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Preface

With the exception of two chapters, our first book Clinical Trial Methodology
(Peace and Chen (2010)) contained no statistical analysis software code for the
analysis results presented therein. In this book we provide a thorough presen-
tation of biostatistical analyses of clinical trial data with detailed step-by-step
illustrations on their implementation using R. In each chapter, examples of
clinical trials based on the authors’ actual experience in many areas of clinical
drug development are presented. After understanding the application, various
biostatistical methods appropriate for analyzing data from the clinical trials
are identified. Then analysis code is developed using appropriate R packages
and functions to analyze the data. Analysis code development and results are
presented in a stepwise fashion. This stepwise approach should enable readers
to follow the logic and gain an understanding of the analysis methods and the
R implementation so that they may use R to analyze their own clinical trial
data.

Based on their experience in biostatistical research and working in clinical
development, the authors understand that there are gaps between developed
statistical methods and applications of statistical methods by students and
practitioners. This book is intended to fill this gap by illustrating the im-
plementation of statistical methods using R applied to real clinical trial data
following a step-by-step presentation style.

With this style, the book is suitable as a text for a course in clinical trial
data analysis at the graduate level (master’s or doctorate’s), particularly for
students seeking degrees in statistics or biostatistics. In addition, the book
should be a valuable reference for self-study and a learning tool for clinical
trial practitioners and biostatisticians in public health, medical research uni-
versities, governmental agencies, and the pharmaceutical industry, particularly
those with little or no experience in using R.

R has become widely used in statistical modeling and computing since its
creation in the mid-1990s and it is now an integrated and essential software
for statistical analyses. Becoming familiar with R is then an imperative for the
next generation of statistical data analysts. In Chapter 1, we present a basic
introduction to the R system, where to get R, how to install R, and how to
upgrade R packages. Readers who are already familiar with R may skip this
chapter and go directly to any of the remaining chapters.

In Chapter 2, we provide an overview of the phases and objectives of
clinical trials as well as biostatistical aspects of clinical trials.

xvii
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In Chapter 3, we consider basic treatment comparisons in clinical trials
using the R system. Datasets from two clinical efficacy trials are introduced;
“Diastolic Blood Pressure”data from a hypertension trial and“Duodenal Ulcer
Healing” data from a large duodenal ulcer trial. Statistical methods, such as
Student’s t-test, analysis of variance (ANOVA), bootstrapping, Pearson’s χ2,
and other contingency table methods, appropriate for the type of data are
identified followed by step-by-step statistical analyses using R.

In Chapter 4, we present data analysis methods for treatment comparisons
in clinical trials adjusting for covariates using R. In addition to the “Diastolic
Blood Pressure” dataset in Chapter 3, datasets from two additional clinical
trials are introduced; one from a large trial of “Beta-Blockers” and one from
a trial of “Familial Andenomatous Polyposis.” We present statistical meth-
ods such as analysis of covariance (ANCOVA), logistic regression for binomial
data, and Poisson regression for count data appropriate for analyzing these
types of data using R. In the application of logistic regression, we empha-
size diagnostics for detecting overdispersion for correct modeling and present
several remedies whenever overdispersion is pinpointed.

Analysis methods using R for data from clinical trials with time-to-event
endpoints are presented in Chapter 5. In this chapter, we use data from a
Phase II trial of patients with Stage-2 breast carcinoma as an example of right-
censored time-to-event data. In addition, data from a publicly available breast
cancer trial is used as an example of interval-censored time-to-event data. We
then present the associated statistical models for analyzing these data with
appropriate R packages. Methods for right-censored data are typically well-
known; e.g., the nonparametric Kaplan–Meier estimator, semiparametric Cox
regression, and full parametric models such as the exponential, Weibull, or
other distributions. However, methods for analyzing interval-censored data
are less known and sometimes not available in statistical software packages.
In this chapter, we include some up-to-date statistical methods as well as the
R packages for analyzing this type of data.

Analysis methods appropriate for data from longitudinal clinical trials are
presented in Chapter 6. Two datasets are used as examples in this chapter.
The first dataset is the “Diastolic Blood Pressure” used in Chapters 3 and
4 and reflects continuous data. The second dataset is from the clinical trial
of “Duodenal Ulcer Healing,” of which a subset was analyzed in Chapter 3,
and reflects categorical data. These datasets are analyzed using longitudinal
statistical methods, such as linear mixed models, generalized linear mixed
models, and generalized estimating equations, and implemented in R packages.

Chapter 7 discusses sample size determination and power analysis in clini-
cal trials. We present an extensive list of methods as well as the R packages to
calculate sample size required under different data types and protocol design.

Meta-analysis of data from clinical trials is presented in Chapter 8. In
this chapter, we present both fixed-effects and random-effects models used in
meta-analysis with several R packages to implement these models.

Since Bayesian methods are being increasingly used in the design and
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analysis of clinical trials, Chapter 9 explores relevant Bayesian models with a
Markov-chain Monte-Carlo approach and application of R packages. Chapter
10 introduces bioequivalence clinical trials. In this chapter, we use a dataset
from Chow and Liu (2009) to illustrate the step-by-step implementation in R
and the reproducibility of their results using the R system. We then analyze
a dataset from a bioequivalence trial comparing different tablet formulations
of a commercially available drug.

The analysis of adverse events in clinical trials is outlined in Chapter 11.
Similarly to other chapters, we introduce clinical trial data and present sta-
tistical models using confidence interval and significance level methods to an-
alyze this type of data as well as the step-by-step implementation using the R
system.

In recent years, microarray technologies have been used extensively to
study molecular differences among different types of diseases, which lead to
identification of new drugs in the biopharmaceutical industry. Along with
the development of microarray technology, many new statistical methods and
models have been developed in parallel and incorporated in software to ana-
lyze high-throughput data. We think it is important to introduce some of these
methods and software as an introductory chapter. Chapter 12 then serves this
purpose to introduce the analysis of microarray data derived from samples
collected in clinical trials using the bioconductor project.

To facilitate the understanding of implementation in R, we annotated all
the R programs with comments and explanations started with # (i.e., the
R command for “comment”) so that the readers can understand exactly the
meaning of the corresponding R programs.

We would like to express our gratitude to many individuals. First, thanks
to David Grubbs from Taylor & Francis for his interest in the book and to
Shashi Kumar for assistance in LATEX. Thanks also go to Professors Jianguo
Sun and Lili Yu for their suggestions to Chapter 5 and to Professor Xijin Ge
for his suggestions to Chapter 12, which significantly improved these chapters.
Special thanks are due to Professors Robert Gentleman and Ross Ihaka who
created the R language with visionary open source, as well as to the devel-
opers and contributing authors in the R community for their endless efforts
and contributed packages. Finally, from the Jiann-Ping Hsu College of Public
Health at Georgia Southern University, thanks go to Macaulay Okwakenye,
our graduate assistant, for assistance in proofing some of the chapters, and to
Dean Charlie Hardy for his support and encouragement to finish the book.

We appreciate any comments and suggestions on typos, errors and fu-
ture improvements about this book. Please contact Din Chen at email:
DrDG.Chen@gmail.com.

Statesboro, GA Din Chen
Karl E. Peace
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Chapter 1

Introduction to R

1.1 What is R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Steps on Installing R and Updating R Packages . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 First Step: Install R Base System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Second Step: Installing and Updating R Packages . . . . . . . . . . . . . 4

1.2.3 Steps to Get Help and Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 R for Clinical Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 A Simple Simulated Clinical Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1.1 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1.2 Data Generation and Manipulation . . . . . . . . . . . . . . . . . 8

1.4.1.3 Basic R Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

In this chapter, we provide a basic introduction to the R system (R Develop-
ment Core Team (2005)): where to get R, how to install R and how to upgrade
R packages. We also show how easy it is to use R to simulate and analyze data
from a simple clinical trial. The chapter ends with concluding remarks and
some recommendations for further reading and references. Readers who al-
ready know and have familiarity with R can skip this chapter and go directly
to any of the remaining chapters.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: xtable, lattice and gsDesign.

1.1 What is R?

To obtain an introduction to R, go to the official home page of the R project
at

http://www.R-project.org

and click “What is R?”:

1



2 Clinical Trial Data Analysis Using R

“ R is a language and environment for statistical comput-
ing and graphics. It is a GNU project which is similar to
the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technolo-
gies) by John Chambers and colleagues. R can be considered
as a different implementation of S. There are some impor-
tant differences, but much code written for S runs unaltered
under R.

R provides a wide variety of statistical (linear and nonlin-
ear modeling, classical statistical tests, time-series analysis,
classification, clustering, ...) and graphical techniques, and
is highly extensible. The S language is often the vehicle of
choice for research in statistical methodology, and R provides
an Open Source route to participation in that activity.

One of R’s strengths is the ease with which well-designed
publication-quality plots can be produced, including mathe-
matical symbols and formulae where needed. Great care has
been taken over the defaults for the minor design choices in
graphics, but the user retains full control.

R is available as Free Software under the terms of the
Free Software Foundation’s GNU General Public License in
source code form. It compiles and runs on a wide variety
of UNIX platforms and similar systems (including FreeBSD
and Linux), Windows and MacOS. ”

To some users, “free” software may have a “negative” connotation – imply-
ing software that is difficult to use, has lower quality or utilizes procedures
that have not been validated or verified, etc. However to other users, “free”
software means software from an open source that not only allows use of the
software but also permits modifications to handle a variety of applications.
This latter description is the fundamental principle for the R system.

We now proceed to the steps for installing and using R.

1.2 Steps on Installing R and Updating R Packages

In general, the R system consists of two parts. One is the so-called R
base system for the core R language and associated fundamental libraries.
The other consists of user contributed packages that are more specialized
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applications. Both the base system and the packages may be obtained from
the Comprehensive R Archive Network (CRAN) using the Web link:

http://CRAN.r-project.org

Installation of the R system is described in the following sections.

1.2.1 First Step: Install R Base System

The base system can be downloaded from

http://CRAN.r-project.org

for different platforms of “Linux,”“MacOS X,” and “Windows”. In this book,
we illustrate the use of R for “Windows.”“Windows” users can download the
latest version of R using the link:

http://CRAN.r-project.org/bin/windows/base/release.htm

(At the writing of this book, version R 2.11.1 is available.) To download and
install R to your computer simply follow the instructions from the installer
to install R to the “Program Files” subdirectory in your C disk. You are then
ready to use R for statistical computing and data analysis.

Note to LATEX and R/Sweave users: LATEX will complain about the extra
space in the path as in “Program Files.” Therefore if you want to use R along
with LATEX, you need to make a subdirectory without space in the path to
install R.

You should now have an icon with a shortcut to R. Simply click the icon
to start R. You should see some introductory information about R and a
command prompt ‘>’:

>

To illustrate R computation, suppose we wish to calculate the sum of 1
and 2. The first line of R computation is

> x = 1+2

The computed value may be printed using

> print(x)

[1] 3

You should get “3.”
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1.2.2 Second Step: Installing and Updating R Packages

The R base system contains a variety of standard statistical functions,
descriptive and inferential statistical analysis methods, and graphics which are
appropriate for many statistical computing and data analysis requirements.

However, the packages are more specialized applications that are con-
tributed by advanced R users who are expert in their field. From our view,
packages in R is the most important component in R development and upgrad-
ing. At the time of writing this book, there are more than 2,000 packages in the
R system spanning almost all fields of statistical computing and methodology.

You may install any packages from the R prompt by clicking in-
stall.packages from the R menu Packages.

For example, for researchers and practitioners who are interested in de-
signing group sequential clinical trials, the gsDesign contributed by Keaven
Anderson from Merck and Company can be installed from this pull-down
manual. All the functionality of this package is then available by loading it to
R as

> library(gsDesign)

For first-time users for this package, information about its use may be
obtained by invoking:

> library(help=gsDesign)

A help page is then available which explains all the functionality of this
package. For readers who desire a comprehensive list of available packages, go
to

http://CRAN.R-project.org/src/contrib/PACKAGES.html

1.2.3 Steps to Get Help and Documentation

A striking feature of R is the easy access of its “Help and Documentation,”
which may distinguish it from other software systems. There are several ways
to access “Help and Documentation.”

The general reference may be obtained from RGui in R. When R is started,
click “Help” to access R help items on “FAQ on R,”“FAQ on R on Windows,”
“Manuals (in PDF),” etc. We recommend that readers print the online PDF
manual “Introduction to R” for future reference.

Additional “Help and Documentation” may be obtained from the R home-
page. Many documentations and online discussions on R are available from
the R homepage http://www.r-project.org/. The online “Documentation”
section consists of almost all the manuals, FAQs, R Journal, books and other
related literature. We recommend readers spend some time in reviewing the
online documents to gain familiar with R.

The most convenient way to access the “help” is from the R command
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prompt. You can always obtain specific help information from the R command
prompt by using“help()”. For example, if you want help on“Conditional Power
Computation” in the library gsDesign, type

> help(gsCP)

This will load an information page on “Conditional Power Computation” con-
taining relevant information. This includes the description of the function,
detailed usage for the function and some examples on how to use this func-
tion.

1.3 R for Clinical Trials

Since its release, R has been used in academia, government agencies and
the pharmaceutical industry in the design and analysis of clinical trials. There
are numerous R packages that have been written for clinical trial applications.
We use some of them in this book. For reference to the R system for clinical
trials, readers are referred to the online documentation titled as

R: Regulatory Compliance and Validation Issues.

A Guidance Document for the Use of R in Regulated Clinical Trial Envi-
ronments is available from the R homepage (http://www.r-project.org/)
by pointing the web browser to “Certification” under “Documentation” on the
left side, or it may be directly downloaded from

http://www.r-project.org/doc/R-FDA.pdf

This online documentation was prepared by “The R Foundation for Sta-
tistical Computing” in August 17, 2008.

This guidance discusses aspects of the use of R for human clinical trials
conducted by the pharmaceutical industry in compliance with regulation of
the United States Food and Drug Administration (hereafter referred to as
the FDA) and the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals in Human Use (hereafter
referred to as the ICH).

Furthermore, Ed Zhang maintains a R online CRAN Task View available
via

http://cran.r-project.org/web/views/ClinicalTrials.html

that contains specific packages for design, monitoring and analysis of data
from clinical trials.

This CRAN Task View gathers “packages for clinical trial design and
monitoring in general plus data analysis packages for specific types of designs.
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Also, it gives a brief introduction to important packages for analyzing clinical
trial data.”

To illustrate use of CRAN Task View, we emphasize and copy several
packages that we often use. Readers are encouraged to visit CRAN Task
View to gain familiarity.

Design and Monitoring includes

• Blockrand creates randomizations for block random clinical trials. It can
also produce a PDF file of randomization cards.

• GroupSeq performs computations related to group sequential designs via
the alpha spending approach, i.e., interim analyses need not be equally
spaced, and their number need not be specified in advance.

• gsDesign derives group sequential designs and describes their properties.

• ldBand from Hmisc computes and plots group sequential stopping
boundaries from the Lan-DeMets method with a variety of α-spending
functions using the ld98 program from the Department of Biostatistics,
University of Wisconsin written by DM Reboussin, DL DeMets, KM
Kim, and KKG Lan.

• PwrGSD is a set of tools to compute power in a group sequential design.

• seqmon computes the probability of crossing sequential efficacy and futil-
ity boundaries in a clinical trial. It implements the Armitage-McPherson
and Rowe Algorithm using the method described in Schoenfeld (2001).

Analysis for Specific Design includes:

• clinfun has functions for both design and analysis of clinical trials. For
phase II trials, it has functions to calculate sample size, effect size, and
power based on Fisher’s exact test, the operating characteristics of a two-
stage boundary, Optimal and Minimax 2-stage Phase II designs given
by Richard Simon (supply reference), the exact 1-stage Phase II design
and can compute a stopping rule and its operating characteristics for
toxicity monitoring based on repeated significance testing. For phase III
trials, sample size for group sequential designs may also be computed.

• bifactorial makes global and multiple inferences for specified bi- and tri-
factorial clinical trial designs using bootstrap methods and a classical
approach.

• ClinicalRobustPriors can be employed for computing distributions
(prior, likelihood, and posterior) and moments of robust models:
Cauchy/Binomial, Cauchy/Normal and Berger/Normal. Furthermore,
the assessment of the hyperparameters and the posterior analysis can
be processed.
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• MChtest performs Monte Carlo hypothesis tests. It allows a couple of dif-
ferent sequential stopping boundaries (a truncated sequential probabil-
ity ratio test boundary and a boundary proposed by Besag and Clifford
(1991). It gives valid p-values and confidence intervals on p-values. sp-
eff2trial performs estimation and testing of treatment effect in a 2-group
randomized clinical trial with a quantitative or dichotomous endpoint.

Other packages are available including those for meta-analyses and other
analyses in general.

1.4 A Simple Simulated Clinical Trial

To demonstrate basic application of R and its functionality, we simulate a
simple two-arm clinical trial to compare a new drug to placebo on reducing
diastolic blood pressure in hypertensive adult men.

Let’s assume an appropriate power analysis indicated the sample size re-
quired to detect a specified treatment difference is n = 100 for both treatment
groups (i.e., drug vs. placebo). For these n participants, we record their age
and measure baseline diastolic blood pressure just before randomization; note
that age is an important risk factor linked to blood pressure.

The new drug and placebo are administered and blood pressure is mea-
sured and recorded periodically thereafter, including at the end of the trial.
Then the change in blood pressure between the endpoint and baseline may be
calculated and used to evaluate the antihypertensive efficacy of the new drug.

We illustrate simulation of the data, data manipulation and analysis with
appropriate statistical graphics. Since this is the very first introduction to R,
we intentionally use the basic R command so that readers can follow the logic
without difficulty.

1.4.1 Data Simulation

1.4.1.1 R Functions

R has a wide range of functions to handle probability distributions and
data simulation. For example, for the commonly used normal distribution,
its density, cumulative distribution function, quantile function, and random
generation with mean equal to mean and standard deviation equal to sd can
be generated using the following R functions:

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)



8 Clinical Trial Data Analysis Using R

where

x, q is vector of quantiles
p is vector of probabilities
n is number of observations

mean is vector of means
sd is vector of standard deviations.

The above specification can be found using the Help function as follows:

> help(rnorm)

There are similar sets of d, p, q, r functions for Poisson, binomial, t, F,
hypergeometric, χ2, Beta, etc. Also there is a sample function for sampling
purpose and replicate for repeating a computation to save computing time.

1.4.1.2 Data Generation and Manipulation

With this introduction, we now simulate the clinical trial data assuming
that the baseline diastolic blood pressures for these 200 (n=100 for each treat-
ment) recruited participants are normally distributed with mean (mu) = 100
(mm HG) and standard deviation sd = 10 (mm HG). The age for these 200
middle-age men is assumed to be normally distributed with mean age age.mu
= 50 (year old) and standard deviation age.sd = 10 (year). In addition, we
assume the new drug will decrease diastolic blood pressure by mu.d = 20(mm
HG).

These input values for this simulation can be specified in R as follows:

> # simulated input values

> n = 100

> mu = 100

> sd = 10

> mu.d = 20

> age.mu = 50

> age.sd = 10

We first simulate data for the n placebo participants with age, baseline
blood pressure (denoted by bp.base), endpoint blood pressure (denoted by
bp.end) and change in blood pressure from baseline to endpoint (denoted by
bp.diff=bp.end-bp.base) with following R code chunk:

> # fix the seed for random number generation

> set.seed(123)

> # use "rnorm" to generate random normal

> age = rnorm(n, age.mu, age.sd)

> bp.base = rnorm(n,mu,sd)

> bp.end = rnorm(n,mu,sd)
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> # take the difference between endpoint and baseline

> bp.diff = bp.end-bp.base

> # put the data together using "cbind" to column-bind

> dat4placebo = round(cbind(age,bp.base,bp.end,bp.diff))

Note that the simulation seed is set at 123 so that simulation can be repro-
duced, which is done by set.seed(123). Otherwise, results can be different
from each simulation.

We can manipulate the data using column bind (R command cbind) to
combine all the simulated data together and round the data into the nearest
whole number (R command round) to produce a dataset and give the data
matrix a name: dat4placebo. The first few observations may be viewed using
the following R code:

> head(dat4placebo)

age bp.base bp.end bp.diff
[1,] 44 93 122 29
[2,] 48 103 113 11
[3,] 66 98 97 0
[4,] 51 97 105 9
[5,] 51 90 96 5
[6,] 67 100 95 -4

Similarly, we can simulate data for the new drug. We use the same variable
names here, but give a different name to the final dataset: dat4drug. Note that
the mean for the bp.end is now mu-mu.d (=100-20) to simulate the decrease
in mean value:

> age = rnorm(n, age.mu, age.sd)

> bp.base = rnorm(n,mu,sd)

> bp.end = rnorm(n,mu-mu.d,sd)

> bp.diff = bp.end-bp.base

> dat4drug = round(cbind(age,bp.base,bp.end,bp.diff))

We do not print the observations at this time. To further manipulate the
data, we stack the two data sets from placebo and new drug using R command
rbind to produce a data frame using R command data.frame. We also create
a column trt with two factors of Placebo and Drug to indicate there are two
treatments in this data set and finally name this data dat :

> # make a dataframe to hold all data

> dat = data.frame(rbind(dat4placebo,dat4drug))

> # make "trt" as a factor for treatment.

> dat$trt = as.factor(rep(c("Placebo", "Drug"), each=n))
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With these manipulations, the data frame dat should have 200 observations
with 100 from Placebo and 100 from Drug. Also this dataframe should have 5
columns as age, bp.base, bp.end, bp.diff,trt. We can check it using the following
R code chunk:

> # check the data dimension

> dim(dat)

[1] 200 5

> # print the first 6 observations to see the variable names

> head(dat)

age bp.base bp.end bp.diff trt
1 44 93 122 29 Placebo
2 48 103 113 11 Placebo
3 66 98 97 0 Placebo
4 51 97 105 9 Placebo
5 51 90 96 5 Placebo
6 67 100 95 -4 Placebo

1.4.1.3 Basic R Graphics

R is well-known for its graphics capabilities. We can display the distribu-
tions for the data just generated to view whether they appear to be normally
distributed using the R command boxplot as follows:

> # call boxplot

> boxplot(dat4placebo, las=1, main="Placebo")

This generates Figure 1.1 from which one can see that the data appear to
be normally distributed except for one outlier from the baseline data.

Similarly we can produce the distribution for Drug using the following R
code chunk:

> boxplot(dat4drug, las=1, main="Drug")

This produces Figure 1.2 to show that the data are in fact normally dis-
tributed. The boxplot for endpoint is 20 mm HG lower than the baseline blood
pressure.

Before performing any statistical analysis of the clinical trial data, we rec-
ommend exploring the data using appropriate plots to assess whether distri-
butional or other relevant assumptions required for the validity of the analysis
methods hold for the data. There is another suite of advanced R graphics to
use for this purpose, i.e., the package lattice with implementation of Trellis
Graphics.

This package is maintained by Deepayan Sarkar (Sarkar (2008)) and can
be downloaded from
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FIGURE 1.1: Distributions for Data Generated for “Placebo.”
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FIGURE 1.2: Distributions for Data Generated for “Drug.”
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http://r-forge.r-project.org/projects/lattice/

or simply from RGui. We first load the package into the R by
library(lattice) and display the relationship between the blood pressure
difference as a function of age for each treatment to assess whether there ex-
ists a statistically significant relationship in addition to a treatment difference.
This can be done with the following R code chunk:

> #load the lattice library

> library(lattice)

> # call xyplot function and print it

> print(xyplot(bp.diff~age|trt, data=dat,xlab="Age",

strip=strip.custom(bg="white"),

ylab="Blood Pressure Difference",lwd=3,cex=1.3,pch=20,

type=c("p", "r")))
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FIGURE 1.3: Data with Regression Line for Each Treatment.

This produces Figure 1.3. From Figure 1.3, we conclude that the relationship
between the blood pressure decrease and age may not be significant, but that
the new drug did reduce blood pressure.
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1.4.2 Data Analysis

With these preliminary graphical illustrations, we now comfortably pro-
ceed to data analysis. The general statistical model we start with is

y = β0 + β1 × trt+ β2 × age+ β3 × age× trt+ ε , (1.1)

where y denotes the change in blood pressure, β’s are the parameters, and ε
is the error term which is assumed to be independently identically distributed
(i.i.d.) as normal with standard deviation σ. Note that we start with the age
and trt interaction.

The fitting of this linear model (1.1) is accomplished in one line of R code
using lm as

> lm1 = lm(bp.diff~trt*age, data=dat)

> summary(lm1)

Call:
lm(formula = bp.diff ~ trt * age, data = dat)

Residuals:
Min 1Q Median 3Q Max

-37.9750 -8.8829 0.0373 8.4877 45.6784

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.62709 6.24247 -2.82 0.0052 **
trtPlacebo 24.15364 9.58693 2.52 0.0126 *
age -0.07628 0.12321 -0.62 0.5365
trtPlacebo:age -0.00631 0.18697 -0.03 0.9731
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.8 on 196 degrees of freedom
Multiple R-squared: 0.468, Adjusted R-squared: 0.46
F-statistic: 57.6 on 3 and 196 DF, p-value: <2e-16

The summary command prints a summary of the model fitting including
the analysis of variance (ANOVA) table, R2 and p-values, etc. A prettier
table can be generated from the R package xtable on tests for significance of
the coefficients, which are shown in Table 1.1 with the following R code chunk:

> # load the xtable library and call xtable to make the table

> library(xtable)

> print(xtable(lm1, caption="ANOVA table for simulated

clinical trial data", label = "tab4RI.coef"),

table.placement = "htbp",caption.placement = "top")
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TABLE 1.1: ANOVA table for simulated clinical trial data

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.6271 6.2425 -2.82 0.0052
trtPlacebo 24.1536 9.5869 2.52 0.0126

age -0.0763 0.1232 -0.62 0.5365
trtPlacebo:age -0.0063 0.1870 -0.03 0.9731

This confirms the conclusion from Figure 1.3 that the new drug statistically
significantly reduced blood pressure.

The diagnostics for model assumptions may be illustrated in simple R code
to generate the residual plot, QQ-plot and the associated plot for outlier and
leverages as in Figure 1.4 using R function plot as follows:

> layout(matrix(1:4, nrow=2))

> plot(lm1)
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1.5 Concluding Remarks

In this chapter, we introduced the reader to the R system, its installation,
and its related packages. We illustrated the use of R for data simulation and
manipulation, statistical graphics and statistical modeling by simulating data
from a simple clinical trial.

For further reading to gain more familiarity with the R system, we recom-
mend:

• R fundamentals to S languages: Two books from John Chambers
(Chambers (1998) and Chambers (2008)) are excellent references to un-
derstand the R language and its programming structures.

• R graphics: Besides Sarkar’s book (Sarkar (2008)) on lattice, we also
recommend Paul Murrell’s book (Murrell (2005)).

• Statistical data analysis using R: we recommend Faraway’s two
books published in 2004 (Faraway (2004)) and 2006 (Faraway (2006))
which are two excellent books in using R for statistical modeling. Everitt
and Hothorn’s book (Everitt and Hothorn (2006)) on statistical data
analysis using R is another excellent book we used in the classroom,
which interested students.

• Statistical computing: Maria Rizzo’s book on Statistical Computing
with R (Rizzo (2008)) is an excellent book.

• R online documentations: We emphasize again that there are many
free online books, manuals, journals and others to be downloaded from
R homepage at “Documentation.”
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2.1 Introduction

A clinical trial is a research study conducted to assess the utility of an
intervention in volunteers. Interventions may be diagnostic, preventative or
treatment in nature and may include drugs, biologics, medical devices or meth-
ods of screening. Interventions may also include procedures whose aim is to
improve quality of life or to better understand how the intervention works in
volunteers.

Quality clinical research must be well planned, closely and carefully mon-
itored and conducted, and appropriately analyzed and reported. Greater at-
tentiveness to detail at the design stage argues for greater efficiency at the
analysis and reporting stages. This is important on a per protocol basis as
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well as across the entire clinical development plan to support regulatory fil-
ing.

2.2 Phases of Clinical Trials and Objectives

It is well known that evidence to support regulatory approval of a new
drug derives from clinical trials. Such trials are categorized as Phase I, Phase
II or Phase III. Although these categories may not be mutually exclusive (nor
in some cases mutually exhaustive), there is general agreement as to what
types of clinical studies comprise the bulk of the trials within each phase.

2.2.1 Phase I Trials

Phase I trials may consist of “early Phase I” trials, early dose ranging
trials, bioavailability or pharmacokinetic trials, or mechanism of action studies.
Early Phase I trials represent the initial introduction of the drug in humans,
in order to characterize the acute pharmacological effect. For most classes
of drugs, healthy subjects are enrolled, in an attempt to reduce the risk of
serious toxicity and to avoid confounding pharmacological and disease effects.
The idea is to introduce the drug to humans without inducing acute toxicity.

Early dose ranging trials, often called dose tolerance or dose titration trials,
are also most often conducted in healthy subjects. Both the effects of single
dosing and multiple dosing schemes are studied. The objective of these trials
is to determine a ‘tolerable’ dose range, such that as long as future dosing
remains in this range, no intolerable side effects of toxicities would be expected
to be seen.

Early Phase I trials and early dose ranging trials don’t establish nor quan-
titate efficacy characteristics of a drug. These studies have to be conducted
first, so that acute pharmacological effects may be described, and a range
of tolerable doses determined, which guide clinical use of the drug for later
studies.

The primary objectives of Phase I bioavailability and pharmacokinetic tri-
als are to characterize what happens to the drug once it’s injected into the
human body. That is, properties such as absorption, distribution, metabolism,
elimination, clearance, and half-life need to be described. These trials also usu-
ally enroll healthy subjects and are often called “blood level trials.”

Mechanism of action trials attempt to identify how the drug induces its
effects. An example is the class of H2-receptor antagonists, such as cimetidine,
ranitidine, famotidine and zanatidine, which by blocking the H2-receptor re-
duce the secretion of gastrin which in turn leads to a reduction of gastric acid
production. Another example is the H1-receptor antagonist, seldane, which
by blocking the H1-receptor reduces histamine release. Other examples are



Overview of Clinical Trials 19

the ACE (angiotensin-converting-enzyme) inhibitors (e.g. captopril, enalapri,
quinapril) which are competitive inhibitors of ACE. ACE inhibitors block the
formation of the chemical angiotensin II (AT-II) which causes muscles sur-
rounding blood vessels to contract. Blocking the formation of AT-II leads to
reduced vasoconstriction, increased vasodilation, and reduced blood pressure.

Bioavailability or pharmacokinetic studies and mechanism of action studies
provide additional information so that the drug may be clinically used more
effectively and safer in future studies.

2.2.2 Phase II Trials

Phase II trials represent the earliest trials of a drug in patients. Patients
should have the disease under investigation. Patients who enter such trials
represent a relatively restricted yet homogeneous population. In some areas of
drug development – such as oncology, Phase II trials are categorized as Phase
IIA and Phase IIB.

Phase IIA trials may include clinical pharmacology studies in patients, and
more extensive or detailed pharmacokinetic and pharmacodynamic studies in
patients. Phase IIB trials are controlled and represent the initial demonstra-
tion of efficacy and safety of a drug at the doses from the clinical pharmacology
studies. Also of interest is to estimate the effective dose range, to characterize
the dose response curve, and to estimate the minimally effective dose. Often it
is difficult to distinguish between Phase IIB trials and Phase III trials, particu-
larly in terms of objectives. The primary differences are the inclusion/exclusion
criteria and the sample size.

2.2.3 Phase III Trials

Phase III trials may be viewed as extensions of Phase IIB trials. They
are larger and the inclusion/exclusion criteria may be less restrictive than
those of Phase IIB trials. For a drug to proceed to the Phase III portion of
the development program, it must be deemed effective from the Phase IIB
program. At this stage, effectiveness has been indicated, but not confirmed.

The primary objectives of the Phase III program are to confirm the effec-
tiveness of the drug in a more heterogeneous population, and to collect more
and longer term safety data. Information from Phase IIB, provides pilot data
for the purpose of sample size determination in Phase III.

For the purpose of obtaining more safety data under conditions which
better approximate the anticipated clinical use of the drug, relatively large,
uncontrolled, non-comparative trials may also be conducted in Phase III. Since
if the drug is given approval to be marketed, it may be used in the elderly, in
the renally impaired, etc., and since such patients are usually excluded from
other trials, studies in special populations may also be conducted in Phase
III.
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2.3 The Clinical Development Plan

The clinical development plan for a new drug includes Phase I, Phase
II, and Phase III trials. In viewing the types of trials within each phase of
clinical development, it is obvious that the objectives of the trials describe
characteristics of a drug which should be known before proceeding sequentially
with subsequent clinical use. Further upon the successful completion of the
trials through Phase III, sufficient information should exist for the drug to be
approved to be marketed.

The drug sponsor may wish to include other trials in the clinical devel-
opment plan particularly to provide a marketing ‘hook’ for launch. Prior to
finalizing the clinical development plan the drug sponsor should formulate
draft labeling. The draft labeling should accommodate what is required to
be said and what is desired to be said about the compound in the package
insert of the marketed product. The clinical development plan then serves as
a blueprint for labeling.

Basically, the labeling should communicate characteristics of the drug and
give instructions for its use. Usually, the objectives of the trials described in
Phase I, Phase II, and Phase III, if met in carrying out the attendant inves-
tigations, provide sufficient information to communicate the characteristics of
the drug. However, since the population studied pre-market approval is likely
to be more homogeneous than the user population post-market approval, and
since inferences are based upon group averages, there may be insufficient infor-
mation from the usual Phase I, Phase II, and Phase III program as to optimal
clinical use of the drug, particularly in individual patients.

Therefore, drug sponsors may consider implementing a ‘Phase III 1/2’
program directed more toward clinical use than toward establishing efficacy as
a characteristic of the drug, which in our mind is what the typical pivotal proof
of efficacy trials in Phase III do. Such a targeted program may be unnecessary
if more efficient and more optimal designs and methods, such as response
surface methodology, and evolutionary operations procedures are incorporated
into the clinical development program as early as Phase II. In addition, being
proactive in developing an integrated data base consisting of all data collected
on a compound, so that meta-analysis and other techniques may be used,
should enable the drug sponsor to do a better job at labeling.

2.4 Biostatistical Aspects of a Protocol

A protocol has to be developed for each clinical trial. An important re-
sponsibility of the statistician or biostatistician assigned to the protocol is to



Overview of Clinical Trials 21

provide its statistical content. This includes: ensuring that the objectives are
clear; recommending the most appropriate design (experimental design and
determination of sample size) for the condition being studied; assessing the
adequacy of endpoints to address study objectives; assigning participants to
protocol interventions to minimize bias; and developing the statistical analysis
section. In addition it is imperative that the biostatistician provides a review
of the protocol for completeness and consistency.

The next four subsections: Background or Rationale; Objective; Plan of
Study; and Statistical Analysis Section provide an overview of their counter-
parts in a clinical trial protocol. Biostatistical input to these subsections is
discussed.

2.4.1 Background or Rationale

Sufficient information should be given in this section to set the stage for
the clinical trial for which the protocol is being developed. This requires in-
tegrating the results (with references) of previous studies that have bearing
on the current protocol. The section should end with a paragraph explaining
why the current protocol is needed or why it is being developed.

2.4.2 Objective

The objective or research question of the protocol should be defined so
that it is unambiguous. For example, in an investigation about the antihy-
pertensive efficacy of drug D in some defined population, the statement: “The
objective of this investigation is to assess the efficacy of drug D” is ambiguous.
It provides only general information as to the question (“Is D efficacious?”).
The statement: “The objective of this investigation is to assess whether drug D
is superior to placebo P in the treatment of hypertensive patients with diastolic
blood pressure (DBP) between 90 and 105 mm HG for six months” is better
as the hypertensive population to be treated and what is meant by efficacious
in a comparative sense are specified.

However, the data or endpoint(s) upon which antihypertensive efficacy will
be based is (are) not specified. DBP is stated, but how will it be measured?
Using a sphygmomanometer or a digital monitor? Will DBP be measured in
the sitting, standing or supine position? Further, what function of the DBP
will be used? The change from baseline to the end of the treatment period?
Or whether the patient achieves a therapeutic goal of normotension (DBP ≤
80 mm HG) by the end of the treatment period?

If there is more than one question or objective, one should identify which
is primary versus which is secondary.
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2.4.3 Plan of Study

The plan of study entails all that is to be done in order to enroll and treat
patients, monitor the study, ensure patient safety, and collect valid data. The
study population has to be specified. Design aspects of the study, including all
procedures to be used in the diagnoses, treatment or management of patients
must be delineated.

2.4.3.1 Study Population

Characteristics of the population of patients to be entered into the proto-
col must be specified. This is typically accomplished by specifying inclusion
and exclusion criteria appropriate for the disease and drug under study. In
specifying these criteria, one has to be cognizant that patients entered must
have the disease under study, that the condition of the patient must not com-
promise patient safety by participating in the protocol, and that the patients
entered should enable the efficacy of the drug under study to be determined
(absence of masking or confounding factors).

The inclusion criteria specify the demography of the patient population,
their disease characteristics, acceptable vital signs ranges, acceptable clinical
laboratory tests ranges, etc. Exclusion criteria are generally the complement
of the inclusion criteria, with delineation of a subset that specifically excludes
patients from entry. For example, non-menopausal females who are pregnant
or who do not agree to practice an acceptable form of birth control during the
intervention period are excluded; as are patients who do not agree to abstain
from using concomitant medications that may mask or interfere with the ac-
tivity of the drug under study. Inclusion/exclusion criteria essentially define
the population to be studied. Therefore they provide general descriptors of the
population to which inferences from analyses of the data collected pertain.

2.4.3.2 Study Design

The study design subsection should identify: the type of study; the treat-
ment or intervention groups and how patients who qualify for the protocol
will be assigned to treatment groups; what measures will be taken to ensure
the absence of bias; requirements relative to patients taking medications other
than those constituting the assigned intervention; and all procedures that are
required by the protocol in order to diagnose, treat, ensure patient safety, and
collect data.

1. Type of Study. The type of study should be described. Is the study
prospective? What type of control (placebo, positive, historical, etc.)
will be used? Is it single or multi-center? Is the study parallel, crossover,
stratified, or some other type?

2. Treatment Group Specification and Assignment. The treatment
groups and the interventions (drug, dose, etc.) that patients in the groups
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will receive should be specified. Then how patients will be assigned to
the treatment groups to remove assignment bias should be articulated.
The gold standard is to randomly assign patients to the groups in bal-
anced fashion. Minor departures from balance are acceptable and may
be more ethical. For example, for a placebo control trial of a new drug,
our preference is to recommend that twice as many patients be ran-
domly assigned to the drug than to placebo. This reduces the number
of patients assigned to placebo by 1/6 and ensures that twice as many
patients are assigned to the drug group as to the placebo group. A 2-to-1
departure from balance has a relatively small impact on power.

3. Packaging to Achieve Blinding. Intervention group medications
should be packaged so that neither the patient nor personnel (physician,
research nurse or assistant) who will either treat, assign medication, draw
blood, administer procedures, or collect data knows the identity of the
interventions. This requires interaction between the protocol biostatisti-
cian (who will generate the randomization schedule) and the formulation
or packaging chemists (who will package the medication). Both have to
thoroughly know the protocol, particularly the drug, dose and frequency
of dosing of intervention medications, when patients are at the clinic for
medication dispensing, and how many days are between visits.

4. Concomitant Medication. The protocol should indicate whether any
medications other than those comprising the treatment or intervention
groups are permitted while the patient is participating in the protocol.
Generally any medication, prescription or over the counter (OTC), that
would mask, cloud or otherwise interfere with the effect of the interven-
tion medications should be excluded.

5. Procedures. All procedures required for enrolling, diagnosing, treat-
ing, or medically monitoring patients should be clearly identified and
described. This applies to all phases: pre-treatment, during treatment,
or post treatment, of the protocol. Providing a study schema at the end
of the protocol that identifies procedures to be administered by day of
study is helpful.

Observers (personnel who see patients that result in data collection and
recording) should be specified. The assignment of observers to patients
should be made to try to eliminate or minimize the introduction of
observer variability into the trial. For example, in hypertension studies,
different observers for different patients are permitted; but each patient
should have the same observer throughout the trial.

Procedures for recording the data to be collected in the trial should be
specified. Whether data are to be recorded on paper data collection forms
(DCFs) or electronically requires protocol sponsor personnel to interact
with site personnel to ensure proper and valid recording of data.
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2.4.3.3 Problem Management

In this subsection of the protocol, criteria for dealing with problems related
to patient safety or that may compromise study objectives if left unattended,
should be specified. For example, clinically significant changes in clinical lab-
oratory parameters; criteria for discontinuing study drug including severe ad-
verse events; actions to be taken for protocol deviations or violations, includ-
ing taking prohibited drugs, missed visits, dropouts, etc. should be specified.
Contact information from the investigational sites to the protocol sponsor for
problem management should be clearly delineated.

2.4.4 Statistical Analysis Section

There are many ways to organize the content of the statistical analysis sec-
tion. One organization is to have six sections or paragraphs: Study Objectives
as Statistical Hypotheses; Endpoints; Statistical Methods; Statistical Moni-
toring Procedures; Statistical Design Considerations; and Subset Analyses.

2.4.4.1 Study Objectives as Statistical Hypotheses

It is important to classify study objectives according to those that reflect
primary efficacy, those that reflect secondary efficacy, those that reflect safety,
and those that reflect other questions of interest (e.g. quality of life). Then
the objectives within each classification should be translated into statistical
questions.

If inferential decisions regarding the questions are to be made on the ba-
sis of hypothesis or significance testing, the questions should be translated
into statistical hypotheses. It is desirable from a statistical viewpoint, for the
alternative hypothesis (Ha) to embody the research question, both in sub-
stance and direction. For placebo controlled studies or for studies in which
superior efficacy is the objective, this is routinely the case. For studies in
which clinical equivalence (or non-inferiority) is the objective, the usual fram-
ing of the objective translates it as the null hypothesis (H0). In this frame-
work, failure to reject H0 does not permit a conclusion of equivalence or
noninferiority. This will depend on a specification of how much the treat-
ment regimens may truly differ in terms of therapeutic endpoints, yet still
be considered clinically equivalent or noninferior (refer to FDA draft guide-
line in March 2010 available from http://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf),
and the power of the test to detect such a difference.

Separate univariate, null and alternative hypotheses should be specified
for each question. The reasons for separate specifications are primarily clarity
and insight: clarity because the questions have been clearly elucidated and
framed as statistical hypotheses. This sets the stage for appropriate statistical
analyses when the data become available. When analyses directed toward the
questions occur, it should be clear whether the statistical evidence is sufficient
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to answer them. Insight is gained from the univariate specifications, as to the
significance level at which the tests should be performed. This is true even
though the study objective may represent a composite hypothesis.

Secondary efficacy objectives should not invoke a penalty on the Type-I er-
ror associated with the primary efficacy objectives. It may be argued that each
secondary objective can be addressed using a Type-I error of 5%, providing
inference via significance testing is preferred. Ninety-five percent confidence
intervals represent a more informative alternative. Since the use of confidence
intervals implies interest in estimates of true treatment differences, rather than
interest in being able to decide whether true treatment differences are some
pre-specified values, confidence intervals are more consistent with a classifica-
tion of secondary.

Safety objectives, unless they are the primary objectives, should not invoke
a penalty on the Type-I error associated with the primary efficacy objectives.
It is uncommon that a study conducted prior to market approval of a new
drug would have safety objectives that are primary. This does not mean that
safety is not important. The safety of a drug, in the individual patient, and
in groups of patients, is of utmost importance.

2.4.4.2 Endpoints

Data collected in the protocol reflecting primary efficacy, secondary effi-
cacy, safety or other objectives should be identified. Then endpoints to be
statistically analyzed to address protocol objectives should be defined. An
endpoint may be the actual data collected or a function of the data collected.
Endpoints are the analysis units on each individual patient that will be sta-
tistically analyzed to address study objectives. In an antihypertensive study,
actual data reflecting potential efficacy are supine diastolic blood pressure
measurements. Whereas it is informative to describe these data at baseline and
at follow-up visits during the treatment period, inferential statistical analyses
are usually based upon the endpoint: change from baseline in supine diastolic
blood pressure. The reason for this is that change from baseline within each
treatment group is an indicator of the extent to which the drug received in
each group is effective.

Another endpoint of clinical interest is whether a patient experienced a
clinically significant reduction in supine diastolic blood pressure from baseline
to the end of the treatment period. Clinically significant is usually defined
as a decrease from baseline of at least 10 mm HG or becoming normotensive
(DBP ≤ 80 mg HG). This definition of an endpoint essentially dichotomizes
DBP at the end of treatment.

2.4.4.3 Statistical Methods

Statistical methods that will be used to analyze the data collected and the
endpoints should be described. The methods chosen should be appropriate for
the type of data or endpoint; e.g. parametric procedures such as analysis of
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variance techniques for continuous endpoints, and nonparametric procedures
such as categorical data methods for discrete endpoints. Analysis methods
should also be appropriate for the study design. For example, if the design has
blocking factors, then statistical procedures should account for these factors. It
is prudent to indicate that the methods stipulated will be used to analyze study
data and endpoints, subject to actual data verification that any assumptions
underlying the methods reasonably hold. Otherwise alternative methods will
be considered.

The use of significance tests may be restricted to the primary efficacy
questions. Otherwise, confidence intervals should be used. The method for
constructing confidence intervals, particularly how the variance estimate will
be determined, should be indicated.

Unless there are specific safety questions as part of the study objectives,
for which sample sizes with reasonable power to address them have been de-
termined, it may be sufficient to use descriptive procedures for summarizing
safety data. Many statisticians routinely provide p-values for treatment group
comparisons in the analysis of safety data. There are many opportunities for
false positive (from the multiplicity of testing) and false negative (from be-
ing underpowered) conclusions in doing this. Small p-values may be helpful in
identifying events of possible clinical importance, which require clinical review
along with the proper statistical context.

The last portion of the statistical methods subsection should identify meth-
ods to be used to address generalizability of results across design blocking
factors or across demographic or prognostic subgroups. Methods for general-
izability include descriptive presentations of treatment effects across blocks
or subgroups, a graphical presentation of confidence intervals on treatment
differences across blocks or subgroups, and analysis of variance models that
include terms for interaction between treatment and blocks or subgroups.

2.4.4.4 Statistical Monitoring Procedures

Most clinical trials of new drugs are designed to provide answers to ques-
tions of efficacy; this is particularly true for Phase III trials, as they are typ-
ically the pivotal proof of efficacy trials. Therefore monitoring for efficacy
while the study is in progress, particularly in an unplanned, ad hoc manner,
will almost always be seen to compromise the integrity of such trials. If it is
anticipated that the efficacy data will be summarized or statistically analyzed
prior to study termination, for whatever reason, it is wise to include an ap-
propriate plan for doing this in the protocol. The plan should address Type-I
error penalty considerations, what steps will be taken to minimize bias, and
permit early termination.

The early termination procedure of O’Brien and Fleming (1979) is usually
reasonable. It allows periodic interim analyses of the data while the study is in
progress, while preserving most of nominal Type-I error for the final analysis
upon scheduled study completion, providing there was insufficient evidence
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to terminate the study after an interim analysis. Other procedures such as
Pocock’s (Pocock (1977)), or Lan and DeMets (Lan and Demets (1983)) may
also be used, as well as publications by numerous authors. The paper (PMA
(1993)) by the PMA Working Group addressing the topic of interim analyses
provides a good summary of the concerns about, and procedures for, interim
analyses. The sample sizes for early termination, group sequential procedures,
such as O’Brien and Fleming’s, are determined as per fixed sample size pro-
cedures, and then this sample size is spread across sequential groups. Safety
data, particularly serious adverse events should be monitored for all trials
as the data accumulate. A comprehensive discussion can be found in Herson
(2009), Piantadosi (2005) and Proschan et al. (2006). The group sequential
procedures referenced above may be used for these purposes. However, un-
less the trial has been designed to provide statistical evidence regarding some
safety objective, it is unclear that a prespecified overall Type-I error rate
should be preserved as discussed in Peace (1987). The idea is to be alerted as
early as possible about any events that may reflect possible safety concerns
so that appropriate intervention may be taken. Often the repeated confidence
interval method of Jennison and Turnbull is helpful (Jennison and Turnbull
(1984)).

The subsection on statistical monitoring procedures should begin with a
paragraph that specifies what data and endpoints will be sequentially mon-
itored (analyzed); when such monitoring will occur (calendar time or cumu-
lative number of patients at each planned analysis); how the data will be
quality assured; and specification of procedures to be followed to minimize
bias or otherwise jeopardizing the integrity of the study.

2.4.5 Statistical Design Considerations

The statistical, experimental design for the study should be described.
Is the experimental design parallel using a completely randomized design
(CRD)? Or is the design parallel using a completely randomized block de-
sign (CRBD)? Or is the design a two-sequence, two-period, two-treatment
crossover design (2 by 2 by 2)? Or is a balanced incomplete block design
(BIBD) used? What are the stratification variables if any? What type of con-
trol (placebo, positive, historical, etc) will be used? Is it single or multi-center?
The type of experimental design used in the trial impacts the type of statistical
methods that will be used to analyze data collected.

Once the design is known, the number of clinical trial participants nec-
essary to provide valid inferences to protocol objectives may be determined.
This requires one to know what the objectives are in terms of statistical ques-
tions; i.e., what is the δ in each separate alternative hypothesis? Specifying δ
requires collaboration between the biostatistician and the clinician.

The specification of δ is the responsibility of the clinician or medical direc-
tor, and requires careful thinking and exploration by both the biostatistician
and the medical expert. A δ too large may lead to failure to answer the question
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due to too small a sample. A δ too small would increase costs of conducting
the investigation and may not be accepted as clinically meaningful.

Once δ is specified, the magnitude of the Type-I error α, and the statistical
power 1−β or degree of certainty required to detect δ must be specified. Then
an estimate of variability σ2 of the data or endpoint reflecting the question is
needed. When the biostatistician has the inputs: δ, α, 1−β, and an estimate of
σ2, the sample size may be computed using well known sample size formulae,
sample size computational software programs, or using simulation techniques.

2.4.6 Subset Analyses

The last subsection of the statistical or data analysis section should identify
what subsets or subpopulations among trial participants will be investigated or
subjected to statistical analyses. Both the Gender Rule and the Demographic
Rule US FDA Regulatory Guidelines identify subpopulations indexed by age,
gender and race or ethnicity. But other subpopulations may be of interest;
e.g. levels of disease severity. In addition, methods to be used for investigating
subsets or performing analyses of subsets should be specified. How one views
the objective of subset investigation will dictate the type of analyses (Peace
(1995)).

If the objective is to provide valid inferences of treatment effects within
subpopulations, then one could stratify the protocol by subpopulation and
design the trial to have sufficient power and numbers of participants to assess
the effectiveness of treatment in each subpopulation. This would seldom be
required if ever. Few if any drug sponsors could afford to conduct such clin-
ical trials. Alternatively, step down procedures may be helpful in providing
valid inferences with subpopulations. The article by Alosh and Huque (2009)
provides an alternative method.

What is of interest is to assess whether the treatment effects in the total
population are generalizable across subpopulations. This can be assessed by in-
troducing subpopulation and treatment-by-subpopulation as fixed effects into
the analysis model and noting the size of the p-value for the interaction term.
Large p-values are consistent with an interpretation of treatment effects being
generalizable across subpopulations, whereas small p-values provide evidence
that treatment effects differ across some subpopulations. Since clinical trials
are not usually designed to have large power to detect significant interactions,
many biostatisticians use a p-value of less than or equal to 0.10 to quantify
small. Some suggest that the protocol should be stratified by subpopulation
to ensure balance across treatment groups in terms of subpopulations.

In addition to interaction tests to address generalizability of treatment ef-
fects across subpopulations, descriptive tables of treatment effects and graphi-
cal presentations of confidence intervals on treatment effects by subpopulation
are helpful. In such graphical presentations, the centers of the confidence in-
tervals representing random variation about a horizontal line are indicative of
generalizability of treatment effects. Lack of generalizability requires the bio-
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statistician to identify what subpopulations are discrepant, and then through
collaboration with the clinician and/or monitoring or investigational site, as-
sess whether there are explanations for the discrepancies.

After the statistical analysis section has been finalized and the protocol ap-
proved, the project biostatistician should develop the statistical analysis plan
(SAP). The SAP should follow the data analysis section but would contain
greater specificity. The SAP serves as a blue print for biostatistical analyses of
the data and endpoints. It should be developed so that if the project biostatis-
tician has to be replaced, the new biostatistician would not require much time
to become fully engaged with analyses. An example of a statistical analysis
plan for a protocol is presented in Chapter 7 of Peace and Chen (2010).

2.5 Concluding Remarks

Quality clinical research must be well planned, closely and carefully mon-
itored, utilize procedures that ensure quality collection and management of
data, use appropriate statistical analysis procedures, and properly interpret
the results so that inferences are valid and without bias. The first step in this
process is to develop a quality protocol for every clinical trial.
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Although clinical trials are conducted with multiple treatment groups, ques-
tions of interest are often expressed as pairwise comparisons among the groups.
For example, a clinical trial of two dose (D1 and D2) groups and placebo (P )
may have as its objective the effectiveness of each dose, and whether the doses
differ in their effectiveness. That is the objective may be formulated in terms
of the three pairwise comparisons: D1 − P , D2 − P , and D2 − D1. Other
contrasts among the groups may be of interest; e.g. the average of the doses
versus placebo. Of course if a trial consists of only two treatment groups, the
objective would be formulated as a single comparison of the two groups. In
this chapter, we present statistical methods for comparing treatment groups
in clinical trials using the R system. Specifically, we present two data sets from
clinical trials in Section 3.1 and in Section 3.2, we introduce the associated
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statistical models for these types of data followed by the data analysis using
R in Section 3.3 and concluding remarks in Section 3.4.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: RODBC and bootstrap.

3.1 Data from Clinical Trials

3.1.1 Diastolic Blood Pressure

The first dataset appears in Table 3.1. This dataset is typical of diastolic
blood pressure data measured in small clinical trials in hypertension from
the mid-to-late 1960s and for approximately a decade thereafter. During this
time, hypertension was more severe, the number of effective treatments was
relatively small, and the definition (DBP > 95 mm HG) of essential hyper-
tension was not as stringent as it is now (DBP > 80 mm HG) as seen in the
1967 report from the Veterans Administration Cooperative Study Group on
Antihypertensive Agents (VA Study Group (1967)).

In Table 3.1, diastolic blood pressure (DBP) was measured (mm HG) in the
supine position at baseline (i.e., “DBP1”) before randomization and monthly
thereafter up to 4 months as indicated by “DBP2,” “DBP3,” “DBP4” and
“DBP5.” Patients’ age and sex were recorded at baseline and represent poten-
tial covariates. The primary objective in this chapter in the analysis of this
dataset is to test whether treatment A (new drug) may be effective in lowering
DBP as compared to B (placebo) and to describe changes in DBP across the
times at which it was measured. Additional analysis may be found in Chapter
6.

3.1.2 Clinical Trial on Duodenal Ulcer Healing

Duodenal ulcers occur in the duodenum—the upper portion of the small
intestine as it leaves the stomach. A duodenal ulcer is characterized by the
presence of a well-demarcated break (ulcer crater) in the mucosa that may
extend into the muscularis propria. Cimetidine was the first H2-Receptor An-
tagonist to receive regulatory approval (in the late 1970s) for the treatment
of duodenal ulcers. The first Cimetidine regimen approved for the treatment
of duodenal ulcers in the United Kingdom was 1000 mg per day, given as: 200
mg at breakfast, lunch and dinner, and 400 mg at bed time, for up to 4 weeks.
The first regimen approved in the United States for this indication was 1200
mg per day, given as: 300 mg q.i.d. for up to 4 weeks.

In the mid-1980s, based upon acid suppression data from gastric acid anti-
secretory studies at various doses and frequencies of dosing, there was reason



Treatment Comparisons in Clinical Trials 33

TABLE 3.1: Diastolic blood pressure trial data.

Subject TRT DBP1 DBP2 DBP3 DBP4 DBP5 Age Sex
1 A 114 115 113 109 105 43 F
2 A 116 113 112 103 101 51 M
3 A 119 115 113 104 98 48 F
4 A 115 113 112 109 101 42 F
5 A 116 112 107 104 105 49 M
6 A 117 112 113 104 102 47 M
7 A 118 111 100 109 99 50 F
8 A 120 115 113 102 102 61 M
9 A 114 112 113 109 103 43 M
10 A 115 113 108 106 97 51 M
11 A 117 112 110 109 101 47 F
12 A 116 115 113 109 102 45 M
13 A 119 117 110 106 104 54 F
14 A 118 115 113 102 99 52 M
15 A 115 112 108 105 102 42 M
16 A 114 111 111 107 100 44 F
17 A 117 114 110 108 102 48 M
18 A 120 115 113 107 103 63 F
19 A 114 113 109 104 100 41 M
20 A 117 115 113 109 101 51 M
21 B 114 115 113 111 113 39 M
22 B 116 114 114 109 110 40 F
23 B 114 115 113 111 109 39 F
24 B 114 115 113 114 115 38 M
25 B 116 113 113 109 109 39 F
26 B 114 115 114 111 110 41 M
27 B 119 118 118 117 115 56 F
28 B 118 117 117 116 112 56 M
29 B 114 113 113 109 108 38 M
30 B 120 115 113 113 113 57 M
31 B 117 115 113 114 115 47 F
32 B 118 114 112 109 110 48 M
33 B 121 119 117 114 115 61 F
34 B 116 115 116 114 111 49 M
35 B 118 118 113 113 112 52 M
36 B 119 115 115 114 111 55 F
37 B 116 114 113 109 109 45 F
38 B 116 115 114 114 112 42 M
39 B 117 115 113 114 115 49 F
40 B 118 114 114 114 115 50 F
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to believe that a single night time (h.s.) dose of 800 mg of Cimetidine (C)
for up to 4 weeks would be the clinically optimal way to treat patients with
duodenal ulcers. A large dose comparison clinical trial was undertaken to con-
firm the effectiveness of 800 C mg h.s. in the treatment of duodenal ulcers
for up to four weeks. The trial was multicenter, stratified by smoking status,
randomized, double-blind and placebo controlled. After endoscopic confirma-
tion of a duodenal ulcer at baseline, patients were randomized to the four
double-blinded treatment groups:

1. 0 mg C Group: Four 400 mg Placebo tablets

2. 400 mg C Group: One Cimetidine 400 mg tablet + three 400 mg
Placebo tablets

3. 800 mg C Group: Two Cimetidine 400 mg tablets + two 400 mg
Placebo tablets

4. 1600 mg C Group: Four Cimetidine 400 mg tablets.

Details of this clinical trial may be found in Peace and Chen (2010). In
summary at the end of clinical trial, 168, 182, 165, and 188 patients were
efficacy evaluatable, in the 0 mg C Group (Placebo), 400 mg C, 800 mg C,
and 1600 mg C groups, respectively. The cumulative duodenal ulcer healing
rates were: 17%, 16%, 15%, and 21% at week 1; 30%, 40%, 42%, and 48%
at week 2; and 41%, 62%, 73%, and 77% at week 4; for the Placebo, 400 mg
C, 800 mg C, and 1600 mg C groups respectively. At week 4: 800 mg C was
effective (p-value < 10−8) as compared to Placebo; 800 mg C was superior to
400 mg C (p-value < 0.05); and 1600 mg C provided no clinically significant
greater benefit than did 800 mg C (p-value = 0.41 with 95% CI (-0.14, 0.05).
Therefore, the study demonstrated that 800 mg C was clinically optimal.

In this chapter, the final data were re-created in Table 3.2 to illustrate the
application of treatment comparisons for categorical data using the R system.

TABLE 3.2: Duodenal ulcer trial data

Placebo 400mg C 800mg C 1600mg C
Total 168 182 165 188

Week 1 (n1) 29 29 25 39
Week 2 (n2) 50 73 69 90
Week 4 (n4) 69 113 120 145
Week 1 (p1) 17% 16% 15% 21%
Week 2 (p2) 30% 40% 42% 48%
Week 4 (p4) 41% 62% 73% 77%
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3.2 Statistical Models for Treatment Comparisons

3.2.1 Models for Continuous Endpoints

We begin with comparison of two treatments based on the well-known t-
test and then extend the concepts to multiple treatment comparisons for the
analysis of variance approach.

3.2.1.1 Student’s t-tests

The student t-test is used to compare two treatment group means as-
suming that the clinical trial endpoints are continuous and follow a normal
distribution. To reflect this situation, a clinical trial of two treatment groups
is conducted with the numbers of patients randomized to the two groups de-
noted as n1 and n2. At the end of trial we observe clinical endpoints y1i and
y2i on patients from each treatment group, where i = 1, · · · , ni. We test the
null hypothesis that the means of the two treatment groups are the same:

H0 : µ1 = µ2 (3.1)

and the alternative could be two-sided as Ha : µ1 6= µ2 or one-sided as Ha :
µ1 > ( or <)µ2 depending on the trial objective.

The test statistic is constructed as:

t =
ȳ1 − ȳ2

s
√

1/n1 + 1/n2

, (3.2)

where ȳi =
Pni
j=1 yij

ni
, i = 1, 2 are the treatment group means of the observed

data, and s is the pooled standard error calculated as:

s =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,

under assumption of constant variance and where s1 and s2 are the sample
standard deviations from two treatment groups. It is noted that the t-statistic
in Equation (3.2) is essentially the standardized difference of the two treatment
group means.

Under the null hypothesis, this t-statistic has a Student’s t-distribution
with n1 + n2 − 2 degrees of freedom. The null hypothesis is not rejected if
|t| < tα/2,n1+n2−2 with 100(1 − α)% confidence coefficient (for a two-sided
test).

Alternatively, a 100(1− α)% confidence interval (CI) may be constructed
on the true difference in treatment group means and used as the basis of
statistical inference. The CI is constructed as:

ȳ1 − ȳ2 ± tα/2,n1+n2−2s
√

1/n1 + 1/n2
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where tα/2,n1+n2−2 is the α/2-percentile.
The CI including zero is consistent with insufficient evidence to contradict

or reject the null hypothesis.
The underlying assumptions for a valid t-test are that the observed clinical

endpoints of y1 and y2 are independent and normally distributed with common
variance σ2. If any of these assumptions is violated, there are remedies:

1. Unequal variances: If the two treatment groups have different variances,
the t-statistic in Equation (3.2) may be modified as

t =
ȳ1 − ȳ2√

s2
1/n1 + s2

2/n2

(3.3)

with ν degrees of freedom calculated as

ν =
[

c

n1 − 1
+

(1− c)2

n2 − 1

]−1

with

c =
s2

1/n1

s2
1/n1 + s2

2/n2

This test statistic t has a Student’s t-distribution, is known as the Welch
test as in Welch (1947), and is implemented in R as t.test.

2. Non-normal data: The t-test is usually quite robust against departures
from normality. However, when the departure is extreme, the recom-
mended remedy is to use the Mann–Whitney–Wilcoxon (MWW) U-test
(also called Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test).
This is a non-parametric test for assessing whether two independent
samples of observations come from the same distribution. It is one of
the most widely used non-parametric significance tests. It was proposed
initially by Wilcoxon (1945), for equal sample sizes, and extended to
arbitrary sample sizes and in other ways by Mann and Whitney (1947).
MWW is virtually identical to performing an ordinary parametric two-
sample t-test on the ranks of the data after ranking over the combined
samples. This U-test is implemented in R system as wilcox.test.

3. Bootstrap resampling: When any of the assumptions underlying the va-
lidity of the t-test don’t hold for the data being analyzed, bootstrapping
provides a viable alternative. The bootstrap method involves iteratively
resampling the data with replacement, calculating the value of the statis-
tic for each sample obtained, and generating the resampling distribution.
Percentile points corresponding to the Type-I error level and the sided-
ness of the alternative hypothesis of the resampling distribution are then
used in the assessment of statistical significance. We illustrate the boot-
strapping approach using the R function bootstrap.
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3.2.1.2 One-Way Analysis of Variance (ANOVA)

For comparisons involving more than two treatment groups, F -tests de-
riving from a one-way analysis of variance (ANOVA) model are used. The
fundamental idea for ANOVA is to partition the overall variance in clinical
response into a component reflecting variation among treatment groups (fac-
tor levels) and variation within treatment group [due to measurement error
(residual)]. For a factor α occurring at i = 1, · · · , I levels, with j = 1, · · · , ni
observations per level, the typical one-way ANOVA model may be expressed
as

yij = µ+ αi + εij (3.4)

The above model is over-parameterized and not all the parameters are
identifiable or estimable. The common constraints are:

1. Set µ = 0 and use I different dummy variables to estimate αi for i =
1, · · · , I.

2. Set α1 = 0, µ represents the expected mean response for level one and
αi for i 6= 1 represents the difference between level i and level one. Level
one is then called the reference level or baseline level. This corresponds
to “treatment contrasts” as commonly outputted in R output.

Treatment effects (differences among specified treatments) are commonly
estimated using least squares. Inference on the statistical significance of a
treatment difference may be constructed as

H0 : αi = 0, i = 1, · · · , I
Ha : at least one of the αi is not zero

The model under H0 is then yij = µ+εij and under Ha is yij = µ+αi+εij .
If the null hypothesis fails to be rejected, the analysis ends and it is concluded
that there is insufficient evidence to conclude that the treatment group means
differ. However, if the null hypothesis is rejected, the next logical step is to
investigate which levels differ by using so-called multiple comparisons.

We warn readers that the t-test from the Section 3.2.1.1 applied individ-
ually to all pairwise comparisons is not the solution since it will inflate the
type-I error rate. Therefore procedures that adjust for multiple comparisons
are used. Tukey’s honest significant difference (HSD) procedure is commonly
used for adjustment in the literature and it is easy to understand. Tukey’s
HSD procedure is based on the distribution of the studentized range with
quantile of qα,df1,df2 where df1 = I and df2 =

∑I
i=1 ni − I as

α̂i − α̂j ±
qα,df1,df2√

2
se(α̂i − α̂j) (3.5)

The ANOVA procedure is implemented in the R system as aov and Tukey’s
HSD procedure as TukeyHSD .
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3.2.1.3 Multi-Way ANOVA: Factorial Design

The R system permits extending the one-way ANOVA in Section 3.2.1.2
to ANOVA accounting for several factors (multi-way ANOVA). We describe
the 2-way ANOVA corresponding to a two-factor design and illustrate this
procedure in analyzing the DBP data in Section 3.1.

Suppose we have two factors, α (e.g. treatment with drugs A and B) at
I levels and β (e.g. time at which DBP is measured; time = 1,..., 5) at J
levels. Let nij be the number of observations at level i of α and level j of β,
and denote those observations by yijk, k = 1, · · · , nij . The full ANOVA model
with fixed effects is

yijk = µ+ αi + βj + (αβ)ij + εijk (3.6)

where αi and βj are the main effects. The term (αβ)ij is the interaction effect
between the two factors α and β, which may be interpreted as that part of
the main effects not explained by the additive effects of α and β.

A significant interaction means the main effect of α cannot be assessed
independent of β. A comparison of the levels of α is dependent on the level of
β.

The interaction effect may be tested using the F -test from the ANOVA,
which is implemented in the R system with the aov. If the interaction is
found to be significant, further investigation is needed for inference about
main effects of interest.

If the interaction is found to be insignificant, then main effects may be
tested from the ANOVA table corresponding to the reduced model without
interaction:

yijk = µ+ αi + βj + εijk (3.7)

3.2.2 Models for Categorical Endpoints: Pearson’s χ2-test

There are many methods for categorical data analyses. Readers are referred
to Agresti (2002) for a comprehensive treatise. We introduce Pearson’s chi-
square test in this chapter to draw comparisons with other methods of analyses
of the clinical trial on duodenal ulcer healing. In addition, Pearson’s χ2 test
is the probably the most commonly used statistical method for categorical
analyses of contingency table data.

The first step in the chi-square test is to calculate the value of the chi-
square statistic. It is obtained by (1) forming the difference between the ob-
served number of frequencies and the expected (under the null hypothesis of
no difference among the groups being compared) number of frequencies in each
cell of the contingency table, (2) squaring each difference, (3) dividing each
squared difference by the expected number of frequencies, and (4) summing
the results. The second step is to determine the degrees of freedom of the
test, which is essentially the total number of observed frequencies adjusted
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for the impact of using some of the observations to compute the “expected
frequencies.”

The value of the test-statistic is:

χ2 =
∑
i

(Oi − Ei)2

Ei
(3.8)

where Oi is the observed frequency, and Ei is the expected (theoretical) fre-
quency under the null hypothesis.

Asymptotically, the distribution of the test statistic χ2 is a chi-square dis-
tribution. The “asymptotical” approximation to the chi-square distribution
breaks down if expected frequencies are too low. In this case, a better approx-
imation is obtained by using Yates’ correction for lack of continuity. This is
accomplished by reducing the absolute value of each difference between ob-
served and expected frequencies by 0.5 before squaring. This Pearson χ2-test
is implemented in R as prop.test.

3.3 Data Analysis in R

3.3.1 Analysis of the DBP Trial

3.3.1.1 Preliminary Data Analysis

We first read the data into R using RODBC and create a new variable “diff,”
which represents changes in DBP from baseline to the last post-baseline time
(visit) using following R code chunk:

> # load the library RODBC
> require(RODBC)
> # get the excel file from the file path
> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"
> # connect to the excel data book
> getxlsbook = odbcConnectExcel2007(datfile)
> # get the data from "DBP" datasheet
> dat = sqlFetch(getxlsbook,"DBP")
> # close the ODBC
> odbcCloseAll()
> # create the "diff"
> diff = dat$DBP5-dat$DBP1
> # show first 6 observations using function "head"
> head(dat)

Subject TRT DBP1 DBP2 DBP3 DBP4 DBP5 Age Sex diff
1 1 A 114 115 113 109 105 43 F -9
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2 2 A 116 113 112 103 101 51 M -15
3 3 A 119 115 113 104 98 48 F -21
4 4 A 115 113 112 109 101 42 F -14
5 5 A 116 112 107 104 105 49 M -11
6 6 A 117 112 113 104 102 47 M -15

As the first step in the data analysis, we gain a better understanding of the
data by displaying treatment group differences in a boxplot as seen in Figure
3.1 using the following R code chunk:

> # call boxplot

> boxplot(diff~TRT, dat, xlab="Treatment",

ylab="DBP Changes", las=1)
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FIGURE 3.1: Boxplot for Two Treatments.

From this boxplot, we make some preliminary observations. Firstly, the
data appear symmetric from both boxes implying that there are no obvious
outliers. Secondly, the new drug treatment“A”seems to be more effective than
the “Placebo” treatment “B,” since on average, the DBP decrease for drug A
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is about 15 mm HG as compared to a decrease of 5 mm HG for the “Placebo”
treatment “B.” This difference needs to be formally tested to assess whether
it is statistically significant.

3.3.1.2 t-test

For statistical significance, we use the t-test in Section 3.2.1.1. First we
assume equal variances as follows:

> # call t-test with equal variance

> t.test(diff~TRT, dat, var.equal=T)

Two Sample t-test

data: diff by TRT
t = -12.2, df = 38, p-value = 1.169e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12.13 -8.67
sample estimates:
mean in group A mean in group B

-15.2 -4.8

From the output, we note that the t-statistic = −12.15 with 38 degrees of
freedom, which gives a p-value of 1.169× 10−14, indicating that the difference
(−10.4 = −15.2 − (−4.8)) between the two treatment groups in terms of
decreases in DBP is strongly statistically significant.

We may question the assumption of equal variances in the above test. If
this is not the case, we can use the Welch t-test as

> t.test(diff~TRT, dat, var.equal=F)

Welch Two Sample t-test

data: diff by TRT
t = -12.2, df = 36.5, p-value = 2.149e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12.14 -8.66
sample estimates:
mean in group A mean in group B

-15.2 -4.8

We note that the t-statistic is −12.15, with 36.522 degrees of freedom,
which gives a p-value = 2.149 ×10−14. Note that the degrees of freedom is no
longer an integer based on the calculation in Equation (3.3). However, it is
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close to the degrees of freedom (38) in the previous test. This suggests that
the assumption of equal variances is not really violated for this data set. We
may statistically test the null hypothesis of equal variances using the so-called
F -test for variances as

> var.test(diff~TRT, dat)

F test to compare two variances

data: diff by TRT
F = 1.50, num df = 19, denom df = 19, p-value = 0.3819
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.595 3.799
sample estimates:
ratio of variances

1.50

The value of the statistic F is 1.50 with degrees of freedom of 19 and 19,
which gives p-value = 0.3819. This means that there is insufficient evidence to
reject the null hypothesis of equal variances even though the observed variance
ratio = 1.50. We caution readers to always test the assumption of equality of
variances before performing the standard t-test.

If the assumptions of normality and equal variances are violated, we may
use the nonparametric version of the t-test (Wilcoxon rank-sum test) as fol-
lows:

> wilcox.test(diff~TRT, dat)

Wilcoxon rank sum test with continuity
correction

data: diff by TRT
W = 0, p-value = 6.286e-08
alternative hypothesis: true location shift is not equal to 0

Again the Wilcoxon rank-sum test gives the same conclusion. Since “B” is
a Placebo, the one-sided t-test may be more appropriate to test the treatment
effect, which can be done in R as

> # data from treatment A

> diff.A = dat[dat$TRT=="A",]$diff

> # data from treatment B

> diff.B = dat[dat$TRT=="B",]$diff

> # call t.test for one-sided test

> t.test(diff.A, diff.B,alternative="less")
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Welch Two Sample t-test

data: diff.A and diff.B
t = -12.2, df = 36.5, p-value = 1.074e-14
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf -8.96

sample estimates:
mean of x mean of y

-15.2 -4.8

This shows that t-statistic = −12.15 with df = 36.5 which gives p-value
= 1.074 ×10−14 indicating again that the decline in DBP in treatment “A” is
statistically significantly greater than in placebo “B.” The 95% one-sided CI
(−∞, −8.96) which again leads to the conclusion that “A” and “B” are statis-
tically significantly different; i.e., there is evidence that “A” is more effective.

3.3.1.3 Bootstrapping Method

Bootstrapping is a resampling procedure extensively used in statistics. In
this situation, we repeatedly draw samples with replacement from the data,
compute the statistic of interest and generate the sampling distribution of
the statistic. Bootstrapping is easily programmed in R, but in this section,
we illustrate the procedure using the built-in function bootstrap to test the
significance of the difference in DBP treatment group means.

To use bootstrap, first load the library and define a function to calculate
the difference in treatment group means as follows:

> # load the library "bootstrap"

> library(bootstrap)

> # define a function to calculate the mean difference

> # between treatment groups A to B: i.e., A-B

> mean.diff = function(bn,dat)

-diff(tapply(dat[bn,]$diff, dat[bn,]$TRT,mean))

Now generate nboot=1,000 bootstrap samples using the bootstrap func-
tion as follows:

> # number of bootstrap

> nboot = 1000

> # call "bootstrap" function

> boot.mean = bootstrap(1:dim(dat)[1], nboot, mean.diff,dat)

The “boot.mean” will have 1000 values representing the DBP mean dif-
ference between treatment groups “A” and “B” (i.e., “A-B”). The bootstrap
sampling distribution may be displayed as in Figure 3.2 using the following R
code chunk:
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> # extract the mean differences

> x = boot.mean$thetastar

> # calcualte the bootstrap quantiles

> x.quantile = quantile(x, c(0.025,0.5, 0.975))

> # show the quantiles

> print(x.quantile)

2.5% 50% 97.5%
-11.99 -10.40 -8.73

> # make a histogram

> hist(boot.mean$thetastar, xlab="Mean Differences", main="")

> # add the vertical lines for the quantiles

> abline(v=x.quantile,lwd=2, lty=c(4,1,4))
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FIGURE 3.2: Bootstrap Distribution of Mean Differences.

In Figure 3.2, the solid vertical line in the middle is the 50% quantile,
which equals −10.4 mm HG corresponding to the mean difference between
treatment group “A” and “B.” The two dashed vertical lines on both sides are
the 95% confidence limits which are −11.99 and −8.73 mm HG. Because this
95% bootstrap CI does not cover zero, we conclude that the mean difference
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between treatment groups “A” and “B” is statistically significant (at the two-
sided Type-I error level of 5%).

3.3.1.4 One-Way ANOVA for Time Changes

The treatment period in the DBP trial was four months with DBP mea-
sured at months 1, 2, 3, and 4 post baseline. To see the mean changes the
months following baseline, we extract the means by treatment group using
the R function aggregate as follows:

> aggregate(dat[,3:7], list(TRT=dat$TRT), mean)

TRT DBP1 DBP2 DBP3 DBP4 DBP5
1 A 116.55 113.5 110.70 106.25 101.35
2 B 116.75 115.2 114.05 112.45 111.95

We note that mean DBP at baseline and at each month of followup are
respectively 116.55, 113.5, 110.70, 106.25, and 101.35 mm HG, for the new
drug treatment “A,” and are 116.75, 115.2, 114.05, 112.45, and 111.95 mm
HG, for the Placebo “B.” The corresponding mean changes from baseline at
each month of followup are −3.05, −5.85, −10.30, −15.20 mm HG, for treat-
ment “A,” and −1.55, −2.70, −4.30, −4.80 mm HG, for treatment “B,” which
illustrates that mean DBP changes from baseline for the new drug “A” are
greater than those for the Placebo ”B.” We may employ the one-way ANOVA
to test the change over time.

We first rearrange the dataframe dat into a “long” format using reshape
to reshape the data as:

> # call reshape

> Dat = reshape(dat, direction="long",

varying=c("DBP1","DBP2","DBP3","DBP4","DBP5"),

idvar = c("Subject","TRT","Age","Sex","diff"),sep="")

> colnames(Dat) = c("Subject","TRT","Age","Sex","diff","Time","DBP")

> Dat$Time = as.factor(Dat$Time)

> # show the first 6 observations

> head(Dat)

Subject TRT Age Sex diff Time DBP
1 A 43 F -9 1 114
2 A 51 M -15 1 116
3 A 48 F -21 1 119
4 A 42 F -14 1 115
5 A 49 M -11 1 116
6 A 47 M -15 1 117

We then use the one-way ANOVA in Section 3.2.1.2 to test the null hy-
potheses that the means of DBP at all five times of measurement are equal
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for each treatment, i.e.,

H0 : µ1 = µ2 = µ3 = µ4 = µ5

Ha : Not all means are equal

We use the R function aov as follows:

> # test treatment "A"

> datA = Dat[Dat$TRT=="A",]

> test.A = aov(DBP~Time, datA)

> summary(test.A)

Df Sum Sq Mean Sq F value Pr(>F)
Time 4 2880 720 127 <2e-16 ***
Residuals 95 538 6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # test treatment "B"

> datB = Dat[Dat$TRT=="B",]

> test.B = aov(DBP~Time, datB)

> summary(test.B)

Df Sum Sq Mean Sq F value Pr(>F)
Time 4 312 77.9 17.6 7.5e-11 ***
Residuals 95 420 4.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the small p-values, we note that both tests lead to rejection of the null
hypotheses of equal means at baseline and across months of followup. To better
understand the nature of the differences across time, multiple range testing
may be used to determine the times at which DBP means are statistically
significantly different. We call the R function TukeyHSD for this purpose:

> TukeyHSD(test.A)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = DBP ~ Time, data = datA)

$Time
diff lwr upr p adj

2-1 -3.05 -5.14 -0.956 0.001
3-1 -5.85 -7.94 -3.756 0.000
4-1 -10.30 -12.39 -8.206 0.000
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5-1 -15.20 -17.29 -13.106 0.000
3-2 -2.80 -4.89 -0.706 0.003
4-2 -7.25 -9.34 -5.156 0.000
5-2 -12.15 -14.24 -10.056 0.000
4-3 -4.45 -6.54 -2.356 0.000
5-3 -9.35 -11.44 -7.256 0.000
5-4 -4.90 -6.99 -2.806 0.000

> TukeyHSD(test.B)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = DBP ~ Time, data = datB)

$Time
diff lwr upr p adj

2-1 -1.55 -3.40 0.299 0.144
3-1 -2.70 -4.55 -0.851 0.001
4-1 -4.30 -6.15 -2.451 0.000
5-1 -4.80 -6.65 -2.951 0.000
3-2 -1.15 -3.00 0.699 0.421
4-2 -2.75 -4.60 -0.901 0.001
5-2 -3.25 -5.10 -1.401 0.000
4-3 -1.60 -3.45 0.249 0.122
5-3 -2.10 -3.95 -0.251 0.018
5-4 -0.50 -2.35 1.349 0.943

We note that all pairwise comparisons for treatment “A” are statistically
significant. But for treatment “B,” the pairwise comparisons of Time 2 versus
Time 1, Time 3 versus Time 2, Time 4 versus Time 3, and Time 5 versus Time
4 are not statistically significantly different. Again this indicates that the new
drug treatment is more effective in reducing DBP.

It should be noted that the data are correlated across time. The HSD
procedure used above from R doesn’t recognize the correlation, and is pre-
sented here for illustration. For correlated observations, the reader may wish
to program in R using the methodology in Duncan (1957).

3.3.1.5 Two-Way ANOVA for Interaction

The DBP trial has two factors: treatment and Time. Whenever there is
more than one factor, the one-way ANOVA (within treatment groups across
Time) in previous sections cannot capture the interaction between these fac-
tors. A two-way or multi-way ANOVA is needed to analyze the interaction
before making statistical inferences about the main effects as shown in model
(3.7).
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For the DBP trial, we use the R function aov to test the significance of the
interaction as

> mod2 = aov(DBP~ TRT*Time, Dat)

> summary(mod2)

Df Sum Sq Mean Sq F value Pr(>F)
TRT 1 972 972 192.8 <2e-16 ***
Time 4 2514 629 124.6 <2e-16 ***
TRT:Time 4 677 169 33.6 <2e-16 ***
Residuals 190 958 5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We note that the p-value associated with the interaction is < 2 ×10−16,
which is highly statistically significant. Since “A” is a new drug and “B” is
a Placebo and the groups were comparable at baseline in terms of DBP, the
statistical significance of the interaction provides evidence of effectiveness of
“A,” but the magnitude of the treatment difference (“A - B”) depends on the
time of measuring DBP. We plot the interactions between “TRT” and “Time”
using the R function interaction.plot as follows, which produces Figure
3.3:

> par(mfrow=c(2,1),mar=c(5,3,1,1))

> with(Dat,interaction.plot(Time,TRT,DBP,las=1,legend=T))

> with(Dat,interaction.plot(TRT,Time,DBP,las=1,legend=T))

In the upper panel of Figure 3.3, both treatments “A” and “B” started
with similar means at baseline, and both reflected decreases in DBP over
the months of followup. However decreases in mean DBP for the new drug
treatment “A” are greater than those for the Placebo treatment “B.” At the
end of trial, mean DBP for new drug treatment “A” decreased from 116.55
to 101.35 mm HG whereas mean DBP decreased from 116.75 to 111.95 mm
HG for the Placebo treatment “B.” This is also reflected in the lower panel
in Figure 3.3. This means that the decline in DBP for both treatment groups
varies across the times of DBP measurement.

Therefore any statistical significance tests for main effects are entangled
with the interactions. We may use a multiple comparison approach for testing
main effects. For example Tukey’s HSD procedure TukeyHSD is invoked as:

> TukeyHSD(aov(DBP ~ TRT*Time,Dat))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = DBP ~ TRT * Time, data = Dat)
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$TRT
diff lwr upr p adj

B-A 4.41 3.78 5.04 0

$Time
diff lwr upr p adj

2-1 -2.30 -3.68 -0.917 0.000
3-1 -4.27 -5.66 -2.892 0.000
4-1 -7.30 -8.68 -5.917 0.000
5-1 -10.00 -11.38 -8.617 0.000
3-2 -1.97 -3.36 -0.592 0.001
4-2 -5.00 -6.38 -3.617 0.000
5-2 -7.70 -9.08 -6.317 0.000
4-3 -3.03 -4.41 -1.642 0.000
5-3 -5.72 -7.11 -4.342 0.000
5-4 -2.70 -4.08 -1.317 0.000

$`TRT:Time`
diff lwr upr p adj

B:1-A:1 0.20 -2.074 2.474 1.000
A:2-A:1 -3.05 -5.324 -0.776 0.001
B:2-A:1 -1.35 -3.624 0.924 0.668
A:3-A:1 -5.85 -8.124 -3.576 0.000
B:3-A:1 -2.50 -4.774 -0.226 0.019
A:4-A:1 -10.30 -12.574 -8.026 0.000
B:4-A:1 -4.10 -6.374 -1.826 0.000
A:5-A:1 -15.20 -17.474 -12.926 0.000
B:5-A:1 -4.60 -6.874 -2.326 0.000
A:2-B:1 -3.25 -5.524 -0.976 0.000
B:2-B:1 -1.55 -3.824 0.724 0.472
A:3-B:1 -6.05 -8.324 -3.776 0.000
B:3-B:1 -2.70 -4.974 -0.426 0.007
A:4-B:1 -10.50 -12.774 -8.226 0.000
B:4-B:1 -4.30 -6.574 -2.026 0.000
A:5-B:1 -15.40 -17.674 -13.126 0.000
B:5-B:1 -4.80 -7.074 -2.526 0.000
B:2-A:2 1.70 -0.574 3.974 0.336
A:3-A:2 -2.80 -5.074 -0.526 0.004
B:3-A:2 0.55 -1.724 2.824 0.999
A:4-A:2 -7.25 -9.524 -4.976 0.000
B:4-A:2 -1.05 -3.324 1.224 0.899
A:5-A:2 -12.15 -14.424 -9.876 0.000
B:5-A:2 -1.55 -3.824 0.724 0.472
A:3-B:2 -4.50 -6.774 -2.226 0.000
B:3-B:2 -1.15 -3.424 1.124 0.837
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A:4-B:2 -8.95 -11.224 -6.676 0.000
B:4-B:2 -2.75 -5.024 -0.476 0.006
A:5-B:2 -13.85 -16.124 -11.576 0.000
B:5-B:2 -3.25 -5.524 -0.976 0.000
B:3-A:3 3.35 1.076 5.624 0.000
A:4-A:3 -4.45 -6.724 -2.176 0.000
B:4-A:3 1.75 -0.524 4.024 0.295
A:5-A:3 -9.35 -11.624 -7.076 0.000
B:5-A:3 1.25 -1.024 3.524 0.759
A:4-B:3 -7.80 -10.074 -5.526 0.000
B:4-B:3 -1.60 -3.874 0.674 0.425
A:5-B:3 -12.70 -14.974 -10.426 0.000
B:5-B:3 -2.10 -4.374 0.174 0.098
B:4-A:4 6.20 3.926 8.474 0.000
A:5-A:4 -4.90 -7.174 -2.626 0.000
B:5-A:4 5.70 3.426 7.974 0.000
A:5-B:4 -11.10 -13.374 -8.826 0.000
B:5-B:4 -0.50 -2.774 1.774 0.999
B:5-A:5 10.60 8.326 12.874 0.000

It is noted that the data are correlated. Again, the reader may wish to
refer to the methodology in Duncan (1957).

From the output, we can see that the following pairwise comparisons are
not statistically significant:

1. For Treatment “A” at Time 1 (i.e., A1), the “Placebo” at Time points 1
and 2 (i.e., B1, B2)

2. For Treatment “A” at Time 2 (i.e., A2), the “Placebo” at Time points 2,
3, 4, and 5 (i.e., B2, B3, B4, and B5)

3. For Treatment “A” at Time 3 (i.e., A3), the “Placebo” at Time points 4
and 5 (i.e., B4 and B5)

4. For Placebo “B” at Time 1 (i.e., B1), the “Placebo” at Time point 2 (i.e.,
B2)

5. For Placebo “B” at Time 2 (i.e., B2), the “Placebo” at Time point 3 (i.e.,
B3)

6. For Placebo “B” at Time 3 (i.e., B3), the “Placebo” at Time points 4
and 5 (i.e., B4 and B5)

7. For Placebo “B” at Time 4 (i.e., B4), the “Placebo” at Time point 5 (i.e.,
B5)

This corresponds to the results from Figure 3.3 and the reader may wish
to reproduce this result.
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3.3.2 Analysis of Duodenal Ulcer Healing Trial

3.3.2.1 Using Pearson’s χ2-test

A total of 168, 182, 165, and 188 patients were entered in the 0 mg C,
400 mg C, 800 mg C, and 1600 mg C groups, respectively. The corresponding
cumulative number of patients whose ulcers healed by the end (Week 4) of
the trial were 69, 113, 120, and 145, respectively. These data are loaded into
R as:

> n = c(168, 182, 165,188)

> p4 = c(.41, .62, .73, .77)

> x4 = c(69, 113, 120, 145)

We can employ Pearson’s χ2-test discussed in Section 3.2.2 to test the null
hypothesis of equal probabilities of healing for the four treatment groups using
the R function prop.test as

> prop.test(x4, n)

4-sample test for equality of proportions
without continuity correction

data: x4 out of n
X-squared = 57.8, df = 3, p-value = 1.735e-12
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 3 prop 4
0.411 0.621 0.727 0.771

We note that the χ2 statistic has a value 57.8 with 3 degrees of freedom,
which gives a p-value of 1.735 ×10−12. This means that there is strong evi-
dence to reject the null hypothesis. This is not surprising since the observed
proportions healed are 41%, 62%, 73% and 77% in the 0 mg C, 400 mg C, 800
mg C, and 1600 mg C groups, respectively.

We again use prop.test for comparisons among two-treatment groups.
For example, to compare 800 mg C to 0 mg C, we use:

> prop.test(x4[c(1,3)], n[c(1,3)])

2-sample test for equality of proportions
with continuity correction

data: x4[c(1, 3)] out of n[c(1, 3)]
X-squared = 32.7, df = 1, p-value = 1.070e-08
alternative hypothesis: two.sided
95 percent confidence interval:
-0.423 -0.210
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sample estimates:
prop 1 prop 2
0.411 0.727

which gives a p-value = 1.070 ×10−8 indicating 800 mg C is statistically more
effective than 0 mg C. We compare 800 mg C to 400 mg C using

> prop.test(x4[c(2,3)], n[c(2,3)])

2-sample test for equality of proportions
with continuity correction

data: x4[c(2, 3)] out of n[c(2, 3)]
X-squared = 3.97, df = 1, p-value = 0.04628
alternative hypothesis: two.sided
95 percent confidence interval:
-0.21008 -0.00271
sample estimates:
prop 1 prop 2
0.621 0.727

which gives a p-value = 0.04628 < 0.05 indicating 800 mg C is superior to 400
mg C. We compare 1600 mg C to 800 mg C using

> prop.test(x4[c(3,4)], n[c(3,4)])

2-sample test for equality of proportions
with continuity correction

data: x4[c(3, 4)] out of n[c(3, 4)]
X-squared = 0.689, df = 1, p-value = 0.4064
alternative hypothesis: two.sided
95 percent confidence interval:
-0.1404 0.0524
sample estimates:
prop 1 prop 2
0.727 0.771

which produces a p-value = 0.406 and a 95% CI of (−0.140, 0.052), indicating
that 1600 mg C and 800 mg C are not statistically significantly different.
Therefore, the study demonstrated that 800 mg C was clinically optimal (is
effective as compared to 0 mg C; is more effective than 400 mg C; and is not
statistically nor clinically inferior to 1600 mg C).

3.3.2.2 Using Contingency Tables

We create a dataframe named “Ulcer” to hold all these values as:
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> # create a dataframe for the Ulcer trial

> Ulcer = data.frame(

# use ``factor" to create the treatment factor

trt = factor(rep(c("0 mg C","400 mg C","800 mg C","1600 mg C"),

each=2),levels=c("0 mg C","400 mg C","800 mg C","1600 mg C") ),

Heal = c("Yes","No","Yes","No","Yes","No","Yes","No"),

y = c(x4[1],n[1]-x4[1],x4[2],n[2]-x4[2],x4[3],

n[3]-x4[3],x4[4],n[4]-x4[4]))

> Ulcer

trt Heal y
1 0 mg C Yes 69
2 0 mg C No 99
3 400 mg C Yes 113
4 400 mg C No 69
5 800 mg C Yes 120
6 800 mg C No 45
7 1600 mg C Yes 145
8 1600 mg C No 43

Then call xtabs to transform the dataframe into a contingency table as:

> tab.Ulcer = xtabs(y~trt+Heal,Ulcer)

> tab.Ulcer

Heal
trt No Yes
0 mg C 99 69
400 mg C 69 113
800 mg C 45 120
1600 mg C 43 145

We can plot the information in the contingency table using dotchart and
mosaicplot and view [Figure 3.4] the ulcer healing status by treatment group
using the R code chunk:

> # layout for the plot

> par(mfrow=c(1,2), mar=c(4,2,1,1))

> # call ``dotchart"
> dotchart(tab.Ulcer)

> # call ``mosaicplot"
> mosaicplot(tab.Ulcer,color=T,las=1, main=" ",

xlab="Treatment",ylab="Heal Status" )

In this figure, the left side is a dot chart showing the number of patients
healed or not healed in each treatment group. The right side of the figure is a
mosaic plot that shows the percentages healed or not healed in each treatment
group. With the contingency table, we can verify the total number of patients
in each treatment using



Treatment Comparisons in Clinical Trials 55

0 mg C

400 mg C

800 mg C

1600 mg C

0 mg C

400 mg C

800 mg C

1600 mg C

No

Yes

40 80 120 Treatment

He
al 

St
atu

s

0 mg C 400 mg C 800 mg C1600 mg C

No

Yes

FIGURE 3.4: Ulcer Healing Distribution.



56 Clinical Trial Data Analysis Using R

> margin.table(tab.Ulcer,1)

trt
0 mg C 400 mg C 800 mg C 1600 mg C

168 182 165 188

We can also utilize the Pearson’s χ2-test for contingency tables to test the
null hypothesis of equal proportions healed as

> summary(tab.Ulcer)

Call: xtabs(formula = y ~ trt + Heal, data = Ulcer)
Number of cases in table: 703
Number of factors: 2
Test for independence of all factors:

Chisq = 58, df = 3, p-value = 2e-12

This reproduces the results from Section 3.3.2.1. In Chapter 4, we reanalyze
the ulcer healing data using logistic regression.

3.4 Concluding Remarks

In this chapter, we illustrated how to perform analyses of treatment com-
parisons using continuous and dichotomous data arising in clinical trials using
the R system. Readers may adapt the R code presented to analyze their own
clinical trial data.
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In this chapter, we present data analyses methods for treatment comparisons
in clinical trials adjusting for covariates using the R system. Analysis of Co-
variance (ANCOVA) is a natural extension of the methods in Chapter 3. Three
actual clinical trial datasets are considered and appear in Section 4.1. These
datasets reflect response variables or endpoints arising from continuous, bino-
mial and count data.

The associated statistical models for analyzing these types of data include
the well-known ANCOVA for continuous data, logistic regression for binomial
data and Poisson regression for count data. These models are presented in
Section 4.2. For both logistic and Poisson regression, we emphasize diagnostics
for detecting over- or under-dispersion for correct modeling and present several
remedies whenever over- or under-dispersion is pinpointed. In Section 4.3,
we demonstrate how to use R and the R functionalities to analyze the data.
Concluding remarks appear in the Section 4.4.

Note: to run the R programs in this chapter, the analyst should install the
following R packages first: MASS , multcomp, scatterplot3d , and mvtnorm.
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4.1 Data from Clinical Trials

4.1.1 Diastolic Blood Pressure

The diastolic blood pressure (DBP) dataset presented in Table 3.1 for
which analyses of variance (ANOVA) were presented in Chapter 3 is an ex-
ample of continuous response data and also includes patients’ age and sex at
baseline as potential covariates. In this chapter we further analyze the DBP
data taking into account the effects of the covariates: “Age” and “Sex.” This
analysis is referred to as an “analysis of covariance (ANCOVA).” Statistical
inference on comparisons of treatment groups are based on adjusted treatment
group means (i.e., observed treatment group response means are adjusted for
the linear relationship response has with the covariates).

4.1.2 Clinical Trials for Beta-Blockers

The data for this example is from Yusuf et al. (1985) who present an
overview of mortality data from a 22 center clinical trial in which beta-blockers
were used to reduce mortality after myocardial infarction. Further McLachlan
and Peel (2000) used these data for mixture models. The data are reproduced
in Table 4.1. In this table, “Deaths” is the number of deaths and “Total” is
the total number of patients enrolled at each clinical “Center.” “Treatment”
represents whether patients at each center were randomized to “Control” or
“Treated” (Beta-blocker). The objective of the analysis is to demonstrate that

TABLE 4.1: Data for beta-blocker clinical trial

Control Treated Control Treated
Center Deaths Total Deaths Total Center Deaths Total Deaths Total

1 3 39 3 38 12 47 266 45 263
2 14 116 7 114 13 16 293 9 291
3 11 93 5 69 14 45 883 57 858
4 127 1520 102 1533 15 31 147 25 154
5 27 365 28 355 16 38 213 33 207
6 6 52 4 59 17 12 122 28 251
7 152 939 98 945 18 6 154 8 151
8 48 471 60 632 19 3 134 6 174
9 37 282 25 278 20 40 218 32 209
10 188 1921 138 1916 21 43 364 27 391
11 52 583 64 873 22 39 674 22 680
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beta-blocker treatment is effective in reducing mortality after myocardial in-
farction, as compared to control. The data (death or non-death) are binomial
and are used to demonstrate the application of logistic regression as well as
remedies for over-dispersion using a quasi-likelihood approach.

4.1.3 Clinical Trial on Familial Andenomatous Polyposis

A placebo-controlled clinical trial of a non-sterioidal anti-inflammatory
drug (NSAID) in treating familial andenomatous polyposis (FAP) is reported
by Giardiello et al. (1993) and by Piantadosi (1997). A planned interim anal-
ysis of the number of colonic polyps revealed significant evidence favoring
NSAID treatment to warrant termination of the trial. Table 4.2 lists the num-
bers of colonic polyps after 12 months of treatment and the age at baseline
for patients in the NSAID and placebo treated groups. The primary objective
of the trial was to assess the effectiveness of NSAID treatment as compared
to placebo in reducing polyps at one year, taking into account age as a covari-
ate. Everitt and Hothorn (2006) analyzed these data using Poisson regression
which revealed over-dispersion. Using quasi-likelihood techniques, we reana-
lyze data from this trial assuming a negative-binomial regression model and
illustrate how to deal with over-dispersion.

TABLE 4.2: Number of polyps in FAP clinical trial

NSAID placebo
number age number age

2 16 63 20
17 22 28 18
1 23 61 13
25 17 7 34
3 23 15 50
33 23 44 19
3 23 28 22
1 722 10 30
4 42 40 27

46 22
50 34
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4.2 Statistical Models Incorporating Covariates

4.2.1 ANCOVA Models for Continuous Endpoints

When covariates are available, such as “Age” and “Sex” in the DBP trial,
the analysis of variance of DBP in Chapter 3 can be extended to incorpo-
rate them into the statistical analysis of DBP, which is known as analysis of
covariance (ANCOVA). In statistics, ANCOVA represents a combination of
analysis of variance and regression. Accordingly ANCOVA refers to regression
to deal with the mixture of qualitative and quantitative predictors where the
qualitative ‘predictors’ may include the treatments in the clinical trial as well
as other factors.

Therefore ANCOVA can be cast into regression theory model framework
as y = Xβ + ε where y is the measured clinical endpoint (e.g. DBP) and X
is the so-called design matrix with one column for treatment. β is the vector
of regression parameters and ε is the error term which is commonly assumed
to follow a normal distribution with mean 0 and variance σ2. Then regression
theory can be drawn on for estimation, inference and model diagnostics.

The basic strategy for incorporating covariates into regression is to intro-
duce dummy variables for the qualitative covariates within the y = Xβ + ε
framework and keep the continuous (quantitative) covariates as they are in
the design matrix X . We illustrate this strategy using DBP at month 4 as the
clinical endpoint (i.e., y = DBP5; alternatively we could consider the DBP
change from baseline as the clinical endpoint, etc.). Treatment is a qualita-
tive covariate which can be incorporated into the regression using a dummy
variable, X1 as

X1 =
{

0 TRT = A
1 TRT = B (4.1)

The same approach can be taken for other qualitative covariates, such as
“Sex” in this trial. Continuous covariates, such as“Age”and baseline DBP, can
be incorporated into the regression as quantitative covariates or regression
predictors, such as, X2 = Age and X3 = DBP1. This strategy has been
implemented in many statistical analysis software packages, such as R and
SAS.

With this strategy, the ANOVA in Chapter 3 and ANCOVA can be merged
into the regression framework as

y = Xβ + ε (4.2)

where y is a vector of the observed clinical endpoint, X is the design matrix,
β is the vector of regression parameters, and ε is the error term. We briefly
present the theory of estimation and inference in this chapter. Readers may
refer to regression books, such as Draper and Smith (1998) and Kutner et al.
(2004), for more comprehensive discussions.
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The regression Equation (4.2), expresses the clinical response measurement
as the sum of a systematic component, denoted by Xβ, and a random unob-
servable component, ε. The fundamental idea in estimating the parameter β
is to find values (estimates) such that the systematic component explains as
much of the response variation as possible. This is equivalent to finding values
of the parameters that make the error as small as possible. This is called least
squares estimation; i.e., find β so that the error sum of squares is as small as
possible. Therefore the least squares estimate (LSE) of β, denoted by β̂, may
be obtained by minimizing:∑

i

ε2i = ε′ε = (y −Xβ)′(y −Xβ)

= y′y − 2βX ′y + β′X ′Xβ (4.3)

Taking the partial derivative of the error sum of squares with respect to
the component of β and setting to zero leads to

X ′Xβ̂ = X ′y (4.4)

When X ′X is invertible, we have

β̂ = (X ′X)−1X ′y (4.5)

We list below some results associated with least squares estimation:

1. The predicted values: ŷ = Xβ̂ = X(X ′X)−1X ′y = Hy. We denote
H = X(X ′X)−1X ′ which is called the “hat-matrix” to turn observed y
into “hat” y.

2. The residuals for diagnostics: ε̂ = y − ŷ = y −Xβ̂ = (I −H)y.

3. Residual sum of squares: RSS = ε̂′ε̂ = y′(I −H)′(I −H)y = y′(I −
H)y.

4. Unbiasedness: β̂ is unbiased with variance var(β̂) = (X ′X)−1σ2 if
var(ε) = σ2I.

5. Variance estimate:. It is easy to show E(ε̂′ε̂) = σ2(n − p) (where p
is the number of columns of the design matrix X , i.e., the number of
parameters in the linear model).

We then estimate σ2 using

σ̂2 =
ε̂′ε̂

n− p =
RSS

n− p (4.6)

where n− p is the degrees of freedom of the model.
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6. R2, is called the coefficient of determination or percentage of re-
sponse variation explained by the systematic component (which is usu-
ally used as a goodness-of-fit measure):

R2 =
∑

(ŷi − ȳ)2∑
(yi − ȳ)2

= 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(4.7)

R2 ranges from 0 to 1 with values closer to 1 indicating a fit of the
model.

4.2.2 Logistic Regression for Binary/Binomial Endpoints

When the observed clinical response is Bernoulli (or binary such as,
death/alive or cured/uncured) or binomial (such as the number of deaths
among a fixed total number of patients as described in Table 4.1) and there
are covariates that may be correlated with response, regressing the response
data (1, 0) on the covariates using the (normal-based) regression method in
Section 4.2.1 may yield biased estimates of the covariate parameters. Logistic
regression provides a preferred alternative for this type of data.

In this situation the response variable Yi for i = 1 , · · · , ni is binomially
distributed with ni fixed, independent trials (ni = 1 for binary data where
Yi = 1 or 0) and probability pi which is denoted by Yi ∼ B(ni, pi). The
probability distribution can then be written as

P (Yi = yi) =
(
ni
yi

)
pyii (1− pi)ni−yi (4.8)

The binomial clinical response variable Yi may be related to q clinical
covariates such as treatment received, sex, age, etc., which are denoted by
(xi1 , · · · , xiq). The fundamental difference between logistic regression and the
multiple linear regression in Section 4.2.1 is that the response variable is bi-
nomially distributed. We then model the probability pi as a linear function
of the q covariates. This is the basic idea behind logistic regression which is
described as part of the generalized linear model developed for the exponential
family of distributions. In the generalized linear model framework, we use a
linear predictor to model the linear relationship and a link function to link the
linear predictor to the binomial probability pi.

Specifically, the linear predictor is denoted by

ηi = β0 + β1xi1 + · · ·+ βqxiq = Xiβ (4.9)

where Xi = (1, xi1, · · · , xiq) is the matrix of observed covariates and β =
(β0, β1, · · · , βq) is the associated parameter vector. Various link functions are
possible for linking the linear predictor η to the probabilities pi we want to
model. It is easy to see that the identity link of pi = ηi is not appropriate
since the binomial probability pi has to be constrained to the [0, 1] interval.
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For binomial response, the most commonly used link function is the so-called
logit (and therefore giving rise to the term logistic regression) given by

η = log

(
p

1− p

)
(4.10)

Other link functions used in the logistic regression of binomial response
data are probit link function: η = Φ−1(p), where Φ−1 is the inverse normal
cumulative distribution function, and the complementary log-log link function:
η = log[−log(1− p)].

Maximum likelihood methods may be used for parameter estimation
and statistical inference. We briefly describe maximum likelihood estimation
(MLE) as follows.

To perform MLE, we first specify the likelihood function to be maximized.
The general likelihood function is defined as:

P (Y = y) =
n∏
i=1

f(yi|θ) = L(θ|y) (4.11)

For binomial data, the likelihood becomes

L(β|y) =
n∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi (4.12)

The likelihood is a function of the unknown parameters and the observed
response data and covariates. MLE of the unknown parameters requires find-
ing values of the parameters that maximize the likelihood function.

Maximizing the likelihood function is equivalent to maximizing the log-
likelihood function:

l(θ|y) = logL(θ|y) (4.13)

For binomial data,

l(β|y) =
n∑
i=1

[
log

(
ni
yi

)
+ yilog(pi) + (ni − yi)log(1− pi)

]
(4.14)

If we use the logit link function of η = log
(

p
1−p

)
, then p = eη

1+eη . The
log-likelihood function becomes

l(β|y) =
n∑
i=1

[
log

(
ni
yi

)
+ yilog(pi) + (ni − yi)log(1− pi)

]

=
n∑
i=1

[
yiηi − nilog(1 + eηi) + log

(
ni
yi

)]
(4.15)

This function is then maximized to obtain the parameter estimates. There
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is no analytical closed form solution for the parameter estimates as there
was in normal based multiple linear regression. Numerical search methods
are required and maximum likelihood estimation theory is drawn upon for
parameter estimates and their standard errors, confidence intervals, p-values
as well as model selection. Readers are referred to McCullagh and Nelder
(1995). This logistic regression is implemented in R system as R function glm.

4.2.3 Poisson Regression for Clinical Endpoint with Counts

When the observed clinical response data are counts, such as the number
of polyps as described in Table 4.2, further extension of the methods proposed
is needed. If Y is Poisson distributed with mean µ ≥ 0, then,

P (Y = y) =
eµµy

y!
(4.16)

for y = 0, 1, 2 · · · . It is important to note that for a Poisson random variable
Y, E(Y ) = V ar(Y ) = µ.

Suppose Yi represents count data and that we want to model Yi as a
function of a set of clinical covariates of (x1, · · · , xq). If Yi ∼ Pois(µi), we
need a link function to link the µi to (x1, · · · , xq) with the linear predictor
ηi = Xiβ as described in Equation (4.9). We require that µi ≥ 0, which can
be ensured by the canonical log link function as

log(µi) = ηi = Xiβ (4.17)

Now we can construct the likelihood function using (4.11), or the log like-
lihood function using (4.13). The log-likelihood function is

l(β) =
n∑
i=1

logP (Y = y) =
n∑
i=1

log

[
eµiµyii
yi!

]

=
n∑
i=1

[
yix

T
i β − exp(xTi β)− log(yi!)

]
(4.18)

Differentiating with respect to β gives the MLE for β̂ as the solution to

n∑
i=1

[
yi − exp(xTi β̂)

]
xj = 0 (4.19)

Again there is no closed form analytic solution for β̂ from this equation
and some numerical search algorithms are needed. This Poisson regression is
implemented in R system as R function glm.

4.2.4 Over-Dispersion

Over-dispersion is a common phenomenon in generalized linear regression
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including logistic and Poisson regression. Over-dispersion is evident if the de-
viance from the fitted model is too large. In the theory of maximum likelihood
estimation, residual deviance is asymptotically distributed as χ2 with appro-
priate degrees of freedom. For χ2 distributed deviance, its value should be
close to its degrees of freedom. If this is not the case, over-dispersion occurs
when the deviance is greater than the degrees of freedom. Conversely, we have
under-dispersion if the deviance is smaller than the degrees of freedom.

There may be several explanations for over- or under-dispersion; e.g. de-
pendence between the ni trials, heterogeneity arising from clusters, etc., which
led to specifying the wrong model structure for the observed clinical data. For
example in the application of Poisson regression, we embed an underlying as-
sumption unconsciously; i.e., the variance of the clinical response is the same
as its mean and therefore there is only one parameter µ to model the data.
Therefore Poisson regression is not very flexible for model fitting. This is also
true for binomial data.

There are several remedies to deal with under- or over-dispersion as out-
lined below:

1. Estimate and Adjust the dispersion parameter: a two-stage approach. To
overcome this stringent mean-variance assumption, we can generalize
the binomial/Poisson regression by introducing a dispersion parameter
φ for over- or under-dispersion such that var(Y ) = φE(Y ) = φµ. If
φ=1, then we have regular Poisson regression. If φ ≥ 1 then we have
over-dispersion and if φ ≤ 1 we have under-dispersion. The first step in
this two-stage approach is to estimate the dispersion parameter using
Pearson’s χ2 as

φ̂ =
χ2

n− p (4.20)

After the dispersion parameter is estimated, the second stage is to use
the estimated dispersion parameter to adjust the model fit for further
statistical inference. We illustrate this in the R system.

2. Using Quasi-likelihood: a Combined Approach. Instead of estimating the
dispersion parameter from Equation (4.20) after model fitting and then
adjusting the statistical inference, the quasi-likelihood approach permits
estimating the dispersion parameter along with the model parameters
simultaneously – without assuming an error distribution. This approach
requires only the mean and variance functions to be specified. This ap-
proach is implemented in glm and we illustrate its application in data
analyses.

3. Fit Negative-Binomial Regression. Another remedy is to use a more gen-
eral distribution to relax the dependence of the mean and variance func-
tion, such as the negative-binomial (NB) or gamma distribution to model
the over-dispersion. We now describe negative-binomial regression.
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The original definition of negative-binomial distribution is: for a series of
independent trials with probability of success p for each trial, the random
variable N for the number of trials until the kth success is observed has
a negative-binomial distribution with distribution function given by

P (N = n) =
(
n− 1
k − 1

)
pk(1− p)n−k n = k, k + 1, · · · (4.21)

The NB is an extension of the Poission distribution from a Bayesian per-
spective where the Poisson parameter λ is assumed to vary according to
a gamma distribution. The resulting distribution is commonly known as
the Gamma-Poisson mixture. It can be shown that the negative-binomial
distribution is a continuous mixture of Poisson distributions where the
mixing distribution of the Poisson rate parameter is a gamma distribu-
tion. That is, we can view the negative-binomial as a Poisson(λ) distribu-
tion, where λ is itself a random variable with a distribution Γ

(
k, p

1−p

)
.

Mathematically, the NB distribution in Equation (4.21) is re-
parameterized for convenience in model fitting by defining Y = N − k
and p = 1

1+α as

P (Y = y) =
(
y + k − 1
k − 1

)
αy

(1 + α)y+k
, y = 0, 1, 2, · · · (4.22)

With this re-parameterization, E(Y ) = µ = kα and var(Y ) = kα +
kα2 = µ+ µ2/k. Therefore, we have an extra term kα2 in the variance
to model over-dispersion. The log-likelihood function may be written as

l(α, k) =
n∑
i=1

yilog α

1 + α
− klog(1 + α) +

yj−1∑
j=0

log(j + k)− log(y!)


(4.23)

The link function to link mean response µ to a linear combination of the
clinical covariates X is

η = Xβ = log
α

1 + α
= log

µ

µ+ k
(4.24)

The NB regression is discussed in Venables and Ripley (2002) and is
implemented in the MASS(Modern Applied Statistics with S) library as
glm.nb.



Treatment Comparisons in Clinical Trials with Covariates 67

4.3 Data Analysis in R

4.3.1 Analysis of DBP Trial

4.3.1.1 Analysis of Baseline Data

Similar to Chapter 3, we read the data into R using RODBC and create a
new dataframe named dat.

We first investigate whether the treatment groups are balanced at baseline
in terms of diastolic blood pressure (DBP1), Age and Sex. We can easily
plot baseline DBP1 for the two treatment groups using a boxplot to see the
distributions as well as the difference in treatment group means. This can be
generated by boxplot with the following R code chunk that produces Figure
4.1:

> boxplot(DBP1~TRT, dat, las=1,

xlab="Treatment", ylab="DBP at Baseline")
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FIGURE 4.1: Boxplot for Baseline DBP.
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It can be seen from this plot that the treatment group distributions of
DBP at baseline are similar, and we conclude that the treatment groups are
balanced at baseline in terms of DBP. Similarly a plot for age at baseline Age
may be generated and we leave that as an exercise for readers.

We can also statistically test whether the treatment group baseline DBP
means are different by using t.test as

> t.test(DBP1~TRT, dat)

Welch Two Sample t-test

data: DBP1 by TRT
t = -0.307, df = 37.8, p-value = 0.7601
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.52 1.12
sample estimates:
mean in group A mean in group B

117 117

This shows that mean DBP at baseline is 116.55 mm HG for treatment
group A and 116.75 mm HG for treatment group B. The p-value for the
difference (−0.20 mm HG) is 0.76, which is not statistically significant. The
same test can be performed for Age to conclude the treatment group balance
at baseline.

Sex in the dataset is a categorical variable. We can perform a test on the
difference in treatment group proportions as

> # call function table to make the 2 by 2 table

> SexbyTRT = table(dat$TRT,dat$Sex)

> # print it

> SexbyTRT

F M
A 8 12
B 10 10

> # call prop.test to test the difference

> prop.test(SexbyTRT)

2-sample test for equality of proportions
with continuity correction

data: SexbyTRT
X-squared = 0.101, df = 1, p-value = 0.7506
alternative hypothesis: two.sided
95 percent confidence interval:



Treatment Comparisons in Clinical Trials with Covariates 69

-0.457 0.257
sample estimates:
prop 1 prop 2

0.4 0.5

We see that there are 8 females and 12 males in treatment “A” and 10 each
in treatment “B,” which corresponds to 40% and 50% females in the respective
treatment groups. The test yielded a p-value of 0.7506 which again indicates
the treatment groups are not statistically significantly different. In summary,
the treatment groups are balanced at baseline in terms of the three covari-
ates, indicating that randomization was successful in balancing the treatment
groups in terms of baseline covariates.

It is of further interest to investigate the relationship of baseline DBP to
“Age” and “Sex” using linear regression as

> # Fit the main effect model on "Sex" and "Age"

> bm1=lm(DBP1~Sex+Age, dat)

> # Show the result

> summary(bm1)

Call:
lm(formula = DBP1 ~ Sex + Age, data = dat)

Residuals:
Min 1Q Median 3Q Max

-2.199 -0.560 0.169 0.525 1.951

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 104.3834 1.1288 92.48 < 2e-16 ***
SexM -0.6422 0.3016 -2.13 0.04 *
Age 0.2639 0.0228 11.55 7.8e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.945 on 37 degrees of freedom
Multiple R-squared: 0.795, Adjusted R-squared: 0.784
F-statistic: 71.6 on 2 and 37 DF, p-value: 1.9e-13

We observe that both “Age” and “Sex” are statistically significant at the
5% level. These results are graphically shown in Figure 4.2 using the following
R code chunk. In this figure, “F” and “M” denote the two-levels of “Sex.” The
solid line is the regression line for “F” and the dashed line is the regression
line for “M.” From these data, the DBP increases with “Age” for both “F” and
“M” at the rate of 0.264 mm HG.
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> # plot the ``Age" to ``DBP1"
> plot(DBP1~Age,las=1,pch=as.character(Sex), dat,

xlab="Age", ylab="Baseline DBP")

> # add the regression lines using ``abline"
> abline(bm1$coef[1], bm1$coef[3],lwd=2, lty=1)

> abline(bm1$coef[1]+bm1$coef[2], bm1$coef[3],lwd=2, lty=4)
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FIGURE 4.2: Baseline DBP as Function of “Age” and “Sex.”

4.3.1.2 Analysis of DBP Change from Baseline with ANCOVA

Now we analyze change from baseline in DBP at the end of trial which is
defined as “diff.” We start with the full model that contains all ‘covariates’:
“TRT,” “Age” and “Sex” and their interactions, and then perform stepwise
model selection to simplify the model as follows:

> # start with full model

> m0 = lm(diff~TRT*Age*Sex, dat)
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> # stepwise model selection

> m1 = step(m0)

Start: AIC=79.5
diff ~ TRT * Age * Sex

Df Sum of Sq RSS AIC
- TRT:Age:Sex 1 2.71 198 78.1
<none> 196 79.5

Step: AIC=78
diff ~ TRT + Age + Sex + TRT:Age + TRT:Sex + Age:Sex

Df Sum of Sq RSS AIC
- TRT:Sex 1 1.33 200 76.3
- TRT:Age 1 9.56 208 78.0
<none> 198 78.1
- Age:Sex 1 17.07 216 79.4

Step: AIC=76.3
diff ~ TRT + Age + Sex + TRT:Age + Age:Sex

Df Sum of Sq RSS AIC
<none> 200 76.3
- TRT:Age 1 10.3 210 76.3
- Age:Sex 1 16.2 216 77.4

> # output the ANOVA

> anova(m1)

Analysis of Variance Table

Response: diff
Df Sum Sq Mean Sq F value Pr(>F)

TRT 1 1082 1082 184.06 2.8e-15 ***
Age 1 51 51 8.69 0.0057 **
Sex 1 1 1 0.18 0.6744
TRT:Age 1 10 10 1.76 0.1939
Age:Sex 1 16 16 2.75 0.1064
Residuals 34 200 6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

After the stepwise model selection, we are left with the main effects with
two 2-way interaction terms of TRT:Age and Age:Sex. However, these two
2-way interactions are not statistically significant as well as the main effect
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for “Sex.” We drop them and further fit a model with the rest of the terms as
follows:

> # fit the reduced model

> m2 = lm(diff~TRT+Age, dat)

> # output the anova

> anova(m2)

Analysis of Variance Table

Response: diff
Df Sum Sq Mean Sq F value Pr(>F)

TRT 1 1082 1082 176.04 1.2e-15 ***
Age 1 51 51 8.31 0.0065 **
Residuals 37 227 6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # output the model fit

> summary(m2)

Call:
lm(formula = diff ~ TRT + Age, data = dat)

Residuals:
Min 1Q Median 3Q Max

-5.90394 -1.65160 -0.00908 1.15575 5.22989

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.7809 2.9724 -2.28 0.0284 *
TRTB 10.1315 0.7894 12.84 3.4e-15 ***
Age -0.1732 0.0601 -2.88 0.0065 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.48 on 37 degrees of freedom
Multiple R-squared: 0.833, Adjusted R-squared: 0.824
F-statistic: 92.2 on 2 and 37 DF, p-value: 4.24e-15

Now we see that “TRT” and “Age” are statistically significant. The model
p-value is 4.24× 10−15 with R2 = 0.833 indicating satisfactory model fit. We
now perform model diagnostics for the normality and homogeneity of variance
assumptions based upon model residuals.

We summarize the results of this analysis graphically using Figure 4.3 with
the following R code chunk:
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> plot(diff~Age,las=1,pch=as.character(TRT), dat,

xlab="Age", ylab="DBP Change")

> abline(m2$coef[1], m2$coef[3],lwd=2, lty=1)

> abline(m2$coef[1]+m2$coef[2], m2$coef[3],lwd=2, lty=4)
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FIGURE 4.3: DBP Change as Function of “Age” for Each “TRT.”

The final model is

DBP Change = −6.78− 0.17×Age+ 10.13× TRT (4.25)

Therefore, the new treatment (A) dropped DBP by 10 mm HG compared to
placebo (B). “Age” is a significant covariate reflecting decreasing trend. For
every 10 years of aging, the change in DBP would be about 1.7 (0.17 × 10)
mm HG.
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4.3.2 Analysis of Beta-Blocker Trial

We read the data into R using RODBC and create a new dataframe named
as “betablocker.” We print this “betablocker” dataframe as follows:

> betablocker

Deaths Total Center TRT
1 3 39 1 Control
2 14 116 2 Control
3 11 93 3 Control
4 127 1520 4 Control
5 27 365 5 Control
6 6 52 6 Control
7 152 939 7 Control
8 48 471 8 Control
9 37 282 9 Control
10 188 1921 10 Control
11 52 583 11 Control
12 47 266 12 Control
13 16 293 13 Control
14 45 883 14 Control
15 31 147 15 Control
16 38 213 16 Control
17 12 122 17 Control
18 6 154 18 Control
19 3 134 19 Control
20 40 218 20 Control
21 43 364 21 Control
22 39 674 22 Control
23 3 38 1 Treated
24 7 114 2 Treated
25 5 69 3 Treated
26 102 1533 4 Treated
27 28 355 5 Treated
28 4 59 6 Treated
29 98 945 7 Treated
30 60 632 8 Treated
31 25 278 9 Treated
32 138 1916 10 Treated
33 64 873 11 Treated
34 45 263 12 Treated
35 9 291 13 Treated
36 57 858 14 Treated
37 25 154 15 Treated
38 33 207 16 Treated
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39 28 251 17 Treated
40 8 151 18 Treated
41 6 174 19 Treated
42 32 209 20 Treated
43 27 391 21 Treated
44 22 680 22 Treated

These data correspond to the data in Table 4.1. We first fit a logistic
regression model using glm as

> # fit a logistic regression using glm

> beta.glm = glm(cbind(Deaths,Total-Deaths)~TRT+Center,

family=binomial,data=betablocker)

> # print the model fitting

> summary(beta.glm)

Call:
glm(formula = cbind(Deaths, Total - Deaths) ~ TRT + Center,

family = binomial, data = betablocker)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.82826 -0.61775 0.00396 0.53502 1.92138

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3493 0.4260 -5.52 3.5e-08 ***
TRTTreated -0.2610 0.0499 -5.23 1.7e-07 ***
Center2 0.1739 0.4832 0.36 0.719
Center3 0.2428 0.5004 0.49 0.628
Center4 -0.0391 0.4309 -0.09 0.928
Center5 -0.0217 0.4480 -0.05 0.961
Center6 0.1685 0.5395 0.31 0.755
Center7 0.5966 0.4308 1.38 0.166
Center8 0.2715 0.4373 0.62 0.535
Center9 0.3888 0.4462 0.87 0.384
Center10 0.0958 0.4293 0.22 0.823
Center11 0.0520 0.4363 0.12 0.905
Center12 0.9153 0.4406 2.08 0.038 *
Center13 -0.6357 0.4720 -1.35 0.178
Center14 -0.3065 0.4375 -0.70 0.484
Center15 1.0016 0.4505 2.22 0.026 *
Center16 0.8799 0.4449 1.98 0.048 *
Center17 0.3997 0.4573 0.87 0.382
Center18 -0.5635 0.5059 -1.11 0.265
Center19 -1.0144 0.5436 -1.87 0.062 .
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Center20 0.8759 0.4447 1.97 0.049 *
Center21 0.1966 0.4436 0.44 0.658
Center22 -0.5812 0.4451 -1.31 0.192
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 332.993 on 43 degrees of freedom
Residual deviance: 23.621 on 21 degrees of freedom
AIC: 287.1

Number of Fisher Scoring iterations: 4

From the model fitting, we can see both “Treatment” and “Center” are
statistically significant with p-value associated with “Treatment” is 1.70e-07.

The residual deviance is 23.621 with 21 degrees of freedom indicating a
reasonable model fit and the over-dispersion is not very serious. However for
illustration purpose, we still show the application of methods in dealing with
over-dispersion using this data. For this data, the dispersion parameter is
estimated using the Pearson residual as:

> est.dp = sum(resid(beta.glm, type="pearson")^2)/beta.glm$df.res

> est.dp

[1] 1.12

i.e., the estimate of dispersion is 1.12 (again, small and not serious for this
data). With this estimate, we can adjust the model fitting as follows:

> summary(beta.glm, dispersion=est.dp)

Call:
glm(formula = cbind(Deaths, Total - Deaths) ~ TRT + Center,

family = binomial, data = betablocker)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.82826 -0.61775 0.00396 0.53502 1.92138

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3493 0.4512 -5.21 1.9e-07 ***
TRTTreated -0.2610 0.0529 -4.93 8.1e-07 ***
Center2 0.1739 0.5118 0.34 0.734
Center3 0.2428 0.5300 0.46 0.647
Center4 -0.0391 0.4564 -0.09 0.932
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Center5 -0.0217 0.4745 -0.05 0.964
Center6 0.1685 0.5714 0.29 0.768
Center7 0.5966 0.4563 1.31 0.191
Center8 0.2715 0.4632 0.59 0.558
Center9 0.3888 0.4727 0.82 0.411
Center10 0.0958 0.4547 0.21 0.833
Center11 0.0520 0.4621 0.11 0.910
Center12 0.9153 0.4667 1.96 0.050 *
Center13 -0.6357 0.4999 -1.27 0.204
Center14 -0.3065 0.4634 -0.66 0.508
Center15 1.0016 0.4772 2.10 0.036 *
Center16 0.8799 0.4713 1.87 0.062 .
Center17 0.3997 0.4843 0.83 0.409
Center18 -0.5635 0.5358 -1.05 0.293
Center19 -1.0144 0.5758 -1.76 0.078 .
Center20 0.8759 0.4710 1.86 0.063 .
Center21 0.1966 0.4698 0.42 0.676
Center22 -0.5812 0.4715 -1.23 0.218
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1.12)

Null deviance: 332.993 on 43 degrees of freedom
Residual deviance: 23.621 on 21 degrees of freedom
AIC: 287.1

Number of Fisher Scoring iterations: 4

We see that same conclusion is obtained. This two-stage approach may be
combined into the quasi-likelihood approach as follows:

> # fit quasi-likelihood for binomial data

> beta.glm2 = glm(cbind(Deaths,Total- Deaths)~TRT+Center,

family=quasibinomial,data=betablocker)

> # print the model fit

> summary(beta.glm2)

Call:
glm(formula = cbind(Deaths, Total - Deaths) ~ TRT + Center,

family = quasibinomial, data = betablocker)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.82826 -0.61775 0.00396 0.53502 1.92138
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.3493 0.4512 -5.21 3.7e-05 ***
TRTTreated -0.2610 0.0529 -4.93 7.0e-05 ***
Center2 0.1739 0.5118 0.34 0.737
Center3 0.2428 0.5300 0.46 0.652
Center4 -0.0391 0.4564 -0.09 0.933
Center5 -0.0217 0.4745 -0.05 0.964
Center6 0.1685 0.5714 0.29 0.771
Center7 0.5966 0.4563 1.31 0.205
Center8 0.2715 0.4632 0.59 0.564
Center9 0.3888 0.4727 0.82 0.420
Center10 0.0958 0.4547 0.21 0.835
Center11 0.0520 0.4621 0.11 0.911
Center12 0.9153 0.4667 1.96 0.063 .
Center13 -0.6357 0.4999 -1.27 0.217
Center14 -0.3065 0.4634 -0.66 0.516
Center15 1.0016 0.4772 2.10 0.048 *
Center16 0.8799 0.4713 1.87 0.076 .
Center17 0.3997 0.4843 0.83 0.419
Center18 -0.5635 0.5358 -1.05 0.305
Center19 -1.0144 0.5758 -1.76 0.093 .
Center20 0.8759 0.4710 1.86 0.077 .
Center21 0.1966 0.4698 0.42 0.680
Center22 -0.5812 0.4715 -1.23 0.231
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 1.12)

Null deviance: 332.993 on 43 degrees of freedom
Residual deviance: 23.621 on 21 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

We observe from the model fitting (i.e., beta.glm2) that the dispersion
parameter is estimated as 1.1218, which equals to what we obtained from the
two stage approach. The p-value for “Treatment” is now 7.02 ×10−5, slightly
different from the two stage result, but with the same conclusion of statistical
significance of beta-blocker.

This data will be re-analyzed in Chapter 8 as an example for meta-analysis.
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4.3.3 Analysis of Data from Familial Andenomatous Poly-
posis Trial

The data from the placebo-controlled clinical trial of a non-sterioidal
anti-inflammatory drug in treating familial andenomatous polyposis (FAP)
is shown in Table 4.2. We read this data into R from the excel databook using
RODBC (R code not shown) and name it polyps. The data may be printed
using

> polyps

number treat age
1 63 placebo 20
2 2 drug 16
3 28 placebo 18
4 17 drug 22
5 61 placebo 13
6 1 drug 23
7 7 placebo 34
8 15 placebo 50
9 44 placebo 19
10 25 drug 17
11 3 drug 23
12 28 placebo 22
13 10 placebo 30
14 40 placebo 27
15 33 drug 23
16 46 placebo 22
17 50 placebo 34
18 3 drug 23
19 1 drug 22
20 4 drug 42

We first fit a Poisson model to this count data using

> # Poisson Regression

> m0.polyps = glm(number~treat*age, polyps, family=poisson())

> # print the model fit

> summary(m0.polyps)

Call:
glm(formula = number ~ treat * age, family = poisson(),

data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.2406 -3.0403 -0.0865 1.4392 5.8490
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.51912 0.15336 29.47 < 2e-16 ***
treatdrug -1.25726 0.47163 -2.67 0.0077 **
age -0.03840 0.00625 -6.15 7.8e-10 ***
treatdrug:age -0.00463 0.02082 -0.22 0.8240

---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.49 on 16 degrees of freedom
AIC: 275.8

Number of Fisher Scoring iterations: 5

On the surface, both treatment and age appear statistically significant.
However there is over-dispersion with residual deviance of 179.49 on 16 degrees
of freedom. The dispersion parameter is estimated as

> est.dp = sum(resid(m0.polyps,

type="pearson")^2)/m0.polyps$df.res

> est.dp

[1] 11.4

which is 11.4. Using this estimate, we can adjust the model fitting as

> summary(m0.polyps, dispersion=est.dp)

Call:
glm(formula = number ~ treat * age, family = poisson(),

data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.2406 -3.0403 -0.0865 1.4392 5.8490

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.51912 0.51725 8.74 <2e-16 ***
treatdrug -1.25726 1.59067 -0.79 0.429
age -0.03840 0.02106 -1.82 0.068 .
treatdrug:age -0.00463 0.07023 -0.07 0.947
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 11.4)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.49 on 16 degrees of freedom
AIC: 275.8

Number of Fisher Scoring iterations: 5

We now observe that no term is statistically significant. Since the interac-
tion is strongly not statistically significant, we refit the reduced model without
the interaction term and adjust for dispersion:

> # refit the model without interaction

> m1.polyps = glm(number~treat+age, polyps, family=poisson())

> # estimate the dispersion parameter

> est.dp = sum(resid(m1.polyps,

type="pearson")^2)/m1.polyps$df.res

> # print the estimated dispersion parameter

> est.dp

[1] 10.7

> # print the model fit adjusting the over-dispersion

> summary(m1.polyps, dispersion=est.dp)

Call:
glm(formula = number ~ treat + age, family = poisson(),
data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.221 -3.054 -0.180 1.446 5.830

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.5290 0.4811 9.41 < 2e-16 ***
treatdrug -1.3591 0.3853 -3.53 0.00042 ***
age -0.0388 0.0195 -1.99 0.04651 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 10.7)

Null deviance: 378.66 on 19 degrees of freedom
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Residual deviance: 179.54 on 17 degrees of freedom
AIC: 273.9

Number of Fisher Scoring iterations: 5

We now observe that the estimated dispersion parameter is 10.7, and both
“Treatment”and the covariate“age”are statistically significant at the 5% level.
This two-step approach can be combined into the quasi-likelihood approach as

> # fit the quasi Poisson

> m2.polyps = glm(number~treat+age, polyps, family=quasipoisson())

> # print the model fit

> summary(m2.polyps)

Call:
glm(formula = number ~ treat + age, family = quasipoisson(),

data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.221 -3.054 -0.180 1.446 5.830

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5290 0.4811 9.41 3.7e-08 ***
treatdrug -1.3591 0.3853 -3.53 0.0026 **
age -0.0388 0.0195 -1.99 0.0628 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 10.7)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.54 on 17 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

From the quasi-likelihood approach, the estimated dispersion is 10.7.
“Treatment” is still statistically significant with p-value = 0.0026. However,
the covariate “age” is no longer statistically significant at the 5% level, but is
marginally statistically significant with p-value = 0.0628.

As further exploration, we fit the negative-binomial model using the func-
tion glm.nb in MASS library using

> # load the MASS library

> library(MASS)
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> # fit the negative-binomial model

> m3.polyps = glm.nb(number~treat+age, polyps)

> # print the model fit

> summary(m3.polyps)

Call:
glm.nb(formula = number ~ treat + age, data = polyps,

init.theta = 1.719491, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8327 -1.1390 -0.0885 0.3364 1.8978

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.5260 0.5947 7.61 2.7e-14 ***
treatdrug -1.3681 0.3690 -3.71 0.00021 ***
age -0.0386 0.0210 -1.84 0.06575 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.72) family taken to be 1)

Null deviance: 36.734 on 19 degrees of freedom
Residual deviance: 22.002 on 17 degrees of freedom
AIC: 164.9

Number of Fisher Scoring iterations: 1

Theta: 1.719
Std. Err.: 0.607

2 x log-likelihood: -156.880

We observe that the estimated parameter k in the negative-binomial dis-
tribution is 1.719 with standard error equal to 0.607. Further “Treatment” is
statistically significant with p-value = 0.00021, and the p-value for the co-
variate “age” is marginally significant with p-value 0.06575. These results are
similar to those from applying the quasi-likelihood approach to the Poisson
regression model.
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4.4 Concluding Remarks

In this chapter, we illustrated analysis methodology for comparing treat-
ments incorporating covariates in clinical trials using three real datasets. These
datasets reflected clinical response variables for the continuous, binomial and
count data cases. In conducting the analyses, we presented the associated sta-
tistical models as well as the R code for the analysis methods. Specifically,
we cast the classical ANCOVA for continuous data into multiple linear re-
gression, logistic regression for binomial data and Poisson regression for count
data. Further we presented three remedies for dealing with over- or under-
dispersion inherent in binomial and count data. Readers may use the models
and the associated R code to analyze their own trials.

For further reading, we recommend McCullagh and Nelder (1995) for the-
oretical background and Venables and Ripley (2002) for application in R/S
with its MASS(Modern Applied Statistics with S) library.
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In this chapter, we analyze time-to-event data arising from clinical trials us-
ing the R system. Time-to-event data are produced in variety of clinical trials
where the primary endpoint is some critical event. For example, in analgesic
studies such as post dental extraction pain or post partum pain, the event is
relief of pain. In an anti-infective study of chronic urinary tract infection, the
event is the microbiological cure or the abatement of clinical signs and symp-
toms of the infection. In the study of bladder tumors, for example, important
events in patient follow-up are remission or progression. In transplantation
studies involving renal allografts, although death is ultimately primary, rejec-
tion may be the primary event reflecting the experimental objective. If the
event is recurrence, then time-to-event is progression free interval. If the event
is death, then time-to-event is survival time.

Data on the times to the event and the times of censoring (as well as any
information about the censoring mechanisms) from such populations may be
analyzed to provide meaningful information about parameters of the underly-
ing population distributions. However, the data structure is different from that
of complete (no censored observations) data or data reflecting only the occur-
rence or nonoccurence of the event (e.g. normally or binomially-distributed
data), and therefore require special statistical analysis methods. The primary
difference is that times-to-event are positive and are generally skewed to the
right. Another key difference is that time-to-event is censored for some pa-
tients. For these patients, we only know their times-to-event are greater than
those recorded, but the exact survival times (if the event is death) cannot
be directly observed. We again need special methods to model this type of
censoring, which in general gave rise to the statistical field called survival
analysis.

In this chapter, we start with the analysis of a typical clinical trial that
produces right-censored data and then consider more recent analysis methods
for clinical trials that produce interval-censored data, such as cancer clinical
trials. Therefore, datasets from two clinical trials are introduced in Section
5.1. We outline the associated statistical models in Section 5.2. Methods for
analyzing right-censored data appear in Section 5.3. Methods for analyzing
interval-censored data appear in Section 5.4. The use of R for analyzing sur-
vival data is presented in Section 5.5 followed by concluding remarks in Section
5.6.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: RODBC , survival and intcox .
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5.1 Clinical Trials with Time-to-Event Data

5.1.1 Phase II Trial of Patients with Stage-2 Breast
Carcinoma

The objective of a Phase II trial was to assess the relative efficacy of
chemotherapy (CT) and immunotherapy (IT) alone and in combination, as
adjuvant to surgery in the treatment of patients with stage-2 carcinoma of
the breast. The design of the trial was parallel with random assignment to the
three treatment groups:

1. S+CT: Surgery plus one year of chemotherapy

2. S+IT: Surgery plus one year of immunotherapy

3. S+CT+IT: Surgery plus one year of chemotherapy and immunotherapy

The measures of efficacy were“time-to-death”and“time-to-evidence of dis-
ease” recorded in weeks. We analyze “time-to-death” in this chapter. Baseline
information were collected and we use the patient’s age as a covariate in the
analyses presented. The data are shown in Table 5.1 where “Time” is “time-to-
death” in weeks, “Status” is the censoring status with 0=died and 1=censored
(i.e., alive at the last follow-up).

The primary objective for this analysis is to assess whether immunotherapy
when added to surgery plus chemotherapy improves survival; i.e., is S+CT+IT
better than S + CT? We also assess whether chemotherapy adds to the efficacy
of surgery plus immunotherapy; i.e., is S+CT+IT better than S + IT? In
addition, we assess the effect of age on survival in the analyses.

TABLE 5.1: Breast carcinoma data

S+CT S+IT S+CT+IT
Time Status Age Time Status Age Time Status Age

48 1 26 102 0 52 36 0 60
55 0 65 105 0 72 73 0 72
58 1 48 144 0 52 139 1 48
63 0 53 151 0 54 158 0 60
102 0 55 182 1 52 185 1 47
133 0 63 191 1 62 198 1 51
144 0 62 192 0 62 239 1 55
177 1 49 196 1 50 239 1 56
182 1 50 222 1 43 240 1 61
216 1 63 251 1 31 242 1 35
217 0 58
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5.1.2 Breast Cancer Trial with Interval-Censored Data

In oncology clinical trials, time-to-event data are usually generated from
diagnostic assessments performed when patients return to the clinic at specific
times (such as about 8 weeks or 2 months, etc.) after baseline, resulting in
interval-censored data. In this section, we use breast cosmesis data described in
Finkelstein (1986), which has been used by many authors to illustrate different
models. These data derive from a retrospective study comparing the time to
cosmetic deterioration of two treatments: radiotherapy alone (TRT=1) versus
radiotherapy plus adjuvant chemotherapy (TRT=0) in 94 women with early
breast cancer.

For these 94 patients, 46 were treated with radiation alone and 48 were
treated with radiation plus chemotherapy. Patients were monitored initially
every 4-6 months and the interval between visits lengthened as their recovery
progressed. The event of interest was the time to first appearance of moderate
or severe breast retraction. Since patients could be only observed during their
clinic visits, the exact time of breast retraction was known only to be within
the interval between visits and therefore the data are interval-censored. For
the 94 patients, 56 were interval-censored (Status = 1) and 38 were right-
censored (Status = 0) observations as seen in Table 5.2 [reproduced from
Finkelstein (1986) for easy reference].

In this table, the interval-censored data are denoted by Status = 1 and
have specific values for tL and tU . The right-censored data are denoted by
Status = 0 for patients who had not achieved moderate or severe breast
retraction by the last visit and tU = NA.

The objective of this clinical trial was to test whether the time-to-breast
retraction increased by adding chemotherapy to radiation treatment. We also
use these data to compare various statistical analysis methods for interval-
censored data.

5.2 Statistical Models

5.2.1 Primary Functions and Definitions

Prior to proceeding with analyses of these two data sets, the reader may
find the following review of definitions of key functions in survival analysis
helpful.

The primary functions in depicting survival are the hazard function or
force of mortality, the survival function, the death density function and the
cumulative death distribution function. These functions are symbolized in this
chapter as h(t), S(t), f(t) and F (t) respectively, where t denotes survival time.
We will briefly define and explain these functions; greater detail may be found
in Peace (2009).
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TABLE 5.2: Breast cancer data

Radiation Only Radiation+Chemotherapy
tL tU Status tL tU Status tL tU Status tL tU Status
0 7 1 32 NA 0 0 22 1 16 24 1
0 8 1 33 NA 0 0 5 1 16 60 1
0 5 1 34 NA 0 4 9 1 17 27 1
4 11 1 36 44 1 4 8 1 17 23 1
5 12 1 36 48 1 5 8 1 17 26 1
5 11 1 36 NA 0 8 12 1 18 25 1
6 10 1 36 NA 0 8 21 1 18 24 1
7 16 1 37 44 1 10 35 1 19 32 1
7 14 1 37 NA 0 10 17 1 21 NA 0
11 15 1 37 NA 0 11 13 1 22 32 1
11 18 1 37 NA 0 11 NA 0 23 NA 0
15 NA 0 38 NA 0 11 17 1 24 31 1
17 NA 0 40 NA 0 11 NA 0 24 30 1
17 25 1 45 NA 0 11 20 1 30 34 1
17 25 1 46 NA 0 12 20 1 30 36 1
18 NA 0 46 NA 0 13 NA 0 31 NA 0
19 35 1 46 NA 0 13 39 1 32 NA 0
18 26 1 46 NA 0 13 NA 0 32 40 1
22 NA 0 46 NA 0 13 NA 0 34 NA 0
24 NA 0 46 NA 0 14 17 1 34 NA 0
24 NA 0 46 NA 0 14 19 1 35 NA 0
25 37 1 46 NA 0 15 22 1 35 39 1
26 40 1 16 24 1 44 48 1
27 34 1 16 20 1 48 NA 0
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5.2.1.1 The Hazard Function

The mathematical definition of the hazard function h(t) is

h(t) = lim
∆t→0

Pr (t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

(5.1)

where T denotes the random variable survival time. Ignoring limit considera-
tions, h(t) is the proportion of a population expiring in the interval [t; t+ ∆t]
among those at risk of expiring at the beginning of the interval, averaged over
the length of the interval. So h(t) may be thought of as the probability of
dying at time = t, given that death did not occur prior to t; or h(t) is the
instantaneous risk of death at time t given that death did not occur prior to
t.

A hazard function may remain constant with respect to time (correspond-
ing to an exponential density); may increase as a function of time according
to some power function (corresponding to a Weibull density); may increase
linearly with time (corresponding to a Rayleigh density); or may increase ex-
ponentially with time (corresponding to a Gompertz density). In addition,
there may be intervals of time where the hazard may alternatingly decrease
or increase according to some power, linear, or exponential function of time.

Associated with this hazard function, h(t), is the integrated or cumulative
hazard function H(t), which is widely used in survival modeling and is defined
as

H(t) =
∫ t

0

h(u)du (5.2)

5.2.1.2 The Survival Function

Besides the hazard function, the survival function is another fundamen-
tal function of interest in the analysis of survival data. The mathematical
definition of the survival function S(t) is

S(t) = Pr (T ≥ t) (5.3)

where T denotes the random variable survival time. The survival function S(t)
may be interpreted as the probability of surviving to at least time t, the t-year
survival rate, the cumulative proportion surviving to at least time t, or the
proportion of a population surviving to at least time t.

5.2.1.3 The Death Density Function

For modeling survival data using a likelihood approach, the death density
function is usually employed. The mathematical definition of the death density
function f(t) is

f(t) = lim
∆t→0

Pr (t ≤ T ≤ t+ ∆t)
∆t

(5.4)
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where T denotes the random variable survival time. Ignoring limit consider-
ations, f(t) is the proportion of all individuals in a population expiring in
the interval [t; t + ∆t] divided by the length of the interval. So f(t) may be
thought of as the unconditional probability of dying at time = t; or f(t) is the
instantaneous unconditional risk of death at time t.

Associated with this death density function, f(t), the cumulative death
distribution function F (t), is the complement of the survival function; i.e.,

F (t) = 1− S(t) (5.5)

5.2.1.4 Relationships among These Functions

The hazard, density, survival, and cumulative death distribution functions
are interrelated. If one knows the survival function, its complement is the
cumulative death distribution function, and the death density may be obtained
by differentiating the negative of the survival function with respect to t; i.e.,

f(t) = −d[S(t)]
dt

(5.6)

The hazard function may then be obtained by dividing the death density
by the survival function; i.e.,

h(t) =
f(t)
S(t)

= −d[log{S(t)}]
dt

(5.7)

Also, if the hazard function is specified, the survival function may be ob-
tained by exponentiating the negative integral of the hazard; i.e.,

S(t) = exp

[
−
∫ t

0

h(u)du
]

= exp [−H(t)] (5.8)

Thus knowledge of any one of the four enables one to determine the other
three.

5.2.2 Parametric Models

For a particular set of survival data, the functions defined in Section 5.2.1
may be parametrically estimated by assuming survival follows some para-
metric distribution or model, ‘fitting’ the data to the model and estimating
model parameters by some valid estimation method (such as maximum likeli-
hood). Five commonly used parametric models are the exponential, Weibull,
Rayleigh, Gompertz, and lognormal. We describe different settings to which
the models may apply.
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5.2.2.1 The Exponential Model

The exponential model is used to model a constant hazard function : h(t) =
λ0 > 0. The exponential death density function is

f(t) = λ0exp(−λ0t) (5.9)

the exponential survival function is

S(t) = exp(−λ0t) (5.10)

and the cumulative death distribution function is

F (t) = 1− exp(−λ0t) (5.11)

5.2.2.2 The Weibull Model

The Weibull model derives from a power law hazard function: h(t) =
λ0λ1t

λ1−1, where λ0 > 0 and λ1 > 0. It may be noted that λ1 > 1 guar-
antees that h(t) is monotone increasing.

The Weibull death density function is

f(t) = λ0λ1t
λ1−1exp(−λ0t

λ1) (5.12)

the Weibull survival function is

S(t) = exp(−λ0t
λ1) (5.13)

and the Weibull cumulative death distribution function is

F (t) = 1− exp(−λ0t
λ1) (5.14)

5.2.2.3 The Rayleigh Model

The Rayleigh model is used to model a linear hazard function: h(t) =
λ0 + 2λ1t, where λ0 > 0 and λ1 ≥ 0. It may be noted that if λ1 > 0 then h(t)
is monotone increasing. The Rayleigh death density function is

f(t) = (λ0 + 2λ1t)exp[−(λ0t+ λ1t
2)] (5.15)

the Rayleigh survival function is

S(t) = exp[−(λ0t+ λ1t
2)] (5.16)

and the Rayleigh cumulative death distribution function is

F (t) = 1− exp[−(λ0t+ λ1t
2)] (5.17)
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5.2.2.4 The Gompertz Model

The Gompertz model derives from an exponential hazard function; i.e.,
h(t) = exp(λ0 + λ1t). Note that if λ1 > 0 then h(t) is monotone increasing.
The Gompertz death density function is

f(t) = exp(λ0 + λ1t)× exp
{

1
λ1

[exp(λ0)− exp(λ0 + λ1t)]
}

(5.18)

the Gompertz survival function is

S(t) = exp

{
1
λ1

[exp(λ0)− exp(λ0 + λ1t)]
}

(5.19)

and the cumulative death distribution function is

F (t) = 1− exp
{

1
λ1

[exp(λ0)− exp(λ0 + λ1t)]
}

(5.20)

5.2.2.5 The Lognormal Model

The lognormal death density function is given by

f(t) =
1√

2πσt
exp

[
−(log(t)− µ)2

2σ2

]
(5.21)

The lognormal survival function is S(t) = 1−Φ
[
log(t)−µ

σ

]
, where Φ is the

standard cumulative normal distribution.
The hazard function is h(t) = f(t)

S(t) . The cumulative death distribution

function is F (t) = Φ
[
log(t)−µ

σ

]
.

5.3 Statistical Methods for Right-Censored Data

5.3.1 Nonparametric Models: Kaplan–Meier Estimator

Nonparametric approaches to estimate the functions in Section 5.2.1 make
no distributional or specific model assumptions about the observed sur-
vival times. Therefore these nonparametric methods are sometimes called
distribution-free methods. The Kaplan–Meier estimator is the most commonly
used non-parametric method to estimate the survival function.

Based on the definition of survival function, S(t), we can estimate S(t)
from a sample of n observations as

Ŝ(t) =
number of patients with observed times ≥ t

n
(5.22)
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when there are no censored survival times in the sample. In this case, the
estimate in Equation (5.22) is simply a proportion (binomial) from the total
n. Confidence intervals can be constructed at each time of death t using the
variance estimate:

V ar
[
Ŝ(t)

]
=
Ŝ(t)[1− Ŝ(t)]

n
(5.23)

When there are censored observations, the survival function is estimated
by the Kaplan–Meier estimator, which extended the simple binomial estimate
in Equation (5.22).

The estimator is presented in detail in Kaplan and Meier (1958). We briefly
describe its computation here. First the observed survival times are ordered
from smallest to the largest as t(1) ≤ t(2) ≤ · · · ≤ t(n), where t(j) is the jth
ordered survival time. The Kaplan–Meier estimator of the survival function
can be constructed as

Ŝ(t) =
∏
R(j)

(
1− ej

rj

)
(5.24)

where rj is the dimension of the risk set of R(j) = {j : t(j) ≤ t} and ej is the
number of patients with events at time tj . The estimated variance of Ŝ(t) can
be obtained as

V ar
[
Ŝ(t)

]
=
[
Ŝ(t)

]2 ∏
R(j)

ej
rj(rj − ej)

(5.25)

5.3.2 Cox Proportional Hazards Regression

The aforementioned methods do not account for covariate information that
might be correlated with survival. In many clinical trials, there exists con-
comitant, covariate or regressor information on patients in addition to their
observed survival times. In such settings, there is interest in assessing the
statistical significance of the concomitant information as it relates to the dis-
tribution of times-to-death.

Generally this is accomplished using the proportional hazards model pro-
posed by Sir David Cox (1972). The model is specified in terms of the hazard
function instead of the survival function, and assumes that additive changes in
the concomitant variables correspond to multiplicative changes in the hazard
function or, equivalently, to additive changes in the log of the hazard.

In other words, the hazard function reflecting the proportional hazards
model is defined as

h(t|X) = exp(Xβ)h0(t) (5.26)

where X is a vector of concomitant, covariate or regressor information X =
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(x1, x2, · · · , xp), β is the column vector of parameters (β1, β2, · · · , βp) corre-
sponding to X, and h0(t) is the time-specific baseline hazard function defined
in Section 5.2.1, sometimes referred to as a homogeneous or baseline hazard
function.

Based on this structure in Equation (5.26), the hazard ratio for any two
patients with different covariants X1 and X2 is constant over time since

h(t|X1)
h(t|X2)

=
exp(X1β)
exp(X2β)

(5.27)

h0(t) cancels from numerator and denominator of the ratio, and therefore the
hazard for one subject is proportional to the hazard of another subject.

From the formulation in Equation (5.26), it is noted that the concomitant
information acts in a multiplicative fashion on the time-dependent-only haz-
ard function. Further, the term proportional hazards, also arises by observing
that if a xi is an indicator of treatment group membership (xi = 1 if treat-
ment group 1; xi = 0 if treatment group 0), then the ratio of the hazard for
treatment group 1 to the hazard of treatment group 0 is exp(βi); or the haz-
ard for treatment group 1 is proportional to the hazard of treatment group 0.
Therefore, exp(β) sometimes is referred to as relative risk.

As noted by Cox (1972), coefficients of the covariates in the Cox Propor-
tional Hazards model may be estimated and used to provide inferences by
maximizing the conditional likelihood arising from the Cox model. In doing
so, the actual survival times are not explicitly used in the estimation process,
rather they serve as bookkeepers of the covariate information; thus knowledge
of the survival time ranks would equally suffice (Peace and Flora (1978)).

In the discussion of Cox’s paper, several authors note that the likelihood
is not strictly a conditional likelihood. Kalbfleisch and Prentice (2002) use the
method of marginal likelihood. Cox (1975) later presents the notion of partial
likelihood. Regardless of nomenclature, estimating the covariate coefficients
in the Cox model enables one to test the significance of the covariates as well
as provides estimates of the relative hazard of one group to another or of
one patient to another (using the covariate information of those patients in
addition to the estimates of the coefficients).

The survival function arising from the Cox specification of the hazard func-
tion in Equation (5.26) may be estimated. If we define S(t|X) as the survival
function (i.e., survival probability) at time t for patients with concomitant
variable X, then

S(t|X) = exp

[
−
∫ t

0

h(u|X)du
]

= exp

[
−
∫ t

0

exp(Xβ)h0(t)du
]

= exp

[
−exp(Xβ)×

∫ t

0

h0(t)du
]

= {exp [−H0(t)]}exp(Xβ) (5.28)
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where H0(t) is the baseline cumulative hazard. Therefore, when the estimates
of β̂ are obtained, survival probabilities can be estimated for any covariates
from clinical trials if we can also estimate the baseline cumulative hazard.

The estimation is based on the principal of maximum partial likelihood.
We refer the reader to Cox (1975) or the excellent texts of Lawless (1982),
Kalbfleisch and Prentice (2002) and Collett (2003). We demonstrate the im-
plementation in the R system.

5.4 Statistical Methods for Interval-Censored Data

In oncology clinical trials, but also in many other clinical trials, time-to-
event data are generated by subjecting the patient to questioning, physical
examination or other diagnostic methods at scheduled clinic follow-up visits.
In such trials, the exact times of the event (e.g. cancer, remission, etc.) are not
known, rather if the event is present at a particular clinic visit, what one knows
is that the event occurred between the last visit and the current visit. Hence
such times-to-event reflect interval-censored data. Interval-censored data
are commonly produced in clinical trials where there is a non-lethal endpoint,
such as the progression-free survival (PFS), time-to-no-evidence of disease or
time-to-remission in oncology trials.

Due to lack of knowledge of more appropriate statistical methods or inac-
cessibility of the appropriate statistical software, the common ad hoc practice
is to approximate the interval-censored data using the left or right endpoint
or the midpoint of the interval. Under this convention, well-known statistical
methods developed for exact failure time data for right censored data may
be utilized. The inference from force fitting exact times-to-event methods to
interval censored data may introduce bias and may render inferences there
from invalid.

Since the seminal Cox proportional hazards regression is not applicable to
interval censored data, we introduce the so-called proportional hazards model
using an iterative convex minorant (ICM) algorithm for interval censored data
as proposed by Pan (1999). This approach is implemented as a intcox in
the R system. In addition, we introduce Turnbull’s nonparametric estimator
for interval-censored data as well as some parametric models to fit interval-
censored data. A comprehensive discussion can be found in Sun (2006).

5.4.1 Turnbull’s Nonparametric Estimator

For interval-censored data, Turnbull (1976) proposed an analog to the
Kaplan–Meier product-limit estimator. This is based on an iterative procedure
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to estimate the survival function S(t) corresponding to the interval-censored
data such as those presented in Table 5.2.

To construct Turnbull’s estimator, the observed times-to-event are ordered
in the same manner as in Kaplan and Meier estimator. Let 0 = τ0 < τ1 <
τ2 < · · · < τm be the ordered time points including all left tLi and right tUi
time points in all intervals of (tLi, tUi), i = 1, 2, · · · , n, from n patients. Notice
that m is usually larger than n because of the interval data.

Then, for the ith patient, define an indicator Iij to keep track of whether
the interval (τj−1, τj) is completely within the interval (tLi, tUi] as

Iij =
{

1 if (τj−1, τj) ∈ (tLi, tUi]
0 otherwise (5.29)

where Iij also indicates whether the event that occurred in (tLi, tUi] could
have occurred at τj . Based on this indicator, Turnbull’s estimator is obtained
from the following iterative steps:

1. Make an initial guess at S(τj) and compute

pj = S(τj−1)− S(τj) j = 1, 2, · · · ,m

2. Compute the number of events occurred at τj using

ej =
n∑
i=1

pjIij∑m
k=1 pkIik

j = 1, 2, · · · ,m

3. Compute the estimated number at risk at time τj using

rj =
m∑
k=j

ek

4. Compute the updated product-limit estimator S(τj) using the con-
structed pseudo data from Steps 2 to 3.

5. Iterate Steps 1 to 4 and update Snew(τj) from the previous step. If
Snew(τj) is close to it in the previous step for all τ ’s, stop the iterative
process. The convergence of the iterative approach depends on the initial
guess of S(τj), which are typically estimated using the Kaplan–Meier
estimator.

5.4.2 Parametric Likelihood Estimation with Covariates

The usual likelihood approach starts with the proportional hazards as-
sumption as in Equation (5.26) to combine the covariates X and the vector of
regression coefficients β via a linear predictor with the baseline hazard h0(t).
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We are interested in the effect the covariates have on the probability of
the occurrence of events as formulated by the survival function

S(t|X) = 1− F (t|X) (5.30)

where F is the cumulative distribution function. Similar mathematical manip-
ulation as in Equation (5.28), we have:

S(t|X) = S0(t)exp(β′X) (5.31)

where S0(t) is the baseline survival function which is independent of the co-
variates. Therefore,

1− F (t|X) = S(t|X)

= S0(t)exp(β′X)

= [1− F0(t)]exp(β′X) (5.32)

Therefore for n patients with observed interval censored data of (tLi, tUi),
i = 1, · · · , n, the log-likelihood function with regression parameter vector β
and the parameters θ from the baseline distribution can be constructed as
follows:

L(F0,β, θ) =
n∑
i=1

log
{

[1− F0(tLi, θ)]exp(β′Xi) − [1− F0(tUi, θ)]exp(β′Xi)
}

(5.33)
Commonly used baseline distribution functions F0 are defined in Section

5.2.2. Statistical estimation and inference is then based on the maximum like-
lihood methods from the Equation (5.33), which has been implemented in R
survival .

The advantage for this likelihood approach is that we can estimate the
regression parameter vector β and the baseline parameters θ simultaneously
(see Peace and Flora (1978)). The disadvantage is that we need to specify the
baseline F0 which is contrary to the essence of Cox regression if interest is
only in estimates and inferences on the regression parameters.

5.4.3 Semiparametric Estimation: The IntCox

From Section 5.4.2, Pan’s (1999) semiparametric method is to estimate
the regression parameters β as the parametric part. This requires utilizing a
nonparametric piecewise constant function to represent the baseline cumula-
tive density function F0(t) in the likelihood function of Equation (5.33) using
the iterative convex minorant algorithm (ICM). Since the parameter vector
θ associated with F0(t) is eliminated, the log-likelihood function in Equation
(5.33) now becomes

L(F0,β) =
n∑
i=1

log
{

[1− F0(tLi)]exp(β′Xi) − [1− F0(tUi)]exp(β′Xi)
}

(5.34)
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Henschel, Heiss and Mansmann implemented Pan’s ICM in the R package
intcox , which can be obtained from following link:

http://cran.r-project.org/web/packages/intcox/

In this section, we briefly describe this implementation. The reader may use
the above link to access more information. The implementation requires max-
imizing the log-likelihood in Equation (5.34) by a modified Newton-Raphson
algorithm assuming that the baseline function F0(t) is a piecewise constant
represented by a finite dimensional vector, which is estimated together with
the regression parameter β.

With the log-likelihood function in Equation (5.34), the gradients are
∇1L(F0,β) = ∂L(F0,β)

∂F0
and ∇2L(F0,β) = ∂L(F0,β)

∂β . The full Hessian matrix in
the original Newton-Raphson algorithm is replaced by the diagonal matrices
of the negative second partial derivatives G1(F0,β) and G2(F0,β).

The Newton-Raphson algorithm updates F (m+1) from F (m) iteratively by
utilizing the stepsize α with initial starting value α = 1 as follows:

F
(m+1)
0 =Proj

[
F

(m)
0 + αG1(m)−1∇1L(m), G1(m),R

]
β(m+1) =β(m) + αG2(m)−1∇2L(m)

To ensure F (m+1)
0 is a distribution function, the authors used a projection

into the restricted range R weighted by G as

Proj[y,G,R] = arg min
x

{ k∑
i=1

(yi − xi)2Gii : 0 ≤ x1 ≤ · · · ≤ xk ≤ 1
}

If L(F (m+1)) < L(F (m)), α is halved and the step is reiterated. To expe-
dite convergence, starting values are computed by treating the data as right-
censored and using the classical proportional hazards model.

5.5 Step-by-Step Implementations in R

5.5.1 Stage-2 Breast Carcinoma

We now proceed with data analyses using the R system with a step-by-step
approach. We start with the phase II clinical trial for patients with Stage-2
breast carcinoma given in Table 5.1. This is a typical right-censored survival
dataset with interest in the comparative analyses of three treatments. The
second dataset is publicly available and represents data from a breast cancer
cosmesis trial with interval-censored data where interest is to compare radio-
therapy alone versus radiotherapy and adjuvant chemotherapy in the delay of
breast retraction. The data is given in Table 5.2.
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We read data from Table 5.1 into R with R package RODBC and name it
as dat:

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> getxlsbook = odbcConnectExcel2007(datfile)

> dat = sqlFetch(getxlsbook,"CTCarcinoma")

> odbcCloseAll()

> # print the first three observations

> head(dat, n=3)

TRT Time Status Age
1 S+CT 48 1 26
2 S+CT 55 0 65
3 S+CT 58 1 48

5.5.1.1 Fit Kaplan–Meier

We now load the R package survival (maintained by Terry Therneau at
Mayo Clinic) to fit the Kaplan–Meier estimator as described in Section 5.3.1:

> # load the R library

> library(survival)

> # fit Kaplan--Meier

> fit.km = survfit(Surv(Time,Status==0)~TRT,

type=c("Kaplan--Meier"),dat)

> # print the model fitting

> fit.km

Call: survfit(formula = Surv(Time, Status == 0) ~ TRT, data = dat,
type = c("Kaplan--Meier"))

records n.max n.start events median 0.95LCL 0.95UCL
TRT=S+CT 11 11 11 6 144 102 NA
TRT=S+CT+IT 10 10 10 3 NA 158 NA
TRT=S+IT 10 10 10 5 192 144 NA

Note that in fit.km with Surv(Time, Status==0), we create a survival
object to be used as the response variable in the survival model fitting of
survfit. The default for Status as event is 1. Since we use 0 (=dead) as the
event, we need to tell Surv to set Status = 0 as the event. The model fit object
fit.km above shows the summary of the model fitting as well as the estimated
median survival and the 95% confidence interval.

The estimated survival function by Kaplan–Meier method in Section 5.3.1
may be printed from the fitting object fit.km as shown in Table 5.3, and is
graphically illustrated in Figure 5.1 with following R code chunk:
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> plot(fit.km, lty=c(1,4,8),lwd=2,xlab="Time in Weeks",ylab="S(t)")

legend("bottomleft",title="Line Types",

c("S+CT","S+CT+IT","S+IT"),lty=c(1,4,8), lwd=2)
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FIGURE 5.1: Kaplan–Meier Estimator for Survival Function.
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TABLE 5.3: Kaplan–Meier estimator for survival function

time n.risk n.event survival std.err lower 95% CI upper 95% CI
TRT=S+CT

48 11 0 1.000 0.0000 1.000 1.000
55 10 1 0.900 0.0949 0.732 1.000
58 9 0 0.900 0.0949 0.732 1.000
63 8 1 0.787 0.1340 0.564 1.000
102 7 1 0.675 0.1551 0.430 1.000
133 6 1 0.562 0.1651 0.316 1.000
144 5 1 0.450 0.1660 0.218 0.927
177 4 0 0.450 0.1660 0.218 0.927
182 3 0 0.450 0.1660 0.218 0.927
216 2 0 0.450 0.1660 0.218 0.927

TRT=S+IT
102 10 1 0.90 0.0949 0.732 1.000
105 9 1 0.80 0.1265 0.587 1.000
144 8 1 0.70 0.1449 0.467 1.000
151 7 1 0.60 0.1549 0.362 0.995
182 6 0 0.60 0.1549 0.362 0.995
191 5 0 0.60 0.1549 0.362 0.995
192 4 1 0.45 0.1743 0.211 0.961
196 3 0 0.45 0.1743 0.211 0.961
222 2 0 0.45 0.1743 0.211 0.961
251 1 0 0.45 0.1743 0.211 0.961

TRT=S+CT+IT
36 10 1 0.900 0.0949 0.732 1
73 9 1 0.800 0.1265 0.587 1
139 8 0 0.800 0.1265 0.587 1
158 7 1 0.686 0.1515 0.445 1
185 6 0 0.686 0.1515 0.445 1
198 5 0 0.686 0.1515 0.445 1
239 4 0 0.686 0.1515 0.445 1
240 2 0 0.686 0.1515 0.445 1
242 1 0 0.686 0.1515 0.445 1
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From the table as well as the figure we note descriptively that survival
for chemotherapy and immunotherapy as combined adjuvant treatment to
surgery (i.e., “S+CT+IT”) is better than immunotherapy as a single adjuvant
to surgery (i.e., “S+IT”) and that immunotherapy as a single adjuvant (i.e.,
“S+IT”) is better than chemotherapy as a single adjuvant to surgery (i.e.,
“S+CT”). This outcome is consistent with a priori belief that survival would
be ordered as: “S+IT+CT”> “S+IT”> “S+CT”.

Estimated median survival for “S+CT” is 144 (weeks) and is 192 (weeks)
for“S+IT”. For the combined treatment of“S+CT+IT”, the estimated survival
probability is always above 50%. This conclusion can be supported addition-
ally by estimating the cumulative hazard function using the following R code
and displaying the results in Figure 5.2 using the following R code chunk:

> # call "survfit" to fit the model

> fit.fleming =survfit(Surv(Time,Status==0)~TRT,dat,type='fleming')
> # plot the estimated cumulative hazard function

> plot(fit.fleming,lty=c(1,4,8),lwd=2,fun="cumhaz",

xlab="Time in Weeks", ylab="Cumulative Hazard")

legend("topleft",title="Line Types",

c("S+CT","S+CT+IT","S+IT"),lty=c(1,4,8),lwd=2)
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FIGURE 5.2: Nonparametric Estimation for Cumulative Hazard Function.
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We can test whether these differences are statistically significant as follows:

> # use "survdiff" to test difference

> fit.diff = survdiff(Surv(Time, Status==0)~TRT,data=dat)

> fit.diff

Call:
survdiff(formula = Surv(Time, Status == 0) ~ TRT, data = dat)

N Observed Expected (O-E)^2/E (O-E)^2/V
TRT=S+CT 11 6 3.64 1.52842 2.12654
TRT=S+CT+IT 10 3 5.19 0.92444 1.51837
TRT=S+IT 10 5 5.17 0.00549 0.00887

Chisq= 2.5 on 2 degrees of freedom, p= 0.28

Since the p-value associated with the χ2-test is 0.28, we may conclude
there is no statistically significantly difference among the three treatments.
This is expected since this trial was a relatively small phase II clinical trial
not designed to have large power to detect specified treatment differences a
priori.

5.5.1.2 Fit Weibull Parametric Model

To illustrate the parametric model approach for the baseline hazard de-
scribed in Section 5.2.2, we use both the exponential and Weibull models. The
reader can be guided by the R code to fit other models.

To fit the exponential and Weibull models we use survreg as follows:

> # fit exponential model

> fit.exp =survreg(Surv(Time, Status==0)~TRT,dat,

dist="exponential")

> summary(fit.exp)

Call:
survreg(formula = Surv(Time, Status == 0) ~ TRT, data = dat,

dist = "exponential")
Value Std. Error z p

(Intercept) 5.449 0.408 13.347 1.23e-40
TRTS+CT+IT 0.919 0.707 1.300 1.94e-01
TRTS+IT 0.401 0.606 0.662 5.08e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -95 Loglik(intercept only)= -96

Chisq= 1.81 on 2 degrees of freedom, p= 0.4
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Number of Newton-Raphson Iterations: 4
n= 31

> # fit Weibull model

> fit.Weibull =survreg(Surv(Time, Status==0)~TRT,dat)

> summary(fit.Weibull)

Call:
survreg(formula = Surv(Time, Status == 0) ~ TRT, data = dat)

Value Std. Error z p
(Intercept) 5.263 0.221 23.84 1.23e-125
TRTS+CT+IT 0.611 0.388 1.57 1.16e-01
TRTS+IT 0.293 0.326 0.90 3.68e-01
Log(scale) -0.627 0.234 -2.68 7.39e-03

Scale= 0.534

Weibull distribution
Loglik(model)= -92.2 Loglik(intercept only)= -93.6

Chisq= 2.77 on 2 degrees of freedom, p= 0.25
Number of Newton-Raphson Iterations: 5
n= 31

We note that treatment effects are not statistically significant from either
parametric model. The p-values > 10% are consistent with the conclusions
from the nonparametric methods in the previous section. Between these two
parametric models, the Weibull is statistically a better fit than the exponential
since the negative log-likelihood function dropped from 95 to 92.2, resulting
in a statistically significantly likelihood ratio test since 2× (95−92.2) = 5.6 >
χ2(0.95, 1) = 3.841.

Note for the interpretations of the parameters in the survreg:

1. Extreme distribution. The estimated coefficients (when specifying the
exponential or the Weibull model) are actually those for the extreme
value distribution, i.e., the log transform of a random variable following
a Weibull distribution.

2. Exponential distribution. The MLE of the usual exponential distribu-
tion, λ̂0 in Section 5.2.2.1 and the R output estimator is related by
µ̂ = log(1/λ̂0) = −log(λ̂0), where µ̂ = (Intercept) in the Summary
output. That is, λ̂0 = exp[−(Intercept)]. For this data, the estimated
µ̂ = (Intercept) = 5.449. Therefore the estimated λ̂0 = 0.0043, which is
statistically significant.

3. Weibull distribution. From the R output for the Weibull distribution
(Intercept) = µ̂ = − lnλ̂0

λ̂1
and Scale = σ̂ = 1/λ̂1. Therefore λ̂0 =
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exp(−µ̂ × λ̂1) = exp
(
− µ̂
σ̂

)
= exp

(
− (Intercept)

Scale

)
and λ̂1 = 1/σ̂ =

1/Scale. For this data, (Intercept) = 5.263 and Scale = 0.566, which
are both statistically significant. The estimated parameters for Weibull
distribution are then λ̂0 = 9.1e − 05 and λ̂1 = 1.768. In addition, the
regression parameter vector β̂ is estimated by the negative of the corre-
sponding estimated Value from the R output divided by the estimated
Scale value, i.e., β̂ = −V alue

Scale
.

Testing for the covariate (i.e., Age) effect can be easily incorporated into
survreg as

> # fit exponential model +Age

> fit.exp.age = survreg(Surv(Time, Status==0)~TRT+Age,

dat,dist="exponential")

> summary(fit.exp.age)

Call:
survreg(formula = Surv(Time, Status == 0) ~ TRT + Age, data = dat,

dist = "exponential")
Value Std. Error z p

(Intercept) 11.0560 2.2253 4.968 6.76e-07
TRTS+CT+IT 0.7334 0.7072 1.037 3.00e-01
TRTS+IT 0.2329 0.6068 0.384 7.01e-01
Age -0.0966 0.0366 -2.636 8.38e-03

Scale fixed at 1

Exponential distribution
Loglik(model)= -91 Loglik(intercept only)= -96

Chisq= 9.91 on 3 degrees of freedom, p= 0.019
Number of Newton-Raphson Iterations: 5
n= 31

> # fit Weibull model+Age

> fit.Weibull.age = survreg(Surv(Time,Status==0)~TRT+Age,dat)

> summary(fit.Weibull.age)

Call:
survreg(formula = Surv(Time, Status == 0) ~ TRT + Age, data = dat)

Value Std. Error z p
(Intercept) 8.5885 1.3214 6.500 8.04e-11
TRTS+CT+IT 0.3899 0.3505 1.112 2.66e-01
TRTS+IT 0.1038 0.2947 0.352 7.25e-01
Age -0.0569 0.0217 -2.620 8.78e-03
Log(scale) -0.7294 0.2291 -3.184 1.45e-03
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Scale= 0.482

Weibull distribution
Loglik(model)= -87.2 Loglik(intercept only)= -93.6

Chisq= 12.8 on 3 degrees of freedom, p= 0.0051
Number of Newton-Raphson Iterations: 7
n= 31

From both models we note that the “Age” effect is a statistically significant
factor for breast carcinoma although the treatment effect still remains non-
significant.

5.5.1.3 Fit Cox Regression Model

Cox regression eliminates the need to select baseline parametric models as
was done in Section 5.5.1.2. Fitting of the Cox model is easily accomplished
in the R system using R package survival . To do so the R function coxph is
called from the package as follows:

> # fit Cox

> fit.Cox = coxph(Surv(Time, Status==0)~TRT,dat)

> summary(fit.Cox)

Call:
coxph(formula = Surv(Time, Status == 0) ~ TRT, data = dat)

n= 31

coef exp(coef) se(coef) z Pr(>|z|)
TRTS+CT+IT -1.085 0.338 0.716 -1.52 0.13
TRTS+IT -0.548 0.578 0.608 -0.90 0.37

exp(coef) exp(-coef) lower .95 upper .95
TRTS+CT+IT 0.338 2.96 0.083 1.37
TRTS+IT 0.578 1.73 0.175 1.90

Rsquare= 0.077 (max possible= 0.933 )
Likelihood ratio test= 2.49 on 2 df, p=0.289
Wald test = 2.41 on 2 df, p=0.3
Score (logrank) test = 2.57 on 2 df, p=0.276

> # fit Cox +Age

> fit.Cox.age = coxph(Surv(Time, Status==0)~TRT+Age,dat)

> summary(fit.Cox.age)

Call:
coxph(formula = Surv(Time, Status == 0) ~ TRT + Age, data = dat)



108 Clinical Trial Data Analysis Using R

n= 31

coef exp(coef) se(coef) z Pr(>|z|)
TRTS+CT+IT -0.8621 0.4223 0.7185 -1.20 0.2301
TRTS+IT -0.2942 0.7451 0.6120 -0.48 0.6307
Age 0.1125 1.1191 0.0412 2.73 0.0064 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
TRTS+CT+IT 0.422 2.368 0.103 1.73
TRTS+IT 0.745 1.342 0.225 2.47
Age 1.119 0.894 1.032 1.21

Rsquare= 0.314 (max possible= 0.933 )
Likelihood ratio test= 11.7 on 3 df, p=0.00855
Wald test = 9.13 on 3 df, p=0.0276
Score (logrank) test = 9.72 on 3 df, p=0.0211

Again, the associated p-values for treatment effects are high (all > 10%)
indicating non-significance from both fitting treatment alone (fit.Cox) as well
as fitting treatment with Age as a covariate (fit.Cox.age). However the “Age”
effect is significant. This Cox model fitting again confirms the conclusions
reached from both nonparametric and parametric model fittings.

5.5.2 Breast Cancer Cosmesis Interval-Censored Data

Table 5.2 presented a cosmesis dataset for breast cancer patients who were
treated with radiotherapy alone versus radiotherapy and adjuvant chemother-
apy. The objective was to assess the efficacy of chemotherapy as adjuvant to
radiotherapy in delaying the time to first appearance of moderate or severe
breast retraction. We load the excel data into R as

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> getxlsbook = odbcConnectExcel2007(datfile)

> dat = sqlFetch(getxlsbook,"BreastCancer")

> odbcCloseAll()

> # print the first 6 observations

> head(dat)

tL tU TRT Status
1 0 7 1 1
2 0 8 1 1
3 0 5 1 1
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4 4 11 1 1
5 5 12 1 1
6 5 11 1 1

5.5.2.1 Fit Turnbull’s Nonparametric Estimator

We implement the Turnbull nonparametric estimator described in Section
5.4.1 in R to estimate the survival function. This implementation is based on
Giolo’s online paper available at

http://www.est.ufpr.br/rt/suely04a.htm

Readers may refer to this paper for more detail. We made modifications
in order to match the data structure in this chapter.

Based on the description in Section 5.4.1, we first order all time points
from left to right for the τ ’s by creating a R function:

> cria.tau = function(data){

l = data$tL;r = data$tU

# sort all the time points

tau = sort(unique(c(l,r[is.finite(r)])))

return(tau)

}

We obtain an initial estimate for the survival function for Turnbull’s non-
parametric estimator using Kaplan–Meier estimator by creating the R func-
tion:

> S.ini = function(tau){

# take the ordered time

m = length(tau)

# fit the Kaplan--Meier

ekm = survfit(Surv(tau[1:m-1],rep(1,m-1))~1)

# Output the estimated Survival

So = c(1,ekm$surv)

# estimate the step

p = -diff(So)

return(p)

}

Based on these two functions, Turnbull’s nonparametric estimator is im-
plemented in R as in the following R code chunk:

> cria.A = function(data,tau){

tau12 = cbind(tau[-length(tau)],tau[-1])

interv = function(x,inf,sup)
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ifelse(x[1]>=inf & x[2]<=sup,1,0)

A = apply(tau12,1,interv,inf=data$tL,sup=data$tU)

id.lin.zero = which(apply(A==0, 1, all))

if(length(id.lin.zero)>0) A = A[-id.lin.zero, ]

return(A)

}

> # Turnbull function

> Turnbull = function(p, A, data, eps=1e-3,

iter.max=200, verbose=FALSE){

n =nrow(A);m=ncol(A);Q=matrix(1,m)

iter = 0

repeat {

iter = iter + 1; diff = (Q-p)

maxdiff = max(abs(as.vector(diff)))

if (verbose) print(maxdiff)

if (maxdiff<eps | iter>=iter.max) break

Q = p; C = A%*%p; p=p*((t(A)%*%(1/C))/n)

}

cat("Iterations = ", iter,"\n")

cat("Max difference = ", maxdiff,"\n")

cat("Convergence criteria: Max difference < 1e-3","\n")

dimnames(p) = list(NULL,c("P Estimate"))

surv = round(c(1,1-cumsum(p)),digits=5)

right = data$tU

if(any(!(is.finite(right)))){

t = max(right[is.finite(right)])

return(list(time=tau[tau<t],surv=surv[tau<t]))

}

else return(list(time=tau,surv=surv))

}

With these functions, we can fit Turnbull’s estimator for the breast cosme-
sis data. We first fit this estimator for TRT=1 (i.e., the treatment of “Radia-
tion Only”) as

> # get the data for TRT=1

> dat1 = dat[dat$TRT==1,]

> dat1$tU[is.na(dat1$tU)] = Inf

> # sort the time points

> tau = cria.tau(dat1)

> # Estimate the initial Survival

> p = S.ini(tau=tau)

> # run Turnbull and name it as "mb1"



Analysis of Clinical Trials with Time-to-Event Endpoints 111

> A = cria.A(data=dat1,tau=tau)

> mb1 = Turnbull(p,A,dat1)

Iterations = 40
Max difference = 0.000982
Convergence criteria: Max difference < 1e-3

> # print the estimates

> mb1

$time
[1] 0 4 5 6 7 8 10 11 12 14 15 16 17 18 19 22
[17] 24 25 26 27 32 33 34 35 36 37 38 40 44 45 46

$surv
[1] 1.000 1.000 0.954 0.954 0.920 0.832 0.832 0.832
[9] 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.759
[17] 0.751 0.669 0.669 0.669 0.665 0.650 0.588 0.588
[25] 0.588 0.587 0.568 0.474 0.468 0.468 0.468

Then we call these functions again to fit Turnbull’s estimator for TRT = 0
(i.e., the treatment of “Radiation+Chemotherapy”) as:

> # get the data for TRT=0

> dat0 = dat[dat$TRT==0,]

> dat0$tU[is.na(dat0$tU)] = Inf

> tau = cria.tau(dat0)

> # Estimate the initial survival

> p = S.ini(tau=tau)

> # run Turnbull

> A = cria.A(data=dat0,tau=tau)

> mb0 = Turnbull(p,A,dat0)

Iterations = 30
Max difference = 0.000972
Convergence criteria: Max difference < 1e-3

> mb0

$time
[1] 0 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20
[17] 21 22 23 24 25 26 27 30 31 32 34 35 36 39 40 44
[33] 48

$surv
[1] 1.0000 1.0000 0.9567 0.9134 0.9134 0.9134 0.9134
[8] 0.8442 0.8442 0.8442 0.8442 0.8438 0.6988 0.6973
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[15] 0.5587 0.4437 0.4430 0.4423 0.4408 0.4403 0.3532
[22] 0.3411 0.3392 0.3389 0.2812 0.2751 0.2665 0.2663
[29] 0.1170 0.1106 0.1106 0.1106 0.0553

The estimated survival functions for both treatments are shown graphically
in Figure 5.3 using the following R code chunk:

> # plot the TRT=1

> plot(mb1$time,mb1$surv,lty=1,lwd=2,type="s", ylim=c(0,1),

xlim=range(c(0,60)),xlab="Time in Months",ylab="S(t)")

> # add a line for TRT=0

> lines(mb0$time,mb0$surv,lty=4,lwd=2,type="s")

> # put a legend

> legend("topright",title="Line Types",lty=c(1,4),lwd=2,

c("Radiation Only","Radiation+Chemotherapy"))
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FIGURE 5.3: Turnbull’s Nonparametric Estimator for Both Treatments.
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From Figure 5.3, we note that the estimated survival (without breast re-
traction) functions do not differ noticeably in the early stage, say before 20
months. But after 20 months, there is a sharp decline in the curves; partic-
ularly for patients in the “Radiation+Chemotherapy” treatment group. For
example, at time = 44 months, 11.06% of patients are estimated to be free
of breast retraction in the “Radiation+Chemotherapy” group, as compared to
46.78% of patients in the “Radiation Only” treatment.

As previously pointed out many analyses of interval-censored data were
performed using non-interval censored data methods, after approximating the
interval-censored observations with the midpoint or left or right endpoint of
the interval in which they occurred. We noted in addition that this approach
could lead to estimation bias. We briefly illustrate the bias using the midpoint
approximation here:

> # get the midpoint

> time = dat$tL+((dat$tU-dat$tL)/2)

> # get the censorship

> Status = ifelse(is.finite(time),1,0)

> # replace the NA with left-time

> time = ifelse(is.finite(time),time,dat$tL)

> # fit Kaplan--Meier model

> ekm = survfit(Surv(time, Status)~TRT,

type=c("Kaplan--Meier"),dat)

> # print the output

> ekm

Call: survfit(formula = Surv(time, Status) ~ TRT, data = dat,
type = c("Kaplan--Meier"))

records n.max n.start events median 0.95LCL 0.95UCL
TRT=0 48 48 48 35 21.5 20 27.5
TRT=1 46 46 46 21 40.5 31 NA

We overlay the Kaplan–Meier estimates based on midpoints with Turn-
bull’s estimates in Figure 5.4 using the following R the code chunk:

> # plot the Turnbull estimates

> plot(mb1$time,mb1$surv,lty=1,lwd=3,type="s",ylim=c(0,1),

xlim=range(c(0,50)), xlab="Time in Months",ylab="S(t)")

> legend("bottomleft",title="Line Types",lty=c(1,4),lwd=3,

c("Radiotherapy Only","Radiotherapy+Chemotherapy"))

> lines(mb0$time,mb0$surv,lty=4,lwd=3,type="s")

> # add lines for the midpoint KM estimates

> lines(ekm[1]$time,ekm[1]$surv,type="s",lty=4,lwd=1)
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> lines(ekm[2]$time,ekm[2]$surv,type="s",lty=1,lwd=1)
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FIGURE 5.4: Turnbull’s Estimator Overlaid with Midpoint Kaplan–Meier Es-
timator.

In this figure, the solid lines reflect the “Radiation Only” treatment, and
the dashed lines reflect the “Radiation+Chemotherapy” treatment. In addi-
tion, the thick lines reflect Turnbull’s estimator and the thin lines reflect
Kaplan–Meier estimator from the midpoint data. We note from this figure
that although both methods have similar trends in estimating the survival
curve, the midpoint Kaplan–Meier estimator tends to bias the estimation up-
ward or downward. Readers may wish to reproduce this comparison using the
left or right endpoints of the intervals.

5.5.2.2 Fitting Parametric Models

The parametric likelihood estimation in Section 5.4.2 is implemented in
the R package survival using the survreg function to call Surv with format
Surv(left,right,type = “interval2”). At the time of writing this chapter, survreg
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cannot handle 0’s on the left-side of interval (i.e., the tL). Therefore another
data set has to be created to treat the 0’s as left-censored data as

> # create a new dataset "breast" and keep "dat" for future use

> breast = dat

> # replace 0's with NA as left-censored

> breast$tL[breast$tL==0]= NA

> # print the first 4 observations

> head(breast, n=4)

tL tU TRT Status
1 NA 7 1 1
2 NA 8 1 1
3 NA 5 1 1
4 4 11 1 1

As a check, note that the tL in the first three observations changed from
0 to NA. Model fitting for the exponential and Weibull is as follows:

> # fit exponential

> fit.exp=survreg(Surv(tL,tU,type="interval2")~TRT, breast,

dist="exponential")

> summary(fit.exp)

Call:
survreg(formula = Surv(tL, tU, type = "interval2") ~ TRT,

data = breast, dist = "exponential")
Value Std. Error z p

(Intercept) 3.376 0.170 19.84 1.44e-87
TRT 0.742 0.277 2.68 7.39e-03
Scale fixed at 1

Exponential distribution
Loglik(model)= -150 Loglik(intercept only)= -153

Chisq= 7.46 on 1 degrees of freedom, p= 0.0063
Number of Newton-Raphson Iterations: 4

> # fit Weibull

> fit.Weibull=survreg(Surv(tL,tU,type="interval2")~TRT, breast)

> summary(fit.Weibull)

Call:
survreg(formula = Surv(tL, tU, type = "interval2") ~ TRT,

data = breast)

Value Std. Error z p
(Intercept) 3.331 0.106 31.29 5.74e-215
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TRT 0.568 0.176 3.23 1.23e-03
Log(scale) -0.479 0.120 -3.99 6.49e-05

Scale= 0.62

Weibull distribution
Loglik(model)= -143 Loglik(intercept only)= -148

Chisq= 10.9 on 1 degrees of freedom, p= 0.00093
Number of Newton-Raphson Iterations: 5

We note that the treatment effect is statistically significant (p-value <
5%) from both models which corroborates the conclusion from the Turnbull
method.

Between the two parametric models, the Weibull is statistically a bet-
ter fit than the exponential since the value of the negative log-likelihood
function dropped from 149.6 to 142 with one additional “scale” parameter
in the Weibull, which resulted in a statistically significantly likelihood ratio
test [2× (149.6− 142) = 15.2 > χ2(0.95, 1) = 3.841].

It is worth noting that the R function survreg can accommodate a user
defined distribution using the R function survreg.distributions.

5.5.3 Fitting the Semiparametric Estimation: IntCox

The method of “IntCox” described in Section 5.4.3 is implemented in the
R package intcox . We load the package as

> library(intcox)

and fit the breast cancer data by calling the intcox function as:

> fit.IntCox = intcox(Surv(tL,tU,type="interval2")~TRT,data=dat)

no improvement of likelihood possible, iteration = 1

> # print the model fit

> fit.IntCox

Call:
intcox(formula = Surv(tL, tU, type = "interval2") ~ TRT,

data = dat)

coef exp(coef) se(coef) z p
TRT -0.776 0.46 NA NA NA

Likelihood ratio test=NA on 1 df, p=NA n= 94

It may be seen from the output of fit.IntCox that the estimated treat-
ment coefficient is −0.776. With this fitting, we can extract the estimated
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piecewise baseline cumulative hazard function to calculate the estimated base-
line survival functions for both treatments. We can then display them graph-
ically as in Figure 5.5 as follows. The reader may compare this figure with
figures from Kaplan–Meier and other methods.

> # the baseline survival is exp(-baseline cumulative hazard)

> surv.base = exp(-fit.IntCox$lambda0)

> # plot the survival function for TRT=0

> plot(fit.IntCox$time.point,surv.base,type="s",

xlab="Time in Months",ylab="S(t)",lty=4, lwd=3)

> # add the survival function for TRT=1

> lines(fit.IntCox$time.point,surv.base^exp(fit.IntCox$coef),

type="s",lty=1, lwd=3)

> # add the legend

> legend("bottomleft",title="Line Types",lty=c(1,4),lwd=3,

c("Radiation Only","Radiation+Chemotherapy"))
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FIGURE 5.5: Estimated Survival Functions from IntCox.

Furthermore, we note that the output from intcox (i.e., fit.IntCox) is
like that from the Cox regression coxph except that no standard errors of
the regression parameters are available at the time of writing this chapter.
Standard errors for the regression parameters may be estimated using standard
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bootstrap methods. We obtain random samples of the observed data with
replacement for a large number of times and fit the intcox for the resultant
bootstrap sample which can be implemented in R easily as

> set.seed(12345678)

> # number of bootstrapping=1000

> num.boot = 1000

> boot.intcox = numeric(num.boot)

> # the for-loop

> for(b in 1:num.boot){

#sample with replacement

boot.ID=sample(1:dim(dat)[1],replace=T)

# fit intcox for the bootstrap sample

boot.fit = intcox(Surv(tL,tU,type="interval2")~TRT,

dat[boot.ID,],no.warnings = TRUE)

# keep track the coefficient

boot.intcox[b] = coef(boot.fit)

} # end of b-loop

The 95% confidence interval for the treatment effect can be obtained using
the R function quantile as

> Boot.CI = quantile(boot.intcox, c(0.025,0.975))

> Boot.CI

2.5% 97.5%
-1.412 -0.237

Therefore from this bootstrapping sample, we see that the 95% confidence
interval for treatment effect is (−1.412,−0.237) with estimated regression pa-
rameter β̂ = −0.776, which again confirms the statistical significance of treat-
ment effect.

In addition, we can use this bootstrapping sample to evaluate the bias be-
tween Pan’s ICM estimate and the mean/median of the bootstrapping samples
as:

> bias.IntCox =c(mean.bias=coef(fit.IntCox)-mean(boot.intcox),

median.bias=coef(fit.IntCox)-median(boot.intcox))

> bias.IntCox

mean.bias.TRT median.bias.TRT
0.0248 0.0202

This shows that the bias is negligible. The bootstrapping distribution,
the confidence interval, and the biases are depicted in Figure 5.6, using the
following R code chunk:
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> # Histogram from bootstrap sample

> hist(boot.intcox,prob=T,las=1,

xlab="Treatment Difference",ylab="Prob", main="")

> # put vertical lines for

> abline(v=c(Boot.CI[1],fit.IntCox$coef,mean(boot.intcox),

median(boot.intcox),Boot.CI[2]), lwd=c(2,3,3,3,2),

lty=c(4,1,2,3,4))
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FIGURE 5.6: Bootstrapping Distribution for Treatment Difference.

Overlaying this bootstrapping distribution, are the lower (left-most dashed
vertical lines) and upper limits (right-most dashed vertical lines) for the 95%
confidence interval. The three vertical lines in the middle depict the estimated
treatment effect from “intcox” - the mean and the median from the bootstrap-
ping sample. Since they are so close it is difficult to note any differences.
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5.6 Concluding Remarks

In this chapter, we presented a variety of methods and models for analyzing
time-to-event data in clinical trials with step-by-step implementation in the R
system. Readers may use the R code and explanations provided in this chapter
to analyze their own clinical trial data.

For further reading, we recommend the book by Peace (2009) specifically
on design and analysis of variety of clinical trials with time-to-event endpoints.
Other general texts on survival analysis are Lawless(1982), Kalbeisch and
Prentice (2002) and Collett (2003).

For interval-censored data, Lindsey and Ryan (1998) is an excellent arti-
cle with which to begin to obtain a broad review of statistical methods for
interval-censored data. In this paper, the same breast cancer data in Table
5.2 was used for illustration and the reader may compare the results from
this article to those in this chapter (they are exactly the same!). For a com-
prehensive understanding of theory and analysis of interval-censored data, we
recommend the book by Sun (2006) which collects and unifies statistical mod-
els and methods in analyzing interval-censored data. As a further extension
of interval-censoring, progressive type-I interval-censoring is commonly seen.
Readers may refer to Chen and Lio (2010) and the references cited therein.
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In this chapter, we analyze response data from longitudinal clinical trials using
the R system. The primary feature of response data from longitudinal clinical
trials is that it is measured over time on each clinical trial participant along
with covariates. Therefore an objective in the analysis of such data is to model
its change over time along with the effects of treatment and covariates.

We present two real clinical trial datasets in Section 6.1 of this chapter. The
statistical models used to analyze these data appear in Section 6.2. Step-by-
step implementation of the models in R is illustrated in Section 6.3. Concluding
remarks follow in Section 6.4.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: RODBC , nlme, lme5 , gee, MASS , multcomp,
mvtnorm and lattice.
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6.1 Clinical Trials

6.1.1 Diastolic Blood Pressure Data

We will re-analyze the diastolic blood pressure data in Table 3.1 from
Chapter 3. In this table, diastolic blood pressure (DBP) was measured (mm
HG) in the supine position at baseline (i.e.,“DBP1”) before randomization and
monthly thereafter up to 4 months as indicated by “DBP2,”“DBP3,”“DBP4,”
and “DBP5.” Patients’ age and sex were recorded at baseline and represent
potential covariates. The primary objective for this analysis is to test whether
treatment A (new drug) may be effective in lowering DBP as compared to B
(placebo). Secondary objectives are to test for longitudinal effects and assess
the effect of the two covariates.

6.1.2 Clinical Trial on Duodenal Ulcer Healing

The data from the duodenal ulcer healing trial was considered in Chapter
3. We re-analyze this data from a longitudinal approach in this chapter.

Patients were followed by endoscopic evaluation at week 1 (Days 7-8), week
2 (Days 13-15), and week 4 (Days 26-30). Patients whose ulcers were healed
at any follow-up endoscopy were considered trial completers and received no
further treatment or endoscopic assessment. The primary efficacy data was
ulcer healing at week 1, 2, or 4. Ulcer healing was defined as complete reep-
itheliation of the ulcer crater (normal or hyperemic mucosa), documented by
endoscopy. The primary efficacy endpoint was cumulative ulcer healing by
week 4. Baseline data from patients were collected for age, height, weight, sex,
race, day or night pain, ulcer size and smoking status. Since ulcer healing was
expected to be negatively correlated with smoking and baseline ulcer size, and
many centers were recruited with relatively few patients per treatment group
per strata per center, 12 analysis blocks reflecting smoking status (2 levels)-
by-baseline ulcer size (6 levels) were defined a priori (see Table 12.2 in Peace
and Chen (2010)).

An interim analysis was performed when approximately half the planned
number of patients had completed treatment (N = 337 patients). There were
76, 83, 85, and 93 patients in the Placebo, 400 mg C, 800 mg C, and 1600 mg
C, respectively. The cumulative duodenal ulcer healing rates were: 19%, 18%,
16%, and 21% at week 1; 29%, 37%, 38%, and 49% at week 2; and 41%, 62%,
72%, and 74% at week 4; for the Placebo, 400 mg C, 800 mg C, and 1600 mg
C groups, respectively. At week 4, 800 mg C was effective (p-value < 0.00001)
as compared to Placebo; 800 mg C was marginally superior to 400 mg C; and
1600 mg C provided no clinically significant greater benefit than did 800 mg
C. Even though 800 mg C healed 10% more ulcers than did 400 mg C, the
p-value for this comparison did not achieve statistical significance. Therefore,
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the interim analysis did not confirm the trial objective; i.e., that 800 mg C
was clinically optimal.

In this chapter, the interim data were generated (simulated) using sum-
mary information from Chapter 12 in Peace and Chen (2010) to demonstrate
the application of statistical methods in the analysis of non-normal endpoints
from longitudinal clinical trials. Table 6.1 summarizes this generation. The
detailed patient data appear in the excel data book as well as in Section 6.3.

TABLE 6.1: Interim data from ulcer trial

Placebo 400 mg C 800 mg C 1600 mg C
Total 76 83 85 93

Week 1 (n1) 14 15 14 19
Week 2 (n2) 22 31 33 45
Week 4 (n4) 31 51 62 68
Week 1 (p1) 18.42% 18.07% 16.47% 20.43%
Week 2 (p2) 28.95% 37.35% 38.82% 48.39%
Week 4 (p4) 40.79% 61.45% 72.94% 73.12%

6.2 Statistical Models

6.2.1 Linear Mixed Models

We begin with the basic regression model. When modeling a response
variable y in terms of a vector of explanatory variables X (such as treatment
effect and the covariates: age, weight, etc.) in clinical trials, the typical model
is the linear regression model that includes factors from the usual ANOVA
and ANCOVA models. The regression model may be written in matrix form
as

y = Xβ + ε (6.1)

This model is also called the fixed-effects model with common assumption
of normal errors and may be written as

y ∼ N(Xβ, σ2I) (6.2)

where X is an n×p model matrix and β is a vector of length p. The parameter
vector β is estimated using least squares or maximum likelihood methods,
which are the same under the assumption of normally distributed errors.

In clinical trials to investigate the effectiveness of a new treatment on a
sample of patients, treatment effect is usually assumed to be fixed in the
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modeling process, whereas patient effects are considered to be random. We
are interested in the average trend/effect of the patient population instead
of the effect for a particular patient. The aforementioned regression model
indicates that the response (y) on a particular patient is explained by an
effect Xβ common to all patients plus a component ε reflecting random error
in measuring y in each patient.

Fundamental to random-effects modeling is to estimate the distribution
characteristics (such as the mean and variance) for the random-effects. The
fixed-effects model in Equation (6.1) may be generalized to a mixed-effects
model with an additional term for random-effects γ of dimension q with as-
sociated n × q model matrix Z. Therefore, this mixed-effects model may be
written to model the response y, given the value of the random-effects as:

y = Xβ + Zγ + ε i.e., y|γ ∼ N(Xβ + Zγ, σ2I) (6.3)

Since γ is the random-effects, it is usually assumed that γ ∼ N(0, σ2D),
then we can show

var(y) = var(Zγ) + var(ε)
= σ2ZDZ′ + σ2I = σ2(ZDZ ′ + I)

Therefore the random-effects model in Equation (6.3) may be re-written
as:

y ∼ N
(
Xβ, σ2(I + ZDZ′)

)
(6.4)

The random-effects model in Equation (6.4) may be further generalized
(repeated measures) to clinical trials where several measurements are taken
repeatedly on each patient. So-called longitudinal clinical trials are those when
repeated measurements are taken over time, which includes almost all clinical
trials. It is expected that measurements taken repeatedly over time would
be correlated. The random-effects model in Equation (6.3) may be further
generalized to incorporate the correlation structure as

y|γ ∼ N
(
Xβ + Zγ, σ2Λ

)
(6.5)

where Λ is a covariance matrix used to model the correlation structure. With
this generalization, we can show

V = var(y) = var(Zγ) + var(ε)
= σ2ZDZ ′ + σ2Λ = σ2(Λ + ZDZ ′)

Therefore the general mixed-effects model which models the fixed-effects
of treatment and covariates and the random-effects (such as patient effects,
etc.) as well repeated/longitudinal measurements may be re-written as

y ∼ N
(
Xβ, σ2(Λ + ZDZ′)

)
= N(Xβ, V ) (6.6)
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Several methods are employed for parameter estimation and statistical
inference. One method is classical maximum likelihood estimation, which
requires finding values of the unknown parameters that maximize the log-
likelihood function as follows:

l(β, σ,D,Λ|y) ∝ −log|σ2V | − 1
σ2

(y −Xβ)′V −1(y −Xβ) (6.7)

A commonly used method for parameter estimation for the model in Equa-
tion (6.6) is the restricted maximum likelihood (REML) estimator. The basic
idea is to search for a linear combination of k to make k′X = 0. With this k,
we would have

k′y ∼ N(0, k′V k) (6.8)

This pivotal transformation eliminates the fixed-effects Xβ from the esti-
mation so that we can estimate the parameters associated with V only from
maximizing the likelihood. This REML has been shown to produce less biased
estimates than MLE.

Pinheiro and Bates (2000) describe the theory and implementation of
REML in the R system. Pinheiro and Bates’ book includes a R package nlme
to fit these models. An updated version of this package called lme4 is available
in CRAN.

6.2.2 Generalized Linear Mixed Models

Extending the linear mixed-effects models from Section 6.2.1 to generalized
linear mixed-effects models (GLMM), we can analyze non-normal repeated
endpoints from longitudinal clinical trials. In principle, the generalized lin-
ear mixed model synchronizes ideas from both the linear mixed-effects model
described in Section 6.2.1 and the generalized linear model where the clini-
cal response/endpoint is a random variable following a distribution from an
exponential family; i.e.,

f(y|θ, φ) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)
]

(6.9)

Similarly the link function η = g(µ) is used to link the mean function of
E(Y ) = µ = θ (assume canonical link) to the linear predictor η = Xβ + Zγ.
Then the likelihood function with n observations is written as

L(β, φ, V |y) =
n∏
i=1

∫
f(yi|β, φ, γ)h(γ|V )dγ (6.10)

where h(γ|V ) denotes the random-effects γ with parameter V . The integral
in this likelihood for non-normal clinical endpoints makes the computations
necessary to maximize this likelihood difficult. Therefore approximation ap-
proaches are used. There are several ways to approximate the likelihood as well
as numerous ways to implement the GLMM in R. A commonly used method
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is the so-called Penalized Quasi-Likelihood method in the MASS by Venables
and Ripley (2002). The R packages lme4 and nlme may also be used to fit
this GLMM.

6.2.3 Generalized Estimating Equation

The generalized estimating equation (GEE) approach is the version of
quasi-likelihood approach for repeated measures and/or longitudinal studies
derived when no distributional assumptions are made. GEE was first proposed
by Liang and Zeger (1986). The GEE is essentially the multivariate extension
of the generalized linear model and the quasi-likelihood method. This quasi-
likelihood approach requires only the link function and the variance. Suppose
that y is a vector of random variables representing the responses or endpoints
on patients from clinical trials and let E(y) = µ. Again, a link function is
used to link this mean function to the linear predictor with parameter β as
η = Xβ. We specify the variance function as

var(y) = var(y; β, α) (6.11)

where α is a vector of parameters to model the correlation structure within
patients in clinical trials. Therefore, the GEE for regression parameters, β, is

∑
i

(
∂µi
∂β

)′
Yi − µi
var(Yi)

= 0 (6.12)

Similar GEE for α may be derived. Note that we only need to specify the
mean and variance functions. The mean function may be specified as a link
function of the regression parameters. This makes fitting and specification
simpler. As seen from Hardin and Hilbe (2003), the estimates of β are consis-
tent even if the variance is misspecified. For a complete description, the reader
is referred to this book and the implementation of GEE in the R package gee.

6.3 Analysis of Data from Longitudinal Clinical Trials

6.3.1 Analysis of Diastolic Blood Pressure Data

We read in the data from Table 3.1 into R with the R package RODBC
and name it as dat as in Section 3.3.1.1. Readers may refer to Table 3.1 for
all the data. Summary information for the data is produced as

> summary(dat)



Analysis of Data from Longitudinal Clinical Trials 127

Subject TRT DBP1 DBP2
Min. : 1.0 A:20 Min. :114 Min. :111
1st Qu.:10.8 B:20 1st Qu.:115 1st Qu.:113
Median :20.5 Median :116 Median :115
Mean :20.5 Mean :117 Mean :114
3rd Qu.:30.2 3rd Qu.:118 3rd Qu.:115
Max. :40.0 Max. :121 Max. :119

DBP3 DBP4 DBP5 Age Sex
Min. :100 Min. :102 Min. : 97 Min. :38.0 F:18
1st Qu.:112 1st Qu.:107 1st Qu.:102 1st Qu.:42.0 M:22
Median :113 Median :109 Median :106 Median :48.0
Mean :112 Mean :109 Mean :107 Mean :47.8
3rd Qu.:113 3rd Qu.:113 3rd Qu.:112 3rd Qu.:51.2
Max. :118 Max. :117 Max. :115 Max. :63.0

6.3.1.1 Preliminary Data Analysis

The dataframe dat is in wide form and should be transformed into long
form for further longitudinal data analysis. The R function reshape reshapes
the data as follows:

> Dat = reshape(dat, direction="long",

varying=c("DBP1","DBP2","DBP3","DBP4","DBP5"),

idvar = c("Subject","TRT","Age","Sex"),sep="")

> # rename the colnames

> colnames(Dat) = c("Subject","TRT","Age","Sex","Time","DBP")

> # print the first 6 observations

> head(Dat)

Subject TRT Age Sex Time DBP
1 A 43 F 1 114
2 A 51 M 1 116
3 A 48 F 1 119
4 A 42 F 1 115
5 A 49 M 1 116
6 A 47 M 1 117

As a preliminary data analysis, we plot the DBP as a function of time
points for each patient as seen in Figure 6.1. In this figure, the first 20 patients
(from treatment A) are plotted using a solid line and the next 20 patients (from
treatment B) are plotted using dashed lines with the following R code chunk:

> # call "lattice" library and using "xyplot"

> library(lattice)
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> # call xyplot to make the plot

> print(xyplot(DBP~Time|as.factor(Subject),type="l",groups=TRT,

strip=strip.custom(bg="white"), lty=c(1,8), lwd=2,

layout=c(10,4), Dat))
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FIGURE 6.1: DBP as a Function of Time for Each Patient.
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For a better presentation of trend, this plot may be grouped for all patients
as seen in Figure 6.2 with the following R code chunk:

> print(xyplot(DBP~Time|TRT,type="l",Dat,

groups=as.factor(Subject),

strip=strip.custom(bg="white")))
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FIGURE 6.2: DBP as a Function of Time Grouped for All Patients.

From this figure, the obvious trend is revealed; i.e., that on average DBP
declines at a faster rate in treatment A than in treatment B. We also note that
the magnitude of the decline in treatment A is greater than that in treatment
B. However the rate and extent of decline varies across the 40 patients.
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Further presentation of trend may be generated in a boxplot as seen in
Figure 6.3 with boxplots using the following R code chunk:

> # call function "bwplot" to make boxplots

> print(bwplot(DBP~as.factor(Time)|TRT,Dat, xlab="Time",

strip=strip.custom(bg="white")))
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FIGURE 6.3: Boxplot by Treatment.

Again, we note that the rate and extent of the decline in DBP is greater
in treatment group A than in treatment group B. We further investigate the
declining trend by estimating the slope and intercept for each patient as de-
picted in Figures 6.1 and 6.2. To do so, we first loop-over the 40 patients to
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fit linear regressions and then extract the intercepts and slopes to make a
dataframe as follows:

> num.Subj = 40

> # initiate the intercept and slope

> intercept = slope = numeric(num.Subj)

> # loop-over

> for(i in 1:num.Subj){

# fit regression model

mod = lm(DBP~Time, Dat[Dat$Subject==i,])

# extract the intercept and slope

intercept[i] = coef(mod)[1]

slope[i] = coef(mod)[2]

}

> # make a dataframe "dat.coef"

> dat.coef = data.frame(Subject=dat$Subject,TRT=dat$TRT,

Intercept = intercept, Slope=slope)

> # print it out

> dat.coef

Subject TRT Intercept Slope
1 1 A 118 -2.4
2 2 A 121 -4.0
3 3 A 126 -5.3
4 4 A 120 -3.2
5 5 A 118 -3.0
6 6 A 121 -3.8
7 7 A 119 -4.0
8 8 A 125 -4.9
9 9 A 118 -2.5
10 10 A 121 -4.3
11 11 A 120 -3.5
12 12 A 121 -3.4
13 13 A 123 -4.1
14 14 A 125 -5.1
15 15 A 118 -3.3
16 16 A 118 -3.2
17 17 A 121 -3.6
18 18 A 124 -4.2
19 19 A 119 -3.7
20 20 A 122 -3.8
21 21 B 115 -0.6
22 22 B 118 -1.7
23 23 B 117 -1.4
24 24 B 114 0.1
25 25 B 117 -1.8
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26 26 B 116 -1.2
27 27 B 120 -0.9
28 28 B 120 -1.3
29 29 B 116 -1.6
30 30 B 120 -1.6
31 31 B 116 -0.5
32 32 B 119 -2.1
33 33 B 122 -1.7
34 34 B 118 -1.1
35 35 B 120 -1.7
36 36 B 120 -1.7
37 37 B 118 -1.9
38 38 B 117 -0.9
39 39 B 116 -0.5
40 40 B 117 -0.6

From this dataframe dat.coef, we note that the intercepts vary about
120 mm HG with a slope of about −2.5 mm HG/month. A bivariate plot
of the intercept and slope from the 40 patients appears in Figure 6.4 using
the following R code chunk. This figure clearly shows the declining trend
by treatment group. The slope declines faster in treatment group A than
in treatment group B. The average baseline DBP is about 120 mm HG as
characterized by the intercept. The variations embedded in the intercepts and
slopes illustrate the modeling of random-effects for both intercept and slope.

> # Make histogram for both intercept and slope

> int.hist = hist(intercept,plot=F)

> slope.hist = hist(slope,plot=F)

> # make layout for plotting

> top = max(c(int.hist$counts, slope.hist$counts))

> nf = layout(matrix(c(2,0,1,3),2,2,byrow=T),

c(3,1), c(1,3),T)

> par(mar=c(5,4,1,1))

> # plot the intercept and slope

> plot(Slope~Intercept,las=1,dat.coef,xlab="Intercept",

ylab="Slope",pch=as.character(TRT))

> par(mar=c(0,4,1,1))

> # add the intercept histogram

> barplot(int.hist$counts, axes=FALSE,

ylim=c(0, top), space=0)

> par(mar=c(5,0,1,1))

> # add the slope histogram

> barplot(slope.hist$counts, axes=FALSE,

xlim=c(0, top), space=0, horiz=TRUE)
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FIGURE 6.4: Bivariate Plot for Intercept and Slope.

We now model the slope and intercept relationship by a linear regression as
follows (in doing so, we fit two models; one with and one without interaction):

> # fit model 1 with interaction

> mod1.coef = lm(Slope~Intercept*TRT, dat.coef)

> summary(mod1.coef)

Call:
lm(formula = Slope ~ Intercept * TRT, data = dat.coef)

Residuals:
Min 1Q Median 3Q Max
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-0.6636 -0.2947 -0.0314 0.3470 0.7532

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.3374 4.6874 6.05 6.0e-07 ***
Intercept -0.2654 0.0387 -6.85 5.2e-08 ***
TRTB -8.2964 7.3796 -1.12 0.27
Intercept:TRTB 0.0848 0.0620 1.37 0.18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 . 0.1 ' ' 1

Residual standard error: 0.429 on 36 degrees of freedom
Multiple R-squared: 0.919, Adjusted R-squared: 0.912
F-statistic: 136 on 3 and 36 DF, p-value: <2e-16

> # fit model 2 without interaction

> mod2.coef = lm(Slope~Intercept+TRT, dat.coef)

> summary(mod2.coef)

Call:
lm(formula = Slope ~ Intercept + TRT, data = dat.coef)

Residuals:
Min 1Q Median 3Q Max

-0.7332 -0.3849 0.0281 0.3348 0.8727

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.3322 3.7022 6.57 1.1e-07 ***
Intercept -0.2323 0.0306 -7.59 4.7e-09 ***
TRTB 1.7914 0.1683 10.64 8.2e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 . 0.1 ' ' 1

Residual standard error: 0.434 on 37 degrees of freedom
Multiple R-squared: 0.915, Adjusted R-squared: 0.91
F-statistic: 198 on 2 and 37 DF, p-value: <2e-16

From model 1, the interaction (Intercept: TRTB) is not statistically sig-
nificant. From model 2, there is a significant difference between the two treat-
ments (TRT B). Further analysis of the difference between treatments may
be performed using the t-test as

> t.test(Slope~TRT, dat.coef)
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Welch Two Sample t-test

data: Slope by TRT
t = -11.7, df = 35.6, p-value = 1.019e-13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.97 -2.09
sample estimates:
mean in group A mean in group B

-3.76 -1.23

> t.test(Intercept~TRT, dat.coef)

Welch Two Sample t-test

data: Intercept by TRT
t = 4.37, df = 36.3, p-value = 0.0001008
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.70 4.66
sample estimates:
mean in group A mean in group B

121 118

In the analysis of data from longitudinal clinical trials, the preliminary
data analysis in this section is called response feature analysis. The analysis
extracts fundamental features from each patient for simple and preliminary
data exploration and summarization. This feature analysis provides basic sum-
mary information from the data for simple conclusions in addition to providing
directions for further analysis. However, the analysis loses information since
other features are included. A more efficient analysis is to use all the informa-
tion from the data in a comprehensive manner, i.e., capture the longitudinal
or repeated measures of the data.

6.3.1.2 Longitudinal Modeling

In this analysis, we fit a series models to help in determining the best
model using the updated R package lme4 . Interested readers can follow the
analysis using R package nlme to reproduce the results. First we fit “Model 1”
with TRT-by-Time interaction as a random-effects on the intercept and slope
on Time and compare it to the “Model 2” with random-intercept only:

> # load the library lme4

> library(lme4)
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> # Fit Model 1

> mod1DBP = lmer(DBP~TRT*Time+(Time|Subject), Dat,

method="ML")

> # Fit Model 2

> mod2DBP = lmer(DBP~TRT*Time+(1|Subject), Dat,

method="ML")

> # model comparison

> anova(mod1DBP, mod2DBP)

Data: Dat
Models:
mod2DBP: DBP ~ TRT * Time + (1 | Subject)
mod1DBP: DBP ~ TRT * Time + (Time | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mod2DBP 6 885 904 -436
mod1DBP 8 886 913 -435 2.12 2 0.35

Model 1 includes an interaction effect between “TRT” and “Time” with
both intercept and slope as random-effects; whereas Model 2 relaxes the
random-effects on slope and includes intercept as the random effect. From
the “anova” test for model comparison, we note that the p-value is 0.35 which
means that these two models are not statistically significantly different. The
simpler “Model 2” is thus recommended. The summary of this model fit can
be printed as follows:

> summary(mod2DBP)

Linear mixed model fit by maximum likelihood
Formula: DBP ~ TRT * Time + (1 | Subject)

Data: Dat
AIC BIC logLik deviance REMLdev
885 904 -436 873 878
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 1.28 1.13
Residual 3.77 1.94
Number of obs: 200, groups: Subject, 40

Fixed effects:
Estimate Std. Error t value

(Intercept) 120.965 0.521 232.3
TRTB -3.180 0.736 -4.3
Time -3.765 0.137 -27.4
TRTB:Time 2.530 0.194 13.0
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Correlation of Fixed Effects:
(Intr) TRTB Time

TRTB -0.707
Time -0.791 0.559
TRTB:Time 0.559 -0.791 -0.707

We can further investigate the interaction effect between TRT and Time
using two additional models (“Model 3” and “Model 4”) as follows:

> # fit Model 3

> mod3DBP = lmer(DBP~TRT+Time+(Time|Subject), Dat)

> # fit Model 4

> mod4DBP = lmer(DBP~TRT+Time+(1|Subject), Dat)

> # model comparison

> anova(mod3DBP, mod4DBP)

Data: Dat
Models:
mod4DBP: DBP ~ TRT + Time + (1 | Subject)
mod3DBP: DBP ~ TRT + Time + (Time | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mod4DBP 5 1000 1016 -495
mod3DBP 7 945 968 -466 58.2 2 2.3e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 . 0.1 ' ' 1

In Model 3, we removed the interaction effect between TRT and Time, but
transferred the interaction into the random-effects by keeping the random-
effects for both intercept and slope to contrast with Model 2. Model 4 is a
further simplified version of Model 3 that has intercept as the only random-
effects. From the comparison of these two models, we note that Model 3 is
statistically significantly different from Model 4 as indicted by the small p-
value (< 0.0001). We therefore utilize Model 3 further to investigate the effects
from the covariates. The summary for Model 3 fitting can be printed as follows:

> summary(mod3DBP)

Linear mixed model fit by REML
Formula: DBP ~ TRT + Time + (Time | Subject)

Data: Dat
AIC BIC logLik deviance REMLdev
947 970 -467 931 933
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Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 12.62 3.55

Time 1.75 1.32 -0.947
Residual 3.54 1.88

Number of obs: 200, groups: Subject, 40

Fixed effects:
Estimate Std. Error t value

(Intercept) 117.648 0.681 172.6
TRTB 3.454 0.455 7.6
Time -2.500 0.229 -10.9

Correlation of Fixed Effects:
(Intr) TRTB

TRTB -0.334
Time -0.881 0.000

Based on this exercise, the final Model 3 corresponds to

DBPijk = (β0 + γ0k) + (β1 + γ1k)× Timej + TRTi + εijk (6.13)

where i indexes treatment A or B, j indexes time from 1 to 5 and k indexes
patient (from 1 to 40). The fixed-effects are estimated as β̂0 = 117.6 and
β̂ = −2.5 which indicates that DBP declines at a rate of 2.5 mm HG per
month. The estimated difference between the rates of decline of treatments B
and A is 3.45 mm HG/ month and all parameters are statistically significant.

For random-effects, the estimated σ̂ = 3.54 and D̂ =
(

12.62 −4.44
−4.44 1.75

)
.

Model diagnostics may be produced using the residuals from the model
fitting. To check the normal assumption for the random-effects, we can use
the QQ-plot to graph the quantiles from the residuals and the theoretical
normal as follows:

> # call "qqmath" from "lattice" for residual plot

> print(qqmath(~resid(mod3DBP)|TRT,Dat,

strip=strip.custom(bg="white"),

xlab="Theoretical Normal", ylab="Residuals"))

It may be seen from Figure 6.5 that the QQ-plot exhibits a straight line
for each treatment indicating no violation of the normality assumption.
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FIGURE 6.5: QQ-Plot for Model 3.
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We also plot the residuals as a function of time by treatment group as seen
in Figure 6.6 using the following R code chunk, which indicates that model 3
is reasonable.

> print(bwplot(resid(mod3DBP)~as.factor(Time)|TRT,Dat,

strip=strip.custom(bg="white"),

xlab="Time",ylim=c(-5,5), ylab="Residuals"))
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FIGURE 6.6: Boxplot of Residuals for All Subjects by Treatment.

To investigate the effects of the covariates of “Age” and “Sex”, we can test
these effects along with all other effects using the following Models 5 and
6. In Model 5, we fit the Model 3 incorporating the “Age” effect to test its
significance as follows:

> # fit Model 3 include ``Age" effect

> mod5DBP = lmer(DBP~TRT+Time+Age+(Time|Subject), Dat,

method="ML")

> # call anova to test ``Age" effect

> anova(mod3DBP, mod5DBP)
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Data: Dat
Models:
mod3DBP: DBP ~ TRT + Time + (Time | Subject)
mod5DBP: DBP ~ TRT + Time + Age + (Time | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mod3DBP 7 945 968 -466
mod5DBP 8 911 937 -448 36.4 1 1.6e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see from the “anova” that the p-value associated with this test on
“Age” effect is 1.6× 10−9 which is statistically significant. We can further test
“Sex” using Model 6 as follows:

> # fit Model 6 including ``Age" and ``Sex"
> mod6DBP = lmer(DBP~TRT+Time+Age+Sex+(Time|Subject), Dat,

method="ML")

> # test the ``Sex" effect

> anova(mod5DBP, mod6DBP)

Data: Dat
Models:
mod5DBP: DBP ~ TRT + Time + Age + (Time | Subject)
mod6DBP: DBP ~ TRT + Time + Age + Sex + (Time | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mod5DBP 8 911 937 -448
mod6DBP 9 912 942 -447 0.67 1 0.41

This gives a p-value of 0.41 indicating that “Sex” is not a statistically
significant effect. This conclusion coincides with the conclusions in Section
4.3.1.2 of Chapter 4.

6.3.2 Analysis of Cimetidine Duodenal Ulcer Trial

6.3.2.1 Preliminary Analysis

We read the data from the excel book into R as follows:

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> getxlsbook = odbcConnectExcel2007(datfile)

> dat = sqlFetch(getxlsbook,"Ulcer")

> odbcCloseAll()

> head(dat)

Subject TRT WeekH Time0 Time1 Time2 Time4
1 1 3 0 0 0 0 0
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2 2 4 2 0 0 1 1
3 3 2 2 0 0 1 1
4 4 3 2 0 0 1 1
5 5 4 1 0 1 1 1
6 6 1 0 0 0 0 0

The summary information in Table 6.1 for the four treatment groups and
four time points is generated from the following R code chunk:

> # total n for each TRT

> n = tapply(rep(1, dim(dat)[1]),dat$TRT,sum)

> # number for time 1

> n1 = tapply(dat$Time1,dat$TRT,sum)

> # number for time 2

> n2 = tapply(dat$Time2,dat$TRT,sum)

> # number for time 4

> n4 = tapply(dat$Time4,dat$TRT,sum)

> print(rbind(n,n1,n2,n4))

1 2 3 4
n 76 83 85 93
n1 14 15 14 19
n2 22 31 33 45
n4 31 51 62 68

> # proportions

> print( round(rbind(n1/n,n2/n,n4/n),2))

1 2 3 4
[1,] 0.18 0.18 0.16 0.20
[2,] 0.29 0.37 0.39 0.48
[3,] 0.41 0.61 0.73 0.73

6.3.2.2 Fit Logistic Regression to Binomial Data

For modeling, we reshape the data into “long” format using the following
R code chunk:

> Dat = reshape(dat, direction="long",

varying = c("Time0","Time1","Time2","Time4"),

idvar = c("Subject","TRT","WeekH"),sep="")

> colnames(Dat) = c("Subject","TRT","WeekH","Time","Heal")

> # sort the data by Subject: very important for gee

> Dat = Dat[order(Dat$Subject),]

> # Remove the baseline for model fitting

> Dat = Dat[Dat$Time > 0,]

> # make the TRT and Time as factors
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> Dat$TRT = as.factor(Dat$TRT)

> Dat$Time = as.factor(Dat$Time)

> # show the first 6 observations

> head(Dat)

Subject TRT WeekH Time Heal
1.3.0.1 1 3 0 1 0
1.3.0.2 1 3 0 2 0
1.3.0.4 1 3 0 4 0
2.4.2.1 2 4 2 1 0
2.4.2.2 2 4 2 2 1
2.4.2.4 2 4 2 4 1

As a preliminary analysis, we first fit logistic regression models with (Model
1) and without (Model 2) interaction to the data using R glm as follows:

> # fit Model 1: with interaction

> mod1glm = glm(Heal~TRT*Time, family=binomial, Dat)

> # fit Model 2: without interaction

> mod2glm = glm(Heal~TRT+Time, family=binomial, data=Dat)

> # test these two model using Chi-Square test

> anova(mod1glm,mod2glm, test="Chi")

Analysis of Deviance Table

Model 1: Heal ~ TRT * Time
Model 2: Heal ~ TRT + Time
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 999 1186
2 1005 1196 -6 -9.75 0.14

Model 1 models TRT-by-Time interaction. We note that the TRT-by-Time
interaction effect is statistically significant. The TRT-by-Time interaction ef-
fect is removed from Model 2. We note that both treatment and time effects
are significant. Since Models 1 and 2 are nested, we can employ the likelihood
ratio test to test the model differences (using the χ2-test). We note that these
two models are not statistically significantly different, with p-value = 0.1355.
We then select Model 2 for inference. The summary of the model fit is as
follows:

> summary(mod2glm)

Call:
glm(formula = Heal ~ TRT + Time, family = binomial, data = Dat)

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.573 -0.969 -0.615 0.976 2.088

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.061 0.205 -10.06 < 2e-16 ***
TRT2 0.493 0.209 2.35 0.0186 *
TRT3 0.676 0.208 3.26 0.0011 **
TRT4 0.893 0.204 4.39 1.2e-05 ***
Time2 1.056 0.181 5.83 5.7e-09 ***
Time4 2.063 0.183 11.28 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1361.3 on 1010 degrees of freedom
Residual deviance: 1195.5 on 1005 degrees of freedom
AIC: 1208

Number of Fisher Scoring iterations: 4

And we can see that both “Time” and “TRT” are statistically significant. A
multiple comparison may be performed using “Tukey”-test. We first load the
R package multcomp for general linear hypotheses and multiple comparisons
using glht as follows:

> # load the ``multcomp" library

> library(multcomp)

> # multiple comparisons

> glht.mod2glm = glht(mod2glm, mcp(TRT="Tukey", Time="Tukey"))

> summary(glht.mod2glm)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: glm(formula = Heal ~ TRT + Time, family = binomial,
data = Dat)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

TRT: 2 - 1 == 0 0.493 0.209 2.35 0.1304
TRT: 3 - 1 == 0 0.676 0.208 3.26 0.0093 **
TRT: 4 - 1 == 0 0.893 0.204 4.39 <0.001 ***
TRT: 3 - 2 == 0 0.183 0.196 0.93 0.9178
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TRT: 4 - 2 == 0 0.400 0.192 2.09 0.2337
TRT: 4 - 3 == 0 0.217 0.189 1.15 0.8242
Time: 2 - 1 == 0 1.056 0.181 5.83 <0.001 ***
Time: 4 - 1 == 0 2.063 0.183 11.28 <0.001 ***
Time: 4 - 2 == 0 1.006 0.161 6.25 <0.001 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

In this multiple comparison, we note that ulcer healing rates differ across
time points in a statistically significant manner. This means that ulcer healing
is significant between weeks 2 and 1, weeks 4 and 1 and weeks 4 and 2. Fur-
ther, there are statistically significant differences between treatments 3 and
1 and between treatments 4 to 1 only. This means that 800 mg C and 1600
mg C are statistically more effective than Placebo in ulcer healing. No statis-
tically significant differences exist for other treatment comparisons, which is
consistent with what is reported in Chapter 12 in Peace and Chen (2010).

6.3.2.3 Fit Generalized Linear Mixed Model

We know that there is variability among patients in terms of ulcer healing.
We fit (Model 3) the generalized linear mixed effects model (GLMM). There
are several ways to fit a GLMM. We illustrate the penalized quasi-likelihood
methods in R using the library MASS. This may be implemented as follows:

> # load MASS library

> library(MASS)

> # fit the Model 3

> mod3glm = glmmPQL(Heal~TRT, random=~1|Subject,

family=binomial, Dat)

> # print the summary

> summary(mod3glm)

Linear mixed-effects model fit by maximum likelihood
Data: Dat
AIC BIC logLik
NA NA NA

Random effects:
Formula: ~1 | Subject

(Intercept) Residual
StdDev: 1.63 0.812

Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: Heal ~ TRT
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Value Std.Error DF t-value p-value
(Intercept) -1.192 0.246 674 -4.85 0.0000
TRT2 0.603 0.332 333 1.82 0.0703
TRT3 0.827 0.327 333 2.53 0.0119
TRT4 1.047 0.321 333 3.26 0.0012
Correlation:

(Intr) TRT2 TRT3
TRT2 -0.741
TRT3 -0.751 0.556
TRT4 -0.765 0.567 0.575

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.559 -0.493 -0.390 0.631 1.865

Number of Observations: 1011
Number of Groups: 337

This model (mod3glm) fits treatment effect incorporating the longitudinal
nature (i.e., Time) of the data with a generalized linear model. We note from
the summary that there is a statistically significant treatment effect. The
estimated standard deviations due to patients and residuals are 1.635 and
0.812, respectively.

We compare this GLMM to the binomial logistic regression (Model 4) as

> # fit Model 4

> mod4glm = glm(Heal~TRT, family=binomial, Dat)

> summary(mod4glm)

Call:
glm(formula = Heal ~ TRT, family = binomial, data = Dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.132 -1.056 -0.834 1.304 1.565

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.877 0.145 -6.03 1.6e-09 ***
TRT2 0.428 0.195 2.19 0.0283 *
TRT3 0.584 0.193 3.03 0.0024 **
TRT4 0.769 0.188 4.08 4.5e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 1361.3 on 1010 degrees of freedom
Residual deviance: 1343.2 on 1007 degrees of freedom
AIC: 1351

Number of Fisher Scoring iterations: 4

The same conclusion is drawn for treatment effect. However, for this Model
4, the residual deviation is 1343.2 with 1007 degrees of freedom. Therefore the
estimated standard deviation for residuals calculated as the square-root of
1343.2/1007 is 1.155. This estimate is larger than the estimate of 0.812 from
GLMM.

6.3.2.4 Fit GEE

The generalized estimation equation may be fitted using the R library gee.
We first fit the GEE assuming independent patient effects to reproduce the
binomial logistical regression as follows:

> # load the ``gee" library

> library(gee)

> # fit the gee model with independent patient effect

> fit.gee1 = gee(Heal~TRT,id=Subject,family=binomial,

data=Dat,corstr="independence", scale.fix=T)

(Intercept) TRT2 TRT3 TRT4
-0.877 0.428 0.584 0.769

> # print the summary

> summary(fit.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent

Call:
gee(formula = Heal ~ TRT, id = Subject, data = Dat,

family = binomial,
corstr = "independence", scale.fix = T)

Summary of Residuals:
Min 1Q Median 3Q Max

-0.473 -0.427 -0.294 0.573 0.706
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Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.877 0.145 -6.03 0.220 -3.99
TRT2 0.428 0.195 2.19 0.280 1.53
TRT3 0.584 0.193 3.03 0.268 2.18
TRT4 0.769 0.188 4.08 0.267 2.88

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

In this independence model fit, i.e., fit.gee1, we assume that responses are
independent over time, which is essentially the binomial logistic regression
in mod4glm. We compare this independence GEE model (i.e., fit.gee1) to the
glm model in mod4glm and see that the model estimates and Naive SE are
reproduced. In the output, the “Robust SE” and “Robust z” are adjusted using
the sandwich estimator. The “Robust Standard Errors” are larger than those
from the GLMs implying that the independence assumption is not reasonable.

We then fit an exchangeable correlation structure to estimate a single
correlation parameter for each pair of repeated observations using the following
R code chunk:

> fit.gee2 = gee(Heal~TRT,id=Subject,family=binomial,

data=Dat,corstr="exchangeable", scale.fix=T)

(Intercept) TRT2 TRT3 TRT4
-0.877 0.428 0.584 0.769

> summary(fit.gee2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Exchangeable

Call:
gee(formula = Heal ~ TRT, id = Subject, data = Dat,
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family = binomial,
corstr = "exchangeable", scale.fix = T)

Summary of Residuals:
Min 1Q Median 3Q Max

-0.473 -0.427 -0.294 0.573 0.706

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.877 0.193 -4.54 0.220 -3.99
TRT2 0.428 0.259 1.65 0.280 1.53
TRT3 0.584 0.256 2.28 0.268 2.18
TRT4 0.769 0.250 3.07 0.267 2.88

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3]

[1,] 1.000 0.381 0.381
[2,] 0.381 1.000 0.381
[3,] 0.381 0.381 1.000

This correlation structure is the so-called compound symmetry structure.
With this correlation structure, the naive and robust standard errors are quite
close indicating that the assumption of exchangeable structure is adequate for
the repeated measurements in this dataset. The estimated correlation is 0.38.
Both the Naive and Robust z-values for TRT2 (corresponding to 400 mg C)
are 1.652 and 1.527, respectively indicating non-significance between 400 mg
C and Placebo. However, there are statistically significant differences between
800 mg C and Placebo and between 1600 mg C and Placebo from both Naive
and Robust z-values. These conclusions are consistent with those in Chapter
12 from Peace and Chen (2010).

6.4 Concluding Remarks

In this chapter, we presented longitudinal analysis of data from two real
clinical trials. Data from the DBP clinical trial reflected continuous measure-
ments, whereas data from the Cimetidine duodenal ulcer trial reflected binary
measurements. Data analyses were illustrated using R along with the statisti-
cal theory in Section 6.2.
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For further reading, we recommend Fitzmaurice et al. (2004). As presented
by the authors, this book provides “a rigorous and systematic description of
modern methods for analyzing data from longitudinal studies” from health
sciences. The book by Pinheiro and Bates (2000) is always a reference book
for longitudinal data analysis with detailed account for nlme.

The data in Table 6.1 contains cumulative numbers of patients healed
across weeks of endoscopy. As an exercise, the reader may wish to create a
data table that includes only the numbers of ulcers healed at each week, redo
the analyses, and interpret the results.
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In this chapter, we discuss sample size determination in clinical trials with
implementation in R. We begin with a review of the prerequisites for sample
size determination in Section 7.1. We then present sample size calculations for
the comparison of two treatment groups for continuous endpoints in Section
7.2 followed by the two treatment comparison for proportions in Section 7.3. In
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Section 7.4, we investigate sample size and power calculations for clinical trials
with time-to-event endpoints. In Section 7.5 we use the R library gsDesign to
design group sequential trials including sample size calculation and stopping
boundaries. Design and sample size calculation for trials with longitudinal data
is discussed in Section 7.6. In Section 7.7, we discuss an atypical situation in
sample size calculation where percent change and coefficient of variation are
known and end the chapter with concluding remarks in Section 7.8.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: samplesize, pwr and gsDesign.

7.1 Prerequisites for Sample Size Determination

Clinical trials should be well designed. An aspect of good design of clinical
trial protocols is determining the number of patients (sample size) required
by the clinical investigation to adequately address the research question or
objective.

The formal statistical basis for sample size determination requires: (i) the
question or objective of the clinical investigation to be defined; (ii) the most
relevant endpoints reflecting the objective to be identified; (iii) the specifica-
tion of the difference δ (which embodies the question) between groups in terms
of the endpoint that is clinically important to detect; (iv) specification of the
magnitudes of the Type-I and Type-II decision errors; and (v) estimates of
the mean and variability of the endpoint.

The objective, particularly for Phase III trials comparing the efficacy of
drug D to a placebo control P , is translated as the alternative hypothesis (Ha)
in the hypothesis testing construct:

H0 : µ1 − µ2 = 0 versus Ha : µ1 − µ2 = δ > 0. (7.1)

where µ1 and µ2 represent the means of the efficacy endpoint for drug D and
placebo P , and Ha reflects that the objective of the trial is to demonstrate
that the efficacy of drug D exceeds that of the control P by at least δ. This
enables one to interpret δ as the expected comparative treatment effect
size. It is noted that the above formulation of Ha is one-sided, consistent with
the a priori belief that drug D is effective as discussed in Peace (1991b).

But what is the endpoint? An endpoint is the analysis unit on each indi-
vidual patient that will be statistically analyzed to address the study objective.
An endpoint may be the actual data collected or a function of the data. If D
is a drug thought to have antihypertensive efficacy, actual data reflecting po-
tential efficacy are supine diastolic blood pressure measurements. However the
endpoint may be defined as the change in supine diastolic blood pressure from
baseline to the end of the treatment period.
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What is the difference δ between D and P that is clinically important
to detect? The choice of δ reflects what is reasonable to expect about the
degree to which the efficacy of D exceeds that of P in the population of
patients to be treated, as long as that degree is clinically important. A δ that
is too large may lead to a trial with sample sizes too small to detect a small
treatment effect; whereas a δ that is too small may lead to a trial that is
too large to be conducted with available financial resources. Even if financial
resources were available, drugs for which the true comparative treatment effect
size is small may have little or no clinical utility in the market place. The
choice of δ should be a joint effort between the clinician and the biostatistician
with input from other scientists who understand the mechanism of action and
pharmacokinetics of drug D.

A Type-I error occurs if H0 is rejected when it is true. A Type-II error
occurs if H0 is accepted when it is false. It is therefore desirable that the
magnitudes of the Type-I (α) and Type-II (β) decision errors regarding H0

are chosen to be small. Historically α is chosen to be 0.05; whereas β is usually
chosen to be anywhere from 0.05 to 0.20.

Hypothesis testing (and confidence interval) methods require estimates
of endpoint means and variances of the control group. These estimates
may be obtained from the literature or from previous studies. It is good prac-
tice for the Biometrics or Biostatistics Department to develop a file of such
information from all studies conducted. In obtaining such information, care
should be taken to make sure that the information is on a population similar
to the target population of the study protocol being designed. If no such infor-
mation exists, it may still be possible, particularly for dichotomous endpoints,
to determine sample sizes by using the worst case of the Bernoulli variance or
utilizing the coefficient of variation.

The well known per group sample size (n) formula (refer to eq. (7.5)) for
clinical trials utilizing a parallel design:

n ≥ 2(s2/δ2)[z1−α + z1−β ]2 (7.2)

where s is an estimate of the standard deviation σ, δ is the difference between
groups which is clinically important to detect (i.e., the minimum expected
treatment effect), and z1−α and z1−β are the appropriate critical points of the
standard normal distribution corresponding to the magnitudes of the Type-I
and Type-II errors, respectively, explicitly reflects the prerequisites for sample
size determination.

The above formula also reflects the interplay between the design charac-
teristics: α, 1− β, δ , s2 and n. As δ decreases, n increases and vice versa; as
power increases, n increases or vice versa; as s2 increases, n increases; and as
α decreases, n increases.

The above formula derives from standardizing the difference between the
observed sample means of the drug and control groups, using the standardized
form as a test statistic for H0, and applying the definitions of the magnitudes
of the Type-I decision error and power (the complement of the magnitude of
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the Type-II decision error). The per group sample size n is interpreted as “the
number of patients required to detect δ with a power of 1−β and a one-sided
Type-I error of α is at least 2(s2/δ2)[z1−α + z1−β ]2.” A graphical derivation
appears in the next section. Note that if Ha is two-sided, the quantity z1−α is
replaced by Z1−α/2.

7.2 Comparison of Two Treatment Groups with
Continuous Endpoints

7.2.1 Fundamentals

The general objective of many clinical trials is to compare two treatment
groups such as a new drug to placebo (or control) where the endpoint is
continuous. Here, we are interested in investigating whether the new drug is
better than placebo (i.e., that new drug is effective) and want to determine
how many patients should be enrolled in each treatment group.

In statistical terms, the null hypothesis is H0 : µ1 = µ2 where µ1 and
µ2 are the true response or endpoint means for the new drug and placebo,
respectively. The alternative hypothesis is then Ha : µ1 > µ2. The null and
alternative hypotheses may be rewritten as H0 : µ1 − µ2 = 0 and Ha :
µ1 − µ2 = δ > 0.

Other concepts associated with sample size determination are Type-I error,
Type-II error and power and they are defined as follows:

• Type-I Error (α): Probability of rejecting the null hypothesis when it is
true

• Type-II Error (β): Probability of not rejecting the null hypothesis when
it is false

• Power = 1 − β: Probability of rejecting the null hypothesis when it is
false

Figure 7.1 summarizes graphically the ingredients in sample size calcula-
tions. In this figure, the null hypothesis in the left normal curve provides the
basis for determining the rejection region (the dark shadowed region) where
the probability of a Type-I error is α and is the size of the test.

The rejection region is denoted by the dashed vertical line in the middle
where the area on the right is α/2. Here the magnitude of the Type-I decision
error is halved to reflect the FDA convention of considering Ha to reflect 6=
rather than “>” even though drug is being compared to placebo in terms of
efficacy. The alternative hypothesis in the right normal curve then defines the
power (the light shadowed region on the right of the critical line) and the Type-
II error (β) (the region on the left side of the critical line). Notice that moving
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P(Z > 1.96, H1) = 0.85
P(Z > 1.96, H0) = 0.05

H0 : μ1 − μ0 = 0 H1 : μ1 − μ0 = δ

α 2 α 2

1 − α
β

Power = 1 − β

S.E. = σ
2
n

FIGURE 7.1: Graphical Features of Sample Size Determination.

the curve associated with the alternative hypothesis to the right is equivalent
to increasing the distance between the null and alternative hypotheses which
in turn increases the area of the curve over the rejection region and thus
increases the power.

In this hypothesis setting, the critical value defines the boundary between
the rejection and non-rejection regions which should be the same under the
null and alternative hypotheses. From the null hypothesis, this critical value

can be calculated as 0+z1−α/2σ
√

2
n

and it is δ−z1−βσ
√

2
n

from the alternative
hypothesis. Therefore, we have the fundamental equation for the two-sample
situation as follows:

0 + z1−α/2σ

√
2
n

= δ − z1−βσ

√
2
n

(7.3)

If the variances are not equal or the sample sizes are not equal, then Equa-
tion (7.3) has to be modified to reflect unequal variances of σ2

1 and σ2
2, and
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unequal sample sizes n1 and n2 as follows:

0 + z1−α/2σ2

√
1
n2

+
1
n1

= δ − z1−β

√
σ2

2

n2
+
σ2

1

n1
(7.4)

This formulation is the most general and is the basis for virtually all two-
parallel group sample size calculations. In doing so we assume a fixed total
sample size or that n1 = k× n2, where k is a scalar reflecting the ratio of the
sample sizes.

7.2.2 Basic Formula for Sample Size Calculation

Based on the Equation (7.3), the required sample size to compare two
population means µ1 and µ2 (against a 2-sided alternative) with common
variance σ2 can be derived as

n ≥
2(z1−α/2 + z1−β)2(

µ1−µ2
σ

)2 =
2(z1−α/2 + z1−β)2(

δ
σ

)2 (7.5)

From this Equation (7.5), we can see that the two key ingredients are the
difference to be detected, δ = µ1 − µ2, and the inherent variability in the
observed data indicated by σ2. The numerator can be calculated for other
magnitudes of Type-I and Type-II errors.

For the common situation of Type-I error α = 0.05 and 80% power [β
= 0.20], the values of z1−α/2 and z1−β are 1.96 and 0.84, respectively. Then
2(z1−α/2 + z1−β)2 = 15.68 which can be rounded up to 16. This produces the
rule of thumb:

n =
16
∆2

(7.6)

where
∆ =

µ1 − µ2

σ
=
δ

σ
(7.7)

is the treatment difference to be detected in units of the standard deviation -
the standardized difference.

Figure 7.2 illustrates the values of the numerator (i.e., 2(z1−α/2 + z1−β)2)
for a Type-I error of α = 0.05 and other values of power from 0.7 to 0.95
with the following R code. A power of 0.90 (as well as 0.95) is frequently used
to evaluate new drugs in Phase III clinical trials (randomized, double blind,
pivotal proof of efficacy comparisons of a new drug to placebo or a standard).

> # Type-I error

> alpha = 0.05

> # Type-II error

> beta = c(0.05,0.1,0.15,0.2,0.25,0.3)

> # power

> pow = 1-beta
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> # numerator in the sample size

> num = 2*(qnorm(1-alpha/2)+qnorm(1-beta))^2

> # plot the power to the numerator

> plot(pow, num, xlab="Power",las=1, ylab="Numerator")

> # add the line to it

> lines(pow, num)

> # use arrows to show the values of numerator

> for(i in 1:length(pow)){

arrows(pow[i],0, pow[i], num[i], length=0.13)

arrows(pow[i],num[i], pow[length(beta)],num[i], length=0.13)

}
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FIGURE 7.2: Numerator in Sample Size Calculation.

7.2.3 R Function power.t.test

Suppose that a clinical trial is designed to detect a treatment difference of
0.5 with common standard deviation of 1. Then the standardized difference
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of ∆ in Equation (7.7) is 0.5, then 16/0.52 = 64 subjects per treatment will
be needed. The two-sample scenario will require 128 subjects.

In R, this calculation is implemented (by Peter Dalgaard based on previous
work from Claus Ekstrømin) in the R basic Stats package as a function call
of power.t.test , which can be used to compute the statistical power of test,
or to determine sample size and other parameters to obtain target power. The
usage of power.t.test is illustrated with the following R code chunk:

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL, type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"), strict = FALSE)

where n is the number of subjects (per group), delta = δ = µ1 − µ2 is the
true difference in means, sd is the common standard deviation, sig.level is the
significance level (i.e., the Type-I error probability) with default value of 0.05,
power is the statistical power of test (i.e., 1 minus Type-II error probability),
type is the type of t-test with three choices of “two.sample” or “one.sample”
or “paired”, alternative is to define the alternative hypothesis which can be
one- or two-sided, and strict is to use strict interpretation in two-sided case.

Detecting a treatment difference of 0.5 with common standard deviation
of 1, can be implemented as

> power.t.test(delta=0.5, sd=1, power=0.8)

Two-sample t test power calculation

n = 63.8
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

This reproduces the sample size of 63.8 or 64 for each treatment. For a
one-sided alternative, we use

> power.t.test(delta=0.5, sd=1, power=0.8,

alternative = c("one.sided"))

Two-sample t test power calculation

n = 50.2
delta = 0.5

sd = 1
sig.level = 0.05
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power = 0.8
alternative = one.sided

NOTE: n is number in *each* group

which gives a sample size 50 for each treatment group.
Not only can this power.t.test function be used for sample size calcu-

lation, it can be also used to calculate statistical power or other clinical trial
characteristics, such as the power for a specific sample size or the minimum
detectable treatment difference for a given sample size and power. For ex-
ample, for a sample size 64 from each treatment group, we can calculate the
associated statistical power as

> power.t.test(n=64,delta=0.5, sd=1)

Two-sample t test power calculation

n = 64
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.801
alternative = two.sided

NOTE: n is number in *each* group

which is 0.801. For a fixed sample size of 64 and power of 80%, we can calculate
the minimum detectable treatment difference as

> power.t.test(n=64,sd=1,power=0.8)

Two-sample t test power calculation

n = 64
delta = 0.499

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

which is 0.499. The sample size and statistical power are nonlinearly related
as indicated in Equation (7.3). We can use power.t.test to illustrate this
relationship with the following R code chunk as seen in Figure 7.3:

> # use pow from 0.2 to 0.9 by 0.05
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> pow = seq(0.2, 0.9, by=0.05)

> # keep track of the size using for-loop

> size = NULL

> for(i in 1:length(pow))

size[i] = power.t.test(delta=0.5, sd=1, power=pow[i])$n

> # plot the size to power

> plot(pow, size, las=1,type="b", xlab="Power",

ylab="Sample Size Required")
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FIGURE 7.3: Nonlinear Relationship between Sample Size to Power.

7.2.4 Unequal Variance: samplesize Package

When the treatment group sample sizes and variances are different, Equa-
tion (7.4) can be used to calculate the sample size along with other char-
acteristics. In this situation the so-called Welch approximation described in
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Equation (3.3) from Chapter 3 is used. A R package samplesize is created
and maintained by Ralph Scherer (scherer.ralph@mh-hannover.de) with
reference to Bock (1998). This package can be used to compute the sample
size for Student’s t-test, Student’s t-test with Welch’s approximation, and
the Wilcoxon–Mann–Whitney test for ordinal data. In this package, there are
several function calls for these purposes.

Specifically,

• n.indep.t.test.eq is used to calculate sample size for independent Stu-
dent’s t-test with equal group sizes;

• n.indep.t.test.neq is used to calculate sample size for independent Stu-
dent’s t-test with unequal group sizes;

• n.paired.t.test is used to calculate sample size for the paired Student’s
t-test;

• n.welch.test is used to calculate sample size for Student’s t-test with
Welch’s approximation;

• n.wilcox.ord is used to calculate sample size for the Wilcoxon–Mann–
Whitney test for ordinal data with or without ties.

We illustrate some simple cases. Readers may use these function calls to
design their own clinical trials.

For example, to design a clinical trial with two treatment groups to detect
a mean difference (denoted by mean.diff in the function call) of 0.8 with
standard deviation (denoted by sd.est in the function call) of 0.83, a 2-sided
Type-I error α=0.05 expressed as 1− α in this function, and 80% power, the
required sample size for each group may be calculated by

> # load the library

> library(samplesize)

> # sample size calculation

> n.indep.t.test.eq(power = 0.8, alpha = 0.95,

mean.diff = 0.8, sd.est = 0.83)

[1] "sample.size:" "29"

which gives 29 patients for each group.
If we would like to have unbalanced randomization to the two treatment

groups on the order of a 2 to 1 ratio, we can calculate the required sample
size as:

> n.indep.t.test.neq(power = 0.8, alpha = 0.95,

mean.diff = 0.8, sd.est = 0.83, k=0.5)

[1] "sample.size:" "32"
[3] "sample.size n.1:" "21.3"
[5] "sample.size n.2:" "10.7"



162 Clinical Trial Data Analysis Using R

which gives a total sample size of 32 with 21 randomized to treatment 1 and
11 randomized to treatment 2. To comply with the sample size ratio of 2 to
1, we would select 22 for treatment 1 and 11 for treatment 2 which increases
the total sample size to 33. This number would increase the power to slightly
above 80%.

In the design of a clinical trial if unequal treatment group variances
were expected, the Welch approximation could be used. In this case, the
n.welch.test can be used to calculate sample size for Student’s t-test with
Welch’s approximation for unequal variances. Usage of this function is illus-
trated with the following code chunk:

n.welch.test(power = 0.8, alpha = 0.95,mean.diff = 2,
sd.est1 = 1, sd.est2 = 2.65)

where power is the required power = 1 − β, alpha is the required 2-sided
Type-I error expressed as 1 − α in this function, mean.diff is the required
minimum difference between group means, sd.est1 is the standard deviation
for treatment 1 and sd.est2 is the standard deviation for treatment 2. The
output for this R function are values of the total sample size (i.e., total
sample size N), and the sample sizes n1 and n2 for treatment groups 1 and 2.
For example, to design a clinical trial with power of 80% and Type-I error rate
of 0.05 to detect a mean difference of 4 between two treatment groups with
standard deviations of 1 and 2 respectively, the required sample sizes may be
calculated as

> n.welch.test(power = 0.8, alpha = 0.95,

mean.diff = 2, sd.est1 = 1, sd.est2 = 2)

sample.size: 16
sample.size n1: 6
sample.size n2: 11

which gives a total sample size of 16 with 6 for treatment group 1 and 11
for treatment group 2. Again to comply with the sample size ratio of 2 to
1, we would require 6 for treatment 1 and 12 for treatment 2 for a total of
18 subjects. This number of patients would increase the power slightly above
80%.

Another useful function in this package is to compute the sample size for
the Wilcoxon–Mann–Whitney test for ordinal data with or without ties as
described in Zhao et al. (2008). Use of this function is illustrated with the
following code chunk:

n.wilcox.ord(beta, alpha, t, p, q)

where

• beta is the required Type-II error
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• alpha is the required Type-I error

• t is the treatment fraction n/N and n is the sample size for treatment 2

• p is the vector of rates from treatment 1 in categories 1, · · · , D

• q is the vector of rates from treatment 2 in categories 1, · · · , D

The output of this function call is the value for total sample size. For
example, in designing a clinical trial with power 80% and Type-I error rate
of 0.05 to detect the rates from treatment 1 as p = (0.66, 0.15, 0.19) and
q = (0.61, 0.23, 0.16) with t = 0.5, the required sample size would be

> n.wilcox.ord(beta = 0.2, alpha = 0.05, t = 0.5,

p = c(0.66, 0.15, 0.19), q = c(0.61, 0.23, 0.16))

$N
[1] 8341

which gives sample size of 8341.

7.3 Two Binomial Proportions

7.3.1 R Function power.prop.test

When the endpoints in clinical trials are proportions, the equations for
sample size and power calculation in Equation (7.3) can be easily modified.
In this situation, we are assessing whether the proportion p1 responding to a
new treatment (D) exceeds the proportion p2 responding to control treatment
(P ), such as a placebo or standard. This is equivalent to the null hypothesis
H0 : p1 − p2 = 0 versus Ha : p1 − p2 = δ > 0.

The test statistic is constructed as:

z =
p1 − p2√

p1(1−p1)
n1

+ p2(1−p2)
n2

(7.8)

which is asymptotically normally distributed and therefore the σ in Equation
(7.3) can be replaced by

σ =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
(7.9)

Based on this approximation, the sample size and statistical power can be
calculated using the R function power.prop.test in the base package Stats
by Peter Dalgaard based on previous work from Claus Ekstrøm. In addition
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to calculating the sample size, this function can also be used to compute the
power of the test and to determine other parameters from target sample size
and power. Use of this function is illustrated with the following code chunk:

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05,
power=NULL, alternative=c("two.sided", "one.sided"),
strict = FALSE)

where

• n is the sample size for the number of subjects per treatment group,

• p1 is the probability of responding in one treatment group D,

• p2 is the probability of responding in the other treatment group P ,

• sig.level is the significance level, i.e., the magnitude of the Type-I error,
α, with default value of 0.05,

• power is the statistical power of the test = 1 − (the magnitude of the
Type-II error) = 1− β,

• alternative denotes one- or two-sided alternative hypothesis, and

• strict specifies whether the strict interpretation in two-sided alternative
should be used.

Note that for the first five input parameters in power.prop.test, one can
be determined from specification of the other four. This is accomplished with
the univariate root finding function uniroot.

For example to design a clinical trial with 80% power with Type-I error
rate α = 0.05 to detect a difference in the response proportions of p1 − p2 =
0.75 − 0.50 between treatment and placebo groups, the required sample size
can be calculated as

> power.prop.test(p1 = .75, p2 = .50, power = .80)

Two-sample comparison of proportions power calculation

n = 57.7
p1 = 0.75
p2 = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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This gives n = 57.7 which means that we would need at least 58 subjects in
each treatment group to achieve the desired design characteristics.

Alternatively, suppose we want to know what the power is that 60 subjects
per treatment group would have in detecting a difference in response propor-
tions p1 − p2 = 0.75− 0.50, at the Type-I error rate α = 0.05. This statistical
power may be calculated using the following R code chunk:

> power.prop.test(n = 60, p1 = .75, p2 = .5)

Two-sample comparison of proportions power calculation

n = 60
p1 = 0.75
p2 = 0.5

sig.level = 0.05
power = 0.816

alternative = two.sided

NOTE: n is number in *each* group

which is 81.6%. Similar computations may be made to determine the propor-
tions and the significance level from specifying other parameters and we leave
this to interested readers.

With the power.prop.test function, we can easily illustrate relationships
graphically among any of the parameters. For example, we know from statis-
tical theory that the Type-I error rate α is nonlinearly related to the Type-II
error rate β as indicated in Equation (7.3). Intuitively we know that the Type-I
error rate α increases when the Type-II error rate β decreases. Since the statis-
tical power = 1−β, power increases when the Type-I error rate increases and
vice versa. We can show this nonlinear relationship using the example above
for a sample size of 60, and p1 = 0.75 and p2 = 0.5. We generate a sequence of
values of power from 0.5 to 0.9 by 0.05 and then calculate the Type-I error rate
corresponding to each value of power to make Figure 7.4 using the following R
code chunk, which shows the increasing nonlinear relationship between power
and α. In this figure, the horizontal line denotes α = 0.05 to point out the
associated statistical power of 0.816 as calculated in the previous example.

> # set up the power range

> pow = seq(0.5, 0.9, by=0.05)

> # a for-loop to calculate alpha

> alpha = NULL

> for(i in 1:length(pow)){

alpha[i] = power.prop.test(n=60, p1=0.75, p2=0.5,

power=pow[i], sig.level=NULL)$sig.level
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}

> # make the plot

> plot(pow, alpha, las=1,type="b", lwd=2, xlab="Power",

ylab="Significance Level")

> # add a segment for alpha=0.05

> segments(pow[1], 0.05, 0.816,0.05, lwd=2)

> # point to the power=0.816 for alpha=0.05

> arrows(0.816,0.05, 0.816,0, lwd=2)
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FIGURE 7.4: Nonlinear Relationship between Power and Significance Level.

7.3.2 R Library: pwr

Since its publication, the seminal book by Cohen (1988), has been widely
used and referenced in statistical power analysis. A R package pwr has been
created and maintained by Stephane Champely (champely@univ-lyon1.fr)
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based on Cohen’s book and is available in the R library. In this library, there
are function calls to calculate the required sample size for a given statistical
power (and α, δ, and standard deviations) as well as to calculate the power
for a given sample size (and α, δ, and standard deviations). These functions
are

1. pwr.2p.test is for power calculations for two proportions assuming equal
sample sizes,

2. pwr.2p2n.test is for power calculations for two proportions assuming
different sample sizes,

3. pwr.anova.test is for power calculations for balanced one-way analysis of
variance tests,

4. pwr.chisq.test is for power calculations for chi-squared tests,

5. pwr.f2.test is for power calculations for the general linear model,

6. pwr.norm.test is for power calculations for the mean of a normal distri-
bution with known variance,

7. pwr.p.test is for power calculations for proportion tests (one sample),

8. pwr.r.test is for power calculations for correlation tests,

9. pwr.t.test is for power calculations for t-tests of means (one sample, two
samples and paired samples), and

10. pwr.t2n.test is for power calculations for two sample (of different sizes)
t-tests of means.

Details about this library may be seen from the help menu using

> # load the library into R

> library(pwr)

> # display the help menu

> library(help=pwr)

These functions can be also used for sample size calculation. In doing so,
the input parameters are based on the effect-size (ES) following the conventions
in Cohen’s book. For example, to calculate the sample size for a clinical trial
with 80% power to detect p1 = 0.75 and p0 = 0.5 for a Type-I error rate
of 0.05 using pwr.2p.test, we first need to calculate the ES from the two
proportions as

> h = ES.h(0.75,0.5)

> print(h)

[1] 0.524



168 Clinical Trial Data Analysis Using R

which gives ES = 0.524. The ES for two proportions is defined as:

ES = 2× arcsin(
√
p1)− 2× arcsin(

√
p2) (7.10)

With this ES, we call function pwr.2p.test to calculate the sample size
for 80% power as

> pwr.2p.test(h=h,power=0.8,sig.level=0.05)

Difference of proportion power calculation for binomial
distribution (arcsine transformation)

h = 0.524
n = 57.3

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: same sample sizes

This gives a sample size of 58.
We can check this with the result from power.prop.test:

> power.prop.test(p1=0.75, p2=0.5, power=0.8)

Two-sample comparison of proportions power calculation

n = 57.7
p1 = 0.75
p2 = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

We see that they are virtually the same.
Besides the traditional use of the t-test and proportion test, this package

can be also used for sample size and power calculations for clinical trials with
more than two-treatment groups using pwr.anova.test. This is equivalent
to the R function power.anova.test, general linear regression model using
pwr.f2.test and χ2-test using pwr.chisq.test.

7.3.3 R Function nBinomial in gsDesign Library

The library gsDesign was created by Keaven Anderson (keaven_
anderson@merck.com) to provide a set of functions to design and analyze
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group sequential trials. The Binomial set provides statistical testing, confi-
dence intervals and sample size calculation for comparing two binomial pro-
portions. This set also provides simulation for two-arm trials with a binary
endpoint for fixed sample size and therefore this simulation is not for group
sequential or adaptive trials.

The library can be loaded into R as

> library(gsDesign)

and the help menu can be displayed as library(help=gsDesign).
For this section to calculate sample size for comparing two binomial pro-

portions, we can display the associated build-in functions as follows:

> help(nBinomial)

There are four functions associated with the Binomial set which are

1. nBinomial uses the method of Farrington and Manning (1990) to com-
pute the total sample sizes needed for comparing two binomial event
rates in terms of superiority or non-inferiority,

2. testBinomial uses the method of Miettinin and Nurminen (1980) to com-
pute a Z- or χ2-statistic for comparing two binomial event rates,

3. ciBinomial is used to compute confidence intervals on the difference
between two rates or on the risk-ratio of two rates or on the odds-ratio
of two rates, and

4. simBinomial is used to conduct simulations to estimate the power for
the Miettinin and Nurminen (1980) test comparing two binomial rates
for superiority or non-inferiority.

The common usage of sample size is as follows:

nBinomial(p1, p2, alpha=.025, beta=0.1, delta0=0, ratio=1,
sided=1, outtype=1, scale="Difference")

where

• p1 is the event rate in treatment group1 (i.e., D) under the alternative
hypothesis,

• p2 is the event rate in treatment group 2 (i.e., P ) under the alternative
hypothesis,

• alpha is the Type-I error rate for either a 1-sided or 2-sided test as noted
in sided,

• beta is the Type-II error rate,
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• delta0 is a parameter associated with the null hypothesis. The default
0 represents no difference between treatment groups under the null hy-
pothesis. If scale = “Difference” (the default), then delta0 = p10 − p20

under H0. If scale = “RR”, then delta0 = log
(
p10
p20

)
. If scale = “LNOR”,

then delta0 = log
(

p10
1−p10

)
− log

(
p20

1−p20

)
,

• ratio is the sample size ratio for treatment 2 divided by treatment 1,

• sided is 2 for 2-sided and 1 for 1-sided alternatives,

• outtype specifies the output type; default = total sample size, 2 provides
sample size for each group (n1, n2), 3 and delta0=0 provides a list with
total sample size (n), sample size for each group (n1, n2), null and al-
ternate hypothesis variance (sigma0, sigma1), input event rates (p1, p2)
and null hypothesis event rates (p10, p20), and

• scale denotes the functional form of the comparison of the groups; i.e.,
“Difference”, “RR” or “OR”.

The sample size of 58 per treatment calculated in the previous section
using

> power.prop.test(p1=0.75,p2=0.5, power=0.8)

can be reproduced using nBinomial as:

> nBinomial(p1=0.75, p2=0.5, alpha=.05, beta=0.2, sided=2)

[1] 115

which gives total sample size of 115. With equal sample size in both treat-
ments, we would need to round 115/2=57.5 to 58 to have a total sample size
of 116.

We now illustrate some calculations for sample size. Suppose we are de-
signing a clinical trial whose objective is to demonstrate that a new drug
is effective when compared to placebo in terms of the endpoint: proportion
of patients showing marked improvement by the end of the treatment period,
and we need to determine the number of patients needed to be randomized
to the drug and placebo treated groups to have a power of 80% to detect a
15% difference (δ) between drug and placebo groups in terms of proportions
of patients markedly improving given a false positive rate of 5%.

Suppose further that a search of the literature reveals that the proportion
of patients randomized to placebo from reported trials of other drugs treating
the same condition who showed marked improvement was 20%, and that for
the trial we are designing, we wish to randomize twice as many patients to
the drug group as to the placebo group.

From the information given and the literature search, we know that the
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proportion showing marked improvement in the placebo group is expected
to be p2 = 0.20; p1 = p2 + δ = 0.35, α = 0.05 one-sided (the alternative
hypothesis is the research objective which is to demonstrate that drug is better
than placebo; i.e., is effective), β = 1−0.80 = 0.20, and that we want twice as
many patients randomized to the drug group as the placebo group. Therefore
the desired sample size would be calculated as

> nBinomial(p1=.35, p2=.2, beta=.2, ratio=0.5,outtype=2,

alpha=.05, sided=1)

$n1
[1] 165

$n2
[1] 82.6

where outtype=2 to print the sample size for each treatment. We can see that
the desired sample size is 165 and 83 (round 82.6 to 83) respectively with total
of 165 + 83 = 248 subjects.

If we are to use 1-1 randomization, the total sample size is calculated as

> nBinomial(p1=.35, p2=.2, beta=.2, alpha=.05, sided=1)

[1] 217

More calculations may be performed under various other scenarios (2-
sided, power of 90% and 95%, etc.) and the reader is encouraged to pursue
these.

We again take advantages of the R graphical capabilities to plot the sample
size required under different control rates with four types of risk reduction for
the new treatment. This is illustrated in Figure 7.5 with the R code chunk
below. In this figure, all the sample size calculations are based on 80% power
with Type-I error rate of 0.025 for one-sided binomial test.

> # sequence of control event rate

> p1 = seq(.1, .3, .01)

> # reduce by 30% to calculate the sample size required

> p2 <- p1 *.7

> y1 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

> # reduce by 40% to calculate the sample size required

> p2 <- p1 * .6

> y2 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

> # reduce by 50% to calculate the sample size required

> p2 <- p1 * .5

> y3 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

> # reduce by 60% to calculate the sample size required

> p2 <- p1 * .4
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> y4 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

> # make the plot for 30% reduction

> plot(p1, y1, type="l", las=1,ylab="Sample Size",

xlab="Control Group Event Rate", ylim=c(0, 3000), lwd=2)

> # add a line for 40% reduction

> lines(p1, y2, lty=2, lwd=2)

> # add a line for 50% reduction

> lines(p1, y3, lty=3, lwd=2)

> # add a line for 60% reduction

> lines(p1, y4, lty=4, lwd=2)

> # add a legend

> legend("topright",lty=c(1,2, 3, 4), lwd=2,

legend=c("30 pct reduction", "40 pct reduction",

"50 pct reduction", "60 pct reduction"))
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FIGURE 7.5: Sample Size Calculations for 80% Power.

It can be seen from Figure 7.5 that the required sample size decreases
when the event probability in the control group increases in all four situa-
tions. This is intuitively true since the absolute differences between p1 and p2
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are increasing even though the values in the vector of p2 are all reduced by
the same amount. Theoretically it takes larger sample sizes to detect smaller
differences which explains why the required sample size decreases along with
the p1 since the absolute difference between p1 and p2 is increasing. This also
explains why a smaller sample size is required for a higher percent reduction
as depicted in this figure.

7.4 Time-to-Event Endpoint

In many clinical trials the primary endpoint is time-to-some critical event
(Peace (2009)). This is especially true in the clinical development of drugs
for the treatment of cancer where the endpoint of primary interest is time-to-
death, or survival time. Chapter 5 discussed methods for analysis of clinical
trials with time-to-event data and in this section, we discuss design aspects of
such trials, including sample size determination using R function nSurvival
in gsDesign library.

Similar to nBinomial, there is a function nSurvival in the gsDesign li-
brary which can be used to determine sample sizes for clinical trials where the
primary endpoint is time-to-some critical event. The function nSurvival uses
the method described in Lachin and Foulkes (1986), which assumes known
distributions for:

1. the time-to-event of primary interest in each treatment group,

2. the time until dropout in each group, and

3. enrollment over time.

The Lachin-Foulkes method allows different distributional assumptions in
different strata.

In nSurvival, time-to-enrollment, time-to-dropout, and time-to-the pri-
mary event, are assumed to follow exponential distributions with no stratifi-
cation. The number of patients and the number of events necessary to meet
design characteristics are then calculatable. It is well-known that the cumu-
lative distribution function for an exponential distribution with failure rate λ
has the following form:

F (t) = 1− eλt (7.11)

Therefore, if we know the cumulative failure rate p0 at time t0, λ can be
estimated as

λ̂ = − ln(1− p0)
t0

(7.12)
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A detailed explanation and usage of this function can be obtained from
help(nSurvival). We briefly describe it here within the context of designing a
trial comparing a drug treatment to placebo in terms of improving survival.
The function call is as follows:

nSurvival(lambda1, lambda2, Ts, Tr, eta = 0, rand.ratio = 1,
alpha = 0.05, beta = 0.10, sided = 2, approx = FALSE,
type = c("rr", "rd"), entry = c("unif", "expo"), gamma = NA)

where

• lambda1, lambda2 are the primary event hazard rates for the placebo
and treatment groups, respectively;

• Ts is the maximum study duration;

• Tr is the accrual (recruitment) duration;

• eta is the dropout hazard rate for both groups. Default is eta = 0;

• rand.ratio is the randomization ratio between the placebo and treatment
groups. Default is a balanced design, i.e., randomization ratio is 1;

• alpha is the Type-I error rate. Default is 0.05;

• beta is the Type-II error rate. Default is 0.10 (90% power);

• sided denotes one- or two-sided test; Default is two-sided;

• approx is a logical indicator. If TRUE, the approximation sample size
formula for risk difference is used;

• type is the type of sample size calculation [i.e., based on the risk ratio
(“rr”) or the risk difference (“rd”)];

• entry is the type of patient entry, whether uniform (“unif”) or exponential
(“expo”);

• gamma is the rate parameter for exponential entry, which has a value of
NA if entry type is “unif” (uniform); and a user supplied non-zero value
if entry type is “expo” (exponential).

The outputs from this function include the total sample size (n) and the
number of events (Events) required along with all inputs.

We now consider some examples of sample size calculations. Consider de-
signing a clinical trial where the general objective is to demonstrate that a
new drug treatment can reduce the constant, hazard death rate by 1/3 as
compared to placebo.

Suppose that it is known from previous studies of the disease that the
constant rate of death among untreated patients is 0.30 and that on average
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10% of patients drop out prior to study completion. Further suppose that the
trial being designed will have uniform patient enrollment over 1 year, and that
the maximum study duration from the time of enrollment of the first patient
will be 3 years.

The sample size question is: How many patients should be enrolled and of
those how many deaths are required to detect a reduction of 1/3 in the con-
stant rate of death among treated patients compared to patients randomized
to the placebo group, with a power of 80% and a Type-I (1-sided) error rate
of 2.5%?

In terms of the difference in hazard rates, the objective of the trial is the
alternative hypothesis Ha in the following:

H0 : λ1 − λ2 = 0 versus Ha : λ1 − λ2 = δ < 0 (7.13)

where δ = -0.10 (1/3 of 0.30).
In terms of the ratio of hazard rates, the objective of the trial is the alter-

native hypothesis Ha in the following:

H0 : λ1/λ2 = 1 versus Ha : λ1/λ2 = 1− δ, (7.14)

where δ = 1/3.
The required numbers of patients to be enrolled and of those the number

of deaths required [to have an 80% power (β = 0.20) to detect the stated
reduction in hazard rates with α = .025] may be calculated as

> # calculate sample size (denoted by ss1)

> ss1 = nSurvival(lambda1=.3,lambda2=.2,

eta =.1,Ts=3,Tr=1,sided=1,alpha=.025,beta=0.2)

> # print the required ss

> print(ss1)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Study duration (fixed): Ts=3
Accrual duration (fixed): Tr=1
Uniform accrual: entry="unif"
Control median: log(2)/lambda1=2.3
Experimental median: log(2)/lambda2=3.5
Censoring only at study end (eta=0)
Control failure rate: lambda1=0.3
Experimental failure rate: lambda2=0.2
Censoring rate: eta=0.1
Power: 100*(1-beta)=80%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1
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Sample size based on hazard ratio=0.667 (type="rr")
Sample size (computed): n=466
Events required (computed): nEvents=192

which gives the required number of patients to be 466 and the number of
deaths to be 192 in order to achieve 80% power to detect a reduction of 1/3
in λ1/λ2 with a 2.5% one-sided Type-I error.

Readers may change the inputs and use the function nSurvival to deter-
mine sample sizes for their own clinical trials where the primary endpoint is
time-to-some critical event.

There is an excellent example in Section 1.6 of the gsDesign manual and
we re-produce it here. In this example, the general objective is to compare the
efficacy of an experimental treatment to the standard treatment in terms of
the primary endpoint: progression free survival (PFS).

Here PFS is defined as the time from randomization until disease progres-
sion or death. Patients on the standard treatment (denoted by C) are assumed
to have an exponential failure (return of the disease) rate with median PFS = 6
months. Based on the Equation (7.12), the failure rate for standard treatment
is estimated as λC = −ln(.5)/6 = .1155, with time measured in months.

The specific objective of the trial is to demonstrate that the experimental
treatment (denoted by E) will reduce the hazard rate (of PFS) by 30% as
compared to standard treatment (C).

The reduction stated in the objective enables us to estimate the experi-
mental group hazard rate as λE = 0.7× λC = .0809. Patients are assumed to
dropout at a rate of 5% per year of follow-up which implies an exponential
dropout rate η = −ln(.95)/12 = .00427.

Enrollment of patients is assumed to be uniform over 30 months with
patients followed for a minimum of 6 months, yielding a total study time
duration of 36 months.

The design question is: How many patients should be enrolled and of those
how many deaths are required to detect a reduction of 30% in the constant
rate of failure among patients treated with the experimental regimen (E) as
compared to patients treated with the standard regimen (C), with a power of
90% and a Type-I (1-sided) error rate of 2.5%?

The required sample size and number of events may be calculated using
the following R code chunk:

> # call nSurvival to calculate sample size

> ss2 = nSurvival(lambda1=-log(.5) / 6,

lambda2=-log(.5) / 6 *.7, eta=-log(.95)/12,

Tr=30 ,Ts=36, type="rr", entry="unif")

> # print the required sample size

> print(ss2$n)
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416

> # print the required number of events

> print(ss2$nEvents)

329

This shows that 418 patients and 330 events (disease progression) are required
to have a power of 90% to detect a 30% reductions in hazards with a one-sided
Type-I error of 2.5%.

7.5 Design of Group Sequential Trials

7.5.1 Introduction

So far we have presented applications of R functions: nBinomial and
nSurvival, from the gsDesign library for sample size and power calculations.
In fact, the primary use of the library gsDesign by Keaven M. Anderson
from Merck Research Laboratories is to design group sequential clinical trials
using α- and β-spending functions, Wang-Tsiatis designs including O’Brien-
Fleming and Pocock designs. This package is based on the statistical theory
developed for group sequential designs as seen in Jennison and Turnbull (2000)
and Proschan et al. (2006). Detailed explanations about this package can be
found from its manual (called gsDesign: An R Package for Designing Group
Sequential Clinical Trials) which is available as a pdf file from the library sub-
directories. As a further promotion to use this package, we briefly describe
some of its functionalities and some of its applications.

The package can be loaded into R as follows:

> library(gsDesign)

All subroutines and functions can be found from the help manual using
library(help=gsDesign). As listed in the manual, three primary functions
are provided for basic computations related to the design and evaluation of
group sequential clinical trials:

1. gsDesign function “provides sample size and boundaries for a group se-
quential design based on treatment effect, spending functions for bound-
ary crossing probabilities, and relative timing of each analysis. Standard
and user-specified spending functions may be used. In addition to spend-
ing function designs, the family of Wang-Tsiatis designs—including
O’Brien-Fleming and Pocock designs—are also available”;

2. gsProbability “function computes boundary crossing probabilities and
expected sample size of a design for arbitrary user-specified treatment
effects, bounds, and interim analysis sample sizes”;
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3. gsCP “function computes the conditional probability of future boundary
crossing given a result at an interim analysis. The gsCP function returns
a value of the same type as gsProbability.”

Besides these primary functions, there are several supporting functions
to evaluate trials with binomial endpoints and trials with time-to-event end-
points, such as nBinomial in Section 7.3.3 and nSurvival in Section 7.4. The
function set of Binomial provides sample size and power calculations, hy-
pothesis testing, confidence intervals and simulation, especially for designing
noninferiority trials as well as superiority trials.

7.5.2 gsDesign

We further illustrate the use of gsDesign to develop boundaries and trial
size required for a group sequential design. Other functions may be found from
the manual. The default group sequential design is one with

1. two interim analyses equally spaced at 1/3 and 2/3 of the way through
the trial plus the final analysis (i.e., k=3);

2. two-sided, asymmetric, beta-spending with non-binding lower bound
(i.e., test.type=4);

3. overall Type-I error α = 0.025 (one-sided);

4. overall Type-II error β = 0.1 with power = 90%;

5. asymmetric boundaries, which means we may stop the trial for futility
or superiority at an interim analysis;

6. β-spending is used to set the lower stopping boundary. This means that
the spending function controls the incremental amount of the Type-II
error at each analysis, β(δ), i = 1, 2, · · · ,K;

7. non-binding lower bound. Lower bounds are sometimes considered as
guidelines, which may be ignored during the course of the trial;

8. Hwang-Shih-DeCani spending functions with γ = −4 for the upper
bound and γ = −2 for the lower bound. This provides a conservative,
O’Brien-Fleming-like superiority bound and a less conservative lower
bound.

This default design is specified by the default inputs in the usage of
gsDesign as follows:

gsDesign(k = 3, test.type = 4, alpha = 0.025, beta = 0.1,
astar=0,delta=0,n.fix=1,timing = 1, sfu = sfHSD,
sfupar = -4, sfl = sfHSD, sflpar = -2, tol = 0.000001,
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r = 18, n.I = 0, maxn.IPlan = 0)

It is noted that all the input parameters in the above function gsDesign,
may be changed to fit the reader’s specific design. For example, we can simply
change k = 5 for a 5-interim stage group sequential design.

The default design can be illustrated with the following R code chunk:

> # load the default gsDesign

> x = gsDesign()

> # print the output

> x

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

Sample
Size ----Lower bounds---- ----Upper bounds-----

Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++
1 0.357 -0.24 0.406 0.0148 3.01 0.0013 0.0013
2 0.713 0.94 0.827 0.0289 2.55 0.0054 0.0049
3 1.070 2.00 0.977 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4
* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.00 0.0013 0.0049 0.0171 0.0233 0.625
3.24 0.1412 0.4403 0.3185 0.9000 0.791

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
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0.00 0.4057 0.4290 0.1420 0.977
3.24 0.0148 0.0289 0.0563 0.100

From the output of this default design, the total Type-I error is 0.025 and
the total probability of crossing the upper boundary at any analysis when the
lower bound stops the trial is 0.0233. Further, we can extract components from
the output for specific usage. For example, the sample size ratio compared to
fixed non-group sequential design can be extracted as

> x$n.I

[1] 0.357 0.713 1.070

which is the column just before “Lower bounds” and shows 0.357, 0.713 and
1.070 for interim analyses 1, 2 and 3, respectively. Note that the sample size
is inflated by 7% at the end of the trial which is expected since the purpose
of group sequential designs is to permit interim analyses for stopping the trial
before its end.

Suppose that we design a clinical trial with a binomial endpoint where we
wish to detect an increase in the cure rate from 15% in the control group to
30% in the new treatment group with a power of 90% and a 1-sided Type-I
error rate of 2.5%. The fixed non-group sequential design required total sample
size is computed as

> # calculate the sample size for non-group sequential design

> n.fix = nBinomial(p1=0.3, p2=0.15)

> # print the fixed sample size

> n.fix

[1] 322

which shows that 322 is the required total sample size. For a group sequential
design, the sample size would be

> # Calculate GS sample sizes at each interims

> n.GS = n.fix*x$n.I

> # print them

> n.GS

[1] 115 229 344

Rounding up to an even number, we would need 116 and 230 patients at
interim stages 1 and 2. The total sample size required is now inflated to 344
using the default group sequential design. The total sample size for the group
sequential design can be directly calculated by
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> # direct calculation of GS design

> x.new = gsDesign(n.fix=n.fix)

> # print the design

> x.new

Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 115 -0.24 0.406 0.0148 3.01 0.0013 0.0013
2 230 0.94 0.827 0.0289 2.55 0.0054 0.0049
3 345 2.00 0.977 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.000 0.0013 0.0049 0.0171 0.0233 201
0.181 0.1412 0.4403 0.3185 0.9000 254

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.000 0.4057 0.4290 0.1420 0.977
0.181 0.0148 0.0289 0.0563 0.100

Comparing the output object from x to x.new, we can see that the Sample
Size Ratio is now replaced by the required sample size N and the rest remains
the same.

Additional useful information in this output are the Upper bounds and
Lower bounds. Both contain multiple variables for the upper and lower bound-
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aries as well as boundary crossing probabilities. The boundaries can be plotted
by calling plot as follows to produce the boundary plot as in Figure 7.6:

> # call "plot" to make the boundary plot

> print(plot(x, plottype=1))
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FIGURE 7.6: Default Plot for gsDesign Boundaries.

In the plot, the plottype allows seven choices with plottype = 1 to be
specified for the boundary plot (default for gsDesign) as seen in Figure 7.6.
And plottype = 2 provides the power plot (default for gsProbability), plottype
= 3 provides the estimated treatment effect at the boundaries, plottype =
4 provides the conditional power at boundaries, plottype = 5 provides the
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spending function plot, plottype = 6 provides the expected sample size plot,
and plottype = 7 provides the B-values at the boundaries.

For example we can plot the spending functions using plottype = 5 to
produce Figure 7.7 for both α and β-spending functions as follows.

> # plot the alpha and beta spending function

> print(plot(x, plottype=5))
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FIGURE 7.7: Spending Function Plot for gsDesign.

A similar illustration using gsDesign can be generated for clinical trials
with time-to-event endpoints as described in Section 5.3.2 in the manual. In
the package, we can define different spending functions to fit the trial require-
ments as well as investigate different spending functions to optimize design



184 Clinical Trial Data Analysis Using R

characteristics. This package is flexible and we encourage readers to become
familiar with using it to design group sequential trials.

7.6 Longitudinal Trials

Chapter 6 discussed the analysis of data from longitudinal clinical trials. In
this subsection our focus is on designing longitudinal trials. In their Chapter
15, Fitzmaurice et al. (2004) described methods for sample size calculation
for longitudinal studies which can be used in designing longitudinal trials. We
program these methods in R and illustrate their application. Therefore, we
use the same notation as in Fitzmaurice et al. (2004).

7.6.1 Longitudinal Trial with Continuous Endpoint

7.6.1.1 The Model Setting

Suppose a trial is designed to compare two treatments such as a new drug
to control in terms of their effect on changes in mean response over time. We
assume equal numbers of subjects, denoted by N , are randomized to both
treatments with n repeated measurements on each subject. At the end of
the trial, we are to compare the changes in mean response over the duration
of trial, as typically seen in longitudinal studies such as the diastolic blood
pressure (DBP) trial in Chapter 6. As is typically done in longitudinal studies,
the changes in mean response are expressed as a linear trend and the treatment
effect is expressed as the difference in slopes or rates of change denoted by
δ. Therefore the null hypothesis of no treatment difference, i.e., there is no
treatment by linear trend interaction, can be denoted by H0 : δ = 0.

A two-stage model is used to describe the longitudinal trial. In the first
stage, it is assumed that a simple parametric linear trend in time can be fit
to the observed clinical response data for each subject. In the second stage,
these subject-specific parameters are then linked to covariates that describe
the different treatments as well as other covariates. Specifically,

• Stage 1: In this stage, we assume that the repeated measurements for
each subject follow a time-trend regression line with the same set of
covariates, with coefficients for each subject as in

Yij = β1i + β2itj + eij (7.15)

where the error eij are assumed to be independently and identically
normally distributed with mean 0 and homogeneous variance of σ2

e , i.e.,
e ∼ N(0, σ2

e),

• Stage 2: In this stage, we assume the subject-specific effects βi =
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(β1i, β2i)′ are random in order to describe population level parameters;
i.e.,

E(β1i) = β1 + β2 × Treatmenti
E(β2i) = β3 + β4 × Treatmenti (7.16)

where Treatmenti is an indicator variable denoting treatment group;
i.e., Treatmenti = 1 if the ith subject was assigned to the new drug
and Treatmenti = 0 if the ith subject was assigned to control. It can
be seen in the model (7.16), that β3 is the mean slope used to describe
the population rates of change in mean response over time for the con-
trol group and β3 + β4 is the mean slope in the new drug treatment
group. Therefore β4 describes the population mean difference between
new drug treatment and control in mean slope or the rates of change
in the repeated measurements, which corresponds to the definition of δ.
Thus the null hypothesis can be expressed as H0 : β4 = 0.

Since the model (7.16) only describes the population mean response of
βi = (β1i, β2i) by treatment group, the residual between-subject varia-
tion in the βi that cannot be explained by treatment group is expressed
as

Cov(βi) = G =
(
g11 g12

g21 g22

)
(7.17)

where g11 = var(β1i), g22 = var(β2i) and g12 = g21 = cov(β1i, β2i).

7.6.1.2 Sample Size Calculations

Let β̂2i denote the ordinary least squares (OLS) estimate of the slope for
the ith subject. The variability of β̂2i can be derived as

σ2 = V ar(β̂2i) =
σ2
e∑n

j=1(tj − t̄)2
+ g22 (7.18)

where t̄ = 1
n

∑n
j=1 tj which means that the variability of β̂2i consists of two

components: one from the within-subject variance of σ2
eP

n
j=1(tj−t̄)2 and the other

from the between-subject variance of g22 = V ar(β2i). Therefore, to test the
null hypothesis H0 : δ = 0 of equal mean changes over time of the two treat-
ment groups, we can construct a z-test based on β̂2i as:

Z =
β̄T2 − β̄C2

σ
√

1/N + 1/N
=
β̄T2 − β̄C2
σ
√

2/N
(7.19)

where β̄T2 and β̄C2 are the sample means of β̂2i in the new drug treatment
(T) and control (C) groups, respectively. Given estimates of g22 and σ2

e , the
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required sample size can be determined from the standard formula in Equation
(7.5) as

N =
2(z1−α/2 + z1−β)2(

δ
σ

)2 (7.20)

where σ is the estimate defined in Equation (7.18) and δ is the treatment effect.
Notice that the sample size formula in Equation (7.20) is identical to Equation
(7.5) except that variance of σ has two components: the within-subject and
between-subject variances. It should be emphasized that the sample size for-
mula in Equation (7.20) includes the length of the study (denoted by τ = tn),
the number of repeated measures (n) and the spacing of the repeated measures
of (t1, t2, · · · , tn).

In a typical equal-spaced longitudinal trial with study duration τ , the n
repeated measurements are to be taken at t1 = 0, t2 = τ

n−1 , t3 = 2τ
n−1 , · · · ,

tn = τ . In this case, it is easily shown that

n∑
j=1

(tj − t̄)2 =
τ2n(n+ 1)
12(n− 1)

(7.21)

7.6.1.3 Power Calculation

The sample size formula in Equation (7.20) may be used to calculate the
statistical power for a specified sample size. Re-arranging Equation (7.20) as

z1−β =

√
Nδ2

2σ2
− z1−α/2, (7.22)

the statistical power 1− β can be calculated as Φ(z1−β) where Φ denotes the
cumulative standard normal distribution function.

7.6.1.4 Example and R Illustration

Following the example in Fitzmaurice et al. (2004), suppose we are plan-
ning a longitudinal trial to compare two treatments: new drug treatment ver-
sus control, say, in terms of the mean response over time. We plan to randomize
equal numbers of patients (N) to both treatment groups. The trial is expected
to require τ = 2 years to complete, and a total of 5 (= n) repeated measure-
ments are to be taken, with one at baseline and the remaining 4 at 6-month
intervals until trial completion. The response is assumed to be approximately
normally distributed and we assume that change in response is linear over
time and that the treatment effect can be expressed in terms of the slopes
(denoted by δ).

Suppose further that we want to enroll enough subjects to detect a min-
imum treatment effect of δ = 1.2 in the annual rates of change between the
new drug treatment and control. Based on historical data, suppose that the
between-subject variability in the rate of change is V ar(β2i) ≈ 2 and the
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within-subject variability σ2
e ≈ 7. We want to determine the number of trial

subjects required to have 90% power to detect δ = 1.2 with a 2-sided 5% false
positive rate (i.e., α = 0.05 and β = 0.1).

Based on these specifications, we first compute the variability of β̂2i in
Equation (7.18) using the Equation in (7.21) as

σ2 =
σ2
e∑n

j=1(tj − t̄)2
+ g22

=
12(n− 1)σ2

e

τ2n(n+ 1)
=

12× 4× 7
4× 5

+ 2 (7.23)

= 2.8 + 2 = 4.8 (7.24)

Then the required sample size may be calculated based on Equation (7.20)
as:

N =
2(z1−α/2 + z1−β)2(

δ
σ

)2
=

(1.96 + 1.282)2 × 2× 4.8
1.44

= 70.1 (7.25)

The corresponding R code is as follows:

> # minimum treatment effect

> delta = 1.2

> # number of repeated measurements

> n = 5

> # trial duration

> tau = 2

> # within-subject variability

> sig2within = 7

> # between-subject variability

> sig2between = 2

> # significance level

> alpha = 0.05

> # desired power

> pow = 0.9

> # variance of slopes

> sig2 = 12*(n-1)*sig2within/(tau^2*n*(n+1))+sig2between

> print(sig2)

[1] 4.8

> # calculate sample size

> N = (qnorm(1-alpha/2)+qnorm(pow))^2*2*sig2/delta^2

> cat("Sample size needed=",N, sep=" ","\n\n")
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Sample size needed= 70

Therefore 142 subjects should be randomized in balanced fashion (71 each)
to both treatment groups to ensure the design characteristics.

For a given sample size, we can also calculate the power using the method
described in Section 7.6.1.3. For example, for the same design characteristics
with sample size N = 40 for each treatment, the statistical power is calculated
to be 0.63 using the following R code chunk:

> # sample size for each treatment

> N = 40; n = 2

> delta = 1.2; tau = 2

> sig2within = 7

> sig2between = 2

> alpha = 0.05

> sig2 = 12*(n-1)*sig2within/(tau^2*n*(n+1))+sig2between

> pow.get = pnorm(sqrt( N*delta^2/(2*sig2))-qnorm(1-alpha/2))

> cat("Power obtained=", pow.get,sep=" ", "\n\n")

Power obtained= 0.629

The relationship among design characteristics (say, the number of repeated
measurements n, sample size N and power) may be illustrated. To do so, we
specify a R function called pow.Long to compute the statistical power from
different design inputs as:

> pow.Long =

function(N, n, delta, tau, sig2within, sig2between, alpha){

sig2 = 12*(n-1)*sig2within/(tau^2*n*(n+1))+sig2between

pow.get = pnorm(sqrt( N*delta^2/(2*sig2))-qnorm(1-alpha/2))

pow.get

}

We then call this function to calculate the power for sample size N from
20 to 100 by 20 and the number of repeated measurements n from 2 to 8 as
follows:

> # the sample size inputs

> N = seq(20, 100, by=20)

> # the number of repeated measurements

> n = seq(2,10, by=2)

> # power matrix

> pow = matrix(0, ncol=length(N), nrow=length(n))

> colnames(pow) = n; rownames(pow) = N

> # loop to calculate the power

> for (i in 1:length(N)){

for(j in 1:length(n)){
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pow[i,j] = pow.Long(N[i], n[j], delta, tau,

sig2within, sig2between, alpha)

} }

> # print the power matrix

> pow

2 4 6 8 10
20 0.366 0.387 0.432 0.471 0.503
40 0.629 0.657 0.716 0.761 0.795
60 0.800 0.825 0.873 0.905 0.926
80 0.899 0.917 0.947 0.965 0.976
100 0.951 0.962 0.979 0.988 0.993

This reproduces Table 15.1 in Fitzmaurice et al. (2004). We can graphically
display this relationship using the R plotting function persp in the following
R code chunk to produce a perspective surface plot as seen in Figure 7.8.

> persp(N, n, pow, theta = 30, phi = 30, expand = 0.5,

col = "lightblue", xlab="Sample Size (N)",

ylab="# of Measurements (n)",

zlab="Power")
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FIGURE 7.8: Perspective Surface for Power in Longitudinal Study.
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7.6.2 Longitudinal Binary Endpoint

7.6.2.1 Approximate Sample Size Calculation

Due to the underlying complications existing in logistic regression for its
link function and dependence between mean and variance, Fitzmaurice et al.
(2004) derived an approximate method to calculate sample size for longitudi-
nal trials with binary response. The approximation is restricted to response
probabilities ranging from 0.2 to 0.8 since in this range, the linearity on the
log odds scale (the logit) or the probit scale coincide approximately to the lin-
earity on the probability scale. Therefore, in this situation, the link function
in the generalized linear model for response probabilities is

g [E(Yij |Xij)] = X ′ijβ (7.26)

which can be well approximated by a linear relationship as

E(Yij |Xij) = X ′ijβ
∗ (7.27)

for some β∗ 6= β, where β∗ represents changes in the probabilities while β
represents changes in the log odds providing g(·) has a logistic form.

In addition, the variance of the binary response:

V ar(Yij) = E(Yij)× [1− E(Yij)] (7.28)

will change more slowly when the response probabilities are in the range of 0.2
to 0.8 with maximum value of 0.25 when E(Yij) = 0.5. Therefore the sample
size formula in Equation (7.5) may be expressed as:

N =
2σ2(z1−α/2 + z1−β)2

δ2
(7.29)

where δ is the linear contrast of response probabilities to denote the compar-
ison of the two treatment groups.

Now,

σ2 = V ar(Yij)(1− ρ)

 n∑
j=1

(tj − t̄)2

 ≈ 0.25× (1− ρ)

 n∑
j=1

(tj − t̄)2

 (7.30)

where V ar(Yij) is approximated by the maximum possible value of 0.25 and
ρ = Corr(Yij , Yik).

In the special case with study duration τ and n equally repeated measure-
ments:

σ2 = 0.25× (1− ρ)

 n∑
j=1

(tj − t̄)2

 =
3(n− 1)(1− ρ)
τ2n(n+ 1)

(7.31)

It should be noted that the above formulation yields an overestimate of
sample size since the maximum value of the variance is used.
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7.6.2.2 Example and R Implementation

Consider the design settings in Section 7.6.1.4 and suppose this is a can-
cer trial to investigate whether a new drug can reduce the mortality rate
as compared to standard treatment. In this case, response is the change in
the probability of the binary response over time which we assume is ap-
proximated by a linear trend. Suppose further that past experience indicates
that the mortality rate of standard treatment is 30%. We want to be able
to detect a reduction in the mortality rate of 15% at 2 years, which means
δ = 0.15/τ = 0.15/2 = 0.075. Based on historical trials, the correlation among
pairs of responses is approximately 0.5 (i.e., ρ = 0.5). Then

σ2 ≈ 3(n− 1)(1− ρ)
τ2n(n+ 1)

=
3× 4× 0.5
4× 5× 6

= 0.05 (7.32)

The required sample size for a power of 90% and a 2-sided false positive
rate of 5% is calculated as follows:

N =
2σ2(z1−α/2 + z1−β)2

δ2
=

(1.96 + 1.282)2 × 2× 0.05
0.0752

= 186.9 (7.33)

which means the required number of subjects needed to achieve the design
specifications is 374 (=187× 2).

This method is implemented in R with the following code chunk:

> # the treatment effect

> delta = 0.075

> # number of repeated measurements

> n = 5

> # study duration

> tau = 2

> # correlation

> rho = 0.5

> # significance level

> alpha = 0.05

> # Type-II error

> beta = 0.1

> # associated power

> pow = 1-beta

> # sigma calculation

> sig2 = 3*(n-1)*(1-rho)/(tau^2*n*(n+1))

> # sample size calculation

> N = (qnorm(1-alpha/2)+qnorm(pow))^2*2*sig2/delta^2

> cat("Sample size needed=",N, sep=" ","\n\n")

Sample size needed= 187

This again reproduces the results from Fitzmaurice et al. (2004).
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7.7 Relative Changes and Coefficient of Variation: An
Extra

7.7.1 Introduction

Often clinical trial practitioners (e.g. the biostatistician and the clinician)
are unable to find estimates of treatment means, standard deviations, etc., in
order to apply sample size formulae. Let’s consider the following dialogue in
a planning meeting for a clinical trial comparing a new drug treatment to a
control:

The biostatistician: “What kind of treatment effect are you expecting?”
The clinician: “I’m looking for a 20% change in the mean.”
The biostatistician again: “And how much variability is there in your ob-

servations?”
The clinician: “About 30%.”
This dialogue reflects that clinicians (and other substantive researchers)

frequently think of relative treatment effects and variability as percentages,
and often think of standard deviation relative to the mean. The question now
is how to calculate the required sample size. The answer is illustrated in the
following.

7.7.2 Sample Size Calculation Formula

Recall that the coefficient of variation is defined as standard deviation
divided by the mean; i.e., CV = σ/µ. CV is unitless but is usually expressed
as a percentage. A CV = 50% means that the magnitude of the standard
deviation is one-half that of the mean.

The dialogue above implies the clinician is thinking about the treatment
effect (as the difference in the means of new drug treatment and control)
as being 20% of the control mean and variability as relative to the treatment
effect. Since relative variability described as the coefficient of variation (CV) is
intrinsically a constant, this implies that the variances of the two populations
are not the same.

The variance σ2 in Equation (7.5) is then replaced by the average of the
two population variances:

σ2 =
σ2

1 + σ2
2

2
(7.34)

Replacing σi by µiCV for i = 1, 2 and simplifying the algebra in Equation
(7.5), we have the sample size formula as

n =
8(CV )2

(PC)2

[
1 + (1− PC)2

]
(7.35)
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where PC is the proportion change in means defined as PC = µ1−µ2
µ1

and CV
is the usual coefficient of variation which is CV = σ1

µ1
= σ2

µ2
.

7.7.3 Example and R Implementation

For the clinical trial being planned as described in the dialogue session,
the sample size can be calculated as

n =
8(0.30)2

(0.20)2
[1 + (1− 0.2)2] = 29.52 = 30 (7.36)

which means that at least 30 subjects per treatment group would be needed to
achieve a 20% change in the mean with a CV of 30%. The R implementation
is straightforward and we use this formulation to look into a series of CVs and
PCs. Suppose we want to see the required sample size for CVs ranging from
0.1 to 0.7 and PCs ranging from 0.1 to 0.5. We may calculate them using the
following R code chunk:

> # CV range

> CV =seq(0.1, 0.7, by=0.1)

> CV

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7

> # PC range

> PC = seq(0.1, 0.5, by=0.05)

> PC

[1] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

> # Sample size calculation

> SS = matrix(0, ncol=length(PC), nrow=length(CV))

> colnames(SS) = PC

> rownames(SS)= CV

> # for-loop to calculate the sample size for each PC and CV combination

> for (i in 1:length(CV)){

for(j in 1:length(PC)){

SS[i,j] = ceiling(8*CV[i]^2/PC[j]^2*(1+(1-PC[j])^2))

}

}

> # print out the table

> SS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1 15 7 4 3 2 1 1 1 1
0.2 58 25 14 9 6 4 3 3 2
0.3 131 56 30 19 12 9 7 5 4
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0.4 232 98 53 33 22 15 11 9 7
0.5 362 154 82 50 34 24 17 13 10
0.6 522 221 119 72 48 34 25 19 15
0.7 710 301 161 98 65 46 34 26 20

From this calculation, we see that the sample size required increases dra-
matically when CV increases and PC decreases which is intuitively true since
one needs a larger sample size to detect a higher variation (CV) and a smaller
effect size (PC). This feature can be seen from the Figure 7.9.

> persp(CV, PC, SS, theta = 30, phi = 30, expand = 0.5,

col = "lightblue", xlab="CV", ylab="PC", zlab="Sample Size")

CV

PC
Sam

ple Size

FIGURE 7.9: Perspective Surface for Sample Size
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7.8 Concluding Remarks

In this chapter, we summarized the basic theory for sample size and power
calculations. In addition we provided several examples illustrating sample size
determination and power calculations using available R libraries and functions.

There are more libraries in R. We list a few of them for reference:

1. samplingbook is a library for survey sampling procedures by Juliane
Manitz and others.

2. SampleSizeProportions is a library for calculating sample size require-
ments when estimating the difference between two binomial proportions
based on a Bayesian approach.

3. SampleSizeMeans is a library for sample size calculations for normal
means using Bayesian criteria.

4. powerMediation is a library for sample size and power calculations for
mediation analysis.

5. Hmisc is a library useful for data analysis, high-level graphics and func-
tions for computing sample size and power, etc.

A comprehensive discussion of sample size and power calculations in clin-
ical trials can be found in Chow et al. (2008) which focuses on the statistical
procedures for almost all aspects of clinical trials research.
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Clinical trials conducted of new drugs prior to regulatory approval are usually
categorized as Phase I, Phase II or Phase III. Phase I trials are almost always
conducted at a single investigational site. Many Phase II trials are conducted
at two or more investigational sites or centers. Virtually all Phase III clinical
trials have to be conducted at several investigational sites in order to accrue
the number of patients required by the protocol. Statistical analyses of multi-
center clinical trials pose challenges in terms of what are the most appropriate
analyses of the data collected. Chapter 8 of Peace and Chen (2010) discuss
the importance of planning, conducting and statistically analyzing multicen-
ter clinical trials. Analysis methods in that chapter are restricted to the usual
linear models appropriate for a completely randomized block (centers) design
(CRBD).

In this chapter, we present meta-analysis methods for clinical trials using
the R system. Meta-analysis methods may be used to combine estimates of
treatment effects at individual centers across centers in a multicenter clinical
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trial as well as overall treatment effects for individual clinical trials across
clinical trials. Three datasets are presented in Section 8.1.

The first dataset is the 22 multicenter betablocker trial to reduce mortality
after myocardial infarction that was analyzed in Chapter 4 to illustrate logistic
regression. We re-analyze the dataset using meta-analysis models.

The second dataset is the classical and famous data from the Cochrane
Collaboration Logo that resulted from systematic reviews of the entire, pre-
1980 clinical trial literature of corticosteroid therapy in premature labor and
its effect on neonatal death. The meta-analysis figure is part of the logo of
the Cochrane Collaboration (http://www.cochrane.org). We present meta-
analyses of this dataset using the R system. The response measure appears in
the first and second datasets and is binary.

The response measure in the third dataset is continuous (work capacity).
The third dataset contains estimates of treatment effect from eight randomized
controlled trials of the effectiveness of amlodipine as compared to placebo in
improving work capacity in patients with angina.

Section 8.2 presents useful meta-analysis models including the weighted
mean method known as fixed-effects model and the DerSimonian–Laird
random-effects model implemented in the R libraries rmeta (Author: Thomas
Lumley from the Department of Biostatistics at the University of Washing-
ton, USA) and meta (Author: Guido Schwarzer from the Institute for Medical
Biometry and Medical Informatics at the University Hospital Freiburg, Ger-
many). The library rmete is used mainly for binary data whereas the library
meta may be used for both binary and continuous data. In Section 8.3, we
demonstrate how to use R and the R functionalities from both libraries to an-
alyze the three datasets in this chapter. Concluding remarks appear in Section
8.4.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: RODBC , meta and rmeta.

8.1 Data from Clinical Trials

8.1.1 Clinical Trials for Beta-Blockers: Binary Data

We again use the data presented in Table 4.1 of Chapter 4. These data
derive from a 22-center clinical trial in which beta-blockers were used to reduce
mortality after myocardial infarction. From Chapter 4, we note that treatment
is marginally statistically significant in reducing mortality. We reanalyze these
data using meta-analysis models. Parenthetically, although McLachlan and
Peel (2000) identify 22 centers giving rise to interpreting the data as deriving
from a 22-center clinical trial, the numbers of patients in each center argue that
the data derive from 22 separate clinical trials which may have used different
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beta-blockers. In either case the methodology for combining the individual
summary results across centers or trials would be the same.

8.1.2 Data from Cochrane Collaboration Logo: Binary Data

Data from 7 randomized trials conducted prior to 1980 of corticosteroid
therapy in premature labor and its effect on neonatal death were meta-
analyzed. This data are included in the R meta-analysis library rmeta and
are reproduced in Table 8.1 for easy reference. This data frame contains five
columns. Column 1 contains the “name” as an identifier for the study. Col-
umn 2 contains the number (“ev.trt”) of deaths among patients in the treated
group. Column 3 contains the total number of patients (“n.trt”) in the treated
group. Column 4 contains the number of deaths (“ev.ctrl”) in the control group.
Column 5 contains the total number of patients (“n.ctrl”) in the control group.

TABLE 8.1: Data for Cochrane Collaboration Logo.

name ev.trt n.trt ev.ctrl n.ctrl
Auckland 36 532 60 538

Block 1 69 5 61
Doran 4 81 11 63
Gamsu 14 131 20 137

Morrison 3 67 7 59
Papageorgiou 1 71 7 75

Tauesch 8 56 10 71

8.1.3 Clinical Trials on Amlodipine: Continuous Data

Eight randomized controlled trials of the effectiveness of the calcium chan-
nel blocker amlodipine as compared to placebo in improving work capacity
in patients with angina are summarized in Table 8.2. These data are used
in Li et al. (1994) to illustrate potential bias in meta-analysis. The data are
reproduced further in Hartung et al. (2008). The change in work capacity is
defined as the ratio of exercise time after the patient receives the intervention
(i.e., drug or placebo) to the exercise time at baseline (before receiving the
intervention). It is assumed that the logarithms of these ratios are normally
distributed. Table 8.2 lists the observed sample size, mean and variance for
both treatment and placebo groups. We meta-analyze these data to illustrate
application of (meta-analysis) methods for continuous data.
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TABLE 8.2: Amlodipine trial data

Protocol nE meanE varE nC meanC varC
154 46 0.2316 0.2254 48 -0.0027 0.0007
156 30 0.2811 0.1441 26 0.0270 0.1139
157 75 0.1894 0.1981 72 0.0443 0.4972
162 12 0.0930 0.1389 12 0.2277 0.0488
163 32 0.1622 0.0961 34 0.0056 0.0955
166 31 0.1837 0.1246 31 0.0943 0.1734
303 27 0.6612 0.7060 27 -0.0057 0.9891
306 46 0.1366 0.1211 47 -0.0057 0.1291

8.2 Statistical Models for Meta-Analysis

Hedges and Olkin (1985) regard meta-analysis as a rubric used to describe
quantitative methods for combining evidence across experiments. DerSimo-
nian and Laird (1986) define meta-analysis as the statistical analysis of a
collection of analytic results for the purpose of integrating the findings. Al-
though neither Cochran (1937), Cochran (1943), Cochran (1954) nor Yates
and Cochran (1938) used the rubric, their methods for combining results from
a series of experiments are clearly meta-analysis methods.

Meta-analysis methods require the identification of a common response
measure reflecting a common experimental objective across the experiments
to be combined, which has been estimated from the data collected in the
individual experiments. Depending on the response measure, its variance may
need to be estimated and the samples sizes identified.

As described in Wikipedia, “In statistics, a meta-analysis combines the
results of several studies that address a set of related research hypotheses.
This is normally done by identification of a common measure of effect size,
which is modeled using a form of meta-regression. Resulting overall averages
when controlling for study characteristics can be considered meta-effect sizes,
which are more powerful estimates of the true effect size than those derived in
a single study under a given single set of assumptions and conditions.” This
effect size will be detailed in Section 8.2.1.

8.2.1 Clinical Hypotheses and Effect Size

The fundamental objective for conducting a clinical trial of the efficacy of
a new drug (D) in the treatment of some disease is to demonstrate that the
new drug is effective in treating the disease. Translating into the statistical
hypothesis framework, the objective becomes the alternative hypothesis in
contrast to the null hypothesis of inefficacy given by
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H0 : Effect of D is no different from that of control (placebo = P)
Ha : Effect of D is better than that of P

Treatment effect size is a comparative function of the efficacy response
measure in each treatment group. The comparative function may be the dif-
ference in means if response is continuous, or the difference in proportions if
response in dichotomous or binary. Other comparative functions of effect size
for binary data are the log-odds ratio or relative risk. The treatment effect
size is denoted by δ to be compatible with the notations used in Peace and
Chen (2010). Then H0 and Ha above become:

H0 : δ = 0
Ha : δ > 0

For a multicenter trial under a common protocol, H0 and Ha are the same
for each center. Randomization of patients to treatment groups within centers
and conducting the trial in a blinded and quality manner guarantees valid,
unbiased estimates of treatment effect within centers.

A design-based analysis strategy for a multicenter clinical trial begins with
combining the estimates of treatment effect across centers in a manner con-
sistent with the design of the trial and behavior of the data. Fundamentally a
design-based analysis strategy is no different than a meta-analysis of the treat-
ment effect estimates across the centers. That is, first compute the estimates
of treatment effect δ̂i and the within variance σ̂2

i of treatment effect at each
center i(i = 1, · · · , C), and then meta-analyze the δ̂i across centers. There are
typically two analysis approaches in this direction with one as fixed-effects and
the other as random-effects.

In fixed-effects meta-analysis, we assume that we have an estimate of treat-
ment effect δ̂i and its (within) variability estimate σ̂2

i from each clinical center
i. Each δ̂i is an estimate of the underlying global overall effect of δ across all
centers. To meta-analyze this set of δ̂i means that we combine them using
some weighting scheme.

However for the random-effects meta-analysis model, we assume that each
δ̂i is an estimate of its own underlying true effect δi which is one realization
from the overall global effect δ. Therefore, the random-effects meta-analysis
model can incorporate both within-center variability and between-center vari-
ability, which is an important source of heterogeneity for multicenter clinical
trials.
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8.2.2 Fixed-Effects Meta-Analysis Model: The Weighted-
Average

In the fixed-effects model, each δ̂i is assumed to be an estimate of the
underlying global overall effect δ as

δ̂i = δ + εi (8.1)

where εi is assumed to be normally distributed by N(0, σ̂2
i ). That is,

δ̂i ∼ N(δ, σ̂2
i ) (8.2)

The global δ is then estimated by combining the individual estimates by
some weighting scheme. That is, we weight δ̂i at each center i with an appro-
priate weight wi, then compute the weighted mean or pooled estimate δ̂ of
treatment effect as well as its variance σ̂2, where

δ̂ =
C∑
i=1

wiδ̂i (8.3)

σ̂2 = V ar(δ̂) =
C∑
i=1

w2
i σ̂

2
i (under independence of centers) (8.4)

Using the weighted mean in Equation (8.3) and its variance in Equation
(8.4), an approximate 95% confidence interval (CI) for δ is

δ̂ ± 1.96×
√
σ̂2 (8.5)

In addition, we may formulate a z-type of test as

Z =
δ̂ − δ√
σ̂2

(8.6)

to be used to test H0 : δ = 0. Based on the test statistic in Equation (8.6),
we construct confidence intervals on the overall global effect of δ in the usual
manner.

The weighted mean in Equation (8.3), requires
∑C
i=1wi = 1. Typical

choices of wi are

1. Weighting by the number of centers as

wi =
1
C

(8.7)

where C is the number of centers (fixed);
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2. Weighting by the number of patients in each center as

wi =
Ni
N

(8.8)

where Ni is the number of patients at center i, and N is the total number
of patients as N =

∑C
i=1Ni;

3. Weighting by the number of patients from each center and each treat-
ment as

wi =
NiDNiP
NiD +NiP

× 1
w

(8.9)

where w =
∑C
i=1wi and NiD and NiP are the numbers of patients in the

new drug treatment (D) and Placebo (P) groups respectively at center
i

4. Weighting by the inverse variance

wi =
1
σ̂2
i

× 1
w

(8.10)

where w =
∑C
i=1wi.

The weighting scheme 1 in Equation (8.7) yields the unweighted mean or
arithmetic average of the estimates of treatment effect across centers.

The weighting scheme 2 in Equation (8.8) yields the average of the esti-
mates of treatment effect across centers weighted according to the number of
patients at each center. Note that the weighting scheme 2 in Equation (8.8)
reduces to weight scheme 1 in Equation (8.7) if there is balance across centers.

The weighting scheme 3 in Equation (8.9) yields the average of the esti-
mates of treatment effect across centers weighted to allow treatment group
imbalance at each center. Note that scheme 3 in Equation (8.9) reduces to
scheme 2 in Equation (8.8) if treatment groups are balanced across centers.

The weighting scheme 4 in Equation (8.10) yields the average of the esti-
mates of treatment effect across centers weighting the estimates inversely to
their variance which is used in almost all the fixed-effects models and we will
use this weighting hereafter. Note that scheme 4 in Equation (8.10) reduces
to scheme 1 in Equation (8.7) if the σ̂2

i are the same (homogeneous) across
centers.

It should be noted that for dichotomous response data, the data at each
center may be summarized by a two-by-two table with responders versus non-
responders as columns and treatment groups as rows. Let Oi denote the num-
ber of responders in the pivotal cell of the two-by-two table at each center,
and E(Oi) and V ar(Oi) denote the expected value and variance of Oi re-
spectively, computed from the hypergeometric distribution. The square of
Equation (8.6) becomes the Mantel–Haenszel statistic proposed by Mantel
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and Haenszel (1959) for addressing association between treatment and re-
sponse across centers. For this reason, the weighted mean estimate in Equa-
tion (8.3) with its variance in (8.4) using weighting scheme 4 is implemented
in R library rmeta as function meta.MH for “Fixed effects (Mantel–Haenszel)
meta-analysis.” This R library is created by Professor Thomas Lumley at the
University of Washington with functions for simple fixed and random-effects
meta-analysis for two-sample comparisons and cumulative meta-analyses as
well as drawing standard summary plots, funnel plots, and computing sum-
maries and tests for association and heterogeneity.

8.2.3 Random-Effects Meta-Analysis Model: DerSimonian–
Laird

In the random-effects meta-analysis model, we assume the treatment effect
δ̂i from each center i is an estimate of its own underlying true treatment effect
δi with variance σ2

i , and further that the δi from all the C centers follow
some overall global distribution denoted byN(δ, τ2). This random-effects meta
model can be written as

δ̂i ∼ N(δi, σ2
i )

δi ∼ N(δ, τ2) (8.11)

This random-effects model can be described as an extension of the fixed-
effects model in Equation (8.1) as

δ̂i = δ + νi + εi (8.12)

where νi ∼ N(0, τ2) describes the between-center variation.
We assume that νi and εi are independent and therefore, the random-effects

model in Equation (8.11) can be re-written as

δ̂i ∼ N(δ, σ2
i + τ2) (8.13)

In this formulation, the extra parameter τ2 represents the between-center
variability around the underlying global treatment effect δ. It is easy to show
in this formulation that the global δ is also estimated by the weighted mean
similar to the fixed-effects meta-model as given in Equation (8.3) as

δ̂∗ =
∑C
i=1w

∗
i δ̂i∑C

i=1w
∗
i

(8.14)

with standard error estimated as

se
(
δ̂∗
)

=

√
1∑C

i=1w
∗
i

(8.15)
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where the weights now are given by

ŵ∗i =
1

σ̂2
i + τ̂2

(8.16)

se
(
δ̂∗
)

=

√
1∑C

i=1w
∗
i

(8.17)

Therefore, a 95% CI may be formulated to provide a statistical inference
similar to the fixed-effects model.

There are several methods to estimate the τ̂2. The most commonly used
one is from DerSimonian and Laird (1986) and is derived using the method of
moments (which does not involve iterative search algorithms as do likelihood-
based ones). This estimate is given as

τ̂2 =
Q− (C − 1)

U
(8.18)

if Q > C − 1, otherwise, τ̂2 = 0 where

Q =
C∑
i=1

wi(δ̂i − δ̂)2

U =
C∑
i=1

wi −
∑C
i=1 w

2
i∑C

i=1 wi

Note that the statistic Q is used for testing heterogeneity. This random-
effects meta-model is implemented in the R library rmeta as function meta.DSL
for “Random effects (DerSimonian–Laird) meta-analysis.” It is also imple-
mented as metabin and metacont in library meta.

Therefore, the random-effects meta-analysis model can incorporate both
within-center and between-center variability which is again an important
source of heterogeneity for multicenter clinical trials. In this sense, the random-
effects meta-analysis model is more conservative since w∗i ≤ wi which leads to

se(δ̂∗) =

√
1∑C

i=1w
∗
i

≥
√

1∑C
i=1wi

= se(δ̂) (8.19)

8.2.4 Publication Bias

Publication bias is sometimes referred to as selection bias. In meta-analysis,
the studies selected to be included in the meta-analysis is vital to the infer-
ential conclusion. Publication bias could arise when only the positive studies
(those that demonstrate statistical significance or if not statistically significant
don’t reflect qualitative interaction) of a drug are published. Therefore even
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though all published studies of a drug for the treatment of some disease may
be selected for a meta-analysis, the resulting inferential results may be biased
(may overestimate the effectiveness of the drug). The bias may be particularly
significant when meta-analyses are conducted by or are sponsored by a group
with a vested interest in the results.

In meta-analysis, Begg’s funnel plot or Egger’s plot is used to graphically
display the existence of publication bias. Statistical tests for publication bias
are usually based on the fact that clinical studies with small sample sizes (and
therefore large variances) may be more prone to publication bias in contrast to
large clinical studies. Therefore, when estimates from all studies are plotted
against their variances (sample size), a symmetrical funnel should be seen
when there is no publication bias, while a skewed asymmetrical funnel is a
signal of potential publication bias. We illustrate this funnel plot along with
the data analysis using the R system.

8.3 Meta-Analysis of Data in R

8.3.1 Analysis of Beta-Blocker Trials

We read the data into R using RODBC and create a new dataframe named
betablocker. For this dataset, we use the library rmeta. First we load this
library as:

> library(rmeta)

8.3.1.1 Fitting the Fixed-Effects Model

We first fit the fixed-effects model as described in Section 8.2.2 using the R
function meta.MH to compute the individual odds ratios or relative risks, the
Mantel–Haenszel weighted mean estimate and Woolf’s test for heterogeneity.
The R implementation is illustrated by the following R code chunk:

> # Get the data from the ``beta"
> n.trt = betablocker[betablocker$Treatment=="Treated",]$Total

> n.ctrl = betablocker[betablocker$Treatment=="Control",]$Total

> ev.trt = betablocker[betablocker$Treatment=="Treated",]$Deaths

> ev.ctrl = betablocker[betablocker$Treatment=="Control",]$Deaths

> # call the meta.MH for calculations

> betaOR = meta.MH(n.trt,n.ctrl,ev.trt,ev.ctrl,

names=paste("Center",1:22,sep=" "))

> # print the summary from meta.MH

> summary(betaOR)
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Fixed effects ( Mantel--Haenszel ) meta-analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = ev.trt,

pctrl=ev.ctrl,names=paste("Center", 1:22, sep = " "))
------------------------------------

OR (lower 95% upper)
Center 1 1.03 0.19 5.45
Center 2 0.48 0.18 1.23
Center 3 0.58 0.19 1.76
Center 4 0.78 0.60 1.03
Center 5 1.07 0.62 1.86
Center 6 0.56 0.15 2.10
Center 7 0.60 0.46 0.79
Center 8 0.92 0.62 1.38
Center 9 0.65 0.38 1.12
Center 10 0.72 0.57 0.90
Center 11 0.81 0.55 1.18
Center 12 0.96 0.61 1.51
Center 13 0.55 0.24 1.27
Center 14 1.33 0.89 1.98
Center 15 0.73 0.40 1.30
Center 16 0.87 0.52 1.46
Center 17 1.15 0.56 2.35
Center 18 1.38 0.47 4.08
Center 19 1.56 0.38 6.35
Center 20 0.80 0.48 1.34
Center 21 0.55 0.33 0.92
Center 22 0.54 0.32 0.93
------------------------------------
Mantel--Haenszel OR =0.77 95% CI ( 0.7,0.85 )
Test for heterogeneity: X^2( 21 ) = 23.26 ( p-value 0.3301 )

From the summary, we observe the odds-ratios (OR) comparing treatment
to placebo with associated 95% confidence intervals for all centers. These are
very variable with the smallest OR = 0.48 from center 2 and largest OR =
1.56 from center 19. There are a few ORs which are significantly different
from 1, but most are not. From the meta-analysis point of view, those ORs
are the estimates for the global OR as indicated by Mantel–Haenszel OR =
0.77 with 95% CI of (0.70, 0.85) indicating global statistical significance. The
χ2 test for heterogeneity gave p-value of 0.3301 indicating heterogeneity is not
statistically significant.

This meta-analysis is shown graphically in Figure 8.1 using “plot” as fol-
lows:

> plot(betaOR, ylab="Center")
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FIGURE 8.1: Forest Plot for the Beta-Blocker Trial with 95% CIs from Fixed-
Effects Meta-Analysis.

This is the so-called “forest plot” in meta-analysis; i.e., a plot of the esti-
mates and their associated 95% CIs for each center (or trial), as well as the
global (summary or combined) estimate. The 95% CI intervals are the lines,
the squares in the middle of the lines represent the point estimates. The global
estimate or “Summary” is the diamond whose width is the associated 95% CI.

To assess potential publication bias, we create the funnel plot for this
dataset as illustrated in Figure 8.2 using “funnelplot” as follows:

> funnelplot(betaOR)

The basic idea for funnel plot is based on the fact that the smaller studies
with larger variations should have greater spread around the mean effect.
Therefore, a plot of a measure of precision (such as the sample size or inverse
standard error, etc.) from all studies to their treatment effect would look
like a funnel if there is no publication bias. For these data, the funnel plot in
Figure 8.2 demonstrates symmetry about the mean effect suggesting no strong
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FIGURE 8.2: Funnel Plot for the Beta-Blocker Trial.

evidence of publication bias. We will illustrate a statistical test in the analysis
of the angina trial using R library meta.

8.3.1.2 Fitting the Random-Effects Model

Similarly, the random-effects model as described in Section 8.2.3 can be
implemented using R function meta.DSL to compute the individual odds ratios
or relative risks, the Mantel–Haenszel weighted mean estimate and Woolf’s
test for heterogeneity along with the estimate of the random-effects variance.
The R implementation is illustrated by the following R code chunk:

> # Call the meta.DSL for calculations

> betaDSL = meta.DSL(n.trt,n.ctrl,ev.trt,ev.ctrl,

names=paste("Center",1:22,sep=" "))

> # Print the summary from meta.DSL

> summary(betaDSL)

Random effects ( DerSimonian--Laird ) meta-analysis
Call: meta.DSL(ntrt = n.trt, nctrl = n.ctrl, ptrt = ev.trt,

pctrl = ev.ctrl,names = paste("Center", 1:22, sep = " "))
------------------------------------
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OR (lower 95% upper)
Center 1 1.03 0.19 5.45
Center 2 0.48 0.18 1.23
Center 3 0.58 0.19 1.76
Center 4 0.78 0.60 1.03
Center 5 1.07 0.62 1.86
Center 6 0.56 0.15 2.10
Center 7 0.60 0.46 0.79
Center 8 0.92 0.62 1.38
Center 9 0.65 0.38 1.12
Center 10 0.72 0.57 0.90
Center 11 0.81 0.55 1.18
Center 12 0.96 0.61 1.51
Center 13 0.55 0.24 1.27
Center 14 1.33 0.89 1.98
Center 15 0.73 0.40 1.30
Center 16 0.87 0.52 1.46
Center 17 1.15 0.56 2.35
Center 18 1.38 0.47 4.08
Center 19 1.56 0.38 6.35
Center 20 0.80 0.48 1.34
Center 21 0.55 0.33 0.92
Center 22 0.54 0.32 0.93
------------------------------------
SummaryOR= 0.78 95% CI ( 0.7,0.87 )
Test for heterogeneity: X^2( 21 ) = 23.26 ( p-value 0.3302 )
Estimated random effects variance: 0.01

From the summary, we see that the estimated between-center variance =
0.01 and the global OR = 0.78 with 95% CI of (0.70, 0.87). Because of the es-
timated nonzero between-center variance, the 95% CIs from individual centers
and the one based on the global estimate are slightly wider than those from
the fixed-effects meta-analysis, which is consistent with the theory described
in Section 8.2.3. Both fixed-effects and random-effects models indicated that
betablocker treatment was effective.

Similarly, the random-effects meta-analysis is shown graphically in Figure
8.3 calling “plot” as follows:

> plot(betaDSL, ylab="Center")

Both Figure 8.1 for the fixed-effects model and Figure 8.3 for the random-
effects model are produced using the default plot to call the forestplot.
These figures may be re-produced with more options directly by using
forestplot. We illustrate this using the fixed-effects model output. We en-
courage readers to try different settings and options for forestplot. In gen-
erating the forest plot, we first make text to list all the “Deaths”, (“OR” or
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FIGURE 8.3: Forest Plot for the Beta-Blocker Trial with 95% CIs from
Random-Effects Meta-Analysis.
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FIGURE 8.4: Forest Plot with More Options.

any other information the analyst would like to include for all centers). Then
“forestplot” is called to place the detail trial information along with the forest
plots in Figure 8.1. This produces Figure 8.4 with a few options using the
following R code chunk. The reader may wish to use “col” to add more colors.

> # Create the ``text" to include all the outputs

> text = cbind(c("","Center",betaOR$names,NA,"Summary"),

c("Deaths","(Betablockers)",ev.trt,NA,NA),

c("Deaths","(Placebo)", ev.ctrl, NA,NA),

c("","OR",format(exp(betaOR$logOR),digits=2),

NA,format(exp(betaOR$logMH),digits=2)))

> # Generate the OR and 95\% CI

> mean = c(NA,NA,betaOR$logOR,NA,betaOR$logMH)

> sterr = c(NA,NA,betaOR$selogOR,NA,betaOR$selogMH)

> l = mean-1.96*sterr

> u = mean+1.96*sterr
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> # Call forestplot with a few options

> forestplot(text,mean,l,u,zero=0,is.summary=c(TRUE,TRUE,

rep(FALSE,22),TRUE),clip=c(log(0.1),log(2.5)), xlog=TRUE)

8.3.2 Analysis of the Cochrane Collaboration Logo Trials

We first load the “Cochrane” data from rmeta library as

> # Load the data

> data(cochrane)

> # print it

> cochrane

name ev.trt n.trt ev.ctrl n.ctrl
1 Auckland 36 532 60 538
2 Block 1 69 5 61
3 Doran 4 81 11 63
4 Gamsu 14 131 20 137
5 Morrison 3 67 7 59
6 Papageorgiou 1 71 7 75
7 Tauesch 8 56 10 71

This gives the data in Table 8.1. With this dataframe, we fit the fixed-
effects model in Section 8.2.2 as follows:

> # Fit the fixed-effects model

> steroid = meta.MH(n.trt, n.ctrl, ev.trt, ev.ctrl,

names=name, data=cochrane)

> # Print the model fit

> summary(steroid)

Fixed effects ( Mantel--Haenszel ) meta-analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = ev.trt,

pctrl = ev.ctrl,names = name, data = cochrane)
------------------------------------

OR (lower 95% upper)
Auckland 0.58 0.38 0.89
Block 0.16 0.02 1.45
Doran 0.25 0.07 0.81
Gamsu 0.70 0.34 1.45
Morrison 0.35 0.09 1.41
Papageorgiou 0.14 0.02 1.16
Tauesch 1.02 0.37 2.77
------------------------------------
Mantel--Haenszel OR =0.53 95% CI ( 0.39,0.73 )
Test for heterogeneity: X^2( 6 ) = 6.9 ( p-value 0.3303 )
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It is observed from the model fit that the overall OR is 0.53 with 95%
CI of (0.39, 0.73), indicating significant overall effect for steroid treatment
in reducing neonatal death. However, if analyzed individually, in only two
(“Auckland” and “Doran”) of the 7 studies was steroid treatment statistically
significant. In addition, the χ2 test for heterogeneity yielded a p-value of 0.3303
indicating non-statistically significant heterogeneity.

We could call the default function plot to plot the meta-analysis, but
we can produce a more comprehensive figure for this analysis by calling the
forestplot using the following R code chunk which give Figure 8.5:

> # Create the ``tabletext" to include all the outputs

> tabletext = cbind(c("","Study",steroid$names,NA,"Summary"),

c("Deaths","(Steroid)",cochrane$ev.trt,NA,NA),

c("Deaths","(Placebo)",cochrane$ev.ctrl, NA,NA),

c("","OR",format(exp(steroid$logOR),digits=2),

NA,format(exp(steroid$logMH),digits=2)))

> # Generate the CI

> mean = c(NA,NA,steroid$logOR,NA,steroid$logMH)

> stderr = c(NA,NA,steroid$selogOR,NA,steroid$selogMH)

> l = mean-1.96*stderr

> u = mean+1.96*stderr

> # Call forestplot

Study
Auckland
Block
Doran
Gamsu
Morrison
Papageorgiou
Tauesch

Summary

Deaths
(Steroid)

36
1
4

14
3
1
8

Deaths
(Placebo)

60
5

11
20

7
7

10

OR
0.58
0.16
0.25
0.70
0.35
0.14
1.02

0.53

0.1 0.5 1.0 1.5 2.02.5

FIGURE 8.5: Forest Plot for Cochrane Data.
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> forestplot(tabletext,mean,l,u,zero=0,

is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE),

clip=c(log(0.1),log(2.5)), xlog=TRUE)

8.3.3 Analysis of Amlodipine Trials Data

8.3.3.1 Load the Library and Data

For this data, we illustrate the application of the R library meta for its
functionalities in meta-analysis. We load the library as

> library(meta)

load meta: C:/MyPrograms/R/R-2.11.1/library ...

The functions associated with this library may be seen using

> library(help=meta)

This library may be used also for fixed- and random-effects meta-analysis.
In addition, there are functions that can be used for tests of bias, and for
producing forest and funnel plots. We load the data in Table 8.2 into R as
follows:

> # Load the library

> require(RODBC)

> # Get the data path

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> # link the excel data book

> getxlsbook = odbcConnectExcel2007(datfile)

> # Get the data from the data sheet

> angina = sqlFetch(getxlsbook,"angina")

> # Close the ODBC

> odbcCloseAll()

> # Print the data

> angina

Protocol nE meanE varE nC meanC varC
1 154 46 0.232 0.2254 48 -0.0027 0.0007
2 156 30 0.281 0.1441 26 0.0270 0.1139
3 157 75 0.189 0.1981 72 0.0443 0.4972
4 162 12 0.093 0.1389 12 0.2277 0.0488
5 163 32 0.162 0.0961 34 0.0056 0.0955
6 166 31 0.184 0.1246 31 0.0943 0.1734
7 303 27 0.661 0.7060 27 -0.0057 0.9891
8 306 46 0.137 0.1211 47 -0.0057 0.1291

We see that there are eight protocols, each with the number of observations,
mean and variance for treatment and control groups.
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8.3.3.2 Fit the Fixed-Effects Model

This is a dataset with continuous response data and we use the metacont
to model the data with the following R chunk:

> # Fit fixed-effect model

> fixed.angina = metacont(nE, meanE, sqrt(varE),nC,meanC,

sqrt(varC),data=angina,studlab=Protocol,comb.random=FALSE)

> # Print the fitted model

> fixed.angina

MD 95%-CI %W(fixed)
154 0.2343 [ 0.0969; 0.372] 21.22
156 0.2541 [ 0.0663; 0.442] 11.35
157 0.1451 [-0.0464; 0.337] 10.92
162 -0.1347 [-0.3798; 0.110] 6.67
163 0.1566 [ 0.0072; 0.306] 17.94
166 0.0894 [-0.1028; 0.282] 10.85
303 0.6669 [ 0.1758; 1.158] 1.66
306 0.1423 [-0.0015; 0.286] 19.39

Number of trials combined: 8

MD 95%-CI z
Fixed effect model 0.162 [0.0986; 0.225] 5.01

p.value
Fixed effect model < 0.0001

Quantifying heterogeneity:
tau^2 = 0.0066; H = 1.33 [1; 2]; I^2 = 43.2% [0%; 74.9%]

Test of heterogeneity:
Q d.f. p.value

12.33 7 0.0902

Method: Inverse variance method

From this fixed-effect model fitting, we note from the 95% CIs that am-
lodipine treatment is not statistically significant in four of the eight protocols.
However the overall effect of Amlodipine from the fixed-effects model is 0.162
with corresponding 95% CI of [0.0986; 0.225] and p-value < 0.001, indicating
a statistically significant treatment effect. The test of heterogeneity gave a
p-value of 0.09 from Q = 12.33 with degrees of freedom of 7 indicating that
there is no strong evidence against homogeneity.
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A simple forest plot can be generated by calling the plot as follows to
produce Figure 8.6.

> plot(fixed.angina)

0.0 0.5 1.0
Mean difference

154

156

157

162

163

166

303

306

Fixed effect model

FIGURE 8.6: Default Forest Plot for the Amlodipine Trials with 95% CIs.

Figure 8.7 is a better presentation of the forest plot in Figure 8.6, and may
be generated by calling forest with the R code chunk below. Note that we
first use round to “round” the number of digits to the right of the decimal to
2 for better display purposes.

> # Round to 2-digit

> fixed.angina$mean.e = round(fixed.angina$mean.e,2)

> fixed.angina$sd.e = round(fixed.angina$sd.e,2)

> fixed.angina$mean.c = round(fixed.angina$mean.c,2)

> fixed.angina$sd.c = round(fixed.angina$sd.c,2)

> # Call forest to make plot

> forest(fixed.angina)
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FIGURE 8.7: A Detailed Forest Plot for the Amlodipine Trials with 95% CIs.

To assess potential publication bias informally, we generate the funnel plot
and visually assess whether it is symmetric. This funnel plot can be generated
using the following R code chunk which produces Figure 8.8:

> funnel(fixed.angina)

From this figure, we note that protocol 303 has the largest mean difference
of 0.6669 on the right and protocol 162 has the smallest mean difference of
−0.1347 on the left. The remaining are quite symmetric. A statistical signif-
icance test can be performed using metabias. This test is based on the rank
correlation between standardized treatment estimates and variance estimates
of estimated treatment effects where Kendall’s tau is used as the correlation
measure (see from Begg and Mazumdar (1994)). Other tests may be performed
and may be seen in the library meta.

By calling metabias for this model fitting as follows:

> metabias(fixed.angina)

Rank correlation test of funnel plot
asymmetry
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FIGURE 8.8: Funnel Plot for the Amlodipine Trials.

data: fixed.angina
z = -0.742, p-value = 0.4579
alternative hypothesis: asymmetry in funnel plot
sample estimates:

ks se.ks
-6.00 8.08

We see the p-value associated with this test is 0.4579 indicating symmetry
of the funnel plot.

8.3.3.3 Fit the Random-Effects Model

Similar to the fixed-effects model in Section 8.3.3.2, we can fit the random-
effects model as follows:

> # fit random-effects model

> random.angina = metacont(nE, meanE, sqrt(varE),nC,meanC,

sqrt(varC),data=angina,studlab=Protocol,comb.random=T)

> # print the summary fit

> random.angina
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MD 95%-CI %W(fixed) %W(random)
154 0.2343 [ 0.0969; 0.372] 21.22 17.47
156 0.2541 [ 0.0663; 0.442] 11.35 12.74
157 0.1451 [-0.0464; 0.337] 10.92 12.45
162 -0.1347 [-0.3798; 0.110] 6.67 9.04
163 0.1566 [ 0.0072; 0.306] 17.94 16.21
166 0.0894 [-0.1028; 0.282] 10.85 12.40
303 0.6669 [ 0.1758; 1.158] 1.66 2.90
306 0.1423 [-0.0015; 0.286] 19.39 16.79

Number of trials combined: 8

MD 95%-CI z p.value
Fixed effect model 0.162 [0.0986; 0.225] 5.01 < 0.0001
Random effects model 0.159 [0.0710; 0.247] 3.54 0.0004

Quantifying heterogeneity:
tau^2 = 0.0066; H = 1.33 [1; 2]; I^2 = 43.2% [0%; 74.9%]

Test of heterogeneity:
Q d.f. p.value

12.33 7 0.0902

Method: Inverse variance method

This gives the model fitting for random-effects as well as for fixed-effects.
We note from the output that the estimated between-protocol variance τ̂2 =
0.0066 and that the mean difference is estimated as 0.159 from the random-
effects model as compared to 0.162 from the fixed-effects model. The 95% CI
from the random-effects model is (0.071, 0.247) as compared to (0.098, 0.225)
from the fixed-effects model. Again the 95% CI from the random-effects model
is wider than that for the fixed-effects model. We leave the forest plot as an
exercise for interested readers.

8.4 Concluding Remarks

In this chapter, we illustrated meta-analysis methods for multicenter clini-
cal trials using publicly available datasets with both fixed-effects and random-
effects models. Woolf’s test was used to test for lack of homogeneity.

Lack of homogeneity among centers in a multicenter clinical trial, can
demonstrably impact the statistical detection of treatment effects as indi-
cated by Peace (1992). A goal of a quality designed and quality conducted
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multicenter clinical trial is to strive for homogeneity among centers. In order
to accomplish or come close to accomplishing this goal requires ownership and
commitment from all personnel having some responsibility in the design, con-
duct, monitoring, data management, statistical analysis and reporting of the
trial.

It may be that modifying the typical design of multicenter trials to account
for biological variation in terms of how patients metabolize the drug may lead
to greater homogeneity of treatment effect across centers. For example, after
patients qualify for the protocol but prior to randomization, give them a single
dose of the drug; obtain sufficient blood samples to estimate the maximum
concentration (i.e., CMAX), and then stratify before randomization on levels
of CMAX as recommended in Peace (1994) and Chapter 8 of Peace and Chen
(2010).

Readers of this chapter may use the models and associated R code con-
tained herein to analyze their own clinical trials by combining treatment effects
across centers or to synthesize trial estimates of treatment effects across tri-
als. For further reading, we recommend Hedges and Olkin (1985), Whitehead
(2003) and Hartung et al. (2008). For R application, we recommend the reader
become more familiar with the rmeta and meta libraries. There are other R
libraries, such as metacor for meta-analysis of correlation coefficients and an-
other library of metafor for meta-analysis. Chapter 12 (Meta-Analysis) in
Everitt and Hothorn (2006) is again an excellent reference on the subject.

Fundamental to the validity of inference from a meta-analysis as a re-
search synthesis of a collection of trials is the selection of individual trials
in the collection. If the results of meta-analyses are to be credible, then the
analysis methods must be only part of an investigative research process re-
flecting good science. Simply put, a protocol should be developed prior to
beginning any meta-analysis that reflects the process. Attention should be
given to the objective of the investigation, endpoints reflecting the objective,
how the studies are to be identified and included, procedures for investigating
bias, and statistical methods as presented in Chalmers et al. (1981), Chalmers
(1987), Peace (1991a), Berlin and Colditz (1999) and Crowe et al. (2009) are
excellent references regarding a meta-analytic scientific process.
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Bayesian methods are being increasingly used in the design and analysis of
clinical trials. Chen and Kim (2009) presented Bayesian analyses of melanoma
data from a clinical trial conducted by Eastern Cooperative Oncology Group
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(ECOG) and of prostate cancer data from a clinical trial conducted at St.
Anne’s Hospital in Fall River, Massachusetts utilizing cure rate models. Tan
et al. (2002) explored a Bayesian approach to the design, analysis and inter-
pretation of Phase II clinical trials conducted at the National Cancer Centre
in Singapore on the activity of Gemcitabine in patients with metastatic na-
sopharyngeal carcinoma. Connor and Berry (2005) used Bayesian methods to
analyze adverse event data from medical device clinical trials.

In this chapter we introduce relevant Bayesian models, applications of R
packages and simulation of some commonly known distributions that are useful
in the Bayesian analysis of clinical trial data. Bayesian models are discussed
in Section 9.1. Applications of the R package MCMCpack appear in Section 9.2.
Simulations of distributions are provided in Section 9.3.

In addition, data from clinical trials analyzed earlier in the book using
frequentist based methods are re-analyzed using Bayesian methods. We re-
analyze the duodenal ulcer clinical trial data from Chapter 3 in subsection
9.3.2 and in subsection 9.4.4. In Section 9.4 we re-analyze the diastolic blood
pressure clinical trial data from Chapter 4 using Bayesian MCMC algorithms.
In subsection 9.4.3 we re-analyze the familial andenomatous polyposis clinical
trial data from Section 4.3.3 using Bayesian Poisson regression. Concluding
remarks are provided in Section 9.5.

Note: to run the R programs in this chapter, the analyst should install the
following R packages first: RODBC , R2WinBUGS , rbugs, BRugs, MCMCpack
and hypergeo.

9.1 Bayesian Models

9.1.1 Bayes’ Theorem

The most elemental beginning of a discussion of Bayesian methods is Bayes’
Theorem, named after Thomas Bayes, an eighteenth century English mathe-
matician and Presbyterian minister. Bayes’ Theorem relates the conditional
probability P (H|E) to its inverse P (E|H) for any two events E and H as
follows:

P (H|E) =
P (E|H)P (H)

P (E)
=

P (E|H)P (H)
P (E|H)P (H) + P (E|Hc)P (Hc)

(9.1)

where Hc is the complementary event of H.
To illustrate use of Bayes’ Theorem, suppose that H denotes the event

of a patient having breast cancer and E denotes the event of the patient
having a positive mammogram. From Equation (9.1) the conditional proba-
bility P (H|E) of the patient having breast cancer (H) given the patient has
a positive mammogram (E) may be calculated from (prior) knowledge of the
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unconditional probabilities P (E) and P (H), as well as the conditional proba-
bility of P (E|H). P (E) could be estimated as the proportion of patients with a
positive mammogram; P (H) could be estimated as the proportion of patients
having breast cancer; and P (E|H) could be estimated as the proportion of
patients having breast cancer in whom the mammogram is positive.

For instance, suppose a mammogram is 95% accurate in detecting breast
cancer among patients with known breast cancer (i.e., the sensitivity of the
mammogram P (E|H) = 0.95), and is 99% accurate in failing to detect breast
cancer among patients not having breast cancer (i.e., the specificity of the
mammogram P (Ec|Hc) = 0.99). Further suppose 1% of subjects will have
breast cancer (i.e., the prevalence of breast cancer P (H) = 0.01). Bayes’
Theorem enables one to calculate the probability that a patient actually has
breast cancer, given the mammogram was positive (i.e., the precision of the
mammogram P (H|E)); e.g.,

P (H|E) =
P (E|H)P (H)

P (E|H)P (H) + P (E|Hc)P (Hc)

=
0.95× 0.01

0.95× 0.01 + (1− 0.99)× (1− 0.01)
= 0.49

which is surprisingly small.
We can also calculate the probability that a patient does not have breast

cancer given the mammogram was negative (i.e., the negative predictive
probability of the mammogram P (Hc|Ec)); e.g.,

P (Hc|Ec) =
P (Ec|Hc)P (Hc)

P (Ec|Hc)P (Hc) + P (Ec|H)P (H)

=
0.99× (1− 0.01)

0.99× (1− 0.01) + (1− 0.95)× 0.01
= 0.999

which is quite high, particularly in comparison to the precision (0.49).
More technically, Bayes’ theorem expresses the posterior probability for

a hypothesis H of having breast cancer after a positive mammogram E is
observed, in terms of the prior probabilities of H and E, and the probability
of E given H. In more general statistical terms, if E represents an observed
data event y and H is described in terms of a hypothetical parameter θ,
then the probability P (E|H) is the likelihood function L(θ) = L(θ|y) and
P (H) = π(θ) is the prior distribution about the parameter θ. In this setting
Bayes’ Theorem becomes

p(θ|y) =
L(θ)π(θ)∫
L(θ)π(θ)dθ

∝ L(θ)π(θ) (9.2)

which may be used for providing statistical inference about an unknown pa-
rameter θ based on the data y. p(θ|y) is called the posterior probability
distribution in Bayesian statistics.
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Therefore in Bayesian statistics, the observed data y and our prior knowl-
edge about θ are combined to form the corresponding posterior distribution
[y, π(θ)]→ p(θ|y) via Bayes’ Theorem.

Note in Equation (9.2), the denominator
∫
L(θ)π(θ)dθ is a constant in-

dependent of the parameter θ and is usually difficult to obtain especially for
higher dimensional parameter vectors. This constant is sometimes called a
normalization constant.

9.1.2 Posterior Distributions for Some Standard
Distributions

The computation of the posterior distribution in Equation (9.2) is then the
next step in Bayesian modeling. In this section, we illustrate posterior distri-
butions without detailed proof for some standard distributions commonly used
in Bayesian statistics and clinical trials. The detailed mathematical derivation
may be found in Gelman et al. (2009) and other Bayesian statistics text books.

There are different types of prior distributions which are being used in
Bayesian modeling. Two of the most commonly used are a noninformative or
reference prior and another is a conjugate prior. A noninformative prior is
used when no prior information is available about the parameter of interest.
A conjugate prior leads to the same distribution family when combined with
the likelihood. We illustrate these two types of priors in this section.

9.1.2.1 Normal Distribution with Known Variance

Consider a set of i.i.d. observations yi with i = 1, 2, · · · , n on some random
variable Y and let y = (y1, · · · , yn) represent all n observations. Assume that
Yi ∼ N(θ, σ) with σ known.

1. Noninformative or reference prior. The noninformative or reference prior
is π(θ) = 1, representing that no prior information is available. For this

prior, the posterior distribution is easily shown to be

p(θ|y) = N(ȳ, σ2/n) (9.3)

which is the usual normal distribution. Therefore, a 1−α credible interval
is ȳ ± zα/2 σ√

n
which is the usual 100(1− α)% confidence interval under

the Bayesian framework. For clarification, by a 100(1 − α)% credible
interval for a parameter we mean that the posterior probability of the
parameter lying in the interval is a 100(1− α)%.

2. The conjugate prior. The so-called conjugate prior is a prior distribution
when combined with the likelihood leads to the same distribution. In the
normal case, the conjugate prior is π(θ) = N(θ0, τ

2) where θ0 and τ2

are the prior mean and variance which leads to the posterior normal
distribution. We can easily show this as

p(θ|y) ∝ N(µP , σ2
P ) (9.4)
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where µP = wȳ + (1 − w)θ0 is the posterior mean and σ2
P = 1

n
σ2 + 1

τ2
is

the posterior variance.

It is noted that µP is the weighted average of the prior mean θ0 and
data mean ȳ with the weight w depending on the prior and the data
variances; i.e., w = τ2

τ2+σ2/n
. The posterior variance σ2

P incorporates
variances from both the data and the prior distribution and is less than
σ2

n , representing a shrinkage to the posterior mean.

9.1.2.2 Normal Distribution with Unknown Variance

Now more realistically we assume that Yi ∼ N(θ, σ) with σ unknown. In
this situation, the usual noninformative or reference prior is π(µ, σ) ∝ 1/σ.
The posterior distribution can be shown to be

p(µ, σ|y) = p(σ|y)p(µ|σ, y) (9.5)

where σ|y ∼ (n−1)s2/χ2
n−1 which is the so-called inverse-χ2 distribution and

µ|σ, y ∼ N(ȳ, σ2/n). For statistical inference on the mean µ, the marginal
posterior distribution for µ can be obtained by integrating out the σ from the
joint posterior distribution in Equation (9.5) and can be expressed as

µ = ȳ +
s√
n
Tn−1 (9.6)

where Tn−1 ∼ tn−1. Therefore a 1−α credible interval for µ is ȳ± tn−1,α/2
s√
n

,
which is the usual 100(1−α)% confidence interval based on the t-distribution.

9.1.2.3 Normal Regression

We now consider the typical simple linear regression model:

yi = β0 + x1iβ1 + · · ·+ βpxpi + εi (9.7)

where εi ∼ N(0, σ2) with observed data (yi, x1i, · · · , xpi). From the theory of
linear regression, the regression parameter vector β = (β0, β1, · · · , βp) can be
estimated by least squares as β̂ = (XTX)−1XTY with variance estimated as
σ̂2 = s2 = SSR

n−p , where SSR is the residual sum of squares.
For Bayesian inference, let’s assume the noninformative or usual reference

prior to be π(β, σ) ∝ σ−1. We can show that the posterior distribution for
σ2 is σ2|data ∼ (n − p)s2/χ2

n−p (i.e., the inverse-χ2 distribution) and that
the posterior for βi is βi ∼ β̂i + siTn−p, where s2

i = s2(XTX)−1
ii (i.e., the

iith element of matrix (XTX)−1). Therefore, a 1−α credible interval for βi is
β̂i±tα/2si, which again is equivalent to the traditional 100(1−α)% confidence
interval based on the t-distribution in the Bayesian framework.
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9.1.2.4 Binomial Distribution

When the observations are binomially distributed as y ∼ Bin(n, θ), where
θ is the binomial proportion parameter, using the usual noninformative or
reference prior π(θ) = 1, leads to the well-known beta-binomial as the pos-
terior distribution. This posterior distribution can be shown to be p(θ|y) =
Beta(y + 1, n− y + 1) where Beta(a, b); a beta distribution with parameters
a and b with functional form given by: Beta(a, b) = Γ(a+b)

Γ(a)Γ(b)
xa−1(1−x)b−1dx.

If we use the conjugate prior Beta(a, b) as π(θ) ∝ θa−1(1 − θ)b−1, the pos-
terior distribution can be shown to be p(θ|y) = Beta(a + y, b + n − y). This
beta-binomial distribution is commonly used in clinical trials with binomial
observations.

9.1.2.5 Multinomial Distribution

If y ∼Multinomial(n, θ) where y = (y1, · · · , yp) and θ = (θ1, · · · , θp), the
noninformative or reference prior π(θ) ∝ 1 leads to the multinomial posterior
distribution p(θ|y) ∝ θy1

1 · · · θ
yp
p .

The conjugate prior for multinomial distribution is the Dirichlet distribu-
tion Dirichlet(α1, · · · , αp); i.e.,

π(θ) ∝ θα1−1
1 · · · θαp−1

p .

The posterior distribution is θ|y ∼ Dir(α1 +y1, · · · , αp+yp). The multinomial
distribution is used in the analysis of clinical trial frequency data with multiple
categories.

9.1.3 Simulation from the Posterior Distribution

From Equation (9.2) in Section 9.1.2, we note that the posterior distribu-
tion can easily become intractable and lead to an unrecognizable distribution.
This created a burden in the early development stages of Bayesian modeling.
With the availability of high-speed computers, we can make statistical infer-
ences from a posterior distribution through simulation. To do so, we draw ran-
dom samples of size N as θ1, · · · , θN from the posterior distribution p(θ|y).
From these samples, for any function of the parameter θ of g, the mean of
E[g(θ)|y] can be estimated by

P
i g(θi)

N and the posterior distribution for g(θ)
can be approximated by a histogram of the values g(θ1), · · · , g(θN ). Then any
statistical inference can be made from this sample.

The challenge for this simulation approach is to find a viable way to draw
samples from p(θ|y). There are many methods to do so and we briefly describe
four of the more common ones used in Bayesian modeling. These are direct
simulation, importance sampling, Gibbs sampling and Metropolis–Hastings
sampling.
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9.1.3.1 Direct Simulation

The direct simulation method is to ‘directly simulate’ from the posterior
distribution provided it can be linked to known distributions that can be easily
simulated. The term easily is very relative depending on the readers analytical
background.

Consider a simple two-treatment clinical trial setting with n patients
from treatment 1 and m from treatment 2, where the data from treat-
ment 1 are X1, · · · , Xn ∼ N(µX , σ2

X) and the data from treatment 2 are
Y1, · · · , Ym ∼ N(µY , σ2

Y ). For simplicity, assume that the noninformative prior
is π(µX , µY , σX , σY ) ∝ 1

σXσY
. Typically in a clinical trial, we are interested

in the mean treatment difference denoted by δ = µX − µY and its posterior
distribution π(δ|data).

The marginal posterior distribution p(µX , µY |data) for µX and µY can be
derived by multiplying the likelihood by the prior distribution and integrat-
ing out σX and σY . It can be shown that µX and µY are independent with
posterior distributions:

µX ∼ x̄+
sX√
n
Tn−1

µY ∼ ȳ +
sY√
m
Tm−1

where Tk denotes a random variable having a Student-t distribution with k
degrees of freedom, x̄ and ȳ are the sample means, and sX and sY are the
sample standard deviations for samples Xi’s and Yi’s.

Since Student-t distribution is common and can be easily simulated, a
direct simulation can be performed as follows:

• Step 1: Randomly draw samples T 1
X , · · · , TNX from tn−1 and T 1

Y , · · · , TNY
from tm−1,

• Step 2: calculate µiX = x̄+ sX√
n
T iX and µiY = ȳ + sY√

m
T iY ,

• Step 3: calculate δi = µiX − µiY , i = 1, · · · , N .

The δi from Step 3 are samples from the posterior distribution π(δ|data)
which can be used to estimate the posterior mean and a credible interval and
to provide any other Bayesian inference.

9.1.3.2 Importance Sampling

In the case that direct simulation is not feasible, importance sampling with
Monte Carlo simulation may be used. It is often used as the first method for
sampling from intractable posterior distributions.

Consider a posterior density function f(z) and suppose we are interested in
the expectation of a function g(z) which can be approximated by E(g(Z)) =∫
g(z)f(z)dz ≈ 1

N

∑
i g(Zi), where z1, · · · , zn is a random sample from the

density f(z). But suppose it is too difficult to directly simulate from f .
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Let s(z) be another density function (called the importance function) which
is close to f in form and is easy to simulate. Simulate z1, · · · , zn from s(z).
Then

E(g(Z)) =
∫
g(z)f(z)dz

=
∫
g(z)f(z)
s(z)

s(z)dz

≈ 1
N

∑
i

g(zi)f(zi)
s(zi)

So if the posterior distribution f(θ) = p(θ|y) ∝ L(θ)π(θ) is not amenable
to direct simulation, we randomly draw samples instead from an importance
density s. Similarly,

E[g(θ)|y] ≈

P
i g(θi)×L(θi)π(θi)

s(θi)P
i L(θi)π(θi)

s(θi)

(9.8)

Importance sampling is an obvious improvement to direct sampling and
both are useful when the number of parameters is small. However, both sam-
pling methods have limitations when the number of parameters is large. When
the dimension of parameter space is large, sampling from the importance den-
sity also becomes intractable. In such cases recent developments in Gibbs
sampling and Metroplis–Hastings sampling can be used.

9.1.3.3 Gibbs Sampling

Gibbs sampling was proposed in the landmark paper by Geman and Geman
(1984) and popularized by Gelfand and Smith (1990) in Bayesian methods and
statistical computing.

The basic idea in Gibbs sampling is to randomly sample from the condi-
tional distributions. As an example, let f(x, y) be a bivariate density function
from which we wish to randomly draw samples. Gibbs sampling starts by ob-
taining x0 and y0, and proceeds iteratively in the following fashion. At the tth

iteration we randomly draw

xt ∼ f(x|yt−1)
yt ∼ f(y|xt)

Repeating N times, the sample (x1, y1), · · · , (xN , yN ) may be regarded as
an approximate sample from f(x, y). Because the sample pairs are dependent
especially in the beginning, the common practice is to discard the first m pairs,
referred to as “burn-in.”
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With this sample, the estimation of f(x) proceeds as follows:

f(x) =
∫
f(x, y)dy

=
∫
f(x|y)f(y)dy

≈
∑
i f(x|yi)
N

(9.9)

To use Gibbs sampling in Bayesian modeling, we choose f(θ1, θ2) as the
posterior distribution; i.e., f(θ1, θ2) = p(θ1, θ2|y). Gibbs sampling easily gen-
eralizes to any number of parameters as long as their conditional distributions
are available.

9.1.3.4 Metropolis–Hastings Algorithm

Similar to Gibbs sampling, the Metropolis–Hastings (MH) algorithm uti-
lizes a Markov-chain (MC) to generate correlated Monte-Carlo (MC) samples
and is therefore referred to as one of the general Markov-chain Monte-Carlo
(MCMC) algorithms. Proposed initially by Metropolis et al. (1953) and later
generated by Hastings (1970), the Metropolis–Hastings (MH) algorithm is very
general. It may be used to generate samples from a distribution p(θ), where
p(θ) is only known up to a constant, such as p(θ) = h(θ)/C and C =

∫
h(θ)dθ.

This links immediately to Bayesian modeling where p(θ) is a posterior distri-
bution and h(θ) = L(θ)π(θ).

The essence of the MH algorithm is to choose a working Markov chain
with easily simulated kernel q(ψ|θ) (the probability of jumping into state ψ
from state θ) then modify the chain to approximate the posterior p(θ). This
is done by starting the selected chain q at an arbitrary point θ(0) and drawing
a candidate value ψ ∼ q

(
ψ|θ(i)

)
from the selected arbitrary chain q. Then

θ(i+1) is obtained as

θ(i+1)=
{

ψ with probability α
θ(i) with probability 1− α

where

α = min

{
h(ψ)
h(θ(i))

q(θ(i)|ψ)
q(ψ|θ(i)) , 1

}
Note in the formula of the above α calculation, the constant C cancels out

in the ratio so we do not need to evaluate the integral
∫
h(θ)dθ which makes

the MH algorithm especially useful in Bayesian modeling.
There are several MH algorithms depending on the choice of the initial

MC q(ψ|θ) kernel. Two of the more commonly used are the independent and
random walks as follows:
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1. Independent MH: In the independent MH, the working MC is inde-
pendent of the present state of the chain, i.e., q(ψ|θ) = q(ψ). In this

situation, α = min

{
h(ψ)
h(θ(i))

q(θ(i))
q(ψ)

, 1
}

2. Random Walk: Different from the independent MH which ignores infor-
mation from the previous state, the random-walk MH takes into account
the MC value previously simulated in generating the next value in the
chain. The random-walk MC can be expressed as

θi+1 = θi + εi (9.10)

where εi is a random perturbation. The most common choice of distri-
butions for the Markov chain kernel is the standardized normal distri-
bution; i.e., chose ψ|θ(i) ∼ N

(
θ(i), σ2

0

)
where σ0 is some fixed number.

In this case, α can be simplified to α = min
{

h(ψ)
h(θ(i))

, 1
}

which is inde-
pendent of q. This MH algorithm is called a normal random walk chain
and is one of the simplest MH algorithms. With this simplified MH, the
candidate value ψ is drawn from a normal distribution with mean at the
current value to compute α as α = min

{
h(ψ)
h(θ(i))

, 1
}

. The next value is
equal to the candidate value with probability α and equal to the previous
value with probability 1− α.

9.2 R Packages in Bayesian Modeling

9.2.1 Introduction

Historically, Bayesian modeling has been heavily dependent on obtaining
a suitable posterior distribution. From the introduction of Bayes’ Theorem to
the 1960s, conjugate priors were used to facilitate determining conjugate poste-
rior distributions. Over the next two decades, a wide range of approaches were
used to approximate posterior distributions, such as Gaussian quadrature,
Expectation-Maximization algorithm, and Laplace’s method. In the 1980s,
simple Monte Carlo (MC) methods began to be used in Bayesian modeling,
such as direct sampling in Section 9.1.3.1 and importance sampling in Sec-
tion 9.1.3.2, which are referred to as non-iterative MC methods. Since the
1990s, due to the rapid development of computer technology, MCMC meth-
ods, such as the Gibbs sampling in Section 9.1.3.3 and the Metropolis–Hastings
algorithm described in Section 9.1.3.4, have become widely used in Bayesian
modeling.

The availability of R since the 1990s has greatly contributed to MCMC
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methods gaining wider use in Bayesian modeling. There are many R packages
developed for Bayesian modeling using MCMC. We briefly outline some of the
commonly used packages in R for Bayesian modeling.

9.2.2 R Packages Using WinBUGS

As mentioned in the previous section, MCMC methods became useable
in the 1990s. This is largely due to the development of WinBUGS, the Win-
dows version of BUGS which stands for “Bayesian inference Using Gibbs
Sampling” as outlined in Spiegelhalter et al. (2003). WinBUGS incorporates
Gibbs sampling and the Metropolis–Hastings algorithm to generate a Markov
chain by sampling from full conditional distributions. It is freely available at
http://www.mrc-bsu.cam.ac.uk/bugs/. Building on WinBUGS, there are sev-
eral packages (commonly referred to as libraries) in R to call the functions in
WinBUGS.

9.2.2.1 R2WinBUGS

Based on the publicly available WinBUGS, the R2WinBUGS package was de-
veloped to provide functions to call WinBUGS from R by Sturtz et al. (2005).
As described by the authors, “it automatically writes the data and scripts in a
format readable by WinBUGS for processing in batch mode.”“After the WinBUGS
process has finished, it is possible either to read the resulting data into R by
the package itself—which gives a compact graphical summary of inference and
convergence diagnostics—or to use the facilities of the coda package for fur-
ther analysis of the output. Examples are given to demonstrate the usage of
this package.”

This package can be downloaded from the R website and loaded into R as
follows:

> library(R2WinBUGS)

If the analyst’s computer is linked to the internet, R2WinBUGS can be in-
stalled by typing install.packages("R2WinBUGS") from the R command
prompt and then loading the library into R using the above R code chunk
and using

> library(help=R2WinBUGS)

to get the help manual for this package which can be viewed to see that this
package is for running WinBUGS from R. Therefore WinBUGS should be installed
in advance in order for R2WinBUGS to call the functions.

For further information on how to use this package step-by-step, readers are
directed to the paper by Sturtz et al. (2005). The manual and some examples
are given in the subdirectory of “/library/R2WinBUGS/doc” under the R
home directory.
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9.2.2.2 BRugs

BRugs is another R library for use in R to call OpenBUGS. The OpenBUGS is
a newly revised version of WinBUGS as described in Spiegelhalter et al. (2004).
Since OpenBUGS is still under development it suffers frequent crashes. When
OpenBUGS becomes more reliable, the development team will merge BRugs with
R2WinBUGS into an R package. This package can be installed from R webpage
and loaded into R using the following R code chunk:

> library(BRugs)

Both usage and help information is available from “library(help=BRugs).”
Interested readers may wish to explore this package.

9.2.2.3 rbugs

The R package rbugs was developed by Jun Yan (jyan@stat.uconn.edu)
with part of the code modified from bugs.R (http://www.stat.columbia.
edu/~gelman/bugsR/) by Andrew Gelman (gelman@stat.columbia.edu). As
mentioned in the manual, the“design philosophy of rbugs is to take advantage
of the universal MCMC sampler of BUGS through an interface as simple as
possible, and return the MCMC samples in a format which can be fed into
other R packages specializing in Bayesian output analysis, such as boa and
coda.”

Similarly, the package rbugs may be installed and loaded into R using the
following R code chunk:

> library(rbugs)

Both usage and help information may be accessed by“library(help=rbugs).”
Again interested readers may wish to explore the functionalities of this pack-
age.

9.2.2.4 Typical Usage

Typical use of these packages is to call WinBUGS. Therefore the model
building steps in WinBUGS must be followed. Usually at a minimum, there are
three files that need to be built beforehand to run the program. These are:
a model file, a data file and an initial value file. The model file is written by
the user with syntax from WinBUGS, which is basically R code. Therefore the
user needs to be good at programming in both R and WinBUGS. The data and
initial files are built using R syntax. With these files, these packages will then
use a function call to WinBUGS to run the program and output the results.
The output can then be analyzed in R for convergence and relevant output
analysis.

The flexibility of these packages to use WinBUGS language is an advantage
for advanced users who want to build and fit advanced custom models.
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9.2.3 MCMCpack

Different from the packages listed in Section 9.2.2 to call WinBUGS,
MCMCpack is designed separately from WinBUGS. It is a standalone package
developed by Andrew D. Martin (admartin@wustl.edu), Kevin M. Quinn
(kevin_quinn@harvard.edu) and Jong Hee Park (jhp@uchicago.edu). This
package implements MCMC algorithms which is model-specific as is usually
done by R function calls. Therefore is easy to use even for a novice user of R.

The package can be downloaded from R and loaded into R using the fol-
lowing R code chunk:

> library(MCMCpack)

##
## Markov Chain Monte Carlo Package (MCMCpack)
## Copyright (C) 2003-2010 Andrew D. Martin, Kevin M. Quinn,
## and Jong Hee Park
##
## Support provided by the U.S. National Science Foundation
## (Grants SES-0350646 and SES-0350613)
##

Details about this package may be found from the help manual using “li-
brary(help=MCMCpack)” which describes “this package contains functions to
perform Bayesian inference using posterior simulation for a number of statis-
tical models. Most simulation is done in compiled C++ written in the Scythe
Statistical Library Version 1.0.2. All models return coda (i.e., Convergence
Diagnostics and Output Analysis) MCMC objects that can then be summa-
rized using the coda package. The MCMCpack also contains some useful util-
ity functions, including some additional density functions and pseudo-random
number generators for statistical distributions, a general purpose Metropolis
sampling algorithm, and tools for visualization.”

A website at http://mcmcpack.wustl.edu is available for the MCMCpack
project which contains a more detailed description. At the of writing this chap-
ter, MCMCpack can be used to fit an extensive list of statistical models. We
list several commonly used models which may be used in the analysis of data
from clinical trials: a linear regression (with Gaussian errors), a hierarchical
longitudinal model with Gaussian errors, a probit model, a logistic regression
model, a Poisson regression, a tobit regression, a multinomial logit model, and
an ordered probit model. In addition, this package includes random number
generators for several distributions that are not part of the standard distribu-
tion in R, a general purpose Metropolis sampling algorithm, and some utilities
for visualization and data manipulation.

We use this package in Section 9.3 to illustrate applications in MCMC,
and in Section 9.4 to reanalyze some of the clinical trial datasets in Chapter
4.



236 Clinical Trial Data Analysis Using R

9.3 MCMC Simulations

9.3.1 Normal-Normal Model

We start with the simplest case as described in Section 9.1.2.1 for normally
distributed data with known variance σ. Suppose a pilot trial enrolled n = 30
patients and from the sample data collected, the sample mean and standard
deviation are 3 and 2, respectively. We wish to simulate data from a population
for which these data are representative; i.e., from a normal population mean
µ = 3 with known standard deviation σ = 2. The data are simulated directly
as follows:

> # set seed to 123

> set.seed(123)

> # n=30 patients

> n = 30

> # known sigma

> sigma = 2

> # population mean

> mu = 3

> # simulate data

> y = rnorm(n, mu,sigma)

> # print the data

> # the mean and variance of the simulated data

> mean(y)

[1] 2.91

> var(y)

[1] 3.85

Suppose from prior knowledge it is reasonable to assume that the prior
distribution is normal with prior mean µ0 = 2 and prior standard deviation
τ0 = 0.5. Then from Section 9.1.2.1, the posterior distribution is also normal
with posterior mean µP = wȳ+(1−w)θ0 and posterior variance σ2

P = 1
n
σ2 + 1

τ2
,

where w = τ2

τ2+σ2/n . The direct simulation can be implemented in R as follows:

> # the prior parameters

> mu0 = 2; tau0 = .5

> # the weight

> w = tau0^2/(tau0^2+sigma^2/n)

> # the posterior mean

> muP = w*mean(y) + (1-w)*mu0

> # the posterior standard deviation
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> sigmaP = sqrt(1/(1/tau0^2+n/sigma^2))

> # direct simulation of posterior normal

> Bayes1.norm2norm = rnorm(10000, muP,sigmaP)

We simulate 10000 samples and name the resulting dataset in
Bayes1.norm2norm. The density plot of the sampling distribution is seen in
Figure 9.1. The quantiles of this posterior distribution are determined from

> quantile(Bayes1.norm2norm, c(0.025,0.25,0.5,0.75,0.975))

2.5% 25% 50% 75% 97.5%
2.01 2.39 2.59 2.79 3.17

We can also call the MCnormalnormal function in MCMCpack for this simu-
lation as follows:

> # call the function

> Bayes2.norm2norm = MCnormalnormal(y, sigma^2, mu0, tau0^2, 10000)

> # print the summary

> summary(Bayes2.norm2norm)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE
2.58766 0.29548 0.00295

Time-series SE
0.00280

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
2.01 2.39 2.59 2.79 3.17

We observe that the quantiles are identical to those from the direct simu-
lation. The prior, likelihood and the resulting posterior distributions are dis-
played in Figure 9.1 using the following R code chunk.

> x = seq(0,6,0.01)

> plot(x, dnorm(x, mu0,tau0), type="l", lwd=1,las=1, ylim=c(0,1.4),

xlab="mu", ylab="density")

> lines(x, dnorm(x, mean(y), sigma/sqrt(n)), lty=8, lwd=1)

> lines(density(Bayes1.norm2norm), lty=8, lwd=3)
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> legend("topright", c("Prior","Likelihood", "Posterior"),

lwd=c(1,1,3), lty=c(1,8,4))
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FIGURE 9.1: Distributions of Prior, Direct Simulation, and MCnormalnormal.

9.3.2 Beta-Binomial Model

As described in Section 9.1.2.4, the beta-binomial distribution is commonly
used in Bayesian analysis of clinical trial data. The beta-binomial distribution
results from binomially distributed data with a beta conjugate prior on the
binomial probability parameter leading to a new (posterior) beta distribution
which can be directly simulated from the R function rbeta.

As an example, we re-visit the duodenal ulcer trial in Chapter 3 where
we found that the 800 mg C treatment was clinically optimal among the
four treatments. In this trial, a total of 168, 182, 165, and 188 patients were
entered in the 0 mg C, 400 mg C, 800 mg C, and 1600 mg C treatment groups,
respectively. The corresponding cumulative numbers of patients whose ulcers
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healed by the end of week 4 were 69, 113, 120 and 145, respectively. These
data are loaded into R as

> # total patients for each treatment

> n = c(168, 182, 165,188)

> # number healed

> x = c(69, 113, 120, 145)

> # the observed proportion

> p = x/n

> p

[1] 0.411 0.621 0.727 0.771

Consider first the 800 mg C treatment where we observed that x3 = 120
of n3 = 165 patients had their ulcers healed. x3 is binomially distributed with
the probability p3 estimated as p̂ = x3/n3 = 120/165 = 0.73. The likelihood
is

L(p) ∝ px3(1− p)n3−x3 (9.11)

For Bayesian inference, we need to identify a suitable prior for the cumu-
lative 4 week cumulative healing rate p (which ranges from 0 to 1 since it is a
probability). We could use the noninformative prior where the posterior dis-
tribution would be the same as the likelihood. However, we illustrate a simple
approach to derive an informative prior.

Suppose that results from prior, smaller trials suggest that the median
of the distribution of p is about 0.75 and the 95 percentile is 0.85 for this
treatment. We can build a search algorithm to find values to be used for the
prior parameters a and b as follows.

We first build an objective function with parameter input parm = (a, b)
as

> # the objective function

> obj = function(parm){

a = parm[1]; b = parm[2]

(pbeta(0.50,a,b) -0.75)^2 +(pbeta(0.95,a,b)- 0.85)^2

}

Then we call the R function optim to optimize (more specifically minimize
for this situation) the objective function to find (a, b) as

> # call optim to search the root with initial values at (3,3)

> out = optim(c(3,3), obj)

> print(out)

$par
[1] 0.0621 0.1829
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$value
[1] 2.57e-10

$counts
function gradient

119 NA

$convergence
[1] 0

$message
NULL

It should be noted that this search is a local one and in fact there are many
roots to be found depending on where the search is started. Anyway, we use
a = 0.062 and b = 0.183 from this search as the prior parameters for our beta
prior. We can check whether the median is 0.75 and the 95 percentile is 0.85
using the following R code chunk:

> pbeta(0.5,out$par[1], out$par[2])

[1] 0.75

> pbeta(0.95,out$par[1], out$par[2])

[1] 0.85

Based on this prior, the posterior distribution for the cumulative 4 week
healing rate is

p(p|n3, x3) ∝ L(p)× π(p)
= px3(1− p)n3−x3 × pa−1(1− p)b−1

= px3+a−1(1− p)n3−x3+b−1 (9.12)

which is beta(x3 + a, n3 − x3 + b) = beta(120 + 0.062, 165 − 120 + 0.183) =
beta(120.062, 45.183). This posterior can be directly simulated in R for 10,000
simulations as follows:

> # direct simulation

> Bayes1.betabin = rbeta(10000, 120.062, 45.183)

> # print the quantiles

> quantile(Bayes1.betabin, c(0.025,0.25,0.5,0.75,0.975))

2.5% 25% 50% 75% 97.5%
0.657 0.704 0.728 0.751 0.791
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This shows that the simulated distribution of p has mean 0.728 and 95%
credible interval of (0.657, 0.791).

We can employ the MCbinomialbeta function from the MCMCpack package
for the same purpose. This function is for Monte Carlo simulation from a
binomial likelihood with a beta prior and is called as follows:

> # keep the parameters

> x3 = 120; n3 =165; a = 0.062; b=0.183

> # call the MCbinomialbeta function for 10000 simulation

> Bayes2.betabin = MCbinomialbeta(x3, n3, a, b, mc=10000)

> # print the summary

> summary(Bayes2.betabin)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE
0.726215 0.034730 0.000347

Time-series SE
0.000337

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.656 0.703 0.727 0.750 0.792

We see from this summary that the quantiles from this MC simulation are
identical to those from the direct simulation. The reader may wish to plot this
simulation visualize the convergence and the MC sampling distribution using
R code as “plot(Bayes2.betabin)”.

We plot the prior and the simulation distributions from both direct simu-
lation and from MCbinomialbeta in Figure 9.2 using the following code chunk:

> # p range from 0 to 1

> p = seq(0,1,0.01)

> # plot the beta density

> plot(p, dbeta(p,a, b), lwd=3, type="l",ylim=c(0,13),

xlab="Healing Rate", ylab="density")

> # add lines from both simulations to the plot

> lines(density(Bayes1.betabin), lty=4, lwd=3)



242 Clinical Trial Data Analysis Using R

> lines(density(Bayes2.betabin), lty=8, lwd=3)

> legend("topleft", c("Prior", "Direct Simulation",

"MCbinomialbeta"),lwd=3, lty=c(1,4,8))
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FIGURE 9.2: Distributions of Prior, Direct Simulation, and MCbinomialbeta.

Note in this figure that both distributions from the direct simulation and
from MCbinomialbeta are almost identical and therefore it is difficult to dis-
tinguish one from the other.

9.4 Bayesian Data Analysis

In this section, we reanalyze the data from Chapter 4 taking a Bayesian
modeling approach using the MCMCpack.
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9.4.1 Blood Pressure Data: Bayesian Linear Regression

We start with the typical linear regression using the blood pressure data
in Section 4.1 where we used the R function lm for ANOVA. As was done in
Section 4.1, we read in this data as

> # get the RODBC library

> require(RODBC)

> # the path of data file

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> # link to the data file

> getxlsbook = odbcConnectExcel2007(datfile)

> # get the data from the excel sheet

> dat = sqlFetch(getxlsbook,"DBP")

> # close the RODBC

> odbcCloseAll()

> # we are interested in the blood pressure change

> dat$diff = dat$DBP5-dat$DBP1

As summarized in Section 4.1, the lm fitting of the regression model re-
vealed that both “TRT” and “Age” were statistically significant. We now use
MCMCpack to re-analyze this data from a Bayesian perspective using MCMC
algorithms.

Since the data are continuous we can use the function MCMCregress in the
MCMCpack package for this purpose. From the help file, this function is used
to generate “a sample from the posterior distribution of a linear regression
model with Gaussian errors using Gibbs sampling (with a multivariate Gaus-
sian prior on the beta vector, and an inverse Gamma prior on the conditional
error variance). The user supplies data and priors, and a sample from the pos-
terior distribution is returned as an MCMC object, which can be subsequently
analyzed with functions provided in the coda package.”

This function uses the regression model:

yi = x′iβ + εi (9.13)

where the errors εi are assumed to be normally distributed; i.e., εi ∼ N(0, σ2).
For Bayesian modeling, the standard, semi-conjugate priors are assumed to
be:

β ∼ N(b0, B−1
0 )

σ−2 ∼ Gamma(c0/2, d0/2)

It is noted that the Bayesian model with noninformative prior described in
Section 9.1.2.3 is a special case when B0 = 0. We fit this special model since
we have no prior information about β.

To fit a linear regression model with this noninformative prior for the
regression parameters and an inverse gamma prior with shape and scale pa-
rameters both equal to 0.0005 for the error variance, we call the function
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MCMCregress (which is identical inn syntax to the lm function call using the
default settings for the parameters in the MCMC) as follows:

> # fit the Bayes regression model with 1000 burn-in

> BayesMod = MCMCregress(diff~TRT+Age, dat)

> # print the MCMC result

> summary(BayesMod)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -6.813 3.0402 0.030402 0.035515
TRTB 10.119 0.8108 0.008108 0.008054
Age -0.173 0.0614 0.000614 0.000719
sigma2 6.484 1.6015 0.016015 0.015654

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -12.704 -8.838 -6.823 -4.792 -0.7915
TRTB 8.543 9.575 10.119 10.648 11.7387
Age -0.295 -0.213 -0.172 -0.132 -0.0542
sigma2 4.086 5.329 6.225 7.329 10.2339

The summary function prints out summary information of the MCMC ob-
jects for various quantities of interest such as the posterior mean, standard
deviation, and quantiles. We note from the MCMC output, that both “TRT”
and“Age”are statistically significant based on the 95% quantiles where“TRT”
is positive with 50% quantile = 10.12, which is close to the linear regression
estimate of 10.13; again indicating that treatment is effective. The same con-
clusion is observed for the “Age” effect.

We can call plot to generate traceplots for convergence diagnostics and
marginal posterior kernel density plots for the MCMC results (Figure 9.3) as
follows:

> # make the margin

> par(mar = c(3,2,1.5,1))

> # make the MCMC plot

> plot(BayesMod)

Note from Figure 9.3 that the MCMC converged.
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FIGURE 9.3: MCMC Plots.
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9.4.2 Binomial Data: Bayesian Logistic Regression

The betablocker trial was analyzed in Section 4.1 using logistic regression.
We will re-use the data from center 1 for illustration since MCMCpack only takes
binary data as input.

> # extract center 1

> beta1 = betablocker[betablocker$Center == 1,

c("Deaths","Total","Treatment")]

> # print the center 1 data

> beta1

Deaths Total Treatment
1 3 39 Control
23 3 38 Treated

We note that there are 3 deaths from 39 patients in the control group
and 3 deaths from 38 patients in the treatment group. We then convert these
binomial count data into a dataframe with binary outcome as

> # make a dataframe

> beta1 = data.frame(trt = c(rep("TRT", 38),rep("Cont",39)),

death = c(rep(1,3), rep(0,38-3), rep(1,3), rep(0,39-3)))

> # print the first 6 observations

> head(beta1)

trt death
1 TRT 1
2 TRT 1
3 TRT 1
4 TRT 0
5 TRT 0
6 TRT 0

We re-use beta1 to name this new dataframe. In this dataframe, there
are two columns. The first column represents “trt” and the second column
represents the binary outcome, where “1” denotes death and “0” denotes alive.

We fit a logistic regression model to the data using glm as follows:

> # fit logistic regression

> glm.beta = glm(death ~trt,binomial,beta1)

> # print the result

> summary(glm.beta)

Call:
glm(formula = death ~ trt, family = binomial, data = beta1)

Deviance Residuals:
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Min 1Q Median 3Q Max
-0.406 -0.406 -0.400 -0.400 2.265

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4849 0.6009 -4.14 3.5e-05 ***
trtTRT 0.0282 0.8503 0.03 0.97
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 42.144 on 76 degrees of freedom
Residual deviance: 42.143 on 75 degrees of freedom
AIC: 46.14

Number of Fisher Scoring iterations: 5

From the logistic regression we note that the estimated parameter β̂ =
(−2.485, 0.028), that treatment effect is not statistically significant with p-
value of 0.974 (which is expected since only 3 of 39 patients in the control group
and 3 of 38 patients in treatment group died), and the observed proportions
are almost the same.

For Bayesian modeling using MCMC for binary data, we make use of
the MCMClogit function in MCMCpack. This function generates a sample from
the posterior distribution of a logistic regression model using a random walk
Metropolis–Hastings algorithm. In this function, the model is as follows:

yi ∼ Bernoulli(pi) (9.14)

with the logit link function as pi = exp(x′iβ)
1+exp(x′iβ) . The multivariate normal prior

is assumed for β as β ∼ N(b0, B−1
0 ), where B0 is the prior precision of β under

a multivariate normal prior. The noninformative prior obtains if B0 = 0. Other
priors can be incorporated into this function call.

We now fit the Bayesian model using the noninformative prior distribution
with the default setting using B0 = 0 as follows:

> ## Call MCMClogit with default

> Bayes1.beta = MCMClogit(death~trt, data=beta1)

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The Metropolis acceptance rate for beta was 0.53709
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

> # print the summary for MCMC

> summary(Bayes1.beta)
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Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -2.6516 0.652 0.00652 0.0189
trtTRT 0.0422 0.909 0.00909 0.0241

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -4.10 -3.043 -2.597 -2.194 -1.55
trtTRT -1.75 -0.558 0.025 0.647 1.78

We note that the estimate of β is β̂ = (−2.652, 0.042) and that the 95%
credible interval for treatment effect is (−1.746, 1.784), which is not statisti-
cally significant.

Similarly we call plot to make traceplots for convergence diagnostics and
marginal posterior kernel density plots for the MCMC results (Figure 9.4)
using the following code chunk:

> plot(Bayes1.beta)

We note from Figure 9.4 that the MCMC algorithm converged.
To further illustrate Bayesian robustness, we consider a vague multivariate

normal prior using B0 = 0.001, which means that the prior precision matrix
is B0 times the identity matrix. With this prior, we fit a Bayesian logistic
regression model as follows:

> # fit the Bayesian logistic regression with multivariate

normal prior

> Bayes2.beta = MCMClogit(death~trt, B0=.001,data=beta1)

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The Metropolis acceptance rate for beta was 0.53391
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

> # print the fit

> summary(Bayes2.beta)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
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FIGURE 9.4: MCMC Plots for BetaBlocker.
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Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -2.6540 0.653 0.00653 0.0181
trtTRT 0.0437 0.906 0.00906 0.0257

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -4.11 -3.04 -2.5944 -2.197 -1.54
trtTRT -1.71 -0.57 0.0456 0.631 1.79

We note that the estimate of β is β̂ = (−2.654, 0.044) and that the 95%
credible interval for treatment effect is (−1.707, 1.790), which again is not
statistically significant. A plot similar plot to that in Figure 9.4 can be made
by “plot(Bayes2.beta).” The reader may wish to produce this plot.

9.4.3 Count Data: Bayesian Poisson Regression

In Section 4.1, we considered data from a placebo-controlled clinical trial
of a non-sterioidal anti-inflammatory drug in treating familial andenomatous
polyposis (FAP). We analyzed these data in Section 4.3.3 using several meth-
ods and concluded that both treatment and“age”were statistically significant.

We re-use these data to illustrate the MCMCpoisson function in the
MCMCpack package for Bayesian Poisson regression. According to its help
manual, “this function generates a sample from the posterior distribution of
a Poisson regression model using a random walk Metropolis–Hastings algo-
rithm” programmed in compiled C++ code to maximize efficiency. The model
for this function is as follows:

yi ∼ Poisson(µi) (9.15)

with log link function as µi = exp(x′iβ). The prior distribution for the param-
eter β is assumed to be multivariate normal; i.e., β ∼ N(b0, B−1

0 ).
The Bayesian Poisson regression with noninformative prior can be easily

performed with the default setting using B0 = 0 as follows:

> ## Call MCMCpoissont with default

> Bayes.polyps <- MCMCpoisson(number ~ treat+age, polyps)

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The Metropolis acceptance rate for beta was 0.40436
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
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> # print the summary for MCMC

> summary(Bayes.polyps)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) 4.5343 0.14788 1.48e-03 0.005134
treatdrug -1.3612 0.12006 1.20e-03 0.004023
age -0.0392 0.00604 6.04e-05 0.000226

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) 4.2388 4.4372 4.5360 4.6307 4.8274
treatdrug -1.6091 -1.4388 -1.3607 -1.2811 -1.1236
age -0.0512 -0.0432 -0.0394 -0.0352 -0.0272

We note that the estimate of β is β̂ = (4.534,−1.361,−0.039) and that the
95% credible intervals are (−1.609, −1.124) for treatment effect and (−0.051,
−0.027) for age effect. This confirms that both treatment effect and age effect
are statistically significant.

The diagnostics plot (Figure 9.5) for MCMC run can be generated using
the following code chunk:

> # set a beta margin for plotting

> par(mar = c(3,2,1.5,1))

> # plot the MCMC

> plot(Bayes.polyps)

We note from Figure 9.5 that the MCMC algorithm converged. Similarly
we may investigate the robustness of this Bayesian model for different priors
by specifying different b0 and B0. We leave this as an exercise for interested
readers.

9.4.4 Comparing Two Treatments

We now consider applying the beta-binomial posterior distribution to com-
pare and select superior treatments in clinical trials with a binomial endpoint
from the Bayesian perspective. Specifically we are interested in comparing two
treatments denoted by X and Y and deciding which treatment is superior by
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FIGURE 9.5: MCMC Plots for Polyps Data.
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calculating the probability P (X > Y ). If P (X > Y ) is greater than some
threshold, say 0.95, we conclude treatment X is superior to treatment Y .

In clinical trials with binary/binomial endpoints, we typically use a beta
prior as the conjugate prior which leads to the posterior distribution in the
same beta family. Then the posterior distributions of both treatments are also
beta, which we denote as X ∼ Beta(uX , vX) and Y ∼ Beta(uY , vY ). Then it
can be shown with some mathematical manipulations (see Cook (2005)) that

P (X > Y ) =
∫ 1

0

xsX−1(1− x)tX−1

B(sX , tX)

(∫ x

0

ysY −1(1− y)tY −1

B(sY , tY )
dy

)
dx

=
B(sX + sY , tX + tY )
B(sX , sY )B(sY , tY )sY

3F2

(
sX + sY , sY + tY , 1

sY + 1, sX + tX + sY + tY
1
)

where B(s, t) is the usual beta function defined as B(s, t) = Γ(s)Γ(t)
Γ(s+t)

and 3F2 is
the hypergeometric function with upper parameters (sX + sY , sY + tY , 1) and
lower parameters (sY +1, sX+tX+sY +tY ). The calculation of the probability
P (X > Y ) can be easily implemented in R by calling the hypergeo library as
follows:

> # call the hypergeo library

> library(hypergeo)

> # make a function call

> pXgtY = function(sx,tx,sy,ty){

tmp1 = beta(sx+sy,tx+ty)/(beta(sx,tx)*beta(sy,ty)*sy)

tmp2 = genhypergeo(U=c(sx+sy,sy+ty,1),L=c(sy+1,sx+tx+sy+ty),

check_mod=FALSE,z=1)

tmp1*tmp2

}

To illustrate, we re-use data from the duodenal ulcer trial with a noninfor-
mative prior. As previously noted, this leads to a beta posterior distribution
which is the same as the likelihood. Therefore,

> # compare 800 mg C to 400 mg C

> p800to400 = pXgtY(x[3], n[3]-x[3], x[2],n[2]-x[2])

> p800to400

[1] 0.983

> # compare 800 mg C to 0 mg C

> p800to0 = pXgtY(x[3], n[3]-x[3], x[1],n[1]-x[1])

> p800to0

[1] 1
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> # compare 1600 mg C to 800 mg C

> p1600to800 = pXgtY(x[4], n[4]-x[4], x[3],n[3]-x[3])

> p1600to800

[1] 0.83

> # compare 1600 mg C to 400 mg C

> p1600to400 = pXgtY(x[4], n[4]-x[4], x[2],n[2]-x[2])

> p1600to400

[1] 1

We note that: (1) the probability that the 800 mg C treatment is better
than the 400 mg C treatment is 0.983; (2) the probability that the 800 mg C
treatment is better than the 0 mg C treatment is 0.999; (3) the probability
that the 1600 mg C treatment is better than the 800 mg C treatment is
0.830; and (4) the probability that the 1600 mg C treatment is better than
the 400 mg C treatment is 0.999. In selecting the superior treatment, if we
deem a probability of 0.95 as the required threshold, we conclude that the
800 mg C treatment is better than the 400 mg C treatment and the 0 mg
C treatment and the 1600 mg C treatment is also better than 400 mg C
treatment. However, the probability that the 1600 mg C treatment is better
than the 800 mg C treatment is 0.83, which does not meet the threshold for
concluding superiority. These results are consistent with those in Chapter 3
where it was concluded that the 800 mg C treatment was clinically optimal.

The reader may wish to modify the above code to include comparisons
of the 400 mg C treatment to the 0 mg C treatment and of the 1600 mg C
treatment to the 0 mg C treatment.

A graphical illustration for the four treatment groups and the prior dis-
tribution (the horizontal dashed line) appears in Figure 9.6. This figure is
generated using the following R code chunk:

> # make p from 0.3 to 0.9 by 100 points

> n.pts =100

> p = seq(0.3,0.9,length=n.pts)

> # the prior and the distributions from 4 treatments

> pb0 = dbeta(p,1,1)

> pb1 = dbeta(p,x[1],n[1]-x[1])

> pb2 = dbeta(p,x[2],n[2]-x[2])

> pb3 = dbeta(p,x[3],n[3]-x[3])

> pb4 = dbeta(p,x[4],n[4]-x[4])

> # the maximum to set the yaxis limit

> ymax= max(pb1,pb2,pb3,pb4)

> # plot the prior and posterior

> plot(p,pb0, lwd=1, lty=8, las=1,type="l",

xlab="Healing Probability",
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ylab="Density",ylim=c(0,ymax))

> lines(p,pb1, lwd=3, lty=1)

> lines(p,pb2, lwd=3, lty=2)

> lines(p,pb3, lwd=3, lty=3)

> lines(p,pb4, lwd=3, lty=4)

> legend("topleft", c("0 mg C","400 mg C", "800 mg C",

"1600 mg C"),lwd=c(3,3,3,3), lty=c(1,2,3,4))
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FIGURE 9.6: Distributions of Prior and the Four Treatments.

From Figure 9.6, we observe that the 800 mg C and 1600 mg C treatment
groups overlap; which illustrates graphically that the 1600 mg C treatment is
not superior to the 800 mg C treatment.

As noted above, this illustration used a noninformative prior. It can be
easily modified to incorporate an informative prior.

It should be stressed that the probability that treatment X is better than
treatment Y ; i.e., P (X > Y ), and its calculation in Equation (9.16), are very
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important in clinical trials that incorporate a Bayesian adaptive randomiza-
tion scheme to assign patients to treatment groups as discussed in Thall and
Wathen (2007), Muss et al. (2009) and Giles et al. (2003). Further references
on Bayesian adaptive clinical trials can be found from Berry et al. (2010).

9.5 Concluding Remarks

In this chapter, we discussed the application of Bayesian modeling using
R. We reviewed relevant models and MCMC simulation as well as the most
commonly used R packages. We recommend the MCMCpack package for ap-
plied Bayesian modeling for users without much programming experience in
R. Advanced users will want to use WinBUGS to build more complex and more
flexible models.

The reader may find the book by Ntzoufras (2009) on how to use WinBUGS
for Bayesian modeling and the references contained therein helpful. The book
by Albert (2007) gives an extensive implementation in R. Chapter 11 outlines
how to use R to call WinBUGS. The book by Robert and Casella (2009) is an
excellent textbook on the introduction of Monte Carlo methods using R.

Bayesian statistics is widely used in the biopharmaceutical industries and
in government agencies, such as the U.S. Food and Drug Administration
(FDA). The FDA issued a guidance on February 5, 2010 (http://www.fda.
gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/
ucm071072.htm) on the use of Bayesian statistical methods in the design and
analysis of medical device clinical trials more efficiently and less costly. This
guidance described the use of Bayesian methods, design and analysis of med-
ical device clinical trials, the benefits and difficulties with the Bayesian ap-
proach, and comparisons with standard statistical methods.
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In this chapter, we illustrate the use of R in the analysis of data collected
in bioequivalence clinical trials. Similar to previous chapters, we describe two
datasets from bioequivalence trials, the associated statistical analysis methods
and then step-by-step implementation of the methods in R.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: RODBC , xtable and lattice.

10.1 Data from Bioequivalence Clinical Trials

10.1.1 Data from Chow and Liu (2009)

The first dataset is obtained from a bioequivalence clinical trial described
in Chow and Liu (2009), Table 3.6.1, Page 71. Since Chow and Liu used SAS
for statistical analyses, we use this dataset to illustrate the reproducibility of
their results using the R system.

The trial utilized a standard two-sequence, two-period, two-formulation
(i.e., 2×2×2) crossover design to compare two formulations of a drug, and was
conducted with 24 healthy volunteers (subjects). Each volunteer was randomly
assigned to either five 50 mg tablets (i.e., test formulation) or 5 mL of an
oral suspension (i.e., 50 mg/mL, reference formulation). Blood samples were
collected at 0 hour before dosing and at various times after dosing up through
32 hours post dosing.

The trapezoid rule was applied to the drug concentrations in the samples
to compute the bioavailability endpoint: area under the concentration-by-time
curve (AUC) over the 0 to 32 hours interval. The AUC data were re-keyed into
the excel data book with name “ChowLiuTab361.” The data are reproduced
here in Table 10.1 for easy reference.

10.1.2 Bioequivalence Trial on Cimetidine Tablets

The second dataset derives from a bioequivalence clinical trial described
in Randolph et al. (1986). The trial utilized a standard 2 × 2 × 2 crossover
design to compare two formulations of Cimetidine and was conducted with
24 healthy volunteers (subjects). Each volunteer was randomly assigned to
either one 800 mg Cimetidine tablet (i.e., test formulation) or two 400 mg
Cimetidine tablets (i.e., reference formulation). Blood samples were collected
at 0 hour before dosing and at various times after dosing up through 24 hours
post dosing.

Bioavailability endpoints: Maximum Concentration (CMAX), Time-to-
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TABLE 10.1: AUC data from Chow and Liu (2009)

Sequence Period Formulation Subject AUC
1 1 R 1 74.675
1 1 R 4 96.400
1 1 R 5 101.950
1 1 R 6 79.050
1 1 R 11 79.050
1 1 R 12 85.950
1 1 R 15 69.725
1 1 R 16 86.275
1 1 R 19 112.675
1 1 R 20 99.525
1 1 R 23 89.425
1 1 R 24 55.175
1 2 T 1 73.675
1 2 T 4 93.250
1 2 T 5 102.125
1 2 T 6 69.450
1 2 T 11 69.025
1 2 T 12 68.700
1 2 T 15 59.425
1 2 T 16 76.125
1 2 T 19 114.875
1 2 T 20 116.250
1 2 T 23 64.175
1 2 T 24 74.575
2 1 T 2 74.825
2 1 T 3 86.875
2 1 T 7 81.675
2 1 T 8 92.700
2 1 T 9 50.450
2 1 T 10 66.125
2 1 T 13 122.450
2 1 T 14 99.075
2 1 T 17 86.350
2 1 T 18 49.925
2 1 T 21 42.700
2 1 T 22 91.725
2 2 R 2 37.350
2 2 R 3 51.925
2 2 R 7 72.175
2 2 R 8 77.500
2 2 R 9 71.875
2 2 R 10 94.025
2 2 R 13 124.975
2 2 R 14 85.225
2 2 R 17 95.925
2 2 R 18 67.100
2 2 R 21 59.425
2 2 R 22 114.050
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Maximum Concentration (TMAX) and area under the concentration-by-time
curve (AUC) over the 0 to 24 hours interval, were computed from the drug
concentration-by-time data. Bioavailability endpoints are summarized in Ta-
ble 10.2.

The objective of this data analysis is to statistically assess whether the
test formulation (one 800 mg tablet) and reference formulation (two 400 mg
tablets) are bioequivalent in terms of the bioavailability endpoints using the
R system.

10.2 Bioequivalence Clinical Trial Endpoints

In a bioequivalence trial comparing the bioavailability of oral formula-
tions T (test) and R (reference) of a drug, blood samples are obtained at
baseline (t0) and at specified times (t1, t2, · · · , tk) post baseline (after in-
gesting each formulation). The blood (or plasma depending on assay) sam-
ples are then analyzed to determine the concentrations (c0, c1, · · · , ck) of the
drug in the samples. A concentration-by-time curve is a plot of the pairs
(t0, c0), (t1, c1), (t2, c2), · · · , (tk, ck).

The primary endpoints in the statistical assessment of average bioequiv-
alence for single oral dose formulation are AUC, CMAX and TMAX, and
are directly calculated from the blood/plasma concentration-by-time curve.
These endpoints are defined and calculated as follows:

1. AUC = the area under curve which is calculated by the so-called trape-
zoid rule as

AUC =
k∑
τ=1

(cτ + cτ−1)× (tτ − tτ−1)
2

(10.1)

This AUC is commonly denoted by AUC0−k.

2. CMAX= the maximum concentration defined as:

CMAX = max(c0, c1, · · · , ck) (10.2)

3. TMAX= the time required to reach maximum concentration defined as

Tmax = t at which CMAX is observed (10.3)

Note that the AUC computed from the observed concentration-by-time
curve in Equation (10.1) is typically symbolized as AUC0−k where k is the
last time of sample collection.

Other bioavailability parameters of interest that can be estimated from the
blood/plasma concentration-by-time curve are
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TABLE 10.2: AUC, CMAX and TMAX data from Cimetidine trial

Sequence Period Formulation Subject AUC CMAX TMAX
1 1 R 1 13.68 3.22 1.5
2 1 T 2 15.04 3.28 1.0
1 1 R 3 15.73 3.99 2.0
2 1 T 4 10.38 2.42 2.0
1 1 R 5 10.70 2.63 1.0
2 1 T 6 18.98 5.08 3.0
2 1 T 7 21.69 4.38 3.0
1 1 R 8 13.90 3.10 3.0
1 1 R 9 14.81 4.10 1.0
2 1 T 10 17.92 4.38 1.5
2 1 T 11 18.05 4.96 1.5
1 1 R 12 15.84 5.42 1.5
2 1 T 14 14.48 3.37 2.0
2 1 T 15 17.82 4.66 2.0
1 1 R 16 17.13 4.04 2.0
1 1 R 17 22.94 4.42 1.5
2 1 T 18 24.10 7.00 1.5
1 1 R 19 21.79 3.68 3.0
2 1 T 20 17.80 4.34 2.0
2 1 T 21 13.34 3.42 2.0
1 1 R 22 11.93 2.47 3.0
1 1 R 23 16.35 6.08 1.5
2 1 T 24 19.94 3.89 3.0
1 2 T 1 16.24 4.08 2.0
2 2 R 2 12.88 3.12 1.0
1 2 T 3 16.45 4.18 2.0
2 2 R 4 13.12 3.47 3.0
1 2 T 5 14.07 3.49 1.5
2 2 R 6 18.54 3.94 3.0
2 2 R 7 20.55 4.40 3.0
1 2 T 8 18.56 4.62 0.5
1 2 T 9 14.80 4.60 3.0
2 2 R 10 18.12 6.72 2.0
2 2 R 11 16.79 5.66 1.0
1 2 T 12 11.04 2.88 2.0
2 2 R 14 15.14 3.22 3.0
2 2 R 15 19.74 4.64 2.0
1 2 T 16 17.20 4.06 3.0
1 2 T 17 24.01 5.46 2.0
2 2 R 18 24.28 5.46 2.0
1 2 T 19 17.56 4.44 3.0
2 2 R 20 17.47 5.28 1.5
2 2 R 21 12.55 3.45 2.0
1 2 T 22 10.31 2.46 3.0
1 2 T 23 9.67 2.32 1.0
2 2 R 24 18.69 4.08 1.5
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1. βt = the terminal elimination rate. The terminal elimination rate βt for
each subject is estimated by the slope of a straight line fit to the log
concentration-by-time data for the last “few” samples. Most calculations
in the literatures are performed to “eyeball” the curve and select the last
few sample to fit a regression line which is highly variable and somewhat
arbitrary.

As discussed in Peace and Chen (2010), an approach to select the largest
number of samples for which the fit of the straight line is best is obtained
by using the measure of the coefficient of determination (R2). Since a
perfect fit is obtained from the last two samples, the last three samples
are chosen initially and the value of R2 (say R2

3) noted. Then the last
4 samples are included and the value of R2 noted (say R2

4). If R2
4 ≤ R2

3

then βt is estimated from the last three samples. If R2
4 ≥ R2

3 then the
last five samples are included and the value of R2 (say R2

5 ) compared
to R2

4. If R2
5 ≤ R2

4 then βt is estimated from the last four samples, etc.

2. t1/2 = the terminal half-life and is calculated as

t1/2 = − ln(2)
βt

(10.4)

3. AUC0−∞ = the AUC extrapolated to infinity which is often called total
exposure and is calculated as

AUC0−∞ = AUC0−k +
ck
βt

(10.5)

10.3 Statistical Methods to Analyze Bioequivalence

In evaluating bioequivalence of two formulations, the commonly used sta-
tistical inference from hypothesis testing has long been criticized in pharma-
ceutical research to be inappropriate. It is now well known that confidence
intervals (CI) provide a more appropriate inferential framework for assessing
bioequivalence. We discuss the most commonly used CIs in assessing bioequiv-
alence following the notations in Peace and Chen (2010). Readers are referred
to Chow and Liu (2009) for more statistical methods.

10.3.1 Decision CIs for Bioequivalence

The Division of Biopharmaceutics at FDA has specified a decision crite-
rion for concluding bioequivalence of a test formulation (T) to a reference
formulation (R): T is bioequivalent to R if the 90% confidence interval (CI)
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on the ratio of the mean of T to the mean of R is between 80% and 125% for
bioequivalence endpoints CMAX, AUC0−t and AUC0−∞.

The decision criterion for concluding bioequivalence is, therefore,

90%CI = (RL, RU ) ∈ DecisionCIratio = (80%; 125%) (10.6)

where (RL, RU ) is a 90% CI on the ratio µT
µR

of the mean (µT ) of T to the
mean of R (µR) for the evaluated endpoint (such as, CMAX, AUC0−t and
AUC0−∞). That is, the observed 90% CI of (RL, RU ) for the ratio must be
contained in the decision interval of DecisionCIratio = (80%; 125%).

When evaluation is based on observed means and the mean difference, the
above decision criterion based on ratio µT

µR
in interval (80%; 125%) is converted

to an interval on the mean difference of µT − µR. Then the decision interval
on the mean difference is

90%CI = (ML,MU ) ∈ DecisionCImean = (−0.2× µR, 0.25× µR) (10.7)

where ML and MU denote the lower and upper CI limits for the mean differ-
ence.

There is a technical issue in this decision criterion since µR is the unknown
population mean for the reference formulation. However, since the mean from
reference of ȲR is a uniformly minimum variance unbiased (UMVU) estimator
of µR, it may be used to replace the unknown µR. Therefore an operational
decision criterion for the mean difference can be obtained as

90%CI = (ML,MU ) ∈ DecisionCImean = (−0.2× ȲR, 0.25× ȲR)
= (θL, θU ) (10.8)

Note for future reference, that we introduced another notation (θL, θU ) for
this decision CI as DecisionCImean=(θL, θU ) =(−0.2× ȲR, 0.25× ȲR).

If the observed 90% CI (ML,MU ) is completely contained inDecisionCImean
we conclude that the test formulation is bioequivalent to the reference formu-
lation.

10.3.2 The Classical Asymmetric Confidence Interval

The classical (or shortest) asymmetric CI is based on the least squares
means for the test and reference formulations using the t-statistic:

T =
(ȲT − ȲR)− (µT − µR)

σ̂d

√
1
nT

+ 1
nR

(10.9)

which follows a t-distribution with df = nT +nR−2 degrees of freedom where
σ̂d is the pooled (intrasubject) variance based upon within subject formulation
differences from both sequences, and ȲT and ȲR are the means. Therefore, the
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classical 100(1−2α)% (α = 5%) CI on the mean difference µT −µR (hereafter
referred as CI1) can be constructed as follows:

CI1 = (L1, U1)

=
(

(ȲT − ȲR)− tα,df σ̂d
√

1
nT

+
1
nR

, (ȲT − ȲR) + tα,df σ̂d

√
1
nT

+
1
nR

)
(10.10)

where tα,df is the α-percentile of t-distribution with degrees of freedom of df .
Since this CI is on the difference in means, bioequivalence of the test

formulation to the reference formulation is concluded if the observed CI1 is
completely contained in DecisionCImean.

Alternatively, CI1 on µT −µR may be converted to an interval on the ratio
of µT

µR
by adding the reference mean to both L1 and U1 and dividing the result

by the reference mean ȲR; i.e.,

CI2 =
(
L1

ȲR
+ 1,

U1

ȲR
+ 1
)
× 100% (10.11)

If CI2 is completely contained in the ratio decision intervalDecisionCIratio
then formulation T is considered bioequivalent to the reference formulation
R.

10.3.3 Westlake’s Symmetric Confidence Interval

This classical CI1 on µT −µR is symmetric about ȲT − ȲR, but not 0, and
its conversion to the interval CI2 on the ratio µT

µR
is symmetric about ȲT

ȲR
, but

not about unity. Westlake (1976) suggested adjusting the CI1 to be symmetric
about 0 and the CI2 to be symmetric about 1. This is accomplished by finding
k1 and k2 such that∫ k1

k2

f(t)dt = 1− 2α and (k1 + k2)σ̂d

√
1
nR

+
1
nT

= 2
(
ȲR − ȲT

)
(10.12)

where f(t) is the probability density function of T . A numerical algorithm is
needed to solve these two equations for k1 and k2. The R system handles this
type of calculation very well.

10.3.4 Two One-Sided Tests

Another method for assessing bioequivalence is the two one-sided test
procedure originally proposed by Schuirmann (1987). The null (bioinequiv-
alence) and alternative (bioequivalence) hypotheses are formulated against
the DecisionCImean in Equation (10.8) as

H01 : µT − µR ≤ θL v.s Ha1 : µT − µR > θL
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and
H02 : µT − µR ≥ θU v.s Ha2 : µT − µR < θU

The method requires conducting two one-sided tests each at the pre-
specified significance level α = 5%, and concluding bioequivalence of the test
and reference formulations if and only if both null hypotheses H01 and H02

are rejected. Therefore, we reject the two null hypotheses and conclude bioe-
quivalence of the test formulation T to reference formulation R if

TL =
(ȲT − ȲR)− θL
σ̂d

√
1
nT

+ 1
nR

> t(α, nT + nR − 2)

TU =
(ȲT − ȲR)− θU
σ̂d

√
1
nT

+ 1
nR

< −t(α, nT + nR − 2) (10.13)

The decision regarding bioequivalence may also be based on the two
one-sided P -values; i.e., reject H01 and H02 and conclude bioequivalence if
max(PL, PU ) < 0.05, where PL and PU are the one-sided P-values from test-
ing H01 and H02, respectively.

10.3.5 Bayesian Approaches

The above methods are so-called frequentist methods which fundamen-
tally assume that the parameter of interest (such as the direct formulation
effect) is unknown but fixed, and an inferential procedure (based on CI or
two, one-sided tests) is derived based on the sampling distribution of the pa-
rameter estimate. Alternatively a Bayesian inferential approach may be taken
where the unknown direct formulation effect is a random variable with some
distribution.

There are several Bayesian CI based methods for concluding bioequiva-
lence. We illustrate the one proposed by Rodda and Davis (1980) for the
bioequivalence trials datasets.

This method requires computing the probability that the difference of µT−
µR will be within the bioequivalence limits.

The fundamental conclusion is that the marginal posterior distribution
of µT − µR given the observed data is a non-central t-distribution with df =
nT+nR−2 degrees of freedom and non-centrality parameter ȲT−ȲT . Therefore
the posterior probability of µT − µR being within the bioequivalence decision
interval DecisionCImean in Equation (10.8) is computed as

pRD = P (θL < µT − µR < θU ) = pt(tU )− pt(tL) (10.14)

where pt is the cumulative probability function for central t distribution with
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df = nT + nR − 2 degrees of freedom and

tL =
θL − (ȲT − ȲR)

σ̂d

√
1
nT

+ 1
nR

tU =
θU − (ȲT − ȲR)

σ̂d

√
1
nT

+ 1
nR

We then conclude that the test formulation T is bioequivalent to the ref-
erence formulation R if pR.D. = 90%. Essentially, this Bayesian method is
equivalent to the classical CI1 in Equation (10.9).

10.3.6 Individual-Based Bienayme-Tchebycheff (BT)
Inequality CI

This is the method proposed by Peace (1986) to use within subject ra-
tios rather than using within subject differences as the analysis unit in the
assessment of bioequivalence. In addition to using the within subject ratios,
he suggested constructing a two-sided 90% CI on the mean of the distribution
of ratios using the Bienayme-Tchebycheff (BT) inequality as

Pr (r̄ −Kσr̄ ≤ µr ≤ r̄ +Kσr̄) ≥ 1− 1
K2

(10.15)

where r is the ratio of the endpoint of interest for the test formulation T to
that of the reference formulation R for each subject. r̄ and σr̄ are the mean and
standard deviation of sampling distribution of the ratios from n = nT + nR
subjects. This inequality states that the probability that the mean of the
sample ratios is within K standard error units of the true mean of the ratios
is at least 1 − 1

K2 regardless of the distribution of ratios. Setting the lower
bound on the probability to be 90% yields K = 3.1623. Therefore the 90% CI
can be constructed as (r̄ −Kσr̄, r̄ +Kσr̄).

The advantage for this CI is that the BT based CI holds regardless of
the true distribution of ratios. If the distribution of the ratios were known,
K would be determined directly from that distribution to produce an interval
that could be compared with the DecisionCIratio. It should be noted that the
BT inequality brackets the true mean in a symmetric manner (−K to +K).
The regulatory decision interval for concluding bioequivalence is asymmetric
(80% to 125%), rather than symmetric (80% to 120%). The lower bound of the
probability on the BT inequality, 1− (1/K2), would actually be larger when
accounting for the content of the sampling distribution of ratios between 120%
and 125%.

Alternatively, resampling methods may be applied to the sample of ratios
to determine a 90% confidence interval on the true mean of the ratios.
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10.3.7 Individual-Based Bootstrap CIs

Following the discussion in Section 10.3.6, we propose a bootstrapping
approach (hereafter referred as Bootstrap1) by resampling the n individual
subject ratios ri, i = 1, 2, · · · , n with replacement for a large number of times
(say, N=1,000) to construct a resampling distribution for the mean of the indi-
vidual ratios. The 90% CI based on the individual ratios is the interval ranging
from the fifth to the 95th percentile of this resampling distribution, and may
be compared to the DecisionCIratio to conclude whether bioequivalence is
achieved.

Extending this idea, we can alternatively perform bootstrapping by resam-
pling the endpoint measures of interest (such as the AUC, CMAX) and deter-
mine the bootstrap resampling distribution (here after referred as Bootstrap2)
of the ratio of means of ȲT

ȲR
. Similarly the 90% CI based on the ratio of means

of formulation T to formulation R is the interval ranging from the fifth to the
95th percentile of this resampling distribution, and may be compared to the
DecisionCIratio to conclude whether bioequivalence is achieved.

It should be noted that the Bootstrap2 can act as check-mark for those
CI methods in previous sections to see whether the distribution assumption
is reasonable.

10.4 Step-by-Step Implementation in R

10.4.1 Analyze the Data from Chow and Liu (2009)

10.4.1.1 Load the Data into R

The data can be loaded into the R system by RODBC as follows:

> # get the library

> require(RODBC)

> # point to the excel file

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> # connect to the excel book

> getxlsbook = odbcConnectExcel2007(datfile)

> # read in the data in that sheet

> dat = sqlFetch(getxlsbook,"ChowLiuTab361")

> odbcCloseAll()

Descriptive summary information for this data can be produced using the
R command aggregate to check the sample size, the mean and variance table
as

> # use ``aggregate" to the sample size

> tab.n = aggregate(dat$AUC,list(seq=dat$Sequence,
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prd=dat$Period),length)

> n1 = tab.n[tab.n$seq==1 & tab.n$prd==1,]$x

> n2 = tab.n[tab.n$seq==2 & tab.n$prd==1,]$x

> n = n1+n2

> # use ``aggregate" to get the mean

> tab.mean = aggregate(dat$AUC,list(seq=dat$Sequence,

prd=dat$Period),mean)

> # use ``aggregate" to get the variance

> tab.var = aggregate(dat$AUC,list(seq=dat$Sequence,

prd=dat$Period),var)

> # make a dataframe for the summary data

> summaryTab = data.frame(Sequence=tab.mean$seq,

Period=tab.mean$prd, numSample = tab.n$x,

Mean = tab.mean$x, Var=tab.var$x)

> # print the summary table

> round(summaryTab,2)

Sequence Period numSample Mean Var
1 1 1 12 85.8 246
2 2 1 12 78.7 539
3 1 2 12 81.8 389
4 2 2 12 79.3 635

In R, there is another set of functions called apply for making this type of
calculation easy and efficient. To list a few, include

• tapply = Apply a function over a “Ragged” Array

• lapply = Apply a function over a list or vector

• sapply = A user-friendly version of lapply by default returning a vector
or matrix if appropriate

• mapply = Apply a function to multiple list or vector arguments and
mapply is a multivariate version of sapply

• rapply = Recursively apply a function to a list and rapply is a recursive
version of lapply

For example, we can use tapply to produce the mean table using the
following R code chunk:

> tapply(dat$AUC, dat[,c("Sequence","Period")], mean)

Period
Sequence 1 2

1 85.8 81.8
2 78.7 79.3
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From the summary table, we note that there are 12 subjects in each se-
quence. The sequence-by-period mean and variance are reproduced exactly
(see bottom of page 70 in Chow and Liu (2009)). The data derive from the
2-sequence, 2-period, 2-formulation crossover design which is the most com-
monly used design in clinical trials designed to assess whether a new formu-
lation (T) is bioequivalent to a reference formulation (R).

Before making an inference as to the bioequivalence of two formulations
in terms of direct effect of the drug (in the formulations), there are other ef-
fects associated with this crossover design that may need to be tested; e.g.
differential carryover and period effects. The most important of these is the
differential carryover or residual drug effect. The presence of differential car-
ryover effect may impact the inference as to bioequivalence and attendant
statistical methods. We now illustrate the implementation in R for these tests.

10.4.1.2 Tests for Carryover Effect

We will illustrate the step-by-step implementation of the tests from Chap-
ter 3 in Chow and Liu (2009) in the R system. Readers may refer to the
referenced text for statistical details.

Following Section 3.2 of the referenced text, we first calculate the subject
totals (addition across periods for each subject) for each sequence as

Uik = Yi1k + Yi2k i = 1, 2, · · · , nk; k = 1, 2 (10.16)

This can be done in R as

> Uik = aggregate(dat$AUC,

list(seq = dat$Sequence,sub=dat$Subject), sum)

> colnames(Uik) = c("seq", "sub","Uik")

In order to statistically test for differential carryover effect C, we first
calculate the sample mean of the subject totals for each sequence as

Ū.k =
1
nk

nk∑
i=1

Uik, k = 1, 2 (10.17)

which is done in R as:

> mUk = aggregate(Uik$Uik, list(seq=Uik$seq), mean)

> colnames(mUk) = c("seq", "mUk")

> print(mUk)

seq mUk
1 1 168
2 2 158

Then the differential carryover effect C is estimated by the difference in
sample means as

Ĉ = Ū.2 − Ū.1 (10.18)

which can be done in R code as:
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> hatC = mUk[2,2]-mUk[1,2]

> hatC

[1] -9.6

Under the assumption of normality of the subject totals, Ĉ is normally
distributed with mean C (see chapter 10, section 10.7.2.4.2.1, Tables 10.3 and
10.4 of Peace and Chen) and variance V ar(Ĉ) is estimated by

V̂ ar(Ĉ) = σ̂2
u

(
1
n1

+
1
n2

)
(10.19)

where

σ̂2
u =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

(Uik − Ū.k)2 (10.20)

which is implemented in R by merging the two dataframes Uik and mUk for
calculation as follows:

> dU = merge(Uik, mUk)

> sigu2 = sum((dU$Uik-dU$mUk)^2)/(n1+n2-2)

> sigu2

[1] 1474

Under the null hypothesis of no carryover effect, the statistical t-test statis-
tic is

TC =
Ĉ√

σ̂2
u

(
1
n1

+ 1
n2

) (10.21)

which is calculated in R as

> se.sigu = sqrt(sigu2*(1/n1+1/n2))

> TC = hatC/se.sigu

> TC

[1] -0.612

Since |TC |=0.612 < t(α/2, n1 + n2− 2) = 2.074, the null hypothesis of no
differential carryover effect is not rejected.

The p-value associated with the test for differential carryover effects is
calculated by:

> pC = 2*(1-pt(abs(TC), n1+n2-2))

> pC

[1] 0.547
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10.4.1.3 Test for Direct Formulation Effect

The calculation for testing the direct differential formulation effect begins
by forming the difference in periods for each subject within each sequence as
follows:

dik =
1
2

(Yi2k − Yi1k) , i = 1, 2, · · · , nk; k = 1, 2 (10.22)

which is implemented in R as:

> dik = aggregate(dat$AUC,

list(sub=dat$Subject,seq=dat$Sequence),diff)

> dik$x = dik$x/2

> colnames(dik)= c("sub", "seq","dik")

> dik

sub seq dik
1 1 1 -0.5000
2 4 1 -1.5750
3 5 1 0.0875
4 6 1 -4.8000
5 11 1 -5.0125
6 12 1 -8.6250
7 15 1 -5.1500
8 16 1 -5.0750
9 19 1 1.1000
10 20 1 8.3625
11 23 1 -12.6250
12 24 1 9.7000
13 2 2 -18.7375
14 3 2 -17.4750
15 7 2 -4.7500
16 8 2 -7.6000
17 9 2 10.7125
18 10 2 13.9500
19 13 2 1.2625
20 14 2 -6.9250
21 17 2 4.7875
22 18 2 8.5875
23 21 2 8.3625
24 22 2 11.1625

Then the differential formulation effect can be estimated as

F̂ = d̄.1 − d̄.2 (10.23)

where d̄.k = 1
nk

∑nk
i=1 dik are the sample means for the period differences for

each sequence. R can be implemented as follows:
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> mdk = aggregate(dik$dik, list(seq=dik$seq), mean)

> colnames(mdk) = c("seq", "mdk")

> hatF = mdk[1,2]-mdk[2,2]

> hatF

[1] -2.29

Under the assumption of no differential carryover effect, F̂ is normally
distributed with mean F and variance

V ar(F̂ ) = σ2
d

(
1
n1

+
1
n2

)
(10.24)

which may be estimated by V̂ ar(F̂ ) = σ̂2
d

(
1
n1

+ 1
n2

)
and

σ̂2
d =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

(dik − d̄.k)2 (10.25)

which is implemented in R by merging the two dataframes dik and mdk for
calculation as follows:

> dF = merge(dik, mdk)

> sigd2 = sum((dF$dik-dF$mdk)^2)/(n1+n2-2)

> sigd2

[1] 83.6

Therefore the t-statistic for testing no direct differential formulation effect
can be constructed as

TF =
F̂√

σ̂2
d

(
1
n1

+ 1
n2

) (10.26)

which is calculated in R as

> se.sigd = sqrt(sigd2*(1/n1+1/n2))

> TF = hatF/se.sigd

> TF

[1] -0.613

Since |TF |=0.613 < t(α/2, n1 + n2− 2) = 2.074, we fail to reject the null
hypothesis of drug effect suggesting that the two formulations are statistically
bioequivalent. Similarly we can make this conclusion using the observed p-
value as calculated by

> pF = 2*(1-pt(abs(TF), n1+n2-2))

> pF
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[1] 0.546

We emphasize that the above test for equality of direct formulation effects
is provided to show agreement between results of the test using R and those
in Chow and Liu (2009). Usually this test has little utility in the analysis of
bioequivalence studies, rather bioequivalence is assessed using CIs or the two,
one-sided tests procedure.

The test for equality of period effects can be implemented in a similar
manner and we leave the implementation for the reader.

10.4.1.4 Analysis of Variance

The above t-tests also follow from an analysis of variance (ANOVA) of
bioavailability endpoints. The principle underlying ANOVA is to analyze the
variability of the observed endpoint by partitioning the total sum of squares
(SS) into components reflecting fixed and random effects, followed by the
statistical F -tests.

The detail mathematical derivations for ANOVA in bioequivalence appear
in Chow and Liu (2009). We merely illustrate how easy it is to implement the
ANOVA using the R system; i.e., with one line of R code as follows:

> # cat("We first re-format the data into R dataframe","\n")

> Data = data.frame(subj = as.factor(dat$Subject),

drug = as.factor(dat$Formulation),

seq = as.factor(dat$Sequence),

prd = as.factor(dat$Period),

AUC = dat$AUC)

> # cat("Then call R function aov for ANOVA Table", "\n")

> summary(aov(AUC ~ seq*drug + Error(subj), data = Data))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

seq 1 276 276 0.37 0.55
Residuals 22 16211 737

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

drug 1 63 62.8 0.38 0.55
seq:drug 1 36 36.0 0.22 0.65
Residuals 22 3679 167.2

It is observed that the p-values from the F -tests for differential carryover
and direct formulation effects are identical to those from the t-tests in the
previous sections.

In summary, we conclude that there are no statistically significant differ-
ential carryover, period, or direct formulation effects in this bioequivalence
clinical trial.



274 Clinical Trial Data Analysis Using R

We can now proceed to illustrate computation of the confidence interval
methods discussed in Section 10.3.

10.4.1.5 Decision CIs

The 90% decision CI for the ratio of means is DecisionCIratio =
(80%, 125%) as indicated in Equation (10.6). The decision CI for the difference
in means as defined in Equation (10.8) has to be calculated using the mean
of reference formulation. Since we will need the means for both formulations,
we calculate both and denote them by ȲT and ȲR. We denote the limits for
this decision CI as θL and θU for future reference.

The implementation in the R system appears in the following R code chunk:

> # get the mean for AUC by Formulation

> mdrug = tapply(dat$AUC, list(drug=dat$Formulation), mean)

> # extract the means

> ybarT = mdrug["T"]

> ybarR = mdrug["R"]

> # make the decision CI

> dec2.low = theta.L = -0.2*ybarR

> dec2.up = theta.U = 0.25*ybarR

> cat("DecisionCI.mean=(",dec2.low,",",dec2.up,")",sep="","\n")

DecisionCI.mean=(-16.5,20.6)

Therefore the decision CI for mean difference is DecisionCImean =
(θL, θU )= (−16.512, 20.64).

It is noted that we are using the asymmetric interval of (80%, 125%) in
this book corresponding to Peace and Chen (2010) which is slightly different
from Chow and Liu (2009), where they use the symmetric interval of (80%,
120%). Therefore, calculations in this book associated with θU will differ from
those in Chow and Liu (2009). It should be noted that bioequivalence decision
interval originally proposed by the FDA Division of Biopharmaceuticals was
(80%, 120%), which is symmetrical on the original scale. The (80%, 125%)
decision interval is symmetrical on the log scale.

10.4.1.6 Classical Shortest 90% CI

The CI for the mean difference in Equation (10.10) is implemented using
the following R code chunk:

> # the confidence coefficient: alpha

> alphaCI = .1

> # the t-value

> qt.alpha = qt(1-alphaCI, n1+n2-2)

> qt.alpha

[1] 1.32
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> # the lower and upper limits for CI1

> low1 = (ybarT-ybarR)-qt.alpha*sqrt(sigd2)*sqrt(1/n1+1/n2)

> up1 = (ybarT-ybarR)+qt.alpha*sqrt(sigd2)*sqrt(1/n1+1/n2)

> cat("The classical CI1=(", round(low1,3),",",

round(up1,3),")", sep=" ","\n\n")

The classical CI1=( -7.22 , 2.64 )

> # the lower and upper limits for CI2

> low2 = (low1/ybarR+1)*100

> up2 = (up1/ybarR+1)*100

> cat("The Ratio CI2=(", round(low2,3),",",

round(up2,3),")", sep=" ","\n\n")

The Ratio CI2=( 91.3 , 103 )

Then, the CI for the difference in means CI1 = (−7.22, 2.645) and the
CI for ratio of means CI2 = (91.255, 103.204). It is observed that they are
identical to those in Chow and Liu (2009).

10.4.1.7 The Westlake Symmetrical CI

From the second part of Westlake Equation (10.12), we first calculate k12 =
k1 + k2 as

> k12 = 2*(ybarR-ybarT)/sqrt( sigd2*(1/n1+1/n2))

We substitute k1 = k12 − k2 into the first part and numerically solve for
k2 using R command uniroot as follows:

> k2 = uniroot(function(k2) pt(k12-k2,n1+n2-2)- pt(k2,n1+n2-2)

-(1-alphaCI),lower = -10, upper = 10, tol = 0.0001)$root

> k1 =k12-k2

> cat("The Westlake k1=",k1," and k2=",k2,sep=" ", "\n\n")

The Westlake k1= 2.6 and k2= -1.37

Then the lower and upper limits are calculated as

> low.west = k2*sqrt(sigd2*(1/n1+1/n2))-(ybarR-ybarT)

> up.west = k1*sqrt(sigd2*(1/n1+1/n2))-(ybarR-ybarT)

> cat("The Westlake CI for mu_T-mu_A is

(",low.west,",",up.west,")",sep=" ", "\n\n")

The Westlake CI for mu_T-mu_A is (-7.41 , 7.41)

Again, this reproduces the results in Chow and Liu (2009).
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10.4.1.8 Two One-Sided Tests

The TL and TU in Equations (10.13) are implemented as:

> TL = (ybarT-ybarR-theta.L)/sqrt(sigd2*(1/n1+1/n2))

> TU = (ybarT-ybarR-theta.U)/sqrt(sigd2*(1/n1+1/n2))

Since TL= 3.81 > t(α, n1 +n2−2) = 1.717 and TU = −6.141 < −t(α, n1 +
n2 − 2) = −1.717, we conclude bioequivalence.

Alternatively, the two, one-sided p-values are

> pL = 1-pt(abs(TL), n1+n2-2)

> pU = pt(TU,n1+n2-2)

> p1side = max(pL, pU)

The p-values are pL = 0.00048 and pU = 2e-06. The maximum of these two,
one-sided p-values is max(pL, pU ) = 0.00048 which is less than 0.05. Again we
conclude bioequivalence.

10.4.1.9 Bayesian Approach

Computation of the posterior probability in Equation (10.14) can be im-
plemented in the R system as:

> tL = (theta.L -(ybarT-ybarR))/sqrt(sigd2*(1/n1+1/n2))

> tU = (theta.U -(ybarT-ybarR))/sqrt(sigd2*(1/n1+1/n2))

> pRD = pt(tU, n1+n2-2) - pt(tL, n1+n2-2)

> pRD

R
0.9995

Since the posterior probability pRD = 0.9995 > 90%, we again conclude
bioequivalence.

10.4.1.10 Individual-Based BT CI

The step-by-step implementation of the individual-based Bienayme-
Tchebycheff Inequality CI in Section 10.3.6 is as follows:

1. Create the individual ratios:

> # get data for "Reference"

> dR = dat[dat$Formulation=="R",c("Subject","AUC")]

> # get data for "Test"

> dT = dat[dat$Formulation=="T",c("Subject","AUC")]

> colnames(dR) = c("Subject","AUC4R")

> colnames(dT) = c("Subject","AUC4T")

> # merge these two data sets to create the ratio
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> dRT = merge(dR,dT)

> rT2R = dRT$AUC4T/dRT$AUC4R

> rT2R

[1] 0.987 2.003 1.673 0.967 1.002 0.879 1.132 1.196
[9] 0.702 0.703 0.873 0.799 0.980 1.163 0.852 0.882
[17] 0.900 0.744 1.020 1.168 0.719 0.804 0.718 1.352

2. Get the mean and standard error:

> k = 1/sqrt(1-.9)

> rbar = mean(rT2R)

> sigrbar = sqrt(var(rT2R)/n)

> rbar

[1] 1.01

> sigrbar

[1] 0.0638

3. Calculate the lower and upper limits for BT CI:

> low.BT = rbar-k*sigrbar

> up.BT = rbar+k*sigrbar

> cat("The Tchebycheff CI for mu_T/mu_A is

(",low.BT,",",up.BT,")",sep="", "\n\n")

The Tchebycheff CI for mu_T/mu_A is (0.807,1.21)

Then the CI from the individual-based Bienayme-Tchebycheff Inequality
is (0.807, 1.211) which lies in the DecisionCIratio =(80%, 125%). Again we
conclude bioequivalence.

10.4.1.11 Bootstrap CIs

As outlined in Section 10.3.7, there are two bootstrap approaches. One
is to bootstrap the individual ratios and calculate the mean. The other is to
bootstrap the individual bioavailability endpoints and calculate the ratio of
the means.

We create 2000 bootstrap samples which is easily implemented using the
R system as follows:
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> # B=number of bootstrap

> B = 2000

> # boota and bootb to keep track the bootstrap results

> boota = bootb = NULL

> for(b in 1:B){

# Boottrap the observed individual ratios

boota[b] = mean(sample(rT2R, replace=T))

# boottrap the individuals and calculate the means

tmp = dRT[sample(1:n, replace=T),]

bootb[b] = mean(tmp$AUC4T)/mean(tmp$AUC4R)

}

> qxa = quantile(boota, c(0.05, 0.95))

> qxa

5% 95%
0.912 1.119

> qxb = quantile(bootb, c(0.05, 0.95))

> qxb

5% 95%
0.902 1.048

Again we conclude bioequivalence from both approaches since both bootstrap
90% CIs are completely within the DecisionCIratio.

The bootstrap sampling distributions from the mean of the individual ra-
tios and the ratio of the means can be generated using the following R code
to produce Figures 10.1 and 10.2, respectively. In both figures, the two solid
vertical segments indicate the limits for the 90% CI and the middle dashed
vertical line indicate the means.

> # Plot for the mean of the individual ratios

> # call "hist" to make histogram

> hist(boota,nclass=30, freq=F,las=1,

xlab="Mean of the Ratios", ylab="Density", main="")

> add the box for the histogram

> box()

> # add the density plot on the histogram

> den = density(boota)

> lines(den, lwd=2)

> # add the quantile lines
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> qya = approx(den$x, den$y, c(qxa,rbar))$y

> segments(qxa[1],0,qxa[1],qya[1], lwd=5)

> segments(qxa[2],0,qxa[2],qya[2], lwd=5)

> segments(rbar,0,rbar,qya[3],lty=4, lwd=5)
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FIGURE 10.1: Bootstrap Distribution for the Mean of the Individual Ratios.

> # Plot for the ratio of means

> hist(bootb,nclass=30, freq=F,las=1,

xlab="Ratio of the Means", ylab="Density", main="")

> box()

> den = density(bootb)

> lines(den, lwd=2)

> rmean = mean(dRT$AUC4T)/mean(dRT$AUC4R)

> qyb = approx(den$x, den$y, c(qxb,rmean))$y

> segments(qxb[1],0,qxb[1],qyb[1], lwd=5)
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> segments(qxb[2],0,qxb[2],qyb[2], lwd=5)

> segments(rmean,0,rmean,qyb[3],lty=4, lwd=5)
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FIGURE 10.2: Bootstrap Distribution for the Ratio of the Means.

We can use the bootstrap samples to test whether the distribution is nor-
mally distributed using the so-called qqnorm plot as seen in Figure 10.3. From
this QQ-plot, we conclude that the distribution is heavy-tailed and we can test
whether it is a normal distribution using the Shapiro test as

> shapiro.test(bootb)

Shapiro-Wilk normality test

data: bootb
W = 0.994, p-value = 4.624e-07
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FIGURE 10.3: QQ-Plot for the Ratio of the Means.
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10.4.2 Analyze the Data from Cimetidine Trial

10.4.2.1 Bioavailability Endpoints Calculations

To illustrate the calculation of bioavailability endpoints, we take the
concentration-by-time data from the first sequence and second period (i.e.,
formulation T = one 800 mg Cimetidine tablet).

The data is loaded into R using the following R code chunk as follows:

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> getxlsbook = odbcConnectExcel2007(datfile)

> datRaw0 = sqlFetch(getxlsbook,"CimetidineRaw", colnames=F)

> odbcCloseAll()

> print(datRaw0)

Subject HR0 HR05 HR10 HR15 HR20 HR30 HR40 HR60
1 0.00 2.81 2.39 2.96 4.08 2.72 1.88 0.94
3 0.00 0.25 2.25 2.64 4.18 3.97 2.25 0.94
5 0.00 1.80 3.16 3.49 2.85 2.71 1.52 0.75
8 0.10 4.62 4.06 3.31 3.88 3.19 1.73 0.94
9 0.11 1.72 1.67 2.45 2.63 4.60 2.00 0.69
12 0.00 1.48 1.82 1.84 2.88 2.12 1.22 0.58
16 0.00 1.02 1.68 2.95 3.30 4.06 2.17 1.11
17 0.00 2.48 4.02 3.98 5.46 4.80 3.20 1.39
19 0.00 1.12 1.65 1.57 1.71 4.44 3.06 1.33
22 0.00 0.21 1.91 1.11 1.64 2.46 1.55 0.75
23 0.00 0.81 2.32 2.19 2.16 1.24 0.94 0.51

HR80 HR100 HR120 HR180 HR240
1 0.56 0.28 0.00 0 0
2 0.41 0.15 0.10 0 0
3 0.39 0.22 0.00 0 0
4 0.53 0.23 0.11 0 0
5 0.26 0.19 0.00 0 0
6 0.40 0.20 0.00 0 0
7 0.57 0.33 0.14 0 0
8 0.58 0.27 0.15 0 0
9 0.59 0.28 0.17 0 0
10 0.41 0.18 0.00 0 0
11 0.35 0.23 0.14 0 0

The original concentration-by-time data datRaw0 is in the “wide” format
and we take advantage of R reshape to reshape this data into column for-
mat using the following R code chunk and we use head to show the first few
observations:

> datRaw = reshape(datRaw0, direction="long",
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varying=-1,idvar = "Subject",sep="")

> datRaw$time = datRaw$time/10

> colnames(datRaw) = c("subj","time","conc")

Therefore the subject-wise concentration-by-time curves can be graphically
displayed in Figure 10.4 as follows:

> library(lattice)

> print(xyplot(conc~time,group=subj,datRaw,xlab="Time(HR)",

xlim=c(0,13),auto.key = list(corner=c(1,1),lines = TRUE) ,

ylab="Concentration(mCG/ML)",type=c("p","a")))
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FIGURE 10.4: Concentration-by-Time Plot for First Sequence and Second
Period.
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As usual, the mean concentration-by-time curve can be obtained by cal-
culating the mean concentration at each time using aggregate and plot it in
Figure 10.5 as follows:

> # make the mean concentration

> dat.mean= aggregate(datRaw$conc, list(time=datRaw$time), mean)

> # plot it with a line

> plot(conc~time,las=1,type="n",datRaw,xlab="Time",xlim=c(0,13),

ylim=c(0, 4), ylab="Mean Concentration")

> lines(x~time,dat.mean, lty=1, lwd=3)
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FIGURE 10.5: Mean Concentration-by-Time Plot for First Sequence and Sec-
ond Period.

From both Figures 10.4 and 10.5, we observe that the variability between
or among subjects is large. We now calculate the endpoints.

As outlined in Section 10.2, we develop some functions to be called to
calculate the endpoints for each subjects. The first function call is to calculate
the elimination rate β in Section 10.2 using the iterative approach:
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> # function `make.beta' with argument `dt'
> make.beta = function(dt){

# terminal elimination beta to find the slope for R2(k+1) <R2(k)

n = length(dt$conc) # get the length of data

# end the loop at tmax

tmax = which.max(dt$conc)

# loop over starting from the last time-conc point to tmax

for(k in n:tmax){

dt1 = dt[((k-2):n),] # start with last 3 pts and move on

dt2 = dt[((k-3):n),] # start with last 4 pts and move on

# some date have 0s at the end of t-c curve and make the lm crash

# so make this dataframe at least 3 data points

if( dim(dt1[dt1$conc>0,])[1]>= 3 ){

# fit log(conc) to time and track the r-square

m1 = lm(log(conc)~time, dt1[(dt1$conc>0),])

m2 = lm(log(conc)~time, dt2[(dt2$conc>0),])

betat = m1$coef[[2]]

#cat("Check=",summary(m1)$r.squared > summary(m2)$r.squared,"

#and Stopped at", k, "with beta=",betat,sep=" ","\n\n")

if(summary(m1)$r.squared > summary(m2)$r.squared) break

} # end of if-loop

} # end of k-for-loop

#cat("final beta=",betat,"\n\n")

# return

betat

} # end of make-beta function

With this function, we can then make a R function make to compute all
the endpoints as defined in Section 10.2 as follows:

> make = function(dt){

time = dt$time; conc = dt$conc

# calculate AUC

t.dif = diff(time) # the t(i)-t(i-1)

c.mean = (conc[-1]+conc[-length(conc)])/2

auc = sum(t.dif*c.mean)

# Cmax

cmax = max(conc)

# tmax

tmax = dt[which.max(dt$conc),]$time

# terminal elimination beta to find the slope for R2(k+1) <R2(k)

betat = make.beta(dt)

# terminal halflife

t5 = round(-log(2)/betat*2.303,1)
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# AUC infinite

aucinf = auc+ conc[length(conc)]/betat

# return the results.

c(auc,cmax,tmax, betat, t5, aucinf)

}

Then we can call the make-function along with the concentration-by-time
data to perform the calculations with output endpts as follows:

> name.subj = sort(unique(datRaw$subj))

> num.subj = length(name.subj)

> endpts = matrix(0, nrow=num.subj, ncol=7)

> colnames(endpts) = c("subj","AUC","CMAX","TMAX",

"betat","t5","AUCinf")

> for(id in 1:num.subj){

tmp = datRaw[(datRaw$subj == name.subj[id]),

c("time","conc")]

endpts[id,] = c(name.subj[id],make(tmp))

}

> endpts

subj AUC CMAX TMAX betat t5 AUCinf
[1,] 1 16.24 4.08 2.0 -0.319 5.0 16.24
[2,] 3 16.45 4.18 2.0 -0.419 3.8 16.45
[3,] 5 14.07 3.49 1.5 -0.307 5.2 14.07
[4,] 8 18.55 4.62 0.5 -0.393 4.1 18.55
[5,] 9 14.80 4.60 3.0 -0.459 3.5 14.80
[6,] 12 11.04 2.88 2.0 -0.290 5.5 11.04
[7,] 16 17.20 4.06 3.0 -0.335 4.8 17.20
[8,] 17 24.02 5.46 2.0 -0.338 4.7 24.02
[9,] 19 17.56 4.44 3.0 -0.373 4.3 17.56
[10,] 22 10.31 2.46 3.0 -0.363 4.4 10.31
[11,] 23 9.67 2.32 1.0 -0.229 7.0 9.67

It is observed that this calculation reproduces the values in Table 10.2.

10.4.2.2 ANOVA: Tests for Carryover and Other Effects

For this data, we only illustrate the analysis of variance (ANOVA) ap-
proach with the F -test since it is equivalent to the t-test for two peri-
ods/formulations.

Again the clinical trial data is loaded into R system using ROBDC as follows:

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> getxlsbook = odbcConnectExcel2007(datfile)

> dat = sqlFetch(getxlsbook,"Cimetidine", colnames=F)

> odbcCloseAll()
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Then we re-format the data into a R dataframe and call the R functions
lm and aov for a series of ANOVA as in the following R code chunk:

> Data = data.frame(subj = as.factor(dat$Subject),

drug = as.factor(dat$Formulation),

seq = as.factor(dat$Sequence),

prd = as.factor(dat$Period),

AUC = dat$AUC, lAUC= log(dat$AUC),

CMAX = dat$CMAX, lCMAX= log(dat$CMAX))

The number of subjects in the trial can be tracked as

> nsubj = tapply(dat$Subject, list(dat$Sequence), length)/2

> n1 = nsubj[1]

> n2 = nsubj[2]

> n = n1+n2

The total number of subjects in the trial is 23 with 11 in Sequence 1 and 12
in Sequence 2.

Specifically, we call lm for fixed effect ANOVA model to test “formulation”
and “period” effects. However this ANOVA model is not appropriate to test
“carryover”effect as outlined in Section 3.5, Chow and Liu (2009) and Chapter
10 in Peace and Chen (2010). We need to call aov to test for “carryover” effect
which is implemented as in the following R code chunk:

1. The ANOVAs for AUC:

> # the fixed model using lm for "formulation" and "period"

> mdAUC = lm(AUC ~ seq + subj:seq + prd + drug,data = Data)

> print(anova(mdAUC))

Analysis of Variance Table

Response: AUC
Df Sum Sq Mean Sq F value Pr(>F)

seq 1 34 34.1 9.62 0.0054 **
prd 1 1 0.9 0.26 0.6127
drug 1 0 0.3 0.08 0.7861
seq:subj 21 525 25.0 7.06 1.8e-05 ***
Residuals 21 74 3.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # the random effect model using aov for carryover and other effects

> mdAUC.R = aov(AUC ~ prd * drug + Error(subj), data = Data)

> print(summary(mdAUC.R))
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Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

prd:drug 1 34 34.1 1.36 0.26
Residuals 21 525 25.0

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

prd 1 0.9 0.94 0.26 0.61
drug 1 0.3 0.27 0.08 0.79
Residuals 21 74.4 3.54

As seen from these ANOVA tables, the p-value for “carryover” effect is
0.256 indicating no statistically significantly “carryover” effect. In addi-
tion, the p-values for “period” and ”drug” are 0.786 and 0.613, respec-
tively, from both the fixed linear model and random effect model.

The same analysis can be performed on log(AUC), CMAX and
log(CMAX), etc. as follows:

2. The ANOVAs for log AUC:

> # the fixed model using lm for "formulation" and "period"

> mdlAUC = lm(lAUC ~ seq + subj:seq + prd + drug,data = Data)

> print(anova(mdlAUC))

Analysis of Variance Table

Response: lAUC
Df Sum Sq Mean Sq F value Pr(>F)

seq 1 0.145 0.1453 8.05 0.00987 **
prd 1 0.005 0.0048 0.27 0.61189
drug 1 0.003 0.0033 0.18 0.67236
seq:subj 21 1.924 0.0916 5.07 0.00023 ***
Residuals 21 0.379 0.0181
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. The ANOVAs for CMAX:

> # the fixed model using lm for "formulation" and "period"

> mdCMAX = lm(CMAX ~ seq + subj:seq + prd + drug,data = Data)

> print(anova(mdCMAX))

Analysis of Variance Table

Response: CMAX
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Df Sum Sq Mean Sq F value Pr(>F)
seq 1 2.4 2.449 2.74 0.11
prd 1 0.1 0.063 0.07 0.79
drug 1 0.2 0.164 0.18 0.67
seq:subj 21 31.9 1.519 1.70 0.12
Residuals 21 18.8 0.895

> # the random effect model using aov for carryover and other effects

> mdCMAX.R = aov(CMAX ~ prd * drug + Error(subj), data = Data)

> print(summary(mdCMAX.R))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

prd:drug 1 2.4 2.45 1.61 0.22
Residuals 21 31.9 1.52

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

prd 1 0.06 0.063 0.07 0.79
drug 1 0.16 0.164 0.18 0.67
Residuals 21 18.79 0.895

4. The ANOVAs for log CMAX:

> # the fixed model using lm for "formulation" and "period"

> mdlCMAX = lm(lCMAX ~ seq + subj:seq + prd + drug,data = Data)

> print(anova(mdlCMAX))

Analysis of Variance Table

Response: lCMAX
Df Sum Sq Mean Sq F value Pr(>F)

seq 1 0.152 0.1518 2.91 0.10
prd 1 0.005 0.0046 0.09 0.77
drug 1 0.010 0.0098 0.19 0.67
seq:subj 21 1.909 0.0909 1.74 0.11
Residuals 21 1.096 0.0522

> # the random effect model using aov for carryover and other effects

> mdlCMAX.R = aov(lCMAX ~ prd * drug + Error(subj), data = Data)

> print(summary(mdlCMAX.R))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)
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prd:drug 1 0.152 0.1518 1.67 0.21
Residuals 21 1.909 0.0909

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

prd 1 0.005 0.0046 0.09 0.77
drug 1 0.010 0.0098 0.19 0.67
Residuals 21 1.096 0.0522

From these ANOVAs, we can confidently conclude that there are no statis-
tically significant carryover, period or direct formulation effects in this bioe-
quivalence clinical trial of Cimetidine.

We now proceed to the confidence interval methods in Section 10.3. Since
we can just call the R code chunks in Section 10.4.1 exactly with minimal
changes, we just illustrate the analysis for the Cimetidine data copying-and-
pasting from Section 10.4.1. Readers can use the R code here in the same
fashion for their own clinical trial data analysis.

10.4.2.3 Decision CIs

Similarly, the 90% decision CI for the ratio of the means is
DecisionCIratio = (80%, 125%) as indicated in Equation (10.6). The decision
CI for the difference in means as defined in Equation (10.8) can be calculated
using the mean of reference formulation. The implementation in the R system
is in the following R code chunk:

> mdrug = tapply(dat$AUC, list(drug=dat$Formulation), mean)

> ybarT = mdrug["T"]

> ybarR = mdrug["R"]

> dec2.low = theta.L = -0.2*ybarR

> dec2.up = theta.U = 0.25*ybarR

> cat("DecisionCI.mean=(",dec2.low,",",dec2.up,")",sep="","\n")

DecisionCI.mean=(-3.33,4.16)

Therefore the decision CI for the mean difference is DecisionCImean =
(θL, θU ) = (−3.328, 4.159).

10.4.2.4 Classical Shortest 90% CI

The CI for the mean difference in Equation (10.10) can be implemented
using the following R code chunk:

> # the confidence coefficient: alpha

> alphaCI = .1

> # the t-value

> qt.alpha = qt(1-alphaCI, n1+n2-2)

> qt.alpha
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[1] 1.32

> # the sigma using the ANOVA model instead

> sigd2 = anova(mdAUC)[5,3]/2

> # the lower and upper limits for CI1

> low1 = (ybarT-ybarR)-qt.alpha*sqrt(sigd2)*sqrt(1/n1+1/n2)

> up1 = (ybarT-ybarR)+qt.alpha*sqrt(sigd2)*sqrt(1/n1+1/n2)

> cat("The classical CI1=(", round(low1,3),",",

round(up1,3),")", sep=" ","\n\n")

The classical CI1=( -0.875 , 0.595 )

> # the lower and upper limits for CI2

> low2 = (low1/ybarR+1)*100

> up2 = (up1/ybarR+1)*100

> cat("The Ratio CI2=(", round(low2,3),",",

round(up2,3),")", sep=" ","\n\n")

The Ratio CI2=( 94.7 , 104 )

Then, the CI for the difference in means CI1 = (−0.875, 0.595) and the
CI for the ratio of means CI2 = (94.74, 103.577) concluding bioequivalence of
the two Cimetidine formulations.

10.4.2.5 The Westlake Symmetrical CI

Again, we calculate k12 = k1 + k2 first as

> k12 = 2*(ybarR-ybarT)/sqrt( sigd2*(1/n1+1/n2))

We substitute k1 = k12 − k2 into the first part to numerically solve for k2

using R command uniroot as follows:

> k2 = uniroot(function(k2) pt(k12-k2,n1+n2-2)- pt(k2,n1+n2-2)

-(1-alphaCI),lower = -10, upper = 10, tol = 0.0001)$root

> k1 =k12-k2

> cat("The Westlake k1=",k1," and k2=",k2,sep=" ", "\n\n")

The Westlake k1= 2.02 and k2= -1.52

The lower and upper limits are calculated as

> low.west = k2*sqrt(sigd2*(1/n1+1/n2))-(ybarR-ybarT)

> up.west = k1*sqrt(sigd2*(1/n1+1/n2))-(ybarR-ybarT)

> cat("The Westlake CI for mu_T-mu_A is

(",low.west,",",up.west,")",sep=" ", "\n\n")

The Westlake CI for mu_T-mu_A is
( -0.983 , 0.983 )

Again, we conclude bioequivalence of the two Cimetidine formulations.
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10.4.2.6 Two One-Sided CI

Similarly the TL and TU in Equations (10.13) can be implemented as

> TL = (ybarT-ybarR-theta.L)/sqrt(sigd2*(1/n1+1/n2))

> TU = (ybarT-ybarR-theta.U)/sqrt(sigd2*(1/n1+1/n2))

Since TL= 5.737 > t(α, n1+n2−2) = 1.721 and TU = −7.739 < −t(α, n1+
n2 − 2) = −1.721, we conclude bioequivalence.

We can look at this from the two, one-sided p-values as

> pL = 1-pt(abs(TL), n1+n2-2)

> pU = pt(TU,n1+n2-2)

> p1side = max(pL, pU)

The p-values are pL = 5e-06 and pU = 0. The max of these two are
max(pL, pU ) = 1e-05 which is less than 0.05. Again we conclude bioequiv-
alence of the two Cimetidine formulations.

10.4.2.7 Bayesian Approach

The posterior probability in Equation (10.14) can be implemented in the
R system as

> tL = (theta.L -(ybarT-ybarR))/sqrt(sigd2*(1/n1+1/n2))

> tU = (theta.U -(ybarT-ybarR))/sqrt(sigd2*(1/n1+1/n2))

> pRD = pt(tU, n1+n2-2) - pt(tL, n1+n2-2)

> pRD

R
0.9999946

Since the posterior probability pRD = 0.9999946 > 90%, we again conclude
bioequivalence of the two Cimetidine formulations.

10.4.2.8 Individual-Based BT CI

The step-by-step implementation of the individual-based Bienayme-
Tchebycheff Inequality CI in Section 10.3.6 is as follows:

1. Create the individual ratios:

> dR = dat[dat$Formulation=="R",c("Subject","AUC")]

> dT = dat[dat$Formulation=="T",c("Subject","AUC")]

> colnames(dR) = c("Subject","AUC4R")

> colnames(dT) = c("Subject","AUC4T")

> dRT = merge(dR,dT)

> rT2R = dRT$AUC4T/dRT$AUC4R

> rT2R
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[1] 1.187 1.168 1.046 0.791 1.315 1.024 1.055 1.335
[9] 0.999 0.989 1.075 0.697 0.956 0.903 1.004 1.047
[17] 0.993 0.806 1.019 1.063 0.864 0.591 1.067

2. Get the mean and standard error:

> k = 1/sqrt(1-.9)

> rbar = mean(rT2R)

> sigrbar = sqrt(var(rT2R)/n)

> rbar

[1] 1

> sigrbar

1
0.0363

3. Calculate the lower and upper limits for BT CI:

> low.BT = rbar-k*sigrbar

> up.BT = rbar+k*sigrbar

> cat("The Tchebycheff CI for mu_T/mu_A is

(",low.BT,",",up.BT,")",sep="", "\n\n")

The Tchebycheff CI for mu_T/mu_A is
(0.885,1.11)

Then the CI from the individual-based Bienayme-Tchebycheff Inequality
is (0.885, 1.115) which lies in the DecisionCIratio =(80%, 125%) and again
we conclude bioequivalence.

10.4.2.9 Bootstrap CIs

As outlined in Section 10.3.7, there are two bootstrap approaches. One is
to bootstrap the individual ratios and calculate the mean and another is to
bootstrap the individual bioavailability endpoints and calculate the ratio of
the means.

We create 2000 bootstrap samples using the R system as follows:

> # B=number of bootstrap

> B = 2000

> # boota and bootb to keep track the bootstrap results

> boota = bootb = NULL

> for(b in 1:B){

# Boottrap the observed individual ratios
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boota[b] = mean(sample(rT2R, replace=T))

# boottrap the individuals and calculate the means

tmp = dRT[sample(1:n, replace=T),]

bootb[b] = mean(tmp$AUC4T)/mean(tmp$AUC4R)

}

The 90% bootstrap CIs for the mean ratios and the ratio of the means are

> qxa = quantile(boota, c(0.05, 0.95))

> qxa

5% 95%
0.941 1.059

> qxb = quantile(bootb, c(0.05, 0.95))

> qxb

5% 95%
0.94 1.04

which again conclude bioequivalence from both approaches since both boot-
strap 90% CIs are completely within the DecisionCIratio.

The bootstrap sampling distributions for the mean of the individual ratios
and the ratio of the means are generated using the following R code to produce
Figures 10.6 and 10.7, respectively. In both figures, the two solid vertical
segments indicate the limits for the 90% CI and the middle dashed vertical
line indicates the means.

> #

> # Plot for the mean of ratios

> #

> hist(boota,nclass=30, freq=F,las=1,

xlab="Mean of the Ratios", ylab="Density", main="")

> box()

> den = density(boota)

> lines(den, lwd=2)

> qya = approx(den$x, den$y, c(qxa,rbar))$y

> segments(qxa[1],0,qxa[1],qya[1], lwd=5)

> segments(qxa[2],0,qxa[2],qya[2], lwd=5)

> segments(rbar,0,rbar,qya[3],lty=4, lwd=5)
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FIGURE 10.6: Bootstrap Distribution for the Mean of the Individual Ratios.

> #

> # Plot for the ratio of means

> #

> hist(bootb,nclass=30, freq=F,las=1,

xlab="Ratio of the Means", ylab="Density", main="")

> box()

> den = density(bootb)

> lines(den, lwd=2)

> rmean = mean(dRT$AUC4T)/mean(dRT$AUC4R)

> qyb = approx(den$x, den$y, c(qxb,rmean))$y

> segments(qxb[1],0,qxb[1],qyb[1], lwd=5)

> segments(qxb[2],0,qxb[2],qyb[2], lwd=5)

> segments(rmean,0,rmean,qyb[3],lty=4, lwd=5)



296 Clinical Trial Data Analysis Using R

Ratio of the Means

De
ns

ity

0.90 0.95 1.00 1.05

0

2

4

6

8

10

12

FIGURE 10.7: Bootstrap Distribution for the Ratio of the Means.
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10.5 Concluding Remarks

We illustrated the analysis of bioequivalence clinical trials using the R
system applied to two datasets. For more methodological details, readers can
refer to the seminal book by Chow and Liu (2009). This is the third edition of
the book. There is a second edition of the book Chow and Liu (1992) which
may also be referenced. The book by Peace and Chen (2010) also describes
bioequivalence trials.

There is a R package bear made by Hsin-ya Lee and Yung-jin Lee which is
available from

http://pkpd.kmu.edu.tw/bear

for average bioequivalence and bioavailability data analysis. This package in-
cludes sample size estimation, noncompartmental analysis (NCA), ANOVA
(lm) for a standard RT/TR 2× 2× 2 crossover design and linear mixed effect
model (lme of nlme) for a 2-treatment, 2-sequence, with 2 periods or more
(i.e., 2 × 2 × 3/2 × 2 × 4) replicate design or a 2-treatment, 2-sequence, and
1-period parallel ABE study (2×2×1). We encourage the readers to download
this package for their bioequivalence clinical trial data analysis.
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In this chapter, we illustrate the application of R to analyze adverse events
(AEs) in clinical trials. Similarly to other chapters, we introduce clinical trial
data in Section 11.1 and present the statistical models using confidence interval
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Section 11.3, we show step-by-step implementation using the R system to
analyze AE data. Concluding remarks appear in Section 11.4. Much of the
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data and methods.
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11.1 Adverse Event Data from a Clinical Trial

Data from a randomized, parallel, double blind clinical trial of two doses
(D1, D2) of a new drug compared to a control (C) appear in Table 11.1.

TABLE 11.1: AE data for clinical trial.

Stage ND2 fD2 ND1 fD1 NC fC
1 1.00 15.00 1.00 15.00 0.00 15.00 0.00
2 2.00 30.00 2.00 31.00 0.00 29.00 0.00
3 3.00 50.00 4.00 48.00 1.00 49.00 0.00
4 4.00 70.00 4.00 68.00 3.00 72.00 2.00
5 5.00 95.00 6.00 94.00 4.00 95.00 3.00
6 6.00 120.00 9.00 119.00 5.00 120.00 4.00
7 7.00 140.00 11.00 138.00 5.00 141.00 6.00
8 8.00 150.00 12.00 150.00 6.00 150.00 7.00

The trial was designed to detect a 20% difference in efficacy between a dose
group (n = 150) and the control with 95% power and a 5% Type-I error
rate. Entry of patients into the clinical trial is staggered; i.e., occurs in stages
(intervals of time). The data consist of the number of patients entered and
the number having a particular AE in each group totaled sequentially across
stages. These data are used retrospectively to illustrate the methods in this
chapter and how they may be used to monitor AEs in clinical trials.

The notations for the data columns in the table are as follows:

• Stage is the stage in the clinical trial;

• ND2 is the total number of patients in dose D2;

• fD2 is the total number of AEs in D2;

• ND1 is the total number of patients in D1;

• fD1 is the total number of AEs in D1;

• NC is the total number of patients in the control group; and

• fC is the total number of AEs in the control group, respectively.

Since the exact time of AE occurrence is not available, the AE rate for each
stage is the crude rate and is calculated as the ratio of the observed number
of patients having the AE to the total number of patients [Table 11.1 for all
ith (i = 1, · · · , 8)]. Therefore when these rates are plotted by treatment group
and stage using the following R code chunk (which produces Figure 11.1), they
may oscillate across stages.
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> plot(p2~Stage, type="n",dat,xlim=c(1,9),

ylim=c(0,max(dat$p1, dat$p2, dat$pC)),

xlab="Stage",las=1, ylab="AE Rate")

> lines(pC~Stage, dat,lwd=3, lty=8)

> lines(p1~Stage, dat,lwd=3, lty=4)

> lines(p2~Stage, dat,lwd=3, lty=1)

> legend("bottomright", legend = c("C","p1","p2"),

lty = c(8,4,1),lwd=3,title = "Line Types")
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FIGURE 11.1: Plot of AE Rate for the Three Dose Groups.

The AE rates by accrual stage for the three treatment groups appear in
Figure 11.1. It may be observed that the AE rates for dose group D1 and
the control group C are quite similar and lower than those of dose group
D2. However, the AE rates for D2 are substantially higher than those in
the control group. Therefore analyses consistent with monitoring focus on
comparing these two groups.
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11.2 Statistical Methods

In this section, we review the statistical methods in Chapter 17 of our
book (Peace and Chen (2010)). Readers may refer to that book for greater
methodological detail.

We describe two related confidence interval methods for comparing the
observed AE rates for two groups where the confidence level (complement of
the significance level) is determined so that the two groups are different at
that level. A sampling-resampling approach is developed parallel to these two
methods.

11.2.1 Confidence Interval (CI) Methods

One CI method is to use the usual, asymmetric CI on the difference in
AE rates of two groups to directly compare the two groups. The other is an
indirect comparison of the two groups, that is facilitated by comparing the
lower confidence limit (LL) of the CI on the AE rate in one group to the
upper confidence limit (UL) of the CI on the AE event rate in the other
group.

11.2.1.1 Comparison Using Direct CI Method

Directly comparing two groups by using a CI on the difference in their AE
rates is the more traditional approach in monitoring AEs in clinical trials. The
direct, comparative CI on the difference is often based on the normal approx-
imation to the binomial for AE events. This traditional confidence interval
(CI) can be constructed as follows:

Let pi and pj be the true incidence rates of some AE in the populations
to be treated with the ith and jth regimens, and let fi, fj , Pi and Pj denote
the corresponding observed incidences and incidence rates among Ni and Nj
treated patients, respectively. Then the observed difference, δij = Pi − Pj is
an unbiased estimate of the difference in true incidences where Pi = fi

Ni
and

Pj = fj
Nj

. The estimate of the variance of the observed difference is given by
Vi + Vj where Vi is the estimate of the variance of the observed incidence
rates in the ith regimen given by Vi = Pi(1−Pi)

Ni
with similar definition for jth

regimen.
Therefore the traditional, direct, 100(1− 2α)% can be represented as

Lij ≤ pi − pj ≤ Uij , (11.1)

where Lij is the lower limit and Uij is the upper limit and are given by:

Lij = Pi − Pj − Zα
√
Vi + Vj

Uij = Pi − Pj + Zα
√
Vi + Vj
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where Zα is the upper percentile of the standardized distribution of Pi − Pj .
The direct comparison of two regimens via 100(1− 2α)% confidence intervals
also permits concluding that the two regimens are different.

The conclusion is based on the lower limit. If the lower limit Lij is positive
(presuming that the observed incidence rate in the ith regimen exceeded the
observed incidence rate in the jth regimen), one may conclude that the two
regimens are statistically different at the nominal significance level α.

11.2.1.2 Comparison Using Indirect CI Methods

We describe two indirect methods based upon per group CIs. One is based
on the normal approximation to binomial AEs (hereafter referred as “Indi-
rectCI1”) and the other is based on the exact binomial distribution from AEs
(hereafter referred as “IndirectCI2”).

Method “IndirectCI1” is a nonstandard, indirect approach for comparing
AE incidence rates from two regimens as follows (using the same notation
from Section 11.2.1.1).

A two-sided 100(1− 2α1)% CI on the true incidence pi in the ith regimen
is

Li ≤ pi ≤ Ui (11.2)

where Li and Ui are the lower and upper limits given by

Li = Pi − Zα1

√
Vi

Ui = Pi + Zα1

√
Vi

where Zα1 is the 100(1 − α1)% percentile of the distribution of Pi based on
the normal approximation. In addition to such confidence intervals furnishing
information on the true incidences in each regimen, they also permit two
regimens to be indirectly compared. One could infer that regimens i and j are
statistically different at the nominal significance level α1 if the lower limit of
the 100(1 − 2α1)% confidence interval on the true incidence of regimen i is
greater than the upper limit of regimen j; that is, if Li > Uj where again the
observed incidence in the ith regimen is greater than the observed incidence
in the jth regimen.

Method “IndirectCI2” AEs follow a binomial distribution. We use the bi-
nomial distribution to construct the CI on the true AE rate. This binomial
approach is based on the well-known fact that if f is binomially distributed
with binomial(N, p), then the exact (1 − 2α1)% confidence interval can be
obtained by finding L and U such that

∑L
k=0Binom(k,N, p) ≤ α1 and∑N

k=U Binom(k,N, p) ≥ α1. Therefore, the indirect CI2 comparison using the
exact binomial distribution of AEs can be constructed to determine whether
Li ≥ Uj where Li is determined from

∑Li
k=0Binom(k,Ni, p̂i) ≤ α1 and Uj

is determined from
∑N
k=Uj

Binom(k,Nj , p̂j) ≥ α1. Note that p̂i = fi
Ni

and

p̂j = fj
Nj

.
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11.2.1.3 Connection between Direct and Indirect CI Methods

The methods of direct comparison in Subsection 11.2.1.1 and the indirect
comparison in Subsection 11.2.1.2 are connected as detailed in Peace and Chen
(2010). This connection is based from the equivalence of the rejection rules
expressed as

Zα1 = Zα ×
√
Vi + Vj√
Vi +

√
Vj
. (11.3)

That is, they are equivalent if the relationship between the critical point
for the indirect comparison is proportional to the critical point for the direct
comparison where the proportionality constant is the ratio of the variances
given in Equation (11.3). Based on this equivalence Equation (11.3), the sig-
nificance level α1 can be calculated as follows:

α1 = Φ−1 (Zα1) = Φ−1

(
Zα ×

√
Vi + Vj√
Vi +

√
Vj

)
(11.4)

where Φ−1(z) is the inverse function of the cumulative normal density func-
tion.

As an example, under the assumption of homogeneous variances of the
two groups, the critical point corresponding to the indirect comparison would
be
√

2/2 = 0.7071 times the critical point for the direct comparison. For
response rates and samples sizes large enough for the binomial distribution
to be well approximated by the normal distribution, if α equals 2.5%, α1 =
Φ−1(0.7071× (−1.96)) = Φ−1(−1.3859) = 8.29%. That is, if one were using a
nominal 95% two-sided confidence interval to directly compare two regimens
and the lower limit of that confidence interval exceeded 0, one would construct
two-sided 83.42% indirect confidence intervals to reach the same decision on
the true incidence in each regimen and require that the lower limit of one be
greater than the upper limit of the other.

11.2.2 Significance Level Methods (SLM)

11.2.2.1 SLM Using Normal Approximation

From method “IndirectCI1” in Section 11.2.1.2 based upon the normal
approximation to the binomial, we conclude that pi ≥ pj if Li ≥ Uj at the
significance level α , where Pi − zα

√
Vi ≥ Pj + zα

√
Vj . This is equivalent to

zα ≤
Pi − Pj√
Vi +

√
Vj

(11.5)

at the significance level α. Consequently “IndirectCI1” gives rise to a decision
rule based upon the significance level α. Consequently the significance level
method requires determining α from an appropriate distribution such that

CRα ≤
Pi − Pj√
Vi +

√
Vj

(11.6)
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where CRα is the critical point such that there is α area in the tail of the distri-
bution of Pi (or Pj) to the right of Pi−Pj√

Vi+
√
Vj

. From the normal approximation

to binomial distribution for AEs, Equation (11.6) is equivalent to Equation
(11.5) and the significance level α is easily calculated by:

α ≥ pnorm

(
Pi − Pj√
Vi +

√
Vj

)
(11.7)

where pnorm is the cumulative normal probability function.

11.2.2.2 SLM Using Exact Binomial Distribution

This method is also based on fact that pi ≥ pj if Li ≥ Uj at the signif-
icance level α, which can be determined as in Section 11.2.2.1. However, we
use the exact binomial distribution of AEs to determine Li and Uj where Li
is determined from

∑Li
k=0Binom(k,Ni, p̂i) ≤ α and Uj is determined from∑N

k=Uj
Binom(k,Nj, pj) ≥ α. The equation Li = Uj is then solved numer-

ically for the smallest α. This method involves extensive numerical analyses
which are easily performed in R.

11.2.2.3 SLM Using Resampling from Pooled Samples

The methods considered thus far are geared toward comparing pi ≥ pj
and making a statistical inference based on the UL and LL of per groups CIs
or to find the critical region CRα for significance level α based on underlying
distributions of the AEs.

Even though these methods are not constrained by H0 : pi = pj , were
we to test H0 directly using significance testing and the randomization test,
we would combine the data under H0 with (fi + fj) AEs in (Ni + Nj) sub-
jects. Therefore a sampling-resampling approach can be developed as in the
following steps:

1. Draw a random sample of size Ni from the (Ni + Nj) combined data
and the rest would be Nj samples from the combined sample;

2. Compute a new set of incidence rates of Pnewi and Pnewj . If Pnewi ≤
Pnewj , go back to Step 1, else compute a new critical value as

CRnew =
Pnewi − Pnewj√
V newi +

√
V newj

3. Repeat Steps 1 and 2 for a significant number of times (say N= 10000)
to construct a sampling-resampling distribution.

The significance level α would be the percentage of CRNew greater than
the observed CRα in Equation (11.6) in these N samples.
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11.2.2.4 SLM Using Resampling from Pooled AE Rates

Similar to the method in Section 11.2.2.3, a sampling-resampling approach
can be proposed from the pooled incidence rates from the binomial AEs. Based
on the null hypothesis that H0 : pi = pj = p, we can then estimate the true p
from the observed incidence rates of Pi and Pj as the pooled p̂ = Pi+Pj

2
. The

sampling-resampling approach can be implemented in the following steps:

1. Sample fsi ∼ Binom(Ni, p̂) and fsj ∼ Binom(Nj , p̂) and then calculate

P si = fsi
Ni

and P sj =
fsj
Nj

;

2. If P si ≤ P sj , then go back to Step 1, otherwise, calculate

CRs =
P si − P sj√
V si +

√
V sj

3. Repeat Steps 1 and 2 for a significant number of times (say N= 10000)
to construct a sampling-resampling distribution.

The significance level α would be the percentage of CRs greater than the
observed CR in Equation (11.6) in these N samples.

11.3 Step-by-Step Implementation in R

11.3.1 Clinical Trial Data Manipulation

Similarly to the previous chapters, we first read in the data from the ex-
cel data book “datR4CTDA.xlsx” using R package RODBC to connect (R
command odbcConectExcel2007) this excel book and read in the data sheet
named “AEPeace” using a R “SQL” command sqlFetch:

> require(RODBC)

> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"

> con = odbcConnectExcel2007(datfile)

> dat = sqlFetch(con, "AEPeace")

> odbcCloseAll()

This data is then shown as in Table 11.1. For further data manipulation,
we calculate the AE rate as well as the associated variance as follows:

> # the AE rate

> dat$p2 = dat$fD2/dat$ND2

> dat$p1 = dat$fD1/dat$ND1

> dat$pC = dat$fC/dat$NC
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> # The variance

> dat$V2 = dat$p2*(1-dat$p2)/dat$ND2

> dat$V1 = dat$p1*(1-dat$p1)/dat$ND1

> dat$VC = dat$pC*(1-dat$pC)/dat$NC

> len = length(dat[,1])

where “len” is defined for the length of stages (“len”= 8) future use.

11.3.2 R Implementations for CI Methods

To implement the direct CI method in Section 11.2.1.1, we first make a
R function (named as direct.CI) to be called to calculate the direct CI for
any two regimens with input vector (N1,f1,N2,f2,alpha) where “alpha” is the
desired significance level.

> # Function for direct comparison

> direct.CI = function(N1,f1,N2,f2,alpha){

p1 = f1/N1; p2 = f2/N2

v1 = p1*(1-p1)/N1;v2 = p2*(1-p2)/N2

z.alpha = qnorm(1-alpha)

low =(p1-p2)-z.alpha*sqrt(v1+v2)

up =(p1-p2)+z.alpha*sqrt(v1+v2)

data.frame(testp=p1>p2,low=low,diff=p1-p2,

p1=p1,p2=p2,N1=N1,N2=N2)

}

The outputs for this function include

1. testp to check whether the observed AE rate in regimen 1 is greater
than that in regimen 2 as “TRUE” or “FALSE”;

2. low to show the value of the lower limit to check whether Li2 is positive;

3. diff to show the difference of AE rate between regimens 1 to 2; and

4. p1,p2,N1,N2 are other relevant information for the regimens.

Using this function, we can calculate the direct CI by calling this function
to compare dose 1 to control (named as CI1toC ) and dose 2 to C (named
as CI2toC ) as follows:

> # call ``direct.CI" to compare dose 1 to control

> CI1toC = direct.CI(dat$ND1, dat$fD1, dat$NC, dat$fC, 0.025)

> # print the calculation

> CI1toC
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testp low diff p1 p2 N1 N2
1 FALSE 0.0000 0.00000 0.0000 0.0000 15 15
2 FALSE 0.0000 0.00000 0.0000 0.0000 31 29
3 TRUE -0.0196 0.02083 0.0208 0.0000 48 49
4 TRUE -0.0455 0.01634 0.0441 0.0278 68 72
5 TRUE -0.0429 0.01097 0.0426 0.0316 94 95
6 TRUE -0.0396 0.00868 0.0420 0.0333 119 120
7 FALSE -0.0520 -0.00632 0.0362 0.0426 138 141
8 FALSE -0.0527 -0.00667 0.0400 0.0467 150 150

> # call ``direct.CI" to compare dose 2 to control

> CI2toC = direct.CI(dat$ND2, dat$fD2, dat$NC, dat$fC, 0.025)

> # print the calculation

> CI2toC

testp low diff p1 p2 N1 N2
1 TRUE -0.0596 0.0667 0.0667 0.0000 15 15
2 TRUE -0.0226 0.0667 0.0667 0.0000 30 29
3 TRUE 0.0048 0.0800 0.0800 0.0000 50 49
4 TRUE -0.0369 0.0294 0.0571 0.0278 70 72
5 TRUE -0.0287 0.0316 0.0632 0.0316 95 95
6 TRUE -0.0154 0.0417 0.0750 0.0333 120 120
7 TRUE -0.0196 0.0360 0.0786 0.0426 140 141
8 TRUE -0.0217 0.0333 0.0800 0.0467 150 150

It may be observed from these outputs that there is no positive lower limit
for the comparison from D1 to C indicating that D1 and C are not statistically
significant at any stage, whereas the positive lower limit (i.e., L3C = 0.005)
is achieved at stage 3 indicating D2 and C are statistically different at this
stage.

11.3.3 R Implementations for Indirect CI Methods

Similarly, we make a R function to facilitate this calculation. The “Indi-
rectCI1” method using normal approximation to the binomial described in
Section 11.2.1.2 can be programmed in R function indirect.CI to calculate
the CI limit for each regimen as follows:

> # Function for indirect comparison: using normal approximation

> indirect.CI = function(N,f,alpha){

p = f/N; v = p*(1-p)/N

z.alpha = qnorm(1-alpha)

low = p-z.alpha*sqrt(v)

up = p+z.alpha*sqrt(v)
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data.frame(low=round(low,3),up=round(up,3),

N=N,f=f,p=round(p,3))

}

Based on Subsection 11.2.1.3, we would need to calculate the corresponding
α1 from Equation (11.4) for α = 0.025 for different specifications of AE rates.
We implement this calculation into following R function called alpha1.fn as
follows:

> # R function to compute alpha1

> alpha1.fn = function(alpha, n1,x1,n2,x2){

# the AE rates

p1 = x1/n1;p2=x2/n2

# the variance

v1 = p1*(1-p1)/n1; v2=p2*(1-p2)/n2

# constant

cont = sqrt(v1+v2)/(sqrt(v1)+sqrt(v2))

# alpha1 calculation

pnorm(cont*qnorm(alpha))

}

For comparison between Dose 1 and Control, α1 can be calculated as fol-
lows:

> alpha1.D1toC = alpha1.fn(0.025, dat$ND1,dat$fD1, dat$NC, dat$fC)

> alpha1.D1toC

[1] NaN NaN 0.0250 0.0813 0.0823 0.0825 0.0828

[8] 0.0827

The α1 for the first two stages can not be calculated since the AE rates
are zeros and the α1 in the third stage equals to α. However, α1s are generally
greater than αs for other stages based on the Equation (11.4).

Therefore the associated lower and upper limits can be calculated and
outputted as

> CIC = indirect.CI(dat$NC, dat$fC, alpha1.D1toC)

> CIC

low up N f p
1 NaN NaN 15 0 0.000
2 NaN NaN 29 0 0.000
3 0.000 0.000 49 0 0.000
4 0.001 0.055 72 2 0.028
5 0.007 0.057 95 3 0.032



310 Clinical Trial Data Analysis Using R

6 0.011 0.056 120 4 0.033
7 0.019 0.066 141 6 0.043
8 0.023 0.071 150 7 0.047

> CI1 = indirect.CI(dat$ND1, dat$fD1, alpha1.D1toC)

> CI1

low up N f p
1 NaN NaN 15 0 0.000
2 NaN NaN 31 0 0.000
3 -0.020 0.061 48 1 0.021
4 0.009 0.079 68 3 0.044
5 0.014 0.071 94 4 0.043
6 0.016 0.068 119 5 0.042
7 0.014 0.058 138 5 0.036
8 0.018 0.062 150 6 0.040

We inspect these outputs to determine which stage Li ≥ Uj is satisfied.
The comparison for the dose D1 to Control can be printed as

> # make a dataframe for dose 1 to control

> out1toC = data.frame(Stage= dat$Stage,

indirect.test = CI1$low > CIC$up,

low1=CI1$low, upC =CIC$up)

> # print it

> print(out1toC)

Stage direct.test low1 upC
1 NA NaN NaN
2 NA NaN NaN
3 FALSE -0.020 0.000
4 FALSE 0.009 0.055
5 FALSE 0.014 0.057
6 FALSE 0.016 0.056
7 FALSE 0.014 0.066
8 FALSE 0.018 0.071

We can see that there exists no stage satisfying Li ≥ Uj .
Similarly for comparison between Dose 2 and Control, α1 can be calculated

as follows:

> alpha1.D2toC = alpha1.fn(0.025, dat$ND2,dat$fD2, dat$NC, dat$fC)

> alpha1.D2toC

[1] 0.0250 0.0250 0.0250 0.0796 0.0801 0.07919 0.0807

[8] 0.0812
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Therefore the associated lower and upper limits can be calculated and
outputted as

> CIC = indirect.CI(dat$NC, dat$fC, alpha1.D2toC)

> CIC

low up N f p
1 0.000 0.000 15 0 0.000
2 0.000 0.000 29 0 0.000
3 0.000 0.000 49 0 0.000
4 0.001 0.055 72 2 0.028
5 0.006 0.057 95 3 0.032
6 0.010 0.056 120 4 0.033
7 0.019 0.066 141 6 0.043
8 0.023 0.071 150 7 0.047

> CI2 = indirect.CI(dat$ND2, dat$fD2, alpha1.D2toC)

> CI2

low up N f p
1 -0.060 0.193 15 1 0.067
2 -0.023 0.156 30 2 0.067
3 0.005 0.155 50 4 0.080
4 0.018 0.096 70 4 0.057
5 0.028 0.098 95 6 0.063
6 0.041 0.109 120 9 0.075
7 0.047 0.110 140 11 0.079
8 0.049 0.111 150 12 0.080

Again we inspect these outputs to determine which stage Li ≥ Uj is satis-
fied. The comparison for the dose D1 to Control can be printed as

> # make a dataframe for dose 1 to control

> out2toC = data.frame(Stage= dat$Stage,

indirect.test = CI2$low > CIC$up,

low1=CI2$low, upC =CIC$up)

> # print it

> print(out1toC)

Stage direct.test low2 upC
1 FALSE -0.060 0.000
2 FALSE -0.023 0.000
3 TRUE 0.005 0.000
4 FALSE 0.018 0.055
5 FALSE 0.028 0.057
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6 FALSE 0.041 0.056
7 FALSE 0.047 0.066
8 FALSE 0.049 0.071

We identify stage 3 as the only stage for which the lower limit for D2

(i.e., LD2 = 0.005) is greater than the upper limit of control (UC = 0). This
confirms the conclusion from the direct comparison.

Since we have observed that D1 is not statistically different from Control,
we don’t consider this dose regimen in the following analysis and focus on the
comparison of D2 to Control.

For the second indirect comparison (i.e., IndirectCI2 ) using exact binomial
distribution described in Section 11.2.1.2 can be programmed in R function
exact.CI to calculate the CI limit for each regimen as follows. This R function
exact.CI will be used and called in later sections.

> # Function to calculate the CI for binomial

> exact.CI = function(N,f,alpha){

p = f/N

low = qbinom(alpha, N, p)

up = qbinom(1-alpha,N,p)

data.frame(N=N,p=p,f=f,low=low,up=up, plow =low/N, pup=up/N)

}

Therefore the associated lower and upper limits may be calculated and
outputted as

> # for control

> CIC = exact.CI(dat$NC, dat$fC, alpha1.D2toC)

> CIC

N p f low up plow pup
1 15 0.0000 0 0 0 0.0000 0.0000
2 29 0.0000 0 0 0 0.0000 0.0000
3 49 0.0000 0 0 0 0.0000 0.0000
4 72 0.0278 2 0 4 0.0000 0.0556
5 95 0.0316 3 1 6 0.0105 0.0632
6 120 0.0333 4 1 7 0.0083 0.0583
7 141 0.0426 6 3 9 0.0213 0.0638
8 150 0.0467 7 4 11 0.0267 0.0733

> # for dose 2

> CI2 = exact.CI(dat$ND2, dat$fD2, 0.025)

> CI2
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N p f low up plow pup
1 15 0.0667 1 0 3 0.0000 0.2000
2 30 0.0667 2 0 5 0.0000 0.1667
3 50 0.0800 4 1 8 0.0200 0.1600
4 70 0.0571 4 1 7 0.0143 0.1000
5 95 0.0632 6 3 9 0.0316 0.0947
6 120 0.0750 9 5 13 0.0417 0.1083
7 140 0.0786 11 7 16 0.0500 0.1143
8 150 0.0800 12 8 17 0.0533 0.1133

We inspect these outputs and determine the stages for which Li ≥ Uj is
satisfied. The comparison for the dose D2 to Control can be printed as

> # dataframe for dose 2 to control

> out2toC = data.frame(Stage= dat$Stage,

indirect.test = CI2$plow > CIC$pup,

low2=CI2$plow, upC =CIC$pup)

> print(out2toC)

Stage direct.test low2 upC
1 FALSE 0.0000 0.0000
2 FALSE 0.0000 0.0000
3 TRUE 0.0200 0.0000
4 FALSE 0.0142 0.0555
5 FALSE 0.0315 0.0631
6 FALSE 0.0416 0.0583
7 FALSE 0.0500 0.0638
8 FALSE 0.0533 0.0733

We observe that stage 3 is the only stage for which the lower limit for D2

(i.e., LD2 = 0.02 ) is greater than the upper limit of control (UC = 0). This
again confirms the conclusion from the direct comparison.

11.3.4 R for Significant Level Methods

11.3.4.1 R for SLM with Normal Approximation

The significance level method (SLM) using the normal approximation in
Section 11.2.2.1 can be implemented in R to calculate the right bound in
Equation (11.6) and then use the cumulative normal probability function to
calculate the significant level α.

We make a R function bound.CI first since this function will be called for
other methods as follows:

> # Function to calculate bounds
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> bound.CI = function(N1,f1,N2,f2){

p1 = f1/N1

p2 = f2/N2

v1 = p1*(1-p1)/N1

v2 = p2*(1-p2)/N2

data.frame(bound= (p2-p1)/(sqrt(v1)+sqrt(v2)),

N1=N1,f1=f1,p1=p1,N2=N2,f2=f2,p2=p2)

}

We can then use the function to calculate the bound and compute the
significance level as

> # call function ``bound.CI" and make the calculation

> d0 = bound.CI(dat$NC,dat$fC,dat$ND2,dat$fD2)

> # calculate the alpha from normal approximation

> d0$alpha.normal = 1-pnorm(d0$bound)

> # print it

> round(d0,4)

bound N1 f1 p1 N2 f2 p2 alpha.normal
1 1.035 15 0 0.0000 15 1 0.0667 0.1503
2 1.464 29 0 0.0000 30 2 0.0667 0.0716
3 2.085 49 0 0.0000 50 4 0.0800 0.0185
4 0.623 72 2 0.0278 70 4 0.0571 0.2665
5 0.736 95 3 0.0316 95 6 0.0632 0.2308
6 1.031 120 4 0.0333 120 9 0.0750 0.1514
7 0.906 141 6 0.0426 140 11 0.0786 0.1824
8 0.847 150 7 0.0467 150 12 0.0800 0.1986

It can be seen that only at stage 3 is the significance level α = 0.019 less
than 0.05. We can plot the αs using the following R code to produce Figure
11.2.

> plot(dat$Stage, d0$alpha.normal,type="o", xlab="Stage",

ylab=expression(alpha), las=1, main="")

> text(dat$Stage, d0$alpha.normal,round(d0$alpha.normal,3))

11.3.4.2 R for SLM with Exact Binomial

The principle for this method in Section 11.2.2.2 is to search for a smallest
α so that LD2 − UC = 0 (i.e., LD2 = UC). We will reuse the R function
exact.CI we created before and call R built-in function uniroot to find the
one dimensional root for each stage using a R for-loop structure.

> # make a funtion for L_D2-UC

> fn = function(alpha, stage){
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FIGURE 11.2: The Estimated Significance Level α for Each Stage.
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LD2 = exact.CI(dat$ND2,dat$fD2,alpha)$plow[stage]

UC = exact.CI(dat$NC,dat$fC,alpha)$pup[stage]

LD2-UC

}

> # call R function ``uniroot" to solve equation

> est.alpha = NULL

> for(s in 1:len)

est.alpha[s]=uniroot(fn, c(0,0.8), stage=s)$root

> est.alpha

[1] 0.3529 0.0986 0.0112 0.2296 0.1988 0.1860 0.1483
[8] 0.1977

It can be seen that only at stage 3 is the significance level α = 0.011 less
than 0.05. The reader may wish to generate a plot similar to that in Figure
11.2 for this method by following the code in Section 11.3.4.1.

11.3.4.3 R for SLM Using Sampling–Resampling

The significance level method using the sampling-resampling approach
from pooled samples in Section 11.2.2.3 is implemented with a for-loop for
each stage under the null hypothesis of H0 : pC = pD2 as in the following R
code chunk with further explanations.

At each stage, we create two vectors, named as x1 and x2, for control and
D2 to mimic the observed AEs from “fC” and “fD2” from Table 11.1. Under
the H0, we combine “fC+fD2” AEs from “NC+ND2” subjects that is the data
frame x in the R code.

Now as in Step 1, we draw a random sample of sizeNC from the (NC+ND2)
using the R function sample applied to the frequencies for control and D2

(named as “f1” and “f2” in the chunk).
In Step 2, we calculate the new AE rates PnewC and PnewD2

(denoted as “p1”
and “p2” in the chunk). If PnewD2

≤ PnewC , we compute the new critical value
as

CRnew =
PnewC − PnewD2√
V newC +

√
V newD2

(11.8)

by calling the R function bound.CI to calculate the new bound.

> # set.seed to fix the seed for random number generation

> set.seed(123)

> # number of simulation

> num.sim = 1000

> # matrix to hold the output ŞboundŤ

> bound3 = matrix(0, ncol=len, nrow=num.sim)

> for(stage in 1:len){

ds = d0[stage,]

# make the 0 and 1's from the data from control
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x1 = c( rep(1, ds$f1), rep(0, ds$N1-ds$f1))

# from D2

x2 = c( rep(1, ds$f2), rep(0, ds$N2-ds$f2))

# combine them

x = data.frame(id = 1:(ds$N1+ds$N2),c(x1,x2))

tsim=0

repeat{

# sample it and sum the freq

f = sample(x$id, ds$N1)

f1 = sum(x[f,2])

f2 = sum(x[-f,2])

p1 = f1/ds$N1

p2 = f2/ds$N2

if(p2 > p1){

tsim=tsim+1

bound3[tsim,stage] = bound.CI(ds$N1,f1,ds$N2,f2)$bound

} # end of if

if(tsim ==num.sim) break

} # end of repeat

} # end of stage

Repeat Steps 1 and 2 for num.sim = 1000 times to create a sampling-
resampling distribution denoted by bounds3 which has 8 (number of stages)
columns and 1000 rows (number of sampling-resampling). We can check it by
the R command dim:

> dim(bound3)

[1] 1000 8

The implementation to the sampling-resampling from pooled AE rates in
Section 11.2.2.4 is similar to the method in Section 11.2.2.3 and is briefly ex-
plained as follows. The only difference is that the pooled AE rate is calculated
as p̂ = Pi+Pj

2
and draw binomial samples with this pooled AE rate.

> bound4 = matrix(0, ncol=len, nrow=num.sim)

> for(stage in 1:len){

ds = d0[stage,]

tsim=0

repeat{

f1 = rbinom(1, ds$N1, (ds$p1+ds$p2)/2)

f2 = rbinom(1, ds$N2, (ds$p1+ds$p2)/2)

p1 = f1/ds$N1

p2 = f2/ds$N2

if(p2 > p1){

tsim=tsim+1
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bound4[tsim,stage] = bound.CI(ds$N1,f1,ds$N2,f2)$bound

} # end of if

if(tsim ==num.sim) break

} # end of repeat

} # end of stage

> dim(bound4)

[1] 1000 8

The significance level α is then calculated by tracking the percentage of
these simulated 1000 samples CRnew in bound3 or bound4 which are greater
than the observed CRα, using Equation (11.6) and the following R code:

> est.alpha3 = NULL

> est.alpha4 = NULL

> for(i in 1:len){

regimen3 = bound3[,i]

regimen4 = bound4[,i]

# calculate how many simulations > the obs bound in d0$bound

est.alpha3[i] = sum(regimen3 > d0$bound[i])/num.sim

est.alpha4[i] = sum(regimen4 > d0$bound[i])/num.sim

}

> est.alpha3

[1] 0.000 0.000 0.000 0.160 0.164 0.078 0.119 0.151

> est.alpha4

[1] 0.204 0.081 0.010 0.312 0.337 0.171 0.186 0.235

As a final summary for the significance level method (SLM), we put all
the αs together and make a unified plot to display them using the following
R code chunk:

> # make the alpha plot

> d0$alpha.binom = est.alpha

> d0$alpha.samp1 = est.alpha3

> d0$alpha.samp2 = est.alpha4

> # keep track of the max values for alpha for y-axis limit

> max.alpha = max(d0$alpha.normal, d0$alpha.binom,

d0$alpha.samp1, d0$alpha.samp2)

> # plot the alpha

> plot(dat$Stage, d0$alpha.normal,type="n", ylim=c(0,max.alpha),

xlab="Stage", ylab=expression(alpha), las=1, main="")

> # add lines to the plots

> lines(dat$Stage, d0$alpha.normal,lwd=3,lty=1)

> lines(dat$Stage, d0$alpha.binom,lwd=3,lty=3)
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> lines(dat$Stage, d0$alpha.samp1,lwd=3,lty=4)

> lines(dat$Stage, d0$alpha.samp2,lwd=3,lty=8)

> abline(h=0.025, lwd=4, lty=1)

> # add legend

> temp <- legend("topright", legend = c(" ", " "," "," "),

text.width = strwidth("Normal Approx"),

lty = c(1,3,4,8),lwd=3,xjust = 1, yjust = 1,

title = "Line Types")

> text(temp$rect$left + temp$rect$w, temp$text$y, c("Normal Approx",

"Exact Binomial","Resampling 1","Resampling 2"), pos=2)
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FIGURE 11.3: The Estimated α’s for Each Stage under All Four Methods.

It can be observed from Figure 11.3 that all four methods identify stage 3
as the only stage at which there is a significant difference.
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11.4 Concluding Remarks

In this chapter, we presented an array of statistical methods to monitor
AEs in clinical trials. These methods are intended to serve as an alerting
mechanism in the usual monitoring of adverse events in clinical trials. Their
attractiveness is their simplicity and the fact that they represent little effort
beyond what is usually done in monitoring AEs as they accumulate. The
methods were applied to AE data from a completed clinical trial. Therefore
they were applied to the crude rate AE data across all stages of entry for
illustration. Had they been applied prospectively as the trial was ongoing
and the AE was serious, the significant excess of the AE in the highest dose
group as compared to control (if placebo) at stage 3 would have led to serious
discussions about possibly stopping the trial or at least dropping the high dose
group from further enrollment.

Statistical procedures involving confidence intervals were suggested for
monitoring AEs in clinical trials. Further per group confidence intervals on
the true AE rates are recommended as they permit easier comparative in-
terpretation, particularly in trials with a large number of treatment groups.
The significance-level-based methods presented in this chapter would be in
addition to these methods.

Readers should review Chapter 17 of our Clinical Trial Methodology book
(Peace and Chen (2010)) for more in depth presentation and discussion of the
methods and issues.
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In this chapter, we discuss the analysis of microarray data derived from sam-
ples collected in clinical trials. In recent years, microarray technologies have
been used extensively to study molecular differences among different types of
cancer and these have played a fundamental role in identifying new drug leads
with the further development of the biotech industry. Along with the devel-
opment of microarray technology, many new statistical methods and models
have been developed in parallel and incorporated in software to analyze high-
throughput data.

Although there are many software packages for analysis of microarray data,
we introduce bioconductor in this chapter, which is widely used and publicly
available from http://www.bioconductor.org. In Section 12.1, we briefly
introduce some basic concepts in bioinformatics specifically for gene, gene
expression and microarray. We use data derived from breast cancer patients
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in Section 12.2 to illustrate the application of bioconductor with a step-by-
step approach. Concluding remarks appear in Section 12.3.

Note: to run the R programs in this chapter, the analyst should install
the following R packages first: affy , hgu133acdf , and limma.

12.1 DNA Microarray

12.1.1 Introduction

DNA Microarray experiments are conducted in many areas of biomedical,
biological and biopharmaceutical research and development. Microarray tech-
niques are applied to problems arising in gene discovery, diagnosis of disease,
pharmacogenomics and toxicogenomics among others. Gene discovery is the
process of finding genes that are differentially expressed between patients with
different diseases. When given reference gene expression profiles from diseased
tissue and non-diseased tissue, diagnosis of an unknown tissue sample can be
made by measuring its expression profile and comparing it with the reference
profiles.

Microarrays are designed to simultaneously measure expression levels of
thousands of genes in a particular tissue or disease cell type. There are several
different microarray technologies, including the cDNA arrays developed at
Stanford and the high density oligonucleotide arrays produced by Affymetrix.

The Affymetrix GeneChip system is a commercial high-density oligonu-
cleotide microarray platform which measures gene expression using hundreds
of thousands of 25-mer oligonucleotide probes. This chapter serves as an in-
troduction for microarray data analysis using bioconductor and we focus on
data from the Affymetrix technology. Other microarray platforms can also be
analyzed using bioconductor.

12.1.2 DNA, RNA, and Genes

We begin with some basic concepts in molecular biology such as DNA,
RNA and gene. The basic genetic material is known as deoxyribonucleic acid
(DNA) which consists of nucleotides. Each nucleotide has three components:
a base, a sugar and a phosphate, that are joined together to form long chains.
The fundamental structure of these chains is formed by the sugar and phos-
phates with individual bases tied to each sugar. There are four different bases
known as adenine, cytosine, guanine and thymine. These are commonly de-
noted by the letters A, C, G, and T in molecular biology where the bases A
and T bind together as do C and G. DNA strands have a typical length of
millions of nucleotides. Each strand has polarities with the 5’-hydroxyl group
at the beginning and 3’-hydroxyl group at the end of the nucleotide in the
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strand. A strand of DNA encloses many different genes with each gene con-
taining a sequence of DNA to code a protein. The protein in turn controls a
trait of the biological cell such as eye or hair color in humans.

Different from DNA, the ribonucleic acid (RNA) molecules are single-
stranded with a length of only 75-5000 nucleotides. In addition, the base
thymine (T) in DNA is replaced by uracil (U) in RNA and the sugar in RNA
is ribose rather than deoxyribose in DNA. There are several types of RNA in
cells, such as messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal
RNA (rRNA).

12.1.3 Central Dogma of Molecular Biology

According to the central dogma in molecular biology, proteins are synthe-
sized from DNA in two stages: transcription and translation. In the first stage,
transcription transfers information from the double-stranded DNA molecule
to the single-stranded RNA. The RNA polymerase moves from the 5’ to the 3’
direction along with the DNA strand to encode the complementary sequence
as a RNA strand. This encoded DNA strand is called the “antisense” strand
and the other is called the “sense” strand where the mRNA is complementary
to the “antisense” strand and the base T is changed to U. Transcription begins
at regions of the sequence known as promoter sites and ends at regions known
as terminator sites. Transcribed RNA molecules are edited and modified to
produce messenger RNAs (mRNA).

In the second stage translation mRNA is translated into a protein in
the ribosome with the help of tRNA and rRNA. The tRNA molecules attach
amino acids to the chain as a rRNA molecule moves along the mRNA. The
process continues until one of the stop codons is reached. At this point, the
protein is complete and can serve its purpose in the cell.

Gene expression in microarrays is then the process of converting a DNA
sequence to a protein. For a particular organism, such as the human, the
DNA content of cells is the same. However, the amount of mRNA and mRNA
translated into proteins might differ among different types of cells or human
cells under different diseases conditions.

For example, consider two disease types A and B. If genes 1 and 2 in
disease A are transcribed into mRNA and then translated into proteins, but
only gene 2 in disease B is transcribed into mRNA and translated into protein
and at a slower rate than in disease A, then we could conclude that gene 1 is
expressed in disease A, but not in disease B, and that gene 2 is expressed at
a slower rate in disease B than in disease A.

Microarray technology was developed to study different levels of gene ex-
pression under different diseases to learn the function of human cells that result
in diseases. However, different from traditional technologies (such as RT-PCR
and Northern blots) that study genes one at a time, microarray technology per-
mits thousands of genes to be studied simultaneously. This leads to a new era
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in gene discovery, disease diagnosis, pharmacogenomics, and toxicogenomics,
among others.

12.1.4 Probes, Probesets, Mismatch, and Perfect Match

In the development of gene technology, a number of organisms have now
been completely sequenced and others are currently being sequenced. With-
out the information of the whole genome, DNA microarrays can be designed
based on expressed sequence. For each known sequence, a number of 25-mer
sequences denoted by probes are chosen to complement the sequence for tar-
get genes. Typically 11 to 20 probes interrogate a given gene. This group of
probes is usually called a probeset and there are between 12,000 to 22,000
probesets on one microarray. Usually, there are two types of probes: perfect
match (PM) and mismatch (MM), where a PM probe complements exactly
the sequence of interest and a MM probe complements the sequence of inter-
est except at the central base. In theory, MM probes are used to quantify and
remove non-specific hybridization. A PM probe and its corresponding MM
probe are referred to as a probepair. PM and MM probe intensities for each
probeset are combined to produce a summary value to be used for microarray
statistical analysis.

12.1.5 Microarray and Statistical Analysis

The primary function of microarrays is to measure the amount of mRNA
in thousands or even more probes simultaneously to see which genes are be-
ing expressed in disease cell types. The primary measurements are the array
intensities to be statistically analyzed to detect differences in gene expression
for different disease types.

The associated statistical questions are focused on image analysis (for qual-
ity control), background noise correction, normalization among arrays and de-
tection of significantly expressed genes. Additional statistical questions arise
in the design and planning of microarray experiments such as sample size,
classification of microarray samples and genes, as well as many others.

12.1.6 Software: R/Bioconductor

There are many software packages to analyze microarray data. For
Affymetrix microarray, there are associated software packages to analyze mi-
croarray data from Affymetrix. An early version of this package is called the
“Affymetrix GeneChip Operating Software (GCOS)” which is more or less
updated and replaced by a newer software called Affymetrix GeneChip Com-
mand Console Software (AGCC) (http://www.affymetrix.com/). The most
commonly used package associated with R is the bioconductor – considered
as a golden standard in microarray data analysis. Since bioconductor is a
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package in the R system it is therefore free. We illustrate the application of
R/Bioconductor in this chapter.

The easiest way to download and install bioconductor from R is by typing:

> source("http://bioconductor.org/biocLite.R")

> biocLite()

The web browser will then link to the bioconductor homepage to download
all necessary software.

12.2 Breast Cancer Data

Breast cancer (BRCA) is one of the most common cancers affecting women.
The American Cancer Society estimates that there were 192,370 new cases of
invasive breast cancer and 40,170 deaths from breast cancer in the United
States in 2009 (http://www.cancer.org/).

BRCA can be both genetically and histopathologically heterogeneous with
unknown underlying mechanisms. With the limitations of traditional treat-
ments, recently-developed microarray gene expression technology offers un-
precedented opportunities to obtain molecular signatures from diseased cells
and patients. In recent years, microarray technology has been utilized exten-
sively to study molecular differences among different types of breast cancer
and these differences have been successfully shown to relate to clinical features
as commented in Chang et al. (2005) and Gruvberger-Saal et al. (2006).

A case in point is HER2-positive BRCA which is characterized by aggres-
sive tumor growth. It is caused by the over expression of the HER2/neu gene in
tumor cells. Herceptin, a monoclonal antibody, manufactured by Genentech re-
ceived FDA approval in late 2006 (http://www.cancer.gov/cancertopics/
druginfo/fda-trastuzumab). It is administered to breast cancer patients
whose cancer cells carry extra copies of the HER2/neu gene. Herceptin has
been shown to dramatically slow the aggressive growth of HER2-positive
BRCA and help women live longer (http://www.cancer.org/). Not only were
microarray techniques used in the research and clinical development of Her-
ceptin, they are used in determining which women diagnosed with BRCA are
candidates for treatment with Herceptin.

Microarray technology allows for the simultaneous analysis of many thou-
sands of individual genes from patient samples and makes it possible to study
the complex biology of breast cancer in a more comprehensive manner. This
has revolutionized the basic biological sciences and hence the biomedical and
biopharmaceutical sciences.
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12.2.1 Data Source

There are many publicly available datasets deposited in the National Cen-
ter for Biotechnology Information (NCBI). Microarray gene expression data
reside in the functional genomics data repository, called Gene Expression Om-
nibus (GEO), and is accessible via

http://www.ncbi.nlm.nih.gov/geo/.

The GEO supports MIAME (Minimum Information About a Microarray
Experiment)-compliant data submissions. The MIAME guidelines outline the
minimum information that should be included when describing a microarray
experiment. Many journals and funding agencies require microarray data to
comply with MIAME. GEO deposit procedures enable and encourage submit-
ters to supply MIAME compliant data. Further in GEO, tools are provided
to help users query and download experiments and curated gene expression
profiles. Additional information about the features and functionalities of GEO
may be found by accessing the link:

http://www.ncbi.nlm.nih.gov/geo/

From the “GEO navigation” interface, we can use “Query” to search any
dataset by key words, and “Browse” may be used to browse the entire GEO
database. We searched for clinical trials of breast cancer by typing “breast
cancer” and “clinical trial” and found eight accessions. For illustration, we use
the first dataset available in the list, which has accession number GDS1329.
These data derive from testing tumor samples obtained from 49 patients with
large operable or locally advanced breast cancers using Affymetrix U133A
gene expression microarrays [contributed by Farmer et al. (2005)]. Tumors
were classified into luminal and basal classes, and a novel molecular apocrine
class. Apocrine tumors are estrogen receptor negative (ER-) and androgen
receptor positive (AR+), while luminal tumors are ER+ and AR+, and basal
tumors are ER- and AR-. The 49 cel (i.e., file for measured intensities and
locations for an array that has been hybridized) files may be downloaded from

ftp:
//ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE1561/

which is over 181 MB of data after zipping.
The microarray sample names and their associated tumor types may be

found from Table 12.1. From this table, we note that there are 6 patients with
apocrine, 16 patients with basal and 27 patients with luminal tumor types.

These zipped raw chip image files have to be unzipped; the unzipped files
account for 573 MB of disk space. The data in these cel files represent the
cell intensities to be used for microarray data analysis. This table is available
in the excel workbook “datR4CTDA” and is loaded into R for future reference
as follows:
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TABLE 12.1: Experimental design and data

Samples Tumor Type Samples Tumor Type
GSM26878 apocrine GSM26804 luminal
GSM26883 apocrine GSM26867 luminal
GSM26886 apocrine GSM26868 luminal
GSM26887 apocrine GSM26869 luminal
GSM26903 apocrine GSM26870 luminal
GSM26910 apocrine GSM26872 luminal
GSM26871 basal GSM26873 luminal
GSM26880 basal GSM26874 luminal
GSM26882 basal GSM26875 luminal
GSM26884 basal GSM26876 luminal
GSM26888 basal GSM26877 luminal
GSM26889 basal GSM26879 luminal
GSM26892 basal GSM26881 luminal
GSM26893 basal GSM26885 luminal
GSM26895 basal GSM26890 luminal
GSM26898 basal GSM26891 luminal
GSM26900 basal GSM26894 luminal
GSM26902 basal GSM26896 luminal
GSM26905 basal GSM26897 luminal
GSM26906 basal GSM26899 luminal
GSM26908 basal GSM26901 luminal
GSM26912 basal GSM26904 luminal

GSM26907 luminal
GSM26909 luminal
GSM26911 luminal
GSM26913 luminal
GSM26914 luminal
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> # link to the data file and read it into R
> require(RODBC)
> datfile = "c:/R4CTDA/dataset/datR4CTDA.xlsx"
> getxlsbook = odbcConnectExcel2007(datfile)
> dat = sqlFetch(getxlsbook,"BreastMicroarry")
> odbcCloseAll()
> # print it
> dat

Samples Tumor
1 GSM26878 apocrine
2 GSM26883 apocrine
3 GSM26886 apocrine
4 GSM26887 apocrine
5 GSM26903 apocrine
6 GSM26910 apocrine
7 GSM26871 basal
8 GSM26880 basal
9 GSM26882 basal
...
20 GSM26906 basal
21 GSM26908 basal
22 GSM26912 basal
23 GSM26804 luminal
24 GSM26867 luminal
25 GSM26868 luminal
....
47 GSM26911 luminal
48 GSM26913 luminal
49 GSM26914 luminal

We note from the R output that there are 49 samples representing 49
patients with the corresponding tumor types.

There are usually two levels: low- and high-level of microarray data anal-
ysis. Their characterizations and distinctions are explained in the following
subsections: Low-Level Data Analysis and High-Level Data Analysis.

12.2.2 Low-Level Data Analysis

12.2.2.1 Introduction

The low-level analysis of Affymetrix arrays involves the manipulation and
modeling of probe intensity data. The goal of this analysis is to produce more
biologically meaningful expression values. A motivation for low-level analysis is
that information may be lost when moving from probe-level data to expression
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measures. Ideally, expression values should be both precise (low variance) and
accurate (low bias). Obviously these are desirable characteristics to permit
determination of which genes are differentially expressed between treatment
conditions—a primary goal of high-level analysis.

Other topics in low-level analysis include determining whether a gene is
being expressed in a given tissue (presence/absence), as well as microarray
quality assessment diagnostics.

A low-level analysis does not typically attempt to directly answer a ques-
tion of biological interest, e.g., determining gene function, nor does it include
more complex methods inherent in cell cycle studies and pathway analysis. In-
stead these are usually addressed by high-level analysis. As noted previously,
a low-level analysis of the data should provide better expression measures to
be used in higher level analyses.

At the low-level, the most common operation is to convert probe level data
to expression values. Typically this is achieved through the following sequence:

• reading in probe level data.

• background correction.

• normalization.

• summarizing the probeset values into one expression measure and, in
some cases, a standard error for this summary.

12.2.2.2 Library affy

In bioconductor, the low-level analysis is facilitated by the affy library.
First load the library into the R system:

> library(affy)

With the affy library, we read the breast cancer microarray data into R
using function ReadAffy. This function is quite flexible and allows the user
to specify the filenames, phenotype and MIAME information. We make use
of the data structure in Table 12.1 with ReadAffy to read the 573 MB cel
intensity files from the 49 breast cancer patients as follows:

> # read the microarray cel files

> Dat = ReadAffy(filenames=paste(dat$Samples,".cel",sep=""))

To view the relevant information about these cel intensity files, we use
print to print the AffyBatch object as

> Dat

AffyBatch object
size of arrays=712x712 features (18 kb)
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cdf=HG-U133A (22283 affyids)
number of samples=49
number of genes=22283
annotation=hgu133a

We note that the data object Dat consists of 49 samples (i.e., 49 patients)
with microarray size 712 × 712 and with 22,283 genes in each sample. With
this Dat object, we may observe further characteristics, such as the annotation:

> annotation(Dat)

[1] "hgu133a"

and description of the target samples hybridized to the arrays:

> phenoData(Dat)

An object of class "AnnotatedDataFrame"
sampleNames: GSM26878.cel, GSM26883.cel, ..., GSM26
914.cel (49 total)
varLabels and varMetadata description:
sample: arbitrary numbering

Since the sample names are long, we change them into the tumor type for
future analysis:

> # the original sample name

> sampleNames(Dat)

[1] "GSM26878.cel" "GSM26883.cel" "GSM26886.cel"
[4] "GSM26887.cel" "GSM26903.cel" "GSM26910.cel"
[7] "GSM26871.cel" "GSM26880.cel" "GSM26882.cel"
[10] "GSM26884.cel" "GSM26888.cel" "GSM26889.cel"
[13] "GSM26892.cel" "GSM26893.cel" "GSM26895.cel"
[16] "GSM26898.cel" "GSM26900.cel" "GSM26902.cel"
[19] "GSM26905.cel" "GSM26906.cel" "GSM26908.cel"
[22] "GSM26912.cel" "GSM26804.cel" "GSM26867.cel"
[25] "GSM26868.cel" "GSM26869.cel" "GSM26870.cel"
[28] "GSM26872.cel" "GSM26873.cel" "GSM26874.cel"
[31] "GSM26875.cel" "GSM26876.cel" "GSM26877.cel"
[34] "GSM26879.cel" "GSM26881.cel" "GSM26885.cel"
[37] "GSM26890.cel" "GSM26891.cel" "GSM26894.cel"
[40] "GSM26896.cel" "GSM26897.cel" "GSM26899.cel"
[43] "GSM26901.cel" "GSM26904.cel" "GSM26907.cel"
[46] "GSM26909.cel" "GSM26911.cel" "GSM26913.cel"
[49] "GSM26914.cel"
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> # change it to tumor type

> sample.names = dat$Tumor

> colnames(exprs(Dat)) = sample.names

The expression matrix should have columns corresponding to the num-
bers of arrays (49 in this example) and rows corresponding to the number of
individual probes (which is 712 × 712 = 506,944 probes) on the array.

> e = exprs(Dat)

> dim(e)

[1] 506944 49

> nrow(Dat)*ncol(Dat)

[1] 506944

Note that the values in the array are the raw values for the probe expression
in the cel files. We can also identify the gene names using the R function
geneNames(). We only print the first 20 of the 22,283 genes for illustration
purposes:

> # gene numbers

> gnames = geneNames(Dat)

> # the total number of genes

> length(gnames)

[1] 22283

> # print the first 20 genes

> gnames[1:20]

[1] "1007_s_at" "1053_at" "117_at" "121_at"
[5] "1255_g_at" "1294_at" "1316_at" "1320_at"
[9] "1405_i_at" "1431_at" "1438_at" "1487_at"
[13] "1494_f_at" "1598_g_at" "160020_at" "1729_at"
[17] "177_at" "1773_at" "179_at" "1861_at"

The length of gnames is 22283 indicating that there are that many probe-
sets on the chip.

12.2.2.3 Quality Control

After reading the data into R, quality control checks of the data should be
conducted. First create an image plot:
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1. Image plot. Image plot looks at the chips’ image using image(Dat)
to detect spatial artifacts. This can be done using the function image
from the affy library. We do not show the output here because of its
exceedingly large file size.

2. Distribution plots for intensities. Now several plots can be gener-
ated to provide information about the intensity distribution, such as
histograms or boxplots. We show the boxplots for the 49 patients in
Figure 12.1 using the following R code chunk:

> # call "boxplot" to plot the data

> boxplot(Dat,col=c(rep("Green",6),rep("Blue",16),

rep("red",27)))

apocrine basal.3 basal.12 luminal.5 luminal.15 luminal.25

6
8

10
12

14

FIGURE 12.1: Boxplot for Original Expression Data.

In Figure 12.1 generated with boxplot, the boxplot for each patient
appears vertically. We note that the first 6 are for the patients with
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apocrine tumor, the middle 16 are for patients with basal tumor and
the last 27 are for patients with luminal tumor. In this figure, the line in
the center of each patient’s boxplot represents the median, and the boxes
show the range of the middle 50% of the expression data. The additional
lines reflect the overall range of the data, and the extreme values are
depicted as individual lines or dots at the end of each boxplot. We note
from the boxplots in Figure 12.1, that the gene expression intensity data
are not normalized.

3. MA-plot. Another plot that that has become widely used in microar-
ray analysis is the MA-plot. It has been applied routinely as a part of
a number of normalization procedures. MA-plots are typically used to
compare two arrays or two groups of arrays. In a MA-plot, the vertical
axis is the difference between the logarithms of the signals (i.e., the log
ratio) and the horizontal axis is the average of the logarithms of the
signals; “M” denotes minus and “A” denotes average.

The MA-plot is constructed in the following manner: Let Xij be the
intensity of gene g on array i. To compare two arrays i and j, the M and
A values are computed by

Mg = log2(Xgi)− log2(Xgj)

Ag =
log2(Xgi) + log2(Xgj)

2

The base 2 logarithm is used for convenience in microarray analysis so
that a unit change in M represents twofold change in expression and a
unit change in A represents a doubling of brightness. Because the probe
intensities are measured using a 16 bit image, the maximum possible
value of A is 16.

For illustration, we compare an array from the first patient with apocrine
tumor type with an array from the first patient with basal tumor type.
This would be a huge file if we plotted all array pairs. We plot the two
arrays using a MA-plot which gives Figure 12.2.

> # call "MAplot" to make the plot

> MAplot(Dat[,c(1,8)], pair=T)

While there is a visible difference between the two arrays of the two
patients, a trend is not apparent. Since there are more probes with low
intensities than probes with high intensities, the log transformation al-
lows us to more easily assess the behavior across all intensities.

The MA-plot makes the relationship between the arrays much easier to
visually assess. We use MA-plots to compare the performance of var-
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apocrine
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Median: −0.336
IQR: 0.38 basal
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MVA plot

FIGURE 12.2: MA Plot for Two Arrays.

ious methods of computing expression measures. For non-differentially
expressed probesets, ideally the MA-plot will be tight around M = 0
across all intensities. A lowess curve fitted to a MA-plot shows whether
the M values are centered around 0 at each intensity value. The spread
of the point cloud around the lowess curve allows us to measure the
variability.

4. Conclusion. The boxplot and the MA-plot show that the object Dat
needs normalization. Arrays that should be the same are different. Ar-
rays that should be different are similar.

12.2.2.4 Background, Normalization, and Summarization

Following the low-level explorations in the previous section, the next step
is to correct background noise, normalize and summarize the probes’ intensity
data into gene expression values. There are several methods. The first one is
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MAS5 which was developed by Affymetrix. The most commonly used, more
robust and efficient method is the “Robust Multi-array Average” (RMA) devel-
oped by Irizarry et al. (2003) where the expression measure can be computed
as

> # call RMA function

> eset = rma(Dat)

Background correcting
Normalizing
Calculating Expression

The rma is a code in C language which made the process extremely efficient
and fast. As pointed in the manual, the rma function will process the expression
data in the following fashion:

1. Probe specific correction of the PM probes using a model based on ob-
served intensity being the sum of signal and noise.

2. Normalization of corrected PM probes using quantile normalization de-
veloped by Bolstad et al. (2003).

3. Calculation of expression measure using median polish.

Specifically, as in the affy manual, rma is implemented as

1. Background adjustment to adjust raw PM probe intensities using a
model based on observed intensity being the sum of signal and noise.
The term background correction, also referred to as signal adjustment,
describes a wide variety of methods. In addition, a background correction
method performs some or all of the following:

• Corrects for background noise and processing effects.

• Adjusts for cross hybridization which is the binding of non-specific
DNA (i.e., non-complementary binding) to the array.

• Adjusts expression estimates so that they fall on the proper scale,
or are linearly related to concentration.

The rma background correction is motivated by looking at the distribu-
tion of probe intensities. The observed intensity is modeled as the sum
of a signal and a background component as S = X + Y , where X is
signal and Y is background. Assume that X is distributed exp(α) and
that Y is distributed N(µ, σ2), with X and Y independent. Under this
model, the background corrected intensities are E(X |S = s).

2. Quantile Normalization. Normalization is the process of removing
unwanted non-biological variation that might exist between chips in a
microarray experiment. It has long been recognized that variability can
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exist between arrays, some of which is of biological interest and the other
of non-biological interest. These two types of variation are classified as
either interesting or obscuring. The aim in normalizing arrays is to re-
move the obscuring variation. Sources of obscuring variation can include
scanner setting differences, the quantities of mRNA hybridized as well
as many other factors.

The goal of quantile normalization is to give the same empirical distri-
bution of intensities to each array. If two data vectors have the same
distribution a quantile-quantile plot will have a straight diagonal line
with slope 1 and intercept 0. Thus, if the quantiles of two data vectors
are plotted against each other and each of these points are then pro-
jected onto the 45-degree diagonal line, we have a transformation that
gives the same distribution to both data vectors.

In summary, the aim of quantile normalization (Bolstad et al., 2003), of
corrected PM probes is

• to make distribution of probe intensities the same for every chip,
and

• to average each quantile across chips.

3. Summarization. This is the final step in the production of summary
gene expression measures from probe intensities using median polish;
i.e., use the multichip linear model:

ygij = log2

(
PMg

ij

)
= αgi + βgj + εgij (12.1)

where g denotes the probeset (or gene), and αgi is the probe effect and βgj
is the log2 expression value. The median polish uses an algorithm from
Tukey (1977) to fit the model robustly. Note that expression values from
this method will be in the log2 scale.

After the rma, we can check the dimension of the expression sets (eset) and
some of the gene expression values using the following R code chunk:

> # dimension

> dim(exprs(eset))

[1] 22283 49

> # print the first 20 genes for three patients

> exprs(eset)[1:20,1:3]

GSM26878.cel GSM26883.cel GSM26886.cel
1007_s_at 11.29 11.04 11.02
1053_at 7.79 8.01 7.87
117_at 7.49 7.53 7.44
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121_at 9.59 9.52 9.61
1255_g_at 5.00 5.13 4.95
1294_at 8.36 8.40 8.26
1316_at 7.19 6.65 6.45
1320_at 5.65 5.77 5.77
1405_i_at 7.14 7.49 7.38
1431_at 4.70 4.72 4.80
1438_at 7.43 8.11 7.58
1487_at 8.65 8.54 8.75
1494_f_at 7.50 7.68 7.66
1598_g_at 10.32 10.93 10.50
160020_at 8.53 8.74 8.62
1729_at 9.11 8.77 8.73
177_at 6.54 6.45 6.52
1773_at 6.22 6.44 6.17
179_at 9.91 9.88 9.76
1861_at 6.59 7.03 6.37

We see that the dimension of this object is 22283 by 49 which means that
there are 22283 genes from 49 patients. For brevity, we print only the first 20
genes from the first three patients in the above R code.

Following the rma procedure, diagnostic plots, such as the image plot,
hist for histograms and boxplot for boxplots, may be produced to permit a
visual assessment of the normalized and background corrected summary gene
expression data. For brevity, we only illustrate use of the boxplot with the
following code chunk:

> # boxplot after RMA

> boxplot(data.frame(exprs(eset)),

col=c(rep("Green",6),rep("Blue",16), rep("red",27)))

Figure 12.3 contains the boxplots for the 49 patients, and shows that all
distributions are normalized after background correction.

12.2.3 High-Level Analysis

The primary aim of high-level microarray analysis is to find genes that
are differentially expressed. Discovering genes that are differentially expressed
between two groups (tumor, tissue or disease types) may be the most common
motivation for microarray experiments. We begin to describe the attendant
statistical methods.

The typical naive microarray analysis is a simple fold-change to

1. calculate the average expression for each population and take the differ-
ence; i.e., in microarray terms, the fold-change;
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GSM26878.cel GSM26895.cel GSM26873.cel GSM26901.cel
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FIGURE 12.3: Boxplot after RMA.

2. rank the genes based on the fold-change;

3. select a cut-off point which is entirely up to the researcher, but typically
to pick up changes that are at least 2-fold; and

4. output those genes with fold-changes larger than the cut-off point.

Problems with this approach are

1. the simple differences in average log expressions do not include any in-
formation about variation;

2. one doesn’t know whether the observed differences are small or large
unless they are compared to other factors; and

3. the fold-change approach doesn’t enable one to determine whether genes
have different variances.



Analysis of DNA Microarrays in Clinical Trials 339

These problems may lead to erroneous conclusions regarding which genes
are differentially expressed.

Therefore additional and more appropriate statistical methods are needed
to perform high-level analyses of microarray data. The limma package in
bioconductor was developed for this purpose by Smyth (2004). We briefly
describe this approach for a two group (tumor, tissue or disease type) com-
parison. Details may be found in Smyth’s paper.

12.2.3.1 Statistical t-test

First we review some relevant statistical terms for comparisons in a two
group microarray experiment.

For each gene with samples X1 , · · · , Xm from one group, such as control,
and Y1 , · · · , Yn from another group, such as treated, we have

• Averages: X̄ =
Pm
i=1Xi
m and Ȳ =

Pn
i=1 Yi
n

• Sample variance: s2
X =

Pm
i=1(Xi−X̄)2

m−1
and s2

Y =
Pn
i=1(Yi−Ȳ )2

n−1

• t-test statistic: t = Ȳ−X̄
sȲ−X̄

= Ȳ−X̄r
s2
Y
n +

s2
X
m

where s is the pooled sample

standard error.

Then

1. Usual t-test with false discovery rate.

Now rank the genes based on the values t of the t-test statistic or based
on the corresponding p-values (which are most often used). Recall that
a p-value, also called the observed significance level, is defined as the
probability of realizing the value of the t-test statistic or one more ex-
treme under the null hypothesis H0 of no differential expression. One
may also think of a p-value as a measure of the strength of evidence
against the null hypotheses. The smaller the p-value, the more evidence
we have against H0 and the greater the departure.

The p-value is associated with the Type-I error (i.e., the significance
level α) in testing some null hypothesis. A Type-I decision error occurs
if the null hypothesis is rejected when it is actually true. The Type-I
error is also called a false-positive error and its magnitude is usually
denoted by α (which is sometimes referred to as a rate). It is desirable
that α is chosen to be small. If α = 0.05 and if p ≤ α, we reject the H0 of
no differential expression. This means that we have a 5% probability of
concluding that genes are significantly differentially expressed even when
they are not. This level of control of the false positive rate is fine when
conducting a test of a single null hypothesis for a single comparison.

However if one applies this type of testing to microarray analyses where
thousands or even tens of thousands genes are being compared, a 5%
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false positive rate could translate to hundreds or thousands of false-
positive differentially expressed genes and lead to reporting hundreds or
thousands of falsely discovered genes.

So we need statistical methods for controlling false discovery rates; e.g.
as in, Benjamini and Hochberg (1995).

2. Moderated t-test.

In a typical microarray experiment, the sample sizes m and n are small.
Thus the standard error in t-statistical t = Ȳ−X̄

s is very unstable leading
to an unstable statistical t-test.

Many methods have been developed that borrow strength across genes
to increase the stability of variance estimates; e.g. the moderated t-test
which is defined as

tg =
Ȳg − X̄g

s̃g
(12.2)

for each gene g where Ȳg = mean of the group 1 samples, X̄g = mean
of the group 2 samples and s̃g = posterior standard deviation for gene
g from the empirical Bayesian approach defined in Smyth (2004) as

s̃g = d0s
2
0+dgS

2
g

d0+dg
where dg and s2

g are from each gene g, but d0 and s2
0 are

from the prior distribution estimated by the empirical Bayes approach.
This approach is implemented in limma as function ebayes.

3. Linear Models for Microarray Analysis (LIMMA).

The moderate t-test with Empirical Bayes approach for several experi-
mental designs are now in LIMMA. We load limma into R as follows:

> library(limma)

12.2.3.2 Model Fitting

We now consider investigating differential expression among the three tu-
mor types: apocrine, basal and luminal from the GEO dataset GDS1329 found
in Table 12.1. First, we specify the design matrix using the following R code
chunk:

> # make the design matrix

> design <- model.matrix(~ 0+factor(c(rep("apocrine",6),

rep("basal",16), rep("luminal",27))))

> # label the design

> colnames(design) <- c("apocrine", "basal", "luminal")

> # print the design

> design
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apocrine basal luminal
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0
7 0 1 0
8 0 1 0
9 0 1 0
10 0 1 0
11 0 1 0
12 0 1 0
13 0 1 0
14 0 1 0
15 0 1 0
16 0 1 0
17 0 1 0
18 0 1 0
19 0 1 0
20 0 1 0
21 0 1 0
22 0 1 0
23 0 0 1
24 0 0 1
25 0 0 1
26 0 0 1
27 0 0 1
28 0 0 1
29 0 0 1
30 0 0 1
31 0 0 1
32 0 0 1
33 0 0 1
34 0 0 1
35 0 0 1
36 0 0 1
37 0 0 1
38 0 0 1
39 0 0 1
40 0 0 1
41 0 0 1
42 0 0 1
43 0 0 1
44 0 0 1
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45 0 0 1
46 0 0 1
47 0 0 1
48 0 0 1
49 0 0 1
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$`factor(c(rep("apocrine", 6),

rep("basal", 16), rep("luminal", 27)))`
[1] "contr.treatment"

The design matrix is 49 by 3 where “1” corresponds to the available tumor
samples. With this design matrix, we fit a linear model. Based on the model fit,
we construct a contrast for pair-wise comparisons of different gene expressions
by calling ebayes to borrow information from all genes using the empirical
Bayesian model as follows:

> # fit the linear model for all genes

> fit = lmFit(eset, design)

> # make a contrast for pair-wise comparisons

> cont.matrix = makeContrasts(Comp2to1=basal-apocrine,

Comp3to1=luminal-apocrine,Comp3to2=luminal-basal,levels=design)

> # then contrast fit

> fit2 = contrasts.fit(fit, cont.matrix)

> # then call ebayes

> fit2 = eBayes(fit2)

After fitting the model, we may observe the ranking of the genes with the
function of topTable as follows:

> options(digits=3)

> topTable(fit2, coef=1, adjust="BH")

ID logFC AveExpr t P.Value dj.P.Val B
214243_s_at -5.33 8.02 -11.33 3.68e-15 8.19e-11 23.9
204667_at -2.56 8.71 -10.97 1.14e-14 8.90e-11 22.9

217284_x_at -4.41 8.17 -10.95 1.20e-14 8.90e-11 22.8
217276_x_at -4.28 8.16 -10.74 2.39e-14 1.33e-10 22.2
209787_s_at 1.86 10.04 10.17 1.48e-13 6.59e-10 20.5
202579_x_at 1.18 10.29 9.80 4.96e-13 1.65e-09 19.3
214404_x_at -1.56 9.26 -9.79 5.17e-13 1.65e-09 19.3
206155_at -1.11 6.16 -9.59 1.00e-12 2.79e-09 18.7

209616_s_at -1.88 7.65 -9.47 1.48e-12 3.67e-09 18.3
209786_at 1.98 10.07 9.43 1.68e-12 3.74e-09 18.2



Analysis of DNA Microarrays in Clinical Trials 343

The default for topTable prints the first 10 genes and the input coef=1
specifies the first contrast for comparing the “basal” and “apocrine” tumor
types. The same can be done for the other two comparisons using coef=2
and 3. The adjust=“BH” provides adjustment for multiple comparisons as
explained below:

Some explanations for the output from fitting the model are

1. ID is the gene IDs.

2. logFC is the log2 fold-change, i.e., the M-value. Positive M-values mean
that the gene is up-regulated and negative values mean that it is down-
regulated.

3. AveExpr is the average log2-intensity value for the probeset; i.e., the
A value.

4. t is the value for the moderated t-statistic.

5. P.Value is the associated p-value from the moderate t-statistic.

6. adj.P.Val is the adjusted p-value (adjusted for multiple testing).

The most popular adjustment is the “BH” by Benjamini and Hochberg
(1995) to control the false discovery rate. This adjusted p-value is called
q-value in microarray analysis if the intention is to control or estimate
the false discovery rate.

The meaning of “BH” q-values is as follows. If all genes with q-value
below a threshold, say 0.05, are selected as differentially expressed, then
the expected proportion of false discoveries in the selected group is con-
trolled to be less than the threshold value, in this case 5%. This proce-
dure is equivalent to the procedure of Benjamini and Hochberg although
the original paper did not formulate the method in terms of adjusted
p-values.

7. B is the B-statistic which is the log-odds that the gene is differentially
expressed.

Suppose for example that B = 1.5. The odds of differential expression is
exp(1.5)=4.48; i.e., about four and a half to one. The probability that the
gene is differentially expressed is 4.48/(1+4.48)=0.82; i.e., the probabil-
ity is about 82% that this gene is differentially expressed. A B-statistic
of zero corresponds to a 50-50 chance that the gene is differentially ex-
pressed. The p-values and B-statistics will normally rank genes in the
same order. In fact, if the data contains no missing values or quality
weights, the order will be exactly the same.

The p or B-values can reveal statistical significance, but say nothing about
the size of an effect. The commonly used fold-change reveals the magnitude
of the differential expression but not significance. A combined illustration to
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put both together is called a volcano plot Volcano Plots as shown in Figure
12.4.

> volcanoplot(fit2,coef=2, highlight=10)

> abline(v=c(-1,1),col="red")

> ilogit = function(p) exp(p)/(1+exp(p))

> abline(h=ilogit(0.05), col="blue")
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FIGURE 12.4: Volcano Plot for Gene Expression Data.

In this figure, the two vertical lines denote the 2-fold (on log 2 scale)
changes with points outside the two vertical lines representing those genes
that have more than two-fold changes in gene expressions. More specifically,
the points above the right vertical line reflect those genes with positive two-fold
changes and the points below the left vertical line represent negative two-fold
changes. The horizontal line represents 5% q-values in log odds scale which
means that those points above this line reflect genes that are statistically
significantly expressed. The intersection of the q-value and two-fold change
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represents those genes of interest and can be pinpointed to export for further
bioinformatics analysis.
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12.2.3.3 Number of Significantly Expressed Genes

The output from topTable can show the significantly expressed genes from
each comparison. This list can be quite long. Another way to display all three
contrasts is to use a Venn diagram to show the number of genes in different
categories.

To do so, we first call the decisionTests which is a function used for
multiple testing across genes and contrasts in order to classify a series of
related t-statistics as up, down or not significant while adjusting for multiple
testing. The following code chunk illustrates how this is done:

> # call decideTests function

> results = decideTests(fit2)

> # classification counts in a Venn diagram

> venn = vennCounts(results)

> # print the venn table

> print(venn)

Comp2to1 Comp3to1 Comp3to2 Counts
[1,] 0 0 0 15970
[2,] 0 0 1 2894
[3,] 0 1 0 298
[4,] 0 1 1 427
[5,] 1 0 0 596
[6,] 1 0 1 1334
[7,] 1 1 0 612
[8,] 1 1 1 152

attr(,"class")
[1] "VennCounts"

The Venn counts may be graphically displayed using vennDiagram as fol-
lows to produce Figure 12.5. Those genes of interest may be saved or outputted
for further bioinformatics analysis, such as gene function analysis.

> vennDiagram(results,include=c("up","down"),

counts.col=c("red","green"))

12.2.4 Functional Analysis of Gene Lists

When genes are identified, the next step is to analyze them for their func-
tions. Readers are referred to

http://david.abcc.ncifcrf.gov/

which provides bioinformatics resources and tools for functional annotation
and classification, etc.
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Comp2to1 Comp3to1

Comp3to2 18434

2133

148

290

1057

0

215

6

up
18350

2226

150

141

877

0

528

11

down

FIGURE 12.5: Venn Diagram.

12.3 Concluding Remarks

In this chapter, we presented briefly analysis of microarray data using
bioconductor. In summary, for any microarray data analysis, the first step is
to load the trial data into bioconductor and make preliminary preprocessing
using low-level analysis methods to correct background noise and to normalize
the array distributions using rma. We can proceed with high-level analyses to
identify significantly expressed gene lists for further bioinformatics analysis.

Other analyses not presented in this chapter include hierarchical cluster
analysis and heatmap displays. We refer readers to the 2010 special issue of
the Journal of Biopharmaceutical Statistics, Volume 20, Number 2, where ex-
tensive discussions on new methodologies appear for gene expression analysis,
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pharmacogenetics, systems biology and predictive models, as well as linkage
disequilibrium analysis and QTL mapping.

Further references may be found in the collection of papers on gene ex-
pression data analyses in the book by Parmigiani et al. (2003). The book
by Gentleman et al. (2005) compiles an extensive list of papers in using R
and bioconductor for bioinformatics and computational biology. The books
by Hahne et al. (2008) and Gentleman (2008) use R and bioconductor for
bioinformatics and include case studies for easy applications of newly devel-
oped methods. Other references and online documents can be found from the
homepage of the bioconductor project at http://www.bioconductor.org
which provides open source software for bioinformatics. For microarray design
and sample size, readers are referred to Chapter 12 in Chow et al. (2008).
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