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Preface

The project of revising Kempthorne’s 1952 book Design and Analysis of Exper-
iments started many years ago. Our desire was to not only make minor changes
to what had become a very successful book but to update it and incorporate new
developments in the field of experimental design. Our involvement in teaching
this topic to graduate students led us soon to the decision to separate the book
into two volumes, one for instruction at the MS level and one for instruction and
reference at the more advanced level.

Volume 1 (Hinkelmann and Kempthorne, 1994) appeared as an Introduction
to Experimental Design. It lays the philosophical foundation and discusses the
principles of experimental design, going back to the ground-breaking work of the
founders of this field, R. A. Fisher and Frank Yates. At the basis of this devel-
opment lies the randomization theory as advocated by Fisher and the further
development of these ideas by Kempthorne in the form of derived linear mod-
els. All the basic error control designs, such as completely randomized design,
block designs, Latin square type designs, split-plot designs, and their associated
analyses are discussed in this context. In doing so we draw a clear distinction
among the three components of an experimental design: the error control design,
the treatment design, and the sampling design.

Volume 2 builds upon these foundations and provides more details about cer-
tain aspects of error control and treatment designs and the connections between
them. Much of the effort is concentrated on the construction of incomplete block
designs for various types of treatment structures, including “ordinary” treatments,
control and test treatments, and factorial treatments. This involves, by necessity,
a certain amount of combinatorics and leads, almost automatically, to the notions
of balancedness, partial balancedness, orthogonality, and uniformity. These, of
course, are also generally desirable properties of experimental designs and aspects
of their analysis.

In our discussion of ideas and methods we always emphasize the historical
developments of and reasons for the introduction of certain designs. The devel-
opment of designs was often dictated by computational aspects of the ensuing
analysis, and this, in turn, led to the properties mentioned above. Even though
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XX PREFACE

in the age of powerful computers and the wide availability of statistical com-
puter software these concerns no longer play the dominant feature, we remind
the reader that such properties have general statistical appeal and often serve as
starting points for new developments. Moreover, we caution the reader that not
all software can be trusted all the time when it comes to the analysis of data
from completely unstructured designs, apart from the fact that the interpretation
of the results may become difficult and ambiguous.

The development and introduction of new experimental designs in the last 50
years or so has been quite staggering, brought about, in large part, by an ever-
widening field of applications and also by the mathematical beauty and challenge
that some of these designs present. Whereas many designs had their origin in
agricultural field experiments, it is true now that these designs as well as modifica-
tions, extensions, and new developments were initiated by applications in almost
all types of experimental research, including industrial and clinical research. It
is for this reason that books have been written with special applications in mind.
We, on the other hand, have tried to keep the discussion in this book as general
as possible, so that the reader can get the general picture and then apply the
results in whatever area of application is desired.

Because of the overwhelming amount of material available in the literature, we
had to make selections of what to include in this book and what to omit. Many
special designs or designs for special cases (parameters) have been presented
in the literature. We have concentrated, generally speaking, on the more gen-
eral developments and results, providing and discussing methods of constructing
rather large classes of designs. Here we have built upon the topics discussed in
Kempthorne’s 1952 book and supplemented the material with more recent top-
ics of theoretical and applications oriented interests. Overall, we have selected
the material and chosen the depth of discussion of the various topics in order to
achieve our objective for this book, namely to serve as a textbook at the advanced
graduate level and as a reference book for workers in the field of experimen-
tal design. The reader should have a solid foundation in and appreciation of
the principles and fundamental notions of experimental design as discussed, for
example, in Volume 1. We realize that the material presented here is more than
can be covered in a one-semester course. Therefore, the instructor will have to
make choices of the topics to be discussed.

In Chapters 1 through 6 we discuss incomplete block and row—column designs
at various degrees of specificity. In Chapter 1 we lay the general foundation for
the notion and analysis of incomplete block designs. This chapter is essential
because its concepts permeate through almost every chapter of the book, in
particular the ideas of intra- and interblock analyses. Chapters 2 through 5 are
devoted to balanced and partially balanced incomplete block designs, their spe-
cial features and methods of construction. In Chapter 6 we present some other
types of incomplete block designs, such as a-designs and control-test treatment
comparison designs. Further, we discuss various forms of row—column designs
as examples of the use of additional blocking factors.
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In Chapters 7 through 13 we give a general discussion of the most fundamental
and important ideas of factorial designs, beginning with factors at two levels
(Chapters 7 through 9), continuing with the case of factors with three levels
(Chapter 10) through the general case of symmetrical and asymmetrical factorial
designs (Chapters 11 and 12), and concluding with the important concept of
fractional factorial designs (Chapter 13). In these chapters we return often to the
notion of incomplete block designs as we discuss various systems of confounding
of interaction effects with block effects.

Additional topics involving factorial designs are taken up in Chapters 14
through 17. In Chapter 14 we discuss the important concept of main effect plans
and their construction. This notion is then extended to supersaturated designs
(Chapter 15) and incorporated in the ideas of search designs (Chapter 16) and
robust-design or Taguchi experiments (Chapter 17). We continue with an exten-
sive chapter about lattice designs (Chapter 18), where the notions of factorial and
incomplete block designs are combined in a unique way. We conclude the book
with a chapter on crossover designs (Chapter 19) as an example where the ideas
of optimal incomplete row—column designs are complemented by the notion of
carryover effects.

In making a selection of topics for teaching purposes the instructor should
keep in mind that we consider Chapters 1, 7, 8, 10, and 13 to be essential for the
understanding of much of the material in the book. This material should then be
supplemented by selected parts from the remaining chapters, thus providing the
student with a good understanding of the methods of constructing various types
of designs, the properties of the designs, and the analyses of experiments based
on these designs. The reader will notice that some topics are discussed in more
depth and detail than others. This is due to our desire to give the student a solid
foundation in what we consider to be fundamental concepts.

In today’s computer-oriented environment there exist a number of software
programs that help in the construction and analysis of designs. We have chosen
to use the Statistical Analysis System (SAS) for these purposes and have provided
throughout the book examples of input statements and output using various pro-
cedures in SAS, both for constructing designs as well as analyzing data from
experiments based on these designs. For the latter, we consider, throughout,
various forms of the analysis of variance to be among the most important and
informative tools.

As we have mentioned earlier, Volume 2 is based on the concepts developed
and described in Volume 1. Nevertheless, Volume 2 is essentially self-contained.
We make occasional references to certain sections in Volume 1 in the form
(I.xx.yy) simply to remind the reader about certain notions. We emphasize again
that the entire development is framed within the context of randomization theory
and its approximation by normal theory inference. It is with this fact in mind
that we discuss some methods and ideas that are based on normal theory.

There exist a number of books discussing the same types of topics that we
exposit in this book, some dealing with only certain types of designs, but per-
haps present more details than we do. For some details we refer to these books
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in the text. A quite general, but less detailed discussion of various aspects of
experimental design is provided by Cox and Reid (2000).

Even though we have given careful attention to the selection of material for
this book, we would be remiss if we did not mention that certain areas are
completely missing. For example, the reader will not find any discussion of
Bayesian experimental design. This is, in part, due to our philosophical attitude
toward the Bayesian inferential approach (see Kempthorne, 1984; Hinkelmann,
2001). To explain, we strongly believe that design of experiment is a Bayesian
experimentation process, not a Bayesian inference process, but one in which the
experimenter approaches the experiment with some beliefs, to which he accom-
modates the design. It is interesting to speculate whether precise mathematical
formulation of informal Bayesian thinking will be of aid in design. Another area
that is missing is that of sequential design. Here again, we strongly believe and
encourage the view that most experimentation is sequential in an operational
sense. Results from one, perhaps exploratory, experiment will often lead to fur-
ther, perhaps confirmatory, experimentation. This may be done informally or
more formally in the context of sequential probability ratio tests, which we do
not discuss explicitly. Thus, the selection and emphases are to a certain extent
subjective and reflect our own interests as we have taught over the years parts
of the material to our graduate students.

As mentioned above, the writing of this book has extended over many years.
This has advantages and disadvantages. My (K.H.) greatest regret, however, is
that the book was not completed before the death of my co-author, teacher, and
mentor, Oscar Kempthorne. I only hope that the final product would have met
with his approval.

This book could not have been completed without the help from others. First,
we would like to thank our students at Virginia Tech, Iowa State University, and
the University of Dortmund for their input and criticism after being exposed to
some of the material. K.H. would like to thank the Departments of Statistics at
Iowa State University and the University of Dortmund for inviting him to spend
research leaves there and providing him with support and a congenial atmosphere
to work. We are grateful to Michele Marini and Ayca Ozol-Godfrey for providing
critical help with some computer work. Finally, we will never be able to fully
express our gratitude to Linda Breeding for her excellent expert word-processing
skills and her enormous patience in typing the manuscript, making changes after
changes to satisfy our and the publisher’s needs. It was a monumental task and
she did as well as anybody possibly could.

KrLAus HINKELMANN

Blacksburg, VA
May 2004



CHAPTER1

General Incomplete Block Design

1.1 INTRODUCTION AND EXAMPLES

One of the basic principles in experimental design is that of reduction of experi-
mental error. We have seen (see Chapters 1.9 and 1.10) that this can be achieved
quite often through the device of blocking. This leads to designs such as ran-
domized complete block designs (Section 1.9.2) or Latin square type designs
(Chapter 1.10). A further reduction can sometimes be achieved by using blocks
that contain fewer experimental units than there are treatments.

The problem we shall be discussing then in this and the following chapters is
the comparison of a number of treatments using blocks the size of which is less
than the number of treatments. Designs of this type are called incomplete block
designs (see Section 1.9.8). They can arise in various ways of which we shall
give a few examples.

In the case of field plot experiments, the size of the plot is usually, though
by no means always, fairly well determined by experimental and agronomic
techniques, and the experimenter usually aims toward a block size of less than
12 plots. If this arbitrary rule is accepted, and we wish to compare 100 varieties
or crosses of inbred lines, which is not an uncommon situation in agronomy,
we will not be able to accommodate all the varieties in one block. Instead, we
might use, for example 10 blocks of 10 plots with different arrangements for
each replicate (see Chapter 18).

Quite often a block and consequently its size are determined entirely on bio-
logical or physical grounds, as, for example, a litter of mice, a pair of twins,
an individual, or a car. In the case of a litter of mice it is reasonable to assume
that animals from the same litter are more alike than animals from different lit-
ters. The litter size is, of course, restricted and so is, therefore, the block size.
Moreover, if one were to use female mice only for a certain investigation, the
block size would be even more restricted, say to four or five animals. Hence,
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2 GENERAL INCOMPLETE BLOCK DESIGN

comparing more than this number of treatments would require some type of
incomplete block design.

Suppose we wish to compare seven treatments, 71, T», 13, 14, Ts, T, T7, say,
using female mice, and suppose we have several litters with four females. We
then could use the following incomplete block design, which, as will be explained
later, is a balanced incomplete block design:

Animal
Litter 1 2 3 4

Ty Ty T7 Te
T3 Ts Ts T7
T T T Ts
Ty T T3 Te
T T7 T3 Ty
Ts T3 Ty T
T T4 Ts To

NN R WN

Notice that with this arrangement every treatment is replicated four times, and
every pair of treatments occurs together twice in the same block; for example,
T1 and T, occur together in blocks 3 and 4.

Many sociological and psychological studies have been done on twins because
they are “alike” in many respects. If they constitute a block, then the block
size is obviously two. A number of incomplete block designs are available
for this type of situation, for example, Kempthorne (1953) and Zoellner and
Kempthorne (1954).

Blocks of size two arise also in some medical studies, when a patient is
considered to be a block and his eyes or ears or legs are the experimental units.

With regard to a car being a block, this may occur if we wish to compare
brands of tires, using the wheels as the experimental units. In this case one may
also wish to take the effect of position of the wheels into account. This then
leads to an incomplete design with two-way elimination of heterogeneity (see
Chapters 6 and 1.10).

These few examples should give the reader some idea why and how the need
for incomplete block designs arises quite naturally in different types of research.
For a given situation it will then be necessary to select the appropriate design
from the catalogue of available designs. We shall discuss these different types
of designs in more detail in the following chapters along with the appropriate
analysis.

Before doing so, however, it seems appropriate to trace the early history
and development of incomplete block designs. This development has been a
remarkable achievement, and the reader will undoubtedly realize throughout the
next chapters that the concept of incomplete block designs is fundamental to the
understanding of experimental design as it is known today.
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The origins of incomplete block designs go back to Yates (1936a) who intro-
duced the concept of balanced incomplete block designs and their analysis utiliz-
ing both intra- and interblock information (Yates, 1940a). Other incomplete block
designs were also proposed by Yates (1936b, 1937a, 1940b), who referred to these
designs as quasi-factorial or lattice designs. Further contributions in the early his-
tory of incomplete block designs were made by Bose (1939, 1942) and Fisher
(1940) concerning the structure and construction of balanced incomplete block
designs. The notion of balanced incomplete block design was generalized to that
of partially balanced incomplete block designs by Bose and Nair (1939), which
encompass some of the lattice designs introduced earlier by Yates. Further exten-
sions of the balanced incomplete block designs and lattice designs were made
by Youden (1940) and Harshbarger (1947), respectively, by introducing balanced
incomplete block designs for eliminating heterogeneity in two directions (gener-
alizing the concept of the Latin square design) and rectangular lattices some of
which are more general designs than partially balanced incomplete block designs.
After this there has been a very rapid development in this area of experimental
design, and we shall comment on many results more specifically in the following
chapters.

1.2 GENERAL REMARKS ON THE ANALYSIS OF INCOMPLETE
BLOCK DESIGNS

The analysis of incomplete block designs is different from the analysis of com-
plete block designs in that comparisons among treatment effects and comparisons
among block effects are no longer orthogonal to each other (see Section 1.7.3).
This is referred to usually by simply saying that treatments and blocks are not
orthogonal. This nonorthogonality leads to an analysis analogous to that of the
two-way classification with unequal subclass numbers. However, this is only
partly true and applies only to the analysis that has come to be known as the
intrablock analysis.

The name of the analysis is derived from the fact that contrasts in the treat-
ment effects are estimated as linear combinations of comparisons of observations
in the same block. In this way the block effects are eliminated and the estimates
are functions of treatment effects and error (intrablock error) only. Coupled with
the theory of least squares and the Gauss—Markov theorem (see 1.4.16.2), this
procedure will give rise to the best linear unbiased intrablock estimators for treat-
ment comparisons. Historically, this has been the method first used for analyzing
incomplete block designs (Yates, 1936a). We shall derive the intrablock analysis
in Section 1.3.

Based upon considerations of efficiency, Yates (1939) argued that the intra-
block analysis ignores part of the information about treatment comparisons,
namely that information contained in the comparison of block totals. This analysis
has been called recovery of interblock information or interblock analysis.
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Yates (1939, 1940a) showed for certain types of lattice designs and for the
balanced incomplete block design how these two types of analyses can be com-
bined to yield more efficient estimators of treatment comparisons. Nair (1944)
extended these results to partially balanced incomplete block designs, and Rao
(1947a) gave the analysis for any incomplete block design showing the similarity
between the intrablock analysis and the combined intra- and interblock analysis.

The intrablock analysis, as it is usually presented, is best understood by assum-
ing that the block effects in the underlying linear model are fixed effects. But for
the recovery of interblock information the block effects are then considered to
be random effects. This leads sometimes to confusion with regard to the assump-
tions in the combined analysis, although it should be clear from the previous
remark that then the block effects have to be considered random effects for both
the intra- and interblock analysis. To emphasize it again, we can talk about intra-
block analysis under the assumption of either fixed or random block effects. In
the first case ordinary least squares (OLS) will lead to best linear unbiased esti-
mators for treatment contrasts. This will, at least theoretically, not be true in the
second case, which is the reason for considering the interblock information in
the first place and using the Aitken equation (see 1.4.16.2), which is also referred
to as generalized (weighted) least squares.

We shall now derive the intrablock analysis (Section 1.3), the interblock
analysis (Section 1.7), and the combined analysis (Section 1.8) for the general
incomplete block design. Special cases will then be considered in the following
chapters.

1.3 THE INTRABLOCK ANALYSIS

1.3.1 Notation and Model

Suppose we have ¢ treatments replicated ry, 2, ... , r; times, respectively, and
b blocks with ki, ko, ..., kp units, respectively. We then have

Zri =ij =n

i=1 j=1

where 7 is the total number of observations.

Following the derivation of a linear model for observations from a random-
ized complete block design (RCBD), using the assumption of additivity in the
broad sense (see Sections 1.9.2.2 and 1.9.2.6), an appropriate linear model for
observations from an incomplete block design is

Vije=mn+ 1+ B +eije (LD

(=12,...,t; j=12,...,b; £=0,1,...,n;;), where 1; is the effect of the
ith treatment, §; the effect of the jth block, and e;, the error associated with the
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observation y;j¢. As usual, the e;j¢ contain both experimental and observational
(sampling) error, that is, using notation established in Volume 1,

eije = €ije + Nije

with €;j¢ representing experimental error and 7;;, representing observational
error. Also, based on previous derivations (see 1.6.3.4), we can treat the e; ;¢
as i.i.d. random variables with mean zero and variance 0 = o2 + 03. Note that
because n;;, the elements of the incidence matrix N, may be zero, not all treat-
ments occur in each block which is, of course, the definition of an incomplete
block design.

Model (1.1) can also be written in matrix notation as
y=pnId+X.t+XgB+e (1.2)

where J is a column vector consisting of n unity elements, X g is the observation-
block incidence matrix

Ik,
Xp = e
ﬂkb
with ka denoting a column vector of k; unity elements (j =1,2,...,b) and
X:=(x1,x2,...,%x;)

is the observation-treatment incidence matrix, where x; is a column vector with
ri unity elements and (n — r;) zero elements such that x'x; = r; and x;x;; =0
fori £i'(i,i'’ =1,2,...,1).

1.3.2 Normal and Reduced Normal Equations

The normal equations (NE) for u, 7;, and §; are then

t b
l’lﬁ-}—Zr,‘fE\i +ij/§\j =G
i=1 j=1
b
riﬁ‘i‘ri%\i‘i‘znijﬂj:n i=12,...,0) (1.3)
j=1
t
kil + Y niT+kiBi=B;  (j=12,....b)

i=1
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where
T, = Z yije = ith treatment total

jt

Bj = yije = jthblock total

il
G = Z T, = Z B; = overall total
i J

Equations (1.3) can be written in matrix notation as

99, 9.X. 9.Xz\ (1 9y
X9, xX.x. x.xs||7]|=|x.y (1.4)
X33, X,X. X,Xp) \B Xy

which, using the properties of J, X, Xg, can be written as

9,9, J.R I,K n G
RS, R N |.|7|=|T (15)
KJ, N K B B
where
R = diag (r;) txt
K = diag (k;) bxb
N = (n;j) t x b (the incidence matrix)

T'=(T,T»,....T))
B' = (B, B, ..., By)
T'=(1,12,....7)

B = B1. B2 ... Bp)

and the J’s are column vectors of unity elements with dimensions indicated by
the subscripts. From the third set of equations in (1.5) we obtain

9 +B=K'"(B-N7) (1.6)



THE INTRABLOCK ANALYSIS 7
Substituting (1.6) into the second set of (1.5), which can also be expressed
as NIyt + NB+ Rt =T (since NI, = RJ,), leads to the reduced normal
equations (RNE) (see Section 1.4.7.1) for

(R—NK'NYT=T-NK~'B (1.7)

Standard notation for (1.7) is

cT=0 (1.8)
where
C=R-NK'N (1.9)
and
Q=T —-NK'B (1.10)

the (i,i") element of C being

b niin
N’
ciir = 8iirri — E .
j

with §;;7 = 1 for i =i’ and = O otherwise, and the ith element of Q being

b ni:B;
0 =1 -y "
=t

And Q; is called the ith adjusted treatment total, the adjustment being due to
the fact that the treatments do not occur the same number of times in the blocks.

1.3.3 The C Matrix and Estimable Functions

We note that the matrix C of (1.9) is determined entirely by the specific design,
that is, by the incidence matrix N. It is, therefore, referred to as the C matrix
(sometimes also as the information matrix) of that design. The C matrix is
symmetric, and the elements in any row or any column of C add to zero, that
is, CJ = 0, which implies that »(C) = rank(C) <t — 1. Therefore, C does not
have an inverse and hence (1.8) cannot be solved uniquely. Instead we write a
solution to (1.8) as

T=CQ (1.11)

where C™ is a generalized inverse for C (see Section 1.3.4).



8 GENERAL INCOMPLETE BLOCK DESIGN

If we write C = (¢y, ¢2, ..., c;), where ¢; is the ith column of C, then the
set of linear functions

{cir,i=1,2,...,1}

which span the totality of estimable functions of the treatment effects, has dimen-
sionality r(C). Let ¢/t be an estimable function and ¢'T its estimator, with T
from (1.11). Then

E(T)=E(d/C Q)
=cCE(Q)
=cC Cr

For ¢'7 to be an unbiased estimator for ¢’t for any 7, we then must have
dcCc=¢ (1.12)

Since CJ = 0, it follows from (1.12) that ¢’J = 0. Hence, only treatment con-
trasts are estimable. If »(C) =t — 1, then all treatment contrasts are estimable.
In particular, all differences 7; — 7;/(i # i’) are estimable, there being ¢t — 1 lin-
early independent estimable functions of this type. Then the design is called a
connected design (see also Section 1.4.13.3).

1.3.4 Solving the Reduced Normal Equations

In what follows we shall assume that the design is connected; that is, r(C) =
t — 1. This means that C has r — 1 nonzero (positive) eigenvalues and one zero
eigenvalue. From

it follows then that (1,1,...,1)" is an eigenvector corresponding to the zero
eigenvalue. If we denote the nonzero eigenvalues of C by di,da,...,di—|
and the corresponding eigenvectors by &, &,,...,&,_; with && =1 (=
1,2,...,t — 1) and §/§;, = 0(i #i’), then we can write C in its spectral decom-
position as

t—1
C =) d&k (1.13)
i=1
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or withd; =0 and §, = 1/4/1(1, 1, ..., 1), alternatively as
t
C =) di&k (1.14)
=1

We note that /&, = 1 and &, =0fori =1,2,...,71— 1.

We now return to (1.8) and consider a solution to these equations of the
form given by (1.11). Although there are many methods of finding generalized
inverses, we shall consider here one particular method, which is most useful
in connection with incomplete block designs, especially balanced and partially
balanced incomplete block designs (see following chapters). This method is based
on the following theorem, which is essentially due to Shah (1959).

Theorem 1.1 Let C be a t x ¢t matrix as given by (1.9) with r(C) =1 — 1.
Then C = C +ad9’, where a # 0 is a real number, admits an inverse C 1, and

C isa generalized inverse for C.
Proof

(a) We can rewrite C as

1
~ 1
C=C+ad9 =C+al|.|,1,...,1)=C +at §E,
1
and because of (1.13)
-l
C =) dikt +at &k (1.15)
i=1
Clearly, C has nonzero roots dy, dy,...,di_1,d; = at and hence is non-
singular. Then
S SR PV B (1.16)
- P di iSi at 1S5t .

(b) To show that C ' = C~ we consider CC ' C. From (1.13), (1.15), and
(1.16) we have

t
CCl=1=) &%
i=1
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and

t—1
~_1 1
cC = 2_1:5,-52 =1-§&=1--97 (1.17)

cc'c=c
which implies
Z,—l —C-

We remark here already that determining C~ for the designs in the following
chapters will be based on (1.17) rather than on (1.14).

Substituting 6'_1 into (1.13) then yields a solution of the RNE (1.8); that is,
7=C0 (1.18)
We note that because of (1.8) and (1.16)

E®@) =E (5_1 Q)

~_1
=C E(Q)
—C'ED
—C 'ct
1
= (I — —f].‘]’) T
t
1 —7T
D —T
T —T

withT =1/t ), 7;; that is, E (7) is the same as if we had obtained a generalized
inverse of C by imposing the condition ) ; 7; = 0. O

1.3.5 Estimable Functions of Treatment Effects

We know from the Gauss—Markov theorem (see Section 1.4.16.2) that for any
linear estimable function of the treatment effects, say ¢z,

E( Tt =ct (1.19)
is independent of the solution to the NE (see Section 1.4.4.4). We have further

var(c?) = ¢ C ' co? (1.20)



THE INTRABLOCK ANALYSIS 11

with a corresponding result (but same numerical value) for any other solution
obtained, using an available software package (see Section 1.14). We shall elab-
orate on this point briefly.

Let us rewrite model (1.2) as

y=pI+XgB+X.T+e

n
=0XgX)|B]| +e
T
=X0O+e (1.21)
with
X=0:Xp:X,) (1.22)
and
Q' =(up.7)
The NE for model (1.21) are
X'X0*=X'y (1.23)

A solution to (1.23) is given by, say,
0" =X'X)"X'y

for some (X'X)™. Now (X’X)" isa (1 +b+1) x (1 +b+1¢) matrix that we
can partition conformably, using the form of X as given in (1.22), as

AI/W- Aup Auc
X'X)” = A;Lﬂ Apg  Ape (1.24)

Al Ay A

Here, A;; is a t x t matrix that serves as the variance—covariance matrix for
obtaining

var(c't*) = ¢/ Ay co? (1.25)

For any estimable function ¢’T we have ¢/T = ¢/t* and also the numerical
Valu§§ for (1.20) and (1.25) are the same. If we denote the @i 7/i "y element of C -
by ¢'* and the corresponding element of A;; in (1.24) by @', then we have, for
example, for ¢t =7, — 7/

var (5 — ) = (c”' Y cf"") o2 = (a” — 241 ¢ a""") o2 (1.26)

For a numerical example and illustration of computational aspects, see
Section 1.13.
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1.3.6 Analyses of Variance

It follows from general principles (see Section 1.4.7.1) that the two forms of
analysis of variance are as given in Tables 1.1 and 1.2. We shall henceforth refer
to the analysis of variance in Table 1.1 as the treatment-after-block ANOVA or
T | B-ANOVA as it is associated with the ordered model

y=puId+XgB+X.t+e
whereas the analysis of variance in Table 1.2 is associated with the ordered model
y=pI+X. v+ XgB+e

and hence shall be referred to as the block-after-treatment ANOVA or B |T-
ANOVA. To indicate precisely the sources of variation and the associated sums
of squares, we use the notation developed in Section 1.4.7.2 for the general case
as it applies to the special case of the linear model for the incomplete block

Table 1.1 T|B-ANOVA for Incomplete Block Design

Source d.f4 SS EMS)
b p2
B* GZ
Xs|9 b—1 < —
ﬁl Z kj n
j=1
t /!
~ 7'Ct
X9, Xg r—1 X;riQi 03+t_1
=
13, Xg, X, n—b—t+1 Difference aez
G2
2
Total n—1 ;Mr?
ij

4d.f. = degrees of freedom.

Table 1.2 B|T-ANOVA for Incomplete Block Design

Source d.f. SS
t 2 2
T: G
er t—1 [,
. ri n
i=1
Xg1d, X, b—1 Difference
11, Xg, X, n—b—t+1 From Table 1.1
G2
2
Total n—1 Zyiﬂ_T

ijt
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design, thereby avoiding the commonly used but not always clearly understood
terms blocks ignoring treatments for (Xg |J), treatments eliminating blocks for
(X 13, Xp), and blocks eliminating treatments for (Xg|J, X;).

The T | B-ANOVA follows naturally from the development of the RNE for the
treatment effects. It is the appropriate ANOVA for the intrablock analysis as it
allows to test the hypothesis

H:tnnt=tn=---=1
by means of the (approximate) F test (see 1.9.2.5)

SS(X:13,Xp)/t — 1)

F =
SSU |3, Xg, X:)/(n—b—1t+1)

(1.27)

Also MS(Error)= SS(I|J, Xg, X;)/(n —b —t + 1) is an estimator for 682 to
be used for estimating var(c'T) of (1.20).

The usefulness of the B | T-ANOVA in Table 1.2 will become apparent when
we discuss specific aspects of the combined intra- and interblock analysis in
Section 1.10. At this point we just mention that SS(Xg |, J, X;) could have been
obtained from the RNE for block effects. Computationally, however, it is more
convenient to use the fact that SS(I |J, Xg, X;) =SS(I |3, X, Xpg) and then
obtain SS(Xg |J, X;) by subtraction.

Details of computational procedures using SAS PROC GLM and SAS PROC
Mixed (SAS1999-2000) will be described in Section 1.14.

1.4 INCOMPLETE DESIGNS WITH VARIABLE BLOCK SIZE

In the previous section we discussed the intrablock analysis of the general incom-
plete block design; that is, a design with possibly variable block size and possibly
variable number of replications. Although most designed experiments use blocks
of equal size, k say, there exist, however, experimental situations where blocks of
unequal size arise quite naturally. We shall distinguish between two reasons why
this can happen and why caution may have to be exercised before the analysis
as outlined in the previous section can be used:

1. As pointed out by Pearce (1964, p. 699):

With much biological material there are natural units that can be used as blocks and
they contain plots to a number not under the control of the experimenter. Thus, the
number of animals in a litter or the number of blossoms in a truss probably vary
only within close limits.

2. Although an experiment may have been set up using a proper design, that
is, a design with equal block size, missing plots due to accidents during
the course of investigation will leave one for purpose of analysis with a
design of variable block size.
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In both cases there are two alternatives to handle the situation. In case 1 one
may wish to reduce all blocks to a constant size, thereby reducing the number of
experimental units available. If experimental units are at a premium, this may not
be the most desirable course of action. The other alternative is to use the natural
blocks and then use the analysis as given in the previous section. Before doing
so we mention that its validity will depend on one very important assumption,
and that is the constancy of the variance o2 for all blocks. In general, the size
of 062 will depend on the size of the blocks: The larger the blocks, the larger oez
will be since it is in part a measure of the variability of the experimental units
within blocks (see 1.9.2.4). In fact, this is the reason for reducing the block size
since it may also reduce the experimental error. Experience shows that such a
reduction in o2 is not appreciable for only modest reduction in block size. It is
therefore quite reasonable to assume that o2 is constant for blocks of different
size if the number of experimental units varies only slightly.

In case 2 one possibility is to estimate the missing values and then use the
analysis for the proper design. Such a procedure, however, would only be approxi-
mate. The exact analysis then would require the analysis with variable block size
as in case 1. Obviously, the assumption of constancy of experimental error is
satisfied here if is was satisfied for the original proper design.

1.5 DISCONNECTED INCOMPLETE BLOCK DESIGNS

In deriving the intrablock analysis of an incomplete block design in Section 1.3.4
we have made the assumption that the C matrix of (1.9) has maximal rank r — 1,
that is, the corresponding design is a connected design. Although connectedness
is a desirable property of a design and although most designs have this property,
we shall encounter designs (see Chapter 8) that are constructed on purpose as
disconnected designs. We shall therefore comment briefly on this class of designs.
Following Bose (1947a) a treatment and a block are said to be associated if
the treatment is contained in that block. Two treatments are said to be connected
if it is possible to pass from one to the other by means of a chain consisting alter-
nately of treatments and blocks such that any two adjacent members of the chain
are associated. If this holds true for any two treatments, then the design is said to
be connected, otherwise it is said to be disconnected (see Section 1.4.13.3 for a
more formal definition and Srivastava and Anderson, 1970). Whether a design is
connected or disconnected can be checked easily by applying the definition given
above to the incidence matrix N: If one can connect two nonzero elements of
N by means of vertical and horizontal lines such that the vertices are at nonzero
elements, then the two treatments are connected. In order to check whether a
design is connected, it is sufficient to check whether a given treatment is con-
nected to all the other r — 1 treatments. If a design is disconnected, it follows
then that (possibly after suitable relabeling of the treatments) the matrix NN’
and hence C consist of disjoint block diagonal matrices such that the treatments
associated with one of these submatrices are connected with each other.
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Suppose C has m submatrices, that is,

Cy
()

Cn

where C,, is t, x t, (35—, t, =¢). It then follows that rank (C,) =1, — 1(v =
1,2,...,m) and hence rank(C) =t — m. The RNE is still of the form (1.8)
with a solution given by (1.11), where in C~ = c - we now have, modifying
Theorem 1.1,

a3y
a9

™
Il

C+
anJ9’

Table 1.3 T|B-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS
Bz. G2
X319 b—1 4 —
ﬁ| Z kj n
j
X.19, Xg t—m D 0
i
19, Xg, X, n—b—t+m Difference
G2
2
Total n—1 ;y’ﬂ_T
ij

Table 1.4 B|T-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS
> G?
X9 t—1 £ - —
; ri n
X319, X, b—m Difference
10, X.,Xg n—t—b+m From Table 1.3
G2
2
Total n—1 Zyiﬂ_T

ije
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with a,(v = 1,2, ..., m) arbitrary constants (% 0) and the JJ’ matrices are of
appropriate dimensions. Following the development in Section 1.3.6, this then
leads to the ANOVA tables as given in Tables 1.3 and 1.4.

1.6 RANDOMIZATION ANALYSIS

So far we have derived the analysis of data from incomplete block designs using
a Gauss—Markov linear model as specified in (1.1). We have justified the appro-
priate use of such an infinite population theory model in our earlier discussions
of error control designs (see, e.g., Sections 1.6.3 and 1.9.2) as a substitute for
a derived, that is, finite, population theory model that takes aspects of random-
ization into account. In this section we shall describe in mathematical terms the
randomization procedure for an incomplete block design, derive an appropriate
linear model, and apply it to the analysis of variance. This will show again, as
we have argued in Section 1.9.2 for the RCBD, that treatment effects and block
effects cannot be considered symmetrically for purposes of statistical inference.

1.6.1 Derived Linear Model

Following Folks and Kempthorne (1960) we shall confine ourselves to proper
(i.e., all k; = k), equireplicate (i.e., all r; = r) designs. The general situation is
then as follows: We are given a set of b blocks, each of constant size k; a master
plan specifies b sets of k treatments; these sets are assigned at random to the
blocks; in each block the treatments are assigned at random to the experimental
units (EU). This randomization procedure is described more formally by the
following design random variables:

" 1 if the uth set is assigned to the jth block
at = . (1.28)
Y 0 otherwise
and
1 if the uv treatment is assigned to the
’7}3) = £th unit of the jth block (1.29)
0 otherwise

The uv treatment is one of the ¢ treatments that, for a given design, has been
assigned to the uth set.

Assuming additivity in the strict sense (see Section 1.6.3), the conceptual
response of the uv treatment assigned to the ¢th EU in the jth block can be
written as

Tjﬁuv = Ujlf + Tuv (1.30)
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where U, is the contribution from the £th EU in the jth block and T, is the
contribution from treatment uv. We then write further

Tiw=U_+U; —U)+WUjs—Uj)+T. +Ty—T.)

where L
uw=U._+ T_ is the overall mean

b

Il
<

j. — U __is the effect of the jth block
(G=1,2,....b

Tuv = tuy — T is the effect of the uv treatment
w=1,2,..  biv=12 ...k

ujo = Ujy — Uj, is the unit error
L=1,2,...,k)

with 3, b; =0=3_,, Ty = 3, uje. We then express the observed response
for the uv treatment, y,,, as

Yo =D o O Tjeu
12

J
=M+‘L’uv+2 Ol?bj-i-zz Ol? 572 Uje
J it
=+ Ty + Bu + wup (1.32)

where

Bu=)_ aib; (1.33)
j

is a random variable with

1 1
EB)=0 EBD=5 b EBubu)= =D Yobi )
J J

Also,

Wy =Y Y o 84w (1.34)
j 14
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is a random variable with

1
E@a)=0  E@) =2 uj,
jt

1 ’
E(wuyoyy) = — m Xj: Xg: I/t;g (v #v)
E(wyywyy) =0 (u # u/)

In deriving the properties of the random variables 8, and w,, we have used, of
course, the familiar distributional properties of the design random variables oz;‘
and 8';2) , such as

" 1
Plj=1=7
P4 =1la"%=1)=0 G#7)
u_ u/_ _# ! . ./
P(aj_1|aj,—1)—b(b_1) (w#u,j#j)
uv 1
P@ ==~
P =1)|@% =1)=0 (L #)
/ 1
P =116 =V=1-D C#v#0)
1.7 1
PR =DIG)p =1 =13 G #Juu)

and so on.

1.6.2 Randomization Analysis of ANOVA Tables

Using model (1.32) and its distributional properties as induced by the design
random variables ajf and 8%, we shall now derive expected values of the sums
of squares in the analyses of variance as given in Tables 1.1 and 1.2:

1. ESSTotal) =E Y (v —5.)°

uv

=E Z (twy + Bu + a)uv)z

uv
=Y T kY B> ud,
uv j I
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2. E[SSXp|N =EY 5, -7)

uv

=kE Z(?u + By + l Z wuv)z
—er +kZb2
3. E[SS(I]9, X, Xo]=""""7T_ b+] Z“,e

since the incomplete block demgns cons1dered are unbiased.
4. E[SS(X; |3, Xp)] can be obtained by subtraction.
5. To obtain E[SS(X;|J)] let

1 if the wth treatment corresponds to the
Yiv = wvindex (w=1,2,...,1)
0 otherwise

w { 1 if the wth treatment occurs in the uth block
Vu =

0 otherwise

where

> vh =y
v

and

2=
u

Then

2
E[SS(X.|9)] = } > <Z Voo Yuv — ; > y;;yuv)

uv

2
1
=E ;Z(Ffw-FZVfﬂu+ZVﬁwuv>
w u uv

19

2 2
SODEREON VO D o Doy
w w u w uv
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_ ) || ST iR+ D v Bubu
_riw:rwjt;%:E - /

uu’

+ % Z E %: Vi w”v + Z Z Vao Yy Cuv@ur’
w

u#v
> X vt oo
+ v’
uFu’
Now l
1
) 2
: {Zn“’ﬂu =y 20
P ] J
Z Vv Bubu | 1
AR B P 3L
bb—-1) —~ -
o i uu’' !
u#u’
1
— Zyu(r Vu)b(b_l)zb]
u /
=
Cbb—1)
Y ] 1 2
E Z)/Mkuv ="k Hut
bk <
uv - ]K
Vw)/w/ww wuv’_ :
Xu: Z uv/uv’ “uv =0 since Vuul))yuul}ﬂ =0
vy -
D ViV @uvoury
’ - O
uu
uu' -
and hence

t(b—
E[(X:. |.‘]]—th +b(b sz kauﬂ

Thus, we have for the mean squares (MS) from Tables 1.1 and 1.2 the expected
values under randomization theory as given in Tables 1.5 and 1.6, respectively.



RANDOMIZATION ANALYSIS 21

Table 1.5 E(MS) for T|B-ANOVA

Source EMS)

Xs19 —Z u+—2b2
1
X.19, Xg ) uﬁg—f-(erv—kZ?ﬁ') /(t—l)
jl uv u

1 2
bk — 1) - e

119, X4, X

Table 1.6 E(MS) for B|T-ANOVA

Source EMS)
X |9 ﬁ; ﬂ+#2 +—;rw
Xg19, X, kak—l)j ,z 1)22 b;
119,Xs, X, ﬁ, u,
If we define
1 2 2

and

we can then express the expected values for the three important mean squares in
ANOVA Tables 1.5 and 1.6 as

—k —2
E[MS(X;|9,Xp)] =07 + D T ‘“; — 12 (1.35)
E[MS(X4]9, X1)] = t-k 2, m=f o (1.36)
P A= G Tk T =1 C '

E[MSU |9, Xp, X.)] =0} (1.37)
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We make the following observations:

1.

The quadratic form in the 7, in (1.35) is just a different way of writing t'Ct
in Table 1.1. Both expressions indicate that the quadratic form depends on the
particular design chosen, and both equal zero when all the treatment effects
are the same.

. It follows from (1.35) and (1.37) that, based on the equality of the E(MS)

under Hy : 71 = 170 = --- = 14, the ratio
MS(X. 13, Xg)/MSU |3, Xg, X;) (1.38)

provides a test criterion for testing the above hypothesis. In fact, Ogawa
(1974) has shown that the asymptotic randomization distribution of (1.38) is
an F distribution with t — 1 and n — ¢t — b 4+ 1 d.f. We interpret this again
to mean that the usual F test is an approximation to the randomization test
based on (1.38).

. Considering (1.36) and (1.37), there does not exist an exact test for testing

the equality of block effects. This is in agreement with our discussion in
Section 1.9.2 concerning the asymmetry of treatment and block effects.

. For k =t and r = b, that is, for the RCBD, the results of Tables 1.5 and 1.6

agree with those in Table 9.1 of Section 1.9.2.

. With treatment-unit additivity in the broad sense (see Section 1.6.3.3) the

expressions in (1.35), (1.36), and (1.37) are changed by adding crv2 + a,? to
the right-hand sides (recall that o> 4 o2 + 03 =02+ 03 = 07). Remarks
(2) and (3) above remain unchanged.

. For the recovery of interblock information (to be discussed in Section 1.7),

we need to estimate aﬂz (or a function of ag). Clearly, under the assumption
of additivity in the broad sense, this cannot be done considering that

t—k 2+n—t 5
— O o
R

E[MS(Xg|3.X:)] =0) +0o] +

It is for this reason only that we shall resort to the approximation

n—t
b—1

n—t 5

E[Ms(X,g|fJ,X,)]ma§+a§+au2+b_laﬂ=03+

2
9
(1.39)

which is the expected value based on an infinite population theory model
[see (1.49) and (1.50)].

For a different approach to randomization analysis, see Calinski and Kageyama
(2000).
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1.7 INTERBLOCK INFORMATION IN AN INCOMPLETE
BLOCK DESIGN
1.7.1 Introduction and Rationale

As mentioned earlier, Yates (1939, 1940a) has argued that for incomplete block
designs comparisons among block totals (or averages) contain some information
about treatment comparisons, and he referred to this as recovery of interblock
information. The basic idea is as follows.
Consider, for purposes of illustration, the following two blocks and their obser-

vations from some design:

Block 1: yst. ¥3l, o Yl

Block 2: Y22, Y42, Y32

Let
B = ys1 + y31 +yn

and
By =y 4+ ya + y»n

represent the block totals. Using model (1.1) we can write

Bi—B=({s+1n+1)—(2+7174+713)
+ 381 — 382 + (es1 + e31 +e1)

— (€22 + eq2 + e32)
Assuming now that the 8; are random effects with mean zero, we find
EBi—B)=11+15-—T2—1©

It is in this sense that block comparisons contain information about treatment
comparisons. We shall now formalize this procedure.

1.7.2 Interblock Normal Equations
Consider the model equation (1.1)
y :/,L:]+XTT+X}3B+9

where B is now assumed to be a random vector with E(8) = 0 and var(f) =
ag I. As pointed out above the interblock analysis is based on block totals rather
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than on individual observations, that is, we now consider

ki
ky
Xyy = : n+NzT+KB+Xje (1.40)
kp
‘We then have
ki
ko
EXjy=|.|n+Nt (1.41)
kp

and the variance—covariance matrix under what we might call a double error
structure with both 8 and e being random vectors

var(X;gy) = Kzog + Kae2

of
=K|[I+-£2K)o?

e

= Lcre2 (say)
and
O'g w
L = diag{t;} = diag 1k; | 1 +_2kj =diag | k;— = diag{k;p;}
o; w;
with 1
w=— (1.42)
Ue
and |
W, = —— 1.43
J 0‘62 + kjag ( )
and
2 2
w o; +kjo
w; o

e

The quantities w and w;. of (1.42) and (1.43) are referred to as intrablock and
interblock weights, respectively, as w is the reciprocal of the intrablock variance,
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crez, and w;. is the reciprocal of the interblock variance, that is, var(B;) on a per

observation basis, or var(B;/k;) = 062 +k jag. We then use as our “observation”
vector
z=L"""?X}y (1.45)

which has
var(z) =1 03

and hence satisfies the Gauss—Markov conditions.
If we write (1.41) as

E(X}y) = kN (“)
T
with k = (k1, k2, ..., kp)’, we have from (1.45) that
E@z)=L "2k N') (“)
T

The resulting NE, which we shall refer to as the interblock NE, is then given by

k/ ,LL* k/
L'k N’ = L 'Xx 1.46
() tam () = ()5 1.4
or explicitly as
i k? k ki ] M ki T
J A e
Zz_,- anjg_ .. Zn% ZE]B,
J ‘ J * J
Z kj Zn%/ anjnt/' 'Z* ZMBJ
nyj—= - o ’ 1 [
T T — 4 = (1.47)
| kj ”'lj”tj .ntzj " Zn’jﬁ
Dot Yot e Y — 0; !
- ¢; ~ L —~ £ i
L J J J . - -

It can be seen easily that the rank of the coefficient matrix in (1.47) is ¢. To solve
the interblock NE, we take u* = 0 and hence reduce the set to the following ¢
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2_mi; pk’ 3 ey

J J
-1 -1

0 0
2omimn

-1 -1

Pj
D mimi
— J
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7, where we have used the fact that £; = k;p;:

—1-
Pj
D mjmi
i J

J *
1 T

[O'
E =l *
n2jntj X TZ

J

0
2.n5 k]

(1.48)

The solution to the equations (1.48) is referred to as the interblock information
about the treatment effects, with

t
E(‘[l,*) = + t; + const. - Z(M + i)
i'=1

Hence

E (Zciti*> = ZC,"L’; for ch’ =0

i

We note here that typically (see Kempthorne, 1952) the interblock analysis
is derived not in terms of the “observations” z [as given in (1.45)] but rather
in terms of the block totals X ;3 y. The resulting NE are then simply obtained
by using L = I in (1.46) and subsequent equations. The reason why we prefer
our description is the fact that then the intra- and interblock information can be
combined additively to obtain the so-called combined analysis (see Section 1.8)
rather than in the form of a weighted average (see Kempthorne, 1952).
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1.7.3 Nonavailability of Interblock Information

We conclude this section with the following obvious remarks:

1. For the special case kj =t for all j,r; =b for all i and all n;; =1, we
have, of course, the RCBD. Then the elements in the coefficient matrix of
(1.48) are all identical, and so are the right-hand sides. Consequently, (1.48)
reduces to a single equation

bZTi*ZZBj
i J

and no contrasts among the 7; are estimable. Expressed differently, any con-
trast among block totals estimates zero, that is, no interblock information is
available.

2. For a design with b < ¢ (and such incomplete block designs exist as we shall
see in Chapter 4; see also the example in Section 1.7.1), the rank of the
coefficient matrix of (1.48), NL'N’, is less than ¢. Hence not all u+T
are estimable using block totals, which means that interblock information is
not available for all treatment contrasts.

1.8 COMBINED INTRA- AND INTERBLOCK ANALYSIS

1.8.1 Combining Intra- and Interblock Information

The two types of information about treatment effects that we derived in Sections
1.3.2 and 1.7.2 can be combined to yield the “best” information about estimable
functions of treatment effects. All we need to do is to add the coefficient matrices
from the intrablock RNE (1.8) and the interblock NE (1.48) and do the same
for the corresponding right-hand sides. This will lead to a system of equations
in 7, %, ..., 1/, say, and the solution to these equations will lead to the
combined intra- and interblock estimators for treatment contrasts.

In the following section we shall derive the equations mentioned above more
directly using the method of generalized least squares, that is, by using the Aitken
equations described in Section 1.4.16.2

1.8.2 Linear Model
In order to exhibit the double error structure that characterizes the underlying
assumptions for the combined analysis, we rewrite model (1.1) as

Yie=u+Tie+Bj+eje (1.49)

where j =1,2,...,b; £=1,2,...,kj; 1y denotes the effect of the treatment
applied to the fth experimental unit in the jth block, the B; are assumed to
be i.i.d. random variables with E(8;) = 0, var(8;) = orﬁz,, and the e, are i.i.d.
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random variables with E(e;¢) = 0, var(ej¢) = 03. We then have
E(yje) = pn+7tje (1.50)
and
og—i-aez for j=j,0=10
cov (yje, yjr) =1 o} for j = j, €4 ¢ (1.51)
0 otherwise

To use matrix notation it is useful to arrange the observations according to blocks,
that is, write the observation vector as

/
Y= (V11 Y120 -« o Ylkys Y210 Y220 vy Yoo Yb2s - - -+ Ybky)

Letting
X=0 X
we rewrite (1.50) as
E(y) :X(“) (1.52)
T
and the variance—covariance (1.51) as
Vi
V) 0 5 5
var(y) = . o, =Vo, (1.53)
0 Vy
where V; is given by
%
V; =ij.+ﬁ.‘lkj ka (1.54)

e

1.8.3 Normal Equations

Applying now the principles of least squares to the model (1.52) with covariance
structure (1.53) yields the Aitken equations (see Section 1.4.16):

-~
=

(X’V"X)(i) —x'vly (1.55)
T

where

v =dig (Vi vilo vy
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and 5
vilen —-—2% 9.9 (1.56)
J ! Ug2+kj(7§ R
With
i = w ; = w/.
o? o2 +kjog !
and ,
w'.
i _ -1
W =P
Eq. (1.56) can be written as
1-— p71
1_ _ J ’
VJ = ij k] gk]gk]
and hence
1 _1
vl=1, - diag 949,
1— ,0;1 1— ,ob_l
/ /
kz gkzjkz, ceey kb jkbgkb (157)

Further, if we let (l — pj_l> /kj=38;(j=1,2,...,b), we have

(1=p)3, (1=0")% - (1-5")3,
Xv-l—x _ SinJy, San 129y, Spn1pJy,
(Sln”:];q 52’%23;{2 (Sbntbg;{b
and
xXv-lx

DI SV A DL D DL
anjp;1 rl—ZSjn%j —Z(Sjnljnzj —Z(Sjnljn,j

—1 2
Domipyt =Y bmny =Y Gy e ri= ) 8nd

(1.58)
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2. B
— > 8;n1;B;

X'vily= (1.59)

— > 8jNijB;

By inspection one can verify that in the coefficient matrix (1.58) the elements
in rows 2 to t + 1 add up to the elements in row 1, which shows that (1.55) is
not of full rank; in fact, it is of rank 7. The easiest way to solve these equations
then is to impose the condition & = 0. This means that we eliminate the first
row and first column from (1.58) and the first element in (1. 59) and solve the
resulting system of ¢ equations in the ¢ unknowns T rl ‘L’2, ..., T;. If we define
S = diag(p;), then this system of equations resulting from (1.58) and (1.59) can
be written as

[R—NK—1 (1—5—1)]?= T - NK-! (1—5—1)3 (1.60)

which we write for short as

~)

AT="P (1.61)

with A and P as described above. The solution then is
T=Aa"'P (1.62)

or, in terms of a generalized inverse for the original set of NE (1.55)
ﬁ _ 0 0o’ ry—1
[?] = [0 A‘l} X'Vv.y (1.63)
with
E@)=n+u G=12,....1
If we denote the (i, i’) element of Al by aii/, then

var (Tl — T ) = var( — r (a” + all — 2aii/) 062 (1.64)

More generally, the treatment contrast ¢/t is estimated by ¢/7 with variance

var (c/?) =c' A7 'co? (1.65)
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Expression (1.65) looks deceptively simple, but the reader should keep in mind
that the elements of A~! depend on aﬂz and o2. We shall return to estimating
(1.65) in Section 1.10.

Finally, we note that the equations (1.60) show a striking similarity to the
intrablock NE (1.7), except that the system (1.60) is of full rank and the elements
of its coefficient matrix depend on the unknown parameters oé and 082.

1.8.4 Some Special Cases

As a special case of the above derivations we mention explicitly the equireplicate,
proper design, that is, the design with all r; = r and all k; = k. We then define

1

= 1.66
o2 —I—koé (1.0
and
w
p=— (1.67)
w
and write (1.60) as
rl—l<1—,0_1> NN’ ?:T—l(l—p—l) NB (1.68)
k k

We shall comment briefly on the set of equations (1.68) for two special cases:

1. If p~! =0, that is, oé = 00, then (1.68) reduces to the NE (1.7) for the
intrablock analysis. This means, of course, that in this case no interblock
information is available. This is entirely plausible and suggests further that
for “large” oé the interblock information is very weak and perhaps not worth-
while considering.

2. If p~1 =1, that is, oé = 0, the solution to (1.68) is the same as that obtained
for the completely randomized design (CRD) with the restriction & = 0. This,
of course, is a formal statement and should not imply that in this case the
observations should be analyzed as if a CRD had been used.

1.9 RELATIONSHIPS AMONG INTRABLOCK, INTERBLOCK, AND
COMBINED ESTIMATION

On several occasions we have pointed out that there exist certain relationships
among the different types of analysis for incomplete block designs. It is worth-
while to exposit this in a little detail.
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1.9.1 General Case
For the full model

y=hpu+X.t+XgB+e

with the double error structure we have

E(y)=Iu+ X7
and

2 2
var(y) = XpXjyo5 + Lo,
= +yXpXp)o;

— Va2
=Vo,

as in (1.53) with y = crg /062. Then, as explained in Section 1.8, the estimators
of estimable functions are obtained from the Aitken equations by minimizing

y-In—X )V (y—-Iu—X.1) (1.69)

with respect to p and 7. To simplify the algebra, let @ = Ju + X7 and then
write ¥ = y — ©. Expression (1.69) can now be written simply as %'V~ !y We
then write

v=Py+U—-P)Y
where, again for brevity, we write

P=P, =Xpg(XpXp) ' X}

= X3K'X} (1.70)
Then
YV =[P +y'd - PV [Py +UT - PY] (1.71)

In order to expand the right-hand side of (1.71) we make use of the following
results. From

I-P)V=(U-P){U —|—yX,3X:3) = -P)
[using (1.70)] it follows that

(I-P)V'l=U-P)
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and hence
I-P)YV'P=IT-PP=0
Thus, (1.71) reduces to
YV Yy =y’ PV IPY +y' I - P)Y (1.72)
To handle the term ¥’ PV ' Py we note that V! in (1.57) can be rewritten as

VI =T—yXpI+yXXp) ' X}

so that
PVT'P=P—yXpg(I+yXyXp) ' X}
= X [K—l oy + yK)—l] X/,
= X diag [7](]_(1 — ykj)] X}
= X3(K + yK») 7' X},
Hence

VPV Py = (XW)/ (K n yKZ)_l (X;glﬁ) (1.73)

Then we note that X }}lﬁ is the vector of block totals of the vector ¥. Since
¥ =y — O, we have

(1) v (33

4 2 2 / 2
(X4Xg) o} + X} Xpo?
= 062 (K + )/KZ)
Hence ¥'PV~! Py is equal to

—1
0, =[B — E(B)] (K + yK2> [B — E(B)] (1.74)

with B = X ;3 y being the vector of block totals.
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The second expression in (1.72) is actually the quadratic form that needs to be
minimized to obtain the RNE for © (see Section 1.4.7.1), and this is equivalent
to minimizing

01=0y X'~ P)y—X.7) (1.75)

We thus summarize: To obtain the intrablock estimator, we minimize Q1; to
obtain the interblock estimator, we minimize Q;; and to obtain the combined
estimator, we minimize Q| + Q5.

1.9.2 Case of Proper, Equireplicate Designs

‘We now consider the case with R = rI and K = k1. The intrablock NE are [see
(1.7]

(rI — %NN’) T=0
For the interblock observational equations
B =kIu + N't + error
or, absorbing u into T, that is, replacing Ju + t by T,
B = N't + error
we have the interblock NE [see (1.47)]
NN't*=NB

As we have pointed out earlier (see Section 1.8) and as is obvious from (1.72),
the combined NE are

- 1 hPS 1
[(rl—ENN>+7k(l+yk) NNi|T—Q+7k(]+yk) NB  (1.76)

The form of (1.76) shows again two things:

1. The intrablock and interblock NE are related.

2. The matrix NN’ determines the nature of the estimators, both intrablock and
interblock.
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The properties of NN’ can be exploited to make some statements about
estimable functions of treatment effects. Being real symmetric, NN’ is orthogo-
nally diagonalizable. We know that

1
(rI — ;NN’) J=0

or

NN'J =rkJ
so that one root of NN’ is rk = §,, say, with associated eigenvector (1//1) I =
&,, say. Suppose &, &,, ..., §,_; complete the full set of orthonormal eigenvec-
tors with associated eigenvalues 61, 82, ..., 8;—1. Then with

0=(E.8....&)

and

NN'E; = §;¢;

the NE are equivalent to
1 ~
o’ (rI—%NN/)00/1=0/Q 1.77)

and
O'NN'OO't*=O'NB (1.78)

respectively. If we write

v = =0t

and

respectively, where

a=(,a,....,a;) =0'Q
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and
b= (by,b2,...,b;)) = O'NB

We see then that we have both intrablock and interblock estimators of v; if §;
is not equal to O or to rk. For the component v;, only the interblock estimator
exists. If other roots are equal to rk, then the intrablock estimators for the corre-
sponding treatment parameters do not exist. Similarly, if other roots are equal to
zero, then the interblock estimators for the corresponding treatment parameters
do not exist. The treatment parameters vy, vy, ..., ;1 are necessarily treatment
contrasts. If the design is connected, thenno §; (i = 1,2, ...,¢ — 1) will equal rk.
The combined NE (1.76) are now transformed to

S 1 ~ b; .
_t - &lvi=a 4+ — =1,2,...,t) (1.79
[(r k>+k<1+yk> ’}”’ “t ity ) A7)

We know that

var(Q) = <rI - %NN/) o2

and
var(NB) = N var(B)N’
k /
=N —2(1 + yk)IN
o
e
Hence
2 - Ji
var(a) = o, diag|r — m
and

var(h) = o2 k(1 + yk)diag(s;)
So we see from (1.79) that combined estimation of the parameter vector v consists
of combining intrablock and interblock estimators of components of v, weighting
inversely as their variances.

1.10 ESTIMATION OF WEIGHTS FOR THE COMBINED ANALYSIS

The estimator for the treatment effects as given by (1.61) depends on the weights
w and w;. as can be seen from (1.58) and (1.59). If these weights were known,
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or alternatively as is apparent from (1.68), if the ratios of the interblock variance
and the intrablock variance,

w 682 +k;j Gﬂz
Pi=w = o?
] e
were known, then the solution (1.63) to the NE (1.55) would lead to best linear
unbiased estimators for estimable functions of treatment effects. Usually, how-
ever, these parameters are not known and have to be estimated from the data. If
the estimators are used instead of the unknown parameters, then the solutions to
the normal equations (1.55) lose some of their good properties. It is for this rea-
son that the properties of the combined estimator have to be examined critically,
in particular with regard to their dependence on the type of estimator for the
p;’s, and with regard to the question of how the combined estimator compares
with the intrablock estimator. Before we discuss these questions in some more
detail, we shall outline the “classical” procedure for estimating the p;. Since
this method was proposed first by Yates (1940a) we shall refer to it as the Yates
procedure or to the estimators as the Yates estimators.

1.10.1 Yates Procedure

One way to estimate w and w; is to first estimate o and aé and then use these
estimators to estimate w and w’. If the estimators are denoted by G2 and o2,
respectively, then we estimate w and w;- as

1 . 1
== 0 == i=1,2,...,b 1.80
5 YT e Y b 48
Obviously, from Table 1.1
G2 =MS(I|9,Xp, X1) (1.81)

To estimate o> we turn to Table 1.2. Under model (1.50) with covariance structure
(1.51) we find [see also (1.39)]

1
E[SS(Xpld. X)]=(b—Doy + [n—)_ r_i”izf o} (1.82)
ij
Hence it follows from (1.81) and (1.82) that
2 b—1
0p = ——T1 5 [SS(Xpl9. X:) —SSU|9, Xp, X)] (1.83)
=2
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The estimators (1.81) and (1.83) are then substituted into (1.80) to obtain w and
wi(j=1,2,...,b). If in (1.83) Eé < 0 for a given data set, we take

1
& ==
i MS(19. X4, X7)

In either case w and w’. are substituted into (1.58) and (1.59) and hence into
the solution (1.61). Also, v.:«lr(’r\\,~ —%/) is estimated by substituting w, @; and
52 into (1.62) and (1.64).

For alternative estimation procedures see Section 1.11, and for a numerical
example see Section 1.14.3.

1.10.2 Properties of Combined Estimators

As we have already pointed out, the fact that the unknown parameters in (1.61)
are replaced by their estimators will have an effect on the properties of the
estimators for treatment effects. The two properties we are concerned about here
are unbiasedness and minimum variance.

Let ¢’z be an estimable function of the treatment effects, let t = c'T be its
intrablock estimator, (o) = ¢'T its combined (Aitken) estimator with p known
(for the present discussion we shall confine ourselves to proper designs), and
t(p) = ¢'T the combined estimator when in (1.68) p is replaced by p = w/w'.

Roy and Shah (1962) have shown that for the general incomplete block design,
although the Yates procedure leads to a biased estimator for p, the estimators for
treatment contrasts obtained by the method just described are unbiased, that is,

E[t(p)l=ct

With regard to var[f(p)], it is clear that due to sampling fluctuations of o we
have

var[t(p)] < var[t(p)]

that is, the combined estimators no longer have minimum variance. The crucial
question in this context, however, is: When is var[¢ ()] < var(¢)? In other words:
When is the combined estimator more efficient than the intrablock estimator?

The answer to this question depends on several things such as (1) the true
value of p, (2) the type of estimator for p, and (3) the number of treatments and
blocks. It is therefore not surprising that so far no complete answer has been
given.

The most general result for the Yates estimator (and a somewhat larger class
of estimators) is that of Shah (1964) based upon some general results by Roy
and Shah (1962) [see also Bhattacharya (1998) for proper designs]. It is shown
there that the combined estimator for any treatment contrast in any (proper)
incomplete block design has variance smaller than that of the corresponding
intrablock estimator if p does not exceed 2, or, equivalently, if Ug < 062 / k. This
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is a condition that, if blocking is effective at all, one would not in general expect
to be satisfied. The problem therefore remains to find methods of construct-
ing estimators for p such that the combined estimator for treatment contrasts is
uniformly better than the corresponding intrablock estimator, in the sense of hav-
ing smaller variances for all values of p. For certain incomplete block designs
this goal has been achieved. We shall mention these results in the following
chapters.

The only general advice that we give at this point in conjunction with the use of
the Yates estimator is the somewhat imprecise advice to use the intrablock rather
than the combined estimator if the number of treatments is “small.” The reason
for this is that in such a situation the degrees of freedom for MS(11J, X g, X)
and MS(Xg|J, X.) are likely to be small also, which would imply that 062 and
aé, and hence p, cannot be estimated very precisely.

1.11 MAXIMUM-LIKELIHOOD TYPE ESTIMATION

In this section we discuss alternatives to the Yates procedure (see Section 1.10)
of estimating the variance components ag and 03 for the combined analy-
sis. These estimators are maximum-likelihood type estimators. This necessi-
tates the assumption of normality, which is not in agreement with our under-
lying philosophy of finite population randomization analysis. The reason for
discussing them, however, is the fact that they can easily be implemented in
existing software, in particular SAS PROC MIXED (SAS, 1999-2000) (see
Section 1.14).

1.11.1 Maximum-Likelihood Estimation

It is convenient to rewrite model (1.49) with its covariance structure (1.51) in
matrix notation as follows:

y=pI+X. v+ XgB+e
=Xa+UB+e (1.84)

where Xa represents the fixed part, with X = (3 X;), o’ = (u, t/), and UB + e
represents the random part. Thus

E(y) = Xa
and
var(y) = UU'0j + I,0;

=Vo? (1.85)
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with V =yUU’' + 1, and y = og /o2 [see also (1.53), (1.54)]. We then assume
that

y ~ Ny(Xa, Vo) (1.86)

that is, y follows as a multivariate normal distribution (see 1.4.17.1).
The logarithm of the likelihood function for y of (1.86) is then given by

A=—1nlogm — no? — L log|lV|—L(y — X&)'V'(y — Xe) /02 (1.87)

Hartley and Rao (1967) show that the maximum-likelihood (ML) estimator of e,
y, and aez are obtained by solving the following equations:

1
X'V ly—X'V'Xa)=0 (1.88)
o3

e

1 1
——u(V'OU)+ —(y - Xa)V'UU'V 1 (By — X&) =
2 20}

n
- Xa) V' (y — Xa) =

202 207 (y YV(y )
where tr(A) represents the trace of the matrix A.

The basic feature of this method is that the fixed effects and the variance com-
ponents associated with the random effects are estimated simultaneously in an
iterative procedure. We shall not go into the details of the numerical implemen-

tation (see, e.g., Hemmerle and Hartley, 1973), but refer to the example given in
Section 1.14.4 using SAS.

1.11.2 Restricted Maximum-Likelihood Estimation

Specifically for the estimation of weights for the purpose of recovery of interblock
information, Patterson and Thompson (1971) introduced a modified maximum-
likelihood procedure. The basic idea is to obtain estimators for the variance
components that are free of the fixed effects in the sense that the likelihood does
not contain the fixed effect. Operationally this is accomplished by dividing the
likelihood function (1.87) into two parts, one being based on treatment contrasts
and the other being based on error contrasts, that is, contrasts with expected value
zero. Maximizing this second part will lead to estimates of functions of Ué and

oez. Because of the procedure employed, these estimates are by some referred
to as residual maximum-likelihood estimates (REML), by others as restricted
maximum likelihood estimates (REML). The latter name is derived from the
fact that maximizing the part of the likelihood free of the fixed effects can be
thought of as maximizing the likelihood over a restricted parameter set, an idea
first proposed by Thompson (1962) for random effects models and generalized
for the general linear mixed model by Corbeil and Searle (1976), based on the
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work by Patterson and Thompson (1971). We shall give below a brief outline of
the basic idea of REML estimation following Corbeil and Searle (1976).

Consider model (1.84) and assume that the observations are ordered by treat-
ments, where the ith treatment is replicated r; times (i = 1,2, ...,¢). Then the
matrix X can simply be written as

t
X = . =YY", (1.89)
: i=1
0 7, |

t
To separate the log-likelihood function (1.87) into the two parts mentioned above,
we employ the transformation (as proposed by Patterson and Thompson, 1971)

YIS:VTX] (1.90)
where

S=I-XX'X)"'x

t
1
_y (1 - _9,,.9;_) (1.91)
i=1 L

is symmetric and idempotent. Furthermore, SX = 0, and hence Sy is distributed
N(0, SV So?) independently of X'V ~!y.

It follows from (1.91) that S is singular. Hence, instead of S we shall use
in (1.90) a matrix, T say, which is derived from S by deleting its rith, (r; +
r)th, (ry +ro + r3)th, ..., (ry +r2 4 - - - 4 ry)th rows, thereby reducing ann x n
matrix to an (n — t) X n matrix (with n — ¢ representing the number of linearly
independent error contrasts). More explicitly, we can write T as

T

t
+ . 1
Z |:Ir,~—1 : Or,-—l __gri_lg;ii|
i=1 i

t

+ 1 . 1
E |:Iri_1 - — gri—l j;ifl L= = jri—l] (1.92)
i=1 Ti i

1

It follows from (1.89) and (1.92) that

TX =0 (1.93)
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Considering now the transformation

T
=lxv)?

it follows from (1.86) and (1.93) that

0 TVT o} 0
NV M xvixe) U 0 xvixe: (199

Clearly, the likelihood function of z consists of two parts, one for 7'y, which
is free of fixed effects, and one for X'V !y pertaining to the fixed effects. In
particular, the log likelihood of Ty then is

A = 2(n — Dlog 21 — 3(n — n)log o

—Llog |TVT' |- Ly T/ (VT y/o? (1.95)

The REML estimators for y = cré /o2 and o2 are obtained by solving the
equations

A
My (1.96)
ay
A
=0 (1.97)
do;

The resulting equations have no analytic solutions and have to be solved itera-
tively. We denote the solutions, that is, estimates by ¥ and 53’ respectively.

The fixed effects, represented by « in (1.84), can be estimated by considering
the log likelihood of X’V ~!y, which is given by

Ay = —%tlogZTr - %t log %2
—3log | X'V7IX|

—2 - X)'VIXX'VIX)TIX'V iy — X /o2 (1.98)
Solving

oA
M _,
oo

leads to the estimator

R)

=X'vIix)“'x'vly (1.99)
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This, of course, assumes that V' is known. Since it is not, we substitute ¥ from
(1.96) and (1.97) for y in (1.99) and obtain the estimate

-1 -1

a=XV X)'X'V 'y (1.100)
where V denotes V with y replaced by ¥.
An approximate estimate of the variance of & is given by

Vi@ = X'V x) 7152 (1.101)

For a numerical example using REML see Section 1.14.4.

1.12 EFFICIENCY FACTOR OF AN INCOMPLETE BLOCK DESIGN

We have seen in Sections 1.9.3 and 1.10.2.9, for example, how we can compare
different error control designs with each other by using the notion of relative
efficiency. In this case, we compare two error control designs after we have per-
formed the experiment using a particular error control design. For example, after
we have used an RCBD we might ask: How would we have done with a corre-
sponding CRD? In other cases, however, we may want to compare error control
designs before we begin an experiment. In particular, we may want to compare
an incomplete block design (IBD) with either a CRD or an RCBD, or we may
want to compare competing IBDs with each other. For this purpose we shall use
a quantity that is referred to as the efficiency factor of the IBD. It compares,
apart from the residual variance, 062, the average variance of simple treatment
comparisons for the two competing designs.

1.12.1 Average Variance for Treatment Comparisons for an IBD

Let us now consider

av. var(z, — ) (1.102)
ii!

for a connected IBD. We know, of course, that (1.102) is a function of C~, a
generalized inverse of the C matrix. Suppose now that all the block sizes are
equal to k. Then we have

1
C=R—ENN/
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and we know that C has one zero root, d; = 0 say, with associated normalized

eigenvector &, = (1/4/1)J. Let the other roots be dy, da, . . ., d;— with associated
orthonormal eigenvectors &, &,,...,&,_;. Then

EC=diE,  (=12..1-1)

and from

ECt=dé&iT
it follows that

— 1

it = d—i’s‘; 0
and

e~ 1 / 2 1 2
var(§;T) = d_izfiC§iUg = d—i% (1.103)

Using the fact that &, = (1/4/1)J, that &, &,, ..., &,_, are mutually perpendic-
ular and perpendicular to &, and that

Z £ & =1
i=1

we have with 2’ = (21,22, ..., 2;)
t—1 t—1
> &t =7 (Z & Ei) z
i1 i=1

=7/(I - & &)z

=) (z; —2)° (1.104)

It is also easy to verify that

1 o2 A2
TRy i;(z, @)?=—7) -2 (1.105)
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Taking z; = T; — 1;, substituting into (1.105) using (1.104) and then taking expec-
tations and using (1.103), yields for (1.102)

t—1

-~ 2 2
av. var(t; — ;) = 1 o (1.106)

i#i!

-
Ay

1

i

1.12.2 Definition of Efficiency Factor

It is natural in attempting to evaluate the efficiency of an IBD to compare it
with a CRD since this is always a possible competing design. For a CRD with
r; replications for treatment 7, the average variance of treatment differences is

P 1 2 2 5
av.var(t; — ;) =av. |—+—) o =—o0 1.107
i (Ti i") i (Vi rl/) ¢(CRD) n ¢(CRD) ( )

where 7, is the harmonic mean of the r;, that is,
1 1 1
A D
1

We shall digress here for a moment and show that the best CRD is the one
with all r; = r, and that is the design with which we shall compare the IBD. For
this and later derivations we need the “old” result that the harmonic mean of a
set of positive numbers is not greater than the arithmetic mean. It seems useful
to give an elementary proof of this.

Let the set of numbers be {x;,i = 1,2, ..., m}. Consider the quadratic

m

q(B) = ; (ﬁ—ﬂ%)z

Clearly g(B) > 0 for all 8. The minimizing value of 8 is obtained by using least
squares which gives the NE

> B

i

The minimum sum of squares is

Hence
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or

or

> 1

el

with equality if and only if x; = x for all i.

This result implies that the best CRD will have r; = r and r = n/t where n is
the total numbers of EUs. This can happen, of course, only if n/¢ is an integer.
If n/t is not an integer so that n = pt +¢q (0 < g < t), then the best CRD will
have ¢ treatments replicated p + 1 times.

Consider now the case of an IBD with b blocks of size k and r; replications
for the ith treatment. Then the total number of EUs is n = bk = )_ r;. Suppose
also that n = rt, so that an equireplicate CRD is possible. The average variance
for such a design is 2%2(CRD) /r, whereas the average variance for the IBD is

2032(IBD) /c where, as shown in (1.106), ¢ is the harmonic mean of the positive
eigenvalues of (R —(1/k) NN’ ) (see Kempthorne, 1956). It is natural to write
¢ = rE, so that with aez(CRD) = aez(IBD) we have

av. var(7; — T;/)CRD 2/r

T~ TCRD _ _ (1.108)
av. var(t; — 7;)ip  2/rE

The quantity E thus defined is called the efficiency factor of the IBD. It is
clearly a numerical property of the treatment-block configuration only and hence
a characteristic of a given IBD.

We add the following remarks:

1. The same definition of E in (1.108) could have been obtained by using the
average variance for an RCBD with b = r blocks instead of the average
variance for an equireplicate CRD assuming that oez(RCBD) = GE(IBD).

2. Although E is a useful quantity to compare designs, it does not, of course,
give the full story. It compares average variances only under the assump-
tion of equality of residual variances, whereas we typically expect UE(IBD) <

Gez(CRD) and O-ez(IBD) < Uez(RCBD)'

3. The efficiency factor pertains only to the intrablock analysis and ignores the
interblock information.

4. Each IBD will have associated with it an efficiency factor E. In order to
compare two competing IBDs with the same n and with efficiency factors
E| and E,, respectively, we would typically choose the one with the higher
E value.
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1.12.3 Upper Bound for the Efficiency Factor

Using again the fact that the harmonic mean of positive numbers is not greater
than the arithmetic mean, we have

t—1

1
Q—Da§§:¢=ﬂmw(R—zNN>

i=1

n?, (1.109)

The largest Value of the right-hand side of (1.109) is obtained for the smallest
value of Z . Since n;; is one of the numbers 0, 1,2, ..., k, the minimum

value of " n? ni w111 be achieved when n of the n;;’s are 1 and the remaining are
zero. Since then n? i =i and Z nij = r;, it follows from (1.109) that

U—Dc<§:n }:,=k;15

i

or, since c =rkE,

k — Dt/(t — Dk

E <
- r/r
But since 17 = n = tr, we have finally
k— 1t
< ( ) (1.110)
t— Dk
Since for an IBD k < ¢, we can write further
k— Dt
< ( ) (1.111)
(t — 1)k

We shall see later (see Chapter 2, also Section 1.9.8.2) that the upper bound given
in (1.110) will be achieved for the balanced incomplete block design.

Sharper upper bounds for certain classes of IBDs are given by Jacroux (1984),
Jarrett (1983), Paterson (1983), and Tjur (1990); see also John and Williams
(1995).
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1.13 OPTIMAL DESIGNS

We have argued in the previous section that in order to compare two designs, d;
and d; say, we may consider their efficiency factors E; and E», respectively, and
choose the design with the higher efficiency factor. In particular, if the efficiency
factor of one of those designs achieves the upper bound for that class of designs,
we would consider that design to be optimal in some sense. Such considerations
have led to the development of the notion of optimal designs and to various
criteria for optimality. We shall describe briefly some of these criteria.

1.13.1 Information Function

Initial contributions to the formal discussion of optimal designs were made by
Wald (1943) and Ehrenfeld (1953). Extending their results, Kiefer (1958) pro-
vided a systematic account of different optimality criteria. These can be discussed
either in terms of maximizing a suitable function of the information matrix or
minimizing a corresponding function of the dispersion matrix of a maximal set
of orthonormal treatment contrast estimates.

In the context of our discussion the information matrix is given by C in (1.9).
Let P't represent a set of + — 1 orthonormal contrasts of the treatment effects.
Using intrablock information from a connected design d, the estimator for P’z is
given by P’'T with T from (1.18). The dispersion matrix for P'T is then given by

Viol=P'C;Ps?=(P'CqP) '} (1.112)

[see (1.20)], where C; and hence C, refer to the specific design d used. The
information matrix for the design d is then defined as

c;=@c,;p)! (1.113)

which shows, of course, the connection between C; and Cy.
An information function or optimality criterion is then a real-valued function
¢ that has the following properties (see Pukelsheim, 1993):

1. Function ¢ is a monotonic function; that is, an information matrix C* is at
least as good as another information matrix D* if ¢(C*) > ¢(D*);

2. Function ¢ is a concave function, that is, ¢[(l —a) C* +aD*] = (1 —
a)p(C*) +a ¢p(D*) for a € (0, 1);

3. Function ¢ is positively homogeneous, that is, ¢ (§C*) = § ¢ (C™).

Condition (2) says that information cannot be increased by interpolation. And
condition (3) says that even if we define the information matrix to be directly
proportional to the number of observations, 7, and inversely proportional to 03,
that is, the information matrix is of the form (n /o*ez)C*, we need to consider
only C*.
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Let D be the set of competing designs. The problem of finding an optimal
design d in D can then be reduced to finding a design that maximizes ¢(C7)
over d in D (see Cheng, 1996). Such a design is called ¢-optimal.

As indicated above, an alternative, and historically original, approach to find-
ing an optimal design is to consider minimization of some convex and non-
increasing function @ of dispersion matrices, as indicated by the relationship
between (1.112) and (1.113). Accordingly, we shall then talk about a ®-optimal
design.

1.13.2 Optimality Criteria

Several optimality criteria, that is, several functions ¢ or ® have been considered
for studying optimal designs. These criteria can be expressed conveniently in
terms of the eigenvalues of C; or, equivalently, the nonzero eigenvalues of Cg,

say (dl = Hd2 =+ = Md,r—1-
The most commonly used optimality criteria are D-, A-, and E-optimality,
which maximize the following information functions:

1. D-optimality: Determinant criterion or
-1
¢(C) =[] rai
i=1

2. A-optimality: Average variance criterion or

1 t—1
$(C)) = (m Zu;})

i=1

-1

3. E-optimality: Smallest eigenvalue criterion or

¢ (CY) = pa,i—1

In terms of the corresponding & function, these optimality criteria can be
expressed as minimizing

t—1

L oV =detVy=]] ng' (1.114)
i=1
t—1

2. oV =uVi=) uy (1.115)
i=1

3.  ®(V;) = maximum eigenvalue of V; = “;}—1 (1.116)
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The statistical meaning of these criteria is that minimizing (1.114) minimizes
the generalized variance of P'T, (1.115) minimizes the average variance of the
set P'T, and (1.116) minimizes the maximum variance of a single normalized
contrast.

1.13.3 Optimal Symmetric Designs

There exist special classes of designs for which all the nonzero eigenvalues of
the information matrix C, are equal. Such designs are called symmetric designs.
Examples of symmetric designs are balanced incomplete block designs (Chapter
2), Latin square designs (Section 1.10.2), Youden squares (Section 1.10.5), and so
forth. The information matrix of a symmetric design is of the form al + b 39,
which is referred to as a completely symmetric matrix.

In general, if a design is ®; optimal, it may not be ®, optimal for two
different optimality criteria ®; and ®;. However, for symmetric designs Kiefer
(1958) showed that they are A-, D-, and E-optimal. This led to the definition of
universal optimality (Kiefer, 1975a) or Kiefer optimality (Pukelsheim, 1993).

Definition 1.1 (Kiefer, 1975a) Let B; ¢ be the set of all # x ¢ nonnegative
definite matrices with zero row and column sums, and let ® be a real-valued
function on B, o such that

(a) P is convex,
(b) ®(8C) is nonincreasing in the scalar § > 0, and
(¢) @ is invariant under each simultaneous permutation of rows and columns.

A design d* is called universally optimal in D if d* minimizes ®(C) for every
@ satisfying conditions (a), (b), and (c). O

To help identify universally optimal designs we have the following fundamen-
tal theorem.

Theorem 1.2 (Kiefer, 1975a) Suppose a class C = {Cy,d € D} of matri-
ces in B; o contains a C g4+ for which

(a) Cg4= is completely symmetric, and
(b) tr Cyx = maxgep tr Cy,

Then d* is universally optimal in D.

1.13.4 Optimality and Research

We have just discussed the notion of design optimality and some of the avail-
able optimality criteria. Other criteria have been introduced in other contexts, in
particular, in the area of regression or response surface designs (see, e.g., Atkin-
son and Donev, 1992). And thus optimality has become a powerful concept, but



OPTIMAL DESIGNS 51

we need to remember that, although it has statistical meaning, it is a mathemat-
ical concept. It has a definite and restricted connotation and it may be difficult
to apply it in the larger context of designing a “very good” experiment for a
researcher who has a scientific or technological problem.

An immediate difficulty is that there is no simple classification of real prob-
lems. There are discovery problems, for example, finding the point in factor
space at which yield is maximum. There are exploration problems, for example,
to obtain a “good” representation of the nature of the dependence of a noisy
dependent variable on a given set of independent variables. There is the math-
ematical problem in that same context that the dependence is known to be of
a definite functional form with some specified but unknown parameters, which
are to be determined from observations at some locations in the factor space.
A common problem in technology and some scientific areas is what is called
screening of factors. It is useful and important to think about this overall picture
because there is a tendency to interpret the term “optimality of design” in a very
limited context, a context that is very valuable, but misleading, in the sphere of
total human investigation.

The moral of the situation is multifold: (1) Researchers have to make a choice
about problems and often work on unrealistic ones as the closest workable approx-
imation to real live problems and should not be criticized for so doing; (2) almost
any optimality problem is to some extent artificial and limited because criteria
of value of designs must be introduced, and in almost any investigative situation
it is difficult to map the possible designs valuewise into the real line; and (3)
a solution to a mathematically formulated problem may have limited value, so
to promote one design that is optimal only with respect to a particular criterion
of value, C1, and to declare another design to be of poor value because it is
not optimal may be unfair because that design may be better with respect to a
different criterion of value, C; say. And for one researcher C; may be irrelevant,
whereas C, may be more appropriate.

Considerations of optimality involve, of course, comparison of designs. But
how does one do this when error reduction needs to be taken into account?
For example, how does one compare the randomized complete block and the
Latin square design? Or how does one compare designs when different aspects
of statistical inference are involved? This was at the basis of heated discussion
between Neyman, who was interested in hypothesis testing, and Fisher and Yates,
who were interested in precision of estimation (see Neyman, Iwaszkiewicz, and
Kolodziejczyk, 1935).

Informal optimality considerations early on gave probably rise to the heuristic
(or perhaps mathematical) idea of symmetry and balancedness, and we shall
encounter these characteristics throughout much of the book. Even though these
properties do not always guarantee optimality in many cases they lead to near
optimality. And from a practical point of view that may be good enough. On the
other hand, if a balanced design is an optimal design, but we cannot use that
design because of practical constraints and need to use instead a near-balanced
design, then we have a way to evaluate the efficiency of the design we are going
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to use. For example, we know that a balanced incomplete block design (Chapter
2) is optimal. However, we cannot use the design and need to use a partially
balanced incomplete block design (Chapter 4). We may then choose, if possible,
a design with efficiency “close” to that of the optimal design.

Thus, the insistence on an optimal design may be frustrating for the user
because practical reasons may dictate otherwise and because an experimenter
rarely has one criterion of value. Rather, he has many criteria of value and is
in a mathematical programming situation in which he wishes the design to have
“reasonable” efficiencies with respect to criteria Cp, C3, ..., Ckx. The dilemma is
often that the design that is optimal with respect to C; is completely nonoptimal
with respect to Cs.

In summary, mathematical ideals and requirements of empirical science do
not always meet, but it is worth trying to find common ground. In the end, prac-
tical considerations may dictate compromises in many instances of experimental
research.

1.14 COMPUTATIONAL PROCEDURES

In this section we shall discuss some computational aspects of performing the
intrablock analysis and the combined intra- and interblock analysis, mainly in the
context of SAS procedures (SAS, 2000). For the intrablock analysis (see Section
1.3) we shall use SAS PROC GLM, and for the combined analysis (see Section
1.8) we shall use SAS PROC MIXED.

1.14.1 Intrablock Analysis Using SAS PROC GLM

Consider the following data set IBD (Table 1.7) with r = 4 treatments in b =5
blocks of size k = 2, such that treatments 1 and 4 are replicated 3 times, and
treatments 2 and 3 are replicated 2 times. An example might be 5 pairs of
identical twins representing the blocks, each twin being an experimental unit to
whom different drugs are assigned according to the given plan.

The SAS PROC GLM input statements for the intrablock analysis and the
results are given in Table 1.8. We shall comment briefly on some aspects of the
SAS output (see Table 1.8):

1. The coefficient matrix as well as the right-hand side (RHS) of (1.5) are given
under the heading “The X'X Matrix.”

2. A generalized inverse for the coefficient matrix X’X is obtained by first
eliminating the rows and columns for 85 and 74 from X’X as a consequence
of imposing the conditions 85 =0 and 7; = 0 (we shall denote the SAS
solutions to the NE by B* and 7*). The reduced matrix is of full rank and
thus can be inverted. The inverted matrix is restored to the original dimension
by inserting zeros in the rows and columns corresponding to 85 and t;. This
matrix, together with 332 =MS(Error) from the ANOVA table, can be used to
find the standard errors for the estimators of estimable functions for treatment
effects.
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Table 1.7 Data for Incomplete Block Design (t=4,b=5,k=2,r1 =3,
r2=r3=2,r4=3)

options pageno=1 nodate;

data IBD;

input TRT BLOCK Y @@;
datalines;

1110 2 1 12

32 23 4 2 28

1 3 13 3 3 27

2 4 14 4 4 20

1 515 4 5 32

run;

proc print data=IBD;

titlel 'TABLE 1.7';

title2 'DATA FOR INCOMPLETE BLOCK DESIGN';
title3 '(t=4, b=5, k=2, rl=3, r2=r3=2, r4=3)"';
run;

Obs TRT BLOCK Y

10
12
23
28
13
27
14
20
15
32

WO JO0 U WN R
BHE BN W R D WN R
Gud d WwwhhNDR R

=
o

3. The general form of an estimable function for treatment effects is given by
LTt + L8ty + L9t3 — (L7+ L8+ L9ty

for any values of L7, L8, and L9; that is, only contrasts are estimable.

4. The general form of estimable functions can also be used to identify the
solutions to the NE by putting sequentially (and in order) each Li = 1 and
the remaining Lj = 0, (j # i). For example, the “Estimate” of “Intercept”
is actually the estimate of u + s+ t4; that is, L1 =1,Lj =0, (j # 1).
Expressed in terms of the SAS solutions we thus have

1=t B+ 1 =31.125
Another example, putting L7 = 1, Lj = 0(j # 7), yields

=1 -1 =-1525
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Table 1.8 Intrablock Analysis with Post-hoc Comparisons

proc glm data=IBD;
class BLOCK TRT;
model Y = BLOCK TRT/XPX inverse solution e;

lsmeans TRT/stderr e;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;
estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0O;

titlel 'TABLE 1.8';

title2 'INTRA-BLOCK ANALYSIS';

title3 'WITH POST-HOC COMPARISONS';

run;
The GLM Procedure
Class Level Information

Class Levels Values

BLOCK 5 12345

TRT 4 12 3 4

Number of observations 10
The X'X Matrix
Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 10 2 2 2 2 2
BLOCK 1 2 2 0 0 0 0
BLOCK 2 2 0 2 0 0 0
BLOCK 3 2 0 0 2 0 0
BLOCK 4 2 0 0 0 2 0
BLOCK 5 2 0 0 0 0 2
TRT 1 3 1 0 1 0 1
TRT 2 2 1 0 0 1 0
TRT 3 2 0 1 1 0 0
TRT 4 3 0 1 0 1 1
Y 194 22 51 40 34 47
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Table 1.8 (Continued)

The X’'X Matrix

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept 3 2 2 3 194
BLOCK 1 1 1 0 0 22
BLOCK 2 0 0 1 1 51
BLOCK 3 1 0 1 0 40
BLOCK 4 0 1 0 1 34
BLOCK 5 1 0 0 1 47
TRT 1 3 0 0 0 38
TRT 2 0 2 0 0 26
TRT 3 0 0 2 0 50
TRT 4 0 0 0 3 80
Y 38 26 50 80 4300

X’'X Generalized Inverse (g2)

Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 0.75 -0.375 -0.625 -0.375 -0.625 0
BLOCK 1 -0.375 1.3125 0.4375 0.5625 0.6875 0
BLOCK 2 -0.625 0.4375 1.3125 0.6875 0.5625 0
BLOCK 3 -0.375 0.5625 0.6875 1.3125 0.4375 0
BLOCK 4 -0.625 0.6875 0.5625 0.4375 1.3125 0
BLOCK 5 0 0 0 0 0 0
TRT 1 -0.5 -0.25 0.25 -0.25 0.25 0
TRT 2 -0.25 -0.625 0.125 -0.125 -0.375 0
TRT 3 -0.25 -0.125 -0.375 -0.625 0.125 0
TRT 4 0 0 0 0 0 0
Y 31.125 -7.6875 -4.0625 -1.9375 -9.3125 0

X'X Generalized Inverse (g2)

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept -0.5 -0.25 -0.25 0 31.125
BLOCK 1 -0.25 -0.625 -0.125 0 -7.6875
BLOCK 2 0.25 0.125 -0.375 0 -4.0625
BLOCK 3 -0.25 -0.125 -0.625 0 -1.9375
BLOCK 4 0.25 -0.375 0.125 0 -9.3125
BLOCK 5 0 0 0 0 0
TRT 1 1 0.5 0.5 0 -15.25
TRT 2 0.5 1.25 0.25 0 -9.625
TRT 3 0.5 0.25 1.25 0 -3.125
TRT 4 0 0 0 0 0
Y -15.25 -9.625 -3.125 0 18.1875
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Table 1.8 (Continued)

GENERAL INCOMPLETE BLOCK DESIGN

General Form of Estimable Functions

Effect

Intercept
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

TRT
TRT
TRT
TRT

u o W N R

WP

Coefficients

L1
L2
L3
L4
L5

L1-L2-L3-L4-L5

L7
L8
L9
L1-L7-L8-L9

The GLM Procedure

Dependent Variable: Y

Source

Model

Error

Corrected Total

Source

BLOCK
TRT

Source

BLOCK
TRT

DF Sum of

Squares Mean Square

7 518.2125000 74.0303571
2 18.1875000 9.0937500
9 536.4000000
R-Square Coeff Var Root MSE
0.966093 15.54425 3.015585
DF Type I SS Mean Square
4 261.4000000 65.3500000
3 256.8125000 85.6041667
DF Type III SS Mean Square
4 79.1458333 19.7864583
3 256.8125000 85.6041667

F Value

8.

Y Mean

19.40000

F Value

7.19
9.41

F Value

2.18
9.41

14

Pr > F

0.1137

Pr > F

0.1259
0.0975

Pr > F

0.3388
0.0975
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Table 1.8 (Continued)

57

Parameter

Intercept
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
TRT

TRT

TRT

TRT

31.
-7.
-4
-1
-9.

-15.
-9.
-3

B W NP O wN R
o

.06250000
.93750000

.00000000

.12500000
.00000000

Estimate

12500000

68750000

31250000

25000000
62500000

W wwwowowwwww

Standard Error

.61157280
.45478608
.45478608
.45478608
.45478608

W w wwhN

3.01558452
.37152599
3.37152599

w

t Value

11.92
-2.23
-1.18
-0.56
-2.70

-5.06
-2.85
-0.93

Pr > |t

.0070
.1560
.3607
.6314
.1145

o O O O o

.0369
.1039
0.4518

o O

NOTE: The X'X matrix has been found to be singular, and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B!
uniquely estimable.
Least Squares Means
Coefficients for TRT Least Square Means
TRT Level
Effect 1 2 3 4
Intercept 1 1 1 1
BLOCK 1 0.2 0.2 0.2 0.2
BLOCK 2 0.2 0.2 0.2 0.2
BLOCK 3 0.2 0.2 0.2 0.2
BLOCK 4 0.2 0.2 0.2 0.2
BLOCK 5 0.2 0.2 0.2 0.2
TRT 1 1 0 0 0
TRT 2 0 1 0 0
TRT 3 0 0 1 0
TRT 4 0 0 0 1
TRT Y LSMEAN Standard Error Pr > |t
1 11.2750000 1.9774510 0.0294
2 16.9000000 2.6632921 0.0239
3 23.4000000 2.6632921 0.0127
4 26.5250000 1.9774510 0.0055
Dependent Variable: Y
Parameter Estimate Standard Error t Value
TRT1 - (TRT2+TRT3)/2 -8.8750000 2.61157280 -3.40
TRT1 - TRT4 -15.2500000 3.01558452 -5.06
TRT2 - TRT3 -6.5000000 4.26468053 -1.52

are not

Pr > |t

0.0768
0.0369
0.2670
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5. The top part of the ANOVA table provides the partition
SS(MODEL) + SS(ERROR) = SS(TOTAL)
and from that produces
MS(ERROR) = &2 = 9.094

6. The lower part of the ANOVA table provides type I SS (sequential SS for
ordered model; see 1.4.7.2) and type III SS (partial SS). From the latter we
obtain the P value (.0975) for the test of

Hy 5i=n=---=17
versus
Hi: not all 7; are the same

We stress that the P value for blocks should be ignored (see 1.9.2).

7. The e-option of LSMEANS gives the coefficients for the solution vector to
compute the treatment least squares means, for example,

LSMEAN(TRT 1)=p*+ 2 gf + 7}
= 31.125 + .2(—7.6875 — 4.0625 — 1.9375

—9.312540) — 15.25
=11.275

The standard error is computed by making use of the G inverse (see item 2)
and MS(ERROR).

8. The ¢ tests are performed for the prespecified contrasts among the least-
squares means; for example,

TRT2-TRT3 = 7; — 73 = 9.625+3.125=— 6.5

se(ty —t¥) = [(1.25 4 1.25 — 2 x .25) x 9.094]"/% = 4.265

— 65
t=—— =-152
4.265

1.14.2 Intrablock Analysis Using the Absorb Option in SAS PROC GLM

A computational method as described in Section 1.3 using the RNE can be imple-
mented in SAS PROC GLM by using the ABSORB OPTION. This is illustrated
in Table 1.9.
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Table 1.9 Intra Block Analysis Using Reduced Normal Equations

With Post-hoc Comparisons

59

proc glm data=IBD;
class BLOCK TRT;
absorb BLOCK;

model Y = TRT/XPX inverse solution e;
estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -. 0;
estimate 'TRT1 - TRT4' TRT 1 0 0 -1;
estimate 'TRT2 - TRT3' TRT 0 1 -1 O;
titlel 'TABLE 1.9';
title2 'INTRA-BLOCK ANALYSIS USING REDUCED NORMAL EQUATIONS';
title3 'WITH POST-HOC COMPARISONS';
run;
The GLM Procedure
Class Level Information
Class Levels Values
BLOCK 5 12345
TRT 4 123 4
Number of observations 10
The X'X Matrix
TRT 1 TRT 2 TRT 3 TRT 4 Y
TRT 1 1.5 -0.5 -0.5 -0.5 -16.5
TRT 2 -0.5 1 0 -0.5 -2
TRT 3 -0.5 0 1 -0.5 4.5
TRT 4 -0.5 -0.5 -0.5 1.5 14
Y -16.5 -2 .5 14 275
The GLM Procedure
X'X Generalized Inverse (g2)
TRT 1 TRT 2 TRT 3 TRT 4 Y
TRT 1 1 0.5 0.5 0 -15.25
TRT 2 5 1.25 0.25 0 -9.625
TRT 3 0.5 0.25 1.25 0 -3.125
TRT 4 0 0 0 0 0
Y -15.25 -9.625 -3.125 0 18.1875

Given that the coefficients for all absorbed effects

General Form of Estimable Functions

are zero
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Table 1.9 (Continued)

GENERAL INCOMPLETE BLOCK DESIGN

Effect

TRT 1

TRT 2

TRT 3

TRT 4
Dependent Variable: Y

Sum of
Source DF Squares
Model 7 518.2125000
Error 2 18.1875000
Corrected Total 9 536.4000000
R-Square Coeff Var
0.966093 15.54425

Source DF Type I SS
BLOCK 4 261.4000000
TRT 3 256.8125000
Source DF Type III SS
TRT 3 256.8125000
Parameter Estimate
TRT1 - (TRT2+TRT3) /2 -8.8750000
TRT1 - TRT4 -15.2500000
TRT2 - TRT3 -6.5000000
Parameter Estimate
TRT 1 -15.25000000 B
TRT 2 -9.62500000 B
TRT 3 -3.12500000 B
TRT 4 0.00000000 B

NOTE: The X'X matrix has been found to be singular,

Coefficients

L1
L2
L3
-L1-L2-L3

Mean Square F Value Pr > F
74.0303571 8.14 0.1137
9.0937500
Root MSE Y Mean
3.015585 19.40000
Mean Square F Value Pr > F
65.3500000 7.19 0.1259
85.6041667 9.41 0.0975
Mean Square F Value Pr > F
85.6041667 9.41 0.0975
Standard
Error Value Pr > |t
2.61157280 -3.40 0.0768
3.01558452 -5.06 0.0369
4.26468053 -1.52 0.2670
Standard
Error Value Pr > |t
3.01558452 -5.06 0.0369
3.37152599 -2.85 0.1039
3.37152599 -0.93 0.4518

and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter

uniquely estimable.

B!

are not
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We make the following comments about the SAS output:

1. The X’X matrix is now the C-matrix of (1.9).
2. The X’'X generalized inverse is obtained by the SAS convention of setting
7, = 0. This g inverse is therefore different from C_1 of (1.16).

3. The ANOVA table provides the same information as in Table 1.8, except that
it does not give solutions for the intercept and blocks. Hence, this analysis
cannot be used to obtain treatment least-squares means and their standard
error.

1.14.3 Combined Intra- and Interblock Analysis Using the
Yates Procedure

Using SAS PROC VARCOMP illustrates the estimation of aé according to the
method described in Section 1.10.1. The result is presented in Table 1.10. The
option type I produces Table 1.2 with

E[MS(BLOCK)] = E [MS(X g9, XT)]

=~2

as given in (1.82). This yields 33 =9.09 (as in Table 1.8) and 5= 7.13.
. 9.09+4+2x17.13 . .
Substituting p = —7; 09X — 2.57 into (1.60) we obtain
2.0814 —-0.3062 —0.3062 —0.3062
A —0.3062 1.3877 0.0000 —0.3062
— | -0.3062 0.0000 1.3877 —0.3062
—0.3062 —0.3062 —0.3062 2.0814
and
0.541654 0.146619 0.146619 0.122823
71—1 1 0.146619 0.785320 0.064704 0.146619
—10.146619 0.064704 0.785320 0.146619
0.122823 0.146619 0.146619 0.541654
and
4.6242
~ 8.8528
P=11358

39.5816



(L¥1)0 +

SL€60°6 (I011H) TN
LY8CT L (M1Dor1g) 1en

93 WTI3sH jusuodwo) SDUBTICA

sojewTasd T =dAL

00000%"9¢€S
(T0I17) TN 0SLE€60°6 00SL8T " 8T
(MDo1d) Iepa §°T + (IOIIH) Iep 8G9%98L 6T €e8SYT 6L
(MID0T1d) TeA L999°0 + (IOIIH)IeA 99995¢€°9¥%T L99990 6¢¥
axenbg uespy poioadxH oxenbg uesp soaxenbs
Jo wns

ooueTIep JO sTIsATeuy T odAL
X :9Tgetaepn juspuadsq

0T SUOT3IeAISSCO JO IJI=aqunN

v et i LIL
svect S 20014
senTea SToAST sse1d

UOT3eWwIOJUI TSAST SSETD

2INpPSNOId UOTIewIlsH sjusuodwo) SDOUBRTIBA

™M ¢ N O

12101l PS31D8II0D
I0IIH

J0071d

LY.L

20aIn0s

‘unx

¢ HYNAED0¥d SHIVA HHIL ONISN., €9T3T3
{1 LNENOdWOD HONVIYVA MDOTd 40 NOILVWILSH, Z9T3Ta

‘00T T ETdYL, TST3T3

{T=POXTI/DO0TE LML = X Topouw

L¥L MD01d sseTd

!TodA3=poyzswu ggIi=e3jep dwooniea doxd

Inpadoid sajex Ay} Surs) juduoduwo)) duBLIBA NI0[( Jo uonewnsy (LT AqBL

62



COMPUTATIONAL PROCEDURES 63

We then obtain

11.9097
14.8659
24.4379
26.5510

We note that the elements of 7 are actually the treatment least-squares means.
Their estimated Varianlces and the estimated variances for the treatment contrasts
are obtained from A = x 9.09 (see Tables 1.13 and 1.14).

1.14.4 Combined Intra- and Interblock Analysis Using SAS
PROC MIXED

We illustrate here the numerical implementation of the ML and REML proce-
dures as described in Sections 1.11.1 and 1.11.2, respectively, using SAS PROC
MIXED. The results of the ML estimation are given in Table 1.11.

It takes four interations to obtain the solutions, yielding 53 = 7.45 and 322 =
4.14 and hence ¥ = 1.80 (Notice that these are quite different from the estimates
obtained by the Yates procedure (Section 1.14.3) and the REML procedure as
given below).

Since SAS uses a different parametrization than the one used in (1.84) it
obtains “estimates” of u and 7; (i = 1, 2, 3, 4) separately. The type 3 coefficients
indicate that the solutions for u, t;(i = 1, 2, 3, 4) are actually estimates of u +
T4, T] — T4, T2 — T4, T3 — T4, Tespectively. From these solutions the least-squares
means are then obtained as

LSMEAN(TRT H=7i+7 = 1165 = &
LSMEAN(TRT 2) =7i+% = 1563 = @
LSMEAN(TRT 3) =7i+73 = 2409 = a;
LSMEAN(TRT 4) = i = 2653 = a4

where the @; denote the solutions to (1.87).

The REML procedure is illustrated in Table 1.12. It takes three iterations to
obtain the estimates Eg = 6.35 and 83 = 10.17, and hence ¥ = 0.62. We note
that the REML and ML least-squares means are numerically quite similar even
though ¥ and G2 are substantially different from 3 and G2, respectively.

1.14.5 Comparison of Estimation Procedures

For a small proper incomplete block design we have employed the above four
methods of estimating treatment least-squares means and treatment comparisons:

M1: Intrablock analysis
M2: Combined analysis: Yates
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Table 1.11 Combined Analysis Using Maximum Likelihood
With Post-hoc Comparisons

proc mixed data=IBD method=ML;

class BLOCK TRT;
model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;
estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

titlel 'TABLE 1.11';

title2 'COMBINED ANALYSIS USING MAXIMUM LIKELIHOOD';
title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK. IBD

Dependent Variable Y

Covariance Structure Variance Components
Estimation Method ML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information
Class Levels Values

BLOCK 5 123475
TRT

Dimensions

Covariance Parameters 2
Columns in X 5
Columns in Z 5
Subjects 1
Max Obs Per Subject 10
Observations Used 10
Observations Not Used 0
Total Observations 10
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Iteration Evaluations -2 Log Like
0 1 51.13433487
1 2 50.29813032
2 1 50.22541829
3 1 50.22033455
4 1 50.22029773
Convergence criteria met.
Covariance Parameter
Estimates
Cov Parm Estimate
BLOCK 7.4528
Residual 4.1426
Fit Statistics
-2 Log Likelihood 50.
AIC (smaller is better) 62.
AICC (smaller is better) 90.
BIC (smaller is better) 59.
Solution for Fixed Effects
Standard
Effect TRT Estimate Error DF
Intercept 26.5329 1.7767 8.87
TRT 1 -14.8822 1.9330 4.75
TRT 2 -10.9029 2.1495 4.82
TRT 3 -2.4380 2.1495 4.82
TRT 4 0
Type 3 Coefficients for TRT
Effect TRT Rowl Row2
Intercept
TRT 1 1
TRT 2 1
TRT 3
TRT 4 -1 -1

Iteration History

o N NN

Criterion
0.00396161
0.00030283
0.00000230
0.00000000

Value Pr > |t
14.93 <.0001

-7.70 0.0007

-5.07 0.0043

-1.13 0.3099

Row3
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Table 1.11 (Continued)

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
TRT 3 4.76 23.37 0.0028
Estimates
Standard
Label Estimate Error DF t Value Pr > |t
TRT1 - (TRT2+TRT3) /2 -8.2117 1.7085 4.3 -4.81 0.0072
TRT1 - TRT4 -14.8822 1.9330 4.75 -7.70 0.0007
TRT2 - TRT3 -8.4650 2.6087 5.86 -3.24 0.0182

Least Squares Means

Standard
Effect TRT Estimate Error DF t Value Pr > |t
TRT 1 11.6506 1.7767 8.87 6.56 0.0001
TRT 2 15.6299 2.0786 9.98 7.52 <.0001
TRT 3 24.0949 2.0786 9.98 11.59 <.0001
TRT 4 26.5329 1.7767 8.87 14.93 <.0001

M3: Combined analysis: ML
M4: Combined analysis: REML

In Tables 1.13 and 1.14 we present the estimates and their standard errors (exact
or approximate) for these methods for purely numerical comparisons.

Based on the numerical results, we make the following observations, which
should not necessarily be generalized:

1. For the least-squares means, M1 produces slightly smaller standard errors
than M2, but the result is reversed for the contrast estimates.

2. The results for M2 and M4 are very similar, both with respect to estimates
and standard errors.
3. In both tables M3 produces the smallest standard errors.

1.14.6 Testing of Hypotheses
To test the hypothesis

Htn=nm=--=1
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Table 1.12 Combined Analysis Using Residual Maximum Likelihood With
Post-hoc Comparisons

proc mixed data=IBD;

class BLOCK TRT;

model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;
estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 O;

titlel 'TABLE 1.12';

title2 'COMBINED ANALYSIS USING RESIDUAL MAXIMUM LIKELIHOOD';
title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK. IBD

Dependent Variable Y

Covariance Structure Variance Components
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

BLOCK 5 1 2345

TRT 4 123 4
Dimensions

Covariance Parameters 2
Columns in X 5
Columns in Z 5
Subjects 1
Max Obs Per Subject 10
Observations Used 10
Observations Not Used 0

Total Observations 10
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Effect

Intercept
TRT
TRT
TRT
TRT

Iteration History

Iteration Evaluations -2 Res Log Like
0 1 37.32907360
1 2 37.14557447
2 1 37.14253025
3 1 37.14250585

Convergence criteria met.
Covariance Parameter
Estimates
Cov Parm Estimate
BLOCK 6.3546
Residual 10.1681
Fit Statistics
-2 Res Log Likelihood 37.1
AIC (smaller is better) 41.1
AICC (smaller is better) 45.1
BIC (smaller is better) 40.4

TRT

B W N

Effect

Interc
TRT
TRT
TRT
TRT

Solution for Fixed Effects

Estimate

26
-14

.5596
.5682
-11.

-2.

9152
0305
0

Standard

w w NN

Error

.2615
.8843
.2045
.2045

N NN U,

DF

.93
.68
.66
.66

Type 3 Coefficients for TRT

ept

TRT

W N R

Rowl

Row?2

Value

11.
-5.
-3
-0.

Row3

74
05

.72

63

Criterion

0.00022052
0.00000186
0.00000000

Pr > |t

o O O A

.0001
.019%e6
.0415
.5766
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
TRT 3 2.42 10.82 0.0615
Estimates
Standard
Label Estimate Error DF t Value Pr > |t
TRT1 - (TRT2+TRT3) /2 -7.5953 2.5979 2.2 -2.92 0.0891
TRT1 - TRT4 -14.5682 2.8843 2.68 -5.05 0.0196
TRT2 - TRT3 -9.8847 3.7522 3.82 -2.63 0.0607
Least Squares Means
Standard
Effect TRT Estimate Error DF t Value Pr > |t
TRT 1 11.9914 2.2615 5.93 5.30 0.0019
TRT 2 14.6444 2.7365 5.52 5.35 0.0023
TRT 3 24 .5291 2.7365 5.52 8.96 0.0002
TRT 4 26.5596 2.2615 5.93 11.74 <.0001
versus

Hj: not all 7; are equal

we consider a set of t — 1 linearly independent contrasts, say C, and test equiv-

alently

Hy: Ct =0

Table 1.13 Comparison of Least-Squares Means

TRT M1 M2 M3 M4
i LSM(TRT;) SE LSM(TRT;) SE LSM(TRT;) SE LSM(TRT;) SE
1 11.28 1.98 11.91 222 11.65 1.78 11.99 2.26
2 16.90 2.66 14.87 2.67 15.63 2.08 14.64 2.74
3 23.40 2.66 24.44 2.67 24.09 2.08 24.53 2.74
4 26.53 1.98 26.55 222 26.53 1.78 26.56 2.26
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Table 1.14 Comparison of Contrast Estimates

Mi M2 M3 M4

CONTRAST¢ c SE c SE c SE c SE
Cl1 -8.88 2.61 775 247 —821 1.71 ~759 2.60
2 —1525 3.02  —14.64 276 —148%8 193  —1457 2.88
C3 —6.50 4.26 —957 3.62 —8.47 261 —9.88 3.75

4Cl = TRT1 — (TRT2 + TRT3)/2
C2 = TRT1 — TRT4
C3 = TRT2 — TRT3

Table 1.15 Comparison of Testing Hy:t1 = 12 = 13 = 14

Denominator
Method F Ratio d.f. P Value Source
M1 9.41 2 .0975 Table 1.8
M2 11.73 2 .0796 See below
M3 23.37 4.76 .0028 Table 1.11
M4 10.82 2.42 .0615 Table 1.12

Versus
Hi:Ct#0

We then compute the test statistic

F=(CT)[CA'CI'CT/I(t — 1) MS(E)]

which follows approximately an F distribution with t — 1 andn — ¢t — b + 1 d.f.
For the data set in Table 1.7, using

—1 0 O
c=1\1 0 -1 0
0 0 -1

with the Yates procedure we obtain F = 11.73 with 3 and 2 d.f.

A comparison of the four methods of analysis [as described in (Section 1.13.5)]
concerning the test of treatment effects is given in Table 1.15

It is interesting to note that the results for M1, M2, and M4 are in close
agreement, whereas the result for M3 is quite different. This appears due to the
fact that the estimate of o*g2 for M3, namely 4.1426, is quite different from the
corresponding estimates using M2, namely, 9.09375, and M4, namely 10.1681.



CHAPTER?2

Balanced Incomplete Block Designs

2.1 INTRODUCTION

In the previous chapter we were concerned with incomplete block designs in
very general terms, mainly with the analyses of these designs. But as men-
tioned earlier, there exist, among the totality of all incomplete block designs,
several special types that have evolved in the process of refining the art of
experimental design, these types being characterized by some common feature
or property.

One such type of design is the balanced incomplete block (BIB) design intro-
duced by Yates (1936a) (see also Section 1.9.8.2). This is a proper, equireplicate,
binary design such that each elementary treatment contrast, that is, the difference
between two treatment effects, is estimated with the same variance.

2.2 DEFINITION OF THE BIB DESIGN

In this section we shall give a more precise and more formal definition of the
BIB design. First we note that for a binary design the incidence matrix N = (n;;)
has elements

1 if treatment i occurs in block j
nij = .
0  otherwise

Furthermore, for an equireplicate design
b
> mj=r  foralli 2.1)
j=1

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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and for a proper design
t
> mj=k  forall j (2.2)
i=1

where r is the number of replications for each treatment and k is the block size.

We denote the (i, i’) element of NN’ by A;;/; thatis, Y ; nijnirj = Ay, where
Aiir denotes simply the number of blocks in which treatments i and i’ appear
together (it is for this reason that NN’ is referred to as the concordance or
concurrence matrix; see Pearce, 1963). Then, with (2.1) and (2.2) and the fact that
all differences between treatment effects are estimated with the same variance,
we must have A;;; = A for all i, i’(i i), as was shown by Thompson (1956)
and Rao (1958). We thus have the following definition.

Definition 2.1 An incomplete block design is said to be a balanced incom-
plete block (BIB) design if it satisfies the following conditions:

i. The experimental material is divided into b blocks of k units each, different
treatments being applied to the units in the same block.

ii. There are ¢ treatments each of which occurs in r blocks.
iii. Any two treatments occur together in exactly A blocks.

The quantities #, b, r, k, and A are called the parameters of the BIB design.
We note here that for a given set of parameters there may or may not exist a
BIB design. ]

2.3 PROPERTIES OF BIB DESIGNS

The following relations hold among the parameters, and even these are only
necessary conditions for the existence of a BIB design:

rt = kb (2.3)
At =D =rk—1) (2.4)
F> 2.5)
b>t (2.6)

Relationship (2.3) follows immediately from the fact that the total number of
observation for the BIB design is

= (2n) -2 (2w)

and to this we apply (2.1) and (2.2).
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To establish (2.4) we consider a fixed treatment that is replicated » times and
in each of these r blocks there are k — 1 other treatments. On the other hand,
because of (iii) in Definition 2.1, each of the remaining r — 1 treatments must
occur in these blocks exactly A times. This leads immediately to (2.4).

Condition (2.5) follows from (2.4) and the fact that for an incomplete block
design k < ¢.

Fisher (1940) first proved (2.6) to be a necessary condition for the existence of
a balanced incomplete block design. The following proof is based on a property
of the matrix NN’. From the definition of the BIB design it follows that

rr A AT
AT
NN’ = N =@ —-MNI+2197 2.7
LA A1

Then

NN'J =@ —1I+1tAI
=@ —Ar+rnd
So (1/4/t)J is a normalized eigenvector with root r — A + Az. If & is another
eigenvector of NN’, which is orthogonal to (1/4/7)J, then we have from
(2.7) that
NN'E = (r — V&
and hence (r — A) is an eigenvalue with multiplicity ¢+ — 1. It follows then that
detNN' = (r — 1)1 (r — A+ 21)

or, using (2.4),

detNN' = (r — ) 'rk (2.8)
Because of (2.5), this determinant is positive definite of rank . Now ¢ = rank
NN’ = rank N < min(¢, b). Hence b > t.

In connection with the above necessary conditions for the existence of a BIB

design, we shall mention briefly the special case when ¢t = b and hence r = k.

Definition 2.2 An incomplete block design (IBD) with the same number of
treatments and blocks is called a symmetrical incomplete block design.



74 BALANCED INCOMPLETE BLOCK DESIGNS

For a symmetrical BIB design, (2.8) will be of the form
detNN' = (detN)z = (r— )\)t—lrz

This implies, for example, that if ¢ is even then r — X must be a perfect square
for a symmetrical BIB design to exist. This is only one of several necessary
conditions (Shrikhande, 1950) for the existence of a symmetrical BIB design.

Nonexistence theorems and methods of actually constructing BIB designs for
a given set of parameters have become an important subject in itself, and we
shall treat some aspects of this in Chapter 3.

Before we consider the analysis of BIB designs, we give as an example the
design mentioned in Section 1.1. (]

Example 2.1 We have t =7,b=7,r =4,k =4, =2 and denoting the
treatments now by 0, 1, ..., 6 the design is listed as

©, 3, 6,9
2, 5, 4, 6)
6, 0,1, 4
©, 1, 2,5)
1, 6, 2, 3)
4, 2, 3, 0
1, 3, 4,9

where each row represents a block, the treatments in each block being randomly
assigned to the experimental units. O

2.4 ANALYSIS OF BIB DESIGNS

2.4.1 Intrablock Analysis
Using the results of Section 1.3.2 the RNE (1.7) take on the form

r k—1 A AT
r _ _
k k k ~
o 71 01
A — ~
—_ T
P 2 _ (05)
. A
k -
2 k—1 Tt 0O
—— —— r
| k k k
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k—1 2 Aoals
[G . +E>I—Ew}1_g (2.9)

A solution to (2.9) is obtained by using Theorem 1.1 with a = A/k. Then

or

vy 2.10
= %=1 & (2.10)

k+k

™

r

Using (2.4) in (2.10) we can write

k=l a_rf kel k — Dt
r — = — — =r
k t—1 k(t—1)

and hence

~_1 1

.
k(t — 1)

~—1 . . . . . .
Recall that C~ o2 is the variance—covariance matrix for estimable functions of
treatment effects. Thus, from (2.11) we have

- a2 2
Va_r(r, — Tl/) = W O,
r
k(t—1)
for all i # i’. Therefore also
o 2 2
&, var(t; — 7y) = ﬂ %,
ki —1)

It follows then from (1.89) that (k — 1)¢/k(¢ — 1) is the efficiency factor E of the
BIB design and according to (1.91) the upper bound for any IBD. We then write

~ 1
Cl= 1 (2.12)
rkE

Hence

.0
T=— (2.13)
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is a solution to (2.9). Furthermore, it follows from (2.13) and (1.20) that any
linear estimable function ¢t = ), ¢;; with ) ¢; = 0 is estimated by

Qi
| — 2.14
with variance, using (2.12),
2
2 O,
P 2.15

2

The intrablock error variance o is estimated in the usual way by using the

analysis of variance given in Table 1.2.

2.4.2 Combined Analysis

It follows from the definition of the BIB design and the form of NN’ as given
in (2.7) that the coefficient matrix, A say, in (1.60) is now of the form

A= [r—(l -0 (%—%)}I—(l —p‘l)%ﬂﬂ’ (2.16)

By a familiar result in matrix algebra (e.g., Graybill, 1969) we find

A
1 (1 —Pil)z
Al = I+

r—(l—p*)(f—&) r—(l—p—l)[fﬂr—l)ﬂ
k k k k
2.17)

39

Denoting the (i, i) element of A~! by a’’’, it follows from (1.62) and (1.63) that
the linear function of treatment effects, ¢’z, with Y ¢; = 0 is estimated by ¢'T
with variance

= .. ..y
var (Z Ci‘Cl') = X:ciza”ae2 + Z cicya' oez (2.18)
i i ii’

i#i’

Substituting the elements of (2.17) into (2.18) yields

2
var (Z c,-?,-> =Y % — (2.19)
: < - ,0_1)( )

1

k k
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or, substituting (1.65) in (2.19),

= 2 (0 + ko )
var (lz Cifi) ZZ ro2 4+ (rk —r + )»)o (2.20)

The following special familiar cases can be deduced easily from (2.19):

1. = A (i.e., RCBD):

2
=\ _ 20,
ar CiTi ) = ¢ —
X - r
i i

2
=\ _ 20,
var CiTi )| = ¢ —
- rE
i

i

which is the same as (2.15), implying that no interblock information exists.
3.pl=1:

2
=\ _ 20,
ar CiTi ) = ¢ —
N - r
i i

which is the same as the variance for a CRD. We note that 03 here refers to
the error variance in a CRD, whereas ore2 in case 1 refers to the within-block

variance.

2.5 ESTIMATION OF p

As we already know from the discussion in the previous chapter and as is 0bv1ous
from (2.17), the combined estimator ¢'T for ¢t depends on w = 1 /o and w’ =

1/ (ae + koﬂ> through p = w/w’. Since, in general, these parameters are not

known, they will have to be estimated from the data; the estimates will have to
be substituted into (2.17) in order to obtain the estimator for ¢'t, which we shall
denote by ¢'T. Note that in our notation ¢;T depends on p and ¢’T depends on
0, where p is an estimator for p.

In the previous chapter we described one method of estimating p, the Yates
procedure, which estimates 2 and og from the intrablock analyses of variance
with the model assuming the block effects to be random variables. This is a
general procedure and as such applicable also to BIB designs. However, we also
mentioned the problem that arises when using the Yates estimators, since one is



78 BALANCED INCOMPLETE BLOCK DESIGNS

not assured that the combined estimator for ¢’t is better than the corresponding
intrablock estimator.

The following theorem, which is a special case of a more general theorem
given by Shah (1964), deals with this problem and gives a solution under a
nonrestrictive condition.

Let

, _ 1= Dktk—1)

o~ 1
i — 12 [SS(XrIfD —2T'T + = SS(X:|9, xm] 2.21)

where SS(X;|J) and SS(X;|J, Xg, ) are given in Tables 1.2 and 1.1, respectively,
T' = (11, T», ..., T,) is the vector of the treatment totals and T is given by (2.13).

Theorem 2.1 For ¢t > 6 and

t—k |: Z 1] " Z k(t—1)
— i >
= ttk—1) [ (¢ - DMSg MSEg t—k (2.22)
1 otherwise

with Z defined by (2.21) and MSg = MS(I]J, X g, X;) being the residual mean
square as given in Table 1.1, the combined estimator, ¢'7, for ¢/t is uniformly
better than the intrablock estimator, ¢'T, that is,

var(c'T) < var(c'T)
For the proof we refer to Shah (1964).

Similar estimators for p have been developed by Seshadri (1963) and still
others by Graybill and Weeks (1959) and Graybill and Deal (1959).

We shall comment briefly on the nature of these estimators without going
into any detail. Of particular interest is, of course, their relationship to the Yates
estimator and the comparison of the performance of all the estimators with regard
to estimating differences of treatment effects.

We note that the Yates estimator utilizes all » — 1 d.f. between blocks as
does the estimator proposed by Graybill and Weeks (1959), which, however, was
shown by Seshadri (1963) to be not as good as the Yates estimator. All the other
estimators utilize only part of the b — 1 d.f,, either t — 1 or b — ¢. Under certain
conditions these estimators have been shown to give rise to estimators for treat-
ment differences uniformly better than the corresponding intrablock estimators.
Such a property has not yet been proved for the Yates procedure, but the fact that
it uses more information than the other estimators may lead one to suspect that
it might actually be better than the estimators mentioned above that enjoy this
property. To some extent this aspect was investigated by Shah (1970) along the
following lines.
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Let V be the average variance for treatment comparisons. Then V can be
expressed as

2
20;

r*

V=

where r* is defined as the effective number of replications. For example, r* cor-
responding to the intrablock estimator is given by r; = r E. The largest possible
value for r* is that corresponding to the combined estimator when p is known.
Denote this value by r. Since usually p is not known and hence has to be esti-
mated from the data, some loss of information is incurred; that is, r*(p) < rk,
where r*() is the effective number of replications when an estimator p is used
instead of p in the combined analysis. Shah (1970) shows that for his estimator
(given in Theorem 2.1) the difference between r and r*(p) is not appreciable
for moderate values of p. This implies that the loss of information is not great
and not much improvement, if any, can be expected from any other estimation
procedure, including the Yates procedure. On the other hand we know that for
Shah’s estimator r*(p) > r; when ¢ > 6 (see Theorem 2.1), which is not guar-
anteed for the Yates procedure. For large values of p the difference between r
and rj is fairly small, so that not much is gained by using a combined estimator.

The conclusion from this discussion then is that the Shah procedure leads in
general to quite satisfactory results and should therefore be used in the combined
analysis.

2.6 SIGNIFICANCE TESTS

As mentioned in Section 1.13.4 significance tests concerning the treatment effects
are performed as approximate F test by substituting o for p in the coefficient
matrix A of (1.60), using any of the previously described methods of estimating
p. Such tests are mostly conveniently performed by choosing any option in SAS
PROC MIXED.

An exact test, based, however, on the assumption of normality, for

Hy 11=m=---=1
against
Hp: not all t; equal
was developed by Cohen and Sackrowitz (1989). We shall give a brief descrip-
tion here, but the reader should refer to the original article for details. The test
is based on invariance properties and utilizes information from the intrablock

analysis (as described in Sections 2.4.1 and 1.3) and the interblock analysis (as
described for the general case in Section 1.7.2) by combining the P values from
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the two respective independent tests. In order to define the test we establish the
following notation:

7 = solution to the intrablock normal equations, (2.13)
¥ = solution to the interblock normal equations, (1.48),
with L = 1

O = matrix of ¢t — 1 orthonormal contrasts for treatment effects

U, =07
U,=0t*

1U|I> = UU,

1U2|* = U4U,
Vi=Ui/ Ul
Vo=U;y/ Uz
R:V/IV2

$? = SS(Error from intrablock analysis)

S # SS(Error from interblock analysis)

¢ 2
= Z (BJ' —kp* — Z nijfi*)

B=S“+Q%QWﬁ2
a=min(Ty /T3, 1)
y=1/(a+1)
P = P value for testing Hy using intrablock analysis
P* = P value for testing Hy using interblock analysis, based on
F statistic
_ (=0 =2 U]

*

witht — 1 and b — ¢ d.f.

kit —1) S
Zi = —€,P
Zy = —, P*

z=yZi+(U-y)2Z
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Then, for y # %, the P value for the exact test is given by
P = ye ™ — (1= e/ ] iy = DA + B

and for y = % by [(2Z + l)e_zz] /(1 + R). Cohen and Sackrowitz (1989) per-
formed some power simulations and showed that the exact test is more powerful
than the usual (approximate) F' test. For a more general discussion see also
Mathew, Sinha, and Zhou (1993) and Zhou and Mathew (1993).

We shall illustrate the test by using an example from Lentner and Bishop
(1993).

Example 2.2 An experiment is concerned with studying the effect of six
diets on weight gain of rabbits using 10 litters of three rabbits each. The data are
given in Table 2.1A. The parameters of the BIB design are t = 6,b = 10,k =
3, r=5xr=2.

The intrablock analysis using SAS PROC GLM is presented in Table 2.1A
yielding F = 3.16 and P = 0.0382. In addition, Table 2.1A gives the SAS solu-
tions to the normal equations, which are then used to compute the set of five
orthonormal contrasts based on

—5/¥70  =3//70  —1/¥70  1/¥70  3/Y70  5/70
5/V/84  —1//84  —4/V84  —4//84  —1/V84 5//84
—5//180 7/v/180  4//180  —4/v/180 —7//180 5/+/180
1/v/28  =3/v/28  2/V28 2/¥28  =3/v/28  1/v/28

—1/4/252 5/4/252 —10/4/252 10/4/252 —5/4/252 1/4/252

The linear, quadratic, cubic, quartic, and quintic parameter estimates represent
the elements of U, yielding | U I = 39.6817.

A solution to the interblock normal equations [using L = I in (1.48)] is given
in Table 2.1B.

The estimates 7* are then used to obtain U, and || U, ||* = 537.5284. We also
obtain from Table 2.1B F* = 2.23 and P* = (0.2282.

Using S2 = 150.7728 from Table 2.1A and S*2 = 577.9133 from Table 2.1B,
all other values needed for the test can be computed. With y = 0.7828 we obtain
Z = 2.8768, and finally P** = 0.03. This result is in good agreement with the P
value of 0.0336 obtained from the combined analysis using SAS PROC MIXED
with the REML option (see Table 2.1A). O
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Table 2.1A Data, Intrablock, and Combined Analysis for BIB Design
(t=6,b=10,r =5, k =3, LAMBDA=2)

options nodate pageno=1;
data rabbitl;
input B T Y @@;

datalines;

1 42.2 1 2 32.6 1 3 35.2
2 3 40.9 2 1 40.1 2 2 38.1
3 3 34.6 3 6 34.3 3 4 37.5
4 1 44.9 4 5 40.8 4 3 43.9
55 32.05 3 40.9 5 4 37.3
6 2 37.3 6 6 42.8 6 5 40.5
7 4 37.9 7 1 45.2 7 2 40.6
8 1 44.0 8 5 38.5 8 6 51.9
9 4 27.5 9 2 30.6 9 5 20.6
10 6 41.7 10 4 42.3 10 1 37.3

1

run;

proc print data=rabbitl;

titlel 'TABLE 2.1A';

title2 'DATA FOR BIB DESIGN';

title3 '(t=6, b=10, r=5, k=3, LAMBDA=2)';
run;

proc glm data=rabbitl;

class B T;

model Y=B T/solution;

estimate 'linear' T -5 -3 -1 1 3 5/divisor=8.3667;
estimate 'quad' T 5 -1 -4 -4 -1 5/divisor=9.1652;
estimate 'cubic' T -5 7 4 -4 -7 5/divisor=13.4164;
estimate 'quartic' T 1 -3 2 2 -3 1/divisor=5.2915;
estimate 'quintic' T -1 5 -10 10 -5 1/divisor=15.8745;
title2 'INTRA-BLOCK ANALYSIS';

title3 'WITH ORTHONORMAL CONTRASTS';

run;

proc mixed data=rabbitl;

class B T;

model Y=T/solution;

random B;

lsmeans T;

title2 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
title3 ' (USING METHOD DESCRIBED IN SECTION 1.8)';
run;
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Table 2.1A (Continued)

Obs B T Y
1 1 6 42.2
2 1 2 32.6
3 1 3 35.2
4 2 3 40.9
5 2 1 40.1
6 2 2 38.1
7 3 3 34.6
8 3 6 34.3
9 3 4 37.5
10 4 1 44.9
11 4 5 40.8
12 4 3 43.9
13 5 5 32.0
14 5 3 40.9
15 5 4 37.3
16 6 2 37.3
17 6 6 42.8
18 6 5 40.5
19 7 4 37.9
20 7 1 45.2
21 7 2 40.6
22 8 1 44.0
23 8 5 38.5
24 8 6 51.9
25 9 4 27.5
26 9 2 30.6
27 9 5 20.6
28 10 6 41.7
29 10 4 42.3
30 10 1 37.3

The GLM Procedure

Class Level Information

Class Levels Values

B 10 12345678910
T 6 123456
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Table 2.1A (Continued)

Number of observations 30

Dependent Variable: Y

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 14 889.113889 63.508135 6.32 0.0005
Error 15 150.772778 10.051519
Corrected
Total 29 1039.886667
R-Square Coeff Var Root MSE Y Mean
0.855010 8.241975 3.170413 38.46667
Source DF Type I SS Mean Square F Value Pr > F
B 9 730.3866667 81.1540741 8.07 0.0002
T 5 158.7272222 31.7454444 3.16 0.0382
Source DF Type III SS Mean Square F Value Pr > F
B 9 595.7352222 66.1928025 6.59 0.0008
T 5 158.7272222 31.7454444 3.16 0.0382
Standard
Parameter Estimate Error t value Pr > |t
linear 0.68326421 1.58518760 0.43 0.6726
quad 2.35674071 1.58519809 1.49 0.1578
cubic 3.14664639 1.58520742 1.99 0.0657
quartic 4.74975590 1.58520728 3.00 0.0090
quintic 1.09504761 1.58520728 0.69 0.5002
Standard
Parameter Estimate Error t Value Pr > |t
Intercept 42.61111111 B 2.24182052 19.01 <.0001
B -3.29722222 B 2.79604144 -1.18 0.2567
B 0.83611111 B 2.79604144 0.30 0.7690
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Table 2.1A (Continued)

Standard

Parameter Estimate Error t Value Pr > |t]
B 3 -5.10000000 B 2.69433295 -1.89 0.0778
B 4 5.49722222 B 2.79604144 1.97 0.0681
B 5 -0.99166667 B 2.79604144 -0.35 0.7278
B 6 2.11111111 B 2.79604144 0.76 0.4619
B 7 2.48055556 B 2.69433295 0.92 0.3718
B 8 6.13055556 B 2.69433295 2.28 0.0380
B 9 -10.77777778 B 2.79604144 -3.85 0.0016
B 10 0.00000000 B . . .

T 1 -3.30000000 B 2.24182052 -1.47 0.1617
T 2 -5.04166667 B 2.24182052 -2.25 0.0400
T 3 -2.90000000 B 2.24182052 -1.29 0.2154
T 4 -3.23333333 B 2.24182052 -1.44 0.1698
T 5 -8.52500000 B 2.24182052 -3.80 0.0017
T 6 0.00000000 B

NOTE: The X'X matrix has been found to be singular, and
a generalized inverse was used to solve the normal
equations. Terms whose estimates are followed by the
letter 'B' are not uniquely estimable.

COMBINED INTRA- AND INTERBLOCK ANALYSIS
(USING METHOD DESCRIBED IN SECTION 1.8)
The Mixed Procedure

Model Information

Data Set WORK.RABBIT1
Dependent Variable Y

Covariance Structure Variance Components
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

B 10 12345678910
T 6 123 456
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Table 2.1A (Continued)

Dimensions
Covariance Parameters 2
Columns in X 7
Columns in Z 10
Subjects 1
Max Obs Per Subject 30
Observations Used 30
Observations Not Used 0
Total Observations 30

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
0 1 160.26213715
1 2 150.36288495 0.00010765
2 1 150.35691057 0.00000054
3 1 150.35688183 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate
B 21.6953
Residual 10.0840

Fit Statistics

-2 Res Log Likelihood 150.4
AIC (smaller is better) 154 .4
AICC (smaller is better) 154.9
BIC (smaller is better) 155.0

Solution for Fixed Effects

Standard
Effect T Estimate Error DF t Value Pr > |t]
Intercept 42.3454 2.1303 9 19.88 <.0001

T 1 -2.8100 2.2087 15 -1.27 0.2227
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Table 2.1A (Continued)

Effect

HHAaA+Hd 34

Effect

I I I e

Solution for Fixed Effects

Standard
T Estimate Error DF t Value
2 -5.3172 2.2087 15 -2.41
3 -2.9941 2.2087 15 -1.36
4 -3.6952 2.2087 15 -1.67
5 -8.4560 2.2087 15 -3.83
6 0
Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value
T 5 15 3.28
Least Squares Means
Standard
T Estimate Error DF t Value
1 39.5354 2.1303 15 18.56
2 37.0282 2.1303 15 17.38
3 39.3513 2.1303 15 18.47
4 38.6502 2.1303 15 18.14
5 33.8894 2.1303 15 15.91
6 42.3454 2.1303 15 19.88

Pr > |t

o O O o

.0294
.1953
.1150
.0016

Pr > F

0.0336

Pr > |t

AN NN N NN

.0001
.0001
.0001
.0001
.0001
.0001

Table 2.1B Data of Block Totals and Interblock Analysis

options nodate pageno=1;
data rabbit2;
input y x1 x2 x3 x4 X5 X6;

datalines;

110.0 01 1 0 0 1
119.1 1 1 1 0 0 O
106.4 0 01 1 01
129.6 1 01 01 0
110.2 0 01 11 0
120.6 01 0 0 1 1
123.7 1 1 01 00
134.4 1 0 0 0 1 1
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Table 2.1B (Continued)

78.7 01 0110
121.3 1 0 01 01

run;

proc print data=rabbit2;
titlel 'TABLE 2.1 B';
title2 'DATA OF BLOCK TOTALS';

proc glm data=rabbit2;
model y=x1 x2 x3 x4 x5 x6;
title2 'INTER-BLOCK ANALYSIS';

run;

Obs y x1 x2 x3 x4 x5 X6
1 110.0 0 1 1 0 0 1
2 119.1 1 1 1 0 0 0
3 106.4 0 0 1 1 0 1
4 129.6 1 0 1 0 1 0
5 110.2 0 0 1 1 1 0
6 120.6 0 1 0] 0 1 1
7 123.7 1 1 0 1 0 0
8 134.4 1 0 0 0 1 1
9 78.7 0 1 0 1 1 0

10 121.3 1 0 0 1 0 1

INTERBLOCK ANALYSIS

The GLM Procedure

Number of observations 10

The GLM Procedure

Dependent Variable: y

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 1613.246667 322.649333 2.23 0.2282
Error 4 577.913333 144.478333

Corrected Total 9 2191.160000
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Table 2.1B (Continued)

89

R-Square
0.736252
Source DF
x1 1
X2 1
X3 1
x4 1
x5 1
X6 0
Parameter
Intercept 131.
x1 11
%2 -13.
x3 -5.
x4 -17.
x5 -6.
X6 0

.8000000

.0000000

Coeff Var

10.41587

Type I SS

1044.484000
89.792667
10.454444

407.075556
61.440000
0.000000

Estimate

1000000

5333333
8000000
4666667
4000000

W oW wwwww

0 VW VW VW VU LV

Root MSE

12.01991

Mean

1044.
89.
10.

407.
61.

Square

484000
792667
454444
075556
440000

Standard

Error

.38152901
.81421871
.81421871
.81421871
.81421871
.81421871

y Mean

115.4000
F Value Pr > F
7.23 0.0547
0.62 0.4746
0.07 0.8012
2.82 0.1685
0.43 0.5499
t Value Pr > |t
6.76 0.0025
1.20 0.2955
-1.38 0.2400
-0.59 0.5863
-1.78 0.1497
-0.65 0.5499

2.7 SOME SPECIAL ARRANGEMENTS

In some cases it is possible to arrange the treatments in the blocks of a BIB
design in a special way that may lead to a reduction of either O’ez or Ug or both.

These arrangements lead therefore to more efficient designs.

2.7.1 Replication Groups Across Blocks

Designs of this type are characterized by the fact that the first s positions in the
b blocks form a group of r’ replications of all ¢ treatments, the same being true
for the next s positions, and so forth. If there are s’ such groups, then s'r' = r.

We illustrate this type of arrangement in Example 2.3.

Example 2.3 Consider the BIB design with parameters t = 10, r = 6, b =
15, k =4, A = 2 given by the following plan:
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Replication Group

Block I II

1 1 2 3 4

2 1 5 2 6

3 1 3 7 8

4 4 9 1 10

5 5 7 1 9

6 6 8 1 10

7 3 9 2 6

8 2 4 7 10

9 5 10 2 8

10 2 7 8 9

11 3 10 5 9

12 6 10 3 7

13 4 8 3 5

14 6 7 4 5

15 8 9 4 6
It can be verified easily that for this design s =2, s’ =2, ¥/ = 3. O

The analysis is based on the following model:

y=uI+Xt+XgB+X,y+e (2.23)

or
Yije =M1+ T+ Bj +ve+eije

where 7; and B; are as defined previously and y; is the (fixed) effect of the £th
replication group (¢ = 1,2, ..., s’). Since the replication groups are orthogonal to
blocks and to treatments, the procedure for estimating linear contrasts of treatment
effects is the same as before. More specifically, the RNE (2.9) are unchanged
and the combined estimators are obtained by using (2.17).

The only change occurs with regard to the estimation of oez. This is reflected
in the analysis of variance according to model (2.23) as given in Table 2.2. The
form of this analysis of variance table shows a certain similarity to that of the
Latin square design except that treatments and blocks are not orthogonal. But
having sources of variation due to blocks and replication groups orthogonal to
blocks achieves elimination of heterogeneity in two directions and hence leads
to a reduction of the residual variance.

As can be seen from Example 2.3 and model (2.23), the replication groups
play the same role as the columns in a Latin square type of design. It is for this
reason that such designs have also been referred to as Latinized incomplete block
designs (Harshbarger and Davis, 1952; John and Williams, 1995).
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Table 2.2 ANOVA for BIB Design with Replication
Groups Across Blocks

Source d.f. SS
1 G?
X519, X b—1 -N'p2_—
pl 14 k I J n
9 - 1 , G?
X,19, X, X, s’ — E;Rl_7
X |9.Xp. X, t—1 > T0
i
19, Xg, X X, n—t—b—s+2 Subtraction
G2
Total n—1 Zyizje——
n
ije

R, = total of £th replicate.

As a special case of designs described in this section we mention the following
definition.

Definition 2.3 A BIB design that can be arranged in replication groups across
blocks, each group containing a complete replicate (ie., ¥’ = 1,s' =r = k), is
called a Youden square design (see 1.10.5).

These designs, which for obvious reasons are also called incomplete Latin
square designs, were first introduced by Youden (1937, 1940). They overcome
the most severe objection to Latin square designs, namely that the number of
replications (of each treatment) is the same as the number of treatments, ¢, which
for large ¢ is difficult to achieve from a practical point of view. Also, the block
size in a Latin square design will then usually become too large.

It was shown by Hartley and Smith (1948) that for all incomplete block designs
in which the number of treatments is equal to the number of blocks, such arrange-
ments exist. Their proof provides, in fact, a general procedure of constructing a
Youden square from a given symmetrical BIB design. This is accomplished by
repeatedly interchanging the positions of pairs of treatments in the same block.
A list of Youden squares is given by Cochran and Cox (1957, 1992). O

2.7.2 Grouped Blocks

Designs of this type are characterized by the fact that the first 5’ blocks form a
group of a replicates of the ¢ treatments, so do the next &’ blocks, and so on,
these groups of blocks being thereby orthogonal to treatments. If there are g of
such groups, then gb’ = b and go = r.



92 BALANCED INCOMPLETE BLOCK DESIGNS

Following Shrikhande and Raghavarao (1963) we formalize this in the fol-
lowing definition.

Definition 2.4 A BIB design with parameters ¢, b, k, r, A that can be arranged
in groups of blocks, each group containing « replicates of the ¢ treatments, is
said to be a-resolvable.

This concept of «-resolvability is an extension of the concept of resolvability
given by Bose (1942), which refers to the case ¢ = 1.

The following design is an example of a 3-resolvable design. O

Example 2.4 Consider the following design with parameters ¢ = t, b = 10,
k=3,4=6,A=3:

Replication
Block Treatment Group

1 1 2 3

2 1 2 5

3 1 4 5 I

4 2 3 4

5 4 5

6 1 2 4

7 1 3 4

8 1 3 5 II

9 2 3 5
10 2 4 5

We find ¥ =5,g =2, = 3. |

For a-resolvable BIB designs inequality (2.6) can be improved as follows.

Theorem 2.2 If a BIB design with parameters ¢, b, k, r, A is a-resolvable,
then the following inequality must hold:

b>t+q—1 (2.24)

Proof Since for an a-resolvable BIB design there exist ¢ — 1 linearly inde-
pendent relationships between the columns of N, we have

t =rank(NN') =rank(N) <b —q + 1

which implies (2.24). O
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Definition 2.5 An a-resolvable BIB design is called affine a-resolvable if
any pair of blocks in the same replication group have g; treatments in common
and if any pair of blocks from two different replication groups have g, treatments
in common. (]

For affine a-resolvable BIB designs the following results are due to Shrikhande
and Raghavarao (1963).

Theorem 2.3 In an affine a-resolvable BIB design k%/¢ is an integer.

Proof Without loss of generality consider the first block in the first replication
group, B1; say. By definition, By has ¢, treatments in common with every block
in the remaining ¢ — 1 replication groups, each group consisting of b/g blocks.
Hence

b
(g—1D - q@=k(r—o
q

which, since ag = r, yields g» = k?/t. Since ¢ is an integer, k> /¢ is an integer.
O

Theorem 2.4 For an affine a-resolvable BIB design, the equality
b=t+qg—1 (2.25)
holds.

Proof We shall give here the proof for « = 1 following Bose (1942) and
refer to Shrikhande and Raghavarao (1963) for the general case.
Consider a resolvable BIB design. We then have

t=bk b=br (2.26)

since the b blocks are divisible into r sets of b’ blocks each, each set containing
each treatment exactly once. Let the blocks belonging to the ith set, S;, be denoted
by B;1, Bi2, ..., By for i =1,2,...,r. Consider now a particular block, By
say. Let £;; be the number of treatments common to blocks By and B;;(i =
2,...,r;j=1,2,...,b"). Further, let m denote the average and s2 the variance
of the b'(r — 1) numbers ¢;;.

Now each of the k treatments in Bjp; is replicated r times, and since the
design is resolvable, that is, 1-resolvable, a given treatment in By; will occur in
exactly one block each in the r — 1 other sets, S, S3, ..., S.. This is true for all
k treatments in By, and hence

D iy =kt —1) (2.27)
ij
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and therefore
m=—=— (2.28)

using (2.26) for the last expression.
Further, the k(k — 1)/2 pairs of treatments in Bj; each occur A — 1 times
together in the sets S, S3, ..., S,. Hence

1 1
Ez:&ﬂ@—4)=§u—1mm—1)
ij

and therefore, using (2.27)

S =kir— 14 0. — Dk — D] (2.29)
ij

Since

_r(k—l)_r(k—l)
T or—1  bk-—1

we rewrite (2.29) as

Ez_uw%—nu—m+m@—nﬁ
v bk—1

ij
Then we find after some algebra, using (2.28), (2.29), and (2.26),
> i —m)?
2 ij

IS
2
DG
ij

“hor—1

m2

k=B —t—r+1)
VA== 1)

(2.30)

Since 52 > 0, (2.30) implies, of course, the earlier result (2.24), with ¢ = r for
a=1.

We now consider an affine resolvable BIB design. Then, by definition, £;; = g2
for all i, j. Hence s> of (2.30) equals zero, which implies (2.25) with ¢ = r for
a l-resolvable BIB design. (]
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Corollary 2.1 If the parameters of a BIB design satisfy (2.25) and k2/¢ is

not an integer, then the design is not resolvable.

Example 2.5 An example of an affine resolvable BIB design is given by
the following design with parameters t =8, b= 14,k =4,r=7,A=3,b' =
2,q=7,q1=0,qp =2, = 1:

Replication
Block Treatments Group
1 1 2 3 4
I
2 5 6 7 8
3 1 2 7 8
I
4 3 4 5 6
5 1 3 6 8
I
6 2 4 5 7
7 1 4 6 7
v
8 2 3 5 8
9 1 2 5 6
\Y%
10 3 4 7 8
11 1 3 5 7
VI
12 2 4 6 8
13 1 4 5 8
VII
14 2 3 6 7

A natural model for the analysis of such a design is

y=pI+ X1+ Xn+Xp:B"+e

or

Yije =+ T +nj + Bl + eije

where 7; is the (fixed) effect of the jth replication group (j =1,2,...

2.31)

,q) and

ﬂjg is the effect of the £th block in the jth group (¢ =1, 2, ..., D). This brings
out the point that the blocks are nested in the replication groups and, hence, in the
case of the ﬂ;‘e being random variables (as assumed for the combined analysis),

that Ug* now measures the variability of the blocks within groups. Since b’ < b,
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it can then usually be concluded that 05* for this design will be smaller than the
corresponding oé in the BIB design without grouping of blocks. Consequently,
only the part of the analysis of variance that deals with the estimation of aﬂz*
(to be used for the combined analysis, in particular, using the Yates estimator)
is affected when using this design and model (2.31). This is shown in Table 2.3,
where R; refers to the total of the jth replication group, and Bj, refers to the
total of the £th block within the jth replication group. O

2.7.3 «-Resolvable BIB Designs with Replication Groups Across Blocks
The designs of this type combine the properties of the designs discussed in
Sections 2.7.1 and 2.7.2 and hence lead to a possible reduction in both o and ag.

Example 2.6 As an example we consider the following BIB design with
parameters t =6, b =15 k=4,r =10, A = 6:

Replication Groups
Across Blocks

Replication
Block I I Group
1 1 2 3 4
2 1 5 4 6 I
3 2 3 5 6
4 1 2 3 5
5 1 2 4 6 I
6 3 5 4 6
7 1 3 2 6
8 4 5 1 3 I
9 4 6 2 5
10 2 4 1 5
11 5 6 1 3 v
12 3 6 2 4
13 5 6 1 2
14 4 6 1 3 \Y%
15 3 4 2 5

We find that ¥’ =5, s’ =2, « =2, ¢ =5 in the notation of Sections 2.7.1
and 2.7.2. U

A natural model for this type of design is

y=puI+Xt+X,y+Xn+Xp:B"+e (2.32)
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Table 2.3 Analysis of Variance for Resolvable BIB Design

Source d.f. SS E(MS)

1 , G?
X.9,X, t—1 ;ZTi -—

1

1 , G?

X,09, X, g—1 ﬂ;Rj—T
—t—k(g—1
X9, X1, X, b—gq Difference o2+ "b—(q)ag*
-q

9. X X Xge n—t—b+1 Y 35 =) B0
ije i

1 2
—7 2B %
jt

G2
Total n—1 Zyizjl_ —
n

ije

S8}

or
Yijew =M+ T + ¥ +ne+ Bl + eijeu

where all the parameters are as previously defined.

The analysis of variance associated with (2.32) follows easily from those
presented in Tables 2.2 and 2.3 with the partitioning of the total d.f. as given in
Table 2.4.

Table 2.4 Outline of Analysis of Variance
for Model (2.32)

Source d.f.
X:13,X,,X, t—1
X,19,X:, X, s’ —1
X9, X, X, qg—1

Xp1J, X1, X)), X, b—gq
1D, X, X,, X, Xg= n—t—b—s+2

Total n—1
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2.8 RESISTANT AND SUSCEPTIBLE BIB DESIGNS

2.8.1 Variance-Balanced Designs

The class of BIB designs belongs to the class of variance-balanced designs, that
is, designs for which every normalized estimable linear function of the treatment
effects is estimated with the same variance. It is easy to establish the following
theorem.

Theorem 2.5 A necessary and sufficient condition for a connected design to
be variance balanced is that its C matrix is of the form

C=ciI+c97 (2.33)

Proof For an IBD with rank C =t — 1 let &§,&,,...,&,_1,& = (1//D)I
be a set of orthonormal eigenvectors of C. If we write

0:(015%:0

0'co bo
“\o o

where D = diag(d;). Then the RNE

then

Ct=0
can be written as

0'C007T=0'Q

or
(o o) ()= (%)
0 0 0 0
Hence
0\T=D"'10,0
with

var(0'7) = D~'0,Cc0, D75}

_p-1.2
=D o,
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For a variance-balanced design we must then have D = dI. It then follows

that
dl 0
C=0 o’
0 0

1
=d0,0,—d|(I-— 99
e ( Ji )

[see (1.17)] which we can write as
C=cl+c37

which is (2.33). Obviously, if C is of the form (2.33), the design is variance
balanced. (I

Further, among all binary, equireplicate, proper designs the BIB designs are
the only variance-balanced designs. There do exist, however, variance-balanced
designs with unequal block sizes, for example.

2.8.2 Definition of Resistant Designs

An interesting question then is: If from a BIB design one or several treatments are
deleted, is the resulting design still variance balanced? In general the answer will
be negative, but for some designs the answer will be, more or less, positive. Such
designs have been called resistant BIB designs by Hedayat and John (1974) who
have also given a characterization of such designs and have shown their existence.
We shall give some results.

Let D be a BIB design with parameters 2, b, k, r, A and let D* be the design
obtained from D by deleting all experimental units that received a certain subset
L of v(< t — 2) treatments. Following Hedayat and John (1974) we then consider
the following definitions.

Definition 2.6 The design D is said to be globally resistant of degree v if
D* is variance balanced when any subset L of v treatments is deleted. (]

Definition 2.7 The design D is said to be locally resistant of degree v if D*
is variance balanced only with respect to certain subsets L of v treatments. [

Definition 2.8 The design D is said to be susceptible if there exist no subsets
L such that D* is variance balanced. (]
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2.8.3 Characterization of Resistant Designs

Of particular interest, from a practical point of view, are resistant designs (locally
and globally) of degree 1. It may happen that the researcher feels that a particular
treatment, say a drug, may have to be discontinued before the termination of the
experiment. If a BIB design had been chosen for this experiment to achieve
equal precision for treatment comparisons, then such a course of action might
destroy this feature, unless the BIB design is globally resistant of degree 1 or
locally resistant of degree 1 with respect to treatment 6, say, and the treatment
in question has been assigned the number 6.

To characterize suitable designs, let D denote a BIB design with parameters ¢,
b, k, r, A and let D be divided into two parts Dy and Dz. Design Dy consists of
all the blocks of D that contain the treatment 6, and Dz consists of the remaining
blocks of D that do not contain the treatment 6. If N, Ny, N are the incidence
matrices of D, Dy, and Dg, respectively, then

N = (Ng, Np) (2.34)
with
NN' = NyNjy + NgN’g =@ — NI+ A3

Now suppose that treatment 6 has been deleted from D, that is, from Dy. Call
the resulting designs D* and Dy, respectively, and their corresponding incidence
matrices N* and N g. Also, let N* be the incidence matrix obtained from Ny
in (2.34) by deleting the row (of zeros) corresponding to 6, and call the corre-
sponding design Dg. We then have the following theorem due to Hedayat and
John (1974).

Theorem 2.6 The BIB design D is locally resistant with respect to 6 if and
only if Dz is a BIB design.

Proof Let C* denote the C matrix for D*. Then, with
* * *
N* = (Ng, Ng)
a (t — 1) x b incidence matrix, we have

1 | /
C*=rl,_y— ——N}N}, — —NINZ 2.35
rfy—1 k—1  etve PR ( )
Since Dj and Dg’ are derived from the BIB design D, we know that if the general
(off-diagonal) element in N gN g/ is A;;, the corresponding element in N; N ;‘/ must
be A — A;;. Hence, the diagonal and off-diagonal elements of C* are
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Rt

Y k—1 k

_kull A
O \k k-1 k

Hence C* of (2.35) is of the form (2.33) if and only if all Ajj are equal, that is, if
Dg and hence Dy is a BIB design (with parameters ty =t — 1,by = b —r, k| =
k,ri=r—2x, ). U

We illustrate this theorem with the following example.

Example 2.7 The following plan, D, is a BIB design with parameters ¢t =
8, b=14k=4,r=7,1=3:

N = N = W= N =N =W = N =
W kA AW R D W PR B WD
AN L O L 9 i NN W
~ 00 OO0 1] 00 O\ 00 NN N o0 ON o0 oo b~

Let 6 = 1; then Dy is given by

N D W DN W W
W ~ B~ W B~ B~ O
(=) N e N Y Y Y
~N o0 o0 o0 NN O &©
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This is a BIB design with t; =7,b; =7,k =4,r1 =4,A1 = 2. Hence D is
resistant w.r.t. treatment 1.

The design D* obtained from design D in Example 2.7 provides an illustration
of the construction of an equireplicate, variance-balanced incomplete block design
for t* = 7 treatments with unequal block sizes. In particular, we have here b* =
14 blocks, with 7 blocks of size k = 3 and 7 blocks of size kj = 4. O

Corollary 2.2 The BIB design D is globally resistant of degree 1 if and
only if Dz is a BIB design for all 6 of D.

Corollary 2.3 The property of being a resistant BIB design depends not only
on the parameters of D but also in the way D has been constructed.

An interesting example of this is provided by Hedayat and John (1974).

Corollary 2.4 The BIB design D is locally resistant w.r.t. 8 if and only if
every triple containing 6 appears the same number of times in D.

Proof From the proof of Theorem 2.6 it follows that if Dg is a BIB design,
then also Dj is a BIB design, that is, every pair of treatments (other than 6)
appears together the same number of times. Hence in Dy (and therefore in D)
every triple containing 6 appears together the same number of times. (]

This leads one to another characterization of globally resistant designs of
degree 1. Before we state this we give the following definition.

Definition 2.9 An incomplete block design in which each triple of treatments
occurs together the same number of times, 8, is referred to as a doubly balanced
incomplete block (DBIB) design.

This definition is due to Calvin (1954), and such designs and their properties
have been discussed by Calvin (1954) and Raghavarao and Thartare (1967, 1970).
The design given in Example 2.7 is a DBIB design with § = 1. O

Based on Definition 2.9 and the proof of Corollary 2.4 we then have the
following theorem.

Theorem 2.7 A BIB design D is globally resistant of degree 1 if and only
if it is a DBIB design.

Existence, construction, and properties of resistant BIB designs have been
discussed by Hedayat and John (1974) and John (1976), and we shall not go into
this, except for the following theorem.

Theorem 2.8 Every symmetric BIB design with blocks of size & is locally
resistant of degree k.
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The proof follows immediately from the construction procedure of BIB designs
described in Section 3.2.

An interesting follow-up to Theorem 2.8 is provided by Baksalary and Puri
(1990). They show that the symmetry of the design is both necessary and suf-
ficient for the local resistance of degree k with respect to L consisting of k
treatments that occur in exactly one block of the design if we demand D* to be
a BIB design (rather than just a variance-balanced design).

2.8.4 Robustness and Connectedness

Another form of robustness of BIB designs is concerned with the question to what
extent the unavailability of observations, such as missing or lost observations,
affects the property of connectedness of the BIB design.

Following Ghosh (1982) we give the following definition.

Definition 2.10 A BIB design is said to be robust against unavailability of
any s observations if the block design obtained by omitting any s observations
remains a connected design. (]

Using the notion of a bipartite graph, consisting of the subsets T =
(1,2,...,¢t) and B=(1, 2, ..., b), and the notion of connectedness (see
Section 1.5) Ghosh (1982) then proves the following theorems.

Theorem 2.9 A BIB design is robust against the unavailability of any s <
r — 1 observations.

Theorem 2.10 A BIB design is robust against the availability of all obser-
vations in by < r — 1 blocks.

With regard to Theorem 2.10, of particular interest is the case by = 1. This
case is considered by Srivastava, Gupta, and Dey (1990) who show that the
efficiency factor for the resulting design relative to the original BIB design is
given by

E =t —k)(t —1)/(A? — At — th + k%)

Considering many of the existing BIB designs, they found that for most designs
E > .80.



CHAPTERS3

Construction of Balanced
Incomplete Block Designs

3.1 INTRODUCTION

In Chapter 2 we discussed at great length the nature of BIB designs and their
associated analyses. Although extensive lists of actual plans of such designs are
available (see Cochran and Cox, 1957; Fisher and Yates, 1957; Beyer, 1991),
these lists do not cover all presently existing BIB designs. Also, it is desirable
to have some understanding of the combinatorics of design and of the result-
ing algebras. The actual structure has, naturally, an impact on the analysis of
resulting data.

Several methods of constructing BIB designs have been introduced (for refer-
ences, see Raghavarao, 1971) using such mathematical tools as finite Euclidian
and projective geometries. We shall present here a very powerful and at the same
time a quite simple method, the method of cyclical development of initial blocks,
which is due to Bose (1939). With this method one can construct most of the
existing BIB designs (Rao, 1946b) as one can see from the essentially complete
listing of BIB designs given by Raghavarao (1971). Mainly from a historical
point we shall also discuss some other methods.

3.2 DIFFERENCE METHODS

3.2.1 Cyclic Development of Difference Sets

The basic ideas of this method of constructing BIB designs are as follows:

1. We have a set of ¢ treatments that we denote by T = {rg, t1, ..., t;—1}.

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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2. We have a set of s initial blocks, each containing k treatments. Suppose
we denote these initial blocks by

Bjo = (tj1,tj2, .-  tjk) G=12,...,5)

where the ¢j; (i = 1,2,...,k) are elements in J. The B;( are chosen in
a particular way such that they satisfy certain properties (which we shall
discuss below).

3. Each initial block B jo is then developed cyclically, that is, by forming

'ng = (tj1 +1tg,tja+tg, ..., Ljx + Ig)
for 6 =1,2,...,t — 1 assuming that we have an addition rule such that
with t;;, 19 € T also t;; + 15 eJT®=0,1,...,t —1) and tii + 1ty =tji.

4. The set of blocks {Bjg; j =1,2,...,5;6 =0,1,...,t — 1} forms then a
BIB design with parameters ¢, b = st, k,r = sk, A.

The crucial part of this method is obviously the choice of T and the initial
blocks Bjo(j =1,2,...,s). To discuss their properties we shall confine our-
selves at first to the case s = 1, that is, one initial block, Bg say. Extensions to
other situations will then become fairly obvious.

We start with the following definition.

Definition 3.1 Let $=0,1,...,t — 1 be an Abelian group under addition,
that is, for g1, g» € G define g; + g2 to be g1 + g» mod ¢ and define g; — g» to
be g, where g» + ¢ = g1 mod ¢. Let A be a subset (of ) of k elements such that
the k(k — 1) differences (mod 7) between members of A comprise all nonzero
elements of G exactly A times. Then A is called a difference set of size k. [

Example 3.1 let t=7,5={0,1,2,3,4,5,6}, A={0,1,3}. The differ-
ences between members in A are 0—1=6,0—-3=4,1-0=1,1-3=
—2=5,3-0=3,3—1=2, and hence A = 1. O

Taking T = G, we now state the main result of this chapter in the form of the
following theorem.

Theorem 3.1 Let A be a difference set of size k for a group G of 7 elements
such that each nonzero difference occurs A times. If the set A is taken as the
initial block By and developed cyclically, it generates a symmetrical BIB design
with parameters ,b =t,r =k, A.

Proof LetA = Bg=1{g1,8,...,8 withg; € G(@ =1,2,...,k). By cycli-
cally developing By, each element in G occurs exactly once in each of the k posi-
tions; hence each element occurs in the b sets (blocks) Bg(@ =0,1,...,t — 1)
exactly k times. The only property of a BIB design that needs to be shown then
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to hold is that any two elements (treatments) occur together in A blocks. To see
this, consider without loss of generality g,, g,, € G. Suppose that for g/, g,y € A
we have

8u=2_8uw +0
3.1)
gu=2gy +0
that is, g, and g, occur together in By. Then
Eu — 8w = 8v — &
or
8u — 8v = 8w — &v
Now g, — gy =c with c € {1,2,...,t — 1}. Since A is a difference set, we

know that there exist A differences of the form g, — g, with the same constant
c. Hence there exist exactly A solutions to (3.1) as equations in 6. Call these
solutions 61, 0;, ..., 6. It then follows that g, and g, appear together in blocks
Bo,, Bo,, - - ., Bg, , which proves the theorem. O

As an illustration reconsider the following example.

Example 3.2 lett=7,5=1{0,1,2,3,4,5,6,},A=By=1{0,1,3}, A =1.
The BIB design then is

O, 1, 3)
{1, 2, 4)
2, 3,5)
(3, 4, 6)
4, 5, 0)
5, 6, 1)
6, 0, 2)
where each row represents a block. (]

It is now easy to generalize this procedure to the case of several initial blocks.
We do this in the next theorem.

Theorem 3.2 Let A= {Big, B, ..., Bso} consist of s sets of k elements
each such that among the sk(k — 1) differences between the elements in each set
each nonzero element of G occurs exactly A times. Developing each set cyclically
yields a BIB design with parameters ¢, b = st, k, r = sk, A.

The proof follows along the same lines as that of Theorem 3.1.
To illustrate Theorem 3.2 we consider the following example.
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Example 3.3 lettr=11,9={0,1,...,10}, and

Bio= (0,1, 10)
Brog=1(0,2,9)
Bso=(0,4,7)
Bao =(0,8,3)
Bso = (0, 5, 6)

The differences resulting from

Bjo are 10,1, 1,2, 10,9
Borgare 9,2,2,4,9,7
Bigare 7,4,4,8,7,3
By are 3,8,8,5,3,6
Bsg are 6, 5,5, 10,6, 1

Inspection shows that & = 3 and hence A = {Bjo, ..., Bso} satisfies the condi-
tion of Theorem 3.2. The resulting BIB design with 11 treatments in 55 blocks
of size 3 and 15 replicates per treatment is then as follows:

©, 1,10) O, 2,9 ©, 4, 7 o, 8, 3) O, 5, 6)
a, 2, 0) (1, 3,10) 1, 5, %) a, 9, 4 a, 6, 7)
2, 3,1 2, 4, 0 2, 6,9 (2, 10, 5) 2, 1, 8
3, 4, 2) 3B, 5 1 3, 17,10) 3, 0, 6) 3, 8 9
4, 5, 3) 4, 6, 2) “, 8, 0 @, 1, 7 4, 9, 10)
S, 6, 4 S, 7, 3) S, 9, 1 S, 2, 8 6, 10, 0)
6, 7, 5) 6, 8, 4 6, 10, 2) 6, 3,9 6, 0, 1)
(7, 8, 6) @7, 9, 5) (7, 0, 3) (7, 4,10) @, 1, 2)
® 9 7 8, 10, 6) @, 1, 4 @Q 5 0 @8, 2, 3)
9, 10, 8) O, 0, 7 o, 2,5) O, 6,1 o, 3, 4
10, 0, 9) (10, 1, 8) 10, 3, 6) 1o, 7, 2) (10, 4, 5)

We note that this design could be used as a Youden square with 5 replication
groups of 11 blocks each (see Section 2.6.1) O

3.2.2 Method of Symmetrically Repeated Differences

So far the procedure of cyclic development has led to BIB designs with the
number of blocks being a multiple of the number of treatments. As exemplified
in Example 3.3, this can mean a rather large number of blocks. This number can
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possibly be reduced, however, if the number ¢ can be factored, say t = pq. For
this situation the notion of a difference set and hence the construction procedure
can be modified as follows (Bose, 1939).

Consider a finite additive group G containing p elements, § = {a(o), a®, ...,
a?~D} say. To each element of the group G let there correspond ¢ symbols, the

symbols associated with a™ being denoted by ai”), aé”), N a;”). Symbols with

the subscript j are said to belong to the jth class, that is, aj.o), a;l), c, at?™b

belong to the jth class. We consider differences of the form al.(”) — a(.v), which

are called differences of type (i, j), and their value is given by a®™ —a® =d,
say, where d € §. When i = j, the differences are called pure, when i # j the
differences are called mixed, there being ¢ types of pure differences and g(¢ — 1)
types of mixed differences.

We then have the following definition.

Definition 3.2 Let A = {Bjg, Boo, ..., Bso} be a collection of s sets satis-
fying the following conditions:

1. Each set contains k symbols with
k=nyg+no+- - +nge =1,2,...,5)

and 7, denoting the number of symbols of the jth class in set £.

2. Among the Y ,_, nj¢(n;¢ — 1) pure differences of type (i, i) arising from
the s sets, every nonzero element of G is repeated exactly A times for each
i=12,...,q.

3. Among the }",_, nj¢ n j, mixed differences of type (i, j) arising from the s
sets, every element of G is repeated exactly A times for every (i, j); i, j =
1,2,...,q;i # j.

If conditions 1-3 are satisfied, the differences are said to be symmetrically
repeated in G, with each difference occurring X times. O

To illustrate Definition 3.2 we consider the following example.
Example 3.4 lett=10,p=5,4=2,5={0,1,2,3,4},
A: o Bio=1(02,12,22)  Byo=(11,41,02)
B30 =1(21,31,02)  Bao=(11,41,22)
Bso = (21,31,22)  Beo = (01,02, 22)

that is,
nip =0 ny =3
np=2 nyp =1
niz =2 ny3 =1
nig =2 ny =1
nis =2 nas =1

nig =1 nyg = 2
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Pure differences of type (1, 1): 1-4=-3=2

1= =
2-3=—-1=4
= =1
1-4=-3=
— 1= 3=
2—-3=-1=
3-2= 1=1:2=2
Pure differences of type (2, 2): 0-1=-1=4
0-2=-2=
1-0= 1=
1-2=-1=
2—-0= 2=
2—-1= 1=1
0-2=-2=

Mixed differences of type (1,2): 1—-0= 1=1

4—-0= 4=4
—0= 2=
3-0 3=

2=—-1=
4 -2 2=2
—2= 0=
3-2= 1=1

0= =

0-2=-2=3:12=2

Mixed differences of type (2, 1) are the negative values of the differences of type
(1, 2): . = 2. Hence A satisfies conditions 1-3. O

Now we let the pg symbols a;”)(u =1,2,...,p,j=1,2,...,q) represent
the ¢ treatments. The method of cyclic development is then used again to generate
BIB designs as described in the following theorem.

Theorem 3.3 Let it be possible to find a collection of s sets A = {Bg, Boo,
.., Byo} satisfying the following conditions:

i. Among the ks symbols (treatments) occurring in the s sets (blocks), exactly
r symbols belong to the jth class (j = 1,2, ..., ¢q), that is, ks = gr.

ii. The differences in A are symmetrically repeated, each occurring X times.
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Then, if each set in A is cyclically developed, obtaining B¢y by adding 6 €
G to each element in Byy(¢£ =1,2,...,s) and retaining the class number, the
resulting ps sets Bpp(£ =1,2,...,5;0 € G) form a BIB design with parameters
t=pqg,b=ps, k,r =ks/q, .

The proof follows arguments similar to those used in the proof of Theorem
3.1 (for more details see Raghavarao, 1971).

We shall illustrate this procedure with a continuation of Example 3.4.

Example 3.4 (Continued) Lett=10=5x2,9={0,1,2, 3, 4}. Develop-
ing the initial blocks given earlier, we obtain the following BIB design with
t=10,b=30,k =3, r =9, A =2:

(02, 12, 22) (11,41,02) (21,31, 02)
(12,22, 32) (21,01, 12) (31,41, 12)
(22,32, 42) (31,11, 22) (41,01, 27)
(32,42,02) (41,21, 32) (01, 11, 32)
(42,02, 12) (01,31, 42) (11,21, 42)
(11,41, 22) (21,31, 22) (01, 02, 22)
(21,01, 32) (31,41, 32) (11, 12, 32)
(31, 11, 42) (41,01, 42) (21,22, 42)
(41,21, 00) (01,11, 02) (31,32,07)
(01, 31, 12) (11,21, 12) (41,42, 1)

We can then identify the symbols with the treatments in any way we want to,
such as

Symbol 00 0, 1; 1o 21 2o 31 3 4 4
Treatment 1 2 3 4 5 6 7 8 9 10 O

Further modifications of the procedures discussed so far can be achieved
by considering the set of treatments T = {t1, t2, ..., ty, 00} where G = {11, 1,
..., Iy} represents an additive group and the element oo is such that co + x = oo
for any x € §. As an extension of Theorem 3.2 we then have the following
theorem.

Theorem 3.4 Let G be an additive Abelian group with v elements. Let A
represent a collection of s + u initial blocks A = {Big, B, ..., Bso, B/IO, B/zo’
e, B;O}, each of size k, subject to the following conditions:

i. The blocks B;o(i = 1,2, ...,s) contain k elements of G.
ii. The blocks B’J.O(j =1,2,...,u) contain oo and k — 1 elements of G.



DIFFERENCE METHODS 111

iii. Ignoring oo, the sk(k — 1) +u(k — 1)(k — 2) differences in A contain
each nonzero member of G the same number, A, of times.
iv. L=uk —1).

Then developing the blocks in A cyclically by means of the elements in
G (mod v) yields a BIB design with parameters t = v+ 1,b = (s + u)v, k,r =
uv, and A = uk — 1).

We illustrate this theorem with the following example.

Example 3.5 let v=11,7T,=1{0,1,...,10,00},5={0,1,...,10},s =
l,u=1, and
Bio=1(0,1,3,7,8,10)

B’IO = (00,0,5,6,8, 10)
The 30 + 20 = 50 differences yield each nonzero element of G five times,

that is, A = 5. The resulting BIB design with parameters t = 12, b =22,k = 6,
r =11,A =5 is given by

©, 1, 3, 17, 8, 10) (co, 0, 5, 6, 8 10)
a, 2, 4, 8, 9, 0 (0o, 1, 6, 7, 9, 0)
2, 3 5 9 10, 1) (00, 2, 7, 8, 10, 1)
(3, 4, 6,10, 0, 2) (00, 3, 8 9, 0, 2)
@, 5 7, 0, 1, 3) (co, 4, 9,10, 1, 3)
6, 6, 8 1, 2, 4 (0o, 5,10, 0, 2, 4)
6 7, 9, 2, 3, 5) (00, 6, 0, 1, 3, 5)
(7, 8, 10, 3, 4, 6) (00, 7, 1, 2, 4, 6)
@& 9 0 4, 5 7 (00, 8 2, 3, 5 1)
O, 10, 1, 5 6, 8 (co, 9, 3, 4, 6, 8
10, 0, 2, 6, 7, 9 (0o, 10, 4, 5, 7, 9 (]

Theorem 3.4 can be generalized in much the same way that Theorem 3.2
was generalized by defining pg symbols of the form ag-w)(w =1,2,...,p;j=
1,2,...,q) with the a® forming an additive group 9 These pg symbols are
now referred to as finite symbols to which we adjoin the symbol oo, so that
Too = {a;w)(w =1,2,...,p;j=1,2,...,q),00}. We then have the following
theorem.

Theorem 3.5 Let A = {Big, Boo, ..., Bso, B|y. Bsy. ..., B} satisfy the
following conditions:

i. Each set B;jo(i = 1,2, ..., s) contains k different finite symbols.
ii. Each set B’jo( j=1,2,...,u) contains co and (k — 1) different finite
symbols.
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iii. Of the finite symbols of the £th class, (pu — A) occur in the sets {B;g,i =
1,2,...,s} and A occur in the sets {B/jo,j =1,2,...,u} for each £ =
1,2,...,q, implying ks = g(pu — 1), (k — Du = gA.

iv. The differences from the finite symbols in A are symmetrically repeated,
each occurring A times.

Then developing each set (block) in A cyclically (as in Theorem 3.3) yields
a BIB design with parameters t = pqg + 1, b= (s +u)p, k,r = up, A.
As an illustration consider the following example.

Example 3.6 Let p=7,q=2,t =15,s =3,u =2, with

Bio = (01, 11,31, 02, 22, 62)
Bro = (01, 11, 31, 12, 52, 62)
B30 = (01, 41,51, 02, 12, 32)
Bl = (00,01, 02, 12,22, 42)
By = (00,01, 31, 51,61, 02)

The reader can check easily that conditions (iii) and (iv) are met with A = 5.
Hence the resulting design is a BIB design with parameters ¢t = 15,b = 35,k =
6,r =14,1 =5. O

3.2.3 Formulation in Terms of Galois Field Theory

In all the examples given so far, the additive group G has been written as § =
{0,1,...,t =1} or §={0,1,...,v — 1}, representing the residues mod ¢ or
mod v, respectively. If ¢ or v is prime or prime power, the elements of G can be
expressed also in terms of the powers of a primitive root of the Galois field GF(¢)
or GF(v), respectively. For a discussion of Galois fields we refer to Appendix A.

Since G can be expressed in terms of all powers of a primitive root of GF(¢),
then also A can be represented in terms of certain powers of such a primitive
root. It is this fact that makes this representation useful. The reader will have
noticed that the construction procedures presented in Theorems 3.1-3.5 depend
upon the existence of difference sets, but we have not yet said how these can be
obtained. One way, certainly, is by trial and error, but that is feasible only for
small 7 and not very satisfactory in general. A more direct way is to make use of
mathematical results that for certain forms of ¢ give general explicit expressions
for certain types of difference sets in the form of powers of primitive roots.
For example, if t =10€ 41 is a prime or prime power and x is a primitive
root of GF(10¢ + 1), then the £ sets B = (xf, x26H x3H | xOb+i ( 8ty j —
0,1,...,¢ —1 form a difference set A with A = 2. As an illustration consider
the following example.
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Example 3.7 Lett =11,£ =1,then A = Bog = (x°, x2, x*, x°, x®), which,
with x = 2 being a primitive root of GF(11), translates into

Boo = (1,4,5,9,3)
and that can then be used in Theorem 3.1 to construct a BIB design with ¢ =

11,b=11,k=5,r =51=2. O

We shall not pursue this any further here, but refer the reader to Raghavarao
(1971) for an extensive list of such results and further references.

3.3 OTHER METHODS

To complete this chapter we mention briefly four other methods that give rise
to quite a number of BIB designs. Of these methods, one is a simple direct
construction procedure, two derive new BIB designs from existing BIB designs,
and the last is based on notions of factorial experiments.

3.3.1 Irreducible BIB Designs

This method is applicable mainly for small # and consists of taking of the ¢
symbols all possible combinations of k symbols. This leads to a BIB design with

parameters , b = ()., k,r = (;1), + = (;73)-

3.3.2 Complement of BIB Designs

If the collection of blocks D = {B, Bo, ..., By} represents a BIB design with
parameters ¢, b, k, r, and A, then, if we let Bf = T — B;, the collection of blocks
Dy = {B],B,..., B}} represents a BIB design with parameters t; = ¢, by =
bki=t—k,ri=b—r,A1 =b—2r+A.

That this is true can be seen as follows: If N denotes the incidence matrix of
the existing BIB design, and N denotes the incidence matrix of its complement,
then

that is,

and hence .,
NN = (ﬂt% - N)(ﬂth;7 —N)

=03,9, - 9,9,N' — N33, + NN’
=((b-2r3,9,+ NN
=(b—-2r39;+ (r — VI + 19,9,

= =M+ 0b—2r+1)3,9,
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which implies that N is the incidence matrix of a BIB design, and

rn=F—-—AN+0b-2r+rx)=>b-r
M=b—-2r+x

3.3.3 Residual BIB Designs

If the collection of blocks D = {B, B, ..., By} represents a symmetrical BIB
design with parameters ¢,b =t, k,r = k, A, then one can consider the design
D,, which is obtained as follows: Select any block from D, say B, and delete
from each of the remaining blocks Bj, Bs, ..., By the A elements it has in com-
mon with By. Call those sets B3, B3, ..., Bf. Then D, = {B}, B}, ..., Bf} is
the residual BIB design with parameterst, =t —k,bo =b— 1, ko =k — X, rp =
k, Ay = A.

To see that this is true we show that in a symmetrical BIB design any two
blocks have A treatments in common. This follows from

N'NN'=N'[(r — VI + 19,9;]
= [(r — I +19,9IN’ (3.2)
since N'd; = 3, N' = rJ,; and since N’ is nonsingular, (3.2) implies
N'N = (r — I +1.9,9,

which is the desired result. The rest is then obvious.

3.3.4 Orthogonal Series

This method is actually the oldest method. These designs are due to Yates (1936b)
and are referred to as quasi-factorial or lattice designs, since their construction is
based on concepts of factorial experiments. The designs generated by these meth-
ods have parameters ¢ = K k=K, b=KK+1),r=K+1,»=1 with K
prime or prime power. This series of designs is also called orthogonal series 1
(OS1). We shall deal with the construction of OS1 designs in Section 18.3.

An alternative method of constructing these designs is given by Khare and
Federer (1981). This algorithm can be described as follows:

1. Write the treatment numbers 1, 2, ..., ¢ consecutively in a square array of
K rows and K columns to yield replicate 1 of the resolvable design, with
rows constituting the blocks.

2. Transpose the rows and columns of replicate 1 to obtain replicate 2.

3. Take the main right diagonal of replicate 2 to form the first row of replicate
3, and write the remaining elements in each column of replicate 2 in a cyclic
order in the same column for replicate 3.
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4. Repeat step 3 for replicate 3 to generate replicate 4.

5. Continue this process on the just generated replicate until K + 1 replicates
have been obtained.

As an illustration consider the following example.

Example 3.8 lett=16=42k=4,b=20,r =5:

Replicate 1 Replicate 2
1 2 3 4 1 5 9 13
5 6 7 8 2 6 10 14
9 10 11 12 37 11 15
13 14 15 16 4 8 12 16
Replicate 3 Replicate 4
1 6 11 16 1 7 9 15
2 7 12 13 2 8 10 16
3 8 9 14 35 11 13
4 5 10 15 4 6 12 14
Replicate 5
1 8§ 11 14
2 5 12 15
36 9 16
4 7 10 13

Because of the repeated application of step 3 above, this method has been re-
ferred to as the successive diagonalizing method (Khare and Federer, 1981). [

3.4 LISTING OF EXISTING BIB DESIGNS

Raghavarao (1971) provides a complete list of existing BIB designs with param-
eters ¢, b < 100, r, k < 15 together with their method of construction. A similar
table with difference sets is given by Takeuchi (1962). Another extensive list
of parameters and references concerning construction of BIB designs for r < 41
and k < t/2 is given by Mathon and Rosa (1996). Table 3.1 gives a list of BIB
designs with r < 25 and k < 11, which can be constructed using the methods
discussed in this chapter. For each design we give the parameters ¢, b, r, k, A and
the method by which the design can be constructed. If ¢ is a prime power the ele-
ments in the difference sets are given in terms of powers of the primitive element
x for the primitive polynomials, P(x), given in Table A2 (see Appendix A).
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Table 3.1 BIB Designs with ¢t < 25,k < 11

Design t b r k A Method
1 3 2 2 1 Irreducible
2 4 6 3 2 1 Irreducible
3 4 3 3 2 Irreducible
4 5 10 4 2 1 Irreducible
5 5 5 4 4 3 Irreducible
6 5 10 6 3 3 Irreducible
7 6 15 5 2 1 Irreducible
8 6 10 5 3 2 Residual of design 25
9 6 6 5 5 4 Irreducible
10 6 15 10 4 6 Irreducible
11 7 21 6 2 1 Irreducible
12 7 7 6 5 Irreducible
13 7 21 15 5 10 Complement of design 11
14 8 28 7 2 1 Irreducible
15 8 14 7 4 3 Difference set:
(00, 1,2,4); (0,3,6,5) mod 7
16 8 8 7 7 6 Irreducible
17 9 36 8 2 1 Irreducible
18 9 18 8 4 3 Difference set:
(9, x2, x*, x%); (x, x3, X7, x7);
x € GF(3?)
19 9 9 8 8 7 Irreducible
20 9 18 10 5 5 Complement of design 18
21 10 45 2 1 Irreducible
22 10 30 3 2 Difference set: (02, 12, 22, );
(11,41, 02)(21, 31, 02);
(11,41, 22,); (21,31, 22);
(01, 02, 22) mod 5
23 10 18 9 5 4 Residual of design 42
24 10 10 9 9 8 Irreducible
25 11 11 5 5 2 Difference set:
(1,4,5,9,3) mod 11
26 11 11 6 6 3 Complement of design 25
27 11 55 10 2 1 Irreducible

28 11 11 10 10 9 Irreducible
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Table 3.1 (Continued)

Design t b r k A Method

29 11 55 15 3 3 Difference set: (0, 1, 10);
0,2,9) (0,4,7)
(0, 8, 3); (0,5, 6) mod 11

30 12 44 11 3 2 Difference set:
0,1, 3); (0,1, 5);
(0,4,6); (00,0,3) mod 11

31 12 33 11 4 3 Difference set:
0,1,3,7); (0,2,7,8);
(00,0,1,3) mod 11

32 12 22 11 6 5 Difference set:
©,1,3,7,8,10);
(00,0,5,6,8,10) mod 11

33 13 26 6 3 1 Difference set: (1, 3, 9);
(2,6,5) mod 13
34 13 26 12 6 5 Difference set:

(1,4,3, 12,9, 10);
(2,8,6,11,5,7) mod 13

35 13 39 15 5 5 Difference set: (0, 1, 8, 12, 5);
©,2,3,11, 10);
0,4,6,9,7) mod 13

36 15 35 7 3 1 Difference set:
(11,441, 02,); (21,31, 02);
(12,42, 03); (22, 32,03, );
(13,43, 01); (23,33, 01);
(01, 02, 03) mod 5

37 15 35 14 6 5 Difference set:
(00,01, 02, 12, 22, 42);
(o0, 01, 31, 51, 61, 02);
(01, 11, 31, 02, 22, 62);
(01, 11, 31, 12, 52, 62);
(O], 4], 5], 02, 12, 32) mod 7

38 16 24 9 6 3 Residual of design 50

39 16 80 15 3 2 Different set:
(% 2%, 2105 (! 20 2
(2, a7, 12y (3, 28, 2P,
x* x%, x; x e GF2YH

40 16 48 15 5 4 Difference set:

(0,0, 20, 2%, x12);

(xl X4 )C7 XIO x13).
(x2, %%, x8, x 11 x4y,

x € GF(2%
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Table 3.1 (Continued)
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Design t b

Method

41

42

43
44

45

46

47

48

49

50
51

19

19

19

21

21

22

23

25

25
25

57

19

19
57

70

42

77

23

50

25
100

10
12

10

12

14

11

12

10

11

Difference set:
(1,7,11); (2, 14, 3);
(4,9, 6) mod 19

Difference set:
(1,4,16,7,9,17,11,6,5)
mod 19

Complement of design 42

Difference set:
0,1,7,11); (0,2, 14, 3);
0,4,9,6) mod 19

Difference set:

(11,61, 02); (21, 51, 02);
(31,41, 02); (12, 62, 03);
(22,52, 03); (32,42, 03);
(13, 63, 01); (23,53, 01);
(33,43, 01); (01,02, 03) mod 7

Difference set:

(01, 51, 12,42, 23, 33);

(01, 11, 31, 02, 12, 32);

(02, 52, 13, 43,21, 31);

(02, 12, 32, 03, 13, 33);
(03,53, 11,44, 22, 32);

(03, 13, 33,0], 1],3]) mod 7

Difference set:

(11,61, 32,42); (31,41,22,52);
(21,51, 62, 12); (12, 62, 33,43);
(32,42, 23, 53); (22, 52, 63, 13);
(13, 63,31,41); (33,43,21,51);
(23, 53, 61, 11); (00, 01, 02, 03);
(OO, 01, 02, 03) mod 7

Difference set:
(1,2,4,8,16,9, 18,13, 3,6, 12)
mod 23

Difference set:

(0, x9, x8, x16);

0, x%, 210, x1%);

x € GF(5%)

See Fisher and Yates (1957)
Difference set:

0, x8, x1%); (x!, x2, x17);
(X xl 18) (x xll 19)’
xeGF@%




CHAPTER4

Partially Balanced Incomplete
Block Designs

4.1 INTRODUCTION

It can be seen very easily from the list of existing BIB designs [see Raghavarao
(1971), Mathon and Rosa (1996), and also Table 3.1] that such designs exist for
certain parameters only and often with an inordinately large number of replicates,
the main reason being that condition (2.4) has to be satisfied with A being an
integer. For example, using (2.4), with 8 treatments and blocks of 3 units, the
lower limit for the number of replicates is 21, and with this number of replicates
the blocks would consist of all combinations 3 at a time of the treatments. In
fact, Yates himself recognized that BIB designs are “rare” and then developed
different types of quasi-factorial or lattice designs (see Chapter 18). Although
some of the lattice designs are special cases of BIB designs (see Section 3.3.4),
others are special cases of a much larger class of designs, namely partially
balanced incomplete block (PBIB) designs. These were introduced by Bose and
Nair (1939).

Recall that BIB designs have the property that all treatment differences are
estimated with the same accuracy. For PBIB designs this property will not be
sacrificed completely, but only to the extent that, loosely speaking, pairs of treat-
ments can be arranged in different sets such that the difference between the
treatment effects of a pair, for all pairs in a set, is estimated with the same
accuracy.

4.2 PRELIMINARIES

Before giving the definition of a PBIB design, we shall take a look at the reduced
normal equations (1.7) for a general incomplete block design, investigate the

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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structure of these equations in light of the remarks made in the introduction, and
see what that might imply.

4.2.1 Association Scheme

Recall that the RNE for a proper equireplicate incomplete block design are of
the form [see (1.7)]

1 1
I—--NN|T=T—--NB
(’ k )’ k
where

NN =Y nijnij | = Qi) (say)
J

For the BIB design A;; = A for all i,i’ (i #i’) and A;; = r for all i. The term
Aiir denotes the number of times that treatments i and i’ appear together in the
same block. We now wish to consider the case that for a given treatment i, the
numbers A;;s are equal within groups of the other treatments. Suppose that over
all i and i’ the A;;s take on the values A1, Ap, ..., A,,. For the sake of argument we
shall assume that the A, (¥ = 1, 2, ..., m) are different although it will become
clear later that this is not necessary. The set of treatments i’ for which A;;» = A;
will be denoted by S(i, 1) and called the first associates of treatment i. The
set of treatments i’ for which ;s = A, will be denoted by S(i,2) and called
the second associates of treatment i, and so forth. For any given i then the
remaining treatments fall into one of the sets S(i, 1), S(i, 2), ..., S(i, m). The
question now is: Under what conditions does this association scheme imply that,
for example, treatment i and all the treatments i’ in S(i, u) are compared with
the same precision and when is this the same for all pairs of uth associates
independent of the treatment i?

4.2.2 Association Matrices

In order to investigate this question we shall use the concept of an association
matrix, which was introduced by Thompson (1958) and investigated in more
detail by Bose and Mesner (1959). Define the uth association matrix, a ¢ x ¢
matrix, as

Buz(bz,g) u=12,...,m)
with

" 1 if treatment o and B are uth associates
op 0 otherwise



PRELIMINARIES 121

At this point it is convenient to introduce By = I and Ag = r. It follows then
from what has been said earlier that

m
> B, =37 4.1)
u=0
Furthermore,
m
NN = Z AuBa 4.2)
u=0
and hence
1, k—1 " h
C=rI—ENN=r . BO—ZTBM (4.3)
u=1

or in words: The coefficient matrix C of the RNE is a linear combination of the
association matrices.

4.2.3 Solving the RNE
To solve the RNE, we know from (1.17) that

o 1
cc'l=1- ~99 (4.4)

where C = C + 99’ and a # 0, real. Using (4.1) and (4.3) we can rewrite (4.4)
in terms of association matrices as follows:

(Z cuBu) (Z cj;Bu) =—Bo—- > B, (4.5)
u=0 u=0 u=I1

where
k—1 M =12 ) .
X cy = . u=1,2,....m cp=cy+a

co=r

Now, let

m -1
(Z cr Bu) =G = (gi) (4.6)

u=0
Then we know that for any two pairs (i,i") and (i, i")
var (% — %) = (gii + giir — 28ii)0; (4.7)

var (3 — Ti) = (gii + gimir — 28iin)0 2 (4.8)
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Suppose that i” and i” are uth associates of i. Then we would like to have that
(4.7) and (4.8) are equal. One way that this can happen is if

gii = gl'/l'/ = gi//i//

and
giit = gii" (4.9)

Furthermore, we would like var(T; — T;/) to be equal to the right-hand side of
(4.7) for any pair (j, j') that are uth associates. It is obvious that this can be
achieved if G is of the form

m
G=) guB. (4.10)
u=0

Substituting (4.10) into (4.5) yields

i BB, - —'B liB 4.11)
Cu8v Dyby = ; 0 : u .
u,v=0 u=1

Since the right-hand side of (4.11) is a linear combination of the B,’s, the
left-hand side also must be one. This would imply that B, B, is of the form

m
B,B, = Z k. By (4.12)
k=0

that is, B, B, is itself a linear combination of the B,,’s.

4.2.4 Parameters of the Second Kind

It will turn out that the coefficients pﬁv in (4.12) play an important role in
the definition of PBIB designs. It is for this reason that they are referred to as
parameters of the second kind. To understand what they really are and to grasp
the full meaning of (4.12), let us consider two treatments, & and § say. Consider
then the («, B) element of B, B, and of ), p’,jv Bj. The (o, B) element of
B, B, is of the form

u v
bay vB

MH

<
Il
—_

Since B, is symmetric (follows from the fact that if « is the £th associate of S,
then B is also the £th associate of «), this is the same as

MH

bl b, (4.13)

<
I
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which equals the number of unity elements the oth row of B, and Bth row
of B, have in common, or expressed differently, which equals the number of
treatments that S(«, #) and S(B, v) have in common. The corresponding element
of the right-hand side of (4.12) is

m
> Pk, b (4.14)
k=0

Because of (4.1) there is only one element bflﬂ equal to one, namely bﬁﬂ if
and B are £th associates. Hence

t
Py =Y b4, bh, (4.15)
y=1

The left-hand side of (4.15) does not depend explicitly on o and S but only
on the type of association between o and § and hence is the same for any two
treatments that are £th associates. In particular for « = § and u = v we obtain

t t
po =Y (bh)* =D "bi, =n, (say)
y=1 y=1

which is the number of elements in S(«, u). This implies that every treatment
has n, uth associates. In summary then, if there exists an association scheme
such that (4.15) holds, then (4.10) and hence (4.9) can be achieved.

4.3 DEFINITION AND PROPERTIES OF PBIB DESIGNS

We now give the formal definition of a PBIB design based on the definition given
by Bose and Shimamoto (1952) and derive some of its properties in terms of its
various parameters.

4.3.1 Definition of PBIB Designs
With the motivation provided in Section 4.2 we now have the following definition.

Definition 4.1 An incomplete block design is said to be a PBIB design, if it
satisfies the following conditions:

1. The experimental material is divided into b blocks of k units each, different
treatments being applied to the units in the same block.

2. There are ¢t treatments each of which occurs in » blocks.
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3. Any two treatments are either 1st, 2nd, ..., mth associates; each treatment
is the Oth associate of itself and of no other treatment.

4. Each treatment has n, uth associates (u =0,1,...,m).

5. If any two treatments are kth associates, then the number of treatments
common to the uth associates of the first and the vth associates of the
second is pX , independent of the pair of kth associates.

6. Any two treatments that are uth associates appear together in A, blocks.

The terms ¢, b, r, k, A1, A2, ..., A, N1, N2, ..., Ny are called the parameters
of the first kind, and the p{jv are called parameters of the second kind.
The parameters of the second kind are generally exhibited in matrix form as

P, = (p{jv)(k =0,1,...,m), and in our notation these are (m + 1) x (m + 1)
matrices (this deviates from the original notation by Bose and
Nair, 1939). O

As an illustration of a PBIB design we consider the following PBIB design
with three associate classes.

Example 4.1 lett=8,b=6,r=3,k=4

Block Treatments
1 1, 2, 3, 4
2 1, 2, 5, 6
3 1, 3, 5, 7
4 2, 4, 6, 8
5 3, 4, 7, 8
6 5 6, 7, 8

The association scheme is as follows:

Oth Associate 1st Associates 2nd Associates 3rd Associates

1 2, 3,5 4, 6, 7 8
2 1, 4, 6 3,5, 8 7
3 1, 4, 7 2,5, 8 6
4 2, 3, 8 1, 6, 7 5
5 1, 6, 7 2, 3, 8 4
6 2,5, 8 1, 4, 7 3
7 3,5, 8 1, 4, 6 2
8 4, 6, 7 2, 3,5 1

Hence ny =3,ny =3,n3 =1, and, from inspection of the design, A} =
2,2 =1,23 =0, and
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1 0100
_ 3 0 1 0 2 0
Po—o 3 Pi=1o 2 0 1
1 0010

0010 00 0 1
02 0 1 00 3 0
Pa=11 012 0 Pi=1p 3 0 0
0100 1000

4.3.2 Relationships Among Parameters of a PBIB Design

The following relationships exist among the various parameters of a PBIB design:

tr = bk (4.16)
m
Y =t 4.17)
u=0
m
>y =rk (4.18)
u=0
Py = Pha (4.19)
m
Z Pk =n, (4.20)
u=0
NPy = NuPly = Ny Py (4.21)

Relationships (4.16), (4.17), and (4.18) follow immediately from the definition
of a PBIB design.

To verify (4.19) we note that the relation of association is symmetric and that
therefore the association matrices B, are symmetric. Hence

/
B,B,=B,B,=(B,B,) = (Z o Bk>
k

:Zpl;u 2=ZP§uBk=BvBu
k k

which implies (4.19).
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To verify (4.20) consider
m m
(Z Bu) B,=99B,=n,99 =n, »_ B
M:O k:O
and

ooy dny ()

u=0 u

Comparing coefficients yields (4.20).
Finally, to derive (4.21) we use (4.12) twice and consider

m m
(BuB)By =) (Z P pie) B,
s=0 \k=0
and

m m
(B¢B,)B, =Y _ ( Pty piu) By
k=0

s=0

Comparing coefficients yields
D PunPhe =D PhoPla (4.22)
k k

which for s = 0 reduces to

Ja u
ngPyy = NuPyy

since p,?e = ny for k = £ and zero otherwise as follows easily from the, trivial,
definition of Oth associates. Concerning the parameters of the second kind, we
have already mentioned that

0 ny foru=v
Dy = . (4.23)
0 otherwise
Also,
‘ 1 fork=v
Poy = ' (4.24)
0 otherwise
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which follows immediately from

B, =BoB, =) p;, Bt
k

Equations (4.23) and (4.24) hold for any PBIB design, whereas the remaining
p{‘w are determined by the particular association scheme for a given PBIB design,
as will be shown later. For this reason we refer to a PBIB design as defined
above as an m-associate class PBIB design, which henceforth we shall denote
by PBIB(m) design.

4.4 ASSOCIATION SCHEMES AND LINEAR
ASSOCIATIVE ALGEBRAS

In the motivation and derivations given in Sections 4.2 and 4.3 we have made
use of some results given by Bose and Mesner (1959), in particular, relationship
(4.12), which leads to the introduction of the parameters of the second kind. There
exists, indeed, a much more mathematical relationship between the association
matrices, B, and certain matrices with elements p’;v. This relationship provides
some further insights into the structures of PBIB designs. We shall give a brief
account of the major results but refer the reader to Bose and Mesner (1959) for
details.

4.4.1 Linear Associative Algebra of Association Matrices

Consider the association matrices B,(u =0, 1,2,...,m) defined in Section
4.2.2. We have seen [see (4.1)] that

Bo+Bi+---+B, =37
It follows then that the linear form
coBo+ciBy+---+cuBpy (4.25)
is equal to zero if and only if
co=c1=-=cp=0
Hence the linear functions (4.25) of the B,’s form a vector space with

By, By, ..., B, as basis.
We also know [see (4.12)] that

m
B.,B,=)_ pk, Bi (4.26)
k=0
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If A and B are two matrices of the form (4.25), then the product AB is,
because of (4.26), again of the form (4.25). The set of matrices of the form
(4.25) is, therefore, closed under multiplication. It also forms an Abelian group
under addition. Also, because of (4.19), multiplication is commutative. As a
consequence, the set of matrices of the form (4.25) constitute a ring with unit
element, Bg. It will be a linear associative algebra if the coefficients ¢, range
over a field.

4.4.2 Linear Associative Algebra of P Matrices

We have introduced in Section 4.3.1 matrices Py = (pX,) whose elements are
the parameters of the second kind (k =0, 1, ..., m). Following Bose and Mesner
(1959) we introduce matrices

0 1
Poy Poy te p(’)nv
1 1
P, =| P v Py e Py (4.27)
0 1
Pmv  Pmv - Pmy
with v =0, 1,...,m. We note that in (4.27), the superscript k is the column

index, and the first subscript u is the row index. Also note that although the Py
are symmetric, the P, are not necessarily symmetric.
We now consider equation (4.22), that is,

k s k s
Z puvplie = Z P@UP]AW
k k

which follows from the associative and commutative laws of multiplication for
the B,’s, and that, because of (4.19), can be written as

Y pkpie=)_ Phipi (4.28)
k k

The left-hand side of (4.28) is the element in the uth row and sth column of P, P,.
Since the element in the uth row and sth column of Py is p;,, the right-hand
side of (4.28) is the element in the uth row and sth column of

ng?O‘i‘pie?l‘i‘""f‘PTg?m

It follows then that we have the representation

PoPr=> PP (4.29)
k=0
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This corresponds to (4.12) and shows that the P matrices multiply in the same
way as the B matrices.

Since pgv =1 for k = v and O otherwise [see (4.24)], the Oth row of P,
contains a 1 in column v and 0’s in the other positions. This implies immediately
that the linear form

coPo+ 1P+ +cnPy (4.30)

is zero if and only if co = ¢y = -+ = ¢, = 0. Thus the P matrices are linearly
independent and hence form the basis of a vector space. Since they combine
in exactly the same way as the B matrices under addition and multiplication,
they provide a regular representation in terms of (m + 1) x (m + 1) matrices of
the algebra of the B matrices, which are ¢ x ¢ matrices with t > m 4+ 1. The P
matrices behave in the same way as the B matrices. Hence, the set of matrices
of the form (4.30) also constitute a linear associative algebra with unit element
Po =111

4.4.3 Applications of the Algebras

Bose and Mesner (1959) describe in detail applications of the algebras to com-
binatorial problems and algebraic properties. We have touched on some of these
in Section 4.3. We shall mention here only one further application, namely the
determination of the eigenvalues of the C matrix for PBIB(2) designs.

We have seen in our earlier discussion (see, e.g., Sections 1.3.3 and 1.10) that
the eigenvalues of the C matrix of a given design or, alternatively, of its NN’
matrix play a major role in describing properties, for example, the efficiency
factor, of the design. We have seen that NN’ has one eigenvalue equal to rk. To
obtain the other eigenvalues we make use of the following arguments.

Let B=) ¢, B, and let f(¢) be a polynomial. Then f(B) can be
expressed as

m
f(B)=) t,B,
u=0
IfP=> ¢, P, is a representation of B, then
m
f(:P) = Z Ly :Pu
u=0

If (1) is the minimum function of B and ®(A) the minimum function of P,
it can be shown that

f)=o@)

which implies that B and P have the same eigenvalues.
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We can apply this result to the specific case where
B=NN =1xBo+ABi+--+AnBp
and
P=2Po+MP1+ -+ 1Py
It follows then that NN’ has at most m + 1 distinct eigenvalues. We know
already that rk is one eigenvalue of NN’ with multiplicity 1, and it is the largest
eigenvalue of NN'. The eigenvalues are determined from | P — 01 | = 0. Specif-
ically for m = 2 and after removal of 6 = rk, the remaining two eigenvalues are
determined from
(ho = 0)% +[(\1 = 22)(piy — Pip) — (b1 +22)] (o — 0)

+ (M = A2)(Aaply = Aip3) + Ak =0

which yields [see Bose and Mesner (1959), Connor and Clatworthy (1954), and
Street and Street (1987) for an explicit derivation]

Ou =20 — 3 [(A1 — A2)(=A 4+ (=D"VA + (A1 + 12)] (4.31)
foru =1, 2, and
y=ph—pria A=y'+28+1  B=phL+ph
and, of course, Lo = r. We then have
INN' — 61| = (rk —0)(6; —0)*' (62 — 0)*2

where o, o are the multiplicities of ) and 6;, respectively. To determine o
and a we use the fact that

trace I =14+a;+apy =t
and
trace NN’ = rk + a101 + a0, = tr

Solving these equations and substituting (4.31) yields

ny+n ny—ny)+vm +n
_m 2+(_1)u(1 2) +y (@ +n2)

4.32
: W (4.32)

ay
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for u = 1, 2. These results imply that the matrix
C 1 : NN’
=ri — —
k
has eigenvalues

dy=r— — (4.33)

with multiplicities o, (u = 0, 1, 2), where 6y = rk, ¢g = 1, and 61, 6> and a1, o2
are given by (4.31) and (4.32), respectively.

Similar results can, of course, be obtained for PBIB designs with m > 2 asso-
ciate classes.

The eigenvalues given in (4.33) together with their multiplicities for u = 1, 2
can be used to obtain the efficiency factor of a given design (see Section 1.11).
We shall also make use of them in Section 4.7 in connection with the combined
analysis of PBIB designs.

4.5 ANALYSIS OF PBIB DESIGNS

4.5.1 Intrablock Analysis

The analysis of PBIB(m) designs can be derived easily from the general analysis
of incomplete block designs as presented in Section 1.3. In order to solve the
RNE [see (1.8)]

CT=0

where C is given in (4.3) and @ is the vector of adjusted treatment totals, we
shall find a generalized inverse C~ for C satisfying (1.17); that is,

1
cC™ =1- ?3.‘]’

by utilizing (4.11) and (4.12) as outlined previously. This leads to the following
system of m 4 1 equations in m + 1 unknowns go, g1, .- ., &m:

m m 1
ZZcuplevgvzl—; for k=0
u=0 v=0

— for k=1,2,...,m (4.34)
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Since
m m m
k= =0
CuPyy = Cyly =
u=0 v=0 u=0

it follows that this system of equations is not of full rank. Therefore any m of
the equations in (4.34) can be taken and solved with an additional convenient
restriction like > g, =0 or Y n,g, = 0, or for some v, g, = 0.

We shall illustrate this procedure for a PBIB(2) design. The system (4.34) is
then of the form

1
cogo +cinigr + conngr =1 — ;

1

c180 + (co + c1piy +c2pir)gr + (ciply + c2pin)gr = - (4.35)
2 2 2 2 1
280 + (c1py; + c2p12)81 + (co + c1piy +2P2)82 = —

with

B e ) S
0= % =% 2T %

Letting go = 0 and omitting the first equation then yields

1
(co+ c1piy + c2piper + (c1pls +caph)gr = ——
(4.36)

(c1p} +caply)gr + (co+ciply +capi)er = —

Example 4.2 Consider the following PBIB(2) design (SR 36 in Clatworthy,
1973) with parameters t =8, r =4,k =4,b =8, A1 =0, = 2:

Block Treatments

N—= k00 W I
NN = koo W

0NN AW =
PR NWAN L
WO WL~ ok
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which has the following association scheme:

Oth Associate 1st Associates 2nd Associates
1 5 2, 3, 4,6, 7, 8
2 6 1, 3, 4, 5, 7, 8
3 7 1, 2, 4, 5, 6, 8
4 8 1, 2, 3, 5,6, 7
5 1 2,3, 46,17, 8
6 2 1, 3, 4,5, 7, 8
7 3 1, 2, 4,5, 6, 8
8 4 1, 2, 3, 5, 6, 7
giving n; = 1, np = 6, and
1 01 0 0 0 1
Py= 1 P,=|(1 0 O P,=(0 0 1
6 0 0 6 1 1 4
Hence ¢ =3,¢1 =0,¢c; = —%, and (4.36) becomes
3g1—3g=—3
—%g1+82=—%

yielding g = —0.3333 and g, = —0.2917.
Having solved (4.34) or its reduced form for go, g1, ..., &n, We obtain the
intrablock estimates of treatment effects as

7= (Z gUBU> 0 (4.37)
v=0

or, equivalently,

T=20i+8 Y. Qi+ Y. Oi+-tem Y, Q  (438)

jeSa,1) keS(i,2) LeS(i,m)

(i=1,2,...,t) where S(i, u) is, as defined earlier, the set of uth associates of
treatment i. It follows further from (4.37) and the definition of the association
matrices that

var(t; — %) = 2(g0 — gu)o? (4.39)
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if treatments i and i’ are uth associates. There are, therefore, m types of compar-
isons which, however, in certain cases may not all be distinct. Correspondingly,
there are also at most m types of efficiency factors, E,. Since

202

e

var(t; — Ty) =

for a CRD or RCBD, we have
1
E,=——— (4.40)
r(8o — &u)

(u=1,2,...,m) (see Section 1.11). The overall efficiency factor of a PBIB(m)
design relative to the CRD or the RCBD is then given by

1 m

E=— > nuE, (4.41)
u=1

For the PBIB(2) design discussed in Example 4.2, we find (since gg = 0)

var(t; — 7)) = .666603

for 1st associates and
var(%; — Ty) = 583407

for 2nd associates. Also, from (4.40) and (4.41)

1
Ei=—— =.750
rgi1
1
Ey=—— =875
rg:
E = L(E| 4+ 6E;) = .842 O

4.5.2 Combined Analysis

As developed in Section 1.8.3, the set of normal equations for the combined
analysis is of the form

AT =P (4.42)
with

—p

1
A=rl— NN’ (4.43)
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and . i
p=r—-—_"

NB (4.44)

In order to obtain T we use the same type of argument as in Section 4.2.1,
that is, make use of the special form of A as expressed in terms of association
matrices; that is,

m
A= Z a, B, (4.45)

u=0

with
1— -1
w0=r (1 _l=» ) (4.46)
k
1—p!

a, = — . Ay u=1,2,...,m) 4.47)

Writing A~ as
m
Al = Z a"B,
u=0

we obtain, equivalent to the set of equations (4.34) for the intrablock analysis,
the following system of equations:

m m m
AAT! = (Z auBu> (Z a”Bv> =>"> awa’pi,Bi=1  (448)
u=0 v=0 uv k=0
or equivalently,
m m
o> awphat = (k=0.1,....m) (4.49)
u=0 v=0

where do; is the Kronecker symbol. This set of equations is of full rank and
hence we have (m + 1) equations in (m + 1) unknowns.
It follows then that

Ti=d"Pi+ad Y Pi+d® Y P+-+d" Y P (450)
jeSa,1) keS(i,2) LeS(i,m)

where the P,(u = 1,2, ...,1t) are the elements of P in (4.44).
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For any two treatments that are uth associates we have consequently

var (T; — 71) = 2(a° — a")o? 4.51)

e
We shall illustrate the procedure by using Example 4.2 given in Section 4.4.1.

Example 4.2 (Continued) We have t =8, r=A =4,k=4,b=8, 1 =
0, A =2.

1 01 0

Py = 1 Pr=|1 00

6 00 6
0 0 1
P,=|0 0 1
11 4

Then, from (4.46) and (4.47),

1 — —1
ao=4<1— 4p )=3+p1

a =0

ay=-(1-p""%
and hence Egs. (4.49) are given as

GB4+pHa 31 —-pHat=1
B+phHa' -31-pHa*=0

—5(0=pHa’ =50 —pHa' +B3+p7" =21 -pHla® =0

There remains, of course, the problem of estimating p or p~!. Substitu-
ting such an estimator in the equations above, or more generally equations
(4.49), will then yield solutions for a°, a!, a®> which we denote by a°,a',a>
and which, in turn, are used in Eqgs. (4.50) and (4.51). One such estimator is
the Yates estimator as described in Section 1.10.1. For certain types of PBIB(2)
designs we shall present in Section 4.7 other estimators for p similar to the one
given for BIB designs (see Section 2.5), which will lead to uniformly better
estimators (than the intrablock estimators) for treatment contrasts under certain
conditions. O
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4.6 CLASSIFICATION OF PBIB DESIGNS

Since their introduction by Bose and Nair (1939) and Bose and Shimamoto (1952)
different types of PBIB designs have evolved. These can be classified according
to the number of associate classes and type of association scheme. (We mention
here parenthetically that the association scheme and the parameters of a PBIB
design do not lead immediately to the actual experimental layout or field plan;
see also Chapter 5). In this section we shall give a brief survey (without being
complete) of types of PBIB designs.

The designs perhaps most often used are PBIB(2) designs. The reason, of
course, is that they constitute the simplest extension of the BIB design. They have
been tabulated (for certain ranges of parameters) extensively by Bose, Clatworthy,
and Shrikhande (1954) and Clatworthy (1956, 1973) and are classified according
to which of the following association schemes (to be explained in the following
sections) is being used:

1. Group-divisible PBIB(2) designs
2. Triangular PBIB(2) designs

3. Latin square type PBIB(2) designs
4. Cyclic PBIB(2) designs

We then mention the association schemes and parameters for some PBIB(3)
designs:

1. Rectangular PBIB(3) designs

2. Generalized group-divisible PBIB(3) designs
3. Generalized triangular PBIB(3) designs

4. Cubic PBIB(3) designs

Finally, we discuss some rather general classes of PBIB designs with m > 3
associate classes:

1. Extended group-divisible PBIB designs
2. Hypercubic PBIB designs

3. Right-angular PBIB(4) designs

4. Cyclic PBIB designs

4.6.1 Group-Divisible (GD) PBIB(2) Designs

Suppose that ¢ can be written as ¢ = #1; and that the treatments are divided into
t1 groups of 1, treatments each by arranging them in a rectangular array of #
rows and f, columns (¢, > 1), the rows constituting the #; groups. Then two
treatments are called first associates if they are in the same group and they are
called second associates otherwise.
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This association scheme implies n; = #; — 1 and ny = (t; — 1)#;. Further

0 1 0 0 0 1
Pi=|1 -2 0 P,=10 0 n—1
0 0 (t1 — Dy 1 -1 (¢ —2)

Example 4.3 lett=8,tj =2, =4.

Association scheme:

1 5
2 6 8
0th Associate 1st Associates 2nd Associates

1 3, 5, 7 2, 4, 6, 8
2 4, 6, 8 1, 3,5 7
3 1, 5, 7 2, 4, 6, 8
4 2, 6, 8 1, 3, 5, 7
5 1, 3, 7 2, 4, 6, 8
6 2, 4, 8 1, 3,5 7
7 1, 3, 5 2, 4, 6, 8
8 2, 4, 6 1, 3, 5, 7 O

The factorization of ¢ is, of course, not always unique. For Example 4.3 we
could just as well have t; = 4, 1, = 2, in which case the rectangular array is

AW N =
oo N O W

and hence n; = 1,np = 6.
Bose and Connor (1952) have shown that for GD-PBIB(2) designs the fol-
lowing inequalities hold:

r> Al rk — Xt >0
Accordingly, they have divided the GD designs further into three subclasses:

1. Singular if r = A4
2. Semiregular if » > Ay, rk — Aot =0
3. Regular if r > Ay, rk — Aot >0
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4.6.2 Triangular PBIB(2) Designs

Suppose that ¢ can be written as t = g(¢ — 1)/2 and that the treatments are
arranged in triangular form above the main diagonal of a ¢ x ¢ array and repeated
symmetrically below the main diagonal leaving the main diagonal blank. Then
two treatments are called first associates if they lie in the same row (or column)
of the g x g array and are second associates otherwise.

This association scheme implies

np=2q—4 ny=1(q—2)(q—-3)/2

0 1 0
P =1 q—2 q—3
10 g—=3 (@—3)(qg—4)/2

0 0 1
Py=|1 4 2q — 8
L1 2g—-8 (q—4(@q—5)/2

Example 44 Lett =10, =5.

Association scheme:

* 1 2 3 4
1 = 5 6 17
2 5 %« 8 9
3 6 8 x 10
4 7 9 10 =«
0th Associate 1st Associates 2nd Associates
1 2, 3,4, 5,6, 7 8, 9, 10
2 1, 3, 4,5, 8, 9 6, 7, 10
3 1, 2, 4, 6, 8, 10 5 7, 9
4 1, 2, 3, 7, 9, 10 5, 6, 8
5 1, 2, 6, 7, 8 9 3, 4, 10
6 1, 3, 5, 7, 8 10 2, 4, 9
7 1, 4, 5, 6, 9, 10 2, 3, 8
8 2, 3,5 6,9, 10 1, 4, 7
9 2, 4,5 17,8, 10 1, 3, 6
10 3, 4,6 7, 8 9 1,25 -
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4.6.3 Latin Square Type PBIB(2) Designs

Suppose that 7 can be written as f = ¢ and that the treatments are arranged in
a square array of size q.

For a Latin square type PBIB(2) design with two constraints [L,-PBIB(2)
design], two treatments are called first associates if they occur together in the
same row or the same column of the square array and are second associates
otherwise.

For the Latin square type design with i constraints (i > 2) [L;-PBIB(2) design]
the association scheme is used in conjunction with i —2 mutually orthogonal
Latin squares (if they exist) (see 1.10.6.2). Then two treatments are called first
associates if they both occur in the same row or column or correspond to the same
letter of the superimposed Latin squares. Hence we obtain for the L;-PBIB(2)
design

ny=i(g—1) n=G@-H@—-i+1

0 1 0
Pi=|1 i?—3i+gq (i—D@—i+1
0 (G—D(g—i+1) (g—ig—i+1

0 0 1
P,=|0 ii—1 i(g—1)
1 i(g—i) (q—D*+i—2

Example 4.5 Lett=9,g =3.

L;-association scheme:

1 2 3

4 5 6

7 8 9

0th Associate 1st Associates 2nd Associates

1 2, 3, 4, 7 5 6, 8 9
2 1, 3, 5, 8 4, 6, 7, 9
3 1, 2, 6, 9 4,5, 7, 8
4 1, 5, 6, 7 2, 3,8 9
5 2, 4, 6, 8 1, 3, 7, 9
6 3, 4,5 9 1, 2, 7, 8
7 1, 4, 8, 9 2, 3,5 6
8 2,5 7,9 1, 3, 4, 6
9 3, 6, 7, 8 1, 2, 4, 5 O
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Example 4.6 Lett=9,q =3.

L3-association scheme:

1A 2B 3C
4C 5A 6B
7B 8C 9A
0th Associate 1st Associates 2nd Associates
1 2,3, 4,5 7,9 6, 8
2 1, 3, 5, 6, 7, 8 4, 9
3 1, 2, 4, 6, 8, 9 5,7
4 1’ 3a 55 67778 2,9
5 1, 2, 4, 6, 8, 9 3, 7
6 2,3, 4,5 17,9 1, 8
7 1, 2, 4, 6, 8, 9 3,5
8 2, 3,4, 5 17,9 1, 6
9 1, 3, 5, 6, 7, 8 2, 4 O
Other examples are mentioned in Section 18.7.
4.6.4 Cyclic PBIB(2) Designs
Suppose the treatments are denoted by 0, 1,2, ..., ¢t — 1. Then the first associates
of treatment i are i +dy,i +da,...,i +d,, (mod t) where the d; are integers

satisfying the following conditions:

1. The d; are all different with 0 < d; < t for each j.
2. Among the ni(n; — 1) differences d;j —dj» (mod t) each of the integers

di,ds,...,d,, occurs o times, and each of the integers ey, ez, ..., ey,
occurs B times, where di, da, ..., dy,, e1, €2, ..., e,, are all the different
integers 1,2, ..., — 1.

The second associates of treatment i obviously are i +ej,i+ea,...,i + ey,

(mod ¢). We then have, as a consequence of condition 2,

nia +nf =ni(ng — 1)

and
0 1 0
P =11 o nyp—a—1
0 m—a—-1 np—n+a+1
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0 0 1
Py=10 B ng—B
0 ni—B np—nm+p—-1

Example 4.7 lett =5,d) =2,dy =3, =0, 8 = 1. With n; = 2, the pos-
sible differences d; — d;» are d| —dy = —1 =4 and d; — d; = 1; that is, dy and
dr occur o = 0 times among these differences and ¢;j = 1,e; =4 occur § =1
time. Hence condition 2 is satisfied. We then have

0th Associate 1st Associates 2nd Associates
0 2, 3 1, 4
1 3, 4 0, 2
2 4, 0 1, 3
3 0, 1 2, 4
4 1, 2 0, 3 O

4.6.5 Rectangular PBIB(3) Designs

This association scheme was first proposed by Vartak (1959). Suppose that t =
t1tp and that the treatments are arranged in a rectangular array with #; rows
and f; columns. Two treatments are said to be first associates if they occur
together in the same row of the array; they are said to be second associates
if they occur together in the same column; they are third associates otherwise.
Hence

ng=t—1, np =t —1 ny=({t —D(-1)
and
[0 1 0 0 ]
|1 -2 0 0
Pi=1y "9 0 fh—1
0 0 -1 ((—-Dt—2)]
0 0 1 0 7T
p,=|0 O 0 |
1 0 -2 0
10 n—1 0 (1h—2)0(2—1)]
[0 0 0 1 ]
1o o0 1 th—2
Ps=1¢9 0 =2

nh—=2 n—-2 (t1—2(n—-2)]
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Example 4.8 Lett=6,t1 =2, = 3.

Association scheme:

143

1 3 5
2 4 6
0th Associate 1st Associates 2nd Associates 3rd Associates
1 3, 5 2 4, 6
2 4, 6 1 3, 5
3 1, 5 4 2, 6
4 2, 6 3 I, 5
5 I, 3 6 2, 4
6 2, 4 5 1, 3 O

4.6.6 Generalized Group-Divisible (GGD) PBIB(3) Designs

In a more general way this association scheme was proposed by Roy (1953-1954)
and described in more detail by Raghavarao (1960).

Suppose that t = t1f>t3 and that the treatments are arranged in a three-
dimensional array with #; rows, f, columns, and 73 layers. Two treatments are
said to be first associates if they occur together in the same row and column,
but in different layers; they are said to be second associates if they occur in the
same row but in different columns (and the same or different layers); they are
third associates otherwise. Hence

np=t3—1
and

0

—_—

P;

1

ny = (f — D13

1
t3—2
0
0

0
0
-1
0

0

0

0
3 — 1

0
0

(t — D3
0

1
3 —1
(2 — 213
0

0
0
0

(t — D3

n3 = (1 — Dixts

0 -
0
0
(t1 — Diar3
0 A
0
0
(t1 — Dotz
| _
3 —1
(— D13
(11 — )13
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Example 4.9 Lett=12,t1 =2,tp =3,z = 2.

Association scheme:

Layer 1 Layer 2
1 3 5 7 9 11
2 4 6 8 10 12

Oth Associate 1st Associates 2nd Associates 3rd Associates

1 7 3,5 9,11 2,4,6,8, 10, 12
2 8 4,6, 10, 12 1,3,5,7, 9,11
3 9 1,5 7,11 2,4,6, 8,10, 12
4 10 2,6, 8,12 1,3,5,7, 9,11
5 11 L3, 7, 9 2, 4,6, 8, 10, 12
6 12 2,4, 8,10 1,3,5,7, 9,11
7 1 3,5 9,11 2,4,6,8, 10, 12
8 2 4,6, 10, 12 1,3,5,7, 9,11
9 3 1,5, 7,11 2, 4,6, 8, 10, 12
10 4 2,6, 8,12 1,3,5,7, 9,11
11 5 1,3, 7,11 2, 4,6, 8, 10, 12
12 6 2,4, 8,10 1,3,5 7, 9,11 O

4.6.7 Generalized Triangular PBIB(3) Designs

John (1966) has shown that the triangular association scheme discussed in Section
4.5.2 can be described equivalently by representing the treatments by ordered
pairs (x,y) with 1 <x <y <g¢ and calling two treatments first associates if
they have one integer in common, second associates otherwise.

This can then be generalized (John, 1966) for the case that t = g(q — 1)(¢ —
2)/6 (¢ > 3) and that the treatments are represented by ordered triplets (x, y, z)
with 1 <x <y < z <g. Two treatments are said to be first associates if they
have two integers in common, second associates if they have one integer in
common but not two, and third associates otherwise. Hence

ny =3(q—3) ny=3(q—3)(g—4/2 ny=(q—3)(qg—4(q—5)/6

and
0 1 0 0
P 1 g-2 2(q —4) 0
"Tlo 2 -9 (q — 4 (q -4 —5)/2

0 0 (@—=Hq—=35/2 (g-4(@q—5(@q—-06)/6
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0 0
1 4
Py, =
1 2(q—4)
|0 ¢g-—5
0 0
0 0
Ps=1o
L1 3(g —6)

145

1 0
2(g —4) q-—>5
(g+2)(g—5))/2 (g —5(q —06)
(g—35(@G—6) (q—5(@q-—6)(qg—T7)/6
0 1
9 3(g —6)
9(g —6) 3(g—6)(g—7/2

3(g =6)(g=7/2 (q—-06)(g—T)(g—8)/6

Example 4.10 Let t =20, g = 6. The treatments are represented as

1=(1,2,3) 2=(1,2,4) 3=(1,2,5) =(1,2,6)
5=(1,3,4) 6=(1,3,5) 7=(1,3,6)
8=(1,4,5) 9=(1,4,6)
10=(1,5,6)
11=2,3,4 12=(2,3,5 13=(2,3,6)
14=(2,4,5) 15=(2,4,6)
16=(2,5,6)
17=(@3,4,5) 18= (3,4,6)
19=(3,5,6)
20=(4,5,6)
and the association scheme follows:

Oth Associate 1st Associates 2nd Associates 3rd Associates
1 2,3, 4, 5, 6, 7,11,12, 13 8,9, 10, 14, 15, 16, 17, 18, 19 20
2 1,3, 4, 5, 8 9,11,14,15 6,7, 10, 12, 13, 16, 17, 18, 20 19
3 1,2, 4, 6, 8,10,12,14,16 5,7, 9,11, 13,15, 17, 19, 20 18
4 1,2, 3, 7, 9,10, 13,15, 16 5,6, 8, 11, 12, 14, 18, 19, 20 17
5 1,2, 6, 7, 8, 9,11,17,18 3,4, 10, 12, 13, 14, 15, 19, 20 16
6 1,3, 5 7, 8,10,12,17, 19 2,4, 9,11, 13, 14, 16, 18, 20 15
7 1,4, 5, 6, 9,10,13,18,19 2,3, 8,11, 12, 15, 16, 17, 20 14
8 2,3, 5 6, 9,10, 14, 17, 20 1,4, 7,11, 12, 15, 16, 18, 19 13
9 2,4, 5,7, 8,10, 15,18, 20 1,3, 6,11, 13, 14, 16, 17, 19 12
10 3,4, 6, 7, 8, 9,16, 19,20 1,2, 5,12,13, 14, 15, 17, 18 11
11 1,2, 5,12,13,14,15, 17,18 3,4, 6, 7, 8, 9,16, 19,20 10
12 1,3, 6,11, 13, 14, 16, 17, 19 2,4, 5, 7, 8,10, 15, 18, 20 9
13 1,4, 7,11,12,15,16,18,19 2,3, 5, 6, 9,10, 14, 17, 20 8
14 2,3, 8,11, 12, 15, 16, 17, 20 1,4, 5, 6, 9,10, 13, 18, 19 7
15 2,4, 9,11, 13, 14, 16, 18, 20 1,3, 5, 7, 8,10,12,17,19 6
16 3, 4,10, 12, 13, 14, 15, 19, 20 1,2, 6, 7, 8 9,11,17,18 5
17 5,6, 8, 11,12, 14,18, 19, 20 1,2, 3, 7, 9,10, 13, 15, 16 4
18 5,7, 9,11, 13, 15, 17, 19, 20 1,2, 4, 6, 8,10, 12, 14, 16 3
19 6,7, 10, 12, 13, 16, 17, 18, 20 1,3, 4, 5, 8 9,11,13,15 2

20 8,9, 10, 14, 15, 16, 17, 18, 19 2,3, 4, 5, 6, 7,11,12,13 1
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4.6.8 Cubic PBIB(3) Designs

This association scheme, described by Raghavarao and Chandrasekhararao
(1964), is an extension of the L,-association scheme discussed in Section 4.5.3,
which can be described equivalently as follows: Denote the ¢ = ¢ treatments
by pairs (x, y) with 1 < x, y < g. Define the distance § between two treatments
(x,y) and (x’,y") as the number of nonzero elements in (x —x’, y — y’). For
the L;-association scheme then two treatments are said to be first associates if
§ = 1, and second associates if § = 2.

For the cubic association scheme we have ¢ = ¢>, each treatment being rep-
resented by a triplet (x, y, z) with 1 < x, y, z < g. If the distance § between any
two treatments (x, y,z) and (x’,y’,z’) is the number of nonzero elements in
(x —x',y—y',z—7/), then two treatments are said to be first, second, or third
associates if § = 1,2, or 3, respectively.

This can be interpreted geometrically by realizing that the above representa-
tion of the treatments corresponds to an arrangement in a cube of side g. Two
treatments are then first associates if they are lying on the same axis, second
associates if they are lying on the same plane (but not on the same axis), and
third associates otherwise. The design given in Example 4.1 has this association
scheme with g = 2.

The cubic association scheme implies immediately

m=3g—-1 n=3g-D> m=(@-1)>

and
K 1 0 0
1 g-2 2q — 1) 0
P = )
0 2g-1) 2¢-Dg-2 (-1
0 0 @17 @-1g-2
00 1 0
|0 2 2(q —2) g—1
T 20— 2g-D+ G- 2g-Dg-2)
0 g—1  2q-D@—-2 (g—1)g—2)7?
[0 0 1
0 0 3 3(g —2)
P = )
0 6(g—2) 3(g—2)
1 3¢-2 3(q-2% (q@-2°



CLASSIFICATION OF PBIB DESIGNS 147

Example 4.11 Lett = 8, g = 2. The treatments are represented as

I=,1,1) 2=(,1,2)
3=(1,2,1) 4=(1,2,2)
5=2,1,1) 6=(2,1,2)
7=2,2,1) 8=(2,2,2)

Association scheme:

0th Associate 1st Associates 2nd Associates 3rd Associates

1 2, 3,5 4, 6, 7 8
2 1, 4, 6 3,5, 8 7
3 1, 4, 7 2,5, 8 6
4 2, 3, 8 1, 6, 7 5
5 1, 6, 7 2, 3, 8 4
6 2,5, 8 1, 4, 7 3
7 3,5, 8 1, 4, 6 2
8 4, 6, 7 2, 3,5 1 O

Other examples are mentioned in Section 18.7.

4.6.9 Extended Group-Divisible (EGD) PBIB Designs

These designs, which we shall abbreviate as EGD/(2" — 1)-PBIB, were first intro-
duced by Hinkelmann and Kempthorne (1963) as an extension of the rectangular
PBIB(3) design of Vartak (1959), and described in more detail by Hinkelmann
(1964). The association scheme for these designs is as follows:

Let there be ¢ =112, ...,t, treatments denoted by (i, i,...,1,), Where
ip=12,...,tpand £ =1,2,...,v, and i, is called the ¢th component of the
treatment. Two treatments are said to be yth associates, ¥ = (v, Y2, ---, ¥)
and yy=0or 1(£ =1,2,...,v), if the treatments differ only in the compo-
nents that correspond to the unity components of y. We then have m =2V — 1
associate classes as each component in y takes on the possible values 0, 1, and
y =(0,0,...,0) represents the trivial association corresponding to the Oth asso-
ciate class of other PBIB designs. The number of associates in the yth associate
class is denoted by n(y) and

np)=n@i,v2, ) = [ J@-)" (4.52)
(=1

If we write the associate classes in lexicographic order, for example, for v = 3:
000, 001, 010, 011, 100, 101, 110, 111, and if we denote by
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po_ (10
0 0 -1

1 tp—2

the P matrices for a BIB design with #, treatments, then we can write the P matri-
ces for the EGD/(2V — 1)-PBIB design recursively as the following Kronecker
product:

)
Pyiysu10 = Pyys.ypy X Py (4.53)
)

Pyrysuit = Pyiysyyy X Py (4.54)
where P, ,, , are the P matrices for an EGD/(2"~! — 1) design with ¢ =
t1t2, ..., t,—1 treatments. In particular then for v = 2:

1 fz)
_ H—1
Poo = -1
v (t1 = D)t — 1)
- 0 1
]
Py = 1 h—2
0 t—1
L @ fh—1 (1 — D —2)
_ 1 0 _
]
Py = 0 fh — 1
1 0 Hn—2 0
| 0 Hn—1 0 1 —=2)(r—1)
_ 0 1 _
]
Py = 1 th—2
0 1 0 Hn-2
| 1 th—2 t1—2 (t1 —2)(tp — 2)

which are, apart from the order of rows and columns, the same as those given
for the rectangular PBIB(3) design (see Section 4.5.5).
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Example 4.12 Lett = 36,1 = t, = 3,3 = 4. The treatments are

1=(,1,1) 2=(1,1,2) 3=(1,1,3) 4=(1,1,4)
5=(1,2,1) 6=(1,2,2) 7=(1,2,3) 8=(1,2,4)
9=(1,3,1) 10=(1,3,2) 11=(1,3,3) 12=(1,3,4)
B=@21,1) 14=212 15=@2,1,3) 16=(2,1,4)
17=(2,2,1) 18=(2,2,2) 19=(2,2,3) 20=(2,2,4)
20=(2,3,1) 22=(2,3,2) 23=(2,3,3) 24=(2,3,4)
25=(3,1,1) 26=(3,1,2) 27=(@3,1,3) 28=(3,1,4)
29=(3,2,1) 30=(3,2,2) 31=(3,2,3) 32=(3,2,4)
33=@3,3,1) 34=(@3,3,2 35=@3,3,3) 36=(3,3,4)

The associate classes and the numbers of associates are

0=(0,0,0) n(0,0,0) =1
1=(0,0,1) n(0,0,1) =

2=(0,1,0) n(0,1,0)=2
3=(0,1,1) n0,1,1)=6
4=(1,0,0) n(1,0,0) =2
5=(1,0,1) n(1,0,1)=6
6=(1,1,0) n(l,1,0)=4
7=(,1,1) n(l,1,1) =12
and the (partial) association scheme is given in Table 4.1 O

4.6.10 Hypercubic PBIB Designs

These designs, first indicated by Shah (1958) and more formally defined by
Kusumoto (1965), are extensions of cubic PBIB designs (see Section 4.5.8). Sup-
pose we have t = ¢V treatments, which are again denoted by (i, i, .. ., i,) where
ip=1,2,...,g and £ =1,2,...,v. The association scheme for this design is
then as follows: Two treatments are said to be jth associates if they differ in
exactly j components. Hence we have m = v associate classes, and the number
of jth associates is

v .
nj=<j)(q—l) G=12,...,v)
Following Shah (1958), the general element of the Py matrix (k =0,1,...,v)

is given as
K v—k k u+k+i—v
=2 ()G

u

% (q _ l)l)—k—u(q _ 2)k+i+j+2u—2v (455)
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where i, j =0, 1, ..., v and the summation extends over all integer values of u
such that
u <min(v —i,v—j,v—=~k)

and
u>IQu—i—j—k

and if for a given combination i, j, k no such u value exists, then pl'.‘j = 0. Specif-
ically, from (4.55) we obtain for v = 3 the P matrices for the cubic association

scheme of Section 4.5.8.

Example 4.13 Lett = 16,q =2, v = 4. The treatments are

1=(,1,1,1) 2=(1,1,1,2) 3=(1,1,2,1) 4=(1,1,2,2)
5=(,2,1,1) 6=(1,2,1,2) 7=(1,2,2,1) 8§=(1,2,2,2)
9=2,1,1,1) 10=2,1,1,2) 11=@2,1,2,1) 12=(2,1,2,2)
13=02,2,1,1) 14=02,2,1,2) 15=(2,2,2,1) 16=(2,2,2,2)
and the association scheme follows:

Oth Associate 1st Associates 2nd Associates 3rd Associates 4th Associates

1 2, 3, 5 9 4,6,17,10, 11, 13 8,12, 14, 15 16

2 1, 4, 6,10 3,5,8, 9,12, 14 7,11, 13, 16 15

3 1, 4, 7,11 2,5,8, 9,12, 15 6, 10, 13, 16 14

4 2, 3, 8,12 1,6,7, 10, 11, 16 5, 9,14, 15 13

5 1, 6, 7,13 2,3,8, 9,14, 15 4,10, 11, 16 12

6 2, 5, 8,14 1,4,7,10, 13, 16 3, 9,12, 15 11

7 3, 5 8,15 1,4,6, 11, 13, 16 2, 9,12, 14 10

8 4, 6, 7,16 2,3,5,12,14, 15 1, 10, 11, 13 9

9 1, 10, 11, 13 2,3,5,12, 14, 15 4, 6, 7,16 8

10 2, 9,12, 14 1,4,6, 11, 13, 16 3, 5 8,15 7

11 3, 9,12, 15 1,4,7, 10, 13, 16 2, 5, 8,14 6

12 4, 10, 11, 16 2,3,8, 9,14, 15 1, 6, 7,13 5

13 5, 9,14, 15 1,6,7, 10, 11, 16 2, 3, 8,12 4

14 6, 10, 13, 16 2,5,8, 9,12,15 1, 4, 7,11 3

15 7,11, 13, 16 3,5,8, 9,12, 14 1, 4, 6,10 2

16 8,12, 14, 15 4,6,7,10, 11, 13 2, 3, 5 9 1
U

4.6.11 Right-Angular PBIB(4) Designs

The right-angular association scheme was introduced by Tharthare (1963) for r =
2sq treatments. The treatments are arranged in g right angles with arms of length
s, keeping the angular positions of the right angles blank. The association scheme
is then as follows: Any two treatments on the same arm are first associates; any
two treatments on different arms of the same right angle are second associates;
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any two treatments on the same (i.e., parallel) arm but in different right angles
are third associates; any two treatments are fourth associates otherwise.
It follows then that

n=s—1 ny=s ny=(@—1)s=mn4
and
0 1 0 0 0
1 s—2 0 0 0
P,=1]0 0 s 0 0
0 0 0 s@—1 0
0 0 0 0 s(g—1)
0 0 1 0 0
0 0 s—1 0 0
P,=]1 s—1 0 0 0
0 0 0 0 s(g—1)
0 0 0 s(g—1) 0
0 0 0 1 0
0 0 0 s—1 0
P;=1]0 0 0 0 s
1 s—1 0 s(g—2) 0
0 0 s 0 s(g—1)
0 0 0 0 1
0 0 0 0 s—1
Py=1]0 0 0 s 0
0 0 s 0 s(g —2)
I s—1 0 s(g—2) 0

Example 4.14 lett=12,9q =3,5 = 2.

Treatments:
T 1 -5 T 9
+2 - 6 + 10

3 4 7 8 11 12
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The association scheme follows:

Oth Associate 1st Associates 2nd Associates 3rd Associates 4th Associates

1 2 3,4 5,6,9,10 7,8, 11, 12
2 1 3,4 5,6,9,10 7,8, 11, 12
3 4 1,2 7,8, 11, 12 5,6,9,10
4 3 1,2 7,8, 11, 12 5,6,9,10
5 6 7,8 1,2,9, 10 3,4, 11, 12
6 5 7,8 1,2,9,10 3,4,11, 12
7 8 5,6 3,4,11,12 1,2,9, 10
8 7 5,6 3,4,11, 12 1,2,9,10
9 10 11, 12 1,2,5,6 3,4,7,8
10 9 11, 12 1,2,5,6 3,4,7,8
11 12 9,10 3,4,7,8 1,2,5,6
12 11 9,10 3,4,7,8 1,2,5,6 O

Tharthare (1965) extended this association scheme to what he called the gen-
eralized right-angular association scheme for + = pgs treatments with p > 2. To
describe the association scheme succinctly, it is useful to denote the treatment
by triplets (x1, x2,x3) with x; =1,2,...,¢;x2=1,2,...,p;x3=1,2,...,5.
Then, two treatments (xp, x2, x3) and (y, y2, ¥3) are said to be

Ist Associates: if x; =y, x2 = y2,x3 # »3
2nd Associates: if x; = yi,x2 # »
3rd Associates: if x| # y,x2 = »

4th Associates: otherwise

This, obviously, leads to ni=s—1,npo=(p—1)s,n3=(q —1)s,na
=(q —D(p—Ds.

4.6.12 Cyclic PBIB Designs

Cyclic PBIB designs represent a rather large and flexible class of incomplete
block designs. They were introduced by Kempthorne (1953) and Zoellner and
Kempthorne (1954) for blocks of size k = 2. Further developments are due to
for example, David (1963, 1965), David and Wolock (1965), John (1966, 1969),
and Wolock (1964).

Let us denote the treatments by 0, 1,2, ..., — 1. The association scheme can
then be defined as follows, where we need to distinguish between ¢ even and
t odd:

t even: For a fixed treatment 6, the uth associates are (6 + u, 6 — u)mod
tu=1,2,...,t/2 — 1) and the ¢ /2th associate is 8 + /2 (mod ¢). Thus we have
m = t/2 associate classes with n, =2(u =1,2,...,t/2—1) and n;p = 1.
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t odd: The uth associates of 0 are (8 +u,60 —u)mod ¢ foru =1,2,...,( —
1)/2. Thus we have m = (+ — 1)/2 associate classes with n, =2[u=1,2,...,

(t —1)/21.

Example 4.15 Lett = 6.

O0th Associate 1st Associates 2nd Associates 3rd Associates
0 1, 5 2, 4 3
1 2, 0 3,5 4
2 3, 1 4, 0 5
3 4, 2 5, 1 0
4 5 3 0, 2 1
5 0, 4 1, 3 2

E} >

We draw the reader’s attention to the cyclic development of the treatments in a
given associate class, hence the name of the association scheme. The P matrices
are as follows:

0100
1 010
Pi=1o 1 0 1
001 0
001 0
010 1
P2=1y 01 0
010 0
00 0 1
00 2 0
Ps=10 2 0 0
1 000 O

4.6.13 Some Remarks

We conclude this section with the following remarks:

1. As we have mentioned earlier, the list of association schemes given here
is not exhaustive. Other association schemes with m > 2 associate classes
were given by for example, Roy (1953-1954), Raghavarao (1960), Oga-
sawara (1965), Yamamoto, Fuji, and Hamada (1965), and Adhikary (1966,
1967). In most cases they represent generalizations of existing association
schemes.
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2. We have chosen our list of association schemes because they lead to a
rather large class of existing and practical PBIB designs [in particular the
PBIB(2) designs and the cyclic PBIB designs are well documented (see
Chapter 5)] and/or are particularly useful in the construction of systems
of confounding for symmetrical and asymmetrical factorial designs (see
Chapters 11 and 12).

3. We emphasize that an association scheme does not constitute a PBIB
design, nor does it lead automatically to a PBIB design. Methods of con-
structing designs with a certain association scheme is the subject of Chapter
5. It will turn out that certain association schemes are connected with certain
construction methods.

4.7 ESTIMATION OF p FOR PBIB(2) DESIGNS

Recall from Sections 1.10 and 2.5 that the general problem with utilizing the
combined intra- and interblock information is that of finding an estimator for p,
0, such that

var[t(p)] < var(t) (4.56)

where 1 is the intrablock estimator for the estimable function ¢’z and 7 () is the
combined estimator for the same function using o as the estimate of p.

Shah (1964) has derived as estimator for p for a certain class of designs such
that (4.56) holds. We shall state his result without proof and then apply it to the
various types of PBIB(2) designs as in Section 4.6.

4.7.1 Shah Estimator

Let D; be the class of proper, equireplicate, binary incomplete block designs for
which the concordance matrix NN’ has only one nonzero eigenvalue (other than
rk). Let 6 denote this eigenvalue with multiplicity o« = rank(NN’) — 1. Further,
define

Z=c(14+0{SS(X.19) — QT —r7))7} (4.57)

where ¢ = (rk/6) — 1 and all the other terms are as defined in earlier sections.
We now state the following theorem.

Theorem 4.1 Consider an incomplete block design belonging to the class

Dl. When
0 Z . Z rko
—1 if > —
rk —0 OlMSE MSE 0

1 otherwise

5=
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with Z as given in (4.57), is used in the combined analysis, then for any treatment
contrast ¢z,

var[t(p)] < var(?)
for all values of p provided that

(@—dHn—t—b—1)>8 (4.58)

4.7.2 Application to PBIB(2) Designs

We have already used the result of Theorem 4.1 in connection with BIB designs
(see Section 2.5) that clearly belong to D;. We have mentioned earlier that among
all PBIB designs the PBIB(2) designs are quite numerous and most useful from
a practical point of view. As we have seen in Section 4.4.3, they have two
distinct eigenvalues other than rk and expressions for these and their multiplicities
are given in (4.31) and (4.32), respectively. Using these results we shall now
investigate which PBIB(2) designs belong to the class D and give for them the
corresponding condition (4.58).

1. Group-Divisible Designs  Using the explicit expressions for Py and P>
as given in Section 4.6.1, we find that

0r=r—Xx ay =ti(tr — 1)

O =r—Ai+n0M —1i) ar =1 —1

In particular, we have, following Bose and Connor (1952), for

a. Singular GD designs: r — A1 = 0. Hence the designs belong to Dy, with
6 = 6, and o = ap. Condition (4.58) then becomes (t; — 5)(n — b —t —
1) > 8.

b. Semiregular GD designs: r — A1 + (A1 — X2) = 0. Hence these
designs also belong to Dj, with § = 6; and o = «|. Condition (4.58)
can, therefore, be written as [t1(tp — 1) —4]l(n —b —t — 1) > 8.

¢. Regular GD designs: They do not belong to D since 6; > 0 and 6, > 0.

2. Triangular Designs  Using the results of Section 4.6.2 we obtain

Oh=r+@—Hr—(@—-3)r oy=qg-—1
Or=r—2x1 + X2 ar =q(g —3)/2

They belong to D; if either one of these eigenvalues is zero, which is
possible.
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3. Latin Square Type Designs  For the L;-association scheme (see Section
4.6.3) we have

Oh=r—>G0—q)(A1—22) — X ay=i(g—1)
Or=r—i(A1 —X2) — A2 ar=(@—-1@—-i+1)

they belong to D if either 6, or 6, is zero, which is possible.

4. Cyclic Designs  Neither the expressions for the eigenvalues or their mul-
tiplicities reduce to simple expressions. To check whether a given design
belongs to Dy, we need to work out (4.31) and check whether either 6; or
6, equals zero.



CHAPTERS

Construction of Partially Balanced
Incomplete Block Designs

In the previous chapter we discussed several types of association schemes for PBIB
designs with two or more associate classes. There exists a very large number of
PBIB designs with these, and other, association schemes. But as we have pointed
out earlier, the association schemes themselves do not constitute or generate the
actual plan, that is, the assignment of treatment to blocks. To obtain such plans,
different methods of construction have been developed and used. It is impossible
to mention all of them as the literature in this area is immense. Rather, we shall
discuss in some detail only a few methods with emphasis mainly on three types
of PBIB designs, namely PBIB(2) designs, in particular, group-divisible PBIB(2)
designs, cyclic PBIB designs, and EGD-PBIB designs. The first class is important
because it constitutes the largest class of PBIB designs. The second class also
represents a rather large class, and the designs are easy to construct and are widely
applicable. The last class is important with respect to the construction of systems
of confounding for asymmetrical factorial experiments (see Chapter 12).

5.1 GROUP-DIVISIBLE PBIB(2) DESIGNS

We shall give a brief discussion of the basic methods for constructing group-
divisible designs. These methods are (i) duals of BIB designs, (ii) method of
differences, (iii) finite geometries, and (iv) orthogonal arrays, as developed mainly
by Bose, Shrikhande, and Bhattacharya (1953).

5.1.1 Duals of BIB Designs

Let N be the incidence matrix of a design D with parameters ¢, b, k, r. Then N’
denotes the incidence matrix of a design D', with parameters ¢, &', k', r’, which

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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has been obtained from D by interchanging treatments and blocks. This implies
that D’ has parameters t' = b, b’ =t, k' = r,r’ = k. The design D’ is referred
to as the dual of the design D (and, of course, vice versa). If the design D has
a certain structure, such as being a BIB or PBIB design, then the dual design
D’ very often also has a particular recognizable structure. It is this relationship
between D and D’ that we shall now utilize to construct certain GD-PBIB(2)
designs from existing BIB designs. Consider the following theorem.

Theorem 5.1 Let D be a BIB design with parameters ¢ = s%, b = s(s + 1),
k=s,r=s54+1,A =1, where s is prime or prime power (see Sections 3.34
and 18.7). Then the dual D’ is a GD-PBIB(2) design with parameters t' = (s +
Ds,ti=s+1,0=s5,b =52 kk=s+1,r=s,4, =01, = 1.

Proof As can be seen from the construction in Section 3.7, D is a resolvable
(¢ = 1) BIB design, consisting of s + 1 replication groups with s blocks each
and containing each treatment once. Denote the blocks by B, where j denotes
the replication group (j =1,2,...,s+ 1) and £ denotes the block within the
jth replication group (¢ =1,2,...,s). Now consider a treatment 0, say, and
suppose it occurs in blocks Big,, Bag,, - .., Bsy1,¢,,,- Then in D’ block 6 con-
tains the treatments 11,20, ...,s + L Further, let 6, 6>, ...,6;_1 be the
treatments that occur together with 6 in By, in D. Since {0, 61,62, ...,0,_1}
appear all in different blocks in the remaining s replication groups (since A = 1),
it follows then that in D’ treatment 1£; occurs together exactly once with all
je(Gj=2,....,s+1;£=1,2,...,s), but not at all with the s — 1 treatments
14(¢ # £1). This implies the association scheme

11 12 s
21 22 2s
s+1 1 s+1 2 s+1 s

where treatments in the same row are 1st associates and 2nd associates otherwise,
which is, in fact, the GD association scheme, and since the GD association is
unique (Shrikhande, 1952), the resulting design is the GD-PBIB(2) design. [

Example 5.1 Consider the BIB design D with t =32, b=12,k=3,r =
4, A = 1, given by the plan [denoting the treatments by (x1, x2), x1, x> =0, 1, 2]:

Block Treatments
11 0,00 (O, 1) (0,2
12 (L,o) a1, 1,2
13 2,00 2,1 2,2
21 0,00 (1,00 (2,0
22 o 1n aO,n @ n

23 ©0,2) 1,2 (2,2
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Block Treatments
31 0,0 (1,2 2,01
32 (1,0) O, 1 (2,2
33 2,00 (0,2 1,1
41 0,0 (1,1 2,2
42 (1,0) (0,2 @2, 1
43 2,00 O, 1) 1,2

The dual D’ is then given by

Block Treatments

0, 0) 11, 21, 31, 41
O, 1) 11, 22, 32, 43
0, 2) 11, 23, 33, 42
(1, 0) 12, 21, 32, 42
(1, 1) 12, 22, 33, 41
(1, 2) 12, 23, 31, 43
(2, 0) 13, 21, 33, 43
2,1 13, 22, 31, 42
2, 2) 13, 23, 32, 41

The reader can verify easily that this is indeed the plan for a GD-PBIB(2)
design with the parameters as indicated. It is isomorphic to plan SR41 given
by Clatworthy (1973). O

5.1.2 Method of Differences

We denote and write the t = ¢, treatments now as follows:

01 0, 0;2
14 1, 1;2
(t1 — (t1 — 1)z (t1 — Dy, (5.1

that is, the (i + 1)th group in the association scheme for the GD design consists
of the treatments (i1, i2, ..., i) withi =0,1,...,# — 1, these treatments being
1st associates of each other. The treatments in the £th column are referred to as
treatments of class £.

The method of differences as described for BIB designs (Section 3.2) can now
be extended for purposes of constructing GD-PBIB(2) designs as stated in the
following theorem.
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Theorem 5.2 Let it be possible to find s initial blocks Bjg, B2, - .., Bso
such that

i. Each block contains k treatments.

ii. Treatments of class £(¢£ = 1,2, ..., p) are represented r times among the
s blocks.

iii. Among the differences of type (¢, ) arising from the s blocks, each
nonzero residue mod #; occurs the same number of times, XA,, say, for
alle =1,2,..., 0.

iv. Among the differences of type (¢, ¢’) arising from the s blocks, each
nonzero residue mod #; occurs A times and O occurs A times, say, for
all (6, ), ¢ =1,2,...,00,L #1).

Then, developing the initial blocks Big, Bag, - . ., Bso cyclically, mod #; yields a
GD-PBIB(2) design with parameters t = t1t>, b = t1s, k, v = ks/t2, A1, Aa.

The proof is quite obvious as it is patterned after that of Theorem 3.1. By
looking at array (5.1), it is clear that through the cyclic development of the initial
blocks, any two treatments in the same row occur A; times together in the same
block, and any two treatments not in the same row occur A, times together in
the same block. This then satisfies the association scheme for the GD-PBIB(2)
design.

We shall illustrate this with the following example.

Example 5.2 lett = 14,1 = 7,1, = 2; that is, array (5.1) is

0, 02
1 12
2 2
3 32
4 4,
5 52
61 62

Let the initial blocks of size 4 be

Bip = (01,02, 11, 12)
By = (01,02, 21,27)
B3p = (01, 02,31, 32)

To verify conditions 2—4 of Theorem 5.2 we see that treatments of class 1 and
2 occur r = 6 times. Further, the differences of type (1, 1) are

Bip: 01—11=6 ,-0,=1
By: 0,—2,=5 21—01 =2
B3y: 0,—3, =4 31—-01 =3
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and the same holds for differences of type (2, 2); similarly, differences of type
(1, 2) are

Bip: 0 —0,=0 0,—1,=6 1, -0, =1 11—1,=0
Bz()i 0]—0250 01—2255 21—0252 2]—2250
B3y: 0 —0,=0 0 —3 =4 31—0, =3 31—3,,=0

and the same is true for differences of type (2, 1). Hence A; = 6, A, = 1. The
plan for the GD-PBIB(2) design with b = 21 blocks is then

(01,02, 11, 12)
(11, 12,21,27)
(21,22,31,32)
(31,32, 41,42)
(41,42,51,52)
(51, 52,61, 67)
(61, 62,01,02)

(01, 02,21,27)
(11, 12,31, 32)
(21,22,41,42)
(31, 32,51, 52)
(41,42,61,67)
(51,52,01,07)
(61,62, 11, 17)

(01, 02,31, 32)
(11, 12,41, 42)
(21,22, 51, 52)
(31,32,61,62)
(41,42,01,07)
(51,52, 11, 12)
(61,62,21,27)

which is the same as plan S13 of Clatworthy (1973). We note that this PBIB
design is, of course, resolvable and that it lends itself to two-way elimination of
heterogeneity in that each treatment occurs exactly three times in the first two
and the last two positions of the 21 blocks. (]

5.1.3 Finite Geometries

We shall first consider a method of using a projective geometry, PG(K, p"),
to construct GD-PBIB(2) designs. The result can then be applied similarly to a
Euclidean geometry, EG(K, p"). (See Appendix B for details about projective
and Euclidean geometries). The basic idea in both cases is to omit one point
from a finite geometry and all the M-spaces containing that point. The remaining
M -spaces are then taken as the blocks of a PBIB design. More specifically we
have the following theorem.

Theorem 5.3 Omitting one point from a PG(K, p™) and all the M-spaces
containing that point, gives rise to a GD-PBIB(2) design, if one identifies the
remaining points with the treatments and the remaining M-spaces with the blocks.
Any two treatments are 1st associates if the line joining them goes through the
omitted point, they are 2nd associates otherwise.

Proof The PG(K, p") has 1+ p" + p?* + ... 4+ pX” points. Omitting one
point leads to

2n Kn

t=pt+pTt+---+p
=(1+pn+.__+p(K71)n>pn

=11 (5.2)
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treatments. In the PG(K, p") there are (M, K, p") M-spaces, of which
¢(0, M, K, p") contain the omitted point. Hence there are

b:I//(Ma K5pn)_(p(07M5 K’I?n) (5‘3)
M -spaces left that constitute the blocks, each M-space (block) containing
k=v0,M,p")=1+p"+p" +---+ pM" (5.4)

points (treatments). Since each point is contained in ¢(0, M, K, p") M-spaces
and since each line joining a given point and the omitted point is contained in
o(1, M, K, p") M-spaces, it follows that each retained point (treatment) occurs in

r=¢0,M,K,p"—e(l,M,K,p" (5.3)
retained M-spaces (blocks). Further
n=¢0,1,p"H)—-2=p"—1=n-1 (5.6)
np=t—n;—1= (p"+p2”+---+p(K_1)">p”
=(n—-Dn (5.7

and
Moo= 0=, MK,p" (5.8)

Thus, we are obviously led to the association scheme for the GD-PBIB(2) design.
Because of the uniqueness of the association scheme, the design constructed in
this manner is a GD-PBIB design. (]

As an illustration we consider the following example.

Example 5.3 let p =3, K =2,n = 1. The points of the PG(2, 2) are given
by triplets (u1, uz, u3) with uy, up, u3 = 0, 1 except (ujuuz) = (000). Suppose
we omit the point (100), then the remaining points are: 010, 110, 001, 101, 011,
111, that is, # = 6. The lines (i.e., M = 1) not passing through 100 constitute the
blocks of the design and are given by

001 010 011
110 001 111
010 101 111
110 101 011 (5.9

that is, b = 4, k = 3, r = 2. The association scheme is obtained by determining
for each point which other points lie on the line going through it and the omitted



164 CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

point. For example, the only point on the line going through (001) and (100) is
obtained from (u0 4 v1, w0+ v0, ul 4+v0) with u = v =1, that is, the point
(101). Doing this for all six points leads to the following association scheme:

Oth Associate 1st Associates 2nd Associates
010 110 001, 101, 011, 111
110 010 001, 101, 011, 111
001 101 010, 110, 011, 111
101 001 010, 110, 011, 111
011 111 010, 110, 001, 101
111 011 010, 110, 001, 101

This is, of course, the GD-PBIB association scheme if we write the treatments
in the following array:

010 110
001 101
011 111

Inspection of the plan (5.9) shows that A1 = 0, A = 1. With suitable labeling
this is plan SR18 of Clatworthy (1973). O

5.14 Orthogonal Arrays

Orthogonal arrays (for a description see Appendix C) play an important role
in the construction of experimental designs (see also Chapters 13 and 14). Of
particular interest are orthogonal arrays of strength 2. This is the type we shall
employ here to construct GD-PBIB designs. More specifically we shall employ
orthogonal arrays OA[N, K, p, 2; A], where p is prime. Their relationship to the
GD-PBIB(2) design is as follows: Replace any integer x appearing in the ith
row of the array by the treatment (i — 1)p + x. The ith row contains then the
treatments

i—-Dp,Gi—Dp+1,....,0—DHp+p—1

each occurring r = N/p times since each symbol occurs equally often in each
row. The total number of treatments is t = Kp and we have t; = K, tp = p. The
columns of this derived scheme form the blocks of the PBIB design, that is,
there are b = N blocks, each of size k = K. Treatments in the same row are 1st
associates, that is, each treatment has ny = p — 1 1st associates and since these
treatments do not appear in any other row, it follows that A; = 0. Treatments
in different rows are 2nd associates, giving no, = (K — 1) p. Since we have an
OA[b, k, p, 2; A], that is, each possible 2 x 1 column vector appearing A times,
we have Ay = A. This is, of course, the association scheme of a GD-PBIB(2)
design with the parameters as stated above.
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We illustrate this with the following example.

Example 5.4 Consider the following OA[S, 4, 2, 2, 2]:
01 01 01 01
A= 0011 0O0T1 1
“]10 00 01 1 1 1
01 1 01 0 01

This leads to the derived GD-PBIB(2) design (with columns representing blocks):

Block
1 2 3 4 5 6 7 8
0O 1 0o 1 0 1 0 1
2 2 3 3 2 2 3 3
4 4 4 4 5 5 5 5
6 7 7 6 7 6 6 17

with t =8,b=8,k=4,r =4,A1 =0, A» = 2. This design is isomorphic to
plan SR36 of Clatworthy (1973). O

For further specialized methods of constructing GD-PBIB(2) designs the reader
is referred to Raghavarao (1971). An essentially complete list of existing plans
for GD-PBIB(2) designs is given by Clatworthy (1973) together with references
and methods concerning their construction.

5.2 CONSTRUCTION OF OTHER PBIB(2) DESIGNS

We shall mention here only a few methods but otherwise refer the reader to the
pertinent literature.

5.2.1 Triangular PBIB(2) Designs

Recall that the number of treatments is = g(g — 1)/2 and that for the association
scheme the treatments are arranged in a triangular array and its mirror image
(see Section 4.6.2). One method of constructing triangular designs can then be
described as follows.

If we let each row of the association scheme be a block, then the resulting
design is a triangular PBIB design with parameters:

t=q@g—1/2 b=q k=qg—1 r=2 ra=1 1=0

Example 5.5 lett=6=4x % The association scheme is

W N = %
O SN
(=) SN )
* O\ D W
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The design then is given by

1: 1 2 3
2: 1 4 5
Block
¢ 3 2 4 6
4: 3 5 6
thatis, b=4,k=3,r=2,A; = 1,1, = 0. u

Other methods given by Shrikhande (1960, 1965) and Chang, Liu, and Liu
(1965) are based on the existence of certain BIB designs and considering, for
example, the dual of the BIB design as omitting certain blocks from the BIB
design. Still other methods are given by Clatworthy (1955, 1956), Masuyama
(1965), and Ray-Chaudhuri (1965). A listing of practically useful designs is
given by Clatworthy (1973).

5.2.2 Latin Square PBIB(2) Designs

Similar to the procedure described in the previous section, the following method
of constructing L,-PBIB designs is closely connected to the square treatment
array for the Lj-association scheme.

We have r = ¢, and suppose g is prime or prime power. We know that
there exist then ¢ — 1 mutually orthogonal Latin squares (MOLS) of order
q (see Section 1.10.6.2). The languages for these ¢ —1 MOLS are then
superimposed on the treatment array, that is, each treatment has associated
with it ¢ — 1 letters, one from each of the ¢ —1 MOLS. Collecting the
treatments that have the same letter from each of the ¢ — 1 languages and
calling those sets blocks, leads to an L,-PBIB design with the following
parameters:

t=q> b=qq-1 k=g r=q—-1 1A =0 1A=1

Example 5.6 Let t =16,g =4. The 4 x 4 association scheme with the
superimposed three MOLS is as follows:

1 2 3 4
Aal BB Cyll D8IV
5 6 7 8
By IV AS T Dall CBI
9 10 11 12
Cs 1l Dyl ABIV  Ball
13 14 15 16

D p 1 CalV Bé§1 Ay Il



CYCLIC PBIB DESIGNS 167

The blocks are then

Block Treatments
1(A) 1, 6, 11, 16
2(B) 2, 5, 12, 15
3(0) 3, 8, 9, 14
4(D) 4, 7, 10, 13
5(a) 1, 7, 12, 14
6(8) 2, 8, 11, 13
7(y) 3, 5, 10, 16
8(5) 4, 6, 9, 15
9(I) 1, 8, 10, 15
101 2, 7, 9, 16
11(IIT) 3, 6, 12, 13
12(IV) 4, 5 11, 14

It is, of course, obvious from the method of construction that this PBIB design
is a resolvable design with the blocks from each language forming a complete
replicate. O

Other methods of construction, some based on the existence of certain BIB
designs, have been given by for example, Bose, Clatworthy, and Shrikhande
(1954), Chang and Liu (1964), Clatworthy (1955, 1956, 1967), and, as lattice
designs, by Yates (1936b) (see Section 18.7). A list of these designs can be
found in Clatworthy (1973).

5.3 CYCLIC PBIB DESIGNS

We shall now turn to the rather large class of cyclic PBIB designs we
introduced in Section 4.6.12. These designs are quite useful since (1) they are
easy to construct, namely as the name suggests through cyclic development
of initial blocks, (2) they exist for various combinations of design parameters,
and (3) they are easy to analyze, that is, their analytical structure is easy to
derive.

5.3.1 Construction of Cyclic Designs

As mentioned earlier, the construction of cyclic designs is based on the cyclic
development of a set of initial blocks. We can distinguish basically between four
types of cyclic designs according to whether the number of blocks b is (1) b = ¢,
2)b=st,3) b=t/d, or (4) b=1t(s+1/d), where d is a divisor of ¢. It
is then obvious that

For (1) we need one initial block of size k;
For (2) we need s distinct (nonisomorphic) initial blocks of size k;
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For (3) we need one initial block of size k such that, if cyclically developed,
block b+ 1 =1t/d + 1 is the same as the initial block and each treatment
is replicated r times. This means that if the initial block contains treat-
ment i, it also must contain treatments i + b, i + 2b, ...,i + (d — 1)b. This
implies that d is also a divisor of k, say k/d = k’. Then any k’ treatments
i1, 12, ..., I can be chosen and the remaining treatments in the initial block
are determined;

For (4) we combine initial blocks from type (1) if s =1 or (2) if s > 1 with
an initial block from type (3).

The choice of initial blocks for (1), (2), and hence (4) above is quite arbitrary
since any choice will lead to an appropriate design. There is, however, one other
consideration that plays an important role in choosing initial blocks and that is
the efficiency E of the resulting design. Efficiency here is defined in terms of
the average variance of all treatment comparisons (see Section 1.10), and high
efficiency is closely related to a small number of associate classes. Whereas the
number of associate classes for a cyclic design is, in general, m = ¢/2 for ¢ even
and m = (+ — 1)/2 for ¢ odd, this number can sometimes be reduced by a proper
choice of initial blocks, in some cases even to m = 1, that is, BIB designs, or
m = 2, that is, PBIB(2) designs. For example, consider t =6,k =3,r =3,b =
6: If the initial block is (1, 2, 3), then the plan is

[« )NV, I NS I S R
— O\ Lt W
N — N bW

and by inspection we can establish the following association scheme:

Oth Associate 1st Associates 2nd Associates 3rd Associates
1 2, 6 3,5 4
2 3, 1 4, 6 5
3 4, 2 5, 1 6
4 5 3 6, 2 1
5 6, 4 1, 3 2
6 1, 5 2, 4 3

with A1 =2, 4 = 1, A3 = 0, and

0100 00 1 0 000 1
1010 01 0 I 002 0
Pi=1o 1 0 1 P2=11 01 0 Ps=10 2 0 0
0010 01 0 0 100 0
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Hence we have a PBIB(3) design. If, on the other hand, the initial block is
(1, 2, 4), then the resulting plan is

AN B W -
— QN L WD
W N = NN B

and, by inspection, we can speculate on the association scheme as being

0th Associate 1st Associates 2nd Associates
1 2, 3,5 6 4
2 3, 4, 6, 1 5
3 4, 5, 1, 2 6
4 5,6, 2, 3 1
5 6, 1, 3, 4 2
6 1, 2, 4, 5 3

with Ay =1, A = 2, and

P = Py =

(=

1
2
1

oo
==
orO
oo -

Hence we have in fact a PBIB(2) design. For the first design we obtain E =
0.743 [see (5.14)], whereas for the second design we find £ = 0.784. Hence the
second design is slightly preferable from an efficiency point of view, and this
design is therefore listed by John, Wolock, and David (1972). One can convince
oneself that no better cyclic design for this combination of parameters exists.

The association scheme for the second design is, indeed, the association
scheme for a cyclic PBIB(2) design as discussed in Section 4.6.4, except that we
have to relabel the treatments as 0, 1,...,5. We then have d| = 1,dp, =2, d3 =
4,dy=5,e1=3,0a=2,8=4.

An extensive list of initial blocks for cyclic designs for various parameters with
6 <t <30,k <10,r <10, and fractional cyclic designs for 10 <f < 60,3 <
k <10 is given by John, Wolock, and David (1972). A special group in this
collection of plans are those with k = 2, which are often referred to as paired
comparison designs.

5.3.2 Analysis of Cyclic Designs

The general methods of analyzing incomplete block designs (see Chapter 1)
apply, of course, also to the cyclic designs just described, or even more specif-
ically, the methods of analyzing BIB designs (where appropriate) or PBIB(m)
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designs can be used. However, as pointed out earlier, for many cyclic designs the
number of associate classes, m, is rather large and hence the system of equations
(4.34) becomes rather large. Instead, another method of solving the RNE

Ci =0

for cyclic designs can be used. This method is interesting in itself as it makes
use of the particular construction process that leads to a circulant matrix C and
hence to a circulant matrix C~, the elements of which can be written out explicitly
(Kempthorne, 1953).

Let us denote the first row of C by (cy, ¢2, ..., ¢;). The second row is then
obtained by shifting each element of the first row one position to the right (in a
circulant manner), and so forth so that C is determined entirely by its first row.
The same is true for C~, so all we need to know in order to solve the RNE
and to obtain expressions for variances of estimable functions A'z, is the first
row of C~, which we denote by el e, .., ¢t Let di(j=1,2,...,1) denote
the eigenvalues of C where (Kempthorne, 1953)

t

dj:Z c—1D(G —1)o (5.10)
(=1
and 6 = 27 /t. Note that d; = 0; hence d3, d3, . . ., d; are the nonzero eigenvalues

of C. Then, as shown by Kempthorne (1953), the elements di=1,2,...,1)
are given as

2!
t

d:

~

t
=2
’ (5.11)

t

; 1 Z cos(j — (@@ — 1o
t 4 dj

(=23 ....1
j=2

Expressions (5.10) and (5.11) can actually be simplified somewhat. Because of
the construction of the designs and the resulting association scheme, we have for
the A7 in NN’

A2 = A1, A3 = A1,

ALitj2 = Altj2+2 for ¢ even
A4 =Ar-2,.0,s

M +1)/2 = M, @43)2  for 1 odd

and hence we have for C
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—A13
€3 =Cr-1=——
—Al4
C4=cr2= —
. _ TALG4D)2 R d4d
Ct+1)/2 = Ct+3)/2 = — % orto
or 2
Ct+2)/2 = —ALudd2 for ¢ even

k

As a consequence, also the maximum number of different ¢! values is (r + 1)/2
for ¢ odd or (¢ + 2)/2 for t even. With the ¢! values given in (5.11) we can find
the variances of treatment comparisons in general via comparisons with treatment
1 as follows:

var(z; — Ty) = var(Ty — Ty—i41)

=2(c' =" he?  fori’ > (5.12)

This is, of course, a consequence of the circulant form of C~. The average
variance of all such treatment comparisons then is

1 ~ =~
av. var = =D Z: var(t; — ;1)
i;léi’
1 ~ -~
= P #Zlvar(rl -7T)
and using (5.12),

2 1 )
av. var = P Z(c —co;

i#1
2 1 : i 2
= tTl (tc — ;CJ) Ue
2t
= clo? (5.13)

r—1

since Z?:l ¢ =0 as can be verified directly by using (5.11). From (5.12) it
follows then that the efficiency factor for the treatment comparison between the
ith and the i’th treatment is

202 /r 1

Eiir = 2ol —c—itD)g2  p(el — o —itl
(¢t —c¢ o rict —c )
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and from (5.13) that the overall efficiency factor is

B 202 /r -1
C2tclo2/(t — 1) rtc!

(5.14)

5.4 KRONECKER PRODUCT DESIGNS

In previous sections we have used the fact that incomplete block designs can
sometimes be generated from some other existing incomplete block design, for
example, the residual design of a BIB design is also a BIB design, the duals
of certain BIB designs are PBIB(2) designs. In this section we shall use another
widely applicable and useful technique to generate new incomplete block designs
from existing designs. This method and hence the resulting designs are referred
to as Kronecker product designs. These designs were first introduced by Vartak
(1955) and later put on a more formal basis by Surendran (1968).

5.4.1 Definition of Kronecker Product Designs

Suppose we have two PBIB designs, D; and D, with m| and mj associate
classes, respectively [in what follows we consider a BIB design as a PBIB(1)
design] defined by their respective incidence matrices N and N, with the fol-
lowing parameters:

DI: tlvrlvklablvnua)"u sz(pﬁv) (H,U,k:(),l,...,ml)
(5.15)
Dy n.rka by X5 Ph=(qgh)  (f.g.h=0.1,....m))

Consider now the Kronecker product
N=N; x N> (5-16)

where N is obtained by multiplying each element in N| by the matrix Nj.
It is immediately obvious that N is an incidence matrix of dimension ¢ x b
with t = t1#, and b = by b,. Furthermore, each row of N contains r = r{ry unity
elements and each column contains k = kjk> unity elements. Hence the design
D, defined by its incidence matrix (5.16), is an incomplete block design with ¢
treatments, b blocks, r replicates per treatment, and k units per block. It remains
for us to show that this Kronecker product design is indeed a PBIB design and
to establish its association scheme and the remaining parameters.

5.4.2 Properties of Kronecker Product Designs

Let us denote the treatments of D; by the vector 8’ = (6, 6s, ...,6,) and the
treatments of D by the vector ¢’ = (¢1, ¢2, ..., ¢1,). The treatments for design
D can then be defined by what Kurkjian and Zelen (1962, 1963) have called the
symbolic direct product between 6 and ¢.
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Definition 5.1 Let 0' = (01,62,...,6,) and ¢’ = (¢1, 2, ..., ¢ds) be two
arrays of size ¢ and s, respectively. Then a new array x of size ¢ - s is created
by the symbolic direct product (SDP) of 6 and ¢ as follows:

et
X12

xX=0Q¢ = | x5 (5.17)
X21
[ Xgs | O

It is convenient to enumerate the rows of the matrix NV in (5.16) in the same way
as the array in (5.17). We shall now prove the following theorem.

Theorem 5.4 Let D and D, be two PBIB designs with parameters as given
in (5.15). Then the Kronecker product design D as defined by its incidence
matrix N = N| x N3 is a PBIB design with m = (m| + 1)(m> + 1) — 1 asso-
ciate classes and the following association scheme: If treatments 6, and 6, are
uth associates in Dy and if treatments ¢, and ¢, are gth associates in D,
then the treatments x,, and x,/, are said to be (u : g)th associates in D with
u:2)=0:0,0:1),...,0:mp),(1:0),...,(my :my).

Proof We shall prove the theorem by establishing that the concordance matrix
and the association matrices satisfy certain conditions as established by Bose and
Mesner (1959) and as used in Chapter 4.

Let B,(u =0,1,...,m) and B;(g =0,1,...,m)) be the association matri-
ces for designs D and D», respectively. We then have

mi

NN}, =) B, (5.18)
u=0
and
my
NyNy =Y " AiB (5.19)
g=0

Then, using (5.16), (5.18), and (5.19), we obtain
NN/ = (N1 X Nz)(Nl X Nz)/

= (N1N) x (N2Np)
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mi my
= ZAMBM x ZAZ:BZ,
u=0 g=0
mp mp
=3 wis (Bu x B))
u=0g=0

Now let
B, =B, x Bz

It can be seen easily that the B,., are association matrices since

(i) Boo=B x Bj=1,

myp mj

(i) > > Buy=> > B,x B}
u g

u=0g=0

= (Z Bu> (ZB ) =9,9; x 3,9, =3,9,

(i) BugBun = (Bu x B) (By x B}) = (BuB) x (B;:B;)

mi ma
() (Lot
k=0 =0

my; mp
WA
k=0 f=0
mip mp
k f
=20 Pudg, Brs
k=0 f=0
myp myp
_ k:f
=22 Pigon Br
k=0 f=0
with
kf o _ k f
pu:g,v:h - puquh
and

kif o _ kS
pugvh puhug

(5.20)

(5.21)

Further, the association scheme defined by the association matrices (5.21) is
indeed the same as that stated in the theorem, which is immediately obvious

from the way the treatments of N have been enumerated in (5.17).

This completes the proof of the theorem.

O
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By way of proving the theorem, we also obtain the remaining parameters of
the Kronecker product design D as

*
Ny.f = nul’y

husf = M

Pis=(P] )
= (P]Zu ) Pgh)
=P x P}“‘-

with w: f)=(0:0),0:1),...,0:mp),(1,0),..., (m1 : ma).
As a simple application we consider the following example.

Example 5.7 Let D| be a BIB design with parameters t; = 4,b) =4, k| =
3,r1 = 3(= Ag), A1 = 2, and incidence matrix

10

0 1
Ni= 11
11

—_ = =

1
1
1
0

and let D, be a BIB design with 1o =3,by =3, k2 = 2,12 = 2(= A(), A] =1,
and incidence matrix

—

1 0
N, = 0 1
0 1 1

Then D has the parameters t = 12,b =12,k = 6,r = 6(= rp.0), ro:1 = 3;
A0 =4, A1:1 = 2, and incidence matrix

N, N, N, O
N, N, 0 N,
N, 0 N Ny
0O N, N Ny

With
B()=It1 Bl=gtlﬂ;1_1t1
Bg:ltz 7:3,23;2—1,2

as the association matrices for D and D», respectively, the association matrices
for D are

Boo=1, x1,=1,
BO:] = Itl X (gtzg;z _Itl) = It[ X :]tz:]l/‘z - It
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Bl;() == (jtlj;l - Itl) X IIQ == gtlg;I X Itz - It
B]:l = (ﬂllj;l — II]) X (3123;2 — Ifz)
= 3;3; — jtlg;1 X I[2 — Il] X gtzg;2 + It
Obviously
Boo + Bo:1 + Bio + Bi = 9,9;

Any treatment in D is denoted, according to (5.17), by (i, j) where i =
1,2,3,4,j=1,2,3, and these treatments are arranged in the order as given
by (5.17). The association scheme for this PBIB(3) design can then be expressed
in two ways, both of which are useful:

1. Any two treatments (i, j) and (i, j') are

0:0 associates if i =i’ j=7
0:1 associates if i =i’ ENA
1:0 associates if i # i’ j=J

/

1:1 associates if i # i’ EN

or

2. If the treatments are arranged in the 4 x 3 array

(1, 1) 1, 2), (1, 3)
2, 1) 2, 2), 2, 3)
3, D (3, 2), (3, 3)
4, 1) 4, 2), 4, 3)

then each treatment is the 0:0th associate of itself, and any two treatments
are

0:1 associates if they are in the same row
1:0 associates if they are in the same column
1:1 associates if they are in different rows and columns

This association scheme has been referred to as the extended group-divisible
association scheme for an EGD(3)-PBIB design by Hinkelmann and Kemp-
thorne (1963) using representation 1 above, and as the rectangular associ-
ation scheme by Vartak (1955) using representation 2 (see Sections 4.6.9
and 4.6.5).

Finally, the P matrices for the design D are obtained from those for design Dj:

10 0 1
n=(o3) m=( )
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and design D»:

as
1 0 1
¢ (]
2 1 1
¢ ¢
6 3 3
1 0 0 1
¢ ]
Pioy= 0 2 Py = 1 1
1 0 2 0 0 0 2
0 2 0 4 1 1 2 2 O

The method of constructing PBIB designs as Kronecker product designs can,
obviously, be extended to Kronecker products of incidence matrices for three or
more existing PBIB designs, for example,

N =N x Ny x N3

and the reader should have no difficulties working out the parameters of the result-
ing PBIB design with (m1 + 1)(m2 + 1)(m3 4+ 1) — 1 associate classes, where
m1, my, m3 are the numbers of associate classes of the component designs.

5.4.3 Usefulness of Kronecker Product Designs

It is, of course, clear that the usefulness of Kronecker product designs is somewhat
limited as even for two component designs, that is, for N = N| x N, they may
require rather large block sizes and/or large numbers of replications depending on
the corresponding parameters for the underlying designs N and N,. In general,
therefore, only those designs N; and N, with moderate values for k and/or r
will be useful in this connection.

Also, the number of associate classes for Kronecker product PBIB designs may
be quite large since the maximum number of associate classes for N = N1 x N
is mimy + m1 + my. Vartak (1955) and Kageyama (1972) have shown, however,
that under certain conditions this number can be reduced considerably, thereby
actually inducing a different association scheme. Kageyama (1972), for example,
proves that a necessary and sufficient condition for an EGD-(2" — 1)-PBIB design
(see Section 4.6.9) based on the v-fold Kronecker product of BIB designs to
reduce to PBIB(v) designs having the hypercubic association scheme (see Section
4.6.10) is that the v BIB designs have the same number of treatments and the same
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block size. This not only makes Kronecker product PBIB designs more attractive
from a practical point of view but it also provides methods of constructing PBIB
designs with different association schemes.

5.5 EXTENDED GROUP-DIVISIBLE PBIB DESIGNS

We have mentioned earlier that the EGD-PBIB designs play a major role in
connection with systems of confounding for asymmetrical factorial experiments
and balanced factorial experiments (see Chapter 12). Knowing how to construct
EGD-PBIB designs therefore means knowing how to construct such systems
of confounding. It is for this reason that we shall present a few methods of
constructing EGD-PBIB designs.

5.5.1 EGD-PBIB Designs as Kronecker Product Designs

As illustrated already by Example 5.7, the EGD-PBIB(3) design can be con-
structed as the Kronecker product of two BIB designs. It is then quite obvious
that a v-fold Kronecker product of BIB designs will lead to an EGD-PBIB(2" — 1)
design. More formally, we state the following theorem.

Theorem 5.5 Let there be v designs D; with parameters t;, b;, k;, r, Ay and
incidence matrix N;(i = 1,2, ..., v), respectively. Then the Kronecker product
design D as given by its incidence matrix

N=N;xNyx---xN,

is an EGD/(2" — 1)-PBIB design with parameters
v v Vv
t=1_[t,' b=l_[bl' k = ki r:l_[ri
i=1 i=1 i=1 i=1

_ 1=viy v
Myaees _nri Ay

v

where the power y; = 0 or 1.

Proof For the proof we simply refer to the definition of the Kronecker prod-
uct design (Section 5.4) and the definition of the EGD/(2" — 1)-PBIB design
(Section 4.6.9). O

5.5.2 Method of Balanced Arrays

The second method of constructing EGD-PBIB designs is due to Aggarwal
(1974). It is based on balanced arrays. Before we give the corresponding theorem
we need first the following definition.
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Definition 5.2 Let o' = (a1, a2, ..., 04) and B’ = (B1, B2, ..., By) be two
arrays of g elements, then the symbolic inner product (SIP), o’ ® B’, of these
arrays is the array defined as

o OB = (a1 i, 2B2, ..., aqBy)

We then state the following theorem.

Theorem 5.6 The existence of an EGD/(2” — 1)-PBIB design with param-
eterst = [/ t;, b =[]\, t;(t; — 1),k =t;,r = [[}_,(t; — 1), and

A _ 1 if]/]:)/z:...:]/,,:l

ViV2- 0 otherwise
where 11 <1;(i =2,3,...,v), is implied by the existence of v — 1 balanced
arrays BA;[#i(t; — 1), 11,4,2]@ =2,3,...,v), that is, with N; =¢(t — 1)
assemblies, #; constraints, strength 2, #; levels, and for each i

0 ifx;=x
1 otherwise

Alx1, x2) = {

[for a definition of balanced array (BA) see Appendix C].

Proof This proof actually gives the construction of the EGD-PBIB design,
assuming that the BA; exist. Denote the columns of BA; by a;1, a2, ..., a; ¢ —1)
and the elements in BA; by 0, 1,...,# — 1. Then construct successively the
following EGD-PBIB designs:

1. Take the SIP of the array [0,1,2,...,(f; —1)] and each a’zj[j =
1,2,...,0(tp — 1)] of BAj. If each SIP is taken as a block with treatments
of the form (xx3), then this yields an EGD(3)-PBIB design with the fol-
lowing parameters: t = t1th, b =t(tr — 1), k=t;,r =t —1,ng1 =tp —
lL,no=t—1, nii=1—D(tr—1), 201 =0,110=0, Ay = 1. This
can be verified easily by noting that (a) each element of BA; must occur
t» — 1 times in each row of BAj, hence each element in (0, 1,...,¢1 — 1)
is combined with each element of (0, 1,...,5 — 1), implying r =, — 1;
(b) each SIP forms a block of size k = t; and hence b = t,(t; — 1); (¢)
because of the BA property concerning the A(x1, x2), no two pairs of ele-
ments, that is, no two treatments (i, j) and (i’, j), say, occur together in
the same block if i =i’ or j = j', implying A9 = 219 = 0, and two pairs
of elements (i, j) and (i’, j') occur together exactly once if i # i’ and
Jj # j/, implying A1 = 1. This establishes the EGD(3)-PBIB property of
this design. We denote the blocks, that is, SIP arrays, of this EGD-PBIB
design by b5, by, .-, b5 41y 1)-
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2. Then take the SIP of the b’zj[j =1,2,...,t(tp — 1)] with the ag([ﬁ =

1,2,...,t3(t3 — 1)] of BAj3. This leads to an EGD/7-PBIB design
with parameters ¢ =ttht3,b =0t — Di3(t3 — 1),k =t1,r =(tp — 1)
(13 — 1), 001 = Ao10 = Ao11 = 2100 = A101 = A110 =0, A1 =1, nieo =
f1—1, nooo=t0—-1, noor=t3—1, nyo=0 —D2—1), nio1 =
(1 =D =1, noip=@—D@—1D,n11 =0 —DE—DEz—1).
This can be verified by repeating the arguments given in item 1.

Continue the process of forming the SIP of the blocks of the EGD/(29 — 1)-
PBIB design with the columns of BA; | until ¢ = v — 1. The resulting
design is then an EGD/(2" — 1)-PBIB design with parameters as stated in
the theorem. O

Example 5.8 Lett =36 =3 x 3 x 4,thatis, ty =3, r, = 3, t3 = 4. The two
required BAs are (see Appendix C for construction)

0120 12
BA,=|2 011 2 0
12020 1
012301230123
BAs;=| 10 3 2 2 1 3210
230132101032

The SIP of (0, 1, 2) with the columns of BA; yields

5 = (00, 12,21)
L, = (01, 10, 22)
by = (02, 11, 20)
Ly = (00, 11,22)
Ls = (01, 12,20)
L = (02,10, 21)

The SIP of the b) j’s with the columns of BAj3 yields the final plan with 72
blocks of size 3 as given in Table 5.1. (]

5.5.3 Direct Method

The methods described in Sections 5.5.1 and 5.5.2 depend both on the avail-
ability of appropriate BIB designs or BAs, respectively. The method to be
described in this section, which is due to Chang and Hinkelmann (1987), is
a direct method in the sense that it is based ab initio on simple combinatorial
operations.
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Table 5.1 EGD-PBIB Design for
t=36,b=72,k=3,and r =6

(000,
(001,
(002,
(003,
(000,
(001,
(002,
(003,
(000,
(001,
(002,
(003,

(020,
(021,
(022,
(023,
(020,
(021,
(022,
(023,
(020
(021,
(022,
(023,

(010,
11,
(012
(013
(010,
(011,
(012
(013
(010
(011,
(012
(013

121, 212)
120, 213)
123, 210)
122, 211)
122, 213)
123, 212)
120, 211)
121, 210)
123, 211)
122, 210)
121, 213)
120, 212)

111, 202)
110, 203)
113, 200)
112, 201)
112, 203)
113, 202)
110, 201)
111, 200)
113, 201)
112, 200)
111, 203)
110, 202)

121, 202)
120, 203)
123, 200)
122, 201)
122, 203)
123, 202)
120, 201)
121, 200)
123, 201)
122, 200)
121, 203)
120, 202)

(010, 101, 222)
(011, 100, 223)
(012, 103, 220)
(013, 102, 221)
(010, 102, 223)
(011, 103, 222)
(012, 100, 221)
(013, 101, 220)
(010, 103, 221)
(011, 102, 220)
(012, 101, 223)
(013, 100, 222)

(000, 111, 222)
(001, 110, 223)
(002, 113, 220)
(003, 112, 221)
(000, 112, 223)
(001, 113, 222)
(002, 110, 221)
(003, 111, 220)
(000, 113, 221)
(001, 112, 220)
(002, 111, 223)
(003, 110, 222)

(020, 101, 212)
(021, 100, 213)
(022, 103, 210)
(023, 102, 211)
(020, 102, 213)
(021, 103, 212)
(022, 100, 211)
(023, 101, 210)
(020, 103, 211)
(021, 102, 210)
(022, 101, 213)
(023, 100, 212)
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Before we state the main result, we introduce, for ease of notation, the fol-

lowing definition.

Definition 5.3 For x and y intergers and x > y, let

X =

(x —y)!

=x(x—1)---(x—y+1)

(5.22)
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We then have the following theorem.

Theorem 5.7 Fort = ]_[;-’:1 t; treatments with 1| < fp < ... <, there exists
an EGD/(2" — 1)-PBIB design with parameters

1% 1%
tzl_[ti bzl_[ti(ﬂ)
i=1 =2
v
r=[]e-D"" k=4
i=2

v
20,0,....00=r A(,....h) =[] -2"?
i=2

all other A(y) =0

The proof is rather elementary but quite lengthy. We shall not go through all
the details here and instead refer the reader to Chang and Hinkelmann (1987).
Just as for Theorem 5.6, however, the proof is based on the actual construction
of the design, and the individual steps of the method will be described now. To
do so, it is useful to introduce some notation.

Let (x1,x2,...,x,) denote a treatment with x;e{l,2,...,#} for i =
1,2,...,v and x; is called the ith component of the treatment (see Section
4.6.9). We then define a matrix

pO
PO

P = ) (5.23)
P

of dimension (]_[i”;l t,-) x t,, with the submatrix P®) of dimension (Hf;zl t,-) x
fy. (In what follows we shall abbreviate []'—] by [] and []'=, by [T*). The

elements of P are the treatments (xi, x2, ..., x,), and P® has the following
properties:
1. The first component of any element is £ for £ =1,2,..., 1.

2. The last component of any element in the sth column is s (1 < s <1,).

3. The remaining components of any element are changed from one row to
the next by first changing the (v — 1)th component from 1 through #,_1,
then the (v — 2)th component from 1 through #,_5, and so on.
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For example, for v = 3 the submatrix P ) is of the form

“,1,1) (¢ 1,2) ... (1,1)
“,2,1) ¢£,2,2) ... (£,2,13)
€, 1, 1) (£, 1,2 ... (U t)

fore=1,2,...,1.
The next step is to define a matrix derived from P,

qtl

183

(5.24)

(5.25)

of order #; x t, such that g, is a row vector from PO €=1,2,...,11) and
any two vectors, ¢ ) and 9 do not have the same row number in P® and

P respectively. Denote the possible choices of Q(P) by Q. Q. ...

(suppressing P), where

N = H*ti(fl)

» On

Example 5.9 Llett =24,t) =2,t, =3,t3 = 4. The P matrices as given by

(5.24) are

P —

PO —

With N = 3@ = 6 we then have

0, =

0, =

03 =

[(1,1,1)
(1,2, 1)
[ (1,3,1)

(2,1, 1)
2,2, 1)
[ (2,3,1)

(1,1, 1)
(2.2,

(1,1, 1)
(2.3, D)

[(1,2,1)

21,1

1,1,2)
1,2,2)
(1,3,2)

1,1,2)
2,2,2)

1,1,2)
(2,3,2)

1,1,3)
1,2,3)
(1,3,3)

(1,1,3)
(2,2,3)

(1,1,3)
(2,3,3)

(1,2,3)
2,1,3)

(1,1,4)]
(1,2,4)
(1,3,4) |

2,1,4)7]
4)

(29 31 4)_

(1,1,4]
(2,2,4)

(1, 1,4)]
(2,3,4)
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1,2,y (1,2,2) (1,2,3) (1,2,4)
Q= (2,3, 1) (2,3,2) (2,3,3) (2,3,4)]

. 3,2 1,3,3 1,3,4
Qs = 2, 1L 2,1,2) (2,1,3) 2, 1,4

(1,3,4)]
(2,2,4)

_a,3,n 1,3,2) (1,3,3)
Q6 = 2,2,1) (2,2,2) (2,2,3)

The PBIB design is now obtained by forming, for each Q,(¢{ =1,3,..., N),
arrays

By, = (beji. bejas - - bejry) (5.26)

such that

1. byj; is an element of the ith row of Q,.
2. For i # i, bgj; and byj;r are selected from different columns of Q,.

Thus for any given ¢, there are tﬁ”)

%
b=N x Z]Stl) = (l_[* ll.(tl)) X llgtl) = 1_[ tl-(tl)
i=2

Each array (5.26) represents a block of size #; and (5.27) gives the total number
of blocks. Hence the collection of all By;’s is the desired EGD/(2" — 1)-PBIB
design.

From Q@ we obtain the following 12 Bj;:

such By;. The total number of arrays then is

(5.27)

By (1,1, (2,2,2) By (1,1,2) (2,2,1)
Bi: (1,1,1) (2,2,3) Bis: (1,1,2) (2,2,1)
Biz: (1,1, (2,2,4) Bi: (1,1,2) (2,2,4)
By;: (1,1,3) (2,2,1) Biy: (1,4,2) (2,2,1)
Big: (1,1,3) (2,2,2) B (1,1,4) (2,2,2)
Bio: (1,1,3) (2,2,4) By (1,1,4) (2,2,3)

The other blocks can be constructed in a similar way.

It is, of course, obvious from the design above that only treatments that differ
in all three components appear together in the same block. In general, this is
assured by the definition of the P matrices in (5.24), the @ matrices in (5.25)
and the B arrays in (5.26). Hence, only A(1,1,...,1) > 0.
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Finally, we point out that if #; =2 (as in Example 5.9) the method just
described yields the same design as Aggarwal’s (1974) method described in
Section 5.5.2.

5.5.4 Generalization of the Direct Method

As stated in Theorem 5.7 the direct method leads to EGD-PBIB designs with
block size k = t1. Following Chang and Hinkelmann (1987) we shall now show
that the theorem can be modified and used to construct certain EGD-PBIB designs
with blocks of size k = t; where 2 <i < v.

Suppose we have r = 1] X 1, X --- X t, treatments with 1] <, <.-- <#,. Let

A=1{i,i3,...,ip} be asubset of 1,2,...,v with 2 <n < v. For ease of nota-
tion we take A = {1, 2, ..., n}, but the reader should have no difficulty replacing
in actual applications 1,2, ...,n by iy, i, ..., i,. The main result can then be

stated as in the following theorem.

Theorem 5.8 Consider an experiment with ¢ = []!_, #; treatments with 7] <
th<---<t, Let A={1,2,...,n}. Then there exists an EGD/(2"~")-PBIB
design with parameters

Vv

t = ﬁti b= (li[ti(")) [T 4
i=1 =2

j=n+1

n
r=[]e-D"""Y k=g
i=2

n
A1 L. 1,000 =@ -0
i=2

n

all other A(y) =0

Before we prove the theorem we introduce the notation in the following defi-
nition.

Definition 5.4 Let a§ =(,2,...,1) be 1 x¢t; vectors fori =1,2,...,v.
The symbolic direct multiplication (SDM) of a p and a;(1 < p,q <v), denoted
by a, © a, is given by an array of 7, vectors:

B (151) (172) (17tq) 7]

(25 1) (27 2) (27 tq)
a,Oa; = : , :

L \(p, D) (tp,2) (tp, 1)/ |
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where each vector has 7, elements and the second components in a given vector
are identical and equal to 1, 2, ..., t,, respectively. O

Proof of Theorem 5.8 We first construct an EGD/(2" — 1)-PBIB design for
t* =[]i_, # treatments according to Theorem 5.7. Let the parameters of this
design be b*, r*, k*, A* say, as given in Theorem 5.7. Let Bj(j =1,2,...,b%
be a block in the EGD/(2" — 1)-PBIB design. Further, let d; =(1,2,...,t;)(i =
1,2,...,v), andletZ:{l,Z,...,v}—A ={n+1,n+2,...,v} (because we
have chosen A = {1, 2, ..., n}). We then define the SDP

Djzdn+1 ®dn+2®"'®dv
and consider the SDM

for j =1,2,...,b* Each B’j‘f consists of ]_[‘j’-:nJrl tj vectors, each vector having
11 elements, each element being an v-tuple and representing a treatment. We thus
have

b=b*x ﬁ l‘jZ(li[l‘i(tl)> ﬁ I
i=2

j=n+1 j=n+1

vectors and each such vector is taken as a block for the EGD/(2" — 1)-PBIB
design. From the construction it is obvious that any two elements in the same
block (vector) of B are different in the first n positions and identical in the
last (v — n) positions. Hence A(1,...,1,0,...,0) = A*(1,..., 1) and all other
A(y) are zero. The other properties of the EGD/(2V — 1)-PBIB design follow
easily. ]

We shall illustrate this procedure to construct a design with blocks of size 3
for t = 24 treatments.

Example 5.10 Lett =24,t = 2,1ty = 3, t3 = 4. To construct an EGD-PBIB
design with blocks of size k = 3, we take A = {2, 3} and construct an EGD/3-
PBIB design for t* = 12 = 3 x 4 according to Theorem 5.7. For this case we
define ]_[;:21 t; (for v = 2) to be 1, so that the matrix P of (5.23) becomes

a€,1n 1,2 1,3 1€,4
P=|21 2,2) 2,3) 2,4
G, 1) 3,2 3,3) 3,4

and Q(P) = P. Then the ij are of the form
(1, 1) (1,1 (1,1 (1,1 (1, 1) (1,1

2,2) 2,2) 2,3) 2,3) 2,4) 2,4)
(3,3) 3,4) 3,2) 3,4) (3,2) 3.,3)
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plus 18 more blocks. Now A = {1} and hence

1
Dy = )

Then, for any Bj above we obtain
Bj=Bj0o Dy
that is, the B;’s are of the form

(1,1,1) @1,1,2) 1,1,1) (1,1,2)
2,2,1) (2,2,2) (2,2,1) (2,2,2)
3,3,1) (3,3,2) (3,4,1) 3,42

and we have a total of 48 blocks. All we need to do now to obtain the final result
is to interchange the elements in each triplet above so that they are in the “right”
order, that is,

(1,1,1) 2,1, (1,1,1) (2,1,2)
(1,2,2) (2,2,2) (1,2,2) (2,2,2)
1,3,3) (2,3,3) (1,3,4) (2,3,4)

The parameters for this design then are t =24,b =48,k =3,r =6, and
A0,1,1)=1. O

We conclude this section to point out that the EGD-PBIB designs thus con-
structed are disconnected except when A = {1,2, ..., v} which, of course, is
the design of Theorem 5.7. Though disconnectedness is not desirable in gen-
eral, it can be useful in connection with asymmetrical factorial experiments (see
Chapter 12).

5.6 HYPERCUBIC PBIB DESIGNS

Using the result due to Kageyama (1972) that an EGD/(2"V — 1)-PBIB design
constructed as a v-fold Kronecker product of BIB designs reduces to a hypercubic
PBIB design with v associate classes if and only if the v BIB designs have the
same number of treatments and the same block size, we can state the following
corollary to Theorem 5.5.

Corollary 5.1 Let there be v BIB designs D; with parameters
ti, bi, ki, ri, Ay and incidence matrix N; such that #; =¢ and k; = k*( =

1,2,...,v). Then the Kronecker product design D given by its incidence matrix

N=N;xNyx---xN,
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is a hypercubic PBIB(v) design with parameters t =g", b = [l bi k=
k*)Y,r =T[1lj_ ri,and &; = ]_[{:1 T ]_[:.)ZJ.Jrl iy for j=1,2,...,v.

Proof We refer simply to the definition of the hypercubic association scheme
(Section 4.6.10). Concerning the expression for A ;, we note that because the f;’s
and k;’s are identical it follows that r; /A ;) = constant for each i and hence all the
A1, v2, - ., Y») of the EDG-PBIB with the same number of unity components
are identical. O

Similarly, for a second method of constructing hypercubic PBIB designs, we
consider a special case of Theorem 5.6 and state the following corollary.

Corollary 5.2 (Aggarwal, 1974) A hypercubic PBIB design with the param-
eters r =¢q”, b=¢g"" ' qg-1D""", k=g, r=@-D""", M=k=---=
Av—1 =0, A, = 1 can be constructed if ¢ is a prime or a prime power.

For the proof we refer to the proof of Theorem 5.6 and the definition of the
hypercubic association scheme (see Section 4.6.10).

For another method of constructing hypercubic designs, see Chang (1989).



CHAPTER®G6

More Block Designs and
Blocking Structures

6.1 INTRODUCTION

In Chapters 3 and 5 we described the construction of two rather large classes
of incomplete block designs with desirable statistical and mathematical proper-
ties. Yet, these designs do not cover the need for incomplete block designs for
many practical applications, such as variety, environmental, medical, sensory, and
screening trials. It is impossible to create a catalogue with all possible designs
because of the large number of combinations of design parameters. Hence there
is a need for simple methods of constructing designs. Of particular interest often
are resolvable designs (see Section 2.7.2) as they allow a certain amount of flex-
ibility with respect to spatial and/or sequential experimentation. In this chapter
we shall present three quite general algorithms to construct resolvable incomplete
block designs allowing equal or unequal block sizes.

Although in general comparisons among all treatments are of primary interest,
there are situations where this is only of secondary importance. In such situations
the forms of the experiment is on comparing so-called test treatments versus a
control (the word control is used here in a general sense with different mean-
ing in different areas of practical applications). Any of the designs discussed in
previous chapters can be used for that purpose by simply declaring one of the
¢t treatments as the control. Because of the special nature of the desired infer-
ence, however, special designs have been developed, and we shall discuss them
briefly here.

So far we have only considered designs with one blocking factor. In most
practical situations this is clearly sufficient to develop an efficient experimental
protocol. There are, however, situations where it is useful to take into account
additional blocking factors to further reduce experimental error. We shall consider

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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here briefly one additional blocking factor, one that leads us to the notion
of row—column designs as generalization of the Latin-square-type designs of
Chapter 1.10.

6.2 ALPHA DESIGNS

These designs, called «-designs, were introduced by Patterson and Williams
(1976) and further developed by John and Williams (1995) to be used mainly in
the setting of variety trials in agronomy.

6.2.1 Construction Method

The general ideas and steps of constructing an «-design are as follows:

1. Denote the ¢ treatments by 0, 1,...,7 — 1.

2. Let t = ks, where k is the desired block size and s is the number of blocks
in each replicate, there being r replicates in the final design.

3. Select as the generating array a k x r array « with elements a(p, ¢) in the
set of residues mod s (p =0,1,2,....k—1;9=1,2,...,r).

4. Develop each column of « cyclically mod s to generate an intermediate
k x rs array, o*.

5. Add i - s to each element in the (i 4+ 1)th row of «*(i =1,2,...,k—1) to
obtain the final array, o™*, containing elements 0, 1,2, ...,¢ — 1.

6. Separate o** into r sets, where the jth set is formed by the columns,
G=—Ds+1,(G—=—Ds+2,...,(j=—Ds+s(j=1,2,...,r), each column
representing a block.

Example 6.1 We shall illustrate this construction method by adapting an
example from John and Williams (1995) fort = 12 = 4 x 3;thatis, k = 4,5 = 3.
In Table 6.1 we give the generating array «, for r = 2, the intermediate array
a*, the final array o**, and the final design.

The generating array « in Table 6.1 is called a reduced array, having zeros in
the first row and first column. All arrays can be represented in the reduced form
by adding suitable elements to individual rows and columns, always reducing
mod s. This is convenient for the search of optimal «-designs; that is, designs
with the highest efficiency factor E [see (1.108)]. For more details see Williams
and John (2000).

The efficiency factor itself is closely tied to the concurrence matrix NN'. It
is easy to verify that NN’ for the design in Table 6.1 has off-diagonal elements
equal to 0, 1, 2, implying that some treatment pairs never occur together in a
block, other pairs occur together once, and still others occur together twice.
To indicate this property the design will be called a «(0, 1, 2)-design. Just as,
in general, 2-associate class PBIB designs are more efficient than 3-associate
class PBIB designs for the same parameters (¢, b, k, r), so are 2-occurrence class
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Table 6.1 Construction of Design for ¢ = 12,
s=3k=4,and r =2

o Array
0 0
0 1
0o 2
0 0
o Array
0 1 2 0 1 2
0 1 2 1 2 0
0 1 2 2 0 1
0 1 2 0 1 2
a™* Array
0 1 0
3 4 4 5 3
6 7 8
9 10 11 9 10 11
Final Design
Replicate 1 2
Block 1 2 3 1 3
0 1 2 0
3 4 5 4 5 3
6 7 8 8 6
9 10 11 9 10 11

a-designs preferred over 3-occurrence class o designs (Patterson and Williams,
1976). For example, the generating array

0
0
0
0

—_ = N O
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leads to an « (0, 1)-design. The efficiency factor for this design can be computed
to be .71, which, in this case, is about the same as that for the «(0, 1, 2)-design.
For purposes of comparison we mention that the upper bound (1.110) for the
efficiency factor is .82. O

6.2.2 Available Software

Williams and Talbot (1993) have provided a design generation software package,
called ALPHA™, which produces a-designs in the parameter ranges

2<r<10 2<k=<20 t <500

A more general software package, called CyDesigN, has been provided by
Whitaker, Williams, and John (1997). Both packages are able to construct designs
with high efficiency factors relative to the upper bounds for such design thus
leading to near-optimal designs.

6.2.3 Alpha Designs with Unequal Block Sizes

The construction of a-designs is quite flexible and able to accommodate most
any desirable, practical block size for a given ¢, or to deal with the situation
when ¢ cannot be written as t = ks(s > 1). In either case we may write

t = s1k1 + s2ko

and construct a design with s; blocks of size ki and s, blocks of size kp. Of
particular interest is the case where k» = k; — 1, that is, where the block sizes
are not too different, differing only by one unit. For this situation an appropriate
design can be derived from an «-design as follows:

1. Construct an «-design for 7 + s treatments in s = 51 + s, blocks of size k;
in each replicate.

2. Delete from this design the treatments labeled 7,7+ 1,...,¢ 4+ 52 — 1.
Example 6.2 Consider
t=11=2x44+1x3
that is, s; = 2,52 = 1, k] =4, ko = 3. The «-design in Table 6.1 is a design for

t + 55 = 11 4+ 1 = 12 treatments in blocks of size 4. Deleting treatment 11 yields
the derived design with two blocks of size 4 and one block of size 3. O



GENERALIZED CYCLIC INCOMPLETE BLOCK DESIGNS 193
6.3 GENERALIZED CYCLIC INCOMPLETE BLOCK DESIGNS

We have seen in Section 5.3 that cyclic PBIB designs are easy to construct and
encompass a large class of useful designs. Jarrett and Hall (1978) extended the
idea underlying these designs and introduced the notion of generalized cyclic
incomplete block designs. Basically, for t = m x n, the designs are obtained by
cyclic development of one or more initial blocks, but rather than adding 1 to the
element in the initial blocks(s) we now add successively m to each element and
reduce mod .

Example 6.3 Consider t = 12 = 3 x 4; that is, m = 3, n = 4. Let the initial
blocks be

0,2,3,7)3 and (1,4,5,9)3

where the subscript indicates the incrementing number. Cyclic development then
leads to the following design with b = 8, k = 4:

©, 2,3, 7) (L, 4,59

(3, 5,6,10) (4, 7, 8,0

6, 89, 1 (7,10,11, 3)

9,11,0, 4) 10, 1, 2,6)
Inspection shows that ro=rm=r3=rs=re=rg=rg=ry] =3,r1 =r4 =
r7 = rio = 2. The reason for the two different number of replications can be

explained as follows. The treatments can be divided into m = 3 groups of n = 4
elements by considering the residue classes mod m, that is,

Si={i,i+m,....,i + mn—1)}

fori =0,1,...,m — 1. For our example we have
So =10, 3,6, 9}
S =1{1,4,7, 10}

S, ={2,5,8, 11}

It follows that when an initial block is developed the elements in each residue
class are equally replicated as each initial block contributes n blocks to the design.
Now, the two initial blocks contain three elements each from Sy and S;, and two
elements from S;.

From this argument it follows immediately that in order to construct an
equireplicate design we need three initial blocks such that each residual class
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is represented the same number of times in these three blocks. One possible set
of initial blocks is

0,2,3,7)3 (1,4,5,9)3  (6,8,10,11)3

It is easy to select initial blocks to construct an incomplete block design with
desired parameters. There is, however, no guarantee that this would lead to a
design with a high efficiency factor. One would need a search algorithm to find
the “best” design. In general, though, aiming for nearly equal numbers of concur-
rences of all pairs of treatments will yield a design with a high efficiency factor.

Cyclic development can also be used to construct incomplete block designs
with unequal block sizes by specifying initial blocks of different sizes. O

6.4 DESIGNS BASED ON THE SUCCESSIVE
DIAGONALIZING METHOD

Khare and Federer (1981) have presented several methods of constructing resolv-
able incomplete block designs for various factorizations of ¢, the number of
treatments. In Section 3.3.4 we have discussed their method when f = K2 and
K is a prime or prime power. Here we shall discuss a few other cases.

6.4.1 Designs for ¢t = Kk

For K prime or prime power and k < K, where k is the block size, we can
use the method described in Section 3.3.4 for + = K2. We then consider only
replicates 2,3, ..., K + 1 and delete in each replicate the treatments numbered
Kk +1,..., K?. This leads to a binary design with » = K replications and r K
blocks of size k. These designs are also called rectangular lattice designs (see
Section 18.11).

Example 6.4 For t =12 =4 x 3 we use the design given in Example 3.8
and delete treatments 13, 14, 15, 16 from replicates 2, 3, 4, and 5. O

Example 6.5 For t =8=4x2 we can again use the design from
Example 3.8 and delete treatments 9, 10, ..., 16 from replicates 2, 3, 4, and
5 to obtain a design with b = 16,k =2, and r = 4. O

6.4.2 Designs with ¢t = n?

We consider here the situation where ¢ is a square but not a square of a prime
number or prime power. The n can be written as n = mp;, where p; is the small-
est prime in n. The first pg 4 1 replicates from the n 4 1 replicates obtained by
the successive diagonalizing method on n? treatments in blocks of size n yield an
incomplete block design with (0, 1)-concurrences for treatment pairs. For addi-
tional replicates one can either repeat some of the original p; + 1 replicates or
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develop further replicates continuing with the successive diagonalizing method.
In the latter case the numbers of concurrences increase, however, in groups of p;.

The above method can also be used to generate a design for ¢ = nk(k < n). We
first obtain the design for # = n? and then delete from replicates 2, ..., ps + 1 the
treatments numbered nk + 1, ..., n?. The versatility of this method is illustrated
by the following example.

Example 6.6 Fichtner (2000) considered the case of ¢t = 400 varieties (treat-
ments) in blocks of size k = 10 with » = 2 replicates for an agronomic trial. In
the context discussed above, we have t = 40 x 10. Rather than writing out the
40 x 40 array for replicate 2 (of the generating design) one only needs to write
out the 40 x 10 array. Thus the first block would contain the varieties

(1,41, 81,121, 161, 201, 241, 281, 321, 361)

Adding 1,2,...,39 to each element produces the remaining 39 blocks. From
this it is easy to see that the first block in replicate 2 contains the varieties

(1,42, 83, 124, 165, 206, 247, 288, 329, 370)

The remaining blocks can then be filled in easily using replicate 1. We thus obtain
the following replicate:

Block Treatments

1

—

42 83 124 165 206 247 288 329 370
2 43 84 125 166 207 248 289 330 371

3 3 44 85 126 167 208 249 290 331 372
39 39 80 81 122 163 204 245 286 327 368
40 40 41 82 123 164 205 246 287 328 369

If a third replicate were desired, the method of successive diagonalizing would
yield the initial block as

(1,43, 85,127,169, 211, 253, 295, 337, 379)

The remaining blocks are obtained by columnwise cyclic substitution (as descri-
bed in Section 3.3.4) using the replicate given above. O

For other cases of constructing (0, 1)-concurrence resolvable incomplete block
designs, we refer the reader to Khare and Federer (1981), where methods are

discussed for t = ka, t = n3, t = n2,

6.5 COMPARING TREATMENTS WITH A CONTROL

In some experimental situations one of the treatments, often referred to as the
control or standard, may play a major role in that the focus is not so much the
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comparisons among all treatments but rather the comparisons of the remaining
treatments, often referred to as the test treatments, with the control. The function
of the controls might simply be to provide an indication whether the treatments are
even worth consideration or to show their superiority to established procedures,
such as comparing new drugs against an established medication, or new varieties
against an old variety.

Obviously, any of the designs we have discussed so far would be suitable if
we simply declare one of the ¢ treatments as the control. However, because of the
limitation on the inference space the designs may not be a good choice and more
specialized designs may be called for that are more efficient for this particular
purpose. Some of these designs will be described in the following sections.

6.5.1 Supplemented Balance

Suppose we have ¢ test treatments and one control treatment. Let us denote
the ¢ + 1 treatments by Ty, Ty, T2, ..., Ty, where Ty represents the control. In
the context of block designs, a natural way to construct suitable designs for
comparing T1, T», ..., Ty with Ty is to consider a block design for 71, T3, ..., T}
and augment or reinforce each block with g(> 1) replications of Tp. This idea
was suggested by Cox (1958) using a BIB design as the generating block design.
Das (1958) referred to such designs as reinforced BIB designs.

A more general class of designs, referred to as supplemented balance designs,
was introduced by Hoblyn, Pearce, and Freeman (1954) and more formally by
Pearce (1960). These designs are characterized by the following form of the
concurrence matrix:

so AQ ... Ao

, Ao S
NN’ = A 6.1)

o

Ao s

implying that the self-concurrence is the same for all the test treatments. Further,
Ty occurs together Ao times with each of 71, T»,...,T;, and T; and T;(i # j,
i, j # 0) occur together A times.

The example below of a supplemented balance design was given by Pearce
(1953) fort =4,b=4,k=T,r0=8,r =5, =10,A; = 6:

0

(=i o)
—
[\S 2N ST NS \S)
W W W W
NG N N
F O USI NS I

0
0
0
where each row represents a block. We note here in passing that the design

above is an example of what we have called an extended block design (see
Section 1.9.8.5). And for the reinforced BIB design we have A9 = gr.
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For incomplete blocks an obvious way to construct a supplemented balance
design is to augment each block in a BIB design with ¢ treatments by one or more
replications of the control. Under certain conditions such designs are A-optimal
(see Hedayat, Jacroux, and Majumdar, 1988; Stufken, 1987).

6.5.2 Efficiencies and Optimality Criteria

Clearly, there exist many ways to construct suitable augmented designs for given
parameters ¢, b, and k. It is, therefore, important to distinguish between competing
designs and choose the one that is “best” for the purpose at hand, which may
not only depend on statistical but also on practical considerations.

From the statistical, that is, inferential, point of view we would like to obtain
maximum information with respect to comparing Ty versus 7; (i = 1,2, ...,1).
To formulate this more precisely, we consider the usual model for observations
from a block design, that is,

Yij =+ Bi +1;+ei (6.2)
or, in matrix notation
y:,ug—l-Xﬂﬂ—}—Xij—}—e (6.3)

The information matrix [see (1.9)], assuming equal block sizes, is given by

1
C=R—- NN (6.4)
where R = X, X, = diag(ro,r1,...,r;) and N = X, Xg. We know [see (1.20)]

that for an estimable function ¢’ of the treatment effects
var(c't) =c'C ¢ oez

For the designs discussed in this section the estimable functions of primary

interest are of the form 7; — 7o(j = 1,2, ..., ). If we denote by
-1 1 0 ... ... ... 0
-1 01 0 ... 0
p=|-10 Lo 0l =(-19,1) (6.5)
-1 0 0 ... ... 0 1

the coefficient matrix for the above contrasts, then the variance—covariance
matrix for the estimators for those contrasts is given by PC~ P’ 062.
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If we write C of (6.4) as

/
C = (Z? cfh) (6.6)
then a generalized inverse of C is given by
0 --- 0
c =1: (6.7)
0 ¢y

which is equivalent to solving the reduced NE Ct = Q [see (1.8)] by imposing
the condition 7y = 0 (recall that SAS PROC GLM, e.g., obtains a generalized
inverse equivalently, by assuming 7, = 0 rather than 7y = 0). Using C~ of the
form (6.7) implies that

PC P =cCy!

and further that (1) the information matrix for treatment control contrasts is given
by C11 of (6.6) [see also Majumdar (1996)] and (2) with C1_11 = (c")

| 1
A2y Jig2 — _ _
av. var (T; — 7g) = ; Z oy = ; Z o (6.8)
j=1 j=1
whered;(j = 1,2, ...,1t) are the eigenvalues of C; [see (1.106) and Constantine
(1983)].
For a CRD with r;(j =0, 1,2,...,t) replications for the jth treatment we
have, for j #£ 0,
@ - =(—+=) o2 (6.9)
av.var(t;, —79)=|—+— ) o .
J 0 ro T ¢(CRD)

where

| =

_ 1

h ;
J

~ | —

t

nl

i

The ratio of (6.9) over (6.8) (assuming 03 = Gj(CRD)) can then be defined

as the efficiency factor E for a treatment control comparison design (see also
Section 1.12.2), that is,

E = M (6.10)

(/1) Y (1/d))

j=1

can be used to compare competing designs.
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Another way to compare designs is to make use of (6.8) and find, for a given
set of parameters ¢, b, k, the design D*, say, with minimum value of

1

1
t

d;

t

j=1

where D* is referred to as an A-optimal design (see Hedayat, Jacroux, and
Majumdar, 1988, and Section 1.13).
An alternative criterion, called MV-optimality, is to minimize

max (1/d;)
t

l<j=

for competing designs (see Hedayat, Jacroux and, Majumdar, 1988).

A different approach to optimal designs is suggested and explored by Bech-
hofer and Tamhane (1981, 1985). They propose to maximize the confidence
coefficient for simultaneous confidence intervals for all 7; — 7o(j =1,2,...,1),
thereby linking the designs to Dunnett’s procedures (see 1.7.5.7) for comparing
treatments with a control (Dunnett, 1955, 1964). In addition to assuming model
(6.2), this method has to make distributional assumptions about the e;;’s, which
for practical purposes amounts to assuming normality (see Section 6.5.5).

6.5.3 Balanced Treatment Incomplete Block Designs

An important and useful class of treatment control designs was introduced by
Bechhofer and Tamhane (1981), a class they refer to as balanced treatment incom-
plete block designs (BTIBD).

6.5.3.1 Definition and Properties

Definition 6.1 A treatment control design with ¢ test treatments and one
control treatment in b blocks of size k <t + 1 is called a balanced treatment
incomplete block design, denoted by BTIBD(¢, b, k; Ag, 11), if (1) each test treat-
ment occurs together with the control A¢ times in a block and (2) any two test
treatments occur together A; times in a block. (]

The concurrence matrix of a BTIBD is then of the form

so0 A ... ... AD
Y . Y ¥ |

NN =|x A s ... (6.11)
. A

A AL .. AL S
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Comparing (6.11) and (6.1) shows that some designs with supplemented balance
are special cases of BTIBDs.

Since the BTIBDs are, by definition, connected designs, it follows that
rank(C) = ¢, where C is given in (6.4). It follows then from (6.4), with N =
(nji), and (6.11) that

T—E noi—?—
i=1

and

b
1 2 Ao (t — DA .

It follows from (6.12) that

1
- n% = [ho — (t — Dal/k

i
and hence C; of (6.6) has the form

Cii =al +b3Y (6.13)
with

Ao+ 1A =X\
= — b=—— 6.14
3 3 (6.14)
Using (6.13) and (6.14) it is then easy to obtain Cl_ll, which is of the same form
as C11, say

Cyl =cI+ad3y (6.15)

We find

ki

c=—— and d=—"21 (6.16)
A+ A Ao(ho + tA7)

and hence from our discussion above this implies that

A A k(o + A1) 5 :
R = - =1,2,...,t 6.17
var(z; — 7o) )"0()"O+t)"l)ae (J ) (6.17)

and

__ = . ./ 1
oG+ e G#J7) (6.18)

COV(‘fj — f(), ‘fj/ — ‘fo)
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Expressions (6.17) and (6.18) explain, of course, in what sense these designs are
balanced.

6.5.3.2 Construction Methods
There exist different methods of constructing BTIB designs, and we shall mention
a few without going into all the details.

One obvious method, mentioned already in Section 6.5.1, is to augment each
block of a BIBD(z, b, k, r, A1) with n copies of the control. This is a special case
of a more general class of BTIB designs, which we denote (following Hedayat,
Jacroux, and Majumdar, 1988) by BTIBD(¢, b, k*; u, s; Ag, A1) and which is char-
acterized by the following form of the incidence matrix:

njj=0o0r1 for j=1,2,...,¢ i=1,2,...,b
and

nor =ney =---=no; =u+1

no,s+1 =No,s+2 = - =Nop = U

The special case mentioned above has s = 0 and hence k* = k + u. Such a design
is of rectangular or R-type, and the general form is depicted in Figure 6.1, where
D represents the BIBD(z, b, k, r, A1).

For s > 0 the design is said to be of step or S-type. Its general form is shown
in Figure 6.1.

One method to construct an S-type BTIB(z, b, k*, X, A1) is to choose BIB
designs for D, and D3, more specifically

D, = BIBD(t, s,k — 1,r@2); A2)) (6.19)
and
D3 =BIBD(t,b — 5, k, r3); A3)) (6.20)

so that k* =k +u, Ao = (u + Droy +ur@y, and A = Ag) + A@3).
For this particular method of construction we make the following comments:

1. Let us denote by Dj and D3 the two component designs of the S-type
BTIB design (see Fig. 6.1). Then D; and D3 with D; and Dj as given in
(6.19) and (6.20), respectively, are themselves BTIB designs. They constitute
what Bechhofer and Tamhane (1981) have called generator designs (see
Definition 6.2).

2. As a special case of S-type designs we can have u = 0; that is, the blocks
in D3 do not contain the control, which means that D = Ds.

3. For u = 0 the design D3 can be a RCBD, possibly with b —s = 1.
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Block
1 2 b
I
2
Control
EU “
u—+1
D
u+k
(@)
1 2 .85 | s4+1 o b
1 1
2 Control 2
Control
u u
u+1 u+1
Dy
D,
u+k u—+k
D3 D3

(b)

Figure 6.1 General form of (a) R- and (b) S-type BTIB designs.
4. As a trivial case (but only in the context of BTIB designs) the design D;

may have blocks of size 1 with s = mt; that is, each treatment occurs m
times. An important case in this context is k* = 2, m = 1 with

Dy =1{1,2,...,1} 6.21)

and

1 1 t—1
p=fy s ©2
Hedayat and Majumdar (1984) denote D, of (6.21) and D3 of (6.22) by Y1
and ¢ )_ 2, respectively, where ¢ >_ p in general denotes all (;) distinct blocks
of size p for ¢t treatments.
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Let us now return to the notion of generator designs (GD) and their function
in constructing BTIB designs. Bechhofer and Tamhane (1981) give the following
definition.

Definition 6.2 For t test treatments and blocks of size k* a generator design
is a BTIB design no proper subset of whose blocks forms a BTIB design, and
no block of which contains only one of the ¢t + 1 treatments.

To illustrate this notion we use the following example. (]

Example 6.7 For t =3 and k* = 3 consider

0 0 O

GD;={0 0 O A =2 XM =0
1 2 3
0 0 0

GD,=3{1 1 2 =2 M=1
2 3 3
1

GD3 =42 =0 M=1
3
0 0 0 1

GDs,=1{0 0 0 2 =2 M =1
1 2 3 3

Of these four designs GD{, GD,, and GD3 are generator designs, but GDy is
not, because GD4 = GD; | J GDjs. O

The design GDy illustrates the construction of a BTIB design, D say, in terms
of the generator designs:

D = fiGD; U f2GDy U f3GD3 (6.23)

with f; > 0(i =1, 2,3) and at least f; or f, > 1 for an implementable BTIB
design. We note that the design D in (6.23) with f; > 1( = 1, 2, 3) represents

another form of S-type BTIB design, which we might refer to as a S>-type design
because it has two steps. In general, we might have a S,-type design

q
D:Uf,- GD;
i=1

with GD; having b; blocks and b =), fib;. Apart from the control the GD;
represent BIB/RCB designs with increasing block size k(1 < k < k*).
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The above then represents a method of constructing generator designs. Another
method is to start with a BIBD(¢*, b, k, r; A) with t* > ¢ and identify the treat-
ments r + 1,7+ 2, ..., t* with the control, that is, treatment 0 (Bechhofer and
Tamhane, 1981). Any block with 0’s only would be deleted. We illustrate this
method with the following example.

Example 6.8 Starting with the BIBD(7, 7, 4, 4; 2)

3111 2 1 2
5 42 2 3 3 4
6 6 53 4 45
77 7 6 75 6

and replacing 7 by 0 leads to the BTIBD(6, 7, 4; 2, 2):

31 11 21 2
5 4 2 2 3 3 4 6.24)
6 6 53 4 4 5 '
00 0 6 0 56

Replacing 6 and 7 by 0 leads to the BTIBD(S, 7, 4; 4, 2):
3111 21 2
5 4 2 2 3 3 4
0 0 5 3 4 4 5 (6.25)
00 0 00 50

Replacing 5, 6, and 7 by 0 leads to the BTIBD(4, 7, 4; 6, 2):
31 11 21 2
0 4 2 2 3 3 4
00 0 3 4 40 (6.26)
00 0 0 0 O0O0

Suppose we want to construct a BTIBD(4, 8, 4; Ao, A1). We could adjoin to
the GD; given by (6.26) the GD, =4 Y 4 and obtain the following BTIBD(4,
8, 4; 6, 3):

31 11 2 1 21
042 2 3 3 42
000 3 440 3 6.27)
00 0 O0O0O0OTO0 4
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We should mention that instead of replacing 5, 6, 7, by 0 we could have
replaced, for example, 6, 7, and 2 by 0, yielding

000O0O0O 071
0 0 0 0 OO0 3
31 1 1 3 4 4
545 3455

Other methods of constructing generator designs are given by Bechhofer and
Tamhane (1981). g

6.5.4 Partially Balanced Treatment Incomplete Block Designs

To further enrich the class of treatment control designs, an obvious step is to
generalize BTIB designs to PBTIB, or partially balanced treatment incomplete
block designs, just as BIB designs were generalized to PBIB designs. Rashed
(1984) introduced two types of PBTIB designs, and we shall give some of his
results below. Another form of PBTIB design was defined by Jacroux (1987)
(see also Stufken, 1991).

6.5.4.1 Definitions and Structures

Definition 6.3 (Rashed, 1984) A treatment control design for ¢ test treat-
ments and one control is said to be a PBTIB type I design if it satisfies the
following conditions:

1. The experimental units are divided into b blocks of size k(k < t).

2. Each test treatment occurs in » blocks, but at most once in a block, and the
control is replicated rg times with possibly multiple applications in a block.

3. The set of test treatments 7 = {1, 2, ..., t} is divided into two disjoint sub-
sets, T1 and 7>, with g and ¢t — ¢ treatments, respectively. Each test treatment
occurs together in a block with the control Ag; or Agy times, where

b
Aol = Znﬁno,- for jeT
i=1
b
Ao = Znﬁno,- for jeT,
i=1
4. Any two treatments in 7; occur together in a block A times (¢ = 1, 2).

5. Any two treatments, one from 77 and the other from 7, occur together in a
block A, times.
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It follows then that the matrix C; of (6.6) is of the form

al, + bﬂqﬂ; eﬂqﬂ’q
Ci = (6.28)
/ / ! / /
eﬂaﬂq clq + dﬂ?ﬂ7

with g =t—q and a=r —r/k+r1/k,b=—=A1/k,c=r —r/k+An/k,
d=—\11/k, and e = —A12/k. O

Since Cl_ll is of the same form as Cp; of (6.28) we can state the following
theorem.

Theorem 6.1 For a PBTIB type I design the variance—covariance structure
of the estimators 7; — 7y for t; — 79 is given by

2.2

ajo, for jeT
var(?; — %) =
2.2 ;
ayo, for jeT
Z j,i’ €T
P10, or J,1 €1
cov(T; — 0. Ty —T0) = { ppog for  j,i' €T
p30? for j eT,j el

where ozf,a%, p1, P2, p3 are functions of the design parameters (see Rashed,
1984).

An illustration of a PBTIB type I design is given in the following example.

Example 6.9 For t =5,b=8,k=3,r=3,r9=9 the two groups are
T =1{2,3,4}, T, = {1,5} withAg1 =2, A2 =3, A11 =1, A2 =0, ;o = 1. The
design is given by

00O0O0O0O0T1 2
D=0 0 0 1 3 4 2 3
1 25 3 45 45

and
619 .19 .19 166 .166
19 619 .19 .166 .166
cil=119 .19 619 .166 .166
166 .166 .166 .583 .083
166 .166 .166 .083 .583

that is, o = .619, &3 = .583, p; = .19, pr = .083, and p3 = .166. 0
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Another type of PBTIB design that retains the feature of two variances but
allows for up to six different covariances for comparison estimators is described
in the following definition.

Definition 6.4 (Rashed, 1984) A treatment control design for ¢ test treat-
ments and one control is said to be a PBTIB type II design if it satisfies the
following conditions. Conditions 1, 2, and 3 are as in Definition 6.3:

4. Each group T; considered by itself has either a BIB or a PBIB association
structure, with at least one of these groups having PBIB design properties;
that is, any two treatments in 7; occur together in either Afll ) or )‘1(1‘2) blocks
with Aii (D )‘1('1'2) for at least one i =1, 2.

5. Any two treatments, one from 77 and the other from 7>, occur together in
12 blocks with Ao = A or AP (i = 1,2). 0

We note that, if in condition 4 above both groups have BIB association struc-
ture, then the PBTIB type II design reduces to a PBTIB type I design. This gives
an indication how much more general type II designs are compared to type I
designs.

For type II designs Rashed (1984) proved the following theorem.

Theorem 6.2 For a PBTIB type II design the variance—covariance structure
of the estimators T; — 7 for t; — 1o is given by

2.2 :
ajo, for jeT
var(t; — 179) =

a%aez for jelh

2 2 .
piio, or ppo, for j,j €T
cov(Tj —T0, Tjr —T0) = { p210Z or ppal for j,j €T»

psiog or ppo; for  jeTy,j el

We shall illustrate this structure with the following example.

Example 6.10 Fort =6,b =8,k =3,r =3,r =3, ryp = 6, the two groups
are 71 = {1,2,5,6} and T, = {3, 4}, and the design is given by

1 23 00000
D=2 3 4 4 5 1 0 1
4 56 56 6 2 3
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with Ag;1 =2, A2 = 1, )»511) =1, )»ﬁ) = 0 (for a PBIB association structure):

0th Associate 1st Associates 2nd Associates
1 2, 6 5
2 1, 5 6
5 2, 6 1
6 1, 5 2

k]

and )ng) =1 (for a BIB association structure) and XAj;p = 1. The vari-
ance—covariance matrix (if the treatments are written in the order 1, 2, 5, 6,
3, 4) is found to be

.66 22 16 22 25 25
22 .66 22 .16 .25 .25
d6 22 66 22 25 25

-1 _
Ci=|2 16 2 66 25 25
25 25 25 25 71 .29
25 25 25 25 29 71
that is, o? = .60, 0[% =71, p11 = .22, p12 = .16, po1 = .20, p31 = .25. O

6.5.4.2 Construction of PBTIB Designs

We shall describe briefly one method of constructing PBTIB designs as developed
by Rashed (1984). It is an extension of one of the methods described by Bechhofer
and Tamhane (1981) to construct BTIB designs (see Section 6.5.3.2). Generally
speaking, in order to construct a PBTIB design with ¢ treatments in b blocks of
size k(<t), we start with a PBIB design with *(>r) treatments in b*(<b) blocks
of size k* = k, and then replace the t* — ¢ “excess” treatments by 0, deleting any
resulting blocks which contain only the control. This is a very general recipe and
may not necessarily lead to a PBTIB design unless we impose further conditions.
Therefore, to be more precise, we start with a GD-PBIB design (see Section 4.6.1)
and proceed as follows:

1. Write out the GD association scheme for * =t x £; treatments, that is, an
array of t;“ rows and ti“ columns, which we denote by 7.

2. For

t = (t11 X t12) + (221 X 122)

form two nonoverlapping subarrays 7 (t11 X t12) and T5(fp1 X tpp) within T
such that 77 and 7> each form a GD association scheme.

3. Denote the remaining set of treatments by 7y and replace those treatments
by O (these are the excess treatments mentioned above).
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Schematically this procedure can be depicted as follows:

2
t1 T
To
9y} tf
1 1
k
)
This implies that
*
1 +n <t
<t
1y <85

Following steps 1-3 and returning to the starting PBIB design yields the
required PBTIB design in which each treatment is replicated r times and the
control is replicated rg times where

ro = (t1{ty — tiitia — bitp)r = (t* — Or

Furthermore, the remaining parameters of the PBTIB design are related to those
of the PBIB design as follows:

1 _ @ _ -
Ajim =M Ajim =M (i=1,2)

()»l(l.l ) exists only if 7; has more than one treatment in the same row of 7', and
)\51.2) exists only if 7; has treatments in more than one row of T'),

Aoi = ajM + biko i=12)

where a; equals the number of treatments that are replaced by zeros and are 1st
associates of a treatment in T;, that is, a; = t; — t;2, and b; equals the number
of treatments that are replaced by zeros and are 2nd associates of a treatment in
T;, thatis, by =t* —t — (] —tip) =t* —t —a;(i = 1,2), and

A2 = A2

We shall illustrate the construction of a PBTIB design with the following
examples.
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Example 6.11 Suppose t =

8, k = 3. We start with design SR 23 from Clat-
worthy (1973) with t* =9,k =3, r

=3,b"=9,11 =0, =1:

1 4 712 3 1 2 3
2 58 5 6 4 6 4 5
36 9 9 7 8 8 9 7
and association structure 7:
4 7
5 8
3 6 9

If we replace 9 by 0, that is, 7o = {9}, then

1 4 7
Tl:{z 5 8} ,={3 6}

and the PBTIB design is given by

147123123
2 585 6 46 45 (6.29)
36 00 7 8 80 7

The association schemes for 77 and 7> follow from the association scheme for
T as

0th Associate 1st Associates 2nd Associates
T, 1 4, 17 2, 3,5 6, 8
2 5 8 I, 3, 4,6, 7
4 1, 7 2, 3,5 6,8
5 2, 8 1, 3, 4, 6, 7
7 1, 4 2, 3,5 6, 8
8 2,5 1, 3, 4, 6, 7
p) 3 6 1, 2, 4, 5, 7, 8
6 3 1, 2, 4, 5, 7, 8

bl )

It follows, therefore, that the design (6.29) is a PBTIB type II design with param-
etersr =rg=3,A01 = 1, g2 =0, )»511) =0, )»521) =1, )»(212) =0,Ap=1. O

Example 6.12  Suppose t = 7,k = 3. We start again with design SR 23 as

given in Example 6.11. We now replace 8 and 9 by 0, that is, Tp = {8, 9} and
then have

Ti={1 4 7} T2={§ 2}
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or, schematically,

1 4 7 < T1
2 5 8
< T()
3 6 9
T
I

The resulting PBTIB design is

1 4 2
2 5 6
3.6 7

S O
S W =
S N =

2 3
4 5 (6.30)
0o 7

with parameters ro = 6, Ao1 = 2, o2 = 1, A(lll) =0, Aglz) =0, )»%) =1, Ap=1.
It is easy to verify that the design (6.30) is a PBTIB type II design.

Since there exist many GD-PBIB designs (see Clatworthy, 1973) the method
described above will yield a rather rich class of PBTIB designs, most of them
being of type I (]

6.5.5 Optimal Designs

In the preceding sections we have described the construction of various types of
treatment control designs. For a prespecified value of the number of test treat-
ments ¢ and block size k, different methods may lead to different designs, some
more efficient than others. In deciding which design to choose among competing
designs and to use in a practical application, one consideration may be to com-
pare their efficiencies and look, if possible, for the optimal design. In this context
different optimality criteria have been used (see Section 6.5.2), based on different
philosophies [for a discussion see Hedayat, Jacroux, and Majumdar (1988), and
the comments following their article]. Unfortunately, different optimality criteria
may lead to different optimal designs, but often the optimal design using one
criterion is near optimal under another criterion.

Using the A-optimality criterion Hedayat and Majumdar (1984) provide for the
class of BTIB designs a catalogue of optimal R- and S-type designs for block
sizes 2 < k* < 8. Optimal R-type designs are also given by Stufken (1987).
These results are based on a theorem by Majumdar and Notz (1983), which can
be stated as in the following theorem (Hedayat and Majumdar, 1984).

Theorem 6.3 For given (¢,b,k*) a BTIBD(t, b, k*, u, s; Ao, A1) (see
Section 6.5.3.2) is A-optimal if for x = 4 and z = s the following function is
minimized:

g(x,2) = (t — 1)2[btk* (k* — 1) — (bx 4+ 2)(K*t — t + k) + (bx> +2x2 +2)] "
+[k*(bx +x) — (bx> +2xz +2)] !
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among integers x =0, 1, ..., [k*/2],z =0, 1,...,b — 1, with [k*/2] the largest
integer not greater than k*/2, and z positive when x = 0 and z = 0 when x =
[k*/2].

A different approach to constructing optimal BTIB designs has been provided
by Bechhofer and Tamhane (1983a, 1983b, 1985). Their criterion is maximiza-
tion of the confidence coefficient for the joint confidence intervals of prescribed

allowance (or length) for 7; — 7o(j =1, 2, ..., t), namely, for £ > 0,
P1=P{rj—roz’fj—’fo—ﬂ;jz1,2,...,t} (6.31)

for one-sided confidence intervals, and
P=P{Tj—-T—{(=1j—10=T—T0+6j=12...1] (6.32)
for two-sided confidence intervals. This requires that additional assumptions have

to be made about the error e;; in model (6.2). Assuming that the e;; are i.i.d.
N(0,02) and denoting the right-hand sides of (6.17) and (6.18) by «?0? and

pozzcrez, respectively, then expressions for P; in (6.31) and P in (6.32) can be
written as
oo + E/ ¢
X o,
P = / @ (Mﬂ dd(x) (6.33)
L Vi=p
—00
and o
[ lL/ao, —t/ac.\ 7
Py = / ® (M) _® (M)} dd(x) (6.34)
JL J1=0p J1=0p

where @ (-) denotes the standard normal cumulative distribution function (cdf).

We note here, parenthetically, that the assumption about the ¢;; does not agree
with our underlying framework of randomization theory (see Sections 1.6 and
1.10). We, therefore, consider the confidence coefficients in (6.33) and (6.34) to
be approximate confidence coefficients. Nevertheless, the proposed procedures
of finding optimal designs based on maximizing P; or P, are useful. We note
also that for design purposes oez is assumed to be known, based on prior experi-
ences or theoretical subject matter considerations. But as Bechhofer and Tamhane
(1985) suggest, for analysis purposes an estimate of 062, based on the analysis
of variance, should be used in connection with Dunnett’s procedure (Dunnett,
1955; see also 1.7).

Tables of optimal BTIB designs for one-sided and two-sided comparisons
for 2 <t <6), k* =2,3 and a wide range of values for b and ¢/o, are given
by Bechhofer and Tamhane (1985). The procedure is, for a desired confidence
coefficient, to combine one or more replicates from a table of minimal complete
sets of generator designs.
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6.6 ROW-COLUMN DESIGNS

6.6.1 Introduction

For purposes of error control or error reduction the principle of blocking is of
primary importance. So far we have considered only one blocking factor, and
for most situations this is quite satisfactory. There are, however, situations where
blocking in more than one dimension may be needed. For example, in an agro-
nomic or forestry trial it is not uncommon to compare a large number of hybrid
varieties (which represent the treatments), which leads to a large experimental
area, and it may be important to account for or eliminate the effects of fertility
trends in the land in two directions. This implies that one needs to block or elim-
inate heterogeneity in two directions. The two blocking systems are referred to
generally (borrowing terminology from field experiments) as row blocking and
column blocking, and the resulting designs are referred to as row—column designs.
Examples of such designs are the Latin square type designs of Chapter 1.10, but
other designs may be needed with incomplete blocks in both directions. As an
example consider the following design given by John and Williams (1995) with
t = 12 treatments in r = 4 rows and ¢ = 9 columns:

Column
1 2 3 4 5 6 7 8 9
1 4 8 5 9 11 3 2 1 7
2 12 11 2 3 5 10 4 8 6
Row 3 7 10 9 4 6 5 1 12 8
4 1m 9 126 1 7 10 3 2

Both rows and columns represent incomplete blocks, and the row design and
column design, which we refer to as the component designs, are characterized
by their respective incidence matrices, N, and N, say. We shall see later (see
Section 6.6.2) that the properties of the row—column design depend on N, and
N, , but that it is not straightforward how to combine the component designs to
produce a “good” final design. We shall return to this point in Section 6.6.3 after
discussing the analysis of a row—column design in Section 6.6.2.

6.6.2 Model and Normal Equations

Consider a row—column design with r rows, ¢ columns, and ¢ treatments where
treatment k is replicated ry times (k = 1,2, ..., 1). Let y;jx denote the observation
for the experimental unit in the ith row and jth column to which treatment k has
been applied. Based on the assumption of unit treatment additivity (see Section
1.10.2.3), a model for y;;; can be derived [despite criticism by Srivastava (1993,
1996), and Srivastava and Wang (1998)] and written as

Yijk =M+ 0i + Vi + T+ eiji (6.35)
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where p;(i =1,2,...,r),y;(j=1,2,...,0),w(k=1,2,...,t) represent the
row, column, and treatment effects, respectively, which are defined such that
Y 0i=0,>y; =0 1% =0 (see Section 1.10.2.3). The e;jx represent the
combined experimental and observational error. Let us rewrite (6.35) in the usual
fashion in matrix notation as follows:

y=pI+X,p+ X,y +X.1+e (6.36)

where p, y, T represent the row, column, and treatment effect vectors, respec-
tively, and X,, X, , X, are known matrices linking the row, column, and treat-
ment effects to the observations. If we write, for example, the observation y such
that the first ¢ components are the observation in row 1, the next ¢ from row 2,
and so forth, then we have

Je
X, = Je . (6.37)
. ).
of dimension rc¢ x r, and
I,
X, = I (6.38)
1.

of dimension rc x c. Further, the relationships between X, X, and X, are
X.X,=N, X.X,=N, (6.39)

Using (6.37), (6.38), and (6.39), it is then easy to write the NE for model (6.36) as

re 3. 3. v m 3.y
cdr el 9,9, N, [|B| [X,» (6.40)
rd. 9.9, rl, N, y Xy
r N, N, 1 T Xy
where r' = (r1,r2,...,r,) and r® = diag(ry, r2, ..., ro).

Similar to Section 1.3.2 we shall derive from (6.40) the reduced NE as follows:

Using ) p; =0 and ) ¥; =0 (as suggested by > p; =0 and ) y; =0), we
obtain from the first equation of (6.40)

G r7
p==2_It (6.41)
n n
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where we are using the following obvious notation for the right-hand side of
(6.40):

pey
X{)y
X;,y
X,y

(6.42)

NN Q

and rc¢ = n. From the second and third set of the NE (6.40) we obtain

cp=P—ciid, - N7 (6.43)

and
ry=T—-rid.—N,7T (6.44)

Substituting (6.41), (6.43), and (6.44) into the fourth set of equations in (6.40)
and simplifying, we obtain the RNE for 7 as

/

8 1NN/ lNN/-i-rr T T lNP lN I+ G
r°—— - — )T = - - r—
c P Y Y n c ? P n

(6.45)
which we write in abbreviated form as
Ct=0Q (6.46)
with C and Q as defined in (6.45). A solution to (6.46) can be written as
T=CQ (6.47)

where C™ is a generalized inverse of C.

Any statistical inference about the treatment effects is then derived, similar
to the developments in Chapter 1, from (6.46) and (6.47), in conjunction with
information from the analysis of variance (see Section 6.6.3). For example, rank
(C)(<t — 1) determines the number of linearly independent estimable functions,
c't, of the treatment effects. For any estimable function ¢’ we have ¢'T = ¢'7T,
with T from (6.47), and

N = a2
var(c't) = c'C co;

6.6.3 Analysis of Variance

Following general principles (see, e.g., Sections .4.11 and 1.3.6), it is easy to
write out the analysis of variance table for a row—column design that will enable
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Table 6.2 Analysis of Variance for Row—-Column

Design
Source d.f. SS
r
X,|9 r—1 Y .-y
i=1
c
X,09.X, c—1 ry (3., -5.)
j=1
X193, X,, X, r—1¢ 70

I19,X,,X,,X,; Difference =vg Difference = SS(E)

Total re—1 Y ik —5.)°
ijik

“Assuming a connected design.

us to (i) estimate 03 and (ii) obtain an (approximate) F' test for testing Hy: 71 =
7o = --- = 1; = 0. Such an ANOVA table is given in Table 6.2, using an earlier
established notation. We then have

. SS(E
G2 =MS(E) = (£)
VE
and
T/t 1)
~ MS(E)
provides an approximate test for testing Hp: 11 = 1p =--- =1, = 0.

It should be mentioned (as is, of course, obvious from the notation used) that
the ANOVA in Table 6.2 is a sequential (or type [ in SAS terminology) ANOVA.
The nature of the design implies immediately that SS(X,|J, X,) = SS(X,|J),
and hence the simple expression for SS(X,|J, X ) given in Table 6.2.

6.6.4 An Example

We shall illustrate the analysis of data from a row—column design, using the
design of Section 6.1 and using SAS PROC GLM. The data and analysis are
given in Table 6.3. We make the following comments about the analysis and the
SAS output in Table 6.3:

1. The inv-option in the model statement provides a generalized inverse to the
coefficient matrix of the NE (6.40), and the 12 x 12 submatrix given by the
rows and columns Ty, T», ..., T1p serve as a C~ for the RNE (6.46).
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230 MORE BLOCK DESIGNS AND BLOCKING STRUCTURES

2. The e-option in the model statement provides a list of linearly independent
estimable functions. The output shows that this design is a connected design,
that is, all treatment comparisons are estimable.

3. The P-values for R and C should be ignored (see Section 1.10.2.5).

4. All treatment least-squares means have the same standard error because of
the same number of replications.

5. Not all simple treatment comparisons have the same standard error. This has
to do with the fact that N, and N, represent incomplete block designs. For
example, treatment 1 occurs together with treatments 7 and 9 three times in
the same row, whereas it occurs together twice in the same row with all other
treatments; but treatment 1 never occurs together with treatments 7 and 9 in
the same column, whereas it occurs together once in the same column with
all other treatments. Hence there are two different variances and, hence, two
different standard errors for simple treatment comparisons, for example, 4.81
and 4.68. We add here, however, that, in spite of their appearance, neither
N, nor N, represent PBIB(2) designs.

6.6.5 Regular Row-Column Designs

As we have already seen in the previous sections, a row—column design consists
of the amalgamation of two component designs, characterized by N, and N,
the row and column designs, respectively. For example, the row—column designs
in Table 6.4 can be characterized (prior to an appropriate rearrangement of the
treatments) easily in terms of well-defined error-control designs. We might refer
to these designs as regular row—column designs.

6.6.6 Doubly Incomplete Row—Column Designs

One feature that all the designs in Table 6.4 have in common is that the number
of columns, that is, the number of experimental units in each row, is equal to
a multiple of the number of treatments. Of considerable interest, however, are
designs for which the number of rows and columns is less than the number of
treatments. A natural way to construct such designs would be to amalgamate two
PBIB designs.

Example 6.13 Fort = 8,r =4, c = 4 Eccleston and Russell (1975) give the
following design:

Column
1 2 3 4
1 1 2 5 6
2 3 4 7 8
Row 4 7 6 2 3
4 5 8 4 1
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Table 6.4 Regular Row-Column Designs

231

Row—Column

Row Design Column Design Design Reference
RCBD RCBD Latin square 1.10.2
RCBD GRBD Latin square 1.10.4
GRBD GRBD Frequency square Hedayat and
Seiden (1970);
Hedayat,
Raghavarao, and
Seiden (1975)
RCBD BIBD Youden square I. 10.5
RCBD PBIBD Youden square 1.10.5
RCBD Extended block Incomplete Latin Cochran and Cox
design® square (1957)
BBD BBD? Generalized Kiefer (1975a, b)
Youden design
“See 1.9.8.5.

bSee Definition 19.9.

By inspection we find that both row and column designs are PBIB(3) designs

with the following association schemes:

Row design:

0th Associate

1st Associates

2nd Associates

3rd Associates

0NN N kAW

with Ay =1, A =2, A3

S o= O
N = O =

2,4, 6, 8
3,5 7, 1
4, 6, 8, 2
5 7,1, 3
6, 8 2, 4
7,1, 3, 5
8, 2, 4, 6
1, 3, 5, 7
=0, and

0 0

1 2

0 0 P, =

00

O —= OO

5
6
7
8
1
2
3
4
010
4 0 O
0 0 0
0 0 2

P;

- o O O

N = 00 3 N kW

AN N AW~ 0

SO O
—_ o O O
S = O =
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Column design:

0th Associate 1st Associates 2nd Associates 3rd Associates
1 5 6, 7, 8 3 2, 4
2 5 6, 7, 8 4 1, 3
3 5 6, 7, 8 1 2, 4
4 5 6, 7, 8 2 1, 3
5 1, 2, 3, 4 7 6, 8
6 1, 2, 3, 4 8 5, 7
7 1, 2, 3, 4 5 6, 8
8 1, 2, 3, 4 6 5, 7

with Ay =1,A, =2,A3 =0, and P matrices the same as for the row
design. ]

6.6.7 Properties of Row—Column Designs

We shall restrict ourselves to designs for which each treatment is replicated the
same number of times, say ro. Moreover, we shall consider a subclass of designs,
denoted by Do by Shah (1977), with the property that each row of the design
has rp treatments in common with each column (this holds for all the designs
discussed so far). In terms of the component design incidence matrices, this
condition can be expressed as

N,N, =r03,9, (6.48)

The condition (6.48) is equivalent to the property of adjusted orthogonality
for the row—column design (John and Eccleston, 1986). For the type of design
considered here Eccleston and Russell (1975, 1977) define adjusted orthogonality
to mean that using model (6.35) the contrast estimators for row effects adjusted
for treatment effects are uncorrelated with the contrast estimators for column
effects adjusted for treatment effects. This property is important because it has
implications with respect to the connectedness of a row—column design. Thus
Eccleston and Russell (1975) show that a row—column design is connected if it
satisfies the property of adjusted orthogonality and if both the row and column
designs are connected. This, in turn, means that for any design in Dy its properties
are determined by the properties of the component designs.

One important characteristic of an incomplete block design is its efficiency fac-
tor, which is related to the properties of the information matrix C (see
Section 1.12.2). For the row—column design the information matrix as given
in (6.37) can be written in terms of the information matrices for the component
designs as follows:

1 1 rr’
C=(rP--N,N S __N,N,|—(r’-—

=C,+C, - (r‘S - 1) (6.49)

n



ROW-COLUMN DESIGNS 233

where C, and C, denote the information matrices for the row and column
designs, respectively. More specifically, for the class Dg (6.49) can be written as

(N (B 99’
C=(rod = —N,N, |+ (rol = —N,N}, | —ro (I~ (6.50)

In addition, for any design in Dy C satisfies the condition
C=C,Cy/ro (6.51)

(John and Eccleston, 1986). The relationships (6.50) and (6.51), together with
the fact that C, C,, and C,, have the same eigenvectors and that the eigenvalues
of C are those of C, or C,, or 0 (John and Eccleston, 1986), it is possible to
express the efficiency factor E,, of a row—column design in Dy in terms of
the efficiency factors E, and E, of the row and column component designs,
respectively, as

E,E,
 E,+E,—E,E,

Epy (6.52)

(see Eccleston and McGilchrist, 1986; John and Eccleston, 1986). For designs not
in Dy the right-hand side of (6.52) represents an upper bound for E,, (Eccleston
and McGilchrist, 1986).

We shall illustrate the relationship (6.52) numerically in terms of the design
of Example 6.13.

Example 6.13 (Continued) Inspection shows that the design belongs to Dy
with rog = 2. The SAS output in Table 6.5 confirms that the design is connected.

To obtain E, and E, (which in this case are identical) we use the system of
equations (4.34) and solve for go, g1, g2, g3 to be used in

var( — t) = 2(g0 — gu)o2

[see (4.39)] for the three types of associates. We find go =0, g1 = —%, g2 =

—%,83=—3 with ny =4,n = 1,n3 = 2, and hence
av. var(f — fr) = 3 02 = 1.2857 o2

Thus, from (1.108) E, = E, = 1/1.2857 = 7778 [we should point out that this
value is slightly different from what would have been obtained from (4.41), which
is defined as the weighted average of the three efficiencies Eq, E;, E3]. Using
(6.52) we obtain

(.7778)2

- = .6364
2 x 7778 — (.7778)2

Epy
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Table 6.5 Data and Analysis for Row-Column Design With PBIB (3) Row and
Column Designs (t =8,r =4,c =4)

options nodate pageno=1;
data rcpbib;
input R C T Y @e@;

datalines;

11120 12223 13525 146 21
21330 22429 23 725 2 4 8 31
31734 32635 33230 3423235
4 1 5 33 4 2 8 38 4 3 434 4 4 1 31
run;

proc print data=rcpbib;

titlel 'TABLE 6.5';

title2 'DATA FOR ROW-COLUMN DESIGN';
title3 'W/PBIB(3) ROW AND COLUMN DESIGNS';
title4 't=8, r=4, c=4';

run;

proc glm data=rcpbib;
class R C T;
model Y=C R T/e;

estimate '1-2' T 1 -1;

estimate '1-3' T 1 0 -1;

estimate '1-4' T 1 0 0 -1;
estimate '1-5' T 1 0 0 0 -1;
estimate '1-6' T 1 0 0 0 0 -1;
estimate '1-7' T 1 0 0 0 0 O -1;
estimate '1-8' T 1 0 0 0 0 0 0 -1;

title2 'ANALYSIS OF DATA';
title3 'FROM ROW-COLUMN DESIGN';
title4 'W/SIMPLE TREATMENT CONTRASTS';

run;
Obs R C T Y
1 1 1 1 20

2 1 2 2 23

3 1 3 5 25

4 1 4 6 21

5 2 1 3 30

6 2 2 4 29

7 2 3 7 25

8 2 4 8 31

9 3 1 7 34
10 3 2 6 35
11 3 3 2 30
12 3 4 3 35
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Table 6.5 (Continued)
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13
14
15
16

4 1 5 33
4 2 8 38
4 3 4 34
4 4 1 31

ANALYSIS OF DATA FROM ROW-COLUMN
DESIGN W/SIMPLE TREATMENT CONTRASTS

The GLM Procedure

Class Level Information

Class Levels Values
R 4 12 3 4
C 4 12 3 4
T 8 123456 738
Number of observations 16
General Form of Estimable Functions
Effect Coefficients
Intercept L1
C 1 L2
C 2 L3
C 3 L4
C 4 L1-L2-L3-L4
R 1 L6
R 2 L7
R 3 L8
R 4 L1-L6-L7-L8
T 1 L10
T 2 L11
T 3 L1l2
T 4 L13
T 5 L14
T 6 L15
T 7 Ll6
T 8 L1-L10-L11-L12-L13-L14-L15-L1l6

Dependent Variable: Y
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Table 6.5 (Continued)

Sum of

Source DF Squares Mean Square F Value Pr > F
Model 13 426.5000000 32.8076923 7.09 0.1302
Error 2 9.2500000 4.6250000

Corrected

Total 15 435.7500000
R-Square Coeff Var Root MSE Y Mean
0.978772 7.259346 2.150581 29.62500
Source DF Type I SS Mean Square F Value Pr > F
C 3 16.2500000 5.4166667 1.17 0.4913
R 3 357.2500000 119.0833333 25.75 0.0376
T 7 53.0000000 7.5714286 1.64 0.4305
Source DF Type III SS Mean Square F Value Pr > F
C 3 10.2500000 3.4166667 0.74 0.6189
R 3 285.5000000 95.1666667 20.58 0.0467
T 7 53.0000000 7.5714286 1.64 0.4305
Standard

Parameter Estimate Error t Value Pr > |t
1-2 0.50000000 2.84495167 0.18 0.8767
1-3 -4.75000000 2.63391344 -1.80 0.2131
1-4 -3.25000000 2.84495167 -1.14 0.3716
1-5 -3.50000000 2.40442301 -1.46 0.2828
1-6 -1.00000000 2.63391344 -0.38 0.7407
1-7 -1.75000000 2.84495167 -0.62 0.6011
1-8 -6.25000000 2.63391344 -2.37 0.1410

This value can be confirmed by making use of the SAS output in Table 6.5,
in particular the standard errors of simple treatment contrasts and the fact that,
because of the combinatorial structure of the design, there are three different
standard errors with frequency 3, 3, and 1, respectively. Thus, using the general
definition of E given in (1.108),

2/2

E,, = — 0.6364
[3 x (2.8449)2 + 3 x (2.6339)2 + (2.4044)2]/(7 x 4.625)

It follows, of course, from (6.52) that if, say, £, = 1, then E,, = E,,. O
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6.6.8 Construction

From our discussion in the previous sections concerning the information matrix
and the efficiency factor of a row—column design, it comes as no surprise that
the construction of an efficient row—column design starts with efficient row and
column component designs. This is, of course, easy to do for regular row—column
designs for which at least one of the component designs has efficiency equal to
1. There are, however, no general rules for amalgamating two PBIB designs.
Rather, we shall describe one construction method due to John and Eccleston
(1986), which is based on the generalized cyclic incomplete block designs of
Jarrett and Hall (1978) (see Section 6.3).

To construct a design for + = r x s treatments such that each treatment is
replicated rg times (with rg < r) in r rows and ¢ = rgs columns, we consider
the r residue classes S; = {i,i +7r,...,i +r(s — 1)} fori =0,1,...,r — 1, and
form an r x rg array where each column contains one element from each of the r
residue classes S;. We shall refer to this array as the generator array. From each
such column we generate s — 1 further columns by adding successively » mod ¢
to each element in that column. Thus each initial column generates a complete
replicate of the ¢ treatments, and the columns of the r x ros array represent the
blocks of the generalized cyclic incomplete block design with rg replications for
each treatment.

In order to obtain a design in Dy we need to ensure that each row in the
generator array contains at most one element from each residue class. Then each
row will consist of elements from ry residue classes and hence each row and
each column will have exactly ry elements in common. Thus the final design
satisfies the condition of adjusted orthogonality.

To illustrate this method we consider the following example.

Example 6.14 Suppose t=12=3x4,r=3,s=4,r9=2,c=8. The
residue classes are

So=1{0,3,6,9} S ={1,47,10p  $={2,58 11}

Choose the generator array as

0 7

1 11

2 3

Then the final row—column design is
Column

|1 2 3 4 5 6 7 8
1 0 3 6 9 7 10 1 4
Row 2 1 4 7 10 11 2 5 8
3 2 5 8 11 3 6 9 0
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Closer inspection shows that both row and column designs are actually PBIB(2)
designs. 0

As pointed out by John and Williams (1995), the method described above
may not always lead to the most efficient row—column designs. Alternatively,
computer algorithms have been proposed that rely on iterative improvements of
a starting design or a starting component design by using exchange algorithms.
The aim is to construct a design with as high an efficiency factor as possible.
The criterion used most often in this context is that of (M, S) optimality since it
is most amenable to computational procedures. We shall not go into details, but
rather refer the reader to the appropriate literature, such as Russell, Eccleston, and
Knudsen (1981), Nguyen and Williams (1993), Venables and Eccleston (1993),
and John and Williams (1995).

6.6.9 Resolvable Row—Column Designs

It is sometimes desirable, especially when the number of treatments is large or
when the experiment is done sequentially, to have the treatments arranged in a
resolvable design. This means that the design consists of several replicates such
that each replicate constitutes a row—column design and each treatment occurs
exactly once in each replicate. An example of a resolvable design for r = ¢? are
the lattice square design of Yates (1940b) (see Chapter 18).

For a resolvable row—column design with R distinct replications model (6.1)

needs to be changed to
Vijke =+ Ri + pij + Vik + T + eijre (6.53)

withi=1,2,...,R;j=1,2,...,r;k=1,2,...,¢c;£=1,2,...,t,and where
R; are the replicate effects, p;;, yix are the row and column effects, respectively,
nested within replicates, and t, are the treatment effects. Because of the nesting
structure these designs are a special case of what has been referred to as nested
row—column designs (see, e.g., Morgan, 1996; John and Williams, 1995).

In matrix notation model (6.53) can be written as

y=uI+XgR+X,p+ X,y +X;T+e (6.54)

where, in contrast to (6.2), X, is of dimension n x Rr, and X, is of dimen-
sion n X Rc, where n = Rrc = Rt. Using (6.54) we can write out the normal
equations and then the reduced normal equations. In terms of the design matrices
in (6.54) the information matrix can be written as (see Morgan and Bailey, 2000)

1 1 1
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With X’ X, =N,, XX, =N, and X, Xg = N we can rewrite (6.55) as
1 / 1 ! 1 /
CZRI_ZNpr_;N}/Ny—i_;NRNR
or, since the replicate design is an RCBD,
1 / 1 / R /
C:RI—;NPNP—;N),N),—}—EJJ (6.56)

When constructing resolvable row—column designs care must be taken to
ensure that rank (C) =t — 1. This holds for the method of constructing lattice
square designs (see Chapter 18). The method described in Section 6.6.7 can be
used here also in conjunction with the interchange algorithm of Nguyen and
Williams (1993) to produce connected and efficient designs.

Variations of the model (6.53) may be considered as dictated by the experimen-
tal conditions. For example, if in an industrial experiment the rows are different
batches of raw material, the columns are different machines, the replicates are
different times, and the experiment is conducted in the same factory, then the
machines may be the same for the different replicates. Or, in an agriculture the
replicates may be contiguous pieces of land so that, for example, the columns are
the same for all the replicates. In those cases the columns are no longer nested in
replicates but rather crossed with replicates, and hence model (6.53) changes to

Yijke = M+ Ri + pij + vk + Te + eijre (6.57)

(this is similar to the various forms of replicated Latin squares in 1.10.3).

Finally, a further modification, or restriction, of the above design is considered
by John and Williams (1995). In addition to having each treatment occur once
in each replicate, each treatment should not occur more than once (or nearly
equally often) in each column as, for example, in the design given below for
t=12=3x4,R=3,r=3,c=4

Replicate
1 0 3 6 9
1 4 7 10
2 5 8 11
2 4 8 9 0
5 6 10 1
37 11 2
3 7 10 0 5
8 11 1 3
4 9 2 4
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This arrangement may be useful in, for example, an agronomic experiment to pro-
vide some protection against the loss of an entire column. This design is referred
to as a Latinized row—column design (using terminology of Harshbarger and
Davis, 1952). John and Williams (1995) recommend to modify model (6.57) to

Yijke = 1+ Ri + pij + vk + (RY)ik + e + €ijke (6.58)

so that the effects R; and (Ry);x account for the R(c — 1) d.f. of the ¥;; in model
(6.53). Obviously, subject matter knowledge may determine whether model (6.53)
or (6.57) is appropriate.

From the above discussion it should be clear that the original row—column
design may have to be modified in various ways to accommodate practical con-
siderations and requirements, leading to still other forms of row—column designs.



CHAPTER?7

Two-Level Factorial Designs

7.1 INTRODUCTION

In the preceding chapters we have discussed various aspects of error control
designs. Another component of an experimental design is, however, the treat-
ment design (see Section 1.2.2.3), in particular, designs with a factorial treatment
structure (see I.11.1 and 1.11.2).

In this chapter we shall consider in great detail the situation where an exper-
iment involves several factors, each having two levels. Such experiments are
generally referred to as 2" factorials, where n denotes the number of fac-
tors, and hence 2" denotes the total number of level combinations or treatment
combinations.

Although the 2" factorial represents only a special case of the general p"
factorial experiment, that is, n factors with p levels each, it deserves spe-
cial consideration because of its practical importance and its special algebraic
and combinatorial representation. At the same time, however, we shall use the
2" case to lay the foundation for the discussion of the more general case by
introducing appropriate notation and mathematics suitable for generalization in
later chapters.

7.2 CASE OF TWO FACTORS

7.2.1 Definition of Main Effects and Interaction

Let us denote the two factors by A and B, where factor A has levels ag and a1,
and factor B has levels by and by. We shall refer to ag and by as O levels and to
a; and by as 1 levels of the two factors, respectively. The four possible treatment

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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combinations may be represented as

apbo
aibg

7.1
aobt (7.1)

arby

We can then define the effect of factor A, that is, the effect of changing A from
ap to ayp, at each of the two levels of factor B. Denoting these effects by A(bg)
and A(by), respectively, we define

A(bo) = arby — apbo 7.2)

A(b1) = a1b1 — apby
where a;b; now denotes the true response of the treatment combination a;b;. We
shall use this dual meaning of a;b; throughout, but from the context it should
always be clear whether we mean the treatment combination or the response of
that treatment combination. The effect of A, also referred to as the main effect
A, is now defined as the average of the so-called simple effects A(by) and A(by)
of (7.2), denoted by A, that is,

A = L[A(bo) + Ab))] (7.3)
or, by using (7.2),
A = 3larbo — aobo + aibi — aob] (7.4)
or, symbolically,
A = 3(a1 — ag) (b + bo) (1.5)

where the expression is to be expanded algebraically.

If the two factors are acting independently, we would expect A(bg) and A(by)
of (7.2) to be equal, but, in general they will be different, and their difference is a
measure of the extent to which the two factors A and B interact. This interaction
is denoted by AB (or A x B), and defined as

AB = J[A(b1) — A(bo)]

| (7.6)
AB = f[albl — agb1 — a1bg + agbg]

or, symbolically,

AB = (a1 — ag)(by — bo) 1.7
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The factor % here is a matter of convention and is used to express the interaction
effect on a per-unit-difference basis, there being two differences in (7.6). We
shall use this convention throughout.

Along the same lines we may also obtain the effect of factor B by first defining
the simple effects:

B(ag) = aob1 — apbg

(7.8)
B(ay) = a1by — a1bg

and then

B = 3[B(ao) + B(a)]
Haoby — agbo + arby — aibo) (7.9)
1
2

(a1 + ao)(b1 — bo)

B(ap) and B(ap) from (7.8) can also be used to define the interaction between
factors B and A as

BA = }[B(a1) — B(ao)]
= Slaiby — a1bo — agby + apbo]
= 3(a1 — ao)(by — bo) = AB

which shows that in defining the interaction we need not bother with the order
in which we write down the letters.

7.2.2 Orthogonal Contrasts

We note that the effects A, B and the interaction AB are three mutually orthog-
onal contrasts of the true responses of the four treatment combinations:

apbg aiby aoby aiby

2 | - 4+ - -
2B | - - 4+ 4+
24B | + - - +

which follows immediately from (7.4), (7.9), and (7.6). If we denote the mean
response of the four treatment combinations by M, we have the following trans-
formation of the response vector (agbg, a1bg, aob1, aiby)’:

4M 11 1 1\ [aoho

24| _[-1 1 =1 1| ]aibo

2B |7 =1 =1 1 1] |ab (7.10)
2AB 1 -1 =1 1) \ah
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It is interesting to note that the transformation matrix in (7.10) can be written as
the Kronecker product

where the matrix

11
Tz(_l 1) (7.11)

can be considered as the transformation matrix for the one factor situation, that

| (- )

Hence, by using (7.11), we can write (7.10) as

aM apbg
24 | aby
g | = (T xT) aobt (7.12)
2AB a1by
7.2.3 Parameterizations of Treatment Responses
Relationship (7.10) and hence (7.12) may be inverted, that is,
apbg aM
arby | 1] 24
aob1 | (T xT) 2B
a1bq 2AB
and since (T x T)" ' =T x T~! and
1 /1 -1
-1 _
= 2 (1 1)
we obtain
aobg 1 -1 -1 1 4M
aibp | 1 1 1 -1 -1 2A
abt| "4l 1 -1 1 -1 2B (7.13)
ayb; 1 1 1 1 2AB
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that is,
agho =M — 1A - 1B+ 1AB
atbp=M +3A— 1B — 1AB
aghy =M — 5A+ 3B — ;AB
aiby =M + A+ 1B+ JAB

(7.14)

Parameterizations of type (7.14) will become very useful in later discussions
of the 2" factorial. At this point it may be of interest to relate representation
(7.14) to the usual parameterization of a factorial structure in linear model terms.
If 1;; denotes the true response of the treatment combination a;b;, the usual
parametric model (see Section 1.4.13.2) is given as

wij = n+oai + B + (aB)ij (7.15)

It is obvious that we cannot relate M, A, B, AB uniquely to the parameters in
(7.15) without defining them more precisely. For that reason we write (7.15) as
the identity

wij =1+ (@ —w )+ (=) + (ij =i, — 1 + 1) (7.16)

where, in the present context with i, j =0, 1,

Wi, = %(Mio + ii1) i=0,1
ﬁjz%(,U»Oj'i‘/lej) (j=0,1)
r.o=1

::M
kS
[
=

so that
o =i — [
Bi=m;— 1.
(@B)ij = pij — I, — I j + 1.
with
ap+a; =0
Bo+pB1 =0

(@B)oo + (@B)i0o =0
(@B)o; + (@B)11 =0
(@B)oo + (@B)o1 =0
(@B)io + (@f)11 =0

(7.17)
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It follows then from (7.10) that

M=pu
A=o0o1 —ap
B =pB1-po

AB = L{(@B)oo — (@B)10 — (@B)or + (@B)11]

or, using the relationships (7.17),

M=pn

A =20

B =128

AB =2(af)11
that is,

2M m
5 =2
AB (C70

Hence we obtain from (7.14)

aobp = p — o1 — P1 + (B
aibp = p+ o1 — 1 — (@P)ii
aobi = p — o1+ p1 — (@B
aiby = p+ o1+ 1+ (@f)n

This again can be expressed as a linear transformation using the matrix T of
(7.11) as

apbg j
22 — 4T xT)"! ;i
aib (@B
Hence
j aobo
P REEER P4

(@B)11 aib;
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We can, therefore, easily relate the parameters customarily used in factorial
experiments to those commonly used in classificatory linear models and relate
both, in turn, to the true responses.

7.2.4 Alternative Representation of Treatment Combinations,
Main Effects, and Interaction

We now return to Egs. (7.10) and (7.14) using two alternative ways of repre-
senting the treatment combinations and hence the responses, one that is peculiar
to the 2" factorial and simplifies the previous notation in a very useful way,
and one that leads to a more formal, mathematical definition of main effects and
interaction, which can be generalized for other factorials as well.

Instead of writing the treatment combinations as in (7.1), we shall now write
them as (1) a, b, ab, respectively, that is, in each combination the letter corre-
sponding to a 0 level is replaced by 1 and the subscript is dropped in a letter
corresponding to a 1 level. With this notation (7.5), (7.9), and (7.7) can be written
formally as

A=Lla-Do+1)
B=3@+1)b-1) (7.18)

AB=L(a—- Db -1

each of which is then multiplied out as if these were mathematical quantities. We
note that in the expressions above terms like (¢ — 1) do not have any meaning
in themselves, only the quantities (1) a, b, ab after multiplication are meaning-
ful. A simple rule for writing down the expressions in (7.18) is as follows:
A minus sign appears in any factor on the right if the corresponding letter is
present on the left, otherwise a plus sign appears. It is crucial in this nota-
tion to adhere to the rule that we have used, that effects and interactions are
denoted by capital letters and treatment combinations and responses are denoted
by small letters.

Still another way of representing the treatment combinations is by pairs
(x1, x2), where x; represents the level of factor A and x; represents the level
of factor B, with x; =0, 1(i = 1, 2). The four treatment combinations are then
written as (0, 0), (1, 0), (0, 1), (1, 1). By looking at (7.10) we notice that, apart
from a constant, main effect A is a comparison of treatment combinations with
x1 = 1 versus those with x; = 0. Similarly, B is a comparison of treatment com-
binations with x, = 1 versus those with x; = 0. And finally, AB is a comparison
of treatment combinations satisfying x; + x, = 0 mod 2, that is, (0, 0) and (1, 1),
versus those satisfying x; + x = 1, that is, (1, 0) and (0, 1). Each of the three
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basic equations for
A:x1 =1
B:x;=j
AB: x1+x =k
where i, j, k take on the values O and 1, and where the equations are always

reduced mod 2, represents a partitioning of the set of four treatment combinations
into two sets of two treatment combinations each, that is,

x1 =0:(0,0), (0, 1)

=1:(1,0), (1,1

x2 =0:(0,0), (1,0)
=1:(0,0D,(,1)
x1+x2=20:(0,0), (1, 1)
=1:(1,0), (0, 1)

A unified way to express these partitions is to write them as
a1x; +azxy; =0,1 mod 2

where a1, ap = 0, 1 but (a1, a2) # (0, 0). These partitions are orthogonal in the
sense that for a given o1x| + apxp = i the set of treatment combinations contains
one from ofx; 4+ ajx; =0 and one from ajx; +ajxy =1 where (o, @) #
(1, ap). This, of course, is equivalent to our earlier statement that A, B and AB
represent orthogonal comparisons of the treatment combination responses.

7.3 CASE OF THREE FACTORS

We now consider three factors A, B, and C, say, with levels ag, a1, by, b1, co, c1,
respectively. The eight possible treatment combinations can be represented, in
the standard order, in the following three ways:

apboco (1) 0,0,0)
aibocy a (1,0,0)
aobco b 0,1,0)
aibicy ab (1,1,0)
or or
aopboc c 0,0,1)
aibocy ac (1,0, 1)
apbicy bc ©0,1,1)

arbicy abc (1,1, 1)
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7.3.1 Definition of Main Effects and Interactions

Denoting the true response by the same symbol as the treatment combination,
we define now four simple effects associated with factor A:

A(bo, co) = a1boco — apboco
A(by, cg) = arbico — apbic
(b1, co) 1b1co — apbico (7.19)
A(bg, c1) = a1boct — agbocy
A(by, c1) = aibicr — apbicy

where A(b;, c;) is the effect of factor A with factor B at level b; (i =0, 1) and
factor C at level c¢;(j =0, 1). The average of the four simple effects of (7.19)
is then defined as the effect of factor A, denoted by A, that is,

A=1>"Awbi.c)
T
= %(alboco + a1bico + a1bocy + a1bicy
—apboco — aobico — aobocy — apbic)
or, symbolically,
A= %(611 —ap)(b1 + bo)(c1 + cp) (7.20)
and using the alternative notation
= Z(a +ab+ac+abc— (1) —b—c—bc)
=z@=DG+ D+ (7.21)

Next we define the interaction between factors A and B, denoted by AB, by
considering the difference between the following average effects:

A(bo. ©) = 5[A(bo. co) + A(bo. c1)]
and
A(b1,0) = 5[A(b1, o) + A(b1, c1)]
Then
AB = 3[A(b1,7) — A(bo, )]
= 1(a1bico — agbico + arbicy — apbicy

—a1bocy + agbgcy — ayrbgcy + agbocy)
= 1(a1 — ap)(by — bo)(ci + co) (7.22)
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or, using the alternative notation
AB = %[ab—l—abc—i—(l)—i—c—a—b—ac—bc]
=1@—-1D®—Dc+1) (7.23)

We can also evaluate the simple interaction between factors A and B for each
level of factor C, using an obvious modification of (7.6), as

AB(co) = %(Cllblco + aopboco — arboco — agbico) (7.24)
and
AB(cy) = %(alb101 + apboct — arbocy — agbicy) (7.25)
Obviously,
AB = 3[AB(co) + AB(cp)]

The two interactions given by (7.24) and (7.25) may be different, and, as a
measure of the extent to which they are different, we define the three-factor
interaction of factors A, B, and C, denoted by ABC, as

ABC = }[AB(c1) — AB(co)]
= %(alblcl + apbocy — arbocy — apbicy
—aibico — aoboco + arboco + aobico)
= 1(a1 — ao) (b1 — bo)(c1 — co) (7.26)

or

ABC = %[abc—i—a—l—b—i—c—(l) —ab — ac — bc]
=ta-1D®—- -1 (7.27)

Similar arguments can be used to define the remaining main effects and two-factor
interactions. We summarize them below:

B = (a1 + ao)(b1 — bo)(c1 + co)
C = (a1 + ao)(by + bo)(c1 — o)
AC = g(a1 — ap) (b1 + bo)(c1 — o)
BC = j(a1 + ao)(bi — bo)(c1 — co)
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or alternatively,
B=Ya+1Db-Dc+1)
C=g@+ Db+ D—1)
AC=g@-Db+ -1
BC = j@+ (b -Dc—1)

Just as in the two-factor case we can express the effects and interactions defined
above as a transformation of the treatment responses:

84 ] 1 1 1 1 1 1 1 1 7 aohoco]
4A 11 -1 1 =1 1 =1 1 arboco
4B 1 -1 1 1 =1 -1 1 1 aobico
4AB =1 =1 1 1 =1 -1 1 arbico
4C | T |=1 =1 -1 -1 1 1 1 1 aoboci
4AC =1 1 -1 -1 1 -1 1 arboci
4BC 11 =1 =1 -1 -1 1 1 aobici
l4aBc| =1 1 1 =1 1 =1 =1 1 | labicr
(7.28)

where M is the mean response of the 8 treatment combinations. We shall com-
ment briefly on the transformation matrix in (7.28): (i) It can be verified easily
that, with the standard order of writing the symbols for the treatment combina-
tions and the effects (main effects and interactions) that we have adopted, the
matrix can be expressed as the threefold Kronecker product T x T x T, where
T is given by (7.11); (ii) the rows of the transformation matrix are orthogo-
nal to each other; (iii) except for the first row, the rows of the transformation
matrix represent comparisons of the treatment responses; (iv) it is easy to write
down the elements in any given row: for A, B, and C we have a +1 if the
corresponding factor appears at the 1 level in a treatment combination, and a
—1 if the corresponding factor appears at the O level; for interactions we just
multiply the corresponding elements for the main effects involved; for the alter-
nate representation of treatment combinations this rule can be formulated as
follows: Let X be any effect symbol; if X consists of an odd (even) number
of factor symbols, then an element in the row corresponding to X is +1 if the
associated treatment combination has an odd (even) number of letters in com-
mon with X, and it is —1 if the associated treatment combination has an even
(odd) number of letters in common with X, where zero is considered to be an
even number.
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7.3.2 Parameterization of Treatment Responses

Inverting (7.28) leads to a representation of treatment responses in terms of the
overall mean, main effects, and interactions:

fahoco] [ 1 -1 —1 1 —1 1 1 —1 [ 8M 7]
arboco 11 =1 -1 -1 -1 1 1 4A
aobico 1 =1 1 -1 -1 1 -1 1 4B
arbico 11 1 1 -1 -1 -1 -1 4AB
abocr | | 1 =1 =1 1 1 -1 -1 1 4C
arbocy 11 -1 -1 1 1 -1 -1 4AC
aobici 1 -1 1 -1 1 -1 1 -1 4BC
labier] L1111 1 1 1 1 | [44BcC]

(7.29)
The rule for writing down the elements in the matrix in (7.29) corresponding to

the treatment combination ;b ¢y is: The coefficient for M is +1; the coefficient
for the main effects is +1 if the corresponding factor appears at the 1 level and
—1 if it appears at the O level; the coefficient for an interaction is the product
of the coefficients for the main effects involved. An alternative way of writing
(7.29) then is

2aibjcr =2M 4+ (=)' TA 4 (=1)! 7/ B 4 (—=HI=DTI=DIg
4 (_1)17/((: 4 (_1)[(1*i)+(1*k)]AC
+ (_1)[(1—j)+(1—k)]BC + (_1)[(1—i)+(1—j)+(1—k)]ABC (7.30)
where i, j, k =0, 1.

7.3.3 The x-Representation

To conclude this section, we shall discuss briefly the formal definition of main
effects and interactions in terms of orthogonal partitions, using what we shall
henceforth call the x representation of treatment combinations. A treatment
combination is given by x’ = (x1, x2, x3) with x; =0, 1(i =1, 2, 3). We then
consider all partitions of the form

o1x] +axy +a3x3 =0,1 mod 2

where o; =0, 1(i = 1, 2, 3) but (o1, a2, @3) # (0, 0, 0). Each partition divides
the set of treatment combinations into two sets of four treatment combinations
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each. The comparison of the average response for these two sets defines then a
main effect or interaction. Specifically these sets are

A: ap=1l,ap=a3=0 ie. x] =
vs. x1 =1

B: avp=1,a01=a3=0 1.e.x2 =0
vs.xp =1

AB: aj=ar=1,a3=0 ie.x;+x2=0
vs. X1 +xp =1

C: oz=1l,a1=0p=0 ie. x3 =
VS. X3 =

AC: aj=a3=1,ap =0 re.x;+x3=0
vs.x1 +x3 =1

BC: aj=0,ap=a3=1 ie.xy+x3=0
vs. xp +x3 =1

ABC: ai=ax=a3=1 ie.x;+x+x3=0
VS. X1 +x2 +x3=1

where every equation is reduced mod 2. We refer to each & = (a, @z, a3)’ as a
partition of the factor space X = {x = (x1,x2,x3);x; =0,1;i =1, 2,3}.

74 GENERAL CASE

We now have n factors and hence 2" treatment combinations. It is convenient
to denote the factors by Ay, Az, ..., A, where factor A; has levels a;o and
ai1i=1,2,...,n), or simply x; =0 and 1. Then a treatment combination can
be represented again in three different forms: (1) the explicit form:

@ @2, i,

where j; =0or 1(i =1, 2,...,n); (2) the condensed form:

Xi X2

ay'ay’ ---ay" (7.31)

where x; =0 or 1 with a? =1 and ai1 = qa; and all unity terms in (7.31) are
ignored; (3) the x representation

(x17x27 ---,xn)

where, as in (2), x; =0 or 1.
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7.4.1 Definition of Main Effects and Interactions

Conforming to the general expression for a partition of the 2" treatment combi-
nations into two sets of 2"~ ! treatment combinations each, that is,

o1 x; +axy+ -+ apx, =0,1 mod 2 (7.32)

with o; =0,1,x; =0,1(G =1,2,...,n), we write the effects and interactions
in the general form
o o
AI‘AZ2 c AT (7.33)

with A? =1, Al.] = A;, and we ignore all unity elements in this expression. If all
o; = 0, then (7.33) is written as M, the mean of the 2" treatment combinations.

Using (7.31) and (7.33) we now generalize the symbolic expressions given in
the previous sections for main effects and interactions and write

1 £ .
AV AT A = oy [Tl + D) (7.34)
i=1

and

1 n
M= T]@+D
i=1

We know that in (7.34) 2"~! treatment combinations enter positively into
A‘f‘ Agz ..~ A" and the remaining 2"~! treatment combinations enter negatively.
For the case n = 3 we have given an even—odd rule to determine which treatment
combinations enter positively and which enter negatively, a rule due to Fisher
(1949). We shall use (7.34) to derive such a rule for the general case.

First we rewrite (7.34) as

1 n
AP AT - A = o [la! + (=D (7.35)
i=1

= oon—1 J

We then note that each treatment combination contains either al.l or a?(i =
1,2,...,n). To determine the sign of a,'a)” - - - a," we therefore have to deter-
mine the sign with which af" enters into this “product”: If o; = 0, then the sign
for a;" is +1 whether x; =0 or 1; if o; = 1, then the sign for a;' is +1 for
x; =1 and —1 for x; = 0 as is obvious from (7.35). Both statements can be
combined into the statement that the sign for af" is (—1)%{=%)_ Hence the sign

of ai'ay’ - - ay" is

l_[[(_])ai(l—X1)] — (_1)2,- o (1=x;) _ (_l)zai—zaixx‘ (7.36)

i=1
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Now Y ; is the number of letters in A{' A5 --- Ay" after deletion of terms
of the form A(j). Also, ajx; =1 if a; and A are present in (7.31) and (7.33),
respectively. With (7.36) this establishes then the following rules.

RULE 1 The treatment combination aj'ay”---a," enters positively into

A{'AT? -+ Ay if § = [number of letters in A]'AS? - -+ A" — number of letters
in common between AY'AS?--- A" and a;'ay’---a,"] is even, and it enters

negatively if § is odd.
This leads immediately to the alternative formulation in rule 1'.

RuLe 1" If AJ'AJ?--- A}" has an odd (even) number of letters, then the
treatment combination af'agz --a," enters positively into AJ'AJ? .- Ap" if it

has an odd (even) number of letters in common with A"”AO‘2 . AZ”, and it

enters negatively if it has an even (odd) number of letters in common with
AOZIAO‘Z . Aan
1 22 no-

Based on the method of orthogonal partitioning as given in (7.32) and rule
1’, we can give yet another expression for AJ'A3? - A;" that will prove to be
useful for further discussion of the general factorial experiment. We know that
A‘f‘ A‘;z .-+ Ay is, apart from a constant, a comparison of responses of treatment
combinations satisfying the equation

o1x] +apxy+ -+ oux, =0 mod 2 (7.37)
versus those satisfying the equation
o1x] +apxo+ -4+ oux, =1 mod 2 (7.38)

Now, if in AJ'AS?--- A" the sum Y ; ; is odd, then all treatment combi-
nations with ), o x; odd that is, satisfying Eq. (7.38), enter positively into
A{'AT? -+ Ay" and those with ), o;x; even, that is, satisfying Eq. (7.37), enter
negatively into A A -+ Ay". If on the other hand )_; «; is even, then all treat-
ment combinations satisfying (7.37) enter positively, and those satisfying (7.38)
enter negatively. Let

(A" AS? - - A%")o = [mean response of all treatment

combinations satisfying Zaix,- =0-M (7.39)
i
and
(A'AS? .- A%")| = [mean response of all treatment

combinations satisfying Zaix,- =11-M (7.40)

i
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We can then write
ATTAT? - AS = (ATTAY? - AS) L — (ATTAS? - AR if Zai is odd
= (AT' AT - A% — (ATT AT -+ AT if Zai is even
or, combining both cases,

APAS A = (D)ZU(AY AT A% — (ATAT - ADY) ] (T41)

7.4.2 Parameterization of Treatment Responses

We shall use this result now to derive an expression, due to Kempthorne (1952),

for the parameterization of treatment combination responses in terms of main

effects and interactions, that is, the generalization of (7.30) for the 2" case. To

abbreviate the notation, let o’ = (a1, a2, ..., o), X' = (x1, X2, ..., Xx,), a(x) =

af‘agz, ...ay, E* = A?‘Agz c AR, EY = (A‘i”Ag‘2 AR (=0, 1).
First, we establish the following identity: For a fixed x

a(x)=M+ Y E%. (7.42)

where summation is over all & # (0,0, ...,0), and a’x is reduced modulo 2.
Expression (7.42) in itself is useful as a parameterization of a(x), and we shall
return to it in connection with the general factorial experiment (see Chapter
11). For the 2" case, however, (7.42) can be rewritten in terms of effects and
interactions as we shall see.

Now, to prove (7.42), we make use of (7.39) and (7.40), the definitions of E(‘;’
and E‘l", and we observe that

1. >, ES,. contains 2" — 1 terms.

2. Each Ej,, contains the term —M.

3. Each Ej contains the sum of 2"~ treatment combinations divided by
2”_1.

4. Each Ej,, contains a(x).

5. If y = (y1, y2, ..., yn), with y # x, satisfies the same equation as x, then
a'(x — y) =0, and there are exactly 2n=1 _ 1 distinct solutions e, that is,
each a(y) # a(x) occurs in exactly 2n=1 _ 1 different EY ..

Collecting terms on the right-hand side of (7.42) we then obtain

M—(2”—1)M+2n—_a(x)+g § a(y)
on—1 on—1 y
y#x
n n—1 _

202" ' - M+ 2 - 1a(x)+ 1[2”M—a(x)] = a(x)
_ — _

2n

2n—1
which proves (7.42).
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We now use (7.42) to derive an expression of the form

a(x) =M+ ¢l x)E (7.43)

where the coefficients ¢ (e, x) are either —i—% or —%. Let 8;"/" =1lifa’x =i and

=0if a’x #£i(i =0, 1). We can then write (7.42) as

a(x) =M+ [8§FES + 6% EY] (7.44)
o

From (7.41) we have
E = (~DXZC(E§ — Ef)

and hence
EY — EY = (=1)X% E® (7.45)

Also, from (7.39) and (7.40), we have
E§+Ef=0 (7.46)
so that from (7.45) and (7.46) it follows that
R O e C [ e (7.47)
Substituting (7.47) into (7.44), we obtain

alx) =M + % Z [58""(_1)2% _ 8‘1!,16(_1)20@] E“

— M+ 1Y (-pZe (ag’x — 3‘1’"") E® (7.48)
o
Now ) )
¥ —=8*= 1 ifax=0
=—-1 ifa'x=1
that is,

(Sg’x _ 8111’x — (_l)a’x — (_1)7a’x
and hence (7.48) becomes

a(x) =M+ 3y (—HZis(=0pe (7:49)

With regard to the contribution of E* to a(x), we can state the following rules.
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RULE 2 The effect or interaction A{'A3?--- A," enters positively into the
treatment combination response a;'a,” - - - a," if § (defined in rule 1) is even and
it enters negatively if § is odd.

The reader may verify that for n = 3 this rule agrees with the expressions
given in (7.29) and that (7.49) does indeed agree with (7.30). Also, the reader will
notice that rule 2 is an exact analog to rule 1. Hence rule 2 can be reformulated
as rule 2’

RULE 2/ If A]'AS*--- A}" has an odd (even) number of letters, then it will
enter positively into a;'a5” - - - ay" if both have an odd (even) number of letters
. . . . . x| X2 Xn :
in common, and it will enter negatively into a; a,” - - - a," if both have an even

(odd) number of letters in common.

This rule will become important in our discussion of systems of confounding
(see Section 8.6) and fractional replication (see Section 13.3).

7.4.3 Generalized Interactions

To conclude this section we shall introduce the concept of a generalized interac-
tion, a concept that also will take on great importance in connection with systems
of confounding and fractional replication. To motivate this concept we return
briefly to the 2> case and arrange the treatment combinations in the following
2 x 2 table:

B
bo by
ag apbg apby
) oj e
aj a1b0 aib;

The contrast defining main effects A, B and the interaction AB can then be
written down symbolically in terms of the cell labels , e, as

as [3+[4)-[1)- 2]
5: [2+[1)-[0- 3
az: [+[2--[

Returning to the 2" case, let X and Y denote two interactions, that is,

X = A?IA‘;Z "'A;)zln
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and 5 5
Yy = A Al Ab

which are defined by the partitions ), ojx; = 0,1 and ) ; Bix; = 0, 1, respec-
tively. Now, any pair of equations

ZO{[)C,' =k
i

Y Bixi=t
i

with k, £ =0, 1 is satisfied by 2”2 treatment combinations. Accordingly, we
can arrange the 2" treatment combinations in a 2 x 2 table as follows:

Y Bixi =
0 1

0[] [2]
vl 4]
There are three orthogonal comparisons among the four cells, namely
x: [3]+[4] - [i]-
v: [2]+[4)-[1]-

Z o X; =

The remaining contrast

+[4]-[2]-[3] (7.50)

corresponds to that of the AB interaction in the 22 case above. We shall therefore
denote the contrast (7.50) by XY and call it the generalized interaction (GI)
of X and Y. From the table above it follows immediately that the treatment
combinations in the four cells satisfy the following equations:

: Zaix,- =0 Zﬂixi =0 hence also Z(a,- 4+ Bi)xi =0
i i

1

[02]

: Zaix,- =0 Zﬁ;xi =1 hence also Z(ai + Bix; =1
i i i

]

: Zaix,- =1 Zﬂixi =0 hence also Z(a,- 4+ Bxi =1
i i i

=]

: Zaix,- =1 Zﬁ;xi =1 hence also Z(ai + Bi)x; =0
i i i
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According to (7.50), the generalized interaction XY can then also be defined in
terms of the partition

D (@i + Bi)xi =0.1 mod 2
i

This is the reason why we shall write the GI between X = A{'A*--- Ay" and
Y = A’f' Azﬂ2 - AP formally as

XY = A71+51A;2+ﬂ2 . AszFﬂn (7.51)

where the superscripts in (7.51) are reduced modulo 2, letters with superscript O
being deleted and letters with superscript 1 being retained following previously
established rules.

7.5 INTERPRETATION OF EFFECTS AND INTERACTIONS

The main effects and interactions are the building blocks of the theory of facto-
rial experiments, a fact that will become more and more obvious in subsequent
chapters. We have introduced the notion of main effects and interactions in such a
way that they can be readily interpreted (see Sections 7.2 and 7.3). For example,
the main effect A is the effect of changing factor A from the O level to the 1
level, averaging over all other factors, or the interaction AB is a measure of the
extent that the simple effects of A at both levels of B, averaged over all other
factors, are different from each other.

In addition to main effects and interactions, however, there may be other
effects that are of interest to the experimenter. For example, in the presence of
interaction AB, the simple effects A(bg) and A(b;) may be of interest, or we
may ask: What is the effect of factor A when factor C is at the O level and we
average over the levels of factor B? Using the previously established notation,
we denote this effect by A(b, cg), and it is given by

A(b, co) = 5 (arbico — apbico + arboco — aghoco)

= 3ab—b+a— (1)] (7.52)
Alternatively, (7.52) can be expressed as
A(b,co) = A — AC (7.53)
which follows immediately from the definition of A and AC, namely

A=ga—=Db+De+1)
AC =3@—=Db+ -1
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so that
A—AC=1@—-Db+1)
which is (7.52). More formally, we write (7.53) as the symbolic product
A(b, co) = A(1 - C)

As another example we may ask: What is the interaction between factors A and
B if factor C is at the 1 level and we average over the levels of factor D? The
answer, of course, is
AB(cy,d) = J(arbieidy — arbocido — apbicido + agbocido)
= Alf(abc —ac —bc+ c+abed —acd — bed + cd)
=3@—1®—Ded+1)
=AB+ ABC
=AB(1+0C) (7.54)
We shall refer to effects and interactions such as (7.52) and (7.54) as partial
interactions. For notational purposes in the 2" case we partition the set N =
(A1, Ag, ..., Ay) of n factors into four disjoint sets:
N] = Ail’ Al'z, RN Ai"l
No=Aj, A}, ..., Aj
N3 = Akl, Akz, Ceey Akn3
Ny =Agy, Agys .-, Ay,
with Ny UN2UNsUNg=N,nj+np+n3+ng=n and N; is always
nonempty. We then write the partial interaction of all factors in Nj with all

factors in N, at the O level, all factors in N3 at the 1 level, and averaging over
both levels of all factors in Ny as

AjApy - A,‘n1 (ajlﬁo, e @y 03 Gk Ly ey Gy 1 gyyee-s 5@n4) (7.55)

By definition, (7.55) is given in terms of treatment combinations as

W% [T@-=0 ] & [] @+n (7.56)

ieN] keN3 LeNy
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For purposes of expressing (7.55) in terms of effects and interactions, we
rewrite (7.56) as

! 1
onitng—1 l_[ (ai = 1) l_[ E[(aerl)_(“J—l)]

ieN| JjeN,

1
[T st@+D+@ -0 [] @+D

keN3 LeNy

Using (7.34) this product can then be written as the symbolic product

[Ta [Ta-ap [T a+4a (7.57)

ieN| JjeN, keN3

In other words: After expansion (7.57) provides a representation of the partial
interaction (7.55) in terms of effects and interactions. This representation rather
than (7.56) may prove to be useful if (estimates of) effects and interactions are
available, but the individual responses are not (see also Section 13.8).

We illustrate this result by the following example.

Example 7.1 Let n =7, that is, we have factors A, As, ..., A7. Suppose
Ni = (A1, A2), Ny = (A3, Ay), N3 = (As), and N4 = (Ag, A7). Then
A1 Az(az0, aqo, asi, ag, a7) = A1Az — A1A2A3 — A1A2A4 + A1 A A3 Ay
+ A1AxAs — A1 AxA3As — A1ArA4As
+ A1A2A3A4As5 O

7.6 ANALYSIS OF FACTORIAL EXPERIMENTS

So far we have considered main effects and interactions as contrasts among the
true treatment combination responses. These true responses are, of course, not
available, but rather estimates of the true responses as the treatment combinations
are used with a particular error control design. Consequently, we obtain estimates
of the true effects and interactions.

7.6.1 Linear Models

In order to obtain such estimates, we utilize the fact that under additivity the
observed yields will be given by a general linear model that characterizes the
error control design that has been used. In its most general form such a model
can be written as (using the notation of Section 1.4.2)

y=ud+ Xsd+ Xov (7.58)
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where y is the vector of observations, § is the vector of blocking effects, T is the
vector of treatment combination effects (by which we mean the true treatment
combination response expressed as deviation from the true mean response), and
X5 and X, are known design-model matrices. For example, for the completely
randomized design (see 1.6) (7.58) is of the form

y=ud+X.t (7.59)
For a randomized complete block design (see 1.9) it is of the form
y=uJd+XgB+ X1 (7.60)
or for a Latin square design (see 1.10) it is of the form
y=pd+X,p+X,y+X:7 (7.61)

The effects and interactions, as defined earlier, are then expressible as linear
contrasts among the treatment combination effects, and we know that under the
GMNLM (see 1.4.17) the best estimate of such a contrast is the same contrast
of the estimates of the treatment effects. For models (7.59), (7.60), and (7.61)
with the same number, r say, of replications for each treatment combination,
the best estimate of any treatment contrast is given by the same contrast of the
treatment means, that is, to obtain the estimate of the interaction A{' A5 --- A"
we substitute for a(x) = A)fl A;z .-+ Ay" its observed mean, a(x) say, into (7.34),
using rule 1 of Section 7.4.1.

7.6.2 Yates Algorithm

A convenient way of obtaining those estimates is to apply the Yates algorithm
(Yates, 1937b) which consists of adding and subtracting the treatment means in
an appropriate way through several steps. Mainly for historical reasons we shall
illustrate this algorithm for the 23 factorial. The steps are as follows:

Step 0: Write down the observed treatment means in standard order. (This is
important since otherwise the algorithm will not work.)

Step 1: Starting from the top, add adjacent pairs of treatment means and record
them in the first 4 (= 2”_') positions; for the same pairs, subtract the
first from the second treatment mean and record those differences in
the next 4 (= 2"1) positions.

Step 2: Repeat step 1 with the numbers recorded in step 1 (column 1).

Step 3: Repeat step 1 with the numbers obtained in step 2 (column 2); the
numbers obtained are SM 4A 4B, . 4ABC that is, apart from
a constant the estimates of the mean response and of effects and
interactions.
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The three steps in terms of the formal expressions of the treatment means (leaving
off the bar for convenience) are indicated below:

Step

0 1 2 3 Estimate

I a+1 @+Db+1)  @+DG+De+1) 8M
ba+1) (@+D@+Dec (@—Db+De+1) 44
ac@+1) (@a—Db+1) (@+Db-1)(c+1) 4B
ab bea+1) @—Db+1c (@—1)B-1)(c+1) 4AB
c a-—1 @+DB-1) (@+DbB+Dc—1) 4C
ac bla—1) (a+D)B-1c (@—1)bB+1)c—1) 4AC
bc aca—1) @—-D®B-1 (@+D®B-1—-1) 4BC
abe bea—1) @—DbB—-1c (@—1D)bB-1)(c—1) 4ABC
For the 2" factorial this algorithm requires n steps and at the last step we
obtain an estimate of 2" 1 A{TA5? ... A" in standard order.
An inverse algorithm (Good, 1958) can be used to express the treatment com-
bination responses in terms of effects and interactions. The mean, effects, and

interactions are arranged in reverse standard order, and then we proceed exactly
as in the Yates algorithm. We shall illustrate this again for the 2° factorial:

Step

0 1 2 3
(a—1)b—-1)(c—1)=4ABC 2a(b—1)(c—1) 4ab(c—1) 8abc
(a+ DB —-1)(c—1)=4BC 2a(b+ 1)(c—1) 4dab(c+1) 8bc
(a—DB+1)(c—-1)=4AC 2a(b— 1)(c+1) 4b(c—1) 8ac
@+ DB+ 1D(c—-1)=4C 2a(b+ 1)(c+ 1) 4b(c+1) 8¢
(a—1)bB-1)(c+1)=4AB 2(b—1)(c—1) 4da(c—1) 8ab
(a+ 1B -—-1)(c+1)=4B 2+ D(c—1) 4da(c+1) 8
(a—DB+1D(c+1)=4A 2b—D(c+1)  4(c—-1) 8a
(a+DO+Dc+1) =8M 20+ De+1) 4+ 1) 8(1)

This shows that if we start at step 0 with %ABC, % BC, ..., %A, M we obtain
the treatment combination response averages in reverse standard order. This
method thus provides an easy way of estimating the residuals.

A modification of the Yates algorithm has been given by Riedwyl (1998) with
a view toward applications for systems of confounding (Chapters 8 and 9) and
fractional factorials (Chapter 13).
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7.6.3 Variances of Estimators

Returning now to the estimation of effects and interactions, we know that each
effect and interaction is estimated as

1
F[(sum of 2"~ ! response means)

— (sum of 2"~! response means)]

where each response mean is based on r replications. Since each observation has
variance o2 and since all the observations can be treated as being uncorrelated
(see the argument in 1.6.3.4), we obtain

var(E%) = L 2 (7.62)
Topn-27e ’

for all E* = A‘fl Agz .-+ Ap". Since all the effects and interactions are orthogonal
to each other, so are their estimates, and hence the variance of a partial inter-
action (see Section 7.5) consisting of a linear combination of m interactions is
mo? / r2n—2

p .

7.6.4 Analysis of Variance

To estimate the variance (7.62) and that of partial interactions we need to estimate
082. This is accomplished through the ANOVA associated with the basic model
(7.58) as outlined in Chapter 1.4. Such an ANOVA can, of course, be written out
explicitly for models (7.59), (7.60), and (7.61) according to the general rules for
such error control designs discussed in Chapters 1.6, 1.9, and 1.10, respectively.
In any case, MS(Error) is an estimate of 03.

We shall comment briefly on the sum of squares due to treatments,
SS(Treatments) say, which in the present situation has t — 1 = 2" — 1 d.f. Using
the fact that effects and interactions represent 2" — 1 orthogonal comparisons
of the treatment effects, we can partition SS(Treatments) into 2" — 1 orthogonal
1-d.f. sums of squares associated with these comparisons (see Chapter 1.7). We
denote the sum of squares associated with E* = A{'A5? - .- A" by SS(E®), and
according to the general rules (see 1.7.2.3)

_ o2 [ET (7.63)

using (7.62).
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Another way of writing SS(E®), a generalization of which will be used in
later chapters, is as follows. We recall from (7.41) that

E* = (—1)2% (E¥ — E%)
In terms of observed quantities we then write
E* = (-2 (E¥ — EY)
It follows then from (7.63) that
SS (E%) = r2" 2 (B¢ — E¥)° (7.64)
Using the fact that Eg + E‘l" = 0 we can rewrite (7.64) as
SS (E%) = r2"2 [E& — B + E¢ + E¢]°

= r2" (Ef)”

or
SS (E%) = r2" 2 [E§ — E¢ — E§ — E¥]°
= r2" (EY)’
or ~ 2 ~ 2
sS (E%) = 42" [(Eg)" + (E%)’]
=2 [(Eg) + (E%)’] (7.65)
Now

1
= ol 2 BT (7.66)
r

so that, using (7.63) and (7.66),
E[SS(E%)] = o2 + r2" 2 [E*] (7.67)
Under the GMNLM we can then test
Hy: E* =0
by means of the F' test (as an approximation to the randomization test)

_ SS(E%)
" MS(Error)



ANALYSIS OF FACTORIAL EXPERIMENTS 267

Table 7.1 ANOVA for 23 Factorial in RCBD

Source d.f. SS E(MS)
Blocks r—1 8 Z@i... -3.)°
i
Treatments 7 r Z(y.jke -y..)?
ke
A 1 2r[AJ? o2 +2r[AP
B 1 2B o2 +2r[B]?
AB 1 2r[ABT? o2 +2r[ABT
c 1 2r[C12 o2 +2r[C]?
AC 1 2r[ACT? o2 4 2r[AC?
BC 1 2r[BC]? 02 +2r[BCJ?
ABC 1 2r[ABCT? o2+ 2r[ABCT?
Error =D Y Okt = Vi = Ve +5.0° 0f
ijke
Total 8r—1 Y Gijee =)’
ijke

As an example of the present discussion we give in Table 7.1 the ANOVA of
a 23 experiment in a RCB design with r blocks, using the model equation

Vijke = 1+ Bi + Tjke + eijke (7.68)

7.6.5 Numerical Examples

To illustrate some aspects of the theoretical developments in the previous sections,
we shall consider two numerical examples. The analysis will be performed by
using SAS PROC GLM and PROC MIXED (SAS Institute, 1999-2001), and we
shall provide some comments on the output.

Example 7.2 Consider a 23 factorial in an RCBD with r = 2 blocks. The
data and the analysis, using the model equation (7.68), are given in Table 7.2.

Although most of the output is self-explanatory we shall make the following
comments:

1. Estimates of the main and interaction effects can be obtained by using the
ESTIMATE option. The coefficients for the contrasts are obtained by uti-
lizing the relationship between the various parameterizations, as explained
in Section 7.2.3.

2. The estimates of the effects are, of course, obtained as linear contrasts
among the LSMEANS using the coefficients as specified in the ESTIMATE
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Table 7.2 Data and Analysis for 23 Factorial in a RCBD

options pageno=1 nodate;
data examplel;
input block A B C y @@;

datalines;

100013 110020 101014 1110 17
100121 110125 101119 111122
200024 210027 201028 211031
200135 210139 201134 211140
run;

proc print data=examplel;

titlel 'TABLE 7.2';

title2 'DATA FOR 2**3 FACTORIAL';
title3 'IN A RCBD';

run;

proc glm data=examplel;

class block A B C;

model y=block A|B|C;

lsmeans A B C A*B A*C B*C A*B*C/stderr;

contrast 'Main effect A' A -1 1;

estimate 'Main effect A' A -1 1;

contrast 'Interaction AB' A*B .5 -.5 -.5 .5;

estimate 'Interaction AB' A*B .5 -.5 -.5 .5;

contrast 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25
estimate 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25
titlel 'ANALYSIS OF 2**3 FACTORIAL';

title2 'IN A RCBD';

run;

Obs block A B C
1 1 0 0 0
2 1 1 0 0
3 1 0 1 0
4 1 1 1 0
5 1 0 0 1
6 1 1 0 1
7 1 0 1 1
8 1 1 1 1
9 2 0 0 0

10 2 1 0 0
11 2 0 1 0
12 2 1 1 0
13 2 0 0 1
14 2 1 0 1

-.25
-.25

13
20
14
17
21
25
19
22
24
27
28
31
35
39

-.25
-.25

.25;
.25;
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15 2 0 1 1 34
16 2 1 1 1 40

ANALYSIS OF 2**3 FACTORIAL

IN A RCBD

The GLM Procedure

Class Level Information

Class Levels Values
block 2 12
A 2 01
B 2 01
C 2 01

Number of observations 16
The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value
Model 8 1026.000000 128.250000 24.98
Error 7 35.937500 5.133929
Corrected Total 15 1061.937500

R-Square Coeff Var Root MSE y Mean

0.966159 8.863833 2.265817 25.56250
Source DF Type I SS Mean Square F Value
block 1 715.5625000 715.5625000 139.38
A 1 68.0625000 68.0625000 13.26
B 1 0.0625000 0.0625000 0.01
A*B 1 0.5625000 0.5625000 0.11
C 1 232.5625000 232.5625000 45.30
A*C 1 0.0625000 0.0625000 0.01
B*C 1 7.5625000 7.5625000 1.47
A*B*C 1 1.5625000 1.5625000 0.30

Pr > F

0.0002

Pr > F

O O O O O O O A

.0001
.0083
.9152
.7503
.0003
.9152
.2642
.5983
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Table 7.2 (Continued)

Source DF Type III SS Mean Square F Value Pr > F
block 1 715.5625000 715.5625000 139.38 <.0001
A 1 68.0625000 68.0625000 13.26 0.0083
B 1 0.0625000 0.0625000 0.01 0.9152
A*B 1 0.5625000 0.5625000 0.11 0.7503
Cc 1 232.5625000 232.5625000 45.30 0.0003
A*C 1 0.0625000 0.0625000 0.01 0.9152
B*C 1 7.5625000 7.5625000 1.47 0.2642
A*B*C 1 1.5625000 1.5625000 0.30 0.5983

Least Squares Means

Standard
A y LSMEAN Error Pr > |t
23.5000000 0.8010874 <.0001
27.6250000 0.8010874 <.0001
Standard
B y LSMEAN Error Pr > |t]
25.5000000 0.8010874 <.0001
25.6250000 0.8010874 <.0001
Standard
c y LSMEAN Error Pr > |t]
21.7500000 0.8010874 <.0001
29.3750000 0.8010874 <.0001
Standard
A B y LSMEAN Error Pr > |t
0 0 23.2500000 1.1329087 <.0001
0 1 23.7500000 1.1329087 <.0001
1 0 27.7500000 1.1329087 <.0001
1 1 27.5000000 1.1329087 <.0001
Standard
A c y LSMEAN Error Pr > |t]
0 0 19.7500000 1.1329087 <.0001
0 1 27.2500000 1.1329087 <.0001
1 0 23.7500000 1.1329087 <.0001
1 1 31.5000000 1.1329087 <.0001
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B C
0 0
0 1
1 0
1 1

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

Dependent Variable: y

Contrast DF
Main effect A 1
Interaction AB 1

iy

Interaction ABC

Parameter

Main effect A
Interaction AB

Interaction ABC

R O K O K O Fr O

21.
30.

22

28.

y LSMEAN

0000000
0000000

.5000000

18.
28.
21.
26.
.5000000
.0000000
24.
31.

23
32

7500000

y LSMEAN

5000000
0000000
0000000
5000000

0000000
0000000

Contrast SS

68.06250000
0.56250000
1.56250000

Estimate

4.12500000
-0.37500000
0.62500000

Standard
Error Pr > |t]
1.1329087 <.0001
1.1329087 <.0001
1.1329087 <.0001
1.1329087 <.0001
Standard
Error Pr > |t
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
1.6021749 <.0001
Mean Square F Value Pr > F
68.06250000 13.26 0.0083
0.56250000 0.11 0.7503
1.56250000 0.30 0.5983
Standard
Error t Value Pr > |t]
.13290871 3.64 0.0083
.13290871 -0.33 0.7503
.13290871 0.55 0.5983

statements. Recall that for an orthogonal design the least-squares means
are just the ordinary means. Thus, we have, for example,

—

AB

IILSMEAN(agho) — LSMEAN(agh)
— LSMEAN(a; by) + LSMEAN(a;b;)]

5G00. — .01 = Y10. + Y1)
12325 - 23.75 — 27.75 + 21.5)
—.375

(7.69)
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3. The E’?\l‘.’ terms, as introduced in Section 7.4.2, can easily be obtained from
the LSMEANS. For example,

EMO - 1 [LSMEAN(agbg) + LSMEAN(a; b)]

— overall mean

200+ V1) — V...
= % (23.25 4+ 27.50) — 25.5625
= —.1875

and

EMY = 1875
4. From the estimate in comment 2 and (7.63)we obtain
SS(AB) =2-2-(—.375)* = .5625
The same value is, of course, obtained in the ANOVA table and through

the CONTRAST statement.

5. The standard error (SE) for the estimate of an effect is provided through the
ESTIMATE statement. It can also be obtained directly from the information
provided for the LSMEANS. For example, making use of (7.69), we obtain

Var(AB) = 1 - 4var [LSMEAN(agho)]
= (1.133)% = 1.283

SE(AB) = /var(AB) = 1.133

The same result can be obtained by substituting in (7.62) the estimate for
o2, namely 33 = MS(Error) = 5.134 from the ANOVA table,

SE(AB) = /1 .5.134 = 1.133 O

and hence

Example 7.3 The following is an example of combining all three elements
of an experimental design, namely error control design, treatment design, and
sampling design (see 1.2.23 and 1.3). More specifically, we consider a 2° factorial
in an RCBD with ' = 2 blocks and subsampling (n = 2). The data and the
analysis are given in Table 7.3.
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Table 7.3 Data and Analysis for 23 Factorial in a RCBD With Subsampling

options pageno=1 nodate;
data example2;
input block A B C y @@;

datalines;

100013 1 00014 110020 1100 22
101014 101011 111017 1110 17
100121 100122 110125 110123
101119 101120 111122 111123
200024 200026 210027 2100 26
201028 201027 211031 211032
2001335 200137 210139 2101239
201134 201135 211140 2111 42

i

run;

proc print data=example2;

titlel 'TABLE 7.3';

title2 'DATA FOR 2**3 FACTORIAL';
title3 'IN A RCBD WITH SUBSAMPLING';

run;

proc glm data=example2;

class block A B C;

model y=block A|B|C block*A*B*C;

test H=A B C A*B A*C B*C A*B*C E=block*A*B*C;
titlel 'ANALYSIS OF 2**3 FACTORIAL';

title2 'IN A RCBD WITH SUBSAMPLING';

run;

proc mixed data=example2;

class block A B C;

model y=block A|B|C;

random block*A*B*C;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B .5 -.5 -.5 .5;

estimate 'Interaction ABC' A*B*C -.25 .25 .25 -.25 .25 -.25 -.25 .25;

run;

Obs block A B C Y
1 1 0 0 0 13
2 1 0 0 0 14
3 1 1 0 0 20
4 1 1 0 0 22
5 1 0 1 0 14
6 1 0 1 0 11
7 1 1 1 0 17




274 TWO-LEVEL FACTORIAL DESIGNS

Table 7.2 (Continued)

8 1 1 1 0 17
9 1 0 0 1 21
10 1 0 0 1 22
11 1 1 0 1 25
12 1 1 0 1 23
13 1 0 1 1 19
14 1 0 1 1 20
15 1 1 1 1 22
16 1 1 1 1 23
17 2 0 0 0 24
18 2 0 0 0 26
19 2 1 0 0 27
20 2 1 0 0 26
21 2 0 1 0 28
22 2 0 1 0 27
23 2 1 1 0 31
24 2 1 1 0 32
25 2 0 0 1 35
26 2 0 0 1 37
27 2 1 0 1 39
28 2 1 0 1 39
29 2 0 1 1 34
30 2 0 1 1 35
31 2 1 1 1 40
32 2 1 1 1 42
ANALYSIS OF 2**3 FACTORIAL
IN A RCBD WITH SUBSAMPLING
The GLM Procedure
Class Level Information

Class Levels Values
block 2 12
A 2 01
B 2 01
Cc 2 01
Number of observations 32
Dependent Variable: y
Sum of
Source DF Squares Mean Square F Value Pr > F

Model 15 2244.968750 149.664583 129.44 <.0001



ANALYSIS OF FACTORIAL EXPERIMENTS

Table 7.3 (Continued)
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Error 16 18.500000 1.156250
Corrected Total 31 2263.468750
R-Square Coeff Var Root MSE
0.991827 4.170824 1.075291

Source DF Type I SS Mean Square
block 1 1498.781250 1498.781250
A 1 132.031250 132.031250
B 1 0.031250 0.031250
A*B 1 1.531250 1.531250
c 1 504.031250 504.031250
A*C 1 0.781250 0.781250
B*C 1 3.781250 3.781250
A*B*C 1 2.531250 2.531250
block*A*B*C 7 101.468750 14.495536
Source DF Type III SS Mean Square
block 1 1498.781250 1498.781250
A 1 132.031250 132.031250
B 1 0.031250 0.031250
A*B 1 1.531250 1.531250
o] 1 504.031250 504.031250
A*C 1 0.781250 0.781250
B*C 1 3.781250 3.781250
A*B*C 1 2.531250 2.531250
block*A*B*C 7 101.468750 14.495536

y Mean

25.78125

F Value

.24
.19
.03
.32
.92
.68
.27
.19
12.

54

F Value

.24
.19
.03
.32
.92
.68
.27
.19
12.

54

Pr > F

<.0001
<.0001
0.8715
0.2667
<.0001
0.4232
0.0894
0.1584
<.0001

Pr > F

<.0001
<.0001
0.8715
0.2667
<.0001
0.4232
0.0894
0.1584
<.0001

Tests of Hypotheses Using the Type III MS for block*A*B*C as an Error Term

Source DF Type III SS Mean Square

1 132.0312500 132.0312500
B 1 0.0312500 0.0312500
C 1 504.0312500 504.0312500
A*B 1 1.5312500 1.5312500
AxC 1 0.7812500 0.7812500
B*C 1 3.7812500 3.7812500
A*B*C 1 2.5312500 2.5312500

F Value

o O O O bk O v

.11
.00
.77
.11
.05
.26
.17

Pr > F

0.0194
0.9643
0.0006
0.7547
0.8231
0.6252
0.6886
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Table 7.3 (Continued)

TWO-LEVEL FACTORIAL DESIGNS

The Mixed Procedure

Model Information

Data Set

Dependent Variable
Covariance Structure
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method

WORK.EXAMPLE2

Y

Variance Components
REML

Profile
Model-Based

Containment

Class Level Information

Class Levels Values
block 2 12
A 2 01
B 2 01
C 2 01
Dimensions
Covariance Parameters 2
Columns in X 29
Columns in Z 16
Subjects 1
Max Obs Per Subject 32
Observations Used 32
Observations Not Used 0
Total Observations 32

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
0 1 116.43092171
1 1 99.48076616 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm

block*A*B*C

Residual

Estimate

6.6696
1.1563
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Table 7.3 (Continued)
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Effect

block
A

B

A*B

c
A*C
B*C
A*B*C

Label

Main effect A
Interaction AB

Interaction ABC

Fit Statistics

-2 Res Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

99.
103.
104.
105.

Type 3 Tests of Fixed Effects

Num Den
DF DF F Value
1 7 103.40
1 7 9.11
1 7 0.00
1 7 0.11
1 7 34.77
1 7 0.05
1 7 0.26
1 7 0.17
Estimates
Standard
Estimate Error DF
4.0625 1.3461 7
0.4375 1.3461 7
0.5625 1.3461 7

o K U un

Pr > F

.0001
.0194
.9643
.7547
.0006
.8231
.6252
.6886

O O O O O O O A

t Value

3.02
0.33
0.42

Pr > |t]

0.0194
0.7547
0.6886

The analysis is based on the model

Yijkem = M+ Bi + Tjke + €ijxe + Nijkem

(see 1.6.9.1).

The following comments are intended to relate the output to the theoretical

developments:

1. SAS PROC GLM is being used only to obtain an ANOVA table. Because
of subsampling it is necessary to explicitly define the experimental error
as block * A % B % C in order to perform the correct tests about all effects,
using MS(X)/MS(block * A * B x C), where X represents any of the seven
effects and MS(Experimental error) = MS(block * A % B * C) represents
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technically speaking, the 7 d.f. associated with the seven 1-d.f. interactions
block * X.

2. Specitying the correct error term is not necessary when using SAS PROC
MIXED because the random term block * A * B * C automatically assumes
that role. This can be verified by comparing the tests performed by PROC
GLM and PROC MIXED (note, however, that the test about block effects
should be ignored; see 1.9.2.6).

3. PROC MIXED provides REML estimates of o and o7 (PROC GLM
provides an estimate of a,? only). We obtain

G2 =6.669 G =1.1563

4. In estimating the various effects, and their standard errors as illustrated
here for A, AB, and ABC, by means of the ESTIMATE statement, PROC
MIXED uses the correct error term, namely MS(Experimental error).

5. The above statement is true also for the LSMEANS, and their standard
error. O

7.6.6 Use of Only One Replicate

In the previous section we have assumed that each treatment combination is repli-
cated r times in a certain error control design such as a CRD or a RCBD. In any
case we usually have r > 1, according to the general principles of experimental
design. One can visualize, however, that in a 2" factorial experiment (particularly
an exploratory-type experiment) the number of treatment combinations can be
rather large, in fact so large that the experimenter cannot afford to replicate the
treatments. How should we deal with such a situation?

Even with only one replicate, that is, r = 1, we can, of course, estimate all
effects and interactions in the usual way. We cannot, however, estimate their
variances as there are no d.f. left for error in the ANOVA. We then recall (see
Chapter 1.11) that many-factor, that is, higher order, interactions are often negli-
gible. Assuming that they are actually zero, it follows then from (7.67) that the
expected value of their sums of squares is 062. The idea then is to pool all sums
of squares associated with interactions assumed (a priori) to be negligible and
treat the resulting sum of squares as SS(Error) for analysis purposes. Even if the
interactions are not zero (and they seldom are), this procedure will result in a
conservative F test for the remaining effects and interactions.



CHAPTER 8

Confounding in 2" Factorial Designs

8.1 INTRODUCTION

It is well known that the experimental error variance is related to the size of the
block, increasing to a greater or lesser degree as the block size increases. If we
were testing 5 factors each at 2 levels, we would have 32 treatment combinations
and hence, if we were to use a randomized complete block design, we would
require blocks of size 32 in order to compare them. In field experiments it is
generally acknowledged that, if at all possible, the size of the block should
not be greater than 16 and if possible 8, though, of course, there are no hard
and fast rules, and one experiment with blocks of 16 EUs may well give a
lower experimental error than another on similar material with blocks of 8 EUs.
In other situations, as, for example, in industrial experimentation, it may be
impossible to have blocks as large as this without randomizing over factors that
contribute considerable variation, thereby causing large experimental error. Or in
experiments with animals (e.g. mice), the litter size determines and hence limits
the block size. It is desirable, therefore, to have some means of reducing the block
size or of making use of blocks of smaller size (i.e., incomplete blocks), and for
this purpose the device of confounding has been introduced. It is a fundamental
concept in the theory and application of factorial experiments.

8.1.1 A Simple Example

We have introduced the concept of confounding certain interactions (or effects,
in general) with block effects in Section I.11.5. The basic idea is that information
about unimportant, that is, usually negligible interactions is sacrificed in the sense
that only biased estimates of the confounded interactions are available, and the
bias is a linear function (contrast) of block effects. For example, for the 23
factorial (with factors A, B, C) with blocks of size 4, we might confound the

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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3-factor interaction, ABC, with blocks that lead to the arrangement

Block 1 (1), ab, ac, bc

8.1)
Block 2 a,b,c,abc
Since for each observation we have derived a linear model of the form
Observation = mean + block effect + treatment effect + error (8.2)

(see Sections 1.9.2 and 1.3) and since block 1 contains all the treatment combi-
nations that enter negatively into ABC (see Section 7.3) and block 2 contains
those entering positively, we have

E(ABC) = ABC + (2 — B1) (8.3)

where 81, B, are the block effects, in other words, the interaction ABC and the
difference of block effects, 8, — B1, cannot be separated. We say, for short, that
ABC is confounded with blocks.

8.1.2 Comparison of Information

As we have mentioned earlier (see Section 1.11.2) the main value of the facto-
rial structure lies in the fact that in many situations the high-order interactions
are of inappreciable magnitude. If in the situation described above the 3-factor
interaction can be assumed to be negligible, then the basic arrangement (8.1) is
quite satisfactory since it allows the unbiased estimation of all main effects and
2-factor interactions. For practical purposes, however, one would have to repeat
the basic arrangement (8.1), say r times (using, of course, a different randomiza-
tion every time). Thus, with r replications for each treatment combination, we
can compare the information on each effect and interaction obtained from the
present design with that obtained from a design without confounding, that is, the
RCBD. Using the reciprocal of the true variance of each estimator as a measure
of the information on each effect and interaction, and denoting by akz the true
error variance [of the error in model (8.2)] with blocks of size k, we have the
results of Table 8.1. Since generally 042 < 082, we have increased the information
on main effects and 2-factor interactions in the ratio 082 /of by using blocks of
size 4 at the expense of obtaining zero information on the 3-factor interaction
instead of 2r/c782 units.

8.1.3 Basic Analysis

Before discussing the problem of confounding and appropriate systems of con-
founding more generally and more formally, we shall conclude this introductory
section by outlining briefly the analysis of the experiment discussed above. As
indicated earlier, all main effects and 2-factor interactions are estimated in the
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Table 8.1 Comparison of Information

Effect or Information with Blocks of
Interaction 8 Units 4 Units

A
B
AB 2r
C 2r o2
AC 082

BC
ABC Zero

usual way based upon the average responses from the r replicates. We can, for
example, use the Yates algorithm and obtain the estimates A, B, AB, C, AC, BC.
We also obtain A/I-i\C , but we know already that it is an estimate of ABC plus
a function of block effect differences. In order to distinguish it from unbiased
estimates we shall denote it by ABC rather than ABC.

For purposes of writing out the analysis of variance we rewrite model (8.2)
more explicitly as

Yijkem = 1+ Bij + Tkem + €ijkem (8.4)

where f;; is the effect of the jth block in the ith replicate ( =1,2,...,r; j =
1,2), tkem is the effect of the treatment combination axbyc,, (k, £, m = 0, 1), and
eijkem 18 the usual error, that is, experimental and observational error.

We then have the usual breakdown of the total sum of squares into the block
sum of squares, the treatment sum of squares, and the error sum of squares as
exhibited in Table 8.2. The treatment sum of squares is partitioned in the usual
way (as explained in Chapter 7), except that there is no SS4pc.

We close this section with a few remarks about some of the features of
Table 8.2:

1. Due to the confounding of ABC we have only 6 d.f. for treatments, which
means that this incomplete block design is a disconnected design (see
Section 1.5). It is, of course, disconnected by choice.

2. The sums of squares for estimable (and unconfounded) main effects and
interactions are obtained as if an RCBD had been used, that is, by linear
combinations of treatment means. This is contrary to what would have
happened had we assigned the treatment combinations in other ways to
existing incomplete block designs, for example, BIB or PBIB designs. In
that case the method described in Section 1.3 would have to be used, that
is, treatment means would have to be replaced by least-squares means.

3. The statement above implies that the estimable effects are orthogonal to
block effects; that is, we have, for example, that SS(A|Blocks) = SS(A).
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Table 8.2 Analysis of Variance Table for 23 Factorial in Blocks of Size 4

Source Sum Expected
of Variation d.f. of Squares Mean Squares
1 2 yi.
Blocks 2r —1 7 Z Vi~
1./
1 y
Replicates -1 =Y oy
eplicates r 3 : Yi... 3
ABC 1 2r[ABCY?
Remainder r—1 Difference
Treatments 6
A 1 2r[AT? o2 +2r[AT?
B 1 2r[B]? 02 +2r[BJ?
AB 1 2r[AB]? 02 +2r[ABT?
C 1 2r[CP? o2 4 2r[CT?
AC 1 2r[ACT? 02 4+ 2r[ACT?
BC 1 2r[BCT? 02+ 2r[BCT?
Error 6(r—1) Difference 062
y2
Total 8r—1 > Viem — o
ijktm r

4.

o

Although it is not important at this point but will become important later
(see Section 8.7), SS(Blocks) can be partitioned in various ways. Recall
that we have r replicates, each consisting of two blocks. We therefore have

SS(Blocks) = SS(Replicates) + SS(Blocks/Replicates)

with r — 1 and r d.f., respectively. Now, the makeup of the two blocks
in each replicate is the same, that is, one block contains the treatment
combinations (1), ab, ac, bc and the other block contains a, b, c, abc.
Apart from block effects, the comparison between the two blocks is an
“estimate” of the (confounded) interaction ABC. Hence we can write

SS(Blocks/Replicates) = SS(ABC) + SS(Remainder)

where SS(ABC) is obtained in the usual way (see remark 2 above).

Although we indicate that SS(Error) and SS(Remainder) can be obtained
by subtraction, there is also a direct way of computing them. Each main
effect and 2-factor interaction can be estimated (unbiasedly) from the r
replicates and comparisons among the r estimates of a particular effect
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provide a measure of the interaction between replicates and the effect.
These interactions are, at least for our current discussion, assumed to be
negligible. Hence, these comparisons “belong to error” (see 1.4.17.1) and
the corresponding sums of squares, for example, SS(A x reps), are part of
SS(Error). Each such “interaction” sum of squares has » — 1 d.f. Since we
have six unconfounded effects we have six such sums of squares and hence
6(r — 1) d.f. for SS(Error). The same comment applies to SS(Remainder),
which, technically speaking, is equal to SS(ABC x reps). For a more pre-
cise discussion see Section 8.5.3.

8.2 SYSTEMS OF CONFOUNDING

In this section we present a formal method of constructing systems of con-
founding when the block sizes are equal to a power of 2. Such systems will be
obtained by considering different partitions of the factor space as represented by
corresponding systems of equations.

8.2.1 Blocks of Size 2”1

The general feature of the example discussed in the previous section is that the
block size is % the number of treatment combinations. As a consequence two
blocks are necessary to accommodate all possible treatment combinations, and
hence not all treatment contrasts are estimable. Through proper arrangement of
the treatment combinations in the blocks, it can be achieved that the nonestimable
contrast (i.e., the lost degree of freedom) is of minor or no importance.

For the 2" factorial with blocks of size k = 2"~! this means that we can
confound any interaction A{' A3* - -- A3" with blocks, and the basic arrangement
is obtained by assigning the set of treatment combinations satisfying

aixy +axxy + -+ apx, =0 mod 2
to one block and the set satisfying
ajxy +axxy + - +apx, =1 mod 2

to the other block. Typically, one would choose the interaction with all «; =
1(i =1,2,...,n), that is, the highest-order interaction.

8.2.2 Blocks of Size 2"—2

In many practical situations blocks of size 2"~! may still be too large or may
not be available. From a factorial point of view the next smaller block size is
then k = 2"~2. In this case four blocks are needed for the 2" treatment combi-
nations. It is obvious then that the 3 d.f. due to block comparisons are “lost”
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as far as treatment comparisons are concerned. With a proper allocation of the
treatment combinations to the blocks this means that three interactions will not
be estimable, that is, will have to be confounded with blocks. To obtain an appro-
priate arrangement, we assume first that the interaction E% = A{' A% --- Ap" is
negligible, that is, can be confounded with blocks. Based on the equations

o1x] +apxy+ -+ oux, =0 mod 2 (8.5)

o1x] +apxy+ -4+ oayx, =1 mod 2 (8.6)
we divide the 2" treatment combinations into two sets of 2"~ ! treatment combi-
nations each. We now assume further that the interaction Ef = AVTASE A
is also negligible. We can then subdivide the set of treatment combinations into
two sets of 2"~ ! based on the equations

Bix1 + Baxa + -+ -+ Bpxy =0 mod 2 8.7)

Bixi+ Paxo+ -+ Bpxy, =1 mod 2 (8.8)
Because of orthogonality, we know that among the 2”~! treatment combinations
that satisfy (8.5), exactly 2"~ satisfy also (8.7) and the remaining 2”2 satisfy
(8.8). The same statement can be made for the treatment combinations satisfying
(8.6). This then gives us a method of dividing the treatment combinations into 4

sets of 2"~2 treatment combinations, which are then assigned to the four blocks,
that is, we consider

Block 1: Zaix,- -0
i

Z,Bixi =0

Block 2: Zaixi =0
i

Z,Bixi =1

Block 3: Zaix,- =1
i

Z,Bixi =0

Block 4: Zaixi =1
i

Z,Bixi =1



SYSTEMS OF CONFOUNDING 285

where all equations are reduced modulo 2 as usual. In terms of block comparisons
E® and E# are defined (apart from a constant) as follows:

Block
1 2 3 4
A‘TIASZ'“ Azn + + _ _
AilglAgZ... Abn + - + —
The third orthogonal comparison is
Block
1 2 3 4
A‘i‘l""ﬂl A‘ZXZ+/32 . A‘r)l‘n""ﬁn ‘ + _ _ +

which we recognize immediately as the GI of E* and E# satisfying the equations
D e+ Bi)xi =0
i

and

D (a4 Bixi =1

The block contrasts given above also indicate at the same time with which
linear function of block effects each of the three interactions is confounded.

The main result of this discussion, however, is that if two interactions E“
and E# are each confounded with blocks then also their GI E**# is confounded
with blocks. This imposes a certain restriction on the choice of the design, that
is, the allocation of the treatment combinations to the blocks. It may very well
be the case that, although E® and E# are negligible, E**# is not; in fact it may
be a main effect or a low-order interaction. Hence care has to be exercised in
choosing E* and E#.

8.2.3 General Case

The problem described above becomes even more acute if we have to resort
to still smaller block sizes. Suppose then that we have available blocks of size
k = 2P(p < n) that require 2"~ 7 blocks for the basic arrangement and hence the
confounding of 2”77 — 1 interactions with blocks. To find a suitable system of
confounding, we choose n — p interactions E* represented by the n-tuples

a; = (051, 052, -+ -, Osp) (8.9)

with s = 1,2,...,n — p, such that no a; can be obtained as a linear combina-
tion of the remaining n-tuples. We refer to this set of interactions as independent
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interactions. BEach set of equations associated with these n — p interactions,
namely

ap Xy F oy + oo o, =81
21X +anxy + -0 o, =8
(8.10)
Op—p1X1 +p—p2X2+ -+ +—panXn = 8n—p

for a fixed right-hand side with § =0, 1(s =1,2,...,n — p) is satisfied by
2P treatment combinations (xi, x2, ..., x,). Since each §; can take on two dif-
ferent values, there are altogether 2"~7 equations of the form (8.10) (with the
oc;, s=1,2,...,n — p, remaining constant, of course). Any treatment combi-
nation satisfying one set of equations cannot satisfy another set. Hence the
2"7P gsets of 27 treatment combinations comprise together all 2" treatment com-
binations and, moreover, each set makes up the treatment combinations for
one block.

Because of the nature of the equations (8.10), the interactions E% are obvi-
ously confounded with blocks. We have shown earlier that if two interactions
are confounded with blocks then so is their GI. Similarly if three interactions,
E*', E*2 E® say, are confounded with blocks, then any treatment combination
(x1, x2, ..., Xx,) that satisfies the equations

> axi =68
i

Zolzixz' =8
i

> asixi =8
i

also satisfies the equations
Z(Otli + @i)xi =681 + 8

i
> (oni +a3i)xi =81 + 83

i
> (oni + a3i)xi =8 + 83

i

D (o + @i +a3i)x; =81 + 82 + 83

i
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which define the GIs E*'T%2 E*11e3 portas and E1H®2He3 - regpectively,
which are then also confounded with blocks. By induction it is then easy to
see that if n — p interactions are confounded with blocks so are their

() (5 )+ ()
== () ("))

= 2" P —(n—p)—1 (8.11)

GIs. It follows then from (8.11) that altogether 2" 77 — 1 interactions (including
the set of n — p independent ones) are confounded with blocks, which is equal
to the number of linearly independent comparisons among the 2"~ blocks.
This result emphasizes the important role played by the original set of n — p
independent interactions. They must be chosen so that their GIs do not result in
main effects and/or low-order interactions that are possibly nonnegligible.
We shall illustrate this procedure with the following example.

Example 8.1 Suppose we have six factors A, B, C, D, E, F and we consider
blocks of size 8, that is, we have n = 6, 26 — 64 treatment combinations, 2P =
8,n— p=73,2""P = 8. A possible set of three independent interactions is

ABCD,CDE,BDF
Their GIs are

(ABCD)(CDE) = ABC*>D’E = ABE

(ABCD)(BDF) = AB>CD?F = ACF
(CDE)(BDF) = BCD?EF = BCEF

(ABCD)(CDE) = AB>C?*D3EF = ADEF

Hence the seven interactions ABCD,CDE,BDF, ABE, ACF, BCEF, and
ADEF will be confounded with blocks. (I

We give in Table 8.3 typical examples of systems of confounding for up to 8
factors. Only those systems are given that result in a block size of 16 or less. The
allocation of letters to the factors is a matter for the experimenter, and the type
exemplified by ABC*, ABD*, C D for 4 factors in blocks of 4 experimental units
includes 5 additional systems, namely, AB*, ACD*, BCD; AC*, ABD*, BCD,;
AD*, ABC*, BCD; BC*, ABD*, ACD; BD*, ABC*, ACD. If the experi-
menter wishes to use this type of confounding, he should decide which of the six
2-factor interactions is least important and choose the system involving that one.



288

CONFOUNDING IN 2" FACTORIAL DESIGNS

Table 8.3 Types of Confounding for 2" Factorial Systems in Blocks of Size k

n k Confounded Effects?
2 Any one effect or interaction
4 Any one effect or interaction
2 AB*, AC*, BC
A*, BC*, ABC
4 8 Any one effect or interaction
4 A*, BCD*, ABCD
AB*,CD*, ABCD
AB*, ACD*, BCD
2 A*, B*, AB,C*, AC, BC, ABC
A*, BC*, ABC,BD*, ABD,CD, ACD
AB*, AC*, BC,AD*, BD,CD, ABCD
5 16 Any one effect or interaction
8 A*, BCDE*, ABCDE
AB*,CDE*, ABCDE
ABC*,CDE*, ABDE
4 A* B*, AB,CDE*, ACDE, BCDE, ABCDE
A* BC*, ABC, DE*, ADE, BCDE, ABCDE
A*, BC*, ABC,CDE*, ACDE, BDE, ABDE
AB*, AC*, BC, DE*, ABDE, ACDE, BCDE
AB*,CD*, ABCD, BDE*, ADE, BCE, ACE
2 AB*, AC*, AD*, AE*, and all GIs
A* BC*, AD*, BE*, and all GIs
6 16 ABCD*,CDEF*, ABEF
8 ACE*, BDE*, ABCD, BCF*, ABEF,CDEF,ADF
4 AB*,CD*,ABCD,EF*, ABEF,CDEF,ABCDEF
ACE*, BCE*, ADE, BDE*, ACF, BCF, ADF, BDF
2 AB*, AC*, AD*, AE*, AF*, and all GIs
[not particularly useful except with partial
confounding (see Chapter 9)]
A* BC*, BD*, BE*, BF*, BG*, and all GIs
7 16 ACEG*, BDE*, ABCDG,BCF*, ABEFG,CDEF,ADFG
8 ABC*, ADE*, BCDE, BDF*, ACDF, ABEF,CEF, ABCDEFG*
DEFG,BCFG,AFG,ACEG,BEG,CDG,ABDG
4 AB*, AC*, AD*, AE*, AF*, AG*, and all GIs
[again not particularly useful]
A*, BC*, BD*, BE*, BF*, BG*, and all GIs
8 16 As for 7 factors in blocks of 8

ABC*, ADE*, AFG*, BDG*, CH*, and all their GIs;
CH is the only 2-factor interaction confounded.

“Effects with an asterisk (*) are the independent effects of (8.10).
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In general one would like to avoid confounding of main effects and 2-factor
interactions. There is a remarkable theorem obtained by Fisher (1942) that this
is possible only if the number of units in a block is larger than the number of
factors. We shall return to this theorem in Section 11.7.

8.3 COMPOSITION OF BLOCKS FOR A PARTICULAR SYSTEM
OF CONFOUNDING

Once it has been decided which effects and interactions are to be confounded
with blocks, that is, once the set of independent interactions has been chosen, the
composition of the individual blocks is (apart from randomization) completely
determined. In fact, varying the right-hand side of the system of equations (8.10)
in all possible ways yields the sets of treatment combinations that are to be
allocated to the various blocks. We shall now describe a more systematic way of
determining these sets.

8.3.1 Intrablock Subgroup

We consider the general case of a 2" factorial in blocks of size 2”. Suppose we
confound the interactions E* (s = 1,2,...,n — p) with g defined in (8.9). Out
of the 2”77 possible sets of equations (8.10) we then consider the set

Xy +  apxy 4o+ apx, =0

axy + apxy +---+ ax, =0
(8.12)

Qp—p,1X1 + Op—p,2X2 +--+ Qp—p,nXn = 0

As pointed out earlier, Egs. (8.12) are satisfied by 27 treatment combinations
x’]- = (xj1,Xj2, ..., xjn)(j =1,2,...,27). We shall now exhibit the structure
of this set, which will prove to be useful for the construction of all blocks.

We note that (i) the treatment combination ¢’ = (0, 0, ..., 0), often referred
to as the control, satisfies (8.12); and (ii) if two treatment combinations, x; and
x say, satisfy (8.12), then the treatment combination

Xp 4 Xy = (Xk1 + Xe1, X2 + X020 <o, Xkn + Xen) (8.13)

also satisfies (8.12), where each component in (8.13) is reduced mod 2. Hence, if
we define “addition” of treatment combinations by (8.13), then the 27 treatment
combinations satisfying (8.12) form an Abelian group with respect to this addition
operation and with ¢’ as the zero element. More precisely, it forms a subgroup
of the group of all 2" treatment combinations. In the context of systems of
confounding this subgroup is referred to as the intrablock subgroup (IBSG).
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In terms of the reduced representation of treatment combinations, that is, (1),
a,b,ab,c, ..., the operation for this subgroup is the ordinary algebraic multipli-
cation with the square of any letter replaced by unity. The symbol (1) acts as the
unity element of the group.

If we examine Eq. (8.12), we see immediately that associated with the nonzero
ag; for each s =1,2,...,n — p there can be only an even number of x;(i =
1,2,...,n) equal to unity. This implies that each treatment combination in the
IBSG has an even number of letters in common with each confounded interaction.
Because of the group property of the IBSG, one only needs to find, in addition
to the control, p “independent” treatment combinations that satisfy (8.12). The
remaining ones are then determined automatically.

We shall illustrate this procedure by continuing Example 8.1.

Example 8.1 (Continued) Equations (8.12) are of the form
X1+ x2+x3+ x4 =0
X3 + x4 + X5 =0
X2 + x4 +x6 =0

The following treatment combinations satisfy these equations; that is, consti-
tute the IBSG:

1. (0,0,0,0,0,0)
2. (1,1,1,1,0,0)
3.(1,0,1,0,1,0)
4. (0,1,0,1,1,0) (by adding 2 and 3)
5. (1,0,0,1,1,1)
6. (0,1,1,0,1,1) (by adding 2 and 5)
7. (0,0,1,1,0,1) (by adding 3 and 5)
8. (1,1,0,0,0,1) (by adding 4 and 5)

In terms of the reduced representation these treatment combinations are (1),
abcd, ace, bde(= abcd x ace), adef, bcef (= abcd x adef), cdf(=ace x
adef), abf(= bde x adef).

8.3.2 Remaining Blocks

So far we have described the composition of one block. Rather than change the
right-hand side of (8.10) and solve the resulting equations to obtain the remaining
2"~P — 1 blocks, we make use of the IBSG and construct the blocks in the
following way. Suppose the treatment combinations in the IBSG are denoted by

x/j:(-les-x]?.»'--v-xjn) (jzl’z""’zp)
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and suppose further that y' = (y1, y2, ..., y;) is a treatment combination not in
the IBSG. Then the treatment combinations

)+ =1,2,...,27) (8.14)

form a new set of 27 treatment combinations. Obviously, these treatment combi-
nations satisfy some set of equations (8.10) with (61, 62, ...,8,) # (0,0,...,0)
and hence are different from the treatment combinations in the IBSG. Thus these
treatment combinations form another block.

This process is now repeated, replacing y’ in (8.14) by a treatment combination
z/, where z’ is neither in the IBSG nor in a previously constructed set (block).
This gives an easy and systematic way of constructing all blocks. We illustrate
this again with a continuation of Example 8.1.

Example 8.1 (Continued) Let block 1 be the IBSG. The first treatment com-
bination of each subsequent block takes the role of y’ in (8.14). The eight blocks
then are given in Table 8.4.

In terms of the reduced representation for a treatment combination the method
just described means that the treatment combinations in any one block may be
obtained from those in the IBSG by multiplying the symbols of the treatment
combinations in the IBSG by the symbol of a treatment combination not contained
in any previous block, replacing the square of any letter by unity.

Also, as a consequence of the procedure, we have that when an effect or
interaction is confounded with blocks, all treatment combinations in a block
have either an even number of letters in common with the effect or interaction
or an odd number. No two treatment combinations in the same block can have
an odd number of letters and the other an even number of letters in common with
any effect or interaction that is confounded. This serves as a convenient check.

8.4 DETECTING A SYSTEM OF CONFOUNDING

Occasionally we may be confronted with the problem of analyzing an experiment
that we have not designed. It may then be necessary to discover the system of
confounding on which the plan for the experiment is based. This can be done by
reversing the procedure outlined in the previous section.

To illustrate, consider the plan given for Example 8.1. Take the IBSG, that is,
the block containing the control. We then know that each treatment combination in
that block must have an even number of letters in common with each confounded
interaction. Inspection shows that no 2-factor interaction meets that requirement;
hence no 2-factor interaction can be confounded with blocks. Next going through
the 3-factor interactions in a systematic fashion one finds that ABE and ACF meet
the requirement. Hence they and their GI, BCEF, are confounded with blocks.
Finally, BDF is found to be confounded with blocks, and so then are all GIs of
BDF with the previously identified interactions. Thus the system of confounding
has been determined completely.
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Table 8.4 Basic Plan for 2° Factorial in Blocks of Size 8

Block 1

Block 2

Block 3

0,0,0,0,0, 0
(1,1,1,1,0,0)
(1,0,1,0, 1, 0
0,1,0,1,1,0)
(1,0,0,1,1, 1)
0,1,1,0, 1, 1)
0,0,1,1,0, 1)
(1,1,0,0,0, 1)

(1,0,0,0,0,0)
0,1,1,1,0,0)
0,0,1,0,1,0)
1,1,0,1,1,0)
0,0,0,1,1, 1)
(1,1,1,0, 1, 1)
(1,0,1,1,0, 1)
0,1,0,0,0, 1)

0,1,0,0,0,0)
(1,0,1,1,0,0)
(1,1,1,0, 1, 0)
0,0,0,1,1,0)
1,1,0,1,1, 1)
0,0,1,0,1, 1)
0,1,1,1,0, 1)
(1,0,0,0,0,1)

Block 4

Block 5

Block 6

0,0,1,0,0, 0
1,1,0,1,0,0)
(1,0,0,0,1,0)
0,1,1,1, 1, 0
(1,0,1,1, 1, 1)
0,1,0,0,1, 1)
0,0,0,1,0, 1)
(1,1,1,0,0, 1)

0,0,0,1,0,0)
(1,1,1,0,0,0)
(1,0,1,1,1,0)
0,1,0,0,1,0)
(1,0,0,0,1, 1)
©0,1,1,1,1, 1)
0,0,1,0,0, 1)
(1,1,0,1,0, 1)

Block 7

Block 8

0,0,0,0,0, 1)
1,1,1,1,0, 1)
(1,0,1,0,1, 1)
0,1,0,1, 1, 1)
(1,0,0,1, 1, 0
©0,1,1,0,1,0)
0,0,1,1,0,0)
(1,1,0,0,0,0)

1,1,1,1, 1, 1)
0,0,0,0,1, 1)
0,1,0,1,0, 1)
(1,0,1,0,0, 1)
0,1,1,0,0, 0
(1,0,0,1,0,0)
(1,1,0,0,1,0)
0,0,1,1,1,0)

0,0,0,0,1,0)
1,1, 1,1, 1,0
(1,0,1,0,0,0)
0,1,0,1,0,0)
(1,0,0,1,0, 1)
0,1,1,0,0, 1)
0,0,1,1,1, 1)
(1,1,0,0, 1, 1)

This then exemplifies the general procedure that should be used in a case like
this: Start with main effects, then 2-factor interactions, and so forth and find
n — p independent interactions that satisfy the even-or-odd-number-of-letters-in-
common requirement for a given block. This presupposes, however, that a proper
system of confounding has been used except that one does not know which. If
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one is not sure, one should check other blocks to see whether they too conform
to the even-or-odd-numbers-of-letters-in-common requirement.

8.5 USING SAS FOR CONSTRUCTING SYSTEMS
OF CONFOUNDING

In this section we shall illustrate briefly how the SAS procedure PROC FACTEX
can be used to generate systems of confounding.

Example 8.2 1In Table 8.5 we present the SAS input and output for the 23
factorial in blocks of size 4, assuming that the 3-factor interaction is negligible.
The keys to generating the system are (1) specification of the block size and
(2) specification of the effects to be estimated, in this example A, B, C, AB,
AC, BC. The “Block Pseudo-factor Confounding Rules” give then the effect(s)
confounded with blocks, in this example ABC. O

Example 8.3 This example is to illustrate how, in the 23 factorial with blocks
of size 4, any effect can be confounded with blocks. For example, we may know
already something about the A effect from a previous experiment, but we are
mainly interested in the other main effects and all interactions. Table 8.6 gives
such a plan. O

Example 8.4 Consider the 2* factorial in blocks of size 4. It is intended to
estimate all the main effects and as many 2-factor interactions as possible, and
then as many 3-factor interactions as possible. From Table 8.3 we see that design
3 for n =4, k = 4 seems an appropriate choice, since it sacrifices information
on one 2-factor interaction, AB, and two 3-factor interactions, ACD and BCD.
This knowledge determines the model statement in Table 8.7 and yields the
basic arrangement given in Table 8.7 The two independent interactions to be
confounded with blocks are listed as BCD and AC D, which implies, of course,
that the generalized interaction, A B, is also confounded with blocks. O

8.6 ANALYSIS OF EXPERIMENTS WITH CONFOUNDING

8.6.1 Estimation of Effects and Interactions

We consider the 2" experiment with blocks of size 27, replicating the basic block
arrangement » times. A linear model appropriate for this design is of the form
(7.60), which we write more specifically as

Yij(x) =+ Bij +1(x) +e;j(x) (8.15)
or, equivalently,

Yij(¥) = p+ pi + B + T(x) +eij(x) (8.16)
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Table 8.5 23 Factorial in Blocks of Size 4 (Confounding ABC)

options nodate pageno=1;

proc factex;

factors A B C;

size design=8;

blocks size=4;

model estimate=(A|B|C @2);

examine design confounding;

output out=design blockname=block nvals=(1 2);
titlel 'TABLE 8.5';

title2 '2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'CONFOUNDING ABC';

run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B (¢ Block
1 -1 -1 -1 1
2 -1 -1 1 2
3 -1 1 -1 2
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 1
7 1 1 -1 1
8 1 1 1 2

Block Pseudofactor Confounding Rules

[B1] = A*B*C

Obs block A B C
1 1 -1 -1 -1
2 1 -1 1 1
3 1 1 -1 1
4 1 1 1 -1
5 2 -1 -1 1
6 2 -1 1 -1
7 2 1 -1 -1
8 2 1 1 1
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Table 8.6 23 Factorial in Blocks of Size 4 (Confounding Main Effect A)

options nodate pageno=1;

proc factex;

factors A B C;

blocks size=4;

model est=(B A*B C A*C B*C A*B*C) ;

examine design confounding;

output out=design blockname=block nvals=(1 2);
titlel 'TABLE 8.6°';

title2 '2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'CONFOUNDING MAIN EFFECT A';

run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B c Block
1 -1 -1 -1 1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 2
7 1 1 -1 2
8 1 1 1 2

Block Pseudofactor Confounding Rules

[B1] = A
Obs block A B (¢
1 1 -1 -1 -1
2 1 -1 -1 1
3 1 -1 1 -1
4 1 -1 1 1
5 2 1 -1 -1
6 2 1 -1 1
7 2 1 1 -1
8 2 1 1 1
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Table 8.7 2* Factorial in Blocks of Size 4

options nodate pageno=1;

proc factex;

factors A B C D;

model est=(A B C A*C B*C D A*D B*D C*D A*B*C A*B*D) ;
blocks size=4;

examine design confounding;

output out=design blockname=block nvals=(1 2 3 4);
titlel 'TABLE 8.7';

title2 '2**4 FACTORIAL IN BLOCKS OF SIZE 4';

run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B C D Block
1 -1 -1 -1 -1 1
2 -1 -1 -1 1 4
3 -1 -1 1 -1 4
4 -1 -1 1 1 1
5 -1 1 -1 -1 2
6 -1 1 -1 1 3
7 -1 1 1 -1 3
8 -1 1 1 1 2
9 1 -1 -1 -1 3
10 1 -1 -1 1 2
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 4
14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] B*C*D
[B2] = A*C*D
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Table 8.7 (Continued)

Obs block A B c D

1 1 -1 -1 -1 -1

2 1 -1 -1 1 1

3 1 1 1 -1 1

4 1 1 1 1 -1

5 2 -1 1 -1 -1

6 2 -1 1 1 1

7 2 1 -1 -1 1

8 2 1 -1 1 -1

9 3 -1 1 -1 1

10 3 -1 1 1 -1

11 3 1 -1 -1 -1

12 3 1 -1 1 1

13 4 -1 -1 -1 1

14 4 -1 -1 1 -1

15 4 1 1 -1 -1

16 4 1 1 1 1
where pi = effect of the ith replicate (i = 1,2,...,7r)

,8;;. or B;; = effect of jth block in ith replicate (j =1, 2,...,2""7)
T(x) = effect of treatment combination x’ = (x1, x2, ..., X,)

(xg=0,1;£=1,2,...,n)
e;j(x) = error associated with treatment combination x in the
jth block of the ith replicate,

or in matrix notation
y=uI +X,0+Xp:p" +X;7 +e (8.17)

with the obvious definition of all terms in this model equation. Let £ = {E¥¢, £ =
1,2,...,qg(=2""P — 1)} be the set of interactions confounded with blocks, and
let Eo ={EYn, m=1,2,...,s[=2""P(2P — 1)]} be the set of interactions not
confounded with blocks. (We note that we use here the word interaction in a
general sense that includes also main effects as I-factor interactions.) We then
obtain in the usual way, using the Yates algorithm for example, estimates E’ EVn
for each E¥m € &, and E®¢ for each E% ¢ &1, such that E?nis BLUE and E%¢
is a biased estimate. From the general discussion in Chapter 7 it also follows that
1 2

o (8.18)

EVm) —
var(E?Vm) = 2%

8.6.2 Parameterization of Treatment Responses

It is clear from the discussion above that only the E¥Y» € £, are estimable.
It is also obvious from the construction of a confounded design that certain
treatment combinations never occur together in the same block and hence cannot,
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ordinarily, be compared with each other. We thus have a disconnected design,
which generally is an undesirable situation. In the factorial setting this negative
feature may be overcome, however. If we can assume that all E¥ € & are
negligible, then the reparameterization (7.42) and (7.43) may be rewritten as

ax) = M+ZE;M
Ym

or
ax) =M+ ¢, . x)E""

Ym

respectively, where ), is summation over all y,, such that E¥» € &;. For any
two treatment combinations x and z, we can then obtain

Ax) =A@ = Y (¢ %) — ¢, D ET™

Vm

where ¢(y,,,x) — ¢(y,,,2) is either 0, 1, or —1. Using (8.18) we can then
evaluate var [a(x) — a(z)].
As an illustration of this procedure consider the following example.

Example 8.5 Suppose we have a 2> experiment in blocks of size 4, con-
founding ABC. We have the basic arrangement

Block 1: (1), ab, ac, bc
Block 2: a, b, c, abc

which is replicated r times. Suppose a(x) = abc, a(z) = (1). Then, assuming
ABC to be negligible, we can write

abc=M+ A+ 1B+ 14B+1C+ AC +1BC

and
0 = 17 1p.1lam 1A, 13~ 15~
(1)=M-3A—-35B+;AB—5C+;AC+ 3BC
and hence
abc—(1)=A+B+C
and
— —~ 3 2
var [abc — (1)] = T O

8.6.3 ANOVA Tables

The ANOVA table for a system of confounding as described in this section
follows the basic outline of the ANOVA table for incomplete block designs (see
Table 1.3) and is as given in Table 8.8a. A partitioning of the various sums of
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Table 8.8 ANOVA Tables for System of Confounding

Source d.f. SS

a. Basic T|B-ANOVA

1
n—p _ — 20y — — 2.
Xgp|9 r2 1 7 2 Yij ) =y ()
i
X9, Xp 2P (2P — 1) Fon—2 Z[E)’m]z
m
IJ, Xg, X (r—12"PQ2°F —1) Subtraction
1
Total 2" —1 Yo v - o Y20
ij x
b. Detailed T|B-ANOVA
— 1 2 1 2
X419 PP — 35 2 2 0= 5 o)
i J
1 2 1 2
X,19 r—1 o 20— %0
i
1 1
X3, X, r@"P-1=rq 5 2 20 =5 2000
i J i
E%1 1 r2n—2 [Eal]Z
E% 1 r2n—2 [an ]2
Remainder r—n2"?-1H)=@r—-1gq Subtraction
X9, Xg PP — 1) =5
EY 1 r2n2 [EV112
EV2 1 F22 [EV2)?
E?s 1 r2n=2 [EYs]?

I3, Xg, X, r—0n2"P 2P -1)=(r—-1s Subtraction

1
Total ron—1 22D @ = %0
i J x
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squares is then given in Table 8.8b. Although quite self-explanatory we shall
comment on these partitionings briefly.
The partitioning

SS(Xg|J) = SS(Replicates) 4+ SS(Blocks/reps)
follows immediately from model (8.16) and can be written more precisely as
SS(Xg 1) =SS(X,|T)+SS(Xp« T, X,) (8.19)

Since each treatment combination occurs exactly once in each replicate,
SS(X ,1J) is orthogonal to treatments in the same sense that blocks and treatments
are orthogonal to each other in a randomized complete block design. However,
SS(Xg+|J, X ) is not orthogonal to treatments. This fact becomes evident from
the partitioning

SS(Xp: 19, X,) = Xq: SS(E%‘) 4+ SS(Remainder) (8.20)
where =
SS(E%) = r2" 2 [E)? (821)
with
ESS(E®) = r2" 2 [E“ ] + Qy(B})) + 07 (8.22)

and Qg(ﬁl?'}) a quadratic function of block effects corresponding to the block
contrast defining E*¢ in the chosen system of confounding. -

There is another way of writing (8.20) that is informative. Let E;” be the
estimate of E“¢ in the ith replicate (i =1, 2,...,r) and let

SS(E™) = 2" 2 [EM T (8.23)
be the sum of squares associated with that estimate. It is clear then that

r q
SS(Xp |9, X,) =Y Y SS(E})

i=1 £=1

q
=) SS(E™)
=1

q r
+y [Z SS(EF) — SS(E‘”)] (8.24)

=1 Li=1
Hence, in (8.20)

q r
SS(Remainder) = ) [Z SS(E) — SS(E‘“):| (8.25)

(=1 Li=l1
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The purpose of writing SS(Xg+|J, X,) in the form (8.24) is to partition it
into what is sometimes referred to as a treatment component and a pure block
component. Obviously, >, SS(E*¢) depends both on treatment effects, namely
the E%*¢, and on block effects. As we shall show below SS(Remainder) does not
depend on treatment effects, hence ) , SS(E*!) is the treatment component of
the block sum of squares mentioned above.

We now consider SS(Remainder) and derive (8.25) in a different way, which
will show that SS(Remainder) is algebraically equivalent to a sum of squares
associated with the replicate x E*¢(¢ = 1,2, ..., ¢g) interactions. Let

ng = {average observed response in replicate i
of all treatment combinations satisfying
apx=380=0,1)}

We note that X§; is the mean of 2"~! observations and that E5/ = X3 — y;.().
We then consider the following two-way table:

Replicate (i)

1 2 .. r
o o o o
0 Xof Xos . Xo! Xo!
§ =
oy o o o
1 X1 x4 . X X
X X% . X5 X

The interaction sum of squares in this table (on a per-observation basis) is

55(1)2—2"122[ D i s ol |
—n— IZZ Egll

since Y, =Yy; ( ) and X = 7.(-). The expression above for SS(/), shows that
it is free of treatment effects as those cancel within each square bracket. Further,

SS(I)e =2""" {ZZ +rZ zz ZEE}

- {Z S [E] _rZ[ng]z} (8.26)
=) (E") =sS(E*)

i
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using (7.65). Hence

q
> "8S(I)¢ = SS(Remainder)
(=1

as given in (8.25).

Turning now to SS(X; | J, Xg) the treatment sum of squares adjusted for block
effects with s =2"7P(2P — 1) d.f., we can partition it into s single-d.f. sums
of squares associated with the unconfounded interactions E¥Y»(m =1,2,...,s),
given by

SS(E?m) = r2" 2 [E?n ] (8.27)

We then use the F' test (as an approximation to the randomization test)

SS(EYm)

F=—"-"
MS(Residual)

to test the hypothesis Hy:E¥» = 0.
Finally, corresponding to SS(Remainder) in (8.25) we can partition SS(Error)
as s sums of squares with r — 1 d.f. each, that is,

SS(Error) = Z [Z SS(E’") —SS (EYm)] (8.28)

m=1 Li=1
where S
SS(E/") =2""* [E]"]

and E/I\l.y’" is the BLUE of E?= in the ith replicate. Obviously, then, (8.28) is a
function of the e;;(x) only and

-
E [Z SS(E™) —SS (E”m):| = (r — Do? (8.29)

i=1
form =1,2,...,s. Hence we have s independent estimates of 082, a fact that

may be useful for testing homogeneity of error.
To complete this discussion about the various sums of squares in Table 8.8b,
we mention that just as

SS(I)¢ =) SS(E{") — SS(E™)
i
in (8.25) is algebraically the (replicate x E“‘) interaction sum of squares with

r—1df. (€=1,2,...,9),

SS(Dm = Z SS(E!™) — SS(E”m)

1
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in (8.28) is algebraically the (replicate x EY») interaction sum of squares with
r—1df. (im=1,2,...,5).

8.7 INTERBLOCK INFORMATION IN CONFOUNDED
EXPERIMENTS

In discussing the problem of confounding and the analysis of confounded exper-
iments we have assumed that the block effects are fixed effects, as is evident
from Eq. (8.3), for example. If, however, we consider block effects as random
effects, then it becomes clear that, again referring to (8.3),

TE[block 2 — block 1] = ABC

that is, the block difference is an unbiased estimate of ABC. The only difference
between this Estimator, ABC say, and the estimators for the other effects and

interactions, A, ..., BC is that with r replications
~ — 1
var(A) = - -- = var(BC) = > o2 (8.30)
r
whereas
Y 1 2 2
var(ABC) = — (o, +40ﬁ) (8.31)
2r
From the nature of the estimators it is clear that ;1\, e, EZ‘ are intrablock esti-

mates and that ABC is an interblock estimate as it is a linear function of block
totals only (see Section 1.7).

For the general case of a 2" factorial in blocks of size k = 27, using an
appropriate system of confounding, we are then able to estimate all interactions as

Table 8.9 ANOVA for Interblock Analysis

Source d.f. SS

Replicates r—1
E% 1 0 + 2005 +r2" A EM P
E® 1 0 + 2005 +r2" A E®]
E% 1 0f +2P0] + r2" 2 E%]?

Remainder (r—1)@Q"P —1) o +2P05
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Table 8.10 Data and Intrablock Analysis for 23 Factorial in Blocks of Size 4 With
ABC Confounded with Blocks

options nodate pageno=1;
data example;
input rep block A B C y @@;

datalines;

1100014 1101125
1110117 11110 20
1200113 12010 16
1210014 1211126
2300024 23011 34
2310127 23110 29
2400124 24010 26
2410025 24111 35
run;

proc print data=example;

titlel 'TABLE 8.10';

title2 'DATA FOR 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'WITH ABC CONFOUNDED WITH BLOCKS';

run;

proc glm data=example;

class rep block A B C;

model y=rep block(rep) A|B|Ce@2;

estimate 'A' A -1 1;

estimate 'A*B' A*B 1 -1 -1 1/divisor=2;

title2 'INTRA-BLOCK ANALYSIS OF 2**3 FACTORIAL';
title3 'IN BLOCKS OF SIZE 4';

title4 'WITH ABC CONFOUNDED WITH BLOCKS';

run;

Obs rep block A B c y
1 1 1 0 0 0 14
2 1 1 0 1 1 25
3 1 1 1 0 1 17
4 1 1 1 1 0 20
5 1 2 0 0 1 13
6 1 2 0 1 0 16
7 1 2 1 0 0 14
8 1 2 1 1 1 26
9 2 3 0 0 0 24

10 2 3 0 1 1 34
11 2 3 1 0 1 27
12 2 3 1 1 0 29
13 2 4 0 0 1 24
14 2 4 0 1 0 26
15 2 4 1 0 0 25
16 2 4 1 1 1 35
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Table 8.10 (Continued)

305

INTRABLOCK ANALYSIS OF 2**3 FACTORIAL

IN BLOCKS OF SIZE 4

WITH ABC CONFOUNDED WITH BLOCKS

Dependent Variable: y

The GLM Procedure

Class Level Information

Class Levels Values
rep 2 12
block 4 1234
A 2 01
B 2 01
c 2 01

Number of observations 16

Source DF Sum of Squares Mean Square F Value Pr > F
Model 9 699.0625000 77.6736111 248.56 <.0001
Error 1.8750000 0.3125000
Corrected Total 15 700.9375000
R-Square Coeff Var Root MSE y Mean
0.997325 2.423922 0.559017 23.06250
Source DF Type I SS Mean Square F Value Pr > F
rep 1 390.0625000 390.0625000 1248.20 <.0001
block (rep) 2 8.1250000 4.0625000 13.00 0.0066
A 1 18.0625000 18.0625000 57.80 0.0003
B 1 175.5625000 175.5625000 561.80 <.0001
A*B 1 0.0625000 0.0625000 0.20 0.6704
c 1 68.0625000 68.0625000 217.80 <.0001
A*C 1 0.0625000 0.0625000 0.20 0.6704
B*C 1 39.0625000 39.0625000 125.00 <.0001
Source DF Type III SS Mean Square F Value Pr > F
rep 1 390.0625000 390.0625000 1248.20 <.0001
block (rep) 2 8.1250000 4.0625000 13.00 0.0066
A 1 18.0625000 18.0625000 57.80 0.0003
B 1 175.5625000 175.5625000 561.80 <.0001
A*B 1 0.0625000 0.0625000 0.20 0.6704
c 1 68.0625000 68.0625000 217.80 <.0001
A*C 1 0.0625000 0.0625000 0.20 0.6704
B*C 1 39.0625000 39.0625000 125.00 <.0001
Standard
Parameter Estimate Error t Value Pr > |t
A 2.12500000 0.27950850 7.60 0.0003
A*B 0.12500000 0.27950850 0.45 0.6704
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Table 8.11 Data and Combined Analysis for 23 Factorial in Blocks of Size 4 With
ABC Confounded with Blocks

options nodate pageno=1;
data example;

input rep block A B C y @@;
datalines;

1100014 1101125
1110117 11110 20
1200113 12010 16
1210014 12111 26
23 00024 23011 34
2310127 2311029
2400124 24010 26
2410025 24111 35

run;

proc print data=example;

titlel 'TABLE 8.11';

title2 'DATA FOR 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title3 'WITH ABC CONFOUNDED WITH BLOCKS';

proc mixed data=example;

class rep block A B C;

model y=rep A|B|C/ddfm=satterth;

random block (rep) ;

estimate 'A' A -1 1;

estimate 'A*B' A*B 1 -1 -1 1/divisor=2;
estimate 'A*B*C' A*B*C -1 1 1 -1 1 -1 -1 1/divisor=4;
titlel 'TABLE 8.11';

title2 'INTRA- AND INTER-BLOCK ANALYSIS';
title3 'OF 2**3 FACTORIAL IN BLOCKS OF SIZE 4';
title4 'WITH ABC CONFOUNDED WITH BLOCKS';

run;
Obs rep block A B C y
1 1 1 0 0 0 14
2 1 1 0 1 1 25
3 1 1 1 0 1 17
4 1 1 1 1 0 20
5 1 2 0 0 1 13
6 1 2 0 1 0 16
7 1 2 1 0 0 14
8 1 2 1 1 1 26
9 2 3 0 0 0 24
10 2 3 0 1 1 34
11 2 3 1 0 1 27
12 2 3 1 1 0 29
13 2 4 0 0 1 24
14 2 4 0 1 0 26
15 2 4 1 0 0 25
16 2 4 1 1 1 35
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Table 8.11 (Continued)

INTRA- AND INTERBLOCK ANALYSIS
OF 2**3 FACTORIAL IN BLOCKS OF SIZE 4
WITH ABC CONFOUNDED WITH BLOCKS

The Mixed Procedure

Model Information

Data Set WORK . EXAMPLE
Dependent Variable vy

Covariance Structure Variance Components
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

rep 2 12

block 4 123 4

A 2 01

B 2 01

C 2 01

Dimensions

Covariance Parameters 2
Columns in X 29
Columns in Z 4
Subjects 1
Max Obs Per Subject 16
Observations Used 16
Observations Not Used 0
Total Observations 16

Iteration History
Iteration Evaluations -2 Res Log Like Criterion

0 1 19.41205069
1 1 19.24234227 0.00000000
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Table 8.11 (Continued)

Convergence Criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
block (rep) 0.06250
Residual 0.3125

Fit Statistics

-2 Res Log Likelihood 19.2
AIC (smaller is better) 23.2
AICC (smaller is better) 26.2
BIC (smaller is better) 22.0
Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
rep 1 1 693.44 0.0242
A 1 6 57.80 0.0003
B 1 6 561.80 <.0001
A*B 1 6 0.20 0.6704
C 1 6 217.80 <.0001
A*C 1 6 0.20 0.6704
B*C 1 6 125.00 <.0001
A*B*C 1 1 13.44 0.1695
Estimates
Standard
Label Estimate Error DF t Value Pr > |t
A 2.1250 0.2795 6 7.60 0.0003
A*B 0.1250 0.2795 6 0.45 0.6704
A*B*C -1.3750 0.3750 1 -3.67 0.1695
follows (using the notation from the previous section): E* (¢ =1,2,...,2"7P —
1) from interblock information only and with variance 1/ r2n=2 (062 + 21705),
EVnm=1,2,...,2"7P(2P —1)] from intrablock information only and with

variance (1/ r2"=2) oez. The fact that either intrablock or interblock informa-
tion only is available for a particular interaction is a major difference between
the block arrangements we have been discussing in this chapter and the block



INTERBLOCK INFORMATION IN CONFOUNDED EXPERIMENTS

Table 8.12 Auxiliary Analysis of 23 Factorial With Blocks of Size 4 and ABC
Confounded with Blocks

309

options nodate pageno=1;

proc glm data=example;
class rep block A B C;

model y=rep|A|B|C;
titlel 'TABLE 8.12

[
7

title2 'AUXILIARY ANALYSIS OF 2**3 FACTORIAL';

title3 'WITH BLOCKS OF SIZE4 AND ABC CONFOUNDED WITH BLOCKS';

run;

The GLM Procedure

Class Level Information

Class

rep

block

C

Levels

2

Values

01

Number of observations 16

Dependent Variable: y

Source

Model

Error

Corrected Total
R-Square

1.000000

DF

15

15

700.

700.

Sum of
Squares

9375000

.0000000

9375000

Coeff Var

Mean Square

46.7291667

Root MSE

F Value

y Mean

23.06250

Pr > F
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Table 8.12 (Continued)

Source DF Type I SS Mean Square F Value Pr > F
rep 1 390.0625000 390.0625000
A 1 18.0625000 18.0625000
rep*A 1 0.0625000 0.0625000
B 1 175.5625000 175.5625000
rep*B 1 1.5625000 1.5625000
A*B 1 0.0625000 0.0625000
rep*A*B 1 0.0625000 0.0625000
C 1 68.0625000 68.0625000
rep*C 1 0.0625000 0.0625000
AxC 1 0.0625000 0.0625000
rep*A*C 1 0.0625000 0.0625000
B*C 1 39.0625000 39.0625000
rep*B*C 1 0.0625000 0.0625000
A*B*C 1 7.5625000 7.5625000
rep*A*B*C 1 0.5625000 0.5625000
Source DF Type III SS Mean Square F Value Pr > F
rep 1 390.0625000 390.0625000
A 1 18.0625000 18.0625000
rep*A 1 0.0625000 0.0625000
B 1 175.5625000 175.5625000
rep*B 1 1.5625000 1.5625000
A*B 1 0.0625000 0.0625000
rep*A*B 1 0.0625000 0.0625000
C 1 68.0625000 68.0625000
rep*C 1 0.0625000 0.0625000
AxC 1 0.0625000 0.0625000
rep*A*C 1 0.0625000 0.0625000
B*C 1 39.0625000 39.0625000
rep*B*C 1 0.0625000 0.0625000
A*B*C 1 7.5625000 7.5625000
rep*A*B*C 1 0.5625000 0.5625000

arrangements we have discussed in connection with incomplete block designs in
Chapters 1, 2, and 4.

Although the choice of a particular system of confounding is no longer as
crucial as it is in the case of fixed block effects, it is important nevertheless
as is evident from the statement about the variances of the different estimators,
interblock estimators having generally larger variance than the intrablock esti-
mators. This is emphasized also by the way in which hypotheses about the E*¢
can be tested in the ANOVA. To show this we give in Table 8.9 the appropriate
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E(MS) in the ANOVA table pertaining to the interblock analysis. The hypothesis
Hy: E“¢ = 0 is then tested using an approximate F test by

. SS(E%t)
~ MS(Remainder)

with (r — 1)(2"7? — 1) d.f. in the denominator, as compared to (r — 1)2" "7 (2P —
1) for testing Hy: EY» = 0 in the intrablock analysis.

8.8 NUMERICAL EXAMPLE USING SAS

The following example illustrates how SAS PROC GLM and PROC MIXED can
be used to analyze the data from systems of confounding.

Consider again the 23 factorial in blocks of size 4 and with ABC confounded
with blocks (see Example 8.2). The data are given in Table 8.10 together with
the intrablock analysis, using PROC GLM.

The combined analysis, using intrablock information for A, B, AB, C, AC,
BC and interblock information for ABC, is obtained with PROC MIXED and
is given in Table 8.11.

‘We note here that in order to obtain the correct interblock information; that
is, test of ABC, it is not sufficient to declare the block effects as random effects,
but also amend the model statement by the option DDFM = SATTERTH (Note:
It is always useful to check the d.f. of each F test as at least a partial assurance
that the correct test has been performed). A check that the correct test for ABC
has been performed is provided in Table 8.12

As explained in Section 8.7 (see also Table 8.8b), the denominator for testing
Hyp: ABC =0 is given by MS(Remainder) [see (8.25)], which algebraically is
given by MS(Rep x ABC) with r — 1 =1 d.f. From Table 8.12 we obtain

SS(ABC) =7.5625 and SS(rep x ABC) = 0.5625
and hence
_7.5625
~0.5625
which is approximately the same as the F value given in Table 8.11, namely
13.44.

As a final note we mention that estimates for o> and ag* are given in Table
8.11 as

=13.38

G, =03125 and Gz = 0.0625
from which we can also reconstruct MS(Remainder) as
MS(Remainder) = 33 + 4’0\;* = 0.5625

which agrees with the value given in Table 8.12.



CHAPTERY9

Partial Confounding in 2"
Factorial Designs

9.1 INTRODUCTION

In the previous chapter we have seen how the treatment combinations of a 2"
experiment can be accommodated in blocks of size 27, where p < n, and what
consequences this has with regard to the estimation of effects and interactions.
The price we have to pay for being able to reduce the error variance is the loss
of information on certain interactions and possibly main effects. As long as only
high-order interactions are confounded, the price may not be too high, but as
is evident from Table 8.3, this may not always be possible; that is, in certain
cases we may have to confound low-order interactions and/or main effects. This
is clearly undesirable. We would like to obtain at least partial information on all
essential effects and interactions. Since most experiments are replicated, it seems
quite reasonable to use different systems of confounding in different replicates,
which may achieve the objective just stated. This is known as partial confounding
(as compared to the complete confounding of Chapter 8).

9.2 SIMPLE CASE OF PARTIAL CONFOUNDING

9.2.1 Basic Plan

Consider the simplest possible factorial scheme, that involving two factors A,
B, each at two levels, and suppose that it is necessary to use blocks of two
experimental units. The necessity of blocks of this size might arise, for example,
in an experiment on young cattle, because it is possible to obtain a number of
identical twins, that is, twins of the same genetic constitution and each pair of
twins forming a block. Or it may be that the experimenter can handle only two

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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Figure 9.1 Partial confounding of a 22 experiment.

experimental units at a time and that, if units were treated in random order, the
experimental error introduced by randomizing over “times” would be consider-
able. Another possible use of blocks of two EUs could arise in plant pathological
work, the block being a leaf and the EUs the two halves. Other examples in other
fields of experimental research (e.g., medicine, engineering, psychology) can be
found easily.

Given such a situation, suppose also that the experimenter wishes to obtain
equal information on both main effects and the 2-factor interaction. This implies
immediately that A, B, and AB should be confounded equally often with blocks.
The basic pattern of the design would then consist of three replicates arranged
as in Figure 9.1. The main effect A is confounded in replicate I, B in replicate
II, and the interaction AB in replicate III. Each effect and interaction is then
“partially confounded” with blocks. In view of this, we shall estimate the effects
and interaction from the replicates in which they are unconfounded with blocks,
namely

Effect A estimated from replicates II, III
Effect B estimated from replicates I, III
Effect AB estimated from replicates I, II.

These estimates will be subject to an error based on the variance of units within
blocks of two units treated alike, and, in order to obtain a reasonably precise
estimate of this error variance, we shall need several repetitions of the basic
pattern given in Figure 9.1. Suppose we have g repetitions (i.e., 3g replicates in
all); then the ANOVA will have the structure shown in Table 9.1.

9.2.2 Analysis
The ANOVA is based on the three-part model

Yijke = K+ pi + B + The + eijre .1

where p; is the effect of the ith replicate (i = 1,2, ...,3q), ﬂ;kj is the effect of
the jth block (j = 1, 2) in the ith replicate, and 1y, is the effect of the treatment
combination agby(k, £ = 0, 1). The reader will recognize that the basic pattern of
this design, given in Figure 9.1, is actually a BIB design (see Chapter 2). Hence
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Table 9.1 Structure of T|B-ANOVA for Partially
Confounded Design

Source d.f. SS

X,19 3¢—1  4) Gi.—V.)
i

Xpel9, X, 3q 23 @i — i)’

X.19, X, Xp- 3 !

A 1 2q [An, HI]2

B 1 24 (B, 111]2

AB 1 2q [ABy, 11]2

113, X,, Xg«, X 3(2q—1) Difference

Total 12 -1 > ijee —5..)
ijke

the complete design is a resolved BIB design and could be analyzed as such (see
Section 9.3). It is, however, much simpler to use the factorial structure of the
treatments and the particular system of confounding that has been employed.

As mentioned earlier, the effects and the interaction can be estimated (unbi-
asedly) only from those types of replicates in which they are not confounded.
To emphasize this point, we write Ay, Brm, ABin indicating that A is esti-
mated from replicates of types II and III, that is, from r = 2¢q replicates; B is
estimated from replicates of types I and III; and AB is estimated from replicates
of types I and II. Consequently, the associated sums of squares are based on
these estimates, as given in Table 9.1. Also, using the general formula (7.62),
with r = 2¢q,n = 2, we have

P -~ — 1
var(An,m) = var(Byn) = var(ABrn) = ZUEZ

Following the procedure outlined in Section 8.5 we can partition SS(Blocks/
replicates) = SS(Xg+|J, X,) and SS(Residua)=SS(I|J, X,, Xg+, X;) of
Table 9.1 as given in Table 9.2. The SS(Blocks/replicates) is further partitioned
into a treatment component, associated with the estimates of A, B, AB from those
types of replicates in which they are confounded, and SS(Remainder), which is
algebraically equal to the interactions between the effects and the replicates in
which the effects are confounded. The actual computation of the various sums
of squares is indicated explicitly in Table 9.2a. Here, for example, Aj is the esti-
mate of A obtained from observations in the ¢ replicates of type I in which A
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Table 9.2 Partitioning of Sums of Squares

Source d.f. SS

a. SS(Blocks/Replicates)

A 1 q [~I]2
B 1 q [~u]2
AB 1 q [;\7?111]2
q
A x repsy qg—1 Z [AU]Z —4q [AI]Z
=1
o~ ~ 2
B x repsyy Remainder qg—1 Z [But]” — ¢ [Bu]
=1
q
AB x repsyy g—1 Z [ABun] - ¢ [ITEIII]Z
=1

b. SS(Residual)

2q
A xrepsy 2g =1 > [An, u, ml* = 2q[An, ml*
m=1
2q
B x repsy, 11 2q — 1 Z[Bm, 1, ml* — 2¢[B;, m1?
m=1
2q
AB x reps; 1 2g — 1 > [ABy, 1, ul* — 2q[ABy, ul®

m=1

is confounded. Similarly, A~gl is the estimate of A obtained from observations in
the £th replicate of type I.

With regard to SS(Residual) it can be partitioned into three components each
one algebraically equal to the interaction between an effect and replicates, in
this case the replicates in which the corresponding effect is not confounded.
The form of the sums of squares is given in Table 9.2b. The notation should be
obvious now.

9.2.3 Use of Intra- and Interblock Information

In concluding the discussion of this introductory example of partial confounding,
we point out that in this case we have both intra- and interblock information about
A, B, and AB. If the block effects in model (9.1) were considered to be random
effects, we could obtain combined estimates of the effects and interaction. We
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know from our previous discussion that

. —~ — 1
var(Ay, ) = var(Brm) = var(ABr ) = ZUEZ

and, as follows from Section 8.6,

- - — 1
var(Ap) = var(By) = var(AB) = ;(03 +20%)

Hence the combined estimate of A, for example is the weighted average of
AH m and AI, that is, letting w = 1/0 and w’' = 1/(0 + 205)

_ qu;\\n, m + qw'Ay

)

9.2
2gw + qw’ ©-2

with similar expressions for B and AB. (For a proof of this result we refer to
Section 11.6.) Since w and w’ or p = w/w’ are usually not known, the quantities
have to be estimated and then substituted into (9.2). We know that

G2 = MS(Residual)
and we also know that (see Section 8.6)
o2+ 20§ = MS(Remainder)

There is, however, another way of estimating 062 + 205. This is accomplished
through the B|T-ANOVA as given in Table 9.3 by utilizing all 3¢ d.f. for
SS(Xg+|J, X,, X;) and not just the 3(g — 1) d.f. for SS(Remainder). We com-
ment briefly on how SS(Xg+|J, X, X;) is obtained in a way other than the
usual as indicated in Section 1.3.

As mentioned above, SS(Remainder) from the T|B-ANOVA is part of
SS(Xp+1d, X, X) because it is free of treatment effects. Since this SS accounts
for 3(¢ — 1) d.f., there remain 3 d.f. to be accounted for. These are obtained by
realizing that for each effect and interaction we have two estimates, namely one
from replicates in which the effect is not confounded and one from replicates in
which the\effect is confounded. Specifically, we have Apmr and Ar, Brm and
By, and ABy 11 and AByyp. Obviously, the comparison of these two types of esti-
mates is a function of block effects and error only, and hence the associated sum
of squares belongs to SSN(X g1, X, X). Since, for example, AH 1 is obtained
from 2¢ replicates and Ay from ¢ replicates and these estimates are uncorrelated,
we have

. ~  [Anm - A2 2g
SS(An,m — Ap = i LIS H —[AHIH—AI] 9.3)

1/2g +1/q
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Table 9.3 Structure of B|T-ANOVA for Partially Confounded Design

Source d.f. SS E(MS)
X,1J 3g —1 From Table 9.1
X.|3, X, 3 3¢ ) (Fope — .0
ke
Xﬂ*|37Xanr 3q
-~ ~ 2 ,~ ~\2 4
A vs. Ap 1 ?q (Amm — Ar) o2+ §o§
~ ~ 2qg ,~ ~ 2 4
Br, 1 vs. B 1 ?q (Bi,m — Bu) o2+ goé
— ~ 2 —~ o~ 4
AB],[] vs. Amr 1 ?q (AB],[] — ABm) 062 + g(fé
Remainder 3(g—1) From Table 9.2a 062 + 2cr§
Residual 32g — 1) From Table 9.2b oez
Total 12g — 1 From Table 9.1
Similarly
=~ ~ 2q 5 2
SS(Brm — Bn) = ?[BI,IH — Bul 94)
2
SS(AB1n— ABm) = ?[ABI,H — AB] 9.5)

Since the comparisons A\II,III — ZI, §I,HI — Em, and KELH — XEIH are orthog-
onal to each other, the SS (9.3), (9.4), and (9.5) are orthogonal. Also, the 3 d.f.
associated with (9.3), (9.4), and (9.5) are not accounted for in SS(Remainder)
since the comparisons leading to SS(Remainder) involve only comparisons among
blocks from those replicates in which the respective effects are confounded, as
is evident from Table 9.2a.

Returning now to the estimation of 062 + 20/52,, to be used in (9.2), we evaluate
as usual E[MS(Xg+|J, X, X;)] assuming that the ,8;; are i.i.d. random variables
with mean zero and variance o2. We do this by obtaining the expected value

of each component of SS(Xg+|J, X, X;) as given in Table 9.3. We already
know that

E[SS(Remainder)] = 3(q — 1)(%2 + 205) (9.6)
Now )
E[SS(An,m — ApD] = ?anr(Au,m — Ap (CN))
4

=062+ gdﬂz
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since

~ 1
var(A = —0,2
(A, ) 277

and
~ 1, 5
var(Ayp) = p (o, + 20/3)

The _same regult (9.7) is, of course, obtained also for SS(E,H] — §H) and
SS(AB]’H — A]H). Hence,

E[MS(X g3, X, X1)] = % [3 (af +2 5) +3(q — (o, + 205)}

3
— o2+ 23q3; la§ 9.8)
An estimator for 02 + 20ﬂ2 is then
ogﬁg = 361—1_1[361 MS(Xg+|J, X, X;) — MS(Residual)] 9.9

We note here that if ¢ is large, MS(Remainder) may actually be a quite satisfac-
tory estimator for o2 + 20}32.

9.3 PARTIAL CONFOUNDING AS AN INCOMPLETE
BLOCK DESIGN

In the previous section we have presented a simple example of partial con-
founding together with the analysis based entirely on reasoning suggested by the
factorial structure of the treatments and the corresponding allocation of the treat-
ments to blocks. The design given in Figure 9.1, replicated g times, is, of course,
an example of an incomplete block design, in fact a resolvable BIB design in this
case as we pointed out earlier. As such, data from this design can be analyzed
according to the general principles discussed in Chapter 1, or, more specifically,
as in Chapter 2. We shall do this now and show that the resulting analysis agrees
with that given in the previous section.

9.3.1 Two Models

Without loss of generality and for purpose of ease of notation only, we assume
that the arrangement of treatments in blocks is the same for each repetition of
the basic design of Figure 9.1. Using the model for an incomplete block design,
we have

y=pd+XgB+X.1+e (9.10)
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with y = (yijrem), i = 1,2, ..., g indicating the repetition, j = 1, 2, 3 indicating
the replication within repetition (as labeled in Fig. 9.1), kK = 1, 2 denoting the
block within replication, and ¢, m = 0, 1 denoting the levels of factors A and
B. The observation vector y consists then of ¢ segments (y;1110, Yi1111> Yi12005

Yi1201, Yi2101, Yi2111s ¥i22005 ¥i22105 ¥i3100, Yi3111s ¥i3210, ¥iz201) (i = 1,2,...,q)
following Figure 9.1. Further, it can be deduced easily that

Xﬂ:l@lx <i> (9.11)

S oo~ O~ OO0 o~ O o
=l N =Nel SeloNolBoloNol S

—_— 0O O O O OO~ —= O oo
SO R OO O~ O OO ~=COo

and " = (700, T10, To1, T11)-
Alternatively, we may write (9.1) as

y=ud+XgB+ X 1" +e (9.12)
where
1 1 -1 -1
1 1 1 1
1 -1 -1 1
1 -1 1 -1
1 -1 1 -1
1 1 1 1
X =3y x | -1 —1 | (9.13)
1 1 -1 -1
1 -1 -1 1
1 1 1 1
1 1 -1 -1
1 -1 1 -1
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and % = (M, %A, %B, %AB). The “factorial incidence matrix” N g = X;*Xﬂ
is then of the form

2 22 22 2
2 =20 00 o
Ne=3xlo 02 -2 0 o
0 00 02 -2
or
1 11 11 1
1 =10 00 0
Ne=29x{o "0 | 1 0 o 9.14)
0 00 0 1 -1

9.3.2 Normal Equations
We consider now the RNE for 7*, that is,

(XX — Np(XpXp) 'Np)Ti = Xiny — Np(XpXp) "' Xy (9.15)

or
(12014 = INpNy) T = T* — [N/ B 9.16)
where
12gM Biii
6gA B2
T* = - |, B= (9.17)
6g B
6gAB By

are the effect totals and block totals, respectively. With

6 0 0 O
, o200
NeNp=44109 0 2 o
0O 0 0 2
and
B..
B.i1— Bz
NpB =2
By — B

B31 — B3
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Eq. (9.16) reduces to

8q - %Zf 6qg— (B.11 — B.12) 461;\\11,111
8q - %f} — 6q§ — (By1 — B.p) = 4q§1,111
8q - %XE 69AB — (B3 — B3) 4qAB1 1
and hence to
A AL
B | = §I,III
AB ZELH

singe B — B.]gvz Zq;l;], By — B‘Z,Z_f qulk/ B3 — B3y = Zq/Tém, A=
T(A1+2Anm), B = $(Bu +2Bym), AB = $(ABm + 2ABy ).

Turning to the RNE for 8, we consider
(X Xg— Np(Xu Xoe) 'Np)B = Xpy — Np(X. Xo) ' X0y (9.18)
or

1 1
(21661_@N/FNF>/3=B—@NIFT* (9.19)

with B and T* as defined in (9.17). With

2 01 1 1 1
021 111
’ _ ’ 1 1.2 0 1 1
NeNp =403 %11 1 9 2 1 1
111120
1 11 10 2
= 4(3qﬂ/q) x H say
we see that the coefficient matrix for B, that is,
1 /
3 <6q1 ~ 3,9, H) (9.20)

is of rank 6 — 1.



322 PARTIAL CONFOUNDING IN 2" FACTORIAL DESIGNS

9.3.3 Block Contrasts

From the form of (9.20) we can write out 6 — 1 identifiable functions of S,
namely 3¢ — 1 of the form

S1:{2(Bij1 + Bij2 — Bzt — Bg32)si = 1,2,...,q5j =1,2,3; (ij) # (¢3)}

3(g — 1) of the form

S$o: {2(Bij1 — Bijo — Bgj1 + Bgj2);i=1,2,...,9g -1, j=1,2,3}

and 3 of the form

4 ,

Ss3: 3 Z(ﬂijl —Bij2) =12, 3}
i=1

These three sets of identifiable functions are orthogonal to each other in the sense

that any function in S,, is orthogonal to any functionin S,/ (v, v =1, 2, 3; v % V).

The corresponding RHSs are obtained by writing the RHS of (9.19) in the form

2M + A
2M— A
2M + B
2M — B
2M + AB
2M — AB |

We then find the following RHSs for
St {Bij. = Bpii=1,2...,q;j=1,2,3; (ij) # 3q)}
S»: {Biji — Bija— Bgj1 + Byjn:ii=1,2...,q—1;j=1,2,3}
S3: {Ba1— B2 — 2qA, By — By —2qB, B3 — B3 — 2q;175‘}
Within the context of the factorial calculus we can rewrite these for S, and S3 as
S |2(A;i — Ay (for j=1)
2(B; — B,) (for j =2)
2(AB; — ABy) (for j=3);i=1,2...,q — 1}

4q ~ ~ 4q ~ ~ 4q —~ —
S3: ?(AI — Anm), ?(BII — Brm), ?(ABHI — AB1)

since Bi1| — Bi12 = 2A;1, Bia1 — Biza = 2Bin, Biai — Bizy = 2ABn1.
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We recognize that the comparisons S represent comparisons among replicates
and the associated sum of squares is SS(Replicate) in Table 9.1. The comparisons
of S> and S5 are comparisons of block effects within replicates and hence belong
to (Xg+|J, X, X;). The sum of squares associated with S, is SS(Remainder) of
Table 9.2, each set for j = 1,2, 3 leading to a sum of squares with ¢ — 1 d.f.
Finally, the three functions of S3 give rise to the remaining three single d.f. sums
of squares belonging to (Xg+|J, X, X;) as given in Table 9.3.

We have thus shown that a system of partial confounding can be analyzed
using the general principles of incomplete block designs. Although we have only
considered the intrablock analysis of a particular case, this line of argument can,
of course, be carried over to the combined analysis and to the general case. It is
hoped, however, that the reader realizes that the analysis can be described and per-
formed much easier via the concepts of factorial experiments as the factorial struc-
ture of the treatments determines the structure of the incomplete block design.

9.4 EFFICIENCY OF PARTIAL CONFOUNDING

In general, reduction of block size will lead to a reduction of experimental error
variance. On the other hand, this forces the experimenter to use a system of
partial confounding, which may offset this gain. Therefore, if the experimenter
has a choice of using blocks either of size 4 or of size 2, he or she needs a
criterion on which to base the choice. For the simple case discussed so far, this
is obtained by comparing the information provided by both designs (using the
same number of replicates) as given in Table 9.4.

The information of the partially confounded scheme relative to that of the
scheme with no confounding is

2 2 2 2
a/% _ 2% 9.21)
3q/o; 3o0;

where the subscript on o> denotes the number of units per block. If af is greater
than 3/2022 (or 022 less than 2/ 304%), the information is greater with the partially
confounded design. Equivalently, we say then that the efficiency of the partially
confounded design relative to the unconfounded design, as given by (9.21), is

Table 9.4 Information on Effects with Equal

Confounding
Partial Confounding
No Confounding of Section 9.2
3q 2q
(o} f 0'22

AB
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Table 9.5 Information on Effects with Unequal

Confounding
No Confounding Partial Confounding
A } 3q
4 )
B _q2 )
o
4 2q
AB —
&)

larger than 1. In general, 042 will be greater than 022, but whether it will be suffi-
ciently greater to give the advantage to the partially confounded design depends
on the experimental material. In many cases this may prove to be a difficult
question.

We have considered a scheme of partial confounding that results in equal
information on main effects and the 2-factor interaction. In some cases it may
be more appropriate to obtain greater information on main effects. This would
entail greater representation of replicates of type III, to an extent depending on
the relative amounts of information required. Suppose that a basic repetition
consists of one replicate each of types I and II and 2 replicates of type III and
that there are ¢ such repetitions, that is, 4q replicates all together. The amounts
of information to be compared then are as given in Table 9.5.

Since the emphasis is on main effects, it seems reasonable to use the partial
confounding scheme if 022 < %of.

The design utilizing partial confounding that we have just mentioned is obvi-
ously only one of many choices. The number of choices becomes even larger
as the number of factors increases. Some such cases will be discussed in the
following sections.

9.5 PARTIAL CONFOUNDING IN A 2* EXPERIMENT

As we have mentioned earlier, the arrangements utilizing partial confounding
that are best for any given situation depend on the information the experimenter
wishes to obtain. Suppose, for example, with an experiment of three factors
A, B, C, each at two levels, the experimenter desires maximum possible accuracy
on main effects and equal information on the 2-factor and 3-factor interactions.

9.5.1 Blocks of Size 2

A suitable system of partial confounding will consist of a number of repetitions,
q say, of the following types of replicates:

Type I: Confound AB, AC, BC
Type II: Same as type I
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Type III: Confound A, BC, ABC
Type IV: Confound B, AC, ABC
Type V: Confound C, AB, ABC

This design requires 5S¢ replicates, that is, 20g blocks, which may not always be
feasible. The information that this design yields as compared to the unconfounded
design is given in Table 9.6.

For an example using SAS PROC FACTEX see Table 9.14, Section 9.10.1.

9.5.2 Blocks of Size 4

In this case the experimenter will use a number of repetitions of the following
basic pattern (with each column representing a block):

I II 111 v

(1) a (H b (H b M a

ab b ac c bc c ab b

c ac b ab a ab ac c
abc bc abc bc abc ac bc abc

confounding AB, AC, BC, ABC in replicates of types I, II, III, IV, respectively.

Suppose we use g repetitions, the positions of replicates, and blocks within
replicates and treatment combinations within blocks being randomized. The infor-
mation from this design and the corresponding unconfounded design is given in
Table 9.7. It follows then that the partially confounded design will yield more
information on interactions than the unconfounded design and substantially more

information on main effects if of is less than %082.

Table 9.6 Information Given by Design for 23 System in Blocks of Size 2

No Confounding Partial Confounding of Section 9.5.1

Estimate from

Information Estimate From Information Replicate of Types

A 8q/0} LILIV,V

B 8q/0} LI II0, V
AB 4q /03 I, IV

c 1024 All replicates 8q/02 L 1L, 100, IV
AC % 49 /02 1, v

BC 4q /03 IV, V

ABC 4q/0} I 11
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Table 9.7 Information Given by Design for 23 System in Blocks of 4

No Confounding Partial Confounding of Section 9.5.2
Estimate from
Information Estimate From Information Replicate of Types
A 8q/0} All
B 8q/0} All
AB 6q/03 IL, 111, V
8
c X All replicates 8q/02 All
[of
8
AC 6q/0; LI,V
BC 6q /07 LI,V
ABC 6q/0; I, 11, III

Table 9.8 Structure of T|B-ANOVA

Source of Variation d.f.
a. Replicates 4qg — 1
Blocks/replicates 4q
A 1
B 1
AB 1
C 1
AC 1
BC 1
ABC 1
Residual 24q — 7
Total 32g — 1
b. Blocks/replicates 4q
AB 1
AC 1
BC 1
ABC 1
AB X reps; q—1
AC x repsy qg—1
BC x repsy q—1

ABC x repspy q—1
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Table 9.8 (Continued)

Source of Variation d.f.
c. Residual 24qg — 17
A x reps (all) 4qg — 1
B x reps (all) 4qg — 1
AB x reps (1L, 111, IV) 3g —1
C x reps (all) 4qg — 1
AC xreps (I, III, IV) 3g — 1
BC xreps (I, 11, IV) 3g —1
ABC x reps (1, 11, III) 3g —1

The partition of the degrees of freedom in the analysis of variance is given in
Table 9.8a with a breakdown of the degrees of freedom for blocks in Table 9.8b
and residual in Table 9.8c.

The computation of the various sums of squares follows the general procedure
as indicated in Tables 9.1 and 9.2 using the observations from the respective
replicates according to Tables 9.7 and 9.8.

9.6 PARTIAL CONFOUNDING IN A 2* EXPERIMENT

9.6.1 Blocks of Size 2

In this situation each replicate will consist of eight blocks. With s types of
replicates, each utilizing a different system of confounding, there will be 8s — 1
d.f. for blocks, 15 d.f. for treatments if no effect is completely confounded, and
therefore 8s — 15 d.f. for residual. In order to have an error based on a reasonable
number of d.f., it seems that we need at least s = 4 replicates. It follows from
Table 8.3 that under these circumstances the best system of confounding appears
to be as follows:

Replicate Effects and Interactions Confounded

I A, BC, ABC, BD, ABD, CD, ACD
II B, AC, ABC, AD, ABD, CD, BCD
11 C, AB, ABC, AD, ACD, BD, BCD
v D, AB, ABD, AC, ACD, BC, BCD

These four replicates give % relative information on main effects (in the sense that
all main effects are estimated from three out of four replicates), % relative infor-

mation on 2-factor interactions, }1 relative information on 3-factor interactions,
and full information on the 4-factor interaction.
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Since the number of observations is already quite large for one set of repli-
cates, it does not seem to be practical to have repetitions of the basic pattern
given above.

9.6.2 Blocks of Size 4

Referring again to Table 8.3, we find that a reasonable pattern of confounding is
obtained by combining two systems of confounding as follows:

Replicate Interactions Confounded
I AB, CD, ABCD
I AC, BD, ABCD
1 AD, ABC, BCD
v BC, ABD, ACD

This yields full information on main effects, % relative information on 2- and

3-factor interactions, and % relative information on the 4-factor interaction. It
also provides a sufficient number of degrees of freedom for residual.

For a design using replicates of types I and II see Section 9.10.2.

Another pattern of confounding, yielding equal information on all effects and
interactions, is based on the completely orthogonalized 4 x 4 square given in
Table 9.9. If we insert into each cell of this square the treatment combinations
obtained by multiplying the treatment combinations listed for the correspond-
ing row and column and then make up blocks of size 4 according to columns,
rows, Latin letters, Greek letters, and numerals, we find the following pattern of
confounding:

Blocks Effects and Interactions
Replicate Obtained From Confounded
1 Columns A, B, AB
11 Rows C,D,CD
11T Latin letters AC,BD,ABCD
v Greek letters AD,ABC,BCD
A% Numerals BC,ABD,ACD

The reader will realize that this design is in fact a resolvable BIB design with
parameters t = 16, b =20,r =5,k =4,A = 1.

9.6.3 Blocks of Size 8

Most likely one would use here a system of complete confounding, namely con-
founding ABC D. If some information is wanted on all interactions, a reasonable
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Table 9.9 Completely Orthogonalized 4 x 4

Square

(N a b ab
@) Aal B2 Cy3 Ds4
c By4 AS3 Da?2 Ccpl
d Cs2 Dyl AB4 Bas3
cd DB3 Cad Bs1 Ay2

system of confounding would be to confound some or all of ABC, ABD, ACD,
BCD, and ABCD, one in each replicate.

For all the examples discussed in this section it should be clear what the
structure of the analysis is. Also, these examples should serve as an illustration
for more general systems of partial confounding for 2" experiments.

9.7 GENERAL CASE

The discussion in the preceding sections should have given an indication of how
the concept of partial confounding can be utilized very effectively for obtaining
information about most or all effects and interactions using blocks of small size.
It also has pointed out that there exist many different designs, that is, patterns
of confounding, for a given situation. There does not seem to be a reasonable
way of discussing the various designs in general. A careful choice must be
made for each specific experiment based on the objectives of the experiment and
prior knowledge or expectations about the experimental situation. All designs,
however, have certain properties in common, and we shall comment on these as
they affect various parts of the analysis.

Suppose we have a 2" factorial in blocks of size 2”. We then have 2777
blocks in each replicate; that is, 2"~” — 1 interactions are confounded in each
replicate. Let a basic pattern of partial confounding consist of s types of repli-
cates and let there be g repetitions of the basic pattern. We can then divide
the totality of the 2" — 1 interactions into three mutually exclusive sets
as follows:

& ={E% k=1,2,...,n1; completely confounded}
& =({EYt, £ =1,2,...,ny; partially confounded}
&3 = {E‘s"’, m=1,2,...,n3; not confounded}
with ny + ny + n3 = 2" — 1. With regard to &, let E¥¢ be confounded in c(yy)

replicates and not confounded in u(yy) = s — c(y,) replicates. Finally, let N =
2"sq denote the total number of observations.
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9.7.1 Intrablock Information

Each Ed» ¢ &3 is estimated from all replicates, and

A 1
var (E8m> - 211—2 062
5q
and hence ’
sS <E3> — 5q2"2 [E“m] (9.22)

EYt € &, is estimated from qu(yy) replicates with

N 1
Ve — — — 2
var (E7?) A=A (9.23)
and P
SS (E?¢) = qu(ye)2" > [E?*] (9.24)

9.7.2 The ANOVAs

The basic partitioning of the total sum of squares and its d.f. in the T|B-ANOVA
is given in Table 9.10a, with a further partitioning of the block and residual sum
of squares indicated symbolically in Tables 9.10b and 9.10c. The ANOVA is
based on model (9.1).

In Table 9.10a SS(E?¢) and SS(E®n) for E¥¢ € &, and E% € &5 are obtained
from (9.22) and (9.24), respectively, and vg is obtained by subtraction. In
Table 9.10b SS(E%). and SS(EY¢). for E“ € £ and E?t € &, are obtained
from the replicates in which these interactions are confounded, that is,

SS (E%), = sq2" 2 [E%]’

and -
SS(E”t), = qe(v2" ) [E?*]
Similarly
~ 12
223 _ An—2 o
SS (Eij )c -2 [E,.j ]
and

sS (E{/)C — o2 [E}’jf]z

where (ij) denotes the replicate j in repetition i and Z; j denotes summation
over all replicates in which a given E?¢ is confounded, that is, gc(yy) replicates.

Also, in Table 9.10c SS(Eiyj“) and SS(E;s j"’) are obtained from those replicates
in which the corresponding effects are not confounded, that is,

ss (EY/) — on=2 [ng]z
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Table 9.10 T|B-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

X, sq —1 Usual

XpJ, X, sq2"P —1) Usual

X9, X,. Xp na + n3 Y SS(EV) + ) SS(E’m)
¢ m

19, X,, Xg+, X; VR Difference

Total N -1 Usual

b. Partitioning of Block Sum of Squares

Xp|9, X, 5q(2"7P —1)

{E®) n > SS(E™),
k

{E7) n > SS(E?0).
€

{E% x reps} ni(sq — 1) DD USS(EfF)e— ) SS(E™),
ko ij k

{E?t % reps} gy cy)—n DY ISSEND =) SS(ETY),

14 e ij L

¢. Partitioning of Residual Sum of Squares

13, X,, Xpg«, Xt VR
{E?t x reps} q > ulye)—n DD USS(E]) =) SS(ETY)
¢ T, ¢
{E% x reps} ni(sq — 1) > SS(Efj"') - SS(E™)
moij m
and

2
B 2 [ 56m
SS (El.j ) —on [Eij]

and ) " denotes summation over all replicates (ij) in which a given E?¢ is not
confounded, there being qu(y,) such replicates.
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Table 9.11 B|T-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

X, sq —1 Usual

X3, X, 2" —1 Usual

Xp:13, X, X sq2"P —1) —ny Difference

10, X,, X¢, Xg= VR From Table 9.10
Total N -1 Usual

b. Partitioning of Block Sum of Squares

Xp+19, Xp, X¢ 5q(2"7P — 1) —
—~ ~ on—2 - ~
EYe vs. E?¢ ny 4 Zc(yg)u(yg) [EW — EW]2
s ;
{E® x reps} ni(sqg — 1) From Table 9.10b
{E?¢ x reps} q Z c(ye) —na From Table 9.10b
¢

The B|T-ANOVA in its basic form is given in Table 9.11a and a partitioning
of the block sum of squares is given in Table 9.11b. Here

(E}'z — EJ’@)Z
var (EW — EJ’@) /o2

SS (E”‘f Vs, E”) =

with

~ ~ 1 1
var (E?¢ — EVt) = ( + )(72
( ) qu(y)2"=2  qe(yp2r=2) ¢

= —S 0‘2
qu(ye)c(y)2n=2 ¢

9.7.3 Interblock Information

Assuming B* to be a vector of i.i.d. random variables with E(B8*) = ¢, E(B*B*')
= crél , we can obtain interblock information on the E* € & and E?¢ € &,,
namely

E (E*) = E* with var () — Sq;n_z (o2 +2703)

and
1

E (E)’@) = EY(]' with var (EY(]') = W

(o2 +2703)  (929)
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9.7.4 Combined Intra- and Interblock Information

Combined information is available for E¥¢ € £;. Using (9.23) and (9.25), we
obtain the combined estimator

u(y)wE?e + c(yp)w'E?e

//E\\}’l =
u(yow + c(yow’

(9.26)

where, as usual, w = 1/02, w' = 1/(c? + 21705). Letting w’'/w = p, we have

= 1
var (E}’@) = 3
[u(yow + c(yow'] g2~

o2

= ¢ 9.27
[u(ye) + c(ve)p] g272 27

9.7.5 Estimation of Weights

As always, we estimate o> and hence w from the T|B-ANOVA, and using the
Yates procedure, we estimate ag and hence w’ from the B|T-ANOVA. From
Table 9.10 we obtain

6_\2 — SS(17X,O7X}3*7 X‘L’)

e

=MSUI19, X,, Xp+, X7) (9.28)
VR

and hence W = 1/G2.
In order to estimate w’ we consider the expected values of the sums of squares

that form SS(Xg+«|J, X, X;) as given in Table 9.11b. Under the mixed model
assumption given in Section 9.7.3 above we find, for each E?¢ € &,,

E (EYt — EY¢)’ = var (E7t — E7)

1 1 2 1 2 2
— P )
q2n2 [u(w)"f o ("e 2% }

N ) u(ye)2? 2:|
_ Y -2 9.29
g2 2u(ye)c(ve) |:Ge s OF 029

and hence, from (9.29) and Table 9.11b,

u 2°
Oez + (ve) 2

ESS (E”t vs. EVt) = o3 (9.30)
S

Since
ESS (E% x teps) = (sq — 1) (oﬁ + 21’05) 9.31)

and
ESS (E?¢ x reps) = [ge(y) — 1] (of n 21’05) (9.32)
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we obtain, by using (9.30), (9.31), and (9.32) in Table 9.11b,

EMS (X419, X, X;) = 0] + A2’ o (9.33)
where

(/)Y ulye) +milsqg — D +q Y clye) —n
0 L

A= (9.34)
sq2"—P — 1) — ny

From (9.33), (9.34), and (9.28) we then obtain

1 1
G, +25, = — = <1 — Z) MS(1|9, X, Xp+, X+)

=/
1
+MS(X 19, X, Xr) (9.35)

An interesting consequence of our derivation of EMS(Xg«|J, X, X;) is that
because of (9.30), that is, the heterogeneous expected values of the components
of SS(Xg+|J, X,, X¢), it follows that even under the assumption of normal-
ity SS(Xg+|J, X,, X;) does not follow a scaled x? distribution but rather is
distributed as a linear combination of scaled x? distributions.

Of course, as we have discussed earlier (see Section 1.11), other estimation
procedures can be used to obtain estimates of o2 and aé (see Section 9.10 for
numerical examples using such procedures).

9.7.6 Efficiencies

Under a system of no confounding with r = gs replicates per treatment com-
bination (= number of blocks of size 2") and a particular pattern of partial
confounding, we can compare the following amounts of information:

No Confounding Partial Confounding

E% € & 5q2" 2 /o2 0
EVie&  s5q2'2/o} u(ye)q2' % /o2
Edn ¢ &5 5q2" 2 /o2 sq2"‘2/a§

where o> denotes o2 for blocks of size 2" and 01% denotes o2 for blocks of size
27 From this we can compute the efficiency for each interaction and determine
when the information on interactions in €, and €3 under confounding is at least
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as good as that without confounding depending on the ratio 01% / oez. Excepting
interactions in €; we can express the average efficiency as

{Z u(ye) + n3S:| / (n2 +n3)s

4

oz/o;

9.8 DOUBLE CONFOUNDING

In certain experimental situations it may be necessary to use more sophisticated
systems of confounding than we have discussed up to this point. Consider, for
example, a 2° experiment, where each treatment is applied to a certain material
that is then processed by a machine. Homogeneous batches of material, sufficient
for four runs (treatment combinations), are available and, in order to complete the
experiment in a reasonable time, four machines will be used; that is, each machine
will handle eight pieces of material from eight different batches, each piece of
material being treated differently (by one of the 2° treatment combinations). In
order to eliminate batch-to-batch variation we might consider each batch as a
block of size 4. Elimination of possible systematic differences among machines
suggests to consider each machine as a block of size 8. Combining these two
types of blocking and their corresponding systems of confounding leads to an
arrangement of the treatment combinations in a rectangular array that is referred
to as a system of double confounding. For the present example this is illustrated
in Table 9.12.

This arrangement is obtained by confounding ABC, CDE, ABDE with rows
(machines) and AB, CD, ABCD, BDE, ADE, BCE, ACE with columns
(batches) (see Table 8.3) and then constructing the intrablock subgroup for each
system of confounding. These subgroups represent the first row and first col-
umn, respectively, in Table 9.12. The remaining treatment combinations are then
filled in by taking products of appropriate treatment combinations according
to the usual rules. In the actual experiment rows and columns are, of course,
randomized.

Table 9.12 25 Experiment in 4 x 8 Pattern

Batches
1 2 3 4 5 6 7 8
1 (1) ab ace bce abde de bed acd
Machines 2 abe e bc ac d abd acde bcde
3 cde abcde ad bd abc c be ae
4 abcd cd bde ade ce abce a b
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Table 9.13 Analysis of Variance
for Double Confounding Scheme

Source of Variation d.f.
Replicates 1
Rows/replicates 6
Columns/replicates 14
A, B, ABy, C, ACy, BC,
D,AD,BD,CDy, E, AE, 15
BE;,CE, DE

Residual 27

The observation in the jth row and kth column receiving the £th treatment is
represented by the model

Vike =+ pj+ Vi +Te +ejie (9.36)

where the terms have the obvious meaning. However, this particular design is of
little value unless repeated, for the only means of estimating the error variance
is to use unconfounded interactions involving three or more factors, so that only
8 d.f. are available. In replications it would be well to use different schemes
of confounding (i.e., partial confounding) so that some within-row-and-column
information could be obtained on all important effects and interactions. If different
sets of machines are used in different replicates, model (9.36) will be extended
as follows:

Vijke = M+ o + pij + Vik + Te + eijie (9.37)

where «; is the effect of the ith replicate, p;; the effect of the jth row (machine)
in the ith replicate, y;; the effect of the kth column (batch) in the ith replicate, t,
the effect of the £th treatment combination, and e; ¢ the error associated with the
unit in the jth row and kth column of the ith replicate receiving the £th treatment.
The structure of the ANOVA for model (9.37) is exhibited in Table 9.13 using
two replicates and confounding in the second replicate ACD, BCE, ABDE
with rows, AC, BE, ABCE, BCD, ABD, CDE, ADE with columns. We
assume that interactions involving three or more factors are negligible. The d.f.
for error in Table 9.13 can be broken down into 12 d.f. from unconfounded
or partially confounded higher order interactions and 15 d.f. from comparisons
of unconfounded effects and interactions in the two replicates, for example, Aj
versus Afr.

9.9 CONFOUNDING IN SQUARES

In the previous section we have discussed systems of confounding in a rectangular
array utilizing in general columns as blocks of size 27 and rows as blocks of size
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2"~P_ A special case, p =n/2, would lead to a square array. More generally,
however, confounding in squares refers to any type of square array with blocks
of size 27 in both directions. Then every treatment combination appears 227"
times in the array. We shall consider a few specific examples illustrating the
procedure (Kempthorne, 1952, Chapter 15).

9.9.1 23 Factorial in Two 4 x 4 Squares

We need to confound one interaction with columns and one interaction with rows,
and since two replicates are necessary to get an adequate estimate of the error
variance, we may completely confound these two interactions, or we may partially
confound four interactions, or we may partially confound two interactions (say,
two 2-factor interactions) and completely confound one interaction (say, the 3-
factor interaction). Examples of each follow.

1. If ABC is confounded with columns and BC with rows, both replicates will
be randomizations of one of the squares

(1) a bc abc (1) a bc abc
ab b ac c ab c ac b
ac c ab b " ac b bc c
bc abc (1) a bc abc (1) a

Note that the first square is constructed by the method described in Section
9.8. Also, the ANOVA has a structure similar to that given in Table 9.13.

2. If ABC and BC are confounded with columns and rows, respectively, in one
square, and AB and AC are confounded with columns and rows, respectively,
in the second square, we obtain the following result:

(1) a bc abc (1) a abc ac
ab b ac c ab b c bc
ac ¢ ab b and abc bc (1) b
bc abc (1) a c ac ab a

Here we obtain full information on main effects and % relative information
on interactions. As a result, however, the error d.f. are reduced from 13 to
11 compared to the previous design.

3. If we confound ABC with columns in both squares, BC with rows in one
square, and AB with rows in the second square, we obtain

() a bc abc () ¢ ab abc
ab b ac ¢ and ab abc (1) ¢
ac c ab b ac a bc b

bc abc (1) a bc b ac a
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9.9.2 2% Factorial in 8 x 8 Squares

An interesting alternative to completely confounding two interactions with rows
and columns is the following: Partially confound four 3-factor interactions with
row pairs and completely confound the 4-factor interaction with the four column
pairs. This leads to the following design, where ABC, ABD, ACD, BCD are
confounded with row pairs I, I, III, IV, respectively:

)] d ab  abd ac acd bc bed
I
ad a bd b cd abc abcd c
ab c (1) abc ad bcd bd acd
II
ac b bc a abcd abd cd d
cd abc ac bcd (1) b ad abd
111
bc acd abcd c bd d ab a
bd abd cd acd bc a (1) abc
v
abcd bed ad d ab c ac b

This design will provide % relative information on the 3-factor interactions
ABC, ABD, ACD, and BC D, no information on ABC D, and full information
on main effects and 2-factor interactions. If replications can be done, other sys-
tems of partial confounding may be used. The structure of the ANOVA is similar
to that given in Table 9.13.

Yates (1937a) has given arrangements for the 2° and 2° experiment in 8 x 8
squares. Through the process of randomizing rows and columns, these arrange-
ments may lead (with considerable frequency) to undesirable configurations.
Grundy and Healy (1950) have provided solutions to this problem by using the
concept of restricted randomization.

9.10 NUMERICAL EXAMPLES USING SAS

In this section we shall illustrate the use of PROC FACTEX to construct designs
with partial confounding and PROC GLM and PROC MIXED to analyze data
from such designs.

9.10.1 23 Factorial in Blocks of Size 2

Using one replicate each of types III, IV, and V as defined in Section 9.5.1 leads
to a design with partial confounding of A, B, C, AB, AC, BC and complete
confounding of ABC. The SAS input and output are given in Table 9.14.
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Table 9.14 23 Factorial in Blocks of Size 2 Using Partial Confounding

options nodate pageno=1;

proc factex;

factors A B C;

blocks size=2;

model est=(A B A*C B*C) ;

examine design confounding;

output out=replicatel blockname=block nvals=(1 2 3 4);
titlel 'TABLE 9.14';

title2 '2#**3 FACTORIAL IN BLOCKS OF SIZE 2';
title3 'USING PARTIAL CONFOUNDING';

title4 ' (CONFOUNDING ABC, AB AND C IN REP 1)';
run;

proc factex;

factors A B C;

blocks size=2;

model est=(A C A*B B*C);

examine design confounding;

output out=replicate2 blockname=block nvals=(5 6 7 8);
title4 ' (CONFOUNDING ABC, AC AND B IN REP 2';

run;

proc factex;

factors A B C;

blocks size=2;

model est=(B C A*B A*C);

examine design confounding;

output out=replicate3 blockname=block nvals=(9 10 11 12);
title4 ' (CONFOUNDING ABC, BC, AND A IN REP 3)';

run;

data combine;
set replicatel replicate2 replicate3;
run;

proc print data=combine;

title4 ' (PARTIALLY CONFOUNDING A, B, AB, C AC, BC';
title5 'AND COMPLETELY CONFOUNDING ABC)';

run;
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Table 9.14 (Continued)

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING
(CONFOUNDING ABC, AB AND C IN REP 1)

The FACTEX Procedure
Design Points

Experiment
Number A B C Block
1 -1 -1 -1 1
2 -1 -1 1 4
3 -1 1 -1 2
4 -1 1 1 3
5 1 -1 -1 2
6 1 -1 1 3
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = A*B*C
[B2] = C

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING
(CONFOUNDING ABC, AC AND B IN REP 2)

Design Points

Experiment
Number A B c Block
1 -1 -1 -1 3
2 -1 -1 1 2
3 -1 1 -1 4
4 -1 1 1 1
5 1 -1 -1 2
6 1 -1 1 3
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] A*B*C
[B2] = A*C
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Table 9.14 (Continued)

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING
(CONFOUNDING ABC, BC, AND A IN REP 3)

Design Points

Experiment
Number A B C Block
1 -1 -1 -1 3
2 -1 -1 1 2
3 -1 1 -1 2
4 -1 1 1 3
5 1 -1 -1 4
6 1 -1 1 1
7 1 1 -1 1
8 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] A*B*C
[B2] = B*C

2**3 FACTORIAL IN BLOCKS OF SIZE 2
USING PARTIAL CONFOUNDING
(PARTIALLY CONFOUNDING A, B, AB, C, AC, BC
AND COMPLETELY CONFOUNDING ABC)

Obs block A B C
1 1 -1 -1 -1
2 1 1 1 -1
3 2 -1 1 -1
4 2 1 -1 -1
5 3 -1 1 1
6 3 1 -1 1
7 4 -1 -1 1
8 4 1 1 1
9 5 -1 1 1

10 5 1 1 -1
11 6 -1 -1 1
12 6 1 -1 -1
13 7 -1 -1 -1
14 7 1 -1 1
15 8 -1 1 -1
16 8 1 1 1
17 9 1 -1 1
18 9 1 1 -1
19 10 -1 -1 1
20 10 -1 1 -1
21 11 -1 -1 -1
22 11 -1 1 1
23 12 1 -1 -1

N
W~

12 1 1 1
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Note that there are three input statements, one for each replicate, and that
the ESTIMATE statement specifies which effects should be estimable and hence
which effects should be confounded in a given replicate.

Various aspects of the analysis of data from the design of Table 9.14 are
illustrated in Table 9.15

The intrablock analysis is performed with PROC GLM and the combined anal-
ysis with PROC MIXED. The output is fairly self-explanatory, but we shall make
the following comments, mainly to relate the numerical output to the theoretical
developments in this chapter:

1. For the intrablock analysis, that is, the GLM procedure, estimates of all
effects are obtained from the replicates in which they are not confounded
with blocks. For example, the main effect A is estimated from replicates 1
and 2, that is, blocks 1-8, yielding A =3.0.

2. The standard error for A is obtained from

P 1 1
var(A) = T G2 = g 15833 = 1.8958

as

se(A) = /var(A) = 1.3769

3. Concerning the combined analysis using PROC MIXED, we notice that the
estimate for o2 obtained here, namely 2 = 8.0297, is different from the
estimate obtained from PROC GLM. The reason for this is that o2 and ag
are estimated jointly using the REML procedure (see Section 1.11.2) rather
than the ANOVA procedure as outlined in Section 9.7.

4. With 5 = 8.027 and G5 = 2.4656 the weights w and w’ (see Section 9.7.5)
are estimated as

=.1245

g)

. 1 1
w o~ -~ =
62+ 205 12.96

=.0772

S. To illustrate the combining of intra- and interblock information, we consider
estimation of A. From the intrablock analysis we have AI 1 = 3.0. From
replicate 3 we find AHI = 5.50. Then [see (9.26)]

= 2x.124 . 0772 .
2 X 5x3.04+.0 X550=3.5916
2 x .1245 4+ .0772

which is (apart from rounding error) the value given in the output.
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Table 9.15 Analysis of 2* Factorial With Partial Confounding

options nodate pageno=1;
data confound;

input rep block A B C y @@;
datalines;

110008 2501122 3910139
1111013 2511025 3 9110 32
1201015 26 00120 3 10 0 0 1 28
121009 2610018 3 10 0 1 0 26
1301111 27 00020 3 11 0 0 0 30
1310118 2710121 31101 1 33
140017 2801017 312 1 0 0 27
1411119 2811121 31211141

I

run;

proc print data=confound;

titlel 'TABLE 9.15';

title2 '2**3 FACTORIAL WITH PARTIAL CONFOUNDING';
run;

proc glm data=confound;

class rep block A B C;

model y= rep block(rep) A|B|C@2;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;
title3 'INTRA-BLOCK ANALYSIS';

run;

proc mixed data=confound;

class rep block A B C;

model y= rep A|B|C/ddfm=satterth;

random block (rep) ;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;

estimate 'Interaction ABC' A*B*C 1 -1 -1 1 -1 1 1 -1/divisor=4;
title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';

run;

proc glm data=confound;

class rep block A B C;

model y= rep A|B|C block(rep) ;
title3 'AUXILIARY ANALYSIS';
run;
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Table 9.15 (Continued)

Obs rep block A B C y
1 1 1 0 0 0 8
2 2 5 0 1 1 22
3 3 9 1 0 1 39
4 1 1 1 1 0 13
5 2 5 1 1 0 25
6 3 9 1 1 0 32
7 1 2 0 1 0 15
8 2 6 0 0 1 20
9 3 10 0 0 1 28

10 1 2 1 0 0 9
11 2 6 1 0 0 18
12 3 10 0 1 0 26
13 1 3 0 1 1 11
14 2 7 0 0 0 20
15 3 11 0 0 0 30
16 1 3 1 0 1 18
17 2 7 1 0 1 21
18 3 11 0 1 1 33
19 1 4 0 0 1 7
20 2 8 0 1 0 17
21 3 12 1 0 0 27
22 1 4 1 1 1 19
23 2 8 1 1 1 21
24 3 12 1 1 1 41

INTRABLOCK ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values

rep 3 123

block 12 123456 789 10 11 12
A 2 01

B 2 01

C 2 01
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Table 9.15 (Continued)

345

Number of observations 24

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value
Model 17 1889.833333 111.166667 14.66
Error 6 45.500000 7.583333
Corrected Total 23 1935.333333

R-Square Coeff var Root MSE y Mean

0.976490 12.70978 2.753785 21.66667
Source DF Type I SS Mean Square F Value
rep 2 1537.333333 768.666667 101.36
block (rep) 9 127.000000 14.111111 1.86
A 1 36.000000 36.000000 4.75
B 1 36.000000 36.000000 4.75
A*B 1 12.250000 12.250000 1.62
c 1 56.250000 56.250000 7.42
A*C 1 81.000000 81.000000 10.68
B*C 1 4.000000 4.000000 0.53
Source DF Type III SS Mean Square F Value
rep 2 1537.333333 768.666667 101.36
block (rep) 9 119.833333 13.314815 1.76
A 1 36.000000 36.000000 4.75
B 1 36.000000 36.000000 4.75
A*B 1 12.250000 12.250000 1.62
C 1 56.250000 56.250000 7.42
A*C 1 81.000000 81.000000 10.68
B*C 1 4.000000 4.000000 0.53

Standard

Parameter Estimate Error t Value
Main effect A 3.00000000 1.37689264 2.18
Interaction AB 1.75000000 1.37689264 1.27

Pr > F

0.0016

Pr > F

.0001
.2316
.0722
.0722
.2508
.0345
.0171
.4950

O O O O O O O A

.0001
.2539
.0722
.0722
.2508
.0345
.0171
.4950

O O O O O O O A

Pr > |t

0.0722
0.2508
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Table 9.15 (Continued)

2%*3

FACTORIAL WITH PARTIAL CONFOUNDING

COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set WORK . CONFOUND
Dependent Variable Yy
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite
Class Level Information
Class Levels Values
rep 3 123
block 12 123456 789 10 11 12
A 2 01
B 2 01
C 2 01
Dimensions
Covariance Parameters 2
Columns in X 30
Columns in Z 12
Subjects 1
Max Obs Per Subject 24
Observations Used 24
Observations Not Used 0
Total Observations 24
Iteration History
Iteration Evaluations -2 Res Log Like Criterion
0 1 83.94834175
1 2 83.76036493 0.00000969
2 1 83.76008026 0.00000000
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Table 9.15 (Continued)

Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
block (rep) 2.4656
Residual 8.0297

Fit Statistics

—2 Res Log Likelihood 83.8
AIC (smaller is better) 87.8
AICC (smaller is better) 88.9
BIC (smaller is better) 88.7

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F
rep 2 4.56 59.31 0.0005
A 1 9.98 8.41 0.0158
B 1 9.98 4.57 0.0584
A*B 1 9.98 0.63 0.4464
C 1 9.98 7.79 0.0191
A*C 1 9.98 6.19 0.0321
B*C 1 9.98 0.11 0.7481
A*B*C 1 4.56 1.85 0.2370
Estimates
Standard
Label Estimate Error DF t Value Pr > |t]
Main effect A 3.5913 1.2380 9.98 2.90 0.0158
Interaction AB 0.9814 1.2380 9.98 0.79 0.4464

Interaction ABC 2.0000 1.4697 4.56 1.36 0.2370
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Table 9.15 (Continued)

PARTIAL CONFOUNDING IN 2" FACTORIAL DESIGNS

2**3 FACTORIAL WITH PARTIAL CONFOUNDING

AUXILIARY ANALYSIS

The GLM Procedure

Class Level Information

Class Levels Values
rep 3 123
block 12 12 3 4
A 2 01

B 2 01

C 2 01

Number of observations 24

Dependent Variable:

Source DF
Model 17
Error 6

Corrected Total 23

R-Square

0.976490

g
T

Source

rep
A

B

A*B

c

A*C

B*C

A*B*C
block (rep)

O R HERRRER RN

Yy

1

1

Sum of
Squares

889.833333
45.500000
935.333333

Coeff Var

12.70978

Type I SS

1537.333333
88.
37.

2.
66.
37.

0.
24.
95.

166667
500000
666667
666667
500000
166667
000000
833333

Mean Square

111.166667
7.583333

Root MSE

2.753785

Mean Square

768

88.
37.

2.
66.
37.

0.
24.
11.

.666667
166667
500000
666667
666667
500000
166667
000000
979167

F Value

14.66

y Mean

21.66667

56 7 8 9 10 11 12

F Value

101.
11.
4.
.35
.79
.95
.02
.16
.58

P W o d» oo

36
63
95

Pr > F

0.

0016

Pr > F

O O O O O O O O A

.0001
.0143
.0678
.5748
.0251
.0678
.8870
.1256
.2973
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Table 9.15 (Continued)
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Source DF Type III SS Mean Square F Value Pr > F
rep 2 1537.333333 768.666667 101.36 <.0001
A 1 36.000000 36.000000 4.75 0.0722
B 1 36.000000 36.000000 4.75 0.0722
A*B 1 12.250000 12.250000 1.62 0.2508
C 1 56.250000 56.250000 7.42 0.0345
A*C 1 81.000000 81.000000 10.68 0.0171
B*C 1 4.000000 4.000000 0.53 0.4950
A*B*C 0 0.000000 . . .
block (rep) 8 95.833333 11.979167 1.58 0.2973
Using (9.27), we obtain
PR 8.0297
() = o = 15323
(24 0.6201)2

and hence

which is (apart from rounding error) the value given in the output.
6. Using all three replicates, we find

with

e~ 1
Vai ABC) - 1296=2.16
Var< 3x2

and

se (X) = 1.2379

ABC =20

se (XB?:) — 1.4697

7. We use the results of Table 9.15—auxiliary analysis—to illustrate the numer-
ical implementation of some of the results of Sections 9.7.4 and 9.7.5 The
reader will recognize that the type I SS are those of the B|T-ANOVA in
Table 9.11. Its main purpose is the estimation of w and w’. Obviously,

W=

75833

1319
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and with A = 0.75 in (9.34), we obtain
W' = (—0.3333 x 7.5833 + 1.3333 x 11.9792)_1 = 0.0744.

The values for w and w’ are used to obtain, for example,

= 0.1319 x 3.040.0744 x 5.5
A= = 3.9016
0.1319 +0.0744

[see (9.26) and from (9.27)],

A 7.5833
ar (X) =199 4787
2+ 0.5641)2

se (4) = 12160
which is in good agreement with the results obtained in 5.

9.10.2 24 Factorial in Blocks of Size 4

Assuming that the 4-factor into action ABC D is negligible and that we want full
information on all main effects, using eight blocks of size 4, a suitable design
(from inspection of Table 8.3) is to confound AB and CD and, hence, ABCD in
one replicate and AC and BD and, hence, ABCD in the other replicate. Such a
design is given in Table 9.16, generated by PROC FACTEX. This design results
in the following three sets (see Section 9.7):

& ={ABCD} n =1
€& ={AB,AC,BD,CD} ny=4
€ =1{A,B,C,D,AD, BC, ABC,ABD, ACD, BCD}  n3=10

with zero information on &, % information on &,, and full information on &3.

The analysis of a data set using the design of Table 9.16 is given in Table 9.17
using PROC GLM for intrablock analysis and PROC MIXED for the combined
analysis.

The same comments made in Section 9.10.1 apply here also, and the reader is
encouraged to perform the computations using previously described methodology
in order to verify agreement with the computer output. We only make one addi-
tional comment concerning unconfounded effects, for example, main effect A.
Since A is unconfounded, only intrablock information gxists. This is reflected in
the fact that the estimates for A are the same, namely A = 4.6250, in the PROC
GLM and PROC MIXED outputs. However, the standard errors are slightly dif-
ferent, 0.8705 for PROC GLM versus 0.8722 for PROC MIXED, due to the fact
that the estimation procedures for variance components and hence the estimates
are different (due to unbalancedness) for the two procedures, 52 = 6.0625 for
PROC GLM and 5> = 6.0857 for PROC MIXED. The difference in this case is,
of course, negligible.
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Table 9.16 2* Factorial in Blocks of Size 4 Using Partial Confounding

options nodate pageno=1;

proc factex;

factors A B C D;

blocks size=4;

model est=(A B C A*C B*C D A*D B*D A*B*C A*B*D A*C*D B*C*D) ;
examine design confounding;

output out=replicatel blockname=block nvals=(1 2 3 4);
titlel 'TABLE 9.16';

title2 '2**4 FACTORIAL IN BLOCKS OF SIZE 4';

title3 'USING PARTIAL CONFOUNDING';

run;

proc factex;

factors A B C D;

blocks size=4;

model est=(A B A*B C B*C A*B*C D A*D C*D A*B*D A*C*D B*C*D) ;
examine design confounding;

output out=replicate2 blockname=block nvals=(5 6 7 8);

run;

proc print data=replicatel;

title3 ' (PARTIALLY CONFOUNDING AB AC BD CD';
title4 'AND COMPLETELY CONFOUNDING ABCD)';
run;

proc print data=replicate2;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B ¢ D Block
1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1
3 -1 -1 1 -1 1
4 -1 -1 1 1 4
5 -1 1 -1 -1 3
6 -1 1 -1 1 2
7 -1 1 1 -1 2
8 -1 1 1 1 3
9 1 -1 -1 -1 3
10 1 -1 -1 1 2
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 4
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Table 9.16 (Continued)

14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudo-factor Confounding Rules

[B1] = A*B*C*D
[B2] = C*D

Design Points

Experiment
Number A B C D Block
1 -1 -1 -1 -1 4
2 -1 -1 -1 1 1
3 -1 -1 1 -1 3
4 -1 -1 1 1 2
5 -1 1 -1 -1 1
6 -1 1 -1 1 4
7 -1 1 1 -1 2
8 -1 1 1 1 3
9 1 -1 -1 -1 3
10 1 -1 -1 1 2
11 1 -1 1 -1 4
12 1 -1 1 1 1
13 1 1 -1 -1 2
14 1 1 -1 1 3
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudo-factor Confounding Rules

[B1] = A*B*C*D
[B2] = B*D

2**4 FACTORIAL IN BLOCKS OF SIZE 4
(PARTIALLY CONFOUNDING AB AC BD CD
AND COMPLETELY CONFOUNDING ABCD)

Obs block A B C D
1 1 -1 -1 -1 1
2 1 -1 -1 1 -1
3 1 1 1 -1 1
4 1 1 1 1 -1
5 2 -1 1 -1 1
6 2 -1 1 1 -1
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Table 9.16 (Continued)

10

11
12
13

14
15
16

10

11
12

13

14
15
16

Table 9.17 Analysis of 2* Factorial With Partial Confounding

=1;

options nodate pageno

data partial;

input rep block A B C D y @@;

datalines;

25000140

11000115
110010 19

250100 43

25101147
251110 45
26 001145
26 0110 49
26100152

11110112
111110 22

12010121

120110 25

121001 28

26 1100 53
27 0010 55
27 011159
27 100 0 54
27 110158

121010 30

130100 27

13011131

131000 30

131011 34
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Table 9.17 (Continued)

14000014 28 00 0 0 45
14001120 28010150
14110022 28101055
14111127 28111163
run;

proc print data=partial;

titlel 'TABLE 9.17';

title2 '2**4 FACTORIAL WITH PARTIAL CONFOUNDING';
run;

proc glm data=partial;

class rep block A B C D;

model y=rep block(rep)A|B|C|De3;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;
title3 'INTRA-BLOCK ANALYSIS';

run;

proc mixed data=partial;

class rep block A B C D;

model y= rep A|B|C|D/ddfm=satterth;

random block (rep) ;

estimate 'Main effect A' A -1 1;

estimate 'Interaction AB' A*B 1 -1 -1 1/divisor=2;

title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';
run;

Obs rep block A B C D Y
1 1 1 0 0 0 1 15
2 1 1 0 0 1 0 19
3 1 1 1 1 0 1 12
4 1 1 1 1 1 0 22
5 1 2 0 1 0 1 21
6 1 2 0 1 1 0 25
7 1 2 1 0 0 1 28
8 1 2 1 0 1 0 30
9 1 3 0 1 0 0 27

10 1 3 0 1 1 1 31
11 1 3 1 0 0 0 30
12 1 3 1 0 1 1 34
13 1 4 0 0 0 0 14
14 1 4 0 0 1 1 20
15 1 4 1 1 0 0 22
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

N NDDNDNDNNDNDNDNDNNDDNDNDNDNDDNDDNDDNLGRE

0 00 00 0O JJJJ0o0oo oo ool

HRPOORHKHOORROOHKEOORHR
HOROROROROKROKORORHR

HRP OOOORHKHOORRHKEOORHR
HOROROROOROROROLHRRHR

27
40
43
47
45
45
49
52
53
55
59
54
58
45
50
55
63

2**4 FACTORIAL WITH PARTIAL CONFOUNDING
INTRABLOCK ANALYSIS

Class

rep

block

U n w

The GLM Procedure

Class Level Information

Levels

NDONDONDN
o o o o

=

Values

12

123456 738

Number of observations 32

Dependent Variable: y

Source
Model
Error

Corrected Total

DF
21
10
31

Sum of
Squares

7132.250000
60.625000

7192.875000

Mean Square
339.630952

6.062500

F Value

56.02

Pr > F

<.0001
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Table 9.17 (Continued)

R-Square Coeff Var

0.991572 6.621081
Source DF Type I SS
rep 1 5940.500000
block (rep) 6 777.375000
A 1 171.125000
B 1 18.000000
A*B 1 1.562500
c 1 120.125000
A*C 1 0.562500
B*C 1 2.000000
A*B*C 1 4.500000
D 1 6.125000
A*D 1 1.125000
B*D 1 5.062500
A*B*D 1 0.500000
C*D 1 1.562500
A*C*D 1 10.125000
B*C*D 1 72.000000
Source DF Type III SS
rep 1 5940.500000
block (rep) 6 406.875000
A 1 171.125000
B 1 18.000000
A*B 1 1.562500
c 1 120.125000
A*C 1 0.562500
B*C 1 2.000000
A*B*C 1 4.500000
D 1 6.125000
A*D 1 1.125000
B*D 1 5.062500
A*B*D 1 0.500000
C*D 1 1.562500
A*C*D 1 10.125000
B*C*D 1 72.000000
Parameter Estimate
Main effect A 4.62500000

Interaction AB —0.62500000

Root MSE

2.462214

Mean Square

5940.500000

129.562500
171.125000
18.000000
1.562500
.125000
.562500
.000000
.500000
.125000
.125000
.062500
.500000
.562500
.125000
.000000

=
N
o o

O O ULk OB+ N

<N
N

Mean Square

5940.500000

67.812500
171.125000
.000000
.562500
.125000
.562500
.000000
.500000
.125000
.125000
.062500
.500000
.562500
.125000
.000000

[y
N =
o O K ©

O O ULk OBk N

<N
N

Standard Error

0.87052427
1.23110723

y Mean

37.18750

F Value

979.88
21.37
28.23

2.97

.26

.81

.09

.33

.74

.01

.19

.84

.08

.26

.67

.88

=
o

PP OOOORKr OOOoOuV

=

F Value

979.88
11.19
28.23

2.97

.26

.81

.09

.33

.74

.01

.19

.84

.08

.26

.67

.88

=
o

PP OOOORKr OOOoOWuV

=

t Value

5.31
—0.51

Pr > F

.0001
.0001
.0003
.1156
.6227
.0012
.7669
.5784
.4091
.3385
.6758
.3823
.7798
.6227
.2253
.0063

O O O O O O O O OO OO OoOoOOoOA A

Pr > F

.0001
.0006
.0003
.1156
.6227
.0012
.7669
.5784
.4091
.3385
.6758
.3823
.7798
.6227
.2253
.0063

O O O O O O O O OO OO O OO oA

Pr > |t|

0.0003
0.6227
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Table 9.17 (Continued)

2**4 FACTORIAL WITH PARTIAL CONFOUNDING
COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set WORK.PARTIAL
Dependent Variable Yy

Covariance Structure Variance Components
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values
rep 2 12
block 8 123456 738
A 2 01
B 2 01
C 2 01
D 2 01
Dimensions
Covariance Parameters 2
Columns in X 83
Columns in Z 8
Subjects 1
Max Obs Per Subject 32
Observations Used 32
Observations Not Used 0
Total Observations 32
Iteration History
Iteration Evaluations -2 Res Log Like Criterion
0 1 107.26388086
1 2 97.51296909 0.01846419
2 1 96.69150852 0.00679576
3 1 96.40491364 0.00138264
4 1 96.35086623 0.00008239
5 1 96.34791369 0.00000036
6 1 96.34790114 0.00000000
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Table 9.17 (Continued)

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm

block (rep)
Residual

Fit Statistics

-2 Res Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

Estimate

36.8465
6.0857

96.
100.
101.
100.

Type 3 Tests of Fixed Effects

Effect Num DF Den DF
rep 1 4.62
A 1 9.92
B 1 9.92
A*B 1 10.7
C 1 9.92
A*C 1 10.7
B*C 1 9.92
A*B*C 1 9.92
D 1 9.92
A*D 1 9.92
B*D 1 10.7
A*B*D 1 9.92
C*D 1 10.7
A*C*D 1 9.92
B*C*D 1 9.92
A*B*C*D 1 4.62

Estimates

Standard

Label Estimate Error

Main effect A 4.6250 0.8722

Interaction AB -0.9587 1.2097

U w w w

F Value Pr > F
38.71 0.0021
28.12 0.0004
2.96 0.1164
0.63 0.4452
19.74 0.0013
0.02 0.8817
0.33 0.5792
0.74 0.4101
1.01 0.3396
0.18 0.6764
0.41 0.5366
0.08 0.7803
0.39 0.5438
1.66 0.2264
11.83 0.0064
0.01 0.9139

DF t Value Pr > |t]

9.92 5.30 0.0004

10.7 -0.79 0.4452




CHAPTER 10

Designs with Factors at Three Levels

10.1 INTRODUCTION

In discussing the 2" factorial design in Chapter 7 we saw that main effects and
interactions can be defined simply as linear combinations of the true responses,
more specifically as the average response of one set of 2”~! treatment combi-
nations minus the average response of the complementary set of 2"~ ! treatment
combinations. And even more specifically, the main effect of a certain factor is
the average response with that factor at the 1 level minus the average response
with that factor at the O level. Turning now to the situation where each factor
has three levels, which we shall refer to as O level, 1 level, and 2 level, such a
simple definition of main effects and interactions no longer exists. We can no
longer talk about the main effect of a factor or the interaction between two or
more factors but shall talk instead about main effect components or comparisons
belonging to a certain factor and about interaction components. We shall see how
all this can be developed as a generalization of the formal approach described
for the 2" experiment in Section 7.4.

10.2 DEFINITION OF MAIN EFFECTS AND INTERACTIONS

10.2.1 The 32 Case

To introduce the concepts we shall consider first the simplest case, namely that
of two factors, A and B say, each having three levels, denoted by 0, 1, 2. A
treatment combination of this 3% factorial is then represented by x’' = (x1, x2)
where x; =0, 1,2(i = 1, 2), with x| referring to factor A and x; to factor B.

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
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We now partition the set of nine treatment combinations into three sets of
three treatment combinations each according to the levels of factor A:

set I  {(0,0), (0,1), (0,2)}
set II:  {(1,0), (1,1), (1,2)}
set III:  {(2,0), (2,1), (2,2)}

More formally, we can define these three sets by the three equations:

setl: x;=0
setIll: x; =1 (10.1)
set III: x; =2

Comparisons among the mean true responses for these three sets are then said
to belong to main effect A. Since there are three sets, there are two linearly
independent comparisons among these three sets (i.e., their mean responses),
and these comparisons represent the 2 d.f. for main effect A. For example, the
comparisons could be (set I — set II) and (set I — III), or (set I — set II) and
(set I 4 set II — 2 set III).

Similarly, we can divide the nine treatment combinations into three sets corre-
sponding to the levels of factor B or, equivalently, corresponding to the equations:

x2=0: {(0,0), (1,0), (2,0)}
xp=1: {0, 1, (1, 1), 2, 1)} (10.2)
x2=2: {(0,2), (1,2), (2,2)}

Comparisons among the mean responses of these three sets then constitute main
effect B.

As in the 2" case, the interaction between factors A and B will be defined in
terms of comparisons of sets (of treatment combinations), which are determined
by equations involving both x; and x,. One such partitioning is given by

setl: x1+x=0 mod 3: {(0,0), (1,2), (2,1}
setll: x;14+x=1 mod 3: {(1,0), (0,1), (2,2)} (10.3)
set lIl: x;+x =2 mod 3: {(2,0), (0,2), (1, 1)}

Comparisons among these three sets account for 2 of the 4 d.f. for the A x B
interaction. The remaining 2 d.f. are accounted for by comparisons among the
sets based on the following partition:

setI: x;4+ 2x, =0 mod 3: {(0,0), (1,1), (2,2)}
set II: x1+ 2xo =1 mod 3: {(1,0), (0,2), (2, 1)} (10.4)
set III:  x1 4 2x, =2 mod 3: {(2,0), (0,1), (1,2)}
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To see what our development so far means with respect to the usual factorial
representation, we consider (see also Section 1.11.8.1)

Tjj =pn+A; +Bj + (AB);j (10.5)
with
2 2 2
> Ai=0 > Bj=0 ) (AB); =0
i=0 j=0 i=0
for each j,
2
D _(AB); =0
j=0

for each i, where 7;; is the true response for the treatment combination (x| =
i,x2 = j). With the model (10.5), a contrast among sets (10.1), that is,

Xi: CiTi. = zl: CiA; (Z ¢ = O)

is the corresponding contrast among A main effects. A contrast among sets (10.2),
that is,

Yoemi=2 B (X e=0)
J J
it is the corresponding contrast among B main effects. A contrast among sets
(10.3) can be written as
c1(too + T12 + T21) + c2(T10 + T01 + T22) + €3(T20 + TO2 + T11)
(ci1+c+e3=0)
which, using (10.5), reduces to the same contrast in the (AB);;’s. The same is
true for comparisons among sets (10.4), that is,
c1(too + 711 + 122) + c2(T10 + T02 + 21) + €3(T20 + TO1 + T12)
(ci+c2+e3=0)
The reader will notice that the last two comparisons have no particular meaning
or interpretation for any choice of the c;’s, except that they each belong to the 2-

factor interaction A x B, and that each represents 2 d.f. of that interaction. This is
in contrast to the parameterization given in Section 1.11.8.1 in terms of orthogonal
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polynomials. One difference, of course, is that the parameterization given there is
in terms of single degree of freedom parameters, and a second difference is that
it is meaningful only for quantitative factors, whereas the definitions in terms of
the partitions as summarized in (10.6) below hold for quantitative and qualitative
factors. But the most important point is that the current definitions of effects and
interactions will prove to be important in the context of systems of confounding
(see Section 10.5) and fractional factorials (see Section 13.4).

To sum up our discussion so far, the effects and interactions for a 32 experiment
are given in pairs of degrees of freedom by comparisons among three sets of
treatment combinations as follows:

A: x1=0,1,2

B: x=0,1,2
mod 3 (10.6)

x1+ x=0,1,2
A X B:

X1 +2x,=0,1,2

It is convenient to denote the pairs of degrees of freedom corresponding to
x1+x2 =0,1,2 by the symbol AB and the pair corresponding to x; + 2x, =
0,1,2 by AB.

It is easy to see that the groups given by the symbols AB?> and A’B are
the same. It is, therefore, convenient, in order to obtain a complete and unique
enumeration of the pairs of degrees of freedom, to adopt the rule that an order
of the letters is to be chosen in advance and that the power of the first letter in a
symbol must be unity. This latter is obtained by taking the square of the symbol
with the rule that the cube of any letter is to be replaced by unity, that is, if the
initial letter of the symbol occurs raised to the power 2, for example, A>B, we
then obtain

A’B = (A’B)? = A*B?> = AB?
This procedure follows from the fact that the partitioning produced by
2x1+x2=0,1,2
is the same as that produced by
2-2x14+2x =0,2,1
that is,
X1 +2x=0,2,1

which is the partitioning denoted by AB?.
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Table 10.1 Effects and Interactions for 33

Experiment
Left-Hand Side of
Effect/Interaction Defining Equation
A X1
B X2
AB
A X B it
AB? X1 +2x2
C X3
AC X
AxC 1+x3
AC? X1 +2x3
BC X2 +
B xC 2
BC? X2 + 2x3
ABC X1+ x2 + x3
ABC? X1+ x2 4+ 2x
AxBxc{™ P e
AB*C X1 +2x3 +x3
AB%C? x1 + 2x2 + 2x3

10.2.2 General Case

The procedure of formally defining effects and interactions, illustrated for the 32
experiment, can be extended easily to the 3" case. We shall have then (3" — 1)/2
symbols, each representing 2 d.f. For example, for the 33 experiment there will
be 13 symbols as given in Table 10.1 together with their defining equations of
the form a1x; + apxo + a3x3 = 0, 1,2 mod 3.

For the general case of the 3" experiment, denoting the factors by
Ay, Ay, ..., Ay, the (3" —1)/2 symbols can be written as A{', AS?, ..., A,"
witho; =0,1,2( =1,2,...,n) and the convention that (1) any letter A; with
a; = 0 is dropped from the expression, (2) the first nonzero « is equal to one
(this can always be achieved by multiplying each «; by 2), and (3) any o; = 1
is not written explicitly in the expression. (This is illustrated in Table 10.1 by
replacing A by A, B by A, and C by Az.)

The n-tuple a’ = (a1, 2, - - -, &) associated with AJ'AS* - -+ A" is referred
to as a partition of the 3" treatment combinations into three sets according to
the equations

ojx; +agxy+ -+ oux, =0,1,2 mod 3 (10.7)
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We now list some properties of such partitions:

1.

2.

Each partition leads to three sets of 3"~! treatment combinations each as
is evident from Eqgs. (10.7).
If o/ = (a1, 00,...,0,) and B’ = (B1, B2, ..., By) are two distinct parti-

tions, then the two equations

o1X] +axxo + -+ oux, =8 mod 3 (10.8)

and
Bix1 + Baxa + -+ Buxy, =062 mod 3 (10.9)
are satisfied by exactly 3"=2 treatment combinations x’ = (X1, X2, ...y Xp).

This implies that the set of treatment combinations determined by o¢'x = §;
has exactly 3”2 treatment combinations in common with each of the
three sets determined by the equations 8'x = 0, 1,2 mod 3, respectively.
It is in this sense that the two partitions o« and B are orthogonal to
each other.

If a treatment combination x’ = (x1,xp,...,x,) satisfies both Eqgs.
(10.8) and (10.9) for a particular choice of 41, 82, then x also satisfies
the equation

(a1 + B)x1 + (a2 + Bo)xa + -+ - + (o + Bp)xy =61 + 2 mod 3
(10.10)
Equation (10.10) is, of course, one of the three equations associated
with the partition &’ + 8" = (a1 + B1, 02 + B2, ...,y + B,), in which
each component is reduced mod 3, and hence with the interaction

AT‘J”B : Agz+’3 2. A% P In agreement with the definition in Section 7.4
we refer to E*HP = A‘f1+ﬂ ! Agﬁﬂ 2. A%TPr a5 generalized interaction
(GI) of E* = AT AS> -~ Ay and EF = AD' A ... Al

In addition to satisfying (10.10), the treatment combination x, which sat-
isfies (10.8) and (10.9), also satisfies the equation

(a1 +2BD)x1 + (2 +2B2)x2 + -+ + (otn + 2Bp)xn =81 +25, mod 3

(10.11)
which is associated with the partition o’ + 28’ and hence the interaction
E*t28 — AT'H’S ! Agﬁzﬂ 2... A% 2P This interaction is therefore another
GI of E® and EP. To summarize then, any two interactions E% and Ef
have two GIs E**# and E*t28 where a + B and o« + 28 are formed
mod 3 and are subject to the rules stated earlier. We illustrate this by the
following example.
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Example 10.1 Consider AB and ABC? in the 33 case, that is, &’ = (1, 1, 0)
and B’ = (1, 1,2). Then

(@+B)=02,2,2)=(1,1,1)

and
(¢+2B8)=(3,3,4=(0,0,1)

and hence the GIs of AB and ABC? are ABC and C. Another way of obtaining
this result is through formal multiplication and reduction mod 3, that is,

(AB)(ABC?) = A’B*C? = (A’B*C?)?> = ABC
and

(AB)(ABC?? = A*B3c*=C O

10.3 PARAMETERIZATION IN TERMS OF MAIN EFFECTS
AND INTERACTIONS

The symbols used in the previous section to denote pairs of degrees of freedom
will also be used to denote the magnitude of effects and interactions in the fol-
lowing way (see also Section 10.4). Each symbol represents a division of the set
of 3" treatment combinations into three sets of 3” — 1 treatment combinations
each. The symbol, with a subscript that is the right-hand side of the equation
determining the particular one of the three sets in which the treatment combina-
tions lie, will denote the mean response of that set as a deviation from the overall
mean, M. If E* = A{'AS? - .- Ay" represents an interaction, then

mean of treatment combinations

i satisfying o’x =i mod 3

E* = (A% A% . A%) = ( ) — M (1012)

We shall also use the notation Ey, for given a and x to denote one of the
quantities Ef, EY, E depending on whether a’x =0, 1,2 mod 3, respectively.
We note that a comparison belonging to E* is, of course, given by
coE§ + c1EY + c2ES (co+c1+c=0) (10.13)
Also, it follows from (10.12) that
E§+EY+Ef=0 (10.14)

so that any comparison of the form (10.13) could be expressed in terms of only
two El‘" Such a procedure was, in fact, adopted for the 2" factorial, but as we
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shall see below, in the present situation this would only lead to a certain amount
of asymmetry.

As an extension of (7.42) we can now state and prove the following result,
which expresses the response a(x) of a treatment combination x as a linear
combination of interaction components. This parameterization of a(x) is given by

a(x)=M+Y EZ, (10.15)
o

where summation is over all &' = (a1, a2, ...,a,) # (0,0, ...,0), subject to
the rule that the first nonzero «; equals one, and o’x is reduced mod 3. The
proof of (10.15) follows that of (7.42) and will be given for the general case in
Section 11.5.

We illustrate (10.15) with the following example.

Example 10.2  Consider the 3 factorial with factors A, B, C and denote
the true response of the treatment combination (i, j, k) by a;bck. Then (10.15)
can be written as

aibjc, =M + A; + Bj + ABj4; + AB,~2+2]-
+ Ck + ACisk + AC? o + BCjk

+ BCj p + ABCiyjix + ABCY,
+ ABZCi+2j+k + AB2Ci2+2j+2k

Fori =1, j =1,k =2, for example, this becomes

atbicy =M + Ay + Bi + AB, + ABj + C2 + ACy
+ AC3 + BCo+ BC; + ABC, + ABC}
+ AB*C, + AB*C?} O

We emphasize again that the parameterization (10.15), which because
of (10.14) is a non-full-rank parameterization, becomes important in connec-
tion with systems of confounding (Section 10.5) and fractional factorials
(Section 13.4).

10.4 ANALYSIS OF 3" EXPERIMENTS

Suppose that each treatment combination is replicated r times in an appropriate
error control design, such as a CRD or a RCBD. Comparisons of treatments are
then achieved by simply comparing the observed treatment means, and tests for
main effects and interactions are done in an appropriate ANOVA.
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Table 10.2 ANOVA for 33 Experiment in Randomized Complete
Block Design

Source d.f. SS
]
Blocks r—1 273 Gi —-5..)
i=1
Treatments 3¥-1=26
2
A 2 oy (3. -7..)
j=0
2 2
B 2 Y (Vo — Vo)
k=0
Ax B 4 3 Tk =T =Tk +7.)
Jjk
2
c 2 Y (Vi —7..)
=0
AxC 4 3y T =V =V +73.)
jt
BxC 4 3r Z (y,_kg - ?k - y[ +7)2
ket
Ax BxC 8 r Z (y.jkz _yjk. - y.j.g —Yoke +§._,-..
jke
VAV =)
Residual 26(r — 1) > Gijee = Ti = Vjpe +5.)
ijke

For purposes of illustration we consider a 3% experiment in an RCBD with r
blocks. With the usual model

Yijke = i+ Bi + Tjke + eijre
or
y=pnI+XgB+X.t+e

where (jk{) denotes the level combinations for the three factors A, B, C, and
with the factorial structure of the treatments, we obtain the usual ANOVA given
in Table 10.2.

An alternative way of computing the various components of the treatment sum
of squares is based upon the definition of the 2-d.f. components of any interaction
and the corresponding symbols defined in Section 10.3. Let £% denote any such
interaction component, such as AB or AB2C, and let Ef, EY, EY be the mean
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Table 10.3 Partitioning of 3-Factor Interaction
Sum of Squares

Source d.f. SS

ABC > 9r|IABCP +[ABCP + [ABC, P
ABC? 2 9 [IABCGIP +1ABCYP +1ABCP)
AB2C 2 9r {[A/B%]2 +[AB2C, 1 + [EZ\CZ]Z}
AB2C? 2 or | [AB2C2P% + [AB2CHP + [@312}

observed responses (as a deviation from the overall mean) of the three sets
defining E%. The sum of squares associated with E<, accounting for 2 d.f,, is
then given by

ss(E®) =3~ {[EgT + [E5]" + [E3]’) (10.16a)
with
E[SS(E] =202 + r3 {[EGT + [E2] + [E5T| (10.16b)

Specifically, for the 33 experiment the sum of squares due to 3-factor interaction,
for example, can be broken down as given in Table 10.3. The usefulness of this
procedure will become apparent when we consider systems of confounding in
Section 10.5. The SS given in (10.16a) is simply the SS (among sets) for the
sets defined by a’x = 0, 1, 2. Since the various partitions are orthogonal to each
other, so are their associated SSs. It is not difficult to show that the sum of the
four SSs in Table 10.3 is the same as SS(A x B x C) in Table 10.2.

Generally, it is also useful to list the quantities Ef, EY, E5 for main effects and
interactions as they can be used to estimate the yield of any treatment combination
or comparisons among treatment combinations (see Section 10.3).

10.5 CONFOUNDING IN A 3" FACTORIAL

The necessity for using incomplete blocks for a 3" factorial is even more obvious
than for a 2" factorial. Even for small n the number of treatment combinations
is often too large for complete blocks, either because such large blocks are not
available or they are no longer homogeneous. The use of smaller blocks will
then lead to confounding of effects and interactions with blocks, a notion that we
have discussed extensively for the 2" factorials. We shall see that the basic ideas
encountered there can be modified easily for 3" factorials. We shall illustrate this
with a simple example before discussing useful systems of confounding more
generally.
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10.5.1 The 33 Experiment in Blocks of Size 3

Suppose we wish to arrange a 3° experiment in blocks of size 3. This will result in
nine blocks with 8 d.f. among them. Hence, we need to confound with blocks four
pairs of degrees of freedom, each pair representing a main effect or an interaction
component. Suppose we first choose to confound AB and ACZ. Recall that AB
is represented by comparisons among the sets satisfying the equations

x1+x=0,1,2 mod3
and that AC? is similarly represented by the equations

x1+2x3=0,1,2 mod 3
It is obvious then that considering jointly

x1+x =k mod3

x1+2x3=¢ mod 3 (10.17)
for all possible combinations of k, ¢, =0, 1,2, we partition the 27 treatment
combinations into 9 sets of 3 treatment combinations each, these sets being the
blocks for the desired system of confounding. Now, any treatment combination
which satisfies (10.17) for given (k, £), also satisfies

2x1 +x2 +2x3=k+ £ mod3

or, equivalently,

X1 +2x3+x3=2(k—+¢) mod3

and since 2(k + £) =0, 1,2 mod 3 it follows that there are three sets of three
blocks which satisfy the equation

X1 +2x24+x3=0,1,2 mod 3

respectively. Comparisons among these sets, however, define the interaction com-
ponent AB>C. Hence AB?C is also confounded with blocks, and we recognize
immediately that AB2C is a Gl of AB and AC?; that is,

(AB) x (AC*) = A’BC? = A*B%>C* = AB*C

Similarly, any treatment combination that satisfies (10.17) also satisfies the
equation

(x1+x2) +2(x1 +2x3) =k+2¢ mod 3
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Table 10.4 Plan for 3> Experiment in Blocks of Size 3

1 2 3 4 5 6 7 8 9
000 002 001 010 012 011 020 022 021
121 120 122 101 100 102 111 110 112
212 211 210 222 221 220 202 201 200
or

x3+x3=k+2¢ mod3

Hence the other GI
(AB)(AC?)?* = A*BC* = BC

is also confounded with blocks. These four interactions, AB, AC 2, AB%C , and
BC, then account for the 8 d.f. for comparisons among blocks.

The composition of the blocks for the above system of confounding can be
obtained from Egs. (10.17) with (k, £) assuming all possible values. Alternatively,
we can construct first the intrablock subgroup (IBSG) from

x1+x2=0 mod3
x1+2x3 =0 mod 3

and then, using the x representation for treatment combinations, add (componen-
twise and mod 3) a treatment combination, not already contained in the IBSG, to
each element in the IBSG. This process is continued as described in Section 8.3,
until all blocks have been constructed in this manner as given in Table 10.4.

10.5.2 Using SAS PROC FACTEX

A similar design can be obtained by using SAS PROC FACTEX and is given in
Table 10.5.

We shall comment briefly here on some aspects of the SAS output and how
it relates to our discussion in this chapter:

1. We note that rather than using 0, 1, 2 for the factor levels, SAS uses —1,
0, 1, respectively, as commonly used in response surface and regression
methodology.

2. The single degree of freedom associated with the main effects and interac-
tions are listed formally akin to the linear-quadratic effects representation
for quantitative factors (see 1.11.8.1), for example,

A —> A linear

2% A — A quadratic
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options nodate pageno=1;
proc factex;
factors A B C/nlev=3;
blocks size=3;

model est=(A B C);
examine design confounding aliasing;
output out=design blockname=block nvals=(1 2 3 4 5 6 7 8 9);

titlel
title2
run;

'TABLE 10.5';

'3**3 FACTORIAL IN BLOCKS OF SIZE 3';

proc print data=design;

run;

Experime
Numb

The FACTEX Procedure

Design Points

nt

er A B c Block
1 -1 -1 -1 1
2 -1 -1 0 9
3 -1 -1 1 5
4 -1 0 -1 6
5 -1 0 0 2
6 -1 0 1 7
7 -1 1 -1 8
8 -1 1 0 4
9 -1 1 1 3
10 0 -1 -1 3
11 0 -1 0 8
12 0 -1 1 4
13 0 0 -1 5
14 0 0 0 1
15 0 0 1 9
16 0 1 -1 7
17 0 1 0 6
18 0 1 1 2
19 1 -1 -1 2
20 1 -1 0 7
21 1 -1 1 6
22 1 0 -1 4
23 1 0 0 3
24 1 0 1 8
25 1 1 -1 9
26 1 1 0 5
27 1 1 1 1
Pseudofactor Confounding Rules

Block

[B1] = (2*A)+(2*B)+(2*C)
[B2] = B+(2*C)
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Table 10.5 (Continued)

Aliasing Structure

A

(2*A)

B

(2*B)

C

(2*Q)
A + B
[B] = (2*A) + B
[B] = A +(2*B)
(2*A) +(2*B)
A + C
[B] = (2*A) + C
[B] = A +(2*C)
(2*A) +(2*C)
B + C
[B] = (2*B) + C
[B] = B +(2*C)

(2*B) +(2*C)

Obs block A B ¢
1 1 -1 -1 -1
2 1 0 0 0
3 1 1 1 1
4 2 -1 0 0
5 2 0 1 1
6 2 1 -1 -1
7 3 -1 1 1
8 3 0 -1 -1
9 3 1 0 0

10 4 -1 1 0
11 4 0 -1 1
12 4 1 0 -1
13 5 -1 -1 1
14 5 0 0 -1
15 5 1 1 0
16 6 -1 0 -1
17 6 0 1 0
18 6 1 -1 1
19 7 -1 0 1
20 7 0 1 -1
21 7 1 -1 0
22 8 -1 1 -1
23 8 0 -1 0
24 8 1 0 1
25 9 -1 -1 0
26 9 0 0 1
27 9 1 1 -1
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and
A + B —> A linear x B linear

2% A+ B —> A quadratic x B linear
A+ 2% B —> A linear x B quadratic
2x A+ 2% B — A quadratic x B quadratic

We should point out, however, that these representations are not identical
[see also (4) below].

3. The confounding rules are essentially the same as those we have explained
earlier. In this example the block compositions are obtained by satisfying
the equations

2%¥A+2xB+2xC =6
B+2xC =6

for some 61, 6,(= 0, 1,2 mod 3), where A, B, and C are the levels of those
factors. In our notation this is equivalent to satisfying the equations

2x1+2x+2x3 =91

X2+ 2x3 =y

or
xi+x+x3=y

X2+2x3=n

Hence, in this example we confound ABC and BC 2 and, hence, AB? and
AC? with blocks. We only need to remember that —1 =2 mod 3 and
—2 =1 mod 3.

4. The aliasing structure gives a list of the main effects and 2-factor interac-
tions that are either estimable or confounded with blocks, the latter being
identified by [B]. More precisely, we should really say that the aliasing
structure represents a list of the number of degrees of freedom associ-
ated with estimable and confounded effects, respectively. For example,
the output identifies A + B and 2 % A + 2 % B as estimable. This does not
mean, however, that A linear x B linear, or A quadratic x B quadratic are
estimable since there is no relationship between these components and the
2-d.f. component AB.
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10.5.3 General Case

Following the example from Section 10.5.1 it is easy to see that for the general
case of a 3" factorial in blocks of size 3”7 we then have the following:

1. 377 — 1 d.f. are confounded with blocks, that is, (3”77 — 1)/2 main
effects and/or interactions are confounded with blocks.

2. If two interactions E® and E# are confounded with blocks, then their Gls
E*tB and E*12B are also confounded with blocks.

3. To find a system of confounding, one needs to specify only g =n — p
independent main effects and/or interactions E%!, E®2, ..., E% since the
q interactions have

q 2(4 3(4 -1(4 1 1
2 2 2 .04 = -39 _ _ _
(@) +2()+2 )+ () =7 -3

GIs among them. Hence altogether (37 — 1)/2 interactions are confounded
with blocks.

4. The composition of the blocks is obtained by means of the IBSG, which
is composed of the treatment combinations satisfying the equations

aj1x] +ojppxy+ -+ ajx, =0

(j=1,2,...,9g =n— p) as determined by the independent confounded
interactions E%!, E*2, ..., E% in (3). The remaining blocks are then
obtained as described in Section 10.5.1.

10.6 USEFUL SYSTEMS OF CONFOUNDING

As we have mentioned earlier, the number of treatment combinations is quite
large even for a moderate number of factors. This would call in most cases for
incomplete blocks and hence for a system of confounding. But even this may
lead to certain difficulties since at this time we are only considering blocks the
size of which is a power of 3, so that the choice is quite limited. (For other
block sizes we refer to Section 11.14.4.) To complicate matters, according to
Fisher’s (1942, 1945) theorem (see Section 11.7) confounding of main effects
and/or 2-factor interactions can be avoided only if the block size is larger than
twice the number of factors, that is, k > 2n. For purposes of reference we list
in Table 10.6 possible types of confounding involving up to five factors and
various block sizes. Further systems can be obtained from this list by permuting
the letters.
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Table 10.6 Types of Systems of Confounding for 3" Experiments

Number of Size of
Factors Blocks Confounded Effects/Interactions?
2 3 Any main effect or interaction
3 3 A*, B*, AB, AB?
A*, BC*, ABC, AB*C?
A*, BC?, AB2C, ABC?
AB*, AC*, BC?, AB>C?
AB*, ACY | BC, AB*C
AB% | AC*, BC, ABC?
AB%, ACY,BC?, ABC
9 Any main effect or interaction
4 3 A*, BC*, ABC, AB2C?, BD*, ABD, AB>D?,

BC?D?,CD?, AB2CD, ACD? AC%D, ABC?D?

B*, AC*, ABC, AB>C, AD*", ABD?, AB2D?,
AC?D,CD, AB%C?D, BCD, ABC?D, BC?*D?

C*, AB*, ABC, ABC?, AD*, ACD, AC?D,
AB?D?, BD?, AB2C?D?, BCD?, AB>CD?, BC?D?

D* AB? , AB®D, AB®D? AC?, AC2D, AC?D?,
ABC, BC?, ABCD?* BC?D?* ABCD, BC®D

9 A*, B*, AB, AB?

A*, BC*, ABC, AB%C?

A*, BCD*, ABCD, AB*C?D?

AB*, AC*, BC%, AB2C?

AB*,CD*, ABCD, ABC2D?

AB*, ACD*, BC®*D?, AB2C?D?

ABD*, ACD?*, AB2C?, BC?D?

27 Any main effect or interaction

5 9 BE*, ABC*, AB’CE, ACE?,CDE*
BCDE?, BC?D?, ABC?DE, ABD*E?
AB2C?’DE?, AB?D? AC?D, AD*E
27 ABC*, AB2DE* AC*D?*E?, BC’DE

“Effects with an asterisk (*) are the independent effects.

Generally not all components of a particular interaction are confounded with
blocks and, hence, limited intrablock information on that interaction is still avail-
able (see also Sections 10.7.2 and 10.7.3). Even so, in most practical cases it will
be useful to resort to partial confounding. These can be obtained easily from the
systems provided in Table 10.6. In the following we shall comment briefly on
some such systems.
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10.6.1 Two Factors

Since we can confound any pair of effect or interaction degrees of freedom, the
following systems suggest themselves: (1) Use a basic pattern of two replicates,
confounding AB and AB?, giving full information on main effects and % infor-
mation on the interaction. (2) Use a basic pattern of four replicates, confounding
A, B, AB, and AB?, each in one of the four replicates, giving equal information
on main effects and interactions. The arrangement of the treatment combinations
in blocks and the structure of the analysis of variance with g repetitions of the
basic pattern are given in Table 10.7.

10.6.2 Three Factors

1. Blocks of Size 3 Consulting Table 10.6 suggests that a suitable system of
confounding consists of a basic pattern of four replicates of the following

types:

Type I confound AB, AC, BC?, AB2C?
Type II confound AB,AC?, BC, AB*C
Type IIl confound ABZ?, AC, BC, ABC?
Type IV confound AB? AC?, BC?, ABC

This will yield full information on main effects, % relative information on
2-factor interactions, and % relative information on 3-factor interactions.

2. Blocks of Size 9 The most useful design consists of one or more repetitions
of a basic pattern of four replicates confounding ABC, ABC?, AB>C,
and AB?C?, respectively. This will result in full information on all main
effects and 2-factor interactions and % relative information on the 3-factor
interaction components. The arrangement of the blocks is given in Table
10.8, each column (level of C) combined with the levels of A and B giving
a block and each set of three columns a replicate.

10.6.3 Treatment Comparisons

At this point we comment briefly on evaluating the amount of information on
any treatment comparison provided by the confounded design relative to the
unconfounded design. To do so we make use of the fact that the yield of a
treatment combination can be represented in terms of main effect and interac-
tion components (see Section 10.3). For purposes of illustration suppose that we
are interested in the comparison (agboco — apbocy), using g repetitions of the
basic pattern given in Table 10.8. Notice that apbgoco and agbpc; never occur
together in the same block, so that a simple comparison among their mean yields
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Table 10.7 3? Experiment in Blocks of Size 3
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Replicate Effect/Interaction
Type Confounded Blocks
a. Arrangement in Blocks
1 A 00, 01, 02; 10, 11, 12; 20, 21, 22
II B 00, 10, 20; 01, 11, 21; 02, 12,22
I AB 00, 12, 21; 01, 10, 22; 02, 20, 11
v AB? 00, 11, 22; 10, 02, 21; 01, 12, 20
Source d.f.
b. Analysis of Variance
Replicates 4q — 1
Blocks/reps 8q
A 2
B 2
AB 2
AB? 2
Residual 24g — 8
A X reps 2(3g — 1)
IL 10, IV
B x reps 2(3g — 1)
I, 1L, IV
AB X reps 2(3¢g — 1)
LI, IV
AB? x reps 23¢g — 1)
I, II, I

Table 10.8 Design for 33 Experiment in Blocks of Size 9

Confounded Interaction

ABC ABC? AB2C AB2C?
Level of
A B Level of C
0 0 012 021 012 021
1 0 201 102 201 102
2 0 120 210 120 210
0 1 20 1 102 120 210
1 1 120 210 012 021
2 1 012 021 201 102
0 2 120 210 20 1 102
1 2 012 021 120 210
2 2 201 102 012 021
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will not provide any useful information. Instead, we make use of the fact that
[see (10.15)]

aoboco = M + Ao + Bo + ABy + AB§ + Co
+ ACy+ AC} + BCy + BCE + ABCy

+ ABC§ + AB*Cy + AB*C}

and
aoboct = M + Ao + By + ABy + AB] + C
+ ACy 4+ AC3 + BCy + BC3 + ABC,
+ ABC; + AB>Cy + ABC3

so that the estimator for (agboco — apbocy) is
apbocy — agboc) = (60 — 61) + (ZEO — Za)
+(ACo - AC3) + (BCo - BC))
2 —2 —_— —
+ (Bc0 BC2> + (ABCO - ABCl)
+ (ABC0 ABC2> (AB2Co - ABPC))
—2 2
+ (A32CO — AB2C2)

Each quantity in parentheses is statistically independent of the others (because
of the orthogonality of the partitions), with a variance depending on the sys-
tem of confounding used. In the present case any difference among main effect
components (like Co — Cy) and among 2-factor interaction components (like
ACp — ACy) is estimated with variance

, o _ ol
49 -9 18q

and any difference among 3-factor interaction components (like ABCy — ABC1)
is estimated with variance

2 2
o, 20;

2 =
3¢-9 2q




USEFUL SYSTEMS OF CONFOUNDING 379

Hence

o2 262 31

e e 2

18 T 274 547

var (aoboco — aobocl) =5.

With no confounding and the same error variance, the variance of the comparison

would have been %2 /2q, so that the relative information on this comparison is
54 _ 27
62 — 3I°

10.6.4 Four Factors

1. Blocks of Size 3 A suitable system consists of a basic pattern of four
replicates, using the four systems of confounding given in Table 10.6.
This design will result in % information on main effects and all 2-factor
interaction components.

2. Blocks of Size 9 The most useful type of confounding is obviously the
last one given in Table 10.6 since it confounds only 3-factor interaction
components, one from each type of 3-factor interaction. Altogether there
exist eight such systems of confounding.

3. Blocks of Size 27  In general, the experimenter will wish to avoid blocks of
size as large as 27, though, in some fields of experimentation and with some
types of experimental material, the effect on error variance of reducing
block size from 27 to 9 may be so small as not to offset any loss in
relative information that results from confounding. If blocks of size 27
are being used, any of the eight 4-factor interaction components may be
confounded.

10.6.5 Five Factors

1. Blocks of Size 9 It is not possible to avoid confounding a main effect or 2-
factor interactions. Under these circumstances, the system of confounding
given in Table 10.6 and permutation of that set would be most useful.

2. Blocks of Size 27 One can show that it is not possible to find a design
confounding only 4- and 5-factor interactions. The most useful system of
confounding is then one of the form given in Table 10.6.

10.6.6 Double Confounding

Occasionally it may be desirable to impose a double restriction on the pattern of
a 3" experiment. This leads to systems of double confounding. Suitable systems
can be found by consulting Table 10.6. The actual arrangement of the treatment
combinations can be obtained by first constructing the IBSGs for confounding
with “rows” and “columns,” respectively, and then adding the elements of the first
row and first column termwise mod 3. As an example consider the 33 experiment
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with rows of size 9, confounding ABC?2, and columns of size 3, confounding
AB, AC, BC?%, AB2CZ; that is, construct row blocks from

X1 +x24+2x3=0 mod 3
and column blocks from

x1 +x2=0 mod3
x1+x3=0 mod3

The final arrangement (apart from randomization of rows and columns) then is
as follows:

Column
‘ 1 2 3 4 5 6 7 8 9

1000 101 202 o011 112 210 022 120 221
Row 2 | 122 220 021 100 201 002 111 212 010
31211 012 110 222 020 121 200 001 102

Obviously, one will need replications of this or a similar arrangement, using
different systems of confounding.

10.7 ANALYSIS OF CONFOUNDED 3” FACTORIALS

In the course of our discussion of 3" factorial experiments we have already
commented on some aspects of the analysis for particular situations. We shall
now make some remarks about the general 3" factorial experiment in blocks
of size 3”7 using some system of complete or partial confounding. Since the
development parallels that of Section 9.7, we shall not repeat all the details, but
only those that are specific to the 3" case.

The basic model underlying the analysis is as before:

y=puI+X,p+Xp:B*+ Xt +e

where p represents the replicate effects, B* the block within replicate effects,
and t the treatment effects, or in its reparameterized form

y=puI+X,p+Xpp* +Xrx1" + e
where ¥ represents the interaction components EY for all admissible o’ =
(o1, 00,...,a,) and i =0, 1, 2. A basic pattern of partial confounding consists
of s types of replicates, each replicate consisting of 3"~ blocks, and the basic
pattern is repeated g times.
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We divide the (3" — 1)/2 interactions E® into three mutually exclusive sets
based on the amount of confounding:

&1 = {E“k, k=1,2,...,n1: completely confounded}
& ={EY, £ =1,2,..., ny: partially confounded}

&3 = {E‘sm,k =1,2,...,n3: not confounded}

and E?t € &, is confounded in c¢(yy) replicates and not confounded in u(yy)
replicates of the basic pattern. We denote by N = 3"sq the total number of
observations.

The following statements concerning the analysis are then obvious extensions
of those made in Section 9.7.

10.7.1 Intrablock Information

1. Each Eg"’ € E3(h =0, 1, 2) is estimated from all replicates, which implies
Do _ P\ _ 2 2
var (Eh — Eh’ ) = WO’C,
and

2 2 2
Sm\ -1 T0m Tom T8m
sS (E%) = sq3" {[EO |+ (& + 2] } (10.18)

2. Each E}:e € & is estimated from qu(y,) replicates and hence

~ ~ 2
Ye _ Ve — 2
var (Eh E,, ) Ju(y)3] o, (10.19)
and
n=1[157e12 | 15712 | [7Ye12
sS(E70) = quiyo3 " {[EYT + [ET'T +[EYT) (020

10.7.2 The ANOVAs

The partitioning of the total sum of squares and its degree of freedom in the
T|B-ANOVA is given in Table 10.9a with a further partitioning of the block
and residual sums of squares in Tables 10.9b and 10.9c. All sums of squares
associated with interactions are obtained in the usual way, following (10.18)
and (10.20), except that SS(-). is obtained from only those replicates in which
the corresponding interaction is confounded. SS(E i*j) is obtained only from the

jth replicate in the ith repetition, and ) ; j and Z;/] denote summation over
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Table 10.9 T|B-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

X,19 sq — 1 Usual

Xp13, X, sq(3"P —1) Usual

X9, X, Xpr 2ny + 2n3 > SS(EYe) + ) SS(E®)
4 m

I3, X, Xgr, Xox VR Difference

Total N -1 Usual

b. Partitioning of Block Sum of Squares

X419, X, sq(3"P — 1)
{E*) 2n, D SS(E™),
k
(E7) 22 > SS(E?O),
4
{E% x reps} 2ni(sq — 1) Y D SS(E[)e — Y SS(E™),
kK ij k
(E* x reps) Y e =2 D SS(EN = Y SS(EY),
¢ T, ¢
c. Partitioning of Residual Sum of Squares
13, X,, Xg, Xt~ VR
(E”¢ x reps) 24 Y ulye) — 2n S5 sS(Er) - Y SS(ET)
¢ T, ' ¢
{E® x reps) 2n3(sq — 1) YD TSSE) =Y ss(Eb)
m o ij m

all replicates in which E* is confounded and not confounded, respectively (see
Section 9.7).

The B|T-ANOVA in its basic form is given in Table 10.10a with a partitioning
of the block sum of squares in Table 10.10b. The only sum of squares that needs
to be explained is that associated with {E Ye vs, EVe } More specifically this sum
of squares is associated with the comparisons

(E}' —EJ) vs. (EV—EY) vs. (EY'—E)) (10.21)

where E}; ¢ is obtained from the qu(yy) replicates in which E?¢ € &, is not
confounded and E}:"' is obtained from the gc(yy) replicates in which E?¢ is
confounded. Since Eg‘f + ET‘ + E;“ =0 and Eg“ + ET‘ + E;“ =0, it follows
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Table 10.10 B|T-ANOVA for Partial Confounding

Source d.f. SS

a. Basic Partitioning

X, sq —1 Usual

X9, X, 3" —1 Usual

Xp<|J, Xp, Xox sq(3" P —1) —2n Difference

1D, X, Xo+, X+ VR From Table 10.9
Total N -1 Usual

b. Partitioning of Block Sum of Squares

Xpc19, X, X o sq(3""P — 1) — 2n,

{E” V. En} 21, See (10.24)

{E* x reps} 2ni(sq — 1) From Table 10.9b

{E?¢ x reps} 2 Y cly) = 2m From Table 10.9b
4

that the comparisons (10.21) and hence the associated sum of squares carry 2
d.f. This sum of squares is obtained in the usual way. Define

El' —El'=X!" (=012
Then

. - XJ’Z _ X)’Z / %4 -1 ny _ X)’Z
SS (B vs. E”):( 0 2) [#} o2 ) o

Ve Ve Ve
X7t —-x) o X7t -x]

e

where V,, is the variance—covariance matrix of
Ve Ve
(XO e )
Ve Ve
X1 X

s 2 1 2
VvV, = o
YT quiye) e(ye) 301 (1 2) ¢

It is easy to see that

and hence

[Mr:qu(n)c(wml( 2 _1)

o2 s -1 2
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Then (10.22) reduces to

n—1
SS(E” . EV«):C”‘()")C?@3 S [T (10.23)
h

Summing (10.23) over all E¥¢ € &, yields

sS({E7 vs. Evi)) =17

n—I1
SN utoco [x1T (1024)
l h

N

which is a sum of squares with 2n, d.f. and which depends only on block effects
and error.

10.7.3 Tests of Hypotheses
We can test the hypotheses

Ho: E) =E{'=E}'=0 (E” € &)

and
Hy: Ef" = EV" =Eim =0 (E% c &)

by using, in the T|B-ANOVA, the F tests as approximations to the randomization
tests (see, e.g., 1.6.6 and 1.9.2):

MS (EY¢)
= (10.25)
MS (119, X, X g+, X1+)
and
MS (E3m)
F = (10.26)

MS (113, X, Xpr, X+)

respectively, each with 2 and vg d.f. These are tests for no main effects or
interactions. With regard to interactions, however, we must keep in mind that the
total interaction among s factors has 2° d.f. and hence has 2° — 1 components
of the form E*. For example, for s = 3 and factors A, B, C, the components
are ABC, ABC?%, AB2C, AB2C?. To test then the hypothesis that there is no
A x B x C interaction we use the F test:

[SS(ABC) + SS (ABC?) + SS (AB>C) + SS (AB%C?)] /8
MS (119, X, Xg+, X %)

with 8 and vg d.f. In this case an F test of the form (10.25) or (10.26) may not
tell us very much about the 3-factor interaction, except that when one or the other
of those tests is significant then we can conclude that A x B x C interaction is
possibly present.
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For the general case of an s-factor interaction the following situations can
occur for a particular system of confounding:

1. All 2°~! components belong to &, and/or £3. In this case we can pool the
associated sums of squares in Table 10.9a and obtain an F test with 2° and
VR d.f.

2. Some components belong to €. In this case we can only use the sums of
squares associated with the components in €, and/or £3. Great care has to
be exercised in interpreting such a test.

3. All components belong to €. In this case no test exists in the context of
the T|B-ANOVA (but see Section 10.7.4).

10.7.4 Interblock Information

Assuming B* to be a vector of i.i.d. random variables with E(B*) = ¢ and
EB*B*) = ogl , we can obtain interblock information regarding E* € &£ and
EY¢ € &, by considering EZ‘" and E;‘ (h =0, 1, 2) obtained from those replicates
in which these interactions are confounded. We then have

E(Ef* —E)=EY — EX

n /4
with 5
7 7 2 2
var (B~ Ejf) = (o2 +37 ) (10.27)
and
4 =44 4 =44
E (Ehe - E//) = Ehe - Eh/e
with
ar (B70 — E7) = 7( 2430 2) 10.28
v ( h h ) qC(J/e)3”_1 O + Gﬂ ( )

If we define the pooled sum of squares associated with {E% x reps}
and {E?¢ x reps} in Table 10.9b as SS(Remainder) with v =2n(sq — 1) +
2q Y, ¢ (y¢) — 2nyp d.f., then the hypotheses

Hyo: Eg* = Ef* =E3* =0  (E* € &)
can be tested by using

MS (E%),

= (10.29)
MS(Remainder)

with 2 and v d.f.
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10.7.5 Combined Intra- and Interblock Information

Combined information is available and may be of interest for quantities of the
form E,);e - EZ,‘]' for E¥t € &, or more generally for cOE(’)" + clEre + czEge
with cg 4+ ¢1 + ¢ = 0. Using (10.19) and (10.28) we obtain

ape 2w wE = EY 4o w (BN — EYY)
Eh _Eh’ = (10.30)
u(ye) w—+ c(ye) w’

with w = 1/07, w' = 1/(07 + 37 o). Letting w/w’ = p, we obtain

2y, Ar 202
var(E, —E; )= ¢ (10.31)
( " h) [(ye) + c(ye)p~1] ¢3!

10.7.6 Estimation of Weights

For the practical use of (10.30) and (10.31) in connection with, for example,
the combined estimate of a(x) — a(z) for two treatment combinations x’ and z’,
using (10.15), we usually need to estimate w and w’ (or p). As always

1
~2
0, = =<

=MSU|J, X,, Xpg+, X1*) (10.32)
which is obtained from the T|B-ANOVA of Table 10.10.

For the estimation of w’ by the Yates procedure we use the B|T-
ANOVA of Table 10.9. The two components of SS(Xﬂ*L‘J Xp,X,*) are
SS(Remainder) as defined in Section 10.7.4 above and SS (E” ¢ vs. E W)
given by (10.24). Now

E SS(Remainder) = v(o; + 37 0}) (10.33)

and, after straightforward derivation,

E SS (E” vs. E”) =2|:Ue2+ M_°>pc7§:| (10.34)

s
Hence, from (10.33), (10.34) and Table 10.10,
EMS(Xg,19, Xy, Xov) =0, + A3V o} (10.35)
with
Y ul)+v
[

T 5qGr — 1) —2m

(10.36)



NUMERICAL EXAMPLE 387

and v as defined in Section 10.7.4. It then follows that
of+3 og = 5 =(1- K MS(I|3,X9,Xﬂ*,X-[*
1
+XMS(Xﬂ*|3,Xp,Xf*) (10.37)

with A given by (10.36).

There are, of course, other methods of estimating the weights as described
in Section 1.11. In any case, Satterthwaite’s procedure (Satterthwaite, 1946; see
also 1.9.7.7) must be used to obtain the degrees of freedom associated with the
estimator given in (10.37).

10.8 NUMERICAL EXAMPLE

We consider the 3% factorial in blocks of size 3, confounding the 2-factor inter-
action component AB with blocks. The data as well as the intrablock analysis
(using SAS PROC GLM) and combined intra- and interblock analysis (using
SAS PROC MIXED) are given in Table 10.11. We shall comment briefly on
these analyses.

10.8.1 Intrablock Analysis

We find 52 = MS(I19, Xy, Xg*, X¢+) = MS(E) = .8333. MS(E) (with 6 d.f.)
is used to test hypotheses about A, B, and A x B by forming F ratios with
the respective type III mean squares in the numerator. Concerning the A x B
interaction, we know, of course, that it has only 2 d.f., which are associated with
the interaction component AB2.

10.8.2 Combined Analysis

In this example A B is confounded in both replicates, that is, AB belongs to &1,
whereas A, B, and AB? belong to €3. This means that only interblock infor-
mation is available for AB and only intrablock information is available for A,
B, and AB2. Thus, the combined analysis for A and B yields the same results
as the intrablock analysis. We can verify this easily by comparing the F ratios
and P values using the type III MS in PROC GLM and PROC MIXED, respec-
tively. In both cases we find for A: F = 126.87, P = .0001, and for B: F = 2.07,
P = .2076.
To test the hypothesis that there is no A x B interaction we obtain

SS(A x B) = SS(AB) + SS(AB?) (10.38)
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Table 10.11 Analysis of 3> Factorial in Blocks of Size 3
(With AB Completely Confounded)

data three;
input rep block A B y @@;

datalines;

10011 111214 1121 20
120220 121123 122 0 27
130120 131027 132230
240020 241225 2421 29
250227 251130 2520 32
26 0131 261041 2 6 2 2 43
i
run;

options nodate pageno=1;

proc print data=three;

titlel 'TABLE 10.11';

title2 '3**2 FACTORIAL IN BLOCKS OF SIZE 3';
title3 ' (WITH AB COMPLETELY CONFOUNDED) ';
run;

proc glm data=three;

class rep block A B;

model y=rep A|B block(rep) ;
title3 'INTRA-BLOCK ANALYSIS';
run;

proc mixed data=three;

class rep block A B;

model y=rep A|B/ddfm=satterth;

random block (rep) ;

title3 'COMBINED INTRA- AND INTER-BLOCK ANALYSIS';

run;
Obs rep block A B y
1 1 1 0 0 11

2 1 1 1 2 14

3 1 1 2 1 20

4 1 2 0 2 20

5 1 2 1 1 23

6 1 2 2 0 27

7 1 3 0 1 20

8 1 3 1 0 27

9 1 3 2 2 30
10 2 4 0 0 20
11 2 4 1 2 25
12 2 4 2 1 29
13 2 5 0 2 27
14 2 5 1 1 30
15 2 5 2 0 32
16 2 6 0 1 31
17 2 6 1 0 41
18 2 6 2 2 43
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Table 10.11 (Continued)
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Class

INTRABLOCK ANALYSIS

The GLM Procedure

Class Level Information

rep

block

A

B

Dependent Variable: y

Source DF

Model 11

Error 6

Corrected Total 17
R-Square
0.995621

Source DF

rep 1

A 2

B 2

A*B 4

block (rep) 2

Source DF

rep
A

B

A*B

block (rep)

NN NN

Levels

Values

Number of observations 18

Sum of
Squares

1136.777778
5.000000

1141.777778

Coeff Var

3.496101

Type I SS

410.8888889
228.1111111
3.4444444
464.2222222
30.1111111

Type III SS

410.8888889
228.1111111
3.4444444
18.7777778
30.1111111

Mean
Square

103.343434

0.833333

Root MSE

0.912871

Mean Square

410.8888889
114 .0555556

1.7222222
116.0555556
15.0555556

Mean Square

410.8888889
114 .0555556
1.7222222
9.3888889
15.0555556

F Value

124.01

y Mean

26.11111

F Value

493.07
136.87
2.07
139.27
18.07

F Value

493.07
136.87
2.07
11.27
18.07

Pr > F

<.0001

Pr > F

.0001
.0001
.2076
.0001
.0029

N

o AN O A

Pr > F

.0001
.0001
.2076
.0093
.0029

A

o O O A




Table 10.11 (Continued)

DESIGNS WITH FACTORS AT THREE LEVELS

COMBINED INTRA- AND INTERBLOCK ANALYSIS

The Mixed Procedure

Model Information

Data Set

Dependent Variable
Covariance Structure
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method

WORK.THREE

Y

Variance Components
REML

Profile

Model -Based
Satterthwaite

Class Level Information

Class Levels Values

rep 2 12

block 6 123 456

A 3 012

B 3 012

Dimensions

Covariance Parameters 2
Columns in X 18
Columns in Z 6
Subjects 1
Max Obs Per Subject 18
Observations Used 18
Observations Not Used 0
Total Observations 18

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
0 1 42.27802731
1 1 34.77498334 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
block (rep) 4.7407
Residual 0.8333
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Table 10.11 (Continued)

391

Fit Statistics

-2 Res Log Likelihood 34.8
AIC (smaller is better) 38.8
AICC (smaller is better) 41.2
BIC (smaller is better) 38.4

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr
rep 1 2 27.29 0
A 2 6 136.87 <
B 2 6 2.07 0
A*B 4 2 13.03 0

> F

.0347
.0001
.2076
.0725

from the type I SS in PROC GLM as

SS(A x B) = 464.22

with 4 d.f. Now we know from (10.16b) and its extension to completely con-

founded effects that

E{SS(AB)} = 202 +2-3 {[ABO]2 FIAB P + [ABz]z}

and

E{SS(ABY) = 2(02 +30}) +2-3 {[ABg]2 FIABP + [AB§]2} (10.40)

Hence, using (10.38), (10.39), and (10.40),

3 3
E{MS(A x B)} =02 + 3 of + 3 {Z,: [AB;)? + 2,: [AB?]Z} (10.41)

(10.39)

Under Hy (10.41) reduces to aez + %aﬂz. We therefore need to obtain an estimator
for this quantity that will then provide the denominator for the F ratio to test

Hp. Using (10.37) and (10.32) it is easy to see that

3

83+5

1
+1- EMS(XIMJ’ Xp, Xgx)

R 1
53 = (1 - H) MS(I19, X, X g+, X¢+)
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where A is obtained from (10.36), recognizing that u(yy) = 0 since £, = ¢, v =
2,s =2,q=1,n=2,p=1,n; = 1. Thus, A =1 and

o;+ %35 = SMSU|9, Xp, X+, Xov) + 3 MS(X p+19, X, X#)
— 1 (.8333 + 15.0556) = 7.95

using results from the ANOVA table. Finally,

o MS(AxB) 11606

- G2+35; 195

= 14.60

This value is comparable to the corresponding value 13.03 obtained with PROC
MIXED, which uses REML to estimate the variance components o> and crﬂz.

The degrees of freedom for the denominator of the F ratio are obtained by
Satterthwaite’s procedure as

[(:8333 + 15.0556)/2]

2 /o (2T

which is comparable to Den DF = 2 in the PROC MIXED output.




CHAPTER 11

General Symmetrical Factorial Design

11.1 INTRODUCTION

In the preceding chapters we have discussed at great length the design and analy-
sis of factorial experiments with two and three qualitative levels. In both cases the
development is based upon orthogonal partitions of the complete set of treatment
combinations and comparisons among the resulting subsets. These partitions are
based on solving certain equations or sets of equations using only elements from
the (mathematical) field of residue classes mod 2 and mod 3, respectively and
elementary facts about ordinary arithmetic mod 2 and mod 3, respectively. The
question then is whether this can be extended.

Consider, say, arithmetic mod 4. Addition with an additive identity and mul-
tiplication with a multiplicative identity are easily defined, for example,

24+3=1
and

2x3=2

However, this is not enough. We want to set up families of hyperplanes defined
by, for example,

X1 +2x=0,1,2,3

and in order to achieve orthogonal partitions of the 4" treatment combinations,
we need the result that the equation in the unknown x

ax =b (a #0)

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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has a unique solution. We see immediately that arithmetic mod 4 does not have
this property; for example,

2x =2

is satisfied by x = 1 and x = 3 and

2x =1

is not satisfied by any x. So we see that the simple arithmetic mod £ does not
extend immediately to any k > 3. It does so, however, if k is a prime number,
p say.

The addition and multiplication properties mod p of the set S = {0, 1,2, ...,
p — 1} are obvious. It only remains to show that

ax =b>b (a #0)

has a unique solution mod p. Suppose we have two solutions x1, x with x| # x>.
Then

a(x; —x) =0

Since x; — x» =d, say, € S, we have

ad =0

but

ad =0<«—ad =cp

with ¢ € S. Since neither a nor d are divisible by p, this relationship cannot hold
unless d = 0, and hence x; = x,. So, division is unique, and hence S forms a
field. We denote this field of p elements and arithmetic mod p by GF(p). Further
generalizations can be made to k = p™, a prime power, using the Galois field
GF(p™) (see Appendix A).

In this chapter we shall discuss the p” factorial as a generalization of the
2" and 3" factorials and indicate how this, in turn, can be generalized to the
s" = (p™)" factorial. Much of the development in this chapter is due to Bose
(1947b), Bose and Kishen (1940), Fisher (1942, 1945), Kempthorne (1947, 1952),
Rao (1946a, 1947b), and Yates (1937b).
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11.2 REPRESENTATION OF EFFECTS AND INTERACTIONS

We now have n factors Ay, Ay, ..., A, each at p levels; hence we have p” treat-
ment combinations and p" — 1 d.f. among treatments. A treatment combination is
denoted by the n-tuple x’ = (x1, x2, ..., x,) with x; € GF(p). We then consider
a partition &’ = (a1, a2, ..., a,) with a; € GF(p), but not all o; = 0, which

partitions the set of p” treatment combinations into p sets of p"~! treatment
combinations each through the equations

a1xy +arxo+ -+ opx, =06 (11.1)

where & takes on all values in GF(p). That this is true can be seen as follows:
Suppose for fixed & and § we have «; # 0 for some i. We can then choose all
x;(j #i) freely (x; = x;‘-‘ say) and obtain, from (11.1),

aix; =8 — Zajx;‘ =8, say
J#i

Because of uniqueness of division in GF(p), x; is then determined uniquely.
Since each x;(j # i) can take on p different values x;‘, we have p"~! solutions
to (11.1). Comparisons among the p sets of treatment combinations generated
by (11.1) define the p — 1 d.f. associated with the effect or interaction E% =
ATVAS? LAY

1 22 n

Let S(x; a, 8) denote the set of treatment combinations x’ = (x1, x2, ..., X,)
satisfying (11.1). Then a contrast belonging to E® can be defined formally as
D s csS(x; e, 8) with 6 € GF(p) and ) 5 ¢s = 0.

Excluding &’ = (0, 0, ..., 0) there exist p" — 1 partitions a. However, for any
given a the partitions o, 2et, ..., (p — 1) are identical since they lead to the
same equations of the form (11.1). Hence we have (p" — 1)/(p — 1) distinct
partitions, each accounting for p — 1 d.f., and consequently, these (p" — 1)/
(p — 1) partitions account for the p” — 1 d.f. among treatments. In order to have
a unique enumeration, we restrict the first nonzero «; in a partition « to be equal
to 1. The partitions then define the main effects, 2-factor interactions, . . ., n-factor
interaction, designated in general by E% = A{'A5?--- A;" with the convention
that a letter A; with «; = 0 is dropped from the expression.

As a consequence of partitioning the totality of p" — 1 d.f. into (p" — 1)/
(p—1) sets of p—1 d.f. each, a k-factor interaction, for example, Aj X
A X -+ x Ay, consists of (p — 1)*! components denoted by, for example,
A1AY? - A, where oz, a3, ..., oy take on all nonzero values in GF(p). As
an example, in a 5" design the 2-factor interaction A x B consists of AB, AB?,
AB3, AB*.

We also note that for two distinct partitions &’ = (1, 3, ..., a,) and B’ =
(B1, B2, - - - » Bn) the equations

a1x] + ooxp 4 - apx, =61 (11.2)
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and
Bix1 + Boxo + -+ Buxy = 82 (11.3)

are satisfied by p"~? treatment combinations. That this is so follows from the
theory of linear equations: Because the partitions & and B8 are distinct, we can
find o;, o, B;, B; such that

[0 4] Otj

0
Bi ﬂj#

We can then choose all x;(k # i, j) freely, say x; = x;. Then (11.2) and (11.3)
reduce to

oixi +ojxj = 51 — Z Olkx]f = S)f
ki, j

Bixi + Bjx; =8 — Z Bexi =385

ki, j

These equations have a unique solution in x; and x;, and since each x; can take
on p different values x;/, we have p"‘2 different solutions to (11.2) and (11.3).
This is true for all § =0, 1, ..., p — 1 and §; fixed, which implies that the p"’1
treatment combinations satisfying (11.2) can be divided into p distinct sets of
p"~? treatment combinations each satisfying one of the p equations (11.3) with
8 =0,1,..., p— 1. Any contrast belonging to E¢ is therefore orthogonal to
any contrast belonging to EB. It is in this sense then that the partitions & and S8,
and hence the interactions E% and E ﬂ, are orthogonal.

11.3 GENERALIZED INTERACTIONS

Any treatment combination x that satisfies the equations (11.2) and (11.3) also
satisfies the equation

(a1 + B)x1 + (a2 + Ba)xa + -+ - + (o + Bu)xn = 61 + 82 (11.4)
As 81 and §, take on all values in GF(p), §; + §> takes on each value in GF(p)

exactly p times. Combining all x that satisfy (11.4) for a particular value of
81 + 82, we have partitioned the treatment combinations according to

(a1 + Br)x1 + (a2 + Bo)xz + -+ -+ (o + Bu)xy =6

with § € GF(p). This is, of course, the partition & 4 8, and the corresponding
interaction E®*# is, in conformity with previous usage, a GI of E* and EP.
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We can make the same statements more generally about
(a1 +2B)x1 + (2 + AB2)x2 + - - + (an + Afp)xn = 61 + A82

with L € GF(p), A # 0. This then leads to partitions « + A and hence to the
totality of p — 1 GIs E*T*8 of E® and E#. These Gls are defined by comparisons
among the sets of treatment combinations satisfying

(a1 +AB)x1 + (2 +Ap2)xa + -+ + (an + Ap)xp =6 (11.5)

with § € GF(p) and each A € GF(p), A # 0.

Formally the GIs are obtained by multiplying the corresponding letters raised
to certain powers into each other, reducing the powers mod p and modifying
the powers (if necessary) such that the first letter included appears with power
unity by multiplying every power by the same appropriate value in GF(p). For
example, in a 53 factorial the GIs of AB and AC? are

(AB) x (AC?) = A’BC? = (A’BC?)3 = AB3C
(AB) x (AC%? = A’BC = (A®BC)?> = AB2C?
(AB) x (AC?)3 = A*BC = (A*BC)* = AB*C*
(AB) x (AC** = BC3

More generally we have the following theorem.

Theorem 11.1 The total number of GIs among ¢ interactions E*!, E*2, ...,
E%4 is given by

q
$(q.p) = Z(".)(p— 1/~ (11.6)
=2
Proof The g interactions are defined by the g sets of equations
Xy +ajpxr - Fajuxy, =36
with §; € GF(p), j =1,2,..., g, or for short
/

x=38 (j=12..9 (11.7)

Any treatment combination x that satisfies (11.7) for a given set 81, 82, ..., 3y
also satisfies any of the equations

q q
Z)\j“/jx:Z)uij (118)
j=1 j=1
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with A; € GF(p) except (A1, 2A2,...,44) =(0,0,...,0). We also exclude any
=00, .., Ag) with only one nonzero A; since such equations define the
q interactions themselves. Given then a particular A, if we let the §; associated
with the nonzero components of A take on all values in GF(p), we obtain the
partition A’ that defines the interaction EX®_ which by definition is a GI of
E* E* ..., E%. To have a unique enumeration of all possible A and hence
all possible GIs, we restrict the first nonzero component in A to unity. All other
components then take on all possible values in GF(p). Hence the possible number
of A vectors is

q .
> (q) (p -1
=N

which is obtained by considering all admissible A with 2, 3, ..., g nonzero com-
ponents, respectively. (]

114 SYSTEMS OF CONFOUNDING

With a p” factorial and blocks of equal size the only block sizes are k = p*(£ <
n). If £ < n, we need to confound certain interactions with blocks. More precisely,
for a p" factorial in blocks of size p* we have p"~¢ blocks and hence we must
confound (p"~¢ — 1)/(p — 1) interactions with blocks. To find such a system of
confounding, we first state the following theorem.

Theorem 11.2 If in a p” factorial with equal block sizes p(< p"~2) two
interactions E% and E# are confounded with blocks, then so are their GIs E*T*8,
A € GE(p), A #£0.

Proof Consider the equations associated with E* and E#:

a1X] +apxo + - 4 oyx, = 8

Bix1 + Baxa 4 -+ Bux, =62 (11.9)

For any pair (81, 8>) the equations (11.9) are satisfied by a set of p"~2 treatment
combinations x” = (x1, x2, ..., x,) denoted by S(x; o, 81; B, 82) say. Each set
S(x; o, 81; B, 82) makes up one or several blocks. A contrast belonging to E% is
given by

DO s Sxie 815 B.82) (11.10)

81 &
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and a contrast belonging to Ef by

DO ds, S(xi e, 815 B.82) (11.11)

8 8

with Zal cs = 262 ds, = 0. The contrasts (11.10) and (11.11), when evaluated
in terms of treatment and block effects, are linear functions not only of treatment
effects but also of block effects as each set S(x; «, d1; B, 82) contains a sum
of block effects multiplied by a common constant, c5, or c5,. Now, for some
% € GR(p),

SEia+rB.8) = > S 8:B.6) (11.12)

31,82
§1+A8r=6

Hence a contrast belonging to E4t*8 can be expressed as

D as Sxia+AB.O =D as| > Sxia.5:B.5) (11.13)
8

8 81,82
§1+X16r=46

with ) 5 as = 0. Since (11.13) is of the same form as (11.10) and (11.11), that
is, a linear combination of the same S(x; &, §1; B, 2), it is also a function of
block effects, and hence E @+AB s also confounded with blocks. This holds for
all A € GF(p), hence for all GIs of E® and EB. O

We now consider specifically a system of confounding of a p” factorial in
blocks of size pt.

Theorem 11.3 A system of confounding for a p" factorial in blocks
of size p’ is completely determined by ¢ =n — £ independent interactions
E*' E* .. E%.

Proof Since with any two interactions their GIs are also confounded with
blocks, it follows immediately that with ¢ interactions all their GIs are also
confounded with blocks. By Theorem 11.1, the total number of GIs is ¢ (g, p) as
given in (11.6). Hence together with the ¢ independent interactions we confound

q
q+¢@40:§j@>@—1ﬁ1
j=1
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interactions. Each interaction carries p — 1 d.f. The total number of degrees of
freedom confounded with blocks is then

q

Z(?)(;o—l)f:p‘f—l:p"—f—l

j=1
This is the number of degrees of freedom among the p”~¢ blocks of size p¢. O

Once the n — ¢ independent interactions have been chosen, it remains to obtain
the composition of the blocks. One way to do this, obviously, is to consider the
q = n — ¢ equations associated with E¥!, E*2 . . E%:

a11x1 +a2x2 + -+ Xy = 61

ap1x] +aoxy + - Foox, =8
(11.14)

Qg1X1 + 0g2X2 + -+ + OgnXn = dy

for all possible p"‘e right-hand sides. For fixed (31, 82, ..., d,4) the equations
(11.14) are satisfied by p® treatment combinations. Hence for all possible choices
of (61, 82,...,8,) we obtain p? = p”_i distinct sets of treatment combinations
that then form the blocks.

11.5 INTRABLOCK SUBGROUP

Another way we have already used with the 2" and 3" factorial is to first obtain the
IBSG and then use it to generate the remaining blocks. Denoting the equations
(11.14) with §; =0( =1,2,...,q) by (11.14"), we first prove the following
theorem.

Theorem 11.4 The treatment combinations x” = (x1, x2, ..., X,) satisfying
the equations (11.14’) form a group, the IBSG, of size p¢ with componentwise
addition as the operation among elements.

Proof (1) The solutions to (11.14') contain the additive unit element
0,0, ...,0); (i) if (x1,x2, ..., x,) satisfies (11.14"), then (Axy, Axa, ..., Ax,)
with A € GF(p) also satisfies (11.14"); (iii) if (x1, x2, ..., x,) and (y1, Y2, ..., Yn)
satisfy (11.14'), then (x| + y1, x2 + y2, ..., Xn + y,) satisfies (11.14"). ]

Suppose now that x’ is in the IBSG and that z’ = (z1, z2, ..., 2,) is a treat-
ment combination not belonging to the IBSG. Then the set {x’ + z’: x’ € IBSG}
is a set of p’ treatment combinations satisfying Eq. (11.14) for some vector
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(81, 82,...,84) other than (0,0,...,0). Hence these treatment combinations
form a block. We shall refer to z’ as the generator of this block. This process can
be continued by choosing successively altogether p"~¢ such generators. These
generators can obviously be found simply by inspection after another block has
been constructed in this way. In certain situations it is possible, however, to give a
complete characterization of the generators z1, z2, ..., 2y (W = p"‘l — 1), say,
where z; = (21, Zi2, - - - » Zin)-

Consider a particular system of confounding for a p" factorial in blocks of
size pe. Letay,o,..., 04,0441, ...,0, be the partitions corresponding to the
confounded interactions, where v = (p”*‘ —1D/(p—Danday,a,...,a,(q =
n — £) represent the independent interactions. We then consider the set

{Aa@; mod p:i=1,2,...,v; A € GF(p), A # 0}
which we denote by
Gilaj;j=1,....p" =1}

We note that if we adjoin to G the element a6 =(0,0,...,0) we have a group
of p"‘Z elements of order n — £ with a1, &2, ..., &, as the generators. Denote
this group by G*.

We now state the following theorem.

Theorem 11.5 For a given system of confounding for a p” factorial in blocks
of size p’ the composition of the blocks is obtained by using the IBSG together
with the generators z; = o; with a; € G provided the o are not contained in
the IBSG.

Proof We have to show that each z; = a; satisfies a different set of equations
(11.14), that is, with different right-hand sides.

Suppose that & and e /(j # j') satisfy the same equations. It follows then
from (11.14) that

aj(aj—oj) =0

as(ej —oj) =0

oc;(aj—oej/)zO

that is, a; —ajr satisfies (11.14)". Now o; —ajy € G* and, by assumption, the
only element in G* that satisfies (11.14)" is atg. Hence o = o O
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Example 11.1 Consider a 3> experiment in blocks of size 33. Suppose
ABCD, BCDEZ?, and hence AB2C?D?E? and AE are confounded with blocks.
The IBSG is determined by

X1+x24+x34+x4=0

X0+ x3+x44+2x5=0

and it can be seen that o} =(1,1,1,1,0), o, =(0,1,1,1,2), af=
(1,2,2,2,2), aﬁt = (1,0,0,0, 1) do not satisfy these equations. Hence the gen-
erators of the eight blocks besides the IBSG are o, &, &}, o)y, a5 =2 =
(2,2,2,2,0), a,=2a,=(0,2,2,2,1,), o) =2a4=21,1,1,1), o
2, = (2,0,0,0,2).

O

11.6 ENUMERATING SYSTEMS OF CONFOUNDING

Concerning the number of possible systems of confounding, we state the follow-
ing theorem.

Theorem 11.6 The total number of systems of confounding of a p" factorial
in blocks of size p* is

P =D —p)---(p"—pth

(Pt =D(p"t=p)---(pn=t = prth

(11.15)

Proof 1t follows from Theorem 11.3 that the total number of systems of
confounding is the same as the number of distinct sets of n — ¢ independent
interactions. This number can be obtained as follows: The first interaction can
be chosen in (p" — 1)/(p — 1) ways; the second in (p" — p)/(p — 1) ways; the
third in
n 2

P=P g p=L"2
p—1 p—1

n

ways, with ¢ (g, p) as defined in (10.6); the fourth in

n 2 n 3

PP 4GB p)+e@p =22
p—1 p—1

ways; ...; the (k+ 1) —th(k > 3) in

k—1
"—p

p—1

' 1= ¢k, p)+dk—1,p) (11.16)
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ways, and since

ok, p) —ptk—1,p)=p* 1 —1

(11.16) becomes (p" — p*)/(p — 1). Hence the total number of sets generated
in this way is

pn -1 pn —p pn _ p2 pn _ pnfﬁfl
11.17
(p—1>(p—1)(p—1 p—1 ( )
Any one set will, however, have been enumerated in
pnfﬁ -1 pnfé —p pnfé _ pnféfl
(=) (50 (=E)

different ways, which can be derived in the same way as (11.17). Dividing (11.17)
by (11.18) gives the stated result (11.15). O

11.7 FISHER PLANS

In many cases (11.15) may be too large to actually write out all possible systems
of confounding. A question of practical interest then is whether there exists a
certain type of confounding and how one can find it if it exists. In particular, one
may be interested to know whether there exists a system of confounding such
that main effects and low-factor interactions remain unconfounded.

11.7.1 Existence and Construction
A first and important result in this direction is the following theorem.
Theorem 11.7 (Fisher, 1942, 1945) The maximum number of factors with

p levels that can be accommodated in a design with blocks of size p(¢ > 2)
such that main effects and two-factor interactions remain unconfounded is

(11.19)

Proof The proof is based on the following correspondence between the
n=(pt—1)/(p —1) factors Fi, F», ..., F, each at p levels and the (p¢ — 1)/
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(p — 1) effects and interactions of a pZ factorial with factors Aq, Ay, ..., Ay:
F| = A,
F,= A
F3 = A1A;
Fy=A1AS
Fp=a A0 oar!
or, if we label the factors F by «, where o’ = (a1, a2, ..., o) designates a

partition in the p’ system,
— o] 402 oy
Fo =A A - A,

with o; € GF(p)(i = 1,2, ..., ¢), not all ; = 0 and the first nonzero «; equal to
unity. There are, of course, n such «’s and we denote the set of these a’s by A. We
then create the following two-way table: The rows are labeled by the p factorial
combinations x” = (x1, x2, ..., x¢) and the columns by the (pl —D/(p—1
interactions AJ' AS? - - - A}", that is, by the Fy. The table entries thus are the inner
products a’x mod p [we note that these are the subscripts in the representation
of 7(x) in terms of main effects and interactions]. Each row in this table then
represents a treatment combination in the n factors Fi, F», ..., F,, the level
of Fy in the treatment combination z(x) corresponding to row x being o’x. We
thus have p? treatment combinations for n factors. These treatment combinations
constitute the IBSG for the system of confounding to be considered. That this is
so can be seen as follows: (i) The operation in this set is componentwise addition
mod p; (ii) the set contains the addition identity; (iii) if the set contains

14
z(x) = (m,xz,m +x2,.. X+ (p - 1)2)@)

i=2

then it also contains Ax, » € GF(p), since with the p’ treatment combination x
we also have the p’ treatment combination Ax because the set of p’ treatment
combinations forms a group; and (iv) if the set contains

4
z(x) = (xl,xz,xl +x2, ..., x1+(p— ])ZX,’)
i=2

and

¢
z(y) = (yl,yz,yl +y2, .o+ (p— 1)2)’;‘)
i=2
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then it also contains z(x) + z(y) because with x and y the p’ treatment combi-
nations also contain x + y.

To show that this IBSG leads to a system of confounding that does not
confound any of the main effects F; (i = 1,2,...,n) and any of the 2-factor
interactions F,-F}/, y € FG(p),y #0,i,j=1,2,...,n,i # j, we have to show
that in the IBSG (i) each level of each factor F; occurs the same number of times
and (ii) each level combination for any two factors F;, F; occurs the same num-
ber of times: (1) The level z € GF(p) of factor F,, occurs in the IBSG whenever
o'x = z. Since at least one «; # 0 in a, this equation has p®~! solutions for every
z € GF(p) and every a € A. (2) The level combination (z1, z») of factors F and
Fg occurs whenever o’x = z; and B’z = z,. As shown previously (Section 11.2),
there exist exactly p‘~2 such p’ treatment combinations x that satisfy these
equations and that hold for every «, 8 € A and every z1, z2 GF(p). O

We illustrate this theorem by the following example.

Example 11.2 let p =3 and ¢ = 2, that is, n = 4. We set up the table,
letting Ay = A, A, = B,

Fy F; F; F4
A B AB AB?
¥ =10 ©1 1O, 1,2

e
o
o
o

N — O~ O~ O

DN === 0 O
DN = =—_=0 00
N = O N = O N =
— O N ON =N =
S = NN O = =N

Each row represents a treatment combination (z1, 22, 23,24) for the factors
F\, F», F3, F4. The nine treatment combinations represent the IBSG for a system
of confounding for a 3% factorial in blocks of size 32. (]

If we write the IBSG as a n x pe array, W say, that is, each column repre-
senting a treatment combination, the proof of Theorem 11.7 leads immediately
to the following corollary.

Corollary 11.1 The IBSG for a p" factorial in blocks of size p¢, written
as a matrix W, is an orthogonal array of size p¢, with n = (p* —1)/(p — 1)
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constraints, p symbols, of strength 2 and index pe—z’ that is,

—1
= P2 pH}

¥4
OA [p", P
P

Such an orthogonal array was called by Rao (1946a) a hypercube of strength
2. More generally this leads to the following definition.

Definition 11.1 Let there be n factors each at p levels. A subset consisting
of p' of the possible p” treatment combinations is said to be a hypercube of
strength d if all combinations of any d of the n factors occur p*~¢ times. Such
an arrangement is denoted by [n, p, £, d].

Still another way of expressing the result of Theorem 11.7 is the following
corollary. O

Corollary 11.2 For a p" factorial experiment there exists a system of con-
founding with main effects and 2-factor interactions unconfounded if the block
size k is such that

k>n(p—1) (11.20)

For p = 2, 3, (11.20) is, of course, the result alluded to in Sections 8.2.3 and
10.6, respectively.

11.7.2 Identifying System of Confounding

Having constructed a system of confounding using the IBSG of Theorem 11.7,
the question may then be asked: Which of the interactions in the p" factorial
are confounded? Let z’ = (z1, 22, . . ., Z,) denote a treatment combination of the
p" factorial with the factors Fp, F3, ..., F,,. We then know that the interaction
F'"Fy*---F)" [y; € GF(p),i = 1,2, ...,n, not all 3; = 0, the first nonzero y;
equals unity] is confounded with blocks if and only if

vizi+vnao+- -+ =0 mod p (11.21)
for every z’ in the IBSG. The IBSG contains p‘ elements that form an addi-
tive group of order ¢, that is, the group is generated by ¢ treatment combina-
tions z/, 25, ..., z,, say with 2/ = (z;1, zi2, ..., Zin), i = 1,2,..., £. The system
(11.21) then reduces to

vizit +y2zi2+ -+ vazin =0

vizo1 + vz + -+ zon =0
A (11.22)

ViZet + 222+ + Yuzen =0
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Equations (11.22) in the unknowns y1, 2, ..., ¥, have p"‘Z solutions. One of
these solutions is (0, O, ..., 0) so that p"‘z — 1 nontrivial solutions remain. How-
ever, if y' = (y1, ¥2, ..., ¥u) is a solution, then Ay with A € GF(p) is a solution
also. Hence there are ¢ = (p"~¢ — 1)/(p — 1) distinct solutions V1:V2s ooy Ves
say, and these then correspond to the confounded interactions E¥1, EY2, ..., E?c
in the Fp, Fa, ..., F, system. Of course, of the ¢ interactions only n — £ are

independent interactions.

To summarize: The general idea is to (i) obtain a set of generators
z/l, z/z, R zfq of the IBSG, (ii) obtain all solutions to (11.22), and (iii) eliminate
all redundancies from these solutions to obtain c distinct solutions y 1, 5, ..., Y.

We note that this confounding detection method works, of course, for any
system of confounding. This is just the formal statement of the procedure men-
tioned in Section 8.4. The method of constructing a confounded design according
to Theorem 11.7 is just one case in point where the confounded interactions are
not known a priori.

11.7.3 Application to Fisher Plans

Returning now to the case of Theorem 11.7, what can we say specifically about
Y1:V2,---, Y] An explicit and complete characterization of the confounded
interactions can be given as follows.

Let us return to Egs. (11.22). We note that the treatment combinations
24,25, ..., 2, are generated by the corresponding treatment combinations x’j =
(xj1,xj2,...,x0) (j =1,2,...,¢). Rewriting (11.22) as

yieix1 + yaahxi + -+ ype,x; =0

Yie1x2 + y20hxo + o+ yue,x2 =0

(11.23)

YioXg + y20hx e + -+ ypo,xp =0
and taking (x1,x3,...,x¢) = I,;, we obtain from (11.23) the equations

anyr +ay2 oy =0
apyl+anyr+ -+ oy, =0

e (11.24)
apyt +ayyr+ -+ ey =0

which is a set of £ equations in the n unknowns y1, y», ..., ¥», Where «; is the

ith component of &;(j =1,2,...,n;i =1,2,..., ).
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To characterize the solutions to (11.24), we write the a; € A in what we shall
refer to as standard order in that a, e, ..., &, represent the £ main effects
Ay, As, ..., Ay, respectively, that is, oz; is the vth row in the identity matrix

I,(v=1,2,...,¢). From (11.24) we then obtain the equations

V1 Qo411 Q42,1 --- Ol Ye+1
V2 Op+1,2 Gp422 ... Op2 Ve+2
= — . . . (11.25)
Ve Oorl,e Op420 ... Opg Ye+n
Since yg4+1, Ve+2,---,¥Yn can be chosen freely, we can obtain n —¢

independent solutions to (11.25) and hence n — £ independent partitions
r = {yj = (Yj1. Vj2,---» ¥jn); j = 1,2,...,n — £} by taking successively for
Ve+1, Ye42, - - -» vn) the rows of I,,_,. If we denote the jth row of I,_, by e’j,
then (11.25) yields successively

y’j = (_“;va e/j) (11.26)

j=1,2,...,n—¢, or if we convert _“/eﬂ to positive components mod p,
(11.26) becomes

Y, =@y (p—1)€) (11.27)

This is so since in each a; 4 the first nonzero component is unity and hence
adding p and multiplying by p — 1 yield (11.27). From (11.27) we then have
that the n — ¢ interactions

. o Ajte ) —1
EYi — pottl peite2  poite pp

1 2 ¢ o+
(j=1,2,...,n — ) are confounded with blocks and so are their GIs, accounting
for all p"~¢ — 1 d.f. among blocks.

As an illustration consider the following example.

Example 11.3 Suppose p=2,¢£ =3, and hence n =7. The &’ in stan-
dard order are o = (100), o), = (010), a} = (001), &, = (110), a5 = (101),
ag = (011), a7 = (111). Then from (11.27) p)| = (a}, €}) = (1101000), p} =
(a, €5) = (1010100), ps = (arg, €5) = (0110010), p, = (7, e4) = (1110001).
Hence F\F,Fy, FF3Fs, FF3Fs, F F,F3F; and all their GIs are
confounded. |

Example 11.4 Suppose p =3,¢ =72, and hence n =4. We have (see
Example 11.2) o} = (10), ), = (01), &y = (11), ) = (12). From (11.27) we
then obtain p| = (1120), y, = (1202). Hence F\F>F3, FiF}F; and their GIs
F\F3F; and F2F3F42 are confounded. The reader should verify that this is in
agreement with the content of the IBSG given in Example 11.2. O



SYMMETRICAL FACTORIALS AND FINITE GEOMETRIES 409
11.8 SYMMETRICAL FACTORIALS AND FINITE GEOMETRIES

It is of some interest to relate the concepts of a p” factorial experiment and its
systems of confounding to the notion of finite geometries, for example, Euclidean
and projective geometries. This line of thought was developed initially by Bose
(1947b) while deriving some known results in a different way and this then led
to further extensions.

The p levels of the factors in a p” factorial experiment may be identified with
the elements of the GF(p). The treatment combinations (xg, x2, ..., X,) can then
be thought of as the points of the Euclidean geometry EG(n, p) (see Appendix
B). Any (n — 1)-space in EG(n, p) satisfies the equation

o +aix; +oxxy+ - +oux, =0 (11.28)

Hence the (n — 1)-space consists of p"~! points of the EG(n, p). Keeping
(a1, 002, ..., ) fixed and varying o9 € GF(p) yield p distinct (n — 1)-spaces
that together form, of course, the EG(n, p). More generally, a (n — g)-space of
the EG(n, p) is determined by ¢ linearly independent equations

1o +o11x) +apxy + -+ agx, =0

o +oo1x1 +apxy + -+ azx, =0
(11.29)

Qg0 + Qg1x1 + agaxy + -+ agpxy =0

which are satisfied by p"~9 points.

It is clear that the partitioning of the EG(n, p) into (n — 1)-spaces as given by
(11.28) corresponds to the partitioning we have used earlier to define main effects
and interactions. We represented such partitions by (o, @2, .. ., @), and two such
partitions (o1, a2, ..., a,) and (By, B2, ..., Bn), say, are identical, that is, lead
to the same set of p distinct (n — 1)-spaces of EG(n, p), if (a1, a2, ..., 0,) = A
(B1, B2, - - -, Bn) for some A € GF(p). We know that the number of distinct par-
titions is (p" — 1)/(p — 1), which is also the number of points in the projective
geometry PG(n — 1, p) (see Appendix B). It is therefore convenient to identify
(o1, 2, ...,a,) as a point in PG(n — 1, p).

With two points o = (a1,a2,...,0,) and B = (81, B2, ..., B € PG
(n — 1, p) the points &’ + AB’, A € GF(p), define a line, that is, a 1-space, in
PG(n — 1, p). In terms of interactions this means that the points on the line rep-
resent the GIs of E% and EP. This implies that for a p" factorial in blocks of
size p"~2 any two points &', 8’ in PG(n — 1, p) determine such a system of con-
founding and the GIs, which are also confounded, are represented by the points
on the line through o’ and B’.

This can be generalized easily, and we then have the following: A system of
confounding for a p” factorial in blocks of size p* is determined by n — k points
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in PG(n — 1, p) such that the points do not lie on a subspace of PG(n — 1, p)
of dimension n — k — 2 or less, that is, the points are not conjoint.

11.9 PARAMETERIZATION OF TREATMENT RESPONSES

We have shown in Sections 7.4.2 and 10.3 how the true response of a treatment
combination for 2" and 3" factorials can be expressed in terms of main-effect
and interaction components. We shall now present such a parameterization for
the p” factorial.

In Section 11.2 we have partitioned the p” treatment combinations into p
mutually exclusive sets of p"~! treatment combinations each through Eqs. (11.1),
that is,

a1x] +axxy+ -t oyx, =6 (11.30)
with § € GF(p) and a fixed o' = (a1, a2,...,a,) with o; € GF(p)(i =
1,2,...,n)a’ #(0,0,...,0). The set of treatment combinations x’ =
(x1, x2, ..., x,) that satisfy (11.30) for a given § we denoted earlier by S(x; «, §).

Let a(x) denote the true response of the treatment combination x. We
then define

EY = 1_1 > a(x)—— > > akx®) (11.31)

x*eS(x;a,0) 5eGF(p) x*eS(x;a,5)

or, if we write for convenience
*
Ly Y we-u
(SEGF(p) x*eS(x;a,8)

the overall mean, then (11.31) becomes

ES = Y axhH-M (11.32)

n—1
p x*eS(x;a,d)

Since § = o’x, we can write (11.32) also as E% o> and we shall use both notations

mterchangeably We thus have p numbers E"‘, EY,... Eg_l with E§ + ET +
-+ E* —1= = 0. Any linear contrast among these, that is,

coE§ +1EY + - +cp1EY

with co + ¢j + -+ + cp—1 = 0 belongs to the interaction E* = A{'AJ*--- A",

We can do this for each admissible partition &, of which there are (p* — 1)/

(p — 1). We have denoted this set by A.
We then have the following theorem.
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Theorem 11.8 The true response a(x) of a treatment combination x in a p”
factorial can be parameterized as

a(x)=M+ Y E%, (11.33)
oaeA

Proof We examine the right-hand side (RHS) of (11.33) and show that it
equals a(x). We have

i n_q
RHS = M + oy aen-E—m (11.34)
Pn—1 acA x*eS(x;a,8) p=

and

>y a(x*):pn_l-a(x)—}—z Yooa@h  (1135)

—1
acA x*eS(x;a,f) p acA x*eS(x;a,d)
x*#£x

Now consider a specific x* # x. In how many terms of the second expression on
the RHS of (11.35), that is, for how many & € A, does a(x*) occur? It occurs if
and only if

or if

or if
du=0 (11.36)

for u = x* — x. Now at least one of the components in u is not zero. Hence
(11.36) as an equation in the unknown & has p"~! solutions. However, we have to
exclude &’ = (0,0, ..., 0), and since with & also A« is a solution for A € GF(p),
A # 0, the number of distinct solutions to (11.36) is (p"~' —1)/(p — 1). Using
this result together with (11.35) in (11.34), we obtain

n_ n_
RHS:M(I—p ) P

p—1

-1
pti—1 1 N
T o > a@x®)
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n_q o1
=M<1—p )+’;_1 i )

ST e M )

B pPr-1 @ =Dp\ @ -D-@" -1
- <1_p—1+ Pl >+ oDy W

— a(x) O

For an illustration of this theorem we refer to Example 10.2.

11.10 ANALYSIS OF p" FACTORIAL EXPERIMENTS

We consider a particular system of confounding in s types of replicates. These
s replicates form the basic pattern, which is then repeated g times. The usual
model for data from such an experiment is

y=uI+X,p+XpB*+X,T+e (11.37)

where the various terms on the RHS of (11.37) refer to the overall mean, replicate
effects, block-within-replicate effects, treatment effects, and error, respectively.

We recall that the blocks within each replicate are determined by the system of
confounding for that replicate and that the basic pattern of replicates is determined
by the various types of systems of confounding employed. We shall therefore
divide the (p" — 1)/(p — 1) interactions E* into three mutually exclusive sets
based on the amount of confounding:

& = {E“k, k=1,2,.. .,nl}: completely confounded
&y = {E"‘f, L=1,2,..., nz}: partially confounded
&3 = {E‘S’", m=1,2,..., n3}: not confounded

and E?¢ € &, is confounded in c(y,) replicates and not confounded in u(y,) =
s — c(y,) replicates of the basic pattern (¢ =1, 2, ..., na). Of course, n1 + nz +
ny=(p" —=1)/(p—1).

Just as the interactions in €1 and &, determine the composition of the blocks

within replicates, the interaction components EY, E‘l",...,E;’f_l are the
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parametric functions of the treatment effects z(x), which are of main interest
from the analysis point of view. To estimate these quantities, we shall utilize the
fact that the design under consideration is resolved in that each treatment combi-
nation occurs once in each replicate (we call a design resolved if it is resolvable
and actually arranged in replicates). Hence, if we arrange the observations y in
(11.37) according to replicates and if in each replicate we arrange the observa-
tions in the same order according to the p” treatment combinations, we can write
the design model matrix in (11.37), that is, the matrix

X = (37Xp7 Xﬂ*v X‘f)

as
N Xﬁ*(l) 1
J J Xﬂ*(z) 1
(11.38)
L -
X, Xpe X,

where each matrix in (11.38) has p" rows and X g«(;) represents the X g+ matrix
for the jth replicate (j = 1,2, ...,r = sq). We now utilize this form of (11.38)
and the structure of the X g«(;) to proceed with the analysis.

11.10.1 Intrablock Analysis
Consider the RNE (1.7) for an incomplete block design

1 - 1
(rI—— NN/)rzT—— NB (11.39)
k k
where N = X, X g. In our case, because of the form of (11.38), we obtain

N = (Xﬂ*(l)»Xﬂ*(Z)’---»Xﬂ*(r)>

and hence (11.39) becomes

NB (11.40)

| =

1 ¢ ~
j=1
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Let us consider now the right-hand side of (11.40). If we write y’ as

( y’(l), y’(z), s y’(r)>, where y’( ;) Tepresents the vector of observations in repli-
cate j, then

- _

Xg=yY )

/
XY
B =
XY

and hence
,
NB =) Xp()Xp(jyY i
j=1

Furthermore, because of the arrangement of the observations in the same order
in each replicate, we have

.
T=3 ¥
j=1

We then write (11.40) as

r r

! ~ 1

j=1 j=1

with k = p®. It follows from (11.41) that, in order to analyze the complete data
set, we can analyze the data in each replicate separately, for example, obtain
estimates of the main effects and interaction components, and then average the
information over all contributing replicates.

Let us then consider the RNE for the jth replicate:

1 . 1
(1 ~ X0 Xﬁs*m) T= (1 — X0 Xﬁs*m) Yi) (11.42)
We shall write the equation for treatment combination x as

oy 1 kNS Lk 1 * *
T — ¢ D xNT (%) =y (x) — p D e x) yiy () (11.43)
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where 7(x) and y(;)(x) represent the effect and response of treatment combina-
tion x, respectively, and

1 if x and x* are in the
Aj(x, x*) = same block in replicate j

0 otherwise

Suppose we want to estimate EY, where [see (11.31)]

EY = Yoo - % > ) (11.44)

n—1
p x*eS(x;a,0) xeX

with S(x; &, §) representing the set of all treatment combinations x satisfying
the equation a’x = § and X being the set of all treatment combinations. We
distinguish between two cases:

(i) Suppose E® is not confounded in replicate j, that is, E* € &, or &3.
Equations (11.44) and (11.42) then suggest that we consider

A% 1 . ’ 1
> [z(x) =2 D A, x*)r(x*)] = [ym(x) =2 D A, x*)Y(j)(x*)}

X X

where

Y= X

x xeS(x;a,8)
or

> 2 - % > [Z’ hjlx, x*)} T(x")

/ 1 /
= Z y(j)(x) — % Z [Z kj(x,x*)} Y (x™) (11.45)

Recall now that each block contains pﬁ treatment combinations, and since
E® is not confounded in replicate j, the p"~! treatment combinations satis-
fying a’x = & are equally distributed over the p”~¢ blocks. It follows then that
Z; Aj(x,x*) = pt~! for each x* € X. Hence, using k = p?, (11.45) becomes

32 - % Y=Y i) - % > v (11.46)

X x*



416 GENERAL SYMMETRICAL FACTORIAL DESIGN

Comparing (11.46) to (11.44) yields
15 ! 1
PTES = ) v — =) yih ) (11.47)
X p x*

or the best linear unbiased estimate (BLUE) of Ef from the jth replicate is

-~ 1 / .

Es) = = > i@ =5, (11.48)

P

with ;) being the mean of all the observations in replicate ;.

(ii) Suppose E“ is confounded in replicate j, that is, E* € £ or ;. We con-
sider again (11.45). Since E% is confounded, the p”_1 treatment combinations
satisfying a’x = §, that is, the treatment combinations in S(x; &, d), are dis-
tributed over p"~¢~! of the p" ¢ blocks each containing p® of the x*€ S(x; a, 8).
Hence

pt for x* € S(x; a, )

Z/Aj(x,x*)z

0  otherwise

It then follows that both sides of (11.45) are identically zero, and hence repli-
cate j does not contribute to the estimation of Eg‘, that is, does not contribute to
information about E%.

The derivation above holds, of course, for any interaction E* (¢ € A) and any
replicate j (j = 1,2, ...,r). Specifically for E“ € &; it follows then that there
is no intrablock information. For E¥¢ € £, we obtain information from qu(y,)
replicates. Let

1 if E?¢ is not confounded in replicate j

nye Jj) = _
0 otherwise

We then obtain from (11.48)

r r
o~
PN e D EN =0 e | Y. @) = p"

j=1 j=1 x*eS(x;y,,0)

or, if we let

Z Ny, J) 5(])

qu(y )
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then

~ 1 "
14 . i P
Egf = P > e ) > Yo = p" TGy | (11.49)
¢ o1 x*€S(x:¥,8)

Finally, information for E In ¢ &3 is obtained from all replicates, so that
1 r
Aam _
E; =Ty Z Z Y (x*) =3 (11.50)
j=1 x*€S(x;6,,,5)

where y is the overall mean.

11.10.2 Disconnected Resolved Incomplete Block Designs

The result just derived is a special case of a more general result applying to dis-
connected resolved incomplete block designs, which we shall give now. Suppose
we have r replicates with each treatment combination occurring exactly once in
each replicate. According to (11.38), we write the model for the jth replicate as

y(j)i,ufl—i—,ojﬂ—i-Xﬂ*(j)ﬂj—i-It (11.51)
[the symbol =, used in 1.4.2 as a shorthand for “approximately described by,” is
used here to denote the expected value, E(-), of the expression on the left-hand
side]. Consider now a linear function &'t of the treatment effects, with £&'J = 0.
Such a function may or may not be estimable, that is, it may or may not be
confounded with blocks. We state the following definition.
Definition 11.2 A linear function &'t with §'J = 0 is completely confounded
with blocks in the jth replicate of a resolved incomplete block design if &’ Y3
d

is a linear function of block totals.

To obtain a characterization of such confounded functions, we multiply (11.51)
on both sides by &'. This gives

&'y =8Xpj) Bj+E7 (11.52)
the left-hand side of which must equal 5’ X ;3*( 7¥(j) for some 5. This implies that
/ / /
On the other hand, if (11.53) holds, it follows from (11.52) that

r[/X/g*(j)y(j) = )7/ diag{kjl, kjg, e, kj;,}ﬂj +§/‘L’
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since
Xige(jy X pr(j) = diaglkji, kjo, ... kjp)

where kj; is the size of the ith block in the jth replicate (j =1,2,...,r; i =
1,2,...,b), or with equal block size k, X g«(j) X g+(j) = kI. Thus we have the
following theorem.

Theorem 11.9 A linear function &'t with §&'J = 0 is completely confounded
with blocks of the jth replicate of a resolved incomplete block design if and only
if & = Xg«(j)n for some 7.

Using this theorem, we can now derive from basic principles of linear model
theory that, if a linear function &'z is completely confounded in ¢ of the r
replicates of a design, &'t is estimated in the usual way from the r — c replicates
in which it is not confounded, thus corroborating our earlier results concerning the
estimation of E’s. Suppose then that £’ is completely confounded in replicates
1,2, ..., c; that is, we have

§=Xpaym =XpMy == Xpro)lle (11.54)

and let
o r
/ !/
gr=) ajy
Jj=1
Assuming a GMLM (the justification for this is given in 1.6.3.5), we have

.
var (E’t) = E a/jajae2
Jj=l1

Hence, to find the BLUE for &'t, we minimize 23:1 a’ja j subject to the unbi-
asedness conditions

.
Y aj=¢ (11.55)
j=1

and

gaj=0 forj=1,2,...,c (11.56)

The condition (11.56) derives from the unbiasedness conditions a’jX g (j) =@
together with (11.54) which implies

gaj=nXpa;=0 forj=12,...¢c
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The Lagrangian to be minimized is then

r r C
L= daj—2' | aj—&|+> 14, (11.57)
j=1 j=1 j=1
where v and A; (j = 1,2, ..., c¢) are Lagrangian multipliers. The derivatives of

(11.57) yield the equations

aj—v+rk=¢ (G=1,2,...,0 (11.58)
aj—v =¢ (j=c+1,2,...,7) (11.59)
Zaf:é
j=1

From (11.58) we obtain
Eaj+1E6=Ev (j=12...0

which, using (11.56), reduces to

rEE=8v  (=12...0 (11.60)
implying Ay =Xy =--- = A. = A, say. Now it follows from (11.55), (11.56),
and (11.59) that
EE= > Eaj=(@r—ofv (11.61)
Jj=c+1

Hence, from (11.60) and (11.61)

(11.62)

and

3 (11.63)

r—=c¢

It follows then from (11.58), (11.59), (11.62), and (11.63) that

aj=¢ for j=1,2,...,c
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and

a; =

3 for j=c+1,...,r

r—c
Hence . ,
g/’\r _ Zj=c+1§' Y

r—=«c¢

that is, the estimate of linear function &'z that is completely confounded in
c replicates is the average of the same linear function of the corresponding
observations from the replicates in which &z is not confounded. If in particular
¢ =r, then &'t is, of course, not estimable.

11.10.3 Analysis of Variance Tables

We now return to the analysis of p” factorial experiments in terms of main effects
and interactions. Since we have used the reparameterization (11.33), a complete
set of estimable functions of the t(x) is given by

4 Y Ve .
[ESC BV BN B e &)

and s s s
{ES B, By B e &)

accounting for (np +n3)(p — 1) d.f. among treatments. Hence we have the T|B-
ANOVA as given in Table 11.1a. It follows from the derivation of E E?t and Edn,
for example, (11.49) and (11.50), and the general principle (see Section 1.3.7)

SS(X.|9.Xp) =70

that
p—1

SS(E”Y) = quiypp"" 3 [EV'T (11.64)
§=0

and

ss (Eam) — Y [Egm]z (11.65)

It is easy to verify that

p—1
E[SS (E7)] = (p — Vo2 +quiyp" S [EVT
§=0
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Table 11.1 T|B-ANOVA for p" Factorial Experiment

Source d.f. SS

a. Basic Partitioning

X, 13 sqg —1 Usual

Xp-19,X, sq(p"t—1) Usual

X:19,X,, Xp- (n2 +n3)(p— 1) D USS(E?t) + ) SS(E’")
4 m

I113,X,,Xp, X VR Difference

Total sqp" — 1 Usual

b. Partitioning of Block Sum of Squares

X 19, X, sq(p"t =1 Usual

{E*} ni(p—1) D SS(E™),
k

{Et} na(p — 1) > SS(ETY),
14

Remainder Difference (=v) Difference

and

E[5 ()] = (p - o2 4 S8

Since all the comparisons belonging to E% € £; and those comparisons
belonging to E?¢ € &, from replicates in which E?¢ is confounded do not con-
tribute to SS(X.|J, X,, Xg+), they must contribute to SS(Xg+|J, X,). This
then leads to the partitioning of SS(Xg«|J, X,) as given in Table 11.1b, where
SS(E%*), is obtained from all replicates in the usual way [comparable to (11.65)]
and SS(EYt). is obtained from all replicates in which E?¢ is confounded
[comparable to (11.64) with c(y,) substituted for u(y,)]. The components
(E;‘k)c, (Eg'k)C for E% € &, EYt € &, and § =0, 1, ..., p — 2 form a complete
set of linearly independent functions involving both block effects and treatment
effects, accounting for (n; +n2)(p — 1) d.f. of SS(Xg«|J, X,) and constitut-
ing the treatment component of this sum of squares. The remaining comparisons
belonging to SS(Xg+| J, X,) are then pure block comparisons accounting for

v=sq(p" ' =1) = (n1 +n2)(p—1) df. (11.66)

11.11 INTERBLOCK ANALYSIS

We have shown in the previous section that intrablock information from sev-
eral replicates can be combined additively to obtain the BLUE for an estimable
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function. We now turn our attention to interblock information for interaction
components, which means we consider the situation where B* is a vector of i.i.d.
random variables with E(8*) = ¢ and E(B*B*) =1 05. In particular, we shall
be concerned about interblock estimates of E% € &, and EY¢ € &, from those
replicates in which E?¢ is confounded. First we shall establish, however, that

similar to the case of intrablock information the estimates from several replicates
can be combined additively to yield BLUEs, a result that does not hold generally.

11.11.1 Combining Interblock Information

We consider the model equation (11.51) for the observations in the jth replicate,
assuming without loss of generality 1 = p; = 0, so that we have

y(j)zlr—I—X,g*(j)ﬂf;—l-e(j) (11.67)
We can rewrite (11.67) as
2 2
E (fu)f/(j)) = Tog + Xpe() Xpe(j) %

2
= (1+ 0" Xp() X)) 0

=V; o} (11.69)

where p* =07 /o7 and V; = I + p*Xp+(yXge(jy (G =1,2,...,r). The model
equation for the combined data from r replicates is thus

[y | 1 [ fo) ]
Yo I fo
=| |+ (11.70)
RIGH I L fo

with variance—covariance matrix

Vo? =diag{Vy, Vi, ..., V,}o? (11.71)
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The Aitken equation (see Section 1.4.16.2) then is

1
1 1 I
(IT---Ddiag{vi', vy, ... v | |7
1
Y
. 1 1 P
= 1I---I)diag{V, " ,V, ...,V '} .
Y
or
-
—1] =~ -1
Yvit|g=Y vy (11.72)
j=1 J
and hence
-1
~ -1 -1
J J
If &'t is an estimable function, then the BLUE is given by
-1
T -1 -1
Er=¢|>V; Y Vilyg (11.73)
J J

Suppose now we consider the estimation of &'t separately for each replicate.
It follows from (11.67) that

7=y
so that the BLUE of &'t from replicate j, (5%) ~say, is
J

(&f’vr)j =&y (11.74)

with ~
var (s/r) =V £o2 (11.75)
J
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Combining the estimates (11.74) with weights equal to the inverse of the variance
(11.75), we obtain

~ T 6 (8,
' = 11.76
A S ANV (11.76)

‘We know that (11.73) iiBLUE for &'7. One can see easily thatif V; =V for all
j=1,2,...,r, then &'t of (11.73) equals &'t of (11.76), but in general these
estimators will be different. We now give a condition under which (11.73) and
(11.76) are identical, a condition we shall show to be met for the purpose of
estimating interaction components.

Theorem 11.10 In a resolved design the interblock information for an
estimable function &'t obtained from each replicate can be combined additively
as in (11.76) to yield the BLUE if, for each j,

ViE=vk (11.77)

that is, if & is an eigenvector of each variance—covariance matrix V; (j =
1,2,...,r), with §'§ = 1.

Proof (i) The estimator in (11.76) is, of course, unbiased.
(i1) We know that (11.76) is BLUE. Therefore, for (11.76) to be BLUE, we must
have, using (11.73),

—1 , ,

- - Z'(l/'SVig)Ey(‘)

’ 1 1 B j j
§ (X,':Vi ) (;Vj J’(j)> =TS aEvie (11.78)

This must hold for all Y- Hence from (11.78) we must have

SN\ /g BE
/ 1 1 _ J
g(; K ) TS e a7

Now, if (11.77) holds, it follows that

vile=—¢ (11.80)

and hence
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and
-1 -1

ZV;l £E= ZVL £ (11.81)
J J

J

Using (11.77), (11.80), and (11.81), on both sides of (11.79) we obtain

-1
1y 1, app¥
(Z w) AR STV

1

which completes the proof. (]

11.11.2 Estimating Confounded Interactions

We now use Theorem 11.10 to obtain interblock information for E* € £ and
E?¢ € &,. Consider an E® € £ or &, and suppose that E® is confounded in
replicate j. We then consider &'z = EY for some & € GF(p). Obviously, we
have £’J = 0, and it follows from Theorem 11.9 that

§ = Xp(jHn (11.82)

Using (11.82) in (11.69), we obtain

ViE=U+ P*Xﬁ*(j)X;s*(j))f
=&+ 0" Xp () X e () X pr ()0
=&+ p*kXpe(jyn
= (1+p*k)& (11.83)

since X;g*( X p*(jy = kI, where k is the block size. Hence the condition of

Theorem 11.10 is satisfied, which implies that E5* can be estimated by combining
additively the estimates from each replicate. Denoting the overall estimate by
E;"‘, 8 € GF(p), we then have, using (11.83) with k = pe,

= 2
var(Eg¥ — EgF) = o <03 + p‘ag) (11.84)

Similarly, we obtain E;’k for E¥t € &, € GF(p) from all replicates in which
E?¢ is confounded. Hence

- - 2
var(EYt — EVY) = 7<02 + pecrz) (11.85)
( ) B} ) qc(yz)pnfl e B
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The Eé” and E‘g’z so obtained are, of course, used to yield

p—1
SS(E%), = qspnil Z [Egtk]Z
5=0
and
p—1
SS (E}'z)c — qC(Yg)pn_l Z [Eg’l]z
=0

of Table 11.1b. Under the assumptions made earlier in this section it follows that
p—1
E[SS(E™)c] = (p— D@7 + p'of) +qsp" Y [ES ]
=0

and
p—1 )
E[SS(E?)c] = (p — D)(o; + p'og) + qcy)p" ' > [E}']
6=0

Since, in Table 11.1b,

E[MS(Remainder)] = 0 + p‘o} (11.86)
we have a test for
o o o
Hp: Eg* = Ef* =--- = E3t =0

with E* € €1, which was not available before from the intrablock analysis.

11.12 COMBINED INTRA- AND INTERBLOCK INFORMATION

To summarize the results so far, we have the following information available for

E* € &y: interblock information only

EYt € &: intrablock information from gc(y,) replicates and interblock
information from gc(y,) replicates

E% € &3: intrablock information only

We have discussed how to get these types of information in Sections 11.10.1 and
11.11.2. It remains then to combine the two types of information for E¥¢ € ;.
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11.12.1 Combined Estimators

We have seen that for 't = E(Sy‘ the condition of Theorem 11.10 is satisfied for
those replicates in which EY¢ is confounded. For those replicates in which EY¢
is not confounded, we have §'X g*(j) = ¢ because of unbiasedness, and hence

Vg =(1+0"Xp () X)) § =&

so that the condition of Theorem 11.10 is trivially satisfied. It follows then that we
can combine the estimates from all replicates additively by weighting inversely
with the respective variances. Thus, letting w = 1 /oe2 and w' =1/ (062 + p‘zo;),
the combined estimator for E;"Z - E;’,‘f, say E ge - E\(’;,Z, is given by

u(yw (EV* — EV) + ey’ (E7* — EVY)

E}t - EY = , (11.87)
u(yw +c(ypw
and
= = 2 2
var (ng» — Eg/) = S — (11.88)
u(ye) +c(ypqp"~

where p = w/w’. To estimate w and w’ (or p), we use the B|T-ANOVA of
Table 11.2. This yields

o1
62 =— =MSU|J, X,, Xp, X1) (11.89)

e ~; =

and one obvious estimator for aez + pt crg =1/wis

— 1
(og n péog)l = (7 = MS(Remainder) (11.90)

Another estimator for 082 + pt crﬂ2 can be obtained by evaluating E[MS(Xg+|J,

X,, X1)] in Table 11.2. In order to do that, we first obtain SS (EW VS. E”) in
Table 11.2b.
Let

oYe Ve _ vV
ES _Eé _XS

for EYt € £, and § =0,1,..., p— 1. Any X;’Z is free of treatment effects but
is a function of block effects and replicate effects. Hence comparisons among
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Table 11.2 B|T-ANOVA for p" Factorial Experiment

Source d.f. SS

a. Basic Partitioning

X, 19 sqg —1 Usual
X.13,X, pt—1 Usual
Xp19,X,, X, sq(p"t =1 —ni(p—1) Difference
I3,X,,X:,Xp VR From Table 11.1
Total sqgp" — 1 Usual

b. Partitioning of Block Sum of Squares

Xpe |9, Xy, X sq(p"t =D —ni (p—1)
(E?¢ vs. E7t) na(p — 1) See (11.93)
Remainder v From Table 11.1

the X;" for fixed y, and § =0, 1,..., p — 1 contribute to SS(Xg+|J, X, X7).
More specifically we have

M v?Ye Ve T [ yvYe Ye 7
XO _Xp—l XO _Xp—l

SS(E?t vs. EVt) =

Ve Ve Ve Ve
XU =X00 vy, 1 | X X0k
(11.91)

Ve Ve Ve Ve
_prZ_prl_ _pr2_prl_

where Vy, is the variance—covariance matrix of the vector of comparisons X i}'e -

XZZ_I, i=0,1,..., p— 2. From the form of these comparisons it follows that
v, = > (I + 9952
TCT quiyy) cry) p! ¢
and hence
1% -1 n—2
[_rzz] _quy) cro) p (oI — 99
OE
We then obtain, from (11.91),
= ~ qu(yy) cly) p' e 2
SS(E?t vs. EVt) = 1222 221 >y (11.92)

N
=0
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and summing (11.92) over all EV¢ € &,
n—1

SS (B¢ vs. E70) = L= Y utr) cro) Y [X)'T
8

¢
Using the definition of ng and
E[x2'] = var (x]*) = var (E*) + var (E}")

p—1 2 p—1 ( 2, 2
= o, + o —i—po)
quiy) p" ¢ qeyp) pt \° P

it follows that
E[SS(E?t vs. E?))] = (p—1) (af + mp‘ag)
s
Hence

E[SS(E” vs. E?))] = (p — 1) [nzof + p; Xe:u(n) a§j|
From (11.86) and (11.94) it follows then that
E[MS (Xp|9.X,. X:)] =02 + Ap'o}
where

A [(p—1)/s1Y ,u(y,) +v
sq(p"~t =1 —ni(p—1)

429

(11.93)

(11.94)

(11.95)

and v as given in (11.66). A second estimator for w’ is then obtained from (11.89)

and (11.95) as

~ 1
2 )
(Ge P Gﬂ)z w’

1
(1 - Z) MS(I|9,X,, Xg+, X1)

1
+ A MS(Xpe]9. X, Xo)

(11.96)

Using (11.89) and (11.96) in (11.87) yields the combined estimator for E;’Z —

E}',8,8=0,1,....p— 1,848
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11.12.2 Variance of Treatment Comparisons

Recalling the parameterization of the true response of a treatment combination
as given in (11.33), we can estimate the difference of the effect of two treatment
combinations x and z, say, as

0 -T@=Y (Eg,x — £, Z) (11.97)
aeA
with
2 207
var (E —EY, )_ (11.98)
) u@) + c(@)p~gp!

using the notation of (11.88). In (11.98) u(a), c(e) =0,1,...,s with u(a) +
c(a) = s foreach & € A, with s being the totality of partitions for the p” factorial.
Since a'x = o’z for (p"~' —1)/(p — 1) different a € A, the right-hand side
of (11.97) contains p”"~! terms corresponding to those a € A*, say, for which
a'x # o'z. It follows then from (11.97) that

var(Bx) — @) = Y var (?g,x - fg,z) (11.99)

acA*

with the appropriate expressions from (11.98) substituted in (11.99). Obviously
A* and hence (11.99) depend on x and z and the particular system of confounding
that has been used.

Rather than compute the variance for each treatment comparison separately, it
may in some situations be appropriate to consider an average variance. To obtain
the average variance, we consider, for a fixed treatment combination x, T(x) —
r(z) for all z # x. For a fixed & € A there exist p"~ I treatment combinations z
that satisfy the equation

ar(xp —z1) a2 —22) + -+ ap(xy —2,) =8

for 6 € GF(p). Since there are p — 1 nonzero § € GF(p), it follows that for each
o € A there are (p — 1)p"~! different z’s with o’x # a’z. Hence, using (11.98),

av. var =

1 ~
F Z var (fc’:(x) —7(2))

X

p—1 5 1
—2 11.100
17 ‘g (u(@) + c(@)p—yg ( )
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11.13 THE s” FACTORIAL

To complete the discussion of the general symmetrical factorial experiment, we
shall now indicate how the methodology developed for the p” factorial can be
extended to the s” factorial, where s = p™ and p is a prime. One way in which
this is achieved is by replacing arithmetic in GF(p) for the p” by arithmetic in
GF(p™) for the s" factorial. Another way is to treat the (p™)" factorial as a p™”"
factorial, that is, mn factors with p levels each, these factors being referred to
as pseudofactors.

11.13.1 Method of Galois Field Theory

Suppose we have factors A, Az, ..., A,. We denote a treatment combination
as usual by x’ = (x1, x2, ..., x,) where x;(i = 1,2,...,n) takes on the values
0,1,...,s — 1. Also, we denote the elements of GF(p") by ug, uy, ..., us— (see
Appendix A). The partitioning of the s” treatment combinations into s mutually
exclusive sets of s” ! treatment combinations each associated with the interaction
E® = A} A% ... A% is obtained by considering the equations

Ugy Uy + Uy Uyy + -+ Ug, Uy, = Us (11.101)

where us € GF(p™). Each of the s equations (11.101) is satisfied by s" 1 treat-
ment combinations as at least one ug, 7 up = 0. Altogether there are (s" —
1)/(s — 1) such partitions and hence (s" — 1)/(s — 1) effects and interactions,
each accounting for s — 1 d.f.

We illustrate this procedure in the following example.

Example 11.5 Take p =2, m =2, n = 2, that is, the 42 factorial. The ele-
ments of GF(2%) are ug = 0, u; = 1, up = x, uz3 = x + 1 with P(x) = x> +x +
1 (see Example A3 in Appendix A). The addition and multiplication tables for
elements in GF(22) are

Addition Multiplication
uo up Uz U3 uo Uy Uz U3
uo | uo U uz us Uo | uo uo Uo U
ui uo us uz ui uyp uz us
uy uo U u uz  up
us uo us uz
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Denoting the factors by A and B, we have the following partitions and associated
interactions:

Partition Equations Interaction
(1,0) Uy, = Us A
O, 1 Uy, = Ug B
(1, 1) Uy, + Uy, = Us AB
(1,2)  uy, + ugy, = us AB?
(1,3) Uy, +U3Uy, = Us AB?

with us € GF(2%). Using the addition and multiplication tables, we can determine
easily for each treatment combination (x, x3) which equation it satisfies for a
particular interaction. The results of these computations are given in Table 11.3.
It follows then, for example, that AB? is defined by comparisons among the four
sets of treatment combinations:

up: (0,0), 2,1, @G,2), (1,3
u;: (1,0, G, D, 2,2), (0,3)
u: (2,0), (O, (1,2), (@3,3)
uz: (3,0), (I,D, (0,2), (2,3 O

Table 11.3 Calculation of Partitioning for Effects and Interactions for
4? Factorial

Treatment
Combination Effects Interactions

X1 X A B AB AB? AB3
0 0 uy Uo ug uo ug
1 0 up  up uy uj uj
2 0 ur U un uy uy
3 0 U3 U u3 us us
0 1 uy uj uy uy us
1 1 U  uj ug us uy
2 1 upy Uuj u3 uo uj
3 1 us U up uj ug
0 2 uy up un us uj
1 2 up  up u3 uy uo
2 2 upy Uy uo Ui us
3 2 U3y  up u| uo uy
0 3 uy us us3 Uy us
1 3 Uy us up uo us
2 3 U us u| us ug
3 3 U3 us uo U uy
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11.13.2 Systems of Confounding

The method of constructing systems of confounding can now also be extended
quite easily. Suppose we consider a s” factorial in blocks of size s*. We choose
n — £ independent interactions, E%!, E*2 ... E%t say, to be confounded with
blocks. The s”~¢ blocks are then obtained from the equations

Ugp Uy, + Ugply, + o0+ Ugy, Ux, = Us,

Ugy Ux; T Ugplly, + -0+ Ugy, Ux, = Us,

(11.102)
Ug, Uz + Ug Uy + -+ Uay,Ux, = Us,
where ¢ =n — €, ) = (1, &2, ..., ), us; € GF(s), i =1,2,...,¢. For a
fixed set (us,, us,, ..., us,) Eqgs. (11.102) are satisfied by st treatment combina-
tions, which then form a block.
Further, any treatment combination that satisfies, say, the equations
Ug Ux + Ugy Uxy + -t Uy, Uy, = Uus,
and
Ug Uy, +ugyly, + -+ ug, Uy, =us,
also satisfies the equation
(uﬂll + ”k”ﬂl)”xl + (uﬂlz + ”l”ﬂz)”xz +
+ (uan + u,\uﬂn)uxn = us, + Ui, (11.103)

for any u; € GF(p™). If us,, us, now take on all the values in GF(p™), then the
right-hand side of (11.103) takes on all values of GF(p™) exactly s = p™ times
for fixed u, . Hence (11.103) provides a partition of the s” treatment combinations.
The interaction associated with it is, by analogy to the p" case, referred to as
a GI of A% A% .. A% and AP'AP> AP denoted by AV'AY ... A} with
1, v2, - -+, ¥u) to be determined from

Ug, T+ upug = Uy,
Ug, T UUG = Uy,

(11.104)

Uay, + uug, = iy,

n
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Since u; € GF(p™), uj # ug, it follows that A% A% ... A% and AP'AR> . Al
have s — 1 GIs among them. Extending this argument (see Section 11.4) implies
then that with E*!, E*2, ..., E% all their GIs are also confounded with blocks,
accounting for the s"~¢ degrees of freedom among blocks.

As in the p" case, the composition of the blocks can be obtained by vary-
ing the right-hand side of (11.102). Alternatively, we can obtain the IBSG
by considering (11.102) with us, = uo(i =1,2,...,q) and then generate the
remaining blocks in the familiar way by adding treatment combinations to those
of the IBSG using GF(p™) arithmetic. As an illustration, consider the following
example.

Example 11.6 Suppose we have a 43 factorial in blocks of size 4, that is, p=
2,m=2,n=3,¢=1. We have 16 blocks, that is, we confound five interactions
with blocks. Suppose we confound AB and BC?, that is, o) =(1,1,0), o), =
(0, 1,2). From (11.104) with u; = uy, us, us it follows, using the addition and
multiplication tables from Example 11.5, that

U +ujuyg = uq Uy + uruy = U Uy + uszuyg = U
up+ujup = uo uy+uguy = u3 uy +uzuy = uy
Uy +ujuy = up Uy + Uy = uj3 Uy + uszr = U

and hence ACZ?, AB3C3, and AB?C are also confounded with blocks. As a
result, 9 d.f. belonging to 2-factor interactions and 6 d.f. belonging to 3-factor
interactions are confounded with blocks. The IBSG is obtained by considering
the equations

Uy, + Uy, = uo
Uy, + UdUyy = UQ
They are satisfied by the treatment combinations
(uo, uo, uo) ~ (0, 0, 0)
(ur,ur,uz) ~(1,1,3)
(u2, uz, u1) ~ (2,2, 1)

(w3, uz, uz) ~ (3,3,2)

where the expressions on the right are the (xp, x2, x3). Another block can be
constructed by noting that, for example, the treatment combination (i1, uz, u3)
is not in the IBSG. Hence, adding this treatment combination to each in the
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IBSG, we obtain the block consisting of

(o +uy, ug +uz, ug +u3z) = (uy, uz, u3z) ~ (1,2, 3)
(1 +uy, uy +uz, uz +uz) = (uo, us, ug) ~ (0, 3,0)
(w2 +uy, uz +up, uy +u3z) = (us3, ug, uz) ~ (3,0, 2)

(u3 4wy, u3 +uz, up +u3) = (uz, ur, uy) ~ (2,1, 1)
This process is then continued in the obvious and familiar way. O

An equivalent system of confounding using SAS PROC FACTEX is given in
Table 11.4. It, too, confounds 9 d.f. belonging to 2-factor interactions (as indi-
cated by the Aliasing Structure) and 6 d.f. belonging to the 3-factor interaction.
We repeat that SAS uses a different parameterization than the one we have used.

Finally, we mention that Theorem 11.7 holds for the s factorial also. All we
need to do is replace p by s = p™ and generate the IBSG by using GF(p™)
arithmetic. For example, it is possible to accommodate n = 5 factors with four
levels each in blocks of size 16 without confounding main effects and 2-factor
interactions.

11.13.3 Method of Pseudofactors

Let Ay, Ay, ..., A, again denote the factors in the (p*)" = s" system. We then
associate with factor A; the m pseudofactors X;1, Xi2, ..., Xim (i =1,2,...,n)
each at p levels. This association implies the following: (i) If a; is the level
of factor A; in a treatment combination and x;; is the level of factor X;; in a
treatment combination belonging to the p” system {X;1, X2, ..., Xim}, we then
set up the correspondence

(ar,az,...,ap) = (X11, X125+« X1m X201, X22, « « + , X2m;

ce 3 Xn1s Xn2s oo Xam)

that is, each level a; of the factor A; corresponds to a level combination
(xi1, Xi2, - - ., Xim) of the pseudofactors X;i, Xi2, ..., Xim(i =1,2,...,n). (i)
The main effects and interactions in the s” system correspond to sets of main
effects and interactions within and among the n p” systems. More formally
we express this as follows: Let {E%, a; € A;} denote the set of main effects
and interactions associated with the p™ system {X;{, Xj2,..., Xim} and let
E% x E%, (a;, o) € A; x Aj, represent an interaction among factors in the p”
systems {X;1, Xi2,..., Xi} and {Xj1, Xj2,..., Xju} with A; x A; denoting
the totality of the corresponding partitions («;, ;). Continuing in this fashion,
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Table 11.4 43 Factorial in Blocks of Size 4 (Confounding 3 d.f. From Each
2-Factor Interaction and 6 d.f. From the 3-Factor Interaction)

options nodate pageno=1;

proc factex;

factors A B C/nlev=4;

blocks size=4;

model est=(A B C);

examine design confounding aliasing;

output out=design blockname=block nvals=(1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16);

titlel 'TABLE 11.4';

title2 '4**3 FACTORIAL IN BLOCKS OF SIZE 4°';

title3 'CONFOUNDING 3 D.F. FROM EACH 2-FACTOR INTERACTION';

title4 'AND 6 D.F. FROM THE 3-FACTOR INTERACTION';

run;

proc print data=design;
run;

The FACTEX Procedure

Design Points

Experiment
Number A B c Block
1 0 0 0 1
2 0 0 1 16
3 0 0 2 6
4 0 0 3 11
5 0 1 0 12
6 0 1 1 5
7 0 1 2 15
8 0 1 3 2
9 0 2 0 14
10 0 2 1 3
11 0 2 2 9
12 0 2 3 8
13 0 3 0 7
14 0 3 1 10
15 0 3 2 4
16 0 3 3 13
17 1 0 0 8
18 1 0 1 9
19 1 0 2 3
20 1 0 3 14
21 1 1 0 13
22 1 1 1 4
23 1 1 2 10
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Table 11.4 (Continued)

24 1 1 3 7
25 1 2 0 11
26 1 2 1 6
27 1 2 2 16
28 1 2 3 1
29 1 3 0 2
30 1 3 1 15
31 1 3 2 5
32 1 3 3 12
33 2 0 0 10
34 2 0 1 7
35 2 0 2 13
36 2 0 3 4
37 2 1 0 3
38 2 1 1 14
39 2 1 2 8
40 2 1 3 9
41 2 2 0 5
42 2 2 1 12
43 2 2 2 2
44 2 2 3 15
45 2 3 0 16
46 2 3 1 1
47 2 3 2 11
48 2 3 3 6
49 3 0 0 15
50 3 0 1 2
51 3 0 2 12
52 3 0 3 5
53 3 1 0 6
54 3 1 1 11
55 3 1 2 1
56 3 1 3 16
57 3 2 0 4
58 3 2 1 13
59 3 2 2 7
60 3 2 3 10
61 3 3 0 9
62 3 3 1 8
63 3 3 2 14
64 3 3 3 3

Block Pseudofactor Confounding Rules

[B1]
[B2]

(3*A) + (3*B) +(3*C)
A+ (2*B) + (3*C)
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Table 11.4 (Continued)

Aliasing Structure

A
(2*A)
(3*3)
B
(2*B)
(3*B)
C
(2*C)
(3*C)
A + B
[B] = (2*A) + B
(3*A) + B

)

(2*A) + (2*B)

[B] = (3*A) +(2*B)
[B] = A +(3*B)
(2*A) + (3*B)

(3*A) +(3*B)

A+ C

(2*A) + C

[B] = (3*A) + C
[B] = A +(2*C
(2*A) + (2*C

(3*A) + (2*C

A +(3*C

[B] = (2*A) +(3*C
(3*A) + (3*C

B + C

[B] = (2*B) + ¢
(3*B) + C

B +(2*C

(2*B) +(2*C

[B] = (3*B) +(2*C
[B] = B +(3*C
(2*B) +(3*C

(3*B) +(3*C

)
)
)
)
)
)

)
)
)
)
)
)

Obs block A B C
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Table 11.4 (Continued)

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24

25

26

27

28

29

30
31
32
33
34
35
36
37
38
39
40

10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14

41

42

43

44
45

46

47

48

49

50
51
52
53
54

55
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Table 11.4 (Continued)

56 14 3 3 2
57 15 0 1 2
58 15 1 3 1
59 15 2 2 3
60 15 3 0 0
61 16 0 0 1
62 16 1 2 2
63 16 2 3 0
64 16 3 1 3

we then have the correspondence
A = (EY%: a; € A;)
Ai x Aj Z{E% x E%: (o, aj) € A; x Aj}
Ai X Aj x Ay Z{E% x E% x E*: (o, o, 05) € Aj x Aj x Ay}

and so on, up to

Al X Ay x - x A, =TT x E%: (a;, a2, ..., 0,) € TT x A;}
This implies, of course, that the s” system can be handled entirely by GF(p)
arithmetic rather than by GF(p™) arithmetic. As an illustration, consider the

following example.

Example 11.7 Suppose we have a (22)3 factorial. For ease of notation we
use the following correspondence for the factors (A;; X1, Xi2):

43 System 2 System

A X1, X2
B Yi, Y2
C VANYA)

and for the levels (a;; x;1, Xi2):

43 System 2 System

0 0,0
1 1,0
2 0,1
3 1,1
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Table 11.5 Correspondence of Main Effects and
Interactions for 4° and 2° System

43 System 26 System
A X1, X2, X1X2
B Yi,, Y112
C VANVANVAVA)
A X B XY, X1, X1 Y1

X2Y1, XoYa, XoY112
X1 X2Y, X1 XoY2, X1 XoY1 Y2

AxC X121, X12>,X1212Z,
X271, X225, X222,
X1X2Zy1, X1 X272, X1X272,2Z,

B xC Y]Z],Y[Zz,Y]Z]Zz
VOVATD CYA IR CYAVS)
Wz, Y''/Y2Zy, Y'1Y2Z2,2Z,

AxXBxC X1Y121,X1Y122,X1Y12122
X117y, X1 Y225, X1 Y2212,
XNz, Xi"Whzy, X\ Y'1/Y2Z2,2Z;

X1 Xo'/ o Zy, X0 XoY1YaZo, X1 XoY1Y2 212,

The correspondence of effects and interactions in both system is then as given
in Table 11.5. This representation implies that all main effects and interactions
in the 4 system are expressed as sets of single degrees of freedom contrasts; for
example, the 3 d.f. for A are represented by the three orthogonal contrasts

x1 =0 VS. x1 =1
x =0 VS. xp=1
x1+x2=0 VS. x1+x=1 O

The value of the method of pseudofactors just described apart from the reduc-
tion to GF(p) arithmetic lies in its flexibility of constructing systems of con-
founding in blocks of size p® rather than (p™)¢, although it requires a certain
amount of care in order not to confound contrasts belonging to main effects or
low-order interactions if that can be avoided.

Example 11.8 For the 43 factorial we may want to consider blocks of size
8. According to Theorem 11.7, we can find a system of confounding for the
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26 factorial in blocks of size 23 without confounding main effects and 2-factor
interactions. This assures us that no contrasts belonging to A, B, or C in the
43 system have to be confounded. A suitable system of confounding would be
to confound X 1X2Y>, X1Y1Z1, X2Y1Z> and their GIs XY Y27, X 1Y1Y>2Z5,
X1X2Z1Z,, Y2Z1Z;,. Referring to Table 11.5, this means that we confound
four contrasts belonging to A x B x C, namely (X1Y1Z1, X2Y1Z>, X2Y1Y2Z,
X1Y1Y27Z5), and one contrast each belonging to A x B, namely (X{X,Y>),
A x C, namely (X1X2Z1Z3), and B x C, namely (Y>Z;Z;). We mention that
confounding Y>Z{Z, is not necessarily more desirable than confounding, for
example, Y>Z; since both belong to the B x C interaction. However, confound-
ing X1X7, Y1Y2, Z1Z> is undesirable.

It should be obvious how this method of pseudofactors is then used to analyze
data from such a design. For Example 11.8, with g replicates, we have the T|B-
ANOVA as given in Table 11.6, where

Z SS(XT'X32Y['Y[?) = SS(X1Y1) 4+ SS(X1Y2) + SS(X1Y1Y>)
+ SS(X37Y1) + SS(X,Y) + SS(X,Y1Y?)
+ SS(X1X,Y1) +SS(X 1 XY 1r)

as follows from Table 11.5 and the fact that X; X,Y> is confounded with blocks.
The other sums of squares in Table 11.6 are obtained similarly. ]

Table 11.6 T|B-ANOVA for 43 Factorial in Blocks of Size 8

Source d.f. SS

X, qg—1 Usual

Xp:|J, X, Tq Usual

X9, Xy, Xp 56
A 3 SS(X1) + SS(X2) + SS(X1X2)
B 3 SS(Y1) + SS(Y2) + SS(Y1Y2)
AxB 8 > SS(XTXS2Y]'Yy?)
c 3 SS(Z1) + SS(Z2) + SS(Z122)
AxC 8 Y SS(X{ X522y Z3?)
BxC 8 Y ssa vz z
AXBxC 23 >SSy X3y 20 25

10, X,, Xp+, X 56(g — 1) Difference

Total 64g — 1 Usual
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11.13.4 The (p1 x p2 x --+ x py)" Factorial

The method of pseudofactors can also be used when the number of levels,
s, is a product of prime numbers, say s = p;pa...pm, OF €ven more gen-
erally, a product of prime powers, say s = p|'py®... py". Using pseudofac-
tors then means that the (py' p5*... py")" factorial can be treated by combin-
ing (p")", (p32)"..... (pw")" factorials. Rather than discuss the general case,
we shall describe briefly how to use this method for the 6" factorial, that is,

s=6,p1 =2,py=3.

Denote the factors for the 6" factorial by Aj, Aj, ..., A,. For A; introduce
the pseudofactors X;{, X;2, where X;; has p; =2 levels and X;> has pp =3
levels (i = 1,2, ...,n). From our discussion in Section 11.13.3 it is clear then

how we establish a correspondence between the levels of the six-level factor and
those of the pair of two- and three-level factors:

6" System 2" . 3" System

0 0,0
1 1,0
2 0,1
3 1, 1
4 0,2
5 1,2

>

Similarly, the correspondence between main effects and interactions in the two
systems is exemplified in Table 11.7.

This correspondence also suggests various possibilities for constructing sys-
tems of confounding. For example, for the 6> factorial we may consider blocks of
size 18, 12, 9, 6. The allocation of the treatment combinations to the blocks can
be achieved easily by using the methods for constructing systems of confounding
for the 2% and/or 32 factorials discussed in Chapters 8 and 10. The basic ideas
are summarized in Table 11.8. Notice that for blocks of size 18 and 9 we use
confounding in the 2% system only, for blocks of size 12 we use the 3% system
only, but for blocks of size 6 we use both the 2> and the 3% system.

The idea is, for example for blocks of size 12, to first construct blocks of
size 3 in the 32 system by confounding X»; and then “augment” those blocks
by “adding on” to each treatment combination (in the 32 system) in a given
block all the treatment combinations for the 22 system (actually, this method
can be more formally described as the Kronecker product design of a system
of confounding for the 32 factorial with the full 2% factorial). If we denote a
treatment combination by (x11, x21, X12, X22) wWhere x1; and x7; refer to the 22
system and x12 and x» to the 32 system, then confounding X;; leads to the
three “intermediate” blocks given in Table 11.9a. These are augmented to give
the blocks in Table 11.9b and, using the correspondence set up for the 6" and
23" systems, the final blocks in the 6 system in Table 11.9c. A closer look at
Table 11.9c reveals the obvious, namely that not all contrasts defining the main
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Table 11.7 Correspondence Between Main
Effects and Interactions in 6” and 2"3" Systems

6" System d.f. 23" System df.

A; 5 Xi1
Xi2
Xi1Xi2

AiA; 25 Xn X))
Xi1Xj2
Xi2Xj1
Xi2Xj2
XX,
Xi1 X1 X2
XitXj1Xj2
Xi1XinXj2
XianijQ
Xj1XinXj2
Xj1XinX3,
Xi1Xj1Xi2X j2
Xi1X_,'1Xi2X§2

[N NS RN ST (R (S R (ST (ST (ST (SR S B S S R L SR

Table 11.8 Systems of Confounding for 6> Factorial

Confound
Block Size In 2232 System In 62 System?
18 X1X2 A1Ax(1)
12 X]2 A](2)
9 X11, X21, X11X21 Aq(1), Ax(1), A1Ax(1)
X11X21, X12X22, X11X12X21X22 A1A2(5)

“Number in parentheses indicates the number of degrees of freedom confounded from the indicated
interaction.

effect A are estimable because they are confounded with blocks. This is also
indicated in the third column of Table 11.8, where, for example, Aj(2) means
that 2 d.f. for main effect A; are confounded with blocks.

It is for this reason that this particular system of confounding by itself may
not be the most useful. A system of partial confounding with X»> confounded in
a second replicate solves this problem to some extent. A better method may be,
however, to confound 2 d.f. from the Aj A, interaction, for example, to construct
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Table 11.9 62 Factorial in Blocks of
Size 12

Block
1 2 3

a. Intermediate Blocks in 32 System

0 0) (10) (20
1) (1 2D
02) (12) 22

b. Blocks in the 223 System

0000 0010 0020
1000 1010 1020
0100 0110 0120
1100 1110 1120
0001 0011 0021
1001 1011 1021
0101 0111 0121
1101 1111 1121
0002 0012 0022
1002 1012 1022
0102 0112 0122
1102 1112 1122
¢. Blocks in the 6 System
00 20 40
10 30 50
01 21 41
11 31 51
02 22 42
12 32 52
03 23 43
13 33 53
04 24 4 4
14 34 54
05 25 45
15 35 55

the intermediate blocks by confounding X X5, (see Table 11.7). Such a method
will be discussed in Section 11.14.

The design displayed in Table 11.9 can also be produced using SAS PROC
FACTEX as given in Table 11.10

Finally, a method of combining systems of confounding for different compo-
nent systems, as for the 62 factorial in blocks of size 6 (see Table 11.8), will be
described in Section 12.2.
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Table 11.10 62 Factorial in Blocks of Size 12 (Using Pseudofactors)

options nodate pageno=1;
proc factex;

factors C D/nlev=3;
blocks size=3;

model est=(D C*D) ;
output out=cddesign;
run;

factors A B;

output out=abdesign
designrep=cddesign;
run;

data abdesign (drop=A B C D) ;
set abdesign;
if A=-1 and C=-1 then F1=0;
if A=1 and C=-1 then F1l=1;
if A=-1 and C=0 then F1=2;
if A=1 and C=0 then F1=3;
if A=-1 and C=1 then Fl=4;
if A=1 and C=1 then F1=5;
if B=-1 and D=-1 then F2=0;
if B=1 and D=-1 then F2=1;
if B=-1 and D=0 then F2=2;
if B=1 and D=0 then F2=3;

if B=-1 and D=1 then F2=4;
if B=1 and D=1 then F2=5;
run;

proc print data=abdesign;

titlel 'TABLE 11.10';

title2 '6**2 FACTORIAL IN BLOCKS OF SIZE 12°';
title3 ' (USING PSEUDO-FACTORS) ';

run;

Obs BLOCK F1
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Table 11.10 (Continued)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
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11.14 GENERAL METHOD OF CONFOUNDING FOR THE
SYMMETRICAL FACTORIAL EXPERIMENT

We have so far considered the s” factorial where s is (i) a prime, (ii) a prime
power, or (iii) a product of primes. For (i) and (ii) our discussion has centered on
the fact that the s” — 1 d.f. can be partitioned orthogonally into (s" — 1)/(s — 1)
components with s — 1 d.f. each. We saw that this provides a simple mechanism
for constructing blocks of size s*(¢ < n) by confounding some of these compo-
nents with blocks. For (iii) we made use of the same principle and indicated how,
for example for s = pj pa, blocks of size pf‘ pgz (€2, £ < n) can be constructed.
In all three cases this procedure may not always be entirely satisfactory for two
reasons: (i) the block sizes are too restricted or (ii) information on important
effects may have to be sacrificed (due to confounding). The second problem can
be overcome to some extent by using a system of partial confounding at the cost
of additional replications.

The problem of restricted block sizes can often also be overcome by using
the factorial treatment design together with existing incomplete block designs,
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specifically BIB and PBIB designs. The drawback with this approach, however,
is that we are giving up complete control over what information to sacrifice. In
other words, we may have to give up partial information about many effects,
including perhaps main effects and low-order interactions. This is expressed in
reduced efficiency, that is, increased variance, rather than in terms of complete
loss of certain degrees of freedom for some effects. We shall present an alter-
native method that uses generalized cyclic incomplete block designs (see, e.g.,
John, 1987) the construction of which attempts to take into account that we may
want to retain information about main effects but may be willing to sacrifice
some information about 2-factor interactions, for example, if that is possible at
all. Before describing the method, however, it is useful to present some ideas
about a calculus for factorial arrangements as developed by Kurkjian and Zelen
(1962, 1963).

11.14.1 Factorial Calculus

We consider the s” factorial, where s is a positive integer. Denote a treatment
combination by x = (x1,x2,...,x,) where x; represents the level of the ith
factor A; withO <x; <s—1G=1,2,...,n).Let@ = (0,1,...,s — 1)’ denote
the vector of the s levels. Then the symbolic direct product (SDP) 8 ® 0 is defined
as (see Kurkjian and Zelen, 1962)

0®0=1[0,0),(0,1),...,0,s — 1), (1,0),

1,D,...,d,s=1),...,(s —1,0),
s—1,0D,....,6—1,s — 1] (11.105)

and 0 ® § ® 0 as

0®0®60=1[0,0,0),(0,0,1),(0,0,2),...,(0,0,5s = 1), (0, 1,0),
0,1,1),...,0,1,s =1),..., (s = Ls — 1, s = 1)]

The array of all s” treatment combinations can then be represented by the n-fold
SDP#®" =0 ® 0 ® --- ® 6. This will be referred to as the standard arrangement
(note that this is different from the standard order given in Chapter 7 for the 2"
factorial). Further, let 7(x) denote the true effect of the treatment combination
x and let T be the vector of all treatment effects arranged in standard order. A
useful reparameterization of 7 is given by expressing each t(x) in terms of main
effects, 2-factor interaction effects, and so on. We write

n n n

Tx) =Y aix)+ Y Y aij(xi, xj) 4

i=1 i=1 j=1
1§i<j§n

+ a2 n(x1, X2, ..., Xp) (11.106)
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where a; (x;) represents the main effect of factor A; at level x;, a;;(x;, x;) rep-
resents the 2-factor interaction effect between factors A; and A; at levels x; and
x;, respectively, and so on. These effects are defined such that

s—1
Z a;(x;) =0 for every i
x;i=0
s—1 s—1
Z ajj(xi,x;) =0= Z ajj(xi, x;) for every pair (i # j), etc.

x; =0 x;=0

that is, every effect sums to zero over the levels of any factor. Note again that
the reparameterization (11.106) is different from that given in (11.33). Each of
the effects is expressible as a contrast in the 7(x), that is,

Q=" @i x2 . X)TE X2 X)) (11.107)

Xy X2 Xn

with le sz--'an ¢(x1,x2,...,x,) = 0. Following Bose (1947b) a con-
trast of the form (11.107) belongs to the g-factor interaction A; A, ... Ai, if

the ¢(x1, x2, ..., x,) depend only on Xips Xigs - n Xy (L S <y <+ <ig <
n;1<q=<n).
Now define z = (z1, 22, ..., z,) With z; = 0, 1 and consider
a“=a'®ay Q@ - ®@a> (11.108)

The al.Z’ by themselves are abstract quantities [Kurkjian and Zelen (1962) refer to
them as primitive elements]. It is only in the context of (11.108) that they have
a quantitative meaning in the following sense.

In this expression we use the convention that a;' is omitted if z; = 0. Then a*
represents the vector of parameters of the interaction corresponding to the factors
A; for which z; = 1, that is, all the terms corresponding to one of the parameters
in (11.106). Specifically, if z;) =z, =--- = z;, = 1, then a® represents all the
terms a;j, - . . ig (Xiys Xiys - - - Xi,) of the g-factor interaction A; A;, . .. Aj,. To
express these terms as contrasts in the treatment effects, we define the contrast
matrix

M=sI-37 (11.109)

where I is the s x s identity matrix and J is an s x 1 vector of unity ele-
ments. With

- _']/ ifZiZO
M = . (11.110)
M ifz; =1
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and with x denoting the Kronecker product,

M* =M x M®2 x --- x M* (11.111)
we have
1
a* = —M*t (11.112)
sn

To illustrate (11.112), consider, for example, the main effects for factor Ay,
that is, z1 = 1, z0 = z3 = - - - = z;, = 0. For the sake of simplicity we shall take
s = 3 and n = 3. Then (with subscripts indicating the dimensions of a matrix or
a vector)
(100) 1 0 0
My =M xM" xM
=BI-99)x9 xT
=313 Xﬂ/9—33f]/27
29, -9, -9,
-9, 29, -9
~9, —9, 29,

and
_ 1 _
1 . .o
g_Zr(l,J,k)— ﬁzf(ld,k)
1 7 A T ) =T
a0 _ | 5 21(2, j, k) — 7 Zt(i, J. k)| = T2, ) —=T(, ")
Jk ijk _ _
1 -5(3’.’.)_-[(.’.,.)
1 . ..
§Zt(37]7k)_ﬁzt(lvjvk)
L Jk ijk i

using familiar dot notation. Similarly for the main effects for factor A, we have

(010) 0 1 0
M3X27=M xM xM
=9 xBI-3TyxT

=37 xIxJ -9 x93 x9

=3(I3 x 9513 x 95:13 x 35) — 939,
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and
T, 1,) —=T(, - )
a9 = 7,2, ) =7, ")
7(,3,) —T(, -, )

For the interaction between factors A; and A, we obtain
M) =M x M' x M°
—GBI-99)xGBI1-37)x
=913 x I3 Xﬂ%—3[3 ><1]3f]/3 Xﬂ%—333gg x I3 Xf]%
+ 333/3 X .']33/3 X 9/3
=91y ng — 313 X333/9—333f]/3 x I3 ng+393/27
and
_?(]9 l’ ‘) - ?(]9 y ') - ?('7 11 ') +?('1 Yy ')_
?(17 27 ') - ?(17 Yy ) - ?(.7 25 ) +?(5 Yy )
?(19 37 ') - ?(19 y ') - ?('7 31 ') +?('1 Yy ')
?(27 17 ') - ?(27 Yy ) - ?(.7 15 ) +?(5 Yy )
a' =17(2,2,) =72, ) =T, 2,) + 7T, - )
?(29 3’ ‘) - ?(29 y ') - ?('7 31 ') +?('1 Yy ')
?(37 17 ) - ?(37 ) ) - ?(7 1’ ) +?(’ ) )
?(39 2’ ‘) - ?(39 y ') - ?('7 21 ') + ?('1 Yy ')
_?(37 37 ) - ?(37 ) ) - ?(7 3’ ) + ?(’ ) ')_

It is easy to verify that, indeed,
?(17 1’ ) - ?(17 '7 ) - ?(v 17 ) +?(7 '7 ) - alZ(L 1)

for example. Hence, any contrast belonging to the 2-factor interaction A; x Aj
can be expressed as

110

where the elements of £11¢ add to zero. In general, the number of linearly inde-
pendent contrasts belonging to the effect represented by a® for a fixed z is
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given by

v(z) = rank(M?) = [ | rank(M) = [ J(s — D¥

i=1 i=1

11.14.2 Orthogonal Factorial Structure (OFS)

Our aim is to construct suitable systems of confounding for the general s” fac-
torial. In order to do so and to identify such systems that have certain desirable
properties, it is useful to look ahead at the analysis and deduce from it structural
properties that must hold for the error-control design and the treatment design.

Recall (see Chapter 1) that the reduced normal equations for an incomplete
block design are given by

Ct=0 (11.113)

where, for an equireplicate proper design,

1
C=rI—%NN’ (11.114)

and !
=T ——-N'B
e k

The error-control design is determined by the incidence matrix N and the struc-
ture and properties of the design can best be characterized through the form of
the concordance matrix NN’. All the systems of confounding derived in this and
previous chapters possess the following two properties:

1. Each contrast belonging to a certain interaction is estimated orthogonally
to any other contrast belonging to a different interaction. That is, if for the
p" factorial Zf:ol ci E' and Zf:ol d; E{ are two contrasts belonging to
E*! and E*2, respectively, then

cov <Z Ci E\?l y Zdi E?z) =0
i i

2. The treatment sum of squares SS(X.|J, Xg) is partitioned orthogonally
into the individual interaction sums of squares:

SS(X¢13,Xp) = ) SS(E%) (11.115)
o
where SS(E®) is the sum of squares due to E* and ), is the sum over

all & such that E® is not completely confounded (i.e., belonging to £, and
&3 as defined in Section 11.6).
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Property 2 follows, of course, from property 1. Factorial designs having these
properties are said to have orthogonal factorial structure (OFS). The importance
of OFS is that it simplifies greatly the interpretation of the analysis of a factorial
experiment. For example, based on significance tests in the ANOVA certain
interaction terms may be deleted from the model without affecting the estimates
of other terms remaining in the model.

We know from earlier discussion (see Chapter 1) that

SS(X.19,Xp) =7 Q=7CT=0CCC Q (11.116)

It is clear from (11.115) and (11.114) that SS(X;|J, Xp) is a function of NN’
Now the structure of C is the same as the structure of NN’. We have seen earlier
(see, e.g., Chapters 2 and 4) that for block designs the structure of C~ is the
same as that of C. We may then ask the questions: (i) For what structure of
these matrices do we have an OFS and (ii) how can one exploit that structure
to generate appropriate systems of confounding? We shall now give answers to
these questions.

11.14.3 Systems of Confounding with OFS
Consider a*® as given in (11.112). It follows then from (11.113) that

@ = M0
with
var (@%) = szinMi’-C—(MZ)’aE2
and
cov (@, a%) = S%MZC’(M“’)’GE

for z # w. More generally, for two contrasts belonging to a® and a¥, respectively,
we have

. - 1
cov[€, a*, £, a¥] =

& cov[, M*T, €, M¥T]
1 -
Sﬁﬂ’z M*C~(M") ¢, (11.117)
Furthermore, the sum of squares due to testing the significance of a® is given by
SS(a%) = (M*7) [MZC_(MZ)/]_ (M*7) (11.118)

With the reparameterization (11.106) OFS is achieved if expression (11.117) is
zero and hence analogous to (11.115),

SS(X|9,Xp) = SS(a®) (11.119)
z
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where Zz is the sum over all binary n vectors except (0,0, ..., 0). We denote
the set of all such vectors by Z. Since (11.117) must be equal to zero for all
choices of £; and ¢, the following theorem holds.

Theorem 11.11 For the s” factorial with parameterization (11.106) a block
design will have OFS if

M*C~(M™) =0 (11.120)
for all z,w € Z(z # w), where M?* is defined in (11.111).

The following theorem, which will be instrumental in constructing block
designs with OFS, is a special case of a more general theorem due to Cotter,
John, and Smith (1973). We need to introduce some notation first. For simplicity
of notation we shall denote the matrix C~, a generalized inverse of C in (11.114),
by D. We shall refer to a cyclic partition of a matrix H of order mimy x mimy
if H can be written as

H, H> Hs H,,
po| fm W ?2 o Hme (11.121)

H, Hy - H, H
where H; (i = 1,2,...,my) is of order mo x m,. We write (11.121) for short as
H={H\ H,, ...,H,}={H))) (11.122)

We now state the following theorem.

Theorem 11.12 A block design N for an s” factorial has OFS if the matrix
C™ = D has the following cyclic partition:

Di]iz...in_z = {(Di]iz...in_l)}

fori;=1,2,...,s, j=1,2,...,n—1, and if the s x s matrix D;;, ;,_, has
row and column sums all equal.
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Proof The proof is patterned after the results of Cotter, John, and Smith
(1973) and John and Smith (1972). We show that (11.120) is true by using
induction. First we show that the theorem is true for n = 2.

For n = 2 the set Z consists of three vectors: (1,0), (0,1), (1,1). Correspond-
ingly we have, using (11.111),

MO = (51, —3,9)) x 9!
=sl; xJ,— 3,9, x I
=sP; -39,
where, using the notation of (11.122),

P ={9.0.. .0

REROR]
Also
MOY =9 x (sIy—9,9;) =sP> —3s9;2
with
P2=(Is,1s7-”513)
and finally

M = (sI, —3,9)) x (sI, —3,9})
=s2{I,,0,...,0} —5{9,,9,.,0,...,0]
—s{Is, Iy, ... I} +{9,9,, 9,9, ..., 9,9}

Now consider
M9D =5 P,D-3,9.D

=s{d 9,9, ....d; 9.} - (Zd,-) 9,9,

where d; is the row and column sum of D; in D = {D, D», ..., D;}. Since
JI'M* = 0 for z € Z it follows that

/
MUOD (M) =5 {13, &3, ... dT}} (P2 = 3,9)

=’ (Z di> 9,9, — s> (Z di> 9,9}

=0
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Similarly,
MO pMY =149, 9., ...,d,9,} MV

=5 {19, &9, ....dT,} —s* |19, drT,, ..., d,T,}

=52 (3 di) 9,9 + 5% (3 di) 9,9, =0

Finally,
MDD =5P,D -9,9,D
=2 (DY b YD) - (3 pi) 39
and hence
MO DM = (3 DY Dy Dy
_ 2 ((Zd,~> 9,9, (Zdl) 99, (Zdl) .‘JSJ;)
~3 (XY DY D)
+52 (30 d) 9,9 () 9.5 (Do di) 9,9))

=0

Now assume that the theorem holds for the s”~! factorial, say with fac-
tors Aj, A3z, ..., A,. If we write the z vector for n — 1 factors as zs =
(z2,23,--.,2n), we then have for z, # w, # (0,0,...,0)

M*D;(M"¥) =0 (11.123)
fori =1,2,...,s with the row and column sum of D; equal to d;, say. Using
(11.123), we now show that

M*D(M%™) =0

for z # w. Now M*DM™ can be written as
(M¥' x M*){Dy, Ds, ..., Dg} (M™" x M")' (11.124)

To show that (11.124) equals zero, it is sufficient to show that M* D; (M™**)" =
0 for every possible z,, w, in 7 = (21, 24) and w = (wy, wy) with z # w #
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(0,0, ...,0). This can be seen by simply multiplying (11.124) out. We distinguish
between three cases:

1. z, =0, =(0,0,...,0): We then have w, # (0,0, ..., 0) since otherwise
z = w. Now, by definition, M = J 1. Hence M%D; = d;9', and since
MM+ is a contrast matrix, it follows that M**D; M*+ = 0.

2. 7, = wy # 0,: We then have z; # w; and without loss of generality assume
z1 = 0. Then

M* =3, x M* = (M*, M*, ..., M%)

and consequently

MZD = (M"'* > D M*Y Di,... M= ZD,~>
=9, x Y M*D;
It follows then that
MZD(MY) = <j/v « ZMZ*Di> (M"” « M"’*)’
=3, x (3 M= D;M*)) =0
3. z4x # w,: By assumption the result is true.

We have therefore shown that if the theorem holds for the s"~! factorial it also
holds for the s" factorial, and we have shown that it holds for the s2 factorial.
This completes the proof. (]

11.14.4 Constructing Systems of Confounding

We shall now make use of Theorem 11.12 in our attempt to construct useful sys-
tems of confounding for the s” factorial. Obviously, OFS is a desirable property
of such a system of confounding. The idea then is to construct an incomplete
block design for the s” factorial such that the matrix C~ = D has the structure
given in Theorem 11.12. In some sense such an approach may seem to be back-
ward since an incomplete block design is characterized first of all by its incidence
matrix N and hence, equivalently, by NN’ or C. The structure of C then deter-
mines the structure of C~. Now we know that for PBIB designs the structures
of C and C~ are the same (see Chapter 4). We therefore want to find a PBIB
design in which to accommodate the s” factorial such that the C matrix has the
form specified in Theorem 11.12 for C, that is, hierarchical cyclic partitions.
Such a method was proposed by John and Dean (1975) and can be described as
follows.
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As before, we denote a treatment combination by x’ = (x1, x2, ..., x,,) where
0<x;<s—13G=1,2,...,n). The totality of the treatment combinations, X,
is arranged in lexicographic order, that is, if # = (0, 1,...,s — 1)’, then

X=00---06

(see Section 11.14.1). Following John (1973) we consider the use of generalized
cyclic PBIB designs, GC/n-PBIB, (see Chapter 5) with blocks of size k. Recall
that such a design is obtained from an initial block of k treatments. The jth block
is obtained by adding the jth treatment combination to the treatments in the
initial block. Here addition of two treatment combinations x’ = (x1, x2, ..., X;)
and y' = (y1, y2, ..., yn) is defined as

/

x' +y = (1, +y1, %2, +y2, ..., X, + y,)mod s (11.125)

Let the highest common factor (HCF) of s and the nonzero elements of x
be denoted by HCF(s, x) = & and let ¢ = s/ k. Then the treatment combinations
x,2x,...,(q@— 1 x,gx =0 mod s form a cyclic Abelian group G with addition
as defined in (11.125). Here, G contains ¢ distinct elements. The implication of
this with respect to GC/n-PBIB designs is as follows. If 0, x,2x,..., (g — 1)x
represent the elements of the initial block of size k = ¢ and if additional blocks
are obtained by adding in turn each treatment of the set X to those in the initial
block, then the block obtained by adding ux (u < ¢) contains the same treatments
as the initial block. Hence the initial block generates a fractional GC/n design
with s"/q distinct blocks such that each treatment combination occurs exactly
once. We shall also say that x generates the fractional GC/n design.

More generally, we can consider g generators x1, X2, ..., Xg with correspond-
ing Abelian groups G1, G2, ..., G,. For the application to be described, the
generators will have to be chosen such that the G; have only the 0 element in
common. Let HCF (s, x;) = h;,q; = s/h; and g = ]_[;.g:1 qi. We consider then
the group G formed by taking the direct sum of G1, Ga,..., Gg, the general
element being given by

UIX]+upxy + -+ ugxy (11.126)
with u; =0,1,...,q; —1,i =1,2,...,g. The g elements of G, taken as the
initial block, then generate a GC/n design with 5" /g distinct blocks and every

treatment combination in X replicated once. To illustrate this concept, consider
the following example.

Example 11.9 Suppose we have s = 6, n = 2, that is, the 6% factorial. Let

x1=(0,3), x;=(3,0), x3=(2,2)
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It follows then that

hi = HCF[6, (0, 3)] = 3, q1 =2
hy, = HCF [6, (3, 0)] = 3, g2 =2
h3 = HCF[6, (2,2)] = 2, q3 =3

and g = 12. The elements of G are obtained from (11.126) with u; =0, 1, up =
0,1, u3 =0,1,2 as

0,00 0,3) 3,00 (3,3) 2,20 2,5
5,2) 6,5 @449 &1 q,9 a,1

This is the initial block, B; say. The remaining blocks are obtained by adding a
treatment combination not in B to each element in Bj. To obtain B,, we add
(1, 0), which yields

1,00 (1,3) &40 &3) 3,2 3.5
©0,2) (0,5 6,49 ¢S, DH 2,9 2,1

and for B3z we add (0, 1), which yields

0,1 ©0,49 @&, 1) 3,49 2,3 2,0
5,3 5,00 &5 &2 1,5 (1,2

The design is summarized in Table 11.11.
We note here that the initial block, By or G, acts as the IBSG discussed
earlier. O

11.14.5 Verifying Orthogonal Factorial Structure

We shall now show that systems of confounding based on GC/n-PBIB designs
have OFS. We do this by showing that the C matrix and hence the C~ = D
matrix have the structure of Theorem 11.12.

Let Ré denote an s X s circulant matrix with a unity element in the ith position
of the first row and zero elements elsewhere. A circulant matrix

a a az ... ag

a ay a ... dg_|
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Table 11.11 6 in Blocks of Size 12
(Using GC/n Method)

Block 1 Block 2 Block 3
00 10 01
03 13 04
30 40 31
33 43 34
22 32 23
25 35 20
52 02 53
55 05 50
44 54 45
41 51 42
14 24 15
11 21 12

can then alternatively be written as
N S
A=) (Rixa)=)Y a R
i=1 i=1

As mentioned in Section 5.3, the matrix NN’ and hence C for a cyclic PBIB
design is a cyclic matrix, that is, C can be written as

For the situation considered here where a treatment consists of an n-tuple (xp, x3,
..., Xp) this expression generalizes to

s s s n .
C=) "> D cinir | [[ xR (11.127)
j=1

i1=1 ip=1 in=1

where

n

l'. . . .
l_[xR" =R! x R? x--- x R
=1



GENERAL METHOD OF CONFOUNDING FOR THE SYMMETRICAL FACTORIAL EXPERIMENT 461

and
1 . .
=1—-- forij=ip=---=i,=1
q
1 / . . . .
= — - forx'=(@G;—1,ir—1,...i, — 1) in By
Ciyiy...ip q
but x” # (0,0,...,0)
=0 otherwise

The reasons for the specific values of c;;,..;, are, of course, (i) we have a single-
replicate design, that is, r = 1; (ii) the block size k is equal to g = ]_[;f”:l gi; and
(iii) we have a disconnected design, that is, any two treatments occur together in
the same block once or not at all. Alternatively, C can be written as

n .
C=1-13 .S, Tk
g7 in j=1

where

. —1  ifx'=(@1—1l,ia—1,...,i, — 1) in B
iizedn | g

(11.128)
otherwise

Now C in (11.127) can be written also (see John, 1973) as

N

C= Z ZZ l_[ xR | x Z Ciriooiy RY (11.129)
Jj=1

i1=1 ir=1 iy=1 ipn=1

where v = n — 1. If we define

S
Cirioiy = Y Cirig.oig R (11.130)

in=1

then (11.129) and hence (11.127) can be rewritten as

v .
C=> > 1T]*R] *x Ciris..i, (11.131)
i j=1

Iy

This, however, is just another way of writing the hierarchical cyclic partition
required in Theorem 11.12. From the definition of C;,;,.;, in (11.130) it follows
immediately that the row and column totals for C;,;,. ;, are all equal, namely
> iy Citigoiin - It follows then from Theorem 11.12 that the GC/n-generated system
of confounding has OFS.
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11.14.6 Identifying Confounded Interactions

The question remains of which effects a® are confounded with blocks or, more
precisely, to which effects a® do the b — 1 = s" /g — 1 block degrees of freedom
belong? Since we have a disconnected design with b = s" /¢ blocks it is clear
that only s” — 1 — (b — 1) degrees of freedom remain for linearly independent
estimable functions belonging to main effects and interactions. We know from
our earlier discussion that without confounding the degrees of freedom for a® are

v(z) = l_[(s — 1% (11.132)

We shall denote the corresponding degrees of freedom for a given system of
confounding by v.(z). We then show the following theorem.

Theorem 11.13 (John and Dean, 1975) For a GC/n-generated system of
confounding the degrees of freedom for the effect a®* are given by

1 nooL
ve(z) = rank(M?) —52---2(:71,-2,”,.” [~ (11.133)
i in j=1
where
s—1 ifij=landz; =1
pl=1 -1 ifij#landz;=1
1 ifz; =0

and the c;‘l. . are defined in (11.128).

i7...0p

Proof Recall from (11.118) that the adjusted sum of squares for a® is given by
SS(@*) = (M*7) (M*C~ M%)~ (M*7)

John and Dean (1975) show that the degrees of freedom for SS(a?) are given by

-1

— 1 - Zj Z z/
ve(2) = Hs j tr (M*CM¥) (11.134)

where tr( ) denotes the trace of a matrix. Now

tr (MCM?) = tr (M*M¥) — Z chm lnl_[tr{sz'Rijsz’}
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with
wr(MMY)=s" [T | | []es = DY (11.135)
j j
and
i s2pl forz; =1
r (sz' Ry sz") - i (11.136)
K forz; =0

Substituting (11.135) and (11.136) into (11.134) and using the fact that
rank(M*) =[] j (s — 1)% prove the theorem. [l

As an immediate result from Theorem 11.12, we state the following corollary.

Corollary 11.3 The number of contrasts belonging to a* that are confounded
with blocks is equal to

v (z) = 52---2@1”,[" I pfjf (11.137)

It follows from (11.137) that (i) v*(z) is determined entirely by the treatment
combinations in the initial block By; (ii) if v*(z) = 0, then a® is unconfounded;
and (iil) if v*(z) =] j (s — 1)%/, then a® is completely confounded.

We shall illustrate Corollary 11.3 in terms of Example 11.9.

Example 11.9 (Continued) We need to find Zg:l 21-62: 166,05 o} Using
the definition of ¢, and By given in Table 11.11, the values for ,oizl1 piz; with
nonzero coefficients and for z = (1, 0), (0, 1), (1, 1) are given in Table 11.12.
It follows then that v*= (1,0) = v*(0,1) =0 and v*(1,1) = % = 2, that is,
the main effects are unconfounded and 2 d.f. from the 2-factor interaction are
confounded with blocks and as a consequence v.(1, 1) = 23. O

11.15 CHOICE OF INITIAL BLOCK

It is worthwhile to compare the designs given in Tables 11.8 and 11.11, which
were constructed by two different methods. The method of pseudofactors is easy
to use but results in the confounding of degrees of freedom belonging to the
main effect Aj. The advantage of the GC/2 design is that it leads to confounding
of degrees of freedom belonging to the interaction AjA,. This will in general be
more desirable but not as easy to achieve since the design depends crucially on
the choice of the initial block.
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Table 11.12 Determination of pizl1 pf; for Main Effects and
Two-Factor Interaction for 6 Factorial in Blocks of Size 12

i1, 02 z1=1,20=0 721=0,22=1 z71=1,z220=1
1,1 6—1 6—1 (6—1)%
1,4 6—1 -1 —(6-1)
4,1 -1 6—1 —(6-1)
4,4 -1 -1 1
3,3 -1 -1 1
3,6 -1 -1 1
6,3 -1 —1 1
6,6 -1 -1 1
5.5 -1 —1 1
5,2 -1 -1 1
2,5 -1 -1 1
2,2 -1 -1 1
Sum 0 0 24

How then should one choose the initial block? Two questions need to be
answered: (i) How many generators does one need? (ii) What should these
generators be? First of all, only block sizes of the form k =g = ]_[;.g_1 q; are
permissible, where the g;’s are divisors (not necessarily different) of s (including
s itself). For example, for the 62 in blocks of size k = 12, we could have g=3
with g1 = q2 =2, g3 =3 (see Example 11.9) or g =2 with g1 =6, g2 = 2.
To answer (ii), one needs to choose the generators xi, x2,...,xg such that
the groups G, G2, ..., G¢ only have the zero element in common. The choice
depends further on which effects one is willing to confound to the extent that
one has a choice. One may have to do this by trial and error, computing for
each choice of generators v.(z) for each z, and then decide what is the best
choice for the situation at hand. If one wants to avoid confounding degrees of
freedom belonging to main effects, one can proceed in the following way (this
follows from the discussion by John and Dean, 1975). If we write the generators
as x; = (xj1, xi2, ..., xin)(i = 1,2, ..., g), we can consider the vector of the
Jjth components (x1;, x2j,...,%g;)(j =1,2,...,n). If for each j the nonzero
x;j are relative primes, then no degrees of freedom belonging to main effects
are confounded. As an example consider for the 6% in blocks of size 12 the fol-
lowing two sets of generators: (1) x; = (1,5), x = (3,0) and (2) x; = (3, 5),
x2 = (3,0), giving, respectively, the initial blocks Bj:

00, 30, 15, 45, 24, 54, 33, 03, 42, 12, 51, 21
and
00, 30, 35, 05, 04, 34, 33, 03, 02, 32, 31, 01
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Using Corollary 11.3 or, alternatively, simple inspection shows that, for system
1, 2 d.f. from A A; are confounded whereas, for system 2, 2 d.f. from A; are
confounded.

We close this section by mentioning that the GC/n designs are most valuable
for the s” factorial where s = p{' p5®--- p," as the method provides some flex-
ibility with block sizes and allows the constructing of systems of confounding
such that main effects remain unconfounded (if that is possible at all). This will
play a role when we discuss systems of confounding for asymmetrical factorial
experiments in Chapter 12. Finally, for s = p and p prime the GC/n designs are
of the same type as those discussed in Section 11.3.



CHAPTER 12

Confounding in Asymmetrical
Factorial Designs

12.1 INTRODUCTION

In previous chapters we have considered systems of confounding for symmetrical
factorial experiments, that is, the s” experiment in 5"t blocks of size s¢. In
many practical situations, however, we may not encounter such a pure system,
but rather find that different factors have different numbers of levels. We call this
an asymmetrical or mixed factorial experiment of the form s;” X S;z X oo X s;",
where the ith set of factors contains n; factors each at s; levels i = 1,2, ..., q).
A typical example is the 2 x 32 experiment, that is, one factor having two levels
and two factors having three levels each. For such an experiment we may want
to use blocks of size sfl X sﬁz X oo X ssq, for example, for the 2 x 32 exper-
iment we may be interested in finding a suitable arrangement of the treatment
combinations in blocks of size 2 x 3 = 6.

Various methods have been proposed to deal with this situation. Generally
speaking, they can be divided into the following broad categories:

1. By looking at each component pure system separately and using the pro-
cedures discussed in previous chapters, it may be possible to generate an
appropriate design. For example, for the 22 x 32 factorial experiment, we
can examine the 2 system in blocks of size 2 and the 32 system in blocks
of size 3. Suitable arrangements then lead to blocks of size 6 or 12 for the
asymmetrical factorial experiment.

2. One can generalize the formal method for pure systems by defining how to
combine elements from different finite fields, for example, elements from
residue fields mod 2 and mod 3.

3. The construction of suitable PBIB designs can lead to useful systems
of confounding. We mention here in particular the EGD-PBIB design

Design and Analysis of Experiments. Volume 2: Advanced Experimental Design
By Klaus Hinkelmann and Oscar Kempthorne
ISBN 0-471-55177-5 Copyright © 2005 John Wiley & Sons, Inc.
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(Section 4.6.9) as its association scheme is based upon the fact that the
number of treatments ¢ can be factored in various ways, for example, for
the 2 x 32 factorial # =2-3 - 3.

4. The factorial treatments can be embedded in a suitable PBIB design, where
the form of the association scheme suggests a correspondence between the
treatments in the usual sense and the factorial treatments.

5. By introducing pseudofactors, we may be able to reduce the asymmetrical
factorial experiment at least formally to a pure (symmetrical) factorial exper-
iment and then apply the familiar procedures. For example, a 23 x 4 factorial
can be interpreted as a 25 factorial. However, care must be taken in that the
interaction between the last two factors in the 2° system is really part of the
main effect of the factor with four levels (see Section 11.13.3).

We shall discuss some of these methods in more detail and give suitable
designs for some that we consider to be the most useful and most commonly
occurring cases.

12.2 COMBINING SYMMETRICAL SYSTEMS OF CONFOUNDING

12.2.1 Construction of Blocks

To present the basic ideas, let us consider the situation involving only two sets
of factors, the first set consisting of n; factors Ay, Az, ..., Ay, each at sy levels
and the second set consisting of ny factors By, By, ..., By, each at s, levels.
For the sake of simplicity we shall take s; = p; and s, = p», where p; and p;
are different primes, but the results can be generalized easily to the case where
s1 and/or s are prime powers by using the methods described in Section 11.7.
We denote a treatment combination by the ny + ny vector (x1, X2, ..., Xu;, Y1,
Y2y oo Yip)s Wherex; =0,1,2, .., p1—1G=1,2,..,n1),y; =0,1,2, ...,
pp—1(=1,2,..., n).

Suppose then we want to arrange the p'll1 pgz treatment combinations in blocks
of size pflpgz(ﬁl <ny, €y <nywith €y + £> < ny + ny). To this end we consider
separately the two symmetrical factorial systems, the p'l11 factorial in blocks of
size pfl, and the p)? factorial in blocks of size pgz. Using the methods described
in Chapter 11, we choose n; — £; independent interactions to be confounded
(together with their GIs) in the p'l11 system. Suppose these effects are E%!, E*2,
.oy E®(v =ny —£1). The arrangement of the p'l11 treatment combinations in

blocks of size pfl is then obtained by solving the systems of equations
11X + axy - A o Xy = 61
a1X] + apxy + -+ oy Xy =8

(12.1)

ay1x1 + X + o oy X =8y
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for the p] = p'l”_el possible choices of (81, 8, ..., 8,), one for each block.
Similarly, suppose that the n, — £> independent interactions to be confounded
for the pgz factorial in blocks of size pgz are EB1, EP2 . EBu(u = ny — ).
The corresponding systems of equations are then

Brivi + Buy2 + -+ By, = Vi

Baivi + Buy2 + -+ By, = V2

: (12.2)

ﬂ//l«lyl + ﬂu2)’2 + - +,3;m2)’n2 =Yu
We thus obtain p; blocks for the p)' factorial, say By, Bia, ..., By, and py
blocks for the pgz factorial system, say By, B2, ..., B, e To obtain the blocks

for the p|' x py?® system, denoted by B (i=1,2...p0;j=12 ..., 29}
we combine the blocks from the individual systems as follows. To obtain the
treatment combinations in block Bl?kj, we “adjoin” to each treatment combination
(x1, X2, ..., Xy) in By; every treatment combination (y{, y2, ..., Yn,) in By to
yield pf‘ pﬁz treatment combinations of the form (x1, X2, ..., Xu;, Y1, Y2, -«
Yn,)- Symbolically this can be expressed as

B}, = Bi; ® By; (12.3)

which has been called the symbolic direct product (SDP) by Kurkjian and
Zelen (1962).

Example 12.1 To illustrate the procedure, we consider the 23 x 3% factorial
in blocks of size 2 x 3 =6, that is, pj =2, po =3, n1 =3, np =2, {1 =1,
£, = 1. Suppose we choose to confound AjA; and A; A3 (and hence A>A3) and
B1 By, respectively, in the two symmetrical systems. The block compositions are
determined by the equations

X1+ x2 =6 mod 2
X1 +x3 =202 mod 2

and
yi+y=y1 mod3

respectively. This yields the blocks

B By B3 B4

000 100 010 001
111 011 101 110
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and
B> B> B3
00 10 20
12 01 02
21 22 11

The blocks for the asymmetrical factorial then are given in Table 12.1. The same
design using SAS PROC FACTEX is given in Table 12.2. O

There is another way of representing the result given above. Let x represent
the column vector of the treatment combinations for the pTI system and y that
for the pgz system. Further, let N and N, denote the incidence matrices for
the two systems of confounding in blocks of size pf‘ and pﬁz, respectively. The
final design can then be expressed as the Kronecker product

N=N; x N> (12.4)

where the vector of treatment combinations is given by the SDP x ® y and the
blocks are labeled as in (12.3).

12.2.2 Properties of Kronecker Product Method

We shall comment briefly on some of the properties of the procedure described
above. For any interaction confounded in the p'fl system, say E%, and any inter-
action confounded in the pgz system, say E#, also the interaction E*EPf is

Table 12.1 Block Arrangement for the 23 x 32
Factorial in Blocks of Size 6

* * * * * *
Bll BlZ Bl3 BZl B22 BZS

00000 00010 00020 10000 10010 10020
00012 00001 00002 10012 10001 10002
00021 00022 00011 10021 10022 10011
11100 11110 11120 01100 01110 01120
11112 11101 11102 01112 01101 01102
11121 11122 11111 01121 01122 01111

* * * * * *
B31 B32 333 B4l 842 B43

01000 01010 01020 00100 00110 00120
01012 01001 01002 00112 00101 00102
01021 01022 01011 00121 00122 00111
10100 10110 10120 11000 11010 11020
10112 10101 10102 11012 11001 11002
10121 10122 10111 11021 11022 11011
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Table 12.2 23 x 3% Factorial in Blocks of Size 6

options nodate pageno=1;
proc factex;

factors A B C;

blocks size=2;

model est=(A B C A*B*C) ;
output out=abcdesn;

run;

factors D E/nlev=3;
blocks size=3;
model est=(D E);
output out=dedesn
designrep=abcdesn;
run;

data dedesn (drop=blockl block2) ;
set dedesn;
blockl=block;
if blockl=1 and block2=1 then block=1;
if blockl=1] and block2=2 then block=2;
if blockl=1 and block2=3 then block=3;
if blockl=2 and block2=1 then block=4;
if blockl=2 and block2=2 then block=5;
if blockl=2 and block2=3 then block=6;
if blockl=3 and block2=1 then block=7;
if blockl=3 and block2=2 then block=8;
if blockl=3 and block2=3 then block=9;
if blockl=4 and block2=1 then block=10;
if blockl=4 and block2=2 then block=11;
if blockl=4 and block2=3 then block=12;
run;

proc sort data=dedesn;
by block;
run;

proc print data=dedesn;

titlel 'TABLE 12.2';

title2 '2**3x3**2 FACTORIAL IN BLOCKS OF SIZE 6';
run;
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Table 12.2 (Continued)

BLOCK

Obs

10

11
12

13

14
15
16

17
18
19
20

21
22

23

24
25
26
27
28

29
30

31
32

33

34
35
36
37
38

39
40

41

42
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Table 12.2 (Continued)

43 8 -1 1 -1 -1 1
44 8 -1 1 -1 0 0
45 8 -1 1 -1 1 -1
46 8 1 -1 1 -1 1
47 8 1 -1 1 0 0
48 8 1 -1 1 1 -1
49 9 -1 1 -1 -1 0
50 9 -1 1 -1 0 -1
51 9 -1 1 -1 1 1
52 9 1 -1 1 -1 0
53 9 1 -1 1 0 -1
54 9 1 -1 1 1 1
55 10 -1 -1 -1 -1 -1
56 10 -1 -1 -1 0 1
57 10 -1 -1 -1 0
58 10 1 1 1 -1 -1
59 10 1 1 1 0 1
60 10 1 1 1 1 0
61 11 -1 -1 -1 -1 1
62 11 -1 -1 -1 0 0
63 11 -1 -1 -1 1 -1
64 11 1 1 1 -1 1
65 11 1 1 1 0 0
66 11 1 1 1 -1
67 12 -1 -1 -1 -1 0
68 12 -1 -1 -1 0 -1
69 12 -1 -1 -1 1 1
70 12 1 1 1 -1 0
71 12 1 1 1 0 -1
72 12 1 1 1 1 1

confounded. This can be seen easily by referring to Table 12.2. Recall that the
p1 — 1 d.f. for E® arise from p; — 1 linearly independent contrasts among the

components Ef, ET, ..., E;‘l_l and the p; — 1 d.f. for EPB arise from contrasts
among Eﬂ, Ef, cen Eﬁz—l' The (El‘" E}B) entry in Table 12.2 is essentially the

average of the responses for all treatment combinations in the p;” p;z

that satisfy the equations

system

a1xy +axxy + -+ ap Xy, =i mod py
and
Bivi+ Bayr+ -+ Buyyn, =j mod py

and the (p; — )(p2 — 1) d.f. for E*EP arise entirely from contrasts among
the p; p» entries (E;", Ef) in Table 123 with i =0, 1, ..., py — 1 and j =0,
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Table 12.3 Representation of Interaction Contrasts for
py' py* Factorial

B B B B
Eo E 1 Ez Epz_1
E§
EY
EY
o
EPl—l
1, ..., po — 1. This implies then that with this procedure we cannot confound

interactions between A factors and B factors without confounding at the same
time also the corresponding A factor interaction and the B factor interaction. In
terms of Example 12.1 we confound with AjA;, A1 A3z, ApAs, and By B; also
A1A2B1 B>, A1A3B1 B3, and Ay A3 B B>, each accounting for 2 d.f. The possi-
bilities for useful systems of confounding are therefore somewhat limited in that
one may sometimes be forced to confound low-order interactions or even main
effects. Partial confounding, if feasible, may resolve this problem to some extent.

From the construction of the designs it is clear that these systems of con-
founding have OFS as defined in Chapter 11. Expressions for sums of squares
associated with effects in the pure systems can be written out easily using the
methods discussed in earlier chapters. The same is true for interaction sums of
squares involving factors from different pure systems, for example, SS(A; x Bj)
in Example 12.1, as long as the interaction is not confounded. There do not,
however, seem to be simple expressions for interaction sums of squares when
the interactions involve factors from different pure systems and are partially
confounded, for example, SS(A| x Ay x By X By) in Example 12.1. Because
A1A>B1 B, is confounded with blocks, we can write formally

SS(A; x Ay x By x By) = SS(A1A2B; B3)

with 2 d.f. The difficulty in writing out an expression for SS(A 1A281822) using
familiar methods is the fact that this would involve arithmetic with elements
from different fields. An attempt has been made by White and Hultquist (1965)
and a more useful formulation will be given in Section 12.4. A general way is,
of course, to use the least-squares principle and obtain, using the notation of
Chapter 1.4, directly the partial sum of squares SS(X 4, ,8,8,1J, Xg, all other
factorial effects), where X g refers to the observation—block incidence matrix,
which in this case is the treatment—block incidence matrix.



474 CONFOUNDING IN ASYMMETRICAL FACTORIAL DESIGNS

12.2.3 Use of Pseudofactors

The method of constructing systems of confounding described in Section 12.2.1
can be extended naturally to include pseudofactors (see Section 11.8). For
example, this allows us to deal with asymmetrical factorials of the form
2M % 32 x 4" x 5™ x 6"5(n; >0, i =1, 2, 3, 4, 5), which includes most
practical situations. All we need to do is to rewrite this as 2M1+213+75
3m211s » 574 and remember that some interactions in the symmetrical com-
ponents of this modified asymmetrical factorial are possibly main effects in
the original asymmetrical factorial. To illustrate this, we consider the follow-
ing example.

Example 12.2 Suppose we want to construct a system of confounding for
a 2 x 4 x 6 factorial in blocks of size 12 and avoid confounding main effects.
Denote the three factors by Ay, Az, Az, respectively. Then we replace A, by
its pseudofactors X, X, each at two levels and A3 by its pseudofactors Y
with two levels and Y, with three levels. We then have four factors at two
levels each and one factor at three levels, that is, a 24 x 3 factorial. In order to
construct blocks of size 12, we need to confound three contrasts with blocks. To
avoid confounding main effect contrasts, we need to consider interactions among
factors from different pure systems. For example, we may confound A; X1, A1Y]
and hence X;Y;, which correspond to interaction contrasts belonging to AjA»,
A1 A3z, and Ay Az. The initial block in terms of the pseudofactors and the original
factors is then as given below:

A1 X1 X, Y1 Y, A1 Ay Az
0 0 0 0 O 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0o 2 0 0 2
0 0 1 0 o0 0 1 0
0 0 1 0 1 0 1 1
0 0 1 0o 2 0 1 2
1 1 0 1 0 1 2 3
1 1 0 1 1 1 2 4
1 1 0 1 2 1 2 5
1 1 1 1 0 1 3 3
1 1 1 1 1 1 3 4
1 1 1 1 2 1 3 5

The same design (apart from different block numbering) as produced by SAS
PROC FACTEX is given in Table 12.4. ]
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Table 12.4 2 x 4 x 6 Factorial in Blocks of Size 12 (Using the Method
of Pseudofactors)

options ate pageno=1;

proc factex;

factors Al X1 X2 Y1;

blocks size=4;

model est= (Al X1 X2 Al*X2 X1*X2 Al*X1*X2 Y1 Y1*X2 Y1*Al*X1
Y1*A1*X2 Y1*X1*X2 Y1*A1*X1*X2) ;

examine design confounding;

output out=twodesn;

run;

factors Y2/nlev=3;
output out=threeds

designrep=twodesn;
run;

data threeds (drop=X1l X2 Y1 Y2);
set threeds;
if Al=-1 then Al=0;
if X1=-1 and X2=-1 then A2=0;
if X1=-1 and X2=1 then A2=1;
if X1=1 and X2=-1 then A2=2;
if X1=1 and X2=1 then A2=3;
if Y1=-1 and Y2=-1 then A3=0;
if Y1=-1 and ¥Y2=0 then A3=1;
if Y1=-1 and Y2=1 then A3=2;
if Y1=1 and Y2=-1 then A3=3;
if Y1=1 and Y2=0 then A3=4;
if Y1=1 and Y2=1 then A3=5;

run;

proc print data=threeds;

titlel 'TABLE 12.4';

title2 '2x4x6 FACTORIAL IN BLOCKS OF SIZE 12';
title3 ' (USING THE METHOD OF PSEUDO-FACTORS) ';
run;

The FACTEX Procedure

Design Points

Experiment
Number Al X1 X2 Y1 Block
1 -1 -1 -1 -1 4
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Table 12.4 (Continued)

3 -1 -1 1 -1 4
4 -1 -1 1 1 1
5 -1 1 -1 -1 3
6 -1 1 -1 1 2
7 -1 1 1 -1 3
8 -1 1 1 1 2
9 1 -1 -1 -1 2
10 1 -1 -1 1 3
11 1 -1 1 -1 2
12 1 -1 1 1 3
13 1 1 -1 -1 1
14 1 1 -1 1 4
15 1 1 1 -1 1
16 1 1 1 1 4

Block Pseudofactor Confounding Rules

[B1] = X1*Y1
[B2] = Al*Y1l

Design Points

Experiment

Number Y2

1 -1

2 0

3 1
Obs BLOCK Al A2 A3
1 1 0 0 3
2 1 0 0 4
3 1 0 0 5
4 1 0 1 3
5 1 0 1 4
6 1 0 1 5
7 1 1 2 0
8 1 1 2 1
9 1 1 2 2
10 1 1 3 0
11 1 1 3 1
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Table 12.4 (Continued)

12 1 1 3 2
13 2 0 2 3
14 2 0 2 4
15 2 0 2 5
16 2 0 3 3
17 2 0 3 4
18 2 0 3 5
19 2 1 0 0
20 2 1 0 1
21 2 1 0 2
22 2 1 1 0
23 2 1 1 1
24 2 1 1 2
25 3 0 2 0
26 3 0 2 1
27 3 0 2 2
28 3 0 3 0
29 3 0 3 1
30 3 0 3 2
31 3 1 0 3
32 3 1 0 4
33 3 1 0 5
34 3 1 1 3
35 3 1 1 4
36 3 1 1 5
37 4 0 0 0
38 4 0 0 1
39 4 0 0 2
40 4 0 1 0
41 4 0 1 1
42 4 0 1 2
43 4 1 2 3
44 4 1 2 4
45 4 1 2 5
46 4 1 3 3
47 4 1 3 4
48 4 1 3 5

12.3 THE GC/n METHOD

The method of using generalized cyclic designs, as described in Section 11.9 for
symmetrical factorial experiments, was extended to asymmetrical factorials by
Dean and John (1975). The general ideas are the same, and the statements of
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theorems and proofs have to be modified in an obvious manner. We shall not go
into the details but rather give a brief description of the method as it applies to
factorials of the form s; x s2 X --- X s,, that is, we have n factors Ay, Ao, ...,
A, with A; having s; levels (the s; are not necessarily all distinct). We denote
the total number of treatment combinations by ¢ = [/_, s;.

12.3.1 Description of the Method

Let u be the lowest common multiple (LCM) of sy, 52, ..., s, that is,
u =LCM(s1, 52, ...,58,) (12.5)
and for a given treatment combination x = (x1, x2,...,x,) with 0 < x; <s; —

1G=1,2,...,n) let

B pX Wn) (12.6)

h:HCF(;},, , ey
YY) Sn

be the highest common factor of the quantities in parentheses. The treatment
combination ux = (uxy, uxy, ..., ux,) is obtained by reducing ux; mod s; (i = 1,
2,...,n).Since ux/h = 0, a cyclic Abelian group G of size u/ h is given by the
treatment combinations 0, x, 2x, ..., (u/h — 1)x, and x is called the generator
of G. In the context of factorials the group G constitutes the initial block, Bj, of
size k = p/h. The remaining blocks are then obtained by adding each treatment
combination to those in Bj and retaining only the set of b =1t - h/p different
blocks. Each treatment combination will occur in only one block.

In general, we may have g generators xi,Xx2,...,Xx, with corresponding
Abelian groups G1, G, ..., G, having only the zero element in common. Let
Xi Xi Xi
h; =HCF(M, 122 zl, % 12’.”’ 122 zn)
S 52 Sn

where x;; is the level of Ajinx;(i=1,2,...,g, j=1,2,...,n). Further, let
qgi = 1/ h; and g = ]_[;.g= 1 gi- The group G is then formed by the elements

Uix| +upXy+ - +ugxeu; =0,1,...,¢; = ;i =1,2,...,¢)

These ¢ treatment combinations form the initial block Bj. Cyclic development
of Bj as described above yields then a single replicate GC/n design with blocks
of size k = g and number of blocks b = t/q.

Extensive tables of GC/n designs and their generators for n < 5, ¢t < 56, k <
30, s; <7( =1,2,3,4,5) were given by Dean and John (1975) and additional
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designs forn <7,t <200,k <100,s; <7( =1,2,...,7) by Lewis (1982). In
all these designs main effects are unconfounded. We should point out that all the
designs listed can be easily constructed by the methods described in Section 12.2.

12.3.2 Choice of Generators

To illustrate the GC/n method and discuss the possible choice of generators, we
consider the following example.

Example 12.3 Suppose we wish to construct a 2 x 5 x 6 factorial in blocks
of size 10. Now LCM (2, 5,6) = 30. We have k = ¢ = 10 =2 -5, suggesting
that we should have two generators with g; = 2 and g3 = 5. Now ¢; = 30/ hy,
which implies

(12.7)

30x;; 30x2 30
h1=HCF(3O, iR xB):lS

275 76

Since 0 <x11 <1,0=<x12 <4, 0 <x13 <5, it follows that (12.7) will be sat-
isfied by x| = (1, 0, 3). Similarly, g = 30/ h, implies

30x2; 30x2, 30
hy = HCE (30, 2L 22422 2PX3 ) _ o
2 s 6

which leads to x5 = (0, 1, 0) as a possible generator. The initial block B; and

the remaining five blocks are given in Table 12.5. O

12.3.3 Loss of Degrees of Freedom

To obtain the loss of degrees of freedom due to confounding for the various main
effects and interactions a* with z = (z1, z2, .. ., 2Z»), the expression (11.137) in
Corollary 11.3,

n
v¥(z) = éz Zc;ﬁmin 1_[ pfj;i (12.8)
i in j=1

has to be modified by defining
S,‘—l ifij=1ande=1
pil=1-1 ifij#landz; =1

1 if ;=0
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Table 12.5 GC/3-Design for 2 x 5 x 6 Factorial
in Blocks of Size 10

Block
1 2 3 4 5 6
000 100 011 111 002 102
103 003 114 014 105 005
010 110 021 121 012 112

113 013 124 024 115 015
020 120 031 131 022 122
123 023 134 034 125 025

030 130 041 141 032 132
133 033 144 044 135 035
040 140 001 101 042 142

143 043 104 004 145 045

(see Dean and John, 1975). Recall that c;kl iyoin = 1 for all treatment combinations
x=(;—1,ip—1,...,i, — 1) in B; and zero otherwise. Thus (12.8) depends
only on the treatment combinations in Bj and hence can be evaluated easily for

each z € Z.

Example 12.3 (Continued) The v*(z) follow easily from inspection of the
design given in Table 12.5. Every level of factor A; occurs the same number
of times in each block; hence v*(100) = 0. The same holds true for A,; hence
v*(010) = 0. For factor Az, however, only two levels occur equally often in each
block, 0 and 3 in By and B, 1 and 4 in B3 and By, and 2 and 5 in Bs5 and Bg.
Hence only three contrasts belonging to main effect A3 can be estimated; hence
v*(001) =2 =5 — 3. For every contrast belonging to a 2-factor interaction each
level combination has to occur the same number of times. It follows then that
v*(110) = v*(011) = 0 but v*(101) > 0. To illustrate the method according to
(12.8), however, we develop the v*(z) in Table 12.6. We obtain v*(001) = % =
2, v*(101) = % = 3. These 5 d.f. account then for the 5 d.f. among blocks.

We note here that the design given in Example 12.3 is slightly better than what
could have been obtained with the Kronecker product method of Section 12.2.
Both result in confounding main effects (2 d.f. from A3z vs. 1 d.f. from A; and
2 d.f. from Ajz), but in this situation that seems to be unavoidable. This shows
that the GC/n method leads to useful designs not available otherwise.

For a detailed discussion of other properties of GC/n designs we refer the
reader to Gupta and Mukerjee (1989). ]

124 METHOD OF FINITE RINGS

The methods of constructing systems of confounding for symmetrical factorials
as discussed in Chapters 8, 9, 10, and 11 (Sections 11.3, 11.7, and 11.8) are based
on the arithmetic in Galois fields. To transfer these procedures to asymmetrical
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Table 12.6 Determination of pizl1 piz; ptf"; for the Design of Table 12.5

Z

i in i3 100 010 110 001 101 011 111
1 1 1 1 4 4 5 20 20
2 1 4 -1 4 —4 -1 1 —4 4
1 2 1 1 -1 -1 5 5 =5 =5
2 2 4 -1 -1 1 -1 1 1 -1
1 3 1 1 -1 -1 5 5 =5 =5
2 3 4 -1 -1 1 -1 1 1 -1
1 4 1 1 -1 -1 5 5 =5 =5
2 4 4 -1 -1 1 -1 1 1 -1
1 5 1 1 -1 -1 5 5 -5 =5
2 5 4 -1 -1 1 -1 1 1 -1

Sum 0 0 0 20 30 0 0

factorials involves combining elements from different finite fields. Using results
from abstract algebra (e.g., van der Waerden, 1966), White and Hultquist (1965)
and Raktoe (1969, 1970) provided the foundation for generalizing the methods
for symmetrical factorials to asymmetrical factorials (Hinkelmann, 1997). We
shall give a brief description of the method (following Raktoe, 1969) without
going into all mathematical details and proofs.

12.4.1 Mathematics of Ideals and Rings

First, we need the following mathematical results. Suppose we have m distinct
primes pi, p2, ..., pm- Let GF(p;) be the Galois field associated with p;(i =
1,2,...,m), the elements of which are the residues mod p;. Let ¢ =[]/~ pi
and R(g) be the ring of residue classes mod g. We denote by /(w) an ideal
generated by an arbitrary element w of R(q). We then state the following results
(for proofs see Raktoe, 1969):

1. The element

m

ajzl_[pi—pjzcj—pj Withcjzl_[pi
i=1 ij
i#]

in R(q) is prime to ¢ and hence a7! exists. The a ;s belong to the multi-
plicative group of nonzero divisors in R(g).

2. The element b; = ¢ jaj_l generates the ideal /(b;) in R(q).

3. The element b; is the multiplicative identity in 7(b;).

4. The multiplicative identity element 1 in R(g) is the sum of the multiplicative
identities in 7 (b;), that is, 1 = Z;":l b;.
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S. Thering R(g) is the direct sum of ideals I (b), that is, R(q) = Z’};l ®I1(bj).

6. The field GF(p;) is isomorphic to the ideal /(b;); for x € GF(p;) and y €
I(b;) the mapping o: GF(p;) — I(b;) is defined by o(x) =b;jx = y.

7. Addition and multiplication of elements from different Galois fields x €
GF(p;), x* € GF(p;) are defined by

x+x*=0()+o(x*) mod g
xx* = o (x)o(x™) mod ¢

8. Addition and multiplication of an element r € R(q) and an element x €
GF(pj) are defined by

r+x=r-4+o(x) mod g
rx =ro(x) mod g

9. The ring R(q) is the direct sum of the GF(p;), that is, R(q) = 27:1 ®
GF(pj).

To illustrate these results, we consider the following example.

Example 12.4 Suppose we have p; =2, pp = 3. Then p = 6 and the gen-
erators of the ideals are

b1 =33-2"'=3-1=3mod 6

and
by=22-3)"1=25)""=2.5=4mod 6

[(5)~! =5 since 5-5 =25 =1 mod 6]. We thus have the two mappings

GF(2) — 1(3) and GF(3) — I(4)
0 0
JESE
2 2

and the direct sums

GF2)®GF3) = I3)®1I4 = R(6)
040 = 00 +70 = 0
140 = o(l)+1(0) 3
0+ 1 = o +t() = 4
1+1 = o+t = 1
042 = o0 +72 = 2
1+2 = o()+1(2) 5 O
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12.4.2 Treatment Representations

We now apply these concepts and results to asymmetrical factorials of the form
Pt x py? x -+ x pu". For ease of notation we shall consider specifically the
22 x 32 factorial. Generalizations will then become obvious.

Ordinarily, treatment combinations would be represented in the form of
quadruples, say x = (x11, X12, X21, X22), Where x11, x1» refer to the levels of the
two-level factors, Ay, Ay say, and xp, xpp refer to the levels of the three-
level factors, By, Bj, say, that is, x;; =0, 1, x3; =0, 1, 2. We shall refer to
this as the elementary representation of treatment combinations and denote it by
T (x), remembering that the components in x are elements from the respective
Galois fields. In order to perform arithmetic with treatment combinations, we now
replace T'(x) by a new representation 7 (v), where the components in v = (vy,
v12, V21, U22) represent the corresponding elements from the respective ideals,
that is, vy1, vi2 € 1(3), va1, v22 € 1(4). The correspondence is as follows:

T (x) T (v)

X1 X2 X211 X2 Vi1 vz V21 22
0 0 0 0 0 0 0 0
0 1 0 0 0 3 0 0
1 0 0 0 3 0 0 0
1 1 0 0 3 3 0 0
0 0 0 1 0 0 0 4
0 0 0 2 0 0 0 2
0 0 1 0 0 0 4 0
1 1 2 2 3 3 2 2

12.4.3 Representation of Main Effects and Interactions

Concerning the representation of main effects and interactions, we recall that
for a p" factorial an effect E* is represented by contrasts among the “levels”
E§, EY, ..., E;‘_l of E*. Here the components in o' = (g, a2, ..., @) also
take on the values 0, 1, ..., p — 1 with the understanding that the first nonzero
o; equals 1. We note also that for the p" factorial we can write an interaction
in general as A" x AS? x --- x A", where the z; are either 0 or 1 with the
understanding that if z; = O then the letter A; is dropped from the interaction.
An interaction A;, x Aj, x --- x A;, consists then of (p — 1)*~! components
AilAZ?;Z - A‘;‘Z where the o; take on all possible values between 1 and p — 1.
Each such component represents p — 1 d.f.

To generalize this representation for asymmetrical factorials, we now write an

. . . zF & - by
interaction for the 22 x 32 factorial as A" x A x B*' x B;*, where z}, and
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ZB are either O or 3, that is, elements in /(3), and z; and 232 are either O or 4,
that is, elements in /(4), with the understanding that if z;*j = 0 then that factor is

dropped from the interaction. We may have, for example, A? X Bf' X B;‘ , which
refers to the interaction among the factors Ay, By, and B,. The components of
this interaction are, in analogy to the symmetrical component systems, given by
Ai’ X Bi‘ X Bg = {A?BfBé‘, A?Bi‘BZZ}. The number of “levels,” L say, for these
interaction components is determined by the fact that they involve factors with
two and three levels. The L is equal to the number of residue classes for the direct
sum of the ideals corresponding to the factors involved. In our case this is the
number of residue classes for 7 (3) ® 1(4) = R(6), thatis, L = 6. More generally,

if the interaction involves only ¢ factors out of m, say F;,, Fj,, ..., F;,({ <m),
then L is equal to the number of residue classes in I(b;,) @ I(b;,) ® --- ® I(b;,)
that is generated by the greatest common divisor of b;, b;,, ..., b;,. Trivially,

this includes the main effects, that is, for main effect F; with p; levels, L equals
the number of residue classes for 7(b;), which equals of course p;.

The reason why we mention the levels of an interaction is that the total number
of treatment combinations can be partitioned into L equal-sized sets (of treatment
combinations) that can be identified with blocks and a recognizable system of
confounding. Let us consider the 2> x 32 factorial. For it we have for the various
main effects and interactions the following L’s:

L(A}) = L(A3) = L(A}A3) =2
L(B}) = L(B) = L(B{B}) = L(B{B}) = 3
L(A%B?) _ L(A%B;‘) = L(Asfl A‘sz?'Bgz) N — L(A?ASB?B%) =6

where ¢1, @2, € 1(3), n1, n2 € 1(4). For A?A%BfBzz, for example, this leads to
the partitioning of the 36 treatment combinations (vy1, vi2, V21, V22) into six sets
according to the equations.

311 + 3v1n + 4vag + 2090 = 8 (12.9)

where § =0, 1, 2, 3, 4, 5, that is, § € R(6). The sets are given in Table 12.7.
Each set represents a block of size 6. We note that the set 6 = 0 represents
the IBSG and all other sets can be obtained easily by adding to each treatment
combination in the IBSG a treatment not in the IBSG and not in any other
already constructed set. As a consequence of constructing blocks according to
(12.9), it follows that the interaction associated with (12.9), that is, A%AngBzz,
is confounded with blocks. This statement, however, is to be understood only
in the sense that together with A?A%B?Bzz also A?A% and BfBzz, that is, the
components from the symmetrical systems, are confounded with blocks. This is
so because to satisfy (12.9) for a given § we must have

3vi1 + 3vip = 6; mod 6 (12.10)
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Table 12.7 Sets of Treatment Combinations
Satisfying 3v11 + 3vy2 + 4va1 + 2v22 =4

§=0 §=1 §=2
0000 3040 0020
3300 0340 3320
0044 3024 0004
3344 0324 3304
0022 3002 0042
3322 0302 3342
§=3 §=4 §=5
3000 0040 3020
0300 3340 0320
3044 0024 3004
0344 3324 0304
3022 0002 3042
0322 3302 0342
and
4vy1 + 2vp0 = 8> mod 6 (12.11)

with §1 + 8> = 8. Thus we see that the system of confounding generated in this
manner is the same as that obtained by using the Kronecker product method of
Section 12.2 by considering confounding in the 22 and 3? systems separately
and then combining them. This is true in general (see Voss, 1986) and thus may
detract somewhat from the value of this method, but we shall discuss below that
it provides for an extension of a useful result for symmetrical factorials that other
methods do not do.

12.4.4 Parameterization of Treatment Responses

Recall from Chapter 11 that we expressed the true response a(x) of a treatment
combination x as a linear function of interaction components E* as follows:

a(x)=M+ Y EY, (12.12)

where ), is the summation over all partitions . To write down the counterpart
to (12.12) for asymmetrical factorials, we consider again the 22 x 32 factorial.
The partitions « are determined by the various main effects and interactions and
are given in Table 12.8. Associated with each partition is an effect/interaction
component and each component has a number, L, of levels as mentioned earlier.
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Table 12.8 Partitions for the 22 x 32 Factorial

CONFOUNDING IN ASYMMETRICAL FACTORIAL DESIGNS

Interaction
* __ (% * * *
27 = (&) 210 2310 220)

Partition
’
a = (a1, a2, @21, 022)

Interaction/Modified
Interaction
Component

3000
0300
3300
0040
0004
0044

3040

3004

0340

0304

3340

3304

3044

3000
0300
3300
0040
0004
0044
0042
3040

3004

0340

0304

3340

3304

3044

3042

(AD)s(8 =0,3)
(A3)s(8 =0,3)
(A3A);5(8=0,3)
(BHs(6=0,4,2)
(B))s(6=0,4,2)
(B}B)s(8=10,4,2)
(B}B3)s(8=0,4,2)
(A}BD); = (A{B})s—
(ADs, — (BD)s,
6=0,1,2,3,4,5;
61=0,3;6,=0,4,2)
(A]B)} = (A}B))s—
(A})s, — (BY)s,
(A3BD); = (A3B})s—
(Ag)al - (Bi‘)sz
(A}BY); = (A3BY)s—
(A3)s, — (B)s,
(4jadh; =
(AJA3B})s—
(A}AY)s, — (BD)s,
(4}A3BH; =
(AJA3BY)s—
(A}AY)s, — (BD)s,
(A]B}BY); =
(A3B}BY)s—
(AD)s, — (BYB3)s,
(418 8D} =
(A}B}B3)s—
(AD)s, — (B} B)s,
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Table 12.8 (Continued)

Interaction/Modified
Interaction Partition Interaction
¥ = (2]}, 212, 2315 35p) o = (11, @12, @21, @22) Component

0344 0344 (A3B}B3); =
(A3B}B3)s—
(A3)s, — (B} B)s,
0342 (A3B!B): =
(A3B}B3)s—
(A3)s, — (B} BY)s,
3344 3344 (AJA3BIB: =
(A7A3B/B))s—
(A]ADs, — (B{B3)s,
3342 (A3A3BB2); =
(AJA3B!B3)s—
(A]ADs, — (B{B})s,

The levels are the elements & in /(3), 1(4), R(6), respectively, as indicated in
Table 12.8. We define the components as

Egl — (A‘;HA(ZYIZB?ZIB;‘ZZ)S
= {average of all treatment responses a(vi1, vi2, V21, V22)
with aj1v11 + a12v12 + @21v21 + 22022 = §(mod g)}
—{average of all treatment responses} (12.13)
where in our case ¢ = 6. For interactions involving factors with different numbers
of levels we now introduce what we shall call modified interaction components
defined as
(Ea):; — (ATIIAZIZB?ZI B‘ZXZZ)E
o o o o
— (A11]A212B1 21 B222)5
—(A‘f”Ag'Z)gl — (3?213322)32 (12.14)

We shall refer to the partitions & involving only factors with the same number of
levels as pure partitions and those that involve factors not all having the same
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number of levels as mixed partitions. Let A denote the set of all pure partitions
and A; the set of all mixed partitions. We can then write

a@)=M+ > EZ + Y (EM, (12.15)
(!E.A,l (!GAQ

where M represents the overall mean. Expression (12.15) is the extension of
(12.12) for the asymmetrical factorial and is used in the same way as (12.12) is
used for the symmetrical factorial.

12.4.5 Characterization and Properties of the Parameterization

The proposed parameterization (12.15) is a major result in that it unifies the theory
of symmetrical and asymmetrical factorials, both with respect to the construction
of design, that is, systems of confounding, and the analysis of such designs.
Although we have only illustrated the idea in terms of a simple example, the
result is true in general. The same holds for the following comments about
further characterizations and properties of the modified components [defined in
(12.14)] as part of the parameterization (12.15).

1. Expressing each a(v) as (12.15) represents a reparameterization of the treat-
ment effects. This reparameterization is singular since for each E“ we have
2.5 E§ =0.
