In the present case any difference among main effect
components (like C0 − C1) and among 2-factor interaction components (like
AC0 − AC1) is estimated with variance

2
σ 2

e

4q · 9
= σ 2

e

18q

and any difference among 3-factor interaction components (like ABC0 − ABC1)
is estimated with variance

2
σ 2

e

3q · 9
= 2σ 2

e

27q
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Hence

var
(
â0b0c0 − â0b0c1

)
= 5 · σ 2

e

18q
+ 4 · 2σ 2

e

27q
= 31

54q
σ 2

e

With no confounding and the same error variance, the variance of the comparison
would have been σ 2

e /2q, so that the relative information on this comparison is
54
62 = 27

31 .

10.6.4 Four Factors

1. Blocks of Size 3 A suitable system consists of a basic pattern of four
replicates, using the four systems of confounding given in Table 10.6.
This design will result in 3

4 information on main effects and all 2-factor
interaction components.

2. Blocks of Size 9 The most useful type of confounding is obviously the
last one given in Table 10.6 since it confounds only 3-factor interaction
components, one from each type of 3-factor interaction. Altogether there
exist eight such systems of confounding.

3. Blocks of Size 27 In general, the experimenter will wish to avoid blocks of
size as large as 27, though, in some fields of experimentation and with some
types of experimental material, the effect on error variance of reducing
block size from 27 to 9 may be so small as not to offset any loss in
relative information that results from confounding. If blocks of size 27
are being used, any of the eight 4-factor interaction components may be
confounded.

10.6.5 Five Factors

1. Blocks of Size 9 It is not possible to avoid confounding a main effect or 2-
factor interactions. Under these circumstances, the system of confounding
given in Table 10.6 and permutation of that set would be most useful.

2. Blocks of Size 27 One can show that it is not possible to find a design
confounding only 4- and 5-factor interactions. The most useful system of
confounding is then one of the form given in Table 10.6.

10.6.6 Double Confounding

Occasionally it may be desirable to impose a double restriction on the pattern of
a 3n experiment. This leads to systems of double confounding. Suitable systems
can be found by consulting Table 10.6. The actual arrangement of the treatment
combinations can be obtained by first constructing the IBSGs for confounding
with “rows” and “columns,” respectively, and then adding the elements of the first
row and first column termwise mod 3. As an example consider the 33 experiment
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with rows of size 9, confounding ABC2, and columns of size 3, confounding
AB, AC, BC2, AB2C2; that is, construct row blocks from

x1 + x2 + 2x3 = 0 mod 3

and column blocks from

x1 + x2 = 0 mod 3

x1 + x3 = 0 mod 3

The final arrangement (apart from randomization of rows and columns) then is
as follows:

Column
1 2 3 4 5 6 7 8 9

1 000 101 202 011 112 210 022 120 221
Row 2 122 220 021 100 201 002 111 212 010

3 211 012 110 222 020 121 200 001 102

Obviously, one will need replications of this or a similar arrangement, using
different systems of confounding.

10.7 ANALYSIS OF CONFOUNDED 3n FACTORIALS

In the course of our discussion of 3n factorial experiments we have already
commented on some aspects of the analysis for particular situations. We shall
now make some remarks about the general 3n factorial experiment in blocks
of size 3p using some system of complete or partial confounding. Since the
development parallels that of Section 9.7, we shall not repeat all the details, but
only those that are specific to the 3n case.

The basic model underlying the analysis is as before:

y = µI + Xρρ + Xβ∗β∗ + Xττ + e

where ρ represents the replicate effects, β∗ the block within replicate effects,
and τ the treatment effects, or in its reparameterized form

y = µI + Xρρ + Xβ∗β∗ + Xτ ∗τ ∗ + e

where τ∗ represents the interaction components Eα
i for all admissible α′ =

(α1, α2, . . . , αn) and i = 0, 1, 2. A basic pattern of partial confounding consists
of s types of replicates, each replicate consisting of 3n−p blocks, and the basic
pattern is repeated q times.
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We divide the (3n − 1)/2 interactions Eα into three mutually exclusive sets
based on the amount of confounding:

E1 = {
Eαk , k = 1, 2, . . . , n1: completely confounded

}
E2 = {

Eγ � , � = 1, 2, . . . , n2: partially confounded
}

E3 =
{
Eδm, k = 1, 2, . . . , n3: not confounded

}
and Eγ � ∈ E2 is confounded in c(γ�) replicates and not confounded in u(γ�)

replicates of the basic pattern. We denote by N = 3nsq the total number of
observations.

The following statements concerning the analysis are then obvious extensions
of those made in Section 9.7.

10.7.1 Intrablock Information

1. Each E
δm

h ∈ E3(h = 0, 1, 2) is estimated from all replicates, which implies

var
(
Ê

δm

h − Ê
δm

h′
)

= 2

sq3n−1
σ 2

e

and

SS
(
Eδm

)
= sq3n−1

{[
Ê

δm

0

]2 +
[
Ê

δm

1

]2 +
[
Ê

δm

2

]2
}

(10.18)

2. Each E
γ �

h ∈ E2 is estimated from qu(γ�) replicates and hence

var
(
Ê

γ �

h − Ê
γ �

h′
) = 2

qu(γ�)3n−1
σ 2

e (10.19)

and

SS
(
Eγ �

) = qu(γ�)3
n−1

{[
Ê

γ �

0

]2 + [
Ê

γ �

1

]2 + [
Ê

γ �

2

]2
}

(10.20)

10.7.2 The ANOVAs

The partitioning of the total sum of squares and its degree of freedom in the
T|B-ANOVA is given in Table 10.9a with a further partitioning of the block
and residual sums of squares in Tables 10.9b and 10.9c. All sums of squares
associated with interactions are obtained in the usual way, following (10.18)
and (10.20), except that SS(·)c is obtained from only those replicates in which
the corresponding interaction is confounded. SS(E∗

ij ) is obtained only from the
j th replicate in the ith repetition, and

∑′
ij and

∑′′
ij denote summation over



382 DESIGNS WITH FACTORS AT THREE LEVELS

Table 10.9 T|B-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

Xρ |I sq − 1 Usual

Xβ∗ |I,Xρ sq(3n−p − 1) Usual

Xτ ∗ |I, Xρ,Xβ∗ 2n2 + 2n3

∑
�

SS(Eγ � ) +
∑
m

SS(Eδm)

I |I,Xρ,Xβ∗ , Xτ ∗ νR Difference

Total N − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I,Xρ sq(3n−p − 1)

{Eαk } 2n1

∑
k

SS(Eαk )c

{Eγ �} 2n2

∑
�

SS(Eγ � )c

{Eαk × reps} 2n1(sq − 1)
∑

k

∑
ij

SS(E
αk

ij )c −
∑

k

SS(Eαk )c

{Eα� × reps} 2q
∑

�

c (γ�) − 2n2

∑
�

∑
ij

′
SS(E

γ �

ij )c −
∑

�

SS(Eγ � )c

c. Partitioning of Residual Sum of Squares

I |I,Xρ,Xβ∗ , Xτ ∗ νR

{Eγ � × reps} 2q
∑

�

u(γ�) − 2n2

∑
�

∑
ij

′′
SS(E

γ �

ij ) −
∑

�

SS(Eγ � )

{
Eδm × reps

}
2n3(sq − 1)

∑
m

∑
ij

SS(E
δm

ij ) −
∑
m

SS(Eδm)

all replicates in which Eγ� is confounded and not confounded, respectively (see
Section 9.7).

The B|T-ANOVA in its basic form is given in Table 10.10a with a partitioning
of the block sum of squares in Table 10.10b. The only sum of squares that needs
to be explained is that associated with

{
Êγ � vs. Ẽγ �

}
. More specifically this sum

of squares is associated with the comparisons(
Ê

γ �

0 − Ẽ
γ �

0

)
vs.

(
Ê

γ �

1 − Ẽ
γ �

1

)
vs.

(
Ê

γ �

2 − Ẽ
γ �

2

)
(10.21)

where Ê
γ �

h is obtained from the qu(γ�) replicates in which Eγ � ∈ E2 is not
confounded and Ẽ

γ �

h is obtained from the qc(γ�) replicates in which Eγ � is
confounded. Since Ê

γ �

0 + Ê
γ �

1 + Ê
γ �

2 = 0 and Ẽ
γ �

0 + Ẽ
γ �

1 + Ẽ
γ �

2 = 0, it follows



ANALYSIS OF CONFOUNDED 3n FACTORIALS 383

Table 10.10 B|T-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

Xρ |I sq − 1 Usual

Xτ ∗ |I, Xρ 3n − 1 Usual

Xβ∗ |I,Xρ,Xτ ∗ sq(3n−p − 1) − 2n1 Difference

I |I,Xρ,Xτ ∗ ,Xβ∗ νR From Table 10.9

Total N − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I,Xρ,Xτ ∗ sq(3n−p − 1) − 2n1{
Êγ � vs. Ẽγ �

}
2n2 See (10.24)

{Eαk × reps} 2n1(sq − 1) From Table 10.9b

{Eγ � × reps} 2q
∑

�

c(γ�) − 2n2 From Table 10.9b

that the comparisons (10.21) and hence the associated sum of squares carry 2
d.f. This sum of squares is obtained in the usual way. Define

Ê
γ �

h − Ẽ
γ �

h = X
γ �

h (h = 0, 1, 2)

Then

SS
(
Êγ � vs. Ẽγ �

) =
(

X
γ �

0 − X
γ �

2

X
γ �

1 − X
γ �

2

)′ [
V γ

�

σ 2
e

]−1 (
X

γ �

0 − X
γ �

2

X
γ �

1 − X
γ �

2

)
(10.22)

where V γ�
is the variance–covariance matrix of(

X
γ �

0 − X
γ �

2

X
γ �

1 − X
γ �

2

)

It is easy to see that

V γ�
= s

qu(γ�) c(γ�) 3n−1

(
2 1
1 2

)
σ 2

e

and hence [
V γ �

σ 2
e

]−1

= qu(γ�) c(γ�) 3n−1

s

(
2 −1

−1 2

)
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Then (10.22) reduces to

SS
(
Êγ � vs. Ẽγ �

) = qu(γ�) c(γ�) 3n−1

s

∑
h

[
X

γ �

h

]2
(10.23)

Summing (10.23) over all Eγ � ∈ E2 yields

SS
({

Êγ � vs. Ẽγ �
}) = qu3n−1

s

∑
�

∑
h

u(γ�) c(γ�)
[
X

γ �

h

]2
(10.24)

which is a sum of squares with 2n2 d.f. and which depends only on block effects
and error.

10.7.3 Tests of Hypotheses

We can test the hypotheses

H0: E
γ �

0 = E
γ �

1 = E
γ �

2 = 0 (Eγ � ∈ E2)

and
H0: E

δm

0 = E
δm

1 = E
δm

2 = 0 (Eδm ∈ E3)

by using, in the T|B-ANOVA, the F tests as approximations to the randomization
tests (see, e.g., I.6.6 and I.9.2):

F = MS (Eγ �)

MS
(
I |I,Xρ, Xβ∗, Xτ ∗

) (10.25)

and

F = MS
(
Eδm

)
MS

(
I |I,Xρ, Xβ∗, Xτ ∗

) (10.26)

respectively, each with 2 and νR d.f. These are tests for no main effects or
interactions. With regard to interactions, however, we must keep in mind that the
total interaction among s factors has 2s d.f. and hence has 2s − 1 components
of the form Eα. For example, for s = 3 and factors A, B, C, the components
are ABC, ABC2, AB2C, AB2C2. To test then the hypothesis that there is no
A × B × C interaction we use the F test:

F =
[
SS(ABC) + SS

(
ABC2

)+ SS
(
AB2C

)+ SS
(
AB2C2

)]
/8

MS
(
I |I, Xρ, Xβ∗,Xτ ∗

)
with 8 and νR d.f. In this case an F test of the form (10.25) or (10.26) may not
tell us very much about the 3-factor interaction, except that when one or the other
of those tests is significant then we can conclude that A × B × C interaction is
possibly present.
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For the general case of an s-factor interaction the following situations can
occur for a particular system of confounding:

1. All 2s−1 components belong to E2 and/or E3. In this case we can pool the
associated sums of squares in Table 10.9a and obtain an F test with 2s and
νR d.f.

2. Some components belong to E1. In this case we can only use the sums of
squares associated with the components in E2 and/or E3. Great care has to
be exercised in interpreting such a test.

3. All components belong to E1. In this case no test exists in the context of
the T|B-ANOVA (but see Section 10.7.4).

10.7.4 Interblock Information

Assuming β∗ to be a vector of i.i.d. random variables with E(β∗) = φ and
E(β∗β∗′) = σ 2

βI , we can obtain interblock information regarding Eαk ∈ E1 and

Eγ � ∈ E2 by considering Ẽ
αk

h and Ẽ
γ �

h (h = 0, 1, 2) obtained from those replicates
in which these interactions are confounded. We then have

E
(
Ẽ

αk

h − Ẽ
αk

h′
) = E

αk

h − E
αk

h′

with

var
(
Ẽ

αk

h − Ẽ
αk

h′
) = 2

qs3n−1

(
σ 2

e + 3p σ 2
β

)
(10.27)

and
E
(
Ẽ

γ �

h − Ẽ
γ �

h′
) = Ẽ

γ �

h − Ẽ
γ �

h′

with

var
(
Ẽ

γ �

h − Ẽ
γ �

h′
) = 2

qc(γ�)3n−1

(
σ 2

e + 3p σ 2
β

)
(10.28)

If we define the pooled sum of squares associated with {Eαk × reps}
and {Eγ � × reps} in Table 10.9b as SS(Remainder) with ν = 2n1(sq − 1) +
2q

∑
� c (γ�) − 2n2 d.f., then the hypotheses

H0: E
αk

0 = E
αk

1 = E
αk

2 = 0 (Eαk ∈ E1)

can be tested by using

F = MS (Eαk )c

MS(Remainder)
(10.29)

with 2 and ν d.f.
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10.7.5 Combined Intra- and Interblock Information

Combined information is available and may be of interest for quantities of the
form E

γ �

h − E
γ �

h′ for Eγ � ∈ E2, or more generally for c0E
γ �

0 + c1E
γ �

1 + c2E
γ �

2
with c0 + c1 + c2 = 0. Using (10.19) and (10.28) we obtain

̂̂
E

γ �

h − ̂̂
E

γ �

h′ = u(γ�) w(Ê
γ �

h − Ê
γ �

h′ ) + c (γ�) w′ (Ẽγ �

h − Ẽ
γ �

h′
)

u(γ�) w + c(γ�)w′ (10.30)

with w = 1/σ 2
e , w′ = 1/(σ 2

e + 3p σ 2
β ). Letting w/w′ = ρ, we obtain

var
(̂̂
E

γ �

h − ̂̂
E

γ �

h′
)

= 2σ 2
e[

(u(γ�) + c(γ�)ρ−1
]
q3n−1

(10.31)

10.7.6 Estimation of Weights

For the practical use of (10.30) and (10.31) in connection with, for example,
the combined estimate of a(x) − a(z) for two treatment combinations x′ and z′,
using (10.15), we usually need to estimate w and w′ (or ρ). As always

σ̂ 2
e = 1

ŵ
= MS(I |I, Xρ,Xβ∗,Xτ ∗) (10.32)

which is obtained from the T|B-ANOVA of Table 10.10.
For the estimation of w′ by the Yates procedure we use the B|T-

ANOVA of Table 10.9. The two components of SS(Xβ∗ |I, Xρ, Xτ∗) are
SS(Remainder) as defined in Section 10.7.4 above and SS

(
Êγ � vs. Ẽγ �

)
given by (10.24). Now

E SS(Remainder) = ν(σ 2
e + 3p σ 2

β ) (10.33)

and, after straightforward derivation,

E SS
(
Êγ � vs. Ẽγ �

) = 2

[
σ 2

e + u(γ�)

s
3p σ 2

β

]
(10.34)

Hence, from (10.33), (10.34) and Table 10.10,

E MS(Xβ∗ |I, Xρ,Xτ ∗) = σ 2
e + 
 3p σ 2

β (10.35)

with


 =
2
s

∑
�

u (γ�) + ν

sq(3n−p − 1) − 2n1
(10.36)
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and ν as defined in Section 10.7.4. It then follows that

̂σ 2
e + 3p σ 2

β = 1

ŵ′ =
(

1 − 1




)
MS(I |I, Xρ,Xβ∗, Xτ ∗

+ 1



MS(Xβ∗ |I, Xρ,Xτ ∗) (10.37)

with 
 given by (10.36).
There are, of course, other methods of estimating the weights as described

in Section 1.11. In any case, Satterthwaite’s procedure (Satterthwaite, 1946; see
also I.9.7.7) must be used to obtain the degrees of freedom associated with the
estimator given in (10.37).

10.8 NUMERICAL EXAMPLE

We consider the 32 factorial in blocks of size 3, confounding the 2-factor inter-
action component AB with blocks. The data as well as the intrablock analysis
(using SAS PROC GLM) and combined intra- and interblock analysis (using
SAS PROC MIXED) are given in Table 10.11. We shall comment briefly on
these analyses.

10.8.1 Intrablock Analysis

We find σ̂ 2
e = MS(I |I,Xρ, Xβ∗, Xτ∗) = MS(E) = .8333. MS(E) (with 6 d.f.)

is used to test hypotheses about A, B, and A × B by forming F ratios with
the respective type III mean squares in the numerator. Concerning the A × B

interaction, we know, of course, that it has only 2 d.f., which are associated with
the interaction component AB2.

10.8.2 Combined Analysis

In this example AB is confounded in both replicates, that is, AB belongs to E1,
whereas A, B, and AB2 belong to E3. This means that only interblock infor-
mation is available for AB and only intrablock information is available for A,
B, and AB2. Thus, the combined analysis for A and B yields the same results
as the intrablock analysis. We can verify this easily by comparing the F ratios
and P values using the type III MS in PROC GLM and PROC MIXED, respec-
tively. In both cases we find for A: F = 126.87, P = .0001, and for B: F = 2.07,

P = .2076.
To test the hypothesis that there is no A × B interaction we obtain

SS(A × B) = SS(AB) + SS(AB2) (10.38)
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Table 10.11 Analysis of 32 Factorial in Blocks of Size 3
(With AB Completely Confounded)

data three;
input rep block A B y @@;
datalines;
1 1 0 0 11 1 1 1 2 14 1 1 2 1 20
1 2 0 2 20 1 2 1 1 23 1 2 2 0 27
1 3 0 1 20 1 3 1 0 27 1 3 2 2 30
2 4 0 0 20 2 4 1 2 25 2 4 2 1 29
2 5 0 2 27 2 5 1 1 30 2 5 2 0 32
2 6 0 1 31 2 6 1 0 41 2 6 2 2 43
;
run;

options nodate pageno=1;
proc print data=three;
title1 'TABLE 10.11';
title2 '3**2 FACTORIAL IN BLOCKS OF SIZE 3';
title3 '(WITH AB COMPLETELY CONFOUNDED)';
run;

proc glm data=three;
class rep block A B;
model y=rep A|B block(rep);
title3 'INTRA-BLOCK ANALYSIS';
run;

proc mixed data=three;
class rep block A B;
model y=rep A|B/ddfm=satterth;
random block(rep);
title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
run;

Obs rep block A B y

1 1 1 0 0 11
2 1 1 1 2 14
3 1 1 2 1 20
4 1 2 0 2 20
5 1 2 1 1 23
6 1 2 2 0 27
7 1 3 0 1 20
8 1 3 1 0 27
9 1 3 2 2 30

10 2 4 0 0 20
11 2 4 1 2 25
12 2 4 2 1 29
13 2 5 0 2 27
14 2 5 1 1 30
15 2 5 2 0 32
16 2 6 0 1 31
17 2 6 1 0 41
18 2 6 2 2 43
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Table 10.11 (Continued )

INTRABLOCK ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values

rep 2 1 2

block 6 1 2 3 4 5 6

A 3 0 1 2

B 3 0 1 2

Number of observations 18

Dependent Variable: y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 11 1136.777778 103.343434 124.01 <.0001

Error 6 5.000000 0.833333

Corrected Total 17 1141.777778

R-Square Coeff Var Root MSE y Mean

0.995621 3.496101 0.912871 26.11111

Source DF Type I SS Mean Square F Value Pr > F

rep 1 410.8888889 410.8888889 493.07 <.0001

A 2 228.1111111 114.0555556 136.87 <.0001

B 2 3.4444444 1.7222222 2.07 0.2076

A*B 4 464.2222222 116.0555556 139.27 <.0001

block(rep) 2 30.1111111 15.0555556 18.07 0.0029

Source DF Type III SS Mean Square F Value Pr > F

rep 1 410.8888889 410.8888889 493.07 <.0001

A 2 228.1111111 114.0555556 136.87 <.0001

B 2 3.4444444 1.7222222 2.07 0.2076

A*B 2 18.7777778 9.3888889 11.27 0.0093

block(rep) 2 30.1111111 15.0555556 18.07 0.0029
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Table 10.11 (Continued )

COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set WORK.THREE
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

rep 2 1 2
block 6 1 2 3 4 5 6
A 3 0 1 2
B 3 0 1 2

Dimensions

Covariance Parameters 2
Columns in X 18
Columns in Z 6
Subjects 1
Max Obs Per Subject 18
Observations Used 18
Observations Not Used 0
Total Observations 18

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 42.27802731
1 1 34.77498334 0.00000000

Convergence criteria met.

Covariance Parameter
Estimates

Cov Parm Estimate

block(rep) 4.7407
Residual 0.8333
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Table 10.11 (Continued )

Fit Statistics

-2 Res Log Likelihood 34.8
AIC (smaller is better) 38.8
AICC (smaller is better) 41.2
BIC (smaller is better) 38.4

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

rep 1 2 27.29 0.0347
A 2 6 136.87 <.0001
B 2 6 2.07 0.2076
A*B 4 2 13.03 0.0725

from the type I SS in PROC GLM as

SS(A × B) = 464.22

with 4 d.f. Now we know from (10.16b) and its extension to completely con-
founded effects that

E {SS(AB)} = 2σ 2
e + 2 · 3

{
[AB0]2 + [AB1]2 + [AB2]2

}
(10.39)

and

E {SS(AB2)} = 2(σ 2
e + 3σ 2

β ) + 2 · 3
{

[AB2
0 ]2 + [AB2

1 ]2 + [AB2
2 ]2

}
(10.40)

Hence, using (10.38), (10.39), and (10.40),

E {MS(A × B)} = σ 2
e + 3

2
σ 2

β + 3

2

{∑
i

[ABi]
2 +

∑
i

[AB2
i ]2

}
(10.41)

Under H0 (10.41) reduces to σ 2
e + 3

2σ 2
β . We therefore need to obtain an estimator

for this quantity that will then provide the denominator for the F ratio to test
H0. Using (10.37) and (10.32) it is easy to see that

σ̂ 2
e + 3

2
σ̂ 2

β =
(

1 − 1

2


)
MS(I |I,Xρ, Xβ∗, Xτ∗)

+ 1 − 1

2

MS(Xβ∗ |I, Xρ, Xτ∗)
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where 
 is obtained from (10.36), recognizing that u(γ�) = 0 since E2 = φ, ν =
2, s = 2, q = 1, n = 2, p = 1, n1 = 1. Thus, 
 = 1 and

σ̂ 2
e + 3

2 σ̂ 2
β = 1

2 MS(I |I,Xρ, Xβ∗, Xτ∗) + 1
2 MS(Xβ∗ |I, Xρ,Xτ∗)

= 1
2 (.8333 + 15.0556) = 7.95

using results from the ANOVA table. Finally,

F = MS(A × B)

σ̂ 2
e + 3

2 σ̂ 2
β

= 116.06

7.95
= 14.60

This value is comparable to the corresponding value 13.03 obtained with PROC
MIXED, which uses REML to estimate the variance components σ 2

e and σ 2
β .

The degrees of freedom for the denominator of the F ratio are obtained by
Satterthwaite’s procedure as

d.f. =
[
(.8333 + 15.0556)/2

]2(
.8333

2

)2 /
6 +

(
15.0556

2

)2 /
2

= 2.22

which is comparable to Den DF = 2 in the PROC MIXED output.
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General Symmetrical Factorial Design

11.1 INTRODUCTION

In the preceding chapters we have discussed at great length the design and analy-
sis of factorial experiments with two and three qualitative levels. In both cases the
development is based upon orthogonal partitions of the complete set of treatment
combinations and comparisons among the resulting subsets. These partitions are
based on solving certain equations or sets of equations using only elements from
the (mathematical) field of residue classes mod 2 and mod 3, respectively and
elementary facts about ordinary arithmetic mod 2 and mod 3, respectively. The
question then is whether this can be extended.

Consider, say, arithmetic mod 4. Addition with an additive identity and mul-
tiplication with a multiplicative identity are easily defined, for example,

2 + 3 = 1

and
2 × 3 = 2

However, this is not enough. We want to set up families of hyperplanes defined
by, for example,

x1 + 2x2 = 0, 1, 2, 3

and in order to achieve orthogonal partitions of the 4n treatment combinations,
we need the result that the equation in the unknown x

ax = b (a �= 0)

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.

393



394 GENERAL SYMMETRICAL FACTORIAL DESIGN

has a unique solution. We see immediately that arithmetic mod 4 does not have
this property; for example,

2x = 2

is satisfied by x = 1 and x = 3 and

2x = 1

is not satisfied by any x. So we see that the simple arithmetic mod k does not
extend immediately to any k > 3. It does so, however, if k is a prime number,
p say.

The addition and multiplication properties mod p of the set S = {0, 1, 2, . . . ,

p − 1} are obvious. It only remains to show that

ax = b (a �= 0)

has a unique solution mod p. Suppose we have two solutions x1, x2 with x1 �= x2.
Then

a(x1 − x2) = 0

Since x1 − x2 = d , say, ∈ S, we have

ad = 0

but

ad = 0 ←→ ad = cp

with c ∈ S. Since neither a nor d are divisible by p, this relationship cannot hold
unless d = 0, and hence x1 = x2. So, division is unique, and hence S forms a
field. We denote this field of p elements and arithmetic mod p by GF(p). Further
generalizations can be made to k = pm, a prime power, using the Galois field
GF(pm) (see Appendix A).

In this chapter we shall discuss the pn factorial as a generalization of the
2n and 3n factorials and indicate how this, in turn, can be generalized to the
sn = (pm)n factorial. Much of the development in this chapter is due to Bose
(1947b), Bose and Kishen (1940), Fisher (1942, 1945), Kempthorne (1947, 1952),
Rao (1946a, 1947b), and Yates (1937b).
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11.2 REPRESENTATION OF EFFECTS AND INTERACTIONS

We now have n factors A1, A2, . . . , An each at p levels; hence we have pn treat-
ment combinations and pn − 1 d.f. among treatments. A treatment combination is
denoted by the n-tuple x ′ = (x1, x2, . . . , xn) with xi ∈ GF(p). We then consider
a partition α′ = (α1, α2, . . . , αn) with αi ∈ GF(p), but not all αi = 0, which
partitions the set of pn treatment combinations into p sets of pn−1 treatment
combinations each through the equations

α1x1 + α2x2 + · · · + αnxn = δ (11.1)

where δ takes on all values in GF(p). That this is true can be seen as follows:
Suppose for fixed α and δ we have αi �= 0 for some i. We can then choose all
xj (j �= i) freely (xj = x∗

j say) and obtain, from (11.1),

αixi = δ −
∑
j �=i

αj x
∗
j = δ∗, say

Because of uniqueness of division in GF(p), xi is then determined uniquely.
Since each xj (j �= i) can take on p different values x∗

j , we have pn−1 solutions
to (11.1). Comparisons among the p sets of treatment combinations generated
by (11.1) define the p − 1 d.f. associated with the effect or interaction Eα =
A

α1
1 A

α2
2 · · · Aαn

n .
Let S(x;α, δ) denote the set of treatment combinations x′ = (x1, x2, . . . , xn)

satisfying (11.1). Then a contrast belonging to Eα can be defined formally as∑
δ cδS(x;α, δ) with δ ∈ GF(p) and

∑
δ cδ = 0.

Excluding α′ = (0, 0, . . . , 0) there exist pn − 1 partitions α. However, for any
given α the partitions α, 2α, . . . , (p − 1)α are identical since they lead to the
same equations of the form (11.1). Hence we have (pn − 1)/(p − 1) distinct
partitions, each accounting for p − 1 d.f., and consequently, these (pn − 1)/

(p − 1) partitions account for the pn − 1 d.f. among treatments. In order to have
a unique enumeration, we restrict the first nonzero αi in a partition α to be equal
to 1. The partitions then define the main effects, 2-factor interactions, . . ., n-factor
interaction, designated in general by Eα = A

α1
1 A

α2
2 · · · Aαn

n with the convention
that a letter Ai with αi = 0 is dropped from the expression.

As a consequence of partitioning the totality of pn − 1 d.f. into (pn − 1)/

(p − 1) sets of p − 1 d.f. each, a k-factor interaction, for example, A1 ×
A2 × · · · × Ak , consists of (p − 1)k−1 components denoted by, for example,
A1A

α2
2 · · ·Aαk

k , where α2, α3, . . . , αk take on all nonzero values in GF(p). As
an example, in a 5n design the 2-factor interaction A × B consists of AB, AB2,
AB3, AB4.

We also note that for two distinct partitions α′ = (α1, α2, . . . , αn) and β ′ =
(β1, β2, . . . , βn) the equations

α1x1 + α2x2 + · · · + αnxn = δ1 (11.2)
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and
β1x1 + β2x2 + · · · + βnxn = δ2 (11.3)

are satisfied by pn−2 treatment combinations. That this is so follows from the
theory of linear equations: Because the partitions α and β are distinct, we can
find αi, αj , βi, βj such that ∣∣∣∣ αi αj

βi βj

∣∣∣∣ �= 0

We can then choose all xk(k �= i, j) freely, say xk = x∗
k . Then (11.2) and (11.3)

reduce to

αixi + αjxj = δ1 −
∑
k �=i,j

αkx
∗
k = δ∗

1

βixi + βjxj = δ2 −
∑
k �=i,j

βkx
∗
k = δ∗

2

These equations have a unique solution in xi and xj , and since each xk can take
on p different values x∗

k , we have pn−2 different solutions to (11.2) and (11.3).
This is true for all δ2 = 0, 1, . . . , p − 1 and δ1 fixed, which implies that the pn−1

treatment combinations satisfying (11.2) can be divided into p distinct sets of
pn−2 treatment combinations each satisfying one of the p equations (11.3) with
δ2 = 0, 1, . . . , p − 1. Any contrast belonging to Eα is therefore orthogonal to
any contrast belonging to Eβ . It is in this sense then that the partitions α and β,
and hence the interactions Eα and Eβ , are orthogonal.

11.3 GENERALIZED INTERACTIONS

Any treatment combination x that satisfies the equations (11.2) and (11.3) also
satisfies the equation

(α1 + β1)x1 + (α2 + β2)x2 + · · · + (αn + βn)xn = δ1 + δ2 (11.4)

As δ1 and δ2 take on all values in GF(p), δ1 + δ2 takes on each value in GF(p)

exactly p times. Combining all x that satisfy (11.4) for a particular value of
δ1 + δ2, we have partitioned the treatment combinations according to

(α1 + β1)x1 + (α2 + β2)x2 + · · · + (αn + βn)xn = δ

with δ ∈ GF(p). This is, of course, the partition α + β, and the corresponding
interaction Eα+β is, in conformity with previous usage, a GI of Eα and Eβ .
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We can make the same statements more generally about

(α1 + λβ1)x1 + (α2 + λβ2)x2 + · · · + (αn + λβn)xn = δ1 + λδ2

with λ ∈ GF(p), λ �= 0. This then leads to partitions α + λβ and hence to the
totality of p − 1 GIs Eα+λβ of Eα and Eβ . These GIs are defined by comparisons
among the sets of treatment combinations satisfying

(α1 + λβ1)x1 + (α2 + λβ2)x2 + · · · + (αn + λβn)xn = δ (11.5)

with δ ∈ GF(p) and each λ ∈ GF(p), λ �= 0.
Formally the GIs are obtained by multiplying the corresponding letters raised

to certain powers into each other, reducing the powers mod p and modifying
the powers (if necessary) such that the first letter included appears with power
unity by multiplying every power by the same appropriate value in GF(p). For
example, in a 53 factorial the GIs of AB and AC2 are

(AB) × (AC2) = A2BC2 = (A2BC2)3 = AB3C

(AB) × (AC2)2 = A3BC = (A3BC)2 = AB2C2

(AB) × (AC2)3 = A4BC = (A4BC)4 = AB4C4

(AB) × (AC2)4 = BC3

More generally we have the following theorem.

Theorem 11.1 The total number of GIs among q interactions Eα1 , Eα2 , . . . ,

Eαq is given by

φ(q, p) =
q∑

j=2

(
q

j

)
(p − 1)j−1 (11.6)

Proof The q interactions are defined by the q sets of equations

αj1x1 + αj2x2 + · · · + αjnxn = δj

with δj ∈ GF(p), j = 1, 2, . . . , q, or for short

α′
j x = δj (j = 1, 2, . . . , q) (11.7)

Any treatment combination x that satisfies (11.7) for a given set δ1, δ2, . . . , δq

also satisfies any of the equations

q∑
j=1

λjα
′
jx =

q∑
j=1

λj δj (11.8)



398 GENERAL SYMMETRICAL FACTORIAL DESIGN

with λj ∈ GF(p) except (λ1, λ2, . . . , λq) = (0, 0, . . . , 0). We also exclude any
λ′ = (λ1, λ2, . . . , λq) with only one nonzero λj since such equations define the
q interactions themselves. Given then a particular λ, if we let the δj associated
with the nonzero components of λ take on all values in GF(p), we obtain the
partition λ′α that defines the interaction Eλ′α , which by definition is a GI of
Eα1, Eα2, . . . , Eαq . To have a unique enumeration of all possible λ and hence
all possible GIs, we restrict the first nonzero component in λ to unity. All other
components then take on all possible values in GF(p). Hence the possible number
of λ vectors is

q∑
j=2

(
q

j

)
(p − 1)j−1

which is obtained by considering all admissible λ with 2, 3, . . . , q nonzero com-
ponents, respectively. �

11.4 SYSTEMS OF CONFOUNDING

With a pn factorial and blocks of equal size the only block sizes are k = p�(� ≤
n). If � < n, we need to confound certain interactions with blocks. More precisely,
for a pn factorial in blocks of size p� we have pn−� blocks and hence we must
confound (pn−� − 1)/(p − 1) interactions with blocks. To find such a system of
confounding, we first state the following theorem.

Theorem 11.2 If in a pn factorial with equal block sizes p�(≤ pn−2) two
interactions Eα and Eβ are confounded with blocks, then so are their GIs Eα+λβ ,
λ ∈ GF(p), λ �= 0.

Proof Consider the equations associated with Eα and Eβ :

α1x1 + α2x2 + · · · + αnxn = δ1

β1x1 + β2x2 + · · · + βnxn = δ2 (11.9)

For any pair (δ1, δ2) the equations (11.9) are satisfied by a set of pn−2 treatment
combinations x′ = (x1, x2, . . . , xn) denoted by S(x;α, δ1; β, δ2) say. Each set
S(x; α, δ1; β, δ2) makes up one or several blocks. A contrast belonging to Eα is
given by

∑
δ1

∑
δ2

cδ1 S(x;α, δ1;β, δ2) (11.10)
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and a contrast belonging to Eβ by

∑
δ2

∑
δ1

dδ2 S(x;α, δ1;β, δ2) (11.11)

with
∑

δ1
cδ1 =∑δ2

dδ2 = 0. The contrasts (11.10) and (11.11), when evaluated
in terms of treatment and block effects, are linear functions not only of treatment
effects but also of block effects as each set S(x; α, δ1; β, δ2) contains a sum
of block effects multiplied by a common constant, cδ1 or cδ2 . Now, for some
λ ∈ GF(p),

S(x;α + λβ, δ) =
∑
δ1,δ2

δ1+λδ2=δ

S(x;α, δ1;β, δ2) (11.12)

Hence a contrast belonging to Eα+λβ can be expressed as

∑
δ

aδ S(x;α + λβ, δ) =
∑

δ

aδ

 ∑
δ1,δ2

δ1+λδ2=δ

S(x;α, δ1;β, δ2)

 (11.13)

with
∑

δ aδ = 0. Since (11.13) is of the same form as (11.10) and (11.11), that
is, a linear combination of the same S(x;α, δ1;β, δ2), it is also a function of
block effects, and hence Eα+λβ is also confounded with blocks. This holds for
all λ ∈ GF(p), hence for all GIs of Eα and Eβ . �

We now consider specifically a system of confounding of a pn factorial in
blocks of size p�.

Theorem 11.3 A system of confounding for a pn factorial in blocks
of size p� is completely determined by q = n − � independent interactions
Eα1, Eα2, . . . , Eαq .

Proof Since with any two interactions their GIs are also confounded with
blocks, it follows immediately that with q interactions all their GIs are also
confounded with blocks. By Theorem 11.1, the total number of GIs is φ(q, p) as
given in (11.6). Hence together with the q independent interactions we confound

q + φ(q, p) =
q∑

j=1

(
q

j

)
(p − 1)j−1
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interactions. Each interaction carries p − 1 d.f. The total number of degrees of
freedom confounded with blocks is then

q∑
j=1

(
q

j

)
(p − 1)j = pq − 1 = pn−� − 1

This is the number of degrees of freedom among the pn−� blocks of size p�. �

Once the n − � independent interactions have been chosen, it remains to obtain
the composition of the blocks. One way to do this, obviously, is to consider the
q = n − � equations associated with Eα1 , Eα2 , . . . , Eαq :

α11x1 + α12x2 + · · · + α1nxn = δ1

α21x1 + α22x2 + · · · + α2nxn = δ2
(11.14)

...

αq1x1 + αq2x2 + · · · + αqnxn = δq

for all possible pn−� right-hand sides. For fixed (δ1, δ2, . . . , δq) the equations
(11.14) are satisfied by p� treatment combinations. Hence for all possible choices
of (δ1, δ2, . . . , δq) we obtain pq = pn−� distinct sets of treatment combinations
that then form the blocks.

11.5 INTRABLOCK SUBGROUP

Another way we have already used with the 2n and 3n factorial is to first obtain the
IBSG and then use it to generate the remaining blocks. Denoting the equations
(11.14) with δi = 0 (i = 1, 2, . . . , q) by (11.14′), we first prove the following
theorem.

Theorem 11.4 The treatment combinations x′ = (x1, x2, . . . , xn) satisfying
the equations (11.14′) form a group, the IBSG, of size p� with componentwise
addition as the operation among elements.

Proof (i) The solutions to (11.14′) contain the additive unit element
(0, 0, . . . , 0); (ii) if (x1, x2, . . . , xn) satisfies (11.14′), then (λx1, λx2, . . . , λxn)

with λ ∈ GF(p) also satisfies (11.14′); (iii) if (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

satisfy (11.14′), then (x1 + y1, x2 + y2, . . . , xn + yn) satisfies (11.14′). �

Suppose now that x ′ is in the IBSG and that z′ = (z1, z2, . . . , zn) is a treat-
ment combination not belonging to the IBSG. Then the set {x′ + z′: x′ ∈ IBSG}
is a set of p� treatment combinations satisfying Eq. (11.14) for some vector
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(δ1, δ2, . . . , δq) other than (0, 0, . . . , 0). Hence these treatment combinations
form a block. We shall refer to z′ as the generator of this block. This process can
be continued by choosing successively altogether pn−� such generators. These
generators can obviously be found simply by inspection after another block has
been constructed in this way. In certain situations it is possible, however, to give a
complete characterization of the generators z1, z2, . . . , zw (w = pn−� − 1), say,
where z′

i = (zi1, zi2, . . . , zin).
Consider a particular system of confounding for a pn factorial in blocks of

size p�. Let α1, α2, . . . , αq, αq+1, . . . , αv be the partitions corresponding to the
confounded interactions, where v = (pn−� − 1)/(p − 1) and α1, α2, . . . ,αq(q =
n − �) represent the independent interactions. We then consider the set

{λαi mod p: i = 1, 2, . . . , v; λ ∈ GF(p), λ �= 0}

which we denote by

G: {αj ; j = 1, . . . , pn−� − 1}

We note that if we adjoin to G the element α′
0 = (0, 0, . . . , 0) we have a group

of pn−� elements of order n − � with α1,α2, . . . ,αq as the generators. Denote
this group by G∗.

We now state the following theorem.

Theorem 11.5 For a given system of confounding for a pn factorial in blocks
of size p� the composition of the blocks is obtained by using the IBSG together
with the generators zj = αj with αj ∈ G provided the αj are not contained in
the IBSG.

Proof We have to show that each zj = αj satisfies a different set of equations
(11.14), that is, with different right-hand sides.

Suppose that αj and αj ′(j �= j ′) satisfy the same equations. It follows then
from (11.14) that

α′
1(αj − αj ′) = 0

α′
2(αj − αj ′) = 0

...

α′
q(αj − αj ′) = 0

that is, αj − αj ′ satisfies (11.14)′. Now αj − αj ′ ∈ G∗ and, by assumption, the
only element in G∗ that satisfies (11.14)′ is α0. Hence αj = αj ′ . �
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Example 11.1 Consider a 35 experiment in blocks of size 33. Suppose
ABCD, BCDE2, and hence AB2C2D2E2 and AE are confounded with blocks.
The IBSG is determined by

x1 + x2 + x3 + x4 = 0

x2 + x3 + x4 + 2x5 = 0

and it can be seen that α′
1 = (1, 1, 1, 1, 0), α′

2 = (0, 1, 1, 1, 2), α′
3 =

(1, 2, 2, 2, 2), α′
4 = (1, 0, 0, 0, 1) do not satisfy these equations. Hence the gen-

erators of the eight blocks besides the IBSG are α′
1, α

′
2, α

′
3, α

′
4, α′

5 = 2α′
1 =

(2, 2, 2, 2, 0), α′
6 = 2α′

2 = (0, 2, 2, 2, 1, ), α′
7 = 2α′

3 = (2, 1, 1, 1, 1), α′
8 =

2α′
4 = (2, 0, 0, 0, 2). �

11.6 ENUMERATING SYSTEMS OF CONFOUNDING

Concerning the number of possible systems of confounding, we state the follow-
ing theorem.

Theorem 11.6 The total number of systems of confounding of a pn factorial
in blocks of size p� is

(pn − 1)(pn − p) · · · (pn − pn−�−1)

(pn−� − 1)(pn−� − p) · · · (pn−� − pn−�−1)
(11.15)

Proof It follows from Theorem 11.3 that the total number of systems of
confounding is the same as the number of distinct sets of n − � independent
interactions. This number can be obtained as follows: The first interaction can
be chosen in (pn − 1)/(p − 1) ways; the second in (pn − p)/(p − 1) ways; the
third in

pn − p

p − 1
− 1 − φ(2, p) = pn − p2

p − 1

ways, with φ(q, p) as defined in (10.6); the fourth in

pn − p2

p − 1
− 1 − φ(3, p) + φ(2, p) = pn − p3

p − 1

ways; . . .; the (k + 1) − th(k ≥ 3) in

pn − pk−1

p − 1
− 1 − φ(k, p) + φ(k − 1, p) (11.16)
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ways, and since

φ(k, p) − φ(k − 1, p) = pk−1 − 1

(11.16) becomes (pn − pk)/(p − 1). Hence the total number of sets generated
in this way is

(
pn − 1

p − 1

)(
pn − p

p − 1

)(
pn − p2

p − 1

)
· · ·
(

pn − pn−�−1

p − 1

)
(11.17)

Any one set will, however, have been enumerated in

(
pn−� − 1

p − 1

)(
pn−� − p

p − 1

)
· · ·
(

pn−� − pn−�−1

p − 1

)
(11.18)

different ways, which can be derived in the same way as (11.17). Dividing (11.17)
by (11.18) gives the stated result (11.15). �

11.7 FISHER PLANS

In many cases (11.15) may be too large to actually write out all possible systems
of confounding. A question of practical interest then is whether there exists a
certain type of confounding and how one can find it if it exists. In particular, one
may be interested to know whether there exists a system of confounding such
that main effects and low-factor interactions remain unconfounded.

11.7.1 Existence and Construction

A first and important result in this direction is the following theorem.

Theorem 11.7 (Fisher, 1942, 1945) The maximum number of factors with
p levels that can be accommodated in a design with blocks of size p�(� ≥ 2)

such that main effects and two-factor interactions remain unconfounded is

n = p� − 1

p − 1
(11.19)

Proof The proof is based on the following correspondence between the
n = (p� − 1)/(p − 1) factors F1, F2, . . . , Fn each at p levels and the (p� − 1)/
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(p − 1) effects and interactions of a p� factorial with factors A1, A2, . . . , A�:

F1 = A1

F2 = A2

F3 = A1A2

F4 = A1A
2
2

...

Fn = A1A
p−1
2 · · · Ap−1

�

or, if we label the factors F by α, where α′ = (α1, α2, . . . , α�) designates a
partition in the p� system,

Fα = A
α1
1 A

α2
2 · · · Aα�

�

with αi ∈ GF(p)(i = 1, 2, . . . , �), not all αi = 0 and the first nonzero αi equal to
unity. There are, of course, n such α’s and we denote the set of these α’s by A. We
then create the following two-way table: The rows are labeled by the p� factorial
combinations x′ = (x1, x2, . . . , x�) and the columns by the (p� − 1)/(p − 1)

interactions A
α1
1 A

α2
2 · · · Aα�

� , that is, by the Fα. The table entries thus are the inner
products α′x mod p [we note that these are the subscripts in the representation
of τ(x) in terms of main effects and interactions]. Each row in this table then
represents a treatment combination in the n factors F1, F2, . . . , Fn, the level
of Fα in the treatment combination z(x) corresponding to row x being α′x. We
thus have p� treatment combinations for n factors. These treatment combinations
constitute the IBSG for the system of confounding to be considered. That this is
so can be seen as follows: (i) The operation in this set is componentwise addition
mod p; (ii) the set contains the addition identity; (iii) if the set contains

z(x) =
(

x1, x2, x1 + x2, . . . , x1 + (p − 1)

�∑
i=2

xi

)

then it also contains λx, λ ∈ GF(p), since with the p� treatment combination x

we also have the p� treatment combination λx because the set of p� treatment
combinations forms a group; and (iv) if the set contains

z(x) =
(
x1, x2, x1 + x2, . . . , x1 + (p − 1)

�∑
i=2

xi

)
and

z(y) =
(
y1, y2, y1 + y2, . . . , y1 + (p − 1)

�∑
i=2

yi

)
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then it also contains z(x) + z(y) because with x and y the p� treatment combi-
nations also contain x + y.

To show that this IBSG leads to a system of confounding that does not
confound any of the main effects Fi (i = 1, 2, . . . , n) and any of the 2-factor
interactions FiF

γ

j , γ ∈ FG(p), γ �= 0, i, j = 1, 2, . . . , n, i �= j , we have to show
that in the IBSG (i) each level of each factor Fi occurs the same number of times
and (ii) each level combination for any two factors Fi , Fj occurs the same num-
ber of times: (1) The level z ∈ GF(p) of factor Fα occurs in the IBSG whenever
α′x = z. Since at least one αi �= 0 in α, this equation has p�−1 solutions for every
z ∈ GF(p) and every α ∈ A. (2) The level combination (z1, z2) of factors Fα and
Fβ occurs whenever α′x = z1 and β ′z = z2. As shown previously (Section 11.2),
there exist exactly p�−2 such p� treatment combinations x that satisfy these
equations and that hold for every α, β ∈ A and every z1, z2 GF(p). �

We illustrate this theorem by the following example.

Example 11.2 Let p = 3 and � = 2, that is, n = 4. We set up the table,
letting A1 = A, A2 = B,

F1 F2 F3 F4

A B AB AB2

x′ α′ = (1, 0) (0, 1) (1, 1) (1, 2)

0, 0 0 0 0 0
0, 1 0 1 1 2
0, 2 0 2 2 1
1, 0 1 0 1 1
1, 1 1 1 2 0
1, 2 1 2 0 2
2, 0 2 0 2 2
2, 1 2 1 0 1
2, 2 2 2 1 0

Each row represents a treatment combination (z1, z2, z3, z4) for the factors
F1, F2, F3, F4. The nine treatment combinations represent the IBSG for a system
of confounding for a 34 factorial in blocks of size 32. �

If we write the IBSG as a n × p� array, W say, that is, each column repre-
senting a treatment combination, the proof of Theorem 11.7 leads immediately
to the following corollary.

Corollary 11.1 The IBSG for a pn factorial in blocks of size p�, written
as a matrix W , is an orthogonal array of size p�, with n = (p� − 1)/(p − 1)
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constraints, p symbols, of strength 2 and index p�−2, that is,

OA

[
p�,

p� − 1

p − 1
, p, 2;p�−2

]
Such an orthogonal array was called by Rao (1946a) a hypercube of strength

2. More generally this leads to the following definition.

Definition 11.1 Let there be n factors each at p levels. A subset consisting
of p� of the possible pn treatment combinations is said to be a hypercube of
strength d if all combinations of any d of the n factors occur p�−d times. Such
an arrangement is denoted by [n, p, �, d].

Still another way of expressing the result of Theorem 11.7 is the following
corollary. �

Corollary 11.2 For a pn factorial experiment there exists a system of con-
founding with main effects and 2-factor interactions unconfounded if the block
size k is such that

k > n(p − 1) (11.20)

For p = 2, 3, (11.20) is, of course, the result alluded to in Sections 8.2.3 and
10.6, respectively.

11.7.2 Identifying System of Confounding

Having constructed a system of confounding using the IBSG of Theorem 11.7,
the question may then be asked: Which of the interactions in the pn factorial
are confounded? Let z′ = (z1, z2, . . . , zn) denote a treatment combination of the
pn factorial with the factors F1, F2, . . . , Fn. We then know that the interaction
F

γ1
1 F

γ2
2 · · ·Fγn

n [γi ∈ GF(p), i = 1, 2, . . . , n, not all γi = 0, the first nonzero γi

equals unity] is confounded with blocks if and only if

γ1z1 + γ2z2 + · · · + γnzn = 0 mod p (11.21)

for every z′ in the IBSG. The IBSG contains p� elements that form an addi-
tive group of order �, that is, the group is generated by � treatment combina-
tions z′

1, z
′
2, . . . , z

′
�, say with z′

i = (zi1, zi2, . . . , zin), i = 1, 2, . . . , �. The system
(11.21) then reduces to

γ1z11 + γ2z12 + · · · + γnz1n = 0

γ1z21 + γ2z22 + · · · + γnz2n = 0
(11.22)

...

γ1z�1 + γ2z�2 + · · · + γnz�n = 0
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Equations (11.22) in the unknowns γ1, γ2, . . . , γn have pn−� solutions. One of
these solutions is (0, 0, . . . , 0) so that pn−� − 1 nontrivial solutions remain. How-
ever, if γ ′ = (γ1, γ2, . . . , γn) is a solution, then λγ ′ with λ ∈ GF(p) is a solution
also. Hence there are c = (pn−� − 1)/(p − 1) distinct solutions γ 1, γ 2, . . . , γ c,
say, and these then correspond to the confounded interactions Eγ 1, Eγ 2 , . . . , Eγ c

in the F1, F2, . . . , Fn system. Of course, of the c interactions only n − � are
independent interactions.

To summarize: The general idea is to (i) obtain a set of generators
z′

1, z
′
2, . . . , z

′
� of the IBSG, (ii) obtain all solutions to (11.22), and (iii) eliminate

all redundancies from these solutions to obtain c distinct solutions γ 1, γ 2, . . . , γ c.
We note that this confounding detection method works, of course, for any

system of confounding. This is just the formal statement of the procedure men-
tioned in Section 8.4. The method of constructing a confounded design according
to Theorem 11.7 is just one case in point where the confounded interactions are
not known a priori.

11.7.3 Application to Fisher Plans

Returning now to the case of Theorem 11.7, what can we say specifically about
γ 1, γ 2, . . . , γ c? An explicit and complete characterization of the confounded
interactions can be given as follows.

Let us return to Eqs. (11.22). We note that the treatment combinations
z′

1, z
′
2, . . . , z

′
� are generated by the corresponding treatment combinations x′

j =
(xj1, xj2, . . . , xj�) (j = 1, 2, . . . , �). Rewriting (11.22) as

γ1α
′
1x1 + γ2α

′
2x1 + · · · + γnα

′
nx1 = 0

γ1α
′
1x2 + γ2α

′
2x2 + · · · + γnα

′
nx2 = 0

(11.23)
...

γ1α
′
1x� + γ2α

′
2x� + · · · + γnα

′
nx� = 0

and taking (x1, x2, . . . , x�) = I �, we obtain from (11.23) the equations

α11γ1 + α21γ2 + · · · + αn1γn = 0

α12γ1 + α22γ2 + · · · + αn2γn = 0
(11.24)

...

α1�γ1 + α2�γ2 + · · · + αn�γn = 0

which is a set of � equations in the n unknowns γ1, γ2, . . . , γn, where αji is the
ith component of αj (j = 1, 2, . . . , n; i = 1, 2, . . . , �).
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To characterize the solutions to (11.24), we write the αj ∈ A in what we shall
refer to as standard order in that α′

1, α
′
2, . . . , α′

� represent the � main effects
A1, A2, . . . , A�, respectively, that is, α′

ν is the νth row in the identity matrix
I �(ν = 1, 2, . . . , �). From (11.24) we then obtain the equations

γ1
γ2
...

γ�

 = −


α�+1,1 α�+2,1 . . . αn1
α�+1,2 α�+2,2 . . . αn2

...

α�+1,� α�+2,� . . . αn�

 ·


γ�+1
γ�+2

...

γ�+n

 (11.25)

Since γ�+1, γ�+2, . . . , γn can be chosen freely, we can obtain n − �

independent solutions to (11.25) and hence n − � independent partitions
� = {γ j = (γj1, γj2, . . . , γjn); j = 1, 2, . . . , n − �

}
by taking successively for

(γ�+1, γ�+2, . . . , γn) the rows of In−�. If we denote the j th row of In−� by e′
j ,

then (11.25) yields successively

γ ′
j = (−α′

�+j , e
′
j ) (11.26)

j = 1, 2, . . . , n − �, or if we convert −α′
�+j to positive components mod p,

(11.26) becomes

γ ′
j = (α′

�+j , (p − 1) e′
j ) (11.27)

This is so since in each α′
�+j the first nonzero component is unity and hence

adding p and multiplying by p − 1 yield (11.27). From (11.27) we then have
that the n − � interactions

Eγ j = F
αj+�,1
1 F

αj+�,2
2 · · · Fαj+�,�

� F
p−1
�+j

(j = 1, 2, . . . , n − �) are confounded with blocks and so are their GIs, accounting
for all pn−� − 1 d.f. among blocks.

As an illustration consider the following example.

Example 11.3 Suppose p = 2, � = 3, and hence n = 7. The α′ in stan-
dard order are α′

1 = (100), α′
2 = (010), α′

3 = (001), α′
4 = (110), α′

5 = (101),
α′

6 = (011), α′
7 = (111). Then from (11.27) γ ′

1 = (α′
4, e

′
1) = (1101000), γ ′

2 =
(α′

5, e
′
2) = (1010100), γ ′

3 = (α′
6, e

′
3) = (0110010), γ ′

4 = (α′
7, e4) = (1110001).

Hence F1F2F4, F1F3F5, F2F3F6, F1F2F3F7 and all their GIs are
confounded. �

Example 11.4 Suppose p = 3, � = 2, and hence n = 4. We have (see
Example 11.2) α′

1 = (10), α′
2 = (01), α′

3 = (11), α′
4 = (12). From (11.27) we

then obtain γ ′
1 = (1120), γ ′

2 = (1202). Hence F1F2F
2
3 , F1F

2
3 F 2

4 and their GIs
F1F3F4 and F2F3F

2
4 are confounded. The reader should verify that this is in

agreement with the content of the IBSG given in Example 11.2. �
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11.8 SYMMETRICAL FACTORIALS AND FINITE GEOMETRIES

It is of some interest to relate the concepts of a pn factorial experiment and its
systems of confounding to the notion of finite geometries, for example, Euclidean
and projective geometries. This line of thought was developed initially by Bose
(1947b) while deriving some known results in a different way and this then led
to further extensions.

The p levels of the factors in a pn factorial experiment may be identified with
the elements of the GF(p). The treatment combinations (x1, x2, . . . , xn) can then
be thought of as the points of the Euclidean geometry EG(n, p) (see Appendix
B). Any (n − 1)-space in EG(n, p) satisfies the equation

α0 + α1x1 + α2x2 + · · · + αnxn = 0 (11.28)

Hence the (n − 1)-space consists of pn−1 points of the EG(n, p). Keeping
(α1, α2, . . . , αn) fixed and varying α0 ∈ GF(p) yield p distinct (n − 1)-spaces
that together form, of course, the EG(n, p). More generally, a (n − q)-space of
the EG(n, p) is determined by q linearly independent equations

α10 + α11x1 + α12x2 + · · · + α1nxn = 0

α20 + α21x1 + α22x2 + · · · + α2nxn = 0
(11.29)

...

αq0 + αq1x1 + αq2x2 + · · · + αqnxn = 0

which are satisfied by pn−q points.
It is clear that the partitioning of the EG(n, p) into (n − 1)-spaces as given by

(11.28) corresponds to the partitioning we have used earlier to define main effects
and interactions. We represented such partitions by (α1, α2, . . . , αn), and two such
partitions (α1, α2, . . . , αn) and (β1, β2, . . . , βn), say, are identical, that is, lead
to the same set of p distinct (n − 1)-spaces of EG(n, p), if (α1, α2, . . . , αn) = λ

(β1, β2, . . . , βn) for some λ ∈ GF(p). We know that the number of distinct par-
titions is (pn − 1)/(p − 1), which is also the number of points in the projective
geometry PG(n − 1, p) (see Appendix B). It is therefore convenient to identify
(α1, α2, . . . , αn) as a point in PG(n − 1, p).

With two points α′ = (α1, α2, . . . , αn) and β ′ = (β1, β2, . . . , βn) ∈ PG
(n − 1, p) the points α′ + λβ ′, λ ∈ GF(p), define a line, that is, a 1-space, in
PG(n − 1, p). In terms of interactions this means that the points on the line rep-
resent the GIs of Eα and Eβ . This implies that for a pn factorial in blocks of
size pn−2 any two points α′,β ′ in PG(n − 1, p) determine such a system of con-
founding and the GIs, which are also confounded, are represented by the points
on the line through α′ and β ′.

This can be generalized easily, and we then have the following: A system of
confounding for a pn factorial in blocks of size pk is determined by n − k points
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in PG(n − 1, p) such that the points do not lie on a subspace of PG(n − 1, p)

of dimension n − k − 2 or less, that is, the points are not conjoint.

11.9 PARAMETERIZATION OF TREATMENT RESPONSES

We have shown in Sections 7.4.2 and 10.3 how the true response of a treatment
combination for 2n and 3n factorials can be expressed in terms of main-effect
and interaction components. We shall now present such a parameterization for
the pn factorial.

In Section 11.2 we have partitioned the pn treatment combinations into p

mutually exclusive sets of pn−1 treatment combinations each through Eqs. (11.1),
that is,

α1x1 + α2x2 + · · · + αnxn = δ (11.30)

with δ ∈ GF(p) and a fixed α′ = (α1, α2, . . . , αn) with αi ∈ GF(p)(i =
1, 2, . . . , n)α′ �= (0, 0, . . . , 0). The set of treatment combinations x ′ =
(x1, x2, . . . , xn) that satisfy (11.30) for a given δ we denoted earlier by S(x;α, δ).

Let a(x) denote the true response of the treatment combination x. We
then define

Eα
δ = 1

pn−1

∑
x∗∈S(x;α,δ)

a(x∗) − 1

pn

∑
δ∈GF(p)

∑
x∗∈S(x;α,δ)

a(x∗) (11.31)

or, if we write for convenience

1

pn

∑
δ∈GF(p)

∑
x∗∈S(x;α,δ)

a(x∗) = M

the overall mean, then (11.31) becomes

Eα
δ = 1

pn−1

∑
x∗∈S(x;α,δ)

a(x∗) − M (11.32)

Since δ = α′x, we can write (11.32) also as Eα
α′x , and we shall use both notations

interchangeably. We thus have p numbers Eα
0 , Eα

1 , . . . , Eα
p−1 with Eα

0 + Eα
1 +

· · · + Eα
p−1 = 0. Any linear contrast among these, that is,

c0E
α
0 + c1E

α
1 + · · · + cp−1E

α
p−1

with c0 + c1 + · · · + cp−1 = 0 belongs to the interaction Eα = A
α1
1 A

α2
2 · · · Aαn

n .
We can do this for each admissible partition α, of which there are (pn − 1)/

(p − 1). We have denoted this set by A.
We then have the following theorem.
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Theorem 11.8 The true response a(x) of a treatment combination x in a pn

factorial can be parameterized as

a(x) = M +
∑
α∈A

Eα
α′x (11.33)

Proof We examine the right-hand side (RHS) of (11.33) and show that it
equals a(x). We have

RHS = M + 1

pn−1

∑
α∈A

∑
x∗∈S(x;α,δ)

a(x∗) − pn − 1

p − 1
M (11.34)

and

∑
α∈A

∑
x∗∈S(x;α,δ)

a(x∗) = pn − 1

p − 1
· a(x) +

∑
α∈A

∑
x∗∈S(x;α,δ)
x∗ �= x

a(x∗) (11.35)

Now consider a specific x∗ �= x. In how many terms of the second expression on
the RHS of (11.35), that is, for how many α ∈ A, does a(x∗) occur? It occurs if
and only if

α′x = α′x∗

or if
α′(x − x∗) = 0

or if
α′u = 0 (11.36)

for u = x∗ − x. Now at least one of the components in u is not zero. Hence
(11.36) as an equation in the unknown α has pn−1 solutions. However, we have to
exclude α′ = (0, 0, . . . , 0), and since with α also λα is a solution for λ ∈ GF(p),
λ �= 0, the number of distinct solutions to (11.36) is (pn−1 − 1)/(p − 1). Using
this result together with (11.35) in (11.34), we obtain

RHS = M

(
1 − pn − 1

p − 1

)
+ pn − 1

p − 1

1

pn − 1
a(x)

+ pn−1 − 1

p − 1

1

pn − 1

∑
x∗

x∗ �= x

a(x∗)
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= M

(
1 − pn − 1

p − 1

)
+ pn − 1

p − 1

1

pn−1
a(x)

+ pn−1 − 1

p − 1

1

pn−1

[
pnM − a(x)

]

= M

(
1 − pn − 1

p − 1
+ (pn−1 − 1)p

p − 1

)
+ (pn − 1) − (pn−1 − 1)

(p − 1)pn−1 a(x)

= a(x) �

For an illustration of this theorem we refer to Example 10.2.

11.10 ANALYSIS OF pn FACTORIAL EXPERIMENTS

We consider a particular system of confounding in s types of replicates. These
s replicates form the basic pattern, which is then repeated q times. The usual
model for data from such an experiment is

y = µI + Xρρ + Xβ∗β∗ + Xττ + e (11.37)

where the various terms on the RHS of (11.37) refer to the overall mean, replicate
effects, block-within-replicate effects, treatment effects, and error, respectively.

We recall that the blocks within each replicate are determined by the system of
confounding for that replicate and that the basic pattern of replicates is determined
by the various types of systems of confounding employed. We shall therefore
divide the (pn − 1)/(p − 1) interactions Eα into three mutually exclusive sets
based on the amount of confounding:

E1 =
{
Eαk , k = 1, 2, . . . , n1

}
: completely confounded

E2 =
{
Eγ � , � = 1, 2, . . . , n2

}
: partially confounded

E3 =
{
Eδm, m = 1, 2, . . . , n3

}
: not confounded

and Eγ � ∈ E2 is confounded in c(γ �) replicates and not confounded in u(γ �) =
s − c(γ �) replicates of the basic pattern (� = 1, 2, . . . , n2). Of course, n1 + n2 +
n3 = (pn − 1)/(p − 1).

Just as the interactions in E1 and E2 determine the composition of the blocks
within replicates, the interaction components Eα

0 , Eα
1 , . . . , Eα

p−1 are the
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parametric functions of the treatment effects τ (x), which are of main interest
from the analysis point of view. To estimate these quantities, we shall utilize the
fact that the design under consideration is resolved in that each treatment combi-
nation occurs once in each replicate (we call a design resolved if it is resolvable
and actually arranged in replicates). Hence, if we arrange the observations y in
(11.37) according to replicates and if in each replicate we arrange the observa-
tions in the same order according to the pn treatment combinations, we can write
the design model matrix in (11.37), that is, the matrix

X = (I,Xρ, Xβ∗, Xτ )

as

I I Xβ∗(1) I

I I Xβ∗(2) I

...
. . .

. . .
...

I I Xβ∗(r) I︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸


(11.38)

Xρ Xβ∗ Xτ

where each matrix in (11.38) has pn rows and Xβ∗(j) represents the Xβ∗ matrix
for the j th replicate (j = 1, 2, . . . , r = sq). We now utilize this form of (11.38)
and the structure of the Xβ∗(j) to proceed with the analysis.

11.10.1 Intrablock Analysis

Consider the RNE (1.7) for an incomplete block design(
rI − 1

k
NN ′

)
τ̂ = T − 1

k
NB (11.39)

where N = X′
τXβ . In our case, because of the form of (11.38), we obtain

N =
(
Xβ∗(1),Xβ∗(2), . . . ,Xβ∗(r)

)
and hence (11.39) becomesrI − 1

k

r∑
j=1

Xβ∗(j) X′
β∗(j)

 τ̂ = T − 1

k
NB (11.40)
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Let us consider now the right-hand side of (11.40). If we write y ′ as(
y′

(1)
, y ′

(2)
, . . . , y ′

(r)

)
, where y ′

(j)
represents the vector of observations in repli-

cate j , then

B =



X′
β∗(1)y(1)

X′
β∗(2)y(2)

...

X′
β∗(r)y(r)


and hence

NB =
r∑

j=1

Xβ∗(j)X
′
β∗(j)y(j)

Furthermore, because of the arrangement of the observations in the same order
in each replicate, we have

T =
r∑

j=1

y(j)

We then write (11.40) as

r∑
j=1

(
I − 1

k
Xβ∗(j)X

′
β∗(j)

)
τ̂ =

r∑
j=1

(
I − 1

k
Xβ∗(j) X′

β∗(j)

)
y(j) (11.41)

with k = p�. It follows from (11.41) that, in order to analyze the complete data
set, we can analyze the data in each replicate separately, for example, obtain
estimates of the main effects and interaction components, and then average the
information over all contributing replicates.

Let us then consider the RNE for the j th replicate:(
I − 1

k
Xβ∗(j) X′

β∗(j)

)
τ̂ =

(
I − 1

k
Xβ∗(j) X′

β∗(j)

)
y(j) (11.42)

We shall write the equation for treatment combination x as

τ̂ (x) − 1

k

∑
x∗

λj (x, x∗)̂τ (x∗) = y(j) (x) − 1

k

∑
x∗

λj (x, x∗) y(j)(x
∗) (11.43)
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where τ(x) and y(j)(x) represent the effect and response of treatment combina-
tion x, respectively, and

λj (x, x∗) =


1 if x and x∗ are in the

same block in replicate j

0 otherwise

Suppose we want to estimate Eα
δ , where [see (11.31)]

Eα
δ = 1

pn−1

∑
x∗∈S(x;α,δ)

τ (x∗) − 1

pn

∑
x∈X

τ(x) (11.44)

with S(x;α, δ) representing the set of all treatment combinations x satisfying
the equation α′x = δ and X being the set of all treatment combinations. We
distinguish between two cases:

(i) Suppose Eα is not confounded in replicate j , that is, Eα ∈ E2 or E3.
Equations (11.44) and (11.42) then suggest that we consider

∑′

x

[
τ̂ (x) − 1

k

∑
x∗

λj (x, x∗)̂τ (x∗)
]

=
∑′

x

[
y(j)(x) − 1

k

∑
x∗

λj (x, x∗)y(j)(x
∗)
]

where ∑
x

′ =
∑

x∈S(x;α,δ)

or

∑′

x

τ̂ (x) − 1

k

∑
x∗

[∑′

x

λj (x, x∗)

]
τ̂ (x∗)

=
∑′

x

y(j)(x) − 1

k

∑
x∗

[∑′

x

λj (x, x∗)

]
y(j)(x

∗) (11.45)

Recall now that each block contains p� treatment combinations, and since
Eα is not confounded in replicate j , the pn−1 treatment combinations satis-
fying α′x = δ are equally distributed over the pn−� blocks. It follows then that∑′

x λj (x, x∗) = p�−1 for each x∗ ∈ X. Hence, using k = p�, (11.45) becomes

∑′

x

τ̂ (x) − 1

p

∑
x∗

τ̂ (x∗) =
∑′

x

y(j)(x) − 1

p

∑
x∗

y(j)(x
∗) (11.46)
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Comparing (11.46) to (11.44) yields

pn−1Êα
δ(j) =

∑′

x

y(j)(x) − 1

p

∑
x∗

y(j)(x
∗) (11.47)

or the best linear unbiased estimate (BLUE) of Eα
δ from the j th replicate is

Êα
δ(j) = 1

pn−1

∑′

x

y(j)(x) − y(j) (11.48)

with y(j) being the mean of all the observations in replicate j .
(ii) Suppose Eα is confounded in replicate j , that is, Eα ∈ E1 or E2. We con-

sider again (11.45). Since Eα is confounded, the pn−1 treatment combinations
satisfying α′x = δ, that is, the treatment combinations in S(x; α, δ), are dis-
tributed over pn−�−1 of the pn−� blocks each containing p� of the x∗∈ S(x;α, δ).
Hence

∑′

x

λj (x, x∗) =
{

p� for x∗ ∈ S(x; α, δ)

0 otherwise

It then follows that both sides of (11.45) are identically zero, and hence repli-
cate j does not contribute to the estimation of Eα

δ , that is, does not contribute to
information about Eα.

The derivation above holds, of course, for any interaction Eα (α ∈ A) and any
replicate j (j = 1, 2, . . . , r). Specifically for Eαk ∈ E1 it follows then that there
is no intrablock information. For Eγ � ∈ E2 we obtain information from qu(γ �)

replicates. Let

η(γ �, j) =
{

1 if Eγ � is not confounded in replicate j

0 otherwise

We then obtain from (11.48)

pn−1
r∑

j=1

η(γ �, j) Ê
γ �

δ(j)
=

r∑
j=1

η(γ �, j)

 ∑
x∗∈S(x;γ �,δ)

y(j)(x
∗) − pn−1y(j)



or, if we let

Ê
γ �

δ = 1

qu(γ �)

∑
j

η(γ �, j)Ê
γ �

δ(j)
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then

Ê
γ �

δ = 1

pn−1qu(γ �)

r∑
j=1

η(γ �, j)

 ∑
x∗∈S(x;γ �,δ)

y(j)(x
∗) − pn−1y(j)

 (11.49)

Finally, information for Eδm ∈ E3 is obtained from all replicates, so that

Ê
δm

δ = 1

pn−1r

r∑
j=1

∑
x∗∈S(x;δm,δ)

y(j)(x
∗) − y (11.50)

where y is the overall mean.

11.10.2 Disconnected Resolved Incomplete Block Designs

The result just derived is a special case of a more general result applying to dis-
connected resolved incomplete block designs, which we shall give now. Suppose
we have r replicates with each treatment combination occurring exactly once in
each replicate. According to (11.38), we write the model for the j th replicate as

y(j)
.= µI + ρjI + Xβ∗(j)β

∗
j + Iτ (11.51)

[the symbol
.=, used in I.4.2 as a shorthand for “approximately described by,” is

used here to denote the expected value, E(·), of the expression on the left-hand
side]. Consider now a linear function ξ ′τ of the treatment effects, with ξ ′I = 0.
Such a function may or may not be estimable, that is, it may or may not be
confounded with blocks. We state the following definition.

Definition 11.2 A linear function ξ ′τ with ξ ′I = 0 is completely confounded
with blocks in the j th replicate of a resolved incomplete block design if ξ ′y(j)

is a linear function of block totals. �

To obtain a characterization of such confounded functions, we multiply (11.51)
on both sides by ξ ′. This gives

ξ ′y(j)
.= ξ ′Xβ∗(j) β∗

j + ξ ′τ (11.52)

the left-hand side of which must equal η′X′
β∗(j)y(j) for some η. This implies that

ξ ′ = η′X′
β∗(j) (11.53)

On the other hand, if (11.53) holds, it follows from (11.52) that

η′Xβ∗(j)y(j)
.= η′ diag{kj1, kj2, . . . , kjb}β∗

j + ξ ′τ
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since

X′
β∗(j)Xβ∗(j) = diag{kj1, kj2, . . . , kjb}

where kji is the size of the ith block in the j th replicate (j = 1, 2, . . . , r; i =
1, 2, . . . , b), or with equal block size k, Xβ∗(j)Xβ∗(j) = kI . Thus we have the
following theorem.

Theorem 11.9 A linear function ξ ′τ with ξ ′I = 0 is completely confounded
with blocks of the j th replicate of a resolved incomplete block design if and only
if ξ = Xβ∗(j)η for some η.

Using this theorem, we can now derive from basic principles of linear model
theory that, if a linear function ξ ′τ is completely confounded in c of the r

replicates of a design, ξ ′τ is estimated in the usual way from the r − c replicates
in which it is not confounded, thus corroborating our earlier results concerning the
estimation of Eα

δ ’s. Suppose then that ξ ′τ is completely confounded in replicates
1, 2, . . . , c; that is, we have

ξ = Xβ∗(1)η1 = Xβ∗(2)η2 = · · · = Xβ∗(c)ηc (11.54)

and let

ξ̂ ′τ =
r∑

j=1

a′
jy(j)

Assuming a GMLM (the justification for this is given in I.6.3.5), we have

var
(
ξ̂ ′τ
)

=
r∑

j=1

a′
jaj σ

2
e

Hence, to find the BLUE for ξ̂ ′τ , we minimize
∑r

j=1 a′
jaj subject to the unbi-

asedness conditions

r∑
j=1

aj = ξ (11.55)

and

ξ ′aj = 0 for j = 1, 2, . . . , c. (11.56)

The condition (11.56) derives from the unbiasedness conditions a′
jXβ∗(j) = φ

together with (11.54) which implies

ξ ′aj = η′
jX

′
β∗(j)aj = 0 for j = 1, 2, . . . , c
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The Lagrangian to be minimized is then

L =
r∑

j=1

a′
jaj − 2ν ′

 r∑
j=1

aj − ξ

+
c∑

j=1

λj ξ
′aj (11.57)

where ν and λj (j = 1, 2, . . . , c) are Lagrangian multipliers. The derivatives of
(11.57) yield the equations

aj − ν + λj ξ = φ (j = 1, 2, . . . , c) (11.58)

aj − ν = φ (j = c + 1, 2, . . . , r) (11.59)

r∑
j=1

aj = ξ

ξ ′aj = 0 (j = 1, 2, . . . , c)

From (11.58) we obtain

ξ ′aj + λj ξ
′ξ = ξ ′ν (j = 1, 2, . . . , c)

which, using (11.56), reduces to

λj ξ
′ξ = ξ ′ν (j = 1, 2, . . . , c) (11.60)

implying λ1 = λ2 = · · · = λc = λ, say. Now it follows from (11.55), (11.56),
and (11.59) that

ξ ′ξ =
r∑

j=c+1

ξ ′aj = (r − c)ξ ′ν (11.61)

Hence, from (11.60) and (11.61)

λ = 1

r − c
(11.62)

and

ν = 1

r − c
ξ (11.63)

It follows then from (11.58), (11.59), (11.62), and (11.63) that

aj = φ for j = 1, 2, . . . , c
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and

aj = 1

r − c
ξ for j = c + 1, . . . , r

Hence

ξ̂ ′τ =
∑r

j=c+1 ξ ′y(j)

r − c

that is, the estimate of linear function ξ ′τ that is completely confounded in
c replicates is the average of the same linear function of the corresponding
observations from the replicates in which ξ ′τ is not confounded. If in particular
c = r , then ξ ′τ is, of course, not estimable.

11.10.3 Analysis of Variance Tables

We now return to the analysis of pn factorial experiments in terms of main effects
and interactions. Since we have used the reparameterization (11.33), a complete
set of estimable functions of the τ(x) is given by{

E
γ �

0 , E
γ �

1 , . . . , E
γ �

p−2: Eγ � ∈ E2

}
and {

E
δm

0 , E
δm

1 , . . . , E
δm

p−2: Eδm ∈ E3

}
accounting for (n2 + n3)(p − 1) d.f. among treatments. Hence we have the T|B-
ANOVA as given in Table 11.1a. It follows from the derivation of Êγ � and Êδm ,
for example, (11.49) and (11.50), and the general principle (see Section 1.3.7)

SS(Xτ | I, Xβ) = τ̂ ′Q

that

SS
(
Eγ �

) = qu(γ �)p
n−1

p−1∑
δ=0

[
Ê

γ �

δ

]2
(11.64)

and

SS
(
Eδm

)
= rpn−1

p−1∑
δ=0

[
Ê

δm

δ

]2
(11.65)

It is easy to verify that

E
[
SS
(
Eγ �

)] = (p − 1)σ 2
e + qu(γ �)p

n−1
p−1∑
δ=0

[
E

γ �

δ

]2
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Table 11.1 T|B-ANOVA for pn Factorial Experiment

Source d.f. SS

a. Basic Partitioning

Xρ | I sq − 1 Usual

Xβ∗ |I,Xρ sq(pn−� − 1) Usual

Xτ | I,Xρ,Xβ∗ (n2 + n3)(p − 1)
∑

�

SS(Eγ � ) +
∑
m

SS(Eδm)

I |I,Xρ,Xβ∗ , Xτ νR Difference

Total sqpn − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I,Xρ sq(pn−� − 1) Usual

{Eαk } n1(p − 1)
∑

k

SS(Eαk )c

{Eγ �} n2(p − 1)
∑

�

SS(Eγ � )c

Remainder Difference (=ν) Difference

and

E
[
SS
(
Eδm

)]
= (p − 1)σ 2

e + rpn−1
p−1∑
δ=0

[
E

δ�

δ

]2

Since all the comparisons belonging to Eαk ∈ E1 and those comparisons
belonging to Eγ � ∈ E2 from replicates in which Eγ � is confounded do not con-
tribute to SS(Xτ | I,Xρ, Xβ∗), they must contribute to SS(Xβ∗ | I, Xρ). This
then leads to the partitioning of SS(Xβ∗ | I, Xρ) as given in Table 11.1b, where
SS(Eαk )c is obtained from all replicates in the usual way [comparable to (11.65)]
and SS(Eγ �)c is obtained from all replicates in which Eγ � is confounded
[comparable to (11.64) with c(γ �) substituted for u(γ �)]. The components
(E

αk

δ )c, (E
γ k

δ )c for Eαk ∈ E1, E
γ � ∈ E2 and δ = 0, 1, . . . , p − 2 form a complete

set of linearly independent functions involving both block effects and treatment
effects, accounting for (n1 + n2)(p − 1) d.f. of SS(Xβ∗ | I, Xρ) and constitut-
ing the treatment component of this sum of squares. The remaining comparisons
belonging to SS(Xβ∗ | I, Xρ) are then pure block comparisons accounting for

ν = sq(pn−� − 1) − (n1 + n2)(p − 1) d.f. (11.66)

11.11 INTERBLOCK ANALYSIS

We have shown in the previous section that intrablock information from sev-
eral replicates can be combined additively to obtain the BLUE for an estimable
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function. We now turn our attention to interblock information for interaction
components, which means we consider the situation where β∗ is a vector of i.i.d.
random variables with E(β∗) = φ and E(β∗β∗′) = Iσ 2

β . In particular, we shall
be concerned about interblock estimates of Eαk ∈ E1 and Eγ � ∈ E2 from those
replicates in which Eγ � is confounded. First we shall establish, however, that
similar to the case of intrablock information the estimates from several replicates
can be combined additively to yield BLUEs, a result that does not hold generally.

11.11.1 Combining Interblock Information

We consider the model equation (11.51) for the observations in the j th replicate,
assuming without loss of generality µ = ρj = 0, so that we have

y(j) = Iτ + Xβ∗(j)β
∗
j + e(j) (11.67)

We can rewrite (11.67) as

y(j) = Iτ + f (j) (11.68)

with E(f (j)) = φ and

E
(
f (j)f

′
(j)

)
= Iσ 2

e + Xβ∗(j)X
′
β∗(j)σ

2
β

=
(
I + ρ∗Xβ∗(j)X

′
β∗(j)

)
σ 2

e

= Vj σ 2
e (11.69)

where ρ∗ = σ 2
β/σ 2

e and Vj = I + ρ∗Xβ∗(j)X
′
β∗(j) (j = 1, 2, . . . , r). The model

equation for the combined data from r replicates is thus


y(1)

y(2)

...

y(r)

 =


I

I

...

I

 τ +


f (1)

f (2)

...

f (r)

 (11.70)

with variance–covariance matrix

V σ 2
e = diag{V 1, V 2, . . . , V r} σ 2

e (11.71)
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The Aitken equation (see Section I.4.16.2) then is

(I I · · · I ) diag{V −1
1 , V −1

2 , . . . , V 1
r }


I

I
...

I

 τ̃

= (I I · · · I ) diag{V −1
1 , V −1

2 , . . . , V −1
r }


y(1)

y(2)

...

y(r)


or  r∑

j=1

V −1
j

 τ̃ =
∑
j

V −1
j y(j) (11.72)

and hence

τ̃ =
∑

j

V −1
j

−1∑
j

V −1
j y(j)


If ξ ′τ is an estimable function, then the BLUE is given by

ξ̃ ′τ = ξ ′
∑

j

V −1
j

−1 ∑
j

V −1
j y(j)

 (11.73)

Suppose now we consider the estimation of ξ ′τ separately for each replicate.
It follows from (11.67) that

τ̃ = y(j)

so that the BLUE of ξ ′τ from replicate j ,
(
ξ̃ ′τ
)

j
say, is

(
ξ̃ ′τ
)

j
= ξ ′y(j) (11.74)

with
var
(
ξ̃ ′τ
)

j
= ξ ′Vj ξ σ 2

e (11.75)
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Combining the estimates (11.74) with weights equal to the inverse of the variance
(11.75), we obtain

ξ̃ ′τ =
∑r

j=1(1/ξ ′Vj ξ)
(
ξ̃ ′τ
)

j∑r
j=1(1/ξ ′Vj ξ)

(11.76)

We know that (11.73) is BLUE for ξ ′τ . One can see easily that if Vj = V for all
j = 1, 2, . . . , r , then ξ̃ ′τ of (11.73) equals ξ ′τ of (11.76), but in general these
estimators will be different. We now give a condition under which (11.73) and
(11.76) are identical, a condition we shall show to be met for the purpose of
estimating interaction components.

Theorem 11.10 In a resolved design the interblock information for an
estimable function ξ ′τ obtained from each replicate can be combined additively
as in (11.76) to yield the BLUE if, for each j ,

Vj ξ = νj ξ (11.77)

that is, if ξ is an eigenvector of each variance–covariance matrix Vj (j =
1, 2, . . . , r), with ξ ′ξ = 1.

Proof (i) The estimator in (11.76) is, of course, unbiased.
(ii) We know that (11.76) is BLUE. Therefore, for (11.76) to be BLUE, we must
have, using (11.73),

ξ ′
(∑

i

V −1
i

)−1(∑
j

V −1
j y(j)

)
=
∑

j (1/ξ ′Vj ξ) ξ ′y(j)∑
i (1/ξ ′Vi ξ)

(11.78)

This must hold for all y(j). Hence from (11.78) we must have

ξ ′
(∑

i

V −1
i

)−1

V −1
j = (1/ξ ′Vj ξ)ξ ′∑

i (1/ξ ′Vi ξ)
(11.79)

Now, if (11.77) holds, it follows that

V −1
j ξ = 1

νj
ξ (11.80)

and hence ∑
j

V −1
j

 ξ =
∑

j

1

νj

 ξ
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and ∑
j

V −1
j

−1

ξ =
∑

j

1

νj

−1

ξ (11.81)

Using (11.77), (11.80), and (11.81), on both sides of (11.79) we obtain

(∑
i

1

νi

)−1
1

νj

ξ ′ = (1/νj ) ξ ′∑
i (1/νi)

which completes the proof. �

11.11.2 Estimating Confounded Interactions

We now use Theorem 11.10 to obtain interblock information for Eαk ∈ E1 and
Eγ � ∈ E2. Consider an Eα ∈ E1 or E2 and suppose that Eα is confounded in
replicate j . We then consider ξ ′τ = Eα

δ for some δ ∈ GF(p). Obviously, we
have ξ ′I = 0, and it follows from Theorem 11.9 that

ξ = Xβ∗(j)η (11.82)

Using (11.82) in (11.69), we obtain

Vj ξ = (I + ρ∗Xβ∗(j)X
′
β∗(j)) ξ

= ξ + ρ∗Xβ∗(j))X
′
β∗(j))Xβ∗(j)η

= ξ + ρ∗kXβ∗(j)η

= (1 + ρ∗k)ξ (11.83)

since X′
β∗(j)Xβ∗(j) = kI , where k is the block size. Hence the condition of

Theorem 11.10 is satisfied, which implies that E
αk

δ can be estimated by combining
additively the estimates from each replicate. Denoting the overall estimate by
Ẽ

αk

δ , δ ∈ GF(p), we then have, using (11.83) with k = p�,

var
(
Ẽ

αk

δ − Ẽ
αk

δ′
) = 2

qspn−1

(
σ 2

e + p�σ 2
β

)
(11.84)

Similarly, we obtain Ẽ
γ �

δ for Eγ � ∈ E2, δ ∈ GF(p) from all replicates in which
Eγ � is confounded. Hence

var
(
Ẽ

γ �

δ − Ẽ
γ �

δ′
) = 2

qc(γ �)p
n−1

(
σ 2

e + p�σ 2
β

)
(11.85)
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The Ẽ
αk

δ and Ẽ
γ �

δ so obtained are, of course, used to yield

SS(Eαk )c = qspn−1
p−1∑
δ=0

[
Ẽ

αk

δ

]2
and

SS
(
Eγ �

)
c

= qc(γ �)p
n−1

p−1∑
δ=0

[
Ẽ

γ �

δ

]2
of Table 11.1b. Under the assumptions made earlier in this section it follows that

E[SS(Eαk )c] = (p − 1)(σ 2
e + p�σ 2

β ) + qspn−1
p−1∑
δ=0

[
E

αk

δ

]2
and

E[SS(Eγ � )c] = (p − 1)(σ 2
e + p�σ 2

β ) + qc(γ �)p
n−1

p−1∑
δ=0

[
E

γ �

δ

]2
Since, in Table 11.1b,

E[MS(Remainder)] = σ 2
e + p�σ 2

β (11.86)

we have a test for

H0: E
αk

0 = E
αk

1 = · · · = E
αk

p−1 = 0

with Eαk ∈ E1, which was not available before from the intrablock analysis.

11.12 COMBINED INTRA- AND INTERBLOCK INFORMATION

To summarize the results so far, we have the following information available for

Eαk ∈ E1: interblock information only
Eγ � ∈ E2: intrablock information from qc(γ �) replicates and interblock

information from qc(γ �) replicates
Eδm ∈ E3: intrablock information only

We have discussed how to get these types of information in Sections 11.10.1 and
11.11.2. It remains then to combine the two types of information for Eγ � ∈ E2.
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11.12.1 Combined Estimators

We have seen that for ξ ′τ = E
γ �

δ the condition of Theorem 11.10 is satisfied for
those replicates in which Eγ � is confounded. For those replicates in which Eγ �

is not confounded, we have ξ ′Xβ∗(j) = φ because of unbiasedness, and hence

Vj ξ =
(
I + ρ∗Xβ∗(j)X

′
β∗(J )

)
ξ = ξ

so that the condition of Theorem 11.10 is trivially satisfied. It follows then that we
can combine the estimates from all replicates additively by weighting inversely
with the respective variances. Thus, letting w = 1/σ 2

e and w′ = 1/(σ 2
e + p�σ 2

β ),

the combined estimator for E
γ �

δ − E
γ �

δ′ , say ̂̂Eγ �

δ − ̂̂Eγ �

δ′ , is given by

̂̂
E

γ �

δ − ̂̂Eγ �

δ′ = u(γ �)w
(
Ê

γ �

δ − Ê
γ �

δ′
)+ c(γ �)w

′ (Ẽγ �

δ − Ẽ
γ �

δ′
)

u(γ �)w + c(γ �)w
′ (11.87)

and

var
(̂̂Eγ �

δ − ̂̂Eγ �

δ′
)

= 2σ 2
e

u(γ �) + c(γ �)ρ
−1qpn−1

(11.88)

where ρ = w/w′. To estimate w and w′ (or ρ), we use the B|T-ANOVA of
Table 11.2. This yields

σ̂ 2
e = 1

ŵ′ = MS(I |I,Xρ, Xβ∗, Xτ ) (11.89)

and one obvious estimator for σ 2
e + p� σ 2

β = 1/w′ is

(
̂σ 2
e + p�σ 2

β

)
1

= 1

(ŵ′)
= MS(Remainder) (11.90)

Another estimator for σ 2
e + p� σ 2

β can be obtained by evaluating E[MS(Xβ∗ |I,

Xρ , Xτ )] in Table 11.2. In order to do that, we first obtain SS
(
Êγ � vs. Ẽγ �

)
in

Table 11.2b.
Let

Ê
γ �

δ − Ẽ
γ �

δ = X
γ �

δ

for Eγ � ∈ E2 and δ = 0, 1, . . . , p − 1. Any X
γ �

δ is free of treatment effects but
is a function of block effects and replicate effects. Hence comparisons among
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Table 11.2 B|T-ANOVA for pn Factorial Experiment

Source d.f. SS

a. Basic Partitioning

Xρ |I sq − 1 Usual

Xτ |I,Xρ pn − 1 Usual

Xβ∗ |I,Xρ,Xτ sq(pn−� − 1) − n1(p − 1) Difference

I |I,Xρ,Xτ , Xβ∗ νR From Table 11.1

Total sqpn − 1 Usual

b. Partitioning of Block Sum of Squares

Xβ∗ |I,Xρ,Xτ sq(pn−� − 1) − n1 (p − 1)

{Êγ � vs. Ẽγ �} n2(p − 1) See (11.93)

Remainder ν From Table 11.1

the X
γ �

δ for fixed γ � and δ = 0, 1, . . . , p − 1 contribute to SS(Xβ∗ |I,Xρ, Xτ ).
More specifically we have

SS
(
Êγ � vs. Ẽγ �

) =



X
γ �

0 − X
γ �

p−1

X
γ �

1 − X
γ �

p−1

...

X
γ �

p−2 − X
γ �

p−1



′

[
V γ �

σ 2
e

]−1



X
γ �

0 − X
γ �

p−1

X
γ �

1 − X
γ �

p−1

...

X
γ �

p−2 − X
γ �

p−1


(11.91)

where Vγ �
is the variance–covariance matrix of the vector of comparisons X

γ �

i −
X

γ �

p−1, i = 0, 1, . . . , p − 2. From the form of these comparisons it follows that

V γ �
= s

qu(γ �) c(γ �) pn−1
(I + II′)σ 2

e

and hence [
V γ �

σ 2
e

]−1

= qu(γ �) c(γ �) pn−2

s
(pI − II′)

We then obtain, from (11.91),

SS
(
Êγ � vs. Ẽγ �

) = qu(γ �) c(γ �) pn−1

s

p−1∑
δ=0

[
X

γ �

δ

]2
(11.92)
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and summing (11.92) over all Eγ � ∈ E2

SS
(
Êγ � vs. Ẽγ �

) = qpn−1

s

∑
�

u(γ �) c(γ �)
∑

δ

[
X

γ �

δ

]2
(11.93)

Using the definition of X
γ �

δ and

E
[
X

γ �

δ

]2 = var
(
X

γ �

δ

) = var
(
Ê

γ �

δ

)+ var
(
Ẽ

γ �

δ

)
= p − 1

qu(γ �) pn
σ 2

e + p − 1

qc(γ �) pn

(
σ 2

e + p�σ 2
β

)
it follows that

E
[
SS
(
Êγ � vs. Ẽγ �

)] = (p − 1)

(
σ 2

e + u(γ �)

s
p�σ 2

β

)
Hence

E
[
SS
(
Êγ � vs. Ẽγ �

)] = (p − 1)

[
n2σ

2
e + p�

s

∑
�

u(γ �) σ 2
β

]
(11.94)

From (11.86) and (11.94) it follows then that

E
[
MS

(
Xβ∗ | I, Xρ, Xτ

)] = σ 2
e + 
p�σ 2

β (11.95)

where


 = [(p − 1)/s]
∑

� u(γ �) + ν

sq(pn−� − 1) − n1(p − 1)

and ν as given in (11.66). A second estimator for w′ is then obtained from (11.89)
and (11.95) as(

σ 2
e +̂ p�σ 2

β

)
2

= 1

w̃′

=
(

1 − 1




)
MS(I | I,Xρ, Xβ∗,Xτ )

+ 1



MS(Xβ∗ | I, Xρ, Xτ ) (11.96)

Using (11.89) and (11.96) in (11.87) yields the combined estimator for E
γ �

δ −
E

γ �

δ′ , δ, δ′ = 0, 1, . . . , p − 1, δ �= δ′.
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11.12.2 Variance of Treatment Comparisons

Recalling the parameterization of the true response of a treatment combination
as given in (11.33), we can estimate the difference of the effect of two treatment
combinations x and z, say, as

̂̂τ(x) − ̂̂τ(z) =
∑
α∈A

(̂̂
Eα

α′x − ̂̂Eα
α′z

)
(11.97)

with

var
(̂̂
Eα

α′x − ̂̂Eα
α′z

)
= 2σ 2

e

u(α) + c(α)ρ−1qpn−1
(11.98)

using the notation of (11.88). In (11.98) u(α), c(α) = 0, 1, . . . , s with u(α) +
c(α) = s for each α ∈ A, with s being the totality of partitions for the pn factorial.
Since α′x = α′z for (pn−1 − 1)/(p − 1) different α ∈ A, the right-hand side
of (11.97) contains pn−1 terms corresponding to those α ∈ A∗, say, for which
α′x �= α′z. It follows then from (11.97) that

var
(̂̂
τ(x) − ̂̂τ(z)

) =
∑
α∈A∗

var
(̂̂
Eα

α′x − ̂̂Eα
α′z

)
(11.99)

with the appropriate expressions from (11.98) substituted in (11.99). Obviously
A∗ and hence (11.99) depend on x and z and the particular system of confounding
that has been used.

Rather than compute the variance for each treatment comparison separately, it
may in some situations be appropriate to consider an average variance. To obtain
the average variance, we consider, for a fixed treatment combination x, ̂̂τ(x) −̂̂τ(z) for all z �= x. For a fixed α ∈ A there exist pn−1 treatment combinations z

that satisfy the equation

α1(x1 − z1) + α2(x2 − z2) + · · · + αn(xn − zn) = δ

for δ ∈ GF(p). Since there are p − 1 nonzero δ ∈ GF(p), it follows that for each
α ∈ A there are (p − 1)pn−1 different z’s with α′x �= α′z. Hence, using (11.98),

av. var = 1

pn − 1

∑
x

var
(̂̂
τ(x) − ̂̂τ (z)

)
= 2

p − 1

pn − 1
σ 2

e

∑
α∈A

1

(u(α) + c(α)ρ−1)q
(11.100)
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11.13 THE sn FACTORIAL

To complete the discussion of the general symmetrical factorial experiment, we
shall now indicate how the methodology developed for the pn factorial can be
extended to the sn factorial, where s = pm and p is a prime. One way in which
this is achieved is by replacing arithmetic in GF(p) for the pn by arithmetic in
GF(pm) for the sn factorial. Another way is to treat the (pm)n factorial as a pmn

factorial, that is, mn factors with p levels each, these factors being referred to
as pseudofactors.

11.13.1 Method of Galois Field Theory

Suppose we have factors A1, A2, . . . , An. We denote a treatment combination
as usual by x′ = (x1, x2, . . . , xn) where xi(i = 1, 2, . . . , n) takes on the values
0, 1, . . . , s − 1. Also, we denote the elements of GF(pm) by u0, u1, . . . , us−1 (see
Appendix A). The partitioning of the sn treatment combinations into s mutually
exclusive sets of sn−1 treatment combinations each associated with the interaction
Eα = A

α1
A1

A
α2
A2

. . . A
αn

An
is obtained by considering the equations

uα1 ux1 + uα2 ux2 + · · · + uαn uxn = uδ (11.101)

where uδ ∈ GF(pm). Each of the s equations (11.101) is satisfied by sn−1 treat-
ment combinations as at least one uαi

�= u0 = 0. Altogether there are (sn −
1)/(s − 1) such partitions and hence (sn − 1)/(s − 1) effects and interactions,
each accounting for s − 1 d.f.

We illustrate this procedure in the following example.

Example 11.5 Take p = 2, m = 2, n = 2, that is, the 42 factorial. The ele-
ments of GF(22) are u0 = 0, u1 = 1, u2 = x, u3 = x + 1 with P(x) = x2 + x +
1 (see Example A3 in Appendix A). The addition and multiplication tables for
elements in GF(22) are

Addition Multiplication

u0 u1 u2 u3 u0 u1 u2 u3

u0 u0 u1 u2 u3 u0 u0 u0 u0 u0

u1 u0 u3 u2 u1 u1 u2 u3

u2 u0 u1 u2 u3 u2

u3 u0 u3 u2



432 GENERAL SYMMETRICAL FACTORIAL DESIGN

Denoting the factors by A and B, we have the following partitions and associated
interactions:

Partition Equations Interaction

(1, 0) ux1 = uδ A

(0, 1) ux2 = uδ B

(1, 1) ux1 + ux2 = uδ AB

(1, 2) ux1 + u2ux2 = uδ AB2

(1, 3) ux1 + u3ux2 = uδ AB3

with uδ ∈ GF(22). Using the addition and multiplication tables, we can determine
easily for each treatment combination (x1, x2) which equation it satisfies for a
particular interaction. The results of these computations are given in Table 11.3.
It follows then, for example, that AB2 is defined by comparisons among the four
sets of treatment combinations:

u0: (0, 0), (2, 1), (3, 2), (1, 3)

u1: (1, 0), (3, 1), (2, 2), (0, 3)

u2: (2, 0), (0, 1), (1, 2), (3, 3)

u3: (3, 0), (1, 1), (0, 2), (2, 3) �

Table 11.3 Calculation of Partitioning for Effects and Interactions for
42 Factorial

Treatment
Combination Effects Interactions

x1 x2 A B AB AB2 AB3

0 0 u0 u0 u0 u0 u0
1 0 u1 u0 u1 u1 u1
2 0 u2 u0 u2 u2 u2
3 0 u3 u0 u3 u3 u3
0 1 u0 u1 u1 u2 u3
1 1 u1 u1 u0 u3 u2
2 1 u2 u1 u3 u0 u1
3 1 u3 u1 u2 u1 u0
0 2 u0 u2 u2 u3 u1
1 2 u1 u2 u3 u2 u0
2 2 u2 u2 u0 u1 u3
3 2 u3 u2 u1 u0 u2
0 3 u0 u3 u3 u1 u2
1 3 u1 u3 u2 u0 u3
2 3 u2 u3 u1 u3 u0
3 3 u3 u3 u0 u2 u1
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11.13.2 Systems of Confounding

The method of constructing systems of confounding can now also be extended
quite easily. Suppose we consider a sn factorial in blocks of size s�. We choose
n − � independent interactions, Eα1 , Eα2, . . . , Eαn−� say, to be confounded with
blocks. The sn−� blocks are then obtained from the equations

uα11ux1 + uα12ux2 + · · · + uα1n
uxn = uδ1

uα21ux1 + uα22ux2 + · · · + uα2n
uxn = uδ2

(11.102)...

uαq1ux1 + uαq2ux2 + · · · + uαqnuxn = uδq

where q = n − �, α′
i = (αi1, αi2, . . . , αin), uδi

∈ GF(s), i = 1, 2, . . . , q. For a
fixed set (uδ1 , uδ2, . . . , uδq ) Eqs. (11.102) are satisfied by s� treatment combina-
tions, which then form a block.

Further, any treatment combination that satisfies, say, the equations

uα1ux1 + uα2ux2 + · · · + uαnuxn = uδ1

and

uβ1ux1 + uβ2ux2 + · · · + uβnuxn = uδ2

also satisfies the equation(
uα1 + uλuβ1

)
ux1 + (uα2 + uλuβ2

)
ux2 + · · ·

+ (uαn + uλuβn

)
uxn = uδ1 + uλuδ2 (11.103)

for any uλ ∈ GF(pm). If uδ1 , uδ2 now take on all the values in GF(pm), then the
right-hand side of (11.103) takes on all values of GF(pm) exactly s = pm times
for fixed uλ. Hence (11.103) provides a partition of the sn treatment combinations.
The interaction associated with it is, by analogy to the pn case, referred to as
a GI of A

α1
1 A

α2
2 . . . A

αn
n and A

β1
1 A

β2
2 . . . A

βn
n , denoted by A

γ1
1 A

γ2
2 . . . A

γn
n with

(γ1, γ2, . . . , γn) to be determined from

uα1 + uλuβ1 = uγ1

uα2 + uλuβ2 = uγ2

(11.104)...

uαn + uλuβn = uγn
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Since uλ ∈ GF(pm), uλ �= u0, it follows that A
α1
1 A

α2
2 . . . A

αn
n and A

β1
1 A

β2
2 . . . A

βn
n

have s − 1 GIs among them. Extending this argument (see Section 11.4) implies
then that with Eα1 , Eα2 , . . . , Eαq all their GIs are also confounded with blocks,
accounting for the sn−� degrees of freedom among blocks.

As in the pn case, the composition of the blocks can be obtained by vary-
ing the right-hand side of (11.102). Alternatively, we can obtain the IBSG
by considering (11.102) with uδi

= u0(i = 1, 2, . . . , q) and then generate the
remaining blocks in the familiar way by adding treatment combinations to those
of the IBSG using GF(pm) arithmetic. As an illustration, consider the following
example.

Example 11.6 Suppose we have a 43 factorial in blocks of size 4, that is, p =
2, m = 2, n = 3, � = 1. We have 16 blocks, that is, we confound five interactions
with blocks. Suppose we confound AB and BC2, that is, α′

1 = (1, 1, 0), α′
2 =

(0, 1, 2). From (11.104) with uλ = u1, u2, u3 it follows, using the addition and
multiplication tables from Example 11.5, that

u1 + u1u0 = u1 u1 + u2u0 = u1 u1 + u3u0 = u1

u1 + u1u1 = u0 u1 + u2u1 = u3 u1 + u3u1 = u2

u0 + u1u2 = u2 u0 + u2u2 = u3 u0 + u3u2 = u1

and hence AC2, AB3C3, and AB2C are also confounded with blocks. As a
result, 9 d.f. belonging to 2-factor interactions and 6 d.f. belonging to 3-factor
interactions are confounded with blocks. The IBSG is obtained by considering
the equations

ux1 + ux2 = u0

ux2 + u2ux3 = u0

They are satisfied by the treatment combinations

(u0, u0, u0) ∼ (0, 0, 0)

(u1, u1, u3) ∼ (1, 1, 3)

(u2, u2, u1) ∼ (2, 2, 1)

(u3, u3, u2) ∼ (3, 3, 2)

where the expressions on the right are the (x1, x2, x3). Another block can be
constructed by noting that, for example, the treatment combination (u1, u2, u3)

is not in the IBSG. Hence, adding this treatment combination to each in the
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IBSG, we obtain the block consisting of

(u0 + u1, u0 + u2, u0 + u3) = (u1, u2, u3) ∼ (1, 2, 3)

(u1 + u1, u1 + u2, u3 + u3) = (u0, u3, u0) ∼ (0, 3, 0)

(u2 + u1, u2 + u2, u1 + u3) = (u3, u0, u2) ∼ (3, 0, 2)

(u3 + u1, u3 + u2, u2 + u3) = (u2, u1, u1) ∼ (2, 1, 1)

This process is then continued in the obvious and familiar way. �

An equivalent system of confounding using SAS PROC FACTEX is given in
Table 11.4. It, too, confounds 9 d.f. belonging to 2-factor interactions (as indi-
cated by the Aliasing Structure) and 6 d.f. belonging to the 3-factor interaction.
We repeat that SAS uses a different parameterization than the one we have used.

Finally, we mention that Theorem 11.7 holds for the sn factorial also. All we
need to do is replace p by s = pm and generate the IBSG by using GF(pm)

arithmetic. For example, it is possible to accommodate n = 5 factors with four
levels each in blocks of size 16 without confounding main effects and 2-factor
interactions.

11.13.3 Method of Pseudofactors

Let A1, A2, . . . , An again denote the factors in the (pm)n = sn system. We then
associate with factor Ai the m pseudofactors Xi1, Xi2, . . . , Xim (i = 1, 2, . . . , n)
each at p levels. This association implies the following: (i) If ai is the level
of factor Ai in a treatment combination and xij is the level of factor Xij in a
treatment combination belonging to the pm system {Xi1, Xi2, . . . , Xim}, we then
set up the correspondence

(a1, a2, . . . , an) = (x11, x12, . . . , x1m; x21, x22, . . . , x2m;
. . . ; xn1, xn2, . . . , xnm)

that is, each level ai of the factor Ai corresponds to a level combination
(xi1, xi2, . . . , xim) of the pseudofactors Xi1, Xi2, . . . , Xim(i = 1, 2, . . . , n). (ii)
The main effects and interactions in the sn system correspond to sets of main
effects and interactions within and among the n pm systems. More formally
we express this as follows: Let {Eαi ,αi ∈ Ai} denote the set of main effects
and interactions associated with the pm system {Xi1, Xi2, . . . , Xim} and let
Eαi × Eαj , (αi ,αj ) ∈ Ai × Aj , represent an interaction among factors in the pm

systems {Xi1, Xi2, . . . , Xim} and {Xj1, Xj2, . . . , Xjm} with Ai × Aj denoting
the totality of the corresponding partitions (αi ,αj ). Continuing in this fashion,
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Table 11.4 43 Factorial in Blocks of Size 4 (Confounding 3 d.f. From Each
2-Factor Interaction and 6 d.f. From the 3-Factor Interaction)

options nodate pageno=1;
proc factex;
factors A B C/nlev=4;
blocks size=4;
model est=(A B C);
examine design confounding aliasing;
output out=design blockname=block nvals=(1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16);
title1 'TABLE 11.4';
title2 '4**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'CONFOUNDING 3 D.F. FROM EACH 2-FACTOR INTERACTION';
title4 'AND 6 D.F. FROM THE 3-FACTOR INTERACTION';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C Block

- - - - - - - - - - - - - - - - - - - - - - - - - -

1 0 0 0 1
2 0 0 1 16
3 0 0 2 6
4 0 0 3 11
5 0 1 0 12
6 0 1 1 5
7 0 1 2 15
8 0 1 3 2
9 0 2 0 14

10 0 2 1 3
11 0 2 2 9
12 0 2 3 8
13 0 3 0 7
14 0 3 1 10
15 0 3 2 4
16 0 3 3 13
17 1 0 0 8
18 1 0 1 9
19 1 0 2 3
20 1 0 3 14
21 1 1 0 13
22 1 1 1 4
23 1 1 2 10
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Table 11.4 (Continued )

24 1 1 3 7
25 1 2 0 11
26 1 2 1 6
27 1 2 2 16
28 1 2 3 1
29 1 3 0 2
30 1 3 1 15
31 1 3 2 5
32 1 3 3 12
33 2 0 0 10
34 2 0 1 7
35 2 0 2 13
36 2 0 3 4
37 2 1 0 3
38 2 1 1 14
39 2 1 2 8
40 2 1 3 9
41 2 2 0 5
42 2 2 1 12
43 2 2 2 2
44 2 2 3 15
45 2 3 0 16
46 2 3 1 1
47 2 3 2 11
48 2 3 3 6
49 3 0 0 15
50 3 0 1 2
51 3 0 2 12
52 3 0 3 5
53 3 1 0 6
54 3 1 1 11
55 3 1 2 1
56 3 1 3 16
57 3 2 0 4
58 3 2 1 13
59 3 2 2 7
60 3 2 3 10
61 3 3 0 9
62 3 3 1 8
63 3 3 2 14
64 3 3 3 3

Block Pseudofactor Confounding Rules

[B1] = (3*A)+(3*B)+(3*C)
[B2] = A+(2*B)+(3*C)
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Table 11.4 (Continued )

Aliasing Structure

A
(2*A)
(3*A)

B
(2*B)
(3*B)

C
(2*C)
(3*C)

A + B
[B] = (2*A) + B

(3*A) + B
A +(2*B)

(2*A) +(2*B)
[B] = (3*A) +(2*B)
[B] = A +(3*B)

(2*A) +(3*B)
(3*A) +(3*B)

A + C
(2*A) + C

[B] = (3*A) + C
[B] = A +(2*C)

(2*A) +(2*C)
(3*A) +(2*C)

A +(3*C)
[B] = (2*A) +(3*C)

(3*A) +(3*C)
B + C

[B] = (2*B) + C
(3*B) + C

B +(2*C)
(2*B) +(2*C)

[B] = (3*B) +(2*C)
[B] = B +(3*C)

(2*B) +(3*C)
(3*B) +(3*C)

Obs block A B C

1 1 0 0 0
2 1 1 2 3
3 1 2 3 1
4 1 3 1 2
5 2 0 1 3
6 2 1 3 0
7 2 2 2 2
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Table 11.4 (Continued )

8 2 3 0 1
9 3 0 2 1
10 3 1 0 2
11 3 2 1 0
12 3 3 3 3
13 4 0 3 2
14 4 1 1 1
15 4 2 0 3
16 4 3 2 0
17 5 0 1 1
18 5 1 3 2
19 5 2 2 0
20 5 3 0 3
21 6 0 0 2
22 6 1 2 1
23 6 2 3 3
24 6 3 1 0
25 7 0 3 0
26 7 1 1 3
27 7 2 0 1
28 7 3 2 2
29 8 0 2 3
30 8 1 0 0
31 8 2 1 2
32 8 3 3 1
33 9 0 2 2
34 9 1 0 1
35 9 2 1 3
36 9 3 3 0
37 10 0 3 1
38 10 1 1 2
39 10 2 0 0
40 10 3 2 3
41 11 0 0 3
42 11 1 2 0
43 11 2 3 2
44 11 3 1 1
45 12 0 1 0
46 12 1 3 3
47 12 2 2 1
48 12 3 0 2
49 13 0 3 3
50 13 1 1 0
51 13 2 0 2
52 13 3 2 1
53 14 0 2 0
54 14 1 0 3
55 14 2 1 1
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Table 11.4 (Continued )

56 14 3 3 2
57 15 0 1 2
58 15 1 3 1
59 15 2 2 3
60 15 3 0 0
61 16 0 0 1
62 16 1 2 2
63 16 2 3 0
64 16 3 1 3

we then have the correspondence

Ai
∼= {Eαi : αi ∈ Ai}

Ai × Aj
∼= {Eαi × Eαj : (αi , αj ) ∈ Ai × Aj }

Ai × Aj × Ak
∼= {Eαi × Eαj × Eαk : (αi , αj , αk) ∈ Ai × Aj × Ak}

and so on, up to

A1 × A2 × · · · × An
∼= {� × Eαi : (αi ,α2, . . . ,αn) ∈ � × Ai}

This implies, of course, that the sn system can be handled entirely by GF(p)

arithmetic rather than by GF(pm) arithmetic. As an illustration, consider the
following example.

Example 11.7 Suppose we have a (22)3 factorial. For ease of notation we
use the following correspondence for the factors (Ai;Xi1, Xi2):

43 System 26 System

A X1, X2

B Y1, Y2

C Z1, Z2

and for the levels (ai; xi1, xi2):

43 System 26 System

0 0, 0

1 1, 0

2 0, 1

3 1, 1
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Table 11.5 Correspondence of Main Effects and
Interactions for 43 and 26 System

43 System 26 System

A X1, X2, X1X2

B Y1, Y2, Y1Y2

C Z1, Z2, Z1Z2

A × B X1Y1, X1Y2, X1Y1Y2

X2Y1, X2Y2, X2Y1Y2

X1X2Y1, X1X2Y2, X1X2Y1Y2

A × C X1Z1, X1Z2, X1Z1Z2

X2Z1, X2Z2, X2Z1Z2

X1X2Z1, X1X2Z2, X1X2Z1Z2

B × C Y1Z1, Y1Z2, Y1Z1Z2

Y2Z1, Y2Z2, Y2Z1Z2

Y1Y2Z1, Y1Y2Z2, Y1Y2Z1Z2

A × B × C X1Y1Z1, X1Y1Z2, X1Y1Z1Z2

X1Y2Z1, X1Y2Z2, X1Y2Z1Z2

X1Y1Y2Z1, X1Y1Y2Z2, X1Y1Y2Z1Z2

...

X1X2Y1Y2Z1, X1X2Y1Y2Z2, X1X2Y1Y2Z1Z2

The correspondence of effects and interactions in both system is then as given
in Table 11.5. This representation implies that all main effects and interactions
in the 43 system are expressed as sets of single degrees of freedom contrasts; for
example, the 3 d.f. for A are represented by the three orthogonal contrasts

x1 = 0 vs. x1 = 1

x2 = 0 vs. x2 = 1

x1 + x2 = 0 vs. x1 + x2 = 1 �

The value of the method of pseudofactors just described apart from the reduc-
tion to GF(p) arithmetic lies in its flexibility of constructing systems of con-
founding in blocks of size p� rather than (pm)�, although it requires a certain
amount of care in order not to confound contrasts belonging to main effects or
low-order interactions if that can be avoided.

Example 11.8 For the 43 factorial we may want to consider blocks of size
8. According to Theorem 11.7, we can find a system of confounding for the
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26 factorial in blocks of size 23 without confounding main effects and 2-factor
interactions. This assures us that no contrasts belonging to A, B, or C in the
43 system have to be confounded. A suitable system of confounding would be
to confound X1X2Y2, X1Y1Z1, X2Y1Z2 and their GIs X2Y1Y2Z1, X1Y1Y2Z2,
X1X2Z1Z2, Y2Z1Z2. Referring to Table 11.5, this means that we confound
four contrasts belonging to A × B × C, namely (X1Y1Z1, X2Y1Z2, X2Y1Y2Z1,
X1Y1Y2Z2), and one contrast each belonging to A × B, namely (X1X2Y2),
A × C, namely (X1X2Z1Z2), and B × C, namely (Y2Z1Z2). We mention that
confounding Y2Z1Z2 is not necessarily more desirable than confounding, for
example, Y2Z1 since both belong to the B × C interaction. However, confound-
ing X1X2, Y1Y2, Z1Z2 is undesirable.

It should be obvious how this method of pseudofactors is then used to analyze
data from such a design. For Example 11.8, with q replicates, we have the T|B-
ANOVA as given in Table 11.6, where

∑′
SS(X

α1
1 X

α2
2 Y

γ1
1 Y

γ2
1 ) = SS(X1Y1) + SS(X1Y2) + SS(X1Y1Y2)

+ SS(X2Y1) + SS(X2Y2) + SS(X2Y1Y2)

+ SS(X1X2Y1) + SS(X1X2Y1Y2)

as follows from Table 11.5 and the fact that X1X2Y2 is confounded with blocks.
The other sums of squares in Table 11.6 are obtained similarly. �

Table 11.6 T|B-ANOVA for 43 Factorial in Blocks of Size 8

Source d.f. SS

Xρ |I q − 1 Usual

Xβ∗ |I,Xρ 7q Usual

Xτ |I, Xρ, Xβ∗ 56

A 3 SS(X1) + SS(X2) + SS(X1X2)

B 3 SS(Y1) + SS(Y2) + SS(Y1Y2)

A × B 8
∑′

SS(X
α1
1 X

α2
2 Y

γ1
1 Y

γ2
2 )

C 3 SS(Z1) + SS(Z2) + SS(Z1Z2)

A × C 8
∑′

SS(X
α1
1 X

α2
2 Z

δ1
1 Z

δ2
2 )

B × C 8
∑′

SS(Y
γ1
1 Y

γ2
2 Z

δ1
1 Z

δ2
2 )

A × B × C 23
∑′

SS(X
α1
1 X

α2
2 Y

γ1
1 Y

γ2
2 Z

δ1
1 Z

δ2
2 )

I |I, Xρ,Xβ∗ , Xτ 56(q − 1) Difference

Total 64q − 1 Usual
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11.13.4 The (p1 × p2 × · · · × pm)n Factorial

The method of pseudofactors can also be used when the number of levels,
s, is a product of prime numbers, say s = p1p2 . . . pm, or even more gen-
erally, a product of prime powers, say s = p

n1
1 p

n2
2 . . . p

nm
m . Using pseudofac-

tors then means that the (p
n1
1 p

n2
2 . . . p

nm
m )n factorial can be treated by combin-

ing
(
p

n1
1

)n
,
(
p

n2
2

)n
, . . . ,

(
p

nm
m

)n
factorials. Rather than discuss the general case,

we shall describe briefly how to use this method for the 6n factorial, that is,
s = 6, p1 = 2, p2 = 3.

Denote the factors for the 6n factorial by A1, A2, . . . , An. For Ai introduce
the pseudofactors Xi1, Xi2, where Xi1 has p1 = 2 levels and Xi2 has p2 = 3
levels (i = 1, 2, . . . , n). From our discussion in Section 11.13.3 it is clear then
how we establish a correspondence between the levels of the six-level factor and
those of the pair of two- and three-level factors:

6n System 2n · 3n System

0 0, 0
1 1, 0
2 0, 1
3 1, 1
4 0, 2
5 1, 2

Similarly, the correspondence between main effects and interactions in the two
systems is exemplified in Table 11.7.

This correspondence also suggests various possibilities for constructing sys-
tems of confounding. For example, for the 62 factorial we may consider blocks of
size 18, 12, 9, 6. The allocation of the treatment combinations to the blocks can
be achieved easily by using the methods for constructing systems of confounding
for the 22 and/or 32 factorials discussed in Chapters 8 and 10. The basic ideas
are summarized in Table 11.8. Notice that for blocks of size 18 and 9 we use
confounding in the 22 system only, for blocks of size 12 we use the 32 system
only, but for blocks of size 6 we use both the 22 and the 32 system.

The idea is, for example for blocks of size 12, to first construct blocks of
size 3 in the 32 system by confounding X21 and then “augment” those blocks
by “adding on” to each treatment combination (in the 32 system) in a given
block all the treatment combinations for the 22 system (actually, this method
can be more formally described as the Kronecker product design of a system
of confounding for the 32 factorial with the full 22 factorial). If we denote a
treatment combination by (x11, x21, x12, x22) where x11 and x21 refer to the 22

system and x12 and x22 to the 32 system, then confounding X21 leads to the
three “intermediate” blocks given in Table 11.9a. These are augmented to give
the blocks in Table 11.9b and, using the correspondence set up for the 6n and
2n3n systems, the final blocks in the 62 system in Table 11.9c. A closer look at
Table 11.9c reveals the obvious, namely that not all contrasts defining the main
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Table 11.7 Correspondence Between Main
Effects and Interactions in 6n and 2n3n Systems

6n System d.f. 2n3n System d.f.

Ai 5 Xi1 1

Xi2 2

Xi1Xi2 2

AiAj 25 Xi1Xj1 1

Xi1Xj2 2

Xi2Xj1 2

Xi2Xj2 2

Xi2X
2
j2 2

Xi1Xj1Xi2 2

Xi1Xj1Xj2 2

Xi1Xi2Xj2 2

Xi1Xi2X
2
j2 2

Xj1Xi2Xj2 2

Xj1Xi2X
2
j2 2

Xi1Xj1Xi2Xj2 2

Xi1Xj1Xi2X
2
j2 2

Table 11.8 Systems of Confounding for 62 Factorial

Confound

Block Size In 2232 System In 62 Systema

18 X11X21 A1A2(1)

12 X12 A1(2)

9 X11, X21, X11X21 A1(1), A2(1), A1A2(1)

6 X11X21, X12X22, X11X12X21X22 A1A2(5)

aNumber in parentheses indicates the number of degrees of freedom confounded from the indicated
interaction.

effect A are estimable because they are confounded with blocks. This is also
indicated in the third column of Table 11.8, where, for example, A1(2) means
that 2 d.f. for main effect A1 are confounded with blocks.

It is for this reason that this particular system of confounding by itself may
not be the most useful. A system of partial confounding with X22 confounded in
a second replicate solves this problem to some extent. A better method may be,
however, to confound 2 d.f. from the A1A2 interaction, for example, to construct
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Table 11.9 62 Factorial in Blocks of
Size 12

Block

1 2 3

a. Intermediate Blocks in 32 System

(0 0) (1 0) (2 0)
(0 1) (1 1) (2 1)
(0 2) (1 2) (2 2)

b. Blocks in the 2232 System

0 0 0 0 0 0 1 0 0 0 2 0
1 0 0 0 1 0 1 0 1 0 2 0
0 1 0 0 0 1 1 0 0 1 2 0
1 1 0 0 1 1 1 0 1 1 2 0
0 0 0 1 0 0 1 1 0 0 2 1
1 0 0 1 1 0 1 1 1 0 2 1
0 1 0 1 0 1 1 1 0 1 2 1
1 1 0 1 1 1 1 1 1 1 2 1
0 0 0 2 0 0 1 2 0 0 2 2
1 0 0 2 1 0 1 2 1 0 2 2
0 1 0 2 0 1 1 2 0 1 2 2
1 1 0 2 1 1 1 2 1 1 2 2

c. Blocks in the 62 System

0 0 2 0 4 0
1 0 3 0 5 0
0 1 2 1 4 1
1 1 3 1 5 1
0 2 2 2 4 2
1 2 3 2 5 2
0 3 2 3 4 3
1 3 3 3 5 3
0 4 2 4 4 4
1 4 3 4 5 4
0 5 2 5 4 5
1 5 3 5 5 5

the intermediate blocks by confounding X11X22 (see Table 11.7). Such a method
will be discussed in Section 11.14.

The design displayed in Table 11.9 can also be produced using SAS PROC
FACTEX as given in Table 11.10

Finally, a method of combining systems of confounding for different compo-
nent systems, as for the 62 factorial in blocks of size 6 (see Table 11.8), will be
described in Section 12.2.
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Table 11.10 62 Factorial in Blocks of Size 12 (Using Pseudofactors)

options nodate pageno=1;
proc factex;
factors C D/nlev=3;
blocks size=3;
model est=(D C*D);
output out=cddesign;
run;

factors A B;
output out=abdesign
designrep=cddesign;
run;

data abdesign (drop=A B C D);
set abdesign;
if A=-1 and C=-1 then F1=0;
if A=1 and C=-1 then F1=1;
if A=-1 and C=0 then F1=2;
if A=1 and C=0 then F1=3;
if A=-1 and C=1 then F1=4;
if A=1 and C=1 then F1=5;
if B=-1 and D=-1 then F2=0;
if B=1 and D=-1 then F2=1;
if B=-1 and D=0 then F2=2;
if B=1 and D=0 then F2=3;
if B=-1 and D=1 then F2=4;
if B=1 and D=1 then F2=5;

run;

proc print data=abdesign;
title1 'TABLE 11.10';
title2 '6**2 FACTORIAL IN BLOCKS OF SIZE 12';
title3 '(USING PSEUDO-FACTORS)';
run;

Obs BLOCK F1 F2

1 1 0 0
2 1 0 1
3 1 1 0
4 1 1 1
5 1 0 2
6 1 0 3
7 1 1 2
8 1 1 3
9 1 0 4

10 1 0 5
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Table 11.10 (Continued )

11 1 1 4
12 1 1 5
13 2 4 0
14 2 4 1
15 2 5 0
16 2 5 1
17 2 4 2
18 2 4 3
19 2 5 2
20 2 5 3
21 2 4 4
22 2 4 5
23 2 5 4
24 2 5 5
25 3 2 0
26 3 2 1
27 3 3 0
28 3 3 1
29 3 2 2
30 3 2 3
31 3 3 2
32 3 3 3
33 3 2 4
34 3 2 5
35 3 3 4
36 3 3 5

11.14 GENERAL METHOD OF CONFOUNDING FOR THE
SYMMETRICAL FACTORIAL EXPERIMENT

We have so far considered the sn factorial where s is (i) a prime, (ii) a prime
power, or (iii) a product of primes. For (i) and (ii) our discussion has centered on
the fact that the sn − 1 d.f. can be partitioned orthogonally into (sn − 1)/(s − 1)

components with s − 1 d.f. each. We saw that this provides a simple mechanism
for constructing blocks of size s�(� < n) by confounding some of these compo-
nents with blocks. For (iii) we made use of the same principle and indicated how,
for example for s = p1p2, blocks of size p

�1
1 p

�2
2 (�2, �2 ≤ n) can be constructed.

In all three cases this procedure may not always be entirely satisfactory for two
reasons: (i) the block sizes are too restricted or (ii) information on important
effects may have to be sacrificed (due to confounding). The second problem can
be overcome to some extent by using a system of partial confounding at the cost
of additional replications.

The problem of restricted block sizes can often also be overcome by using
the factorial treatment design together with existing incomplete block designs,
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specifically BIB and PBIB designs. The drawback with this approach, however,
is that we are giving up complete control over what information to sacrifice. In
other words, we may have to give up partial information about many effects,
including perhaps main effects and low-order interactions. This is expressed in
reduced efficiency, that is, increased variance, rather than in terms of complete
loss of certain degrees of freedom for some effects. We shall present an alter-
native method that uses generalized cyclic incomplete block designs (see, e.g.,
John, 1987) the construction of which attempts to take into account that we may
want to retain information about main effects but may be willing to sacrifice
some information about 2-factor interactions, for example, if that is possible at
all. Before describing the method, however, it is useful to present some ideas
about a calculus for factorial arrangements as developed by Kurkjian and Zelen
(1962, 1963).

11.14.1 Factorial Calculus

We consider the sn factorial, where s is a positive integer. Denote a treatment
combination by x = (x1, x2, . . . , xn)

′ where xi represents the level of the ith
factor Ai with 0 ≤ xi ≤ s − 1 (i = 1, 2, . . . , n). Let θ = (0, 1, . . . , s − 1)′ denote
the vector of the s levels. Then the symbolic direct product (SDP) θ ⊗ θ is defined
as (see Kurkjian and Zelen, 1962)

θ ⊗ θ = [(0, 0), (0, 1), . . . , (0, s − 1), (1, 0),

(1, 1), . . . , (1, s − 1), . . . , (s − 1, 0),

(s − 1, 1), . . . , (s − 1, s − 1)] (11.105)

and θ ⊗ θ ⊗ θ as

θ ⊗ θ ⊗ θ = [(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (0, 0, s − 1), (0, 1, 0),

(0, 1, 1), . . . , (0, 1, s − 1), . . . , (s − 1, s − 1, s − 1)]

The array of all sn treatment combinations can then be represented by the n-fold
SDP θ⊗n = θ ⊗ θ ⊗ · · · ⊗ θ . This will be referred to as the standard arrangement
(note that this is different from the standard order given in Chapter 7 for the 2n

factorial). Further, let τ(x) denote the true effect of the treatment combination
x and let τ be the vector of all treatment effects arranged in standard order. A
useful reparameterization of τ is given by expressing each τ(x) in terms of main
effects, 2-factor interaction effects, and so on. We write

τ(x) =
n∑

i=1

ai(xi) +
n∑

i=1
1≤i<

n∑
j=1
j≤n

aij (xi , xj ) + · · ·

+ a12...n(x1, x2, . . . , xn) (11.106)
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where ai(xi) represents the main effect of factor Ai at level xi , aij (xi, xj ) rep-
resents the 2-factor interaction effect between factors Ai and Aj at levels xi and
xj , respectively, and so on. These effects are defined such that

s−1∑
xi=0

ai(xi) = 0 for every i

s−1∑
xi=0

aij (xi , xj ) = 0 =
s−1∑
xj=0

aij (xi, xj ) for every pair (i �= j), etc.

that is, every effect sums to zero over the levels of any factor. Note again that
the reparameterization (11.106) is different from that given in (11.33). Each of
the effects is expressible as a contrast in the τ(x), that is,

� =
∑
x1

∑
x2

. . .
∑
xn

φ(x1, x2, . . . , xn)τ (x1, x2, . . . , xn) (11.107)

with
∑

x1

∑
x2

. . .
∑

xn
φ(x1, x2, . . . , xn) = 0. Following Bose (1947b) a con-

trast of the form (11.107) belongs to the q-factor interaction Ai1Ai2 . . . Aiq if
the φ(x1, x2, . . . , xn) depend only on xi1, xi2 , . . . , xiq (1 ≤ i1 < i2 < · · · < iq ≤
n; 1 ≤ q ≤ n).

Now define z = (z1, z2, . . . , zn) with zi = 0, 1 and consider

az = a
z1
1 ⊗ a

z2
2 ⊗ · · · ⊗ azn

n (11.108)

The a
zi

i by themselves are abstract quantities [Kurkjian and Zelen (1962) refer to
them as primitive elements]. It is only in the context of (11.108) that they have
a quantitative meaning in the following sense.

In this expression we use the convention that a
zi

i is omitted if zi = 0. Then az

represents the vector of parameters of the interaction corresponding to the factors
Ai for which zi = 1, that is, all the terms corresponding to one of the parameters
in (11.106). Specifically, if zi1 = zi2 = · · · = ziq = 1, then az represents all the
terms ai1i2 . . . iq(xi1 , xi2 , . . . , xiq ) of the q-factor interaction Ai1Ai2 . . . Aiq . To
express these terms as contrasts in the treatment effects, we define the contrast
matrix

M = s I − II′ (11.109)

where I is the s × s identity matrix and I is an s × 1 vector of unity ele-
ments. With

Mzi =
{

I′ if zi = 0

M if zi = 1
(11.110)
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and with × denoting the Kronecker product,

Mz = Mz1 × Mz2 × · · · × Mzn (11.111)

we have

az = 1

sn
Mzτ (11.112)

To illustrate (11.112), consider, for example, the main effects for factor A1,
that is, z1 = 1, z2 = z3 = · · · = zn = 0. For the sake of simplicity we shall take
s = 3 and n = 3. Then (with subscripts indicating the dimensions of a matrix or
a vector)

M
(100)
3×27 = M1 × M0 × M0

= (3 I − II′) × I′ × I′

= 3 I 3 × I′
9 − I3I

′
27

=

2I′
9 −I′

9 −I′
9

−I′
9 2I′

9 −I′
9

−I′
9 −I′

9 2I′
9


and

a(100) =



1
9

∑
jk

τ (1, j, k) − 1

27

∑
ijk

τ (i, j, k)

1
9

∑
jk

τ (2, j, k) − 1

27

∑
ijk

τ (i, j, k)

1
9

∑
jk

τ (3, j, k) − 1

27

∑
ijk

τ (i, j, k)


=

τ(1, ·, ·) − τ(·, ·, ·)
τ (2, ·, ·) − τ(·, ·, ·)
τ (3, ·, ·) − τ(·, ·, ·)



using familiar dot notation. Similarly for the main effects for factor A2 we have

M
(010)
3×27 = M0 × M1 × M0

= I′ × (3 I − II′) × I′

= 3 I′ × I × I′ − I′ × II′ × I′

= 3(I 3 × I′
3

...I 3 × I′
3

...I 3 × I′
3) − I3I

′
27
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and

a(010) =

τ(·, 1, ·) − τ(·, ·, ·)
τ (·, 2, ·) − τ(·, ·, ·)
τ (·, 3, ·) − τ(·, ·, ·)


For the interaction between factors A1 and A2 we obtain

M
(110)
9×27 = M1 × M1 × M0

= (3 I − II′) × (3 I − II′) × I′

= 9 I 3 × I 3 × I′
3 − 3 I 3 × I3I

′
3 × I′

3 − 3 I3I
′
3 × I 3 × I′

3

+ I3I
′
3 × I3I

′
3 × I′

3

= 9 I 9 × I′
3 − 3 I 3 × I3I

′
9 − 3 I3I

′
3 × I 3 × I′

3 + I9I
′
27

and

a(110) =



τ (1, 1, ·) − τ(1, ·, ·) − τ (·, 1, ·) + τ(·, ·, ·)
τ (1, 2, ·) − τ(1, ·, ·) − τ (·, 2, ·) + τ(·, ·, ·)
τ (1, 3, ·) − τ(1, ·, ·) − τ (·, 3, ·) + τ(·, ·, ·)
τ (2, 1, ·) − τ(2, ·, ·) − τ (·, 1, ·) + τ(·, ·, ·)
τ (2, 2, ·) − τ(2, ·, ·) − τ (·, 2, ·) + τ(·, ·, ·)
τ (2, 3, ·) − τ(2, ·, ·) − τ (·, 3, ·) + τ(·, ·, ·)
τ (3, 1, ·) − τ(3, ·, ·) − τ (·, 1, ·) + τ(·, ·, ·)
τ (3, 2, ·) − τ(3, ·, ·) − τ (·, 2, ·) + τ(·, ·, ·)
τ (3, 3, ·) − τ(3, ·, ·) − τ (·, 3, ·) + τ(·, ·, ·)


It is easy to verify that, indeed,

τ(1, 1, ·) − τ(1, ·, ·) − τ(·, 1, ·) + τ(·, ·, ·) = a12(1, 1)

for example. Hence, any contrast belonging to the 2-factor interaction A1 × A2
can be expressed as

� = �′
110M

(110)τ

where the elements of �110 add to zero. In general, the number of linearly inde-
pendent contrasts belonging to the effect represented by az for a fixed z is
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given by

ν(z) = rank(Mz) =
n∏

i=1

rank(Mzi ) =
n∏

i=1

(s − 1)zi

11.14.2 Orthogonal Factorial Structure (OFS)

Our aim is to construct suitable systems of confounding for the general sn fac-
torial. In order to do so and to identify such systems that have certain desirable
properties, it is useful to look ahead at the analysis and deduce from it structural
properties that must hold for the error-control design and the treatment design.

Recall (see Chapter 1) that the reduced normal equations for an incomplete
block design are given by

C τ̂ = Q (11.113)

where, for an equireplicate proper design,

C = r I − 1

k
NN ′ (11.114)

and

Q = T − 1

k
N ′B

The error-control design is determined by the incidence matrix N and the struc-
ture and properties of the design can best be characterized through the form of
the concordance matrix NN ′. All the systems of confounding derived in this and
previous chapters possess the following two properties:

1. Each contrast belonging to a certain interaction is estimated orthogonally
to any other contrast belonging to a different interaction. That is, if for the
pn factorial

∑p−1
i=0 ci E

α1
i and

∑p−1
i=0 di E

α2
i are two contrasts belonging to

Eα1 and Eα2 , respectively, then

cov

(∑
i

ci Ê
α1
i ,
∑

i

di Ê
α2
i

)
= 0

2. The treatment sum of squares SS(Xτ |I, Xβ) is partitioned orthogonally
into the individual interaction sums of squares:

SS(Xτ |I, Xβ) =
∑
α

SS(Eα) (11.115)

where SS(Eα) is the sum of squares due to Eα and
∑

α is the sum over
all α such that Eα is not completely confounded (i.e., belonging to E2 and
E3 as defined in Section 11.6).
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Property 2 follows, of course, from property 1. Factorial designs having these
properties are said to have orthogonal factorial structure (OFS). The importance
of OFS is that it simplifies greatly the interpretation of the analysis of a factorial
experiment. For example, based on significance tests in the ANOVA certain
interaction terms may be deleted from the model without affecting the estimates
of other terms remaining in the model.

We know from earlier discussion (see Chapter 1) that

SS(Xτ |I,Xβ) = τ̂ ′Q = τ̂ ′Cτ̂ = Q′C−CC−Q (11.116)

It is clear from (11.115) and (11.114) that SS(Xτ |I, Xβ) is a function of NN ′.
Now the structure of C is the same as the structure of NN ′. We have seen earlier
(see, e.g., Chapters 2 and 4) that for block designs the structure of C− is the
same as that of C. We may then ask the questions: (i) For what structure of
these matrices do we have an OFS and (ii) how can one exploit that structure
to generate appropriate systems of confounding? We shall now give answers to
these questions.

11.14.3 Systems of Confounding with OFS

Consider az as given in (11.112). It follows then from (11.113) that

âz = 1

sn
MzC−Q

with

var (̂az) = 1

s2n
MzC−(Mz)′σ 2

e

and

cov (̂az, âw) = 1

s2n
MzC−(Mw)′σ 2

e

for z �= w. More generally, for two contrasts belonging to az and aw, respectively,
we have

cov[�′
z âz, �′

w âw] = 1

s2n
cov[�′

z Mzτ̂ , �′
w Mwτ̂ ]

= 1

s2n
�′
z MzC−(Mw)′ �′

w (11.117)

Furthermore, the sum of squares due to testing the significance of az is given by

SS(az) = (Mzτ̂ )′
[
MzC−(Mz)′

]−
(Mzτ̂ ) (11.118)

With the reparameterization (11.106) OFS is achieved if expression (11.117) is
zero and hence analogous to (11.115),

SS(Xτ |I, Xβ) =
∑

z

SS(az) (11.119)
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where
∑

z is the sum over all binary n vectors except (0, 0, . . . , 0). We denote
the set of all such vectors by Z. Since (11.117) must be equal to zero for all
choices of �z and �w, the following theorem holds.

Theorem 11.11 For the sn factorial with parameterization (11.106) a block
design will have OFS if

MzC−(Mw)′ = 0 (11.120)

for all z,w ∈ Z(z �= w), where Mz is defined in (11.111).

The following theorem, which will be instrumental in constructing block
designs with OFS, is a special case of a more general theorem due to Cotter,
John, and Smith (1973). We need to introduce some notation first. For simplicity
of notation we shall denote the matrix C−, a generalized inverse of C in (11.114),
by D. We shall refer to a cyclic partition of a matrix H of order m1m2 × m1m2
if H can be written as

H =


H 1 H 2 H 3 · · · Hm1

Hm1 H 1 H 2 · · · Hm1−1
...

...
. . .

...
...

H 2 H 3 · · · Hm1 H 1

 (11.121)

where Hi (i = 1, 2, . . . ,m1) is of order m2 × m2. We write (11.121) for short as

H = {H 1,H 2, . . . , Hm1

} = {(H i )} (11.122)

We now state the following theorem.

Theorem 11.12 A block design N for an sn factorial has OFS if the matrix
C− = D has the following cyclic partition:

D = {(Di1

)}
Di1 = {(Di1i2

)}
Di1i2 = {(Di1i1i3

)}
...

Di1i2...in−2 = {(Di1i2...in−1

)}
for ij = 1, 2, . . . , s, j = 1, 2, . . . , n − 1, and if the s × s matrix Di1i2...in−1 has
row and column sums all equal.
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Proof The proof is patterned after the results of Cotter, John, and Smith
(1973) and John and Smith (1972). We show that (11.120) is true by using
induction. First we show that the theorem is true for n = 2.

For n = 2 the set Z consists of three vectors: (1,0), (0,1), (1,1). Correspond-
ingly we have, using (11.111),

M(10) = (sI s − IsI
′
s) × I′

s

= sI s × I′
s − IsI

′
s × I′

s

= sP 1 − IsI
′
s2

where, using the notation of (11.122),

P 1 = {I′
s , 0′

s , . . . , 0′
s

}
Also

M(01) = I′
s × (sI s − IsI

′
s

) = sP 2 − IsI
′
s2

with
P 2 = (I s, I s, . . . , I s)

and finally

M(11) = (sI s − IsI
′
s

)× (sI s − IsI
′
s

)
= s2 {I s , 0, . . . , 0} − s

{
Is ,I

′
s , 0, . . . , 0

}
− s {I s, I s, . . . , I s} + {IsI

′
s ,IsI

′
s, . . . , IsI

′
s

}
Now consider

M(10)D = s P 1D − IsI
′
sD

= s
{
d1 I′

s, d2 I′
s, . . . , ds I′

s

}−
(∑

i

di

)
IsI

′
s

where di is the row and column sum of Di in D = {D1, D2, . . . , Ds}. Since
II′Mz = 0 for z ∈ Z it follows that

M(10)D
(
M(01)

)′ = s
{
d1I

′
s , d2I

′
s , . . . , dsI

′
s

}
(sP 2 − IsI

′
s2)

′

= s2

(∑
i

di

)
IsI

′
s − s2

(∑
i

di

)
IsI

′
s

= 0
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Similarly,

M(10)DM(11)′ = s
{
d1I

′
s , d2I

′
s , . . . , dsI

′
s

}
M(11)

= s3 {d1I
′
s , d2I

′
s , . . . , dsI

′
s

}− s3 {d1I
′
s, d2I

′
s, . . . , dsI

′
s

}
− s2

(∑
di

)
IsI

′
s2 + s2

(∑
di

)
IsI

′
s2 = 0

Finally,

M(01)D = sP 2D − IsI
′
s2D

= s2
(∑

Di ,
∑

Di , . . . ,
∑

Di ,
)

−
(∑

Di

)
IsI

′
s2

and hence

M(01)DM(11)′ = s3
(∑

Di ,
∑

Di , . . . ,
∑

Di ,
)

− s2
((∑

di

)
IsI

′
s,
(∑

di

)
IsI

′
s , . . . ,

(∑
di

)
IsI

′
s

)
− s3

(∑
Di ,

∑
Di , . . . ,

∑
Di ,

)
+ s2

((∑
di

)
IsI

′
s,
(∑

di

)
IsI

′
s , . . . ,

(∑
di

)
IsI

′
s

)
= 0

Now assume that the theorem holds for the sn−1 factorial, say with fac-
tors A2, A3, . . . , An. If we write the z vector for n − 1 factors as z∗ =
(z2, z3, . . . , zn), we then have for z∗ �= w∗ �= (0, 0, . . . , 0)

Mz∗Di (M
w∗)′ = 0 (11.123)

for i = 1, 2, . . . , s with the row and column sum of Di equal to di , say. Using
(11.123), we now show that

MzD(Mw)′ = 0

for z �= w. Now MzDMw′ can be written as(
Mz1 × Mz∗) {D1, D2, . . . , Ds}

(
Mw1 × Mw∗)′ (11.124)

To show that (11.124) equals zero, it is sufficient to show that Mz∗Di (M
w∗)′ =

0 for every possible z∗, w∗ in z = (z1, z∗) and w = (w1, w∗) with z �= w �=



GENERAL METHOD OF CONFOUNDING FOR THE SYMMETRICAL FACTORIAL EXPERIMENT 457

(0, 0, . . . , 0). This can be seen by simply multiplying (11.124) out. We distinguish
between three cases:

1. z∗ = 0∗ = (0, 0, . . . , 0): We then have w∗ �= (0, 0, . . . , 0) since otherwise
z = w. Now, by definition, M0∗ = Isn−1 . Hence M0∗Di = diI

′, and since
Mw∗ is a contrast matrix, it follows that Mz∗DiM

w∗′ = 0.
2. z∗ = w∗ �= 0∗: We then have z1 �= w1 and without loss of generality assume

z1 = 0. Then

Mz = I′
s × Mz∗ = (Mz∗,Mz∗, . . . , Mz∗)

and consequently

MzD =
(
Mz∗

∑
Di , M

z∗
∑

Di , . . . ,M
z∗
∑

Di

)
= I′

s ×
∑

Mz∗Di

It follows then that

MzD(Mw)′ =
(
I′

s ×
∑

Mz∗Di

) (
Mw1 × Mw∗)′

= I′
s(M

w1)′ ×
(∑

Mz∗Di (M
w∗)′

)
= 0

3. z∗ �= w∗: By assumption the result is true.

We have therefore shown that if the theorem holds for the sn−1 factorial it also
holds for the sn factorial, and we have shown that it holds for the s2 factorial.
This completes the proof. �

11.14.4 Constructing Systems of Confounding

We shall now make use of Theorem 11.12 in our attempt to construct useful sys-
tems of confounding for the sn factorial. Obviously, OFS is a desirable property
of such a system of confounding. The idea then is to construct an incomplete
block design for the sn factorial such that the matrix C− = D has the structure
given in Theorem 11.12. In some sense such an approach may seem to be back-
ward since an incomplete block design is characterized first of all by its incidence
matrix N and hence, equivalently, by NN ′ or C. The structure of C then deter-
mines the structure of C−. Now we know that for PBIB designs the structures
of C and C− are the same (see Chapter 4). We therefore want to find a PBIB
design in which to accommodate the sn factorial such that the C matrix has the
form specified in Theorem 11.12 for C−, that is, hierarchical cyclic partitions.
Such a method was proposed by John and Dean (1975) and can be described as
follows.
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As before, we denote a treatment combination by x′ = (x1, x2, . . . , xn) where
0 ≤ xi ≤ s − 1(i = 1, 2, . . . , n). The totality of the treatment combinations, X,
is arranged in lexicographic order, that is, if θ = (0, 1, . . . , s − 1)′, then

X = θ ⊗ θ ⊗ · · · ⊗ θ

(see Section 11.14.1). Following John (1973) we consider the use of generalized
cyclic PBIB designs, GC/n-PBIB, (see Chapter 5) with blocks of size k. Recall
that such a design is obtained from an initial block of k treatments. The j th block
is obtained by adding the j th treatment combination to the treatments in the
initial block. Here addition of two treatment combinations x′ = (x1, x2, . . . , xn)

and y ′ = (y1, y2, . . . , yn) is defined as

x′ + y′ = (x1, +y1, x2,+y2, . . . , xn + yn)mod s (11.125)

Let the highest common factor (HCF) of s and the nonzero elements of x

be denoted by HCF(s,x) = h and let q = s/h. Then the treatment combinations
x, 2x, . . . , (q − 1) x, qx = 0 mod s form a cyclic Abelian group G with addition
as defined in (11.125). Here, G contains q distinct elements. The implication of
this with respect to GC/n-PBIB designs is as follows. If 0, x, 2x, . . . , (q − 1)x

represent the elements of the initial block of size k = q and if additional blocks
are obtained by adding in turn each treatment of the set X to those in the initial
block, then the block obtained by adding ux(u < q) contains the same treatments
as the initial block. Hence the initial block generates a fractional GC/n design
with sn/q distinct blocks such that each treatment combination occurs exactly
once. We shall also say that x generates the fractional GC/n design.

More generally, we can consider g generators x1, x2, . . . , xg with correspond-
ing Abelian groups G1, G2, . . . , Gg . For the application to be described, the
generators will have to be chosen such that the Gi have only the 0 element in
common. Let HCF (s, xi ) = hi, qi = s/hi and q =∏g

i=1 qi . We consider then
the group G formed by taking the direct sum of G1,G2, . . . ,Gg , the general
element being given by

u1x1 + u2x2 + · · · + ugxg (11.126)

with ui = 0, 1, . . . , qi − 1, i = 1, 2, . . . , g. The q elements of G, taken as the
initial block, then generate a GC/n design with sn/q distinct blocks and every
treatment combination in X replicated once. To illustrate this concept, consider
the following example.

Example 11.9 Suppose we have s = 6, n = 2, that is, the 62 factorial. Let

x′
1 = (0, 3), x′

2 = (3, 0), x ′
3 = (2, 2)
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It follows then that

h1 = HCF [6, (0, 3)] = 3, q1 = 2

h2 = HCF [6, (3, 0)] = 3, q2 = 2

h3 = HCF [6, (2, 2)] = 2, q3 = 3

and q = 12. The elements of G are obtained from (11.126) with u1 = 0, 1, u2 =
0, 1, u3 = 0, 1, 2 as

(0, 0) (0, 3) (3, 0) (3, 3) (2, 2) (2, 5)

(5, 2) (5, 5) (4, 4) (4, 1) (1, 4) (1, 1)

This is the initial block, B1 say. The remaining blocks are obtained by adding a
treatment combination not in B1 to each element in B1. To obtain B2, we add
(1, 0), which yields

(1, 0) (1, 3) (4, 0) (4, 3) (3, 2) (3, 5)

(0, 2) (0, 5) (5, 4) (5, 1) (2, 4) (2, 1)

and for B3 we add (0, 1), which yields

(0, 1) (0, 4) (3, 1) (3, 4) (2, 3) (2, 0)

(5, 3) (5, 0) (4, 5) (4, 2) (1, 5) (1, 2)

The design is summarized in Table 11.11.
We note here that the initial block, B1 or G, acts as the IBSG discussed

earlier. �

11.14.5 Verifying Orthogonal Factorial Structure

We shall now show that systems of confounding based on GC/n-PBIB designs
have OFS. We do this by showing that the C matrix and hence the C− = D

matrix have the structure of Theorem 11.12.
Let Ri

s denote an s × s circulant matrix with a unity element in the ith position
of the first row and zero elements elsewhere. A circulant matrix

A =


a1 a2 a3 . . . as

as a1 a2 . . . as−1

. . . . . . . . . . . . . . .

a2 a3 a4 . . . a1


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Table 11.11 62 in Blocks of Size 12
(Using GC/n Method)

Block 1 Block 2 Block 3

0 0 1 0 0 1

0 3 1 3 0 4

3 0 4 0 3 1

3 3 4 3 3 4

2 2 3 2 2 3

2 5 3 5 2 0

5 2 0 2 5 3

5 5 0 5 5 0

4 4 5 4 4 5

4 1 5 1 4 2

1 4 2 4 1 5

1 1 2 1 1 2

can then alternatively be written as

A =
s∑

i=1

(Ri
s × ai) =

s∑
i=1

ai Ri
s

As mentioned in Section 5.3, the matrix NN ′ and hence C for a cyclic PBIB
design is a cyclic matrix, that is, C can be written as

C =
t∑

i=1

ci Ri
t

For the situation considered here where a treatment consists of an n-tuple (x1, x2,

. . . , xn) this expression generalizes to

C =
s∑

i1=1

s∑
i2=1

· · ·
s∑

in=1

ci i2...in

 n∏
j=1

×R
ij
s

 (11.127)

where

n∏
j=1

×R
ij
s = Ri1

s × Ri2
s × · · · × Rin

s
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and

ci1i2...in



= 1 − 1

q
for i1 = i2 = · · · = in = 1

= − 1

q
for x′ = (i1 − 1, i2 − 1, . . . in − 1) in B1

but x′ �= (0, 0, . . . , 0)

= 0 otherwise

The reasons for the specific values of ci1i2...in are, of course, (i) we have a single-
replicate design, that is, r = 1; (ii) the block size k is equal to q =∏g

i=1 qi ; and
(iii) we have a disconnected design, that is, any two treatments occur together in
the same block once or not at all. Alternatively, C can be written as

C = I − 1

q

∑
i1

· · ·
∑
in

c∗
i1i2...in

n∏
j=1

×R
ij
s

where

c∗
i1i2...in

{
= 1 if x′ = (i1 − 1, i2 − 1, . . . , in − 1) in B1

= 0 otherwise
(11.128)

Now C in (11.127) can be written also (see John, 1973) as

C =
s∑

i1=1

s∑
i2=1

· · ·
s∑

iν=1


 ν∏

j=1

×R
ij
s

×
 s∑

in=1

ci1i2...inR
in
s

 (11.129)

where ν = n − 1. If we define

Ci1i2...iν =
s∑

in=1

ci1i2...inR
in
s (11.130)

then (11.129) and hence (11.127) can be rewritten as

C =
∑
i1

· · ·
∑
iν


 ν∏

j=1

×R
ij
s

× Ci1i2...iν

 (11.131)

This, however, is just another way of writing the hierarchical cyclic partition
required in Theorem 11.12. From the definition of Ci1i2...iν in (11.130) it follows
immediately that the row and column totals for Ci1i2...iν are all equal, namely∑

in
ci1i2...in . It follows then from Theorem 11.12 that the GC/n-generated system

of confounding has OFS.
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11.14.6 Identifying Confounded Interactions

The question remains of which effects az are confounded with blocks or, more
precisely, to which effects az do the b − 1 = sn/q − 1 block degrees of freedom
belong? Since we have a disconnected design with b = sn/q blocks it is clear
that only sn − 1 − (b − 1) degrees of freedom remain for linearly independent
estimable functions belonging to main effects and interactions. We know from
our earlier discussion that without confounding the degrees of freedom for az are

ν(z) =
n∏

i=1

(s − 1)zi (11.132)

We shall denote the corresponding degrees of freedom for a given system of
confounding by νc(z). We then show the following theorem.

Theorem 11.13 (John and Dean, 1975) For a GC/n-generated system of
confounding the degrees of freedom for the effect az are given by

νc(z) = rank(Mz) − 1

q

∑
i1

· · ·
∑
in

c∗
i1i2...in

 n∏
j=1

ρ
zj

ij

 (11.133)

where

ρ
zj

ij
=


s − 1 if ij = 1 and zj = 1

− 1 if ij �= 1 and zj = 1

1 if zj = 0

and the c∗
i1i2...in

are defined in (11.128).

Proof Recall from (11.118) that the adjusted sum of squares for az is given by

SS(az) = (Mzτ̂ )′(MzC−Mz′)−(Mzτ̂ )

John and Dean (1975) show that the degrees of freedom for SS(az) are given by

νc(z) = 1

sn

 n∏
j=1

szj

−1

tr
(
MzCMz′) (11.134)

where tr( ) denotes the trace of a matrix. Now

tr
(
MzCMz′) = tr

(
MzMz′)− 1

q

∑
i1

. . .
∑
in

c∗
i1i2...in

n∏
j=1

tr
{
Mzj R

ij
s Mzj ′

}
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with

tr
(
MzMz′) = sn

∏
j

szj

∏
j

(s − 1)zj

 (11.135)

and

tr
(
Mzj R

ij
s Mzj ′

)
=
{

s2ρ1
ij

for zj = 1

s for zj = 0
(11.136)

Substituting (11.135) and (11.136) into (11.134) and using the fact that
rank(Mz) =∏j (s − 1)zj prove the theorem. �

As an immediate result from Theorem 11.12, we state the following corollary.

Corollary 11.3 The number of contrasts belonging to az that are confounded
with blocks is equal to

ν∗(z) = 1

q

∑
i1

· · ·
∑
in

c∗
i1...in

 n∏
j=1

ρ
zj

ij

 (11.137)

It follows from (11.137) that (i) ν∗(z) is determined entirely by the treatment
combinations in the initial block B1; (ii) if ν∗(z) = 0, then az is unconfounded;
and (iii) if ν∗(z) =∏j (s − 1)zj , then az is completely confounded.

We shall illustrate Corollary 11.3 in terms of Example 11.9.

Example 11.9 (Continued) We need to find
∑6

i1=1
∑6

i2=1 c∗
i1i2

ρ
z1
i1

ρ
z2
i2

. Using
the definition of c∗

i1i2
and B1 given in Table 11.11, the values for ρ

z1
i1

ρ
z2
i2

with
nonzero coefficients and for z = (1, 0), (0, 1), (1, 1) are given in Table 11.12.
It follows then that ν∗= (1, 0) = ν∗(0, 1) = 0 and ν∗(1, 1) = 24

12 = 2, that is,
the main effects are unconfounded and 2 d.f. from the 2-factor interaction are
confounded with blocks and as a consequence νc(1, 1) = 23. �

11.15 CHOICE OF INITIAL BLOCK

It is worthwhile to compare the designs given in Tables 11.8 and 11.11, which
were constructed by two different methods. The method of pseudofactors is easy
to use but results in the confounding of degrees of freedom belonging to the
main effect A1. The advantage of the GC/2 design is that it leads to confounding
of degrees of freedom belonging to the interaction A1A2. This will in general be
more desirable but not as easy to achieve since the design depends crucially on
the choice of the initial block.
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Table 11.12 Determination of ρ
z1
i1

ρ
z2
i2

for Main Effects and

Two-Factor Interaction for 62 Factorial in Blocks of Size 12

i1, i2 z1 = 1, z2 = 0 z1 = 0, z2 = 1 z1 = 1, z2 = 1

1, 1 6 − 1 6 − 1 (6 − 1)2

1, 4 6 − 1 − 1 −(6 − 1)

4, 1 − 1 6 − 1 −(6 − 1)

4, 4 − 1 − 1 1

3, 3 − 1 − 1 1

3, 6 − 1 − 1 1

6, 3 − 1 − 1 1

6, 6 − 1 − 1 1

5, 5 − 1 − 1 1

5, 2 − 1 − 1 1

2, 5 − 1 − 1 1

2, 2 − 1 − 1 1

Sum 0 0 24

How then should one choose the initial block? Two questions need to be
answered: (i) How many generators does one need? (ii) What should these
generators be? First of all, only block sizes of the form k = q =∏g

i−1 qi are
permissible, where the qi’s are divisors (not necessarily different) of s (including
s itself). For example, for the 62 in blocks of size k = 12, we could have g = 3
with q1 = q2 = 2, q3 = 3 (see Example 11.9) or g = 2 with q1 = 6, q2 = 2.
To answer (ii), one needs to choose the generators x1, x2, . . . , xg such that
the groups G1, G2, . . . ,Gg only have the zero element in common. The choice
depends further on which effects one is willing to confound to the extent that
one has a choice. One may have to do this by trial and error, computing for
each choice of generators νc(z) for each z, and then decide what is the best
choice for the situation at hand. If one wants to avoid confounding degrees of
freedom belonging to main effects, one can proceed in the following way (this
follows from the discussion by John and Dean, 1975). If we write the generators
as x′

i = (xi1, xi2, . . . , xin)(i = 1, 2, . . . , g), we can consider the vector of the
j th components (x1j , x2j , . . . , xgj )(j = 1, 2, . . . , n). If for each j the nonzero
xij are relative primes, then no degrees of freedom belonging to main effects
are confounded. As an example consider for the 62 in blocks of size 12 the fol-
lowing two sets of generators: (1) x1 = (1, 5), x2 = (3, 0) and (2) x1 = (3, 5),
x2 = (3, 0), giving, respectively, the initial blocks B1:

00, 30, 15, 45, 24, 54, 33, 03, 42, 12, 51, 21
and

00, 30, 35, 05, 04, 34, 33, 03, 02, 32, 31, 01
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Using Corollary 11.3 or, alternatively, simple inspection shows that, for system
1, 2 d.f. from A1A2 are confounded whereas, for system 2, 2 d.f. from A1 are
confounded.

We close this section by mentioning that the GC/n designs are most valuable
for the sn factorial where s = p

n1
1 p

n2
2 · · ·pnm

m as the method provides some flex-
ibility with block sizes and allows the constructing of systems of confounding
such that main effects remain unconfounded (if that is possible at all). This will
play a role when we discuss systems of confounding for asymmetrical factorial
experiments in Chapter 12. Finally, for s = p and p prime the GC/n designs are
of the same type as those discussed in Section 11.3.



C H A P T E R 12

Confounding in Asymmetrical
Factorial Designs

12.1 INTRODUCTION

In previous chapters we have considered systems of confounding for symmetrical
factorial experiments, that is, the sn experiment in sn−� blocks of size s�. In
many practical situations, however, we may not encounter such a pure system,
but rather find that different factors have different numbers of levels. We call this
an asymmetrical or mixed factorial experiment of the form s

n1
1 × s

n2
2 × · · · × s

nq
q ,

where the ith set of factors contains ni factors each at si levels (i = 1, 2, . . . , q).
A typical example is the 2 × 32 experiment, that is, one factor having two levels
and two factors having three levels each. For such an experiment we may want
to use blocks of size s

�1
1 × s

�2
2 × · · · × s

�q
q , for example, for the 2 × 32 exper-

iment we may be interested in finding a suitable arrangement of the treatment
combinations in blocks of size 2 × 3 = 6.

Various methods have been proposed to deal with this situation. Generally
speaking, they can be divided into the following broad categories:

1. By looking at each component pure system separately and using the pro-
cedures discussed in previous chapters, it may be possible to generate an
appropriate design. For example, for the 22 × 32 factorial experiment, we
can examine the 22 system in blocks of size 2 and the 32 system in blocks
of size 3. Suitable arrangements then lead to blocks of size 6 or 12 for the
asymmetrical factorial experiment.

2. One can generalize the formal method for pure systems by defining how to
combine elements from different finite fields, for example, elements from
residue fields mod 2 and mod 3.

3. The construction of suitable PBIB designs can lead to useful systems
of confounding. We mention here in particular the EGD-PBIB design

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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(Section 4.6.9) as its association scheme is based upon the fact that the
number of treatments t can be factored in various ways, for example, for
the 2 × 32 factorial t = 2 · 3 · 3.

4. The factorial treatments can be embedded in a suitable PBIB design, where
the form of the association scheme suggests a correspondence between the
treatments in the usual sense and the factorial treatments.

5. By introducing pseudofactors, we may be able to reduce the asymmetrical
factorial experiment at least formally to a pure (symmetrical) factorial exper-
iment and then apply the familiar procedures. For example, a 23 × 4 factorial
can be interpreted as a 25 factorial. However, care must be taken in that the
interaction between the last two factors in the 25 system is really part of the
main effect of the factor with four levels (see Section 11.13.3).

We shall discuss some of these methods in more detail and give suitable
designs for some that we consider to be the most useful and most commonly
occurring cases.

12.2 COMBINING SYMMETRICAL SYSTEMS OF CONFOUNDING

12.2.1 Construction of Blocks

To present the basic ideas, let us consider the situation involving only two sets
of factors, the first set consisting of n1 factors A1, A2, . . ., An1 each at s1 levels
and the second set consisting of n2 factors B1, B2, . . ., Bn2 each at s2 levels.
For the sake of simplicity we shall take s1 = p1 and s2 = p2, where p1 and p2
are different primes, but the results can be generalized easily to the case where
s1 and/or s2 are prime powers by using the methods described in Section 11.7.
We denote a treatment combination by the n1 + n2 vector (x1, x2, . . ., xn1 , y1,
y2, . . ., yn2 ), where xi = 0, 1, 2, . . ., p1 − 1 (i = 1, 2, . . ., n1), yj = 0, 1, 2, . . .,
p2 − 1 (j = 1, 2, . . ., n2).

Suppose then we want to arrange the p
n1
1 p

n2
2 treatment combinations in blocks

of size p
�1
1 p

�2
2 (�1 ≤ n1, �2 ≤ n2 with �1 + �2 < n1 + n2). To this end we consider

separately the two symmetrical factorial systems, the p
n1
1 factorial in blocks of

size p
�1
1 , and the p

n2
2 factorial in blocks of size p

�2
2 . Using the methods described

in Chapter 11, we choose n1 − �1 independent interactions to be confounded
(together with their GIs) in the p

n1
1 system. Suppose these effects are Eα1 , Eα2 ,

. . ., Eαν (ν = n1 − �1). The arrangement of the p
n1
1 treatment combinations in

blocks of size p
�1
1 is then obtained by solving the systems of equations

α11x1 + α12x2 + · · · + α1n1xn1 = δ1

α21x1 + α22x2 + · · · + α2n1xn1 = δ2
... (12.1)

αν1x1 + αν2x2 + · · · + ανn1xn1 = δν
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for the pν
1 = p

n1−�1
1 possible choices of (δ1, δ2, . . ., δν), one for each block.

Similarly, suppose that the n2 − �2 independent interactions to be confounded
for the p

n2
2 factorial in blocks of size p

�2
2 are Eβ1 , Eβ2 , . . ., Eβµ(µ = n2 − �2).

The corresponding systems of equations are then

β11y1 + β12y2 + · · · + β1n2yn2 = γ1

β21y1 + β22y2 + · · · + β2n2yn2 = γ2
... (12.2)

βµ1y1 + βµ2y2 + · · · +βµn2yn2 = γµ

We thus obtain pν
1 blocks for the p

n1
1 factorial, say B11, B12, . . ., B1pν

1
, and p

µ
2

blocks for the p
n2
2 factorial system, say B21, B22, . . ., B2p

µ
2

. To obtain the blocks

for the p
n1
1 × p

n2
2 system, denoted by B∗

ij (i = 1, 2, . . ., pν
1 ; j = 1, 2, . . ., p

µ
2 ),

we combine the blocks from the individual systems as follows. To obtain the
treatment combinations in block B∗

ij , we “adjoin” to each treatment combination
(x1, x2, . . ., xn1 ) in B1i every treatment combination (y1, y2, . . ., yn2 ) in B2j to
yield p

�1
1 p

�2
2 treatment combinations of the form (x1, x2, . . ., xn1 , y1, y2, . . .,

yn2 ). Symbolically this can be expressed as

B∗
ij = B1i ⊗ B2j (12.3)

which has been called the symbolic direct product (SDP) by Kurkjian and
Zelen (1962).

Example 12.1 To illustrate the procedure, we consider the 23 × 32 factorial
in blocks of size 2 × 3 = 6, that is, p1 = 2, p2 = 3, n1 = 3, n2 = 2, �1 = 1,
�2 = 1. Suppose we choose to confound A1A2 and A1A3 (and hence A2A3) and
B1B2, respectively, in the two symmetrical systems. The block compositions are
determined by the equations

x1 + x2 = δ1 mod 2

x1 + x3 = δ2 mod 2

and
y1 + y2 = γ1 mod 3

respectively. This yields the blocks

B11 B12 B13 B14

000 100 010 001
111 011 101 110
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and

B21 B22 B23

00 10 20
12 01 02
21 22 11

The blocks for the asymmetrical factorial then are given in Table 12.1. The same
design using SAS PROC FACTEX is given in Table 12.2. �

There is another way of representing the result given above. Let x represent
the column vector of the treatment combinations for the p

n1
1 system and y that

for the p
n2
2 system. Further, let N1 and N2 denote the incidence matrices for

the two systems of confounding in blocks of size p
�1
1 and p

�2
2 , respectively. The

final design can then be expressed as the Kronecker product

N = N1 × N2 (12.4)

where the vector of treatment combinations is given by the SDP x ⊗ y and the
blocks are labeled as in (12.3).

12.2.2 Properties of Kronecker Product Method

We shall comment briefly on some of the properties of the procedure described
above. For any interaction confounded in the p

n1
1 system, say Eα, and any inter-

action confounded in the p
n2
2 system, say Eβ , also the interaction EαEβ is

Table 12.1 Block Arrangement for the 23 × 32

Factorial in Blocks of Size 6

B∗
11 B∗

12 B∗
13 B∗

21 B∗
22 B∗

23

00000 00010 00020 10000 10010 10020
00012 00001 00002 10012 10001 10002
00021 00022 00011 10021 10022 10011
11100 11110 11120 01100 01110 01120
11112 11101 11102 01112 01101 01102
11121 11122 11111 01121 01122 01111

B∗
31 B∗

32 B∗
33 B∗

41 B∗
42 B∗

43

01000 01010 01020 00100 00110 00120
01012 01001 01002 00112 00101 00102
01021 01022 01011 00121 00122 00111
10100 10110 10120 11000 11010 11020
10112 10101 10102 11012 11001 11002
10121 10122 10111 11021 11022 11011
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Table 12.2 23 × 32 Factorial in Blocks of Size 6

options nodate pageno=1;
proc factex;
factors A B C;
blocks size=2;
model est=(A B C A*B*C);
output out=abcdesn;
run;

factors D E/nlev=3;
blocks size=3;
model est=(D E);
output out=dedesn
designrep=abcdesn;
run;

data dedesn(drop=block1 block2);
set dedesn;
block1=block;
if block1=1 and block2=1 then block=1;
if block1=1 and block2=2 then block=2;
if block1=1 and block2=3 then block=3;
if block1=2 and block2=1 then block=4;
if block1=2 and block2=2 then block=5;
if block1=2 and block2=3 then block=6;
if block1=3 and block2=1 then block=7;
if block1=3 and block2=2 then block=8;
if block1=3 and block2=3 then block=9;
if block1=4 and block2=1 then block=10;
if block1=4 and block2=2 then block=11;
if block1=4 and block2=3 then block=12;

run;

proc sort data=dedesn;
by block;
run;

proc print data=dedesn;
title1 'TABLE 12.2';
title2 '2**3x3**2 FACTORIAL IN BLOCKS OF SIZE 6';
run;
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Table 12.2 (Continued )

Obs BLOCK A B C D E

1 1 -1 -1 1 -1 -1
2 1 -1 -1 1 0 1
3 1 -1 -1 1 1 0
4 1 1 1 -1 -1 -1
5 1 1 1 -1 0 1
6 1 1 1 -1 1 0
7 2 -1 -1 1 -1 1
8 2 -1 -1 1 0 0
9 2 -1 -1 1 1 -1
10 2 1 1 -1 -1 1
11 2 1 1 -1 0 0
12 2 1 1 -1 1 -1
13 3 -1 -1 1 -1 0
14 3 -1 -1 1 0 -1
15 3 -1 -1 1 1 1
16 3 1 1 -1 -1 0
17 3 1 1 -1 0 -1
18 3 1 1 -1 1 1
19 4 -1 1 1 -1 -1
20 4 -1 1 1 0 1
21 4 -1 1 1 1 0
22 4 1 -1 -1 -1 -1
23 4 1 -1 -1 0 1
24 4 1 -1 -1 1 0
25 5 -1 1 1 -1 1
26 5 -1 1 1 0 0
27 5 -1 1 1 1 -1
28 5 1 -1 -1 -1 1
29 5 1 -1 -1 0 0
30 5 1 -1 -1 1 -1
31 6 -1 1 1 -1 0
32 6 -1 1 1 0 -1
33 6 -1 1 1 1 1
34 6 1 -1 -1 -1 0
35 6 1 -1 -1 0 -1
36 6 1 -1 -1 1 1
37 7 -1 1 -1 -1 -1
38 7 -1 1 -1 0 1
39 7 -1 1 -1 1 0
40 7 1 -1 1 -1 -1
41 7 1 -1 1 0 1
42 7 1 -1 1 1 0
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Table 12.2 (Continued )

43 8 -1 1 -1 -1 1
44 8 -1 1 -1 0 0
45 8 -1 1 -1 1 -1
46 8 1 -1 1 -1 1
47 8 1 -1 1 0 0
48 8 1 -1 1 1 -1
49 9 -1 1 -1 -1 0
50 9 -1 1 -1 0 -1
51 9 -1 1 -1 1 1
52 9 1 -1 1 -1 0
53 9 1 -1 1 0 -1
54 9 1 -1 1 1 1
55 10 -1 -1 -1 -1 -1
56 10 -1 -1 -1 0 1
57 10 -1 -1 -1 1 0
58 10 1 1 1 -1 -1
59 10 1 1 1 0 1
60 10 1 1 1 1 0
61 11 -1 -1 -1 -1 1
62 11 -1 -1 -1 0 0
63 11 -1 -1 -1 1 -1
64 11 1 1 1 -1 1
65 11 1 1 1 0 0
66 11 1 1 1 1 -1
67 12 -1 -1 -1 -1 0
68 12 -1 -1 -1 0 -1
69 12 -1 -1 -1 1 1
70 12 1 1 1 -1 0
71 12 1 1 1 0 -1
72 12 1 1 1 1 1

confounded. This can be seen easily by referring to Table 12.2. Recall that the
p1 − 1 d.f. for Eα arise from p1 − 1 linearly independent contrasts among the
components Eα

0 , Eα
1 , . . ., Eα

p1−1 and the p2 − 1 d.f. for Eβ arise from contrasts

among E
β
0 , E

β
1 , . . ., E

β
p2−1. The

(
Eα

i , E
β
j

)
entry in Table 12.2 is essentially the

average of the responses for all treatment combinations in the p
n1
1 p

n2
2 system

that satisfy the equations

α1x1 + α2x2 + · · · + αn1xn1 = i mod p1

and
β1y1 + β2y2 + · · · + βn2yn2 = j mod p2

and the (p1 − 1)(p2 − 1) d.f. for EαEβ arise entirely from contrasts among

the p1p2 entries
(
Eα

i , E
β
j

)
in Table 12.3 with i = 0, 1, . . ., p1 − 1 and j = 0,
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Table 12.3 Representation of Interaction Contrasts for
p

n1
1 p

n2
2 Factorial

E
β
0 E

β
1 E

β
2 · · · E

β
p2−1

Eα
0

Eα
1

Eα
2

...

Eα
p1−1

1, . . ., p2 − 1. This implies then that with this procedure we cannot confound
interactions between A factors and B factors without confounding at the same
time also the corresponding A factor interaction and the B factor interaction. In
terms of Example 12.1 we confound with A1A2, A1A3, A2A3, and B1B2 also
A1A2B1B2, A1A3B1B2, and A2A3B1B2, each accounting for 2 d.f. The possi-
bilities for useful systems of confounding are therefore somewhat limited in that
one may sometimes be forced to confound low-order interactions or even main
effects. Partial confounding, if feasible, may resolve this problem to some extent.

From the construction of the designs it is clear that these systems of con-
founding have OFS as defined in Chapter 11. Expressions for sums of squares
associated with effects in the pure systems can be written out easily using the
methods discussed in earlier chapters. The same is true for interaction sums of
squares involving factors from different pure systems, for example, SS(A1 × B1)
in Example 12.1, as long as the interaction is not confounded. There do not,
however, seem to be simple expressions for interaction sums of squares when
the interactions involve factors from different pure systems and are partially
confounded, for example, SS(A1 × A2 × B1 × B2) in Example 12.1. Because
A1A2B1B2 is confounded with blocks, we can write formally

SS(A1 × A2 × B1 × B2) = SS(A1A2B1B
2
2 )

with 2 d.f. The difficulty in writing out an expression for SS(A1A2B1B
2
2 ) using

familiar methods is the fact that this would involve arithmetic with elements
from different fields. An attempt has been made by White and Hultquist (1965)
and a more useful formulation will be given in Section 12.4. A general way is,
of course, to use the least-squares principle and obtain, using the notation of
Chapter I.4, directly the partial sum of squares SS(XA1A2B1B2 |I, Xβ , all other
factorial effects), where Xβ refers to the observation–block incidence matrix,
which in this case is the treatment–block incidence matrix.
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12.2.3 Use of Pseudofactors

The method of constructing systems of confounding described in Section 12.2.1
can be extended naturally to include pseudofactors (see Section 11.8). For
example, this allows us to deal with asymmetrical factorials of the form
2n1 × 3n2 × 4n3 × 5n4 × 6n5 (ni ≥ 0, i = 1, 2, 3, 4, 5), which includes most
practical situations. All we need to do is to rewrite this as 2n1+2n3+n5 ×
3n2+n5 × 5n4 and remember that some interactions in the symmetrical com-
ponents of this modified asymmetrical factorial are possibly main effects in
the original asymmetrical factorial. To illustrate this, we consider the follow-
ing example.

Example 12.2 Suppose we want to construct a system of confounding for
a 2 × 4 × 6 factorial in blocks of size 12 and avoid confounding main effects.
Denote the three factors by A1, A2, A3, respectively. Then we replace A2 by
its pseudofactors X1, X2 each at two levels and A3 by its pseudofactors Y1
with two levels and Y2 with three levels. We then have four factors at two
levels each and one factor at three levels, that is, a 24 × 3 factorial. In order to
construct blocks of size 12, we need to confound three contrasts with blocks. To
avoid confounding main effect contrasts, we need to consider interactions among
factors from different pure systems. For example, we may confound A1X1, A1Y1
and hence X1Y1, which correspond to interaction contrasts belonging to A1A2,
A1A3, and A2A3. The initial block in terms of the pseudofactors and the original
factors is then as given below:

A1 X1 X2 Y1 Y2 A1 A2 A3

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 2 0 0 2

0 0 1 0 0 0 1 0

0 0 1 0 1 0 1 1

0 0 1 0 2 0 1 2

1 1 0 1 0 1 2 3

1 1 0 1 1 1 2 4

1 1 0 1 2 1 2 5

1 1 1 1 0 1 3 3

1 1 1 1 1 1 3 4

1 1 1 1 2 1 3 5

The same design (apart from different block numbering) as produced by SAS
PROC FACTEX is given in Table 12.4. �
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Table 12.4 2 × 4 × 6 Factorial in Blocks of Size 12 (Using the Method
of Pseudofactors)

options ate pageno=1;
proc factex;
factors A1 X1 X2 Y1;
blocks size=4;
model est=(A1 X1 X2 A1*X2 X1*X2 A1*X1*X2 Y1 Y1*X2 Y1*A1*X1
Y1*A1*X2 Y1*X1*X2 Y1*A1*X1*X2);

examine design confounding;
output out=twodesn;
run;

factors Y2/nlev=3;
output out=threeds

designrep=twodesn;
run;

data threeds (drop=X1 X2 Y1 Y2);
set threeds;

if A1=-1 then A1=0;
if X1=-1 and X2=-1 then A2=0;
if X1=-1 and X2=1 then A2=1;
if X1=1 and X2=-1 then A2=2;
if X1=1 and X2=1 then A2=3;
if Y1=-1 and Y2=-1 then A3=0;
if Y1=-1 and Y2=0 then A3=1;
if Y1=-1 and Y2=1 then A3=2;
if Y1=1 and Y2=-1 then A3=3;
if Y1=1 and Y2=0 then A3=4;
if Y1=1 and Y2=1 then A3=5;

run;

proc print data=threeds;
title1 'TABLE 12.4';
title2 '2x4x6 FACTORIAL IN BLOCKS OF SIZE 12';
title3 '(USING THE METHOD OF PSEUDO-FACTORS)';
run;

The FACTEX Procedure

Design Points

Experiment
Number A1 X1 X2 Y1 Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1
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Table 12.4 (Continued )

3 -1 -1 1 -1 4
4 -1 -1 1 1 1
5 -1 1 -1 -1 3
6 -1 1 -1 1 2
7 -1 1 1 -1 3
8 -1 1 1 1 2
9 1 -1 -1 -1 2
10 1 -1 -1 1 3
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 1
14 1 1 -1 1 4
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = X1*Y1
[B2] = A1*Y1

Design Points

Experiment
Number Y2

- - - - - - - - - - - - - - - - - -
1 -1
2 0
3 1

Obs BLOCK A1 A2 A3

1 1 0 0 3
2 1 0 0 4
3 1 0 0 5
4 1 0 1 3
5 1 0 1 4
6 1 0 1 5
7 1 1 2 0
8 1 1 2 1
9 1 1 2 2
10 1 1 3 0
11 1 1 3 1
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Table 12.4 (Continued )

12 1 1 3 2
13 2 0 2 3
14 2 0 2 4
15 2 0 2 5
16 2 0 3 3
17 2 0 3 4
18 2 0 3 5
19 2 1 0 0
20 2 1 0 1
21 2 1 0 2
22 2 1 1 0
23 2 1 1 1
24 2 1 1 2
25 3 0 2 0
26 3 0 2 1
27 3 0 2 2
28 3 0 3 0
29 3 0 3 1
30 3 0 3 2
31 3 1 0 3
32 3 1 0 4
33 3 1 0 5
34 3 1 1 3
35 3 1 1 4
36 3 1 1 5
37 4 0 0 0
38 4 0 0 1
39 4 0 0 2
40 4 0 1 0
41 4 0 1 1
42 4 0 1 2
43 4 1 2 3
44 4 1 2 4
45 4 1 2 5
46 4 1 3 3
47 4 1 3 4
48 4 1 3 5

12.3 THE GC/n METHOD

The method of using generalized cyclic designs, as described in Section 11.9 for
symmetrical factorial experiments, was extended to asymmetrical factorials by
Dean and John (1975). The general ideas are the same, and the statements of
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theorems and proofs have to be modified in an obvious manner. We shall not go
into the details but rather give a brief description of the method as it applies to
factorials of the form s1 × s2 × · · · × sn, that is, we have n factors A1, A2, . . .,
An with Ai having si levels (the si are not necessarily all distinct). We denote
the total number of treatment combinations by t = ∏n

i=1 si .

12.3.1 Description of the Method

Let µ be the lowest common multiple (LCM) of s1, s2, . . ., sn, that is,

µ = LCM(s1, s2, . . . , sn) (12.5)

and for a given treatment combination x = (x1, x2, . . . , xn) with 0 ≤ xi ≤ si −
1(i = 1, 2, . . . , n) let

h = HCF

(
µ,

µx1

s1
,
µx2

s2
, . . . ,

µxn

sn

)
(12.6)

be the highest common factor of the quantities in parentheses. The treatment
combination ux = (ux1, ux2, . . . , uxn) is obtained by reducing uxi mod si(i = 1,
2, . . ., n). Since µx/h ≡ 0, a cyclic Abelian group G of size µ/h is given by the
treatment combinations 0, x, 2x, . . ., (µ/h − 1)x, and x is called the generator
of G. In the context of factorials the group G constitutes the initial block, B1, of
size k = µ/h. The remaining blocks are then obtained by adding each treatment
combination to those in B1 and retaining only the set of b = t · h/µ different
blocks. Each treatment combination will occur in only one block.

In general, we may have g generators x1, x2, . . . , xg with corresponding
Abelian groups G1,G2, . . . ,Gg having only the zero element in common. Let

hi = HCF

(
µ,

µxi1

s1
,
µxi2

s2
, . . . ,

µxin

sn

)
where xij is the level of Aj in xi (i = 1, 2, . . . , g; j = 1, 2, . . . , n). Further, let
qi = µ/hi and q = ∏g

i=1 qi . The group G is then formed by the elements

u1x1 + u2x2 + · · · + ugxg(ui = 0, 1, . . . , qi − 1; i = 1, 2, . . . , g)

These q treatment combinations form the initial block B1. Cyclic development
of B1 as described above yields then a single replicate GC/n design with blocks
of size k = q and number of blocks b = t/q.

Extensive tables of GC/n designs and their generators for n ≤ 5, t ≤ 56, k ≤
30, si ≤ 7(i = 1, 2, 3, 4, 5) were given by Dean and John (1975) and additional
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designs for n ≤ 7, t ≤ 200, k ≤ 100, si ≤ 7(i = 1, 2, . . . , 7) by Lewis (1982). In
all these designs main effects are unconfounded. We should point out that all the
designs listed can be easily constructed by the methods described in Section 12.2.

12.3.2 Choice of Generators

To illustrate the GC/n method and discuss the possible choice of generators, we
consider the following example.

Example 12.3 Suppose we wish to construct a 2 × 5 × 6 factorial in blocks
of size 10. Now LCM (2, 5, 6) = 30. We have k = q = 10 = 2 · 5, suggesting
that we should have two generators with q1 = 2 and q2 = 5. Now q1 = 30/h1,
which implies

h1 = HCF

(
30,

30x11

2
,

30x12

5
,

30x13

6

)
= 15 (12.7)

Since 0 ≤ x11 ≤ 1, 0 ≤ x12 ≤ 4, 0 ≤ x13 ≤ 5, it follows that (12.7) will be sat-
isfied by x1 = (1, 0, 3). Similarly, q2 = 30/h2 implies

h2 = HCF

(
30,

30x21

2
,

30x22

5
,

30x23

6

)
= 6

which leads to x2 = (0, 1, 0) as a possible generator. The initial block B1 and
the remaining five blocks are given in Table 12.5. �

12.3.3 Loss of Degrees of Freedom

To obtain the loss of degrees of freedom due to confounding for the various main
effects and interactions az with z = (z1, z2, . . . , zn), the expression (11.137) in
Corollary 11.3,

ν∗(z) = 1

q

∑
i1

· · ·
∑
in

c∗
i1...in

 n∏
j=1

ρ
zj

ij

 (12.8)

has to be modified by defining

ρ
zj

ij
=


si − 1 if ij = 1 and zj = 1

−1 if ij �= 1 and zj = 1

1 if zj = 0
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Table 12.5 GC/3-Design for 2 × 5 × 6 Factorial
in Blocks of Size 10

Block
1 2 3 4 5 6

000 100 011 111 002 102
103 003 114 014 105 005
010 110 021 121 012 112
113 013 124 024 115 015
020 120 031 131 022 122
123 023 134 034 125 025
030 130 041 141 032 132
133 033 144 044 135 035
040 140 001 101 042 142
143 043 104 004 145 045

(see Dean and John, 1975). Recall that c∗
i1i2...in

= 1 for all treatment combinations
x = (i1 − 1, i2 − 1, . . . , in − 1) in B1 and zero otherwise. Thus (12.8) depends
only on the treatment combinations in B1 and hence can be evaluated easily for
each z ∈ Z.

Example 12.3 (Continued) The ν∗(z) follow easily from inspection of the
design given in Table 12.5. Every level of factor A1 occurs the same number
of times in each block; hence ν∗(100) = 0. The same holds true for A2; hence
ν∗(010) = 0. For factor A3, however, only two levels occur equally often in each
block, 0 and 3 in B1 and B2, 1 and 4 in B3 and B4, and 2 and 5 in B5 and B6.
Hence only three contrasts belonging to main effect A3 can be estimated; hence
ν∗(001) = 2 = 5 − 3. For every contrast belonging to a 2-factor interaction each
level combination has to occur the same number of times. It follows then that
ν∗(110) = ν∗(011) = 0 but ν∗(101) > 0. To illustrate the method according to
(12.8), however, we develop the ν∗(z) in Table 12.6. We obtain ν∗(001) = 20

10 =
2, ν∗(101) = 30

10 = 3. These 5 d.f. account then for the 5 d.f. among blocks.
We note here that the design given in Example 12.3 is slightly better than what

could have been obtained with the Kronecker product method of Section 12.2.
Both result in confounding main effects (2 d.f. from A3 vs. 1 d.f. from A1 and
2 d.f. from A3), but in this situation that seems to be unavoidable. This shows
that the GC/n method leads to useful designs not available otherwise.

For a detailed discussion of other properties of GC/n designs we refer the
reader to Gupta and Mukerjee (1989). �

12.4 METHOD OF FINITE RINGS

The methods of constructing systems of confounding for symmetrical factorials
as discussed in Chapters 8, 9, 10, and 11 (Sections 11.3, 11.7, and 11.8) are based
on the arithmetic in Galois fields. To transfer these procedures to asymmetrical
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Table 12.6 Determination of ρ
z1
i1

ρ
z2
i2

ρ
z3
i3

for the Design of Table 12.5

z

i1 i2 i3 100 010 110 001 101 011 111

1 1 1 1 4 4 5 5 20 20
2 1 4 −1 4 −4 −1 1 −4 4
1 2 1 1 −1 −1 5 5 −5 −5
2 2 4 −1 −1 1 −1 1 1 −1
1 3 1 1 −1 −1 5 5 −5 −5
2 3 4 −1 −1 1 −1 1 1 −1
1 4 1 1 −1 −1 5 5 −5 −5
2 4 4 −1 −1 1 −1 1 1 −1
1 5 1 1 −1 −1 5 5 −5 −5
2 5 4 −1 −1 1 −1 1 1 −1

Sum 0 0 0 20 30 0 0

factorials involves combining elements from different finite fields. Using results
from abstract algebra (e.g., van der Waerden, 1966), White and Hultquist (1965)
and Raktoe (1969, 1970) provided the foundation for generalizing the methods
for symmetrical factorials to asymmetrical factorials (Hinkelmann, 1997). We
shall give a brief description of the method (following Raktoe, 1969) without
going into all mathematical details and proofs.

12.4.1 Mathematics of Ideals and Rings

First, we need the following mathematical results. Suppose we have m distinct
primes p1, p2, . . ., pm. Let GF(pi) be the Galois field associated with pi(i =
1, 2, . . . , m), the elements of which are the residues mod pi . Let q = ∏m

i=1 pi

and R(q) be the ring of residue classes mod q. We denote by I (w) an ideal
generated by an arbitrary element w of R(q). We then state the following results
(for proofs see Raktoe, 1969):

1. The element

aj =
m∏

i=1
i �=j

pi − pj = cj − pj with cj =
∏
i �=j

pi

in R(q) is prime to q and hence a−1
j exists. The aj ’s belong to the multi-

plicative group of nonzero divisors in R(q).

2. The element bj = cja
−1
j generates the ideal I (bj ) in R(q).

3. The element bj is the multiplicative identity in I (bj ).
4. The multiplicative identity element 1 in R(q) is the sum of the multiplicative

identities in I (bj ), that is, 1 = ∑m
j=1 bj .
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5. The ring R(q) is the direct sum of ideals I (bj ), that is, R(q) = ∑m
j=1 ⊗I (bj ).

6. The field GF(pj ) is isomorphic to the ideal I (bj ); for x ∈ GF(pj ) and y ∈
I (bj ) the mapping σ : GF(pj ) → I (bj ) is defined by σ(x) = bjx = y.

7. Addition and multiplication of elements from different Galois fields x ∈
GF(pj ), x∗ ∈ GF(pi) are defined by

x + x∗ = σ(x) + σ(x∗) mod q

xx∗ = σ(x)σ (x∗) mod q

8. Addition and multiplication of an element r ∈ R(q) and an element x ∈
GF(pj ) are defined by

r + x = r + σ(x) mod q

rx = rσ (x) mod q

9. The ring R(q) is the direct sum of the GF(pj ), that is, R(q) = ∑m
j=1 ⊗

GF(pj ).

To illustrate these results, we consider the following example.

Example 12.4 Suppose we have p1 = 2, p2 = 3. Then p = 6 and the gen-
erators of the ideals are

b1 = 3(3 − 2)−1 = 3 · 1 = 3 mod 6

and
b2 = 2(2 − 3)−1 = 2(5)−1 = 2 · 5 = 4 mod 6

[(5)−1 = 5 since 5 · 5 = 25 = 1 mod 6]. We thus have the two mappings

GF(2) → I (3) and GF(3) → I (4)

0
1

}
σ−→

{
0
3

0
1
2

 τ−→
 0

4
2

and the direct sums

GF(2) ⊗ GF(3) = I (3) ⊗ I (4) = R(6)

0 + 0 = σ(0) + τ(0) = 0

1 + 0 = σ(1) + τ(0) = 3

0 + 1 = σ(0) + τ(1) = 4

1 + 1 = σ(1) + τ(1) = 1

0 + 2 = σ(0) + τ(2) = 2

1 + 2 = σ(1) + τ(2) = 5 �
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12.4.2 Treatment Representations

We now apply these concepts and results to asymmetrical factorials of the form
p

n1
1 × p

n2
2 × · · · × p

nm
m . For ease of notation we shall consider specifically the

22 × 32 factorial. Generalizations will then become obvious.
Ordinarily, treatment combinations would be represented in the form of

quadruples, say x = (x11, x12, x21, x22), where x11, x12 refer to the levels of the
two-level factors, A1, A2 say, and x21, x22 refer to the levels of the three-
level factors, B1, B2, say, that is, x1i = 0, 1, x2i = 0, 1, 2. We shall refer to
this as the elementary representation of treatment combinations and denote it by
T (x), remembering that the components in x are elements from the respective
Galois fields. In order to perform arithmetic with treatment combinations, we now
replace T (x) by a new representation T (v), where the components in v = (v11,
v12, v21, v22) represent the corresponding elements from the respective ideals,
that is, v11, v12 ∈ I (3), v21, v22 ∈ I (4). The correspondence is as follows:

T (x) T (v)

x11 x12 x21 x22 v11 v12 v21 v22

0 0 0 0 0 0 0 0

0 1 0 0 0 3 0 0

1 0 0 0 3 0 0 0

1 1 0 0 3 3 0 0

0 0 0 1 0 0 0 4

0 0 0 2 0 0 0 2

0 0 1 0 0 0 4 0
...

...

1 1 2 2 3 3 2 2

12.4.3 Representation of Main Effects and Interactions

Concerning the representation of main effects and interactions, we recall that
for a pn factorial an effect Eα is represented by contrasts among the “levels”
Eα

0 , Eα
1 , . . ., Eα

p−1 of Eα. Here the components in α′ = (α1, α2, . . ., αn) also
take on the values 0, 1, . . ., p − 1 with the understanding that the first nonzero
αi equals 1. We note also that for the pn factorial we can write an interaction
in general as A

z1
1 × A

z2
2 × · · · × A

zn
n , where the zi are either 0 or 1 with the

understanding that if zi = 0 then the letter Ai is dropped from the interaction.
An interaction Ai1 × Ai2 × · · · × Ai� consists then of (p − 1)�−1 components
Ai1A

α2
i2

· · · Aα�

i�
where the αi take on all possible values between 1 and p − 1.

Each such component represents p − 1 d.f.
To generalize this representation for asymmetrical factorials, we now write an

interaction for the 22 × 32 factorial as A
z∗

11
1 × A

z∗
12

2 × B
z∗

21
1 × B

z∗
22

2 , where z∗
11 and
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z∗
12 are either 0 or 3, that is, elements in I (3), and z∗

21 and z∗
22 are either 0 or 4,

that is, elements in I (4), with the understanding that if z∗
ij = 0 then that factor is

dropped from the interaction. We may have, for example, A3
1 × B4

1 × B4
2 , which

refers to the interaction among the factors A1, B1, and B2. The components of
this interaction are, in analogy to the symmetrical component systems, given by
A3

1 × B4
1 × B4

2 = {A3
1B

4
1B4

2 , A3
1B

4
1B2

2 }. The number of “levels,” L say, for these
interaction components is determined by the fact that they involve factors with
two and three levels. The L is equal to the number of residue classes for the direct
sum of the ideals corresponding to the factors involved. In our case this is the
number of residue classes for I (3) ⊗ I (4) = R(6), that is, L = 6. More generally,
if the interaction involves only � factors out of m, say Fi1 , Fi2 , . . ., Fi�(� < m),
then L is equal to the number of residue classes in I (bi1) ⊗ I (bi2) ⊗ · · · ⊗ I (bi�)

that is generated by the greatest common divisor of bi1 , bi2 , . . ., bi� . Trivially,
this includes the main effects, that is, for main effect Fi with pi levels, L equals
the number of residue classes for I (bi), which equals of course pi .

The reason why we mention the levels of an interaction is that the total number
of treatment combinations can be partitioned into L equal-sized sets (of treatment
combinations) that can be identified with blocks and a recognizable system of
confounding. Let us consider the 22 × 32 factorial. For it we have for the various
main effects and interactions the following L’s:

L(A3
1) = L(A3

2) = L(A3
1A

3
2) = 2

L(B4
1 ) = L(B4

2 ) = L(B4
1B4

2 ) = L(B4
1B2

2 ) = 3

L(A3
1B

4
1 ) = L(A3

1B
4
2 ) = · · · = L(A

ϕ1
1 A

ϕ2
1 B

η1
1 B

η2
2 ) = · · · = L(A3

1A
3
2B

4
1B2

2 ) = 6

where ϕ1, ϕ2, ∈ I (3), η1, η2 ∈ I (4). For A3
1A

3
2B

4
1B2

2 , for example, this leads to
the partitioning of the 36 treatment combinations (v11, v12, v21, v22) into six sets
according to the equations.

3v11 + 3v12 + 4v21 + 2v22 = δ (12.9)

where δ = 0, 1, 2, 3, 4, 5, that is, δ ∈ R(6). The sets are given in Table 12.7.
Each set represents a block of size 6. We note that the set δ = 0 represents
the IBSG and all other sets can be obtained easily by adding to each treatment
combination in the IBSG a treatment not in the IBSG and not in any other
already constructed set. As a consequence of constructing blocks according to
(12.9), it follows that the interaction associated with (12.9), that is, A3

1A
3
2B

4
1B2

2 ,
is confounded with blocks. This statement, however, is to be understood only
in the sense that together with A3

1A
3
2B

4
1B2

2 also A3
1A

3
2 and B4

1B2
2 , that is, the

components from the symmetrical systems, are confounded with blocks. This is
so because to satisfy (12.9) for a given δ we must have

3v11 + 3v12 = δ1 mod 6 (12.10)
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Table 12.7 Sets of Treatment Combinations
Satisfying 3v11 + 3v12 + 4v21 + 2v22 = δ

δ = 0 δ = 1 δ = 2

0 0 0 0 3 0 4 0 0 0 2 0
3 3 0 0 0 3 4 0 3 3 2 0
0 0 4 4 3 0 2 4 0 0 0 4
3 3 4 4 0 3 2 4 3 3 0 4
0 0 2 2 3 0 0 2 0 0 4 2
3 3 2 2 0 3 0 2 3 3 4 2

δ = 3 δ = 4 δ = 5

3 0 0 0 0 0 4 0 3 0 2 0
0 3 0 0 3 3 4 0 0 3 2 0
3 0 4 4 0 0 2 4 3 0 0 4
0 3 4 4 3 3 2 4 0 3 0 4
3 0 2 2 0 0 0 2 3 0 4 2
0 3 2 2 3 3 0 2 0 3 4 2

and
4v21 + 2v22 = δ2 mod 6 (12.11)

with δ1 + δ2 = δ. Thus we see that the system of confounding generated in this
manner is the same as that obtained by using the Kronecker product method of
Section 12.2 by considering confounding in the 22 and 32 systems separately
and then combining them. This is true in general (see Voss, 1986) and thus may
detract somewhat from the value of this method, but we shall discuss below that
it provides for an extension of a useful result for symmetrical factorials that other
methods do not do.

12.4.4 Parameterization of Treatment Responses

Recall from Chapter 11 that we expressed the true response a(x) of a treatment
combination x as a linear function of interaction components Eα as follows:

a(x) = M +
∑
α

Eα
α′x (12.12)

where
∑

α is the summation over all partitions α. To write down the counterpart
to (12.12) for asymmetrical factorials, we consider again the 22 × 32 factorial.
The partitions α are determined by the various main effects and interactions and
are given in Table 12.8. Associated with each partition is an effect/interaction
component and each component has a number, L, of levels as mentioned earlier.
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Table 12.8 Partitions for the 22 × 32 Factorial

Interaction/Modified
Interaction Partition Interaction

z∗′ = (z∗
11, z

∗
12, z∗

21, z∗
22) α′ = (α11, α12, α21, α22) Component

3 0 0 0 3 0 0 0 (A3
1)δ(δ = 0, 3)

0 3 0 0 0 3 0 0 (A3
2)δ(δ = 0, 3)

3 3 0 0 3 3 0 0 (A3
1A

3
2)δ(δ = 0, 3)

0 0 4 0 0 0 4 0 (B4
1 )δ(δ = 0, 4, 2)

0 0 0 4 0 0 0 4 (B4
2 )δ(δ = 0, 4, 2)

0 0 4 4 0 0 4 4 (B4
1B4

2 )δ(δ = 0, 4, 2)

0 0 4 2 (B4
1B2

2 )δ(δ = 0, 4, 2)

3 0 4 0 3 0 4 0 (A3
1B

4
1 )∗δ = (A3

1B
4
1 )δ−

(A3
1)δ1 − (B4

1 )δ2

(δ = 0, 1, 2, 3, 4, 5;
δ1 = 0, 3; δ2 = 0, 4, 2)

3 0 0 4 3 0 0 4 (A3
1B

4
2 )∗δ = (A3

1B
4
2 )δ−

(A3
1)δ1 − (B4

2 )δ2

0 3 4 0 0 3 4 0 (A3
2B

4
1 )∗δ = (A3

2B
4
1 )δ−

(A3
2)δ1 − (B4

1 )δ2

0 3 0 4 0 3 0 4 (A3
2B

4
2 )∗δ = (A3

2B
4
2 )δ−

(A3
2)δ1 − (B4

2 )δ2

3 3 4 0 3 3 4 0 (A3
1A

3
2B

4
1 )∗δ =

(A3
1A

3
2B

4
1 )δ−

(A3
1A

3
2)δ1 − (B4

1 )δ2

3 3 0 4 3 3 0 4 (A3
1A

3
2B

4
2 )∗δ =

(A3
1A

3
2B

4
2 )δ−

(A3
1A

3
2)δ1 − (B4

2 )δ2

3 0 4 4 3 0 4 4 (A3
1B

4
1B4

2 )∗δ =
(A3

1B
4
1B4

2 )δ−
(A3

1)δ1 − (B4
1B4

2 )δ2

3 0 4 2 (A3
1B

4
1B2

2 )∗δ =
(A3

1B
4
1B2

2 )δ−
(A3

1)δ1 − (B4
1B2

2 )δ2
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Table 12.8 (Continued )

Interaction/Modified
Interaction Partition Interaction

z∗′ = (z∗
11, z∗

12, z∗
21, z∗

22) α′ = (α11, α12, α21, α22) Component

0 3 4 4 0 3 4 4 (A3
2B

4
1B4

2 )∗δ =
(A3

2B
4
1B4

2 )δ−
(A3

2)δ1 − (B4
1B4

2 )δ2

0 3 4 2 (A3
2B

4
1B2

2 )∗δ =
(A3

2B
4
1B2

2 )δ−
(A3

2)δ1 − (B4
1B2

2 )δ2

3 3 4 4 3 3 4 4 (A3
1A

3
2B

4
1B4

2 )∗δ =
(A3

1A
3
2B

4
1B4

2 )δ−
(A3

1A
3
2)δ1 − (B4

1B4
2 )δ2

3 3 4 2 (A3
1A

3
2B

4
1B2

2 )∗δ =
(A3

1A
3
2B

4
1B2

2 )δ−
(A3

1A
3
2)δ1 − (B4

1B2
2 )δ2

The levels are the elements δ in I (3), I (4), R(6), respectively, as indicated in
Table 12.8. We define the components as

Eα
δ = (A

α11
1 A

α12
2 B

α21
1 B

α22
2 )δ

= {average of all treatment responses a(v11, v12, v21, v22)

with α11v11 + α12v12 + α21v21 + α22v22 = δ(mod q)}

−{average of all treatment responses} (12.13)

where in our case q = 6. For interactions involving factors with different numbers
of levels we now introduce what we shall call modified interaction components
defined as

(Eα)∗δ = (A
α11
1 A

α12
2 B

α21
1 B

α22
2 )∗δ

= (A
α11
1 A

α12
2 B

α21
1 B

α22
2 )δ

−(A
α11
1 A

α12
2 )δ1 − (B

α21
1 B

α22
2 )δ2 (12.14)

We shall refer to the partitions α involving only factors with the same number of
levels as pure partitions and those that involve factors not all having the same
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number of levels as mixed partitions. Let A1 denote the set of all pure partitions
and A2 the set of all mixed partitions. We can then write

a(v) = M +
∑

α∈A1

Eα
α′v +

∑
α∈A2

(Eα)∗α′v (12.15)

where M represents the overall mean. Expression (12.15) is the extension of
(12.12) for the asymmetrical factorial and is used in the same way as (12.12) is
used for the symmetrical factorial.

12.4.5 Characterization and Properties of the Parameterization

The proposed parameterization (12.15) is a major result in that it unifies the theory
of symmetrical and asymmetrical factorials, both with respect to the construction
of design, that is, systems of confounding, and the analysis of such designs.
Although we have only illustrated the idea in terms of a simple example, the
result is true in general. The same holds for the following comments about
further characterizations and properties of the modified components [defined in
(12.14)] as part of the parameterization (12.15).

1. Expressing each a(v) as (12.15) represents a reparameterization of the treat-
ment effects. This reparameterization is singular since for each Eα we have∑

δ Eα
δ = 0.

2. For the modified components the values for δ1 and δ2 are determined uniquely
from the addition table, for example,

δ2

0 4 2

0 0 4 2
δ1

3 3 1 5

where the entries in the table are δ = δ1 + δ2.
3. For the modified components we have

∑
δ1

(Eα)∗δ1+δ2
= 0 for each δ2 and∑

δ2
(Eα)∗δ1+δ2

= 0 for each δ1.

4. The degrees of freedom ν(α) associated with the component Eα are given by
ν(α) = L(Eα) − 1; for example, for A3

1A
3
2B

4
1B2

2 we have L(A3
1A

3
2B

4
1B2

2 ) =
6 and hence ν(3, 3, 4, 2) = 5.

5. The degrees of freedom ν∗(α) associated with the modified component
(A

α11
1 A

α12
2 B

α21
1 B

α22
2 )∗ are given by

ν∗(α11α12α21α22) = ν(α11α12α21α22) − ν(α11α1200) − ν(00α21α22)

= ν(α11α1200) · ν(00α21α22)
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6. If a block design is constructed by confounding A
α11
1 A

α12
2 B

α21
1 B

α22
2 and if

A
α11
1 A

α12
2 B

α21
1 B

α22
2 is a mixed component, it follows from comment 3 and

the definition of the modified component that A
α11
1 A

α12
2 and B

α21
1 B

α22
2 are

also confounded (as pointed out earlier).
7. The component Eα

δ is estimated by

Êα
δ = {mean of observed responses for treatments v satisfying

α′v = δ} − {overall observed mean}
8. If the confounded interactions, that is, A

α11
1 A

α12
2 B

α21
1 B

α22
2 , A

α11
1 A

α12
2 , B

α21
1

B
α22
2 , are assumed to be negligible, then differences between two treatment

responses (more generally, linear contrasts among treatment responses), say
a(v) − a(w), can be estimated by

â(v) − (̂w) =
∑′

α∈A1

[
Êα

α′v − Êα
α′w

]

+
∑′

α∈A2

[
(Êα)∗α′v − (Êα)∗α′w

]
(12.16)

where
∑′ refers to summation over all α except those belonging to con-

founded interactions. Using (12.14), we find, for example,

a(3040) − a(0000) =
[
(A3

1)3 − (A3
1)0

]
+

[
(A3

1A
3
2)3 − (A3

1A
3
2)0

]
+

[
(B4

1 )4 − (B4
1 )0

]
+

[
(B4

1B4
2 )4 − (B4

1B4
2 )0

]
+

[
(A3

1B
4
1 )∗1 − (A3

1B
4
1 )∗0

]
+

[
(A3

1B
4
2 )∗3 − (A3

1B
4
2 )∗0

]
+

[
(A3

2B
4
1 )∗4 − (A3

2B
4
1 )∗0

]
+

[
(A3

1A
3
2B

4
1 )∗1 − (A3

1A
3
2B

4
1 )∗0

]
+

[
(A3

1A
3
2B

4
2 )∗3 − (A3

1A
3
2B

4
2 )∗0

]
+

[
(A3

1B
4
1B4

2 )∗1 − (A3
1B

4
1B4

2 )∗0
]

+
[
(A3

1B
4
1B2

2 )∗1 − (A3
1B

4
1B2

2 )∗0
]

+
[
(A3

2B
4
1B4

2 )∗4 − (A3
2B

4
1B4

2 )∗0
]
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+
[
(A3

2B
4
1B2

2 )∗4 − (A3
2B

4
1B2

2 )∗0
]

+
[
(A3

1A
3
2B

4
1B4

2 )∗1 − (A3
1A

3
2B

4
1B4

2 )∗0
]

(12.17)

Observed means (based on different numbers of observations) are then sub-
stituted for the true means to obtain â(3040) − â(0000).

9. It is obvious that variances for differences of the form
[
(Â3

1)3 − (Â3
1)0

]
can

be written out easily in terms of the number of observations satisfying the
equation 3v11 = δ for a given δ. If N is the total number of treatment com-
binations, then the number of treatment combinations satisfying 3v11 = δ is
given by N/L(A3

1). Hence

var
[
(Â3

1)3 − (Â3
1)0

]
= 2

L(A3
1)

N
σ 2

e

which equals 1
9σ 2

e for the 22 × 32 factorial.

For differences of the form
[
(̂A3

1B
4
2 )∗3 − (̂A3

1B
4
2 )∗0

]
, that is, involving mod-

ified components, it can be worked out that

var
[
(̂A3

1B
4
2 )∗3 − (̂A3

1B
4
2 )∗0

]
= 2

N

[
L(A3

1B
4
2 ) − L(A3

1) − L(B4
2 )

]
σ 2

e

which for the 22 × 32 factorial equals

2

36
[6 − 2 − 3]σ 2

e = 1

18
σ 2

e

Finally, it can be shown that the covariances between differences of com-
ponents are zero, for example,

cov
{[

(Â3
1)3 − (Â3

1)0

]
,
[
(̂B4

1B2
2 )4 − (̂B4

1B2
2 )0

]}
= 0

cov
{[

(Â3
1)3 − (Â3

1)0

]
,
[
(̂A3

1B
4
1 )∗1 − (̂A3

1B
4
1 )∗0

]}
= 0

cov
{[

(̂A3
1B

4
1 )∗1 − (A3

1B
4
1 )∗0

]
,
[
( ̂A3

1A
3
2B

4
1 )∗1 − ( ̂A3

1A
3
2B

4
1 )∗0

]}
= 0

10. Using (12.16) and the results in comment 9, one can obtain easily the vari-
ances of the estimates of treatment contrasts, that is,

var[̂a(v) − â(w)] = var[̂τ(v) − τ̂ (w)]

= (sum of the variances of all estimated

component differences)
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for example, for (12.17) we find

var[̂a(3040) − â(0000)] =
[

2

18
+ 2

18
+ 2

12
+ 2

12

+ 10

(
2

6
− 2

18
− 2

12

)]
σ 2

e = 20

18
σ 2

e

11. The sums of squares for unconfounded effects can be written out similarly
to those for symmetrical factorials:

SS(A3
1) = N

L(A1)

∑
δ∈I (3)

[
(Â3

1)δ

]2

SS(B4
1B2

2 ) = N

L(B4
1B2

2 )

∑
δ∈I (4)

[
(̂B4

1B2
2 )δ

]2

SS(A3
1B

4
1 ) = N

L(A3
1B

4
1 )

∑
δ∈R(6)

[
(̂A3

1B
4
1 )∗δ

]2

and because of comment 9 these sums of squares are orthogonal to each
other. This makes testing of hypotheses concerning main effects and inter-
actions easy.

12.4.6 Other Methods for Constructing Systems of Confounding

In addition to the method discussed in this section, alternative but essentially
equivalent methods of constructing systems of confounding for asymmetrical
factorials have been proposed. A method based on finite groups and rings is
discussed by Banerjee (1970), Worthley and Banerjee (1974) (see also Raktoe,
Rayner, and Chalton, 1978), and Sihota and Banerjee (1981), who extended the
method to include any number of levels, thus avoiding the use of pseudofactors.
A different technique based on the Chinese remainder theorem was introduced
by Lin (1986) and extended by Huang (1989).

12.5 BALANCED FACTORIAL DESIGNS (BFD)

The incomplete block designs for asymmetrical factorials we have discussed so
far have resulted in the confounding of certain contrasts belonging to some main
effects and/or interactions. As a consequence the number of degrees of freedom
for such effects has been reduced (possibly to zero). The lost degrees of freedom
are said to be confounded with blocks. As we have seen in the previous sections,
the confounding of interactions may sometimes also lead to the confounding of
main effects, for example, with the methods of Sections 12.2 and 12.4. If we
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confound, for example, a two-factor interaction involving factors with different
numbers of levels, then the corresponding main effects are confounded also.
This is generally an undesirable feature. If it cannot be avoided, the method of
partial confounding, that is, using different systems of confounding in different
replicates, provides some relief. This, however, may not always be feasible from a
purely practical point of view because of the usually large number of experimental
units required.

In this section we shall discuss a method that results in a different kind of
partial confounding. Rather than confound completely certain degrees of freedom
in some replicates and not at all in others, the method to be described results in
some loss of information for some degrees of freedom over the whole design.
We shall illustrate this with a very simple example.

Example 12.5 Consider the 22 × 3 factorial in blocks of size 6. Using the
Kronecker product method of Section 12.2, a reasonable design may be obtained
by using three replicates of two blocks each. If we denote the factors by A1, A2,
and B with two, two, and three levels, respectively, we may construct the design
by confounding A1 in replicate I, A2 in replicate II, and A1A2 in replicate III. The
allocation of the treatment combinations is given in Table 12.9a. Compared to a
RCBD with b = 3 blocks (replicates), the relative information for main effects
A1, A2 and the interaction A1A2 is 2

3 and 1 for all other effects.
In Table 12.9b an arrangement due to Yates (1937b) is given that is the only

arrangement not resulting in the confounding of main effects. Kempthorne (1952)

Table 12.9 22 × 3 Factorial in Blocks of Size 6

Replicate

I II III

Block 1 2 3 4 5 6

a. Kronecker Product Method

000 100 000 010 000 100
001 101 001 011 001 101
002 102 002 012 002 102
010 110 100 110 110 010
011 111 101 111 111 011
012 112 102 112 112 012

b. Yates Method

000 100 100 000 100 000
110 010 010 110 010 110
101 001 001 101 101 001
011 111 111 011 011 111
102 002 102 002 002 102
012 112 012 112 112 012
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shows, from first principles, using the least-squares method, that the relative
information for A1A2 is 8

9 , for A1A2B is 5
9 , and for all other effects is 1.

If we define the total relative loss in information, TRL say, as the weighted
sum of relative losses for the various effects, with the weights being the degrees
of freedom for each effect, we find that TRL is the same for both arrangements,
namely

TRL(a) = 1 · 1
3 + 1 · 1

3 + 1 · 1
3 = 1

TRL(b) = 1 · 1
9 + 2 · 4

9 = 1

Even so, we would generally prefer arrangement (b) over arrangement (a) since
its loss of information is mainly associated with the three-factor interaction. �

Both designs of Example 12.5 belong to the class of balanced factorial designs
(BFD), a notion defined by Shah (1958) for the general factorial experiment.
Although Shah (1958, 1960) pointed out the connection between BFDs and PBIB
designs, Kurkjian and Zelen (1963) and Kshirsagar (1966) established the one-
to-one correspondence between BFDs and EGD-PBIB designs as defined by
Hinkelmann and Kempthorne (1963) and Hinkelmann (1964) (see Section 4.6.9).
We shall now give some definitions of and results for BFDs and then give some
methods of construction.

12.5.1 Definitions and Properties of BFDs

Suppose we have n factors A1, A2, . . ., An with s1, s2, . . ., sn levels, respectively,
where the si (i = 1, 2, . . . , n) do not necessarily have to be all distinct. Following
Kurkjian and Zelen (1963) and extending the notation of Section 11.9, we define
the si × si matrix

M i = siI − II′ (12.18)

and

M
zi

i =
{

I′
si

if zi = 0

M i if zi = 1

Mz = M
z1
1 × M

z2
2 × · · · × Mzn

n (12.19)

for z = (z1, z2, . . . , zn) and zi = 0, 1(i = 1, 2, . . ., n). Let Z = {z} be the col-
lection of all possible vectors z except z = (0, 0, . . ., 0). Further, let t = ∏n

i=1 si
denote the number of treatment combinations. Then for any z ∈ Z the interaction
components in the n-factor factorial can be expressed in terms of the treatment
effects τ(x1, x2, . . ., xn)(0 ≤ xi ≤ si − 1; i = 1, 2, . . ., n) arranged in standard
order (see Section 11.9) in the vector τ as

az = 1

t
Mzτ (12.20)
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Let

φ(z) = �′
za

z = ϕ′(z)τ (12.21)

denote a normalized contrast belonging to az (note that we are using az for two
different things but it should always be clear from the context what is meant).
With

τ̂ = C−Q

as a solution to the reduced normal equations we obtain the BLUE of φ(z) in
(12.21) as

φ̂(z) = �′
zâ

z = 1

t
�′
zM

zτ̂ (12.22)

Following Gupta and Mukerjee (1989), we then give the following definition.

Definition 12.1 In a factorial design an interaction az(z ∈ Z) is said to be
balanced if either (a) all contrasts belonging to az are estimable and the BLUEs
of all normalized contrasts belonging to az have the same variance or (b) no
contrast belonging to az is estimable. �

If we adopt the convention that if a contrast is nonestimable its BLUE has
variance ∞, then parts (a) and (b) in Definition 12.1 can be combined, and it is
in this sense that we shall use the definition. For an overall characterization of a
factorial design, we then have the following definition.

Definition 12.2 A factorial design is said to be a BFD if the interaction az

is balanced for every z ∈ Z.
It is of historical interest to note that Li (1944, p. 457) already refers to BFD

(although not by that name) when he says, “An interaction which has more than
1 degree of freedom should be confounded as evenly as possible.” �

Gupta and Mukerjee (1989) show that an interaction az is balanced in the
sense of Definition 12.1 if and only if the BLUEs of any two orthogonal con-
trasts belonging to az are uncorrelated. Recall that a similar result holds for
factorial designs with OFS except that in that case BLUEs of contrasts belonging
to different interactions are uncorrelated. Hence in a BFD with OFS we have
between-interaction and within-interaction orthogonality (Gupta and Mukerjee,
1989). As we have pointed out earlier (e.g., I.7), orthogonality is a useful prop-
erty as it leads to ease of analysis and ease of interpretation of the results from
an experiment. We have seen in Chapter 11 that OFS requires a certain structure
of C−(see Theorem 11.12) and hence of C and ultimately NN ′. The results of
Shah (1958, 1960), Kurkjian and Zelen (1963), Kshirsagar (1966), and Gupta
and Mukerjee (1989) have led to similar structures for NN ′ (and hence C and
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C−) for BFDs. We shall give a brief description of the major results, deferring
details to the above references.

The basic result for giving an algebraic characterization of a BFD with OFS
is what Kurkjian and Zelen (1963) have called property A of the matrix NN ′.
Let D

δi

i be an si × si matrix defined as

D
δi

i =
{

I si if δi = 0

IsiI
′
si

if δi = 1

for i = 1, 2, . . . , n, and

Dδ =
n∏

i=1

×D
δi

i

with δ = (δ1, δ2, . . . , δn). Denote the set of all δ (with δi = 0, 1) by Z∗= Z

∪{(0, 0, . . . , 0)}. We then state formally:

Definition 12.3 (Gupta and Mukerjee, 1989) A t × t matrix G with t =∏n
i=1 si is said to have property A if it is of the form

G =
∑
δεZ∗

h(δ)Dδ (12.23)

where the h(δ) are constants depending on δ.
Now suppose the matrix C has property A, that is,

C = rI − 1

k
NN ′ =

∑
δεZ∗

h(δ)Dδ (12.24)

We want to show that if C is of the form (12.24) then all normalized contrasts
belonging to az are estimated with the same variance and the estimators of
any two orthogonal contrasts belonging to az are uncorrelated. Let H ′

i be an
(si − 1) × si matrix of normalized orthogonal contrasts, that is, H ′

iIsi = 0 and
H ′

iH i = I si−1, and define

H
zi

i =
{

H ′
i if zi = 1

1 if zi = 0

and

Hz =
n∏

i=1

×H
zi

i
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A complete set of normalized orthogonal contrasts belonging to az is then given
by Hzaz. More specifically, the contrasts belonging to the p-factor interaction
Ai1 × Ai2 × · · · × Aip (1 ≤ p ≤ n), that is, to the si1si2 · · · sip elements of ai1 ⊗
ai2 ⊗ · · · ⊗ aip , are given by

(
H ′

i1
× H ′

i2
× · · · × H ′

ip

) (
ai1 ⊗ ai2 ⊗ · · · ⊗ aip

)
and there are (si1 − 1)(si2 − 1) · · · (sip − 1) such contrasts. We can then prove
the following theorem. �

Theorem 12.1 If for an s1 × s2 × · · · × sn factorial design the C matrix
satisfies property A, then the design is a BFD and the variance–covariance
matrix for Hzâz is given by

var(Hzâz) = 1∏
i s

1−zi

i rE(z)
Iσ 2

e (12.25)

where r is the number of replications for each treatment combination and E(z),
the efficiency factor for az, is a constant depending only on z.

Proof Let

C =
∑
δεZ∗

h(δ)Dδ

Then
MzC =

∑
δεZ∗

h(δ)MzDδ

=
∑
δεZ∗

h(δ)
∏
i

×M
zi

i D
δi

i (12.26)

Now
M

zi

i D
δi

i = (1 − ziδi)s
(1−zi )δi

i M
zi

i

and ∏
i

×M
zi

i D1
i = 0

so that (12.26) can be written as

MzC =
∑

δ∈Z∗∗
h(δ)

∏
i

×
[
(1 − ziδi)s

(1−z)δi
i M

zi

i

]
= rE(z)Mz (12.27)
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where, by definition,

rE(z) =
∑

δ∈Z∗∗
h(δ)

∏
i

(1 − ziδi)s
(1−zi )δi

i (12.28)

and Z∗∗ = Z∗ − {(1, 1, . . . , 1)}. It follows now from

Cτ̂ = Q

and (12.27) that

MzCτ̂ = MzQ

can be written as

rE(z)Mzτ̂ = MzQ

and, using (12.20),

rtE(z)̂az = MzQ

so that

Hzâz = 1

rtE(z)
HzMzQ

Then

var(Hzâz) = 1

[rtE(z)]2 HzMzC(Mz)′(Hz)′σ 2
e

and using (12.27) again

var(Hzâz) = 1

t2rE(z)
HzMz(Mz)′(Hz)′σ 2

e (12.29)

To simplify (12.29), we write

HzMz = (
H

z1
1 × H

z2
2 × · · · × H zn

n

) (
M

z1
1 × M

z2
2 × · · · × Mzn

n

)
= (

H
z1
1 M

z1
1

) × (
H

z2
2 M

z2
2

) × · · · × (
H zn

n Mzn
n

)
From the definitions of H

zi

i and M
zi

i it follows that

H
zi

1 M
zi

1 =
{

I′
si

if zi = 0

siH
′
i if zi = 1
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and

HzMz(Mz)′(Hz)′ = (MzHz)(MzHz)′ =
∏
i

s
1−zi

i

∏
i

[szi

i ]2I (12.30)

Substituting (12.30) into (12.29) yields

var(Hzâz) = 1

t2rE(z)

∏
i

s
1+zi

i Iσ 2
e

= 1

trE(z)

∏
i

s
zi

i Iσ 2
e

= 1∏
i s

1−zi

i rE(z)
Iσ 2

e

using the fact that t = ∏
i si . This is the desired result. �

We comment briefly on the efficiency factors E(z) = (z1, z2, . . ., zn) associ-
ated with the interaction az. Recall that the efficiency factor of an IBD is defined
as the ratio of the average variance for simple treatment comparisons using an
RCBD over the corresponding variance for the IBD. We saw in Chapter 4 that if
the IBD is a PBIB(m) design then we may have up to m different efficiencies E1,
E2, . . ., Em, where Ei refers to the efficiency factor for comparing two treatments
that are ith associates (i = 1, 2, . . ., m). In the context of the BFD we have up
to 2n − 1 different efficiency factors E(z) associated with treatment comparisons
belonging to the various interactions (which in our terminology also include the
main effects). Let �′

z,ia
z(i = 1, 2, . . ., ν(z)) be a set of linearly independent nor-

malized contrasts belonging to az [e.g., the rows of Hz constitute such a set of
�′
z,i , where ν(z) represents the number of degrees of freedom for az]. We know

that with an RCBD each such contrast is estimated in terms of treatment means,
averaging over the levels of those factors not involved in the interaction, that is,
the factors for which zi = 0 in az. With r replications (blocks) we then have

varRCBD(�′
z,ia

z) = 1

r
∏

i s
1−zi

i

σ 2
e (12.31)

From (12.25) we have

varIBD(�′
z,ia

z) = 1

r
∏

i s
1−zi

i E(z)
σ 2

e (12.32)

The ratio of (12.31) to (12.32) is then equal to E(z). We shall return to evaluating
E(z) shortly.
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We have shown in Theorem 12.1 that if for a factorial design the C matrix has
a certain structure, as defined by property A, then the design is a BFD. Kshirsagar
(1966) proved the converse so that we can now state the following theorem.

Theorem 12.2 For an s1 × s2 × · · · × sn factorial design to be a BFD with
OFS, it is necessary and sufficient that the C matrix of the design satisfies
property A.

We proved the sufficiency part in Theorem 12.1 and for the necessity part we
refer the reader to Kshirsagar (1966) (see also Gupta and Mukerjee, 1989).

12.5.2 EGD-PBIBs and BFDs

To provide further insight into BFDs, we recall that the association matrices Bγ

for an EGD-PBIB design can be expressed as Kronecker products of (the trivial)
association matrices for a BIBD, B0 = I and B1 = II′ − I (see Section 5.4).
More specifically, using the notation of this section, we define

B
γi

i =
{

I si for γi = 0

IsiI
′
si

− I si for γi = 1

Then the association matrix, Bγ , for γ th associates [with γ = (γ1, γ2, . . ., γn)

and γi = 0, 1 for i = 1, 2, . . ., n] can be written as

Bγ = B
γ1
1 × B

γ2
2 × · · · × B

γn
n

with

NN ′ =
∑
γ∈Z∗

λ(γ )Bγ

or

C =
∑
γ εZ∗

c(γ )Bγ (12.33)

where

c(0, 0, . . . , 0) = λ(0, 0, . . . , 0)
k − 1

k

c(γ ) = −1

k
λ(γ ) for all γ �= (0, 0, . . . , 0)

It is not difficult to speculate that there exists some relationship between BFDs
and EGD-PBIB designs. Indeed, Kshirsagar (1966) proved the following (for an
alternative proof see Gupta and Mukerjee, 1989).

Theorem 12.3 Every n-factor BFD is an EGD-PBIB (2n − 1) design.
This result is useful for several reasons, two of which we shall discuss in some

detail:
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i. For any given EGD-PBIB it is easy to obtain the efficiency factors;
ii. Existing methods for constructing EGD-PBIBs can be used to obtain BFDs.

Let us consider first i by returning to Example 12.5.

Example 12.5 (Continued) For arrangement b in Table 12.9 it is easy to
verify, using the association scheme for EGD-PBIBs, that

λ(000) = 3 λ(001) = 1
λ(100) = 0 λ(101) = 2
λ(010) = 0 λ(011) = 2
λ(110) = 3 λ(111) = 1

Further, we can express each Bγ easily in terms of the D
δi

i as used in defining
property A [see (12.23)]. We note that

B0
1 = B0

2 = I 2 = D0
1 = D0

2

B1
1 = B1

2 = I2I
′
2 − I 2 = D1

1 − D0
1 = D1

2 − D0
2

and
B0

3 = I 3 = D0
3,B

1
3 = I3I

′
3 − I 3 = D1

3 − D0
3

so that, for example,

B(000) = D0
1 × D0

2 × D0
3

B(100) = D1
1 × D0

2 × D0
3 − D0

1 × D0
2 × D0

3

B(110) = D1
1 × D1

2 × D0
3 − D1

1 × D0
2 × D0

3

− D0
1 × D1

2 × D0
3 + D0

1 × D0
2 × D0

3

and so on. Collecting terms, we can rewrite (12.33) as

C =
(

3 − 8
6

)
D(000) − 4

6D(100) − 4
6D(010) − 2

6D(110)

+ 2
6D(001) − 1

6D(101) − 1
6D(011) − 1

6D(111)

that is, in the form (12.23) with

h(000) = 10
6 h(100) = − 4

6 h(010) = − 4
6 h(110) = − 2

6

h(001) = 2
6 h(101) = − 1

6 h(011) = − 1
6 h(111) = − 1

6
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Using (12.28), we can now obtain the efficiency factors E(z). Let us write

Wi(zi, δi) = (1 − ziδi)s
(1−zi )δi

i

with

Wi(zi, δi) =


1 for zi = 0, δi = 0

1 for zi = 1, δi = 0

si for zi = 0, δi = 1

0 for zi = 1, δi = 1

Then (12.28) can be rewritten as

rE(z1, z2, . . . , zn) =
∑

δ∈Z∗∗
h(z1, z2, . . . , zn)

n∏
i=1

Wi(zi, δi) (12.34)

So, for example,

6 · 3E(110) = 10W1(1, 0) W2(1, 0) W3(0, 0)

−4W1(1, 1) W2(1, 0) W3(0, 0)

−4W1(1, 0) W2(1, 1) W3(0, 0)

−2W1(1, 1) W2(1, 1) W3(0, 0)

+2W1(1, 0) W2(1, 0) W3(0, 1)

−W1(1, 1) W2(1, 0) W3(0, 1)

−W1(1, 0) W2(1, 1) W3(0, 1)

= 10 + 2 · 3 = 16

Hence
E(110) = 8

9

the same value we obtained earlier and referred to as relative information for the
two-factor interaction A1 × A2.

If we define the efficiency factor for a BFD as

E =
∑
z∈Z

∏
i

(si − 1)zi E(z)

t − 1
= 1 − T RL

t − 1
(12.35)

with TRL being the total relative loss defined earlier, we obtain, for both designs
of Table 12.9, E = 10

11 . To choose among competing designs, it is therefore in
general advisable to consider not only E for each design but also the individual
E(z) and then choose the design that is most appropriate for the experiment
under consideration. �
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12.5.3 Construction of BFDs

We shall now turn to the construction of BFDs or, alternatively, to the con-
struction of EGD-PBIB designs. For some of these methods we shall refer
to Chapter 5 and provide here just an illustration, for other methods we shall
give a brief description of their special features in the context of factorial
experiments.

12.5.3.1 Kronecker Product Designs
The method is described in Section 5.5, and we know from Chapter 4 that the
Kronecker product of BIBDs is an EGD-PBIB design. As an illustration let us
consider Example 5.5 to construct a BFD for a 4 × 3 factorial in blocks of size 6.
Using the SDP notation of Section 11.9, the treatment combinations are written
in the order (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3,
0), (3, 1), (3, 2). The 12 blocks are then as given in Table 12.10. Following our
earlier discussion, it is easy to work out that E(1, 0) = 31

36 , E(0, 1) = 29
36 , and

E(1, 1) = 35
36 , and the overall efficiency factor is E = 1 − 35

396 .

12.5.3.2 GD-PBIB(2) Designs
If in an EGD(3)-PBIB design we have λ(10) = λ(11), then the design reduces
to a GD-PBIB(2) design with parameters n1 = n(01), n2 = n(10) + n(11) and
λ1 = λ(01), λ2 = λ(10) = λ(11). It is therefore possible to obtain a BFD for a
t = s1 × s2 factorial if there exists a GD-PBIB design for t = s1s2 treatments.

Table 12.10 4 × 3 Factorial in Blocks of
Size 6 Using a Kronecker Product Design

Block
1 2 3 4 5 6

00 00 01 00 00 01
01 02 02 01 02 02
10 10 11 10 10 11
11 12 12 11 12 12
20 20 21 30 30 31
21 22 22 31 32 32

Block
7 8 9 10 11 12

00 00 01 10 10 11
01 02 02 11 12 12
20 20 21 20 20 21
21 22 22 21 22 22
30 30 31 30 30 31
31 32 32 31 32 32
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All we need to do is to arrange the factorial treatment combinations in the rect-
angular array

(0, 0) (0, 1) · · · (0, s2 − 1)

(1, 0) (1, 1) · · · (1, s2 − 1)
...

...
. . .

...

(s1 − 1, 0) (s1 − 1, 1) · · · (s1 − 1, s2 − 1)

and use the association scheme for a GD-PBIB design: Any two treatments in the
same row are first associates and any two treatments in different rows are second
associates. We can then use any suitable GD-PBIB design to obtain a BFD. This
method was proposed by Kramer and Bradley (1957) and Zelen (1958). We shall
illustrate this method for the 4 × 3 factorial in blocks of size 6 using design S

27 of Clatworthy (1973).
Using the following correspondence between ordinary treatments and factorial

treatments,

1 5 9 00 01 02

2 6 10 −→ 10 11 12

3 7 11 20 21 22

4 8 12 30 31 32

the BFD is given in Table 12.11 [we note here that this labeling does not agree
with that obtained from the SDP of (0 1 2 3)′ and (0 1 2)′ but rather it agrees
with the labelling for GD-PBIB designs as given by Clatworthy (1973) and that
for EGD-PBIB designs]. With λ0 = r = 3, λ1 = 3, λ2 = 1 for the GD-PBIB and
hence λ(00) = r = 3, λ(01) = 3, λ(10) = λ(11) = 1 for the EGD-PBIB we can
obtain the efficiency factors in the usual way except for one small change. From

Table 12.11 4 × 3 Factorial in Blocks of
Size 6 Using a GD-PBIB

Block

1 2 3 4 5 6

00 20 02 12 01 11
10 30 22 32 31 21
01 21 00 10 02 12
11 31 20 30 32 22
02 22 01 11 00 10
12 32 21 31 30 20
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the structure of the GD-PBIB design we know that we can write

B0 = I t

B1 = (
Is2I

′
s2

− I s2

) × I s1

= Is2I
′
s2

× I s1 − I t

B2 = Is2I
′
s2

× (
Is1I

′
s1

− I s1

)
= ItI

′
t − Is2I

′
s2

× I s1

and
B0 = B(00) = D0

2 × D0
1

B1 = B(01) = D1
2 × D0

1 − D0
2 × D0

1

B2 = B(10) + B(11) = D1
2 × D1

1 − D1
2 × D0

1

Notice that because of the labeling the order of the D matrices is reversed (this
is, of course, essential only for D1

2 × D0
1). Hence, in general,

C =
(

r − r − λ1

k

)
D0

2 × D0
1 − λ1 − λ2

k
D1

2 × D0
1 − λ2

k
D1

2 × D1
1

so that, using (12.34) and the properties of the Wi ,

rE(1, 0) =
(

r − r − λ1

k

)
W1(1, 0)W2(0, 0)

−λ1 − λ2

k
W1(1, 0)W2(0, 1)

rE(0, 1) =
(

r − r − λ1

k

)
W1(0, 0)W2(1, 0)

and

rE(1, 1) =
(

r − λ1

k

)
W2(1, 0)W1(1, 0)

Then, for the specific example of Table 12.11 we find

E(1, 0) = 2
3 E(0, 1) = 1 E(1, 1) = 1

that is, we have full information on the main effect A2 and the interaction A1 ×
A2 and two-thirds information on the main effect A1.

The GD-PBIB design for t = t1t2 treatments can, of course, also be used for
factorials with more than two factors, that is, for an s1 × s2 × · · · × sn factorial,
as long as si1si2 · · · sim = t1 for any m factors (m < n) and sj1sj2 · · · sj�

= t2 for
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the remaining � = n − m factors. Thus the design in Table 12.11 can also be
used for the 2 × 2 × 3 factorial in blocks of size 6 with t1 = 4 = s1s2 = 2 · 2.
All we need to do is relabel appropriately the levels of A1. It follows then
immediately that

E(100) = E(010) = E(110) = 2
3

and all other E(z) = 1.

12.5.3.3 Other Methods
The methods of constructing EGD-PBIB designs given by Aggarwal (1974) and
Chang and Hinkelmann (1987) (see Section 5.5) can be used to obtain different
systems of confounding for the s1 × s2 × · · · × sn factorial. If the factors are
labeled such that s1 ≤ s2 ≤ · · · ≤ sn, then Aggarwal’s method leads to BFDs
with block size k = s1. The method by Chang and Hinkelmann is somewhat
more flexible in that it can be used to obtain BFDs with block sizes k = si
(i = 1, 2, . . ., n − 1). It leads, however, to disconnected designs, which means
that some effects are completely confounded with blocks. Both methods can
be modified easily to generate a larger class of BFDs by combining several
factors into “superfactors” and thereby changing the order of the levels, that is,
some si �= s1 becomes the smallest number of levels, or creating new levels,
that is, sn may no longer be the largest number of levels. The first modification
is useful for the Aggarwal method, the second for the Chang and Hinkelmann
method.

There exist other ad hoc methods used by Yates (1937b) and Li (1944) for
specific asymmetrical factorials. For example, the design for the 22 × 3 factorial
given in Table 12.9b can be obtained by combining the levels of factor A3 with
treatment combinations for factors A1 and A2 determined by the equations

x1 + x2 = 0 : (0, 0), (1, 1)

and
x1 + x2 = 1 : (1, 0), (0, 1)

If we denote {(0, 0), (1, 1)} by α and {(1, 0), (0, 1)} by β, then the design can
be written in compact form as follows (Kempthorne, 1952):

Block

1 2 3 4 5 6

α0 β0 β0 α0 β0 α0

β1 α1 α1 β1 β1 α1

β2 α2 β2 α2 α2 β2
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Rather than describe the ad hoc methods in detail, we reproduce some of the more
useful designs given by Li (1944) for up to four factors with two, three, and four
levels. They are given in Appendix D together with some relevant parameters.

Other methods of construction have been proposed by Kishen and Srivastava
(1959) and Muller (1966). They consider s × s1 × · · · × sn−1 factorials, where s

is a prime or prime power and various block sizes.
It is quite obvious that BFDs require in general several replications that may

lead to more blocks than is feasible from a practical point of view. If one is willing
to give up the property of balancedness, then useful designs can be obtained by a
suitable reduction of the number of replications. Such possibilities are mentioned
for some situations in Appendix D. Even though these designs are no longer
BFDs, they yield full or partial information on all degrees of freedom. This may
make these designs more useful than comparable designs obtained by methods
discussed in Sections 11.2 and 11.3.



C H A P T E R 13

Fractional Factorial Designs

13.1 INTRODUCTION

So far, we have considered possible arrangements of the complete factorial sys-
tem; that is, we have considered only arrangements in which each individual
treatment combination of the factorial set is represented the same number of
times. For example, with 4 factors each at 2 levels, we have discussed arrange-
ments of the 16 treatment combinations in blocks of size 2, blocks of size 4,
8 × 8 squares, and so on, but always with the restriction that each of the 16
combinations is to be tested an equal number of times. Such a restriction is
practicable with a small number of factors, but, when we consider the case of,
say, 10 factors each at 2 levels, it would result in the necessity of testing 1024
combinations or a multiple of these. The main reason for imposing the restric-
tion is that it results in the estimates of effects and interactions having maximum
precision and being uncorrelated. Thus, to take a simple example, suppose we
are evaluating 2 factors, A and B, each at 2 levels, and test the treatment com-
bination (1), a, b, ab with r1, r2, r3, r4 replications, respectively. Then using
the definitions of Section 7.2.1, each effect and interaction is estimated with
variance

σ 2
e

4

(
1

r1
+ 1

r2
+ 1

r3
+ 1

r4

)
but the estimates are correlated thus:

cov
(
Â, B̂

) = σ 2
e

4

[
1

r1
− 1

r2
− 1

r3
+ 1

r4

]
cov

(
Â, ÂB

) = σ 2
e

4

[
− 1

r1
− 1

r2
+ 1

r3
+ 1

r4

]

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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and

cov
(
B̂, ÂB

) = σ 2
e

4

[
− 1

r1
+ 1

r2
− 1

r3
+ 1

r4

]

These covariances will be zero if r1 = r2 = r3 = r4. Furthermore, if we fix (r1 +
r2 + r3 + r4), the total number of observations, we obtain minimum variance for
each of the effects and interaction with r1 = r2 = r3 = r4.

As we have seen throughout, the general problem of the design of experiments
is that we are given a model and we wish to determine parametric functions of
such a model with as low a variance as possible. There are two methods by which
this may be accomplished: namely, by choosing the pattern of observations, for
example, equal r’s above, or by reducing the error variance σ 2

e by choice of the
error control design.

The question we ask in this chapter is whether it is always necessary to test
all the factorial combinations equally frequently or whether we can omit some
of them. The question is of considerable relevance, for factorial experiments are
most appropriate for exploratory research, and in such research the number of
possible factors that should be tested is by no means so small as 2 or 3. For
example, in research into the possible importance of the various vitamins in the
nutrition of an organism, the number of factors that might be used is at least of
the order of 10. It is, furthermore, important to use a factorial system because
we cannot assume all interactions to be negligible. The testing of 1024 treatment
combinations may be virtually impossible from the practical viewpoint. If the
whole 1024 combinations were tested, the subdivision of the 1023 treatment
comparisons would be

Main effects 10
2-factor interactions 45
3-factor interactions 120
4-factor interactions 210
5-factor interactions 252
6-factor interactions 210
7-factor interactions 120
8-factor interactions 45
9-factor interactions 10

10-factor interactions 1

Total 1023

It may well be reasonable to assume that high-order interactions are negligible,
and, if, for instance, all interactions involving 3 or more factors could be ignored,
the testing of the 1024 combinations would give an estimate of error based on
about 950 degrees of freedom. The accuracy that would result for the estimation
of main effects and interactions (a variance of σ 2

e /256 where σ 2
e is the experi-

mental error variance) might well be unnecessarily high. We may then ask what
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information can be obtained from the testing of a lesser number of combinations.
We shall, in fact, find that information on main effects and interactions for all
the 10 factors can be obtained under some mild assumptions from the testing of
512, 256, or perhaps even 128 of the total of 1024 combinations. The general
process by which this is accomplished is known as fractional replication. The
resulting design is called a fractional factorial design, which was introduced first
by Finney (1945).

For an annotated bibliography of applications papers using some of the con-
cepts developed in the following chapters, see Prvan and Street (2002).

13.2 SIMPLE EXAMPLE OF FRACTIONAL REPLICATION

We shall illustrate the concept of a fractional factorial design in terms of a simple,
though somewhat unrealistic, example. Suppose we are testing three factors A, B,
and C, each of two levels, and for some reason we are able to observe only four of
the eight possible treatment combinations. Let these four treatment combinations
be a, b, c, and abc. The question then is: What information can we obtain from
these four combinations? This question can be answered easily by referring to Table
13.1, which shows the relationship between the true yields of these four treatment
combinations and the effects and interactions for the ordinary 23 design. It shows
that, for these four treatment combinations, M and 1

2 ABC have always the same
sign, and so have 1

2A and 1
2 BC , 1

2B and 1
2AC, 1

2C, and 1
2 AB . It will therefore be

impossible to separate the mean from the ABC interaction, the A effect from the
BC interaction, the B effect from the AC interaction, and the C effect from the AB
interaction. In fact, we have the following four estimating relations:

1
4 (a + b + c + abc) estimates M + 1

2 ABC

1
2 (a − b − c + abc) estimates A + BC

1
2 (−a + b − c + abc) estimates B + AB

1
2 (−a − b + c + abc) estimates C + AB

where a, b, c, abc are now the observed yields. We may say that, with these
four observations only, A is completely confounded with BC because there is

Table 13.1 Relationship Between True Yields and Effects and
Interactions for 23 Design

True Yield M 1
2 A 1

2 B 1
2 AB 1

2C 1
2AC 1

2BC 1
2 ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +

abc + + + + + + + +
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no possibility of estimating A alone and BC alone but only their sum. We also
express this by saying that A is an alias of BC (and vice versa) or that A is
aliased with BC . Similarly, B is completely confounded with AC , C with AB ,
and M with ABC . This confounding, however, need not cause the experimenter
any worry if he is prepared to assume that the interactions are negligible: Then
the second, third, and fourth comparisons above may be used to estimate the
three main effects, and the estimates are uncorrelated. In this simple example,
there is not, of course, any possibility of estimating error variance, and we would
not, generally, use this design for any practical purpose. It serves, however, to
bring out the main idea of fractional replication, namely that a suitably chosen
subset of the full factorial set can provide worthwhile information. The above
example utilizes a 1

2 replication of the 23 system because we have tested only
four of the eight combinations.

We could equally well have used the treatment combinations (1), ab, ac, and
bc, and it may be verified that the estimating equations will be

M − 1
2 ABC = 1

4 [(1) + ab + ac + bc]

A − BC = 1
2 [−(1) + ab + ac − bc]

B − AC = 1
2 [−(1) + ab − ac + bc]

C − AB = 1
2 [−(1) − ab + ac − bc]

The confounding among the mean, main effects, and interactions is the same as
before, only the functions that can be estimated are different.

The dominant feature of this example is the choice of the interaction ABC

and the selection of either the treatments entering positively in this interaction or
those entering negatively, or alternatively, either those that satisfy the equation

x1 + x2 + x3 = 1 mod 2

or those satisfying the equation

x1 + x2 + x3 = 0 mod 2, respectively

For most purposes we may disregard which half of the treatment combinations
we choose because we shall always choose an interaction in such a way that
those interactions that are confounded with the effects or interactions we wish to
estimate are assumed on the basis of prior knowledge to be negligible.

If we use the equality sign to denote “confounded with,” we may write the
confounding relations above in the form:

A = BC

B = AC (13.1)

C = AB
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and, if by convention we denote M by I , also

I = ABC (13.2)

We note the equalities (13.1) are obtained from (13.2) by regarding the relation-
ship (13.2) as an algebraic identity and I as unity and using multiplication with
the rule that the square of any letter is to be replaced by unity. Thus, (13.2)
multiplied by A gives

A = A2BC = BC

when multiplied by B gives

B = AB2C = AC

and when multiplied by C gives

C = ABC 2 = AB

In Table 13.2 we show how this design and the alias structure can be obtained
using SAS PROC FACTEX. We comment briefly on the input statements and
the output:

1. The number of treatment combinations to be used can be specified either
by “size design = # of treatment combinations” or “size fraction = denom-
inator of fraction.”

2. The model can either be specified by listing the effects we wish to estimate
or by giving the resolution of the design (see Section 13.3.2).

3. The factor confounding rule is equivalent to the defining relation in the
sense that C = A ∗ B is formally identical to C2 = A ∗ B ∗ C and C2 = I ;
operationally C = A ∗ B indicates how from a complete 22 factorial the
levels of the factor C are obtained, namely by multiplying the levels of
factors A and B into each other when the levels are denoted by −1 and +1.

If, instead of a, b, c, abc, we had chosen the treatment combinations that enter
positively into AB, namely (1), ab, c, and abc, we can obtain the confounding
relationships formally by multiplying each effect or interaction into

I = AB (13.3)

Thus
A = A2B = B

C = ABC (13.4)

AC = A2BC = BC
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Table 13.2 1/2 Fraction of 23 Factorial With Defining Contrast I = ABC

options nodate pageno=1;
proc factex;
factors A B C;
size design=4;
model est=(A B C);
examine design aliasing confounding;
title1 'TABLE 13.2';
title2 '1/2 FRACTION OF 2**3 FACTORIAL';
title3 'WITH DEFINING CONTRAST I=ABC';
run;

proc factex;
factors A B C;
size fraction=2;
model res=3;
examine design aliasing confounding;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C

- - - - - - - - - - - - - - - - - - - - -
1 -1 -1 1
2 -1 1 -1
3 1 -1 -1
4 1 1 1

Factor Confounding Rules

C = A*B

Aliasing Structure

A = B*C
B = A*C
C = A*B

The equations (13.4) we interpret then by saying that A and B are confounded,
C and ABC are confounded, and AC and BC are confounded. Of course, (13.3)
means that M and AB are confounded. Alternatively, we can say that with the
four observations above we can only estimate M + 1

2AB, A + B, C + ABC, and
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AC + BC. This can be verified easily by using an argument similar to the one
we used at the beginning of this section.

In each of these two examples we have used a 1
2 replicate of the full set

of factorial combinations. The information obtained from these two designs is
quite different: If we can assume that the three factors do not interact, the first
replicate is a satisfactory design (apart from the fact that no estimate of error can
be made) because we can estimate each of the three main effects A, B, and C.
In the second 1

2 replicate, however, the effect A is confounded with the effect
B, and this is generally undesirable.

The crucial part of the specification of the design is clearly the choice of the
relationship I = ABC or I = AB . This relation is known as the defining rela-
tion or identity relationship. Once this relationship is chosen, we can specify the
functions of the parameters that can be estimated, and the choice of an identity
relationship is based on this fact. Thus, we would typically not use a relationship
that results in confounding of main effects with each other.

In passing we note that the defining relation can be written in such a way that
it identifies uniquely the two complimentary 1

2 replicates, for example,

I = + ABC , and I = − ABC

the first denoting the 1
2 replicate based on the treatment combinations entering

positively into ABC , and the second based on those entering negatively into
ABC . The specific form of the defining relation also tells us which functions
of the parameters can be estimated; for example, A + BC from the first and
A − BC from the second 1

2 replicate. In either case, A and BC are confounded,
and so forth. The totality of all confounding relationships is also referred to as
the alias structure of the fractional factorial design.

13.3 FRACTIONAL REPLICATES FOR 2n FACTORIAL DESIGNS

It is clear from the discussion in Section 13.2 that for a 1
2 replicate of a 2n factorial

design will generally be determined by the identity relationship of the form

I = A1 A2 · · · An (13.5)

so that main effects and low-order interactions are aliased with interactions of as
high an order as possible. The actual choice of the specific 1

2 replicate based on
(13.5) is often made so that it contains the treatment combination (0, 0, . . . , 0),
which is often the control.

13.3.1 The 1
2� Fraction

In a practical situation it may be that a 1
2 replicate is still too large a fraction

to be accommodated in a reasonable experimental design. Thus smaller fractions
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may have to be considered, such as a 1
2� fraction of a 2n factorial design. We

denote such a design by 2n−�. The treatment combinations of a 2n−� design are
obtained by specifying � equations:

α11x1 + α12x2 + · · · + α1nxn = δ1

α21x1 + α22x2 + · · · + α2nxn = δ2 (13.6)

...

α�1x1 + α�2x2 + · · · + α�nxn = δ�

where the α′
i = (αi1, αi2, . . . , αin) represent independent interactions Eαi (i =

1, 2, . . . , �) (see Section 8.2) and the δi(i = 1, 2, . . . , �) are either 0 or 1 mod
2. It follows then that there are exactly 2n−� treatment combinations that satisfy
(13.6) and these constitute the specified 2n−� fractional factorial. We note the
following:

1. All treatment combinations satisfying (13.6) enter with the same sign into
Eαi (i = 1, 2, . . . , �).

2. Any treatment combination that satisfies (13.6) also satisfies any linear
combination of the equations in (13.6).

3. Because of conditions 1 and 2 all treatment combinations satisfying (13.6)
also enter with the same sign into any GI of the Eαi (i = 1, 2, . . . , �).

It then follows that the Eαi and all their GIs are confounded with (or inseparable
from) the mean M , so that the identity relationship is then

I = Eα1 = Eα2 = Eα1+α2 = Eα3 = Eα1+α3 = Eα2+α3

= Eα1+α2+α3 = · · · = Eα1+α2+···+α� (13.7)

that is, (13.7) contains 2� − 1 interactions. The alias structure is obtained by
taking an Eβ not represented in (13.7) and multiplying it into each term in
(13.7), that is, Eβ is confounded with

Eα1+β, Eα2+β , Eα1+α2+β , Eα3+β , . . . , Eα1+α2+...+α�+β (13.8)

There are s = 22−� − 1 such interactions, say Eβj (j = 1, 2, . . . , s) and each
is aliased with s� − 1 other interactions according to (13.8). We thus have the
complete alias structure for the 2n−� design based on (13.7).

It is, of course, clear from Eqs. (13.6) that there exist 2� different fractions
2n−� depending on the choice of the δi(i = 1, 2, . . . , �). To specify which frac-
tion we are choosing we may attach a plus or minus sign to the independent
interactions Eαi (i = 1, 2, . . . , �) so that +Eαi (−Eαi ) means that we take all
treatment combinations that enter positively (negatively) into Eαi . Regardless of
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what fraction we choose, as long as it is based on one of the possible sets of Eqs.
(13.6), the alias structure remains the same, only the estimable linear functions
of effects and interactions change.

To illustrate these concepts we consider the following example.

Example 13.1 Let n = 5 and � = 2, that is, we consider a 1
4 replicate of a

25 design or a 25−2 design. We may specify (13.6) as

x1 + x2 + x3 = 0

x1 + x4 + x5 = 0

which are satisfied by the treatment combinations

(1), bc, abd, acd, abe, ace, de, bcde

These treatment combinations also satisfy the equation

x2 + x3 + x4 + x5 = 0

and, moreover, these treatment combinations enter negatively into ABC and ADE
and hence positively into their GI BCDE. The identity relationship therefore is

I = −ABC = −ADE = +BCDE (13.9)

From (13.9) we then obtain the alias structure given in Table 13.3. It,
together with (13.9), also shows which parametric functions are estimable, for
example, A − BC − DE + ABCDE , which is defined as 1

4 [abd + acd + abe +
ace − (1) − bc − de − bcde]. Had we selected the eight treatment combinations
according to the equations

x1 + x2 + x3 = 1

x1 + x4 + x5 = 0

x2 + x3 + x4 + x5 = 1

Table 13.3 Alias Structure
for 25−2 Design

A = BC = DE = BCDE

B = AC = ABDE = CDE

C = AB = ACDE = BDE

D = ABCD = AE = BCE

E = ABCE = AD = BCD

BD = ACD = ABE = CE

BE = ACE = ABD = CD
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that is,

b, c, ad, ae, bde, cde, abce, abcd

the identity relationship would have been

I = ABC = −ADE = −BCDE (13.10)

From the alias structure given in Table 13.3 and from (13.10) we see that now,
for example, A + BC − DE − ABCDE is estimable. �

Rather than specifying the identity relationship (13.7) by attaching plus or
minus signs to the Eαi , we can indicate the specific fractional replicate by writ-
ing E

αi

δi
, where δi is the ith right-hand side in (13.6), so that according to the

definition of E
αi

δi
given in Section 7.4 this implies that we select all treatment

combinations that satisfy the equation

αi1x1 + αi2x2 + · · · + αinxn = δi

(i = 1, 2, . . . , �). We shall see that this notation is useful when we consider the
pn−� system (see Section 13.5).

13.3.2 Resolution of Fractional Factorials

As has been mentioned earlier the value of fractional replication lies in the fact
that often higher-order interactions are negligible. One would therefore consider
fractions that result in the confounding of main effects and low-order interactions
with higher-order interactions. The extent to which this is possible is expressed
clearly by the form of the identity relationship. Basically, the minimum number of
factors involved in an interaction included in the identity relationship determines
the resolution of the design, that is, the extent to which main effects and low-
order interactions are estimable under the assumption that certain higher-order
interactions are negligible. Following the terminology introduced by Box and
Hunter (1961a, 1961b), we distinguish between the following types of fractional
replicates.

Resolution III Designs No main effect is confounded with another main effect,
but main effects are confounded with 2-factor interactions.

Resolution IV Designs No main effect is confounded with another main effect
or a 2-factor interaction, but 2-factor interactions are confounded with one
another.

Resolution V Designs No main effect is confounded with another main effect
or 2-factor interaction, and 2-factor interactions are confounded with 3-
factor interactions.
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These definitions apply, strictly speaking, only to so-called regular fractional
factorial designs for symmetrical factorials. A regular fraction is, for example,
a 1

2� of a 2n factorial as compared to an irregular fraction such as a 3
2� of a 2n

factorial (see, e.g., Addelman, 1961; Webb, 1971). A more general definition was
given by Webb (1964).

Definition 13.1 A fractional factorial design is of resolution (2R + 1) if it
permits the estimation of all effects up to R-factor interactions assuming that all
interactions involving more than R factors are negligible (R = 1, 2, . . .). A design
is of resolution 2R if it permits the estimation of all effects up to (R − 1)-factor
interactions assuming that all interactions involving (R + 1) factors are negligible
(R = 2, 3, . . .). �

As a consequence of this definition, a resolution III design (i.e., R = 1) per-
mits the estimation of main effects assuming that all interactions are negligible,
and a resolution IV design (i.e., R = 2) permits the estimation of main effects
assuming that all 3-factor and higher-order interactions are negligible. The design
given in Example 13.1 is a resolution III design, which we indicate by calling
it a 25−2

III design. Note also that the lowest order interaction in the identity rela-
tionship involves three factors or, using different terminology, the smallest word
(i.e., interaction) contains three letters (i.e., factors). A 2n−�

IV is given in the
following example.

Example 13.2 Let n = 6, � = 2, and

I = ABCD = CDEF = ABEF (13.11)

The 16 treatment combinations are obtained by solving the equations

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 + x6 = 0

It is clear from (13.11) that main effects are confounded with 3-factor interactions.
We can use SAS PROC FACTEX to generate this design. It is given in

Table 13.4
The output shows that the defining relationship

I = BCDE = ACDF = ABEF

was used, which is of the same form as (13.11). As a consequence seven of the
fifteen 2-factor interactions are confounded with one other 2-factor interaction and
one 2-factor interaction is confounded with two other 2-factor interactions. �
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13.3.3 Word Length Pattern

In discussing the resolution of a fractional factorial design, we have referred to
the interactions in the defining relationship as words, and the number of fac-
tors involved in an interaction is called the word length. Typically, a defining
relationship contains several words of possibly different length. This is referred
to as the word length pattern (WLP) of the defining relationship. A 2n−� frac-
tion may be constructed by using different defining relationships with different
WLPs. More precisely, a defining relationship can be characterized with respect
to its general properties by giving the distribution of words of different length.
Denoting the number of words with in letters, that is, an m-factor interaction, by
Lm, we denote the WLP of an identity relationship by

WLP(L3, L4, . . . , Ln)

We ignore designs with words of length 1 and 2 since they are obviously of no
practical interest as the smallest Lm �= 0 determines the resolution of the design.
For a 2n−� design we then have

n∑
m=3

Lm = 2� − 1

For the designs in Example 13.2 and in Table 13.4 we have WLP(0, 3, 0, 0), and
it is easy to see that this is the only possible WLP for a 26−2 design.

13.3.4 Criteria for Design Selection

In general, however, there may be different WLPs for a 2n−�
R design, that is,

different identity relationships. In such situations the particular WLP can be used
to distinguish among competing designs and select the one that is “best.” And
best in our context means the largest number of estimable, that is, unconfounded,
effects or interactions. For example, for a resolution III we would like the number
of main effects that are confounded with 2-factor interactions as small as possible,
or expressed differently, the number of main effects not confounded with 2-factor
interactions as large as possible. For a resolution IV design we would like to
have as few 2-factor interactions confounded with each other. Wu and Chen
(1992) called a main effect or 2-factor interaction clear if none of its aliases
are main effects or 2-factor interactions, and strongly clear if none of its aliases
are main effects, 2-factor interactions or 3-factor interactions (see also Wu and
Hamada, 2000).

Another criterion to distinguish among competing designs with maximum
possible resolution, Rmax say, was introduced by Fries and Hunter (1980).
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Table 13.4 1/4 Replicate of 26 Factorial of Resolution IV

options nodate pageno=1;
proc factex;
factors A B C D E F;
size fraction=4;
model res=4;
examine design aliasing confounding;
title1 'TABLE 13.4';
title2 '1/4 REPLICATE OF 2**6 FACTORIAL';
title3 'OF RESOLUTION IV';
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D E F

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 1 1
3 -1 -1 1 -1 1 1
4 -1 -1 1 1 -1 -1
5 -1 1 -1 -1 1 -1
6 -1 1 -1 1 -1 1
7 -1 1 1 -1 -1 1
8 -1 1 1 1 1 -1
9 1 -1 -1 -1 -1 1
10 1 -1 -1 1 1 -1
11 1 -1 1 -1 1 -1
12 1 -1 1 1 -1 1
13 1 1 -1 -1 1 1
14 1 1 -1 1 -1 -1
15 1 1 1 -1 -1 -1
16 1 1 1 1 1 1

Factor Confounding Rules

E = B*C*D
F = A*C*D

Aliasing Structure

A
B
C
D
E
F
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Table 13.4 (Continued )

A*B = E*F
A*C = D*F
A*D = C*F
A*E = B*F
A*F = B*E = C*D
B*C = D*E
B*D = C*E

Suppose we have two competing 2n−� designs, D1 and D2 say, of maximum
resolution and suppose that the WLP are given as

D1: WLP(L3, L4, . . . , Ln)

and

D2: WLP(L′
3, L

′
4, . . . , L

′
n)

Consider then the first i for which Li �= L′
i (Rmax ≤ i ≤ n). If Li < L′

i , then D1
is said to have less aberration than D2, otherwise D2 has less aberration. Among
all competing designs the one with the smallest Li is said to be the minimum
aberration design.

As an illustration of these concepts, we consider the following example.

Example 13.3 Let n = 8, � = 3, and R = IV; that is, we are interested in a
28−3

IV design consisting of 32 runs.

Design 1

I = ABCDEF = CDEG = ABFG

= BDEH = ACFH = BCGH = ADEFGH

with WLP(0, 5, 0, 2, 0, 0,). This design, as constructed by SAS PROC FACTEX,
is given in Table 13.5. Inspection of the alias structure shows that all main effects
are clear, but not strongly clear. Also, only 4 of the 28 two-factor interactions
are clear (actually, strongly clear), all other 2-factor interactions are confounded
with other 2-factor interactions.

Design 2

I = CDEF = ABDEG = ABCFG

= ABCEH = ABDFH = CDGH = EFGH

with WLP(0, 3, 4, 0, 0, 0). This design, given in Table 13.6, was constructed
by SAS PROC FACTEX using the option “minabs” to produce a minimum
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Table 13.5 1/8th Fraction of the 28 Factorial of Resolution IV

options nodate pageno=1;
proc factex;
factors A B C D E F G H;
size design=32;
model res=4;
examine design aliasing confounding;
title1 'TABLE 13.5';
title2 '1/8TH FRACTION OF THE 2**8 FACTORIAL';
title3 'OF RESOLUTION IV';
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D E F G H

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 -1 1 1 1 1
3 -1 -1 -1 1 -1 1 1 1
4 -1 -1 -1 1 1 -1 -1 -1
5 -1 -1 1 -1 -1 1 1 -1
6 -1 -1 1 -1 1 -1 -1 1
7 -1 -1 1 1 -1 -1 -1 1
8 -1 -1 1 1 1 1 1 -1
9 -1 1 -1 -1 -1 1 -1 1

10 -1 1 -1 -1 1 -1 1 -1
11 -1 1 -1 1 -1 -1 1 -1
12 -1 1 -1 1 1 1 -1 1
13 -1 1 1 -1 -1 -1 1 1
14 -1 1 1 -1 1 1 -1 -1
15 -1 1 1 1 -1 1 -1 -1
16 -1 1 1 1 1 -1 1 1
17 1 -1 -1 -1 -1 1 -1 -1
18 1 -1 -1 -1 1 -1 1 1
19 1 -1 -1 1 -1 -1 1 1
20 1 -1 -1 1 1 1 -1 -1
21 1 -1 1 -1 -1 -1 1 -1
22 1 -1 1 -1 1 1 -1 1
23 1 -1 1 1 -1 1 -1 1
24 1 -1 1 1 1 -1 1 -1
25 1 1 -1 -1 -1 -1 -1 1
26 1 1 -1 -1 1 1 1 -1
27 1 1 -1 1 -1 1 1 -1
28 1 1 -1 1 1 -1 -1 1
29 1 1 1 -1 -1 1 1 1
30 1 1 1 -1 1 -1 -1 -1
31 1 1 1 1 -1 -1 -1 -1
32 1 1 1 1 1 1 1 1
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Table 13.5 (Continued )

Factor Confounding Rules

F = A*B*C*D*E
G = C*D*E
H = B*D*E

Aliasing Structure

A
B
C
D
E
F
G
H
A*B = F*G
A*C = F*H
A*D
A*E
A*F = B*G = C*H
A*G = B*F
A*H = C*F
B*C = G*H
B*D = E*H
B*E = D*H
B*H = C*G = D*E
C*D = E*G
C*E = D*G
D*F
E*F

aberration design (L4 = 3 in D2 vs. L4 = 5 in D1). All main effects are clear, of
course, but only A and B are strongly clear. Now thirteen 2-factor interactions
are clear, but none of them are strongly clear. �

Intuitively, minimum aberration designs should be the best designs with respect
to the estimation of 2-factor interactions. However, Wu and Hamada (2000) in
their listing of useful 2n−� designs give a few examples of resolution IV designs,
where a judicious choice of the identity relationship leads to a design with more
clear 2-factor interactions than the corresponding minimum aberration design (see
also Wu and Wu, 2002). Hence, both concepts should be used when selecting a
design for a particular application.

Still other criteria have been introduced to further enable the search for and
study of the properties of “desirable” designs, such as estimation capacity (Cheng,
Steinberg, and Sun, 1999) and estimation index (Chen and Cheng, 2004). In
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Table 13.6 1/8th Fraction of the 28 Factorial of Resolution IV and Minimum
Aberration

options nodate pageno=1;
proc factex;
factors A B C D E F G H;
size design=32;
model res=4/minabs;
examine design aliasing confounding;
title1 'TABLE 13.6';
title2 '1/8TH FRACTION OF THE 2**8 FACTORIAL';
title3 'OF RESOLUTION IV AND MINIMUM ABERRATION';
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D E F G H

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1 -1 -1 1 1
2 -1 -1 -1 -1 1 1 -1 -1
3 -1 -1 -1 1 -1 1 -1 1
4 -1 -1 -1 1 1 -1 1 -1
5 -1 -1 1 -1 -1 1 1 -1
6 -1 -1 1 -1 1 -1 -1 1
7 -1 -1 1 1 -1 -1 -1 -1
8 -1 -1 1 1 1 1 1 1
9 -1 1 -1 -1 -1 -1 -1 -1

10 -1 1 -1 -1 1 1 1 1
11 -1 1 -1 1 -1 1 1 -1
12 -1 1 -1 1 1 -1 -1 1
13 -1 1 1 -1 -1 1 -1 1
14 -1 1 1 -1 1 -1 1 -1
15 -1 1 1 1 -1 -1 1 1
16 -1 1 1 1 1 1 -1 -1
17 1 -1 -1 -1 -1 -1 -1 -1
18 1 -1 -1 -1 1 1 1 1
19 1 -1 -1 1 -1 1 1 -1
20 1 -1 -1 1 1 -1 -1 1
21 1 -1 1 -1 -1 1 -1 1
22 1 -1 1 -1 1 -1 1 -1
23 1 -1 1 1 -1 -1 1 1
24 1 -1 1 1 1 1 -1 -1
25 1 1 -1 -1 -1 -1 1 1
26 1 1 -1 -1 1 1 -1 -1
27 1 1 -1 1 -1 1 -1 1
28 1 1 -1 1 1 -1 1 -1
29 1 1 1 -1 -1 1 1 -1
30 1 1 1 -1 1 -1 -1 1
31 1 1 1 1 -1 -1 -1 -1
32 1 1 1 1 1 1 1 1



524 FRACTIONAL FACTORIAL DESIGNS

Table 13.6 (Continued )

Factor Confounding Rules

F = C*D*E
G = A*B*D*E
H = A*B*C*E

Aliasing Structure

A
B
C
D
E
F
G
H
A*B
A*C
A*D
A*E
A*F
A*G
A*H
B*C
B*D
B*E
B*F
B*G
B*H
C*D = E*F = G*H
C*E = D*F
C*F = D*E
C*G = D*H
C*H = D*G
E*G = F*H
E*H = F*G

many cases application of these criteria leads to the same design. For a detailed
discussion of the relationship among these criteria, we refer the reader to Chen
and Cheng (2004).

13.4 FRACTIONAL REPLICATES FOR 3n FACTORIAL DESIGNS

The basic ideas for the 2n−� design can be extended easily to the 3n−� design,
that is, the 1

3� fraction of the 3n factorial. To obtain the treatment combinations
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for such a fraction we have to specify an identity relationship containing �

independent interactions. If we denote these interactions by Eα1 , Eα2 , . . . , Eα� ,
we can then write

I = E
α1
δ1

= E
α2
δ2

= · · · = E
α�

δ�
(13.12)

The treatment combinations are obtained by solving the equations (mod 3)

α11x1 + α12x2 + · · · + α1nxn = δ1

α21x1 + α22x2 + · · · + α2nxn = δ2 (13.13)

...

α�1x1 + α�2x2 + · · · + α�nxn = δ�

For any choice of δ1, δ2, . . . , δ� there will be exactly 3n−� treatment combinations
satisfying (13.13). Each such set, and there will be 3� possible sets, constitutes
a 3n−� fractional factorial. If, for some reason, we want the fraction to contain
the “control,” that is, the treatment combination (0, 0, . . . , 0), then we choose
δ1 = δ2 = · · · = δ� = 0.

We know, of course, that any treatment combination x = (x1, x2, . . . , xn)
′ sat-

isfying Eqs. (13.13), that is, α′
ix = δi(i = 1, 2, . . . , �), also satisfies the equations

(
�∑

i=1

λi αi

)′
x =

�∑
i=1

λi δi (13.14)

where λi = 0, 1, 2(i = 1, 2, . . . , �). For a given set of λ1, λ2, . . . , λ� (not all
zero) let us denote

∑
λiαi by α∗ and

∑
λiδi by δ∗. Thus (13.14) becomes

(α∗)′x = δ∗ (13.15)

Each α∗ corresponds to an effect Eα∗
and the treatment combinations satisfying

(13.15) belong to the component Eα∗
δ∗ with δ∗ = 0, 1, 2. It is not difficult to

see that, using our convention that the first nonzero element in α∗ is equal to
one, there are altogether (3� − 1)/2 such α∗ including α1,α2, . . . ,α�. And it
is obvious that the α∗ other than α1, α2, . . . ,α� correspond to all possible GIs
among Eα1, Eα2, . . . , Eα� . Hence the complete identity relationship is obtained
by adding to (13.12) all the GIs, that is,

I = E
α1
δ1

= E
α2
δ2

= · · · = E
α�

δ�
= E

α1+α2
δ1+δ2

= E
α1+2α2
δ1+2δ2

= · · · = E
α1+2α2+...+2α�

δ1+2δ2+...+2δ�
(13.16)
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In order to obtain the treatment combinations for the 3n−� design, we need
to know only (13.12) and solve Eqs. (13.13), but in order to obtain the alias
structure we need to use the entire set of interactions in the identity relationship as
given in (13.16). Suppose Eβ is an effect not contained in (13.16). We know that
because of orthogonality (see Chapter 10) exactly 1

3 of the treatment combinations
satisfying (13.13) also satisfy the equation

β1x1 + β2x2 + · · · + βnxn = δ (13.17)

for δ = 0, 1, 2 and each treatment combination satisfies only one of the three
equations. Then Eβ is defined, as with the full set of 3n treatment combinations,
by contrasts of the form

c0E
β
0 + c1E

β
1 + c2E

β
2 (13.18)

with c0 + c1 + c2 = 0, where E
β
δ is obtained (apart from the overall mean)

from the 3n−�−1 treatment combinations satisfying (13.17) for δ = 0, 1, 2. Let
us take now any of the interactions in (13.16), say E

αi

δi
, and consider the GI

between Eβ and Eαi , denoted by Eβ+αi . A contrast belonging to this effect is
given by

c0E
β+αi

0 + c1E
β+αi

1 + c2E
β+αi

2

where the leading mean in E
β+αi

δ is obtained from the treatment combinations
satisfying

(β1 + αi1) x1 + (β2 + αi2) x2 + · · · + (βn + αin) xn = δ (13.19)

We know that

αi1x1 + αi2x2 + · · · + αinxn = δi (13.20)

Substituting (13.20) in (13.19) yields

β1x1 + β2x2 + · · · + βnxn = δ − δi

Now δ − δi takes on the values 0, 1, 2 (mod 3), and it is therefore obvious that a
contrast belonging to Eβ is also a contrast belonging to Eβ+αi , that is, Eβ and
Eαi are confounded. The same argument holds for the other GI between Eβ and
Eαi , namely Eβ+2αi . This then explains how we use (13.16) to obtain the alias
structure for the 3n−� design: Any effect Eβ not in (13.16) is confounded with
all GIs obtained by formally multiplying Eβ into Eγ and E2γ where Eγ is any
effect listed in (13.16), that is, Eβ is confounded with Eβ+γ and Eβ+2γ . We
illustrate this below.
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Example 13.4 Consider the 34−2 design with the identity relationship
given by

I = ABC 2
0 = ACD0 = AB2D2

0 = BCD2
0 (13.21)

where ABC 2 and ACD are the two independent interactions of (13.12) and
AB2D2, BCD2 are their GIs. The treatment combinations are obtained from
the equations

x1 + x2 + 2x3 = 0

x1 + x3 + x4 = 0

They are

0 0 0 0 0 1 1 2 0 2 2 1

1 0 1 1 1 1 2 0 1 2 0 2

2 0 2 2 2 1 0 1 2 2 1 0

The alias structure is given by multiplying each effect not contained in (13.21)
into each interaction in (13.21) and its square (ignoring the subscripts). We obtain
(using reduction mod 3):

A = A(ABC 2) = A(ABC 2)2 = A(ACD) = A(ACD)2

= A(AB2D2) = A(AB 2D2)2 = A(BCD2) = A(BCD2)2

= AB2C = BC 2 = AC 2D2 = CD = ABD = BD = ABCD2 = AB2C2D

Similarly

B = AB2C2 = AC 2 = ABCD = AB2CD = AD2 = ABD2

= BC 2D = CD2

C = AB = ABC = AC 2D = AD = AB2CD2 = AB2C2D2

= BC 2D2 = BD2

D = ABC 2D = ABC 2D2 = ACD2 = AC = AB2 = AB2D

= BC = BCD

Together with the effects in (13.21) these account for all the effects of a 34

factorial. We recognize, of course, that this design is a resolution III design, which
allows the estimation of all main effects only if all interactions are negligible.

An equivalent design, using SAS PROC FACTEX, is given in Table 13.7.
The factor confounding rule states that the levels of C are obtained as twice

the levels of A plus twice the levels of B, and that the levels of D are obtained as
the levels of A plus twice the levels of B and reduction mod 3. The output shows
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Table 13.7 1/9 Fraction of the 34 Factorial of Resolution III

options nodate pageno=1;
proc factex;
factors A B C D/nlev=3;
size fraction=9;
model res=3;
examine design aliasing confounding;
title1 'TABLE 13.7';
title2 '1/9 FRACTION OF THE 3**4 FACTORIAL';
title3 'OF RESOLUTION III';
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D

- - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1
2 -1 0 1 1
3 -1 1 0 0
4 0 -1 1 0
5 0 0 0 -1
6 0 1 -1 1
7 1 -1 0 1
8 1 0 -1 0
9 1 1 1 -1

Factor Confounding Rules

C = (2*A) + (2*B)
D = A + (2*B)

Aliasing Structure

A = (2*B) + (2*C) = B + D = C + (2*D)
(2*A) = B + C = (2*B) + (2*D) = (2*C) + D

B = (2*A) + (2*C) = A + (2*D) = C + D
(2*B) = A + C = (2*A) + D = (2*C) + (2*D)

C = (2*A) + (2*B) = A + D = B + (2*D)
(2*C) = A + B = (2*A) + (2*D) = (2*B) + D

D = A + (2*B) = (2*A) + C = B + (2*C)
(2*D) = (2*A) + B = A + (2*C) = (2*B) + C

that the levels of C are indeed computed in this fashion, but the levels of D are
obtained by subtracting 1 from the results of the rule given above (presumably
this is done to include the control in the fraction). The alias structure shows that,
just as in Example 13.4, the main effect A is confounded with 2 d.f. of each of the
2-factor interactions B × C, B × D, and C × D (and higher-order interactions).
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The notions of clear effects and minimum aberration design can be carried
over in an obvious fashion to 3n−� designs. A listing of useful designs is given
by Wu and Hamada (2000). �

13.5 GENERAL CASE OF FRACTIONAL REPLICATION

13.5.1 Symmetrical Factorials

From our discussion above it is quite obvious how the concept of fractional
replication can be extended to the general case, that is, to the 1/s� fraction
of the sn factorial where s is a prime or prime power. All we need to do is
specify � independent interactions, say Eα1 , Eα2 , . . . , Eα� and the sn−� treatment
combinations are then obtained by solving the � equations

αi1x1 + αi2x2 + · · · + αinxn = δi(i = 1, 2, . . . , �)

where αij , xj , δi are elements in GF(s) (i = 1, 2, . . . , �; j = 1, 2, . . . , n). The
identity relationship is given by

I = Eα1 = Eα2 = · · · = Eα� = Eα1+α2 = Eα1+u2α2

= · · · = Eα1+us−1α2 = · · · = Eα1+us−1α2+···+us−1α� (13.22)

[uj ∈ GF(s)] that is, (13.22) contains the � independent interactions and all their
GIs. It follows then that an effect Eα is aliased with all the GIs between Eα and
the interactions in (13.22).

13.5.2 Asymmetrical Factorials

The basic ideas of fractional replication for symmetrical factorial experiments
as presented above can be extended and applied also to asymmetrical factorials.
Suppose we want to choose a fraction of an s

n1
1 × s

n2
2 × · · · × s

nq

1 factorial. An

obvious and easy method would be to consider a 1 − in − s
�1
1 s

�2
2 , . . . , s

�q
q repli-

cate consisting of s
n1−�1
1 , s

n2−�2
2 , . . . , s

nq−�q
q treatment combinations. The idea,

of course, is to consider each of the q symmetrical component systems sep-
arately, obtain a 1/s

�i

i fraction of the s
ni

i factorial (i = 1, 2, . . . , q ) and then
combine those fractions as a Kronecker product design. More specifically, let
xi = (xi1, xi2, . . . , xiνi

)′ denote the νi = s
n−�i

i treatment combinations for the
fractional factorial design of the s

ni

i factorial, abbreviated FFD(si, ni, �i), for
i = 1, 2, . . . , q, with xij = (xij1, xij2, . . . , xijni

)′ and xijk the level of the kth
factor in the j th treatment combination of FFD(si , ni , �i). Then the treatment
combinations for the fractional replicate of the asymmetrical factorial s

n1
1 × s

n2
2 ×

· · · × s
nq
q are given by the symbolic direct product (see Section 11.4.1) x1 ⊗ x2 ⊗

· · · ⊗ xq . Symbolically, we may write this also as
∏q

i=1 × FFD(si , ni , �i).
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Now each FFD (si , ni , �i) is based on an identity relationship, Ii say,
containing �i independent interactions and all their GI’s. Thus Ii determines
the alias structure for FFD(si , ni , �i) involving the ni factors in the s

ni

i facto-
rial. We simply apply the rules given above. In addition, we have confounding
among mixed interactions, that is, interactions involving factors from different
symmetrical factorials. We note here that the alias structure for mixed interactions
may be more advantageous than those for interactions in the symmetrical compo-
nent systems, advantageous in the sense of being confounded with higher-order
interactions that may be assumed negligible.

We shall illustrate these ideas with the following example.

Example 13.5 Consider a 1
6 replicate of the 23 × 33 factorial; that is, q = 2,

s1 = 2, n1 = 3, �1 = 1, s2 = 3, n2 = 3, �2 = 1. Let A1, A2, A3 and B1, B2, B3
denote the factors for the two symmetrical component systems, respectively. To
obtain FFD(2, 3, 1) we use

I1 = (A1 A2 A3)0

and for FFD(3, 3, 1) we use

I2 = (B1 B2 B2
3 )0

It follows that

x1 =


0 0 0
1 1 0
1 0 1
0 1 1


and

x2 =



0 0 0
1 2 0
2 1 0
0 1 1
1 0 1
2 2 1
0 2 2
1 1 2
2 0 2


The 36 treatment combinations are obtained by combining every treatment com-
bination in x1 with every treatment combination in x2. The alias structure for
FFD(2, 3, 1) is given by

A1 = A2A3

A2 = A1A3

A3 = A1A2
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and for FFD(3, 3, 1) by

B1 = B1B
2
2B3 = B2B

2
3

B2 = B1B
2
2B2

3 = B1B
2
3

B3 = B1B2 = B1B2B3

B1B
2
2 = B1B3 = B2B3

The alias structure for mixed interactions is illustrated by

A1 × B1 = A1 × B1B
2
2B3 = A1 × B2B

2
3 = A2A3 × B1

= A2A3 × B1B
2
2B3 = A2A3 × B2B

2
3

This shows that the 2-factor interaction A1 × B1 is confounded with 3-factor or
higher-order interactions.

An isomorphic design using SAS PROC FACTEX is given in Table 13.8. �

13.5.3 General Considerations

From a practical point of view highly fractionated designs may be the only feasi-
ble designs, requiring only a relatively small number of treatment combinations.
This has, of course, fairly severe consequences as each effect will be confounded
with a “large” number of other effects. For such a design to be useful the identity
relationship must be chosen carefully in order to avoid having effects of interest
confounded with each other. For example, if main effects and some or all 2-factor
interactions are considered to be important, then certainly main effects should
not be confounded with other main effects and 2-factor interactions. If only some
2-factor interactions are important, then confounding of certain 2-factor interac-
tions is permissible, but if all 2-factor interactions are important, then they must
only be confounded with 3-factor or higher-order interactions. In other words,
resolution IV or V designs are called for. It is obvious that the more effects we
want to estimate the more treatment combinations we need. It is typical that for
experiments having to use fractional factorial designs the two requirements of a
limited number of treatment combinations and of information about a specified
number of effects are often in conflict with each other and compromises will have
to be made. It is therefore important to be aware of methods of constructing frac-
tional factorial designs of minimal size to achieve certain objectives such as those
mentioned above. This leads also to consideration of fractional replicates other
than the regular fractions discussed so far. A general discussion of the structures
and properties of fractional factorial designs is given by Raktoe, Hedayat, and
Federer (1981), and a description of construction methods for certain fractional
factorial designs is provided by Dey (1985). We shall discuss some of these
issues in Section 13.6.
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Table 13.8 1/6 Fraction of the 23 × 33 Factorial Using a Kronecker Product Design

options nodate pageno=1;
proc factex;
factors A1 A2 A3;
size design=4;
model res=3;
examine design confounding aliasing;
output out=two;
title1 'TABLE 13.8';
title2 '1/6 FRACTION OF THE 2**3×3**3 FACTORIAL';
title3 'USING A KRONECKER PRODUCT DESIGN';
run;
factors B1 B2 B3/nlev=3;
size design=9;
model res=3;
examine design confounding aliasing;
output out=three
designrep=two;
run;

proc print data=three;
run;

The FACTEX Procedure

Design Points

Experiment
Number A1 A2 A3

- - - - - - - - - - - - - - - - - - - -
1 -1 -1 1
2 -1 1 -1
3 1 -1 -1
4 1 1 1

Factor Confounding Rules

A3 = A1*A2

Aliasing Structure

A1 = A2*A3
A2 = A1*A3
A3 = A1*A2



GENERAL CASE OF FRACTIONAL REPLICATION 533

Table 13.8 (Continued )

Design Points

Experiment
Number B1 B2 B3

- - - - - - - - - - - - - - - - - - - - -
1 -1 -1 -1
2 -1 0 1
3 -1 1 0
4 0 -1 1
5 0 0 0
6 0 1 -1
7 1 -1 0
8 1 0 -1
9 1 1 1

Factor Confounding Rules

B3 = (2*B1) + (2*B2)

Aliasing Structure

B1 = (2*B2) + (2*B3)
(2*B1) = B2 + B3

B2 = (2*B1) + (2*B3)
(2*B2) = B1 + B3

B3 = (2*B1) + (2*B2)
(2*B3) = B1 + B2
(2*B1)+ B2 = B1 + (2*B3) = (2*B2) + B3

B1 + (2*B2) = (2*B1) + B3 = B2 + (2*B3)

Obs A1 A2 A3 B1 B2 B3

1 -1 -1 1 -1 -1 -1
2 -1 -1 1 -1 0 1
3 -1 -1 1 -1 1 0
4 -1 -1 1 0 -1 1
5 -1 -1 1 0 0 0
6 -1 -1 1 0 1 -1
7 -1 -1 1 1 -1 0
8 -1 -1 1 1 0 -1
9 -1 -1 1 1 1 1

10 -1 1 -1 -1 -1 -1
11 -1 1 -1 -1 0 1
12 -1 1 -1 -1 1 0
13 -1 1 -1 0 -1 1
14 -1 1 -1 0 0 0
15 -1 1 -1 0 1 -1
16 -1 1 -1 1 -1 0
17 -1 1 -1 1 0 -1
18 -1 1 -1 1 1 1
19 1 -1 -1 -1 -1 -1
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Table 13.8 (Continued )

20 1 -1 -1 -1 0 1
21 1 -1 -1 -1 1 0
22 1 -1 -1 0 -1 1
23 1 -1 -1 0 0 0
24 1 -1 -1 0 1 -1
25 1 -1 -1 1 -1 0
26 1 -1 -1 1 0 -1
27 1 -1 -1 1 1 1
28 1 1 1 -1 -1 -1
29 1 1 1 -1 0 1
30 1 1 1 -1 1 0
31 1 1 1 0 -1 1
32 1 1 1 0 0 0
33 1 1 1 0 1 -1
34 1 1 1 1 -1 0
35 1 1 1 1 0 -1
36 1 1 1 1 1 1

13.5.4 Maximum Resolution Design

The discussion in Section 13.6 will allow us to make statements about the min-
imum size of a design for a specified resolution. An equally important question
arises if we are given a fixed number, say N , of runs and we want to know what
is the maximum resolution that can be achieved under this constraint.

It is clear, of course, that a 1/s fraction of the sn factorial has resolution
R = n. For the general case of the sn−� fractional factorial an upper bound of
the resolution was given by Fujii (1976). We state his result in the following
theorem without proof.

Theorem 13.1 (Fujii, 1976) Let M = (s� − 1)/(s − 1) and n = qM + m,
with q ≥ 0 integer. Then, for � ≥ 2, the maximum resolution R�(n, s) of the
sn−� design (with s prime or prime power) is given by

R�(n, s) = s�−1q if m = 0, 1

≤ s�−1q +
[
s�−2(s − 1)(m − 1)/(s�−1 − 1)

]
if m = 2, 3, . . . , s�−1 − 1

≤ s�−1q + [(s − 1)m/s]

if m = s�−1, s�−1 + 1, . . . ,M − 1

where [x] is the greatest integer not exceeding x.

In Table 13.9 we present Rmax values for s = 2, 3, 4, 5 and 4 ≤ n ≤ 10, 2 ≤
� ≤ 7 with the number of runs ≤ 256. An asterisk indicates that Rmax < R�(n, s)
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Table 13.9 Maximum Resolution sn−� Designs

s n � Rmax Number of Runs

2 5 2 3 8
6 2 4 16
6 3 3 8
7 2 4 32
7 3 4 16
7 4 3 8
8 2 5 64
8 3 4 32
8 4 4 16
9 3 4 64
9 4 4 32
9 5 3∗ 16

10 3 5 128
10 4 4∗ 64
10 5 4 32
10 6 3∗ 16

3 4 2 3 9
5 2 3 27
6 2 4 81
6 3 3 27
7 2 5 243
7 3 4 81
7 4 3∗ 27
8 3 5 243
8 4 4 81
8 5 3∗ 27
9 4 5 243
9 5 3∗ 81
9 6 3∗ 27

10 5 5∗ 243
10 6 3∗ 81
10 7 3∗ 27

4 4 2 3 16
5 2 4 64
5 3 3 16
6 2 4 256
6 3 4 64
7 3 4 256
7 4 3∗ 64
8 4 4∗ 256
8 5 3∗ 64
9 5 4∗ 256
9 6 3∗ 64

10 6 4∗ 256
10 7 3∗ 64
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Table 13.9 (Continued )

s n � Rmax Number of Runs

5 4 2 3 25
5 2 4 125
5 3 3 25
6 3 4 125
6 4 3∗ 25
7 4 3∗ 125
8 5 3∗ 125
9 6 3∗ 125

10 7 3∗ 125

as given above [it shows that R�(n, s) is not particularly good for larger values
of �, a fact also observed by Fries and Hunter (1980) who provided a different
bound for s = 2].

13.6 CHARACTERIZATION OF FRACTIONAL FACTORIAL
DESIGNS OF RESOLUTION III, IV, AND V

13.6.1 General Formulation

Recall from (12.15) that each true treatment response, a(v), for a s
n1
1 × s

n2
2 ×

· · · × s
nq
q factorial with s1 < s2 < · · · < sq can be expressed in terms of the mean

response, a component from each pure partition and a component from each
mixed partition. Of interest here are only all components from pure partitions
belonging to main effects and 2-factor interactions and all components from
mixed partitions belonging to 2-factor interactions. As an illustration we shall
consider the 22 × 32 factorial.

Let A1, A2 denote the two factors with two levels each, and B1, B2 the two
factors with three levels. Recall from Example 12.4 that all arithmetic has to be
done in R(6) and that the levels of A1, A2 are denoted by 0, 3 and those of B1,
B2 by 0, 4, 2. To simplify the notation we shall write the treatment combination
v = (v11, v12, v21, v22)

′ as v = (v′
1, v

′
2)

′ where v1 = (v11, v12)
′, v2 = (v21, v22)

′.
We then have

a(v) = a(v1, v2)= + (A3
1)(30)v1 + (A3

2)(03)v1 + (A3
1A

3
2)(33)v1

+ (B4
1 )(40)v2 + (B4

2 )(04)v2 + (B4
1B4

2 )(44)v2

+ (B4
1B2

2 )(42)v2 + (A3
1B

4
1 )∗(3040)v + (A3

1B
4
2 )∗(3004)v

+ (A3
2B

4
1 )∗(0340)v + (A3

2B
4
2 )∗(0304)v (13.23)



CHARACTERIZATION OF FRACTIONAL FACTORIAL DESIGNS OF RESOLUTION III, IV, AND V 537

Alternatively, and equivalently, we can express a(v) in terms of the traditional
model for factorial structures as

a(v) = µ + αi + βj + (αβ)ij + γk + δ�

+(γ δ)k� + (αγ )ik + (βγ )jk

+(αδ)i� + (βδ)j� (13.24)

with i, j = 0, 1, k, � = 0, 1, 2. Models of the type (13.24) are used in SAS, for
example.

We ignore 3-factor and higher-order interactions since those are assumed
to be negligible for resolution III, IV, and V designs. In addition, for resolu-
tion III designs 2-factor interactions are also negligible, and we are interested
only in estimating the mean and main effects. For resolution IV designs we
are mainly interested in estimating main effects, but the mean and 2-factor
interactions are assumed to be unknown (and not necessarily zero). For reso-
lution V designs we wish, of course, to estimate the mean, main effects, and
2-factor interactions. All three situations can be expressed in very general terms
in the form of a three-part linear model, the first part referring to the mean,
the second part referring to the main effects, and the third part to the 2-factor
interactions. We formulate this as follows (see Raktoe, Hedayat, and Federer,
1981).

Let D denote an FFD consisting of N treatment combinations (not necessarily
all distinct) and let aD denote the N × 1 vector of the true treatment responses
associated with D. Further, let M denote the mean, E1 the q1 × 1 vector of main
effect components and E2 the q2 × 1 vector of 2-factor interaction components
[using either (13.23) or (13.24)], with E1 and E2 conformable to D and the
factorial from which D was obtained. We then write, analogously to (12.15),

aD = (I, X1D,X2D)

M

E1
E2

 (13.25)

where X1D and X2D are N × q1 and N × q2 incidence matrices, respectively.
If yD represents the N × 1 vector of observations corresponding to aD , then we
write (13.25) alternatively and in a more familiar form as

E[yD] = (I,X1D, X2D)

M

E1
E2

 (13.26)

In order to determine whether a given FFD is of resolution III, IV, or V it is
sufficient to consider, instead of D, the unreplicated design D0, which contains
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the same treatment combinations as D except that each treatment combination
is represented only once. Suppose D0 contains N0 treatment combinations. We
then replace (13.26), using obvious notation, by

E[yD0
] = (I,X1D0, X2D0)

M

E1
E2

 (13.27)

We shall now consider (13.27) and the resulting NE for each of the three
situations.

13.6.2 Resolution III Designs

For a resolution III design we have, of course, E2 = 0 and (13.27) reduces to
the two-part model (dropping the subscript D0 for convenience)

E(y) = (I,X1)

(
M

E1

)
(13.28)

and the NE are of the form(
I′I I′X1

X′
1I X′

1X1

)(
M

E1

)
=
(

I′y
X′

1y

)
(13.29)

Suppose we have n factors A1, A2, . . . , An and factor Ai has si levels (i =
1, 2, . . . , n), where the si need not be all different. Then E1 has q1 = ∑

i si
components, but for factor Ai the si components add to zero (i = 1, 2, . . . , n).
Hence E1 contains only

∑
i(si − 1) = q1 − n independent components. It fol-

lows then also that the coefficient matrix in (13.29) is not of full rank. A solution
to (13.29) can be written as(

M̂

Ê1

)
=
(

I′I I′X1

X′
1I X′

1X1

)− (
I′y
X′

1y

)
(13.30)

or, if we write X∗
1 = (I, X1),(

M̂

Ê1

)
= (

X∗′
1 X∗

1

)−
X∗′

1 y (13.31)

It is obvious then that for the mean and all main effects to be estimable we must
have

rank
(
X∗′

1 X∗
1

) = 1 + q1 − n (13.32)

Condition (13.32) can in certain situations be achieved with N0 = 1 + q1 − n

treatment combinations, and we shall give some examples later (see Chapter 14).
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For such a design no d.f. are available for estimating the variance σ 2
e in the

context of the ANOVA. The design D0 is then referred to as a ü saturated
design. If we use a design D with N runs where N > 1 + q1 − n and (13.32) is
satisfied, then σ 2

e can, of course, be estimated with N − (1 + q1 − n) d.f. Using
(X∗′

1DX∗
1D)− as the variance–covariance matrix we can then, within the factor

space of the experiment, compare different treatments, for example, a(v) − a(w)

for some treatment combinations v and w using the main effects model (13.28).
For the analysis of a saturated design D0 see Section 13.9.

13.6.3 Resolution IV Designs

For this case it is convenient to rewrite (13.27) (dropping again the subscript
D0) as

E
(
y) = (X1, X

∗
2

)(E1

E∗
2

)
(13.33)

with

X∗
2 = (I, X2) E∗

2 =
(

M

E2

)

The reason to include M in E∗
2, the vector of nuisance parameters, is mostly

one of mathematical convenience. It simply means that we are not interested in
estimating the mean just as we are not interested in estimating 2-factor interac-
tions. A plausible argument for proceeding in this fashion was given by Raktoe,
Hedayat, and Federer (1981) who point out that because of the possible presence
of 2-factor interactions we cannot use (13.27) in the same way as we used (13.28)
to make comparisons among treatments. Our only aim here can be to estimate
main effects and draw conclusions from that concerning the importance of the
various factors. The important difference between estimating main effects from
a resolution IV design as compared to a resolution III design is, of course, that
in a resolution IV design 3-factor interactions are assumed to be negligible, that
is, main effects are clear, whereas in a resolution III design 2-factor interactions
are also assumed to be negligible.

Returning now to model (13.33) the NE are(
X′

1X1 X′
1X

∗
2

X∗′
2 X1 X∗′

2 X∗
2

)(
E1

E∗
2

)
=
(

X′
1y

X∗′
2 y

)
(13.34)

Using results of Chapter I.4 the RNE for E1 are given by(
X′

1X1 − X′
1X

∗
2

(
X∗′

2 X∗
2

)−
X∗′

2 X1

)
E1

=
(
X′

1 − X′
1X

∗
2

(
X∗′

2 X∗
2

)−
X∗′

2

)
y (13.35)
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or
CE1 = Q (13.36)

where C and Q are defined in an obvious way. For all main effects to be estimable
we must have

rank
(
X′

1X1 − X′
1X

∗
2

(
X∗′

2 X∗
2

)−
X∗′

2 X1

)
=
∑

i

(si − 1) = q1 − n (13.37)

To illustrate these ideas we consider the following example.

Example 13.6 Suppose we have four factors, A, B, C, F , each at two levels
and we have a 1

2 replicate D0 = {(0 0 0 0), (0 1 1 0), (1 0 1 0), (1 1 0 0), (0 0 1
1), (0 1 0 1), (1 0 0 1), (1 1 1 1)} with eight treatment combinations. Notice that
D0 is based on the identity relationship I = ABCF . So we already know that D0
is a resolution IV design. We now have

X1 =



A0 A1 B0 B1 C0 C1 F0 F1
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1


X∗

2 =

M AB0 AB1 AC0 AC1 AF0 AF1 BC0 BC1 BF0 BF1 CF0 CF1
1 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 1 0 0 1 0 1
1 0 1 1 0 0 1 0 1 1 0 0 1
1 1 0 0 1 0 1 0 1 0 1 1 0
1 1 0 0 1 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 0 1 1 0 0 1
1 0 1 0 1 1 0 1 0 0 1 0 1
1 1 0 1 0 1 0 1 0 1 0 1 0



X′
1X1 =



4 0 2 2 2 2 2 2
0 4 2 2 2 2 2 2
2 2 4 0 2 2 2 2
2 2 0 4 2 2 2 2
2 2 2 2 4 0 2 2
2 2 2 2 0 4 2 2
2 2 2 2 2 2 4 0
2 2 2 2 2 2 0 4


= 4I 4 × I 2 + 2(I4I

′
4 − I 4) × I2I

′
2
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X∗′
2 X∗

2 =
[

8 4 I′
12

4I12 4 I 6 × I 2 + 2(I6I
′
6 − I 6) × I2I

′
2

]

(X∗′
2 X∗

2)
− =

 1
8 0′

12

− 1
8 I12

1
4 I 12



X′
1X

∗
2(X

∗′
2 X∗

2)
−X∗′

2 X1 = 2 I8I
′
8

and

C = X′
1X1 − X′

1X
∗
2(X

∗′
2 X∗

2)
−X∗′

2 X1 = 2 I 4 ×
(

1 −1

−1 1

)
.

It is clear then that

rank C = 4

and hence (13.37) is satisfied since q1 = 8, n = 4. All main effects are estimable
(which we knew already, of course). �

Let us now return to (13.36). Since C is not of full rank, we write a solution
to (13.36) as

Ê1 = C−Q

where C− is a generalized inverse of C. We also have for any estimable function
c′E1

var(c′Ê1) = c′C− cσ 2
e

The estimable functions here are, of course, those belonging to the various main
effects. To illustrate this we consider again Example 13.6.

Example 13.6 (Continued) A generalized inverse for C is

C− =



1
2

0 0
1
2

0
1
2

0 0
1
2

0


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It is verified easily that

X′
1X

∗
2(X

∗′
2 X∗

2)
−X∗′

2 = 1
2 I8I

′
8

and hence

Q =
[
X′

1 − 1
2 I8I

′
8

]
y = 1

2



1 1 −1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1

1 −1 −1 1 −1 1 1 −1
−1 1 1 −1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1


y

Finally, we obtain

Ê1 = C−Q = 1

4



1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0
1 −1 −1 1 −1 1 1 −1
0 0 0 0 0 0 0 0
1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0





y(0000)

y(0110)

y(1010)

y(1100)

y(0011)

y(0101)

y(1001)

y(1111)


We thus have 

Â0

Â1

B̂0

B̂1

Ĉ0

Ĉ1

F̂0

F̂1


=



y(0 . . .) − y(1 . . .)

0
y(. 0 . .) − y(. 1 . .)

0
y(. . 0 .) − y(. . 1 .)

0
y(. . . 0) − y(. . . 1)

0


and hence for the four estimable functions A = A1 − A0, B = B1 − B0, C =
C1 − C0, F = F1 − F0, we obtain the estimators

Â = Â1 − Â0 = y(1 . . .) − y(0 . . .)

B̂ = B̂1 − B̂0 = y(. 1 . .) − y(. 0 . .)

Ĉ = Ĉ1 − Ĉ0 = y(. . 1 .) − y(. . 0 .)

F̂ = F̂1 − F̂0 = y(. . . 1) − y(. . . 0)
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with
var(Â) = var(B̂) = var(Ĉ) = var(F̂ ) = 1

2σ 2
e

This agrees, of course, with our earlier results. �

We noted that for resolution III designs the minimum number of distinct
treatment combinations, that is, the number of treatment combinations in D0, is
1 + q1 − n, and designs with the number of runs can be constructed. No such
general statement, simply based on the rank condition (13.37), can be made
for resolution IV designs because of the presence of nuisance parameters, for
example, 2-factor interactions.

It is possible, however, to give a lower bound (LB) of the number of runs
needed for a resolution IV design. For a s

n1
1 × s

n2
2 × · · · × s

nq
q factorial with

s1 < s2 < · · · < sq such a bound was derived by Margolin (1969) as

LB = sq

{(
q∑

i=1

(si − 1)ni

)
− (sq − 2)

}
(13.38)

(see also Seely and Birkes (1984) for a comment on its validity). Specifically for
symmetrical factorials, that is, sn, we have the following lower bounds:

s LB

2 2n

3 3(2n − 1)

4 4(3n − 2)

5 5(4n − 3)

We can see that the design in Example 13.6 achieves this lower bound. But a
quick look at Table 13.9 shows that only few of those designs achieve the lower
bound, namely for s = 2, n = 8, � = 4 with 16 runs and s = 4, n = 6, � = 3
with 64 runs.

13.6.4 Foldover Designs

Experiments are often initiated with resolution III designs because they are rel-
atively small in size and provide some preliminary information about possibly
active factors. However, the fact that main effects are not clear may make it
sometimes difficult to interpret the results from such an experiment. One way to
solve or partially solve this problem is to augment the original design with another
fractional replicate such that the resulting design is a resolution IV design. For the
2n−�

III fraction this can be achieved by using the foldover principle or producing
a foldover design (Box and Wilson, 1951).

The idea behind a foldover design simply is to replace in each treatment
combination of the original fraction all 0 levels by 1 levels and all 1 levels by 0
levels. We shall illustrate this principle in the following example.
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Example 13.7 Consider the 25−2
III fraction given by

I = ABCD = CDE = ABE (13.39)

and with the design obtained by solving the equations

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0 (13.40)

x1 + x2 + x5 = 0

This yields the design points

(00000)

(11110)

(00110)

(11000)

(01101)

(10011)

(01011)

(10101)

The foldover design then is

(11111)

(00001)

(11001)

(00111)

(10010)

(01100)

(10100)

(01010)

It is easy to see that the treatment combinations of the foldover design satisfy
the equations

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 1

x1 + x2 + x5 = 1

Alternatively, we could have written (13.39) more precisely as

I = ABCD = −CDE = −ABE

and then the identity relationship for the foldover fraction becomes

I = ABCD = CDE = ABE

so that the identity relationship for the combined design is simply

I = ABCD

that is, we have obtained a 25−1
IV fraction. �

Within the practical context the augmentation of the original fraction by the
foldover fraction results in a sequential design in that the two fractions can be
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thought of as occurring in two different blocks. Formally this can be expressed
by adding another factor to the original design and having that factor occur at the
same level in the original fraction. Applying the foldover principle to the new
design yields then the same results as described above. We illustrate this briefly
with a continuation of Example 13.7

Example 13.7 (Continued) Denote the new (blocking) factor by F . We then
have a 26−3 fraction defined by

I = ABCD = −CDE = −ABE = F = ABCDF = −CDEF = −ABEF

The foldover design is thus defined by

I = ABCD = CDE = ABE = −F = −ABCDF = −CDEF = −ABEF

The two fractions combined are then defined by

I = ABCD = −CDEF = −ABEF (13.41)

hence yielding a 26−2
IV fraction. Assuming no block treatment interaction, we see

from (13.41) that with respect to the original factors A, . . . , E we obtain again
a 25−1

IV design as before. �

From Example 13.7 we can easily deduce the general idea associated with
the foldover principle: Starting with a resolution III design, we know that the
identity relationship contains one or more words of length 3 and other words
of length > 3. Or, alternatively, the defining equations [such as (13.40)] contain
three or more unknowns. Using the foldover principle changes the right-hand
sides of all equations with an odd number of unknowns, but does not change the
right-hand sides of equations with an even number of unknowns. This implies
that the identity relationship for the final design contains only interactions with
an even word length, the smallest of which will be 4. The foldover princi-
ple is thus an easy way to achieve dealiasing of main effects and 2-factor
interactions.

Such dealiasing can also be achieved by constructing what we might call a
partial foldover design. Rather than changing the level of each factor in each
treatment combination, we may choose to change only the levels of a judiciously
chosen subset of factors, in particular only one factor. This may have some merit
from the practical point of view.

It is, of course, clear that the foldover principle leads to a design with twice the
number of design points as the original fraction. Especially for larger designs,
that is, a large number of factors, this may be a disadvantage if not all main
effects may need to be dealiased. Other techniques, such as optimality based
techniques (see Wu and Hamada, 2000), may then be used instead by focusing
on a particular model as suggested by the data from the original experiment.
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13.6.5 Resolution V Designs

For resolution V designs we wish to estimate the mean, main effects, and 2-factor
interactions. Hence models (13.26) and (13.27) are appropriate. For purposes of
our discussion we write the model for short as

E[y] = X · E (13.42)

where

X = (I, X1, X2) (13.43)

and

E = (M, E′
1, E

′
2)

′

with q = 1 + q1 + q2 parameters. The NE for model (13.42) is

(X′X)E = X′y

and we know that because of the parameterization used

rank(X′X) < q

We also know that the number of degrees of freedom associated with the mean
and all main effects and 2-factor interactions included in E is

1 +
n∑

i=1

(si − 1) +
∑
i<j

(si − 1)(sj − 1) = ν(E)

say. For a design D to give rise to ν(E) degrees of freedom for SS(X), the sum
of squares due to fitting the model (13.42), and hence to the estimation of the
mean, all main effects and 2-factor interactions, we must have

rank(X′X) = ν(E)

A design D with ν(E) runs can always be achieved, a result similar to that for
resolution III designs. Such a design is obviously a saturated design.

We illustrate this with the following example.

Example 13.8 Consider n = 4 and s1 = s2 = s3 = s4 = 2. Then ν(E) = 11,
and it can be shown that the following (nonorthogonal) FFD allows the estimation
of all main effects and 2-factor interactions:

(0000) (1010) (1110)

(0011) (1001) (1101)

(1100) (0110) (1011)

(1111) (0101) �
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13.7 FRACTIONAL FACTORIALS AND COMBINATORIAL ARRAYS

The treatment combinations of a factorial design can conveniently be repre-
sented in the form of an array or a matrix with n rows representing the factors
A1, A2, . . . , An and N columns representing the treatment combinations (runs).
The elements of this array represent the levels of the factors, that is, if factor
Ai has si levels, then the elements in the ith row take on values from the set
Si = {0, 1, 2, . . . , si − 1} depending on which treatment combinations are part of
the design. In this section we shall give an overview of several types of arrays
and their relationship to certain types of fractional factorials.

13.7.1 Orthogonal Arrays

Let us consider an orthogonal array of size N , with n constraints, s levels, strength
d , and index λ, denoted by OA[N,n, s, d; λ] (see Appendix C). From our dis-
cussion above it follows that the rows represent the factors, the columns represent
the runs, and each factor has s levels. We are considering here specifically the
case N = sn−� = λsd .

Rao (1947b, 1950) has shown that for d = p + q − 1 we can estimate from
such an array main effects and interactions involving up to p factors if interactions
involving q(q > p) or more factors are assumed to be negligible. Of particular
interest are the following cases:

d p q Resolution

2 1 2 III
3 1 3 IV
4 2 3 V

An extension of this result to asymmetrical factorial designs was given by
Chakravarti (1956). Suppose we consider the s

n1
1 × s

n2
2 × · · · × s

ng
g factorial set-

ting and we wish to construct a subset of size N from the complete asymmetrical
factorial such that certain effects are estimable assuming that other effects (inter-
actions) are negligible. The solution given by Chakravarti (1956) can be stated
in the following theorem.

Theorem 13.2 If orthogonal arrays OA[Ni, ni, si , di; λi] (i = 1, 2, . . . , g)

exist, then the Kronecker product array of the g orthogonal arrays above yields
a fractional factorial designs in

N =
g

	
i=1

Ni =
g

	
i=1

λi s
di

i

runs. If the ith orthogonal array is of strength di = pi + qi − 1 (with pi, qi

as defined above), then in this Kronecker product array all main effects and
interactions involving up to r = ∑g

i=1 ri (0 ≤ ri ≤ pi; 0 < r ≤ ∑
pi) factors are

estimable, where ri factors are chosen from the ith group of factors at si levels
(i = 1, 2, . . . , g).
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As an illustration of this procedure we consider the following example.

Example 13.9 (Chakravarti, 1956) Suppose we have three factors A1, A2,
A3 with two levels each and four factors B1, B2, B3, B4 with three levels each;
that is, we have the 23 × 34 asymmetrical factorial. There exist resolution III
designs for the individual systems with 4 and 9 runs, respectively, given by
OA[22, 3, 2, 2; 1]

1 2 3 4

A1 0 1 1 0
A2 0 1 0 1
A3 0 0 1 1

and OA(32, 4, 3, 2; 1)

1 2 3 4 5 6 7 8 9

B1 0 0 0 1 1 1 2 2 2
B2 0 1 2 1 2 0 2 0 1
B3 0 2 1 1 0 2 2 1 0
B4 0 1 2 0 1 2 0 1 2

which correspond to the identity relationships

I = A1A2A3

and
I = B1B2B3 = B2B

2
3B4 = B1B

2
2B4 = B1B

2
3B2

4

respectively. The Kronecker product design is then obtained by combining every
column of OA[22, 3, 2, 2; 1] with every column of OA[32, 4, 3, 2; 1] resulting
in an array of n1 + n2 = 7 rows and N1N2 = 4 · 9 = 36 columns. Since p1 =
p2 = 1 and q1 = q2 = 2, it follows that in addition to the main effects only
2-factor interactions involving one factor Ai(i = 1, 2, 3) and one factor Bj (j =
1, 2, 3, 4), each with 2 d.f., are estimable assuming that all other interactions are
negligible. �

This method can produce a large number of asymmetrical fractional factorials,
but, as is the case with many Kronecker product designs, the number of runs
becomes quite large. For this reason we mention only a few other special cases
that lead to useful designs with the same properties as the design in Example 13.9:

1. For the 2n · s complete factorial (3 < n ≤ 7) combine each level of the
factor with s levels with each column of the array OA[8, n, 2, 2; 2] to
obtain a design with 8s runs.

2. For the 2n · s complete factorial (7 < n ≤ 11) combine each level of the
factor with s levels with each column of the array OA[12, n, 2, 2; 3] to
obtain a design with 12s runs.
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3. For the 2n1 · 3n2 complete factorial with 3 < n1 ≤ 7 and 1 < n2 ≤ 4 obtain
the Kronecker product design of OA[8, n1, 2, 2; 2] and OA[32, n2, 3, 2; 1]
with 72 runs.

For a more general characterization of designs in the above classes as well as
other factor combinations, see Chakravarti (1956).

13.7.2 Balanced Arrays

Just as orthogonal arrays are related to fractional factorial designs, so are balanced
arrays (see Appendix C). B-arrays of strength 2, 3, 4 represent resolution III, IV,
V designs, respectively. As an illustration consider the following example.

Example 13.10 BA(5, 4, 2, 2; (1, 1, 2)) is given by

B =


0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0


This represents a main effect plan for four factors in five runs. �

However, contrary to fractional factorial designs in the form of orthogonal
arrays, the designs from B-arrays are nonorthogonal, but as shown by Chakravarti
(1956) and Srivastava (1965) the variance–covariance matrix for estimates of the
parameters is balanced. For Example 13.10 this means that var(Âi) is the same
for each i = 1, 2, 3, 4, cov(µ̂, Âi) is the same for each i, and cov(Âi , Âj ) is the
same for each pair (i, j) with i �= j .

In a series of studies Srivastava and Chopra (1971) and Chopra and Srivastava
(1974, 1975) have provided methods of constructing B-arrays of strength 4 and a
list of resolution V designs for 4 ≤ n ≤ 8 factors and a wide range of N runs.

13.8 BLOCKING IN FRACTIONAL FACTORIALS

13.8.1 General Idea

As we have discussed, the purpose of FFDs is to reduce the number of experi-
mental runs consonant with the objectives of the experiment. That may still leave
us with a relatively large number of treatment combinations such that in the prac-
tical setting some form of blocking may be required. To achieve such blocked
designs we simply need to combine the ideas of systems of confounding and
fractional factorials. The concept can be described in general terms as follows.

Let us consider an unreplicated sn−� fractional factorial to be used in sm

blocks. We then know the following:

1. We have sn−� treatment combinations.
2. The available treatment combinations are determined by � independent

interaction components in the identity relationship.
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3. We can estimate (sn−� − 1)/(s − 1) functions of main effects and interac-
tion components.

4. The estimable functions are determined by the identity relationship in the
form of the alias structure.

5. We now have sm blocks of size 2n−�−m.
6. We have sm − 1 d.f. among blocks.
7. We need to confound (sm − 1)/(s − 1) interaction components with blocks.
8. From the available estimable functions (as given by the alias structure) we

need to select m functions to confound with blocks.
9. Then all their generalized interactions (and aliases) are also confounded

with blocks.

We shall illustrate these steps and some other ideas in the following sections with
particular reference to the 2n and 3n systems.

13.8.2 Blocking in 2n−� Designs

Consider a 2n−� FFD defined by the identity relationship (see Section 13.3.1)

I = Eα1 = Eα2 = · · · = Eα� = Eα1+α2 = · · · = Eα1+α2+...+α� (13.44)

where Eα1 , Eα2 , . . . , Eα� are the independent interactions. We shall denote the
2n−� − 1 = q estimable effects by Eβ1 , Eβ2, . . . , Eβq . The alias structure is
obtained by multiplying each Eβi (i = 1, 2, . . . , q) into (13.44).

We now consider placing the treatment combinations specified by (13.44) into
2m blocks of size 2n−�−m. To accomplish this we need to select m effects from
among the Eβi (i = 1, 2, . . . , q) to confound with blocks, say, without loss of
generality, Eβ1 , Eβ2, . . . , Eβm . We know that then all their generalized interac-
tions are also confounded with blocks, giving rise to the required 2m blocks.

To generate the intrablock subgroup (IBS) we combine the � equations for
generating the fraction specified by (13.44) and the m equations for the specified
system of confounding, that is,

α11x1 + α12x2 + · · · + α1nxn = 0

α21x1 + α22x2 + · · · + α2nxn = 0

...

α�1x1 + α�2x2 + · · · + α�nxn = 0

β11x1 + β12x2 + · · · + β1nxn = 0 (13.45)

β21x1 + β22x2 + · · · + β2nxn = 0

...

βm1x1 + βm2x2 + · · · + βmnxn = 0
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Equations (13.45) show that the IBS constitutes a 2n−(�+m) fraction, with the
remaining blocks representing the other fractions obtained by changing succes-
sively the right-hand sides of the second set of equations in (13.45).

In the practical context the interactions Eβi (i = 1, 2, . . . , m) would have
to be chosen carefully so as to avoid the confounding of “important” effects
with blocks. We shall illustrate the preceding procedure with the following
example.

Example 13.11 Consider the 27−3 design in four blocks. We start with the
resolution IV design defined by the identity relationship

I = ABCD = CDEF = ABEF = BCEG = ADEG = BDFG = ACFG

where the three independent interactions are underlined. The 15 estimable func-
tions (d.f.) are accounted for by seven main effects (+ 3-factor and higher-order
interactions), seven 2-factor interactions (+ higher-order interactions), and one
3-factor interaction (+ higher-order interactions). In order to set up blocks of
size 4 we need to confound three 2-factor interactions (and their aliases), choos-
ing, say, AB and AC as the two independent interactions. Thus, to generate the
design we chose in (13.45)

α′
1 = (1 1 1 1 0 0 0) α′

2 = (0 0 1 1 1 1 0) α′
3 = (0 1 1 0 1 0 1)

β ′
1 = (1 1 0 0 0 0 0) β ′

2 = (1 0 1 0 0 0 0)

An isomorphic design using SAS PROC FACTEX is given in Table 13.10. �

13.8.3 Optimal Blocking

As we have mentioned earlier, there may be various ways to set up the blocks
for a particular fractional factorial, for example, by choosing different βj to use
in (13.45). Such choices for the 2n−� fraction in 2m blocks may be made by
first inspecting the alias structure for the 2n−� and then selecting m appropriate
interactions to generate the system of confounding. We obviously need to be
careful in this selection so that some of the resulting 2m − m − 1 generalized
interactions do not end up being desirable effects.

A more formal approach to this problem makes use of the fact that blocking in
a 2n−� can be considered as a special case of fractionation (Kempthorne, 1952;
Lorenzen and Wincek, 1992) by introducing additional factors as blocking factors.
More specifically, a 2n−� fractional factorial in 2m blocks of size 2n−�−m(m <

n − �) can be considered formally as a 2(n+m)−(�+m) (Chen and Cheng, 1999).
The factors are divided into n treatment factors A1, A2, . . . , An and m blocking
factors b1, b2, . . . , bm. The 2m “level” combinations of the blocking factors are
used to divide the 2n−� treatment combinations into 2m blocks. By treating this
as a special case of a fractional factorial, the identity relationship will contain two
types of words: treatment-defining words are those that contain only treatment
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Table 13.10 27−3 Design in 4 Blocks

options nodate pageno=1;
proc factex;
factors A B C D E F G;
size design=16;
model res=4;
blocks size=4;
examine design aliasing(3) confounding;
output out=design

blockname=block nvals=(1 2 3 4);
title1 'TABLE 13.10';
title2 '2**(7-3) DESIGN IN 4 BLOCKS';
run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D E F G Block

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 -1 -1 -1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1 1 1 1
3 -1 -1 1 -1 1 1 -1 1
4 -1 -1 1 1 -1 -1 1 4
5 -1 1 -1 -1 1 -1 1 3
6 -1 1 -1 1 -1 1 -1 2
7 -1 1 1 -1 -1 1 1 2
8 -1 1 1 1 1 -1 -1 3
9 1 -1 -1 -1 -1 1 1 3

10 1 -1 -1 1 1 -1 -1 2
11 1 -1 1 -1 1 -1 1 2
12 1 -1 1 1 -1 1 -1 3
13 1 1 -1 -1 1 1 -1 4
14 1 1 -1 1 -1 -1 1 1
15 1 1 1 -1 -1 -1 -1 1
16 1 1 1 1 1 1 1 4

Factor Confounding Rules

E = B*C*D
F = A*C*D
G = A*B*D
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Table 13.10 (Continued )

Block Pseudofactor Confounding Rules

[B1] = A*B*C*D
[B2] = C*D

Aliasing Structure

A = B*D*G = B*E*F = C*D*F = C*E*G
B = A*D*G = A*E*F = C*D*E = C*F*G
C = A*D*F = A*E*G = B*D*E = B*F*G
D = A*B*G = A*C*F = B*C*E = E*F*G
E = A*B*F = A*C*G = B*C*D = D*F*G
F = A*B*E = A*C*D = B*C*G = D*E*G
G = A*B*D = A*C*E = B*C*F = D*E*F

[B] = A*B = D*G = E*F
A*C = D*F = E*G
A*D = B*G = C*F

[B] = A*E = B*F = C*G
[B] = A*F = B*E = C*D

A*G = B*D = C*E
B*C = D*E = F*G
A*B*C = A*D*E = A*F*G = B*D*F = B*E*G = C*D*G = C*E*F

Obs block A B C D E F G

1 1 -1 -1 -1 1 1 1 1
2 1 -1 -1 1 -1 1 1 -1
3 1 1 1 -1 1 -1 -1 1
4 1 1 1 1 -1 -1 -1 -1
5 2 -1 1 -1 1 -1 1 -1
6 2 -1 1 1 -1 -1 1 1
7 2 1 -1 -1 1 1 -1 -1
8 2 1 -1 1 -1 1 -1 1
9 3 -1 1 -1 -1 1 -1 1

10 3 -1 1 1 1 1 -1 -1
11 3 1 -1 -1 -1 -1 1 1
12 3 1 -1 1 1 -1 1 -1
13 4 -1 -1 -1 -1 -1 -1 -1
14 4 -1 -1 1 1 -1 -1 1
15 4 1 1 -1 -1 1 1 -1
16 4 1 1 1 1 1 1 1

factors, and block-defining words are those that contain at least one blocking
factor (Chen and Cheng, 1999). We shall illustrate this in the following example.

Example 13.12 Consider the 27−3 in 22 blocks as a 2(7+2)−(3+2) fraction. We
need three independent treatment-defining words, say A2A3A4A5, A1A3A4A6,
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and A1A2A4A7, and two independent block-defining words, say A1A2A3A4b1
and A3A4b2. To obtain the desired design we thus need to solve the following
equations:

x2 + x3 + x4 + x5 = 0

x1 + x3 + x4 + x6 = 0

x1 + x2 + x4 + x7 = 0 (13.46)

x1 + x2 + x3 + x4 + y1 = 0

x3 + x4 + y2 = 0

where in (13.46) x1, x2, . . . , x7 refer to the treatment factors and y1, y2 refer to the
block factors, with xi = 0, 1, (i = 1, 2, . . . , 7), yj = 0, 1(j = 1, 2). The solution
of Eqs. (13.46) leads to the design given in Table 13.10 if we use the following
association between block numbers and block factor level combinations:

Block No. y1 y2

1 1 1

2 0 1

3 1 0

4 0 0 �

Inspection of the identity relationship in Example 13.12 illustrates some of
the difficulties encountered in extending the notions of resolution and minimum
aberration to situations involving block-defining words. The presence of a three-
letter word, for example, A3A4b2, would suggest that the design is a resolution
III design, when in fact it is clearly a resolution IV design with regard to the
treatment factors. Similar problems have been addressed and solutions proposed
by, for example, Bisgaard (1994), Sitter, Chen, and Feder (1997), and Sun, Wu,
and Chen (1997), but as Chen and Cheng (1999) point out, none of these solu-
tions are satisfactory with regard to properly characterizing blocked designs and
identifying optimal blocking schemes.

The problem is that there are two different word length patterns, one for
treatment-defining words and one for block-defining words. Suppose we consider
only designs where no main effects are confounded either with other main effects
or block effects. Following Sun, Wu, and Chen (1997), let Li,0 be the number
of treatment-defining words containing i treatment letters, and let Li,1 be the
number of block-defining words also containing i treatment letters and one or
more block letters. We then have, for a given design, two types of word length
patterns, one for treatment-defining words

WLPt = (L3,0, L4,0, . . .) (13.47)
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and one for block-defining words

WLPbt = (L2,1, L3,1, . . .) (13.48)

Clearly, (13.47) and (13.48) have different meanings and are of different
importance. An intuitive method to proceed would be to search for a design
that has minimum aberration (see Section 13.3.4) with respect to both treatment
and block factors. Zhang and Park (2000), however, have shown that no such
design exists. Instead, in order to extend the concept of minimum aberration we
somehow may need to combine (13.47) and (13.48). To this end Chen and Cheng
(1999) propose the following ordering, based on the hierarchical assumption that
lower-order effects are more important than higher-order effects and that effects
of the same order are of equal importance:

(L3,0, L2,1), L4,0, (L5,0, L3,1), L6,0, (L7,0, L4,1) L8,0, . . . (13.49)

This means, for example, that if L3,0 > 0 some 2-factor interactions are aliased
with main effects, and if L2,1 > 0 then some 2-factor interactions are confounded
with blocks. In either case those 2-factor interactions cannot be estimated. Further,
designs with L3,0 > 0 and/or L2, 1 > 0 are clearly less desirable than designs with
L3,0 = L2,1 = 0 and L4,0 > 0.

Based on such considerations, the criterion of minimum aberration for
blocked fractional factorial designs might be defined by sequentially mini-
mizing L3,0, L2,1, L4,0, L5,0, L3,1, L6,0, L7,0, L4,1, L8,0, . . . . But Chen
and Cheng (1999) show that even that is not quite satisfactory. Based on
the notion of estimation capacity [for details see Cheng, Steinberg, and Sun,
(1999)], they propose to minimize sequentially what they call the blocking
word length pattern:

WLPb =
(
Lb

3, L
b
4, . . . , L

b
n+[n/2]

)
(13.50)

where

Lb
j =



Lj,0 for even j ≤ n(
j

(j + 1)/2

)
Lj,0 + L(j+1)/2,1 for odd j ≤ n

Lj−[n/2],1 for n + 1 ≤ j ≤ n + [n/2]
(13.51)

and [n/2] is the largest integer less than or equal to n/2. As can be seen
from (13.51) the word length for odd j ≤ n is a linear combination of the
two associated word lengths enclosed in parentheses in (13.49). For example,
Lb

3 = 3L3,0 + L2,1 and Lb
5 = 10 L5,0 + L3,1.

For detailed methods of identifying minimum aberration blocked fractional
factorial designs we refer the reader to Chen and Cheng (1999). In Tables 13.11,
13.12, and 13.13 we give, in a different form, some of their results for 8-,
16-, 32-run minimum aberration 2n−� designs in 2m blocks for n = 4, 5, . . . , 10;
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Table 13.11 8-Run Minimum Aberration 2n−� Designs

Independent Defining Words

n � m Treatments Blocks WLPb
a

4 1 1 ABCD ABb1 2 1 0
4 1 2 ABCD ABb1, ACb2 6 1 0
5 2 1 ABD, ACE BCb1 8 1 2
6 3 1 ABD, ACE , BCF ABCb1 15 3 4

aGiving only Lb
3, Lb

4, Lb
5.

Table 13.12 16-Run Minimum Aberration 2n−� Designs

Independent Defining Words

n � m Treatments Blocks WLPb
a

5 1 1 ABCE ABDb1 0 1 2
5 1 2 ABCE ABb1, ACDb2 2 1 4
5 1 3 ABCE ABb1, ACb2, ADb3 10 1 0
6 2 1 ABCE , ABDF ACDb1 0 3 4
6 2 2 ABCE , ABDF ABb1, ACDb2 3 3 8
6 2 3 ABCE , ABDF ABb1, ACb2, ADb3 15 3 0
7 3 1 ABCE , ABDF , BCDb1 0 7 7

ACDG

7 3 2 ABCE , ABDF , ABb1, ACb2 9 7 0
ACDG

7 3 3 ABCE , ABDF , ABb1, ACb2, ADb3 21 7 0
ACDG

8 4 1 ABCE , ABDF , ABb1 4 14 0
ACDG, BCDH

8 4 2 ABCE , ABDF , ABb1, ACb2 12 14 0
ACDG, BCDH

8 4 3 ABCE , ABDF , ABb1, ACb2, ADb3 28 14 0
ACDG, BCDH

9 5 1 ABE , ACF , BCb1, 16 14 84
ADG, BCDH ,
ABCDJ

9 5 2 ABE , ACF , BCb1, BDb2 24 14 92
ADG, BCDH ,
ABCDJ

10 6 1 ABE , ACF , BDb1 28 18 96
BCG, ADH ,
BCDJ , ABCDK

10 6 2 ABE , ACF , ABCb1, BDb2 37 18 184
BCG, ADH ,
BCDJ , ABCDK

aGiving only Lb
3, Lb

4, Lb
5.
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Table 13.13 32-Run Minimum Aberration 2n−� Designs

Independent Defining Words

n � m Treatments Blocks WLPb
a

6 1 1 ABCDEF ABCb1 0 0 2
6 1 2 ABCF ABDb1, ACEb2 0 1 4
6 1 3 ABCDEF ABb1, CDb2, ACEb3 3 0 8
6 1 4 ABCDEF ABb1, ACb2, 15 0 0

ADb3, AEb4
7 2 1 ABCF , ABDEG ACDb1 0 1 22
7 2 2 ABCF , ABDG ACDb1, ABEb2 0 3 7
7 2 3 ABCF , ABDEG ACb1, ABDb2, 5 1 32

ABEb3
7 2 4 ABCF , ADEG ABb1, ACb2 21 2 0

ADb3, AEb4
8 3 1 ABCF , ABDG , ABEb1 0 3 43

ACDEH
8 3 2 ABCF , ABDG , ABEb1, BCDEb2 1 3 50

ACDEH
8 3 3 ABCF , ABDG , ABb1, ACDb2, 7 5 18

ACEH AEb3
8 3 4 ABCF , ABDG , ABb1, ACb2, 28 5 0

ACEH ADb3, AEb4
9 4 1 ABCF , ABDG , BCDEb1 0 6 84

ABEH , ACDEJ
9 4 2 ABCF , ABDG , BCb1, BDEb2 2 9 14

ACEH , ADEJ
9 4 3 ABCF , ABDG , ABb1, ACDb2, 9 9 27

ACEH , ADEJ AEb3
9 4 4 ABCF , ABDG , ABb1, ACb2, 36 9 0

ACEH , ADEJ DEb3, AEb4
10 5 1 ABCF , ABDG , ACDb1 0 15 10

ACEH , ADEJ ,
ABCDEK

10 5 2 ABCF , ABDG , ABb1, ACDb2 3 15 20
ACEH , ADEJ ,
ABCDEK

10 5 3 ABCF , ABDG , ABb1, ACb2, 12 16 36
ACDH , ABEJ , ADEb3
ACEK

10 5 4 ABCF , ABDG , ABb1, ACb2 45 15 0
ACEH , ADEJ , ADb3, AEb4
ABCDEK

aGiving only Lb
3, Lb

4, Lb
5.
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� = 1, 2 . . . , 6; m = 1, 2, 3, 4. For possible combinations of n, �, and m we give
the independent words for the identity relationship from which the design can
be obtained by solving a set of equations as illustrated in Example 13.12. We
also list the first three components, Lb

3, Lb
4, and Lb

5, of each associated WLPb.
In Tables 13.11, 13.12, and 13.13 we denote the treatment factors by A, B, C,
D, E, F , G, H , J , K and the blocking factors by b1, b2, b3, b4.

13.9 ANALYSIS OF UNREPLICATED FACTORIALS

One reason for using fractional factorial designs is to reduce the number of runs
in the experiments. But even a highly fractional design for a large number of
factors may involve quite a large number of runs. In that case we may be able
to afford only a few or no replications of the treatment combinations included in
the design. As we know replications are important for estimating the variance of
the estimable effects and interactions.

For unreplicated 2n factorials we have described how negligible interactions
can be used to estimate σ 2

e (see Section 7.6.6). This method is, of course, applica-
ble also for the general sn factorial and mixed factorials. The problem becomes
more complicated for fractional factorials where often only main effects and
low-order interactions are estimable. In this case we have to fall back on the
assumption of effect sparsity, which says that typically only a few effects and/or
interactions are real. We shall mention here briefly the essential ideas of two
methods that are helpful with the analysis of data and the interpretation of the
results from unreplicated fractional factorials.

13.9.1 Half-Normal Plots

Let us consider a 2n−� fraction and suppose that the effects and interactions Eα1 ,
Eα2, . . ., Eαm(m = 2n−� − 1) are estimable (these are, of course, aliased with
other interactions which we assume to be negligible). Noting that | Êαi | =
| Ê

αi

1 − Ê
αi

0 | can be viewed as the range of a pair of (approximately) nor-
mally distributed random variables suggests that the | Êαi | are themselves half-
normally distributed, that is, follow the distribution function

f (x) = [2/(π σ 2
e )]1/2 exp[−x2/(2 σ 2

e )] for x ≥ 0

= 0 for x < 0

Its cdf can be linearized by using the upper half of normal probability paper,
relabeling the P axis for P ≥ .5 as P ′ = 2P − 1. Based on this idea Daniel
(1959) proposed a procedure that has come to be known as half-normal plot.

It consists of plotting the absolute values of the m estimates, approximating
their P ′ values by P ′ = (i − 1

2 )/m for i = 1, 2, . . . , m. If, as assumed, most of
the estimates are, in fact, estimating zero, then they should fall near a straight
line through the origin. The 68% point (obtained from P ′ = 2 × .84 − 1 = .68)
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would provide an approximate value of the standard error, say SE0, of the effects
plotted, that is, an estimate of σ 2

e since SE(Êαi ) = σ̂e/(2n−�−2)1/2. Furthermore,
to the extent that some of the largest estimates deviate from the straight line is
an indication that the corresponding effects are different from zero.

The above describes in essence the procedure, but we need to elaborate on
two points: (1) How do we judge an estimate to be significantly different from
zero? and (2) should we reestimate σ 2

e in light of some significant estimates?

1. The significance of effects is judged by whether they fall outside certain
“guardrails” (Daniel, 1959). The α-level guardrails are constructed by draw-
ing a line through the α-level critical values for the largest standardized
absolute effects, say th(h = m, m − 1, . . . , m − K), standardized by the
initial estimate of σe. Zahn (1975) provided the critical values for m = 15,
31, 63, 127 and α = .05, .20, .40. In Table 13.14 we give the critical values
for m = 15, 31 and α = .05, .20, .40 for some th.

2. Based upon the test performed by using the procedure in point 1 above,
we exclude not only the significant effects at α = .05 but also “borderline”
effects at α = .20 or even α = .40, say there are Kα such effects altogether,
and replot the m − Kα remaining effects. The value at P ′ = .68 provides
then the final value for SE(Êαi ), say SEf , and from it we obtain the final
estimate of σe [for a more refined explanation see Zahn (1975)].

The half-normal plot procedure is illustrated in the following example.

Example 13.13 The following data are taken from Example 10.4 in Davies
(1956), which describes a 25−1 factorial investigating the quality of a basic
dyestuff. The factors are A (temperature), B (quality of starting material), C

Table 13.14 Guardrail Critical Values

m = 15: h α = .05 α = .20 α = .40

15 3.230 2.470 2.066

14 2.840 2.177 1.827

13 2.427 1.866 1.574

12 2.065 1.533 1.298

m = 31: h α = .05 α = .20 α = .40

31 3.351 2.730 2.372

30 3.173 2.586 2.247

29 2.992 2.439 2.121

28 2.807 2.288 1.991

27 2.615 2.133 1.857
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(reduction pressure), D (pressure), and E (vacuum leak). The 1
2 -fraction is based

on I = −ABCDE. The treatment combinations and observations Y are given in
Table 13.15.

Pertinent computed values to draw the half-normal plot are given in Table
13.16, and the half-normal plot is given in Figure 13.1.

From Table 13.16 we see that SE0 = B̂C = 8.31, the 11th-order statistic, is
closest to the .68 percentile and hence is the initial estimate of SE(Êαi ). The
standardized effects are then obtained as ti =| Êαi | /8.31. The guardrails for
α = .05, .20, and .40 are constructed by drawing lines through the corresponding

Table 13.15 25−1 Fractional Factorial

Treatment Y Treatment Y

00000 201.5 00011 255.5

10001 178.0 10010 240.5

01001 183.5 01010 208.5

11000 176.0 11011 244.0

00101 188.5 00110 274.0

10100 178.5 10111 257.5

01100 174.5 01111 256.0

11101 196.5 11110 274.5

Table 13.16 Calculations for Half-Normal Plot of Figure 13.1

Effect Êαi Order(i) (i − .5)/15 ti

DE − .0625 1 .0333 .00752

A .4375 2 .1000 .05263

AE −2.3125 3 .1667 .27820

AC 3.0625 4 .2333 .36842

BD −3.5625 5 .3000 .42857

E 3.9375 6 .3667 .47368

CE −4.6875 7 .4333 .56391

AD 5.1875 8 .5000 .62406

B −7.5625 9 .5667 .90977

BE 7.6875 10 .6333 .92481

BC 8.3125 11 .7000 1.00000

C 14.0625 12 .7667 1.69173

CD 14.3125 13 .8333 1.72180

AB 16.6875 14 .9000 2.00752

D 66.6875 15 .9667 8.02256
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Figure 13.1 Half-normal plot with guardrails.
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Figure 13.2 Half-normal plot for nonsignificant effects.

critical values for t15, t14, t13, and t12. From Figure 13.1 we see that for α = .05
only D is significant, for α = .20 D and C are significant, and for α = .40 D, C,
CD, and AB are significant. Using the latter result, we obtain the final estimate
of σe from the .68 percentile of the half-normal plot for the 11 smallest effects in
Figure 13.2. From it we see that ÂD = 5.188 = SE(Êαi ) = σ̂e/(25−1−2)1/2 =
SEf , and hence σ̂e = 2 × 5.188 = 10.376. �
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13.9.2 Bar Chart

This procedure, proposed by Lenth (1989), is based on a simple formula for the
standard error of the estimated effects. The effects are plotted and the usual t

procedures are used to judge significance and interpret the results.
Let

s0 = 1.5 × median | Êαi |

and define the pseudostandard error (PSE) of the estimated effect by

PSE = 1.5 × r-median | Êαi | (13.52)

where r-median is the restricted median over all | Êαi | < 2.5s0. PSE (corre-
sponding to SEf in Section 13.9.1) in (13.52) is an estimate of σe/(2n−�−2)1/2.
It can be used to define two useful quantities that in turn can be used to assess
the significance of effects.

Let

ME = t.975,d × PSE (13.53)

denote the margin of error for Êαi , where t.975,d is the .975th quantile of the t

distribution with d = m/3 d.f. (m = 2n−� − 1). An approximate 95% confidence
interval for Eαi is then given by Êαi ± ME. A simultaneous margin of error
(SME) is defined:

SME = tγ,d × PSE (13.54)

where γ = (1 + .951/m)/2. For some values of m we have

m t.975,d tγ,d

7 3.76 9.01

15 2.57 5.22

31 2.22 4.22

63 2.08 3.91

The procedure proposed by Lenth (1989) then is as follows:

1. Construct a bar chart of the signed effects.
2. Add reference lines at ± ME [from (13.53)] and ± SME [from (13.54)].
3. Judge an effect as clearly active if Êαi extends beyond the SME lines,

inactive if Êαi does not extend beyond the ME lines, and of debatable
significance if Êαi falls between the ME and SME lines.
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Figure 13.3 Bar chart for Example 13.14.

We illustrate this procedure in the following example.

Example 13.14 Consider the data from Example 13.13. We obtain s0 =
1.5 × 5.1875 = 7.78, PSE = 1.5 × 4.9875 = 7.48, ME = 19.23, SME = 39.05.
The bar chart is given in Figure 13.3. From it we see that only D is significant
at α = .05. This agrees with the result in Example 13.13. �

13.9.3 Extension to Nonorthogonal Design

The previous analysis procedures are applicable for orthogonal designs. There
are, however, situations where we may encounter nonorthogonal designs, either
by construction (see Section 14.4) or as a consequence of some mishap in the
experiment. For example, we may have some replicates for one or a few treatment
combinations. Or we may have missing values. Both cases lead to nonorthogonal
designs, complicating the analysis and interpretation of results.

A data-driven method for nonorthogonal designs was proposed by Kunert
(1997), extending the method of Daniel (1959) as modified by Zahn (1975) and
the method of Lenth (1989). For details we refer the reader to the original article
by Kunert (1997).
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Main Effect Plans

14.1 INTRODUCTION

Main effect plans (MEP) or resolution III designs are commonly used in
exploratory studies when a large number of factors need to be considered or
screened. The idea is to try to detect factors that exhibit “large” main effects
and discard factors with no noticeable effects from further study. The crucial
assumption here is that all interactions are negligible, including 2-factor inter-
actions. This may not always be realistic, but as a first approximation this is
nevertheless a very valuable method. In some cases it may be helpful to know
with which 2-factor interactions each main effect is aliased. We shall make some
remarks about that later.

14.2 ORTHOGONAL RESOLUTION III DESIGNS FOR
SYMMETRICAL FACTORIALS

Among the resolution III designs those that admit uncorrelated estimates of main
effects are of major importance. Not only are they easy to construct and analyze,
but the results from such experiments are also easy to interpret. Because of their
special feature, these designs are referred to as orthogonal resolution III designs
or orthogonal main effect plans (OMEP). We shall now describe some methods
of constructing OMEPs.

14.2.1 Fisher Plans

In discussing systems of confounding (see Section 11.4) for an sn factorial in
blocks of size s� with n = (s� − 1)/(s − 1) we have already provided a method
of constructing a 1/sn−� fraction of an sn factorial. Such a FFD is a saturated

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.

564
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OMEP, designated by s
n−(n−�)
III , indicating that this is a 1/sn−� fraction of an

sn factorial resulting in sn−(n−�) = s� treatment combinations (runs, trials) and
is of resolution III. Here s = pm and p is a prime. The method of construc-
tion is based on results given by Fisher (1942, 1945) on how to obtain the
IBSG for an sn factorial in blocks of size s�. The IBSG is then the OMEP.
The method of construction guarantees that each level of each factor occurs
the same number of times, namely s�−1, and each level combination for any
two factors occurs the same number of times, namely s�−2 (see Section 11.3).
The latter is a sufficient condition for the estimates of the main effects to be
uncorrelated.

To see this, consider model (13.28) with X1 having the following properties:

1. Each column has s�−1 unity elements, the remaining s�−1(s − 1) elements
are zero.

2. The inner product of any two columns belonging to the same factor [i.e.,
columns belonging to (Ai)δ and (Ai)γ , δ, γ = 0, 1, . . . , s − 1; δ �= γ ] is
equal to zero.

3. The inner product of any two columns belonging to different factors [i.e.,
columns belonging to (Ai)δ and (Aj )γ , i, j = 1, 2, . . ., n; i �= j ] is equal
to s�−2.

Considering (13.28) as a two-part linear model and using the result of
Section I.4.8 we can write the RNE for E1 as

X′
1

(
I − 1

s�
II′

)
X1E1 = X′

1

(
I − 1

s�
II′

)
y (14.1)

The coefficient matrix in (14.1) can be written alternatively as[
X′

1

(
I − 1

s�
II′

)][(
I − 1

s�
II′

)
X1

]
= X̃

′
1X̃1 (14.2)

with

X̃1 =
(

I − 1

s�
II′

)
X1

that is, X̃1 is obtained from X1 by subtracting from each element the correspond-
ing column mean. Because of property 1 each column mean is 1/s. Because of
properties 2 and 3, it follows then that

X̃
′
1X̃1 = diag [M, M, . . . , M]︸ ︷︷ ︸

n
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with M an s × s matrix of the form

M = s�−2(sI − II′)

Using the result from Theorem 1.1 we then have(
X̃

′
1X̃1

)− = diag(M−, M−, . . . , M−) (14.3)

with

M− = 1

s�−1
I

Since
(
X̃

′
1X̃1

)−
is the variance–covariance matrix for estimable functions

associated with the various main effects, it follows then from (14.3) that
estimable functions associated with different main effects, such as

∑
δ cδ(Âi)δ

and
∑

δ dδ(Âj )δ for the two factors Ai and Aj , are uncorrelated. The same, of
course, is true for the estimates of orthogonal contrasts associated with the main
effects of the same factor, such as

∑
δ cδ(Âi)δ and

∑
δ dδ(Âi)δ with

∑
δ cδdδ = 0.

The estimates of the estimable functions are obtained from (14.1) as

Ê1 =
(
X̃

′
1X̃1

)−
X̃

′
1y

Examples of OMEPs that can be obtained by this method are given in
Table 14.1. In this table n represents the maximum number of factors that can
be accommodated in N = s� runs resulting in a saturated OMEP. It should
be clear how this method can also be used to construct OMEPs for n∗ < n =
(s� − 1)/(s − 1) factors in N runs. All we need to do is to construct the plan for
n factors and then delete n − n∗ factors from that plan. The resulting design is
obviously an OMEP, but it is no longer a saturated OMEP. Instead it provides
(n − n∗)(s − 1) d.f. for error.

Table 14.1 Orthogonal Main
Effect Plans (Fisher’s Method)

sn N = s�

27 8
215 16
231 32
34 9
313 27
340 81
45 16
421 64
56 25



ORTHOGONAL RESOLUTION III DESIGNS FOR SYMMETRICAL FACTORIALS 567

14.2.2 Collapsing Factor Levels

The condition of equal frequencies for all level combinations for any pair of
factors in an OMEP can be relaxed to that of proportional frequencies. This
was shown first by Plackett (1946) and later by Addelman and Kempthorne
(1961) for asymmetrical factorials (see Theorem 14.1). This result leads to the
construction of additional OMEPs by using what is called collapsing of factor
levels. For example, we may collapse the levels of a three-level factor to those
of a two-level factor by setting up the correspondence

Three-Level Factor Two-Level Factor

0 −→ 0
1 −→ 1
2 −→ 0

Using this correspondence we can, for example, use the 34−2
III and obtain an

OMEP for the 24 factorial with nine runs.

14.2.3 Alias Structure

Even though for resolution III designs we make the assumption that all interac-
tions are negligible, it may in certain situations be useful to know with which
2-factor interactions the main effects are confounded. The reason, of course, is
that among interactions the 2-factor interactions are least likely to be negligible
and hence to know the aliasing between main effects and 2-factor interactions may
be helpful for diagnostic purposes (see also Section 13.6.4). We shall illustrate
this later.

The general method of investigating the alias structure is, of course, to make
use of models (13.28) and (13.33). That is, we estimate the main effects from
a given design using (13.31) and then consider the expected value of the esti-
mates under model (13.33). To illustrate this we have from (13.31), with
E∗′

1 = (M, E′
1),

Ê
∗
1 = (X∗′

1 X∗
1)

−X∗′
1 y

and, using (13.33)

E[X∗
1Ê

∗
1] = X∗

1(X
∗′
1 X∗

1)
−X∗′

1 (X∗
1E

∗
1 + X2E2)

= X∗
1E

∗
1 + X∗

1(X
∗′
1 X∗

1)
−X∗′

1 X2E2

or, for an estimable function c′E∗
1,

E[c′Ê∗
1] = c′E∗

1 + c′(X∗′
1 X∗

1)
−X∗′

1 X2E2 (14.4)
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Expressions for this alias structure can be stated explicitly (see below) for certain
OMEPs. In other cases computer programs may be useful to obtain expressions
for (14.4).

Since the OMEP sn−(n−�) with n = (s� − 1)/(s − 1) is equivalent to the IBSG
of an sn experiment in blocks of size s�, it is obvious that the interactions that
are confounded with blocks are also the interactions included in the identity
relationship. Altogether there are (sn−� − 1)/(s − 1) interactions in the identity
relationship, n − � independent interactions plus all their GIs. For our purpose
here we are concerned only with knowing the 3-factor interactions contained in
the identity relationship. Some 3-factor interactions are directly identified from
(11.27), namely those Eγ j for which the partition αj+� corresponds to a 2-factor
interaction in the s� system. Others may be obtained as GIs among the n − �

independent interactions (11.27). Now if, for example, Fi1F
δ
i2

F
γ

i3
is a 3-factor

interaction in the identity relationship for some i1, i2, i3 with 1 ≤ i1, i2, i3 ≤ n

and i1, i2, i3 different and some δ, γ with 1 ≤ δ, γ ≤ s − 1, then Fi1 will be con-
founded with Fδ

i2
F

γ

i3
(or an appropriate power of Fδ

i2
F

γ

i3
to bring it into standard

form), and so forth. An alternative method, using existing computer programs,
of obtaining the relevant alias structure is given below. We now illustrate our
discussion with the following example.

Example 14.1 Suppose s = 3, � = 2, and hence n = 4. The 34−2
III was given

as the IBSG in Example 11.2. From Example 11.4 it follows that the identity
relationship is given by

I = F1F2F
2
3 = F1F

2
2 F 2

4 = F1F3F4 = F2F3F
2
4 (14.5)

or, more precisely,

I = (F1F2F
2
3 )0 = (F1F

2
2 F 2

4 )0 = (F1F3F4)0 = (F2F3F
2
4 )0 (14.6)

where F1F2F
2
3 and F1F

2
2 F 2

4 are the independent interactions obtained from
(11.27) and F1F3F4, F2F3F

2
4 are their GIs. It follows then from (14.5) that

the relevant aliasing for F1, for example, is given by

F1 = F2F
2
3 = F2F4 = F3F4

If the 2-factor interactions were indeed not negligible, then instead of estimating,
for example, (F1)2 − (F1)0 we would actually estimate [see also (14.4)]

[(F1)2 − (F1)0] + [(F2F
2
3 )1 − (F2F

2
3 )0]

+ [(F2F4)2 − (F2F4)0] + [(F3F4)1 − (F3F4)0] (14.7)

making use of (14.6). Clearly, if all 2-factor interactions were nonnegligible
using the OMEP would be useless. But suppose the investigator is fairly sure
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that all 2-factor interactions except possibly F2 × F3 are negligible. Then we
would have to be concerned about the confounding of F1 and F2F

2
3 and F4

and F2F3. If then an estimated contrast belonging to F1 were “large,” we may
suspect that this is partly due to a corresponding contrast belonging to F2F

2
3 , and

so forth. Of course, we have no way of knowing, but this may suggest at least
further investigation, for example, by augmenting the original design to achieve
the desired dealiasing. It is in this sense that knowledge of the alias structure can
be helpful as a diagnostic tool.

The form of the estimable function (14.7) can also be obtained by using the
E-option in SAS PROC GLM. The (fictitious) data and the ensuing analysis are
given in Table 14.2.

Concerning the SAS input and output in Table 14.2 we make the following
comments:

1. The factors are now labeled A, B, C, D.
2. The model includes all 2-factor interactions similar to the model for a reso-

lution IV design.
3. The option e1 lists all type I estimable functions (see comment 4) and pro-

duces the type I sums of squares (see I.4.11.1).
4. Using a model similar to (13.23) (see also Section 7.2.1), we see that by

putting L2 = 1 and all other Li = 0(i = 3, 5, 6, 8, 9, 11, 12) the following
function is estimable:

α0 − α2 + 1
3 [(αβ)00 + (αβ)01 + (αβ)02 − (αβ)20 − (αβ)21 − (αβ)22]

+ 1
3 [(αγ )00 + (αγ )01 + (αγ )02 − (αγ )20 − (αγ )21 − (αγ )22]

+ 1
3 [(αδ)00 + (αδ)01 + (αδ)02 − (αδ)20 − (αδ)21 − (αδ)22]

+ 1
3 [(βγ )00 − (βγ )02 − (βγ )10 + (βγ )11 − (βγ )21 + (βγ )22]

+ 1
3 [(βδ)00 − (βδ)02 − (βδ)11 + (βδ)12 − (βδ)20 + (βδ)21]

+ 1
3 [(γ δ)00 − (γ δ)01 − (γ δ)10 + (γ δ)12 + (γ δ)21 − (γ δ)22] (14.8)

Defining the interaction terms such that, for example,

2∑
j=0

(αβ)ij = 0 for i = 0, 1, 2

then in (14.8) all terms in (αβ)ij , (αγ )ik , (αδ)i� drop out. Concerning the remain-
ing interaction terms, we make use of the two equivalent parameterizations, for
example,

B × C = BC + BC2
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Table 14.2 Orthogonal Main Effect Plan 34−2

options nodate pageno=1;

data OMEP;

input A B C D Y @@;

datalines;

0 0 0 0 5 1 1 2 0 7 2 2 1 0 6

0 1 1 2 8 1 0 1 1 4 0 2 2 1 5

1 2 0 2 8 2 0 2 2 9 2 1 0 1 7

;

run;

proc print data=OMEP;

title1 'TABLE 14.2';

title2 'ORTHOGONAL MAIN EFFECT PLAN 3**(4-2)';

run;

proc glm data=OMEP;

class A B C D;

model y=A B C D A*B A*C A*D B*C B*D C*D/e1;

title3 'ANALYSIS AND ESTIMABLE FUNCTIONS';

run;

Obs A B C D Y

1 0 0 0 0 5

2 1 1 2 0 7

3 2 2 1 0 6

4 0 1 1 2 8

5 1 0 1 1 4

6 0 2 2 1 5

7 1 2 0 2 8

8 2 0 2 2 9

9 2 1 0 1 7

The GLM Procedure

ANALYSIS AND ESTIMABLE FUNCTIONS

Class Level Information

Class Levels Values

A 3 0 1 2

B 3 0 1 2

C 3 0 1 2

D 3 0 1 2
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Table 14.2 (Continued )

Number of observations 9

Type I Estimable Functions

- - - - - - - - - - - - - - - - - - Coefficients - - - - - - - - - - - - - - - - - -

Effect A B C

Intercept 0 0 0

A 0 L2 0 0

A 1 L3 0 0

A 2 -L2-L3 0 0

B 0 0 L5 0

B 1 0 L6 0

B 2 0 -L5-L6 0

C 0 0 0 L8

C 1 0 0 L9

C 2 0 0 -L8-L9

D 0 0 0 0

D 1 0 0 0

D 2 0 0 0

A*B 0 0 0.3333*L2 0.3333*L5 0.3333*L8

A*B 0 1 0.3333*L2 0.3333*L6 0.3333*L9

A*B 0 2 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

A*B 1 0 0.3333*L3 0.3333*L5 0.3333*L9

A*B 1 1 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

A*B 1 2 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

A*B 2 0 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

A*B 2 1 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

A*B 2 2 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

A*C 0 0 0.3333*L2 0.3333*L5 0.3333*L8

A*C 0 1 0.3333*L2 0.3333*L6 0.3333*L9

A*C 0 2 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

A*C 1 0 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

A*C 1 1 0.3333*L3 0.3333*L5 0.3333*L9

A*C 1 2 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

A*C 2 0 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

A*C 2 1 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

A*C 2 2 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

A*D 0 0 0.3333*L2 0.3333*L5 0.3333*L8

A*D 0 1 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

A*D 0 2 0.3333*L2 0.3333*L6 0.3333*L9

A*D 1 0 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

A*D 1 1 0.3333*L3 0.3333*L5 0.3333*L9
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Table 14.2 (Continued )

Type I Estimable Functions

- - - - - - - - - - - - - - - - - Coefficients - - - - - - - - - - - - - - - - -

Effect D A*B A*C A*D B*C B*D C*D

Intercept 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0

A 1 0 0 0 0 0 0 0

A 2 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

B 1 0 0 0 0 0 0 0

B 2 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0

C 1 0 0 0 0 0 0 0

C 2 0 0 0 0 0 0 0

D 0 L11 0 0 0 0 0 0

D 1 L12 0 0 0 0 0 0

D 2 -L11-L12 0 0 0 0 0 0

A*B 0 0 0.3333*L11 0 0 0 0 0 0

A*B 0 1 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*B 0 2 0.3333*L12 0 0 0 0 0 0

A*B 1 0 0.3333*L12 0 0 0 0 0 0

A*B 1 1 0.3333*L11 0 0 0 0 0 0

A*B 1 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*B 2 0 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*B 2 1 0.3333*L12 0 0 0 0 0 0

A*B 2 2 0.3333*L11 0 0 0 0 0 0

A*C 0 0 0.3333*L11 0 0 0 0 0 0

A*C 0 1 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*C 0 2 0.3333*L12 0 0 0 0 0 0

A*C 1 0 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*C 1 1 0.3333*L12 0 0 0 0 0 0

A*C 1 2 0.3333*L11 0 0 0 0 0 0

A*C 2 0 0.3333*L12 0 0 0 0 0 0

A*C 2 1 0.3333*L11 0 0 0 0 0 0

A*C 2 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*D 0 0 0.3333*L11 0 0 0 0 0 0

A*D 0 1 0.3333*L12 0 0 0 0 0 0

A*D 0 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*D 1 0 0.3333*L11 0 0 0 0 0 0

A*D 1 1 0.3333*L12 0 0 0 0 0 0
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Table 14.2 (Continued )

Type I Estimable Functions

- - - - - - - - - - - - - - - - - - Coefficients - - - - - - - - - - - - - - - - - -

Effect A B C

A*D 1 2 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

A*D 2 0 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

A*D 2 1 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

A*D 2 2 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

B*C 0 0 0.3333*L2 0.3333*L5 0.3333*L8

B*C 0 1 0.3333*L3 0.3333*L5 0.3333*L9

B*C 0 2 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

B*C 1 0 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

B*C 1 1 0.3333*L2 0.3333*L6 0.3333*L9

B*C 1 2 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

B*C 2 0 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

B*C 2 1 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

B*C 2 2 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

B*D 0 0 0.3333*L2 0.3333*L5 0.3333*L8

B*D 0 1 0.3333*L3 0.3333*L5 0.3333*L9

B*D 0 2 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

B*D 1 0 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

B*D 1 1 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

B*D 1 2 0.3333*L2 0.3333*L6 0.3333*L9

B*D 2 0 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

B*D 2 1 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

B*D 2 2 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

C*D 0 0 0.3333*L2 0.3333*L5 0.3333*L8

C*D 0 1 -0.3333*L2-0.3333*L3 0.3333*L6 0.3333*L8

C*D 0 2 0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L8

C*D 1 0 -0.3333*L2-0.3333*L3 -0.3333*L5-0.3333*L6 0.3333*L9

C*D 1 1 0.3333*L3 0.3333*L5 0.3333*L9

C*D 1 2 0.3333*L2 0.3333*L6 0.3333*L9

C*D 2 0 0.3333*L3 0.3333*L6 -0.3333*L8-0.3333*L9

C*D 2 1 0.3333*L2 -0.3333*L5-0.3333*L6 -0.3333*L8-0.3333*L9

C*D 2 2 -0.3333*L2-0.3333*L3 0.3333*L5 -0.3333*L8-0.3333*L9

Type I Estimable Functions

- - - - - - - - - - - - - - - - - Coefficients - - - - - - - - - - - - - - - - -

Effect D A*B A*C A*D B*C B*D C*D

A*D 1 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

A*D 2 0 0.3333*L11 0 0 0 0 0 0

A*D 2 1 0.3333*L12 0 0 0 0 0 0

A*D 2 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0
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Table 14.2 (Continued )

B*C 0 0 0.3333*L11 0 0 0 0 0 0

B*C 0 1 0.3333*L12 0 0 0 0 0 0

B*C 0 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

B*C 1 0 0.3333*L12 0 0 0 0 0 0

B*C 1 1 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

B*C 1 2 0.3333*L11 0 0 0 0 0 0

B*C 2 0 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

B*C 2 1 0.3333*L11 0 0 0 0 0 0

B*C 2 2 0.3333*L12 0 0 0 0 0 0

B*D 0 0 0.3333*L11 0 0 0 0 0 0

B*D 0 1 0.3333*L12 0 0 0 0 0 0

B*D 0 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

B*D 1 0 0.3333*L11 0 0 0 0 0 0

B*D 1 1 0.3333*L12 0 0 0 0 0 0

B*D 1 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

B*D 2 0 0.3333*L11 0 0 0 0 0 0

B*D 2 1 0.3333*L12 0 0 0 0 0 0

B*D 2 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

C*D 0 0 0.3333*L11 0 0 0 0 0 0

C*D 0 1 0.3333*L12 0 0 0 0 0 0

C*D 0 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

C*D 1 0 0.3333*L11 0 0 0 0 0 0

C*D 1 1 0.3333*L12 0 0 0 0 0 0

C*D 1 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

C*D 2 0 0.3333*L11 0 0 0 0 0 0

C*D 2 1 0.3333*L12 0 0 0 0 0 0

C*D 2 2 -0.3333*L11-0.3333*L12 0 0 0 0 0 0

Dependent Variable: Y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 8 22.22222222 2.77777778 . .

Error 0 0.00000000 .

Corrected Total 8 22.22222222

R-Square Coeff Var Root MSE Y Mean

1.000000 . . 6.555556

Source DF Type I SS Mean Square F Value Pr > F

A 2 2.88888889 1.44444444 . .

B 2 2.88888889 1.44444444 . .
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Table 14.2 (Continued )

C 2 1.55555556 0.77777778 . .

D 2 14.88888889 7.44444444 . .

A*B 0 0.00000000 . . .

A*C 0 0.00000000 . . .

A*D 0 0.00000000 . . .

B*C 0 0.00000000 . . .

B*D 0 0.00000000 . . .

C*D 0 0.00000000 . . .

(see Section 10.2) where the 2 d.f. of BC consist of comparisons among BC0,
BC1, and BC2, with

BC0: (βγ )00 + (βγ )12 + (βγ )21

BC1: (βγ )10 + (βγ )01 + (βγ )22

BC2: (βγ )20 + (βγ )02 + (βγ )11

and similarly

BC2
0 : (βγ )00 + (βγ )11 + (βγ )22

BC2
1 : (βγ )10 + (βγ )02 + (βγ )21

BC2
2 : (βγ )20 + (βγ )01 + (βγ )12

We can write out similar expressions involving the (βδ)jk and (γ δ)k� terms.
Utilizing these equivalencies in (14.8) leads to the same result as given in (14.7).

�
14.2.4 Plackett–Burman Designs

For 2n factorials a special method of constructing a large number of OMEPs was
provided by Plackett and Burman (1946). The method is based on the existence
of Hadamard matrices.

Definition 14.1 A square matrix H of order N with entries −1, 1 is called
a Hadamard matrix of order N if

HH ′ = H ′H = NIN (14.9)
�

Condition (14.9) is equivalent to saying that for a Hadamard matrix H the
rows are pairwise orthogonal and the columns are pairwise orthogonal. Given a
Hadamard matrix H , an equivalent matrix with all elements in the first column
equal to +1 can be obtained by multiplying by −1 each element in every row
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of H whose first element is −1. Such a matrix will be called seminormalized.
Through a similar operation one can transform a Hadamard matrix H such that
all elements in the first row are equal to +1. If the first column and first row
contain only +1 elements, then the matrix is said to be normalized. Except for
the trivial Hadamard matrices

H 1 = (1), H 2 =
(

1 1

1 −1

)

it is known that a necessary condition of the existence of a Hadamard matrix of
order N is that N ≡ 0 mod 4 (Paley, 1933). Hadamard matrices for N ≤ 200
have been constructed (see, e.g., Hedayat and Wallis, 1978; Hedayat, Sloane and
Stufken, 1999). For N = 2�, for example, H can be constructed as the �-fold
Kronecker product of H 2 with itself. Hadamard matrices for N = 4t and t = 1,
2, . . ., 8 are given by Hedayat and Wallis (1978) and for t = 1, 2, . . ., 12 by
Dey (1985).

Consider now a Hadamard matrix H of order N in normalized (or seminor-
malized) form and delete from it the first column. Denote the resulting matrix
by H̃ and identify the columns with factors F1, F2, . . ., FN−1. We then take

H ∗ = 1
2

(
H̃ + II′)

and consider each row of H ∗ as a treatment combination from the 2N−1 facto-
rial. These N runs constitute an OMEP for N − 1 factors, with N = 4t(t = 1,
2, . . .). The fact that this FFD is an OMEP follows immediately from the prop-
erties of a Hadamard matrix in seminormalized (and hence normalized) form,
namely for any column (factor) we have the same number of +1 and −1 ele-
ments in H̃ (and hence the same number of +1 and 0 elements in H ∗, and for
any pair of columns we have the same number of (+1, +1), (+1, −1), (−1,
+1), (−1, −1) combinations in H̃ ). FFDs constructed in this manner are called
Plackett–Burman designs. Actually, Plackett and Burman (1946) list designs for
t = 1, 2, . . ., 25 (except 23 which was given by Baumert, Golomb, and Hall,
1962) using H ∗ = 1

2 (−H̃ + II′). In this way the OMEP includes the control,
that is, the treatment combination (0, 0, . . ., 0). We note here that for N = 2� the
Plackett–Burman designs are the same as the Fisher plans for n = N − 1 factors
discussed earlier. Also, the Plackett–Burman designs are relevant for the prob-
lem of weighing N − 1 light objects in N weighings, a problem first discussed
by Yates (1935) for a spring balance and by Hotelling (1944) for a chemical bal-
ance. Hotelling (1944) showed that the optimum weighing design was obtained
by using Hadamard matrices. Kempthorne (1948) discussed the problem from
the viewpoint of factorial experimentation and showed how fractional factorials
could be used. For a detailed discussion of weighing designs the reader is referred
to Banerjee (1975).

In contrast to the Fisher plans the alias structure for the Plackett–Burman
designs is rather complicated and difficult to determine (Margolin, 1968; Lin and
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Draper, 1993). In any case, each main effect is aliased with a long string of
2-factor interactions and no expressions like (14.7) can be written out easily and
studied in case the estimate of a main effect turns out to be “large.”

Of course, folding-over the Plackett–Burman design leads to a resolution IV
design, thereby dealiasing the main effects. In many cases less drastic measures
may, however, achieve the goal of dealiasing some main effects, and that may be
all that is needed since main effect plans are often used for screening purposes and
only some of the main effects may be important; that is, only some of the factors
may be active. This leads to investigating the projections of a Plackett–Burman
design into smaller, say k, dimensions, where k < n. Here projection simply
means to ignore the remaining n − k factors after k factors have been identified,
at least in a rough and preliminary sense, as being active. For example, Lin and
Draper (1992) have shown that for the 211 Plackett–Burman design in 12 runs
the projection to k = 4 dimensions shows that one needs to add only one more
run to identify a 24−1

IV design among the 13 runs. Or for k = 5 one needs to add
8 more runs to obtain a 25−1

IV design plus additional runs. Similar results have
been obtained for other Plackett–Burman designs (Lin and Draper, 1993).

We shall use the 211 Plackett–Burman design in 12 runs, as given in
Table 14.3, to make some additional comments about projections and the esti-
mation of main effects and 2-factor interactions:

1. k = 2: Since the Plackett–Burman designs are orthogonal arrays of strength
2 (see Section 14.2.5), it follows that each combination of the levels of two
factors occurs equally often. Hence, for the two specified factors we can
estimate the main effects and the 2-factor interaction.

2. k = 3: Inspection of the design in Table 14.3 shows that it contains a com-
plete 23 factorial, allowing the estimation of the three main effects and three
2-factor interactions. The 12 runs no longer constitute an orthogonal design
and hence the estimators will be correlated.

3. k = 4: It turns out that the available 11 d.f. allow the estimation of the four
main effects and their six 2-factor interactions. This is shown in Table 14.3
using the E-option in SAS PROC GLM (keeping in mind that, e.g., EF01 +
EJ01 + EL01 = 0). The ANOVA in Table 14.3 also shows that the design is
no longer orthogonal as indicated by different numerical values for the type
I and type III sums of squares.

14.2.5 Other Methods

We mention here briefly two other methods of constructing OMEPs. Addelman
and Kempthorne (1961) describe a procedure for constructing an OMEP for an
sn factorial in 2s� runs, where n = [2(s� − 1)/(s − 1) − 1]. This procedure is an
extension of the method used for the Fisher plans, using, however, a different
correspondence between the factors and factor combinations from the 2� factorial
and the n factors for the FFD. This method leads to OMEPs such as N = 18 =
2 · 32 runs for the 37, N = 54 = 2 · 33 runs for the 325, or N = 32 = 2 · 42 runs
for the 49 factorial.
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Table 14.3 Plackett–Burman Design for 11 Factors in 12 Runs

options pageno=1 nodate;
data PBdesign;
input A B C D E F G H J K L Y;
datalines;
1 1 0 1 1 1 0 0 0 1 0 10
0 1 1 0 1 1 1 0 0 0 1 15
1 0 1 1 0 1 1 1 0 0 0 20
0 1 0 1 1 0 1 1 1 0 0 25
0 0 1 0 1 1 0 1 1 1 0 23
0 0 0 1 0 1 1 0 1 1 1 32
1 0 0 0 1 0 1 1 0 1 1 29
1 1 0 0 0 1 0 1 1 0 1 33
1 1 1 0 0 0 1 0 1 1 0 30
0 1 1 1 0 0 0 1 0 1 1 31
1 0 1 1 1 0 0 0 1 0 1 28
0 0 0 0 0 0 0 0 0 0 0 30
;
run;

proc print data=PBdesign;
title1 'TABLE 14.3';
title2 'PLACKETT-BURMAN DESIGN';
title3 'FOR 11 FACTORS IN 12 RUNS';
run;

proc glm data=PBdesign;
class A B C D E F G H J K L;
model Y=A B C D E F G H J K L;
title4 'ANALYSIS OF VARIANCE';
run;

proc glm data=PBdesign;
class E F J L;
model Y=E|F|J|L@2/e;
title3 'PROJECTION ON FACTORS E,F,J,L';
title4 'ANALYSIS WITH MAIN EFFECTS AND TWO-FACTOR INTERACTIONS';
run;

Obs A B C D E F G H J K L Y

1 1 1 0 1 1 1 0 0 0 1 0 10
2 0 1 1 0 1 1 1 0 0 0 1 15
3 1 0 1 1 0 1 1 1 0 0 0 20
4 0 1 0 1 1 0 1 1 1 0 0 25
5 0 0 1 0 1 1 0 1 1 1 0 23
6 0 0 0 1 0 1 1 0 1 1 1 32
7 1 0 0 0 1 0 1 1 0 1 1 29
8 1 1 0 0 0 1 0 1 1 0 1 33
9 1 1 1 0 0 0 1 0 1 1 0 30
10 0 1 1 1 0 0 0 1 0 1 1 31
11 1 0 1 1 1 0 0 0 1 0 1 28
12 0 0 0 0 0 0 0 0 0 0 0 30
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Table 14.3 (Continued )

Class Level Information

Class Levels Values

A 2 0 1

B 2 0 1

C 2 0 1

D 2 0 1

E 2 0 1

F 2 0 1

G 2 0 1

H 2 0 1

J 2 0 1

K 2 0 1

L 2 0 1

Number of observations 12

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 575.0000000 52.2727273 . .

Error 0 0.0000000 .

Corrected Total 11 575.0000000

R-Square Coeff Var Root MSE Y Mean

1.000000 . . 25.50000

Source DF Type I SS Mean Square F Value Pr > F

A 1 3.0000000 3.0000000 . .
B 1 27.0000000 27.0000000 . .
C 1 12.0000000 12.0000000 . .
D 1 16.3333333 16.3333333 . .
E 1 176.3333333 176.3333333 . .
F 1 133.3333333 133.3333333 . .
G 1 1.3333333 1.3333333 . .
H 1 21.3333333 21.3333333 . .
J 1 108.0000000 108.0000000 . .
K 1 1.3333333 1.3333333 . .
L 1 75.0000000 75.0000000 . .
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Table 14.3 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

A 1 3.0000000 3.0000000 . .
B 1 27.0000000 27.0000000 . .
C 1 12.0000000 12.0000000 . .
D 1 16.3333333 16.3333333 . .
E 1 176.3333333 176.3333333 . .
F 1 133.3333333 133.3333333 . .
G 1 1.3333333 1.3333333 . .
H 1 21.3333333 21.3333333 . .
J 1 108.0000000 108.0000000 . .
K 1 1.3333333 1.3333333 . .
L 1 75.0000000 75.0000000 . .

PROJECTION ON FACTORS E, F, J, L
ANALYSIS WITH MAIN EFFECTS AND TWO-FACTOR INTERACTIONS

Class Level Information

Class Levels Values

E 2 0 1

F 2 0 1

J 2 0 1

L 2 0 1

Number of observations 12

General Form of Estimable Functions

Effect Coefficients

Intercept L1

E 0 L2
E 1 L1-L2

F 0 L4
F 1 L1-L4

E*F 0 0 L6
E*F 0 1 L2-L6
E*F 1 0 L4-L6
E*F 1 1 L1-L2-L4+L6

J 0 L10
J 1 L1-L10
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Table 14.3 (Continued )

E*J 0 0 L12
E*J 0 1 L2-L12
E*J 1 0 L10-L12
E*J 1 1 L1-L2-L10+L12

F*J 0 0 L16
F*J 0 1 L4-L16
F*J 1 0 L10-L16
F*J 1 1 L1-L4-L10+L16

L 0 L20
L 1 L1-L20

E*L 0 0 L22
E*L 0 1 L2-L22
E*L 1 0 L20-L22
E*L 1 1 L1-L2-L20+L22

F*L 0 0 L26
F*L 0 1 L4-L26
F*L 1 0 L20-L26
F*L 1 1 L1-L4-L20+L26

J*L 0 0 L30
J*L 0 1 L10-L30
J*L 1 0 L20-L30
J*L 1 1 L1-L10-L20+L30

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 10 574.5000000 57.4500000 114.90 0.0725

Error 1 0.5000000 0.5000000

Corrected Total 11 575.0000000

R-Square Coeff Var Root MSE Y Mean

0.999130 2.772968 0.707107 25.50000

Source DF Type I SS Mean Square F Value Pr > F

E 1 176.3333333 176.3333333 352.67 0.0339
F 1 133.3333333 133.3333333 266.67 0.0389
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Table 14.3 (Continued )

E*F 1 65.3333333 65.3333333 130.67 0.0556
J 1 66.6666667 66.6666667 133.33 0.0550
E*J 1 2.6666667 2.6666667 5.33 0.2601
F*J 1 112.6666667 112.6666667 225.33 0.0423
L 1 10.8000000 10.8000000 21.60 0.1349
E*L 1 5.4857143 5.4857143 10.97 0.1867
F*L 1 0.1758242 0.1758242 0.35 0.6592
J*L 1 1.0384615 1.0384615 2.08 0.3862

Source DF Type III SS Mean Square F Value Pr > F

E 1 61.03846154 61.03846154 122.08 0.0575
F 1 61.03846154 61.03846154 122.08 0.0575
E*F 1 9.34615385 9.34615385 18.69 0.1447
J 1 61.03846154 61.03846154 122.08 0.0575
E*J 1 0.11538462 0.11538462 0.23 0.7149
F*J 1 72.11538462 72.11538462 144.23 0.0529
L 1 9.34615385 9.34615385 18.69 0.1447
E*L 1 5.65384615 5.65384615 11.31 0.1840
F*L 1 0.11538462 0.11538462 0.23 0.7149
J*L 1 1.03846154 1.03846154 2.08 0.3862

Another method is derived from the fact that each OMEP is an orthogonal
array of strength 2 (Rao, 1946a). More precisely, if n denotes the number of
factors, N the number of runs, s the number of levels, then an OMEP can be
denoted by OA[N , n, s, 2]. Bose and Bush (1952) show that an OA[λs2, λs, s,
2] can be constructed if λ and s are both powers of the same prime p. Suppose
λ = pu, s = pν . Then some examples of OMEPs obtained with this method are
given below:

Factorial Number of Runs (N )

24 8
28 16
39 27
327 81

Obviously, these will not be saturated OMEPs.

14.3 ORTHOGONAL RESOLUTION III DESIGNS FOR
ASYMMETRICAL FACTORIALS

In many practical situations it is the case that we shall use factors with different
numbers of levels. This is dictated by the nature of the experiment and the
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type of factors included in the experiment as well as the suspected nature of
their response at different levels. And again, if we want to investigate a large
number of factors, concentrating on estimating main effects may be a prudent
thing to do.

14.3.1 Kronecker Product Design

An easy method to construct an OMEP for an s
n1
1 × s

n2
2 × · · · × s

nq
q asymmetrical

factorial is to consider each component symmetrical factorial separately, construct
an OMEP for it, and then take the Kronecker product of these designs. For
example, if we have a 27 × 34 we can construct a 27−4

III and a 34−2
III and the

Kronecker product of these two designs will yield a FFD, which is an OMEP,
with N = 8 · 9 = 72 runs. Obviously, this design contains far too many treatment
combinations to account for the 7 + 4 · 2 = 15 d.f. for the main effects. It is for
this reason that other methods of constructing OMEPs for asymmetrical factorials
have been developed.

14.3.2 Orthogonality Condition

A method that yields a very large number of OMEPs for many different situa-
tions was developed by Addelman and Kempthorne (1961) (see also Addelman,
1962a). These designs are based on OMEPs for symmetrical factorials with sub-
sequent collapsing and replacement of levels for certain factors. This procedure
will be described more precisely in Section 14.3.3. For now we mention only
that as a consequence of this procedure the levels of one factor no longer occur
together with the same frequency with each of the levels of any other factor, as
was the case for the OMEPs for symmetrical factorials. They do, however, occur
together with proportional frequencies and that, as we shall show, is sufficient to
guarantee orthogonal estimates of main effects.

To reduce the amount of writing let us consider the case of two factors, A

and B say, where A has a levels and B has b levels. Suppose that in a given
FFD the ith level of A occurs together with the j th level of B for Nij times.
Let

∑
j Nij = Ni.,

∑
i Nij = N.j ,

∑
i Ni. = ∑

j N.j = N , the total number of
runs in the FFD. If the level combinations occur with proportional frequencies,
we have Nij = Ni.N.j /N for every i and j (i = 0, 1, . . ., a − 1; j = 0 1, . . .,
b − 1). We then state the following theorem.

Theorem 14.1 A sufficient condition for a main effect plan for two factors
A and B with a and b levels, respectively, to be an OMEP is that each level
combination for the two factors occurs with proportional frequency.

Proof Consider model (13.28) and rewrite it as

E(y) = (I,X11, X12)

µ

A

B


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where A′ = (A0, A1, . . . , Aa−1) and B ′ = (B0, B1, . . . , Bb−1) represent the main
effect components for the two factors A and B, respectively. We then rewrite the
N E (13.29) as  I′I I′X11 I′X12

X′
11I X′

11X11 X′
11X12

X′
12I X′

12X11 X′
12X12


µ

A

B

 =

 I′y

X′
11y

X′
12y

 (14.10)

Denote the coefficient matrix in (14.10) by K . Then we have

K =



N N0. N1. . . . Na−1,. N.0 N.1 . . . N.,b−1

N0. N0. 0 . . . 0 N00 N01 . . . N0,b−1

N1. 0 N1. . . . 0 N10 N11 . . . N1,b−1

.

..
.
..

Na−1,. 0 0 . . . Na−1,. Na−1,0 Na−1,1 . . . Na−1,b−1

N.0 N00 N10 . . . Na−1,0 N.0 0 . . . 0

N.1 N01 N11 . . . Na−1,1 0 N.1 . . . 0

.

..
.
..

N.,b−1 N0,b−1 N1,b−1 . . . Na−1,b−1 0 0 . . . N.,b−1


To obtain a solution to (14.10) we need to find a generalized inverse for K . If
Nij = Ni.N.j /N for each i and j , then such a g inverse is given by

K− =



1

N
0 . . . 0 0 . . . 0

− 1

N

1

N0.

− 1

N

1

N1.
0

.

..
. . .

− 1

N

1

Na−1,.

− 1

N

1

N.0

− 1

N

1

N.1
.
.. 0

. . .

− 1

N

1

N.,b−1



(14.11)
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This follows easily by verifying that KK−K = K using the proportionality con-
dition. The reader may recognize that the solution and hence K− can be obtained
by imposing the conditions

∑
i Ni.Âi = 0 = ∑

j N.j B̂j . Consider now the con-
trasts

∑
ciAi and

∑
djBj (with

∑
ci = 0,

∑
dj = 0) belonging to the main

effects A and B, respectively. It follows then immediately that

cov
(∑

ciÂi ,
∑

dj B̂j

)
= (0, c′, 0)K−

0
0
d

 = 0 (14.12)

where c′ = (c0, c1, . . . , ca−1), d ′ = (d0, d1, . . . , db−1), that is, estimates of con-
trasts for the two main effects are uncorrelated. Hence we have an OMEP. �

Obviously the proof can be extended in a straightforward manner to any
number of factors with the proportionality condition holding for any pair of
factors. We mention also that Addelman and Kempthorne (1961) proved that
proportional frequency is actually a necessary and sufficient condition for a main
effect plan to be an OMEP (see also Dey, 1985).

The methods of constructing main effect plans as described in the follow-
ing section make use of the proportionality condition of Theorem 14.1. Before
proceeding, however, we need to clarify an argument put forth by Srivastava
and Ghosh (1996). They argue that main effect plans with proportional (and not
equal) frequencies are not OMEPs. Clearly, Eq. (14.12) shows that the estimators
of contrasts of main effects belonging to two different factors are uncorrelated.
The concern of Srivastava and Ghosh (1996) has to do with estimators of contrasts
belonging to the same factor, for example,∑

i

ciÂi

∑
i

diÂi (14.13)

with
∑

i ci = 0 = ∑
i di and

∑
i cidi = 0. Using K− from (14.11), it follows

immediately that the contrasts in (14.13) are correlated (see also Section I.7.3).
In order to produce uncorrelated contrasts Addelman (1962a) considers contrasts
of the form ∑

i

Ni.c
∗
i Ai

∑
i

Ni.d
∗
i Ai (14.14)

with
∑

i Ni.c
∗
i = 0 = ∑

i Ni.d
∗
i and

∑
i Ni.c

∗
i d

∗
i = 0.

We emphasize that contrasts of the form (14.13) or (14.14) are considered only
for purposes of posthoc analyses (see Chapter I.7). For qualitative factors such
contrasts are prespecified, for quantitative factors they represent various forms
of trends, such as linear, quadratic, and so forth. In either case the contrasts
must be chosen such that they are meaningful in the context of the experiment,
whether they are orthogonal or not. And that does not affect the properties of the
design. Whether a main effect plan is an OMEP is determined only by whether
the condition of Theorem 14.1 is satisfied.
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14.3.3 Addelman–Kempthorne Methods

We now describe three methods for constructing OMEPs for asymmetrical fac-
torials as developed by Addelman and Kempthorne (1961).

Method 1
We consider the s

n1
1 × s

n2
2 × · · · × s

nq
q factorial and assume that s1 > s2

> · · · > sq .

Collapsing Factors
We can construct an OMEP with N = s�

1 runs, where s1 is a prime or prime
power and

q∑
i=1

ni ≤ s�
1 − 1

s1 − 1
(14.15)

in the following way. We first construct an OMEP for the sn
1 factorial in s�

1 trials
where � is chosen so that (14.15) is satisfied and where n = (s�

1 − 1)/(s1 − 1)

using the method described in Sections 14.2 and 11.7. We write the plan as an
N × n array, D say, such that the columns denote the factors and each row
represents a treatment combination (run) for the n factors with s1 levels each.
We shall refer to D also as the auxiliary OMEP. In the context of the s

n1
1 ×

s
n2
2 × · · · × snq

q factorial the first n1 columns in D correspond to the first set of
factors, each having s1 levels. For the following factors we use what Addelman
and Kempthorne (1961) refer to as collapsing factors with s1 levels to factors
occurring at si levels (i = 2, 3, . . ., q) by setting up a many–one correspondence
between the set of s1 levels and the set of si levels. This means that different levels
of the s1-level factor are mapped into the same level of the si-level factor. As
an example, suppose we have s1 = 5, s2 = 3. We then might have the following
mapping:

Five-Level Factor Three-Level Factor

0 −→ 0

1 −→ 1

2 −→ 2

3 −→ 0

4 −→ 1

Proceeding in this way we replace the next n2 factors by s2-level factors, the
following n3 factors by s3-level factors, and so on, until all factors have been
accommodated. Since

∑q

i=1 ni ≤ n it may be necessary to delete some factors
from the basic OMEP if the inequality holds. Since the collapsing procedure
leads automatically to proportional frequencies (for any collapsing scheme) the
final design is an OMEP.

We illustrate this procedure with the following example.
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Example 14.2 Consider the 53 × 3 × 22 factorial. Since for � = 2, (52 −
1)/(5 − 1) = 6 we can construct an OMEP with 25 runs from an OMEP for the
56 factorial in 25 runs, using the method of Section 11.7.1. The construction of
this plan is illustrated in Table 14.4a. Using the collapsing schemes

0 −→ 0 0 −→ 0

1 −→ 1 1 −→ 1

2 −→ 2 and 2 −→ 0

3 −→ 0 3 −→ 1

4 −→ 1 4 −→ 0

we then obtain the final design given in Table 14.4b. It can easily be verified
that the proportionality conditions are met. For example, for factors F4 and
F5 we have N00 = 6, N0. = 10, N.0 = 15, and with N = 25 we have N00 =
10 · 15/25 = 6. �

Expanding Factors
Rather than collapsing the s1-level factor to an si-level factor we may, in certain
situations, expand the s1-level factor into a set of si-level factors if s1 = sm

i for
some i. We know that there exists an OMEP for ν = (sm

i − 1)/(si − 1) factors

at si levels with sm
i runs, that is, an s

ν−(ν−m)
iIII . We then construct the s

n−(n−�)
1III for

a suitable n as discussed before and � determined from n ≤ (s�
1 − 1)/(s1 − 1).

Next, we replace each of the s1 levels for one factor by a treatment combination
from the s

ν−(ν−m)
iIII . We thus replace an s1-level factor by ν = (sm

i − 1)/(si − 1)

si-level factors. This method will be most useful for s1 = 4 = 22 and perhaps
for s1 = 8 = 23, s1 = 9 = 32. We now illustrate this method in the follow-
ing example.

Example 14.3 Consider the 43 × 3 × 23 factorial. Instead of using the col-
lapsing factors method with n1 = 3, n2 = 1, n3 = 3 which would lead to an
OMEP with 64 runs, we use the fact that a 4-level factor can be replaced by
ν = 3 two-level factors. We thus consider an OMEP for the 45 factorial that
can be obtained with 16 runs and then use replacing and collapsing as given in
Table 14.5. For details of the construction of the auxiliary OMEP using GF(22)
arithmetic, we refer to Sections 11.7 and 11.13.1 (Example 11.5). In the final plan
(Table 14.5b), the elements in GF(22) are replaced by 0, 1, 2, and 3, respectively.
We use the following collapsing scheme for F4:

Four-Level Factor (F4) Three-Level Factor (F4)

0 −→ 0
1 −→ 1
2 −→ 2
3 −→ 0
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Table 14.4 Orthogonal Main Effect Plan for 53 × 3 × 22 Factorial

α F1 F2 F3 F4 F5 F6

x (1 0) (0 1) (1 1) (1 2) (1 3) (1 4)

a. Auxiliary Plan (56 in 25 Runs)

0 0 0 0 0 0 0 0
0 1 0 1 1 2 3 4
0 2 0 2 2 4 1 3
0 3 0 3 3 1 4 2
0 4 0 4 4 3 2 1
1 0 1 0 1 1 1 1
1 1 1 1 2 3 4 0
1 2 1 2 3 0 2 4
1 3 1 3 4 2 0 3
1 4 1 4 0 4 3 2
2 0 2 0 2 2 2 2
2 1 2 1 3 4 0 1
2 2 2 2 4 1 3 0
2 3 2 3 0 3 1 4
2 4 2 4 1 0 4 3
3 0 3 0 3 3 3 3
3 1 3 1 4 0 1 2
3 2 3 2 0 2 4 1
3 3 3 3 1 4 2 0
3 4 3 4 2 1 0 4
4 0 4 0 4 4 4 4
4 1 4 1 0 1 2 3
4 2 4 2 1 3 0 2
4 3 4 3 2 0 3 1
4 4 4 4 3 2 1 0

b. Final Plan

F1 F2 F3 F4 F5 F6

0 0 0 0 0 0
0 1 1 2 1 0
0 2 2 1 1 1
0 3 3 1 0 0
0 4 4 0 0 1
1 0 1 1 1 1
1 1 2 0 0 0
1 2 3 0 0 0
1 3 4 2 0 1
1 4 0 1 1 0
2 0 2 2 0 0
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Table 14.4 (Continued )

F1 F2 F3 F4 F5 F6

2 1 3 1 0 1
2 4 4 1 1 0
2 3 0 0 1 0
2 4 1 0 0 1
3 0 3 0 1 1
3 1 4 0 1 0
3 2 0 2 0 1
3 3 1 1 0 0
3 4 2 1 0 0
4 0 4 1 0 0
4 1 0 1 0 1
4 2 1 0 0 0
4 3 2 0 1 1
4 4 3 2 1 0

Table 14.5 Orthogonal Main Effect Plan for 43 × 3 × 23 Factorial

α F1 F2 F3 F4 F5

x (u1, u0) (u0, u1) (u1, u1) (u1, u2) (u1, u3)

a. Auxiliary OMEP

u0, u0 u0 u0 u0 u0 u0
u0, u1 u0 u1 u1 u2 u3

u0, u2 u0 u2 u2 u3 u1

u0, u3 u0 u3 u3 u1 u2

u1, u0 u1 u0 u1 u1 u1

u1, u1 u1 u1 u0 u3 u2

u1, u2 u1 u2 u3 u2 u0

u1, u3 u1 u3 u2 u0 u3

u2, u0 u2 u0 u2 u2 u2

u2, u1 u2 u1 u3 u0 u1

u2, u2 u2 u2 u0 u1 u3

u2, u3 u2 u3 u1 u3 u0

u3, u0 u3 u0 u3 u3 u3

u3, u1 u3 u1 u2 u1 u0

u3, u2 u3 u2 u1 u0 u2

u3, u3 u3 u3 u0 u2 u1
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Table 14.5 (Continued )

b. Final Plan

F1 F2 F3 F4 F5,1 F5,2 F5,3

0 0 0 0 0 0 0
0 1 1 2 1 1 0
0 2 2 0 0 1 1
0 3 3 1 1 0 1
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 2 3 2 0 0 0
1 3 2 0 1 1 0
2 0 2 2 1 0 1
2 1 3 0 0 1 1
2 2 0 1 1 1 0
2 3 1 0 0 0 0
3 0 3 0 1 1 0
3 1 2 1 0 0 0
3 2 1 0 1 0 1
3 3 0 2 0 1 1

and the following replacement (expansion):

F5 F5,1 F5,2 F5,3

0 −→ 0 0 0

1 −→ 0 1 1

2 −→ 1 0 1

3 −→ 1 1 0 �

Method 2
For the s × s

n1
1 × s

n2
2 × · · · × s

nq
q factorial we can construct an OMEP with 2s�

1
runs, where s1 is a prime or prime power and

s1 > s2 > · · · > s1 s1 < s ≤ 2s1

and

1 +
q∑

i=1

ni ≤ s�
1 − 1

s1 − 1
(14.16)

We construct first the OMEP for the sν
1 factorial where ν = (s�

1 − 1)/(s1 − 1)

and � is chosen such that (14.16) is satisfied. We then duplicate the plan except



ORTHOGONAL RESOLUTION III DESIGNS FOR ASYMMETRICAL FACTORIALS 591

that the levels 0, 1, 2, . . ., s1 − 1 for the first factor, F1, are replaced by s1,
s1 + 1, s1 + 2, . . ., 2s1 − 1, respectively. This will be an OMEP with 2s�

1 runs
for the 2s1 × sν

1 factorial. If s < 2s1, we obtain the final plan by collapsing F1
and then proceed as in method 1a. We illustrate this with the following example.

Example 14.4 We consider the 5 × 32 × 2 factorial. We have 1 + 2 + 1 =
4 ≤ (3� − 1)/(3 − 1). Hence � = 2, and we construct the 34−2

III , duplicate it (see
Table 14.6a) and collapse factors F1 and F4 as follows:

Six-Level Factor (F1) Five-Level Factor (F1)

0 −→ 0
1 −→ 1
2 −→ 2
3 −→ 3
4 −→ 4
5 −→ 0

Three-Level Factor (F4) Two-Level Factor (F4)

0 −→ 0
1 −→ 1
2 −→ 0

The final design is given in Table 14.6b. �

Method 3
In some cases the methods described above lead to an unnecessarily large number
of runs since the auxiliary plan is based on an OMEP involving factors with the
largest number of levels. The method to be described is, by contrast, based on an
appropriate OMEP for factors having the smallest number of levels. The basic
idea is, as a converse to method 1b, to replace several factors with the smallest
number of levels by a factor with a larger number of levels. More precisely,
we can construct an OMEP for the s

n1
1 × s

n2
2 × · · · × s

nq
q factorial with s�

1 runs,
where s1 is a prime or prime power, s1 < s2, . . . , < sq and

q∑
i=1

λini ≤ s�
1 − 1

s1 − 1
(14.17)

with 1 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λq and λi (i = 1, 2, . . ., q) an integer. The basic
idea of this procedure is based on the following theorem.

Theorem 14.2 In the s
n−(n−�)
III with n = (s� − 1)/(s − 1) and s a prime or

prime power, a factor with t levels, sm−1 < t ≤ sm, can be introduced as a
replacement for a suitably chosen set of ν = (sm − 1)/(s − 1) factors that will
preserve the orthogonality of the main effect estimates.
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Table 14.6 Orthogonal Main Effect Plan for 5 × 32 × 2 Factorial

a. Auxiliary Plan b. Final Plan

F1 F2 F3 F4 F1 F2 F3 F4

0 0 0 0 0 0 0 0
0 1 1 2 0 1 1 0
0 2 2 1 0 2 2 1
1 0 1 1 1 0 1 1
1 1 2 0 1 1 2 0
1 2 0 2 1 2 0 0
2 0 2 2 2 0 2 0
2 1 0 1 2 1 0 1
2 2 1 0 2 2 1 0
3 0 0 0 3 0 0 0
3 1 1 2 3 1 1 0
3 2 2 1 3 2 2 1
4 0 1 1 4 0 1 1
4 1 2 0 4 1 2 0
4 2 0 2 4 2 0 0
5 0 2 2 0 0 2 0
5 1 0 1 0 1 0 1
5 2 1 0 0 2 1 0

Proof Let t = sm. There exists an s
ν−(ν−m)
III with ν = (sm − 1)/(s − 1).

Hence a factor with t = sm levels can replace ν factors with s levels each.
If sm−1 < t < sm, then a factor with sm levels can be collapsed.

We illustrate this method with the following example. �

Example 14.5 We consider the 24 × 4 factorial, that is, s1 = 2, s2 = 4, n1 =
4, n2 = 1. Now t = 4 = 22, that is, m = 2 and ν = 3 and a 4-level factor can
replace three 2-level factors in the 2n−(n−�)

III where n and � are determined as
follows so that (14.17) is satisfied: With n1 = 4, n2 = 1, and ν = 3 we have for
(14.17) with λ2 = ν = 3

4 + 3 · 1 = n ≤ (2� − 1)/(2 − 1)

which yields � = 3. Hence we can obtain the OMEP with N = 23 = 8 runs from
the 27−4

III . The final plan is given in Table 14.7 using the replacement according
to the 23−1

III given below:

Two-Level Factors in 23−1
III Four-Level Factor

0 0 0 −→ 0
0 1 1 −→ 1
1 0 1 −→ 2
1 1 0 −→ 3
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Table 14.7 Orthogonal Main Effect Plan for 24 × 4 Factorial

α F1 F2 F3 F4 F5 F6 F7

x (1 0 0) (0 1 0) (1 1 0) (0 0 1) ( 1 0 1) (0 1 1) (1 1 1)

a. Auxiliary Plan

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1
0 1 1 0 1 1 1 1 0 0
1 0 0 1 0 1 0 1 0 1
1 0 1 1 0 1 1 0 1 0
1 1 0 1 1 0 0 1 1 0
1 1 1 1 1 0 1 0 0 1

b. Final Plan

F ′
1 F4 F5 F6 F7

0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 1 1 0 0
2 0 1 0 1
2 1 0 1 0
3 0 1 1 0
3 1 0 0 1

It follows then that in the auxiliary plan (Table 14.5a) factors F1, F2, F3 with
two levels are replaced by factor F ′

1 with four levels. �

This procedure of constructing an OMEP is most useful if s < t ≤ s2. It
follows then from Theorem 14.2 that the maximum number of t-level factors
that can be introduced into the s

n−(n−�)
III with n = (s� − 1)/(s − 1) is equal to

(s� − 1)/(s − 1) if � is even, and equal to the largest integer less than or equal
to (s� − 1)/(s − 1) − 1 if � is odd.

The three methods described above lead to a very large number of OMEPs for
asymmetrical factorials. An extensive catalog of such plans is provided by Addel-
man and Kempthorne (1961), Addelman (1962a, 1962b), and Dey (1985). Dey
also lists some additional OMEPs not derivable by the Addelman–Kempthorne
methods but instead derivable from Hadamard matrices or orthogonal arrays. For
details the reader is referred to Dey (1985).

For the 2n × 3m Addelman–Kempthorne designs Margolin (1968) has inves-
tigated the aliasing of main effects with 2-factor interactions. This is important
for the reasons discussed in Section 14.2 for OMEPs for symmetrical factorials.
We shall not discuss the rather complicated results here but refer to the method
illustrated in Table 14.2.
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14.4 NONORTHOGONAL RESOLUTION III DESIGNS

Orthogonal main effect plans are useful because they are easy to analyze and the
results are easy to interpret. Sometimes there may, however, be practical reasons
why an OMEP may not be the most suitable design. In that case nonorthogonal
MEPs may be more appropriate. We shall give some examples.

As we have mentioned earlier, a saturated OMEP does not provide any degrees
of freedom for the estimation of the error variance. If no information about the
error variance is available, additional observations must be obtained. To replicate
the OMEP may lead to too large an experiment. Hence only some runs may
be replicated leading to nonproportional frequencies and as a consequence to
correlated estimates of the main effects.

In contrast to the just described situation an OMEP may not be a saturated
plan and may therefore have too many runs. It is always possible to obtain a
saturated MEP. One such plan is the one-at-a-time plan, where if the runs are
considered in sequence, only the level of one factor is changed from one run to
the next. As an example consider the following MEP for a 28 in nine runs (apart
from randomization):

Run F1 F2 F3 F4 F5 F6 F7 F8

1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0
5 1 1 1 1 0 0 0 0
6 1 1 1 1 1 0 0 0
7 1 1 1 1 1 1 0 0
8 1 1 1 1 1 1 1 0
9 1 1 1 1 1 1 1 1

An alternative to the plan above is one where each run, other than the control,
has only one factor at the high level and all other factors at the low level (apart
from randomization):

Run F1 F2 F3 F4 F5 F6 F7 F8

1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0
5 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0 0
7 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 1
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Obviously, this method can be adapted to both symmetrical and asymmetrical
factorials with factors at any number of levels. It should be clear to the reader
that if a saturated OMEP exists for a given factorial it will be more efficient than
the comparable nonorthogonal MEP. But often statistical properties may have to
be balanced against practical considerations.

In listing the designs above we have added for emphasis the cautionary
note “apart from randomization.” There may be settings, especially in indus-
trial applications, where it would be most economical and feasible to execute the
experiment using the run order given above. This may have serious consequences
for the analysis and interpretation, since not only is there lack of randomization
(see I.9.9) but this would also invoke a split-plot type of experiment if the levels
of factors are not reset for each run (see I.13). For a discussion of such problems
see Daniel (1973) and Webb (1968).



C H A P T E R 15

Supersaturated Designs

15.1 INTRODUCTION AND RATIONALE

We have seen in the preceding chapters that very often practical considerations
lead the experimenter to using fractional factorial designs. The aim, of course, is
to reduce the size of the experiment without sacrificing important information.
Even then, the suggested design may be quite large. This may be true even for the
most highly fractionated design, the saturated main effect plan, if the number of
factors under investigation is large. And it is not unusual that in many physical,
chemical, or industrial experiments the number of factors that one would like to
study is quite large, but consideration of cost calls for a small number of runs,
that is, treatment combinations. Moreover, it is suspected that among the large
number of factors only few are important or active. Such situations have led to
the development of what are called supersaturated designs (for a definition see
Section 15.3).

The idea is to somehow select N treatment combinations from the totality of
all possible treatment combinations, say from the s1 × s2 × · · · × sn combina-
tions of a factorial with factors A1, A2, . . . , An where factor Ai has pi levels
(i = 1, 2, . . . , n) and n > N − 1. Obviously, orthogonality as with fractional fac-
torials can no longer be achieved. Rather, orthogonality is being replaced by some
measure of near orthogonality. Also the analysis of data from such an experiment
will have to be approached differently from the usual analysis of factorial exper-
iments. Simultaneous estimation of effects will no longer be possible. Instead,
based on the assumption of scarcity of active factors and absence of interactions,
stepwise forward regression provides a plausible approach.

15.2 RANDOM BALANCE DESIGNS

One way to select the N treatment combinations is by using a random sampling
process. This idea has led to the notion of random balance designs (Satterth-
waite, 1959).

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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Here the notion of random balance is understood in the following sense
(Raghavarao, 1986): Factor Aj is randomly balanced with respect to factor Ai

if the random sampling process used to select the pj levels of factor Aj is the
same for each level of factor Ai . If every factor has random balance with respect
to every other factor, then Satterthwaite (1959, p. 113) refers to this as a pure
random balance design.

Satterthwaite (1959, p. 114) states that “pure random balance designs are
almost always inefficient in some sense” (see Section 15.4.1), but at the same
time he argues that “there are important and large classes of problems for which
these inefficiencies are often unimportant or even trivial.” These views were
largely contradicted by Youden et al. (1959), who, among other things, called for
a systematic, rather than random, construction of designs for the earlier stated
purpose.

15.3 DEFINITION AND PROPERTIES OF
SUPERSATURATED DESIGNS

Generalizing some results of Yamada and Lin (1999), we consider an experi-
ment with n factors A1, A2, . . . , An, each with p levels denoted by 1, 2, . . . , p.
Let N be the number of runs (treatment combinations) with (i) (p − 1)n >

N − 1 and (ii) N = p · q and q a positive integer. Further, let C(N) be the
set of N -dimensional vectors each containing each of the p levels exactly
q times.

A p-level supersaturated design D can be described as a selection of n vectors
in C(N), say c1, c2, . . . , cn, by some specified rule. The design D can then be
represented by the N × n array

[c1, c2, . . . , cn] (15.1)

Obviously, the rule by which the selection leading to (15.1) is made is of major
importance. As mentioned earlier, orthogonality of the vectors in (15.1) cannot
be achieved, but we would like to stay as “close” as possible to this property,
which is exhibited in the Fisher and Plackett–Burman main effect plans (see
Sections 14.2.1 and 14.2.4). Following Yamada and Lin (1999) we shall adopt
the following χ2 statistic as a measure of deviation from orthogonality and choose
the design D, which achieves the smallest amount of deviation. Such a design
we declare to exhibit near-optimality.

Let nab(ci , cj ) denote the number of rows in the N × 2 array [ci , cj ] whose
values are [a, b], where ci , cj , (i < j) are two columns from (15.1). Obviously,

p∑
a,b=1

nab(ci , cj ) = N
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for any pair i, j (1 ≤ i < j ≤ n). The χ2 statistic mentioned above is then
defined as

χ2
ij =

p∑
a,b=1

[nab(ci , cj ) − N/p2]2

N/p2
(15.2)

For orthogonality (or complete independence) of ci and cj we have nab(ci , cj )=
N/p2 for each pair [a, b] (1 ≤ a, b ≤ p), whereas for complete confounding of
factors Ai , Aj (or complete dependence) we have, without loss of generality,

nab(ci , cj ) =
{

N/p for a = b

0 otherwise

It is then easy to see that the χ2 value of (15.2) lies between 0 and (p − 1)N .
For the overall evaluation of deviation from orthogonality for the design D,

we then use either

av χ2 =

n∑
i,j=1
i<j

χ2
i,j

n(n − 1)/2
(15.3)

or
max χ2 = max χ2

ij 1 ≤ i < j ≤ n (15.4)

with χ2
ij given in (15.2). Using either (15.3) or (15.4) the design D with the

smallest value will be chosen among competing arrangements.
For an extension of the χ2 criterion to mixed-level supersaturated designs see

Yamada and Matsui (2002).

15.4 CONSTRUCTION OF TWO-LEVEL
SUPERSATURATED DESIGNS

15.4.1 Computer Search Designs

Most of the emphasis of devising rules for obtaining a suitable array (15.1) has
been concentrated on 2-level supersaturated designs, that is, p = 2, denoting
the levels by −1 and +1. Booth and Cox (1962) provided the first set of such
designs for the following pairs of (n, N ) values: (16, 12), (20, 12), (24, 12),
(24, 18), (30, 18), (36, 18), and (30, 24). These designs were obtained through
computer search.
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To compare their designs with random balance designs, Booth and Cox (1962)
consider sij = c′

icj (i < j ) as a measure of nonorthogonality of factors Ai and
Aj . As an overall measure of the non-orthogonality for the design under consid-
eration, they then define

E(s2) =

∑
i<j

s2
ij

n(n − 1)/2
(15.5)

Yamada and Lin (1999) show that (15.5) is equivalent to (15.3) for p = 2. For
a random balance design (15.5) is given by

ERBD(s2) = N2

N − 1
(15.6)

(Booth and Cox, 1962). It turns out that for all designs constructed by Booth and
Cox (1962)

E(s2) < ERBD(s2)

indicating a smaller degree of nonorthogonality, that is, less confounding among
the factors, of their designs, a result that holds true in general for other supersat-
urated designs as well.

15.4.2 Hadamard-Type Designs

A more systematic way to construct a special class of 2-level supersaturated
designs was provided by Lin (1993). Just as the Plackett–Burman designs (see
Section 14.2.4) are based on Hadamard matrices of order M , so are the proposed
supersaturated designs. Their construction can be described in general as follows:
Consider a Hadamard matrix of order M (which is not constructed via foldover)
in seminormalized form. Delete the first column of +1’s and label the remaining
columns 1, 2, . . . ,M − 1. Choose one of these columns as the branching column,
that is, the column that divides the Hadamard matrix into two half-fractions
according to its +1’s and −1’s. Delete the branching column and choose a sign,
say +. Then the M/2 rows that corresponding to +1 in the branching column
form a supersaturated design with n = M − 2 factors and N = M/2 runs, where
each factor is, of course, represented M/4 times at the high and low level.

Letting H be an M × M Hadamard matrix, then the procedure described
above can be formally represented as

H =
[
I I H h

I −I ∗

]
(15.7)
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Table 15.1 Supersaturated Design for n = 10 Factors in N = 6 Runs

Factor

Row 1 2 3 4 5 6 7 8 9 10 Run

1 + + + − + + + − − − + − 1
2 + + − + + + − − − + − + 2
3 + + + + − − − + − + + − 3
4 + + + − − − + − + + − + 4
5 + + − − − + − + + − + + 5
6 + + − + + − + + + − − − 6
7 + − + + − + + + − − − +
8 + − + + + − − − + − + +
9 + − − − + − + + − + + +

10 + − − + − + + − + + + −
11 + − + − + + − + + + − −
12 + − − − − − − − − − − −

(Bulutoglu and Cheng, 2003), where I represents a vector of N/2 unity elements
and Hh represents the supersaturated design, that is, the columns of H h represent
the columns [c1, c2, . . . , cn] of (15.1) with n = M − 2.

Example 15.1 We shall illustrate this method with the design for M = 12
given by Lin (1993). Table 15.1 contains the Hadamard matrix in the form indi-
cated by (15.7), where + represents +1 and − represents −1.

It is easy to see that for this from (15.5) design all | sij | = 2 and hence
E(s2) = 4, compared to ERBD(s2) = 7.2 from (15.6). �

For n < M − 2 we can delete certain columns from the complete design. In
practice it does not matter which column we choose as the branching column
and which columns we delete subsequently (Lin, 1993).

Another Hadamard-type supersaturated design was proposed by Wu (1993).
Starting with a seminormalized Hadamard matrix of order M , it makes use of all
its columns except the first and augments it by interaction columns to generate a
supersaturated design with N = M runs for n factors, where M ≤ n ≤ 2M − 3.
The procedure can be described as follows.

Let the generator Hadamard matrix H be given by H = (I, x1, x2, . . . ,

xM−1). Obtain M − 2 interaction columns xi0j = xi0 ◦ xj as the elementwise
product of xi0 and xj (j �= i0, i0 fixed). For cyclic Hadamard matrices we
can choose i0 = 1; for noncyclic Hadamard matrices we choose i0 to minimize
max | x′

i xi0j | over i and j . Thus, (15.1) is given by

[x1, x2, . . . , xM−1, xi0j (j = 1, 2, . . . ,M − 1; j �= i0)]
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Among all inner products of the columns only x′
i xi0j with i, i0, j all different

may be nonzero. Hence the choice of i0 ensures that the confounding among
factors is kept to a minimum. It can be shown (Wu, 1993) that for the above
designs

E(s2) = M2(n − M + 1)

n(n − 1)/2
(15.8)

If n < 2M − 3, we simply choose n − M + 1 columns from the M − 2 interac-
tion columns, keeping E(s2) as small as possible.

A third method to construct Hadamard-type supersaturated designs was pro-
posed by Tang and Wu (1997). The method essentially consists of adjoining k

Hadamard matrices (after deleting their first column of ones) of order M . The
resulting array yields a supersaturated design for n = k(M − 1) factors in M runs.
For n = (k − 1)(M − 1) + j factors (with 1 ≤ j ≤ M − 2) we delete M − 1 − j

from the full design, that is, the design for k(M − 1) factors.
We shall conclude this section by making some remarks about the possible

optimality with regard to the E(s2) criterion. Nguyen (1996) and Tang and Wu
(1997) have shown that a lower bound for E(s2) is given by

E(s2) ≥ M2(n − M + 1)

(n − 1)(M − 1)
(15.9)

Nguyen (1996) has shown that the half-fraction Hadamard designs of Lin (1993)
achieve the lower bound (15.9). This is true also for the full designs given by
Tang and Wu (1997). Comparing (15.8) with (15.9) shows that for n = 2M − 3
the designs of Wu (1993) have E(s2) values only slightly larger than the lower
bound. A similar statement can be made about the designs of Tang and Wu (1997)
when n = (k − 1)(M − 1) + j . Obviously, designs that achieve the lower bound
are E(s2)-optimal.

15.4.3 BIBD-Based Supersaturated Designs

Interesting relationships between certain BIB designs and supersaturated designs
were established by Nguyen (1996), Cheng (1997), and Liu and Zhang (2000).
We shall not go into all the details here, but just describe one method based
on the cyclic development of initial blocks as described by Liu and Zhang
(2000). They establish the equivalence of existence of a supersaturated design
with N = 2v, n = c(2v − 1) (with v ≥ 3, c ≥ 2 and when v is odd, c is even) and
that of a BIB design with t = 2v − 1, b = c(2v − 1), r = c(v − 1), k = v − 1,
λ = c(v − 2)/2, which is cyclically developed from c initial blocks.
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Given a BIB design with parameters specified above and the treatments labeled
as 0, 1, 2, . . . , t − 1 = 2v − 2, the procedure to generate a supersaturated design
can be described as follows:

1. Develop the first initial block cyclically, giving rise to blocks 1, 2, . . . ,

2v − 1.
2. Consider an array of 2v − 1 columns, each column containing the elements

0, 1, 2, . . . , 2v − 1 (in that order), which correspond to the 2v − 1 blocks
obtained in step 1. In column j replace the v − 1 elements corresponding
to the treatments in block j by +1 and the remaining v elements by −1.

3. Add a +1 in the first position to each column, thus generating the first
2v − 1 columns of the array (15.1).

4. Repeat steps 1, 2, and 3 for each of the remaining c − 1 initial blocks, thus
generating altogether the n = c(2v − 1) columns of (15.1).

We shall illustrate this procedure in the next example.

Example 15.2 For v = 4, c = 2 the two initial blocks are given by Liu and
Zhang (2000) as (0 1 3) and (0 1 5). The individual steps then are:

(1) Develop (0 1 3) and (0 1 5) mod 7:

0 1 2 3 4 5 6

1 2 3 4 5 6 0

3 4 5 6 0 1 2

0 1 2 3 4 5 6

1 2 3 4 5 6 0

5 6 0 1 2 3 4

(2) + (3) + (4) and writing + for +1 and − for −1:

+ + + + + + + + + + + + + +
+ − − − + − + + − + − − − +
+ + − − − + − + + − + − − −
− + + − − − + − + + − + − −
+ − + + − − − − − + + − + −
− + − + + − − − − − + + − +
− − + − + + − + − − − + + −
− − − + − + + − + − − − + +

The columns represent the supersaturated design (15.1) with N = 8, n = 14.
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Liu and Zhang (2000) provide a list of initial blocks for constructing a large
number of supersaturated designs with N = 2v and n = c(2v − 1) for 3 ≤ v ≤
12. All these designs are E(s2) optimal. �

15.5 THREE-LEVEL SUPERSATURATED DESIGNS

Clearly, from a practical point of view two-level supersaturated designs are the
most important. But in some situations three-level designs may be called for if
the few active factors are expected to exhibit linear and/or quadratic effects.

Whereas there exist several methods of constructing two-level supersatu-
rated designs, there exist only very few for constructing three-level designs (see
Yamada and Lin, 1999; Yamada et al., 1999; Fang, Lin, and Ma, 2000). We shall
describe briefly one method due to Yamada and Lin (1999).

Let C = [c1, c2, . . . , cn∗] be a two-level supersaturated design or saturated
main effect plan in N∗ runs. Let φab(C) be an operator that changes the elements
in C from −1 (or −) to a and +1 (or +) to b. Then consider the matrix

D =

φ12(C) φ12(C) φ13(C) φ23(C)

φ23(C) φ13(C) φ23(C) φ12(C)

φ31(C) φ23(C) φ12(C) φ13(C)

 (15.10)

= [
D1 D2 D3 D4

]
(15.11)

Array (15.10) represents a three-level supersaturated design with N = 3N∗ runs
and n = 4n∗ factors. Each level of each factor occurs N∗ times, and 2n > N .

For n = 2n∗ or n = 3n∗ a combination of subdesigns Di (i = 1, 2, 3, 4) from
(15.11) can be used to form a suitable supersaturated design. We shall illustrate
this with the following example.

Example 15.3 Suppose we want to examine 14 three-level factors accounting
for 28 effects, and suppose further that we are allowed 24 runs. A suitable design
can be constructed by choosing for C the saturated main effect plan with N∗ = 8
and n∗ = 7, given by the following Hadamard matrix

C =



+ + + − + − −
− + + + − + −
− − + + + − +
+ − − + + + −
− + − − + + +
+ − + − − + +
+ + − + − − +
− − − − − − −


(15.12)
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Using D2 and D3 from (15.11) and applying the transformations to (15.12)
yields the supersaturated design D:

2 2 2 1 2 1 1 3 3 3 1 3 1 1
1 2 2 2 1 2 1 1 3 3 3 1 3 1
1 1 2 2 2 1 2 1 1 3 3 3 1 3
2 1 1 2 2 2 1 3 1 1 3 3 3 1
1 2 1 1 2 2 2 1 3 1 1 3 3 3
2 1 2 1 1 2 2 3 1 3 1 1 3 3
2 2 1 2 1 1 2 3 3 1 3 1 1 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 1 3 1 1 3 3 3 2 3 2 2
1 3 3 3 1 3 1 2 3 3 3 2 3 2
1 1 3 3 3 1 3 2 2 3 3 3 2 3
3 1 1 3 3 3 1 3 2 2 3 3 3 2
1 3 1 1 3 3 3 2 3 2 2 3 3 3
3 1 3 1 1 3 3 3 2 3 2 2 3 3
3 3 1 3 1 1 3 3 3 2 3 2 2 3
1 1 1 1 1 1 1 2 2 2 2 2 2 2
3 3 3 2 3 2 2 2 2 2 1 2 1 1
2 3 3 3 2 3 2 1 2 2 2 1 2 1
2 2 3 3 3 2 3 1 1 2 2 2 1 2
3 2 2 3 3 3 2 2 1 1 2 2 2 1
2 3 2 2 3 3 3 1 2 1 1 2 2 2
3 2 3 2 2 3 3 2 1 2 1 1 2 2
3 3 2 3 2 2 3 2 2 1 2 1 1 2
2 2 2 2 2 2 2 1 1 1 1 1 1 1 �

Using the max χ2 criterion (15.4), Yamada and Lin (1999) show that if
max | sij | = d , say, over all i, j (1 ≤ i < j ≤ n∗), then for the design D in
(15.10) or a combination of subdesigns from (15.11) we have

max χ2 = max

{
(N + 9d)2

8N
,
N

2

}
This result is useful because it allows us to compare competing designs with
regard to the maximum dependency between two factors, the smaller this value,
the better the design.

15.6 ANALYSIS OF SUPERSATURATED EXPERIMENTS

Because the number of runs, N , is smaller than the number of parameters to
be estimated, (p − 1)n, we cannot apply the usual analysis to the data from a
supersaturated experiment, that is, an experiment using a supersaturated design.
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Therefore, the analysis of such data must be predicated on the principle (or
assumption) of active factor sparsity (Box and Meyer, 1986a, 1986b) or, in the
case of p-level designs, effect sparsity as each factor is associated with p − 1
effects. Furthermore, we assume that all interactions are negligible.

To put this in the context of a linear regression model, we express the obser-
vation vector y ′ = (y1, y2, . . . , yN) as

y = Xβ + e (15.13)

where X is an N × [(p − 1)n + 1] known matrix, which is determined by the
design matrix, β is the [(p − 1)n + 1] vector of unknown parameters, and e is the
error vector with the variance–covariance structure for a completely randomized
design (see I.6.3.4). Based on the assumption of effect sparsity we may rewrite
(15.13) as

y = (X1, X2)

(
β1

β2

)
+ e (15.14)

where β1 represents the vector of nonzero or large effects (including the intercept)
and β2 represents the vector of zero or negligible effects. Our aim, obviously, is
to identify β1, that is, the “true” model.

This necessitates applying variable selection procedures. An obvious choice is
stepwise variable selection. This method may, however, not always be the best
choice. If the number of factors is very large, the probability is high that some
of the inert factors may be selected (type I error). Also, mainly because of the
nonorthogonality of the X matrix, it may not always select active factors (type II
error). A thorough discussion of these difficulties has been provided by Westfall,
Young, and Lin (1998). To overcome in particular type I error problems, they
recommend using adjusted P values at each step of the stepwise procedure, using
familywise error rates. The familywise error rate should not be higher than .50
for inclusion of a variable in the model.

It is for these reasons that Abraham, Chipman, and Vijayan (1999) recommend
the use of all-subsets regression. For obvious reasons, this method has to be
implemented in such a way that only subsets up to a certain prespecified size
(< N) will be considered. An advantage of this method is that it may produce
different competing models, which allow the experimenter to make a choice
based perhaps on subject matter considerations.

Using similar arguments against the use of stepwise variable selection, Li and
Lin (2002) propose a penalized least-squares approach to the variable selection
problem. Let us rewrite (15.13) as

yi = x ′
i β + ei (i = 1, 2, . . . , N) (15.15)

where xi is the vector of input variables. For example, for the two-level design
(15.15) is

yi = β0 + x1iβ1 + x2iβ2 + · · · + xniβn + ei
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or for the three-level design we have

yi = β0 + x1iβ1 + x2
1iβ11 + x2iβ2 + x2

2iβ22 + · · · + xniβn + x2
niβnn + ei

A form of penalized least squares is defined as

Q(β) = 1

2N

N∑
i=1

(yi − x ′
iβ)2 +

(p−1)n∑
j=0

pλN
( |βj | ) (15.16)

(Fan and Li, 2001; Li and Lin, 2002), where pλN
(·) is a penalty function and λN

is a tuning parameter, which is usually chosen by some data-driven approach.
Since this method cannot be applied to the full model (15.15), Li and Lin

(2002) recommend to proceed in two steps: Apply stepwise variable selection
(or subset selection, we might add) in step 1, using a low threshold, that is, a
high α value, and then, in step 2, apply (15.16) to the model obtained in step 1.
More formally, in (15.16) β = β1 and xi = x1i , say, where x1i conforms to β1.

An appropriate penalty function for supersaturated experiments is the smoothly
clipped absolute deviation (SCAD) penalty, whose first-order derivative is

p′
λ(|β|) = λ

{
I (|β| ≤ λ) + (aλ − |β|)+

(a − 1)λ
I (|β| > λ)

}
(15.17)

for |β| > 0 with a = 3.7, and pλ(0) = 0 (Fan and Li, 2001; Li and Lin, 2002).
Suppose β1 in (15.14) has been identified in step 1 above to consist of d

terms, say β(1), β(2), . . . , β(d). Let β
(0)
1 be an initial value close to the true value

β1, when β(j) is not very close to zero. The penalty function (15.17) can be
locally approximated by a quadratic function as

[
pλ(|β(j)|)

]′ ≈
p′

λ

(
|β(0)

(j)
|
)

|β(0)
(j) |

β(j) (15.18)

and β̂(j) = 0 if β
(0)
(j)

is close to zero. With the local approximation (15.18), the
solution to the penalized least square can be obtained iteratively as

β
(1)
1 =

{
X′

1X1 + N
∑

λ

(
β

(0)
1

)}−1
X′

1y (15.19)

with ∑
λ

(
β

(0)
1

)
= diag

p′
λ

(
|β(0)

(j) |
)

|β(0)
(j)

|


j=1,2,..., d

For more details about the ridge regression (15.19) and description of the prop-
erties of the penalized least-squares estimators we refer the reader to Li and
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Lin (2002). See also Li and Lin (2003) and Holcomb, Montgomery, and Carlyle
(2003) for a comparison of analysis procedures.

Regardless of which type of analysis is used, special care has to be exercised
to interpret the results. We always have to remember that supersaturated designs
are used for screening purposes, and the primary objective is to eliminate a large
portion of inactive factors from further consideration. The nature of the designs
do not guarantee that we always find the right answer. In any case, smaller
follow-up experiments will be needed.



C H A P T E R 16

Search Designs

16.1 INTRODUCTION AND RATIONALE

The usefulness of factorial experiments is based on the premise that high-order
interactions are negligible. In previous chapters we have shown how this premise
can be used to construct useful and efficient factorial designs through confounding
and fractionation. Extreme examples of the latter category are, of course, main
effect plans and supersaturated designs. They are based on the severe and often
nonsustainable assumption that all interactions are negligible.

It is this point that leads to the question whether one can construct designs
that (1) have a relatively small number of runs and (2) allow the exploration
of a limited number of low-level interactions. The emphasis here is on “lim-
ited number,” because even for a 2n factorial there are n(n − 1)/2 two-factor
and n(n − 1)(n − 2)/6 three-factor interactions and to investigate them all would
necessitate a resolution VII design. In most cases this may lead to a prohibitively
large number of runs. But how can we limit the number of interactions to be inves-
tigated since we do not know which of the interactions are possibly nonnegligible?

Clearly, we need to make some assumptions to overcome this difficulty. Rather
than specifying the particular interactions we would like to investigate, we specify
the number of interactions to be investigated. In other words, we assume that a
specified number, say k, 2- or 3-factor interactions are possibly nonnegligible. We
would then like to construct a design that allows us to (1) identify these nonnegli-
gible interactions and (2) estimate these effects in addition to the main effects. This
idea was first proposed and investigated by Srivastava (1975) when he introduced
the concepts of search design and search linear model. We shall describe in this
chapter some of his results and subsequent developments on this topic.

16.2 DEFINITION OF SEARCH DESIGN

Let us consider here the case of n factors, each at two levels. We know from
Section 7.4.2 that the true response for each treatment combination can be

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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expressed as a linear function of the mean, all main effects and all interactions.
We can divide the 2n − 1 factorial effects into three categories:

C1: contains the effects we want to estimate in any case, such as the main
effects;

C2: contains effects we are interested in, but we know that only a few of
them are nonnegligible, such as 2-factor interactions, C2(2), or 2- and 3-factor
interactions, C2(2, 3);

C3: contains the remaining effects (such as higher-order interactions), which
we consider to be negligible.

Based on the above scenario we can then express a set of N observations,
given by the N × 1 vector y, in terms of the following linear model:

y = A1ξ1 + A2ξ2 + e (16.1)

where A1, A2 are known matrices of order N × ν1 and N × ν2, respectively,
ξ1 is a ν1 × 1 vector of unknown parameters consisting of the mean µ and the
effects in C1, ξ2 is a ν2 × 1 vector of unknown parameters pertaining to the
effects in C2, and e is the N × 1 vector of errors with

E(e) = 0 var(e) = V (16.2)

where V represents the variance–covariance matrix for e under the error structure
of the completely randomized design (see Section I.6.3.5).

We assume now that at most k of the effects in C2 are nonnegligible, where k is
quite small compared to ν2. Let D be the design that gave rise to the observations
y in (16.1). If y and hence A1 and A2 are such that we can estimate ξ1 and the k

nonnegligible effects of ξ2, then D is said to be a search design of resolving (or
revealing) power (ξ1; ξ2, k) and the model (16.1) is said to be a search linear
model (Srivastava, 1975).

16.3 PROPERTIES OF SEARCH DESIGNS

16.3.1 General Case

In the words of Srivastava (1984), model (16.1) represents a supermodel from
which we want to extract an individual model based on the above criteria. Obvi-
ously, a search design that accomplishes this task must have certain properties.
More specifically, the search design must have a sufficiently large number of
runs and it must include a particular subset of all possible runs.

Consider a design D with N runs and suppose that D is composed of two parts
or subdesigns, D1 with N1 runs, and D2 with N2 runs. Let the observation vector
y in (16.1) be partitioned conformably as y′ = (y′

1, y
′
2), where y1 is N1 × 1 and

is associated with D1, while y2 is N2 × 1 and is associated with D2. Very often
D1 represents a main effect plan to which treatment combinations in the form
of D2 are added to generate a search design. In essence, this is a process of
dealiasing main effects from certain interactions.
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A fundamental result that provides a characterization of the properties that
such a design must possess is due to Srivastava (1975) and can be stated as
follows:

Theorem 16.1 (i) Given model (16.1), a necessary condition for a design D

to be a search design of revealing power (ξ1; ξ2, k) is that

rank(A1, A20) = ν1 + 2k (16.3)

for every N × 2k submatrix A20 of A2.
(ii) In the noiseless case, that is, for e ≡ 0 in (16.1) and (16.2), the condition

(16.3) is also sufficient.

We shall comment briefly on the noiseless case. It implies, of course, that there
is no experimental error and no observational error (see Section I.6.3.4). Such a
situation does not occur in practice. Even so, the noiseless case is important with
regard to the construction of search designs, for if the structure of designs D1 and
D2 and hence the structure of A1 and A2 in (16.1) is such that the search and esti-
mation problem cannot be solved in this case, then it certainly cannot be solved
when noise is present. Moreover, in the noiseless case the observations y in (16.1)
are nonstochastic and hence the search problem is deterministic. This implies that
the nonnegligible effects in ξ2 can be identified with probability one if D satisfies
the condition (16.3) of Theorem 16.1 In the stochastic case such identification
can be achieved only with a certain probability, usually less than one.

The following theorems provide not only a tool to check whether for a given
design D condition (16.3) is satisfied but can also be used to obtain more explicit
conditions that a search design has to satisfy.

Theorem 16.2 (Srivastava and Ghosh, 1977) Consider model (16.1) and
suppose that rank(A1) = ν1. Then condition (16.3) holds if and only if for every
N × 2k submatrix A20 of A2 we have

rank [A′
20A20 − A′

20A1(A
′
1A1)

−1A′
1A20] = 2k (16.4)

A similar result is given in the following theorem.

Theorem 16.3 (Srivastava and Gupta, 1979) Consider model (16.1) and
suppose that rank(A1) = ν1. Let A11 be a ν1 × ν1 submatrix of A1 of rank
ν1. Rearrange the observation vector y and write (16.1) as(

y∗
1

y∗
2

)
=

(
A11

A21

)
ξ1 +

(
A12

A22

)
ξ2 + e (16.5)

where y∗
1, A11, and A12 have ν1 rows and y∗

2 , A21, and A22 have N − ν1 rows.
A necessary and sufficient condition for (16.3) to be satisfied is that every set of
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2k columns of

Q = A22 − A21A
−1
11 A12 (16.6)

are linearly independent.

Note that in Theorem 16.3 the vector y∗
1 is not necessarily equal to y1 obtained

from D1 and, hence, y∗
2 is not necessarily equal to y2 obtained from D2 as

described earlier. However, if D1 is a saturated main effect plan with N1 = ν1 =
n + 1, then y∗

1 = y1 and, hence, y∗
2 = y2.

16.3.2 Main Effect Plus One Plans

As stated earlier, in the context of search designs we assume a priory that at
most k effects in ξ2 of (16.1) are nonnegligible, where k is generally small. The
most important and tractable situation from both the theoretical and practical
point of view is the case k = 1. In addition, the most obvious starting point is to
consider the case where ξ1 is the vector of the mean, µ, and the n main effects,
say F1, F2, . . . , Fn, of the n factors F1, F2, . . . , Fn, each at two levels. Thus, D1
might be a main effects plan. The resulting search design D is then referred to
as a main effect plus one plan, or MEP.1 for short, with resolution III.1.

Let us denote a treatment combination by x′ = (x1, x2, . . . , xn) with x� = 0
or 1(� = 1, 2, . . . , n). Then we denote the Ni treatment combinations of Di(i =
1, 2) by x′

ij = (xij1, xij2, . . . , xijn) for j = 1, 2, . . . , Ni . Now consider the fol-
lowing D1 with N1 = n + 2 treatment combinations and given by its design
matrix

D1 =


I′

n

In

0′
n

 (16.7)

Recall from Section 7.4.2 that the true response of treatment combination x can
be expressed as

a(x) = µ + 1

2

∑
α

(−1)
∑

i αi (1−xi)Eα

or, if we define E∗α = 1
2Eα, as

a(x) = µ +
∑
α

(−1)
∑

i αi (1−xi)E∗α (16.8)

Taking y∗
1 to be the first n + 1 observations in D1 it follows from (16.7) and

(16.8) that A11 in Theorem 16.3 can be written as the patterned matrix

A11 =
(

1 I′
n

In 2In − InI
′
n

)
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with A−1
11 having the same pattern. Following lengthy but elementary arguments

we can then derive the general form of Q in (16.6) such that the conditions
of Theorem 16.3 are satisfied (see Srivastava and Gupta, 1979), leading to the
following theorem.

Theorem 16.4 (Srivastava and Gupta, 1979) Let D = (D1
D2

)
be the design

matrix for the design D, where D1 is given by (16.7). Let D21 and D22 be any
two submatrices of D2 of order (N − ν1) × n1 and (N − ν1) × n2, respectively,
with n1, n2 ≥ 2. Let nij be the number of ones in the ith row of D2j (j = 1, 2)
and let for an integer z

φ(z) =
z if z is even

z − 1 if z is odd

Then a necessary and sufficient condition for D to be a search design, where
at most one element of ξ2 is nonnegligible, is that for every pair of distinct
submatrices D21 and D22 there exists a row in D2 (say, the ith row), such that

φ(ni1)

φ(n1)
�= φ(ni2)

φ(n2)

[where i may be different for different pairs (D21, D22)].

This provides a convenient and simple check on D2 for D to be an MEP.1.
Whereas for the MEP.1 discussed above the vector ξ2 in (16.1) consists of

all possible interactions in 2n factorial, it seems more reasonable to restrict ξ2
to include only 2- and 3-factor interactions, such that ν2 = (

n
2

) + (
n
3

)
. A search

design for identifying at most one nonnegligible effect among those interactions
has been referred to by Gupta (1990) as a weak MEP.1. The structure of such an
MEP.1 has been considered by Ghosh (1981) and Ohnishi and Shirakura (1985),
and we shall give a brief description of their results without going through all
the derivations.

Let D1 be given by its design matrix

D1 =


I′

n

0′
n

InI
′
n − In

 (16.9)

where D1 consists of N1 = n + 2 treatment combinations and represents a main
effects plan. Let y1 denote the observation vector obtained from D1 and let

y1 = A∗
1ξ1 + A∗

2ξ2 + e1 (16.10)
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with ξ1 and ξ2 as defined above. Using the parameterization (16.8) it follows
that

A∗
1 =

 1 I′
n

1 −I′
n

In InI
′
n − 2In

 (16.11)

Now the columns of A∗
2 in (16.9) and of A2 in (16.1) are obtained by appropriate

multiplication of the elements in the columns of A∗
1 (and A1). For example, to

obtain the column corresponding to Fi1Fi2 in A∗
2 (and in A2) we simply multiply

the corresponding elements of the columns belonging to Fi1 and Fi2 . Since D1
is a main effects plan, the columns of A∗

2 are linear combinations of the columns
of A∗

1. This fact can be exploited to obtain conditions for D2 such that condition
(16.3) of Theorem 16.1 is satisfied for k = 1. This is done by considering all
possible types of pairs of 2- and/or 3-factor interactions such as (Fi1i2 , Fi1i3),
(Fi1i2 , Fi3i4), (Fi1i2 , Fi1i3i4), and so forth with distinct indices i1, i2, i3, i4. This
leads to the following theorem.

Theorem 16.5 (Ohnishi and Shirakura, 1985) Let ω(z′) denote the weight
of the vector z, which is defined as the number of nonzero elements in z. Further,
let D1 be given by (16.9) with row vectors of weights 0, n − 1, and n. Then a
necessary and sufficient condition on D2 with N2 treatment combinations, such
that D = D1 + D2 is a search design, is that there exist treatment combinations
(x1, x2, . . . , xn) in D2 satisfying the following conditions for any distinct integers
ik(k = 1, 2, 3, 4, 5, 6) belonging to the set {1, 2, . . . , n}:

(1) ω(xi1 , xi2) = 1 xi3 = 0

(2) ω(xi1 , xi2) = 1 ω(xi3 , xi4) = 1

(3a) ω(xi1 , xi2) ≥ 1 ω(xi3 , xi4) = 0 or

(3b) ω(xi1 , xi2) = 0 ω(xi3 , xi4) ≥ 1

(4a) xi1 = 0, xi2 = 1 ω(xi3 , xi4) = 1 or

(4b) ω(xi1 , xi2) ≥ 1 ω(xi3 , xi4) = 0 or

(4c) ω(xi1 , xi2) = 0 ω(xi3 , xi4) = 2

(5a) ω(xi1 , xi2) = 2 ω(xi3 , xi4) = 0 or

(5b) ω(xi1 , xi2) = 0 ω(xi3 , xi4) = 2 or

(5c) ω(xi1 , xi2 , xi3 , xi4) = 1 xi5 = 1 or

(5d) ω(xi1 , xi2 , xi3 , xi4) = 3 xi5 = 0
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(6a) ω(xi1 , xi2) = 0 ω(xi3 , xi4 , xi5) ≥ 2 or

(6b) ω(xi1 , xi2) ≥ 1 ω(xi3 , xi4 , xi5) ≤ 1

(7a) ω(xi1 , xi2, xi3) ≤ 1 ω(xi4 , xi5 , xi6) ≥ 2 or

(7b) ω(xi1 , xi2, xi3) ≥ 2 ω(xi4 , xi5 , xi6) ≤ 1

Even though the conditions in Theorem 16.5 are intended to provide a mech-
anism for checking condition (16.3) for all possible submatrices A20, they them-
selves are not very easy to check since the number of cases to be considered is
quite large. The conditions prove, however, to be useful in a sequential construc-
tion of search designs (see Section 16.4).

16.3.3 Resolution V Plus One Plans

In the context of fractional factorial designs resolution V designs are of particular
importance as long as the assumption of negligible interactions involving three
or more factors is reasonable. If we suspect, however, that at most k of those
interactions are nonnegligible, then a search design may be appropriate. Again,
the case k = 1 is of interest. Such a search design is referred to as a resolution
V.1 design.

For resolution V designs the parameter vector ξ1 in (16.1) contains the mean,
the main effects, and the 2-factor interactions, with

ν1 = 1 + n +
(

n

2

)
components, and the vector of negligible effects, ξ2, consists of the remaining
interactions with ν2 = 2n − ν1 terms. For purposes of a search design ξ2 may be
(i) as described above or (ii) restricted to involve only the 3-factor interactions,
in which case ν2 = (

n
3

)
.

The case (i) above was considered by Srivastava and Ghosh (1976, 1977),
whereas case (ii) was considered by Shirakura and Ohnishi (1985). In both cases
the starting points are balanced resolution V plans (see Section 13.6.5). The
reason for the restriction to these balanced arrays is the fact that it reduces greatly
the number of cases one has to consider in order to verify whether condition
(16.4) is indeed met. Exploiting the form of balanced arrays in light of the rank
condition (16.4) leads then to the identification of those resolution V designs that
are also resolution V.1 designs. We shall list a few examples in Section 16.4.2.

16.3.4 Other Search Designs

In the previous section we have considered search designs for 2n factorials that
allow us to search for one (k = 1) additional interaction among those interactions
that are ordinarily assumed to be negligible. Extensions to k = 2 have been con-
sidered using Theorem 16.1 [for resolution III.2 plans see, e.g., Shirakura (1991)
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and Chatterjee, Deng, and Lin (2001)]. Another extension is that to factors with
more than two levels. Ghosh and Burns (2001), for example, consider search
designs for the 3n factorial, whereas Chatterjee and Mukerjee (1986, 1993) con-
sider the most general case for symmetrical and asymmetrical factorials for k = 1
and k ≥ 3, respectively.

Another application of the principles of a search design is given by Ghosh
and Burns (2002). They assume that ξ1 in (16.1) contains only the mean and
ξ2 contains the main effects of the n factors. By assuming that at most k (< n)

factors have nonnegligible effects, they are able to reduce the number of treatment
combinations necessary to identify and estimate those effects compared to the
number of treatment combinations in an orthogonal main effects plan. Note that
this idea is similar to that used in supersaturated designs (see Section 15.1) except
that the number of factors here is “small.”

16.4 LISTING OF SEARCH DESIGNS

There are not very many methods of constructing search designs. The existing
methods fall essentially into three categories:

1. Start with a “minimal” design D1 that allows estimating ξ1 in (16.1) assum-
ing that ξ2 is negligible; then add treatment combinations in the form of
D2 such that the final design D = D1 + D2 satisfies the conditions of a
search design.

2. Start with a “larger” design D1 that allows estimating ξ1 and show that D1
itself satisfies the conditions of a search design.

3. Start with an “intuitive” design D1 and show that it satisfies the conditions
of a search design, or modify it accordingly.

Methods 1 and 2 have been used for resolution III.1 and V.1, respectively,
and we shall give some examples below. Method 3 is essentially a trial-and-error
method and requires a great amount of intuition and insight.

16.4.1 Resolution III.1 Designs

Starting with the design D1 given in (16.9), Ghosh (1981) suggested to construct
the design D2 iteratively. More precisely, let D2,n be the design D2 for n factors
with N2,n treatment combinations, then D2,n+1 can be represented by the design
matrix

D2,n+1 =
(

D2,n z1,n+1

D∗
2,n z2,n+1

)
(16.12)

where D2,n+1 is a N2,n+1 × (n + 1) matrix, D∗
2,n is a (N2,n+1 − N2,n) × n

matrix, and zn+1 = (z′
1,n+1,, z

′
2,n+1)

′ is an N2,n+1 × 1 vector. All the elements
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in D2,n+1 are, of course, either 0 or 1. We note here that it is possible that
N2,n+1 = N2,n.

To proceed iteratively has the advantage that it greatly reduces the number
of cases that have to be considered to check the conditions of Theorem 16.5.
Using this method, Ohnishi and Shirakura (1985) have provided designs D2,n

for 3 ≤ n ≤ 8, which are given in Table 16.1 with a summary of the various
model and design parameters as given in Table 16.2. It illustrates the point that
the total number N of treatment combinations required is relatively small but
increases proportionately, of course, as n, the number of factors, increases.

16.4.2 Resolution V.1 Designs

In order to reduce the computational load of checking the rank condition (16.4),
construction of resolution V.1 designs has been limited to balanced arrays (see
Section 13.6.5). Srivastava and Ghosh (1977) and Shirakura and Ohnishi (1985)
provide tables of such search designs for n = 4, 5, 6, 7, 8, and we present some
examples of their results in Table 16.3.

Table 16.1 Design Matrices D2, n for 3 ≤ n ≤ 8 Factors

n

1 2 3 4 5 6 7 8

1 1 0 0 1 0 0 1 0
2 0 0 1 1 0 0 1 1

3 1 0 0 0 1 0 1 1
4 0 1 0 0 1 0 1 1

N2, n 5 0 0 1 0 1 1 0 0

6 1 0 0 1 0 1 0 1
7 1 0 0 0 1 1 0 1
8 1 0 0 1 1 0 0 0

9 1 0 0 0 1 1 0 0

10 0 1 0 0 1 0 1 0

Table 16.2 Number of Parameters and
Runs for Search Design of Resolution III.1

n ν1 ν2 N1 N2 N

3 4 4 5 2 7

4 5 10 6 5 11

5 6 20 7 5 12

6 7 35 8 8 16

7 8 56 9 8 17

8 9 84 10 10 20
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Table 16.3 Resolution V.1 Designs for 4 ≤ n ≤ 8 Factors

Srivastava and Ghosh (1977) Ohnishi and Shirakura (1985)

n ν1 ν2 N λ′ ν2 N λ′

4 11 5 15 1 1 1 1 0

5 16 16 21 1 1 1 0 1 0

6 22 42 28 1 1 1 0 0 1 0 20 28 1 0 0 1 0 1 1

7 29 99 36 1 1 1 0 0 0 1 0 35 35 0 1 0 0 0 1 1 0

8 37 219 45 1 1 1 0 0 0 0 1 0 56 44 0 1 0 0 0 0 1 1 0

Let Sn,j denote the set of all treatment combinations with exactly j factors
at level 1 and n − j factors at level 0, and let λj denote the number of times
that each treatment combination in Sn,j appears in the design (array) (j = 0, 1,
. . ., n). Of course, each vector (treatment combination) in Sn,j has weight j and
λ′ = (λ0, λ1, . . ., λn) is referred to as the index set of the array. The resolution
V.1 designs, which are also referred to as BARE 5.1 plans by Srivastava and
Ghosh (1976), are then completely described by their index sets, as given in
Table 16.3.

The Srivastava–Ghosh designs contain

Nn = 1 + 2n +
(

n

2

)
runs and can be represented easily as D = Sn,0 ∪ Sn, 1 ∪ Sn,2 ∪ . . . ∪ Sn,n−1. Both
types of search designs given in Table 16.3 are minimal designs, but designs
with a larger number of runs are given in the two references. We also note that
restricting ξ2 in (16.1) does not reduce the size of the design appreciably.

16.5 ANALYSIS OF SEARCH EXPERIMENTS

16.5.1 General Setup

We shall call an experiment that employs a search design a search experiment.
The analysis of data from a search experiment are based, of course, on submodels
of (16.1), which we write as

y = A1ξ1 + A21(ζ )ζ + e (16.13)

where ζ refers to k possible components of ξ2 in (16.1) and A21(ζ ) refers to the
column vectors in A2 corresponding to ζ . The analysis will then be performed
for each possible ζ from ξ2.

For purposes of characterizing and comparing the outcomes from the various
analyses we shall denote by ζ 0 the true (unknown) nonnegligible effects in ξ2.
We shall then refer to model (16.13) with ζ = ζ 0 as M0, and with ζ �= ζ 0 as
M1, where M1 represents a series of competing models to M0.
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16.5.2 Noiseless Case

Even though in practice there does not exist a situation where e ≡ 0 in (16.3), we
have pointed out earlier that this noiseless case is important for purposes of con-
structing search designs. The noiseless case is equally important and instructive
for describing and comparing the various analyses based on M0 and M1.

We shall illustrate this for the case k = 1 by first constructing a data set with
known parameters ξ1 and ξ2 and then using (16.13) with e ≡ 0 to analyze those
data.

Example 16.1 Let us consider the case of n = 3 factors and the search design
with D2 given in Table 16.1. Thus, in model (16.1),

ξ1 =


µ

A

B

C

 ξ2 =


AB

AC

BC

ABC


Let µ = 10, A = 4, B = −2, C = 3, AB = 2, AC = 0, BC = 0, ABC = 0.
Then using (16.8) [see also (7.30)] with A∗ = 2, B∗ = −1, C∗ = 1.5, (AB)∗ = 1
we obtain the true yield y = a(x) for the seven treatment combinations of the
design D as follows:

Treatment µ A∗ B∗ C∗ (AB)∗
Combination 10 2 −1 1.5 1 y

1 1 1 1 −1 −1 −1 1 13.5
0 0 0 1 −1 −1 −1 1 8.5
0 1 1 1 −1 1 1 −1 7.5
1 0 1 1 1 −1 1 −1 13.5
1 1 0 1 1 1 −1 1 10.5
1 0 0 1 1 −1 −1 −1 10.5
0 0 1 1 −1 −1 1 −1 11.5

The analysis of these data, using SAS PROC GLM, is presented in Tables
16.4a–16.4c for the models with ζ = AB, AC, and BC, respectively. We shall
comment briefly on some aspects of the output:

1. Since AB = ζ0, the model used in Table 16.4 a provides a perfect fit to
the data as indicated by the fact that SS(Error) = SSE(M0) = 0, which
is equivalent to the fact that the estimated effects are equal to the true
effects, for example, Â = A, and that the predicted values ŷ are equal to
the observed values y. In other words, the true model is identified correctly.
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Table 16.4 Data and Analysis for Search Experiment (Noiseless Case)

options nodate pageno=1;

data search;

input A B C y;

datalines;

1 1 1 13.5

0 0 0 8.5

0 1 1 7.5

1 0 1 13.5

1 1 0 10.5

1 0 0 10.5

0 0 1 11.5

;

run;

proc print data=search;

title1 'TABLE 16.4';

title2 'DATA FOR SEARCH EXPERIMENT';

title3 '(NOISELESS CASE)';

run;

proc glm data=search;

class A B C;

model y=A B C A*B/e;

estimate 'A' A -1 1;

estimate 'B' B -1 1;

estimate 'C' C -1 1 ;

estimate 'A*B' A*B 1 -1 -1 1/divisor=2;

output out=predicta p=yhat r=resid stdr=eresid;

title1 'TABLE 16.4a';

title2 'ANALYSIS WITH MODEL Y=A B C A*B';

title3 '(NOISELESS CASE)';

run;

proc print data=predicta;

run;

proc glm data=search;

class A B C;

model y=A B C A*C/e;

estimate 'A' A -1 1;

estimate 'B' B -1 1;

estimate 'C' C -1 1 ;

estimate 'A*C' A*C 1 -1 -1 1/divisor=2;

output out=predictb p=yhat r=resid stdr=eresid;

title1 'TABLE 16.4b';
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Table 16.4 (Continued )

title2 'ANALYSIS WITH MODEL A B C A*C';

title3 '(NOISELESS CASE)';

run;

proc print data=predictb;

run;

proc glm data=search;

class A B C;

model y=A B C B*C/e;

estimate 'A' A -1 1;

estimate 'B' B -1 1;

estimate 'C' C -1 1;

estimate 'B*C' B*C -1 1 1 -1/divisor=2;

output out=predictc p=yhat r=resid stdr=eresid;

title1 'TABLE 16.4c';

title2 'ANALYSIS WITH MODEL Y=A B C B*C';

title3 '(NOISELESS CASE)';

run;

proc print data=predictc;

run;

Obs A B C y

1 1 1 1 13.5

2 0 0 0 8.5

3 0 1 1 7.5

4 1 0 1 13.5

5 1 1 0 10.5

6 1 0 0 10.5

7 0 0 1 11.5

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A. ANALYSIS WITH MODEL Y=A B C A*B

(NOISELESS CASE)

The GLM Procedure

Class Level Information

Class Levels Values

A 2 0 1

B 2 0 1

C 2 0 1
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Table 16.4 (Continued )

Number of observations Read 7

Number of observations Used 7

General Form of Estimable Functions

Effect Coefficients

Intercept L1

A 0 L2

A 1 L1-L2

B 0 L4

B 1 L1-L4

C 0 L6

C 1 L1-L6

A*B 0 0 L8

A*B 0 1 L2-L8

A*B 1 0 L4-L8

A*B 1 1 L1-L2-L4+L8

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 31.42857143 7.85714286 Infty <.0001

Error 2 0.00000000 0.00000000

Corrected Total 6 31.42857143

R-Square Coeff Var Root MSE y Mean

1.000000 0 0 10.78571

Source DF Type I SS Mean Square F Value Pr > F

A 1 13.76190476 13.76190476 Infty <.0001

B 1 1.66666667 1.66666667 Infty <.0001

C 1 10.00000000 10.00000000 Infty <.0001

A*B 1 6.00000000 6.00000000 Infty <.0001
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Table 16.4 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

A 1 24.00000000 24.00000000 Infty <.0001

B 1 6.00000000 6.00000000 Infty <.0001

C 1 13.50000000 13.50000000 Infty <.0001

A*B 1 6.00000000 6.00000000 Infty <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

A 4.00000000 0 Infty <.0001

B -2.00000000 0 -Infty <.0001

C 3.00000000 0 Infty <.0001

A*B 2.00000000 0 Infty <.0001

Obs A B C y yhat resid eresid

1 1 1 1 13.5 13.5 0 .

2 0 0 0 8.5 8.5 0 .

3 0 1 1 7.5 7.5 -2.6645E-15 .

4 1 0 1 13.5 13.5 0 .

5 1 1 0 10.5 10.5 0 .

6 1 0 0 10.5 10.5 0 .

7 0 0 1 11.5 11.5 0 .

B. ANALYSIS WITH MODEL A B C A*C

(NOISELESS CASE)

The GLM Procedure

General Form of Estimable Functions

Effect Coefficients

Intercept L1

A 0 L2

A 1 L1-L2

B 0 L4

B 1 L1-L4

C 0 L6

C 1 L1-L6

A*C 0 0 L8

A*C 0 1 L2-L8

A*C 1 0 L6-L8
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Table 16.4 (Continued )

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 26.09523810 6.52380952 2.45 0.3106

Error 2 5.33333333 2.66666667

Corrected Total 6 31.42857143

R-Square Coeff Var Root MSE y Mean

0.830303 15.14033 1.632993 10.78571

Source DF Type I SS Mean Square F Value Pr > F

A 1 13.76190476 13.76190476 5.16 0.1511

B 1 1.66666667 1.66666667 0.62 0.5120

C 1 10.00000000 10.00000000 3.75 0.1924

A*C 1 0.66666667 0.66666667 0.25 0.6667

Source DF Type III SS Mean Square F Value Pr > F

A 1 16.66666667 16.66666667 6.25 0.1296

B 1 2.66666667 2.66666667 1.00 0.4226

C 1 8.16666667 8.16666667 3.06 0.2222

A*C 1 0.66666667 0.66666667 0.25 0.6667

Standard

Parameter Estimate Error t Value Pr > |t|

A 3.33333333 1.33333333 2.50 0.1296

B -1.33333333 1.33333333 -1.00 0.4226

C 2.33333333 1.33333333 1.75 0.2222

A*C 0.66666667 1.33333333 0.50 0.6667

Obs A B C y yhat resid eresid

1 1 1 1 13.5 12.8333 0.66667 0.94281

2 0 0 0 8.5 8.5000 0.00000 .

3 0 1 1 7.5 8.8333 -1.33333 0.94281

4 1 0 1 13.5 14.1667 -0.66667 0.94281

5 1 1 0 10.5 9.8333 0.66667 0.94281

6 1 0 0 10.5 11.1667 -0.66667 0.94281

7 0 0 1 11.5 10.1667 1.33333 0.94281
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Table 16.4 (Continued )

C. ANALYSIS WITH MODEL Y=A B C B*C

(NOISELESS CASE)

The GLM Procedure

General Form of Estimable Functions

Effect Coefficients

Intercept L1

A 0 L2

A 1 L1-L2

B 0 L4

B 1 L1-L4

C 0 L6

C 1 L1-L6

B*C 0 0 L8

B*C 0 1 L4-L8

B*C 1 0 L6-L8

B*C 1 1 L1-L4-L6+L8

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 26.09523810 6.52380952 2.45 0.3106

Error 2 5.33333333 2.66666667

Corrected Total 6 31.42857143

R-Square Coeff Var Root MSE y Mean

0.830303 15.14033 1.632993 10.78571

Source DF Type I SS Mean Square F Value Pr > F

A 1 13.76190476 13.76190476 5.16 0.1511

B 1 1.66666667 1.66666667 0.62 0.5120

C 1 10.00000000 10.00000000 3.75 0.1924

B*C 1 0.66666667 0.66666667 0.25 0.6667
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Table 16.4 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

A 1 16.66666667 16.66666667 6.25 0.1296

B 1 2.66666667 2.66666667 1.00 0.4226

C 1 8.16666667 8.16666667 3.06 0.2222

B*C 1 0.66666667 0.66666667 0.25 0.6667

Standard

Parameter Estimate Error t Value Pr > |t|

A 3.33333333 1.33333333 2.50 0.1296

B -1.33333333 1.33333333 -1.00 0.4226

C 2.33333333 1.33333333 1.75 0.2222

B*C 0.66666667 1.33333333 0.50 0.6667

Obs A B C y yhat resid eresid

1 1 1 1 13.5 12.1667 1.33333 0.94281

2 0 0 0 8.5 7.8333 0.66667 0.94281

3 0 1 1 7.5 8.8333 -1.33333 0.94281

4 1 0 1 13.5 14.1667 -0.66667 0.94281

5 1 1 0 10.5 10.5000 0.00000 .

6 1 0 0 10.5 11.1667 -0.66667 0.94281

7 0 0 1 11.5 10.8333 0.66667 0.94281

2. For the models with ζ = AC and BC, Tables 16.4 b and 16.4 c show
that SS(Error)=SSE(M1)>0, as they should because the wrong models
are used.

3. In all three cases the expressions for estimable functions confirm the the-
oretical results that, individually, AB, AC, and BC are estimable.

4. It is, of course, clear that ABC cannot be estimated since its definition
depends on all eight treatment combinations of the 23 factorial. �

16.5.3 Noisy Case

As we have seen in the previous section, in the noiseless case the true model
is identified correctly. This may not necessarily happen in the noisy case, that
is, when var(e) = V �= 0. However, based on the results for the noiseless case,
where SSE(M0)=0, it seems plausible to select that model as the correct model
for which SSE achieves the smallest value among competing models. This, in
fact, was suggested by Srivastava (1975).

We illustrate this procedure in the following example.

Example 16.2 We consider the same search design as in Example 16.1. We also
use the same parameter values as in Example 16.1. The observations are obtained
by adding N(0, 1) noise to each true value. The data are given in Table 16.5.
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Table 16.5 Data and Analysis for Search Experiment (With N(0, 1) Noise)

Obs A B C y

1 1 1 1 13.792

2 0 0 0 9.013

3 0 1 1 7.445

4 1 0 1 15.187

5 1 1 0 10.176

6 1 0 0 10.606

7 0 0 1 11.638

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A. ANALYSIS WITH MODEL Y=A B C A*B

(WITH N(0, 1) NOISE)

The GLM Procedure

Class Level Information

Class Levels Values

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 7

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 42.09222138 10.52305535 22.00 0.0439

Error 2 0.95654033 0.47827017

Corrected Total 6 43.04876171

R-Square Coeff Var Root MSE y Mean

0.977780 6.217804 0.691571 11.12243

Source DF Type I SS Mean Square F Value Pr > F

A 1 16.20876430 16.20876430 33.89 0.0283

B 1 4.81496682 4.81496682 10.07 0.0866

C 1 15.73393923 15.73393923 32.90 0.0291

A*B 1 5.33455104 5.33455104 11.15 0.0792
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Table 16.5 (Continued )

Source DF Type III SS Mean Square F Value Pr > F

A 1 29.79504504 29.79504504 62.30 0.0157

B 1 11.74600417 11.74600417 24.56 0.0384

C 1 19.51928067 19.51928067 40.81 0.0236

A*B 1 5.33455104 5.33455104 11.15 0.0792

Standard

Parameter Estimate Error t Value Pr > |t|

A 4.45683333 0.56466519 7.89 0.0157

B -2.79833333 0.56466519 -4.96 0.0384

C 3.60733333 0.56466519 6.39 0.0236

A*B 1.88583333 0.56466519 3.34 0.0792

Obs A B C y yhat resid eresid

1 1 1 1 13.792 13.7877 0.00433 0.39928

2 0 0 0 9.013 8.5218 0.49117 0.39928

3 0 1 1 7.445 7.4450 -0.00000 .

4 1 0 1 15.187 14.7002 0.48683 0.39928

5 1 1 0 10.176 10.1803 -0.00433 0.39928

6 1 0 0 10.606 11.0928 -0.48683 0.39928

7 0 0 1 11.638 12.1292 -0.49117 0.39928

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

B. ANALYSIS WITH MODEL Y=A B C A*C

(WITH N(0, 1) NOISE)

The GLM Procedure

Class Level Information

Class Levels Values

A 2 0 1

B 2 0 1

C 2 0 1

Number of observations 7

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 39.22872871 9.80718218 5.13 0.1696

Error 2 3.82003300 1.91001650

Corrected Total 6 43.04876171
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Table 16.5 (Continued )

R-Square Coeff Var Root MSE y Mean

0.911263 12.42564 1.382033 11.12243

Source DF Type I SS Mean Square F Value Pr > F

A 1 16.20876430 16.20876430 8.49 0.1004

B 1 4.81496682 4.81496682 2.52 0.2533

C 1 15.73393923 15.73393923 8.24 0.1030

A*C 1 2.47105837 2.47105837 1.29 0.3733

Source DF Type III SS Mean Square F Value Pr > F

A 1 20.14284038 20.14284038 10.55 0.0832

B 1 6.03605400 6.03605400 3.16 0.2174

C 1 11.88633750 11.88633750 6.22 0.1301

A*C 1 2.47105837 2.47105837 1.29 0.3733

Standard

Parameter Estimate Error t Value Pr > |t|

A 3.66450000 1.12842560 3.25 0.0832

B -2.00600000 1.12842560 -1.78 0.2174

C 2.81500000 1.12842560 2.49 0.1301

A*C 1.28350000 1.12842560 1.14 0.3733

Obs A B C y yhat resid eresid

1 1 1 1 13.792 13.4865 0.3055 0.79792

2 0 0 0 9.013 9.0130 0.0000 .

3 0 1 1 7.445 8.5385 -1.0935 0.79792

4 1 0 1 15.187 15.4925 -0.3055 0.79792

5 1 1 0 10.176 9.3880 0.7880 0.79792

6 1 0 0 10.606 11.3940 -0.7880 0.79792

7 0 0 1 11.638 10.5445 1.0935 0.79792

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C. ANALYSIS WITH MODEL Y=A B C B*C

(WITH N(0, 1) NOISE)

The GLM Procedure

Class Level Information

Class Levels Values

A 2 0 1

B 2 0 1

C 2 0 1
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Table 16.5 (Continued )

Number of observations 7

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 37.33955238 9.33488810 3.27 0.2477

Error 2 5.70920933 2.85460467

Corrected Total 6 43.04876171

R-Square Coeff Var Root MSE y Mean

0.867378 15.19055 1.689558 11.12243

Source DF Type I SS Mean Square F Value Pr > F

A 1 16.20876430 16.20876430 5.68 0.1400

B 1 4.81496682 4.81496682 1.69 0.3236

C 1 15.73393923 15.73393923 5.51 0.1434

B*C 1 0.58188204 0.58188204 0.20 0.6959

Source DF Type III SS Mean Square F Value Pr > F

A 1 21.99952017 21.99952017 7.71 0.1090

B 1 7.07094704 7.07094704 2.48 0.2562

C 1 13.32209004 13.32209004 4.67 0.1633

B*C 1 0.58188204 0.58188204 0.20 0.6959

Standard

Parameter Estimate Error t Value Pr > |t|

A 3.82966667 1.37951795 2.78 0.1090

B -2.17116667 1.37951795 -1.57 0.2562

C 2.98016667 1.37951795 2.16 0.1633

B*C 0.62283333 1.37951795 0.45 0.6959

Obs A B C y yhat resid eresid

1 1 1 1 13.792 12.5333 1.25867 0.97547

2 0 0 0 9.013 7.8947 1.11833 0.97547

3 0 1 1 7.445 8.7037 -1.25867 0.97547

4 1 0 1 15.187 15.3273 -0.14033 0.97547

5 1 1 0 10.176 10.1760 0.00000 .

6 1 0 0 10.606 11.7243 -1.11833 0.97547

7 0 0 1 11.638 11.4977 0.14033 0.97547
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The individual analyses for different models are given in Tables 16.5a–16.5c. The
summary below shows that in this case we would have selected the true model over
the others:

Model SS(Error)

M0: A, B, C, AB 0.478

M1: A, B, C, AC 1.910

M1: A, B, C, BC 2.855 �

16.6 SEARCH PROBABILITIES

The discussion of the preceding section can be expressed in terms of probabilities
as follows: For the noiseless case we have

P [SSE(M0) < SSE(M1) |M0,M1, V = 0] = 1

and for the noisy case we have

P [SSE(M0) < SSE(M1) |M0,M1, V �= 0] < 1 (16.14)

Let us assume, for operational purposes, that var(e) = V = σ 2
e I . If σ 2

e = ∞,
then M0 and M1 are indistinguishable, and hence we can rewrite (16.14) more
precisely as

P [SSE(M0) < SSE(M1) |M0, M1, σ 2
e = ∞] = 1

2

The probability P [SSE(M0) < SSEM1) |M0,M1, σ 2
e ] is called a search prob-

ability, which assumes values between 1
2 and 1 (Ghosh and Teschmacher, 2002).

The expression in (16.14) can be written out more explicitly as follows. To
simplify the notation, let us write

θ =
(

ξ1

ζ

)
A(ζ ) = [A1,A21(ζ )] M(ζ ) = A(ζ )′A(ζ )

Then the error sum of squares, SSE, for model (16.13), which we shall denote
more precisely by s(ζ )2, can be written as

s(ζ )2 = y ′[I − Q(ζ )]y (16.15)

where
Q(ζ ) = A(ζ ) [M(ζ )]−A(ζ )′

(see Section I.4.4.3). Rather than using (16.15) in (16.14) and minimizing s(ζ )2,
Shirakura, Takahashi, and Srivastava (1996) propose maximizing

h(ζ , y) = y′[Q(ζ ) − Q]y
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where
Q = A1(A

′
1A1)

−1A1

and
s(ζ )2 = y′(I − Q)y − h(ζ , y)

They then define

P = min
ζ 0 ⊂ ξ2

min
ζ ∈ A(ξ2; ζ )

P [h(ζ 0, y) > h(ζ , y)] (16.16)

as the search probability for a given search design, where A(ξ z; ζ ) denotes the
set of all possible ζ of ξ2, of which at least one effect is not of ζ 0, and ζ 0
represents the vector of the nonnegligible effects in ξ2.

For the case k = 1 and assuming that e ∼ N(0, Iσ 2
e ), Shirakura, Takahashi,

and Srivastava (1996) derive an explicit expression for

P(ζ0, ζ, σ 2
e ) = P [h(ζ0, y) − h(ζ, y)] (16.17)

after rewriting (16.13) as

y = A1ξ1 + a(ζ )ζ + e (16.18)

where ζ is one effect of ξ2 and a(ζ ) is the column vector in A2 corresponding
to ζ , and ζ0 represents the nonnegligible effect in ξ2. The expression for (16.17)
is then given as follows (see Ghosh and Teschmacher, 2002):

P(ζ0, ζ, σ 2
e ) = .5 + 2[φ(ρc1(ζ0, ζ )) − .5]

× [φ(ρ

√
r(ζ0, ζ0) − c2

1(ζ0, ζ )) − .5] (16.19)

where φ(·) is the standard normal cdf, r(γ, η) = a′(γ )[I − A1(A
′
1A1)

−1A′
1]a(η)

for (γ, η) = (ζ0, ζ0), (ζ0, ζ ), (ζ, ζ ), x(ζ0, ζ ) = r(ζ0, ζ )/
√

r(ζ0, ζ0) r(ζ, ζ ) ,
c2

1(ζ0, ζ ) = [r(ζ0, ζ0)/2][1 − | x(ζ0, ζ ) |], and ρ = | ζ0 |/σe.
It follows immediately from (16.19) that .5 ≤ P(ζ0, ζ, σ 2

e ) ≤ 1, as stated
before, and that P(ζ0, ζ, σ 2

e ) increases as ρ increases.
Using the search design and parameters in Example 16.2 we illustrate the use

of (16.19) in the next example.

Example 16.3 From Example 16.1 we obtain for use in (16.18)

a(ζ0) = a′(AB) = (
1 1 −1 −1 1 −1 1

)
a(ζ1) = a′(AC) = (

1 1 −1 1 −1 −1 −1
)

a(ζ2) = a′(BC) = (
1 1 1 −1 −1 1 −1

)
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and

A1 =



1 1 1 1

1 −1 −1 −1

1 −1 1 1

1 1 −1 1

1 1 1 −1

1 1 −1 −1

1 −1 −1 1


with r(ζ0, ζ0) = 6, r(ζ0, ζ1) = 3, r(ζ0, ζ2) = −1, r(ζ1, ζ1) = 1.5, rζ2, ζ2) = 5.5,
x(ζ0, ζ1) = 1, x(ζ0, ζ2) = −0.1741, c2

1(ζ0, ζ1) = 0, c2
1(ζ0, ζ2) = 2.4777, ρ = 1.

We then obtain P(ζ0, ζ1, 1) = .5, P(ζ0, ζ2, 1) = .9144. Individually, the results
show that there is a much higher probability of distinguishing between the true
model (including AB) and the model including BC. If we adopt (16.16) as the
overall measure for the given design and parameters, then the search probability
P is only .5. �

Ghosh and Teschmacher (2002) show how search probabilities can be used to
compare different search designs. They develop criteria so that such comparisons
can be made without requiring a specific value of ρ = | ζ0 |/σe.
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Robust-Design Experiments

As we have mentioned before, factorial designs in their various forms were orig-
inally developed and used in the context of agricultural experimentation. They
have since found wide application in almost all fields of empirical research.
Important contributions to factorial experimentation has come from applications
in engineering and manufacturing, a development usually associated with the
name Taguchi. The so-called Taguchi method and variations of this method
are concerned with quality engineering and product improvement. According
to Taguchi (1993, p. 4), “the objective of quality engineering is to discover the
countermeasure which results in an overall reduction in the total loss to both
the company and society. It is therefore important to evaluate the two kinds of
losses—the loss due to function and one due to harmful effects.” Thus, the basic
philosophy here rests on the concept of societal loss due to imperfect production
and “environmental” factors and the role that experimental design can play to
reduce that loss. We shall discuss some of the underlying ideas in the following
sections.

17.1 OFF-LINE QUALITY CONTROL

An important aspect of any production process is quality control. Typically this
is performed during the manufacturing phase of the process. Various forms of
inspection sampling can be applied to ensure that the product meets certain spec-
ification and that the process is in control (see, e.g., Montgomery, 1991). There
exists, however, another form of quality control. It is conducted at the product or
process design stage, thus preceding the manufacturing stage. This type of quality
control is therefore referred to as off-line quality control. Its aim is to improve
product manufacturability and reliability, and to reduce product development and
lifetime costs (Kackar, 1985).

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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It is in this context that Taguchi (1986, 1987) introduced the application of
what he called robust parameter design (parameter here refers to the characteristic
of a product). According to Taguchi (1986, p. 98) its purpose “is to adjust the
parameter levels so that the objective characteristic will not vary much even if
the system and environmental parameters change. It is a search for the parameter
levels at which the characteristic is stable.” More explicitly, Montgomery (1999)
reformulates this in terms of making (1) products and processes insensitive to
environmental factors or other factors hard to control and to variation transmitted
from components and (2) finding levels of the process variables that achieve a
mean performance at a specified (target) value and at the same time reducing
variability around that value.

17.2 DESIGN AND NOISE FACTORS

With the previous statements we have implicitly acknowledged the existence of
two categories of factors that affect the characteristic of the product: Design
factors and noise factors. This categorization is a new feature that we have not
encountered before, at least not in this explicit form. It is, however, an important
feature in conducting and analyzing robust-design experiments.

Design factors, sometimes also referred to as design parameters (Kackar, 1985)
or control factors (Taguchi, 1993), are those factors that can be controlled easily
during the manufacturing process, the values of which remain essentially fixed
at “optimal” levels. Noise factors, on the other hand, are factors that are hard
to control, such as environmental factors, and, as a consequence, their levels
will vary within a certain range during the production process and/or during
subsequent use of the product [for a detailed description of various types of
noise factors see, e.g., Wu and Hamada (2000)].

As an example we mention an experiment performed in a semiconductor
factory to determine the influence of five factors on the transistor gain for a
particular device (Montgomery, 1999). The three factors implant dose, drive-
in time, and vacuum level are easy to control and hence represent the design
factors. The factors oxide thickness and temperature are hard to control during
the manufacturing process and hence represent the noise factors.

The underlying idea of the Taguchi method is to incorporate the noise factors
into the product design phase by varying their settings systematically over a range
representative of the variation during typical manufacturing and/or use conditions.
The aim then is to find settings for the design factors so that the influence of the
noise factors on the product performance is minimized or, to express it differently,
to make the product robust with respect to the noise factors. It is for this reason
that this methodology is referred to as robust design or robust parameter design
(or parameter design for short).
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17.3 MEASURING LOSS

As mentioned earlier, the notion of loss to society and to the company forms the
underpinning of the Taguchi method. To assess the loss we need to specify a loss
function as a function of a value of the performance characteristic of the product,
say Y , and the target value, say τ , for that performance characteristic. We can
think of many loss functions, but in practice it is usually difficult to come up
with the actual loss function. However, in many situations an appropriate loss
function is given by

�(Y ) = c(Y − τ)2 (17.1)

where c is some constant, which can be determined if �(Y ) is known for some
value of Y .

One way to determine c in (17.1) was described by Kackar (1985). Let (τ − �,
τ + �) be the consumer’s tolerance interval in the sense that if Y falls outside
this interval, then the product needs either to be repaired or discarded. Suppose
the cost for that action is A dollars. It follows then from (17.1) that A = c�2

and hence c = A/�2.
The loss function (17.1) is symmetric around τ . This may not always be

appropriate as the loss may depend on whether Y < τ or Y > τ . In this case a
simple variation of (17.1) may lead to the form

�(Y ) =
{

c1(Y − τ)2 if Y < τ

c2(Y − τ)2 if Y > τ
(17.2)

where c1 and c2 are constants that can be determined using arguments similar to
those given above.

A special case of (17.2) occurs if τ = 0. Then (17.2) reduces to

�(Y ) = c2Y
2 if Y > 0 (17.3)

In either of the cases (17.1), (17.2), (17.3) we consider the expected loss

L = E[�(Y )] (17.4)

as the criterion to assess the quality of a product or process. The expectation in
(17.4) is taken with respect of the distribution of Y during the product’s lifetime
and across different users. The latter is represented to a great extent by some or
all of the noise factors.
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17.4 ROBUST-DESIGN EXPERIMENTS

In order to minimize the average loss (17.4) we perform an experiment, the
robust-design experiment. The purpose of this experiment is to determine the
optimal levels for the control factors in conjunction with reducing the product’s
performance around the target value. There are several ways in which such an
experiment can be performed making use of some of the factorial designs we
have discussed in previous chapters or certain types of response surface designs
(see I.12.3 and I.12.4).

17.4.1 Kronecker Product Arrays

Distinguishing between the two sets of factors, design and noise factors, suggests
the use of the following experimental design: Choose an appropriate fractional
factorial design for the design factors and another one for the noise factors and
then combine these two designs in the form of a Kronecker product design;
that is, each design factor level combination occurs with each noise factor level
combination. Taguchi (1986) referred to these two component designs as inner
array and outer array, respectively. Moreover, he suggested the use of main
effect plans in the form of orthogonal arrays.

As an illustration consider the following example.

Example 17.1 Suppose we have four design factors A1, A2, A3, A4, each
at three levels, and three noise factors, B1, B2, B3, each at two levels. The inner
array is then given by OA(9, 4, 3, 2; 1) and the outer array by OA(4, 3, 2, 2; 1)
(see Example 13.9). Then the Kronecker product design or the so-called cross
array consists of 9 × 4 = 36 runs. �

An important aspect of the cross array is that the interactions between indi-
vidual design and noise factors can be estimated (see Example 13.9). If such
interactions exist, they can be exploited to choose the design factor settings such
that the product variation over the noise factor settings will be reduced (we shall
return to this point in Section 17.5).

On the other hand, the number of runs required for a cross array may be quite
large, even when we use minimal designs for both the design and noise factors.
This disadvantage of cross arrays will become even more pronounced if we allow
at least some 2-factor interactions between design factors by using a resolution
IV or resolution V design instead of a main effect plan.

17.4.2 Single Arrays

The last two comments above provide a strong argument to look for alternative
experimental designs in connection with robust-design experiments. This can be
achieved by combining the design and noise factors into one set of factors and
then obtain an appropriate fractional factorial design that achieves the objectives
of the experiment. Such experimental designs are referred to as single array or
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common array. We shall illustrate this approach with some examples. For a listing
of useful single arrays see Wu and Hamada (2000).

Example 17.2 Suppose we have three design factors A1, A2, A3 and two
noise factors B1, B2, each at two levels. The usual Taguchi method would cross
the 23−1

III array with the 22 array with 4 × 4 = 16 runs. Suppose, however, that
we are interested also in estimating 2-factor interactions between design factors.
In that case the crossed array would be of the form 23 × 22 with 8 × 4 = 32
runs. A single array can be obtained by considering the 25−1

V array based on the
identity relationship I = A1A2A3 B1B2 with only 16 runs. �

Example 17.3 Suppose we have five design factors A1, A2, A3, A4, A5 and
two noise factors B1, B2, each at two levels. The usual cross array would be of
the form 25−2

III × 22 with 8 × 4 = 32 runs. The single array 27−2
IV , also with 32

runs, based on the identity relationship

I = A1A2A3A5 = A1A2A4B1B2 = A3A4A5B1B2

has the additional property that it allows us to estimate at least some of the
2-factor interactions among design factors, assuming that only interactions involv-
ing three or more factors are negligible. �

Example 17.4 Suppose we have three design factors A1, A2, A3, each at
three levels, and two noise factors, B1, B2, each at two levels. The usual cross
array would be of the form 33−1

III × 22 with 9 × 4 = 36 runs. Here the 33−1
III ,

referred to L9(33) by Taguchi, is based on I = A1A2A
2
3. An alternative single

array in the form of a modified central composite design for five factors (see
I.12.4.3) was proposed by Myers, Khuri, and Vining (1992). Their design consists
of three parts: (1) The factorial part is a 25−1

V based on I = A1A2A3B1B2 and
using only the high and low levels of each factor; (2) the axial part consists of the
axial points for the control factors, keeping the noise factors at their intermediate
level (assuming that the noise factors are quantitative factors), and (3) n0 center
runs. Using the response surface methodology convention of denoting the low,
intermediate and high levels by −1, 0, 1, respectively, the final design is given
in Table 17.1.

This design, consisting of 16 + 6 + n0 = 22 + n0 runs, allows us to estimate
all main effects, all 2-factor interactions between design factors, and the 2-factor
interactions between design and noise factors. �

The single arrays discussed above provide some insight into their general
structure. It also shows that single arrays may be more economical than crossed
arrays or that they provide more information. These are aspects that may deter-
mine which type of array we should choose for a given situation. However, to
some extent this choice will also be influenced by the type of modeling we intend
to use for data from such experiments, that is, how we intend to use the data in
order to arrive at a robust product design. We shall discuss some of these issues
in the following sections.
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Table 17.1 Central Composite Design for Three
Design Factors and Two Noise Factors

A1 A2 A3 B1 B2

−1 −1 −1 −1 −1
−1 −1 1 1 1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1

1 −1 −1 1 1
1 −1 1 −1 1
1 −1 1 1 −1
1 1 −1 −1 1
1 1 −1 1 −1
1 1 1 −1 −1

−1 −1 −1 −1 1
−1 −1 −1 1 −1
−1 −1 1 −1 −1
−1 1 −1 −1 −1

1 −1 −1 −1 −1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−1 0 0 0 0
1 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 0 0 0 n0

17.5 MODELING OF DATA

Just as there are different approaches to deciding on a statistical design for a
robust-design experiment, there are different ways of analyzing the data from
such an experiment. The proposal by Taguchi (1986) to use various forms of
signal-to-noise ratios (S/N ratios) to analyze and interpret such data has come
under a certain amount of criticism (e.g., Box, 1988) and as a consequence other
methods of looking at the data from these experiments have been proposed. We
shall indicate some of these ideas in the following sections.

17.5.1 Location and Dispersion Modeling

As we have mentioned earlier, the novel idea associated with robust-design exper-
iments is not only to identify the factors that affect the average response, but
also to identify the factors that contribute to the variability of the response. In
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the practical setting of product design this means more specifically that we need
to model both the location and the dispersion of the response or, as it is often
referred to, the performance characteristic in order to find an appropriate level
combination of the control factors that will achieve the desired value of or target
for the performance characteristic.

Let us consider the cross array of Section 17.4.1. Suppose the inner or design
array D1 consists of N1 treatment combinations and the outer or noise array D2
consists of N2 treatment combinations. The total number of runs in D = D1 × D2
then is N = N1N2. Let A denote the design factor settings, then, following
Nair (1986), we can write a location-scale model for the (possibly transformed)
observations as

Y = µ(A) + σ(A)e (17.5)

where the random component e does not depend on A and is assumed to have
mean 0 and variance 1. The terms µ(A) and σ(A) represent the location and
dispersion effects, respectively.

We should emphasize that using model (17.5) implies that the experiment has
been carried out according to a completely randomized design. In practice this
may not always be possible and some form of blocking may have to be used as
discussed in Chapters 11 and 12. Another possibility is the use of a split-plot-
type design (see I.13.4), where, for example, the treatment combinations of the
design array represent the whole-plot treatments and the treatment combinations
of the noise array represent the split-plot treatments. In either case it is easy to
modify model (17.5) by either incorporating the block effects or the whole-plot
error term, both of which are independent of the design factors.

Using the loss function (17.1) the expected loss (17.4) for the response (17.5)
can be written as

L = E[�(Y )] = c E(Y − τ)2

= c[µ(A) − τ ]2 + c σ 2(A) (17.6)

This form of L shows explicitly that in order to minimize the mean-squared
error (17.6) we need to identify the setting of the design factors such that µ(A)

achieves the target value τ and σ 2(A) is minimized.
Now let A = (A1, A2, . . . , An) be the set of design factors employed in the

experiment. Then the aim of the subsequent analysis is to divide A into three
sets, say, A = (A1, A2, A3) (Phadke, 1982), where

A1 represents the factors that affect dispersion (they are referred to as control
factors);

A2 represents the factors that affect location but not dispersion (they are
referred to as adjustment factors);

A3 represents the factors that neither affect location nor dispersion.
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According to this division the factors included in A1 and A2 represent the
actual design factors (Box, 1988). Such a division is possible only if we can get
rid of dispersion effects that arise because of a dependence of σ on µ (Box and
Meyer, 1986b; Box, 1988). This can often be achieved through an appropriate
transformation of the original data or through the use of a performance mea-
sure independent of adjustment (PerMIA) as proposed by Leon, Shoemaker, and
Kackar (1987). We assume that Y in (17.5) is of that form.

To achieve the division of A let us now consider the observations Y from the
experiment based on the cross array D. More specifically, let yij be the (possibly
transformed) observation for the ith treatment combination of D1 and the j th
treatment combination of D2 (i = 1, 2, . . . , N1; j = 1, 2, . . . , N2). In some sense
the N2 observations, stemming from D2, for each treatment combination of D1
can be considered as replications for that treatment combination. It is, therefore,
plausible to analyze

yi. = 1

N2

N2∑
j=1

yij and s2
i = 1

N2 − 1

N2∑
j=1

(yij − yi.)
2

for i = 1, 2, . . . , N1, separately as measures of location and variability, respec-
tively. The analysis of the yi. conforms, of course, to the usual analysis of
fractional factorial designs. The s2

i are obtained over the same design points of
D2 and, hence, any differences among them can be attributed to the design fac-
tors. This provides justification for analyzing the s2

i , or more appropriately log s2
i ,

in the same way as the yi. in order to identify the factors belonging to A1 and
A2. For both variables we can use the tools of the analysis of variance.

We shall illustrate this approach with the data obtained from a cross-array
experiment described by Engel (1992).

Example 17.5 (Engel, 1992) Seven design factors and three noise factors,
each at two levels, were included in the experiment in an effort to identify the
design factors that had an effect on the mean of and variation in the percentage
of shrinkage of products made by injection moulding. The factors are (rather
than using the labels A1, A2, . . . , A7 and B1, B2, B3 we retain the labels used
by Engel):

Design Factors Noise Factors

A: cycle time M: percentage regrind
B: mould temperature N: moisture content
C: cavity thickness O: ambient temperature
D: holding pressure
E: injection speed
F: holding time
G: gate size
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The cross-array D is given by crossing D1 = 27−4
III with D2 = 23−1

III , were D1
has the identity relationship

I = ABC = DEFG = ABCDEFG = ADE = BCDE

= AFG = BCFG = BEG = ACEG = BDF = ACDF

and D2 has the identity relationship

I = MNO

The 32 design points with their observations are listed in Table 17.2 together
with the values for s2

i (note that as a matter of convenience each s2
i value is

listed four times for the four replications of each design point in D1). The results
of the analysis of variance for the yi. and the log s2

i are given in Table 17.2.
Concerning the location modeling aspect, we may conclude by looking infor-

mally and somewhat subjectively at the P values (or half-normal plots) for the
estimated main effects, that the factors A, D, and possibly G constitute A2 and
hence represent the adjustment factors. A separate regression analysis using A,
D, and G yields the prediction equation

Ŷ = 2.3375 + 0.85xA − 0.5625xD − 0.4625x6

where xA, xD , xG represent the coded levels of A, D, and G, respectively.
Together with engineering and production considerations this equation can then
be used to adjust the process so that a particular target, τ , can be achieved.

With regard to the dispersion modeling the results point clearly to factor F

as having a pronounced effect on the variability and hence constituting the only
control factor. A look at the data shows, indeed, that the s2

i for those treatment
combinations in D1 with F = 0 are much smaller than for those with F = 1.

For a different approach to dispersion modeling and analysis of the same data
set we refer the reader to Engel (1992). �

17.5.2 Dual-Response Modeling

We have pointed out earlier that cross-array experiments allow for the estimation
of 2-factor interactions between design and noise factors. Yet, in the preceding
discussion we have assumed that such interactions either do not exist or have been
eliminated through an appropriate transformation of the original observations.
Also, the location and dispersion modeling approach as discussed in the previous
section is obviously not appropriate for single-array experiments.

In order to deal with these situations we shall describe now a two-step mod-
eling procedure that Myers, Khuri, and Vining (1992) and Vining and Myers
(1990) referred to as a dual-response approach. The basic idea is to express an



642 ROBUST-DESIGN EXPERIMENTS

Table 17.2 Robust-Design Experiment Cross Array Data Points,
Data, and Analysis

options nodate pageno=1 LS=75;
data robust;
input A B C D E F G M N O Y S @@;
logS=log(S);
datalines;
0 0 0 0 0 0 0 0 0 0 2.2 0.0092 0 0 0 0 0 0 0 0 1 1 2.1 0.0092
0 0 0 0 0 0 0 1 0 1 2.3 0.0092 0 0 0 0 0 0 0 1 1 0 2.3 0.0092
0 0 0 1 1 1 1 0 0 0 0.3 1.7700 0 0 0 1 1 1 1 0 1 1 2.5 1.7700
0 0 0 1 1 1 1 1 0 1 2.7 1.7700 0 0 0 1 1 1 1 1 1 0 0.3 1.7700
0 1 1 0 0 1 1 0 0 0 0.5 2.1000 0 1 1 0 0 1 1 0 1 1 3.1 2.1000
0 1 1 0 0 1 1 1 0 1 0.4 2.1000 0 1 1 0 0 1 1 1 1 0 2.8 2.1000
0 1 1 1 1 0 0 0 0 0 2.0 0.0092 0 1 1 1 1 0 0 0 1 1 1.9 0.0092
0 1 1 1 1 0 0 1 0 1 1.8 0.0092 0 1 1 1 1 0 0 1 1 0 2.0 0.0092
1 0 1 0 1 0 1 0 0 0 3.0 0.0025 1 0 1 0 1 0 1 0 1 1 3.1 0.0025
1 0 1 0 1 0 1 1 0 1 3.0 0.0025 1 0 1 0 1 0 1 1 1 0 3.0 0.0025
1 0 1 1 0 1 0 0 0 0 2.1 1.8733 1 0 1 1 0 1 0 0 1 1 4.2 1.8733
1 0 1 1 0 1 0 1 0 1 1.0 1.8733 1 0 1 1 0 1 0 1 1 0 3.1 1.8733
1 1 0 0 1 1 0 0 0 0 4.0 1.7625 1 1 0 0 1 1 0 0 1 1 1.9 1.7625
1 1 0 0 1 1 0 1 0 1 4.6 1.7625 1 1 0 0 1 1 0 1 1 0 2.2 1.7625
1 1 0 1 0 0 1 0 0 0 2.0 0.0067 1 1 0 1 0 0 1 0 1 1 1.9 0.0067
1 1 0 1 0 0 1 1 0 1 1.9 0.0067 1 1 0 1 0 0 1 1 1 0 1.8 0.0067
;
run;

proc print data=robust;
title1 'TABLE 17.2';
title2 'ROBUST-DESIGN EXPERIMENT';
title3 'CROSS ARRAY DATA POINTS AND DATA';
run;

proc glm data=robust;
class A B C D E F G;
model Y logS = A B C D E F G;
estimate 'A' A -1 1/divisor=16;
estimate 'B' B -1 1/divisor=16;
estimate 'C' C -1 1/divisor=16;
estimate 'D' D -1 1/divisor=16;
estimate 'E' E -1 1/divisor=16;
estimate 'F' F -1 1/divisor=16;
estimate 'G' G -1 1/divisor=16;
title2 'IDENTIFICATION OF ADJUSTMENT AND DISPERSION FACTORS';
title3 'THROUGH ANALYSIS OF VARIANCE';
run;

proc reg data=robust;
model Y = A D G;
title2 'ESTIMATING PREDICTION EQUATION';
title3 'USING ADJUSTMENT FACTORS A, D, G';
run;
quit;
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Table 17.2 (Continued )

Obs A B C D E F G M N O Y S LogS

1 0 0 0 0 0 0 0 0 0 0 2.2 0.0092 -4.68855

2 0 0 0 0 0 0 0 0 1 1 2.1 0.0092 -4.68855

3 0 0 0 0 0 0 0 1 0 1 2.3 0.0092 -4.68855

4 0 0 0 0 0 0 0 1 1 0 2.3 0.0092 -4.68855

5 0 0 0 1 1 1 1 0 0 0 0.3 1.7700 0.57098

6 0 0 0 1 1 1 1 0 1 1 2.5 1.7700 0.57098

7 0 0 0 1 1 1 1 1 0 1 2.7 1.7700 0.57098

8 0 0 0 1 1 1 1 1 1 0 0.3 1.7700 0.57098

9 0 1 1 0 0 1 1 0 0 0 0.5 2.1000 0.74194

10 0 1 1 0 0 1 1 0 1 1 3.1 2.1000 0.74194

11 0 1 1 0 0 1 1 1 0 1 0.4 2.1000 0.74194

12 0 1 1 0 0 1 1 1 1 0 2.8 2.1000 0.74194

13 0 1 1 1 1 0 0 0 0 0 2.0 0.0092 -4.68855

14 0 1 1 1 1 0 0 0 1 1 1.9 0.0092 -4.68855

15 0 1 1 1 1 0 0 1 0 1 1.8 0.0092 -4.68855

16 0 1 1 1 1 0 0 1 1 0 2.0 0.0092 -4.68855

17 1 0 1 0 1 0 1 0 0 0 3.0 0.0025 -5.99146

18 1 0 1 0 1 0 1 0 1 1 3.1 0.0025 -5.99146

19 1 0 1 0 1 0 1 1 0 1 3.0 0.0025 -5.99146

20 1 0 1 0 1 0 1 1 1 0 3.0 0.0025 -5.99146

21 1 0 1 1 0 1 0 0 0 0 2.1 1.8733 0.62770

22 1 0 1 1 0 1 0 0 1 1 4.2 1.8733 0.62770

23 1 0 1 1 0 1 0 1 0 1 1.0 1.8733 0.62770

24 1 0 1 1 0 1 0 1 1 0 3.1 1.8733 0.62770

25 1 1 0 0 1 1 0 0 0 0 4.0 1.7625 0.56673

26 1 1 0 0 1 1 0 0 1 1 1.9 1.7625 0.56673

27 1 1 0 0 1 1 0 1 0 1 4.6 1.7625 0.56673

28 1 1 0 0 1 1 0 1 1 0 2.2 1.7625 0.56673

29 1 1 0 1 0 0 1 0 0 0 2.0 0.0067 -5.00565

30 1 1 0 1 0 0 1 0 1 1 1.9 0.0067 -5.00565

31 1 1 0 1 0 0 1 1 0 1 1.9 0.0067 -5.00565

32 1 1 0 1 0 0 1 1 1 0 1.8 0.0067 -5.00565
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Table 17.2 (Continued )

IDENTIFICATION OF ADJUSTMENT AND DISPERSION FACTORS

THROUGH ANALYSIS OF VARIANCE

The GLM Procedure

Dependent Variable: Y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 11.00000000 1.57142857 1.67 0.1646

Error 24 22.60000000 0.94166667

Corrected Total 31 33.60000000

R-Square Coeff Var Root MSE y Mean

0.327381 43.12867 0.970395 2.250000

Source DF Type I SS Mean Square F Value Pr > F

A 1 5.78000000 5.78000000 6.14 0.0207

B 1 0.18000000 0.18000000 0.19 0.6659

C 1 0.12500000 0.12500000 0.13 0.7188

D 1 2.53125000 2.53125000 2.69 0.1141

E 1 0.66125000 0.66125000 0.70 0.4103

F 1 0.01125000 0.01125000 0.01 0.9139

G 1 1.71125000 1.71125000 1.82 0.1902

Source DF Type III SS Mean Square F Value Pr > F

A 1 5.78000000 5.78000000 6.14 0.0207

B 1 0.18000000 0.18000000 0.19 0.6659

C 1 0.12500000 0.12500000 0.13 0.7188

D 1 2.53125000 2.53125000 2.69 0.1141

E 1 0.66125000 0.66125000 0.70 0.4103

F 1 0.01125000 0.01125000 0.01 0.9139

G 1 1.71125000 1.71125000 1.82 0.1902

Standard

Parameter Estimate Error t Value Pr > |t|

A 0.05312500 0.02144291 2.48 0.0207

B -0.00937500 0.02144291 -0.44 0.6659

C 0.00781250 0.02144291 0.36 0.7188

D -0.03515625 0.02144291 -1.64 0.1141

E 0.01796875 0.02144291 0.84 0.4103

F -0.00234375 0.02144291 -0.11 0.9139

G -0.02890625 0.02144291 -1.35 0.1902
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Table 17.2 (Continued )

IDENTIFICATION OF ADJUSTMENT AND DISPERSION FACTORS

THROUGH ANALYSIS OF VARIANCE

The GLM Procedure

Dependent Variable: LogS

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 266.4310915 38.0615845 Infty <.0001

Error 24 0.0000000 0.0000000

Corrected Total 31 266.4310915

R-Square Coeff Var Root MSE LogS Mean

1.000000 0 0 -2.233358

Source DF Type I SS Mean Square F Value Pr > F

A 1 1.5111751 1.5111751 Infty <.0001

B 1 0.6003957 0.6003957 Infty <.0001

C 1 0.2841756 0.2841756 Infty <.0001

D 1 0.3835367 0.3835367 Infty <.0001

E 1 0.7414489 0.7414489 Infty <.0001

F 1 261.7830683 261.7830683 Infty <.0001

G 1 1.1272911 1.1272911 Infty <.0001

Source DF Type III SS Mean Square F Value Pr > F

A 1 1.5111751 1.5111751 Infty <.0001

B 1 0.6003957 0.6003957 Infty <.0001

C 1 0.2841756 0.2841756 Infty <.0001

D 1 0.3835367 0.3835367 Infty <.0001

E 1 0.7414489 0.7414489 Infty <.0001

F 1 261.7830683 261.7830683 Infty <.0001

G 1 1.1272911 1.1272911 Infty <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

A -0.02716392 0 -Infty <.0001

B 0.01712197 0 Infty <.0001

C -0.01177954 0 -Infty <.0001

D 0.01368480 0 Infty <.0001

E -0.01902723 0 -Infty <.0001

F 0.35752449 0 Infty <.0001

G -0.02346135 0 -Infty <.0001



646 ROBUST-DESIGN EXPERIMENTS

Table 17.2 (Continued )

ESTIMATING PREDICTION EQUATION

USING ADJUSTMENT FACTORS A, D, G

The REG Procedure

Model: MODEL1

Dependent Variable: Y

Analysis of Variance

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 10.02250 3.34083 3.97 0.0178

Error 28 23.57750 0.84205

Corrected Total 31 33.60000

Root MSE 0.91763 R-Square 0.2983

Dependent Mean 2.25000 Adj R-Sq 0.2231

Coeff Var 40.78377

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 2.33750 0.32443 7.20 <.0001

A 1 0.85000 0.32443 2.62 0.0140

D 1 -0.56250 0.32443 -1.73 0.0940

G 1 -0.46250 0.32443 -1.43 0.1650

observation as a function of design and noise factor effects as well as the 2-factor
interactions between design and noise factors, or

Y = µ(A) + ν(B) + λ(A, B) + σe (17.7)

where B denotes the noise factor settings. Contrary to (17.5), in (17.7) σ is
independent of the design factors. Even though the noise factors are considered
to be random factors during the use of the product, we need to remember that
for the purpose of the robust-design experiment their levels are selected by the
experimenter. It is for this reason that we first consider (17.7) conditionally on
B in order to identify important design and noise factors. Using those factors we
then consider the predicted value Ŷ and consider var(Ŷ ) as a second response in
an effort to reduce the variability.
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More specifically, let us now write (17.7) as

Y = Xβ + Zγ + Wδ + σe (17.8)

where XN×p , ZN×q , and WN×s are known design model matrices associated
with the design factor effects βp×1, the noise factor effects γ q×1, and the
design–noise factor interactions δs×1, respectively. It is convenient and useful
here to think of model (17.8) as a regression or response surface model. Depend-
ing on the experimental design used, β may include linear and quadratic main
effects and possibly some interaction effects between design factors, and δ may
include some or all 2-factor interactions between design and noise factors.

As indicated earlier, in step 1 we analyze Y conditional on γ and δ using anal-
ysis of variance. Suppose we identify β0 ⊂ β, γ 0 ⊂ γ , and δ0 ⊂ δ as important
effects. We write a model for the predicted value then as

ŷ = β̂
′
0x0 + γ̂ ′

0z0 + δ̂
′
0w0 (17.9)

where x0 represents the linear and quadratic terms for design factors retained
in (17.9), z0 represents linear terms for noise factors retained in (17.9), and
w0 represents cross-product terms xz associated with design and noise factor
interaction terms retained in (17.9). For example, (17.9) might be of the form

ŷ = β̂0 + β̂1x1 + β̂11x
2
1 + β̂2x2 + γ̂2z2 + γ̂3z3 + δ̂12x1z2 + δ̂23x2z3 (17.10)

in which case β̂
′
0 = (β̂0, β̂1, β̂11, β̂2), γ̂ ′

0 = (γ̂2, γ̂3), δ̂
′
0 = (̂δ12, δ̂23) and x′

0 =
(1, x1, x

2
1 , x2), z′

0 = (z2, z3), w′
0 = (x1z2, x2z3), with xi referring to the ith design

factor and zj to the j th noise factor.
Given β̂0, γ̂ 0, δ̂0 and assuming now that the z and w terms are random

variables, we model the location as

Ê(y | β̂0, γ̂ 0, δ̂0) = β̂
′
0 x0 (17.11)

and the variability as

v̂ar(y |̂β0, γ̂ 0, δ̂0) = var(γ̂ ′
0z0) + var(γ̂ ′

0w0)

+ 2 cov(γ̂ ′
0z0, γ̂

′
0w0) + σ 2 (17.12)

To illustrate (17.11) and (17.12) we consider (17.10) and find

Ê(y) = β̂0 + β̂1x1 + β̂11x
2
1 + β̂2x2 (17.13)
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and

var(y) = (γ̂2)
2σ 2

z2
+ (γ̂3)

2σ 2
z3

+ (̂δ12x1)
2σ 2

z2

+ (̂δ23x2)
2σ 2

z3
+ 2γ̂2δ̂12x1 σ 2

z2

+ 2γ̂3 δ̂23x2 σ 2
z3

+ σ 2

= [(γ̂2)
2 + (̂δ12x1)

2 + 2γ̂2δ̂12x1] σ 2
z2

+ [(γ̂3)
2 + (δ23x2)

2 + 2γ̂3δ̂23x2]σ 2
z3

+ σ 2 (17.14)

Assuming that the levels for the noise factors B2 and B3 are chosen such that
σ 2

z2
= σ 2

z3
= 1, then an estimator for (17.14) can be written as

v̂ar(y |̂β0, γ̂ 0, δ̂0) = [(γ̂2)
2 + (̂δ12x1)

2 + 2γ̂2δ̂12x12]

+ [(γ̂3)
2 + (̂δ23x2)

2 + 2γ̂3{̂δ23x2] + MS(E) (17.15)

where MS(E) is obtained from the ANOVA using model (17.8). By choosing
the levels of the noise factors such that σ 2

zj
= 1, we also assume that under

field conditions the z values represent a random sample of levels within the
same range.

The response surface (17.11) in general or (17.13) for the illustrated case will
then be used to adjust the process to the target value. At the same time the
response surface (17.12) in general or (17.15) for the illustrated case will serve
to reduce the variance by using the identified adjustment factors. In general, these
two objectives cannot be achieved independently of each other and hence require
engineering as well as statistical considerations. For examples, see Myers, Khuri,
and Vining (1992) and Vining and Myers (1990), who also point out how this
may involve sequential experimentation.

Another way of making use of the design–noise factor interactions is to con-
sider, for each interaction, the interaction plot and choose the design factor level
that has the flattest response over the range of the particular noise factor (see Wu
and Hamada, 2000).

Finally, an extension of model (17.8) and the analysis based on it has been
proposed by Wolfinger and Tobias (1998). Their mixed linear model allows a
more direct approach of modeling variability in addition to location. However,
this approach requires the assumption of normality for the distribution of the
dispersion and random effects in order to perform maximum likelihood or REML
estimation.
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Lattice Designs

18.1 DEFINITION OF QUASI-FACTORIAL DESIGNS

We have previously discussed the desirability and usefulness of incomplete block
designs (see Chapter 1) when the number of treatments is large and/or complete
blocks are unavailable or inappropriate. In this chapter we describe yet other
methods of constructing certain types of resolvable incomplete block designs,
some of which are in fact BIB or PBIB designs, but others are not. These meth-
ods are based on a correspondence between the treatments to be compared and
the treatment combinations of a factorial set such that the procedures for con-
structing systems of confounding (see Chapter 11) can be utilized. Because of
this correspondence, these designs are referred to as quasi-factorial or lattice
designs. We emphasize, however, that the actual treatments do not have a factorial
structure.

Historically, lattice designs were developed for large-scale agricultural exper-
iments (Yates, 1936b) in which large numbers of varieties were to be compared.
The main application since then has been and continues to be in agriculture.

A special feature of lattice designs is that the number of treatments, t , is related
to the block size, k, in the form t = k2 or t = k3 or t = k(k + 1) (see Section
18.2). Even though this limits the number of possible designs (see Section 6.2),
lattice designs represent an important class of designs nevertheless, in particu-
lar when one is dealing with a large number of treatments. In certain types of
agronomic experiments the number of treatments can easily be 100 or more, for
example, in breeding experiments.

18.1.1 An Example: The Design

We shall illustrate the basic idea of a lattice design with a simple example.
Suppose we have t = 4 treatments t1, t2, t3, t4 and blocks of size 2. We set

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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up the following correspondence between the four treatments and the treatment
combinations of a 22 factorial (using the notation of Section 7.2.4):

Treatment t1 t2 t3 t4

Quasi-factorial combination (1) a b ab

To arrange the treatments in blocks of size 2 we make use of a system of
partial confounding (see Chapter 9). We may, for example, use three different
types of confounding in three replicates, that is,

Replicate Confounding Blocks

I A (1), b and a, ab

II B (1), a and b, ab

III AB (1), ab and a, b

In terms of the treatments t1, t2, t3, t4 the arrangement is then as follows:

Replicate I Replicate II Replicate III

t1, t3 t1, t2 t1, t4

t2, t4 t3, t4 t2, t3

Suppose that this basic pattern is repeated q times, so that there are 3q repli-
cates altogether.

18.1.2 Analysis

Using the results of Chapter 9 we obtain the estimates ÂII,III, B̂I,III, ÂBI,II. In
order to make comparisons among the treatments t1, t2, t3, t4 or their effects
τ1, τ2, τ3, τ4, respectively, we apply the parameterization (7.49). In this way we
obtain, for example,

τ̂1 − τ̂2 = −ÂII,III + ÂBI,II

τ̂1 − τ̂3 = −B̂I,III + ÂBI,II

τ̂1 − τ̂4 = −ÂII,III + B̂I,III

and other contrasts can be estimated similarly. Since ÂII,III, B̂I,III, and ÂBI,III
are independent with

var(ÂII,III) = var(B̂I,III) = var(ÂB I,II) = σ 2
e /2q
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Table 18.1 T | B-ANOVA for Lattice Design

Source d.f. SS

Xρ |I 3q − 1 Usual

Xβ∗ | I, Xρ 3q Usual

Xτ |I,Xρ,Xβ∗ 3 2q{[ÂII,III]2 + [B̂I,III]2 + [ÂBI,II]2}
I | I, Xρ, Xβ∗ ,Xτ 3(2q − 1) Subtraction

Total 12q − 1 Usual

it follows then that
var(̂τi − τ̂j ) = σ 2

e /2q

for i, j = 1, 2, 3, 4, i �= j .
To estimate σ 2

e we turn to the T|B-ANOVA given in Table 18.1, which follows
from the familiar model [see (9.1)]

y = µI + Xρρ + Xβ∗β∗ + Xττ + e

Hence MS(I |I, Xρ , Xβ∗ , Xτ ) is an estimate of σ 2
e .

Based upon the factorial correspondence it is also easy to obtain the combined
estimator for treatment comparisons. Using the notation of Section 9.2.3, we
combine the intrablock estimator ÂII,III and the interblock estimator ÃI and obtain
the combined estimator for A as

̂̂
A = 2qwÂII,III + qw′ÃI

2qw + qw′

= wÂII + wÂIII + w′ÃI

2w + w′ (18.1)

where we have used the fact that ÂII,III = 1
2 (ÂII + ÂIII) and w = 1/σ 2

e , w′ =
1/[σ 2

e + 2σ 2
β ]. Similarly

̂̂
B = wB̂I + wB̂III + w′B̃II

2w + w′ (18.2)

and ̂̂
AB = wÂB I + wÂBII + w′ÃBIII

2w + w′ (18.3)

Since

var
(̂̂
A
)

= var
(̂̂
B
)

= var
(̂̂
AB

)
= 1

q(2w + w′)
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Table 18.2 B | T-ANOVA for Lattice Design

Source d.f. SS E(MS)

Xρ | I 3q − 1 Usual

Xτ |I,Xρ 3 Usual

Xβ∗ |I,Xρ,Xτ 3q σ 2
e + 2

(
1 − 1

3q

)
σ 2

β

A × reps I q − 1
q∑

i=1

[
ÃI,i

]2 − q
[
ÃI

]2
σ 2

e + 2σ 2
β

B × reps II q − 1
q∑

i=1

[
B̃II,i

]2 − q
[
B̃II

]2
σ 2

e + 2σ 2
β

AB × reps III q − 1
q∑

i=1

[
ÃBIII,i

]2 − q
[
ÃBIII

]2
σ 2

e + 2σ 2
β

ÂII,III vs. ÃI 1
2q

3

[
ÂII,III − ÃI

]2
σ 2

e + 4

3
σ 2

β

B̂I,III vs. B̃II 1
2q

3

[
B̂I,III − B̃II

]2
σ 2

e + 4

3
σ 2

β

ÂBI,II vs. ÃBIII 1
2q

3

[
ÂBI,II − ÃBIII

]2
σ 2

e + 4

3
σ 2

β

I |I,Xβ∗Xτ 3(2q − 1) From Table 18.1 σ 2
e

it follows then that, for example,

var
(̂̂
τ 1 − ̂̂τ 2

) = var
(
−̂̂A + ̂̂

AB
)

= 2

q(2w + w′)

The variance of other contrasts can be worked out similarly. To estimate w and
w′ use is made of the T | B-ANOVA of Table 18.1 and the B | T-ANOVA of
Table 18.2, which follows the format of Table 9.11. We thus obtain

σ̂ 2
e = 1

ŵ
= MS(I |I, Xρ,Xβ∗, Xτ ) (18.4)

σ̂ 2
e + 2σ̂ 2

β = 1

ŵ′ = 3q

3q − 1
MS(Xβ∗ |I,Xρ, Xτ )

− 1

3q − 1
MS(I |I, Xρ, Xβ∗, Xτ ) (18.5)

Substituting (18.4) and (18.5) into (18.1), (18.2), and (18.3) then yields the
combined estimator for A, B, and AB, respectively, and with that the combined
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estimators for τi − τj , for example,

τ̃1 − τ̃2 = −2ŵÂII,III + ŵ′ÃI

2ŵ + ŵ′ + 2ŵÂBI,II + ŵ′ÃBIII

2ŵ + ŵ′

with estimated variance

v̂ar
(̃
τi − τ̃j

) = 2

2qŵ + qŵ′ (18.6)

for all i, j = 1, 2, 3, 4, i �= j .
The fact that each treatment comparison is estimated with the same variance,

whether we use intrablock information only or combined intra- and interblock
information, suggests that this lattice design is in fact a BIB design. This can
be verified easily, and this design serves as an illustration of the construction
procedure referred to in Section 3.4. Because of the feature mentioned above,
this particular lattice design is called a balanced lattice. It is just one of several
types of lattice designs as we shall describe in the next section.

18.1.3 General Definition

Even though we have only discussed a simple example, the general idea of
a lattice design can be stated as follows: The treatments are identified with the
treatment combinations of a symmetrical factorial. The implied factorial structure
is then used to construct a resolvable design in incomplete blocks by using
different systems of partial confounding of main effects and interactions. The
same factorial (or better: quasi-factorial) structure can then be used to obtain
various types of estimators, that is, intrablock, interblock, combined estimators,
for contrasts of treatment effects, together with their variances. This latter point is
no longer as important as it was at the time when these designs were developed.
We can now simply refer to the procedures described in Sections 1.8 and 1.14. On
the other hand, the derivations in terms of the factorial are useful for establishing
general properties of lattice designs, as, for example, whether they are BIB or
PBIB designs.

18.2 TYPES OF LATTICE DESIGNS

The existing lattice designs can be classified according to

1. Number of treatments, t

2. Block size, k

3. Number of different systems of confounding used, s

4. Number of restrictions imposed on randomization, c
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Using these parameters a partial list consisting of the most commonly used lattice
designs is given in Table 18.3. Although this table mentions only lattice designs
with c = 1, 2, and t = K2, K3, K(K − 1), it should be clear how this classifi-
cation can be extended to n-dimensional lattices, that is, t = Kn(n = 4, 5, . . . ,)
with c restrictions, c = 1, 2, 3, . . . (e.g., Kempthorne and Federer, 1948a, 1948b;
Federer, 1955).

Balanced lattices have the same properties as BIB designs, in that each treat-
ment occurs together once with every other treatment in the same block, which

Table 18.3 Types of Lattice Designs

Type c t k s

One-restrictional two-dimensional
(square) lattices 1 K2

Simple (double) lattice K 2

Triple lattice K 3

Quadruple lattice K 4

(�= 6)

Balanced lattice Ka K + 1

One-restrictional three-dimensional
(cubic) lattices 1 K3

Triple lattice K 3

Quadruple lattice Ka 4

Balanced lattice Ka K2 + K + 1

Two-restrictional two-dimensional
lattices 2 K2

Semibalanced lattice square Ka (K + 1)/2

Balanced lattice square Ka K + 1

Unbalanced lattice square Ka ≥2

Unbalanced lattice square 6 ≤3

Unbalanced lattice square 10 ≤4

Unbalanced lattice square 12 ≤7

Unbalanced lattice square 14 ≤5

Unbalanced lattice square 15 ≤6

One-restrictional two-dimensional
rectangular lattices 1 K(K − 1)

Simple rectangular lattice K − 1 2

Triple rectangular lattice K − 1 3

Near balanced
rectangular lattice K − 1a K

aK is prime or prime power.
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implies that all treatment differences are estimated with the same variance. The
number of different systems of confounding (s) needed to achieve such balance
depends on the dimensionality (n) of the design, increasing roughly exponentially.
Even for moderate values of n, it may therefore be difficult, from a practical point
of view, to achieve balance.

Lattice designs other than balanced lattices have at least the properties of PBIB
designs with two or more associate classes (see Section 18.7). The method of
constructing lattice designs using different systems of confounding provides thus
an easy and convenient way to construct PBIB designs of certain types.

With regard to rectangular lattices one can envision more general designs
with t = KL in blocks of size k = L with L ≤ K − 1. The most important
case, however, and the one usually referred to as rectangular lattice is that of
L = K − 1. Apart from using blocks of size k = K − 1 instead of K as for the
other (square) lattice designs, the rectangular lattice of the above type is suitable
for t values between (K − 1)2 and K2, thus providing additional incomplete
block designs. Even though the rectangular lattices can be constructed easily
(see Section 18.11), they are not based on systems of confounding, that is, they
are not based on the method of pseudofactors. It has been shown (Nair, 1951) that
rectangular lattices are PBIB designs or even more general than PBIB designs.

18.3 CONSTRUCTION OF ONE-RESTRICTIONAL
LATTICE DESIGNS

18.3.1 Two-Dimensional Lattices

We consider first the case where K is prime or prime power. The K2 treatments
can then be represented by the treatment combinations of a K2 factorial with
pseudofactors A and B. A simple lattice with blocks of size K is obtained by
confounding A in one replicate (sometimes referred to as the X arrangement) and
B in the other replicate (sometimes referred to as the Y arrangement). For a triple
lattice we may confound A, B, and AB, respectively, in the three replicates, and
for a quadruple lattice A, B, AB, and AB2, respectively. Continuing in this fash-
ion, a balanced lattice is obtained by confounding A, B,AB,AB2, . . . , ABK−1,
respectively, in the K + 1 replicates.

This method of using systems of confounding to construct lattice designs is,
of course, equivalent to arranging the K2 treatments in a square array with the
cell in the ith row and j th column containing the treatment combination aibj and
using for a simple lattice the rows as blocks for one replicate and the columns
as blocks for the other replicate. For a triple lattice the rows, columns, and Latin
letters of a Latin square constitute the three replicates. Since a Latin square exists
for any K , this implies that we can construct a triple lattice for every K . For
a quadruple lattice the blocks of the four replicates are generated by the rows,
columns, Latin letters, and Greek letters, respectively, of a Graeco-Latin square
of order K . This is possible for all K except K = 6. The types of lattice designs
that can be constructed for a given K depends then on how many mutually
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orthogonal Latin squares (MOLS) exist for that K . For example, for K = 10,
there exist only 2 MOLS, hence only simple, triple and quadruple lattices can
be constructed; for K = 12 there exist 5 MOLS so that lattices up to a septuple
lattice can be constructed, similarly, for K = 14, 15 there exist 3, 4 MOLS,
respectively, so that lattices up to a quintuple, sextuple lattice, respectively, can
be constructed (see Abel et al., 1996). Hence, K − 1 MOLS and balanced lattices
exist, however, only for K prime or prime power.

18.3.2 Three-Dimensional Lattices

The replicates of these designs consist of K2 blocks of size K . Expressing the K3

treatments as the treatment combinations of a K3 factorial with factors A, B, C

such replicates can be obtained for K a prime or prime power by confounding any
two effects or interactions and their GIs. In order to avoid complete confounding
of any effect or interaction, which would lead to a disconnected design, at least
three replicates are needed giving a triple lattice. We may specify a set of three
replicates as follows:

Rep I: Confound A, B,AB,AB2, . . . , ABK−1

Rep II: Confound A, C,AC, AC2, . . . , ACK−1

Rep III: Confound B,C, BC,BC2, . . . , BCK−1

which are sometimes referred to as X, Y , Z arrangements, respectively.
Alternatively, we can arrange the treatments in a K × K × K cube such that

the treatment in the ith row, j th column, and �th layer is aibj c�. The blocks for
the three replicates can then be specified as follows:

Rep I: {aibj c�, � = 1, 2, . . . , K} for each i, j = 1, 2, . . . , K

Rep II: {aibj c�, j = 1, 2, . . . , K} for each i, � = 1, 2, . . . , K

Rep III: {aibj c�, i = 1, 2, . . . , K} for each j, � = 1, 2, . . . , K

Obviously, such an arrangement is possible for every K , so that for a triple lattice
K does not have to be prime or prime power.

For a quadruple lattice with K prime or prime power we can specify in addition
to the three replicates above

Rep IV: Confound AB,AC and all GIs

This process of adding further independent systems of confounding can be
continued to generate further lattices. It follows from (11.15) that the total number
of possible systems of confounding is

(K3 − 1)(K3 − K)

(K2 − 1)(K2 − K)
= K3 − 1

K − 1
= K2 + K + 1

Using all such possible systems of confounding yields a balanced lattice.
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18.3.3 Higher-Dimensional Lattices

The methods described in the previous sections can be extended immediately to
higher dimensions such as t = K4 or t = K5. For t = K4 and blocks of size
K , we need at least four replicates to obtain a connected design. This may be
achieved as follows:

Rep I: Confound A, B, C, and GIs
Rep II: Confound A, B, D, and GIs
Rep III: Confound A, C, D, and GIs
Rep IV: Confound B, C, D, and GIs

which is equivalent to writing the blocks as

Rep I: {aibj c�dm,m = 1, 2, . . . ,K} for i, j, � = 1, 2, . . . , K

Rep II: {aibj c�dm, � = 1, 2, . . . , K} for i, j, m = 1, 2, . . . , K

Rep III: {aibj c�dm, j = 1, 2, . . . ,K} for i, �,m = 1, 2, . . . , K

Rep IV: {aibj c�dm, i = 1, 2, . . . , K} for j, �,m = 1, 2, . . . ,K

This shows that a lattice design is possible for every K .
For a balanced lattice with t = K4 treatments we need (K4 − 1)/(K − 1)

different replicates. Already for K = 3 this number, 40, is prohibitively large for
most practical purposes. An enumeration of such a set of systems of confounding
is given by Kempthorne (1952).

For t = K5 the same arguments can be made, except that in this case at least
five replicates are needed to achieve a connected design.

Rather than considering only blocks of size K we may also envisage blocks of
size K2 or K3. Using the factorial correspondence, it should be clear how such
designs can be constructed for K prime or prime power. Care must be taken to
avoid complete confounding of any main effect or interaction. For other values
of K the arrangement of the treatments in a hypercube suggests immediately how
replicates with blocks of size K2 or K3 can be found by simply extending the
principle used above.

18.4 GENERAL METHOD OF ANALYSIS FOR
ONE-RESTRICTIONAL LATTICE DESIGNS

Since lattice designs are incomplete block designs, their analysis follows along
the general principles discussed in Chapter 1, leading to intrablock or combined
intra- and interblock estimates of estimable functions of the treatment effects.
However, since the construction of lattice designs for K prime or prime power
is based on the methods of factorial experiments, the analysis can be carried out
alternatively as that of confounded factorial experiments as presented in Chapter
11 making use of the parameterization of treatment effects in terms of main
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effects and interactions (cf. Section 11.9). We shall now reiterate the major steps
for this type of analysis, making extensive references to Chapter 11.

The basic model for any one-restrictional lattice design is

yij� = µ + ρi + β∗
ij + τ� + eij� (18.7)

where ρi is a replicate effect (i = 1, 2, . . . , sq, q = number of repetitions of basic
lattice design), β∗

ij is a block/replicate effect (j = 1, 2, . . . , b with b depending on
the type of lattice), and τ� is a treatment effect (� = 1, 2, . . . , t). Further, if treat-
ment � corresponds to the pseudotreatment combination x′ = (x1, x2, . . . , xK),
we have, using the notation of Section 11.9),

τ� ≡ τ(x) = a(x) − M =
∑
α∈A

Eα
α′x (18.8)

We are interested in estimating treatment contrasts

t∑
�=1

c�τ� ≡
∑
x∈χ

c(x) τ (x) =
∑
x∈χ

∑
α∈A

c(x) Eα
α′x (18.9)

for

t∑
�=1

c� =
∑
x∈χ

c(x) = 0

using the right-hand side (RHS) of (18.9), that is, using estimates of the Eα
α′x .

From the construction of lattice designs it follows that the interaction components
in (18.9) fall into only two of the three sets defined in Section 11.6, namely
Eγ � ∈ E2 (partially confounded) and Eδm ∈ E3 (unconfounded). Thus, if we use
intrablock information only, we obtain Ê

γ �

γ ′
�x

and Ê
δ�

δ′
�x

in the usual way and then

t∑
�=1

c�τ̂� =
∑
x∈χ

c(x) τ̂ (x) =
∑
x∈χ

c(x)

∑
E2

Ê
γ �

γ ′
�x

+
∑
E3

Ê
δm

δ′
mx

 (18.10)

If we use intra- and interblock information, as is usually the case with lattice
designs, we obtain

t∑
�=1

c�
̂̂τ � =

∑
x∈χ

c(x)̂̂τ(x) =
∑
x∈χ

c(x)

∑
E2

̂̂Eγ �

γ ′
�x

+
∑
E3

Ê
δm

δ′
mx

 (18.11)

where ̂̂Eγ �

γ ′
�x

is given in (11.87).
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A specific form of (18.9) is τ� − τ�′ = τ(x) − τ(z), say. Then (18.11) is
given by

̂̂τ(x) − ̂̂τ(z) =
∑
E2

[̂̂
E

γ �

γ ′
�x

− ̂̂
E

γ �

γ ′
�z

]
+
∑
E3

[
Ê

δm

δ′
mx

− Ê
δm

δ′
mz

]
(18.12)

Recall that E2 contains n2 interactions and E3 contains n3 interactions with
n2 + n3 = (Kn − 1)/(K − 1). There are, however, (Kn−1 − 1)/(K − 1) differ-
ent Eγ � ∈ E2 and Eδm ∈ E3 for which γ ′

�x = γ ′
�z and δ′

mx = δ′
mz, for given x

and z, so that the right-hand side of (18.12) contains only Kn−1 terms. Denoting
the sets of interactions for which γ ′

�x �= γ ′
�z and δ′

mx �= δ′
mz by E∗

2(x, z) and
E∗

3(x, z), respectively, and using (11.98) we then have for the estimator (18.12)

var
[̂̂
τ(x) − ̂̂τ(z)

]
= 2σ 2

e

 ∑
E∗

2(x,z)

[
(u(γ �) + c(γ �)ρ

−1)Kn−1
]−1 +

∑
E∗

3(x,z)

[sKn−1]−1


(18.13)

Except for balanced lattices it will be the case that (18.13) will take on different
values so that different treatment comparisons may be estimated with different
variances. Rather than use the variance as given by (18.13) for a given comparison
it is common practice in the analysis of lattice designs, in particular within the
context of multiple comparison procedures, to use the average variance of all such
comparisons. It follows from (11.100) that such average variance is given by

av. var = 2
K − 1

Kn − 1
σ 2

e

∑
α∈A

[u(α) + c(α)ρ−1]−1

where A is the set of all partitions for a Kn factorial and 0 ≤ u(α) ≤ s, 0 ≤
c(α) ≤ s − 1 with u(α) + c(α) = s as determined by the type of lattice. Alter-
natively, (18.14) can be written as

av. var = 2
K − 1

Kn − 1

s∑
i=1

mi

i + (s − i)ρ−1
σ 2

e (18.14)

where mi denotes the number of Eα unconfounded in i replicates, that is, for
which u(α) = i, and hence confounded in (s − 1) replicates, that is, for which
c(α) = s − i.

We illustrate this with the following example.

Example 18.1 Triple three-dimensional lattice with K = 3, that is, t = 27
treatments in blocks of size k = 3 with three replicates specifying three different
systems of confounding. Let those systems of confounding be (see Section 18.3.2)
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Table 18.4 Plan for Triple Three-Dimensional Lattice with
27 Treatments

Block Rep I Rep II Rep III

1 000, 001, 002 000, 010, 020 000, 100, 200
2 100, 101, 102 100, 110, 120 010, 110, 210
3 200, 201, 202 200, 210, 220 020, 120, 220
4 110, 111, 112 001, 011, 021 001, 101, 201
5 220, 221, 222 002, 012, 022 002, 102, 202
6 010, 011, 012 101, 111, 121 011, 111, 211
7 020, 021, 022 102, 112, 122 012, 112, 212
8 120, 121, 122 201, 211, 221 021, 121, 221
9 210, 211, 212 202, 212, 222 022, 122, 222

Rep I: A, B, AB, AB2

Rep II: A, C, AC, AC2

Rep III: B, C, BC, BC2

The experimental plan is then as given in Table 18.4. It is easy to check
that there are three types of comparisons between treatments; that is, (18.13)
leads to three distinct expressions for all possible comparisons. Denoting these
three expressions by Vi (i = 0, 1, 2), where Vi is the variance of a treatment
comparison when both treatments have i levels of the three pseudofactors in
common, we find from (18.13)

V0 = 2

9

[
3

1 + 2ρ−1
+ 3

2 + ρ−1
+ 3

3

]
σ 2

e

V1 = 2

9

[
2

1 + 2ρ−1 + 5

2 + ρ−1 + 2

3

]
σ 2

e

V2 = 2

9

[
1

1 + 2ρ−1
+ 4

2 + ρ−1
+ 4

3

]
σ 2

e

and from (18.14)

av. var = 2

13

[
3

1 + 2ρ−1
+ 6

2 + ρ−1
+ 4

3

]
σ 2

e �

It is a property of all lattice designs discussed up to this point that (18.13)
will result in only a few distinct expressions for all possible comparisons, similar
to the findings in Example 18.4. This means that comparisons can be put into
distinct sets such that all treatment comparisons in a given set are made with the
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same precision and that the precisions are different for the different sets. This
is, of course, also the property of PBIB designs. We shall return to this topic in
Section 18.7.

To estimate var[̂̂τ(x) − ̂̂τ(z)] as given by (18.13), we need to estimate σ 2
e and

ρ, or alternatively w and w′. As with factorial experiments this is achieved via
the T | B- and B | T-ANOVA tables. The results of Sections 11.10 and 11.12, in
particular Tables 11.1a and 11.2 are applicable to lattice designs putting p =
K , n1 = 0, and n2 + n3 = (Kn − 1)/(K − 1). In most cases we have only one
repetition of the basic pattern; that is, q = 1. We note that in the terminology
of lattice designs the sources Remainder and “

{
Êγ� vs. Ẽγ�

}
” of (Xβ∗ |I, Xρ ,

Xτ ) in Table 11.2b are often referred to as component (a) and component (b),
respectively.

From the discussion in Section 11.12 it should then be clear how w and w′
are estimated for lattice designs. As an illustration we elaborate Example 18.1.

Example 18.1 (Continued) Using the model

yij� = µ + ρi + β∗
ij + τ� + eij�

(i = 1, 2, 3; j = 1, 2, . . . , 9; � = 1, 2, . . . , 27), the T | B-ANOVA is given in
Table 18.5. Here SS(Treatments) =SS(Xτ |I, Xρ , Xβ∗), the component SSs of
which are computed from those replicates in which the respective effects or
interactions are unconfounded, for example, SS(A × B)II,III is the usual sum
of squares for the A × B interaction obtained from replicates II and III. The
B | T-ANOVA is presented in Table 18.6. The partitioning of SS(Blocks/reps) =
SS(Xβ∗ |I, Xρ , Xτ ) follows the general procedure outlined in Section 11.12
with regard to computing sums of squares and determining the E(MS). We then
obtain σ̂ 2

e = 1/ŵ = MS(Residual) and with 	 = 2
3 ,

σ̂ 2
e + 3σ̂ 2

β = 1

ŵ′ = 3
2 MS(Blocks/reps) − 1

2 MS(Residual)

using (11.96). �

18.5 EFFECTS OF INACCURACIES IN THE WEIGHTS

We recall that an estimate of τ(x) − τ(z) is obtained by replacing in (18.12) w

and w′ by ŵ and ŵ′, respectively. We thus obtain

˜̃τ(x) − ˜̃τ(z) =
∑
E2

[˜̃
E

γ �

γ ′
�x

− ˜̃
E

γ �

γ ′
�z

]
+
∑
E3

[
Ê

δm

δ′
mx

− Ê
δm

δ′
mz

]
=
∑[˜̃

Eα
α′x − ˜̃

Eα
α′z

]
(18.15)
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Table 18.5 T | B-ANOVA for Triple
Three-Dimensional Lattice with 27 Treatments

Source d.f. SS

Replicates 2
1

27

∑
i

y2
i.. − 1

81
y2
...

Blocks/Reps 24
1

3

∑
ij

y2
ij. − 1

27

∑
i

y2
i..

Treatments 26 sum of SS’s below

A 2 SS(A)III

B 2 SS(B)II

A × B 4 SS(A × B)II,III

C 2 SS(C)I

A × C 4 SS(A × C)I,III

B × C 4 SS(B × C)I,II

A × B × C 8 SS(A × B × C)I,II,III

Residual 28 Difference = SS(Residual)

Total 80
∑
ij�

y2
ij� − 1

81
y2
...

say, where

˜̃
Eα

(α′x) − ˜̃
Eα

(α′z) = u(α)ŵ
[
Êα

α′x − Êα
α′z
]+ c(a)ŵ′ [Ẽα

α′x − Ẽα
α′z
]

u(α)ŵ + c(α)ŵ′ (18.16)

using the notation of Section 11.12. It can be shown that

E
[˜̃
E

α

α′x − ˜̃
E

α

α′z

]
= Eα

α′x − Eα
α′z

and it follows then that

E
[̃̃
τ(x) − ˜̃τ(z)

] = τ(x) − τ(z)

Turning now to var[̃̃τ(x) − ˜̃τ(z)] we note first that

var
[
Êα

α′x − Êα
α′z
] = 2

Kn−1
· 1

u(α)w
(18.17)
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Table 18.6 B | T-ANOVA for Triple Three-Dimensional Lattice with 27 Treatments

Source d.f. SS E(MS)

Replicates 2
1

27

∑
i

y2
i.. − 1

81
y2
...

Treatments 26
1

3

∑
�

y2
..� − 1

81
y2
...

Blocks/Reps 24 SS(a) + SS(b) σ 2
e + 2σ 2

β

Component a 6 SS(a) = sum of SSs below σ 2
e + 3σ 2

β

2 SS(A)I + SS(A)II − SS(A)I,II σ 2
e + 3σ 2

β

2 SS(B)I + SS(B)III − SS(B)I,III σ 2
e + 3σ 2

β

2 SS(C)II + SS(C)III − SS(C)II,III σ 2
e + 3σ 2

β

Component b 18 SS(b) = sum of SSs below σ 2
e + 5

3 σ 2
β

2 SS(Â vs. Ã) σ 2
e + σ 2

β

2 SS(B̂ vs. B̃) σ 2
e + σ 2

β

2 SS(ÂB vs. ÃB) σ 2
e + 2σ 2

β

2 SS(ÂB
2

vs. ÃB
2
) σ 2

e + 2σ 2
β

2 SS(Ĉ vs. C̃) σ 2
e + σ 2

β

2 SS(ÂC vs. ÃC) σ 2
e + 2σ 2

β

2 SS(ÂC
2

vs. ÃC
2
) σ 2

e + 2σ 2
β

2 SS(B̂C vs. B̃C) σ 2
e + 2σ 2

β

2 SS(B̂C
2

vs. B̃C
2
) σ 2

e + 2σ 2
β

Residual 28 From Table 18.5 σ 2
e

and

var
[
Ẽα

α′x − Ẽα
α′z
] = 2

Kn−1
· 1

c(α)w′ (18.18)

for α′x �= α′z. Using (18.17) and (18.18) in (18.16) we obtain

Kn−1

2
var

[˜̃
Eα

α′x − ˜̃
Eα

α′z | ŵ, ŵ′
]

= u(α) ŵ2

w
+ c(α) ŵ′2

w′

[u(α)ŵ + c(α)ŵ′]2
(18.19)

Note that if ŵ = w and ŵ′ = w′, then (18.19) reduces to 1/[u(α)w + c(α)w′].
If we put

F = w′

ŵ′
ŵ

w
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then, following Kempthorne (1952), the right-hand side of (18.19) can be writ-
ten as

1

u(α)w + c(α)w′ + u(α)c(α) w
w′ ŵ′2(F − 1)2

[u(α)ŵ + c(α)ŵ′]2 [u(α)w + c(α)w′]
or

1

w

[
1

u(α) + c(α) ρ−1
+ u(α)c(α)ρ−1(F − 1)2[

u(α)F + c(α)ρ−1
]2 [

u(α) + c(α)ρ−1
]
]

(18.20)

where w/w′ = ρ. The proportional increase in the variance of ˜̃Eα
(α′x)

− ˜̃
Eα

(α′z)
due to inaccuracies in the weights, that is, due to the fact that we substitute ŵ and
ŵ′ for w and w′, is then given by the second term in (18.20). We note that this
increase depends on the weights only through w′/w = ρ−1 and ŵ/ŵ′. We note
that if w′/w = ŵ′/ŵ then F = 1 and hence there is no increase in variance. Also,
if ŵ < ŵ′ we take, following the Yates procedure, ŵ/ŵ′ = 1. Then F = ρ−1 and
hence the proportional increase in (18.20) becomes

1

w
· u(α)c(α)(ρ−1 − 1)2

ρ−1s
[
u(α) + c(α)ρ−1

] (18.21)

where we have used the fact that u(α) + c(α) = s. Adding over all possible
effects and interactions, we shall obtain the increase in variance for a treatment
comparison due to inaccuracies in the weights, which is a constant if F < ρ−1

and is a function of F if F > ρ−1. The percentage loss in information due to
the inaccuracies in the weights may then be obtained. We shall illustrate this by
continuing Example 18.1.

Example 18.1 (Continued) Using the results of Section 18.4 and (18.20) and
(18.21), we find the following increases in

V0:
2

9
· 1

w

[
3 · 1 · 2

(F + 2ρ−1)2(1 + 2ρ−1)
+ 3 · 2 · 1

(2F + ρ−1)2(2 + ρ−1)

]
· ρ−1(F − 1)2

V1:
2

9
· 1

w

[
2 · 1 · 2

(F + 2ρ−1)2(1 + 2ρ−1)
+ 5 · 2 · 1

(2F + ρ−1)2(2 + ρ−1)

]
· ρ−1(F − 1)2

V2:
2

9
· 1

w

[
1 · 1 · 2

(F + 2ρ−1)2(1 + 2ρ−1)
+ 4 · 2 · 1

(2F + ρ−1)2(2 + ρ−1)

]
· ρ−1(F − 1)2

and

av. var:
2

13
· 1

w

[
3 · 1 · 2

(F + 2ρ−1)2(1 + 2ρ−1)
+ 6 · 2 · 1

(2F + ρ−1)2(2 + ρ−1)

]
·ρ−1(F − 1)2
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for F > ρ−1, and

V0:
2

9
· 1

w

[
3 · 1 · 2

1 + 2ρ−1
+ 3 · 2 · 1

2 + ρ−1

]
(ρ−1 − 1)2

3ρ−1

V1:
2

9
· 1

w

[
2 · 1 · 2

1 + 2ρ−1
+ 5 · 2 · 1

2 + ρ−1

]
(ρ−1 − 1)2

3ρ−1

V2:
2

9
· 1

w

[
1 · 1 · 2

1 + 2ρ−1 + 4 · 2 · 1

2 + ρ−1

]
(ρ−1 − 1)2

3ρ−1

and

av. var:
2

13
· 1

w

[
3 · 1 · 2

1 + 2ρ−1
+ 6 · 2 · 1

2 + ρ−1

]
(ρ−1 − 1)2

3ρ−1

for F = ρ−1. �

If we assume a Gauss–Markov normal linear model (GMNLM) and if we use

ŵ = 1/MS(Residual)

and
ŵ′ = 1/MS(Remainder) = 1/MS(Component a) (18.22)

[see (11.90)], then

F = w′

ŵ′ · ŵ

w

follows an F distribution with ν and νR d.f. (see Table 11.2). This would allow us
to determine, for a given ρ, the expected increase in variance due to inaccuracies
in the weights. If instead of (18.22) we use

ŵ′ = 1/MS(Xβ∗ |I, XρXτ )

matters become more complicated because of the heterogeneity of MS (Xβ∗ |I,
Xρ , Xτ ), that is, because the different components of MS (Xβ∗ |I, Xρ ,
Xτ ) have different expected values (see Table 18.6). For details we refer to
Kempthorne (1952).

The results published by Yates (1939) and Kempthorne (1952) indicate that
the effect of inaccuracies of the weights on the variance of treatment comparisons
is of the order of 1, 2, or 3% and, therefore, trivial. The effect of inaccuracies
of the weights will increase as the number of degrees of freedom for interblock
error [ν or s(Kn−1 − 1)] and intrablock error (νR) decrease. Usually the number
of degrees of freedom for intrablock error is sufficiently large, and as a practical
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rule with lattice designs, it is probably safe to say that the effect of inaccuracies
will be inappreciable if the interblock error is based on 10 or more degrees of
freedom. With a smaller number of degrees of freedom, it is best to assume that
w′ = 0 and to utilize intrablock information only.

18.6 ANALYSIS OF LATTICE DESIGNS AS RANDOMIZED
COMPLETE BLOCK DESIGNS

Yates (1939) has shown that certain types of lattice designs may be analyzed as
randomized complete block designs (RCBD). His method of proof depends on
the fact that, if, under a particular analysis, the expectation of the treatment mean
square, in the absence of treatment effects, is equal to the expectation of the error
mean square, this analysis gives an unbiased estimate of the error variance for
treatment comparisons. This, however, is not necessarily true, for the error sum
of squares must be homogeneous. In this section we shall discuss briefly to what
extent such an analysis is valid.

Suppose we have an experiment on Kn treatments in a lattice design with
blocks of size K and s replicates. For the analysis as an RCBD we use the
model

y = µI + Xρρ + Xττ + ω (18.23)

with
ω = Xβ∗β∗ + e (18.24)

and the analysis of variance as outlined in Table 18.7 (see Section I.9.2.4).
Using the quasi-factorial approach as employed for lattice designs, we can par-
tition SS(Xτ |I, Xρ) into (Kn − 1)/(K − 1) components Eα(α ∈ A) each with
K − 1 d.f. and similarly SS(I |I, Xρ , Xτ ) into (Kn − 1)/(K − 1) components
Eα × reps (α ∈ A) each with (s − 1)(K − 1) d.f. We shall now consider these
components and their expected mean squares.

Consider Eα and let Ẽα
ij denote the average response of all treatment combi-

nations in replicate j satisfying the equation
∑

α�x� = i expressed as deviation
from the average response of replicate j . Note that if Eα is not confounded in

Table 18.7 ANOVA Structure
for Lattice Design as RCBD

Source d.f.

Xρ |I,Xτ s − 1

Xτ |I,Xρ Kn − 1

I | I, Xρ, Xτ (s − 1)(Kn − 1)

Total sKn − 1
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replicate j , then Ẽα
ij = Êα

ij (i = 0, 1, . . . , K − 1). We know (see Section 11.10.3)
that, under model (18.23), the sum of squares for Eα is

SS(Eα) = Kn−1

s

K−1∑
i=0

[ s∑
j=1

Ẽα
ij

]2
(18.25)

If Eα is unconfounded in u(α) replicates and confounded in c(α) replicates,
with u(α) + c(α) = s, then the expected value of

[∑
j Ẽα

ij

]2
for each i =

0, 1, . . . , K − 1, using (18.23) with τ = 0 and (18.24) is{
c(α)

[
1

Kn−1

(
1 − 1

K

)]2

Kn−2 + 1

K2n

(
Kn−1 − Kn−2

)
K2

}
σ 2

β

+
{

s

[
1

Kn−1

(
1 − 1

K

)]2

Kn−1 + s

K2n

(
Kn−1 − Kn−2

)
K

}
σ 2

β

= c(α)(K − 1)

Kn−1
σ 2

β + s(K − 1)

Kn
σ 2

e

Hence

E[SS(Eα)] = (K − 1)

[
σ 2

e + c(α)

s
Kσ 2

β

]
(18.26)

We now consider Eα × reps and its associated sum of squares, SS(Eα × reps)
say, which is a component of SS(I |I, Xρ , Xτ ), accounting for (s − 1) (K − 1)
d.f. This sum of squares, in turn, can be partitioned into three components as
presented in Table 18.8. It follows then that

E[MS(Eα × reps)] = σ 2
e + 1

s − 1

[
u(α)

s
+ c(α) − 1

]
Kσ 2

β

= σ 2
e + c(α)

s
Kσ 2

β (18.27)

Table 18.8 Partitioning of SS(I |I, Xρ , Xτ )

Source d.f. E(MS)

Êα vs. Ẽα K − 1 σ 2
e + u(α)

s
Kσ 2

β

Êα × reps [u(α) − 1](K − 1) σ 2
e

Ẽα × reps [c(α) − 1](K − 1) σ 2
e + Kσ 2

β
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It follows further from (18.26) and (18.27) that, with τ = 0, MS(Eα) and
MS(Eα × reps) and hence

MS(Xτ |I, Xρ) =
∑
α

SS(Eα)

Kn − 1

and

MS(I |I, Xρ, Xτ ) =
∑
α

SS(Eα × reps)

(s − 1)(Kn − 1)

have the same expected value.
An ordinary RCBD analysis of a one-restrictional lattice design is, therefore,

valid insofar as the expectation of the treatment mean squares is the same as the
expectation of the RCBD error mean square. It follows then, from consideration
of the randomization test, that the RCBD analysis gives a reasonably valid test
of the null hypothesis that there are no differences among treatment effects. A
test may also be made, of course, with the intrablock treatment and error mean
squares. Difficulties do arise, however, as soon as we wish to ascribe variances to
treatment comparisons obtained from the ordinary treatment averages, because
we have shown (see Table 18.8) that the error sum of squares, SS( I |I, Xρ ,
Xτ ), with (s − 1)(Kn − 1) d.f. is not homogeneous if σ 2

β is greater than zero.
To illustrate the problem we consider the comparison of two treatments. Based

on the RCBD analysis the difference of the treatment effects is estimated by the
corresponding treatment means, with estimated variance (2/s) MS(I |I,Xρ, Xτ ).
Now, from (18.24),

2

s
E[MS(I | I, Xρ, Xτ )] = 2

s

K − 1

Kn − 1

∑
α

[
σ 2

e + c(α)

s
Kσ 2

β

]

= 2

s

[
σ 2

e + Kn−1 − 1

Kn − 1
Kσ 2

β

]

= 2

s

[
σ 2

e + σ 2
β

(
1 − K − 1

Kn − 1

)]
(18.28)

since
∑

α c(α) = s(Kn−1 − 1)/(K − 1) as (Kn−1 − 1)/(K − 1) sets of K − 1
d.f. are confounded in each replicate. We now compare (18.28) with the true
variance of the difference of two treatment means. Suppose that the two treat-
ments occur together in a block in, say, q out of the s replicates. Then, using
(18.23) and (18.24) the variance is given by

2

s2

[
sσ 2

e + (s − q)σ 2
β

]
= 2

s

[
σ 2

e + σ 2
β

(
1 − q

s

)]
(18.29)
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Hence the difference between the expectation of the estimated variance (18.29)
and the true variance (18.28) is

2

s

[
q

s
− K − 1

Kn − 1

]
σ 2

β (18.30)

which can be either positive or negative: If (18.30) is positive, we overestimate the
variance; if (18.30) is negative, we underestimate the variance. As an illustration
we consider again Example 18.1.

Example 18.1 (Continued) It follows from Table 18.4 that there are now
two types of comparisons with either q = 0 or q = 1. We find for q = 0: (18.30)

equals − 2
39 σ 2

β < 0, q = 1: (18.30) equals 2
3

[
1
3 − 1

13

]
σ 2

β > 0, so that one vari-
ance is underestimated and the other variance is overestimated. �

In practical situations the decision whether to analyze a lattice design as an
incomplete block design or as an RCBD is often based on the efficiency of
lattice designs relative to the RCBD. In light of what has been said above this,
too, may be a questionable procedure, since the efficiency is based on (18.28).
More specifically, the efficiency of a lattice design relative to the RCBD is given
by the ratio of (18.14) over (18.28), that is,

E =
Kn−1 − 1

ρ−1
+ Kn−1(K − 1)

s(K − 1)

s∑
i=1

mi

i + (s − i)ρ−1

(18.31)

where the numerator is obtained by rewriting (18.28) in terms of ρ−1 and w.
For different values of ρ and various lattice designs Kempthorne (1952) has
tabulated E. As is to be expected, E increases quite rapidly with increasing ρ,
which would indicate that in most situations an RCB analysis is not warranted.
In a practical situation this question may be decided by using ρ̂ in (18.31) and
computing Ê, say, and do a RCBD analysis if 1.00 ≤ Ê ≤ 1.05.

18.7 LATTICE DESIGNS AS PARTIALLY BALANCED
INCOMPLETE BLOCK DESIGNS

In the preceding sections we have discussed one-restrictional lattice designs with
Kn treatments in blocks of size K as they relate to factorial experiments. This
discussion presupposes that K is a prime or a prime power although we did not
mention this explicitly. We know, however, from Table 18.3 that certain lattice
designs exist even if K is not a prime or prime power. For these cases it is useful
to know that lattice designs are PBIB designs and hence can be constructed and
analyzed as such.
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Let us consider the one-restrictional two-dimensional lattice designs. We can
arrange the K2 treatments in a K × K array. A simple lattice can then be con-
structed by taking the rows of this array as the blocks for one replicate and the
columns of the array as the blocks for the second replicate. We can check easily
that this results in a PBIB(2) design with a Latin square association scheme,
that is, a L2-PBIB(2) design (see Section 4.6.3). The relevant parameters of
this design are t = K2, r = 2, k = K , b = 2K , λ1 = 1, λ2 = 0. Accordingly,
two treatments are compared with variance V1, say, if they occur together in
the same block, and with variance V2, say, if they do not occur together in the
same block. The reader should check that this agrees with the result obtained
from (18.13).

Using the same K × K array we can obtain triple, quadruple, and so forth
lattices by superimposing one, two, and so on mutually orthogonal Latin squares
(if they exist), respectively. Blocks of size K are then formed by the rows, the
columns, and the letters of each of the superimposed MOLS, respectively. Thus
the triple lattice represents an L3-PBIB(2) design with parameters t = K2, r = 3,
k = K , b = 3K , λ1 = 1, λ2 = 0; the quadruple lattice an L4-PBIB(2) design with
parameters t = K2, r = 4, k = K , b = 4K , λ1 = 1, λ2 = 0; in general the i-tuple
lattice an Li-PBIB(2) design (see Section 4.6.3) with parameters t = K2, r = i,
k = K , b = iK , λ1 = 1, λ2 = 0.

The triple three-dimensional lattice with t = K3 treatments in blocks of size
K represents a PBIB(3) design with the cubic association scheme (Section 4.6.8).
Following the geometric interpretation of that association scheme and denoting
the three axes by x, y, and z, respectively, the arrangement in blocks is such that
for the first replicate the treatments in a block lie on the same x axis, that is, are of
the form {(x, y, z): x = 0, 1, . . . , K − 1} for fixed y and z (y, z = 0, 1, . . . , K −
1), for the second replicate the treatments in a block lie on the same y axis, that
is, are of the form {(x, y, z): y = 0, 1, . . . , K − 1} for fixed x and z (x, z =
0, 1, . . . , K − 1), and for the third replicate the treatments in a block lie on the
same z axis, that is, are of the form {(x, y, z): z = 0, 1, . . . , K − 1} for fixed
x and y (x, y = 0, 1, . . . , K − 1). For an illustration we refer to Example 18.4
(with an appropriate renumbering of the replicates). It follows then immediately
that this design has the parameters t = K2, r = 3, k = K , b = 3K2, λ1 = 1,
λ2 = 0, λ3 = 0.

18.8 LATTICE DESIGNS WITH BLOCKS OF SIZE K�

The most commonly used lattice designs are those for Kn treatments in blocks
of size K . There are, however, situations where blocks of size K� (1 < � < n)
are more appropriate. There are no difficulties extending the previously discussed
methods to this case:

1. If n is a multiple of �, say n = m�, then we can represent the experiment
as one of m factors with K� levels and employ the methods described in
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Sections 18.3 and 18.4 [using GF(K�) arithmetic for K prime as discussed
in Appendix A or Section 18.7].

2. If n is not a multiple of �, then we employ appropriate systems of con-
founding as presented in Chapter 11 for K prime. The practical problem
is to choose out of all possible systems of confounding a system for each
replicate such that the confounding is distributed as evenly as possible
over all the effects and interactions and such that no effect or interaction
is completely confounded over the entire design. The second requirement
is necessary for the design to be connected with respect to the intrablock
analysis. For more details and examples of practically useful designs the
reader is referred to Kempthorne and Federer (1948b).

18.9 TWO-RESTRICTIONAL LATTICES

In Section 9.8 we considered the problem of double confounding in a 2n factorial
experiment as a device for eliminating heterogeneity in two directions using
incomplete blocks. This principle can be extended to other factorial experiments
and can be applied also to construct two-restrictional two-dimensional lattices,
which are also referred to as lattice squares and lattice rectangles (Yates, 1940b).
They represent special types of resolvable row–column designs (see Section 6.6).

We shall consider designs for K2 treatments arranged in K rows and K

columns. To construct suitable arrangements we distinguish two cases: (1) K

prime (or prime power) and (2) K not prime.

18.9.1 Lattice Squares with K Prime

For K prime (or prime power) we can use the correspondence between the
t = K2 treatments and the treatment combinations of the K2 factorial experiment
to partially confound any or all of the K + 1 effects and interactions, Eα, with
rows or columns in s squares of order K . If s = K + 1, we confound each
Eα once with rows and once with columns yielding a balanced lattice square.
If s = (K + 1)/2, we confound each Eα once with rows or columns giving a
semibalanced lattice square. If 2 ≤ s ≤ (K + 1)/2 we confound any Eα at most
once with rows or columns, and if (K + 1)/2 < s < K , we try to confound the
Eα as equally as possible with rows and columns.

The analysis of lattice squares is based on the linear model

y = µI + Xss + Xrr + Xcc + Xττ + e (18.32)

where s, r , and c represent the effects of squares (replicates), rows within squares,
and columns within squares, respectively. For the combined analysis r and c are
considered to be vectors of random variables with E(r) = 0, var(r) = Iσ 2

r ,
E(c) = 0 , var(c) = Iσ 2

c .
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Following the notation of Section 18.4, we can write out the intrablock and
the combined estimators for a linear contrast,

∑
ckτk , of treatment effects as

in (18.10) and (18.11), respectively. In particular, the combined estimator ̂̂τ k −̂̂τ k′ for a simple treatment comparison, τk − τk′ , is given by (18.12). To find
var

(̂̂
τ k − ̂̂τ k′

)
we denote by cr(γ �) and cc(γ �) the number of squares in which

Eγ � ∈ E2 is confounded with rows and columns, respectively, with cr(γ �) +
cc(γ �) = c(γ �) being the number of squares in which Eγ � is confounded in the
design. Further, let

wr = 1

σ 2
e + Kσ 2

r

wc = 1

σ 2
e + Kσ 2

c

(18.33)

denote the reciprocals of the interrow and intercolumn variances, and

ρr = w

wr

ρc = w

wc

We can then extend (18.13) easily and write

var
[̂̂τ k − ̂̂τ k′

] = var
[̂
τ̂ (x) − ̂̂τ(z)

]
= 2σ 2

e

 ∑
E∗

2(x,z)

[
(u(γ �) + cr(γ �)ρ

−1
r + cc(γ �)ρ

−1
c ) K

]−1

+
∑

E∗
3(x,z)

[sK]−1

 (18.34)

We shall consider (18.34) for the special case of a balanced lattice square.
Recall (see Table 18.3) that for a balanced lattice square s = K + 1 such that
each effect and interaction is confounded once with rows and once with columns,
which implies that E3 = φ, E2 = A, cr(γ �) = 1 = cc(γ �), u(γ �) = K − 1 for all
Eγ � ∈ E2, E∗

2(x, z) consists of K interactions for each (x, z). It follows then from
(18.34) that

var
[̂
τ̂ (x) − ̂̂τ(z)

] = 22
e

K − 1 + ρ−1
r + ρ−1

c

(18.35)

for any two treatments (x, z), as one would expect for a balanced design. Obvi-
ously, (18.35) is also the average variance of all such treatment comparisons,
which is an extension of (18.14) for this special case.

In order to complete the actual analysis, we still have to estimate w, wr ,
and wc. This is easily accomplished with the help of ANOVA tables as given
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Table 18.9 T |R, C-ANOVA for Lattice Square

Source d.f.

Xs |I s − 1

Xr | I, Xs s(K − 1)

Xc |I,Xs s(K − 1)

Xτ | I, Xs ,Xr ,Xc K2 − 1

I |I,Xs ,Xr ,Xc, Xτ (K − 1)[s(K − 1) − (K + 1)] = νR

Total sK2 − 1

Table 18.10 R | C, T- and C | R, T-ANOVA for Lattice Square

Source d.f. Source

Xs |I s − 1 Xs |I
Xτ | I, Xs K2 − 1) Xτ | I, Xs

Xc |I,Xs , Xτ s(K − 1) Xr | I, Xs ,Xτ{(
Ẽγ �

)
cc

vs.
(
Ẽγ �

)
uc

} {(
Ẽγ �

)
cr

vs.
(
Ẽγ �

)
ur

}
Xr | I, Xs ,Xc, Xτ s(K − 1) Xc |I,Xs , Xr ,Xτ{(

Ẽγ �
)
cr

vs.
(
Êγ �

)} {(
Ẽγ �

)
cc

vs.
(
Êγ �

)}
I |I,Xs ,Xr ,Xc, Xτ νR I |I,Xs ,Xr ,Xc, Xτ

in Tables 18.9 and 18.10. In Table 18.9, the treatment-after-rows-and-columns
ANOVA or T | R, C-ANOVA, the sums of squares are obtained in the familiar
fashion, where the components of

SS(Xτ |I, Xx, Xr , Xc) = SS(A) + SS(B) + SS(AB) + · · · + SS
(
ABK−1

)
are obtained from the intrablock analysis (see Section 11.10) and

SS(Residual) = SS(I |Xs, Xr , Xc,Xτ )

is obtained by subtraction.
The row-after-treatments-and-columns or R | C, T-ANOVA and the column-

after-treatments-and-rows or C | R, T-ANOVA, as outlined in Table 18.10, are
used to estimate wr and wc, respectively. In order to do so it is useful to com-
ment briefly on the form of some of the sums of squares in Table 18.10. For
Eγ � ∈ E2 let ur(γ �) = s − cr(γ �) and uc(γ �) = s − cc(γ �) denote the number
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of squares in which Eγ � is unconfounded with rows and columns, respectively,
and let

(
Ẽ

γ �

δ

)
cc

,
(
Ẽ

γ �

δ

)
cr

,
(
Ẽ

γ �

δ

)
uc

,
(
Ẽ

γ �

δ

)
ur

be the estimate of E
γ �

δ obtained from
those squares in which Eγ � is confounded with columns, confounded with rows,
unconfounded with columns, unconfounded with rows, respectively. It is then
easy to verify that, in Table 18.10,

SS(Xc |I, Xs, Xτ ) = SS
[{(

Ẽγ �
)
cc

vs.
(
Ẽγ �

)
uc

}]
(18.36)

SS(Xr |I, Xs, Xc Xτ ) = SS
[{(

Ẽγ �
)
cr

vs.
(
Êγ �

)}]
(18.37)

SS(Xr |I, Xs, Xτ ) = SS
[{(

Ẽγ �
)
cr

vs.
(
Ẽγ �

)
ur

}]
(18.38)

SS(Xc |I, Xs ,Xr Xτ ) = SS
[{(

Ẽγ �
)
cc

vs.
(
Êγ �

)}]
(18.39)

The RHS of (18.36)–(18.39) can be computed following (11.93) with the proper
modifications, that is, computing the quantities X

γ �

δ from the squares as indicated
in each expression and then modifying c(γ �) and u(γ �) accordingly [this includes
replacing s by cr(γ �) + u(γ �) in (18.38) and by cc(γ �) + u(γ �) in (18.39)]. With
regard to estimating wr and wc, the sums of squares (18.38) and (18.39) and their
expected values are needed. Again, these are easily obtained from (11.94) as

E
[
MS(Xr |I, Xs, Xc,Xτ )

] = σ 2
e + 	r Kσ 2

r (18.40)

where

	r = 1

s

∑
E2,r

u(γ �)

(u(γ �) + cr(γ �)
(18.41)

and
∑

E2,r
denotes summation over all Eγ � ∈ E2, which are confounded with

rows, and

E
[
MS(Xc |I, Xs ,Xr , Xτ )

] = σ 2
e + 	c Kσ 2

c (18.42)

where

	c = 1

s

∑
E2,c

u(γ �)

(u(γ �) + cc(γ �)
(18.43)

and
∑

E2,c
denotes summation over all Eγ � ∈ E2, which are confounded with

columns. We then obtain

σ̂ 2
e = 1

ŵ
= MS(I |I, Xs, Xr , Xc, Xτ ) (18.44)
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from (18.40) and (18.44)

σ̂ 2
e + Kσ̂ 2

r = 1

ŵr

=
(

1 − 1

	r

)
MS(I |I, Xs, Xr , Xc, Xτ )

+ 1

	r

MS(Xr | I, Xs ,Xc, Xτ )

and from (18.42) and (18.44)

σ̂ 2
e + Kσ̂ 2

c = 1

ŵc

=
(

1 − 1

	c

)
MS(I |I, Xs ,Xr , Xc,Xτ )

+ 1

	c

MS(Xc |I,Xs, Xr , Xτ )

We illustrate the above by the following example.

Example 18.2 Suppose we have t = 52 treatments in an unbalanced lattice
square with s = 4 squares. We can use the following system of confounding:

Square

I II III IV

Rows A B AB3 AB

Columns AB AB2 AB4 AB3

The experimental plan (apart from randomization of rows and columns) is then
as given in Table 18.11, and the relevant parts of the R | C, T-ANOVA and the
C | R, T-ANOVA are given in Tables 18.12 and 18.13, respectively. Concerning
treatment comparisons such as, for example, (0, 0) versus (1, 1), we have

̂̂τ(0, 0) − ̂̂τ(1, 1) =
(̂̂
A0 − ̂̂

A1

)
+
(̂̂
B0 − ̂̂

B1

)
+
(̂̂
AB0 − ̂̂

AB2

)
+
(̂̂
AB2

0 − ̂̂
AB2

3

)
+
(̂̂
AB3

0 − ̂̂
AB3

4

)
with [see (18.34)]

var
(̂̂
τ (0, 0) − ̂̂τ(1, 1)

) = 4

5
σ 2

e

[
1

3 + ρ−1
r

+ 1

2 + ρ−1
r + ρ−1

c

+ 1

3 + ρ−1
c

]
�

18.9.2 Lattice Squares for General K

We now turn to the case where K is not prime or prime power. Suppose there
exist q MOLS of order K . Then the row and column classification and the
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Table 18.11 Experimental Plan for Lattice
Square with 25 Treatments in 4 Squares

Square I

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)
(1, 4) (1, 0) (1, 1) (1, 2) (1, 3)
(2, 3) (2, 4) (2, 0) (2, 1) (2, 2)
(3, 2) (3, 3) (3, 4) (3, 0) (3, 1)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 0)

Square II

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)
(1, 2) (2, 2) (3, 2) (4, 2) (0, 2)
(2, 4) (3, 4) (4, 4) (0, 4) (1, 4)
(3, 1) (4, 1) (0, 1) (1, 1) (2, 1)
(4, 3) (0, 3) (1, 3) (2, 3) (3, 3)

Square III

(0, 0) (1, 3) (2, 1) (3, 4) (4, 2)
(1, 1) (2, 4) (3, 2) (4, 0) (0, 3)
(2, 2) (3, 0) (4, 3) (0, 1) (1, 4)
(3, 3) (4, 1) (0, 4) (1, 2) (2, 0)
(4, 4) (0, 2) (1, 0) (2, 3) (3, 1)

Square IV

(0, 0) (1, 4) (2, 3) (3, 2) (4, 1)
(1, 3) (2, 2) (3, 1) (4, 0) (0, 4)
(2, 1) (3, 0) (4, 4) (0, 3) (1, 2)
(3, 4) (4, 3) (0, 2) (1, 1) (2, 0)
(4, 2) (0, 1) (1, 0) (2, 4) (3, 3)

classifications with respect to the q languages, say L1, L2, . . . , Lq , can be used in
pairs to construct various numbers of squares, that is, if we denote the orthogonal
classifications by R = Lq+1, C = Lq+2, L1, . . . , Lq , respectively, then any pair
(Li , Lj ) with i �= j (i, j = 1, 2, . . . , q + 2) defines a suitable square arrangement
of the t = K2 treatments, where the levels of Li determine the rows and the levels
of Lj determine the columns of the square.

Example 18.3 For K = 6 we have q = 1. A suitable arrangement would be
as follows:

Square

I II III

Rows L2 L1 L3

Columns L3 L2 L1 �
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Table 18.12 R | C, T-ANOVA for Example 18.2

Source d.f. E(MS)

Xs |I 3

Xτ |I,Xs 24

Xc | I, Xs , Xτ 16

ÃBI vs. ÃBII,III,IV 4

ÃB
2
II vs. ÃB

2
I,III,IV 4

ÃB
3
IV vs. ÃB

3
I,II,III 4

ÃB
4
III vs. ÃB

4
I,II,IV 4

Xr |I,Xs ,Xc, Xτ 16 σ 2
e + 7

12 5σ 2
r

ÃI vs. ÂII,III,IV 4 σ 2
e + 3

4 5σ 2
r

B̃II vs. B̂I,III,IV 4 σ 2
e + 3

4 5σ 2
r

ÃB
3
III vs. ÂB

3
I,II 4 σ 2

e + 2
3 5σ 2

r

ÃBIV vs. ÂBII,III 4 σ 2
e + 2

3 5σ 2
r

I |I,Xs , Xr , Xc,Xτ 40 σ 2
e

Table 18.13 C | R, T-ANOVA for Example 18.3

Source d.f. E(MS)

Xs |I 3

Xτ |I,Xs 24

Xr |I,Xs ,Xτ 16

ÃI vs. ÃII,III,IV 4

B̃II vs. B̃I,III,IV 4

ÃB
3
III vs. ÃB

3
I,II,IV 4

ÃBIV vs. ÃBI,II,III 4

Xc | I, Xs , Xr , Xτ 16 σ 2
e + 7

12 5σ 2
c

ÃBI vs. ÂBII,III 4 σ 2
e + 2

3 5σ 2
c

ÃB
2
II vs. ÂB

2
I,III,IV 4 σ 2

e + 3
4 5σ 2

c

ÃB
4
III vs. ÂB

4
I,II,IV 4 σ 2

e + 3
4 5σ 2

c

ÃB
3
IV vs. ÂB

3
I,II 4 σ 2

e + 2
3 5σ 2

c

I |I,Xs , Xr , Xc,Xτ 40 σ 2
e
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Example 18.4 For K = 10 we have q = 2. A suitable arrangement would
be as follows:

Square

I II III IV

Rows L1 L2 L3 L4

Columns L2 L3 L4 L1

Other arrangements are, of course, possible. �

18.10 LATTICE RECTANGLES

The concept of the lattice square as a design that enables elimination of het-
erogeneity in two directions can be extended to situations where the rows and
columns do not contain the same number of experimental units. The notion of
double confounding presented in Section 9.8 may be used to develop designs for
Kn treatments, K being prime or prime power, with replicates having a rect-
angular pattern with rows of size Kr and columns of size Kc with r + c = n.
There are, obviously, many possible configurations. To describe the general case
leads to rather complicated notation. For this reason we shall illustrate this type
of design by the following example.

Example 18.5 Suppose we have t = 33 = 27 treatments and replicates with
rows of size 3 and columns of size 9. A possible system of row and column
confounding would be as follows:

Replicate I: Rows: A,B,AB, AB2

Columns: ABC

Replicate II: Rows: A,C, AC, AC2

Columns: AB2C

Replicate III: Rows: B,C,BC, BC2

Columns: ABC2

This leaves each effect or interaction unconfounded in at least one replicate. �

With proper modifications, the analysis proceeds as outlined in Section 18.9
using model (18.32) and the weights

wr = 1

σ 2
e + Kr σ 2

r

wc = 1

σ 2
e + Kc σ 2

c

Estimation of the weights is accomplished easily by following the procedures
outlined in Section 11.12 in combination with (18.41) and (18.43). We merely
illustrate this for Example 18.5.
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Table 18.14 Partial ANOVA for Lattice Rectangle
of Example 18.5

Source d.f. E(MS)

Xr | I, Xs ,Xc, Xτ 24 σ 2
e + 3

2 3σ 2
r σ 2

e + 1
3 3σ 2

r

ÃII,III vs. ÂIII 2

B̃I,III vs. B̂II 2

C̃II,III vs. ĈI 2 
σ 2

e + 2
3 3σ 2

r

ÃBI vs. ÂBII,III 2

ÃB
2
I vs. ÂB

2
II,III 2

ÃCII vs. ÂCI,III 2

ÃC
2
II vs. ÂC

2
I,III 2

B̃CIII vs. B̂CI,II 2

B̃C
2
III vs. B̂C

2
I,II 2  σ 2

e + 3σ 2
r

ÃI vs. ÃII 2

B̃I vs. B̃III 2

C̃II vs. C̃III 2

Xc |I,Xs , Xr , Xτ 6 σ 2
e + 2

3 9σ 2
c σ 2

e + 2
3 9σ 2

c

ÃBCI vs. ÂBCII,III 2

ÃB2CII vs. ÂB2CI,III 2

ÃBC
2
III vs. ÂBC

2
I,II 2

Example 18.5 (Continued) The partitioning of SS(Xr |I, Xs , Xc, Xτ ) and
SS(Xc |I, Xs , Xr , Xτ ) is indicated in Table 18.14 together with the associated
E(MS). With these, wr and wc can be estimated in the usual way. �

18.11 RECTANGULAR LATTICES

The class of two-dimensional lattices is applicable when the number of treatments
is a perfect square; that is, t = K2. Obviously, this limits the number of cases in
which such a lattice design can be used. To remedy this deficiency Harshbarger
(1947, 1949, 1951) introduced designs for t = K(K − 1) treatments in blocks
of size K − 1, which are referred to as rectangular lattice designs. Actually,
this is a special case of a more general class of designs for t = K(K − L)

treatments in blocks of size K − L (K > L). However, only the case L = 1 is
really useful from a practical point of view since (K − 1)2 < K(K − 1) < K2,
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thus accommodating intermediate values of t . In contrast to the lattice designs
discussed so far there does not now exist a correspondence between the treatments
and factorial combinations, a fact that will be reflected in the analysis of these
designs.

18.11.1 Simple Rectangular Lattices

We denote the treatments by ordered pairs (x, y) with x, y = 1, 2, . . . , K, x �= y.
We then form two replicates, each with K blocks of size K − 1 as follows:

Replicate I: Treatments with the same value for x form the xth block
Replicate II: Treatments with the same value for y for the yth block

Thus each treatment (x, y) appears together in a block with 2(K − 2) treat-
ments all of which have one digit in common with (x, y). The remaining
K2 − 3K + 3 treatments have either 0, 1, or 2 digits in common with (x, y).
Nair (1951) has shown that these groups of treatments define an association
scheme for a PBIB(4) design for K ≥ 4 with the actual resolved PBIB(4) design
as given above with t = K(K − 1), k = K − 1, r = 2, b = 2K .

More formally, the association scheme and the parameters of the design (see
Section 4.3) are as follows: Two treatments (x, y) and (x′, y′) are said to be

1st associates if (x = x′, y �= y′) or (y = y′, x �= x′)
2nd associates if x �= x′, x �= y′, y �= x′, y �= y′

3rd associates if (x = y′, y �= x′) or (y = x′, x �= y′)
4th associates if x = y′, y = x′

Thus n1 = 2(K − 2), n2 = (K − 2)(K − 3), n3 = 2(K − 2), n4 = 1 with λ1 =
1, λ2 = λ3 = λ4 = 0.

Furthermore

P 1 =



0 1 0 0 0

1 K − 3 K − 3 1 0

0 K − 3 (K − 3)(K − 4) K − 3 0

0 1 K − 3 K − 3 1

0 0 0 1 0



P 2 =



0 0 1 0 0

0 2 2(K − 4) 2 0

1 2(K − 4) (K − 4)(K − 5) 2(K − 4) 1

0 2 2(K − 4) 2 0

0 0 1 0 0


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P 3 =



0 0 0 1 0

0 1 K − 3 K − 3 1

0 K − 3 (K − 3)(K − 4) K − 3 0

1 K − 3 K − 3 1 0

0 1 0 0 0



P 4 =



0 0 0 0 1

0 0 0 2(K − 2) 0

0 0 (K − 2)(K − 3) 0 0

0 2(K − 2) 0 0 0

1 0 0 0 0


For K = 3 this design reduces to a PBIB(3) design since then n2 = 0.

The analysis of this design proceeds as outlined in Section 4.5.

18.11.2 Triple Rectangular Lattices

We now denote the treatments by triplets (x, y, z) with x, y, z = 1, 2, . . . , K and
x �= y �= z �= x. The triplets are chosen in the following way. We take a Latin
square of order K , replacing the Latin letters A, B,C, . . . by the “Latin” numbers
1, 2, 3, . . ., respectively, arranged in such a way that the diagonal contains the
numbers 1, 2, . . . , K . Then leaving out the diagonal the remaining K(K − 1)

cells are identified by the row number, x, the column number, y, and the “Latin”
number, z. Each such cell corresponds to a treatment (x, y, z), and the treatments,
which are allocated to the blocks in the three replicates as follows:

Replicate I: Treatments with the same x value form the xth block
Replicate II: Treatments with the same y value form the yth block
Replicate III: Treatments with the same z value form the zth block

giving a resolved design with parameters t = K(K − 1), k = K − 1, b =
3K , r = 3.

Nair (1951) has shown that for K = 3 and K = 4 the resulting design is a
PBIB design, but that this is no longer true for K ≥ 5. For K = 3 we have a
PBIB(2) design with the following association scheme: Two treatments (x, y, z)
and (x′, y′, z′) are said to be 1st associates if x = x′ or y = y′ or z = z′ and 2nd
associates otherwise. It then follows that n1 = 3, n2 = 2, λ1 = 1, λ2 = 0 and

P 1 =
0 1 0

1 0 2
0 2 0

 P 2 =
0 0 1

0 3 0
1 0 1


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For K = 4, the association is as follows: Two treatments (x, y, z) and (x′, y′, z′)
are said to be 1st associates if x = x′ or y = y′ or z = z′, 2nd associates if they
have three digits alike, and 3rd associates otherwise. This leads to a PBIB(3)
design with parameters n1 = 6, n2 = 2, n3 = 3, λ1 = 1, λ2 = λ3 = 0 and

P 1 =


0 1 0 0
1 2 1 2
0 1 0 1
0 2 1 0

 P 2 =


0 0 1 0
0 3 0 3
1 0 1 0
0 3 0 0

 P 3 =


0 0 0 1
0 4 2 0
0 2 0 0
1 0 0 2


The analysis of these triple rectangular lattices follows the procedures given in
Section 4.5. For K ≥ 5 these designs can be analyzed according to the methods
developed in Chapter 1 for the general incomplete block design. It should be
mentioned, however, that for K = 5 treatments are compared with five different
variances depending whether they (1) appear together in the same block and
have either 1, 2, or 3 digits alike or (2) do not appear in the same block and
have 1 or 2 digits alike. It appears then that this design has a structure that
is more general than that of a PBIB design (see also Nair, 1951) but that is
unknown.

The method used to construct triple rectangular lattices can be generalized
to construct rectangular lattices with more than three replicates by using several
MOLS (where available) to label the treatments appropriately. For K − 2 MOLS
(if they exist) we obtain the near balance rectangular lattices with K replicates
(Harshbarger, 1951).

18.12 EFFICIENCY FACTORS

It should be clear from our discussion in the preceding sections that the one-
restrictional lattice designs are certain types of incomplete block designs, and
that the two-restrictional lattic designs are resolvable row–column designs. For
both of these types of designs we have discussed in Sections 1.12 and 6.6.7,
respectively, how comparisons among competing designs can be made by com-
puting their efficiency factors, and by providing upper bounds for the efficiency
factors. These results can, of course, be used here, too.

More specifically, however, Patterson and Williams (1976) give the efficiency
factor for a square lattice as

E = (K2 − 1)(s − 1)

(K2 − 1)(s − 1) + s(K − 1)
(18.45)

where s is the number of replicates or number of different systems of con-
founding used. For other one-restrictional lattices (18.45) represents an upper
bound.
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For a two-restrictional lattice John and Williams (1995) give an upper bound

Eργ = t − ρ − γ + 1

t − 1
(18.46)

where t = number of treatments, ρ = number of rows, and γ = number of
columns. Alternatives to (18.46) were derived by John and Street (1992, 1993).
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Crossover Designs

19.1 INTRODUCTION

We have mentioned earlier (e.g., I.9.1) that a very important aspect of experi-
mental design is the reduction of error in order to improve the inference from
experiments. This is particularly true if an experiment involves biological entities,
such as animals or humans, since such entities typically exhibit rather larger vari-
ability. One way to reduce this natural variability is to use each animal or human,
which we shall refer to as subjects, as a block rather than as an experimental
unit. Different treatments are then applied successively, that is, in different time
periods, to each subject, so that each subject–period combination now represents
the experimental unit. This is often referred to as each subject acting as its own
control, since now comparisons between treatments can be made within rather
than between subjects.

Obviously, for this procedure to be of any value certain conditions have to be
fulfilled: (1) a subject reacts to the treatment soon after the treatment has been
applied, (2) the treatment effect only lasts for a limited time, (3) after this time the
subject is restored to its original state, and (4) the treatment effects are the same
in each period. If these conditions are satisfied, we may use some form of block
design where the subjects are the blocks and the treatments to be administered
to the subject are applied at random. If, however, period effects are suspected,
that is, the subjects change systematically over the time of the trial, then we
employ some sort of row–column design, with rows representing the periods
and columns representing the subjects. This situation may occur, for example,
in a dairy cattle feeding trial, where the treatments are applied during the cow’s
lactation period and where it is known that changes occur during the lactation
period regardless of the treatments (Cochran, Autrey, and Cannon, 1941).

It is this latter type of situation that we are concerned with in this chapter. The
designs suitable for these situations are called crossover designs or changeover

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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designs, and we shall discuss some of their features in the following sections.
We should mention that these designs are sometimes referred to as repeated
measurements designs, but we shall reserve this term for designs where repeated
measurements are obtained on a subject following a single treatment application
(see I.13.7).

Crossover designs were first considered in principle in the context of agricul-
tural experiments. Cochran (1939), for example, alluded to their special features
in connection with rotation experiments. Further developments came with appli-
cations in animal feeding trials (e.g., Lucas, 1957; Patterson, 1951; Patterson and
Lucas, 1959, 1962), biological assay (e.g., Finney, 1956), pharmaceutical and
clinical trials (e.g., Senn, 1993), psychology (e.g., Cotton, 1998), and industrial
research (e.g., Raghavarao, 1990). For a brief history of this subject see Hedayat
and Afsarinejad (1975).

19.2 RESIDUAL EFFECTS

We have pointed out above that one of the advantages of crossover designs is
that certain treatment contrasts may be estimated more precisely on a within-
subject basis as compared to designs where only between-subject information
is available. There are, however, also disadvantages, such as the length of time
required for a trial.

Another major disadvantage may arise if the treatments exhibit effects beyond
the period in which they are applied. These lingering effects are referred to as
residual effects or carryover effects. If these effects cannot be accounted for,
they may bias the estimates of contrasts among treatment effects or, as they also
are referred to, direct effects. Wash-out periods (with either no treatment or a
standard treatment) have been used to eliminate this problem, but that may in
some cases be unethical and it also prolongs the duration of the trial even more.

There may be situations in which one is interested to estimate the residual
effects, but generally we are interested only in the direct effects. It is there-
fore important to construct designs that allow us to estimate the direct effects
separately from the residual effects.

19.3 THE MODEL

We have argued before (see I.2.2) that the development of the experimental design
and the formulation of an appropriate statistical model are intimately connected
in that the structures of the treatment design, the error control design, and the
sampling and observation design determine essentially the complexity of the
statistical model for purposes of analyzing the data. From our discussion, so far it
is clear that a model for crossover designs follows that for a row–column design,
that is, it contains period, subject, and treatment (direct) effects. In addition,
however, we also need to include residual effects, and that requires that we have
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to make assumptions about the nature of the residual effects. Over how many
periods do they extend? Do they interact with the treatments applied in these
periods? Do they change over time?

The commonly used assumptions are that the carryover effects last only for one
period and that they are constant over time and do not depend on the treatment
applied in that period (but see also Section 19.8.6). Thus, if we denote by yij

the observation in period i (i = 1, 2, . . . , p) on subject j (j = 1, 2, . . . , n), we
write the model as

yij = µ + πi + βj + τd(i,j) + ρd(i−1,j) + eij (19.1)

where πi represents the ith period effect, βj the j th subject effect, τd(i,j) the treat-
ment effect, with d(i, j) denoting the treatment applied to subject j in period
i using the design d , ρd(i−1,j) the carryover effect associated with the treat-
ment assigned to subject j in period i − 1, and eij the error with mean 0 and
variance σ 2

e .
We shall rewrite (19.1) in matrix notation as follows (see Stufken, 1996):

y = Iµ + X1π + X2β + Xd3τ + Xd4ρ + e (19.2)

with y ′ = (y11, y21, . . . , ypn), π ′ = (π1, π2, . . . , πp), β ′ = (β1, β2, . . . , βn),
τ ′ = (τ1, τ2, . . . , τt ), ρ′ = (ρ1, ρ2, . . . , ρt ),

X1 =


Ip

...

Ip

 = I × Ip , X2 =


Ip 0p . . . 0p

0p Ip . . . 0p

...

0p 0p . . . Ip

 = In × Ip

and the pn × t design-dependent matrices as

Xd3 =


Xd31

Xd32

...

Xd3n

 Xd4 =


Xd41

Xd42

...

Xd4n

 (19.3)

where the p × t matrix Xd3j denotes the period–treatment incidence matrix for
subject j and where Xd4j = L∗Xd3j denotes the p × p period–residual effect
incidence matrix for subject j , with the p × p matrix L∗ defined as

L∗ =
[

0′
p−1 0

Ip−1 0p−1

]
(19.4)

The form of L∗ in (19.4) implies that ρd(0,j) = 0.
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19.4 PROPERTIES OF CROSSOVER DESIGNS

We have seen in our earlier discussions that balancedness plays an important and
useful role in the construction of designs. It is therefore not surprising—in fact,
it is quite intuitive—that “good” crossover designs benefit from certain forms of
balancedness.

We shall denote a crossover design d with t treatments, n subjects, and p

periods by CO(t , n, p) and the totality of all CO(t , n, p) by �t,n,p . In order
to describe balancedness more precisely we then give the following definitions,
following Cheng and Wu (1980) and Afsarinejad (1990).

Definition 19.1 A design d ε �t,n,p is said to be uniform on the periods if
each treatment is assigned to λ1 subjects in each period. �

Definition 19.2 A design d ε �t,n,p is said to be uniform on the subjects if
each treatment is assigned λ2 times to each subject. �

Definition 19.3 A design d ε �t,n,p is said to be uniform if it is uniform on
the periods and uniform on the subjects. �

These definitions imply that

n = λ1t p = λ2t (19.5)

and hence n ≥ t , p ≥ t .

Definition 19.4 A design d ε �t,n,p is said to be balanced for residual effects
(or balanced for short) if each treatment is immediately preceded by each other
treatment (but not by itself) λ times. �

Definition 19.5 A design d ε �t,n,p is said to be strongly balanced for resid-
ual effects (or strongly balanced for short) if each treatment is immediately
preceded by all the treatments (including itself) λ∗ times. �

These definitions imply that

n(p − 1) = λt(t − 1) n(p − 1) = λ∗t2 (19.6)

For the important case p < t Afsarinejad (1990) gives the following definitions
for balancedness.

Definition 19.6 A design d ε �t,n,p with p < t is said to be balanced if it
is uniform on periods, balanced for residual effects, and distinct treatments are
applied to the subjects. �

Definition 19.7 A design d ε �t,n,p with p < t is said to be strongly bal-
anced if it is uniform on periods and strongly balanced for residual effects. �
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19.5 CONSTRUCTION OF CROSSOVER DESIGNS

In this section we shall describe some methods of constructing crossover designs.

19.5.1 Balanced Designs for p = t

A method of constructing balanced designs for the case p = t was given by
Williams (1949). These designs are commonly referred to as Williams squares.
The method can be described easily by developing the treatment sequence
assigned to subject 1 (Bradley, 1958). We distinguish between t even and t odd.

1. t even: Let us denote the treatment sequence for subject 1 by (c1,

c2, . . . , ct )
′. Then the sequence for subject j + 1 (j = 1, 2, . . . , t − 1)

is given by (c1 + j, c2 + j, . . . , ct + j)′ where each element in this
sequence is reduced mod t . Now, labeling the treatments 1, 2, . . . , t , we
have specifically, (c1, c2, . . . , ct )

′ = (1, t, 2, t − 1, 3, . . . , t/2, (t + 2)/2)′.
This yields a CO(t, t, t).

2. t odd: Here (c1, c2, . . . , ct )
′ = (1, t, 2, t − 1, 3, . . . , (t + 3)/2, (t + 1)/2)′.

Developing (c1, c2, . . . , ct ) as in (1) yields t sequences for t subjects.
We then take the sequence for subject t , that is, (c1 + t − 1, c2 + t −
1, . . . , ct + t − 1)′ and make the mirror image of it the sequence for subject
t + 1. The sequences for subjects t + 2, t + 3, . . . , 2t are then obtained by
developing the sequence for subject t + 1 as described above, always mod
t . This yields a CO(t, 2t, t).

Using arguments based on cyclic groups, one can show that the designs
obtained by the methods described in (1) and (2) above are balanced crossover
designs with λ = 1 and λ = 2, respectively, in (19.6). In addition, the CO(t, t, t)

in (1) is obviously a minimal design since λ1 = 1 in (19.5). The same cannot
be said for the CO(t, 2t, t) in (2). In fact, it is known that minimal balanced
designs do not exist for t = 3, 5, 7 and exist only for some t odd (Dénes and
Keedwell, 1974).

19.5.2 Balanced Designs for p < t

Even for moderate values of t the designs discussed in Section 19.5 may not
always be practicable because the duration of the trial may be too long. Rather
than using Latin square designs, as in (1) above, or multiples of Latin square
designs, as in (2) above, we need designs that have the form of Youden squares
(see I.10.5) or multiples of Youden squares, that is, designs with p < t . At the
same time it is desirable to consider minimal designs, that is, to keep the number
of subjects as small as possible.

We know from (19.5) and (19.6) that for a balanced CO(t, n, p) we require n =
λ1t and n = λt(t − 1)/(p − 1), which implies λ1(p − 1) = λ(t − 1). A minimal
design is then obtained for λ = 1. We thus have the following theorem.
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Table 19.1 Generating Columns for Minimal Balanced
CO(t, n, p)

Column
1 2 3 . . . i . . . λ1

c1 cp c2p−1 . . . c(i−1)p−(i−2) . . . c(λ1−1)p−(λ1−2)

c2 cp+1 c2p . . . c(i−1)p−(i−3) . . . c(λ1−1)p−(λ1−3)

...
...

...
...

...

cp c2p−1 c3p−2 . . . cip−(i−1) . . . ct

Theorem 19.1 (Afsarinejad, 1990) The necessary and sufficient conditions
for the existence of a minimal balanced CO(t, n, p) with p < t are n = λ1t and
λ1(p − 1) = t − 1.

We shall describe here two of several general methods of constructing balanced
CO(t, n, p).

Method 1
Extending the method of Section 19.5.1, Afsarinejad (1983, 1990) proposed
to construct a minimal balanced CO(t, λ1t, p) for p < t by developing (mod
t) each of the λ1 columns of Table 19.1 associated with subjects 1, t + 1,

2t + 1, . . . , (λ1 − 1)t + 1, where

c′ = (c1, c2, . . . , ct ) =



(1, t, 2, t − 1, 3, . . . , t/2, (t + 2)/2) for t even

(1, t, 3, t − 2, 5, . . . , (t − 3)/2,

(t + 5)/2, (t + 1)/2, (t + 5)/2,

(t − 3)/2, . . . , t, 1) for t = 4γ + 1

(1, t, 3, t − 2, 5, . . . , (t − 1)/2,

(t + 3)/2, (t − 1)/2, . . . , t, 1) for t = 4γ + 3

We comment briefly on the form and nature of the columns in Table 19.1:

1. The columns consist of interlaced increasing and decreasing sequences of
positive integers;

2. For t odd the column consists of three parts, say c′ = (c′
−1, c0, c′

1), where c′
1

is the mirror image of c′
−1, and c0 = (t + 1)/2 or (t + 3)/2 for t = 4γ + 1

or t = 4γ + 3, respectively;
3. The set

⋃t
i=2(ci − ci−1) contains each nonzero integer mod t . These repre-

sent the p − 1 successive differences between the elements of each of the
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λ1 columns [recall that λ1(p − 1) = t − 1]. After development each column
will lead to (p − 1)t such differences, so that each ordered pair of distinct
treatments will appear exactly once in the design, implying λ = 1.

We shall illustrate the procedure with the following example.

Example 19.1 Let t = 7, p = 4, and hence λ1 = 2. From Table 19.1 we
obtain (c1, c2, . . . , c7) = (1, 7, 3, 5, 3, 7, 1). Thus the generating columns are
(1, 7, 3, 5)′ and (5, 3, 7, 1)′, and the design is given by

Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 5 6 7 1 2 3 4
2 7 1 2 3 4 5 6 3 4 5 6 7 1 2

Period
3 3 4 5 6 7 1 2 7 1 2 3 4 5 6
4 5 6 7 1 2 3 4 1 2 3 4 5 6 7 �

Method 2
This method is due to Patterson (1952) (see also Patterson and Lucas, 1962) and
is based on balanced incomplete block designs. Suppose we have a BIBD (t , b,
k, r; α). We then take the treatments in each block as the generating column for
a balanced CO(k, k, k) for k even or a CO(k, 2k, k) for k odd as described in
Section 19.5.1. Adjoining these b crossover designs leads to the final CO(t, bk, k)

with λ = α for k even or CO(t, 2bk, k) with λ = 2α for k odd.
We illustrate this procedure with the following example.

Example 19.2 Consider the BIBD (5, 5, 4, 4; 3)

Block

1 2 3 4 5

1 1 1 1 2
2 2 2 3 3
3 3 4 4 4
4 5 5 5 5

Recall that a balanced CO(4, 4, 4) is obtained from the generating column
(1, 4, 2, 3)′. For a generating column (block) from the BIB design of the form
(T1, T2, T3, T4) we then obtain the CO(4, 4, 4) by using the association T1 ≡
1, T2 ≡ 4, T3 ≡ 2, T4 ≡ 3. In other words, in the CO(4, 4, 4) given by

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2
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replace i by the associated Tj successively for each block. Part of the final
CO(5, 20, 4) is given below:

Subject

1 2 3 4 · · · 17 18 19 20

1 1 3 4 2 · · · 2 4 5 3

2 2 1 3 4 · · · 3 2 4 5
Period

3 3 4 2 1 · · · 4 5 3 2

4 4 2 1 3 · · · 5 3 2 4 �

19.5.3 Partially Balanced Designs

One possible disadvantage of the designs obtained by method 2 in Section 19.5.2
is that the number of subjects required may be rather large. This is due to the fact
that in general the number of blocks in a BIB design is relatively large. We have
seen earlier that one “remedy” is to resort to PBIB designs with a smaller number
of blocks. The same idea can be used here. Instead of developing the blocks of
a BIB design as illustrated in Example 19.2, we may choose to develop in the
same manner the blocks of a PBIB(m) design (Patterson, 1952; Patterson and
Lucas, 1962). As a consequence, however, comparisons between direct effects
from the resulting crossover design are estimated with up to m different variances.
Of particular interest here are PBIB(2) designs but also, because of the ease of
construction, cyclic PBIB designs (see Section 5.3) as advocated by Davis and
Hall (1969). For another class of partially balanced designs see Blaisdell and
Raghavarao (1980).

19.5.4 Strongly Balanced Designs for p = t + 1

We have pointed out earlier that the main interest in crossover designs is to esti-
mate comparisons among direct effects. There are, however, situations where the
residual effects are of interest in themselves as well. To increase the efficiency
of estimating residual effect contrasts and to achieve orthogonality between the
direct and residual effects (see Section 19.7), we consider strongly balanced
designs. The additional important feature of these designs is that each treatment
is also preceded by itself λ∗ times (see Definition 19.5).

An obvious way to construct a minimal strongly balanced design is to
consider the balanced designs CO(t, t, t) and CO(t, 2t, t) of Section 19.5.1 and
add an extra period by simply repeating the treatment assignments from
period t . We thus create the so-called extra-period designs (Lucas, 1957)
CO(t, t, t + 1) and CO(t, 2t, t + 1) with λ∗ = 1 and 2, respectively. Some other
extra-period designs based on orthogonal Latin squares were given by Lucas
(1957).
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19.5.5 Strongly Balanced Designs for p < t

Similar to Theorem 19.1 we can state the following theorem.

Theorem 19.2 (Afsarinejad, 1990) The necessary and sufficient conditions
for the existence of a minimal strongly balanced CO(t, n, p) with p < t are
n = λ1t and λ1(p − 1) = t .

The construction then follows the method described in Section 19.5.2 with the
following modifications (Afsarinejad, 1983, 1990):

1. The last element in the λ1th generating column in Table 19.1 is ct+1.
2. The c vector

(c1, c2, . . . , ct , ct+1)

=



(1, t, 2, t − 1, . . . , t/2, (t + 2)/2, (t + 2)/2) for t even

(1, t, 3, t − 2, . . . , (t − 3)/2, (t + 5)/2,

(t + 1)/2, (t + 1)/2, (t + 5)/2,

(t − 3)/2, . . . , t, 1) for t = 4γ + 1

(1, t, 3, t − 2, . . . , (t − 1)/2, (t + 3)/2,

(t + 3)/2, (t − 1)/2, . . . , t, 1) for t = 4γ + 3

3. The set
⋃t+1

i=2(ci − ci−1) contains each number mod t and, hence, each
ordered pair of treatments appears exactly once in the design.

We illustrate this procedure with the following example.

Example 19.3 Let t = 6, p = 4, and hence λ1 = 2. Then (c1, c2, . . . , c7) =
(1, 6, 2, 5, 3, 4, 4). The generating columns are (1, 6, 2, 5) and (5, 3, 4, 4) and
the final design is

Subject

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 5 6 1 2 3 4

2 6 1 2 3 4 5 3 4 5 6 1 2
Period

3 2 3 4 5 6 1 4 5 6 1 2 3

4 5 6 1 2 3 4 4 5 6 1 2 3 �
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19.5.6 Balanced Uniform Designs

Uniform crossover designs (see Definition 19.3) are not only structurally appeal-
ing but also an important role in connection with the consideration of optimality
(see Section 19.6). It is easy to verify that the CO(t, t, t) and CO(t, 2t, t) given in
Section 19.5.1 are uniform crossover designs. From these designs we can obtain,
of course, CO(t, c1t, c2t) and CO(t, 2c1t, c2t), respectively, with c1, c2 positive
integers.

19.5.7 Strongly Balanced Uniform Designs

One method of construction is provided through the proof of the following
theorem.

Theorem 19.3 (Cheng and Wu, 1980) If n is a multiple of t2 and p = λ2t

with λ2 even, then there exists a strongly balanced uniform CO(t, n, p).

A simple way to construct such a design (Cheng and Wu, 1980) is to first
consider the case n = t2 and λ2 = 2. For periods 1 and 2 write down all possible
ordered pairs of the t treatments as a 2 × t2 array. To each element in this array
add i mod t (i = 1, 2, . . . , t − 1) to obtain periods 2i + 1 and 2i + 2.

As an illustration we consider the following example.

Example 19.4 Take t = 3, thus n = 9, p = 6, leading to the following
CO(3, 9, 6) with λ∗ = 3:

Subject

1 2 3 4 5 6 7 8 9

1 1 1 1 2 2 2 3 3 3
2 1 2 3 1 2 3 1 2 3
3 2 2 2 3 3 3 1 1 1

Period
4 2 3 1 2 3 1 2 3 1
5 3 3 3 1 1 1 2 2 2
6 3 1 2 3 1 2 3 1 2

It is then obvious how one can obtain in general a CO(t, ct2, λ2t) with c a
positive integer and λ2 even. For a different method of construction see Beren-
blut (1964). �

19.5.8 Designs with Two Treatments

The most widely used crossover designs involve two treatments, A and B say,
where in the clinical setting A may be a standard drug or placebo and B may be
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the test drug. And the simplest design is to consider two sequences of treatment
application to a subject: AB or BA. For two subjects the CO(2, 2, 2) is given by

Subject

1 2

1 A B
Period

2 B A

It is, of course, obvious by considering the available degrees of freedom that this
CO(2, 2, 2) will not allow the estimation of all parameters in model (19.1). Even
replicating each sequence r times resulting in a CO(2, 2r , 2) does not solve this
problem. Therefore, designs with additional periods and/or additional sequences
will have to be considered.

We shall mention some such possible designs by indicating the number of
sequences s and the number of periods p, as well as the sequences themselves in
a p × s array. The final design is then obtained by replicating each sequence r

times (we note that equal replication is desirable, but not necessary). The resulting
design is then a CO(2, sr , p).

p = 2, s = 4 (Balaam, 1968):

A B A B

B A A B

p = 3, s = 2:

(i) A B (ii) A B (iii) A B

B A B A A B

B A A B B A

Design (i) is, of course, an extra-period design as discussed in Section 19.5.4.
Design (ii) is referred to as a switch-back design.

p = 3, s = 4:

Combining various sequences from the designs for p = 3, s = 2 leads to

(i) A B A B (ii) A B A B

B A B A B A A B

B A A B B A B A

(iii) A B A B

B A A B

A B B A



OPTIMAL DESIGNS 695

p = 3, s = 6:

Combine all six sequences from (i), (ii), (iii) for p = 3, s = 2.

p = 4, s = 2:

(i) A B (ii) A B (iii) A B

A B B A B A

B A A B B A

B A B A A B

(iv) A B (v) A B (vi) A B

B A A B B A

A B B A B A

A B A B B A

(vii) A B

A B

A B

B A

Some of these designs may be combined to obtain designs with s = 4 or s = 6
sequences, for example.

A detailed discussion of the designs given above can be found in Jones and
Kenward (2003) and Ratkowsky, Evans, and Alldredge (1993). An extensive
discussion of 2-treatment designs is also given by Kershner and Federer (1981).

19.6 OPTIMAL DESIGNS

In the previous sections we have discussed different classes of crossover designs
and have given some methods of constructing designs in these classes. Although
the designs presented here have certain desirable properties, such as balancedness,
for example, and may be quite appropriate from a practical point of view, they
may not necessarily be optimal from a statistical point of view. We shall address
this question briefly in this section and give a few results.

19.6.1 Information Matrices

In order to write out the information matrices for τ and ρ [see model (19.2)],
we shall follow Cheng and Wu (1980) and Stufken (1996) and use the following
notation:

nuj = number of times that treatment u is assigned to subject j

ñuj = number of times that treatment u is assigned to subject j in
the first p − 1 periods



696 CROSSOVER DESIGNS

�ui = number of times that treatment u appears in period i

muv = number of times that treatment u is immediately preceded by
treatment v

ru =
n∑

j=1
nuj =

p∑
i=1

�ui = number of replications for treatment u

r̃u =
n∑

j=1
ñuj =

p−1∑
i=1

�ui =
t∑

v=1
mvu = number of replications for

treatment u in the first p − 1 periods

su =
p∑

i=2
�ui =

t∑
v=1

muv = number of times that treatment u appears

in the last p − 1 periods

We then have that∑
u

nuj = p
∑
u

ñuj = p − 1
∑
u

�ui = n

∑
u

ru = np
∑
u

r̃u = n(p − 1)

Now we consider (19.2) and assume, without loss of generality, µ = 0 (or,
equivalently, define π∗ = µI + π). Then the coefficient matrix for the normal
equations for model(19.2) can be written as

X′
1X1 X′

1X2 X′
1Xd3 X′

1Xd4

X′
2X1 X′

2X2 X′
2Xd3 X′

2Xd4

X′
d3X1 X′

d3X2 X′
d3Xd3 X′

d3Xd4

X′
d4X1 X′

d4X2 X′
d4Xd3 X′

d4Xd4



=


nIp IpI′

n L′
d L̃

′
d

InI
′
p pIn N ′

d Ñ
′
d

Ld Nd Dd Md

L̃d Ñd M ′
d D̃d

 (19.7)

where, dropping the subscript d for convenience and indicating the dimensions
instead,

Lt×p = (�ui) L̃t×p =
(
�̃ui

)
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with �̃u1 = 0, �̃ui = �u,i−1 (i ≥ 2),

N t×n = (nuj ) Ñ t×n =
(
ñuj

)
Dt×t = diag(r1, r2, . . . , rt ) D̃t×t = diag

(̃
r1, r̃2, . . . , r̃t

)
M t×t = (muv)

We then obtain from (19.7) the information matrix for estimating jointly the
direct and residual effects as

Cτ,ρ =
(

D M

M ′ D̃

)
−

(
L N

L̃ Ñ

)(
nIp IpI′

n

InI
′
p pIn

)− (
L′ L̃

′

N ′ Ñ
′

)

≡
(

C11 C12

C21 C22

)
(19.8)

where

C11 = D − n−1LL′ − p−1NN ′ + n−1p−1N InI
′
n N ′

C12 = C ′
21 = M − n−1LL̃

′ − p−1NÑ
′ + n−1p−1N InI

′
n Ñ

′

C22 = D̃ − n−1L̃L̃
′ − p−1ÑÑ

′ + n−1p−1Ñ InI
′
n Ñ

′

It then follows from (19.8) that the information matrices, that is, the coeffi-
cient matrices for the reduced normal equations, for estimating the direct effects
(adjusted for residual effects) and for estimating the residual effects (adjusted for
direct effects) are given by

Cτ = C11 − C12 C−
22 C21 (19.9)

and
Cρ = C22 − C21 C−

11 C12 (19.10)

respectively.

19.6.2 Optimality Results

As we have seen in Section 1.13 optimality considerations are based on the
information matrices for competing designs. For some of the classes of designs,
which we have discussed in Section 19.5, the matrices (19.9) and (19.10) reduce
to quite simple forms so that optimal designs can be characterized if not with
respect to �t,n,p then with respect to some suitable subset � ⊂ �t,n,p .
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For example, for a uniform CO(t , λ1t , t) Hedayat and Afsarinejad (1978)
show that

Cτ = λ1t I − t

λ1(t2 − t − 1)
MM ′ + λ1(2 − t)

t2 − t − 1
ItI

′
t (19.11)

and

Cρ = λ1
t2 − t − 1

t
I − 1

λ1t
MM ′ + λ1(2 − t)

t2
ItI

′
t (19.12)

with M such that MItI
′
t = λ1(t − 1)ItI

′
t . Together with the facts that CτIt = 0

and Cτ is completely symmetric enables them to state the following theorem.

Theorem 19.4 A design d∗ in �u
t,λ1t,t

is universally optimal for the estima-
tion of direct effects if M(d∗) = λ1(ItI

′
t − I ).

Here �u
t,λ1t,t

denotes the set of all uniform CO(t, λ1t, t) and M(d∗) denotes
the M matrix for design d∗. The same result holds with respect to estimating
residual effects. Now we know from Sections 19.5.6 and 19.5.1 that for a bal-
anced design d in �u

t,λ1t,t
with λ1 = 1 for even t and λ1 = 2 for odd t we have

M(d) = (ItI
′
t − I ) and M(d) = 2(ItI

′
t − I ), respectively. Thus patching λ1 (or

λ1/2) copies of a balanced design d in �u
t,t,t (or �u

t,2t,t ) for t even (odd) yields a
balanced design d in �u

t,λ1t,t
with M(d) = λ1(ItI

′
t − I ). Even more generally,

M(d) = λ1(ItI
′
t − I ) if and only if d is balanced (Hedayat and Afsarinejad,

1978). Thus we have the following theorem.

Theorem 19.5 A design d∗ in �u
t,λ1t,t

is universally optimal over �u
t,λ1t,t

if
it is balanced.

Although balancedness is important, Kunert (1984) argues that for sufficiently
large n one can find designs that are better than uniform balanced designs. At
the same time he proved the following theorem.

Theorem 19.6 If a uniform balanced design d∗ exists in �t,λ1t,t , then

tr(Cτ (d
∗))

supd∈�t,n,t
[tr(Cτ (d))]

≥ 1 − (t2 − t − 1)−2 (19.13)

where Cτ (d) is the information matrix for direct effects for design d .

From (19.13) we see that even though a uniform balanced design may not be
optimal it is nevertheless highly efficient for estimating direct effects for t > 2.
More specifically, Kunert (1984) showed the following theorem.

Theorem 19.7 A uniform balanced design d∗ with n = λ1t and p = t is
universally optimal for direct effects in �u

t,λ1t,t
if λ1 = 1 and t ≥ 3, or λ1 = 2

and t ≥ 6.
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For an extension of this result to t ≥ 3 and λ1 ≤ (t − 1)/2 see Hedayat and
Yang (2003).

The efficiency of uniform balanced designs for p = t is generally smaller for
residual effects than it is for direct effects. Here then strongly balanced designs
are important.

Theorem 19.8 (Cheng and Wu, 1980) A strongly balanced design d∗ in
�t,n,p is universally optimal for the estimation of direct and residual effects over
�t,n,p .

Theorem 19.9 (Cheng and Wu, 1980) Let n = λ1t and p = λ2t + 1 and let
d∗ be a strongly balanced design in �t,n,p , which is uniform on the periods and
uniform on the subjects in the first p − 1 = λ2t periods. Then d∗ is universally
optimal for the estimation of direct and residual effects over �u

t,n,p .

Such designs include, of course, the extra-period crossover designs discussed
in Section 19.5.4.

For the proofs of these and other results on optimal designs we refer the reader
to Cheng and Wu (1980), Kunert (1984), and Stufken (1996).

19.7 ANALYSIS OF CROSSOVER DESIGNS

In this section we shall discuss briefly how SAS PROC GLM can be used to
analyze data from a crossover design using model (19.1). Since the designs in
general are nonorthogonal, we need to use reduced normal equations to obtain
estimates of direct and residual effects, as already alluded to in (19.9) and (19.10).

We consider two examples, one a balanced design and the other a strongly
balanced design, and use them to point out numerically some differences between
them.

Example 19.5 In Table 19.2 we present the data from a Williams square
CO(4, 4, 4) (see Section 19.5.1) and the input for analyzing them according
to model (19.1). We comment on some features of the input and output in
Table 19.2:

1. In the input we identify periods, subjects, treatments, and residuals by P , S,
T , C, respectively;

2. Since there is no residual effect in period 1 and since we cannot leave the
corresponding place for C blank (as SAS would delete the entire data point),
we introduce “level” 0 for that purpose;

3. The general form of estimable functions (see L2) and the type III SS for peri-
ods show that period effects are partially confounded with residual effects;

4. Treatment and residual effects are nonorthogonal to each other as indicated
by the fact that the type I and type III SS for treatments are not identical.
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Table 19.2 Williams Square Crossover Design CO (4, 4, 4)

options nodate pageno=1;
data Williams;
input P S T C Y @@;
datalines;
1 1 1 0 27.5 2 1 4 1 20.1 3 1 2 4 23.9 4 1 3 2 17.2
1 2 2 0 29.9 2 2 1 2 23.6 3 2 3 1 20.2 4 2 4 3 16.8
1 3 3 0 14.3 2 3 2 3 15.7 3 3 4 2 12.3 4 3 1 4 17.2
1 4 4 0 19.3 2 4 3 4 12.8 3 4 1 3 20.0 4 4 2 1 23.4
;
run;

proc print data=Williams;
title1 'TABLE 19.2';
title2 'WILLIAMS SQUARE CROSSOVER DESIGN';
title3 'CO(4, 4, 4)';
run;

proc glm data=Williams;
class P S T C;
model Y=P S T C/e solution;
title3 'ANALYSIS OF VARIANCE';
run;

Obs P S T C Y

1 1 1 1 0 27.5
2 2 1 4 1 20.1
3 3 1 2 4 23.9
4 4 1 3 2 17.2
5 1 2 2 0 29.9
6 2 2 1 2 23.6
7 3 2 3 1 20.2
8 4 2 4 3 16.8
9 1 3 3 0 14.3
10 2 3 2 3 15.7
11 3 3 4 2 12.3
12 4 3 1 4 17.2
13 1 4 4 0 19.3
14 2 4 3 4 12.8
15 3 4 1 3 20.0
16 4 4 2 1 23.4

The GLM Procedure

Class Level Information

Class Levels Values

P 4 1 2 3 4
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Table 19.2 (Continued )

S 4 1 2 3 4

T 4 1 2 3 4

C 5 0 1 2 3 4

Number of observations 16

General Form of Estimable Functions

Effect Coefficients

Intercept L1

P 1 L2
P 2 L3
P 3 L4
P 4 L1-L2-L3-L4

S 1 L6
S 2 L7
S 3 L8
S 4 L1-L6-L7-L8

T 1 L10
T 2 L11
T 3 L12
T 4 L1-L10-L11-L12

C 0 L2
C 1 L15
C 2 L16
C 3 L17
C 4 L1-L2-L15-L16-L17

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 12 378.8035000 31.5669583 57.26 0.0033

Error 3 1.6540000 0.5513333

Corrected Total 15 380.4575000

R-Square Coeff Var Root MSE Y Mean

0.995653 3.781124 0.742518 19.63750
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Table 19.2 (Continued )

Source DF Type I SS Mean Square F Value Pr > F

P 3 53.8875000 17.9625000 32.58 0.0086
S 3 154.5075000 51.5025000 93.41 0.0018
T 3 149.8475000 49.9491667 90.60 0.0019
C 3 20.5610000 6.8536667 12.43 0.0337

Source DF Type III SS Mean Square F Value Pr > F

P 2 2.2200000 1.1100000 2.01 0.2790
S 3 111.9660000 37.3220000 67.69 0.0030
T 3 161.8278182 53.9426061 97.84 0.0017
C 3 20.5610000 6.8536667 12.43 0.0337

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 14.67500000 B 0.76085478 19.29 0.0003
P 1 4.67000000 B 0.66412850 7.03 0.0059
P 2 -0.60000000 B 0.52503968 -1.14 0.3361
P 3 0.45000000 B 0.52503968 0.86 0.4544
P 4 0.00000000 B . . .
S 1 2.86000000 B 0.55066626 5.19 0.0139
S 2 3.59500000 B 0.55066626 6.53 0.0073
S 3 -3.45500000 B 0.55066626 -6.27 0.0082
S 4 0.00000000 B . . .
T 1 5.65000000 B 0.55066626 10.26 0.0020
T 2 6.25500000 B 0.55066626 11.36 0.0015
T 3 -1.28500000 B 0.55066626 -2.33 0.1018
T 4 0.00000000 B . . .
C 0 0.00000000 B . . .
C 1 2.80000000 B 0.66412850 4.22 0.0244
C 2 0.62000000 B 0.66412850 0.93 0.4194
C 3 -1.14000000 B 0.66412850 -1.72 0.1846
C 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-
eralized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter ‘B’ are
not uniquely estimable.

5. Since we are considering a balanced design, we have var(̂τu − τ̂u′) the same
for each u, u′(u �= u′), with the same holding true for var(ρ̂u − ρ̂u′). A partial
verification of this is that se(Tu) = se(̂τu − τ̂4) = .55 for u = 1, 2, 3, and
se(Cu) = se(ρ̂u − ρ̂4) = .66 for u = 1, 2, 3. �

Example 19.6 In Table 19.3 we present the data for an extra-period design
CO(4, 4, 5) (see Section 19.5.4) and the input for analyzing them. Again, we
shall comment briefly on some features of the input and output in Table 19.3:
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Table 19.3 Extra-Period Crossover Design CO (4, 4, 5)

options nodate pageno=1;
data extra;
input P S T C Y @@;
if C=0 then C=4;
datalines;
1 1 1 0 27.5 2 1 4 1 20.1 3 1 2 4 23.9 4 1 3 2 17.2
5 1 3 3 18.5 1 2 2 0 29.9 2 2 1 2 23.6 3 2 3 1 20.2
4 2 4 3 16.8 5 2 4 4 17.1 1 3 3 0 14.3 2 3 2 3 15.7
3 3 4 2 12.3 4 3 1 4 17.2 5 3 1 1 18.0 1 4 4 0 19.3
2 4 3 4 12.8 3 4 1 3 20.0 4 4 2 1 23.4 5 4 2 2 21.4
;
run;

proc print data=extra;
title1 'TABLE 19.3';
title2 'EXTRA-PERIOD CROSSOVER DESIGN';
title3 'CO(4,4,5)';
run;

proc glm data=extra;
class P S T C;
model Y=P S T C/e solution;
lsmeans T/stderr;
title3 'ANALYSIS OF VARIANCE';
run;

Obs P S T C Y

1 1 1 1 4 27.5
2 2 1 4 1 20.1
3 3 1 2 4 23.9
4 4 1 3 2 17.2
5 5 1 3 3 18.5
6 1 2 2 4 29.9
7 2 2 1 2 23.6
8 3 2 3 1 20.2
9 4 2 4 3 16.8
10 5 2 4 4 17.1
11 1 3 3 4 14.3
12 2 3 2 3 15.7
13 3 3 4 2 12.3
14 4 3 1 4 17.2
15 5 3 1 1 18.0
16 1 4 4 4 19.3
17 2 4 3 4 12.8
18 3 4 1 3 20.0
19 4 4 2 1 23.4
20 5 4 2 2 21.4
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Table 19.3 (Continued )

The GLM Procedure

Class Level Information

Class Levels Values

P 5 1 2 3 4 5

S 4 1 2 3 4

T 4 1 2 3 4

C 4 1 2 3 4

Number of observations 20

General Form of Estimable Functions

Effect Coefficients

Intercept L1

P 1 L2
P 2 L3
P 3 L4
P 4 L5
P 5 L1-L2-L3-L4-L5

S 1 L7
S 2 L8
S 3 L9
S 4 L1-L7-L8-L9

T 1 L11
T 2 L12
T 3 L13
T 4 L1-L11-L12-L13

C 1 L15
C 2 L16
C 3 L17
C 4 L1-L15-L16-L17

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 13 385.1805000 29.6292692 21.77 0.0006

Error 6 8.1675000 1.3612500

Corrected Total 19 393.3480000
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Table 19.3 (Continued )

R-Square Coeff Var Root MSE Y Mean

0.979236 5.995510 1.166726 19.46000

Source DF Type I SS Mean Square F Value Pr > F

P 4 56.4080000 14.1020000 10.36 0.0073
S 3 119.2600000 39.7533333 29.20 0.0006
T 3 190.4300000 63.4766667 46.63 0.0001
C 3 19.0825000 6.3608333 4.67 0.0518

Source DF Type III SS Mean Square F Value Pr > F

P 4 52.2875000 13.0718750 9.60 0.0089
S 3 167.4140000 55.8046667 41.00 0.0002
T 3 190.4300000 63.4766667 46.63 0.0001
C 3 19.0825000 6.3608333 4.67 0.0518

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 14.20416667 B 1.02435193 13.87 <.0001
P 1 4.88750000 B 0.96739825 5.05 0.0023
P 2 -0.70000000 B 0.82500000 -0.85 0.4287
P 3 0.35000000 B 0.82500000 0.42 0.6862
P 4 -0.10000000 B 0.82500000 -0.12 0.9075
P 5 0.00000000 B . . .
S 1 3.45000000 B 0.75311852 4.58 0.0038
S 2 3.42500000 B 0.75311852 4.55 0.0039
S 3 -3.70833333 B 0.75311852 -4.92 0.0026
S 4 0.00000000 B . . .
T 1 5.56666667 B 0.75311852 7.39 0.0003
T 2 6.42500000 B 0.75311852 8.53 0.0001

T 3 -0.52500000 B 0.75311852 -0.70 0.5118
T 4 0.00000000 B . . .
C 1 2.67500000 B 0.82500000 3.24 0.0176
C 2 0.87500000 B 0.82500000 1.06 0.3297
C 3 -0.00000000 B 0.82500000 -0.00 1.0000
C 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-
eralized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter ‘B’ are
not uniquely estimable.
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Table 19.3 (Continued )

Least Squares Means

Standard
T Y LSMEAN Error Pr > |t|

1 22.3375000 0.5394137 <.0001
2 23.1958333 0.5394137 <.0001
3 16.2458333 0.5394137 <.0001
4 16.7708333 0.5394137 <.0001

1. The input statement ‘If C = 0 then C = 4’ is included for the sole purpose
of obtaining least squares (LS) means (see Ratkowsky, Evans and Alldredge,
1993) since otherwise LS means are “nonestimable” (see also (5) below);

2. With the statement in (1) there is no longer any confounding between period
and residual effects;

3. Treatment and residual effects are now orthogonal to each other [independent
of the statement in (1)] as indicated by the equality for the type I and type
III treatment SS;

4. The balancedness property is again indicated in the standard errors for treat-
ments and residuals;

5. The numerical value for the treatment LS means does depend on the statement
in (1) ‘If C = 0 then C = u’ for u = 1, 2, 3, 4, but differences between LS
means are independent of the value of u. �

19.8 COMMENTS ON OTHER MODELS

All our discussions up to this point are based on model (19.1) with all effects,
except e, assumed to be fixed effects. From many points of view—practical and
theoretical—this seems to be the most plausible model, but in certain cases good
arguments can be made for other models. We shall conclude this chapter by
commenting briefly on some of these models without going into all the details.

19.8.1 No Residual Effects

The presence of residual effects not only affect the analysis of the data from a
crossover design but also the interpretation of such an analysis. For example,
we have mentioned earlier that the 2-treatment, 2-period, 2-sequence (AB, BA)
design cannot be analyzed under model (19.1). Subject matter knowledge may
suggest that no residual effects exist. Or appropriate wash-out periods can elim-
inate residual effects, but they may lengthen considerably the duration of the
experiment. In any event, the design problem becomes then one of Latin square-
type designs (see I.10). Obviously, we no longer need strongly balanced designs.
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We should warn, however, that the use of a balanced design in itself does not
automatically imply that residual effects can be dropped from model (19.1), as
encountered often in the applied literature.

19.8.2 No Period Effects

To overcome the problem mentioned above for the 2-treatment, 2-period, 2-
sequence design, it may be quite reasonable to assume that there are no period
effects. That may be true for other situations as well where the number of periods
is relatively small. In this case the design reduces to a block design (with the
subjects representing the blocks) but with restricted randomization so that the
balancedness property can be preserved.

19.8.3 Random Subject Effects

In certain situations there may be good arguments that the subject effects are
random rather than fixed effects. This is a question that cannot be answered
generally but needs to be decided on a case-by-case basis.

If the subject effects are considered to be random effects, then the analysis
differs from that presented in Section 19.7 in that now in addition to intrasub-
ject information also intersubject information with respect to direct and residual
effects becomes available (this is, of course, akin to the interblock information
for block designs as discussed in Section 1.7). Computationally this can be han-
dled by using, for example, SAS PROC MIXED with the appropriate RANDOM
statement.

One other consequence of assuming random subject effects is an increase of
the standard error for direct and residual least-squares means.

19.8.4 Autocorrelation Error Structure

It is plausible to argue that since we obtain p observations on the same subject
the observations are correlated. In the context of model (19.1) this implies that for
a given j the eij are correlated. One way to look at such a correlation structure
is to consider the p observations for a subject a short time series and hence the
entire set of observations as n time series. The simplest correlation structure in
this context is induced by a first-order autoregression with

eij = ρei−1,j + ηij (i > 1) e1j = η1j (19.14)

and −1 < ρ < 1. The ηij are assumed to be independently distributed with mean
0 and

var(ηij ) =
{

σ 2/(1 − ρ2) for i = 1

σ 2 for i > 1
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Then the variance–covariance structure for e is given by

var(e) = σ 2(I n × V )

where V = (Vii′) and Vii′ = ρ|i−i′|/(1 − ρ2) for i, i′ = 1, 2, . . . , p.
The autocorrelation structure (19.14) leads to an information matrix that is

a function of ρ, a generally unknown parameter [for an explicit expression for
the joint information matrix for direct and residual effects see Matthews (1987)].
As a consequence it becomes much more difficult to obtain general results for
optimality of designs.

Even for t = 2 and p = 3, 4 the results are very complicated and not very
practical (Matthews, 1987). The problem is compounded by the fact that we
usually do not know the correct value of ρ in (19.14). A useful strategy then
would be to choose a design that has good properties, that is, is efficient, over a
reasonable range of ρ rather than choose the optimal design for a particular value
of ρ. Along these lines Matthews (1987) has shown that for t = 2 and p = 3 an
equal number of subjects for the sequences ABB, BAA, AAB, BBA yields a
highly efficient design for estimating direct effects and ABB, BAA, ABA, BAB

for estimating residual effects. For t = 2 and p = 4 the corresponding result is
that the sequences ABBA, BAAB, AABB, BBAA yield a highly efficient design
over the full range of ρ for estimating direct and residual effects. As Matthews
(1987) pointed out, an interesting property of the design above for p = 4 is that
if the experiment had to be stopped after three or two periods the resulting design
is still highly efficient.

We have seen earlier that balanced crossover designs play an important role.
Because their information matrix Cτ in (19.11) is completely symmetric it fol-
lows, of course, that comparisons between two direct effects are estimated with
the same variance. Gill (1992) investigated this property for the case of autocor-
related errors (remember that Cτ is now a function of ρ). He found that for p ≤ t

and t a prime or prime power the method proposed by Williams (1949) can be
used to construct a balanced design with t (t − 1) subjects. Let L1, L2, . . . , Lt−1
be the t − 1 mutually orthogonal Latin squares of size t in semistandard order;
that is, the elements in the first row of L1, L2, . . . , Lt−1 are in natural order.
Then adjoining L1, L2, . . . , Lt−1 yields a balanced CO(t , t (t − 1), t).

For further results concerning Williams designs see Kunert (1985).

19.8.5 Second-Order Residual Effects

It may not be very common, but it is entirely possible that the effect of a treatment
lingers on for two periods (and perhaps even more). In such a case we are not
only dealing with first-order residual effects as we have discussed so far, but also
with second-order residual effects. This changes model (19.1) to

yij = µ + πi + βj + τd(i,j) + ρd(i−1,j) + γd(i−2,j) + eij (19.15)



COMMENTS ON OTHER MODELS 709

where γd(i−2,j) indicates the second-order residual effect in period i for the
treatment that the design d assigned to subject j in period i − 2.

Consideration of second-order residual effects obviously further complicates
the construction of efficient crossover designs. Williams (1950) proposed a
method based on mutually orthogonal Latin squares with the property that each
treatment is preceded by each ordered pair of different treatments (see I.10.7.3).
For these designs and under model (19.15) the direct effects are nonorthogonal
to their first-order and second-order residual effects.

An orthogonal CO(2, 4, 6) was proposed by Quenouille (1953) (see also John
and Quenouille, 1977). His idea was extended for t ≥ 2 by Sharma (1977). His
method produces what he refers to as completely balanced designs.

Definition 19.8 A design d in �t,n,p is called a completely balanced design
if (1) d is uniform, (2) d is strongly balanced for first-order residual effects,
(3) each treatment is preceded equally often by every other treatment (including
itself) by two periods, and (4) each ordered pair of treatments occurs equally
often in the last two periods. �

It is easy to see that a minimal completely balanced design is a CO(t , t2, 3t).
Sharma (1977) introduced a method of constructing such designs through the use
of orthogonal arrays of the form OA[t2, 3, t , 2; 1]: Such an orthogonal array can
be obtained by adjoining t arrays of the form1 2 · · · t

u u · · · u

u u + 1 · · · u + t − 1

 (u = 1, 2, . . . , t) (19.16)

The CO(t , t2, 3t) is obtained from developing the full array (19.16) by adding
successively 1, 2, . . . , t − 1 to its three rows, always mod t .

We illustrate this procedure for the probably most useful cases t = 2 and t = 3
in the following examples.

Example 19.7 For t = 2 the array (19.16) (periods 1, 2, 3) and the final
CO(2, 4, 6) are obtained as

Subject

1 2 3 4

1 1 2 1 2

2 1 1 2 2

3 1 2 2 1
Period - - - - - - - - - - - -

4 2 1 2 1

5 2 2 1 1

6 2 1 1 2

or

Subject

1 2 3 4

A B A B

A A B B

A B B A

B A B A

B B A A

B A A B �
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Example 19.8 For t = 3 we obtain the following CO(3, 9, 9), with the first
three rows constituting array (19.16):

Subject

1 2 3 4 5 6 7 8 9

1 1 2 3 1 2 3 1 2 3

2 1 1 1 2 2 2 3 3 3

3 1 2 3 2 3 1 3 1 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - -

4 2 3 1 2 3 1 2 3 1

Period 5 2 2 2 3 3 3 1 1 1

6 2 3 1 3 1 2 1 2 3
- - - - - - - - - - - - - - - - - - - - - - - - - - - -

7 3 1 2 3 1 2 3 1 2

8 3 3 3 1 1 1 2 2 2

9 3 1 2 1 2 3 2 3 1 �

19.8.6 Self and Mixed Carryover Effects

One important characteristic of strongly balanced designs is the fact that each
treatment is preceded by itself λ2 times. This means that some observations
are a function of the direct and residual effects of the same treatment, whereas
other observations are influenced by direct and residual effects from different
treatments. Model (19.1) does not distinguish between these two situations in that
ρu is the same regardless of whether it occurs together with τu or τu′(u �= u′).
This has sometimes been considered as a weakness of the model. One can argue
that there might be some form of interaction between direct and residual effects
of treatments. This was, indeed, considered by Sen and Mukerjee (1987), but the
ensuing model becomes too complicated and not practically useful.

A different approach to this problem, which can be considered as a special
form of direct-residual treatment interaction, was first proposed by Afsarine-
jad and Hedayat (2002) and further considered by Kunert and Stufken (2002).
Following their development, we consider two types of carryover effects: self
carryover effect, which occurs when treatment u is followed by itself, and mixed
carryover effect, which occurs if treatment u is followed by treatment u′(u �= u′),
independent of what u′ is. This distinction then leads to the following model
[using the same notation as for model (19.1)]:

yij = µ + πi + βj + τd(i,j) +
{

ρd(i−1,j) if d(i, j) �= d(i − 1, j)

χd(i−1,j) if d(i, j) = d(i − 1, j)

}
+ eij

(19.17)

Obviously, ρd(i−1,j) refers to the mixed and χd(i−1,j) to the self carryover effect.
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Based on model (19.15) Afsarinejad and Hedayat (2002) provide useful designs
for t ≥ 2 and p = 2, and Kunert and Stufken (2002) discuss the optimality of
designs for t ≥ 3 and p > 2. We shall report some of their findings, but refer to
the original articles for details.

1. p = 2 The CO(t , n, 2) consists of two parts, say D1 and D2, where in
D1 n1 subjects receive the same treatment in both periods and in D2 n2 subjects
receive different treatments in periods 1 and 2, with n1 + n2 = n. It is obvious
that we can estimate differences between the χu from D1, and hence we would
require n1 ≥ t . Of critical importance then becomes the construction of D2.

One method to construct a CO(t , n2, 2) for estimating direct effects is to
use each ordered pairs of treatments for n2 = t (t − 1) subjects. This may lead
to a rather large design. An alternative method is derived by Afsarinejad and
Hedayat (2002) through the use of BIB designs. It can be described as follows:
Consider a symmetric BIB design with t blocks of size k. Write the design in
the form of a k × t Youden square, H say. Add to H a new row to obtain
a (k + 1) × t array, H ∗ say, that maintains the Youden square property. Then
assign k subjects to each treatment for the first period in D2. Consider, for
example, treatment u(u = 1, 2, . . . , t). Search for treatment u in the first row
of H ∗, and then assign successively those treatments to the second period that
appear in the corresponding column of H . The resulting design D2 is an optimal
design in the subclass of CO(t , n2, 2).

To illustrate this method we consider the following example.

Example 19.9 For t = 7 and k = 3 we have the symmetric BIB design

H :

1 2 3 4 5 6 7

2 3 4 5 6 7 1

4 5 6 7 1 2 3

We obtain

H ∗:

3 4 5 6 7 1 2

1 2 3 4 5 6 7

2 3 4 5 6 7 1

4 5 6 7 1 2 3

Then D2 is given by the 21 × 2 array

3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 1 1 1 2 2 2
D2:

1 2 4 2 3 5 3 4 6 4 5 7 5 6 1 6 7 2 7 1 3

and the entire design uses n1 + n2 = 7 + 21 = 28 subjects. �
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2. p > 2 The results of Kunert and Stufken (2002) are closely tied to the
notions of balanced block designs and generalized Youden designs (see Kiefer,
1958, 1975a, 1975b).

Definition 19.9 A block design with t treatments and blocks of size k is
called a balanced block design if (1) each treatment is replicated equally often,
(2) each pair of treatments occurs together the same number of times, and (3)
|nij − k/t | < 1 for all i, j (i = 1, 2, . . . , t ; j = 1, 2, . . . , b), where nij is the
number of times treatment i appears in block j (see Section 1.3.1). �

Definition 19.10 A row–column design is called a generalized Youden
design if it is balanced block design when considering rows as blocks and
columns as blocks. �

Investigating the properties of the information matrix Cτ under model (19.15)
with regard to uniform optimality Kunert and Stufken (2002) introduced the
following definition.

Definition 19.11 A design d in �t,n,p is called totally balanced if the fol-
lowing conditions hold:

1. d is a generalized Youden design;
2. d is a balanced block design in the carryover effects;
3. d is balanced for carryover effects;
4. The number of subjects where both treatment u and u′ appear [p/t] + 1

times and treatment u′ does not appear in the last period is the same for
every pair u �= u′. �

To establish universal optimality we then have the following theorem.

Theorem 19.10 (Kunert and Stufken, 2002) For t ≥ 3 and 3 ≤ p ≤ 2t , if a
totally balanced design d∗ in �t,n,p exists, then d∗ is universally optimal for the
estimation of direct effects over �t,n,p .

No general methods of constructing such designs exist, but they can sometimes
be obtained by modifying existing designs considered in earlier sections. We
illustrate this with the following example.

Example 19.10 For t = 3, p = 4, and n = 6 the extra-period design

d =


1 2 3 1 2 3
3 1 2 2 3 1
2 3 1 3 1 2
2 3 1 3 1 2


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is universally optimal under model (19.1). Now d is strongly balanced for residual
effects, rather than balanced. Hence d is not totally balanced. Changing the
arrangement in the last period leads to the following totally balanced design:

d∗ =


1 2 3 1 2 3
3 1 2 2 3 1
2 3 1 3 1 2
1 2 3 1 2 3


Thus d∗ is universally optimal under model (19.15). �

Kunert and Stufken (2002) point out the interesting fact that in optimal designs
under model (19.15) generally no self carryover effects occur. This shows that
optimality may not always be the ultimate criterion because in some applications
it may be useful to obtain estimates of self carryover effects, for example, in
connection with a single drug therapy for a chronic disease (Afsarinejad and
Hedayat, 2002).

19.8.7 Factorial Treatment Structure

So far we have tacitly assumed that we are dealing with t qualitative treatments.
It is, however, entirely possible that we could have quantitative treatments. For
example, our treatments may be represented by one or more factors at several
levels. This fact may be used to construct special designs that achieve certain
statistically desirable properties, such as certain types of orthogonality. Such
designs were discussed by for example, Berenblut (1967, 1968) and Mason and
Hinkelmann (1971).

Here we shall discuss briefly yet another type of treatment structure, namely a
factorial treatment structure. We shall limit ourselves to the case of 2m factorials,
although the approach can be extended easily to other factorials. An obvious
way of proceeding is to simply equate the 2m treatment combinations to the t

treatments and use the designs we have discussed earlier. This will lead, however,
very quickly to a prohibitively large number of periods. To reduce the number of
periods we shall make the assumption that some interactions are negligible and
then use appropriate systems of confounding.

In order to use this approach it is useful to use in model (19.1) the reparam-
eterization (7.42) and rewrite the model as

yij = µ + πi + βj + a
(
xd(i,j)

) + ar

(
zd(i−1,j)

) + eij

where xd(i,j) represents the treatment combination x assigned by d to subject
j in period i, and zd(i−1,j) the treatment combination z assigned to subject j

in period i − 1. Further, a(xd(i,j)) and ar(zd(i−1,j)) represent the true direct
and residual effects in terms of main effect and interaction effect components
Eα

α′x = (A
α1
1 A

α2
2 · · ·Aαm

m )α′x and Eα
r,α′x = (A

α1
1 A

α2
2 · · ·Aαm

m )r,α′x , respectively.
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The method to construct suitable designs is to first construct the block design
confounding selected interactions and their generalized interactions with blocks.
These blocks constitute the generating subjects. Each generating subject is then
developed into a Williams square as described in Section 19.5.1. Formally we
can describe the result as in the following theorem.

Theorem 19.11 (Shing and Hinkelmann, 1992) For a 2m factorial with � =
2q−1 effects Eβ1 , Eβ2, . . . , Eβ� negligible (this set is made up of q independent
interactions and their generalized interactions), where m ≥ q + 1, there exists a
CO(2m, 2m, 2m−q ) such that all nonnegligible direct and residual effects and
interactions are estimable.

To construct such a design we assign 2m−q treatment combinations to each of
2q subjects in arbitrary order by confounding Eβ1 , Eβ2 , . . . , Eβ� with subjects.
Each of the 2q initial subjects is then developed into a Williams square. We
adjoin the 2q Williams squares to obtain the final CO(2m, 2m, 2m−q ).

We illustrate this procedure in the following example.

Example 19.11 Suppose we have a 23 factorial with factors A, B, C. Sup-
pose further that we want to use p = 4 = 22 periods, that is, we have m = 3,
q = 1. Thus we need to confound one interaction with subjects, say ABC. The
final design is then given in Table 19.4, with subjects 1 and 5 being the initial
subjects, and using the fact that the Williams square, that is, CO(4, 4, 4) is of
the form

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2

implying that for subject 1 we have the association (0, 0, 0) ≡ 1, (1, 0, 1) ≡ 2,
(0, 1, 1) ≡ 3, (1, 1, 0) ≡ 4, with a similar association for subject 5.

From the design in Table 19.4 we can estimate A, B, AB, C, AC, BC and
Ar , Br , (AB)r , Cr , (AC)r , (BC)r . We point out, however, that the effects like

Table 19.4 CO(23, 8, 4) with ABC Confounded

Subjects

Periods 1 2 3 4 5 6 7 8

1 (0,0,0) (1,0,1) (0,1,1) (1,1,0) (1,1,1) (0,1,0) (1,0,0) (0,0,1)
2 (1,1,0) (0,0,0) (1,0,1) (0,1,1) (0,0,1) (1,1,1) (0,1,0) (1,0,0)
3 (1,0,1) (0,1,1) (1,1,0) (0,0,0) (0,1,0) (1,0,0) (0,0,1) (1,1,1)
4 (0,1,1) (1,1,0) (0,0,0) (1,0,1) (1,0,0) (0,0,1) (1,1,1) (0,1,0)
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Ar have no particular meaning, except that they represent linear combinations of
residual effects. �

Obviously, for large values of m this method may lead to rather large designs.
In that case we may need to use fractional factorials together with a system
of confounding. More specifically, if we use a 2m−s fraction and 2m−s−q peri-
ods, then we can construct a CO(2m−s , 2m−s , 2m−s−q ) by the method described
above. However, this must be considered carefully because this may not lead to
practically useful designs for all values of m, s, and q.

For another approach to constructing crossover designs with a factorial treat-
ment structure we refer to Fletcher, Lewis, and Matthews (1990). They consider
in particular the case of two factors with up to four levels in three or four periods.
Their designs are obtained by cyclic generation from one or more suitably chosen
initial sequences. A table of such sequences is provided by Fletcher, Lewis, and
Matthews (1990).



A P P E N D I X A

Fields and Galois Fields

The notion of a finite field, in particular a Galois field, plays an important role in
the construction of experimental designs (see, e.g., Chapters 3 and 13). We shall
give here the elementary notions of fields and Galois fields. For a more thorough
discussion of this topic the reader is referred to, for example, Carmichael (1956).

Consider a set of s distinct elements (marks) U = {u0, u1, . . . , us−1}.

Definition A.1 The set U is said to be a finite field of order s if its elements
satisfy the following conditions:

1. The elements may be combined by addition with the laws

ui + uj = uj + ui

ui + (uj + uk) = (ui + uj ) + uk

2. The sum of any two elements is an element in U.
3. Given two elements ui and uk , there is a unique element uj such that

ui + uj = uk . Then uj is said to be determined by subtraction, and we
write uj = uk − ui .

4. The element having the additive property of zero is u0 so that

u0 + uj = uj or u0 = uj − uj

for all j .
5. The elements may be combined by multiplication with the laws

uiuj = ujui

ui(ujuk) = (uiuj )uk

ui(uj + uk) = uiuj + uiuk

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
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Table A.1 Primitive Marks of
Finite Fields of Order p

Order of Primitive
Field (p) Mark (u)

3 2
5 2
7 3

11 2
13 2
17 3
19 2
23 5

6. The product of any two elements is an element in U.
7. From the relations

u0ui = uiu0 = ui(uj − uj ) = uiuj − uiuj = u0

it follows that u0 has the multiplicative properties of zero.
8. Given any ui(�= u0) and any uk , there is a unique uj such that

uiuj = uk

Then uj is said to be determined by division, and uj is called the quotient
of uk by ui .

9. The quotient ui/ui has the multiplicative properties of unity and is chosen
to be ui . �

The finite field of s = p elements, where p is a prime number, may be
represented by u0 = 0, u1 = 1, u2 = 2, . . . , up−1 = p − 1. Addition and multi-
plication are the ordinary arithmetic operations, except that the resulting number
is reduced mod p, that is, the resulting number is replaced by the remainder after
dividing by p.

Every element u ∈ U(u �= u0) satisfies the equation up−1 = 1. If for a given
u, p − 1 is the smallest power satisfying this equation, then u is called a primitive
mark of the field. Then the marks u, u2, u3, . . . , up−1 are all distinct and hence
represent, in some order, the elements of U. Examples of primitive marks (roots)
for different values of p are given in Table A.1. As an illustration consider the
following example.

Example A.1 Consider p = 7, u = 3, u1 = 3, u2 = 32 = 2, u3 = 2 · 3 =
6, u4 = 6 · 3 = 4, u5 = 4 · 3 = 5, u6 = 5 · 3 = 1. �

The field of order p described above is a special case of a finite field of order
s = pn, where p is a prime number. Such a field is referred to as a Galois field
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and is generally denoted by GF(pn). For n = 1 the elements are the residues
modulo p as described above. For n > 1 the elements are obtained as follows.

Let P(x) be a given polynomial in x of degree n with integral coefficients
and let F(x) be any polynomial in x with integral coefficients. Then F(x) may
be expressed as

F(x) = f (x) + p · q(x) + P(x) Q(x)

where
f (x) = b0 + b1x + b2x

2 + · · · + bn−1 xn−1

and coefficients bi (i = 0, 1, . . . , n − 1) belonging to GF(p), that is, the set U =
(0, 1, 2, . . . , p − 1). This relationship may be written as

F(x) = f (x) mod p, P (x) (A.1)

and we say that f (x) is the residue modulis p and P(x). The functions F(x),
which satisfy (A.1) when f (x), p, and P(x) are kept fixed, form a class. If p

and P(x) are kept fixed, but f (x) is varied, pn classes may be formed since
each coefficient in f (x) may take the p values 0, 1, 2, . . . , p − 1.

It may be readily verified that the classes defined by the f (x)’s make up a
field. For example, if Fi(x) belongs to the class corresponding to fi(x), and Fj (x)

corresponding to fj (x), then Fi(x) + Fj (x) belongs to the class corresponding to
fi(x) + fj (x). The other operations defined for a field are, likewise, satisfied, any
function obtained by ordinary algebraic operations being replaced by its residue
modulis p and P(x). In order that division be unique, it is also necessary that p

be a prime number and that P(x) cannot be expressed in the form

P(x) = P1(x) P2(x) + p P3(x) (A.2)

where Pi(x) are polynomials in x with integral coefficients, and the degrees of
P1(x) and P2(x) being positive and less than the degree of P(x). Any P(x) that
does not admit the representation is thus irreducible mod p.

Summarizing the preceding discussion, we have the following definition.

Definition A.2 For p a prime number and P(x) an irreducible polynomial
mod p, the residue classes given by (A.1) form a finite field of order pn. This
field is called a Galois field, and is denoted by GF(pn). �

As an illustration we consider the following example.

Example A.2 Let p = 3 and consider GF(32). Then P(x) is of degree 2,
that is, of the form a0 + a1x + a2x

2 with a0, a1, a2 ∈ {0, 1, 2}. For P(x) to be
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irreducible mod 3 we can exclude a0 = 0. Suppose we take a0 = 1. Then P(x) is
of the form 1 + a1x + a2x

2. If a1 = 0, a2 = 2 we have P(x) = 1 + 2x2, which is
0 for x = 1 and can be written as (1 + x)(1 + 2x) − 3x, that is, it is of the form
(A.2), and hence is not irreducible mod 3. We then consider a1 = 0, a2 = 1,
that is, P(x) = 1 + x2. For x = 0, 1, 2, P (x) takes the values 1, 2, 2 mod 3,
respectively, and hence is irreducible mod 3. For P(x) = 1 + x2 we then consider
the possible f (x)’s, which are of the form b0 + b1x. Hence, the elements of
the GF(32) are: u0 = 0, u1 = 1, u1 = 2, u3 = x, u4 = 2x, u5 = 1 + x, u6 = 2 +
x, u7 = 1 + 2x, u8 = 2 + 2x. Just as for the GF(p), there exists as primitive mark
u such that the powers uj (j = 1, 2, . . . , pn − 1) represent the nonzero elements
of GF(pn). In the above case, u = 1 + x is such a primitive mark, since

u1 = 1 + x = u5

u2 = 1 + 2x + x2 = 2x = u4

u3 = 2x(1 + x) = 2x + 2x2 = 2x + 1 + 2(1 + x2) = 1 + 2x = u7

u4 = (1 + 2x)(1 + x) = 1 + 3x + 2x2 = 2 + 2(1 + x2) = 2 = u2

u5 = 2(1 + x) = 2 + 2x = u8

u6 = (2 + 2x)(1 + x) = 2 + 4x + 2x2 = 4x = x = u3

u7 = x(1 + x) = x + x2 = 2 + x + (1 + x2) = 2 + x = u6

u8 = (2 + x)(1 + x) = 2 + 3x + x2 = 1 = u1 �

The irreducible polynomials P(x) are not unique. It can be shown, however,
that there always exists a particular irreducible P(x) such that u = x is a primitive
element. Such a P(x) is called a primitive polynomial. A partial list of primitive
polynomials is given in Table A.2 [for a more extensive list see Hedayat, Sloane,
and Stufken (1999)].

To perform arithmetic operations in a GF it is convenient to first obtain addition
and multiplication tables in terms of the powers of the primitive element, x, using
the primitive polynomial (see Table A.2). We illustrate this with the following
example.

Example A.3 Consider the GF(22). The elements are u0 = 0, u1 = 1, u2 =
x, u3 = 1 + x = x2, with P(x) = 1 + x + x2. We then have the following addi-
tion table:

u0 u1 u2 u3

u0 u0 u1 u2 u3
u1 u1 u0 u3 u2
u2 u2 u3 u0 u1
u3 u3 u2 u1 u0
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Table A.2 List of Primitive
Polynomials for Selected Values
of p and n

GF P(x)

22 1 + x + x2

23 1 + x + x3

24 1 + x + x4

25 1 + x2 + x5

32 2 + x + x2

33 1 + 2x + x3

52 2 + x + x2

or

0 x0 x1 x2

0 0 x0 x1 x2

x0 x0 0 x2 x1

x1 x1 x2 0 x0

x2 x2 x1 x0 0

For example,
x1 + x2 = x(1 + x) = x3 = 1 = x0

Similarly, we obtain the following multiplication table:

u0 u1 u2 u3

u0 u0 u0 u0 u0
u1 u0 u1 u2 u3
u2 u0 u2 u3 u1
u3 u0 u3 u1 u2

or

0 x0 x1 x2

0 0 0 0 0
x0 0 x0 x1 x2

x1 0 x1 x2 x0

x2 0 x2 x0 x1

For example,
x2 · x2 = x4 = x3 · x = x = x1

With these tables we can then carry out all arithmetic operations in GF(22). �
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Finite Geometries

A finite geometry consists of a finite set of elements, called points, that are
subject to certain conditions about points and lines. Such a geometry can be
represented in terms of the marks of a Galois field, GF(pn), where p is a prime.
Of primary importance in the context of constructing experimental designs are
K-dimensional projective and Euclidean geometries, denoted by PG(K , pn) and
EG(K , pn), respectively.

PROJECTIVE GEOMETRY PG(K , P N )

A point of a K-dimensional projective geometry is defined by the ordered set
of homogeneous coordinates (µ0, µ1, . . . , µK ) where µi ∈ GF(pn) and at least
one µi �= u0 = 0. The symbol (µµ0, µµ1, . . ., µµK ) denotes the same point,
where µ ∈ GF(pn) and µ �= u0. The total number of points in the PG(K , pn)
then is

pn(K+1) − 1

pn − 1
= 1 + pn + p2n + · · · + pKn (B.1)

since there exist pn(K+1) − 1 ordered sets �= (0, 0, . . ., 0), and these may be
arranged in groups of pn − 1 sets all of whose elements represent the same
point.

Now consider two distinct points (µ0, . . ., µK ) and (ν0, . . ., νK ). Then the
line between these points is defined by the points

(µµ0 + νν0, µµ1 + νν1, . . . , µµK + ννK) (B.2)
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where µ, ν ∈ GF(pn), not both 0. The number of possible combinations of µ

and ν is p2n − 1, so that because of proportionality the line (B.2) contains

p2n − 1

pn−1
= pn + 1 (B.3)

points.
The system of points and lines given by (B.1) and (B.3) is called a K-

dimensional projective geometry PG(K , pn).

In (B.2) we have defined what we might call a 1-space in the PG(K , pn).
More generally, we can define an M-space (M < K) in PG(K , pn) as follows:
If the points (µi0, µi1, . . ., µiK ) (i = 0, 1, . . ., M) are any M + 1 points not in
the same (M − 1)-space, then an M-space is defined by the points(

M∑
i=0

µiµi0,
∑

µiµi1, . . . ,
∑

µiµiK

)
(B.4)

where µ0, µ1, . . ., µM ∈ GF(pn) and not all equal to 0. Alternatively, (B.4) can
be described in terms of the solutions to K − M independent, linear, homoge-
neous equations

ai0µ0 + ai1µ1 + · · · + aiKµK = 0 (B.5)

(i = 1, 2, . . ., K − M) with aij fixed.
In order to find the number of M-spaces in the K-space (M < K), we need

to find first the number of ways in which the M + 1 noncollinear base points can
be chosen, such that they do not all lie in any (M − 1)-space:

1st point: 1 + pn + · · · + pKn ≡ NK1

2nd point: pn + · · · + pKn ≡ NK2

3rd point: p2n + · · · + pKn ≡ NK3
...

(M + 1)th point: pMn + · · · + pKn ≡ NK,M+1

and then the ways in which M + 1 points of a given PG(M , pn) may be selected
in a given order so that they do not all lie in any (M − 1)-space:

1st point 1 + pn + · · · + pMn ≡ NM1

2nd point pn + · · · + pMn ≡ NM2
...

(M + 1)th point pMn ≡ NM,M+1
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Hence every PG(K , pn) contains

ψ(M, K, pn) =
M+1
�
i=1

NKi

M+1
�
i=1

NMi

(B.6)

M-spaces, with NKi and NMi as defined above.
Similarly, we can show that every PG(S, pn) in PG(K , pn) is contained in

ϕ(S, M, K,pn) =
(
p(S+1)n + · · · + pKn

) × · · · × (
pMn + · · · + pKn

)(
p(S+1)n + · · · + pMn

) × · · · × (
p(M−1)n + pMn

)
pMn

(B.7)

PG(M , pn)’s for S < M . In particular, for S = 0, every point is contained in ϕ(0,
M , K , pn) PG(M , pn) in PG(K , pn), and, for S = 1, every line is contained in
ϕ(1, M , K , pn) PG(M , pn) in PG(K , pn), or, since with every pair of points
also the line containing them is in the PG(M , pn), it follows that every pair of
points is contained in ϕ(1, M , K , pn) different PG(M , pn).

EUCLIDEAN GEOMETRY EG(K , P N )

Consider a PG(K , pn) and the subset of points (µ0, µ1, . . ., µK ) for which
µ0 �= 0. Take µ0 = 1, then the points (1, µ1, . . ., µK ) constitute an EG(K , pn)
consisting of pKn points. The excluded points (0, µ1, . . ., µK ) form a PG(K − 1,
pn) with homogeneous coordinates (µ1, µ2, . . ., µK ). Hence, the EG(K , pn) is
obtained by deleting from the PG(K , pn) a PG(K − 1, pn).

Every PG(M , pn) contained in PG(K , pn) but not in PG(K − 1, pn) becomes
an EG(M , pn) since by deleting PG(K − 1, pn) from PG(K , pn) we also delete
PG(M − 1, pn) from PG(M , pn). The number of EG(M , pn) contained in EG(K ,
pn) then is ψ(M , K , pn)−ψ(M , K − 1, pn), with ψ defined in (B.6). The number
of EG(M , pn) containing a given EG(S, pn) with S < M is ϕ(S, M , K , pn) as
defined in (B.7).
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Orthogonal and Balanced Arrays

ORTHOGONAL ARRAYS

Definition C.1 A K × N matrix A, with entries from a set
∑

of s ≥ 2 elements,
is called an orthogonal array of strength t , size N,K constraints and s levels if
each t × N submatrix of A contains all possible t × 1 column vectors with the
same frequency λ, denoted by OA[N,K, s, t; λ], where λ is called the index of
A and N = λst . �

For the case
∑ = {0, 1, . . . , s − 1} consider the following example.

Example C.1 OA[9, 4, 3, 2; 1]:

A =


0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 1 2 0


�

There are different methods of constructing orthogonal arrays [for a thorough
discussion see Hedayat, Sloane, and Stufken (1999)]. We shall present here a
particular method based on projective geometries.

Theorem C.1 If we can find a matrix C = (cij ) of K rows and τ columns,
whose elements cij belong to a GF(pn), and for which every submatrix obtained
by taking t rows is of rank t , then we can construct an OA[pnτ ,K, pn, t; λ].

Proof Consider τ × 1 column vectors ξ whose coordinates belong to GF(pn).
Then there are pτn different ξ i . Consider then the matrix A whose pτn columns
are the vectors C ξ i (i = 1, 2, . . ., pnτ ). A is then an orthogonal array:
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Suppose A∗ is a t × pτn submatrix of A, and C∗ is the corresponding t × τ

submatrix of C. Consider

A∗ = C∗(ξ1, ξ2, . . . , ξ s)

with s = pτn, and denote the ith column of A∗ by αi(i = 1, 2, . . ., s), that is,

αi = C∗ ξ i

or
c11ξi1 + c12ξi2 + · · · + c1τ ξiτ = αi1

c21ξi1 + c22ξi2 + · · · + c2τ ξiτ = αi2

...

ct1ξi1 + ct2ξi2 + · · · + ctτ ξiτ = αit

Assume without loss of generality that the first t columns of C∗ are linearly
independent. Then consider all the ξ i that have the same last τ − t components.
There are ptn different such vectors. Each will give rise to a different αi . But
the total number of different αi is ptn, that is, each possible αi is obtained
exactly once from such a set. Now there are pn(τ−t) possible sets of vectors for
which this holds. Hence each different αi is obtained exactly pn(τ−t) times. This
implies that in A∗ each possible t × 1 column vector occurs λ = pn(τ−t) times
and shows that A is an orthogonal array of strength t and index λ. �

The rows of C in Theorem C.1 may be interpreted as the coordinates of a
PG(τ − 1, pn) such that no t points lie in a space of dimension ≤ t − 2. To
find a matrix C then means to find K points of a PG(τ − 1, pn) with the above
restriction. We illustrate this with the following example.

Example C.2 Consider the case pn = 2. In the PG(τ − 1, 2) consider all
points that are not in the (τ − 2)-space:

x0 + x1 + · · · + xτ−1 = 0

There are exactly 2τ−1 such points, namely those with an odd number of unity
components. No three of these points are on the same line, since in the PG(τ − 1,
2) each line has exactly three points, one of which is excluded. Hence we can
construct an OA[2τ , 2τ−1, 2, 3; λ].

Consider, for example, the case τ = 3:

C =


1 0 0
0 1 0
0 0 1
1 1 1


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(ξ1, ξ2, . . . , ξ8) =
 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


and hence

A =


0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 1 1 0 1 0 0 1


with λ = 1. It is easy to see that A is also an OA[2τ , 2τ−1, 2, 2; 2]. �

BALANCED ARRAYS

Balanced arrays, or B-arrays, were introduced by Chakravarti (1956) under the
name partially balanced arrays. The following definition is adapted from Srivas-
tava and Chopra (1973).

Definition C.2 A K × N matrix B, with entries from a set
∑

of s ≥ 2
elements, is said to be a balanced array of strength t , size N , K constraints, and
s levels if for each t × N submatrix B0 of B and for each t × 1 vector x = (x1,
x2, . . ., xt )

′ with elements from
∑

, we have

λ(x, B0) = λ(P (x), B0) (C.1)

where λ(x, B0) is the number of columns of B0 that are identical with x, and
P(x) is any vector obtained by permuting the elements of x.

We denote such an array by BA[N,K, s, t;λ′], where λ′ is the vector of the
totality of λ(x, B0) as defined by Definition C.1. The term λ′ is referred to as the
index set of the B-array. Note that if all elements of λ′ are identical, say equal
to λ, then the B-array becomes an orthogonal array with index λ. �

For the case
∑ = {0, 1, 2, . . ., s − 1} we illustrate the notion of a B-array

with the following example.

Example C.3 Consider BA[15, 5, 3, 2; 1, 2]

B =


0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
0 1 2 1 2 1 2 0 2 0 2 0 1 0 1
1 0 2 2 1 2 1 0 0 2 0 2 1 1 0
2 2 0 1 1 0 0 1 2 2 1 1 2 0 0
1 2 1 0 2 2 0 2 1 0 0 1 0 2 1


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where

λ(x1, x2) =
{

λ1 = 1 for x1 = x2

λ2 = 2 for x1 �= x2 �

Condition (C.1) can be expressed operationally as follows. Let in x the symbol
i occur ri times (0 ≤ i ≤ s − 1). Then

s−1∑
i=0

ri = t

and each of the t!/r0!r1! . . . rs−1! vectors obtained by permuting x has the same
λ value.

For the special case s = 2, the index set λ′ consists of t + 1 components, λ0,
λ1, . . ., λt , corresponding to the number of nonzero components in x, which is
also referred to as the weight of x.

There exist several methods of constructing B-arrays [see, e.g., Chakravarti
(1956, 1961), Srivastava and Chopra (1973), Aggarwal and Singh (1981)]. We
shall mention here one method that is based on the existence of orthogonal arrays
(Chakravarti, 1961).

Suppose, an orthogonal array OA[N,K, s, t; λ] can be divided into two dis-
joint arrays such that one array is a B-array or a degenerate B-array [a degenerate
B-array being one that has some but not all λ(x1, x2, . . . , xt ) equal to zero],
with λ(x1, x2, . . . , xt ) < λ for all t × 1 vectors x. Then the remaining array is a
B-array with λ parameters given by λ∗(x1, x2, . . . , xt ) = λ − λ(x1, x2, . . . , xt ).

As an illustration consider the following example.

Example C.4 Consider OA[9, 3, 3, 2; 1]

A =

 0 1 2 0 1 2 0 1 2

0 1 2 2 0 1 1 2 0

0 1 2 1 2 0 2 0 1


Divide A into

A1 =

 0 1 2

0 1 2

0 1 2

 and A2 =

 0 1 2 0 1 2

2 0 1 1 2 0

1 2 0 2 0 1


where A1 is a degenerate B-array and A2 then represents a BA[6, 3, 3, 2] with
λ1 = 0, λ2 = 1, where λ1, λ2 are as defined in Example C.3. �

In other situations we may be able to obtain a B-array by deleting not only
columns but also rows from an orthogonal array (see Chakravarti, 1961).
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Selected Asymmetrical Balanced
Factorial Designs

1. 4 × 2 × 2, k = 4 (Li, 1944)

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 3 4 1 2 3 4 1 2 3 4

000 001 010 011 000 001 010 011 000 001 010 011
101 100 111 110 111 110 101 100 110 111 100 101
210 211 200 201 201 200 211 210 211 210 201 200
311 310 301 300 310 311 300 301 301 300 311 310

λ(000) = 3 h(000) = 2

λ(100) = 0 h(100) = 1
4

λ(010) = 0 h(010) = 0

λ(110) = 1 h(110) = 0

λ(001) = 0 h(001) = 0

λ(101) = 1 h(101) = 0

λ(011) = 0 h(011) = 1
4

λ(111) = 1 h(111) = − 1
4

E(110) = E(101) = E(111) = 2
3 , all other E(z) = 1, E = 4

5 .

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.
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2. 4 × 2 × 2, k = 8 (Li, 1944)

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 1 2 1 2

000 001 000 001 000 001
011 010 011 010 011 010
100 101 101 100 101 100
111 110 110 111 110 111
201 200 201 200 200 201
210 211 210 211 211 210
301 300 300 301 301 300
310 311 311 310 310 311

λ(000) = 3 h(000) = 2

λ(100) = 1 h(100) = 1
4

λ(010) = 0 h(010) = 1
2

λ(110) = 2 h(110) = − 1
8

λ(001) = 0 h(001) = 1
2

λ(101) = 2 h(101) = − 1
8

λ(011) = 3 h(011) = − 1
4

λ(111) = 1 h(111) = 1
8

E(111) = 2
3 , all other E(z) = 1, E = 14

15 .

3. 4 × 4, k = 4 (Yates, 1937b)

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 3 4 1 2 3 4 1 2 3 4

00 01 02 03 00 01 02 03 00 01 02 03
11 10 13 12 12 13 10 11 13 12 11 10
22 23 20 21 23 22 21 20 21 20 23 22
33 32 31 30 31 30 33 32 32 33 30 31
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λ(00) = 3 h(00) = 2

λ(10) = 0 h(10) = 1
4

λ(01) = 0 h(01) = 1
4

λ(11) = 1 h(11) = − 1
4

E(10) = E(01) = 1, E(11) = 2
3 , E = 4

5 .

4. 4 × 3 × 2, k = 12 (Li, 1944)

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 1 2 1 2

000 001 001 000 001 000
011 010 010 011 011 010
021 020 021 020 020 021
101 100 100 101 100 101
110 111 111 110 110 111
120 121 120 121 121 120
200 201 201 200 201 200
211 210 210 211 211 210
221 220 221 220 220 221
301 300 300 301 300 301
310 311 311 310 310 311
320 321 320 321 321 320

Replication 4 Replication 5 Replication 6
Block Block Block

1 2 1 2 1 2

001 000 000 001 000 001
010 011 011 010 010 011
020 021 020 021 021 020
100 101 101 100 101 100
111 110 110 111 111 110
121 120 121 120 120 121
200 201 201 200 201 200
211 210 210 211 211 210
221 220 221 220 220 221
301 300 300 301 300 301
310 311 311 310 310 311
320 321 320 321 321 320
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Replication 7 Replication 8 Replication 9
Block Block Block

1 2 1 2 1 2

000 001 001 000 001 000
011 010 010 011 011 010
021 020 021 020 020 021
100 101 101 100 101 100
111 110 110 111 111 110
121 120 121 120 120 121
201 200 200 201 200 201
210 211 211 210 210 211
220 221 220 221 221 220
301 300 300 301 300 301
310 311 311 310 310 311
320 321 320 321 321 320

λ(000) = 9 h(000) = 23
3

λ(100) = 3 h(100) = 1
3

λ(010) = 3 h(010) = 1
3

λ(110) = 5 h(110) = − 1
12

λ(001) = 0 h(001) = 2
3

λ(101) = 6 h(101) = − 1
6

λ(011) = 6 h(011) = − 1
6

λ(111) = 4 h(111) = − 1
3

E(101) = 26
27 , E(111) = 23

27 , all other E(z) = 1, E = 22
23 .

Using replicates 1, 2, 3 only will yield a design with the same relative
efficiencies, but the design is not a BFD.

5. 4 × 4 × 3, k = 12 (Li, 1944)

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 3 4 1 2 3 4 1 2 3 4

000 010 020 030 000 030 010 020 000 020 030 010
110 100 130 120 130 100 120 110 120 100 110 130
220 230 200 210 210 220 200 230 230 210 200 220



732 APPENDIX D

Replication 1 Replication 2 Replication 3
Block Block Block

1 2 3 4 1 2 3 4 1 2 3 4

330 320 310 300 320 310 330 300 310 330 320 300
001 011 021 031 001 031 011 021 001 021 031 011
111 101 131 121 131 101 121 111 121 101 111 131
221 231 201 211 211 221 201 231 231 211 201 221
331 321 311 301 321 311 331 301 311 331 321 301
002 012 022 032 002 032 012 022 002 022 032 012
112 102 132 122 132 102 122 112 122 102 112 132
222 232 202 212 212 222 202 232 232 212 202 222
332 322 312 302 322 312 332 302 312 332 322 302

λ(000) = 3 h(000) = 3

λ(100) = 0 h(100) = 0

λ(010) = 0 h(010) = 0

λ(110) = 1 h(110) = 0

λ(001) = 3 h(001) = − 1
3

λ(101) = 0 h(101) = 1
12

λ(011) = 0 h(011) = 1
12

λ(111) = 1 h(111) = − 1
12

E(110) = 2
3 , all other E(z) = 1, E = 44

47 .

6. 3 × 3 × 2, k = 6 (Yates, 1937b)

Replication 1 Replication 2 Replication 3 Replication 4
Block Block Block Block

1 2 3 1 2 3 1 2 3 1 2 3

100 200 000 200 000 100 100 200 000 200 000 100
010 020 120 020 120 010 210 010 110 010 110 210
220 110 210 110 210 220 020 120 220 120 220 020
201 001 101 101 201 001 201 001 101 101 201 001
021 121 011 011 021 121 011 111 211 211 011 111
111 211 221 221 111 211 121 221 021 021 121 221



APPENDIX D 733

λ(000) = 4 h(000) = 5
2

λ(100) = 0 h(100) = 1
2

λ(010) = 0 h(010) = 1
2

λ(110) = 2 h(110) = − 1
6

λ(001) = 0 h(001) = 1
2

λ(101) = 2 h(101) = − 1
6

λ(011) = 2 h(011) = − 1
6

λ(111) = 1 h(111) = − 1
6

E(110) = 7
8 , E(111) = 5

8 , all other E(z) = 1, E = 15
17 .

If only replications 1 and 2 or 3 and 4 are used, then the relative information
for A1 × A2 is 3

4 and A1 × A2 × A3 is 1
4 , but the design is not a BFD.

7. 3 × 3 × 2 × 2, k = 12 (Li, 1944)

Replication 1 Replication 2
Block Block

1 2 3 1 2 3

0100 0000 0001 0101 0001 0000
0111 0011 0010 0110 0010 0011
0201 0101 0200 0200 0100 0201
0210 0110 0211 0211 0111 0210
1001 1100 1000 1000 1101 1001
1010 1111 1011 1011 1110 1010
1200 1201 1101 1201 1200 1100
1211 1210 1110 1210 1211 1111
2000 2001 2100 2001 2000 2101
2011 2010 2111 2010 2011 2110
2101 2200 2201 2100 2201 2200
2110 2211 2210 2111 2210 2211

Replication 3 Replication 4
Block Block

1 2 3 1 2 3

0101 0000 0001 0100 0001 0000
0110 0011 0010 0111 0010 0011
0200 0201 0100 0201 0200 0101
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Replication 3 Replication 4
Block Block

1 2 3 1 2 3

0211 0210 0111 0210 0211 0110
1001 1101 1000 1000 1100 1001
1010 1110 1011 1011 1111 1010
1100 1200 1201 1101 1201 1200
1111 1211 1210 1110 1210 1211
2000 2001 2101 2001 2000 2100
2011 2010 2110 2010 2011 2111
2201 2100 2200 2200 2101 2201
2210 2111 2211 2211 2110 2210

λ(0000) = 4 h(0000) = 5
2

λ(1000) = 0 h(1000) = 1
2

λ(0100) = 0 h(0100) = 1
2

λ(1100) = 2 h(1100) = − 1
6

λ(0010) = 0 h(0010) = 3
4

λ(1010) = 2 h(1010) = − 1
4

λ(0110) = 2 h(0110) = − 1
4

λ(1110) = 1 h(1110) = 1
12

λ(0001) = 0 h(0001) = 3
4

λ(1001) = 2 h(1001) = − 1
4

λ(0101) = 2 h(0101) = − 1
4

λ(1101) = 1 h(1101) = 1
12

λ(0011) = 4 h(0011) = − 1
2

λ(1011) = 0 h(1011) = 1
6

λ(0111) = 0 h(0111) = 1
6

λ(1111) = 2 h(1111) = − 1
6

E(1100) = 7
8 , E(1111) = 5

8 , all other E(z) = 1.

If only replications 1 and 2 or 3 and 4 are used, the relative information
for A1 × A2 remains 7

8 and for A1 × A2 × A3 × A4 remains 5
8 , but these

designs are not BFDs.
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8. 5 × 2 × 2, k = 10 (Shah, 1960)

Block
1 2 3 4 5 6 7 8 9 10

000 010 010 010 000 010 000 000 010 000
011 001 001 001 011 001 011 011 001 011
100 100 110 110 110 100 110 100 100 110
111 111 101 101 101 111 101 111 111 101
210 200 200 210 210 210 200 210 200 200
201 211 211 201 201 201 211 201 211 211
310 310 300 300 310 300 310 300 310 300
301 301 311 311 301 311 301 311 301 311
410 410 410 400 400 400 400 410 400 410
401 401 401 411 411 411 411 401 411 401

λ(000) = 5 h(000) = 38
10

λ(100) = 2 h(100) = 2
10

λ(010) = 0 h(010) = 6
10

λ(110) = 3 h(110) = − 1
10

λ(001) = 0 h(001) = 6
10

λ(101) = 3 h(101) = − 1
10

λ(011) = 5 h(011) = − 3
10

λ(111) = 2 h(111) = − 2
10

E(011) = 24
25 , E(111) = 19

25 , all other E(z) = 1, E = 18
19 .
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Exercises

CHAPTER 1

1.1 Consider the following design with t = 7 treatments in blocks of size 3
and 4:

Block

1 2 3 4 5 6 7

2 3 3 5 1 7 3

4 5 6 4 6 2 1
Treatments

1 2 4 7 5 6 7

2 4 1 3

(a) Give the parameters for this design.
(b) Write out the incidence matrix.
(c) Write out the C matrix of (1.9).
(d) Show that all differences τi − τi′ are estimable.

1.2 Show that CI = O for C of (1.9).

1.3 The experiment of Exercise 1.1 was originally planned for blocks of size
3, but it turned out that some of the blocks had actually 4 experimental
units. The investigator decided to replicate one of the treatments assigned
to those blocks.
(a) Sketch the ANOVA table for this experiment, giving sources of varia-

tion and d.f.

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright  2005 John Wiley & Sons, Inc.

736



APPENDIX E 737

(b) Discuss how the error d.f. can be divided into two sets and what the
advantage of that would be.

1.4 Consider the following incomplete block design with t = 6, b = 6, and
k = 2:

Block

1 2 3 4 5 6

1 3 2 4 5 5
Treatments

2 1 3 6 6 4

(a) Write out the C matrix.
(b) Show that this is a disconnected design.
(c) Identify a set of estimable functions of the treatment effects.

1.5 Consider the following data obtained from an experiment using an incom-
plete block design with t = 9, b = 6, k = 3, and 2 subsamples (the numbers
in parentheses indicate the treatments):

1 53.5 , 54.8 53.2 , 54.0 57.7 , 56.4
(6) (4) (7)

2 53.1 , 52.7 58.6 , 57.1 53.9 , 55.1
(3) (1) (2)

3 57.2 , 56.5 55.0 , 55.9 51.5 , 53.2
(9) (7) (8)

Block
4 53.7 , 52.9 53.6 , 54.6 57.9 , 56.8

(4) (2) (9)
5 54.5 , 53.3 52.8 , 53.2 53.3 , 55.0

(3) (7) (5)
6 48.9 , 47.8 53.5 , 54.9 56.7 , 55.4

(8) (6) (1)

(a) Write out a model for this data set.
(b) Obtain the intrablock analysis using SAS.
(c) Obtain the standard errors for all treatment comparisons τi − τi′ .

1.6 Consider an incomplete block design with t treatments, b blocks of size k,
r replications per treatment, and m subsamples per experimental unit.
(a) Explain how the derivations in Sections 1.8.2 and 1.8.3 need to be

modified for this case.
(b) Using the data from Exercise 1.5 obtain the combined analysis, includ-

ing treatment comparisons.
(c) Compare the results with those of Exercise 1.5.
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CHAPTER 2

2.1 Consider the BIB design

Block Block Block

1 1 4 6 7 7 2 3 6 7 13 1 2 4 9

2 2 6 8 9 8 2 4 5 8 14 1 5 6 9

3 1 3 8 9 9 3 5 7 9 15 1 3 6 8

4 1 2 3 4 10 1 2 5 7 16 4 6 7 8

5 1 5 7 8 11 2 3 5 6 17 3 4 5 8

6 4 5 6 9 12 3 4 7 9 18 2 7 8 9

(a) Give the parameters of this design.
(b) Write out its C matrix.

2.2 (a) Describe a scenario where you may want to use the design given in
Exercise 2.1 but in such a form that each treatment occurs exactly 4
times in the first 2 positions and 4 times in the last 2 positions over the
18 blocks.

(b) Write out the Latinized form of this design.
(c) Give the SAS statements for analyzing data using the design in (b).

2.3 (a) Show that the design given in Exercise 2.1 is a 4-resolvable BIB design.
(b) Give the SAS statements for analyzing data using the design in (a).

2.4 (a) Show that the design obtained in Exercise 2.3 can be Latinized.
(b) Give the SAS statements for analyzing data using the design obtained

in (i).

2.5 Investigate whether the design given in Exercise 2.1 is locally resistant
w.r.t. any of the treatments.

CHAPTER 3

3.1 Give a proof of Theorem 3.2.

3.2 Obtain the complement of the BIB design given in Exercise 2.1 and verify
that it is a BIB design.

3.3 (a) Using the successive diagonalizing method construct a BIB for t = 25
treatment in blocks of size 5.

(b) Obtain the C matrix for this design.
(c) Suppose that the last replicate is missing from the design. Investigate the

properties of the residual design w.r.t. estimating treatment differences
τi − τi′ .
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3.4 Construct the BIB design #25 in Table 3.1.

3.5 Construct the BIB design #18 in Table 3.1.

3.6 Construct the BIB design #22 in Table 3.1.

CHAPTER 4

4.1 Consider the rectangular PBIB design of Example 4.8.
(a) Write out explicitly Eqs. (4.34) and obtain a solution of these equations.
(b) Give explicit expressions for the variances of simple treatment com-

parisons.
(c) Generate data for this design and, using the g inverse obtained from

SAS PROC GLM, verify the results obtained in (b).

4.2 Write out the association scheme for the L4-PBIB(2) design for t = 9 treat-
ments.

4.3 (a) Write out the association scheme for the EGD/(7)-PBIB design with
t = 18 treatments.

(b) Give the parameters of this design.
(c) Give the P matrices for this design.

CHAPTER 5

5.1 Verify that the design D′ of Example 5.1 is a PBIB(2) design and give its
parameters, including the P matrices.

5.2 Using the PG(3, 2) construct a GD-PBIB(2) with t = 2 · 6 = 12 treatments
in 8 blocks of size 6.

5.3 Show that the dual of the BIB design #8 in Table 3.1 is a triangular PBIB(2)
design.

5.4 Construct a L2-PBIB(2) design for t = 25 treatments in 20 blocks of size 5.

5.5 (a) Construct a cyclic PBIB design for t = 7 treatments in b = 7 blocks of
size k = 4.

(b) Obtain the efficiency factor of this design.
(c) Check whether there exists a more efficient cyclic PBIB design than

the design obtained in (a).

5.6 Construct a balanced array BA[15, 6, 3, 2] from OA[18, 7, 3, 2; 2] and
give its index set.

5.7 Using the method of balanced arrays construct an EGD/3-PBIB design for
t = 12 treatments in 12 blocks of size 3.
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5.8 Using the method of balanced arrays construct an EGD/7-PBIB design for
t = 12 treatments in 12 blocks of size 2.

CHAPTER 6

6.1 (a) Construct an α design for t = 15 treatments in r = 3 replicates and
blocks of size k = 5.

(b) Describe the properties of this design.
(c) Obtain the efficiency factor of this design.

6.2 Construct an α design for t = 19 treatments in blocks of size 5 and 4, with
r = 2 replicates.

6.3 Construct a generalized cyclic incomplete block design for t = 15 treat-
ments in blocks of size 5.

6.4 (a) Show that the design of Example 6.6 with r = 3 replicates is a (0, 1)
design.

(b) Obtain the efficiency factor of this design.

6.5 Consider the BTIB design with t = 4 test treatments and blocks of size 3
with generator designs

GD1 =

 0 0 0 0 0 0

1 1 1 2 2 3

2 3 4 3 4 4



GD2 =

 0 0 1 1 1 1 2 2

1 3 2 2 3 3 3 4

2 4 3 4 4 4 3 4



GD3 =

 1 1 1 2

2 2 3 3

3 4 4 4


(a) Using the generator designs given above, construct two BTIB designs

with b = 12 blocks.
(b) Give the parameters of both designs and compare their efficiency fac-

tors.

6.6 Consider the GD-PBIB(2) design with 6 treatments and 9 blocks of size 2:

1 3 5 1 6 5 1 3 5

2 4 6 3 2 4 4 6 2
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(a) By inspection of the design above give its parameters and the associa-
tion structure.

(b) Using the PBIB design above, obtain a PBTIB design for t = 5 test
treatments.

(c) Give the parameters of the design obtained in (b).

6.7 (a) Using the PBIB design of Exercise 6.6, obtain a PTBIB design for
t = 4 test treatments.

(b) Give the parameters of this design.

6.8 Consider the GD-PBIB(2) design for t = 6 treatments in b = 6 blocks of
size 4:

1 4 2 5

2 5 3 6

3 6 1 4

4 1 5 2

5 2 6 3

6 3 4 1

(a) Investigate the properties of this design as a row–column design.
(b) Obtain the efficiency factor of the design obtained in (a).

CHAPTER 7

7.1 For the 24 factorial give explicit expressions for the true response of the
treatment combination x′ =(0, 1, 0, 1) using (7.42) and (7.49).

7.2 For the 25 factorial write out explicitly the contrast that defines the 4-factor
interaction ABCD.

7.3 For the 23 factorial with r replications per treatment and m subsamples per
experimental unit write out:
(a) An expression for the interaction AB.
(b) An expression for the sum of squares for AB.
(c) The ANOVA table, including sources of variation, d.f., SS, E(MS).

7.4 Consider the 26 factorial with one replication per treatment combination.
Assume that all interactions involving three or more factors are
negligible.
(a) Write out the ANOVA table including sources of variation, d.f., SS,

E(MS).
(b) Assume that there are m = 2 subsamples per treatment combination.

Write out the ANOVA table, including sources of variation, d.f., SS,
E(MS).

(c) For the situation described in (b) give the input statements for SAS
PROC GLM and SAS PROC MIXED to perform both the intrablock
and combined analyses.
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CHAPTER 8

8.1 (a) Determine the intrablock subgroup for the 25 factorial in blocks of size
8, confounding interactions involving three or more factors.

(b) Write out the remaining blocks.

8.2 Generate the design of Exercise 8.1 using SAS PROC FACTEX.

8.3 Consider the design generated in Exercise 8.1 with r = 2 replications.
(a) Assuming that all interactions involving three or more factors are neg-

ligible, write out the ANOVA table, including sources of variation, d.f.,
SS, and E(MS).

(b) Suppose that for each experimental unit we have m = 2 subsamples.
Modify the ANOVA table in (a) appropriately.

8.4 For the situations described in Exercise 8.3 give the SAS statements for
performing the respective analyses, using SAS PROC GLM and SAS PROC
MIXED.

CHAPTER 9

9.1 Consider the 25 factorial with 3 replicates and in blocks of size 4. Without
confounding main effects construct a design that provides as much and as
uniform as possible information about 2-factor interactions.

9.2 For the design obtained in Exercise 9.1, assuming that 4- and 5-factor
interactions are negligible, give the ANOVA table, including sources of
variation, d.f., SS, and E(MS).

9.3 For the design obtained in Exercise 9.1 give expressions for the combined
estimators of all 2-factor interactions and the variances of these estimators.

9.4 Discuss some possibilities of arranging a 26 factorial in two 8 × 8 squares,
giving the actual designs and the relative information provided for main
effects and 2-factor interactions.

CHAPTER 10

10.1 For the 34 factorial write out all main effects and interactions together
with their 2-d.f. components.

10.2 For the 34 factorial write out the parametrization (10.15) for the true
response of the treatment combination x′ = (0, 1, 1, 2).

10.3 Construct a design for the 34 factorial in blocks of size 9 without con-
founding main effects and 2-factor interactions.
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10.4 Consider the 34 factorial in blocks of size 3.
(a) Suppose two replicates are available. Using partial confounding, con-

struct a design that obtains at least partial information on all main
effects and 2-factor interaction components.

(b) Give the relative information for all main effects and 2-factor interac-
tion components.

(c) Assuming that all 3- and 4-factor interactions are negligible, sketch
the ANOVA table for the design obtained in (a), giving sources of
variation, d.f., SS, and E(MS).

(d) Give the SAS statements for performing the analysis of an experiment
using the design obtained in (a) for PROC GLM (intrablock analysis)
and PROC MIXED (combined analysis).

CHAPTER 11

11.1 Consider the 52 factorial in 10 blocks of size 5.
(a) Obtain a plan that yields full information on main effects and at least

partial information on all interaction components.
(b) Sketch the ANOVA table, including sources of variation, d.f., and SS.
(c) Give the parametrization for a(1 1 1 1 1) − a(0 0 0 0 0)

and give the variance of the estimator for this difference in yields.

11.2 As an alternative to the design obtained in Exercise 11.1 consider the
design based on the PBIB-L2 design LS 51 (Clatworthy, 1973) given by

Block Block

1 1 2 3 4 5 6 1 6 11 16 21

2 6 7 8 9 10 7 2 7 12 17 22

3 11 12 13 14 15 8 3 8 13 18 23

4 16 17 18 19 20 9 4 9 14 19 24

5 21 22 23 24 25 10 5 10 15 20 25

(a) Set up a correspondence between the treatments 1, 2, . . ., 25 and the
factorial treatments (x1, x2, x3, x4, x5).

(b) Explain the major difference between the two designs with respect to
the estimation of main effects and interaction effects.

(c) Explain how you would compare the overall efficiency of the two
designs.

11.3 Consider the 43 factorial in blocks of size 16.
(a) Assuming that 3-factor interactions are negligible, obtain a plan that

yields full information on main effects and 2-factor interactions.



744 APPENDIX E

(b) Suppose that 8 blocks are available for the experiment. Write out the
ANOVA table, including sources of variation, d.f., and SS.

11.4 (a) Apply Theorem 11.7 to the case of the 4n factorial and write out the
Fisher plan for the maximum number of factors.

(b) For the plan obtained in (a) identify the resulting system of confound-
ing.

11.5 (a) For the 43 factorial in blocks of size 8 obtain a system of confounding
with orthogonal factorial structure.

(b) Obtain the efficiency factor of the design.

CHAPTER 12

12.1 Consider the 22 × 33 factorial in 18 blocks of size 6.
(a) Assuming that interactions involving three or more factors are negli-

gible, obtain a design using the Kronecker product method.
(b) Explain why the design obtained in (a) is or is not satisfactory, and if

it is not satisfactory what you might want to do to fix the problem.

12.2 Consider the 22 × 33 factorial in blocks of size 6.
(a) Using the GC/n method construct a system of confounding.
(b) Obtain the loss of d.f. for the design obtained in (a).
(c) Compare the design obtained in (a) with that obtained in Exercise 12.1.

12.3 (a) Apply the method of finite rings to the 22 × 33 factorial in blocks of
size 6.

(b) Obtain the variance for the comparison between the treatments (1, 1,
2, 2, 2) and (0, 0, 0, 0, 0).

12.4 Consider the 22 × 42 factorial in blocks of size 8.
(a) Construct a balanced factorial design such that all treatment contrasts

are estimable.
(b) For the design of (a) obtain the efficiency factor.

CHAPTER 13

13.1 Consider a 28−2 design.
(a) Give an identity relationship such that all main effects are strongly

clear and all 2-factor interactions are either clear or strongly clear.
(b) Obtain the design based on the identity relationship in (a).
(c) Give the resolution of the design.
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13.2 Consider the design in Exercise 13.1. Suppose that for the actual experi-
ment blocks of size 16 need to be used.
(a) Identify a suitable system of confounding.
(b) Obtain the actual design.
(c) For the design in (b) sketch the ANOVA table, including sources of

variation and d.f., assuming that interactions involving four or more
factors are negligible.

13.3 Consider a 36−2
IV factorial based on the identity relationship I = ABCD =

AB2EF = all GI.
(a) Complete the identity relationship.
(b) Write out the alias structure for all main effects and 2-factor interaction

components.
(c) Identify all the clear effects.
(d) Obtain the actual design.

13.4 For the design of Exercise 13.3 suppose that blocks of size 9 need to be
used.
(a) Obtain a suitable system of confounding and state any assumptions

you are making.
(b) For the arrangement in (a) sketch the ANOVA, giving sources of

variation and d.f., assuming that all interactions involving three or
more factors are negligible.

13.5 Consider the 26−2
IV fraction in 4 blocks.

(a) Using the independent defining words given in Table 13.12, obtain the
actual design.

(b) Suppose that the plan in (a) is replicated three times. Sketch the
ANOVA, including sources of variation and d.f.

(c) Rather than replicating the plan in (a) three times, discuss other pos-
sibilities of carrying out the experiment.

CHAPTER 14

14.1 Construct a saturated orthogonal main effect plan for the 27 factorial.

14.2 Construct an OMEP for the 34 factorial in 9 runs.

14.3 (a) Construct an OMEP for the 24 factorial in 9 runs.
(b) Identify the alias structure for this design.

14.4 Using the OMEPs obtained in Exercises 14.1 and 14.2, construct an OMEP
for the 27 × 34 factorial.

14.5 (a) Construct an OMEP for the 42 × 3 × 22 factorial.
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(b) Suppose the four- and three-level factors are quantitative factors with
equidistant levels. Show that the estimators for the linear effects of a
four-level factor and the three-level factor are uncorrelated.

14.6 (a) Construct an OMEP for the 4 × 32 × 22 factorial.
(b) Suppose the plan in (a) is replicated twice. Sketch the ANOVA table,

including sources of variation and d.f.

14.7 Consider the following main effect plan for the 24 factorial in five runs:

Run A B C D

1 0 0 0 0

2 0 1 1 1

3 1 0 1 1

4 1 1 0 1

5 1 1 1 0

(a) Is this an OMEP?
(b) Show how you would estimate the main effects.
(c) Obtain the efficiency factor of this design.

CHAPTER 15

15.1 Construct a supersaturated design for 14 factors in 8 runs.

15.2 (a) Construct a supersaturated design for 20 factors in 12 runs.
(b) Obtain E(s2) for this design and compare it to the lower bound (15.9).

15.3 (a) Construct a three-level supersaturated design for 12 factors in 12 runs.
(b) Obtain the av χ2 and max χ2 values of (15.3) and (15.4), respectively.

CHAPTER 16

16.1 (a) Using the results of Table 16.1, write out the resolution III.1 design
for n = 5 factors.

(b) Verify that the conditions of Theorem 16.5 are satisfied.
(c) Show explicitly that, individually, each 2-factor interaction is estimable.

16.2 (a) Obtain the resolution V.1 design for n = 4 factors.
(b) Verify that the conditions of Theorem 16.4 is satisfied.
(c) Show explicitly that, individually, each 3-factor interaction is estimable.
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16.3 Find the search probabilities for the design obtained in Exercise 16.1.

16.4 Fine the search probabilities for the design obtained in Exercise 16.2.

CHAPTER 17

17.1 Consider the case of three design factors A1, A2, A3, each at three levels,
and two noise factors B1, B2, also each at three levels.
(a) Construct the smallest cross array design such that all main effects are

estimable.
(b) Suppose that all five factors are quantitative factors and that only linear

× linear interactions between Ai and Bj (i = 1, 2, 3; j = 1, 2) are
important. Sketch the ANOVA table for the design in (a), including
sources of variation and d.f.

17.2 Find an alternative single array design to the design obtained in Exercise
17.1 that uses fewer runs.

17.3 In certain cases when the design and noise factors have two levels it is
possible to utilize a 2n−� fractional factorial to construct a single array
design. For example, for three design factors A1, A2, A3 and three noise
factors B1, B2, B3 the 26−2 fraction based on

I = A1A2A3B2 = A1A2A3B1B3 = B1B2B3

yields a suitable design.
(a) Write out the design in terms of control and noise factor level combi-

nations.
(b) Identify the design–noise factor interactions that are clear.

17.4 (a) Use the method described in Exercise 17.3 to obtain a single array for
four design factors and two noise factors, each at two levels.

(b) Identify all the clear effects.
(c) What additional assumptions will you have to make to estimate all

main effects of the control factors and all control × noise factor inter-
actions?

CHAPTER 18

18.1 (a) Construct a balanced square lattice for 25 treatments in blocks of size
5.

(b) Sketch the ANOVA table for this design, including sources of variation
and d.f.

(c) Show that this design is a BIB design.
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18.2 (a) Construct a triple three-dimensional lattice for 64 treatments in blocks
of size 4.

(b) Sketch the ANOVA table for this design, including sources of variation
and d.f.

(c) Consider the B | T-ANOVA and indicate how you would estimate the
weights w and w′.

18.3 Construct a simple square lattice for 81 treatments in blocks of size 9.

18.4 (a) Construct a balanced lattice square for 16 treatments.
(b) Sketch the ANOVA table for this design, including sources of variation

and d.f.

18.5 Construct a triple rectangular lattice for 30 treatments in blocks of size 5.

CHAPTER 19

19.1 Construct a balanced CO(5, 10, 3).

19.2 Consider the irreducible BIB design for 4 treatments in blocks of size 3.
Use this design to construct the CO(4, 24, 3).

19.3 (a) Consider the PBIB(2) design in (5.9) and use it as the generator design
to construct the CO(6, 12, 3).

(b) Obtain the variances for all simple treatment comparisons.

19.4 Construct the strongly balanced CO(4, 8, 3).

19.5 Suppose we have a 24 factorial treatment structure. Assume that the
4-factor interaction is negligible.
(a) Construct the CO(24, 24, 23).
(b) Explain how you would estimate the direct main effects and 2-factor

interactions.
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outer, 636, 639
partially balanced, 726
reduced, 190
single, 636–637
square, 655

Association, 123
matrix, 120, 121, 127, 133–135, 173–174

Association scheme(s), 120, 123, 127, 133,
137, 154, 158–159, 169–172, 174–176,
208, 231

cubic, 146, 670
cyclic, 141, 153

771
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Association scheme(s) (Continued)
extended group-divisible (EGD), 147, 176
generalized

group-divisible, 143–144
right-angular, 153
triangular, 144

group-divisible, 138, 160–164, 208
hypercubic, 149, 177
Latin square, 670

L2, 140, 166
Li , 140

rectangular, 142, 176
right-angular, 151
triangular, 139, 165

Autocorrelation, 707
Autoregression, first-order, 707

Balanced incomplete block (BIB) design(s),
2–4, 9, 52, 71–73, 89–92, 95, 100–120,
136, 159, 168, 172, 175–180, 187,
196–197, 201, 207, 211, 281, 313, 602,
649, 653–654, 690

affine resolvable, 93–95
α-resolvable, 92–93, 96
complement of, 113
dual of, 158, 166
irreducible, 113
reinforced, 196
residual, 114
resistant, 98–102

globally, 99–102
locally, 99–100

resolvable, 93, 96–97, 314
robust, 103
susceptible, 98–99
symmetrical, 74, 105, 114, 711

Balanced treatment incomplete block (BTIB)
design(s), 199–204, 208

optimal, 211–212
R-type, 202
S -type, 201–203

Balancedness, 687, 695, 706–707
Bar chart, 561
Block(s)

comparisons, 23, 283, 322
effect(s), 3–4, 13, 16, 22, 279–281, 300, 399
eliminating treatments, 13
ignoring treatments, 13
initial, 105–106, 110, 167–169, 193, 458,

463–464, 602
size(s), 1–2, 14, 279

unequal, 13, 99, 189, 192

Bound
lower, 601
upper, 47–48, 75, 192, 233,

682–683
Branching column, 599

Chinese remainder theorem, 491
Collapsing of factor levels, 567, 583, 586–587,

591
Component(s)

pure block, 301
treatment, 301, 421

Comparison(s), see also Contrast(s)
block, 23, 283, 322

pure, 421
orthogonal, 248
post-hoc, 54, 64, 67
treatment, 3–4, 23, 43, 171, 236, 284, 376,

430
Confidence

coefficient, 212
interval(s), 212

Confounded, completely, 417–419
Confounding, 279, 288, 368, 650

complete, 312, 380, 417
double, 335–336, 379
in squares, 336
partial, 312–314, 318, 324, 327, 331–334,

343, 351, 375, 380–382, 492, 653
system(s) of, 323, 329
efficiency of, 323

relationship(s), 511–513
system(s) of, 258, 264, 283, 287–289,

292–293, 298–300, 327, 362, 366,
370, 374–375, 378–380, 398–405,
430, 433, 443–444, 452–453,
459–461, 466, 473–474, 480, 491,
549–550, 564, 655–659, 713

constructing, 457, 491
detecting, 291
symmetrical, 467

Connectedness, 14, 103, 232
Contrasts, see also Comparison(s)

orthogonal, 243
Control

factor, 634–636, 639–641
quality, 633

off-line, 633
treatment, see Treatment, control

Criterion, see also Optimality
average-variance, 49
chi-squared (χ2), 598

maximum, 604
determinant, 49
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E(s2), 601
smallest eigenvalue, 49

Crossover design(s), 684–690, 715
2-treatment, 693–695
balanced, 687–688, 699, 702, 707–708

completely, 709
for residual effects, 687
minimal, 688–689
minimal completely, 709
minimal strongly, 691–692
partially, 691
strongly, 687, 691–692, 699, 706, 710
strongly uniform, 693
totally, 712–713
uniform, 692, 698–699

construction of, 688, 708
extra-period, 691, 699, 702, 712
orthogonal, 709
uniform, 693

Cyclic development, 107–109, 193–194

Dealiasing, 545, 569, 577, 609
Defining equation(s), see Defining relationship
Defining relationship, 511–513, 545. See also

Identity relationship
Design(s), see also Experiment(s); Plan(s)

A-optimal, 199
alpha (α), 190–192

2-occurrence class, 190
3-occurrence class, 191

analysis of
balanced incomplete block, 74
complete block, 666–669
disconnected incomplete block, 15
incomplete block, 3

binary, 71, 99, 194
block

balanced, 712
extended, 196, 231

central composite, 637–639
changeover, see Crossover design(s)
column, 213, 230–231, 237
complete block, randomized, see Design(s),

randomized complete block
completely randomized (CRD), 43, 46, 263,

278, 366
component, 213, 230–234, 237
computer search, 598
confounded, 376, 407

partially, 314, 317, 325
connected, 43, 98, 230
crossover, see Crossover design(s)
cyclic, 169–170

construction of, 167

fractional, 169
disconnected, 281, 460
dual, 159
efficient, 89, 239, 708
equireplicate, 31, 34, 71, 99
error control, 16, 43, 230, 241, 262, 272,

366, 452, 685
experimental, 1–3, 241

construction of, 164
factorial, 633. See also Factorial(s)

asymmetrical, 547
balanced (BFD), 491–506
blocked fractional, 549, 555
fractional, 507–509, 513, 517, 531,

547–549, 636, 640
minimum aberration blocked fractional,

555
resolution of a fractional, 518
symmetrical, 394
two-level, 241

foldover, 543–544
partial, 545

generalized
cyclic (GC/n), see also Design(s),

incomplete block, generalized cyclic
randomized block, 231
Youden, 231, 712

generator, 201–205, 212
highly fractionated, 531
incomplete block, 1–4, 9, 13, 23, 38, 43, 46,

50, 91, 119, 123, 131, 169, 172, 189,
194, 281, 310, 318, 323, 413, 448,
491, 649, 657, 669

ANOVA table of, 12
balanced, see Balanced incomplete block

(BIB) design(s)
balanced treatment, see Balanced treatment

incomplete block (BTIB) design(s)
binary, 155
disconnected, 14–15, 462
disconnected resolved, 417
doubly balanced, 102
equireplicate, 120, 155, 452
generalized cyclic, 193, 237, 448
Latinized, 90
partially balanced, see Partially balanced

incomplete block (PBIB) design(s)
partially balanced treatment, see Partially

balanced treatment incomplete block
(PTBIB) design(s)

proper, 120, 155, 452
resolvable, 189, 194–195, 649
resolved, 418
symmetrical, 73
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Design(s) (Continued)
incomplete Latin square, 91, 231
Kronecker product, 172–178, 502, 529,

548–549, 583, 636
Latin square, 3, 50–51, 90, 263, 688. See

also Square(s), Latin
Latin square type, 1, 190, 706
lattice(s), 3–4, 114, 119, 649–669. See also

Lattice(s)
maximum resolution, 518–520, 534–535
minimum aberration, 520–522
near-optimal, 192
nonorthogonal, 563
optimal, 49, 52, 211, 695–699, 711–713
orthogonal, 271, 563
paired comparison, 169
process, 633
proper, 31, 34, 71, 99
quasi-factorial, 3, 114, 119, 649
randomized complete block (RCBD), 1, 4,

43, 46, 51, 238, 263, 267, 278, 281,
300, 366–367, 666, 669

random variables, 16, 18
repeated measurements, see Crossover

design(s)
replicate, 238
residual, 172
resolution III, 516, 527–528, 537–539,

543–546, 582. See also Resolution, III
resolution IV, 516, 522, 537–539, 543. See

also Resolution, IV
resolution V, 516, 537, 546. See also

Resolution, V
resolvable, 114, 189, 238, 653
resolved, 424
response surface, 49, 637
robust parameter, 634
row, 213, 230–231, 234, 237
row-column, 190, 213–216, 230–234, 237,

240, 684–685, 712
doubly incomplete, 230
Latinized, 240
nested, 238
regular, 230–231, 237
resolvable, 238, 682

sampling, 272, 685
saturated, 539, 546
search, 608–614, 631–632

constructing, 614
sequential construction of, 614

sequential, 544
square, see Square(s)
supersaturated, 596–608

2-level, 598–599, 603

3-level, 603
balanced incomplete block (BIBD)-based,

601
Hadamard type, 599–601
mixed level, 598

supplemented balance, 196–197, 200
switch-back, 693
symmetric, 50
treatment, 241, 272, 452
treatment-control, 205
treatment-control comparison, 198
unconfounded, 323, 376
variance-balanced, 98–99, 103
weighing, 576

Differences
mixed, 108
pure, 108
symmetrically repeated, 107–109

Difference set(s), 105–108, 112

Effect(s)
block, 3–4, 13, 16, 22, 281, 300, 399

fixed, 4
random, 4

carryover, 685–686, 712
mixed, 710
self, 710, 713

clear, 518, 539, 543
strongly, 518

column, 232
direct, 685, 697–698, 708–713
dispersion, 640
estimable, 281
fixed, 4, 706–707
main, 241–242, 247, 250–251, 254,

260–262, 265, 281, 287, 324, 359–360,
365, 526, 546, 713

period, 686, 706
random, 707
residual, 685–686, 697–699, 706–710, 713

first-order, 708–709
second-order, 708–709

row, 232
simple, 242, 249
sparsity, 558, 605
subject, 686, 707
treatment, 3, 16, 22, 197, 232, 399,

685–686, 706
Effective number of replications, 79
Efficiency(ies), 3, 168, 197, 334, 699

factor(s), 43–48, 75, 103, 129–131, 134,
171–172, 190–194, 198, 232, 236–238,
498, 501, 682

relative, 43
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Eigenvalue(s), 8, 129–131, 155, 170, 198, 233
Eigenvector(s), 8, 44, 233, 424
Equation(s)

Aitken, 27–28, 32
normal (NE), 5, 10, 28, 134, 213–216, 696

combined, 36
interblock, 23–27
reduced (RNE), 5–10, 13, 27, 74,

119–121, 131, 170, 214–216, 238,
320–321, 413–414, 452, 494, 539,
697–699

prediction, 641
Error

control, 213
experimental, 1, 5, 14, 189, 214, 279–281,

323, 610
homogeneity of, 302
interblock, 665–666
intrablock, 3, 76, 665
observational, 5, 214, 281, 610
pseudostandard, 562
rate(s), familywise, 605
reduction, 213
simultaneous margin of, 562
variance, 76, 379
whole-plot, 639

Estimate(s), see Estimation; Estimator(s)
Estimation

capacity, 522
combined, 31, 36
index, 522
interblock, 31
intrablock, 31
maximum-likelihood, 39, 648
restricted (residual) maximum-likelihood

(REML), 40–41, 648
Estimator(s)

Aitken, 38
best linear unbiased (BLUE), 416–418,

421–424
intrablock, 3

combined, 34, 38–39, 77–78, 155, 333,
427–429, 651–653, 672

interblock, 34–36, 303, 651–653
intrablock, 34–39, 78, 133, 155, 303,

651–653, 672
residual (restricted) maximum-likelihood

(REML), 40–42
Shah, 155
Yates, 37–39, 77–78, 96, 136

Experiment(s), see also Design(s); Factorial(s)
23, 324
24, 327
25, 335

2n, 329
32, 377
33, 363, 367–370, 377
35, 402
3n, 363, 366
confounded, 303
cross-array, 640–641
exploratory-type, 278
factorial, 114, 279, 323, 657

analysis of, 262
confounded, 657

field plot, 1
robust-design, 633–637, 642, 646
rotation, 685
search, 617–619

analysis of, 617
single-array, 641
split-plot type, 595
supersaturated, 604–606

analysis of, 604
Experimental unit, 2, 74
Experimentation, sequential, 648

Factor(s)
adjustment, 639–641, 648
blocking, 189, 551–553
control, 634–636, 639–641
design, 634–636, 639–641, 646–648
environmental, 634
expanding, 587
highest common, 458
noise, 634–636, 640–641, 646–648
pseudo, 431, 435, 441–443, 463, 467, 491,

660
qualitative, 362
quantitative, 362
random, 646
scarcity of active, 596, 605
treatment, 551

Factor level(s), collapsing of, 567, 583,
586–587, 591

Factorial(s), see also Design(s); Experiment(s)
22, 650
23, 267, 272, 279, 282, 293–295, 298,

304–306, 309–311, 325–326,
337–338, 343, 511, 714

24, 293, 296, 338, 350–351
26, 441
(22)3, 440
2n, 264, 278, 283, 288–289, 293, 303, 312,

329, 513
32, 359, 388
33, 366, 371
34, 405
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Factorial(s) (Continued)
3n, 368, 374, 380, 524
42, 431
43, 434–436, 441–442
62, 443–446, 460
6n, 443–444
pn, 394, 398–401, 405–406, 410–412, 428
(pm)n, 431
pmn, 431
sn, 431, 447, 452–454, 457, 465, 529, 558,

564–565
analysis of, 265, 343, 366, 412
asymmetrical, 465–467, 474, 477, 480,

483–485, 488, 505, 529, 558, 567,
582, 586, 595

balanced, 728–734
confounding in, 466

calculus, 448
fractional, 264, 362, 507–509, 525,

547–549, 576, 715
asymmetrical, 548
blocking in, 549
nonorthogonal, 546
regular, 517
resolution of, 516

mixed, see Factorial(s), asymmetrical
symmetrical, 409, 431, 467, 477, 480, 488,

517, 529, 564, 583, 593–595, 653
confounding for, 447

unreplicated, 558
2n, 558

Field(s)
finite, 481, 716
Galois (GF), 112, 480–483, 716–718, 724

theory, 112, 431
Foldover principle, 543–545, 577
Fraction(s)

foldover, 544
regular, 531

Fractional
replicate(s), 513, 517, 524, 531
replication, 509–510, 516, 529

Frequencies
nonproportional, 594
proportional, 567, 583–586

Function(s)
confounded, 417
estimable, 8, 11, 38, 52, 75, 197, 215, 230,

424, 541, 550–551, 699
linearly independent, 462
of treatment effects, 10, 35

linearly independent, 421
loss, 635, 639
minimum, 129

penalty, 606
smoothly clipped absolute deviation

(SCAD), 606

Gauss–Markov theorem, 3, 10
Generalized inverse(s), 7–10, 30, 61, 131, 198,

541
Generator(s), 401

of the intrablock subgroup, 407
Geometry(ies)

Euclidean, 162, 409, 721–723
finite, 158, 162, 409, 721
projective, 162, 409, 721–724

Group(s)
Abelian, 105, 110, 128, 289, 458
additive, 108–112
cyclic, 688

Guardrails, 559–560

Half-normal plot(s), 558–560
Harmonic mean, 45–46
Heterogeneity

eliminating, in two directions, 3, 89, 213
two-way elimination of, 2, 162

Hypercube
of strength 2, 406
of strength d, 406

Ideal(s), 481–484
Identity relationship(s), 513–518, 525–526,

529–531, 544, 550, 554, 558, 637, 641
Information, 280, 323, 334

combined intra- and interblock, 154, 333,
349, 386, 426, 653, 658

function, 48
interblock, 3, 26–27, 46, 77, 303, 308, 314,

332, 385, 422–426, 707
recovery of, 3–4, 22–23, 40

intersubject, 707
intrablock, 3, 26, 48, 308, 314, 330, 350,

375, 381, 421–422, 426, 653, 658, 666
intrasubject, 707
matrix, see Matrix, information
relative, 337, 501
total relative loss in, 493
within-row-and-column, 336

Interaction(s), 241–243, 247, 251, 254,
260–262, 265, 281, 286, 297, 359,
360–365, 449

1-factor, 297
2-factor, 250, 280, 292, 324, 337, 361,

373–374, 379, 395, 403–405, 434, 492,
536, 539, 546, 608–609
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3-factor, 250, 280, 337, 368, 378–379, 434,
567–568, 608

n-factor, 395, 493
component(s), 366–369, 376, 412, 422, 493,

658, 713
modified, 487

confounded, 279, 282, 401, 407, 425, 462,
489

design-noise factor, 647
direct-residual treatment, 710
generalized (GI), 258–260, 285–286, 364,

396–399, 408, 433, 514, 525, 551
high-order, 280, 508, 516, 608–609
independent, 285–287, 292, 399–402, 407,

433–434, 468, 514, 529, 551
independent confounded, 374
low-order, 287, 403, 513, 608
mixed, 530–531
negligible, 279, 614
nonnegligible, 608
partial, 261–265

Intrablock subgroup (IBSG), 289–291, 370,
374, 379, 400–401, 405–408, 434–435,
484, 550, 565

Lagrangian multipliers, 419
Lattice(s)

analysis of, 657–659
balanced, 653–656, 659
efficiency of, 669
higher-dimensional, 654, 657
one-restrictional, 654–655, 658, 668–669,

682
two-dimensional (square), 654–655, 670,

679, 682–683
three-dimensional (cubic), 654–656, 659,

662
quadruple, 654–656
quintuple, 656
rectangle(s), 678–679
rectangular, 3, 194, 654–655, 679

near-balanced, 654
one-restrictional, 654
simple, 654, 680
triple, 654, 681–682

septuple, 656
sextuple, 656
simple, 655–656, 670
triple, 655–656, 659, 662
two-restrictional, see Lattice square

Lattice square, 239, 654, 671, 675–678
balanced, 654, 671–672
semibalanced, 654, 671
unbalanced, 654, 675

Least squares, 28
generalized, 27
means (LSM), 58, 69, 230, 271, 706

direct, 707
residual, 707

ordinary, 4
penalized, 605–606
theory of, 3

Likelihood function, 40–42
log-, 41

Loss, 633–635
average, 636
expected, 635
function, 635, 639
total relative, 501

Matrix(ces)
association, 120–121, 127, 173–174
C , see Matrix(ces), information
circulant, 170, 459
coefficient, 25, 121
completely symmetric, 50
concordance, 72, 155, 173, 452
concurrence, 72, 190, 196, 199
cyclic, 460
design, 238, 612
design-model, 413
Hadamard, 575–576, 593, 599, 600, 603

cyclic, 600
noncyclic, 600
normalized, 576
seminormalized, 576, 599–600

incidence, 5, 71, 113–114, 158, 173, 177,
187, 452

observation-block, 473
period-residual effect, 686
period-treatment, 686
treatment-block, 473

information, 7, 48, 129, 197–198, 232,
236–238, 695–698, 708

transformation, 244, 251
variance-covariance, 11, 24, 75, 197, 383,

424, 428, 496, 539, 549
Maximum likelihood (ML), 64–66, 648

residual (REML), 66–67, 81, 392, 648
Method

direct, 180, 188
of differences, 158–160
successive diagonalizing, 115, 194–195
Taguchi, 633–637

Minimum aberration, 555
Missing plots, 13
Model(s)

general linear mixed, 40
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Model(s) (Continued)
linear, 4, 262

mixed, 648
search, 608–609

location-scale, 639
mixed, 333
random effects, 40
regression, 605, 647
response surface, 647
three-part, 313

Modeling
dispersion, 638, 641
dual-response, 641
location, 638, 641

Noiseless, 610, 618–619
Noisy, 625, 630
Nonorthogonality, 3, 599, 605

measure of, 599

Optimal, see also Optimality
A-, 197, 211
blocking, 551
E(s2)-, 601–603
universally, 698, 712–713

Optimality, 48–50, 601, 693, 708, 711
A-, 49
criterion, 48–49, 197
D-, 49
E-, 49
Kiefer, 50
MS-, 238
MV-, 199
universal, 50, 712

Orthogonal series, 114
Orthogonality, 284, 583, 593, 596–597, 691,

713
adjusted, 232, 237
between-interaction, 494
deviation from, 597–598

measure of, 597–598
near-, 596–597
within-interaction, 494

Parameter(s)
of the first kind, 124
of the second kind, 122–128

Parameterization
of treatment responses, 245, 256, 297, 365,

410, 485
non-full rank, 366

Partially balanced incomplete block (PBIB)
design(s), 3–4, 9, 52, 119, 122–127, 131,

137, 158, 172–173, 207–209, 281, 467,
649, 653, 669, 691

2-associate class (PBIB/2), 129, 132,
136–137, 155–156, 168, 172, 190

cyclic, 137, 141, 157, 169
group-divisible (GD), 137–138, 156–164,

208, 502–504
L2, 140, 166, 670
L3, 670
Li , 140, 670
Latin square, 166
Latin square type, 137, 140, 157
regular group-divisible, 156
semiregular group-divisible, 156
singular group-divisible, 156
triangular, 137–139, 156, 165

3-associate class (PBIB/3), 169, 176, 190,
231, 234, 670

cubic, 137, 146, 670
generalized group-divisible (GGD), 137,

143
generalized triangular, 137, 144
rectangular, 137, 142, 147–148

4-associate class (PBIB/4), 680
generalized right-angular, 153
right-angular, 137, 151
resolved, 680

m-associate class (PBIB/m), 127, 131, 134
cubic, 149
cyclic, 137, 167–170, 193, 460, 691
extended group-divisible (EGD), 137,

147–148, 178, 187, 466, 493,
499–505

EGD/(2ν−1), 147, 177–187
EGD/3, 176–179, 186, 502
EGD/7, 180

generalized cyclic (GC/n), 458–460, 465,
477–478

hypercubic, 137, 149, 187–188
Partially balanced treatment incomplete block

(PTBIB) design(s), 205, 208–209, 230
construction of, 208–209
type I, 205–206
type II, 207, 210–211

Partition(s), 260, 363–364, 395–396, 401, 404,
409

cyclic, 454
hierarchical, 457, 461

mixed, 488, 536
orthogonal, 255, 393
pure, 487, 536

Performance measure, 640
Plan(s)

Fisher, 403, 407, 564, 576
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main effect(s) (MEP), 564, 608–609
auxiliary, 586–589, 593
constructing, 585–586
Fisher, 564–566, 577, 597
nonorthogonal, 594
Plackett–Burman, 575–578, 597–599
orthogonal (OMEP), 564–569, 575–577,

582–595, 614
saturated, 566, 594

plus one (MEP.1), 611–614
resolution V plus one, 614–617
saturated, 594, 603, 611
weak MEP.1, 612

one-at-a-time, 594
Polynomial

irreducible, 718
orthogonal, 361
primitive, 115, 719

Primitive
mark, 717
polynomial, 115, 719
root, 112–113, 115, 717

Procedure(s)
ANOVA, 342
computational, 52
Dunnett’s, 199, 212
maximum likelihood (ML), 63
randomization, 16
residual (restricted) maximum likelihood

(REML), 63, 342
SAS, see SAS
Satterthwaite, 387, 392
Shah, 79
variable selection, 605
Yates, 37–38, 61–63, 70, 77, 386, 664

Product
Kronecker, 172, 177, 244, 251, 450, 469
symbolic direct (SDP), 172–173, 186, 448,

468
symbolic inner (SIP), 179–180

Projection, 577
Proportionality condition, 585
Pseudofactor(s), see Factor(s), pseudo

Randomization, 595
restricted, 338, 707
test(s), see Test(s), randomization
theory, 212

Regression, 605, 641, 647
all-subsets, 605
linear, 605

Repeated measurements, see Crossover
design(s)

Replication groups, 89, 96, 107

Residue class, 193
Resolution, 516

2R, 517
2R + 1, 517
III, 516, 536

nonorthogonal, 594
orthogonal, 564, 582

III.1, 611, 614
IV, 516, 536, 577
V, 516, 536, 614
V.1, 614–617
VII, 608
maximum, 518, 520
upper bound of, 534

Resolvability, 92
Response surface, 648
Revealing power, 610
Ring(s), 128

finite, 468, 481–482
Robustness, 103

SAS
PROC FACTEX, 293, 325, 338, 350, 370,

435, 445, 469, 474, 511, 517, 520, 527,
531

PROC GLM, 52, 58, 81, 216, 267, 277, 311,
338, 342, 350, 387, 391, 569, 618, 699

PROC MIXED, 39, 52, 63, 79–81, 267, 278,
311, 338, 342, 350, 387, 392, 707

PROC VARCOMP, 61
Search probability, 630–632
Selection

stepwise variable, 605–606
subset, 606
variable, 605

Signal-to-noise (S/N) ratio(s), 638
Spectral decomposition, 8
Software, 192
Square(s)

frequency, 231
Latin, 50–51, 231, 655, 688

mutually orthogonal (MOLS), 166, 656,
675, 682, 708–709

orthogonal, 691
replicated, 239

Williams, 688, 699–700, 708
Youden, 50, 91, 107, 221, 688, 711, 714

Statistical inference, 16, 51, 215
Structure

alias, 373, 513–516, 520, 526–530,
567–569, 576

autocorrelation error, 707
factorial

orthogonal (OFS), 452–454, 457–461,
473, 495
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Structure (Continued)
treatment, 713–715

variance–covariance, 206, 708
Subclass numbers, unequal, 3
Subgroup, 290

intrablock (ISBG), 289–291, 370, 374,
379

Submodel(s), 617
Subsampling, 272
Supermodel, 609
Symbolic direct multiplication, 185. See also

Product, symbolic direct

Target value, 635–636, 639, 648
Test(s)

F -, 266, 302, 311, 384, 391
randomization, 22, 266, 302, 384
significance, 79

Time series, 707
Transformation, 640
Treatment(s)

combination(s), 242, 247, 252
comparison(s), 4, 8, 38, 368
component, 421
contrast(s), see Treatment(s), comparison(s)
control, 196
effect(s), 3, 16, 22, 197, 232
eliminating blocks, 13
responses, 256–258

parameterization of, see Parameterization,
of treatment responses

test, 196, 205
whole-plot, 639

Trial
animal feeding, 685
pharmaceutical, 685
clinical, 685

Unbiasedness, 38
Uniform, 687

on the periods, 687
on the subjects, 687

Variance
average, 46, 168, 171, 659
component(s), 62, 350, 392
interblock, 25, 37
intrablock, 24, 37, 77
minimum, 38
residual, 90
within-block, see Variance, intrablock

Weights
estimation of, 36, 286–387
inaccuracies of, 661, 665
interblock, 24
intrablock, 24

Word length pattern (WLP), 518, 554
Words

block-defining, 553–554
treatment-defining, 551–554
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