
Statistical Computing and Numerical Methods

Using R Page 1

Unit -1
1.1 Introduction to R- Language

R is a programming language and software environment for statistical

computing and graphics supported by the R Foundation for Statistical

Computing. The R language is widely used among statisticians and data miners for

developing statistical software and data analysis. Polls, surveys of data miners, and

studies of scholarly literature databases show that R's popularity has increased

substantially in recent years.

R is a GNU package. The source code for the R software environment is written

primarily in C, FORTRAN, and R.

R is freely available under the GNU General Public License, and pre-

compiled binary versions are provided for various operating systems. While R has

a command line interface, there are several graphical front-ends available.

 R is an implementation of the S programming language combined

with lexical scoping semantics inspired by Scheme. S was created by John

Chambers while at Bell Labs. There are some important differences, but much of

the code written for S runs unaltered.

R was created by Ross Ihaka and Robert Gentleman

at the University of

Auckland, New Zealand, and is currently developed by the R Development Core

Team, of which Chambers is a member. R is named partly after the first names of

the first two R authors and partly as a play on the name of S. The project was

conceived in 1992, with an initial version released in 1994 and a stable beta

version in 2000.

 R and its libraries implement a wide variety of statistical

and graphical techniques, including linear and nonlinear modeling, classical

statistical tests, time-series analysis, classification, clustering, and others.

R is easily extensible through functions and extensions, and the R

community is noted for its active contributions in terms of packages. Many of R's

standard functions are written in R itself, which makes it easy for users to follow

the algorithmic choices made.

Strength of R is static graphics, which can produce publication-quality

graphs, including mathematical symbols. Dynamic and interactive graphics are

available through additional packages.

The general consensus is that R compares well with other popular statistical

packages, such as SAS, SPSS, and Stata. In a comparison of all basic features for

statistical software R is heads up with the best of statistical software.

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_computing
https://en.wikipedia.org/wiki/Statistical_computing
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Statistical_software
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Rexer%27s_Annual_Data_Miner_Survey
https://en.wikipedia.org/wiki/List_of_GNU_packages
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/Lexical_scoping
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/John_Chambers_(programmer)
https://en.wikipedia.org/wiki/John_Chambers_(programmer)
https://en.wikipedia.org/wiki/Bell_Laboratories
https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/University_of_Auckland
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/Graphical
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Time-series_analysis
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/Comparison_of_statistical_packages
https://en.wikipedia.org/wiki/Comparison_of_statistical_packages

Statistical Computing and Numerical Methods

Using R Page 2

In January 2009, the New York Times ran an article about R gaining

acceptance among data analysts and presenting a potential threat for the market

share occupied by commercial statistical packages, such as SAS.

1.2 R as a calculator

R can be used as a calculator. The basic operations are + (addition), -

(subtraction), * (multiplication), and / (division). It is also used to calculate %%

(modular), ^ (power). For example

> 5^3
[1] 125

>5 %% 3

[1] 2

1.3 Measures of central tendency

 We explain how to compute measures of central tendency in R. Measures of

central tendency are called averages. The most frequently encountered averages are

arithmetic mean, median and mode.

Example 1.1:

The age of seven people are given as 25, 35, 45, 56, 25, 89 and 65. Find mean,

median and mode of the age.
 Solution:

 age <-c(25,35,45,56,25,89,65)

 age

 mean (age)

 [1] 48.57143

 median(age)

 [1] 45

 x<-table(age)

 mode<-which(x==max(x))

 mode

 25

 1

Observe the out. The mode is 25, which is the first distinct value in the ordered series.

1.4 Quartiles, deciles and percentiles

These are some more measures of location. Median is the set of

measurements in the value that divides the distribution in to two parts, each

containing 50% of the observations. In the same way, quartiles Q1, Q2 and Q3 are

https://en.wikipedia.org/wiki/New_York_Times

Statistical Computing and Numerical Methods

Using R Page 3

the three values that divide the distribution in to four equal parts. The deciles are

nine values that divide the distributions in to ten equal parts. The percentiles are

the ninety nine values that divide the distribution in to hundred equal parts.

Example 1.2:

Obtain three quartiles, fifth decile and fiftieth percentile of the data given below:
Marks in

Statistics

36 35 30 36 27 40 41 45 46 49

Solution

 >marks <-c(36,35,30,36,27,40,41,45,46,49)

 >marks

 >a=sort(marks)

 >Q1=quantile(a,0.25)

 >Q1

 25%

 35.25

 >Q2=quantile(a,0.5)

 >Q2

 50%

 38

 >Q3=quantile(a,0.75)

 >Q3

 75%

 44

 >D5=quantile(a,0.5)

 >D5

 50%

 38

 >P50=quantile(a,0.50)

 >P50

 50%

 38

1.5 Measures of Dispersion

In statistics, dispersion (also called variability, scatter, or spread) denotes

how stretched or squeezed a distribution (theoretical or that underlying a statistical

sample) is. Common examples of measures of statistical dispersion are the Range,

variance, standard deviation and inter quartile range etc..

Statistical Computing and Numerical Methods

Using R Page 4

Example 1.3:

Marks out of 50 in a subject of 12 students, in a class are given as follows:

12, 18, 20, 12, 16, 14, 30, 32, 28, 12, 12 and 35. Obtain Range, variance, standard

deviation and inter quartile range.

Solution:

>marks<- c(12,18,20,12,16,14,30,32,28,12,12,35)

>marks

 >range<-max(marks)- min(marks)

>range

[1] 23

 >var(marks)

[1] 76.81061

 >sd(marks)

[1] 8.764166

 >a=sort(marks)

 >Q3=quantile(a,0.75)

 >Q1=quantile(a,0.25)

>IQR=Q3-Q1

>IQR

75%

16.5

1.6 Graphical representation of data

Statistics is a special subject that deals with large (usually) numerical data.

The statistical data can be represented graphically. In fact, the graphical

representation of statistical data is an essential step during statistical analysis.

Statistical surveys and experiments provide valuable information about numerical

scores. For better understanding and making conclusions and interpretations, the

data should be managed and organized in a systematic form.

A graph is the representation of data by using graphical symbols such as

bars, pie slices, dots etc. A graph does represent a numerical data in the form of a

qualitative structure and provides important information.

Now we study about various types of graphical representations of the data.

1.6.1 Bar chart

A bar graph is a very frequently used graph in statistics. A bar graph is a

type of graph which contains rectangles or rectangular bars. The lengths of these

bars should be proportional to the numerical values represented by them. In bar

Statistical Computing and Numerical Methods

Using R Page 5

graph, the bars may be plotted either horizontally or vertically. But a vertical bar

graph (also known as column bar graph) is used more than a horizontal one.

Example 1.4:
 Annual sales (in lakhs of Rs.) of a pharmaceutical firm for 6 year are given below.

Year 1995 1996 1997 1998 1999 2000

Annual sales 15 25 27 28 26 26.6
Represent the data by Bar chart.

Solution:-

>year=(1995:2000)

>year

>sales=c(15,25,27,28,26,26.6)

>sales

>sales.year=data.frame(year,sales)

>sales.year

 year sales

1 1995 15.0

2 1996 25.0

3 1997 27.0

4 1998 28.0

5 1999 26.0

6 2000 26.6

>attach(sales.year)

>barplot(sales,xlab="year",ylab="sales",main="Bar chart",col="green")

Statistical Computing and Numerical Methods

Using R Page 6

Figure 1.1 Bar Diagram

1.6.2 Pie chart

A circle is used in a pie chart to represent the whole, and “slices” are used to

represent the categories, one slice for each category. The size of a slice is

proportional to relative frequency of the corresponding category.

Example 1.5:

 The tax revenue of Indian (in crores of Rs.), provide in 1984-85

budget, when broken into various sources are given below. Represent the data by a

pie chart.

Sources Excise Customs Corporation tax Income Tax Others

Tax Revenue 6526 7108 2568 560 763

Solution:

>tax=c(6526,7108,2568,560,763)

>tax

>names(tax)=c("Excise","Customs","Corporation tax","Income tax","Other")

>names(tax)

>pie(tax,main="The tax revenue of India",col=c("red","orange","green","white","pink"))

Figure 1.2: Pie Chart

Statistical Computing and Numerical Methods

Using R Page 7

1.6.3 Box plot

Example 1.6:

Titanium content in an aircraft grade is an of 20 test coupons reveals the following

titanium content (in %).

8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83,

8.50, 8.38, 8.29, 8.46.

Represent data by Box plot.

Solution:
>titanium=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,

8.60,8.83,8.50,8.38,8.29,8.46)

>titanium

>boxplot (titanium, main="Box plot", col=”green”)

Figure 1.3: Box plot

1.6.4 Histogram

Statistical Computing and Numerical Methods

Using R Page 8

Example 1.7

Titanium content in an aircraft grade is an of 20 test coupons reveals the following

titanium content (in %)

Grade:8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,8.60,8

.83,8.50,8.38,8.29,8.46. Represent data by Histogram.

Solution:
>titanium=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,8.60,8.83,8.50

,8.38,8.29,8.46)

>titanium

>hist(titanium, main="Histogram", col="green")

Figure 1.4: Histogram

1.6.5 Stem-and-leaf plot

Example 1.8

Following are the number of room occupied on hotel for 30 days. Draw a stem and

leaf diagram.

20,14,21,29,43,17,15,26,8,14,30,23,16,46,28,11,26,35,26,28,30,22,23,7,32,19,22,1

8,27,9.

Solution:

Statistical Computing and Numerical Methods

Using R Page 9

>x=c(20,14,21,29,43,17,15,26,8,14,30,23,16,46,28,11,26,35,26,28,30,22,23,7,32,19,22,18,27,9)

>x

>stem(x)

The decimal point is 1 digit(s) to the right of the |

 0 | 789

 1 | 144

 1 | 56789

 2 | 012233

 2 | 6667889

 3 | 002

 3 | 5

 4 | 3

 4 | 6

1.7 Statistical tests in R

1.7.1 One sample t – test

One sample t-test is a statistical procedure used to examine the mean

difference between the sample and the known value of the population mean. In one

sample t-test, we know the population mean. We draw a random sample from the

population and then compare the sample mean with the population mean and make

a statistical decision as to whether or not the sample mean is different from the

population mean.

We can use this analysis, for example, when we take a sample from the city

and we know the mean of the country (population mean). If we want to know

whether the city mean differs from the country mean, we will use the one sample t-

test.

 Assumptions:

1. The dependent variable should be measured at the interval or ratio

level (i.e., continuous).

2. The data are independent (i.e. not correlated/related).

3. The dependent variable should be normally distributed.

Example 1.9

The following data refer of amount of coffee (in ounces) filled by machine in six

randomly picked jars: 15.7, 15.9, 16.3, 16.2, 15.7 and 15.9. Is the true means

amount of coffee in a jar 16 ounces?

Solution:

Hypothesis,

Statistical Computing and Numerical Methods

Using R Page 10

 : µ = 16 Vs : µ 16

To check the normality assumption we use the Shapiro-Wilk normality test. The

hypothesis for this test is,

 : Data follows normal distribution

Vs : Data does not follows normal distribution.

The Test statistics,

 t =
 ̅

√

 Where s
2
 =

∑ ̅

with (n-1) degree of freedom where n is sample size.

R-commands:
>x <- c(15.7,15.9,16.3,16.2,15.7,15.9)

>x

>shapiro.test(x)

Shapiro-Wilk normality test

data: x

W = 0.8788, p-value = 0.2636

> t.test(x,mu=16)

 One Sample t-test

data: x

t = -0.48795, df = 5, p-value = 0.6462

alternative hypothesis: true mean is not equal to 16

95 percent confidence interval:

 15.68659 16.21341

sample estimates:

mean of x 15.95

Interpretation of output:

The p-value of Shapiro-wilk normality test is 0.264. Which is greater than 0.05,

hence we accept null hypothesis at 5% level of significance. i.e our data follows

normal distribution. Thus, the assumption of normality is satisfied.

The p-value of one sample t-test is 0.6462 which is greater than 0.0.5. Hence

we accept null hypothesis. Thus, we can conclude that true mean is equal to 16. i.e.

true means amount of coffee in a jar 16 ounces.

If the assumption of Normality of parent population is not satisfied in one

sample t-test then non-parametric alternative to one sample t-test suggested by

Wilcoxon known as One sample Wilcoxon signed rank test.

Statistical Computing and Numerical Methods

Using R Page 11

 1.7.2 One sample Wilcoxon signed rank test (One sample Median test)

The One-Sample Wilcoxon Signed Rank test is a non parametric

alternative to a one-sample t-test. The test determines whether the median of the

sample is equal to some specified value.

Example 1.10:

Titanium content in an aircraft grade is an of 20 test coupons reveals the following

titanium content (in %).

8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83,

8.50, 8.38, 8.29, 8.46. Apply the Wilcoxon signed rank test to test the hypothesis

that median titanium content is 8.5%.

Solution:

Hypothesis,

 : M= 8.5 Vs : M 8.5

The Test statistics,

 f(t) = (

) for t=0,1,2,………(

f(u|t) =
(

)(

)

 for u= 0,1,2,……,n

R-commands:
> x=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83, 8.50,

8.38, 8.29, 8.46)

> x

> wilcox.test(x,mu=8.5)

 Wilcoxon signed rank test with continuity correction

data: x

V = 80.5, p-value = 0.573

alternative hypothesis: true location is not equal to 8.5

Interpretation of output:

The p-value of wilcoxon signed rank test is 0.572 which is greater than 0.05.

Hence we accept . Thus we can conclude that true Median is equal to 8.5.

1.7.3 Independent two sample t-test
The independent two-sample t-test is used to test whether two population

means are significantly different from each other, using the means from randomly

drawn samples.

Statistical Computing and Numerical Methods

Using R Page 12

 Assumptions:

1. The dependent variable should be measured at the interval or ratio

level (i.e., continuous).

2. The independent variable should consist of two categorical, independent

groups.

3. The data are independent (i.e. not correlated/related).

4. The dependent variable should be normally distributed for each group of the

independent variable.

Example 1.11:

By Using Independent two sample t-test, check whether the mean of two

populations equal or not.

 X=28, 31, 26, 27, 23, 38, 37

 Y=37, 42, 34, 37, 35

Solution:

Hypothesis

 : = Vs :

Hypothesis for normality:

 : Data follows normal distributions Vs

 : Data does not follow distributions

The Test statistics,

 t =
 ̅ ̅

 √

 If

 =
∑ ̅

 and

 =
∑ ̅

 then s

2
 =

with degree of freedom.

R- command:
>x=c(28,31,26,27,23,38,37)

>x

>y=c(37,42,34,37,35)

>y

>shapiro.test(x)

Shapiro-Wilk normality test

data: x

W = 0.91361, p-value = 0.4214

>shapiro.test(y)

 Shapiro-Wilk normality test

data: y

Statistical Computing and Numerical Methods

Using R Page 13

W = 0.88521, p-value = 0.3336

>var.test(x,y)

F test to compare two variances

data: x and y

F = 3.3684, num df = 6, denom df = 4, p-value = 0.2599

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

 0.3662398 20.9757008

sample estimates:

ratio of variances

 3.368421

>t.test(x,y,var.equal=T)

 Two Sample t-test

data: x and y

t = -2.4927, df = 10, p-value = 0.03184

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -13.2569512 -0.7430488

sample estimates:

mean of x mean of y

 30 37

Interpretation of output:

The P-value of Shapiro-wilk normality test is greater than 0.05 for both

populations. Hence we accept . i.e. Data follows normal distribution for both

populations.

The p-value of two sample t-test is less than (p-value=0.03184) 0.05. Hence

reject null hypothesis i.e. mean of first population is not equal to mean of second

population.

In two sample t-test, we have made assumptions that parent population is

normal. If this assumption is not satisfied then we have to do non-parametric test

which is known as Wilcoxon Mann-Whitney U-test.

1.7.4 Wilcoxon Mann-whitney U test

Wilcoxon Mann-Whitney U test is the alternative test to the independent two

sample t-test. It is a non-parametric test that is used to compare two population

means that come from the same population, it is also used to test whether two

population means are equal or not. It is used for equal sample sizes, and is used to

test the median of two populations. Usually the Mann-Whitney U test is used when

the data is ordinal.

http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/sample-size-power-analysis/write-up-generator-references/independent-sample-t-test-2/
http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/sample-size-power-analysis/write-up-generator-references/independent-sample-t-test-2/
http://www.statisticssolutions.com/academic-solutions/academic-research-consulting/sample-size-determination/

Statistical Computing and Numerical Methods

Using R Page 14

Example 1.12:

In a study of factors thought to be responsible for adverse effects of smoking on

human reproduction, cadmium level determination(nanograms per gram)were

made on placenta tissue of a sample of 14 mothers who were smokers and an

independent sample of 18 non-smoking mothers results were as follows.

 Non –smokers:

10.0,8.4,12.8,25.0,11.8,9.8,12.5,15.4,23.5,9.4,25.1,19.5,25.5,9.8,7.5,11.8,12.2, 15

Smokers:-30.0,30.1,15.0,24.1,30.5,17.8,16.8,14.8,13.4,28.5,17.5,14.4,12.5,20.4

 Does mean cadmium level is equal to smoker and non-smoker.

Solution:

Hypothesis,

 : = VS :

Hypothesis for normality,

 : Data follows normal distributions Vs

 : Data does not follow normal distributions.

Test statistics:

U = +

 – ∑

R- command:
>x=c(10.0,8.4,12.8,25.0,11.8,9.8,12.5,15.4,23.5,9.4,25.1,19.5,25.5,9.8,7.5,11.8, 12.2,15.0)

>x

>y=c(30.0,30.1,15.0,24.1,30.5,17.8,16.8,14.8,13.4,28.5,17.5,14.4,12.5,20.4)

>y

>shapiro.test(x)

 Shapiro-Wilk normality test

data: x

W = 0.84484, p-value = 0.00703

>shapiro.test(y)

Shapiro-Wilk normality test

data: y

W = 0.85335, p-value = 0.02467

>wilcox.test(x,y)

Wilcoxon rank sum test with continuity correction

data: x and y

W = 58, p-value = 0.01032

Statistical Computing and Numerical Methods

Using R Page 15

alternative hypothesis: true location shift is not equal to 0

Interpretation of output:

For both variable x and y the p-value of Shapiro-Wilk normality test is less

than 0.05. Hence we reject the null hypothesis of normality. Thus, we conclude

that both variables are does not follows normal distribution. Hence we do non

parametric test which is known as Wilcoxon Mann-whitney U-test.

The P-value of Mann-Whitney U-test is 0.01032. This is less than 0.05.

Hence we reject the null hypothesis. Thus we conclude that the median of first

population is not equal to median of second population.

1.7.5 Paired t-test

The Paired Samples t Test compares two means that are from the same

individual, object, or related units. The two means typically represent two different

times (e.g., pre-test and post-test with an intervention between the two time points)

or two different but related conditions or units (e.g., left and right ears, twins). The

purpose of the test is to determine whether there is statistical evidence that the

mean difference between paired observations on a particular outcome is

significantly different from zero.

 Assumptions:

1. The dependent variable should be measured at the interval or ratio

level (i.e., continuous).

2. The independent variable should consist of two categorical, "related groups" or

"matched pairs".

3. The distribution of the differences in the dependent variable between the two

related groups should be normally distributed.

Example 1.13:

An automotive engineer is investigating two different types of metering devices for

an electronic fuel injection system to determine whether they differ in fuel mileage

performance. The system is installed on 12 different cars and the test is run with

each metering devise on each car. Observed fuel performance data corresponding

to different devices is shown in following table. Use appropriate test to check the

hypothesis that two devices do not differ in their fuel mileage performance.

Device Mileage

I 17.6 19.4 19.5 17.1 15.3 15.9 16.3 18.4 17.3 19.1 17.8 18.2

II 16.8 20 18.2 16.4 16 15.4 16.5 18 16.4 20.1 16.7 17.9

Solution:

Statistical Computing and Numerical Methods

Using R Page 16

 : ̅= 0 Vs : ̅ 0

Hypothesis for normality:

 : Difference (x-y) follows normal distributions. Vs

 : Difference (x-y) does not follow normal distribution.

Test statistics:

 t =
 ̅

√

 Where ̅ =
∑

 and =

∑ ̅

 with (n-1)

degree of freedom.

R-command:
>x=c(17.6,19.4,19.5,17.1,15.3,15.9,16.3,18.4,17.3,19.1,17.8,18.2)

>x

>y=c(16.8,20,18.2,16.4,16,15.4,16.5,18,16.4,20.1,16.7,17.9)

>y

>difference =(x-y)

>shapiro.test(difference)

 Shapiro-Wilk normality test

data: difference

W = 0.93417, p-value = 0.4265

>t.test(x,y,paired=T)

Paired t-test

data: x and y

t = 1.3448, df = 11, p-value = 0.2058

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -0.1856942 0.7690275

sample estimates:

mean of the differences 0.2916667

Interpretation of output:

P-value of Shapiro-Wilk normality test is 0.4265. This is greater than 0.05.

Hence we accept null hypothesis. Thus we conclude that difference follows normal

distribution.

The p-value of paired t-test is 0.2058. This is greater than 0.05. Hence we

accept null hypothesis. Thus, we conclude that the two types of measuring devices

do not differ in their fuel mileage performance.

If the assumption of differences in the dependent variable between the two

related groups should be normally distributed is not satisfied in paired t-test then

Statistical Computing and Numerical Methods

Using R Page 17

non-parametric alternative to paired t-test suggested by Wilcoxon known as

Wilcoxon signed rank test (Two related test).

1.7.6 Wilcoxon signed rank test (Two related sample)

The Wilcoxon signed-rank test is the nonparametric test equivalent to

the paired t-test. As the Wilcoxon signed-rank test does not assume normality in

the data, it can be used when this assumption has been violated and the use of the

paired t-test is inappropriate.

 It is used to compare two sets of scores that come from the same

participants. This can occur when we wish to investigate any change in scores from

one time point to another, or when individuals are subjected to more than one

condition.

Example 1.14:

Seventeen families participated in a training program in which a test was

administered before and after training to one parent in each family. Following are

pre and post-training scores made by the parent on test.

Pre 7 6 10 16 8 13 8 14 16 11 12 13 9 10 17 8 5

Post 11 14 16 17 9 15 9 17 20 12 14 15 14 15 18 15 9

May we conclude, on the basis of these data, that training program is effective or

not?

Solution:

Hypotheses,

 : ̅ = 0 Vs : ̅

Test statistics is,

 f(t) = (

) for t=0,1,2,………(

 f(u|t) =
(

)(

)

 for u= 0,1,2,……,n

R-command:
>x=c(7,6,10,16,8,13,8,14,16,11,12,13,9,10,17,8,5)

>x

>y=c(11,14,16,17,9,15,9,17,20,12,14,15,14,15,18,15,9)

>y

>wilcox.test(x,y,paired=T)

Wilcoxon signed rank test with continuity correction

data: x and y

https://statistics.laerd.com/spss-tutorials/dependent-t-test-using-spss-statistics.php

Statistical Computing and Numerical Methods

Using R Page 18

V = 0, p-value = 0.0003034

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x, y, paired = T) :

 cannot compute exact p-value with ties

Interpretation of output:

The p-value of Wilcoxon signed rank test is 0.0003034. This is less than

0.05. Hence we reject null hypothesis. Thus we conclude that the training program

is effective.

1.7.7One-way analysis of variance (ANOVA)

The one-way analysis of variance (ANOVA) is used to determine whether

there are any statistically significant differences between the means of two or more

independent (unrelated) groups.

 For example, you could use a one-way ANOVA to understand whether

exam performance differed based on test anxiety levels amongst students, dividing

students into three independent groups (e.g., low, medium and high-stressed

students).

It is important to realize that the one-way ANOVA cannot tell you which

specific groups were statistically significantly different from each other; it only

tells you that at least one pair are different. Since you may have two, three, four,

five or more pairs in your study design, determining which of these pairs differ is

important. To find this pairs by using a post hoc test.

Assumptions:

1. The dependent variable should be measured at the interval or ratio

level (i.e., continuous).

2. Independent variable should consist of two or more categorical, independent

groups.

3. The data are independent (i.e. not correlated/related).

4. The dependent variable should be approximately normally distributed for

each category of the independent variable.

Example 1.15:

Following table shows forced expiratory valume per second for patients with

coronary artery disease sample at three different medical centers, denoted by A, B

and C.
A 3.23 3.47 1.86 2.47 3.01 1.69 2.10 2.81 3.28 3.36 2.61 2.91

1.98 2.57 2.08 2.47 2.47 2.74 2.88 2.63 2.53

B 3.52 3.23 2.21 3.19 4.12 3.79 3.79 4.13 3.14 3.21 3.21 3.91

Statistical Computing and Numerical Methods

Using R Page 19

3.37 3.11 3.89 3.67

C 2.79 3.22 2.25 2.98 2.47 2.77 2.95 3.56 2.88 2.63 3.38 3.07

2.81 3.17 2.23 2.19 4.06 1.98 2.81 2.85 2.43 3.2 3.53

Test whether the average expiratory volume per second for all patients with

coronary artery disease from all three centers are equal.

Solution:

Hypothesis,

 :
 =

 =

 Vs : at least one pair differs.

Hypothesis for normality:

 : Data follows normal distributions. Vs

 : Data does not follow distributions.

Hypothesis for variance:

 : Variances are equal Vs

 : Variances are not equal.

Test statistics is,

R-commands:
>a=c(3.23,3.47,1.86,2.47,3.01,1.69,2.10,2.81,3.28,3.36,2.61,2.91,1.98,2.57,2.08,2.47,2.47,2.74,2

.88,2.63,2.53)

>a

>b=c(3.52,3.23,2.21,3.19,4.12,3.79,3.79,4.13,3.14,3.21,3.21,3.91,3.37,3.11,3.89,3.67)

>b

>c=c(2.79,3.22,2.25,2.98,2.47,2.77,2.95,3.56,2.88,2.63,3.38,3.07,2.81,3.17,2.23,2.19,4.06,1.98,2

.81,2.85,2.43,3.20,3.53)

>c

>shapiro.test(a)

 Shapiro-Wilk normality test

data: a

W = 0.97084, p-value = 0.7515

>shapiro.test(b)

 Shapiro-Wilk normality test

data: b

W = 0.90868, p-value = 0.1108

>shapiro.test(c)

 Shapiro-Wilk normality test

Statistical Computing and Numerical Methods

Using R Page 20

data: c

W = 0.97996, p-value = 0.9056

>d=stack(list("A"=a,"B"=b,"C"=c))

>names(d)

[1] "values" "ind"

>attach(d)

>bartlett.test(values~ind)

 Bartlett test of homogeneity of variances

data: values by ind

Bartlett's K-squared = 0.0062359, df = 2, p-value = 0.9969

>oneway.test(values~ind,data=d,var.equal=T)

 One-way analysis of means

data: values and ind

F = 13.506, num df = 2, denom df = 57, p-value = 1.58e-05

>pairwise.t.test(values,ind,p.adj="bonferroni")

 Pairwise comparisons using t tests with pooled SD

data: values and ind

 A B

B 1.1e-05 -

C 0.2891 0.0017

P value adjustment method: bonferroni

Interpretation of output:

The p-value of Shapiro-Wilk normality test for all three populations are greater

than 0.05. Hence we accept the null hypothesis. Thus, all three populations follow

normal distribution.

The P-value of Bartlett test of homogeneity of variance is 0.9969. This is

greater than 0.05. Hence we accept i.e. variances are equal.

The p-value of one way analysis is less than 0.05. Thus, we can conclude that

 is rejected. i.e. at least one pair of mean is differ significantly.

The bonferroni test suggested that there is means of pair A and B, B and C are

differ significantly but means of pair A and C do not differ significantly.

 In the ANOVA, we assume that distribution of each group is normally

distributed. If this assumption is not satisfied in ANOVA then non-parametric

alternative to ANOVA developed by Kruskal and Wallis (1952) as Kruskal-

Wallis test.

Statistical Computing and Numerical Methods

Using R Page 21

1.7.8 Kruskal-Wallis test

The Kruskal-Wallis H test (sometimes also called the "one-way ANOVA on

ranks") is a rank-based nonparametric test that can be used to determine if there are

statistically significant differences between two or more groups of an independent

variable on a continuous or ordinal dependent variable.

Example 1.16:
 An instructor sets three different question papers and distributes them randomly to

her students. After collecting answer books and grading them, following scores are

obtained.

 Test 1:63, 64, 95, 64, 60, 85.

 Test 2:58, 56, 51, 84, 77.

 Test 3:105, 79, 82, 80, 74, 97.

The instructor would like to know whether the three tests are equally difficult by

testing equality of means of populations of scores. Carry out the appropriate test

procedure.

Solution:

Hypothesis

 : = = Vs : at least one pair differ.

Test statistics:

 w =

 ∑

R-Command:
>x=c(63,64,95,64,60,85)

>x

>y=c(58,56,51,84,77)

>y

>z=c(105,79,82,80,74,97)

>z

>d=stack(list("test1"=x,"test2"=y,"test3"=z))

>names(d)=c("values","test")

>names(d)

[1] "values" "test"

>kruskal.test(values~test,data=d)

 Kruskal-Wallis rank sum test

data: values by test

Kruskal-Wallis chi-squared = 4.9459, df = 2, p-value = 0.08433

Statistical Computing and Numerical Methods

Using R Page 22

Interpretation of Output:

The p-value of kruskal-wallis rank test is 0.08433. This is greater than 0.05. Henc

null hypothesis is accepted. i.e. Median of all three population are equal.

1.7.9 Correlation

(a) Pearson product-moment correlation coefficient

The Pearson product-moment correlation coefficient (Pearson’s correlation)

is a measure of the strength and direction of association that exists between two

variables measured on at least an interval scale.

For example, you could use a Pearson’s correlation to understand whether

there is an association between exam performance and time spent revising. You

could also use a Pearson's correlation to understand whether there is an association

between depression and length of unemployment.

A Pearson’s correlation attempts to draw a line of best fit through the data of

two variables, and the Pearson correlation coefficient, r, indicates how far away all

these data points are from this line of best fit.

Assumptions:

1. Two variables should be measured at the interval or ratio level (i.e.

Continuous).

2. There is a linear relationship between your two variables.

3. The Two variables should be normally distributed.

Example 1.17:

 Plot the scatter diagram and compute the Pearson’s correlation co-efficient

between amount(X) of fertilizer and the yield(Y) of potatoes for the data

X 0 4 8 12

Y 8.34 8.89 9.16 9.5

Solution:

Hypothesis,

 : = 0 Vs : 0

Test statistics:

 r =
∑ ̅ ̅

√∑ ̅ ∑ ̅

R-command:
>x=c(0,4,8,12)

>x

>y=c(8.34,8.89,9.16,9.5)

Statistical Computing and Numerical Methods

Using R Page 23

>y

>plot(x,y,pch=17,xlab="Amount of Fertilizer",ylab="Yield",main="Scatter Plot")

>r=cor.test(x,y,method="pearson", alt="two.sided",conf.int=T)

>r

 Pearson's product-moment correlation

data: x and y

t = 9.0552, df = 2, p-value = 0.01198

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.5341930 0.9997609

sample estimates:

 cor

0.9880231

Interpretation of Output:

The Pearson product-moment correlation coefficient is 0.9880231. Hence we

conclude that there is strong positive correlation between amount of fertilizer and

the yield of potatoes.

The p-value is less than 0.05. Hence we rejected . i.e. population correlation

coefficient is not equal to zero.

Statistical Computing and Numerical Methods

Using R Page 24

(b) Spearmen’s rank correlation

The Spearman rank-order correlation coefficient (Spearman’s correlation) is

a nonparametric measure of the strength and direction of association that exists

between two variables measured on at least an ordinal scale.

Example 1.18:

Compute the Spearmen’s rank co-efficient between marks in Mathematics (X) of

and the marks in Statistics (Y) of 12
th
 student for the data.

X 76 84 88 92 70

Y 83 88 91 95 77

Solution:

Hypothesis,

 : = 0 Vs : 0

Test statistics is,

 r =1 -
 ∑

R-command:
>x=c(76,84,88,92,70)

>x

>y=c(83,88,91,95,77)

>y

>r=cor.test(x,y,method="spearman", alt="two.sided",conf.int=T)

>r

 Spearman's rank correlation rho

data: x and y

S = 4.4409e-15, p-value = 0.01667

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho 1

Interpretation of Output:

The Spearman rank-order correlation coefficient is 1. Hence we conclude that

there is perfect positive correlation between marks in Mathematics and marks in

Statistics.

The p-value is less than 0.05. Hence we reject . i.e. population correlation

coefficient is not equal to zero.

Statistical Computing and Numerical Methods

Using R Page 25

1.7.10 Linear Regression

Linear regression is the next step up after correlation. It is used when we

want to predict the value of a variable based on the value of another variable. The

variable we want to predict is called the dependent variable. The variable we are

using to predict the other variable's value is called the independent variable.

For example, you could use linear regression to understand whether exam

performance can be predicted based on revision time.

Example 1.19:

Following table gives the observed of gains corresponding to amount of fertilizer

applied.

Amount of fertilizer(y) Yield(x)

30 43

40 45

50 54

60 53

70 56

80 63

 Fit the lines of regression of amount of fertilizer on yield.

Solution:

Hypothesis,

 :
 0 Vs :

 0

Regression line of y on x is

 y = a + * x

 Where = Cov(x, y) /
 and a= ̅ - ̅

R-command:
>x=c(43,45,54,53,56,63)

>x

>y=c(30,40,50,60,70,80)

>y

>fit=lm(y~x)

>fit

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 -72.297 2.432

>summary(fit)

Call:

Statistical Computing and Numerical Methods

Using R Page 26

lm(formula = y ~ x)

Residuals:

 1 2 3 4 5 6

-2.2973 2.8378 -9.0541 3.3784 6.0811 -0.9459

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -72.297 19.259 -3.754 0.01988 *

 x 2.432 0.365 6.664 0.00263 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.012 on 4 degrees of freedom

Multiple R-squared: 0.9174, Adjusted R-squared: 0.8967

F-statistic: 44.41 on 1 and 4 DF, p-value: 0.002634

Interpretation of Output:

The P-value of F-statistics is 0.002634. This is less than 0.05. Hence is rejected.

 i.e.

 0.

The regression line is, y = -72.297 + 2.432 * x

1.7.11 Chi-square test

(a) Test for Association

The chi-square test for independence, also called Pearson's chi-square test or

the chi-square test of association, is used to discover if there is a relationship

between two categorical variables.

Assumptions:

1. The two variables should be measured at an ordinal or nominal

level (i.e., categorical data).

2. The two variables should consist of two or more categorical, independent

groups.

Example 1.20:

An educator would like to know whether gender (male/female) is associated with

the preferred type of learning medium (online vs. books).

 Preferred learning Medium

Books Online Total

Gender Male 16 24 40

Female 13 27 40

Total 29 51 80

Statistical Computing and Numerical Methods

Using R Page 27

Test the hypothesis that Gender is associated with preferred type of learning

medium.

Solution:

Hypothesis,

 : Gender is associated with preferred type of learning medium. Vs

 : Gender is not associated with preferred type of learning medium.

Test statistics is,

 =
∑

 with (k-1)(k-1) df.

R-commands:
>o1=16

>o2=24

>o3=13

>o4=27

>e1=29*40/80

>e1

>e2=51*40/80

>e2

>e3=29*40/80

>e3

>e4=51*40/80

>e4

>chi=(o1-e1)^2/e1+(o2-e2)^2/e2+(o3-e3)^2/e3+(o4-e4)^2/e4

>chi

[1] 0.4868154

>qchisq(0.95,df=1)

[1] 3.841459

Interpretation of output:

The output shows that calculated value of Chi-square is 0.4868154 and tabulated

value of Chi-square is 3.841459. Here
 is less than

 .

Hence we accept null hypothesis and conclude that gender is associated with

preferred type of learning medium.

(b) Goodness of fit test

The chi-square goodness-of-fit test is a single-sample nonparametric test,

also referred to as the one-sample goodness-of-fit test or Pearson's chi-square

goodness-of-fit test. It is used to determine whether the distribution of cases in a

Statistical Computing and Numerical Methods

Using R Page 28

single categorical variable follows a known or hypothesized distribution. (e.g.

Binomial, Poisson, Normal etc.).

 Example 1.21: (Fitting of Binomial distribution)

Fit the binomial distribution and test the goodness of fit on following data.

X 0 1 2 3 4

F 5 20 45 20 10

Solution:

 : Fit of Binomial distribution is good. Vs

 : Fit of Binomial distribution is not good

Test statistics is,

 ∑

 with (n-1) df.

R-commands:
>x=0:4

>x

>f=c(5,20,45,20,10)

>f

>n=max(x)

>n

>N=sum(f)

>N

>smean=sum(f*x/sum(f))

>smean

>p=smean/n

>p

>px=dbinom(0:3,n,p)

>px

>p4=1-sum(px)

>p4

>px=c(px,p4)

>px

>px=round(px,4)

>px

>ex=px*N

>ex

>fr.dist=data.frame(x,f,px,ex)

>fr.dist

>chisq=sum((f-ex)^2/ex)

>chisq

[1] 4.665105

Statistical Computing and Numerical Methods

Using R Page 29

>qchisq(0.95,3)

[1] 7.814728

Interpretation of output:

The output shows that, calculated value of Chi-square is 4.665105 and tabulated

value of Chi-square is 7.814728. Here
 is less than

 .

Hence is accepted and we conclude that Fit of Binomial distribution is good

Example 1.22: (Fitting of Poisson distribution)
 Following table shows the data on the movement of leaf hopper (Hemiptera)

across a sand dune.

 Leaf hopper per trap(x) frequency (f)

 0 6

 1 8

 2 12

 3 4

 4 or more 3

 Fit Poisson distribution to the above data and test goodness of fit.

Solution:

Hypothesis,

 : Fit of Poisson distribution is good. Vs

 : Fit of Poisson distribution is not good

Test statistics is,

 ∑

 with (n-2) df.

R-Commands:
>x=0:4

>x

>f=c(6,8,12,4,3)

>smean=sum(f*x)/sum(f)

>smean

>x=0:3

>x

>px=dpois(x,smean)

>px

>px=c(px,1-sum(px))

>px

>ex=sum(f)*px

Statistical Computing and Numerical Methods

Using R Page 30

>ex

>x=c(x,4)

>x

>fx.dist=data.frame(x,f,ex)

>fx.dist

>ex=c(ex[c(1:3)],sum(ex[c(4:5)]))

>ex

>o=c(6,8,12,7)

>o

>chiq=sum((o-ex)^2/ex)

>chiq

[1] 1.866058

>qchisq(0.95,2)

[1] 5.991465

Interpretation of output:

The output shows that, calculated value of Chi-square is 1.866058 and tabulated

value of Chi-square is 5.991465. Here
 is less than

 .

There for we accept and conclude that fit of Poisson distribution is good.

Example 1.23: (Fitting of Normal distribution)

Following table displays a frequency distribution of heights of trees in a certain

Locality. Fit a normal distribution to the data and test the goodness of fit.

Heights of tress (in inches)

Class-internal frequency

13.20-20.90 2

20.90-28.60 10

28.60-36.30 16

36.30-44.00 37

 44.00-51.70 43

 51.70-59.40 39

 59.40-67.10 29

 67.10-74.80 13

 74.80-82.50 6

 82.50-90.20 5

Solution:

Hypothesis,

 : Fit of normal distribution is good. Vs

 : Fit of normal distribution is not good

Statistical Computing and Numerical Methods

Using R Page 31

Test statistics is,

 ∑

 with (n-3) df.

R-Commands:
>midy=seq(17.05,86.35,length=10)

>midy

>f=c(2,10,16,37,43,39,29,13,6,5)

>f

>mean=sum(midy*f)/sum(f)

>mean

>sd=(sum(f*(midy-mean)^2)/sum(f))^0.5

>sd

>l=seq(13.2,82.5,length=10)

>l

>l=c(l,90.2)

>l

>cdf=pnorm(l,mean,sd)

>cdf

>cdf=c(0,cdf,1)

>cdf

>pcf=diff(cdf)

>pcf

>f=c(0,f,0)

>f

>ex=round(pcf*sum(f),4)

>ex

>fr=data.frame(f,ex)

>fr

>o=c(12,16,37,43,39,29,13,11)

>o

>ex=c(sum(ex[c(1,2,3)]),ex[c(4:9)],sum(ex[c(10,11,12)]))

>ex

>chisq=sum((o-ex)^2/ex)

>chisq

[1] 2.132088

>qchisq(0.95,5)

[1] 11.0705

Interpretation of output:

The output shows that, calculated value of Chi-square is 2.132088 and tabulated

value of Chi-square is 11.0705. Here
 is less than

 .

Therefore we accept and conclude that fit of normal distribution is good.

Statistical Computing and Numerical Methods

Using R Page 32

Unit-II

2.1 Concept of Random number Generator

One of the fundamental tools required in computational statistics is the

ability to simulate random variables from specified probability distributions. On

the general subject of methods for generating random variates from specified

probability distributions. In the simplest case, to simulate drawing an observation

at random from a finite population, a method of generating random observations

from the discrete uniform distribution is required. Therefore a suitable generator of

uniform pseudo random numbers is essential.

 Methods for generating random variates from other probability distributions

all depend on the uniform random number generator. In this text we assume that a

suitable uniform pseudo random number generator is available.

The uniform pseudo random number generator in R is runif. To generate a

vector of n (pseudo) random numbers between 0 and 1 use runif(n). Throughout

this text, whenever computer generated random numbers are mentioned, it is

understood that these are pseudo random numbers. To generate n random Uniform

(a, b) numbers use runif(n, a, b). To generate an n by m matrix of random numbers

between 0 and 1 use matrix(runif (n*m), nrow=n, ncol=m) or matrix(runif(n*m), n,

m).

The several functions are given for generating random variates from continuous

and discrete probability distributions. Generators for many of these distributions

are available in R (e.g. rbeta, rgeom, rchisq, etc.), but the methods presented below

are general and apply to many other types of distributions.

2.2 Random Generators of Common Probability Distributions in R

In the sections that follow, various methods of generating random variates

from specified probability distributions are presented. Before discussing those

methods, however, it is useful to summarize some of the probability functions

available in R. The probability mass function (pmf) or density (pdf), cumulative

distribution function (cdf), quantile function, and random generator of many

commonly used probability distributions are available. For example, four functions

are documented in the help topic Binomial:

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)

rbinom(n, size, prob)

Statistical Computing and Numerical Methods

Using R Page 33

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations. If length(n) > 1, the length is taken to be the number

required.

size Number of trials (zero or more).

prob Probability of success on each trial.

log, log.p Logical; if TRUE, probabilities p are given as log(p).

lower.tail Logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

The same pattern is applied to other probability distributions. In each case,

the abbreviation for the name of the distribution is combined with first letter d for

density or pmf, p for cdf, q for quantile, or r for random generation from the

distribution.

A partial list of available probability distributions and parameters is given in

Table 2.1

TABLE 2.1: Selected Univariate Probability Functions Available in R

Distribution cdf Generator Parameters

beta pbeta rbeta shape1, shape2

binomial pbinom rbinom size, prob

chi-squared pchisq rchisq df

exponential pexp rexp rate

F pf rf df1, df2

Gamma pgamma rgamma shape, rate or scale

Geometric pgeom rgeom prob

lognormal plnorm rlnorm meanlog, sdlog

negative binomial pnbinom rnbinom size, prob

normal pnorm rnorm mean, sd

Poisson ppois rpois lambda

Student’s t pt rt df

uniform punif runif min, max

2.3 Methods for generation of pseudo random numbers
We begin our discussion of simulation with a brief exploration of the

mechanics of pseudo random number generation. In particular, we will describe

one of the simplest methods for simulating independent uniform random variables

on the interval [0,1].

Statistical Computing and Numerical Methods

Using R Page 34

2.3.1 Multiplicative Congruential Method of generating uniform

variate
A multiplicative congruential random number generator produces a

sequence of pseudo random numbers, u1, u2, . . . which appear similar to

independent uniform random variables on the interval [0,1].

Let m be a large integer, and let b be another integer which is smaller than

m. The value of b is often chosen to be near the square root of m. Different values

of b and m give rise to pseudorandom number generators of varying quality. There

are various criteria available for choosing good values of these parameters, but it is

always important to test the resulting generator to ensure that it is providing

reasonable results.

To begin, an integer x0 is chosen between 1 and m. x0 is called the seed. We

discuss strategies for choosing x0 below.

Once the seed has been chosen, the generator proceeds as follows:

x1 = b x0 (mod m)

u1 = x1/ m.

Where u1 is the first pseudo random number, taking some value between 0 and 1.

The second pseudo random number is then obtained in the same manner:

x2 = b x1 (mod m)

u2 = x2 / m.

Here u2 is another pseudo random number. If m and b are chosen properly and are

not disclosed to the user, it is difficult to predict the value of u2, given the value of

u1 only. In other words, for most practical purposes u2 is approximately

independent of u1. The method continues according to the following formulas:

xn = b xn-1 (mod m)

un = xn / m.

This method produces numbers which are entirely deterministic, but to an observer

who doesn’t know the formula above, the numbers appear to be random and

unpredictable, at least in the short term.

Example 2.1: (Multiplicative Congruential Method)

The following lines produce 50 pseudorandom numbers based on the

multiplicative congruential generator:

xn = 171 xn-1 (mod 30269)

Statistical Computing and Numerical Methods

Using R Page 35

un = xn / 30269

with initial seed x0 = 27218.

Solution:
>random.number <- numeric (50) # this will store the pseudorandom output

 >random.seed <- 27218

 >for (j in 1:50) {

+ random.seed <- (171 * random.seed) %% 30269

 + random.number[j] <- random.seed / 30269

 +}

> random.number

 [1] 0.76385080 0.61848756 0.76137302 0.19478675 0.30853348 0.75922561

 [7] 0.82757937 0.51607255 0.24840596 0.47741914 0.63867323 0.21312234

[13] 0.44391952 0.91023820 0.65073177 0.27513297 0.04773861 0.16330239

[19] 0.92470845 0.12514454 0.39971588 0.35141564 0.09207440 0.74472232

[25] 0.34751726 0.42545178 0.75225478 0.63556774 0.68208398 0.63636063

[31] 0.81766824 0.82126929 0.43704780 0.73517460 0.71485678 0.24051009

[37] 0.12722587 0.75562457 0.21180085 0.21794575 0.26872378 0.95176583

[43] 0.75195745 0.58472364 0.98774324 0.90409330 0.59995375 0.59209092

[49] 0.24754700 0.33053619

A similar kind of operation (though using a different formula, and with a

much longer cycle) is used internally by R to produce pseudorandom numbers

automatically with the function runif ().

Syntax
runif(n, min = a, max = b)

Execution of this command produces n pseudorandom uniform numbers on the

interval [a, b]. The default values are a = 0 and b = 1. The seed is selected

internally.

Example 2.2:

Generate five uniform pseudorandom numbers on the interval [0, 1], and 10

uniform such numbers on the interval [−3,−1].

Solution:
>runif(5)

>runif(10, min = -3, max = -1)

 [1] -1.666937 -2.051194 -2.493232 -2.160725 -1.532510 -2.508264 -2.071462

 [8] -2.462480 -2.301991 -1.533259

Statistical Computing and Numerical Methods

Using R Page 36

2.3.2 The Inverse Transform Method
The inverse transform method of generating random variables is based on the

following well known result,

(a) Inverse Transform Method for Continuous distribution
Theorem 2.1: (Probability Integral Transformation)
 If X is a continuous random variable with cdf FX(x), then U = FX(x) ~ Uniform(0, 1).

The inverse transform method of generating random variables applies the

probability integral transformation. Define the inverse transformation,

 (u) = inf {x: FX(x) = u}, 0 < u < 1.

If U ∼ Uniform(0, 1), then for all x ∈ R

P (
 (U) ≤ x) = P(inf{t : FX(t) = U} ≤ x)

 = P(U ≤ FX(x))

 = FU(FX(x)) = FX(x),

and therefore
 (U) has the same distribution as X. Thus, to generate a random

observation X, first generate a Uniform (0,1) variate u and deliver the inverse value

 (u). The method is easy to apply, provided that

 is easy to compute. The

method can be applied for generating continuous or discrete random variables.

The method can be summarized as follows:

 1. Derive the inverse function
 (u).

2. Write a command or function to compute
 (u).

3. For each random variate required:

 (a) Generate a random u from Uniform (0,1).

(b) Deliver x =
 (u).

Example 2.3: (continuous case)

This example uses the inverse transform method to simulate a random sample from

the distribution with density fX(x) = 3x
2
, 0 < x < 1.

Solution:

Here FX (x) = x
3
 for 0 < x < 1, and

 (u) = u
1/3

. Generate all n required random

uniform numbers as vector u. Then u^(1/3) is a vector of length n containing the

sample x1, . . . , xn.

Statistical Computing and Numerical Methods

Using R Page 37

R-commands:
>n <- 100

>u <- runif(n)

>x <- u^(1/3)

>x

 [1] 0.8017509 0.8092308 0.7659171 0.6885996 0.9530523 0.9322022 0.9973710

 [8] 0.7564671 0.7752620 0.7826785 0.9585013 0.8017270 0.8821938 0.5613602

 [15] 0.7773277 0.8820697 0.3013756 0.7065704 0.5502851 0.8371029 0.6610354

 [22] 0.8130874 0.5110281 0.8630272 0.4970090 0.8709242 0.6978373 0.8514141

 [29] 0.9395620 0.9280061 0.5633003 0.6425118 0.8178466 0.6948340 0.7486318

 [36] 0.8709448 0.9229255 0.5590832 0.8017308 0.9581135 0.7566680 0.7471477

 [43] 0.6538598 0.7765798 0.9336162 0.5726958 0.9556333 0.9484229 0.7977834

 [50] 0.8671924 0.9998218 0.8620407 0.7930682 0.6803484 0.9994234 0.6145732

 [57] 0.7644595 0.6422658 0.3873663 0.9850638 0.4256389 0.7753329 0.5766481

 [64] 0.9936862 0.9762227 0.8037953 0.9850256 0.8906251 0.8682515 0.6050461

 [71] 0.8532275 0.9574121 0.6661810 0.7092815 0.6293770 0.8857795 0.6183310

 [78] 0.4612910 0.5768998 0.9038709 0.6654110 0.8742584 0.6437220 0.2246501

 [85] 0.8885111 0.5929618 0.9203562 0.5340973 0.9815111 0.9348766 0.1928312

 [92] 0.8935198 0.8835455 0.5937719 0.7211663 0.7465011 0.7337043 0.9215036

 [99] 0.3692013 0.3787825

Example 2.4: (Exponential distribution)

Apply the inverse transform method to generate a random sample of size 50 from

the exponential distribution with mean (1/λ). (Take λ=2)

Solution:

If X ∼ Exp(λ), then for x > 0 the cdf of X is FX(x) = 1 – e
-λx

. The inverse

transformation is
 (u) = -

 log(1 − u). Note that U and 1 – U have the same

distribution and it is simpler to set x = -

 log (u).

To generate a random sample of size n with parameter lambda:

-log(runif(n)) / lambda

R-command:
>n <- 50

> lambda<-2

>u <- runif(n)

>x <- -log(u) / lambda

>x

 [1] 0.3598627242 0.3347805546 0.7596332007 0.2463782606 0.2239335267

 [6] 0.2036329982 1.0090972137 0.9739047124 0.0001422623 0.6846383850

 [11] 0.7637487292 0.1994585613 0.4722244805 0.2802124042 1.1055513937

 [16] 0.1143128321 0.4937254753 0.0903049990 0.0082735617 0.2923288222

[21] 0.5257431151 0.0186001460 0.1579470824 0.2890119377 0.8753127855

[26] 0.2217230566 0.0319919366 0.2026061099 0.1926596397 1.0311402242

Statistical Computing and Numerical Methods

Using R Page 38

[31] 0.7202690999 0.2936336867 0.2628641877 0.4913609900 0.5257280754

[36] 0.2731594433 0.1822659334 0.3529688704 0.7823672629 0.5368235895

[41] 0.1940126521 1.0570093869 0.0291803706 0.8973065598 0.0545378281

[46] 2.0402737576 0.2391678679 0.2475638189 0.2304718313 0.4128641585

(b) Inverse Transform Method for Discrete distributions
 The inverse transform method can also be applied to discrete distributions. If X is

a discrete random variable and

 ...<x i-1 <x i <x i+1 <...

are the points of discontinuity of FX(x), then the inverse transformation is

 (u)=xi, where FX(xi-1) < u ≤ FX(xi). For each random variate required:

1. Generate a random u from Uniform (0,1).

2. Deliver xi where F(xi-1) < u ≤ F(xi).

Note: The solution of F(xi-1) < u ≤ F(xi) in Step (2) may be difficult for some

distributions.

Example 2.5: (Two point distribution)

Apply the inverse transform to generate a random sample of size 100 of Bernoulli

(p =0.4) variates.

Solution:

This example illustrates computing the inverse cdf of a discrete random variable in

the simplest case.

In this example, FX(0) = fX(0) = 1−p and FX(1) = 1. Thus,
 (u)=1 if u>0.6 and

 (u) = 0 if u ≤ 0.6. The generator should therefore deliver the numerical value of

the logical expression u>0.6.

R-command:
> n <- 100

> p <- 0.4

> u <- runif(n)

 > x <- as.integer(u > 0.6) #(u > 0.6) is a logical vector

> x

 [1] 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0

 [38] 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0

 [75] 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0

> mean(x)

[1] 0.42

Statistical Computing and Numerical Methods

Using R Page 39

> var(x)

[1] 0.2460606

Compare the sample statistics with the theoretical moments. The sample mean of a

generated sample should be approximately p =0 .4 and the sample variance should

be approximately p(1−p)=0.24.

Example 2.6: (Geometric distribution)
Use the inverse transform method to generate a random sample of size 200 of

geometric variates with parameter p = 1/4.

Solution:

The probability mass function is f(x) = pq
x
, x = 0, 1, 2, . . ., where q = 1 − p. At the

points of discontinuity x = 0, 1, 2, . . ., the cdf is F(x) = 1 – q
x+1

. For each sample

element we need to generate a random uniform u and solve

 1 – q
x
 < u ≤ 1 – q

x+1
.

This inequality simplifies to x < log(1 − u)/ log(q) ≤ x + 1. The solution is x + 1 =

⌈

⌉, where ⌈ ⌉ denotes the ceiling function (the smallest integer not less than

t).

R-command:
> n <- 200

> p <- 0.25

> u <- runif(n)

> x <- ceiling(log(1-u) / log(1-p)) – 1

> x

 [1] 22 0 9 0 6 6 1 1 3 3 1 3 0 3 1 1 1 4 2 2 1 7 4 2 12

 [26] 0 7 10 4 1 2 2 2 10 7 3 8 4 1 0 6 0 0 0 0 3 10 4 2 0

 [51] 2 5 6 28 1 6 0 0 2 0 0 1 1 10 2 2 0 1 2 6 0 10 7 0 1

 [76] 3 0 1 3 0 2 6 2 1 3 4 1 0 1 3 4 0 10 0 0 6 2 1 6 2

[101] 0 0 7 0 1 1 4 4 9 0 5 2 7 9 0 1 0 2 4 2 0 2 1 4 8

[126] 1 2 5 2 0 1 2 0 5 0 0 1 3 3 3 0 1 0 1 7 0 4 7 4 0

[151] 5 4 4 2 0 0 7 0 0 0 1 3 3 1 3 7 4 2 5 1 0 1 0 0 0

[176] 2 4 0 1 2 3 3 7 0 1 1 6 3 1 2 4 0 2 3 0 2 6 6 5 3

Here again there is a simplification, because U and 1 − U have the same

distribution. Also, the probability that log(1− u)/ log(1− p) equals an integer is

zero. The last step can therefore be simplified to

>x<- floor(log(u) / log(1-p))

>x

[1] 0 6 0 6 0 0 4 4 1 1 2 1 13 1 3 4 3 1 2 2 4 0 1 2 0

Statistical Computing and Numerical Methods

Using R Page 40

 [26] 4 0 0 1 3 2 1 2 0 0 1 0 0 4 16 0 7 7 6 7 1 0 1 2 8

 [51] 2 0 0 0 2 0 5 5 2 7 10 4 3 0 2 2 9 3 1 0 5 0 0 5 3

 [76] 1 6 4 1 6 2 0 2 3 1 1 3 6 3 1 1 14 0 7 12 0 2 4 0 2

[101] 7 7 0 10 3 3 0 1 0 6 0 2 0 0 14 3 7 2 1 2 5 1 4 1 0

[126] 4 2 0 2 5 3 2 10 0 12 7 3 1 1 1 8 3 11 3 0 4 1 0 1 7

[151] 0 1 1 2 6 7 0 5 7 6 4 1 1 3 1 0 1 2 0 4 5 4 8 5 7

[176] 2 1 5 3 2 1 1 0 11 4 3 0 1 4 2 1 7 2 1 5 2 0 0 0 1

Note: 1. Ceiling takes a single numeric argument x and returns a numeric vector

containing the smallest integers not less than the corresponding elements of x.

2. floor takes a single numeric argument x and returns a numeric vector containing

the largest integers not greater than the corresponding elements of x.

2.3.3 Transformation Method
Many types of transformations other than the probability inverse transformation

can be applied to simulate random variables. Some examples are,

Example 2.7:

If Z ∼ N(0,1), then V = ∼ (1).

Solution:

 If Z ∼ N(0,1), then V = has chi-square distribution with one degree of
freedom. This transformation determines an algorithm for generating random chi-

square variates with one degree of freedom.

1. Generate a random z from N(0,1).

2. Deliver v= z
2

 R-commands:
 > n<-50

> z<-rnorm(n,0,1)

> z

> v<-z*z

> v

[1] 0.305991600 0.936708505 0.176985090 0.019269297 4.706842164 8.082750751

 [7] 0.416388769 0.674569347 0.081927138 1.185487582 0.334547126 1.837157329

[13] 0.239230745 0.831482321 2.606537497 0.026806421 0.031947524 0.002424443

[19] 0.046569952 0.006557288 1.062038943 1.329896308 0.417741028 0.006213941

[25] 0.893791994 1.493647667 1.177504868 0.044944794 0.253231402 0.207673422

[31] 0.611983256 0.298337772 1.073820376 1.189793711 2.417628174 0.003843653

[37] 0.571621345 2.168156633 2.408532957 0.025244563 0.363919032 1.350905815

[43] 2.433898855 0.239302537 2.627804748 0.510848305 0.471539636 0.886617652

[49] 2.204411292 0.501172239

Example 2.8

Statistical Computing and Numerical Methods

Using R Page 41

If U ∼ (m) and V ∼ (n) are independent, then F =

 has the F distribution

with (m, n) degrees of freedom.

Solution :

If U follows Chi-square with m degree of freedom an V follows Chi-square with n

degree of freedom and they are independent then F =

 has F distribution with

(m ,n) degrees of freedom. This transformation determines an algorithm for

generating random variates.

1. Generate a random u from (m).

2. Generate a random v from (n).

3. Deliver f =

R-commands:
 >n<-10

 > df1<-25

 > df2<-30

 > u<-rchisq(n, df1)

 > u

 > v<-rchisq(n,df2)

 > v

 > f<-(u/df1)/(v/df2)

 > f

 [1] 1.0321807 0.9670168 2.0695526 0.7978024 1.1737535 0.8972368 0.9310880

 [8] 1.0385090 1.5052634 0.6193445 0.3652712 0.7769930 1.5944072 1.3368636

 [15] 1.0971476 1.1805528 0.8509757 1.0530814 0.7395804 0.6777567 0.3872551

 [22] 0.7401450 1.0015335 1.4481652 0.5785281 1.0139439 1.2096411 0.8026473

 [29] 1.0641119 0.6810229 0.7686142 2.4284338 1.1694846 1.1182540 1.8254075

 [36] 0.8226599 1.0921456 1.0326177 0.9808855 1.2804703 1.1069543 0.8580444

 [43] 0.7096639 0.6385750 1.3748067 0.9581666 1.4010971 1.7270581 0.5388314

 [50] 0.4130219

Example 2.9:

If Z ∼ N(0,1) and V ∼ (n) are independent, then T =

√
 has the Student t

distribution with n degrees of freedom.

Solution

If Z follows N (0,1) and V follows Chi-square distribution with n degree of

freedom and they are independent then T =

√
 has the Student t distribution with

n degrees of freedom. This transformation determines an algorithm for generating

random t variates with n degree of freedom.

Statistical Computing and Numerical Methods

Using R Page 42

1. Generate a random z from N(0,1).

2. Generate a random v from (n).

3. Deliver t =

√

 R-commands:
 > n <-100

 > df1<-30

 > z <- rnorm(n,0,1)

 > z

 > v <-rchisq(n, df1)

 > v

 > t <- z/sqrt(v/n)

 >t

 [1] 0.26446379 1.39800807 3.92791932 -1.76426156 1.89240314 1.94872727

 [7] -4.36731846 -0.12477115 1.05737110 3.10173033 -2.66401373 -0.41518548

 [13] -3.60220144 0.90638595 2.05071659 0.20169017 1.22424344 -1.52899330

 [19] 2.34304814 -0.10279873 0.35987186 0.13248595 0.78447612 0.97159389

 [25] 1.41866892 1.16106491 3.51499716 1.62117628 -0.03927726 -4.09739243

 [31] 0.14825550 -2.64193688 2.01529940 -1.51096553 -1.08861161 1.60956835

 [37] -1.51931718 1.42138984 -2.24604129 -2.42070540 1.39707719 0.91635615

 [43] 0.16044138 -1.63285685 0.60393770 2.22841710 -0.27656098 1.26268787

 [49] 1.56338839 -0.03879602 0.47203525 -0.71188275 -1.21320443 -0.48620090

 [55] -3.58978950 0.45394887 2.11485752 1.06356104 2.42630003 -0.02625576

 [61] -3.41974745 -0.88714154 -1.26062016 1.52293729 1.41621213 3.41113041

 [67] -0.54567125 1.61609607 -0.65802077 -1.09476607 0.92254807 -1.57262214

 [73] 2.13950748 0.71165649 -0.26277114 -1.72264936 -1.91914977 -5.64431301

 [79] 1.25059713 -0.57808189 -1.05332032 1.69372271 3.67224005 -0.05815857

 [85] 0.33717586 1.80094828 3.59441233 0.39715328 -0.10471523 0.21402481

 [91] 0.34962907 0.53354374 -1.41554722 -0.45955978 -2.79763750 -0.45922718

 [97] -0.93228173 1.59851480 -0.07998800 -1.92484870

Example 2.10:

If U, V ∼ Unif(0,1) are independent, then Z1 =√ cos(2πV),

 Z2 =√ sin(2πU) are independent standard normal variables.

Solution:

If U, V follows Uniform (0,1) distribution and they are independent, then Z1

=√ cos(2πV) and Z2 =√ sin(2πU) has independent standard

normal distribution . This transformation determines an algorithm for generating

two independent standard Normal variates.

1. Generate a random u from Uniform (0,1).

2. Generate a random v from Uniform (0,1).

Statistical Computing and Numerical Methods

Using R Page 43

3. Deliver z1=√ cos(2πv) and z2 =√ sin(2πu)

 R-commands:
> n<-10

> u<-runif(n)

> u

> v<-runif(n)

> v

> z1<-sqrt(-2*log(u))*cos(2*pi*v)

> z1

 [1] 1.1250714 0.7727131 -0.3350260 -0.1239726 0.1766388 -0.2534140

 [7] -1.6997664 1.6549950 -0.1669520 1.2223246

> z2<-sqrt(-2*log(v))*sin(2*pi*u)

> z2

 [1] -0.0586010 -0.2061662 -0.4627048 -0.1096821 -0.6211043 0.8008360

 [7] 1.1698148 0.2115135 -0.8181893 0.8186927

Example 2.11:

If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then X =

 has the

Beta(r, s) distribution.

Solution:
The following relation between beta and gamma distributions provides another

beta generator.

If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then X=

 has the

Beta(r, s) distribution. This transformation determines an algorithm for generating

random Beta (a, b) variates.

1. Generate a random u from Gamma (a, 1).

2. Generate a random v from Gamma (b, 1).

3. Deliver x =

This method is applied below to generate a random Beta (3, 2) sample.

 R-commands:
 > n <- 50

> a <- 3

> b <- 2

> u <- rgamma(n, shape=a, rate=1)

> v <- rgamma(n, shape=b, rate=1)

Statistical Computing and Numerical Methods

Using R Page 44

> x <- u / (u + v)

> x

 [1] 0.59648930 0.24795800 0.47529540 0.73482820 0.57455776 0.46957939

 [7] 0.16626121 0.34215751 0.90528863 0.66933936 0.91986937 0.64417831

[13] 0.60251166 0.29869794 0.66538529 0.59687444 0.60106581 0.55351348

[19] 0.61768632 0.22185070 0.70750753 0.82545663 0.64704160 0.78169584

[25] 0.50398825 0.68894688 0.91392111 0.26920499 0.80817692 0.09896981

[31] 0.63780512 0.67690692 0.64038829 0.55494909 0.88168902 0.47601543

[37] 0.70737323 0.74133759 0.79254969 0.47663673 0.85928021 0.29155043

[43] 0.66012778 0.65084000 0.51040890 0.24622534 0.44460079 0.84453544

[49] 0.66177467 0.13825054

Example 2.12:

If U, V ∼ Unif(0,1) are independent, then X= ⌊

⌋ has the

Logarithmic(θ) distribution, where ⌊ ⌋ denotes the integer part of x.

Solution:
This example provides another, more efficient generator for the logarithmic

distribution. If U, V are independent Uniform (0,1) random variables, then

 X= ⌊

⌋

has the Logarithmic(θ) distribution . This transformation provides a simple and

efficient generator for the logarithmic distribution.

1. Generate u from Uniform (0, 1).

2. Generate v from Uniform (0, 1).

3. Deliver x = ⌊

⌋

 R-commands:
> n <- 1000

> theta <- 0.5

> u <- runif(n) #generate logarithmic sample

> v <- runif(n)

> x <- floor(1 + log(v) / log(1 - (1 - theta)^u))

> x

 [1] 1 1 3 2 6 1 3 1 1 2 1 1 7 1 1 1 1 1 2 1 2 1 1 1 1 1 1 6 1 1 1 1 1 1 2 1 1

 [38] 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 3 1 1 3 1 2 1 2 1 1 1 2 1 1 1 1 1

 [75] 1 2 1 1 1 1 1 1 1 1 1 1 1 2 4 1 1 1 2 1 1 4 1 1 1 1

Statistical Computing and Numerical Methods

Using R Page 45

2.3.4 Sums and Mixtures
Sums and mixtures of random variables are special types of transformations.

In this section we focus on sums of independent random variables (convolutions)

and several examples of discrete and continuous mixtures.

Convolutions

Let X1, . . .,Xn be independent and identically distributed with distribution Xj ∼ X,

and let S = X1 + · · · + Xn. The distribution function of the sum S is called the n-

fold convolution of X and denoted

. It is straightforward to simulate a

convolution by directly generating X1, . . .,Xn and computing the sum.

Several distributions are related by convolution. If ν > 0 is an integer, the

chi-square distribution with ν degrees of freedom is the convolution ofνi.i.d.

squared standard normal variables. The negative binomial distribution NegBin(r,

p) is the convolution of r i.i.d. Geom(p) random variables. The convolution of r

independent Exp (λ) random variables has the Gamma(r, λ) distribution.

In R it is of course easier to use the functions rchisq, rgeom and rnbinom to

generate chi-square, geometric and negative binomial random samples. The

following example is presented to illustrate a general method that can be applied

whenever distributions are related by convolutions.

Example 2.13: (Chi-square)

This example generates a chi-square random variable as the convolution of ν

squared normal. If Z1, . . . , Zv are iid N(0,1) random variables, then

V=
 +

 + +
 has the χ

2
(ν) distribution.

Steps to generate a random sample of size n from χ2(ν) are as follows.

1. Fill an n × ν matrix with nν random N(0,1) variates.

2. Square each entry in the matrix (1).

3. Compute the row sums of the squared normals. Each row sum is one

random observation from the χ
2
(ν) distribution.

4. Deliver the vector of row sums.

An example with n = 1000 and ν = 2 is shown below.

n <- 1000

nu <- 2

X <- matrix(rnorm(n*nu), n, nu)^2 #matrix of sq. normals

 #sum the squared normals across each row: method 1

y <- rowSums(X)

 #method 2

y <- apply(X, MARGIN=1, FUN=sum) #a vector length n

Statistical Computing and Numerical Methods

Using R Page 46

mean(y)

mean(y^2)

Mixtures

A random variable X is a discrete mixture if the distribution of X is a weighted sum

FX(x) =∑
 for some sequence of random variables X1, X2, . . . and θi > 0

such that ∑ = 1. The constants θi are called the mixing weights or mixing

probabilities. Although the notation is similar for sums and mixtures, the

distributions represented are different.

A random variable X is a continuous mixture if the distribution of X is

FX(x) =∫

 for a family X|Y = y indexed by the real numbers y

and weighting function fY such that ∫

Compare the methods for simulation of a convolution and a mixture of

normal variables. Suppose X1 ∼ N(0, 1) and X2 ∼ N(3, 1) are independent.

The notation S = X1 + X2 denotes the convolution of X1 and X2. The distribution of

S is normal with mean μ1+ μ2 = 3 and variance
 +

 =2.

To simulate the convolution:

1. Generate x1 ∼ N (0, 1).

2. Generate x2 ∼ N (3, 1).

3. Deliver s = x1 + x2.

We can also define a 50% normal mixture X, denoted FX(x) = 0.5FX1(x)+0.5FX2(x).

Unlike the convolution above, the distribution of the mixture X is distinctly non-

normal; it is bimodal.

To simulate the mixture:

1. Generate an integer k ∈ {1, 2}, where P(1) = P(2) = 0.5.

2. If k = 1 deliver random x from N(0, 1);

 if k = 2 deliver random x from N(3, 1)

Statistical Computing and Numerical Methods

Using R Page 47

Unit III

3.1Methods to find solution of non-linear Equation

(A) Bisection Method

 The bisection method is a root-finding method that

repeatedly bisects an interval and then selects a subinterval in which a root must lie

for further processing. It is a very simple and robust method, but it is also relatively

slow. Because of this, it is often used to obtain a rough approximation to a solution

which is then used as a starting point for more rapidly converging methods.

The method is applicable for numerically solving the equation f(x) = 0 for

the real variable x, where f is a continuous function defined on an interval [a, b]

and where f(a) and f(b) have opposite signs. In this case a and b are said to bracket

a root since, by the intermediate value theorem, the continuous function f must

have at least one root in the interval (a, b).

At each step the method divides the interval in two by computing the

midpoint c = (a + b) / 2 of the interval and the value of the function f(c) at that

point. Unless c is itself a root (which is very unlikely, but possible) there are now

only two possibilities: either f(a) and f(c) have opposite signs and bracket a root,

or f(c) and f(b) have opposite signs and bracket a root. The method selects the

subinterval that is guaranteed to be a bracket as the new interval to be used in the

next step. In this way an interval that contains a zero of f is reduced in width by

50% at each step. The process is continued until the interval is sufficiently small.

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the

new value for b, and if f(b) and f(c) have opposite signs then the method sets c as

the new a. (If f(c)=0 then c may be taken as the solution and the process stops.) In

both cases, the new f(a) and f(b) have opposite signs, so the method is applicable to

this smaller interval.

Iteration Process:

Given the interval [a, b], define c = (a + b)/2. Then

 if f(c) = 0 (unlikely in practice), then halt, as we have found a root,

 if f(c) and f(a) have opposite signs, then a root must lie on [a, c], so assign b

= c,

 else f(c) and f(b) must have opposite signs, and thus a root must lie on [c, b],

so assign a = c.

https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Intermediate_value_theorem

Statistical Computing and Numerical Methods

Using R Page 48

Halting Conditions:

There are three conditions which may cause the iteration process to halt:

1. As indicated, if f(c) = 0.

2. We halt if both of the following conditions are met:

 The width of the interval (after the assignment) is sufficiently small,

that is b- a < εstep, and

 The function evaluated at one of the end point |f(a)| or |f(b)| < εabs.

3. If we have iterated some maximum number of times, say N, and have not

met Condition 1, we halt and indicate that a solution was not found.

If we halt due to Condition 1, we state that c is our approximation to the root. If

we halt according to Condition 2, we choose either a or b, depending on

whether |f(a)| < |f(b)| or |f(a)| > |f(b)|, respectively.

 If we halt due to Condition 3, then we indicate that a solution may not exist

(the function may be discontinuous).

Example 3.1:

Find the root of f(x) = x
2
 - 3. Let εstep = 0.01, εabs = 0.01 and start with the interval

[1, 2].

Solution:
Table 3.1: Bisection Method Applied to f(x) = x

2
 - 3.

a b f(a) f(b) c=(a+b)/2 f(c) Update New(b-a)

1.0 2.0 -2.0 1.0 1.5 -0.75 a=c 0.5

1.5 2.0 -0.75 1.0 1.75 0.062 b=c 0.25

1.5 1.75 -0.75 0.0625 1.625 -0.359 a=c 0.125

1.625 1.75 -0.3539 0.0625 1.6875 -0.1523 a=c 0.0625

1.6875 1.75 -0.1523 0.0625 1.7188 -0.0457 a=c 0.0313

1.7188 1.75 -0.0457 0.0625 1.7344 0.0081 b=c 0.0156

1.71988 1.7344 -0.0457 0.0081 1.7266 -0.0189 a=c 0.0078

Thus, with the seventh iteration, we note that the final interval, [1.7266, 1.7344],

has a width less than 0.01 and |f(1.7344)| < 0.01, and therefore we chose b =1.7344

to be our approximation of the root.

R programme to find the root of f(x) = x
2
 - 3. Let εstep = 0.01, εabs = 0.01 and start

with the interval [1, 2].

R-Commands:
 bisec<-function(a,b){

 f <- function(x) {

 x^2-3

 }

Statistical Computing and Numerical Methods

Using R Page 49

 it <- 0

 eps <- 0.001

 r <- seq(a, b, length=3)

 x <- c(f(r[1]), f(r[2]), f(r[3]))

 if (x[1] * x[3] > 0)

 stop("f does not have opposite sign at endpoints")

 while(it < 1000 && abs(x[2]) > eps) {

 it <- it + 1

 if (x[1]*x[2] < 0) {

 r[3] <- r[2]

 x[3] <- x[2]

 } else {

 r[1] <- r[2]

 x[1] <- x[2]

 }

 r[2] <- (r[1] + r[3]) / 2

 x[2] <- f(r[2])

 cat(it,c(r[1],r[3], x[1],x[3],r[2],x[2]),"\n")

 }

 }

 bisec(1,2)

Output:
 1 1.5 2 -0.75 1 1.75 0.0625

2 1.5 1.75 -0.75 0.0625 1.625 -0.359375

3 1.625 1.75 -0.359375 0.0625 1.6875 -0.1523438

4 1.6875 1.75 -0.1523438 0.0625 1.71875 -0.04589844

5 1.71875 1.75 -0.04589844 0.0625 1.734375 0.008056641

6 1.71875 1.734375 -0.04589844 0.008056641 1.726562 -0.01898193

7 1.726562 1.734375 -0.01898193 0.008056641 1.730469 -0.005477905

8 1.730469 1.734375 -0.005477905 0.008056641 1.732422 0.001285553

9 1.730469 1.732422 -0.005477905 0.001285553 1.731445 -0.00209713

10 1.731445 1.732422 -0.00209713 0.001285553 1.731934 -0.0004060268

Statistical Computing and Numerical Methods

Using R Page 50

(B) Newton-Raphson Method
In numerical analysis, Newton's method (also known as the Newton–

Raphson method), named after Isaac Newton and Joseph Raphson, is a method for

finding successively better approximations to the roots (or zeroes) of a real-

valued function.

The Newton–Raphson method in one variable is implemented as follows:

The method starts with a function f defined over the real numbers x, the

function's derivative f’, and an initial guess x0 for a root of the function f. If the

function satisfies the assumptions made in the derivation of the formula and the

initial guess is close, then a better approximation x1 is

 = –

The process is repeated as

 = –

until a sufficiently accurate value is reached.

Where,

xi = value of the root at iteration i

xi+1 = a revised value of the root at iteration i +1

f(xi) = value of the function at iteration i

f’(xi) = derivative of f(x) evaluated at iteration i

This algorithm is first in the class of Householder's methods, succeeded by Halley's

method. The method can also be extended to complex functions and to systems of

equations.

Example 3.2:

Use the Newton-Raphson iteration method to estimate the root of the following

function employing an initial guess of x0 =3,

f(x) = - 2x -2

Solution:

f(x) = - 2x -2

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Joseph_Raphson
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Householder%27s_method
https://en.wikipedia.org/wiki/Halley%27s_method
https://en.wikipedia.org/wiki/Halley%27s_method

Statistical Computing and Numerical Methods

Using R Page 51

Let us find the derivative of the function first,

 (x) = 2x - 2

The initial guess is x0 = 3

Table 3.2:

i Iteration f(xi) = - 2x -2 (xi) = 2x - 2 = –

0 1
st
 3 (3)

2
 -2(3)-2=1 2(3)-2=4 3-(1/4)=2.75

1 2
nd

 2.75 0.0625 3.5 2.73214

2 3
rd

 2.73214 3.0898 x10
-4

3.46428 2.73205

3 4
th
 2.73205

So the answer will be 2.732 (in three decimal places).

R- Commands:
NRM<-function(x){

fx<-(x^2-2*x-2)

dfx<-(2*x-2)

xf<-x-(fx/dfx)

it<-1

while(abs(fx)>0.00001&it<100){

x<-xf

fx<-(x^2-2*x-2)

dfx<-(2*x-2)

xf<-x-(fx/dfx)

it<-it+1

}

list(a=xf, iteration=it)

}

NRM(3)

Output:
$a

[1] 2.732051

$iteration

[1] 4

Statistical Computing and Numerical Methods

Using R Page 52

Unit IV
4.1 Iterative methods for solving linear system of equations

As a numerical technique, Gaussian elimination is rather unusual because it

is direct. That is, a solution is obtained after a single application of Gaussian

elimination. Once a “solution” has been obtained, Gaussian elimination offers no

method of refinement. The lack of refinements can be a problem because, as the

previous section shows, Gaussian elimination is sensitive to rounding error.

Numerical techniques more commonly involve an iterative method. For

example, in calculus you probably studied Newton’s iterative method for

approximating the zeros of a differentiable function. In this section you will look at

two iterative methods for approximating the solution of a system of n linear

equations in n variables.

(A) Jacobi Method
The first iterative technique is called the Jacobi method, after Carl Gustav Jacob

Jacobi (1804–1851). It is simplest iterative method for solving linear system

Ax = b. This method makes two assumptions: (1) that the system given by

 + + + =

 + + + =

 + + + =

has a unique solution and (2) that the coefficient matrix A has no zeros on its main

diagonal. If any of the diagonal entries , , are zero, then rows or

columns must be interchanged to obtain a coefficient matrix that has nonzero

entries on the main diagonal.

 Main idea of Jacobi

To begin, solve the 1
st
 equation for , the 2

nd
 equation for and so on to obtain

the rewritten equations:

 =

 (- - - -)

 =

 (- - - -)

 =

 (- - - -)

Statistical Computing and Numerical Methods

Using R Page 53

 Then make an initial guess of the solution = (

,

,

, ,

).

Substitute these values into the right hand side the of the rewritten equations to

obtain the first approximation, (

,

,

, ,

). This accomplishes one

iteration.

 In the same way, the second approximation (

,

,

, ,

) is

computed by substituting the first approximation’s x -vales into the right hand side

of the rewritten equations.

By repeated iterations, we form a sequence of approximations

 =

 , k=1, 2, 3, …..

The Jacobi Method for each k 1, generates the components

 of from

 by,

=

 [∑

] for i= 1, 2, ,n

Example 4.1:

Use the Jacobi method to approximate the solution of the following system of

linear equations.

5 - 2 + 3 = -1

 -3 + 9 + = 2

 2 - - 7 = 3

Continue the iterations until two successive approximations are identical when

rounded to three significant digits.

Solution:

To begin, write the system in the form

 = -

 +

 -

 =

 +

 -

 = -

 +

 -

Because you do not know the actual solution, choose x1 = 0, x2 =0, x3 = 0 as a

convenient initial approximation. So, the first approximation is

 = -

 +

 (0) -

 (0) = -0.200

Statistical Computing and Numerical Methods

Using R Page 54

 =

 +

 (0) -

 (0) 0.222

 = -

 +

 (0) -

 (0) -0.429

Continuing this procedure, you obtain the sequence of approximations shown in

following Table.

Table 4.1

n 0 1 2 3 4 5 6 7

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423

Because the last two columns in above Table are identical, you can conclude that

to three significant digits the solution is

x1 = 0.186, x2 =0.331, x3 = -0.423

(B) The Gauss-Seidel Method
You will now look at a modification of the Jacobi method called the Gauss-

Seidel method, named after Carl Friedrich Gauss (1777–1855) and Philipp L.

Seidel (1821–1896). This modification is no more difficult to use than the Jacobi

method, and it often requires fewer iterations to produce the same degree of

accuracy.

With the Jacobi method, the values of xi obtained in the n
th
 approximation remain

unchanged until the entire approximation has been calculated. With the

Gauss- Seidel method, on the other hand, you use the new values of each xi as soon

as they are known. That is, once you have determined from the first equation, its

value is then used in the second equation to obtain the new . Similarly, the new

 and are used in the third equation to obtain the new and so on.

The Gauss-Seidel Method for each k 1, generates the components

 of

from by,

=

 *–∑ (

) ∑ (

)

 + for i= 1, 2, ,n

Namely,

Statistical Computing and Numerical Methods

Using R Page 55

Example 4.2:

Use the Gauss-Seidel iteration method to approximate the solution to the system of

linear equations,

5 - 2 + 3 = -1

 -3 + 9 + = 2

 2 - - 7 = 3

Continue the iterations until two successive approximations are identical when

rounded to three significant digits.

Solution:

To begin, write the system in the form

 = -

 +

 -

 =

 +

 -

 = -

 +

 -

Because you do not know the actual solution, choose x1 = 0, x2 =0, x3 = 0 as a

convenient initial approximation. So, obtain the following new value of

 = -

 +

 (0) -

 (0) = -0.200

Now that you have a new value for , however, use it to compute a new value for

 That is,

 =

 +

 (-0.200) -

 (0) 0.156

Similarly, use =-0.200 and =0.156 to compute a new value for .That is,

 = -

 +

 (-0.200) -

 (0.156) -0.508

So the first approximation is =-0.200, =0.156 and =-0.508.

Continued this iterations produce the sequence of approximation shown in

following table,

Table

n 0 1 2 3 4 5

x1 0.000 -0.200 0.167 0.191 0.186 0.186

x2 0.000 0.156 0.334 0.333 0.331 0.331

x3 0.000 -0.508 -0.429 -0.422 -0.423 -0.423

Statistical Computing and Numerical Methods

Using R Page 56

Note that after only five iterations of the Gauss-Seidel method, you achieved the

same accuracy as was obtained with seven iterations of the Jacobi method.

