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Unit -1 
1.1 Introduction to R- Language 

R is a programming language and software environment for statistical 

computing and graphics supported by the R Foundation for Statistical 

Computing. The R language is widely used among statisticians and data miners for 

developing statistical software and data analysis. Polls, surveys of data miners, and 

studies of scholarly literature databases show that R's popularity has increased 

substantially in recent years.  

R is a GNU package. The source code for the R software environment is written 

primarily in C, FORTRAN, and R.  

R is freely available under the GNU General Public License, and pre-

compiled binary versions are provided for various operating systems. While R has 

a command line interface, there are several graphical front-ends available. 

  

                 R is an implementation of the S programming language combined 

with lexical scoping semantics inspired by Scheme. S was created by John 

Chambers while at Bell Labs. There are some important differences, but much of 

the code written for S runs unaltered.  

R was created by Ross Ihaka and Robert Gentleman
 
at the University of 

Auckland, New Zealand, and is currently developed by the R Development Core 

Team, of which Chambers is a member. R is named partly after the first names of 

the first two R authors and partly as a play on the name of S. The project was 

conceived in 1992, with an initial version released in 1994 and a stable beta 

version in 2000.
 

                          R and its libraries implement a wide variety of statistical 

and graphical techniques, including linear and nonlinear modeling, classical 

statistical tests, time-series analysis, classification, clustering, and others.  

R is easily extensible through functions and extensions, and the R 

community is noted for its active contributions in terms of packages. Many of R's 

standard functions are written in R itself, which makes it easy for users to follow 

the algorithmic choices made.  

Strength of R is static graphics, which can produce publication-quality 

graphs, including mathematical symbols. Dynamic and interactive graphics are 

available through additional packages.  

The general consensus is that R compares well with other popular statistical 

packages, such as SAS, SPSS, and Stata. In a comparison of all basic features for 

statistical software R is heads up with the best of statistical software. 
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In January 2009, the New York Times ran an article about R gaining 

acceptance among data analysts and presenting a potential threat for the market 

share occupied by commercial statistical packages, such as SAS. 

 

 

1.2 R as a calculator 

R can be used as a calculator. The basic operations are + (addition), - 

(subtraction), * (multiplication), and / (division). It is also used to calculate %% 

(modular), ^ (power). For example   

> 5^3   
[1] 125 

 

>5 %% 3 

[1] 2 

 

1.3 Measures of central tendency 

 We explain how to compute measures of central tendency in R. Measures of 

central tendency are called averages. The most frequently encountered averages are 

arithmetic mean, median and mode.  

 

Example 1.1: 

The age of seven people are given as 25, 35, 45, 56, 25, 89 and 65. Find mean, 

median and mode of the age. 
 Solution: 

   age <-c(25,35,45,56,25,89,65) 

   age 

   mean (age) 

  [1] 48.57143 
 

      median(age) 

  [1] 45 

 

   x<-table(age) 

   mode<-which(x==max(x)) 

   mode 

   25 

   1 

Observe the out. The mode is 25, which is the first distinct value in the ordered series. 

 

1.4 Quartiles, deciles and percentiles 

These are some more measures of location. Median is the set of 

measurements in the value that divides the distribution in to two parts, each 

containing 50% of the observations. In the same way, quartiles Q1, Q2 and Q3 are 

https://en.wikipedia.org/wiki/New_York_Times
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the three values that divide the distribution in to four equal parts. The deciles are 

nine values that divide the distributions in to ten equal parts. The percentiles are 

the ninety nine values that divide the distribution in to hundred equal parts. 

 

Example 1.2: 

Obtain three quartiles, fifth decile and fiftieth percentile of the data given below:    
Marks in 

Statistics  

36 35 30 36 27 40 41 45 46 49 

 

Solution 

   >marks <-c(36,35,30,36,27,40,41,45,46,49) 

   >marks
 

   >a=sort(marks) 

  >Q1=quantile(a,0.25) 

  >Q1 

  25%  

  35.25 

 

  >Q2=quantile(a,0.5) 

  >Q2 

  50%  

  38 

 

  >Q3=quantile(a,0.75) 

  >Q3 

  75%  

  44 

 

  >D5=quantile(a,0.5) 

  >D5 

 50%  

 38 

 

  >P50=quantile(a,0.50) 

  >P50 

 50%  

 38 

 

1.5 Measures of Dispersion 

In statistics, dispersion (also called variability, scatter, or spread) denotes 

how stretched or squeezed a distribution (theoretical or that underlying a statistical 

sample) is. Common examples of measures of statistical dispersion are the Range, 

variance, standard deviation and inter quartile range etc.. 
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Example 1.3: 

Marks out of 50 in a subject of 12 students, in a class are given as follows: 

12, 18, 20, 12, 16, 14, 30, 32, 28, 12, 12 and 35. Obtain Range, variance, standard 

deviation and inter quartile range.  
   

Solution:  

>marks<- c(12,18,20,12,16,14,30,32,28,12,12,35) 

>marks 

 >range<-max(marks)- min(marks) 

>range 

[1] 23 

 

 >var(marks) 

[1] 76.81061 

 

 >sd(marks) 

[1] 8.764166 

 

 >a=sort(marks) 

 >Q3=quantile(a,0.75) 

 >Q1=quantile(a,0.25) 

>IQR=Q3-Q1 

>IQR 

75%  

16.5 

 
1.6 Graphical representation of data 

Statistics is a special subject that deals with large (usually) numerical data. 

The statistical data can be represented graphically. In fact, the graphical 

representation of statistical data is an essential step during statistical analysis. 

Statistical surveys and experiments provide valuable information about numerical 

scores. For better understanding and making conclusions and interpretations, the 

data should be managed and organized in a systematic form. 

A graph is the representation of data by using graphical symbols such as 

bars, pie slices, dots etc. A graph does represent a numerical data in the form of a 

qualitative structure and provides important information. 

Now we study about various types of graphical representations of the data. 

 
1.6.1 Bar chart 

A bar graph is a very frequently used graph in statistics. A bar graph is a 

type of graph which contains rectangles or rectangular bars. The lengths of these 

bars should be proportional to the numerical values represented by them. In bar 
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graph, the bars may be plotted either horizontally or vertically. But a vertical bar 

graph (also known as column bar graph) is used more than a horizontal one.        

Example 1.4: 
 Annual sales (in lakhs of Rs.) of a pharmaceutical firm for 6 year are given below. 

Year 1995 1996 1997 1998 1999 2000 

Annual sales 15 25 27 28 26 26.6 
Represent the data by Bar chart. 

 

Solution:- 

>year=(1995:2000) 

>year 

>sales=c(15,25,27,28,26,26.6) 

>sales 

>sales.year=data.frame(year,sales) 

>sales.year 

   year sales 

1 1995  15.0 

2 1996  25.0 

3 1997  27.0 

4 1998  28.0 

5 1999  26.0 

6 2000  26.6 

 

>attach(sales.year) 

>barplot(sales,xlab="year",ylab="sales",main="Bar chart",col="green") 
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Figure 1.1 Bar Diagram 

 

1.6.2 Pie chart 

A circle is used in a pie chart to represent the whole, and “slices” are used to 

represent the categories, one slice for each category. The size of a slice is 

proportional to relative frequency of the corresponding category. 

 
Example 1.5: 

                   The tax revenue of Indian (in crores of  Rs.), provide in 1984-85 

budget, when broken into various sources are given below. Represent the data by a 

pie chart. 

Sources Excise Customs Corporation tax Income Tax Others 

Tax Revenue 6526 7108 2568 560 763 
 

Solution: 

>tax=c(6526,7108,2568,560,763) 

>tax 

>names(tax)=c("Excise","Customs","Corporation tax","Income tax","Other") 

>names(tax) 

>pie(tax,main="The tax revenue of India",col=c("red","orange","green","white","pink")) 
 

 
Figure 1.2: Pie Chart 
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1.6.3 Box plot 
 
Example 1.6: 

Titanium content in an aircraft grade is an of 20 test coupons reveals the following 

titanium content (in %). 

8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83, 

8.50, 8.38, 8.29, 8.46.  

Represent data by Box plot. 

 

Solution:          
>titanium=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,            

8.60,8.83,8.50,8.38,8.29,8.46) 

>titanium 

>boxplot (titanium, main="Box plot", col=”green”) 

 

 
Figure 1.3: Box plot 

 

 

1.6.4 Histogram 
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Example 1.7 

Titanium content in an aircraft grade is an of 20 test coupons reveals the following 

titanium content (in %) 

Grade:8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,8.60,8

.83,8.50,8.38,8.29,8.46. Represent data by Histogram.            

 

Solution: 
>titanium=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71,8.75,8.60,8.83,8.50 

,8.38,8.29,8.46) 

>titanium 

>hist(titanium, main="Histogram", col="green") 

 

 
Figure 1.4: Histogram 

 
1.6.5 Stem-and-leaf plot 

Example 1.8 

Following are the number of room occupied on hotel for 30 days. Draw a stem and 

leaf diagram. 

20,14,21,29,43,17,15,26,8,14,30,23,16,46,28,11,26,35,26,28,30,22,23,7,32,19,22,1

8,27,9. 

Solution: 
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>x=c(20,14,21,29,43,17,15,26,8,14,30,23,16,46,28,11,26,35,26,28,30,22,23,7,32,19,22,18,27,9) 

>x 

>stem(x) 

 
The decimal point is 1 digit(s) to the right of the | 

  0 | 789 

  1 | 144 

  1 | 56789 

  2 | 012233 

  2 | 6667889 

  3 | 002 

  3 | 5 

  4 | 3 

  4 | 6  

 

1.7 Statistical tests in R 

 
1.7.1 One sample t – test 

One sample t-test is a statistical procedure used to examine the mean 

difference between the sample and the known value of the population mean. In one 

sample t-test, we know the population mean.  We draw a random sample from the 

population and then compare the sample mean with the population mean and make 

a statistical decision as to whether or not the sample mean is different from the 

population mean.   

We can use this analysis, for example, when we take a sample from the city 

and we know the mean of the country (population mean).  If we want to know 

whether the city mean differs from the country mean, we will use the one sample t-

test. 

  Assumptions: 

1. The dependent variable should be measured at the interval or ratio 

level (i.e., continuous).  

2. The data are independent (i.e. not correlated/related).  

3. The dependent variable should be normally distributed. 

 

Example 1.9 

The following data refer of amount of coffee (in ounces) filled by machine in six 

randomly picked jars: 15.7, 15.9, 16.3, 16.2, 15.7 and 15.9. Is the true means 

amount of coffee in a jar 16 ounces? 

 

Solution: 

Hypothesis,  
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    : µ = 16   Vs        :  µ    16 

 

To check the normality assumption we use the Shapiro-Wilk normality test. The 

hypothesis for this test is, 

          : Data follows normal distribution   

Vs    :   Data does not follows normal distribution. 

    

The Test statistics, 

    

                        t =  
 ̅   

 

√ 

        Where  s
2
 = 

∑      ̅   
   

     
 

with (n-1) degree of freedom where n is sample size. 

 

R-commands: 
>x <- c(15.7,15.9,16.3,16.2,15.7,15.9) 

>x 

>shapiro.test(x) 

Shapiro-Wilk normality test 

data:  x 

W = 0.8788, p-value = 0.2636 

> t.test(x,mu=16) 

               One Sample t-test 

data:  x 

t = -0.48795, df = 5, p-value = 0.6462 

alternative hypothesis: true mean is not equal to 16 

95 percent confidence interval: 

 15.68659 16.21341 

sample estimates: 

mean of x  15.95 

 

Interpretation of output: 

The p-value of Shapiro-wilk normality test is 0.264. Which is greater than 0.05, 

hence we accept null hypothesis at 5% level of significance. i.e our data follows 

normal distribution. Thus, the assumption of normality is satisfied. 

The p-value of one sample t-test is 0.6462 which is greater than 0.0.5. Hence 

we accept null hypothesis. Thus, we can conclude that true mean is equal to 16. i.e. 

true means amount of coffee in a jar 16 ounces. 

 

If the assumption of Normality of parent population is not satisfied in one 

sample t-test then non-parametric alternative to one sample t-test suggested by 

Wilcoxon known as One sample Wilcoxon signed rank test.  
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 1.7.2 One sample Wilcoxon signed rank test (One sample Median test)  

The One-Sample Wilcoxon Signed Rank test is a non parametric 

alternative to a one-sample t-test. The test determines whether the median of the 

sample is equal to some specified value.  

 

Example 1.10: 

Titanium content in an aircraft grade is an of 20 test coupons reveals the following 

titanium content (in %). 

8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83, 

8.50, 8.38, 8.29, 8.46. Apply the Wilcoxon signed rank test to test the hypothesis 

that median titanium content is 8.5%. 

Solution: 

Hypothesis,  

                             : M= 8.5   Vs        :  M   8.5 

 

The Test statistics, 

  f(t) = (
     

 
)                  for t=0,1,2,………(        

 

f(u|t) = 
(
  
 

)(
  
 
)

     
 

  for u= 0,1,2,……,n 

 

R-commands: 
> x=c(8.32,8.05,8.93,8.65,8.25,8.46,8.52,8.35,8.36,8.41,8.42,8.30,8.71, 8.75, 8.60, 8.83, 8.50, 

8.38, 8.29, 8.46) 

> x 

> wilcox.test(x,mu=8.5) 

 

        Wilcoxon signed rank test with continuity correction 

data:  x 

V = 80.5, p-value = 0.573 

alternative hypothesis: true location is not equal to 8.5 

 

Interpretation of output: 

The p-value of wilcoxon signed rank test is 0.572 which is greater than 0.05. 

Hence we accept   . Thus we can conclude that true Median is equal to 8.5. 

  

1.7.3 Independent two sample t-test 
The independent two-sample t-test is used to test whether two population 

means are significantly different from each other, using the means from randomly 

drawn samples. 
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  Assumptions: 

1. The dependent variable should be measured at the interval or ratio 

level (i.e., continuous).  

2. The independent variable should consist of two categorical, independent 

groups. 

3. The data are independent (i.e. not correlated/related).  

4. The dependent variable should be normally distributed for each group of the 

independent variable. 

 

Example 1.11: 

By Using Independent two sample t-test, check whether the mean of two 

populations equal or not. 

                       X=28, 31, 26, 27, 23, 38, 37 

                       Y=37, 42, 34, 37, 35 

 

Solution: 

Hypothesis 

   :    =    Vs    :         

 

Hypothesis for normality: 

   : Data follows normal distributions Vs 

  : Data does not follow distributions 

 

The Test statistics, 

  t = 
 ̅   ̅

 √
 

  
 

 

  
 
   If   

  = 
∑      ̅    

   

      
  and   

  = 
∑      ̅    

   

      
  then s

2
 = 

        
          

 

         
  

with           degree of freedom. 

 

R- command: 
>x=c(28,31,26,27,23,38,37) 

>x 

>y=c(37,42,34,37,35) 

>y 

>shapiro.test(x) 

Shapiro-Wilk normality test 

data:  x 

W = 0.91361, p-value = 0.4214 

 

>shapiro.test(y) 

  Shapiro-Wilk normality test 

data:  y 
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W = 0.88521, p-value = 0.3336 

 

>var.test(x,y) 

F test to compare two variances 

data:  x and y 

F = 3.3684, num df = 6, denom df = 4, p-value = 0.2599 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

  0.3662398 20.9757008 

sample estimates: 

ratio of variances  

          3.368421 

 

>t.test(x,y,var.equal=T) 

  Two Sample t-test 

data:  x and y 

t = -2.4927, df = 10, p-value = 0.03184 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -13.2569512  -0.7430488 

sample estimates: 

mean of x mean of y  

       30        37 

 

Interpretation of output: 

The P-value of Shapiro-wilk normality test is greater than 0.05 for both 

populations. Hence we accept   . i.e. Data follows normal distribution for both 

populations. 

The p-value of two sample t-test is less than (p-value=0.03184)  0.05. Hence  

reject  null  hypothesis i.e. mean of first population is not equal to mean of second 

population. 

 

In two sample t-test, we have made assumptions that parent population is 

normal. If this assumption is not satisfied then we have to do non-parametric test 

which is known as Wilcoxon Mann-Whitney U-test. 

 

1.7.4 Wilcoxon Mann-whitney U test 

Wilcoxon Mann-Whitney U test is the alternative test to the independent two 

sample t-test.  It is a non-parametric test that is used to compare two population 

means that come from the same population, it is also used to test whether two 

population means are equal or not.  It is used for equal sample sizes, and is used to 

test the median of two populations. Usually the Mann-Whitney U test is used when 

the data is ordinal.   

http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/sample-size-power-analysis/write-up-generator-references/independent-sample-t-test-2/
http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/sample-size-power-analysis/write-up-generator-references/independent-sample-t-test-2/
http://www.statisticssolutions.com/academic-solutions/academic-research-consulting/sample-size-determination/
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Example 1.12: 

In a study of factors thought to be responsible for adverse effects of smoking on 

human reproduction, cadmium level determination(nanograms per gram)were 

made on placenta tissue of a sample of 14 mothers who were smokers and an 

independent sample of 18 non-smoking mothers results were as follows. 

 Non –smokers: 

10.0,8.4,12.8,25.0,11.8,9.8,12.5,15.4,23.5,9.4,25.1,19.5,25.5,9.8,7.5,11.8,12.2, 15 

Smokers:-30.0,30.1,15.0,24.1,30.5,17.8,16.8,14.8,13.4,28.5,17.5,14.4,12.5,20.4 

  Does mean cadmium level is equal to smoker and non-smoker. 

 

Solution: 

Hypothesis, 

    :   =      VS        :         

 

Hypothesis for normality, 

   : Data follows normal distributions Vs 

  : Data does not follow normal distributions. 

 

Test statistics: 

U =       + 
          

 
 – ∑   

  
    

 

 

R- command: 
>x=c(10.0,8.4,12.8,25.0,11.8,9.8,12.5,15.4,23.5,9.4,25.1,19.5,25.5,9.8,7.5,11.8,  12.2,15.0) 

>x 

>y=c(30.0,30.1,15.0,24.1,30.5,17.8,16.8,14.8,13.4,28.5,17.5,14.4,12.5,20.4) 

>y 

>shapiro.test(x) 

 

        Shapiro-Wilk normality test 

data:  x 

W = 0.84484, p-value = 0.00703 

 

>shapiro.test(y) 

Shapiro-Wilk normality test 

data:  y 

W = 0.85335, p-value = 0.02467 

 

>wilcox.test(x,y) 

Wilcoxon rank sum test with continuity correction 

data:  x and y 

W = 58, p-value = 0.01032 
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alternative hypothesis: true location shift is not equal to 0 

 

Interpretation of output: 

For both variable x and y the p-value of Shapiro-Wilk normality test is less 

than 0.05. Hence we reject the null hypothesis of normality. Thus, we conclude 

that both variables are does not follows normal distribution. Hence we do non 

parametric test which is known as Wilcoxon Mann-whitney U-test.   

The P-value of Mann-Whitney U-test is 0.01032. This is less than 0.05. 

Hence we reject the null hypothesis. Thus we conclude that the median of first 

population is not equal to median of second population. 

 

1.7.5 Paired t-test 

The Paired Samples t Test compares two means that are from the same 

individual, object, or related units. The two means typically represent two different 

times (e.g., pre-test and post-test with an intervention between the two time points) 

or two different but related conditions or units (e.g., left and right ears, twins). The 

purpose of the test is to determine whether there is statistical evidence that the 

mean difference between paired observations on a particular outcome is 

significantly different from zero.  

  Assumptions: 

1. The dependent variable should be measured at the interval or ratio 

level (i.e., continuous).  

2. The independent variable should consist of two categorical, "related groups" or 

"matched pairs". 

3. The distribution of the differences in the dependent variable between the two 

related groups should be normally distributed. 

 

Example 1.13:  

An automotive engineer is investigating two different types of metering devices for 

an electronic fuel injection system to determine whether they differ in fuel mileage 

performance. The system is installed on 12 different cars and the test is run with 

each metering devise on each car. Observed fuel performance data corresponding 

to different devices is shown in following table. Use appropriate test to check the 

hypothesis that two devices do not differ in their fuel mileage performance. 

                        

Device Mileage 

I 17.6 19.4 19.5 17.1 15.3 15.9 16.3 18.4 17.3 19.1 17.8 18.2 

II 16.8 20 18.2 16.4 16 15.4 16.5 18 16.4 20.1 16.7 17.9 

 

Solution: 
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    :   ̅= 0       Vs        :   ̅   0 

 

Hypothesis for normality: 

   : Difference (x-y) follows normal distributions. Vs 

  :  Difference (x-y) does not follow normal distribution.  

 

Test statistics: 

 

                 t = 
 ̅
 

√ 

               Where  ̅ = 
∑   

 
   

 
      and         = 

∑      ̅   
   

     
  with (n-1) 

degree of freedom.  

 

R-command:  
>x=c(17.6,19.4,19.5,17.1,15.3,15.9,16.3,18.4,17.3,19.1,17.8,18.2) 

>x 

>y=c(16.8,20,18.2,16.4,16,15.4,16.5,18,16.4,20.1,16.7,17.9) 

>y 

>difference =(x-y) 

>shapiro.test(difference) 

        Shapiro-Wilk normality test 

data:  difference 

W = 0.93417, p-value = 0.4265 

 

>t.test(x,y,paired=T) 

Paired t-test 

data:  x and y 

t = 1.3448, df = 11, p-value = 0.2058 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -0.1856942  0.7690275 

sample estimates: 

mean of the differences    0.2916667 

 

Interpretation of output: 

P-value of Shapiro-Wilk normality test is 0.4265. This is greater than 0.05. 

Hence we accept null hypothesis. Thus we conclude that difference follows normal 

distribution. 

The p-value of paired t-test is 0.2058. This is greater than 0.05. Hence we 

accept null hypothesis. Thus, we conclude that the two types of measuring devices 

do not differ in their fuel mileage performance.  

If the assumption of differences in the dependent variable between the two 

related groups should be normally distributed is not satisfied in paired t-test then 
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non-parametric alternative to paired t-test suggested by Wilcoxon known as 

Wilcoxon signed rank test (Two related test). 

 

1.7.6 Wilcoxon signed rank test (Two related sample) 

The Wilcoxon signed-rank test is the nonparametric test equivalent to 

the paired t-test. As the Wilcoxon signed-rank test does not assume normality in 

the data, it can be used when this assumption has been violated and the use of the 

paired t-test is inappropriate. 

 It is used to compare two sets of scores that come from the same 

participants. This can occur when we wish to investigate any change in scores from 

one time point to another, or when individuals are subjected to more than one 

condition. 

 

Example 1.14: 

Seventeen families participated in a training program in which a test was 

administered before and after training to one parent in each family. Following are 

pre and post-training scores made by the parent on test. 

              

Pre  7 6 10 16 8 13 8 14 16 11 12 13 9 10 17 8 5 

Post 11 14 16 17 9 15 9 17 20 12 14 15 14 15 18 15 9 

May we conclude, on the basis of these data, that training program is effective or 

not? 

 

Solution: 

Hypotheses, 

   :   ̅ = 0 Vs   :    ̅    

Test statistics is, 

 

           f(t) = (
     

 
)                  for t=0,1,2,………(        

 

           f(u|t) = 
(
  
 

)(
  
 
)

     
 

  for u= 0,1,2,……,n 

R-command: 
>x=c(7,6,10,16,8,13,8,14,16,11,12,13,9,10,17,8,5) 

>x 

>y=c(11,14,16,17,9,15,9,17,20,12,14,15,14,15,18,15,9) 

>y 

>wilcox.test(x,y,paired=T) 

Wilcoxon signed rank test with continuity correction 

data:  x and y 

https://statistics.laerd.com/spss-tutorials/dependent-t-test-using-spss-statistics.php
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V = 0, p-value = 0.0003034 

alternative hypothesis: true location shift is not equal to 0 

 

Warning message: 

In wilcox.test.default(x, y, paired = T) : 

  cannot compute exact p-value with ties 

 

Interpretation of output: 

The p-value of Wilcoxon signed rank test is 0.0003034. This is less than 

0.05. Hence we reject null hypothesis. Thus we conclude that the training program 

is effective.  

 

1.7.7One-way analysis of variance (ANOVA) 

The one-way analysis of variance (ANOVA) is used to determine whether 

there are any statistically significant differences between the means of two or more 

independent (unrelated) groups.  

 For example, you could use a one-way ANOVA to understand whether 

exam performance differed based on test anxiety levels amongst students, dividing 

students into three independent groups (e.g., low, medium and high-stressed 

students).  

It is important to realize that the one-way ANOVA cannot tell you which 

specific groups were statistically significantly different from each other; it only 

tells you that at least one pair are different. Since you may have two, three, four, 

five or more pairs in your study design, determining which of these pairs differ is 

important. To find this pairs by using a post hoc test.  

Assumptions: 

1. The dependent variable should be measured at the interval or ratio 

level (i.e., continuous).  

2. Independent variable should consist of two or more categorical, independent 

groups.  

3. The data are independent (i.e. not correlated/related).  

4. The dependent variable should be approximately normally distributed for 

each category of the independent variable. 

 

Example 1.15: 

Following table shows forced expiratory valume per second for patients  with 

coronary artery disease sample at three different medical centers, denoted by A, B 

and C. 
A 3.23 3.47 1.86 2.47 3.01 1.69 2.10 2.81 3.28 3.36 2.61 2.91 

1.98 2.57 2.08 2.47 2.47 2.74 2.88 2.63 2.53  

B 3.52 3.23 2.21 3.19 4.12 3.79 3.79 4.13 3.14 3.21 3.21 3.91 
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3.37 3.11 3.89 3.67  

C 2.79 3.22 2.25 2.98 2.47 2.77 2.95 3.56 2.88 2.63 3.38 3.07 

2.81 3.17 2.23 2.19 4.06 1.98 2.81 2.85 2.43 3.2 3.53  

Test whether the average expiratory volume per second for all patients with 

coronary artery disease from all three centers are equal. 

 

Solution: 

Hypothesis,  

   :    
 =  

 
 =  

 
         Vs                :   at least one pair differs. 

 

Hypothesis for normality: 

   : Data follows normal distributions. Vs 

  : Data does not follow distributions. 

 

Hypothesis for variance: 

   : Variances are equal    Vs 

  : Variances are not equal. 

 

Test statistics is, 

 

 

 

R-commands: 
>a=c(3.23,3.47,1.86,2.47,3.01,1.69,2.10,2.81,3.28,3.36,2.61,2.91,1.98,2.57,2.08,2.47,2.47,2.74,2

.88,2.63,2.53) 

>a 

>b=c(3.52,3.23,2.21,3.19,4.12,3.79,3.79,4.13,3.14,3.21,3.21,3.91,3.37,3.11,3.89,3.67) 

>b 

>c=c(2.79,3.22,2.25,2.98,2.47,2.77,2.95,3.56,2.88,2.63,3.38,3.07,2.81,3.17,2.23,2.19,4.06,1.98,2

.81,2.85,2.43,3.20,3.53) 

>c 

>shapiro.test(a) 

      Shapiro-Wilk normality test 

data:  a 

W = 0.97084, p-value = 0.7515 

 

>shapiro.test(b) 

        Shapiro-Wilk normality test 

data:  b 

W = 0.90868, p-value = 0.1108 

 

>shapiro.test(c) 

     Shapiro-Wilk normality test 
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data:  c 

W = 0.97996, p-value = 0.9056 

 

>d=stack(list("A"=a,"B"=b,"C"=c)) 

>names(d) 

[1] "values" "ind" 

 

>attach(d) 

>bartlett.test(values~ind) 

  Bartlett test of homogeneity of variances 

data:  values by ind 

Bartlett's K-squared = 0.0062359, df = 2, p-value = 0.9969 

 

>oneway.test(values~ind,data=d,var.equal=T) 

     One-way analysis of means 

data:  values and ind 

F = 13.506, num df = 2, denom df = 57, p-value = 1.58e-05 

 

>pairwise.t.test(values,ind,p.adj="bonferroni") 

     Pairwise comparisons using t tests with pooled SD  

data:  values and ind  

 

  A                B      

B 1.1e-05     -      

C 0.2891    0.0017 

 

P value adjustment method: bonferroni 

 

Interpretation of output: 

The p-value of Shapiro-Wilk normality test for all three populations are greater 

than 0.05. Hence we accept the null hypothesis. Thus, all three populations follow 

normal distribution. 

The P-value of Bartlett test of homogeneity of variance is 0.9969. This is 

greater than 0.05. Hence we accept       i.e. variances are equal. 

The p-value of one way analysis is less than 0.05. Thus, we can conclude that 

   is rejected. i.e. at least one pair of mean is differ significantly. 

The bonferroni test suggested that there is means of  pair A and B, B and C are 

differ significantly but means of pair A and C do not differ significantly.  

 In the ANOVA, we assume that distribution of each group is normally 

distributed. If this assumption is not satisfied in ANOVA then non-parametric 

alternative to ANOVA developed by Kruskal and Wallis  (1952) as Kruskal-

Wallis test. 
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1.7.8  Kruskal-Wallis test 

The Kruskal-Wallis H test (sometimes also called the "one-way ANOVA on 

ranks") is a rank-based nonparametric test that can be used to determine if there are 

statistically significant differences between two or more groups of an independent 

variable on a continuous or ordinal dependent variable.  

 

Example 1.16:           
 An instructor sets three different question papers and distributes them randomly to 

her students. After collecting answer books and grading them, following scores are 

obtained. 

                                  Test 1:63, 64, 95, 64, 60, 85. 

                                  Test 2:58, 56, 51, 84, 77. 

                                  Test 3:105, 79, 82, 80, 74, 97. 

The instructor would like to know whether the three tests are equally difficult by 

testing equality of means of populations of scores. Carry out the appropriate test 

procedure. 

 

Solution: 

Hypothesis 

   :    =     =           Vs    :   at least one pair differ. 

 

Test statistics: 

     w =  
  

      
  ∑

  
 

  
         

    

 

R-Command: 
>x=c(63,64,95,64,60,85) 

>x 

>y=c(58,56,51,84,77) 

>y 

>z=c(105,79,82,80,74,97) 

>z 

>d=stack(list("test1"=x,"test2"=y,"test3"=z)) 

>names(d)=c("values","test") 

>names(d) 

[1] "values" "test"   

 

>kruskal.test(values~test,data=d) 

    Kruskal-Wallis rank sum test 

data:  values by test 

Kruskal-Wallis chi-squared = 4.9459, df = 2, p-value = 0.08433 
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Interpretation of Output: 

The p-value of kruskal-wallis rank test is 0.08433. This is greater than 0.05. Henc 

null hypothesis is accepted. i.e. Median of all three population are equal.      

                            

1.7.9 Correlation  

(a) Pearson product-moment correlation coefficient 

The Pearson product-moment correlation coefficient (Pearson’s correlation) 

is a measure of the strength and direction of association that exists between two 

variables measured on at least an interval scale. 

For example, you could use a Pearson’s correlation to understand whether 

there is an association between exam performance and time spent revising. You 

could also use a Pearson's correlation to understand whether there is an association 

between depression and length of unemployment. 

A Pearson’s correlation attempts to draw a line of best fit through the data of 

two variables, and the Pearson correlation coefficient, r, indicates how far away all 

these data points are from this line of best fit. 

Assumptions: 

1. Two variables should be measured at the interval or ratio level (i.e.  

Continuous).  

2. There is a linear relationship between your two variables.  

3. The Two variables should be normally distributed. 

 

Example 1.17: 

 Plot the scatter diagram and compute the Pearson’s correlation co-efficient 

between amount(X) of fertilizer and the yield(Y) of potatoes for the data 

X 0 4 8 12 

Y 8.34 8.89 9.16 9.5 

 

Solution: 

Hypothesis, 

   :  = 0   Vs        :      0 

 

Test statistics: 

 r = 
∑      ̅       ̅ 

√∑     ̅   ∑     ̅    
   

 

R-command: 
>x=c(0,4,8,12) 

>x 

>y=c(8.34,8.89,9.16,9.5) 
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>y 

>plot(x,y,pch=17,xlab="Amount of Fertilizer",ylab="Yield",main="Scatter Plot") 

 
 

 

 

>r=cor.test(x,y,method="pearson", alt="two.sided",conf.int=T) 

>r 

               Pearson's product-moment correlation 

data:  x and y 

t = 9.0552, df = 2, p-value = 0.01198 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.5341930 0.9997609 

sample estimates: 

      cor  

0.9880231 

 

Interpretation of Output: 

The Pearson product-moment correlation coefficient is 0.9880231. Hence we 

conclude that there is strong positive correlation between amount of fertilizer and 

the yield of potatoes. 

The p-value is less than 0.05. Hence we rejected   . i.e. population correlation 

coefficient is not equal to zero.       
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(b) Spearmen’s rank correlation 

The Spearman rank-order correlation coefficient (Spearman’s correlation) is 

a nonparametric measure of the strength and direction of association that exists 

between two variables measured on at least an ordinal scale. 

Example 1.18: 

Compute the Spearmen’s rank co-efficient between marks in Mathematics (X) of 

and the marks in Statistics (Y) of 12
th
 student for the data. 

X 76 84 88 92 70 

Y 83 88 91 95 77 

 

 

Solution: 

Hypothesis,                 

   :  = 0                 Vs             :      0 

 

Test statistics is,  

                                     r =1 - 
 ∑  

       
  

 

R-command: 
>x=c(76,84,88,92,70) 

>x 

>y=c(83,88,91,95,77) 

>y 

>r=cor.test(x,y,method="spearman", alt="two.sided",conf.int=T) 

>r 

  Spearman's rank correlation rho 

data:  x and y 

S = 4.4409e-15, p-value = 0.01667 

alternative hypothesis: true rho is not equal to 0 

sample estimates: 

rho  1    

 

Interpretation of Output: 

The Spearman rank-order correlation coefficient is 1. Hence we conclude that 

there is perfect positive correlation between marks in Mathematics and marks in 

Statistics. 

The p-value is less than 0.05. Hence we reject   . i.e. population correlation 

coefficient is not equal to zero.       
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1.7.10 Linear Regression 

Linear regression is the next step up after correlation. It is used when we 

want to predict the value of a variable based on the value of another variable. The 

variable we want to predict is called the dependent variable. The variable we are 

using to predict the other variable's value is called the independent variable.  

For example, you could use linear regression to understand whether exam 

performance can be predicted based on revision time. 

 

Example 1.19: 

Following table gives the observed of gains corresponding to amount of fertilizer 

applied.    

Amount of fertilizer(y)            Yield(x) 

30                                       43 

40                                       45 

50                                       54 

60                                       53 

70                                       56 

80                                       63 

    Fit the lines of regression of amount of fertilizer on yield. 

 

Solution: 

Hypothesis, 

   :     
  0           Vs         :   

  
  0 

Regression line of y on x is 

                      y = a +     * x 

                Where    = Cov(x, y) /   
   and a=  ̅ -     ̅ 

R-command: 
>x=c(43,45,54,53,56,63) 

>x 

>y=c(30,40,50,60,70,80) 

>y 

>fit=lm(y~x) 

>fit 

Call: 

lm(formula = y ~ x) 

Coefficients: 

(Intercept)            x   

    -72.297        2.432   

 

>summary(fit) 

Call: 
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lm(formula = y ~ x) 

 

Residuals: 

      1           2           3              4            5       6  

-2.2973  2.8378 -9.0541  3.3784  6.0811 -0.9459  

 

Coefficients: 

                  Estimate Std. Error   t value Pr(>|t|)    

(Intercept)  -72.297     19.259   -3.754  0.01988 *  

     x              2.432      0.365      6.664  0.00263 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 6.012 on 4 degrees of freedom 

Multiple R-squared:  0.9174,    Adjusted R-squared:  0.8967  

F-statistic: 44.41 on 1 and 4 DF,  p-value: 0.002634 

 

Interpretation of Output:  

The P-value of F-statistics is 0.002634. This is less than 0.05. Hence    is rejected. 

 i.e.     
  

  0. 

The regression line is,  y = -72.297 + 2.432 * x 

 

1.7.11 Chi-square test 

(a) Test for Association 

The chi-square test for independence, also called Pearson's chi-square test or 

the chi-square test of association, is used to discover if there is a relationship 

between two categorical variables. 

Assumptions: 

1. The two variables should be measured at an ordinal or nominal 

level (i.e., categorical data).  

2. The two variables should consist of two or more categorical, independent 

groups. 

Example 1.20: 

An educator would like to know whether gender (male/female) is associated with 

the preferred type of learning medium (online vs. books).  

  

 Preferred learning Medium 

Books Online Total 

Gender Male 16 24 40 

Female 13 27 40 

Total 29 51 80 
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Test the hypothesis that Gender is associated with preferred type of learning 

medium. 

 

Solution: 

Hypothesis, 

   : Gender is associated with preferred type of learning medium.  Vs 

  : Gender is not associated with preferred type of learning medium. 

 

Test statistics is, 

 

    =  
∑       

 

  
   with (k-1)(k-1) df. 

R-commands: 
>o1=16 

>o2=24 

>o3=13 

>o4=27 

>e1=29*40/80 

>e1 

>e2=51*40/80 

>e2 

>e3=29*40/80 

>e3 

>e4=51*40/80 

>e4 

>chi=(o1-e1)^2/e1+(o2-e2)^2/e2+(o3-e3)^2/e3+(o4-e4)^2/e4 

>chi 

[1] 0.4868154 

 

>qchisq(0.95,df=1) 

[1] 3.841459 

 

Interpretation of output: 

The output shows that calculated value of Chi-square is 0.4868154 and tabulated 

value of Chi-square is 3.841459. Here   
             is less than  

            . 

Hence we accept null hypothesis and conclude that gender is associated with 

preferred type of learning medium. 

 

(b) Goodness of fit test 

The chi-square goodness-of-fit test is a single-sample nonparametric test, 

also referred to as the one-sample goodness-of-fit test or Pearson's chi-square 

goodness-of-fit test. It is used to determine whether the distribution of cases in a 
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single categorical variable follows a known or hypothesized distribution. (e.g. 

Binomial, Poisson, Normal etc.).  

 

 Example 1.21: (Fitting of Binomial distribution)    

Fit the binomial distribution and test the goodness of fit on following data. 

X 0 1 2 3 4 

F 5 20 45 20 10 

Solution: 

   : Fit of Binomial distribution is good.          Vs 

  : Fit of Binomial distribution is not good 

 

Test statistics is,  

 

    ∑
        

 

  

 
       with (n-1) df. 

 

R-commands: 
>x=0:4 

>x 

>f=c(5,20,45,20,10) 

>f 

>n=max(x) 

>n 

>N=sum(f) 

>N 

>smean=sum(f*x/sum(f)) 

>smean 

>p=smean/n 

>p 

>px=dbinom(0:3,n,p) 

>px 

>p4=1-sum(px) 

>p4 

>px=c(px,p4) 

>px 

>px=round(px,4) 

>px 

>ex=px*N 

>ex 

>fr.dist=data.frame(x,f,px,ex) 

>fr.dist 

>chisq=sum((f-ex)^2/ex) 

>chisq 

[1] 4.665105 
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>qchisq(0.95,3) 

[1] 7.814728 

 

Interpretation of output: 

The output shows that, calculated value of Chi-square is 4.665105 and tabulated 

value of Chi-square is 7.814728. Here    
              is less than    

            . 

Hence    is accepted and we conclude that Fit of Binomial distribution is good  

 

Example 1.22: (Fitting of Poisson distribution) 
 Following table shows the data on the movement of leaf hopper (Hemiptera) 

across a sand dune. 

     Leaf hopper per trap(x)               frequency (f) 

           0                                                        6 

           1                                                        8 

           2                                                       12 

           3                                                        4 

           4 or more                                           3 

  Fit Poisson distribution to the above data and test goodness of fit.  

Solution: 

Hypothesis, 

   :  Fit of Poisson distribution is good.      Vs 

  :  Fit of Poisson distribution is not good 

 

Test statistics is,  

 

    ∑
        

 

  

 
        with (n-2) df. 

 

R-Commands: 
>x=0:4 

>x 

>f=c(6,8,12,4,3) 

>smean=sum(f*x)/sum(f) 

>smean 

>x=0:3 

>x 

>px=dpois(x,smean) 

>px 

>px=c(px,1-sum(px)) 

>px 

>ex=sum(f)*px 
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>ex 

>x=c(x,4) 

>x 

>fx.dist=data.frame(x,f,ex) 

>fx.dist 

>ex=c(ex[c(1:3)],sum(ex[c(4:5)])) 

>ex 

>o=c(6,8,12,7) 

>o 

>chiq=sum((o-ex)^2/ex) 

>chiq 

[1] 1.866058 

 

>qchisq(0.95,2) 

[1] 5.991465 

 

Interpretation of output: 

The output shows that, calculated value of Chi-square is 1.866058 and tabulated 

value of Chi-square is 5.991465. Here    
             is less than   

            . 

There for we accept      and conclude that fit of Poisson distribution is good. 

                                                       

Example 1.23: (Fitting of Normal distribution) 

Following table displays a frequency distribution of heights of trees in a certain 

Locality. Fit a normal distribution to the data and test the goodness of fit. 

Heights of tress (in inches) 

Class-internal                   frequency 

13.20-20.90                           2 

20.90-28.60                          10 

28.60-36.30                           16 

36.30-44.00                           37 

 44.00-51.70                          43 

 51.70-59.40                          39 

  59.40-67.10                         29 

  67.10-74.80                           13 

 74.80-82.50                            6 

 82.50-90.20                            5 

Solution: 

Hypothesis, 

   :  Fit of normal distribution is good.   Vs 

  :  Fit of normal distribution is not good 
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Test statistics is, 

 

    ∑
        

 

  

 
      with (n-3) df. 

 

R-Commands: 
>midy=seq(17.05,86.35,length=10) 

>midy 

>f=c(2,10,16,37,43,39,29,13,6,5) 

>f 

>mean=sum(midy*f)/sum(f) 

>mean 

>sd=(sum(f*(midy-mean)^2)/sum(f))^0.5 

>sd 

>l=seq(13.2,82.5,length=10) 

>l 

>l=c(l,90.2) 

>l 

>cdf=pnorm(l,mean,sd) 

>cdf 

>cdf=c(0,cdf,1) 

>cdf 

>pcf=diff(cdf) 

>pcf 

>f=c(0,f,0) 

>f 

>ex=round(pcf*sum(f),4) 

>ex 

>fr=data.frame(f,ex) 

>fr 

>o=c(12,16,37,43,39,29,13,11) 

>o 

>ex=c(sum(ex[c(1,2,3)]),ex[c(4:9)],sum(ex[c(10,11,12)])) 

>ex 

>chisq=sum((o-ex)^2/ex) 

>chisq 

[1] 2.132088 

 

>qchisq(0.95,5) 

[1] 11.0705 

 

Interpretation of output: 

The output shows that, calculated value of Chi-square is 2.132088 and tabulated 

value of Chi-square is 11.0705. Here   
             is less than   

            . 

Therefore we accept    and conclude that fit  of  normal distribution is good. 
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Unit-II 
 

2.1 Concept of Random number Generator  

One of the fundamental tools required in computational statistics is the 

ability to simulate random variables from specified probability distributions. On 

the general subject of methods for generating random variates from specified 

probability distributions. In the simplest case, to simulate drawing an observation 

at random from a finite population, a method of generating random observations 

from the discrete uniform distribution is required. Therefore a suitable generator of 

uniform pseudo random numbers is essential. 

 Methods for generating random variates from other probability distributions 

all depend on the uniform random number generator. In this text we assume that a 

suitable uniform pseudo random number generator is available.  

The uniform pseudo random number generator in R is runif. To generate a 

vector of n (pseudo) random numbers between 0 and 1 use runif(n). Throughout 

this text, whenever computer generated random numbers are mentioned, it is 

understood that these are pseudo random numbers. To generate n random Uniform 

(a, b) numbers use runif(n, a, b). To generate an n by m matrix of random numbers 

between 0 and 1 use matrix(runif (n*m), nrow=n, ncol=m) or matrix(runif(n*m), n, 

m). 

The several functions are given for generating random variates from continuous 

and discrete probability distributions. Generators for many of these distributions 

are available in R (e.g. rbeta, rgeom, rchisq, etc.), but the methods presented below 

are general and apply to many other types of distributions.  

 

2.2 Random Generators of Common Probability Distributions in R 

In the sections that follow, various methods of generating random variates 

from specified probability distributions are presented. Before discussing those 

methods, however, it is useful to summarize some of the probability functions 

available in R. The probability mass function (pmf) or density (pdf), cumulative 

distribution function (cdf), quantile function, and random generator of many 

commonly used probability distributions are available. For example, four functions 

are documented in the help topic Binomial: 

 
dbinom(x, size, prob, log = FALSE) 

pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) 

qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE) 

rbinom(n, size, prob) 
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Arguments 

x, q Vector of quantiles. 

p Vector of probabilities. 

n Number of observations. If length(n) > 1, the length is taken to be the number 

required. 

size Number of trials (zero or more). 

prob Probability of success on each trial. 

log, log.p   Logical; if TRUE, probabilities p are given as log(p). 

lower.tail   Logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X   > x]. 

 

The same pattern is applied to other probability distributions. In each case, 

the abbreviation for the name of the distribution is combined with first letter d for 

density or pmf, p for cdf, q for quantile, or r for random generation from the 

distribution. 

A partial list of available probability distributions and parameters is given in 

Table 2.1 

 

TABLE 2.1: Selected Univariate Probability Functions Available in R 

 
Distribution cdf Generator Parameters 

beta pbeta rbeta shape1, shape2 

binomial pbinom rbinom size, prob 

chi-squared pchisq rchisq df 

exponential pexp rexp rate 

F pf rf df1, df2 

Gamma pgamma rgamma shape, rate or scale 

Geometric pgeom rgeom prob 

lognormal plnorm rlnorm meanlog, sdlog 

negative binomial pnbinom rnbinom size, prob 

normal pnorm rnorm mean, sd 

Poisson ppois rpois lambda 

Student’s t pt rt df 

uniform punif runif min, max 

 

 

2.3 Methods for generation of pseudo random numbers 
We begin our discussion of simulation with a brief exploration of the 

mechanics of pseudo random number generation. In particular, we will describe 

one of the simplest methods for simulating independent uniform random variables 

on the interval [0,1]. 
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2.3.1 Multiplicative Congruential Method of generating uniform 

variate  
A multiplicative congruential random number generator produces a 

sequence of pseudo random numbers, u1, u2, . . .  which appear similar to 

independent uniform random variables on the interval [0,1]. 

Let m be a large integer, and let b be another integer which is smaller than 

m. The value of b is often chosen to be near the square root of m. Different values 

of b and m give rise to pseudorandom number generators of varying quality. There 

are various criteria available for choosing good values of these parameters, but it is 

always important to test the resulting generator to ensure that it is providing 

reasonable results. 

To begin, an integer x0 is chosen between 1 and m.  x0 is called the seed. We 

discuss strategies for choosing  x0 below. 

Once the seed has been chosen, the generator proceeds as follows: 

x1 = b x0  (mod m) 

u1 = x1/ m. 

 

Where u1  is the first pseudo random number, taking some value between 0 and 1. 

 

The second pseudo random number is then obtained in the same manner: 

x2 = b x1 (mod m) 

u2 = x2 / m. 

Here u2  is another pseudo random number. If m and b are chosen properly and are 

not disclosed to the user, it is difficult to predict the value of u2, given the value of 

u1 only. In other words, for most practical purposes u2 is approximately 

independent of u1. The method continues according to the following formulas: 

 

xn = b xn-1 (mod m) 

un = xn / m. 

 

This method produces numbers which are entirely deterministic, but to an observer 

who doesn’t know the formula above, the numbers appear to be random and 

unpredictable, at least in the short term. 

 

Example 2.1: (Multiplicative Congruential Method) 

The following lines produce 50 pseudorandom numbers based on the 

multiplicative congruential generator: 

xn = 171 xn-1 (mod 30269) 
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un = xn / 30269 

with initial seed x0 = 27218. 

 

Solution: 
>random.number <- numeric (50) # this will store the pseudorandom output 

 >random.seed <- 27218 

 >for (j in 1:50) { 

+ random.seed <- (171 * random.seed) %% 30269 

 + random.number[j] <- random.seed / 30269 

 +} 

> random.number 

  [1] 0.76385080 0.61848756 0.76137302 0.19478675 0.30853348 0.75922561 

  [7] 0.82757937 0.51607255 0.24840596 0.47741914 0.63867323 0.21312234 

[13] 0.44391952 0.91023820 0.65073177 0.27513297 0.04773861 0.16330239 

[19] 0.92470845 0.12514454 0.39971588 0.35141564 0.09207440 0.74472232 

[25] 0.34751726 0.42545178 0.75225478 0.63556774 0.68208398 0.63636063 

[31] 0.81766824 0.82126929 0.43704780 0.73517460 0.71485678 0.24051009 

[37] 0.12722587 0.75562457 0.21180085 0.21794575 0.26872378 0.95176583 

[43] 0.75195745 0.58472364 0.98774324 0.90409330 0.59995375 0.59209092 

[49] 0.24754700 0.33053619 

 

A similar kind of operation (though using a different formula, and with a 

much longer cycle) is used internally by R to produce pseudorandom numbers 

automatically with the function runif (). 

 

Syntax 
runif(n, min = a, max = b) 

 

Execution of this command produces n pseudorandom uniform numbers on the 

interval [a, b]. The default values are a = 0 and b = 1. The seed is selected 

internally. 

 

Example 2.2: 

Generate five uniform pseudorandom numbers on the interval [0, 1], and 10 

uniform such numbers on the interval [−3,−1]. 

 

Solution:  
>runif(5) 

>runif(10, min = -3, max = -1) 

 [1] -1.666937 -2.051194 -2.493232 -2.160725 -1.532510 -2.508264 -2.071462 

 [8] -2.462480 -2.301991 -1.533259 
 
 
 



Statistical Computing and Numerical Methods 
 

Using R Page 36 
 

 
 

 

2.3.2 The Inverse Transform Method 
The inverse transform method of generating random variables is based on the 

following well known result, 

(a) Inverse Transform Method for Continuous distribution 
Theorem 2.1: (Probability Integral Transformation)  
 If X is a continuous random variable with cdf FX(x), then U = FX(x) ~ Uniform(0, 1). 

The inverse transform method of generating random variables applies the 

probability integral transformation. Define the inverse transformation, 

 

   
  (u) = inf {x: FX(x) = u},                                              0 < u < 1. 

 

 

If U ∼ Uniform(0, 1), then for all x ∈ R 

P (  
  (U) ≤ x) = P(inf{t : FX(t) = U} ≤ x) 

                                             = P(U ≤ FX(x)) 

                                             = FU(FX(x)) = FX(x), 

 

and therefore   
  (U) has the same distribution as X. Thus, to generate a random 

observation X, first generate a Uniform (0,1) variate u and deliver the inverse value 

  
  (u). The method is easy to apply, provided that   

   is easy to compute. The 

method can be applied for generating continuous or discrete random variables.  

 

The method can be summarized as follows: 

 1. Derive the inverse function   
  (u). 

2. Write a command or function to compute   
  (u). 

3. For each random variate required: 

  (a) Generate a random u from Uniform (0,1). 

(b) Deliver x =   
  (u).  

 

Example 2.3:  (continuous case) 

This example uses the inverse transform method to simulate a random sample from 

the distribution with density             fX(x) = 3x
2
,                                      0 < x < 1. 

Solution: 

Here FX (x) = x
3
    for 0 < x < 1, and   

  (u) = u
1/3

. Generate all n required random 

uniform numbers as vector u. Then u^(1/3) is a vector of length n containing the 

sample  x1, . . . , xn. 
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R-commands: 
>n <- 100 

>u <- runif(n) 

>x <- u^(1/3) 

>x 

   [1] 0.8017509 0.8092308 0.7659171 0.6885996 0.9530523 0.9322022 0.9973710 

   [8] 0.7564671 0.7752620 0.7826785 0.9585013 0.8017270 0.8821938 0.5613602 

 [15] 0.7773277 0.8820697 0.3013756 0.7065704 0.5502851 0.8371029 0.6610354 

 [22] 0.8130874 0.5110281 0.8630272 0.4970090 0.8709242 0.6978373 0.8514141 

 [29] 0.9395620 0.9280061 0.5633003 0.6425118 0.8178466 0.6948340 0.7486318 

 [36] 0.8709448 0.9229255 0.5590832 0.8017308 0.9581135 0.7566680 0.7471477 

 [43] 0.6538598 0.7765798 0.9336162 0.5726958 0.9556333 0.9484229 0.7977834 

 [50] 0.8671924 0.9998218 0.8620407 0.7930682 0.6803484 0.9994234 0.6145732 

 [57] 0.7644595 0.6422658 0.3873663 0.9850638 0.4256389 0.7753329 0.5766481 

 [64] 0.9936862 0.9762227 0.8037953 0.9850256 0.8906251 0.8682515 0.6050461 

 [71] 0.8532275 0.9574121 0.6661810 0.7092815 0.6293770 0.8857795 0.6183310 

 [78] 0.4612910 0.5768998 0.9038709 0.6654110 0.8742584 0.6437220 0.2246501 

 [85] 0.8885111 0.5929618 0.9203562 0.5340973 0.9815111 0.9348766 0.1928312 

 [92] 0.8935198 0.8835455 0.5937719 0.7211663 0.7465011 0.7337043 0.9215036 

 [99] 0.3692013 0.3787825 

 

Example 2.4: (Exponential distribution) 

Apply the inverse transform method to generate a random sample of size 50 from 

the exponential distribution with mean (1/λ). (Take λ=2) 

Solution: 

If X ∼ Exp(λ), then for x > 0 the cdf of X is FX(x) = 1 – e
-λx

. The inverse 

transformation is   
  (u) = - 

 

 
 log(1 − u). Note that U and 1 – U have the same 

distribution and it is simpler to set x = - 
 

 
 log (u).  

To generate a random sample of size n with parameter lambda: 

-log(runif(n)) / lambda 

 

R-command: 
>n <- 50 

> lambda<-2 

>u <- runif(n) 

>x <- -log(u) / lambda 

>x 

   [1] 0.3598627242 0.3347805546 0.7596332007 0.2463782606 0.2239335267 

   [6] 0.2036329982 1.0090972137 0.9739047124 0.0001422623 0.6846383850 

 [11] 0.7637487292 0.1994585613 0.4722244805 0.2802124042 1.1055513937 

 [16] 0.1143128321 0.4937254753 0.0903049990 0.0082735617 0.2923288222 

[21] 0.5257431151 0.0186001460 0.1579470824 0.2890119377 0.8753127855 

[26] 0.2217230566 0.0319919366 0.2026061099 0.1926596397 1.0311402242 
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[31] 0.7202690999 0.2936336867 0.2628641877 0.4913609900 0.5257280754 

[36] 0.2731594433 0.1822659334 0.3529688704 0.7823672629 0.5368235895 

[41] 0.1940126521 1.0570093869 0.0291803706 0.8973065598 0.0545378281 

[46] 2.0402737576 0.2391678679 0.2475638189 0.2304718313 0.4128641585 

 

(b) Inverse Transform Method for Discrete distributions 
 The inverse transform method can also be applied to discrete distributions. If X is 

a discrete random variable and 

                                             ...<x i-1 <x i <x i+1 <... 

are the points of discontinuity of FX(x), then the inverse transformation is 

  
  (u)=xi, where FX(xi-1) < u ≤ FX(xi). For each random variate required: 

 

1. Generate a random u from Uniform (0,1).  

2. Deliver xi where F(xi-1) < u ≤ F(xi). 

 

Note: The solution of F(xi-1) < u ≤ F(xi) in Step (2) may be difficult for some 

distributions. 

 

Example 2.5: (Two point distribution)  

Apply the inverse transform to generate a random sample of size 100 of Bernoulli 

(p =0.4) variates.  

Solution: 

This example illustrates computing the inverse cdf of a discrete random variable in 

the simplest case. 

 

In this example, FX(0) = fX(0) = 1−p and FX(1) = 1. Thus,   
  (u)=1 if u>0.6 and 

  
  (u) = 0 if u ≤ 0.6. The generator should therefore deliver the numerical value of 

the logical expression u>0.6. 

 

R-command: 
> n <- 100 

> p <- 0.4  

> u <- runif(n) 

 > x <- as.integer(u > 0.6)     #(u > 0.6) is a logical vector 

> x 

   [1] 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 

 [38] 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 

 [75] 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 

 

> mean(x)  

[1] 0.42 
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> var(x)  

[1] 0.2460606 

Compare the sample statistics with the theoretical moments. The sample mean of a 

generated sample should be approximately p =0 .4 and the sample variance should 

be approximately p(1−p)=0.24.  

 

Example 2.6: (Geometric distribution) 
Use the inverse transform method to generate a random sample of size 200 of 

geometric variates with parameter p = 1/4. 

Solution: 

The probability mass function is f(x) = pq
x
, x = 0, 1, 2, . . ., where q = 1 − p. At the 

points of discontinuity x = 0, 1, 2, . . ., the cdf is F(x) = 1 – q
x+1

. For each sample 

element we need to generate a random uniform u and solve 

                                           1 – q
x
 < u ≤ 1 – q

x+1
. 

 

This inequality simplifies to x < log(1 − u)/ log(q) ≤ x + 1. The solution is x + 1 = 

⌈
         

       
⌉, where ⌈ ⌉ denotes the ceiling function (the smallest integer not less than 

t). 

 

R-command: 
> n <- 200 

> p <- 0.25 

> u <- runif(n) 

> x <- ceiling(log(1-u) / log(1-p)) – 1 

> x 

    [1] 22  0  9  0  6  6  1  1  3  3  1  3  0  3  1  1  1  4  2  2  1  7  4  2 12 

  [26]  0  7 10  4  1  2  2  2 10  7  3  8  4  1  0  6  0  0  0  0  3 10  4  2  0 

  [51]  2  5  6 28  1  6  0  0  2  0  0  1  1 10  2  2  0  1  2  6  0 10  7  0  1 

 [76]  3  0  1  3  0  2  6  2  1  3  4  1  0  1  3  4  0 10  0  0  6  2  1  6  2 

[101]  0  0  7  0  1  1  4  4  9  0  5  2  7  9  0  1  0  2  4  2  0  2  1  4  8 

[126]  1  2  5  2  0  1  2  0  5  0  0  1  3  3  3  0  1  0  1  7  0  4  7  4  0 

[151]  5  4  4  2  0  0  7  0  0  0  1  3  3  1  3  7  4  2  5  1  0  1  0  0  0 

[176]  2  4  0  1  2  3  3  7  0  1  1  6  3  1  2  4  0  2  3  0  2  6  6  5  3 

 

Here again there is a simplification, because U and 1 −  U have the same 

distribution. Also, the probability that log(1− u)/ log(1− p) equals an integer is 

zero. The last step can therefore be simplified to 

 
>x<- floor(log(u) / log(1-p)) 

>x 

[1]  0  6  0  6  0  0  4  4  1  1  2  1 13  1  3  4  3  1  2  2  4  0  1  2  0 
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 [26]  4  0  0  1  3  2  1  2  0  0  1  0  0  4 16  0  7  7  6  7  1  0  1  2  8 

 [51]  2  0  0  0  2  0  5  5  2  7 10  4  3  0  2  2  9  3  1  0  5  0  0  5  3 

 [76]  1  6  4  1  6  2  0  2  3  1  1  3  6  3  1  1 14  0  7 12  0  2  4  0  2 

[101]  7  7  0 10  3  3  0  1  0  6  0  2  0  0 14  3  7  2  1  2  5  1  4  1  0 

[126]  4  2  0  2  5  3  2 10  0 12  7  3  1  1  1  8  3 11  3  0  4  1  0  1  7 

[151]  0  1  1  2  6  7  0  5  7  6  4  1  1  3  1  0  1  2  0  4  5  4  8  5  7 

[176]  2  1  5  3  2  1  1  0 11  4  3  0  1  4  2  1  7  2  1  5  2  0  0  0  1 

 

Note: 1. Ceiling takes a single numeric argument x and returns a numeric vector 

containing the smallest integers not less than the corresponding elements of x. 

2. floor takes a single numeric argument x and returns a numeric vector containing 

the largest integers not greater than the corresponding elements of x. 

 

2.3.3 Transformation Method 
Many types of transformations other than the probability inverse transformation 

can be applied to simulate random variables. Some examples are, 

 

Example 2.7: 

If Z ∼ N(0,1), then V =    ∼   (1). 

Solution:  

 If Z ∼ N(0,1), then V =    has chi-square distribution with one degree of 
freedom. This transformation determines an algorithm for generating random chi-

square variates with one degree of freedom. 

1. Generate a random z from N(0,1). 

2. Deliver v= z
2
 

 

  R-commands: 
            > n<-50 

> z<-rnorm(n,0,1) 

> z 

> v<-z*z 

> v 

[1] 0.305991600 0.936708505 0.176985090 0.019269297 4.706842164 8.082750751 

 [7] 0.416388769 0.674569347 0.081927138 1.185487582 0.334547126 1.837157329 

[13] 0.239230745 0.831482321 2.606537497 0.026806421 0.031947524 0.002424443 

[19] 0.046569952 0.006557288 1.062038943 1.329896308 0.417741028 0.006213941 

[25] 0.893791994 1.493647667 1.177504868 0.044944794 0.253231402 0.207673422 

[31] 0.611983256 0.298337772 1.073820376 1.189793711 2.417628174 0.003843653 

[37] 0.571621345 2.168156633 2.408532957 0.025244563 0.363919032 1.350905815 

[43] 2.433898855 0.239302537 2.627804748 0.510848305 0.471539636 0.886617652 

[49] 2.204411292 0.501172239 

 

Example 2.8 
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If U ∼   (m) and V ∼   (n) are independent, then F = 
   

   
 has the F distribution 

with (m, n) degrees of freedom. 

 

Solution : 

If U follows Chi-square with m degree of freedom an V follows Chi-square with n 

degree of freedom and they are independent then F = 
   

   
 has F distribution with 

(m ,n) degrees of freedom. This transformation determines an algorithm for 

generating random       variates. 

1. Generate a random u from   (m). 

2. Generate a random v from   (n). 

3.  Deliver  f = 
   

   
 

 

R-commands: 
          >n<-10 

          > df1<-25 

          > df2<-30 

          > u<-rchisq(n, df1) 

          >  u 

          > v<-rchisq(n,df2) 

          > v 

          > f<-(u/df1)/(v/df2) 

          > f 

          [1] 1.0321807 0.9670168 2.0695526 0.7978024 1.1737535 0.8972368 0.9310880 

          [8] 1.0385090 1.5052634 0.6193445 0.3652712 0.7769930 1.5944072 1.3368636 

        [15] 1.0971476 1.1805528 0.8509757 1.0530814 0.7395804 0.6777567 0.3872551 

        [22] 0.7401450 1.0015335 1.4481652 0.5785281 1.0139439 1.2096411 0.8026473 

        [29] 1.0641119 0.6810229 0.7686142 2.4284338 1.1694846 1.1182540 1.8254075 

        [36] 0.8226599 1.0921456 1.0326177 0.9808855 1.2804703 1.1069543 0.8580444 

        [43] 0.7096639 0.6385750 1.3748067 0.9581666 1.4010971 1.7270581 0.5388314 

        [50] 0.4130219 

 

Example 2.9: 

If Z ∼ N(0,1) and V ∼   (n) are independent, then T = 
 

√   
 has the Student t 

distribution with n degrees of freedom. 

Solution  

If Z follows N (0,1) and V follows  Chi-square distribution with n degree of 

freedom and they are independent then T = 
 

√   
 has the Student t distribution with 

n degrees of freedom. This transformation determines an algorithm for generating 

random t variates with n degree of freedom. 
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1. Generate a random  z  from N(0,1). 

2. Generate a random v from   (n). 

3. Deliver t = 
 

√   
   

    

  R-commands: 
         > n <-100 

         > df1<-30 

         > z <- rnorm(n,0,1) 

         > z 

         > v <-rchisq(n, df1) 

         > v 

         > t <- z/sqrt(v/n) 

         >t 

  [1]  0.26446379  1.39800807  3.92791932 -1.76426156  1.89240314  1.94872727 

  [7] -4.36731846 -0.12477115  1.05737110  3.10173033 -2.66401373 -0.41518548 

 [13] -3.60220144  0.90638595  2.05071659  0.20169017  1.22424344 -1.52899330 

 [19]  2.34304814 -0.10279873  0.35987186  0.13248595  0.78447612  0.97159389 

 [25]  1.41866892  1.16106491  3.51499716  1.62117628 -0.03927726 -4.09739243 

 [31]  0.14825550 -2.64193688  2.01529940 -1.51096553 -1.08861161  1.60956835 

 [37] -1.51931718  1.42138984 -2.24604129 -2.42070540  1.39707719  0.91635615 

 [43]  0.16044138 -1.63285685  0.60393770  2.22841710 -0.27656098  1.26268787 

 [49]  1.56338839 -0.03879602  0.47203525 -0.71188275 -1.21320443 -0.48620090 

 [55] -3.58978950  0.45394887  2.11485752  1.06356104  2.42630003 -0.02625576 

 [61] -3.41974745 -0.88714154 -1.26062016  1.52293729  1.41621213  3.41113041 

 [67] -0.54567125  1.61609607 -0.65802077 -1.09476607  0.92254807 -1.57262214 

 [73]  2.13950748  0.71165649 -0.26277114 -1.72264936 -1.91914977 -5.64431301 

 [79]  1.25059713 -0.57808189 -1.05332032  1.69372271  3.67224005 -0.05815857 

 [85]  0.33717586  1.80094828  3.59441233  0.39715328 -0.10471523  0.21402481 

 [91]  0.34962907  0.53354374 -1.41554722 -0.45955978 -2.79763750 -0.45922718 

 [97] -0.93228173  1.59851480 -0.07998800 -1.92484870 

 

Example 2.10: 

If U, V ∼ Unif(0,1) are independent, then Z1 =√         cos(2πV), 

   Z2 =√         sin(2πU)   are independent standard normal variables. 

 

Solution: 

If U, V follows Uniform (0,1) distribution and they are independent, then Z1 

=√         cos(2πV) and   Z2 =√         sin(2πU)    has independent standard 

normal distribution . This transformation determines an algorithm for generating 

two independent standard Normal variates. 

1. Generate a random u from Uniform (0,1). 

2. Generate a random v from Uniform (0,1). 
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3. Deliver z1=√         cos(2πv) and z2 =√         sin(2πu)      

 

  R-commands: 
> n<-10 

> u<-runif(n) 

> u 

> v<-runif(n) 

> v 

> z1<-sqrt(-2*log(u))*cos(2*pi*v) 

> z1 

 [1]  1.1250714  0.7727131 -0.3350260 -0.1239726  0.1766388 -0.2534140 

 [7] -1.6997664  1.6549950 -0.1669520  1.2223246 

 

> z2<-sqrt(-2*log(v))*sin(2*pi*u) 

> z2 

  [1] -0.0586010 -0.2061662 -0.4627048 -0.1096821 -0.6211043  0.8008360 

 [7]  1.1698148  0.2115135 -0.8181893  0.8186927 

 

Example 2.11: 

If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then X = 
 

   
 has the 

Beta(r, s) distribution. 

 

Solution: 
The following relation between beta and gamma distributions provides another 

beta generator. 

If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then X= 
 

   
 has the 

Beta(r, s) distribution. This transformation determines an algorithm for generating 

random Beta (a, b) variates. 

 

1. Generate a random u from Gamma (a, 1). 

2. Generate a random v from Gamma (b, 1). 

3. Deliver x = 
 

   
 

 

This method is applied below to generate a random Beta (3, 2) sample. 

 

  R-commands: 
            > n <- 50 

> a <- 3 

> b <- 2 

> u <- rgamma(n, shape=a, rate=1) 

> v <- rgamma(n, shape=b, rate=1) 
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> x <- u / (u + v) 

> x 

   [1] 0.59648930 0.24795800 0.47529540 0.73482820 0.57455776 0.46957939 

  [7] 0.16626121 0.34215751 0.90528863 0.66933936 0.91986937 0.64417831 

[13] 0.60251166 0.29869794 0.66538529 0.59687444 0.60106581 0.55351348 

[19] 0.61768632 0.22185070 0.70750753 0.82545663 0.64704160 0.78169584 

[25] 0.50398825 0.68894688 0.91392111 0.26920499 0.80817692 0.09896981 

[31] 0.63780512 0.67690692 0.64038829 0.55494909 0.88168902 0.47601543 

[37] 0.70737323 0.74133759 0.79254969 0.47663673 0.85928021 0.29155043 

[43] 0.66012778 0.65084000 0.51040890 0.24622534 0.44460079 0.84453544 

[49] 0.66177467 0.13825054 

 

Example 2.12: 

If U, V ∼ Unif(0,1) are independent, then   X= ⌊  
       

              
⌋  has the 

Logarithmic(θ) distribution, where ⌊ ⌋ denotes the integer part of x. 

 

Solution: 
This example provides another, more efficient generator for the logarithmic 

distribution. If U, V are independent Uniform (0,1) random variables, then 

                    X= ⌊  
       

              
⌋ 

has the Logarithmic(θ) distribution . This transformation provides a simple and 

efficient generator for the logarithmic distribution. 

 

1. Generate u from Uniform (0, 1). 

2. Generate v from Uniform (0, 1). 

3. Deliver x = ⌊  
       

              
⌋ 

 

  R-commands: 
> n <- 1000 

> theta <- 0.5 

> u <- runif(n)                              #generate logarithmic sample 

> v <- runif(n) 

> x <- floor(1 + log(v) / log(1 - (1 - theta)^u)) 

> x 

   [1] 1 1 3 2 6 1 3 1 1 2 1 1 7 1 1 1 1 1 2 1 2 1 1 1 1 1 1 6 1 1 1 1 1 1 2 1 1 

 [38] 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 3 1 1 3 1 2 1 2 1 1 1 2 1 1 1 1 1 

 [75] 1 2 1 1 1 1 1 1 1 1 1 1 1 2 4 1 1 1 2 1 1 4 1 1 1 1 
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2.3.4 Sums and Mixtures 
Sums and mixtures of random variables are special types of transformations. 

In this section we focus on sums of independent random variables (convolutions) 

and several examples of discrete and continuous mixtures. 

 

Convolutions 

Let X1, . . .,Xn  be independent and identically distributed with distribution Xj ∼ X, 

and let S = X1 + · · · + Xn. The distribution function of the sum S is called the n-

fold convolution of X and denoted    
    

. It is straightforward to simulate a 

convolution by directly generating X1, . . .,Xn  and computing the sum. 

Several distributions are related by convolution. If ν > 0 is an integer, the 

chi-square distribution with ν degrees of freedom is the convolution ofνi.i.d. 

squared standard normal variables. The negative binomial distribution NegBin(r, 

p) is the convolution of r i.i.d. Geom(p) random variables. The convolution of r 

independent Exp (λ) random variables has the Gamma(r, λ) distribution.  

In R it is of course easier to use the functions rchisq, rgeom and rnbinom to 

generate chi-square, geometric and negative binomial random samples. The 

following example is presented to illustrate a general method that can be applied 

whenever distributions are related by convolutions. 

 

Example 2.13: (Chi-square) 

This example generates a chi-square    random variable as the convolution of ν 

squared normal. If Z1, . . . , Zv are iid N(0,1) random variables, then  

V=  
 +   

  +  +   
  has the χ

2
(ν) distribution.  

Steps to generate a random sample of size n from χ2(ν) are as follows. 

1. Fill an n × ν matrix with nν random N(0,1) variates. 

2. Square each entry in the matrix (1). 

3. Compute the row sums of the squared normals. Each row sum is one       

random observation from the χ
2
(ν) distribution. 

4. Deliver the vector of row sums. 

 

An example with n = 1000 and ν = 2 is shown below. 

n <- 1000 

nu <- 2 

X <- matrix(rnorm(n*nu), n, nu)^2                         #matrix of sq. normals 

                                     #sum the squared normals across each row: method 1 

y <- rowSums(X) 

                                                        #method 2 

y <- apply(X, MARGIN=1, FUN=sum)           #a vector length n 
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mean(y) 

mean(y^2) 

 

Mixtures 

A random variable X is a discrete mixture if the distribution of X is a weighted sum 

FX(x) =∑     
    for some sequence of random variables X1, X2, . . . and θi > 0 

such that ∑  = 1. The constants θi  are called the mixing weights or mixing 

probabilities. Although the notation is similar for sums and mixtures, the 

distributions represented are different. 

 

A random variable X is a continuous mixture if the distribution of X is 

FX(x) =∫                  
  

  
 for a family X|Y = y indexed by the real numbers y 

and weighting function fY such that ∫          
  

  
  

 

Compare the methods for simulation of a convolution and a mixture of 

normal variables. Suppose X1 ∼ N(0, 1) and X2 ∼ N(3, 1) are independent. 

The notation S = X1 + X2 denotes the convolution of X1 and X2. The distribution of 

S is normal with mean μ1+ μ2 = 3 and variance   
 +   

  =2. 

 

To simulate the convolution: 

1. Generate x1 ∼ N (0, 1). 

2. Generate x2 ∼ N (3, 1). 

3. Deliver s = x1 + x2. 

 

We can also define a 50% normal mixture X, denoted FX(x) = 0.5FX1(x)+0.5FX2(x). 

Unlike the convolution above, the distribution of the mixture X is distinctly non-

normal; it is bimodal. 

To simulate the mixture: 

1. Generate an integer k ∈ {1, 2}, where  P(1) = P(2) = 0.5. 

2. If k = 1 deliver random x from N(0, 1); 

    if k = 2 deliver random x from N(3, 1) 
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Unit III 

 
3.1Methods to find solution of non-linear Equation 

(A)   Bisection Method 

                                                  The bisection method is a root-finding method that 

repeatedly bisects an interval and then selects a subinterval in which a root must lie 

for further processing. It is a very simple and robust method, but it is also relatively 

slow. Because of this, it is often used to obtain a rough approximation to a solution 

which is then used as a starting point for more rapidly converging methods.  

The method is applicable for numerically solving the equation f(x) = 0 for 

the real variable x, where f is a continuous function defined on an interval [a, b] 

and where f(a) and f(b) have opposite signs. In this case a and b are said to bracket 

a root since, by the intermediate value theorem, the continuous function f must 

have at least one root in the interval (a, b).  

At each step the method divides the interval in two by computing the 

midpoint c = (a + b) / 2 of the interval and the value of the function f(c) at that 

point. Unless c is itself a root (which is very unlikely, but possible) there are now 

only two possibilities: either f(a) and f(c) have opposite signs and bracket a root, 

or f(c) and f(b) have opposite signs and bracket a root. The method selects the 

subinterval that is guaranteed to be a bracket as the new interval to be used in the 

next step. In this way an interval that contains a zero of f is reduced in width by 

50% at each step. The process is continued until the interval is sufficiently small. 

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the 

new value for b, and if f(b) and f(c) have opposite signs then the method sets c as 

the new a. (If f(c)=0 then c may be taken as the solution and the process stops.) In 

both cases, the new f(a) and f(b) have opposite signs, so the method is applicable to 

this smaller interval.  

 

Iteration Process: 

Given the interval [a, b], define c = (a + b)/2. Then 

 if f(c) = 0 (unlikely in practice), then halt, as we have found a root, 

 if f(c) and f(a) have opposite signs, then a root must lie on [a, c], so assign b 

= c, 

 else f(c) and f(b) must have opposite signs, and thus a root must lie on [c, b], 

so assign a = c. 

 

 

 

https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Intermediate_value_theorem
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Halting Conditions: 

There are three conditions which may cause the iteration process to halt: 

1. As indicated, if f(c) = 0. 

2. We halt if both of the following conditions are met: 

 The width of the interval (after the assignment) is sufficiently small, 

that is b- a < εstep, and 

 The function evaluated at one of the end point |f(a)| or |f(b)| < εabs. 

3. If we have iterated some maximum number of times, say N, and have not 

met Condition 1, we halt and indicate that a solution was not found. 

If we halt due to Condition 1, we state that c is our approximation to the root. If 

we halt according to Condition 2, we choose either a or b, depending on 

whether |f(a)| < |f(b)| or |f(a)| > |f(b)|, respectively. 

 If we halt due to Condition 3, then we indicate that a solution may not exist 

(the function may be discontinuous). 

 

Example 3.1: 

Find the root of f(x) = x
2
 - 3. Let εstep = 0.01, εabs = 0.01 and start with the interval 

[1, 2]. 

Solution: 
Table 3.1: Bisection Method Applied to f(x) = x

2
 - 3. 

a b f(a) f(b) c=(a+b)/2 f(c)   Update New(b-a) 

1.0 2.0 -2.0 1.0 1.5 -0.75 a=c 0.5 

1.5 2.0 -0.75 1.0 1.75 0.062 b=c 0.25 

1.5 1.75 -0.75 0.0625 1.625 -0.359 a=c 0.125 

1.625 1.75 -0.3539 0.0625 1.6875 -0.1523 a=c 0.0625 

1.6875 1.75 -0.1523 0.0625 1.7188 -0.0457 a=c 0.0313 

1.7188 1.75 -0.0457 0.0625 1.7344 0.0081 b=c 0.0156 

1.71988 1.7344 -0.0457 0.0081 1.7266 -0.0189 a=c 0.0078 

 

Thus, with the seventh iteration, we note that the final interval, [1.7266, 1.7344], 

has a width less than 0.01 and |f(1.7344)| < 0.01, and therefore we chose b =1.7344 

to be our approximation of the root. 

 

R programme to find the root of f(x) = x
2
 - 3. Let εstep = 0.01, εabs = 0.01 and start 

with the interval [1, 2]. 

 

R-Commands: 
    bisec<-function(a,b){ 

     f <- function(x) { 

        x^2-3 

    } 
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    it <- 0 

    eps <- 0.001 

    r <- seq(a, b, length=3) 

    x <- c(f(r[1]), f(r[2]), f(r[3])) 

    if (x[1] * x[3] > 0) 

        stop("f does not have opposite sign at endpoints") 

     

    while(it < 1000 && abs(x[2]) > eps) { 

        it <- it + 1 

        if (x[1]*x[2] < 0) { 

            r[3] <- r[2] 

            x[3] <- x[2] 

        } else { 

            r[1] <- r[2] 

            x[1] <- x[2] 

        } 

        r[2] <- (r[1] + r[3]) / 2 

        x[2] <- f(r[2]) 

        cat(it,c(r[1],r[3], x[1],x[3],r[2],x[2]),"\n") 

      } 

   } 

   bisec(1,2) 

 

Output: 
 1 1.5 2 -0.75 1 1.75 0.0625  

2 1.5 1.75 -0.75 0.0625 1.625 -0.359375  

3 1.625 1.75 -0.359375 0.0625 1.6875 -0.1523438  

4 1.6875 1.75 -0.1523438 0.0625 1.71875 -0.04589844  

5 1.71875 1.75 -0.04589844 0.0625 1.734375 0.008056641  

6 1.71875 1.734375 -0.04589844 0.008056641 1.726562 -0.01898193  

7 1.726562 1.734375 -0.01898193 0.008056641 1.730469 -0.005477905  

8 1.730469 1.734375 -0.005477905 0.008056641 1.732422 0.001285553  

9 1.730469 1.732422 -0.005477905 0.001285553 1.731445 -0.00209713  

10 1.731445  1.732422 -0.00209713 0.001285553 1.731934 -0.0004060268 
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(B) Newton-Raphson Method 
In numerical analysis, Newton's method (also known as the Newton–

Raphson method), named after Isaac Newton and Joseph Raphson, is a method for 

finding successively better approximations to the roots (or zeroes) of a real-

valued function. 

 

The Newton–Raphson method in one variable is implemented as follows: 

The method starts with a function f defined over the real numbers x, the 

function's derivative f’, and an initial guess x0 for a root of the function f. If the 

function satisfies the assumptions made in the derivation of the formula and the 

initial guess is close, then a better approximation x1 is 

 

  =    – 
     

      
 

 

 

The process is repeated as 

    =    – 
     

      
 

 

until a sufficiently accurate value is reached. 

 

Where,  

xi = value of the root at iteration i 

xi+1 = a revised value of the root at iteration i +1  

f(xi) = value of the function at iteration i  

f’(xi ) = derivative of  f(x) evaluated at iteration i 

 

This algorithm is first in the class of Householder's methods, succeeded by Halley's 

method. The method can also be extended to complex functions and to systems of 

equations. 

 

Example 3.2: 

Use the Newton-Raphson iteration method to estimate the root of the following 

function employing an initial guess of x0 =3, 

f(x) =  - 2x -2 

 

Solution: 

f(x) =  - 2x -2 

 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Joseph_Raphson
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Householder%27s_method
https://en.wikipedia.org/wiki/Halley%27s_method
https://en.wikipedia.org/wiki/Halley%27s_method
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Let us find the derivative of the function first, 

                                                        (x) = 2x - 2 

The initial guess is x0 = 3 

Table 3.2: 

i Iteration    f(xi) =  - 2x -2   (xi) = 2x - 2     =    – 
     

      
 

 

0 1
st
 3 (3)

2
 -2(3)-2=1 2(3)-2=4 3-(1/4)=2.75 

1 2
nd

 2.75 0.0625 3.5 2.73214 

2 3
rd

 2.73214 3.0898 x10
-4 

3.46428 2.73205 

3 4
th
 2.73205    

          

So the answer will be 2.732 (in three decimal places). 

 

R- Commands: 
NRM<-function(x){ 

fx<-(x^2-2*x-2) 

dfx<-(2*x-2) 

xf<-x-(fx/dfx) 

it<-1 

while(abs(fx)>0.00001&it<100){ 

x<-xf 

fx<-(x^2-2*x-2) 

dfx<-(2*x-2) 

xf<-x-(fx/dfx) 

it<-it+1 

} 

list(a=xf, iteration=it) 

} 

NRM(3) 

 

Output: 
$a 

[1] 2.732051 

 

$iteration 

[1] 4 
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Unit IV 
4.1 Iterative methods for solving linear system of equations 

As a numerical technique, Gaussian elimination is rather unusual because it 

is direct. That is, a solution is obtained after a single application of Gaussian 

elimination. Once a “solution” has been obtained, Gaussian elimination offers no 

method of refinement. The lack of refinements can be a problem because, as the 

previous section shows, Gaussian elimination is sensitive to rounding error. 

Numerical techniques more commonly involve an iterative method. For 

example, in calculus you probably studied Newton’s iterative method for 

approximating the zeros of a differentiable function. In this section you will look at 

two iterative methods for approximating the solution of a system of n linear 

equations in n variables. 

 

(A) Jacobi Method 
The first iterative technique is called the Jacobi method, after Carl Gustav Jacob 

Jacobi (1804–1851). It is simplest iterative method for solving linear system 

Ax = b.  This method makes two assumptions: (1) that the system given by 

 

      +       +   +       =    

      +       +   +       =    

                                               
      +       +   +       =    

 

has a unique solution and (2) that the coefficient matrix A has no zeros on its main 

diagonal. If any of the diagonal entries   ,        ,    are zero, then rows or 

columns must be interchanged to obtain a coefficient matrix that has nonzero 

entries on the main diagonal. 

 

 Main idea of Jacobi  

To begin, solve the 1
st
 equation for   , the 2

nd
  equation for     and so on to obtain 

the rewritten equations: 

  = 
 

   
 (   -       -       -   -      ) 

 

  = 
 

   
 (   -       -       -   -      ) 

                                          
                                          

  = 
 

   
 (   -       -       -   -           ) 
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 Then make an initial guess of the solution     = (  
   

,   
   

,   
   

,   ,    
   

 ).  

Substitute these values into the right hand side the of the rewritten equations to 

obtain the first approximation, (  
   

,   
   

,   
   

,   ,   
   

 ). This accomplishes one 

iteration. 

 

 In the same way, the second approximation (  
   

,   
   

,   
   

,   ,   
   

 ) is 

computed by substituting the first approximation’s x -vales into the right hand side 

of the rewritten equations. 

By repeated iterations, we form a sequence of approximations  

    =     
   

   
   

   
   

      
   

    , k=1, 2, 3, ….. 
 

The Jacobi Method for each k  1, generates the components   
   

 of      from 

       by,  

  
   

=
 

   
 [∑        

     
  

   
   

   ]    for i= 1, 2,   ,n 

 

Example 4.1: 

Use the Jacobi method to approximate the solution of the following system of 

linear equations. 

5   - 2   + 3   = -1 

                                                 -3   + 9   +     = 2 

                                                  2   -     - 7     = 3 

Continue the iterations until two successive approximations are identical when 

rounded to three significant digits. 

 

Solution: 

To begin, write the system in the form 

  = - 
 

 
 + 

 

 
    - 

 

 
    

  =   
 

 
 + 

 

 
    - 

 

 
    

  = - 
 

 
 + 

 

 
    - 

 

 
    

 

Because you do not know the actual solution, choose x1 = 0, x2 =0,  x3 = 0 as a 

convenient initial approximation. So, the first approximation is 

 

  = - 
 

 
 + 

 

 
 (0) - 

 

 
 (0) = -0.200 
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  =   
 

 
 + 

 

 
 (0) - 

 

 
 (0)   0.222 

  = - 
 

 
 + 

 

 
 (0) - 

 

 
 (0)   -0.429 

Continuing this procedure, you obtain the sequence of approximations shown in 

following Table. 

Table 4.1 

n 0 1 2 3 4 5 6 7 

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186 

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331 

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423 

 

Because the last two columns in above Table are identical, you can conclude that 

to three significant digits the solution is 

x1 = 0.186, x2 =0.331,  x3 = -0.423 

 

 

(B) The Gauss-Seidel Method 
You will now look at a modification of the Jacobi method called the Gauss-

Seidel method, named after Carl Friedrich Gauss (1777–1855) and Philipp L. 

Seidel (1821–1896). This modification is no more difficult to use than the Jacobi 

method, and it often requires fewer iterations to produce the same degree of 

accuracy. 

With the Jacobi method, the values of xi obtained in the n
th
 approximation remain 

unchanged until the entire         approximation has been calculated. With the 

Gauss- Seidel method, on the other hand, you use the new values of each xi as soon 

as they are known. That is, once you have determined   from the first equation, its 

value is then used in the second equation to obtain the new   . Similarly, the new 

  and    are used in the third equation to obtain the new    and so on. 

 

The Gauss-Seidel Method for each k  1, generates the components   
   

 of      

from        by,  

  
   

=
 

   
 *–∑ (     

   
)  ∑ (     

     
) 

     
   
      +    for i= 1, 2,   ,n 

 

Namely,  
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Example 4.2: 

Use the Gauss-Seidel iteration method to approximate the solution to the system of 

linear equations, 

5   - 2   + 3   = -1 

                                                 -3   + 9   +     = 2 

                                                  2   -     - 7     = 3 

Continue the iterations until two successive approximations are identical when 

rounded to three significant digits. 

 

Solution: 

To begin, write the system in the form 

  = - 
 

 
 + 

 

 
    - 

 

 
    

  =   
 

 
 + 

 

 
    - 

 

 
    

  = - 
 

 
 + 

 

 
    - 

 

 
    

 

Because you do not know the actual solution, choose x1 = 0, x2 =0,  x3 = 0 as a 

convenient initial approximation. So,  obtain the following new value of     

 

  = - 
 

 
 + 

 

 
 (0) - 

 

 
 (0) = -0.200 

 

Now that you have a new value for   , however, use it to compute a new value for 

   That is, 

  =   
 

 
 + 

 

 
 (-0.200) - 

 

 
 (0)   0.156 

 

Similarly, use   =-0.200 and   =0.156 to compute a new value for   .That is, 

  = - 
 

 
 + 

 

 
 (-0.200) - 

 

 
 (0.156)   -0.508 

So the first approximation is   =-0.200,    =0.156 and   =-0.508. 

Continued this iterations produce the sequence of approximation shown in 

following table,  

 

Table 

n 0 1 2 3 4 5 

x1 0.000 -0.200 0.167 0.191 0.186 0.186 

x2 0.000 0.156 0.334 0.333 0.331 0.331 

x3 0.000 -0.508 -0.429 -0.422 -0.423 -0.423 
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Note that after only five iterations of the Gauss-Seidel method, you achieved the 

same accuracy as was obtained with seven iterations of the Jacobi method. 


