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In clinical trial practice, controversial statistical issues inevitably occur regardless 
of compliance with good statistical practice and good clinical practice. However, 
by identifying the causes of the issues and correcting them, the study objectives of 
clinical trials can be better achieved. Controversial Statistical Issues in Clinical 
Trials covers commonly encountered controversial statistical issues in clinical 
trials and, whenever possible, makes recommendations to resolve these problems.

The book focuses on issues occurring at various stages of clinical research and 
development, including early-phase clinical development (such as bioavailability/
bioequivalence), bench-to-bedside translational research, and late-phase clinical 
development. Numerous examples illustrate the impact of these issues on the 
evaluation of the safety and efficacy of the test treatment under investigation. 

Features 

• Identifies controversial statistical issues frequently encountered in clinical 
research and development

• Examines critical issues that impact the clinical investigation of a test 
treatment

• Offers resolutions and recommendations that address the problems 
discussed

• Gives examples of randomization/blinding, seamless trial design, various 
statistical tests, assessment of quality of life instruments, center grouping, 
clinical trial simulation, generalizability/reproducibility, and good review 
practices

• Outlines recent developments and future perspectives

Written by one of the preeminent experts in the field, this book provides a useful 
desk reference and state-of-the art examination of problematic issues in clinical 
trials for scientists in the pharmaceutical industry, medical/statistical reviewers in 
government regulatory agencies, and researchers and students in academia.
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Preface

In pharmaceutical/clinical development of a test drug or treatment, relevant 
clinical data are usually collected from subjects with the diseases under 
study in order to evaluate the safety and efficacy of the test drug or treatment 
under investigation. It is necessary to conduct well-controlled clinical trials 
under a valid study design to provide an accurate and reliable assessment. 
A clinical trial process is a lengthy and costly process but is nevertheless 
necessary to ensure a fair and reliable assessment of the test treatment under 
investigation. It consists of protocol development, trial conduct, data collec-
tion, statistical analysis/interpretation, and reporting. In practice, controver-
sial issues inevitably occur regardless of the compliance with good statistical 
practice (GSP) and good clinical practice (GCP). Controversial issues are basi-
cally debatable issues that are commonly encountered during the conduct 
of clinical trials. In practice, these issues could be raised from, but are not 
limited to, (1) compromises between theoretical and real/common practices; 
(2) miscommunication and/or misunderstanding in perception/interpreta-
tion among regulatory agencies, clinical scientists, and biostatisticians; and 
(3) disagreement, inconsistency, miscommunication/misunderstanding, and 
errors in clinical practice.

In clinical trials, commonly seen controversial issues include, but are not 
limited to, (1) appropriateness of traditional statistical hypotheses (which 
primarily focus on efficacy) for the clinical evaluation of both efficacy and 
safety, (2) the instability of classical sample size calculation based on infor-
mation from a small pilot study, (3) the integrity of randomization and blind-
ing, (4) clinical strategies for selecting an appropriate endpoint from some 
endpoints that are derived based on data collected from the same patient 
population, (5) the impact of major protocol amendments that may have 
resulted in a population shift, (6) the feasibility/applicability of the use of 
adaptive design methods in clinical trials, (7) issues of multiplicity in clinical 
trials, (8) the independence of the independent data monitoring committee 
(IDMC), (9) the determination of non-inferiority margin in active control (or 
non-inferiority) trials, and (10) the assessment of the probability of success 
in clinical development. In this book, we will post these controversial issues 
rather than provide resolutions. Other practical and/or controversial issues 
are also briefly described. The impact of these issues on the evaluation of 
the safety and efficacy of the test treatment under investigation is discussed 
with examples whenever applicable. Recommendations regarding possible 
resolutions of these issues are also provided whenever possible. It is our goal 
that regulatory agencies, clinical scientists, and biostatisticians should (1) pay 
attention to these issues, (2) identify the possible causes, (3) resolve/correct 
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the issues, and, consequently, (4) enhance good statistical/clinical practices 
for achieving the study objectives of the intended clinical trials.

This book is intended to be the first book entirely devoted to the discus-
sion of controversial issues in clinical trials. It covers controversial issues 
that are commonly encountered at various stages of clinical research and 
development, including bench-to-bedside translational research. It is our 
goal to provide a useful desk reference and state-of-the art examination of 
controversial issues in clinical trials to (1) scientists who are engaged in clini-
cal research and development, (2) statistical and/or medical reviewers from 
regulatory agencies who have to make decisions on the evaluation/approval 
of test treatments under investigation, and (3) biostatisticians who provide 
statistical support for the design and analysis of clinical trials or related proj-
ects. We hope that this book can serve as a bridge among scientists from 
the pharmaceutical industry, medical/statistical reviewers from government 
regulatory agencies, and researchers from academia.

The scope of this book is restricted to controversial issues that are com-
monly seen in clinical development including early-phase clinical devel-
opment such as bioavailability/bioequivalence and bench-to-bedside 
tranÂ�slaÂ�tional research. This book consists of 27 chapters. Chapter 1 provides 
a background on pharmaceutical/clinical research and development and 
describes some commonly seen controversial issues in clinical research. 
Chapter 2 emphasizes the importance of GSP in clinical research and devel-
opment. In Chapter 3, some controversial issues that are commonly seen in 
bench-to-bedside translational research are discussed. Chapter 4 discusses 
practical issues encountered during the assessment of bioequivalence. 
Chapter 5 introduces composite hypotheses for the clinical evaluation of effi-
cacy and safety simultaneously. Chapter 6 examines the instability of sam-
ple size calculation/justification based on data obtained from a small pilot 
study. Chapter 7 discusses tests for the integrity of randomization/blind-
ing while Chapter 8 attempts to provide some insight into clinical strategies 
for the selection of an appropriate endpoint for the assessment of treatment 
effect. Chapter 9 studies the impact of major protocol amendments that have 
caused population shifts during the conducting of clinical trials. Chapter 10 
investigates the feasibility/applicability for the use of adaptive design meth-
ods in clinical trials. Chapter 11 discusses the issue of multiplicity in clini-
cal trials. Chapter 12 challenges the independence of an IDMC. Chapter 13 
studies the impact of analysis results under an incorrect model (e.g., data 
collected under a one-way analysis of variance model but analyzed using a 
two-way analysis of variance model).

Chapter 14 reviews some performance characteristics for the validation of a 
subjective instrument (questionnaire) to assess the clinical benefit of the test 
treatment under investigation such as quality-of-life assessment. Chapter 15 
provides a summary of statistical methods for missing data imputation in 
clinical trials. Chapter 16 compares several approaches for center group-
ing for clinical trials with a number of small centers. Chapter 17 provides a 
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summary of statistical methods for determining the non-inferiority margin 
in non-inferiority (active-control) trials. In Chapter 18, design and analysis 
for QT/QTc studies with recording replicates for the assessment of cardio-
toxicity in terms of QT/QTc prolongation are reviewed. Chapter 19 discusses 
some practical issues that are commonly encountered in multiregional (mul-
tinational) clinical trials. Chapter 20 compares commonly considered dose 
escalation trial designs in cancer trials such as algorithm-based traditional 
escalation rule (TER) and model-based continual reassessment method 
(CRM) trial designs. Chapter 21 focuses on the enrichment process in target 
clinical trials. Chapter 22 discusses basic concepts and principles for conduct-
ing clinical trial simulation. Chapter 23 provides an outline of fundamental 
differences between Western medicine and traditional Chinese medicine. 
Chapter 24 discusses practical issues encountered during the assessment of 
biosimilarity between follow-on biologics (FOB). Chapter 25 deals with the 
calculations of the probabilities of generalizability and reproducibility of a 
given clinical trial based on the observed clinical data of the clinical trial. 
Chapter 26 provides a review of good regulatory practices, especially the 
good review practice (GRP) published by the Center for Drug Evaluation and 
Research (CDER) at the United States Food and Drug Administration (FDA). 
Chapter 27 evaluates the probability of success for the pharmaceutical and/or 
clinical development of a test treatment under investigation. In each chap-
ter, examples and possible recommendations and/or resolutions are pro-
vided whenever possible.

I would like to thank David Grubbs from Taylor & Francis for providing 
me the opportunity to work on this book. I would also like to thank my 
colleagues from the Department of Biostatistics and Bioinformatics, Duke 
Clinical Research Institute (DCRI), Duke Clinical Research Unit (DCRU), 
and Center for AIDS Research (CFAR) of Duke University School of Medicine 
for their support during the preparation of this book. I wish to express my 
gratitude to the following individuals for their encouragement and support: 
Robert Califf, MD, Robert Harrington, MD, and Ralph Corey, MD, of DCRI; 
John Sundy, MD, PhD of DCRU; Ken Weinhold, MD, of CFAR; John Rush, 
MD, of Duke-NUS; and Liz DeLong, PhD, of the Department of Biostatistics 
and Bioinformatics, Duke University School of Medicine, as well as many 
friends from academia, the pharmaceutical industry, and regulatory agen-
cies such as U.S. FDA and EU EMEA.

Finally, the views expressed are mine and not necessarily those of Duke 
University School of Medicine. I am solely responsible for the contents and 
errors of this book. Any comments and suggestions will be very much 
appreciated.

Shein-Chung Chow, PhD
Duke University School of Medicine

Durham, North Carolina
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1
Introduction

1.1â•‡ Introduction

In the past several decades, it has been recognized that increasing spending 
for biomedical research does not reflect an increase in the success rate of phar-
maceutical (clinical) development. Woodcock (2005) indicated that the low 
success rate of pharmaceutical development could be due to (1) a diminished 
margin for improvement that escalates the level of difficulty in proving drug 
benefits, (2) genomics and other new sciences have not yet reached their full 
potential, (3) mergers and other business arrangements have decreased can-
didates, (4) easy targets are the focus as chronic diseases are harder to study, 
(5) failure rates have not improved, (6) rapidly escalating costs and complex-
ity decrease the willingness/ability to bring many candidates forward into 
the clinic. In the early 2000s, the U.S. Food and Drug Administration (FDA) 
kicked off a Critical Path Initiative to assist the sponsors in identifying the 
scientific challenges underlying the medical product pipeline problems. In 
its 2004 Critical Path Report, the FDA presented its diagnosis of the scientific 
challenges underlying the medical product pipeline problems.

On March 16, 2006, the FDA released a Critical Path Opportunity List 
that outlines six broad topic areas, which include 76 initial projects to 
bridge the gap between the quick pace of new biomedical discoveries and 
the slower pace at which those discoveries are currently being developed 
into therapies. These six broad topic areas include (1) better evaluation 
tools, (2) streamlining clinical trials, (3) harnessing bioinformatics, (4) mov-
ing manufacturing into the twenty-first century, (5) developing products 
to address urgent public health needs, and (6) specific at-risk populations 
such as pediatrics. In this book, we will focus on the second broad topic 
area of streamlining clinical trials, which includes (1) design of active con-
trolled trials, (2) enrichment designs, (3) use of prior experience or accu-
mulated information in trial design, (4) development of best practices for 
handling missing data, (5) development of trial protocols for specific thera-
peutic areas, and (6) analysis of multiple endpoints. The first topic for the 
design of active controlled trials has led the research for design and statis-
tical methodology development for non-inferiority trials. The enrichment 
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designs have stimulated research for using biomarkers in the enrichment 
process of target clinical trials for achieving the ultimate goal of person-
alized medicine. The recommendation for the use of prior experience or 
accumulated information in the trial design has provoked tremendous 
discussion for the use of adaptive methods in clinical trials and the use of 
the Bayesian approach in drug research and evaluation. The encourage-
ment for the development of best practices for handling missing data has 
triggered (1) the study of the validity of the commonly used method of 
last observation carry forward (LOCF) and (2) research for the methodology 
development of missing data imputation (see, e.g., NRC, 2010). The last 
topic of analysis of multiple endpoints has attracted much attention on the 
issue of multiplicity in clinical trials.

In pharmaceutical/clinical research and development, clinical trials are 
necessarily conducted for the evaluation of the efficacy and safety of the test 
treatment under investigation. In practice, the clinical trial process involves 
(1) protocol development, (2) conduct of clinical trial, analysis, and interpreta-
tion, and (3) regulatory review and approval. For a given clinical trial, good 
clinical practice (GCP) and good statistics practice (GSP), which is the founda-
tion of GCP, are key to the success of the intended clinical trial. GSP and GCP 
ensure the validity and integrity of the clinical data collected from the clini-
cal trial. In clinical trials, controversial issues inevitably occur regardless of 
whether the clinical trial process is in compliance with both GCP and GSP. In 
this book, controversial issues in clinical trials are referred to as debatable issues 
that are commonly encountered while conducting clinical trials. Controversial 
issues could be raised from, but are not limited to, (1) compromises between 
theoretical and real/common practices, (2) miscommunication and/or misun-
derstanding in perception/interpretation among regulatory agencies, clinical 
scientists, and biostatisticians, and (3) disagreement, inconsistency, miscom-
munication/misunderstanding, and errors in clinical practice.

In Section 1.2, the process of pharmaceutical development including 
nonclinical, preclinical, and clinical development is briefly outlined. Some 
commonly seen controversial issues are briefly described in Section 1.3. The 
aim and structure of the book are given in the last section.

1.2â•‡� Pharmaceutical Development

As pointed out by Chow and Shao (2002) and Chow and Liu (2004), pharmaceu-
tical development is a lengthy and costly process to ensure the safety and effi-
cacy of the drug products under investigation before they can be approved by 
the regulatory agencies for use in humans. In addition, this lengthy and costly 
development process is necessary to assure that the approved drug product 
will possess some good drug characteristics such as identity, purity, quality, 



Introduction	 3

strength, stability, and reproducibility. A typical pharmaceutical develop-
ment process involves drug discovery, formulation, laboratory development, 
animal studies for toxicity, clinical development, and regulatory submission/
review and approval. Pharmaceutical development is a continual process that 
can be classified into three phases of development, namely, nonclinical devel-
opment (e.g., drug discovery, formulation, laboratory development, scale-up, 
manufacturing process validation, stability, and quality control/assurance), 
preclinical development (e.g., animal studies for toxicity, bioavailability and 
bioequivalence studies, and pharmacokinetic and pharmacodynamic stud-
ies), and clinical development (e.g., phases I–III clinical trials for the assess-
ment of safety and efficacy). These phases may occur in sequential order or 
be overlapped during the development process. To provide a better under-
standing of the pharmaceutical development process, these critical phases of 
pharmaceutical development are briefly outlined in the following sections.

1.2.1  �Nonclinical Development

Nonclinical development includes drug discovery, formulation, laboratory 
development such as analytical method development and validation, (manu-
facturing) process validation, stability, statistical quality control, and quality 
assurance (see, e.g., Chow and Liu, 1995). Drug discovery usually consists of 
the phases of drug screening and drug lead optimization. In the drug screen-
ing phase, the mess compounds are screened to identify those that are active 
from those that are not. Lead optimization is a process of finding a compound 
with some advantages over related leads based on some physical, chemical, 
and/or pharmacological properties. In practice, the success rate for identify-
ing a promising active compound is usually relatively low. As a result, there 
may be a few compounds that are identified as promising active compounds.

The purpose of formulation is to develop a dosage form (e.g., tablets or 
capsules) such that the drug can be delivered to the site of action efficiently. 
For laboratory development, an analytical method is necessarily developed 
to quantitate the potency (strength) of the drug product. Analytical method 
development and validation play an important role in quality control and 
quality assurance of the drug product. To ensure that a drug product will 
meet the U.S. Pharmacopeia and National Formulary (USP/NF, 2000) stan-
dards for the identity, strength, quality, and purity of the drug product, a 
number of tests such as potency testing, weight variation testing, content 
uniformity testing, dissolution testing, and disintegration testing are usu-
ally performed at various stages of the manufacturing process. These tests 
are referred to as USP/NF tests. At the same time, stability studies are usu-
ally conducted to characterize the degradation of the drug product over 
time under appropriate storage conditions. Stability data can then be used to 
determine drug expiration dating period (or drug shelf life) as it is required 
by the regulatory agency to be indicated in the immediate label of the con-
tainer (Chow, 2007b).
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After the drug product has been approved by the regulatory agency for use 
in humans, a scale-up program is usually carried out to ensure that a pro-
duction batch can meet USP/NF standards for the identity, strength, quality, 
and purity of the drug before a batch of the product is released to the market. 
The purpose of a scale-up program is not only to identify, evaluate, and opti-
mize critical formulation and/or (manufacturing) process factors of the drug 
product but also to maximize or minimize the excipient range. A successful 
scale-up program can result in an improvement in formulation/process or 
at least a recommendation on a revised procedure for formulation/process 
of the drug product. During nonclinical development, the manufacturing 
process is necessarily validated in order to produce drug products with good 
drug characteristics such as identity, purity, strength, quality, stability, and 
reproducibility (Bergum, 1988). Process validation is important in nonclini-
cal development to ensure that the manufacturing process does what it pur-
ports to do.

1.2.2  �Preclinical Development

The primary focus of preclinical development is to evaluate the safety of 
the drug product through in vitro assays and animal studies. In general, 
in vitro  assays or animal toxicity studies are intended to alter the clinical 
investigators to the potential toxic effects associated with the investigational 
drugs so that those effects may be watched for during the clinical investi-
gation. Preclinical testing involves dose selection, toxicological testing for 
toxicity and carcinogenicity, and animal pharmacokinetics. For selection of 
an appropriate dose, dose response (dose ranging) studies in animals are 
usually conducted to determine the effective dose, such as the median effec-
tive dose (ED50). Preclinical development is critical in the pharmaceutical 
development process because it is not ethical to investigate certain toxicities 
such as the impairment of fertility, teratology, mutagenicity, and overdose in 
humans (Chow and Liu, 1998a). Animal models are then used as a surrogate 
for human testing under the assumption that they can be predictive of clini-
cal outcomes in humans.

Following the administration of a drug, it is also important to study the 
rate and extent of absorption, the amount of drug in the bloodstream that 
hence becomes available, and the elimination of the drug. For this purpose, 
a comparative bioavailability study in humans is usually conducted to char-
acterize the profile of the blood or plasma concentration–time curve by 
means of several pharmacokinetic parameters such as area under the blood 
or plasma concentration–time curve (AUC), maximum concentration (Cmax), 
and time to achieve maximum concentration (tmax) (Chow and Liu, 2000a). It 
should be noted that the identified compounds will have to pass the stages 
of nonclinical/preclinical development before they can be used in humans.
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1.2.3  �Clinical Development

Clinical development in the development of a pharmaceutical entity is to sci-
entifically evaluate benefits (e.g., efficacy) and risks (e.g., safety) of promising 
pharmaceutical entities at a minimum cost and within a relatively short time 
frame. As indicated by Chow and Liu (2004), approximately 75% of phar-
maceutical development is devoted to clinical development and regulatory 
registration. In a set of new regulations promulgated in 1987 and known as 
the investigational new drug (IND) Rewrite, the phases of clinical investiga-
tion adopted by the FDA since the late 1970s is generally divided into three 
phases (see, e.g., Part 21 Code of Federal Regulations, 312.21). These phases 
of clinical investigation are usually conducted sequentially but may overlap.

The primary objective of phase I is not only to determine the metabolism 
and pharmacological activities of the drug in humans, the side effects associ-
ated with increasing doses, and the early evidence on effectiveness, but also 
to obtain sufficient information about the drug’s pharmacokinetics and phar-
macological effects to permit the design of well-controlled and scientifically 
valid phase II studies. The primary objectives of phase II studies are not only 
to first evaluate the effectiveness of a drug based on clinical endpoints for a 
particular indication or indications in patients with the disease or condition 
under study, but also to determine the dosing ranges and doses for phase III 
studies and the common short-term side effects and risks associated with 
the drug. Note that some pharmaceutical companies further differentiate 
phase II into phases IIa and IIb. For example, clinical studies designed to 
evaluate dosing are referred to as phase IIa studies, while studies designed 
to determine the effectiveness of the drug are called phase IIb. In some cases, 
clinical studies based on clinical endpoints are considered phase IIb stud-
ies. The primary objectives of phase III studies are (1) to gather additional 
information about the effectiveness and safety needed to evaluate the overall 
benefit–risk relationship of the drug and (2) to provide an adequate basis for 
physician labeling. Note that studies conducted after regulatory submission 
before approval are generally referred to as phase IIIb studies.

In addition to these three phases of clinical development, many pharma-
ceutical companies consider performing studies after a drug is approved for 
marketing called phase IV studies. The purpose for conducting phase IV 
studies is to elucidate further the incidence of adverse reactions and deter-
mine the effect of a drug on morbidity or mortality. In addition, a phase IV 
trial may be conducted to study a patient population not previously studied, 
such as children. In practice, phase IV studies are usually considered use-
ful market-oriented comparison studies against competitors such as qual-
ity-of-life studies. As indicated by Chow and Shao (2002), in practice, it is 
estimated that about 1 in 8 to 10 × 103 compounds screened may finally reach 
the phase of clinical development for human testing. The probability of suc-
cess for those compounds that reach clinical development is relatively low. 
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As a result, a thoughtful clinical development plan is necessary to ensure the 
success of the development of a promising pharmaceutical entity.

In practice, phases I and II are considered early-phase clinical development, 
while phases III and IV are viewed as later-phase clinical development. However, 
in the pharmaceutical industry, some pharmaceutical companies consider 
clinical studies up to phase IIa as early-phase clinical development. Phase I 
clinical investigation provides an initial introduction of an IND to humans. 
Phase I clinical investigation includes studies of drug metabolism, bioavail-
ability, dose ranging, and multiple doses. Phase I studies usually involve 20–80 
normal volunteer subjects or patients. In several therapeutic areas, patients 
with the diseases are subjects rather than healthy volunteers. This tradition is 
strongest in oncology because many cytotoxic agents cause damage to DNA. 
For similar reasons, many anti-AIDS drugs are not tested initially in healthy 
subjects. It should be noted that some categories of drugs such as neurophar-
macology may have an acclimatization or tolerance aspect, which makes them 
difficult to study in healthy subjects. For phase I clinical investigation, FDA’s 
review focuses on the assessment of safety. Therefore, extensive safety infor-
mation such as detailed laboratory evaluations is usually collected at very 
extensive schedules. A typical phase I design for tolerability and safety is a 
dose escalation trial design in which successive groups (cohorts) of patients are 
given successively higher doses of the treatment until some of the patients in a 
cohort experience unacceptable side effects. In most phase I trials of this kind, 
there are—three to six patients in each cohort. The starting dose at the first 
cohort is usually rather low. If unacceptable side effects are not seen in the first 
cohort, patients in the next cohort will receive a higher dose. This continues 
until a dose is reached at which it is too toxic for some patients (say one out of 
three). Then, the previous dose level is considered to be the maximum toler-
ated dose (MTD). It should be noted that MTD usually is the most effective 
dose, which is often chosen as the optimal dose for phase II studies in prac-
tice. Also, as indicated by the FDA, phase I studies are usually less detailed 
and more flexible than for subsequent phases, and therefore adaptive (flexible) 
designs are usually considered.

Phase II studies are the first controlled clinical studies of the drug under 
investigation. Phase II studies usually involve not more than several hun-
dred patients. A commonly employed study design for a phase II study is 
a randomized, parallel group (either a placebo-control or an active-control) 
study. Patients will be randomly assigned to either of the treatment groups to 
receive the dose determined in the prior phase I study. Many phase II trials, 
however, are conducted in two stages. The idea is to stop the trial as soon as 
it can be known that the treatment is ineffective. On the other hand, we wish 
to continue the trial if the treatment has shown to be effective. In a two-stage 
design, after a predetermined number of patients have been treated, the trial 
is paused and the response rate (RR) is evaluated. If the RR is less than a pre-
specified minimum goal (undesirable RR), it is concluded that the treatment 
is not worth pursuing and the trial is stopped. Otherwise, the trial continues 
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and additional patients are enrolled to permit determination of the RR for 
achieving desired accuracy with certain statistical power. It should be noted 
that if the trial has reached the second stage, it indicates that at least some of 
the patients are responding to the treatment though the RR could still be low 
at the first stage.

1.3â•‡� Controversial Issues

In clinical development, the success of a well-controlled clinical trial relies 
on both clinical operation and statistical operation. Clinical operation is 
responsible for (1) the involvement of protocol development, (2) site manage-
ment including selecting qualified study sites, and patient recruitment, (3) 
Institutional Review Board review, (4) conducting/monitoring of the trial, 
(5) protocol amendments, and (6) data management. On the other hand, sta-
tistical operation is responsible for (1) evaluation of alternative study designs 
for achieving the study objectives of the intended trial, (2) setting up appro-
priate (statistical) hypotheses according to study objectives, (3) performing 
a pre-study power analysis for sample size calculation based on primary 
study endpoint, (4) preparing statistical section for inclusion in the study 
protocol including randomization model/method with blinding proce-
dure for preventing potential bias, (5) clinical strategy for endpoint selec-
tion and development of appropriate statistical methods for data analysis, 
(6) addressing possible statistical impact on protocol amendments, (7) pro-
viding support to an established independent data safety monitoring com-
mittee (IDMC) (if applicable) to ensure the validity, integrity, and safety of 
the intended clinical trials, and (8) interaction with regulatory agencies for 
feasibility and applicability of the use of adaptive design methods in clinical 
trials (if applicable). During the conduct of a clinical trial, some controversial 
issues are commonly encountered regardless of the compliance of GSP and 
GCP. These controversial issues will not only have an influence on the valid-
ity of statistical analysis for providing a fair and unbiased assessment of the 
treatment under investigation, but also have an impact on the probability of 
the success for bringing promising compounds or innovative therapies into 
the marketplace. In the subsequent sections, these controversial issues that 
are commonly encountered are briefly described.

Drug recall/withdrawal: A commonly asked question in pharmaceutical/clin-
ical development is “Why did a newly approved drug product get recalled or 
withdrawn (usually due to safety concern) after a lengthy and costly process 
of pharmaceutical/clinical development?” Subsequent questions include the 
following: (1) Is the current drug review/approval process adequate? (2) Is 
the observed safety issue which led to the recall/withdrawal of the drug 
product by chance alone? (3) Are the trial design, data management, and 
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programming and statistical methods employed for data analysis valid? (4) 
Are the clinical data interpreted correctly? (5) Did the regulatory submission 
contain all of the information regarding efficacy/safety and good drug char-
acteristics of identity, purity, quality, strength, stability, and reproducibility? 
In practice, there may exist no definite answers to any of these questions. In 
this book, we intend to provide some insights in some chapters, which may 
be useful to revisit these questions.

One-fits-all criterion: For approval of generic drug products, most regula-
tory agencies including the FDA require that evidence of average BE in terms 
of the extent and rate of drug absorption, which are measured by AUC and 
Cmax, be provided. The FDA requires that the 90% confidence interval for 
the ratio of means (e.g., AUC) be totally within the BE limits (80%, 125%) 
for claiming BE. This one-fits-all criterion is applicable to all drug products 
across therapeutic areas regardless of narrow/wide therapeutic index and/or 
intra-subject variability. One of the controversial issues that is frequently 
challenged by clinical scientists is “What if we fail to meet the BE limits by 
a relatively small margin?” This is similar to the question “What is the dif-
ference between a p-value of 0.49 (pass) and a p-value of 0.51 (fail) in clini-
cal trials?” In addition, the following questions are often asked: (1) Can an 
approved generic drug product reach a similar therapeutic effect of the inno-
vative drug product—what is the compromise between scientific validity and 
regulatory consideration? (2) Can all of the approved generic drug products 
be used interchangeably (drug interchangeability in terms of drug prescrib-
ability for new patients and drug switchability for current patients)? (3) What 
if a BE study meets the BE criterion based on the raw data but fails to meet 
the BE criterion based on log-transformed data (current FDA requirement) or 
vice versa? (4) What if AUC meets the BE criterion but Cmax fails? More details 
and discussions of the above controversial issues are given in Chapter 4.

Lost-in-translation: One of the major concerns in bench-to-bedside transla-
tional research is probably the appropriateness of the one-way translational 
process from basic drug discovery to clinical outcome. The most commonly 
asked question is “Is an animal model (or in vitro activity) predictive of the 
human model (or in vivo activity)?” or “Does an in vitro–in vivo correlation 
exist?” Under the one-way translational process from bench to bedside, what 
is the potential lost-in-translation? The possibility that a significant lost-in-
translation from bench to bedside could lead to the failure of the clinical trial 
despite the test treatment is in fact promising. As a result, it is suggested 
that a two-way translational process between bench (basic drug discovery) 
and bedside (clinical application) be considered for the improvement of the 
pharmaceutical/clinical development of a test treatment under investigation. 
More details can be found in Chapter 3.

Instability of sample size: In practice, sample size calculation/justification is 
usually performed based on the information obtained from previous studies or 
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a small pilot study. It is, however, of concern whether the selected sample size 
can achieve statistical significance with a desired power for correctly detecting 
a clinically meaningful difference at a prespecified level of significance. One of 
the controversial issues regarding sample size calculation is why the selected 
sample size does not guarantee the success of the intended clinical trials? In 
addition, Why sample size reestimation is recommended? For a given clinical 
trial, can we always start with a small number of subjects and then increase 
the sample size later if necessary? Is this approach acceptable to regulatory 
agencies? It should be noted that sample size calculation is usually performed 
under certain assumptions that are closely related to the uncertainties of the 
target patient population. Thus, the formula or procedure for sample size cal-
culation is very sensitive to assumptions of the study parameters. Any devia-
tions to the assumption could lead to instability of the estimated sample size. 
The instability of the sample size in clinical trials is examined in Chapter 6.

Integrity of randomization/blinding: The purpose of randomization and 
blinding in a double-blind randomized clinical trial is to prevent possible 
biases that may be introduced during the conduction of the clinical trial. 
However, because of human nature, both patients and investigators may guess 
which treatment a patient receives. Thus, “Does the randomization/blinding 
work in randomized double-blind studies?” is an interesting question to clini-
cal scientists. Chow and Shao (2004) proposed a method for testing the integ-
rity of blinding. This, however, raises the following controversial issues. First, 
should a test for the integrity of blinding be performed at the end of the study? 
Second, what action should be taken for those positive trials which fail to pass 
the test for the integrity of blinding? Similarly, can the sponsor appeal if a 
negative trial fails to pass the test for integrity of blinding? Finally, should the 
clinical data that fail to pass the test for integrity of blinding be rejected for 
clinical evaluation of the test treatment under investigation? For randomiza-
tion, the integrity of randomization can be tested in terms of the probability 
of correctly guessing the treatment codes. For comparative clinical trials, a 
blocking size of 2 or 4 is usually employed for the generation of randomization 
schedules in order to maintain treatment balance. As a result, which blocking 
size will give a higher probability of correctly guessing the treatment codes 
right has become an interesting question in clinical trials. More details regard-
ing the integrity of randomization/blinding can be found in Chapter 7.

Clinical strategy for endpoint selection: In clinical trials, the sponsor 
always seeks an appropriate study endpoint that can lead to or increase the 
probability of success of the intended clinical trial. As a result, two major 
controversial issues are raised. As an example, for cancer trials, the following 
study endpoints are often considered: RR, time to disease progression (TTP), 
and survival. Different study endpoints may exhibit different effect sizes, 
which relate to overall clinical evaluation of the efficacy of the test treatment. 
Williams et al. (2004) indicate that a cancer drug product could be approved 
based either on RR, TTP, and survival alone or combinations of RR, TTP, and 
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survival. One of the controversial issues is that there exists no gold standard 
for the assessment of cancer drugs. As another example, for a given study 
endpoint, when data are collected from clinical trials, the following derived 
study endpoints are usually considered: (1) absolute changes from baseline, 
(2) relative change from baseline, (3) responder defined based on absolute 
change, (4) responder based on relative change, and (5) any combinations of 
the above. Different derived study endpoints may lead to different conclu-
sions regarding the treatment effect, which has led to the controversial issue 
“Which (derived) endpoint is telling the truth?” and “How these (derived) 
endpoints translate one another?” In practice, it should be noted that regula-
tory agencies may prefer one derived endpoint over the other without scien-
tific justification. More discussions are given in Chapter 8.

Protocol amendments: Protocol amendments are commonly issued during the 
conduct of the clinical trials for various reasons such as change in eligibility cri-
teria due to slow enrollment or modification of dose/dose regimen due to safety. 
For a given clinical trial, it is not uncommon to have—three to five protocol 
amendments during the conduct of the clinical trial. It is a concern that frequent 
protocol amendments may cause a shift in the target patient population. A clini-
cal trial with frequent protocol amendments (with significant changes) could 
result in a totally different trial that is unable to address the scientific/medical 
questions the original trial is intended to address. Thus, one of the controver-
sial issues is “How many protocol amendments are allowed for a given clinical 
trial?” Since, currently, there are no regulations on the protocol amendment, it 
is suggested that regulatory guidelines/guidance on protocol amendment be 
developed in order to maintain the integrity of the clinical trial. The impact of 
protocol amendments on clinical outcomes is studied in Chapter 9.

Independence of IDMC: In recent years, an IDMC is often established for 
clinical trials conducted in the later phases (e.g., phases IIb and III) of clinical 
development. The intention of IDMC is good. However, the independence of 
IDMC has been challenged. As a result, “Is an established IDMC really inde-
pendent?” has become a controversial issue in clinical trials. In practice, most 
IDMCs do not communicate with regulatory agencies directly, while the 
sponsor makes every attempt to influence the IDMC. The other controversial 
issue is then whether the IDMC should have the authority to communicate 
with regulatory agencies regarding serious misconduct or wrongdoing of 
the clinical trial. Some observations that are commonly seen in the function/
activity of an IDMC are described in Chapter 12.

Multiplicity: One of the controversial issues in clinical trials that has attracted 
much attention is probably the issue of multiplicity in clinical trials. It is not 
clear to clinical scientists at to when and how adjustment for multiplicity in 
clinical trials should be done for controlling the overall type I error rate at a 
prespecified level of significance. It should be noted that the purpose of a clini-
cal trial is to detect a clinically meaningful difference for achieving statistical 
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significance (i.e., the observed difference is not by chance alone and is repro-
ducible). Multiplicity refers to simultaneous statistical inference. Thus, one 
should always refer to the null hypothesis of interest (i.e., scientific/medical 
question) that one wishes to answer since the test statistic should be derived 
under the null hypothesis. The derived test statistic is then evaluated under 
the alternative hypothesis for achieving the desired power. Thus, the impact 
on power after adjustment for multiplicity is also a great concern in practice. 
Westfall and Bretz (2010) pointed out that the commonly encountered contro-
versial issues regarding multiplicity in clinical trials include (1) penalizing 
for doing more or good job (i.e., performing additional test), (2) adjusting α 
for all possible tests conducted in the trial, and (3) the family of hypotheses to 
be tested. These controversial issues will be further discussed in Chapter 11.

Feasibility of seamless adaptive design: The use of adaptive design methods 
in clinical trials has become very popular in recent years due to their flexibility 
and efficiency for identifying any signals of safety and/or efficacy (preferably 
optimal clinical benefit) of a test treatment under investigation. As indicated by 
Chow and Chang (2006), there are several different types of adaptive designs 
depending upon the nature of adaptations applied either before, during, or 
after the conduct of a clinical trial. Among these adaptive designs is a two-stage 
seamless adaptive design that combines two separate (independent) studies 
(e.g., a phase IIb study and a phase III study) into a single study. Although the 
application of a seamless adaptive design enjoys the advantages of (1) reducing 
lead time between trials, (2) potential saving of the cost and resources, and (3) 
increasing the efficiency and consequently the probability of success, there are a 
few issues that remain unsolved. First, it is not clear how the overall type I error 
can be controlled, especially when the study objectives and study endpoints at 
different stages are different. Second, it is not clear whether the classic O’Brien-
Fleming type of boundary is appropriate. Third, it is not clear how the data col-
lected from both stages can be combined for a final analysis. Even if the above 
questions can be addressed, it is still a controversial issue whether the two-stage 
seamless adaptive design is feasible, especially when there is a population shift 
due to protocol amendments as described above.

Missing values imputation: In the past decade or two, when there were miss-
ing values, subjects with missing values were often excluded from the analy-
sis. In recent years, patients with missing values are included in the analysis 
with imputed data in order to (1) fully utilize all information (even it is incom-
plete) collected from the trial and (2) increase power by imputing the missing 
values based on some valid statistical methods. In clinical trials, the method of 
LOCF is often considered. The validity of LOCF, however, has been challenged 
by many researchers. Although the validity of LOCF is questionable, it is still 
widely accepted in practice. Alternatively, many other methods for missing 
data imputation are available, which include (1) mean imputation, (2) median 
imputation, and (3) the method of regression analysis. One of the controversial 
issues is “Can missing data imputation be applied if there is a large proportion 
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of subjects with missing values?” Another controversial issue is the potential 
impact on power when applying missing data imputation in clinical trials.

Non-inferiority margin: For clinical trials with life-threatening diseases 
such as cancer, it is unethical to use a placebo-control when approved and 
effective therapies are available. In this case, an active-control trial is often 
considered. The purpose of such an active-control trial is to show that the 
test treatment is at least as effective as the active-control agent or that it is 
not worse than the active-control agent within a prespecified margin, which 
is usually referred to as a non-inferiority margin. One of the controversial 
issues in active-control trials (or non-inferiority trials) is the determination of 
the non-inferiority margin. A different choice of non-inferiority margin could 
alter the conclusion of the clinical study. As indicated in the International 
Conference Harmonization (ICH) guideline, the selection of non-inferiority 
margin should be based on both clinical justification and statistical reason-
ing. Since the selection of the non-inferiority margin could be based on either 
absolute change or relative change, both of which have a significant impact on 
sample size calculation and the probability for achieving study objectives, it 
is very controversial as to whether the non-inferiority margin based on abso-
lute change or the non-inferiority margin based on relative change should 
be used. More discussions in this regard can be found in Chapters 8 and 17.

Reproducibility/generalizability probability: For marketing approval of a 
new drug product, the FDA requires that at least two adequate and well-
controlled clinical trials be conducted to provide substantial evidence regard-
ing the effectiveness of the drug product under investigation. The purpose of 
conducting the second trial is to study whether the observed clinical result 
from the first trial is reproducible on the same target patient population. One 
of the controversial issues is “Can a large trial serve as two adequate and 
well-controlled clinical trials?” Shao and Chow (2002) studied the reproduc-
ibility probability of a future study based on observed data from a given 
clinical trial. The result indicates that a positive trial with a p-value less than 
0.001 will have approximately 90% reproducibility probability. Under cer-
tain circumstances, the FDA Modernization Act (FDAMA) of 1997 includes a 
provision (Section 115 of FDAMA) to allow data from one adequate and well-
controlled clinical trial investigation and confirmatory evidence to establish 
effectiveness for the risk–benefit assessment of drug and biological candi-
dates for approval. More details regarding the application of reproducibility 
and generalizability probabilities are given in Chapter 25.

Probability of success: In the past several decades, it has been recognized 
that increasing spending of biomedical research does not reflect an increase 
in the success rate of pharmaceutical/clinical research and development. The 
low success rate of pharmaceutical/clinical development could be because 
(1) a diminished margin for improvement that escalates the level of difficulty 
in proving drug benefits, (2) genomics and other new sciences have not yet 
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reached their full potential, (3) mergers and other business arrangements 
have decreased candidates, (4) easy targets are the focus as chronic diseases 
are harder to study, (5) failure rates have not improved, (6) rapidly escalat-
ing costs and complexity decrease the willingness/ability to bring many 
candidates forward into the clinic (Woodcock, 2005). One of the controver-
sial issues is “How to correctly assess the probability of success based on 
available data?” Other controversial issues are “How to identify the possible 
causes of failure?” and “What actions should be taken for improving the fail-
ure rate?” More discussions are given in the last chapter of this book.

Other controversial issues: In addition to the controversial issues described 
above, there are other controversial issues such as (1) validation of subjec-
tive instruments—do we ask the right questions? (2) center grouping—how 
to group small centers into a reasonable size of dummy center? (3) QT/QTc 
studies with recording replicates—is a recording replicate a real replicate? 
(4) multi-regional trials—how many subjects should be included at a specific 
region in order to produce consistent results? (5) dose escalation trials—what 
is the probability of correctly identifying the MTD? (6) enrichment process 
in target clinical trials—how to estimate the proportion of patients with 
positive diagnostic test results? (7) clinical trial simulation—is clinical trial 
simulation a solution or the solution? (8) traditional Chinese medicine—how 
to calibrate Chinese diagnostic procedures against well-established clinical 
endpoints used in Western medicines? (9) follow-on biologics (FOB)—how 
similar is  similar? (10) good regulatory (review) practices—do gold stan-
dards for drug evaluation exist? These controversial issues have an impact 
on the clinical evaluation of the treatment effect under investigation. These 
controversial issues will be discussed in subsequent chapters of this book.

In clinical development, randomized clinical trials are usually conducted 
to collect data for the evaluation of the efficacy and safety of a test treatment 
(e.g., a drug product or a therapy). To provide an accurate and fair assessment 
of the test treatment under investigation, well-controlled clinical trials fol-
lowing GCP at different phases of clinical development are necessarily con-
ducted. In practice, a clinical trial process consists of protocol development, 
trial conduct, data collection, statistical analysis/interpretation, and report-
ing. A clinical trial is a lengthy but costly process, which is necessary to ensure 
the quality, identity, purity, strength, and stability of the test treatment under 
investigation. However, some controversial issues evitably occur regardless 
of whether the intended clinical trial is well planned. Basically, these con-
troversial issues present conceptual differences in perspectives of clinicians 
(investigators/sponsors), biostatisticians, and reviewers for the evaluation of 
the test treatment under investigation. The major concern of the clinicians 
is whether the observed difference is of clinical significance, while the bio-
statisticians are interested in demonstrating whether the observed difference 
is of any statistical significance (i.e., whether the observed difference is not 
by chance alone and it is reproducible). The reviewers from the regulatory 
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agencies would like to make sure whether the observed clinically meaning-
ful difference (clinical benefits) has a statistical significance before they can 
approve the test treatment under investigation. A clinical trial is considered 
successful if it can meet the expectations of clinicians, biostatisticians, and 
regulatory reviewers.

1.4â•‡� Aim and Structure of the Book

In this book, we will post commonly seen controversial issues rather than 
provide resolutions. It is our goal that regulatory agencies, clinical scien-
tists, and biostatisticians will pay much attention to these issues, identify 
the possible causes, resolve/correct the issues, and consequently enhance 
good Â�clinical/statistical practices for achieving the study objectives of the 
intended clinical trials. This book is intended to be the first book entirely 
devoted to the discussion of controversial issues in clinical research and 
development. It covers controversial issues that are commonly encoun-
tered at various stages of clinical research and development including from 
bench-to-bedside translational research. It is our goal to provide a useful 
desk reference and state-of-the art examination of controversial issues in 
clinical trials to scientists engaged in clinical research and development, 
those in government regulatory agencies who have to make decisions on 
the evaluation/approval of test treatments under investigation, and to bio-
statisticians who provide the statistical support for the design and analy-
sis of clinical trials or related projects. We hope that this book will serve 
as a bridge between scientists from the pharmaceutical industry, medical/
statistical reviewers from government regulatory agencies, and researchers 
from the academia.

In this chapter, the background of pharmaceutical/clinical research and 
development, critical path initiatives, and some commonly seen controversial 
issues in clinical research have been discussed. In Chapter 2, GSP, which is the 
foundation of GCP for ensuring the success of the conduct of clinical trials, 
including some general concepts for statistics such as type I error versus type II 
error, one-sided test versus two-sided test, p-value versus confidence interval, 
and statistical difference versus clinical difference are described. In Chapter 
3, some controversial issues such as one-way translational process versus two-
way translational process, animal model versus human model, and the impact 
of lost-in-translation from bench to bedside on the probability of success for 
pharmaceutical/clinical development that are commonly encountered in 
bench-to-bedside translational research are discussed. Practical issues for the 
assessment of BE for generic approval under a standard 2 × 2 crossover design 
will be discussed in Chapter 4. Unlike the traditional approach for clinical 
evaluation of the effectiveness and safety by first demonstrating efficacy and 
then assessing the tolerability of the safety, Chapter 5 describes the possibility 
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of evaluating composite hypotheses that include both efficacy and safety at 
the same time. Also included in this chapter is a recommended approach of 
significant digits for reporting the observed clinical results.

Chapter 6 examines the instability of sample size calculation/justification 
based on data obtained from previous studies and/or a small pilot study. The 
instability of sample size calculation has led to the justification of sample size 
reestimation at interim analysis, which has an impact on the success of the 
intended clinical trial. As a result, a more robust method such as a Bayesian-
bootstrap median approach is recommended. As is well known, randomiza-
tion and/or blinding are often employed in clinical trials in order to prevent 
potential biases that might be introduced during the conduct of the intended 
clinical trial. However, it is not clear whether the randomization and/or blind-
ing will achieve the objective of preventing biases. Chapter 7 discusses the 
integrity of randomization/blinding based on post-study patients and/or inves-
tigators’ guesses of the treatment codes that the patients receive. In clinical 
trials, it is debatable whether the absolute change from baseline to endpoint, 
the relative change from baseline to endpoint, or responder that is defined 
based on either absolute change or relative change should be used for the 
assessment of treatment effect. Chapter 8 attempts to provide some insight 
regarding the clinical strategy for the selection of an appropriate endpoint for 
the assessment of treatment effect. As it is a common practice to issue protocol 
amendments due to various reasons, it is a major concern that frequent proto-
col amendments may lead to a shift of target patient population; consequently, 
the original clinical trial may become a totally different trial that is unable to 
address the scientific/medical questions the original clinical trial intended to 
answer. Chapter 9 studies the impact of protocol amendments in data collec-
tions and consequently statistical inference at the end of the study. Chapter 10 
investigates the feasibility/applicability for the use of adaptive design meth-
ods in clinical trials, which has become very popular and widely accepted by 
the pharmaceutical/biotechnology industry although the regulatory agencies 
still have some reservation in terms of its validity and integrity. The chap-
ter will only focus on the most commonly employed seamless adaptive trial 
designs that combine two separate (independent) studies into a single trial.

In clinical trials, the issue of multiplicity often occurs due to multiple 
doses, multiple endpoints, multiple testing, and/or multiple comparisons. It 
is a concern as to when and how the overall type I error rate should be con-
trolled due to multiplicity. Chapter 11 discusses controversial issues regard-
ing multiplicity in clinical trials. Chapter 12 challenges the independence of 
an IDMC, which is often established to maintain the integrity of the trial, 
monitor ongoing safety data, and/or perform interim analysis for efficacy. In 
clinical research, data collected from a one-way analysis of variance model 
with repeated measures is often wrongly analyzed under a two-way analy-
sis of variance model, which may lead to a wrong conclusion of the treatment 
effect. Chapter 13 studies the impact of analysis results under an incorrect 
model. Chapter 14 reviews some performance characteristics for validation 
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of a subjective instrument (questionnaire) for the assessment of the clini-
cal benefit of the test treatment under investigation such as quality-of-life 
assessment. Missing values are commonly encountered due to various rea-
sons regardless of missing at random or not. Chapter 15 provides a summary 
of statistical methods for missing data imputation in clinical trials.

To expedite patient recruitments in clinical trials, a multicenter trial is often 
considered. One of the disadvantages is that we may end up with a few large 
sites and a number of small centers. In addition, it is likely to increase the 
probability of observing treatment-by-site interaction, which makes the over-
all assessment of the treatment effect almost impossible. Chapter 16 compares 
several approaches for center grouping in clinical trials with a number of 
small centers. Statistical methods for determining the non-inferiority mar-
gin in non-inferiority (active-control) trials are summarized in Chapter 17. 
The design and analysis for QT/QTc studies with recording replicates for 
assessment of cardio-toxicity in terms of QT/QTc prolongation are reviewed 
in Chapter 18. Chapter 19 discusses some practical issues that are commonly 
encountered in multiregional (multinational) clinical trials. Also included in 
this chapter is the determination of sample size at specific regions as com-
pared to the entire multiregional trial. Algorithm-based traditional escalation 
rule trial design and model-based continual reassessment method trial design 
for dose escalation trials in cancer clinical trials are compared in Chapter 20.

Chapter 21 focuses on the enrichment process in target clinical trials, 
which will identify patient populations who are most likely to respond to 
the test treatment under study and consequently may lead to personalized 
medicine. Chapter 22 provides basic concepts and principles for conducting 
clinical trial simulation, which are useful for evaluating clinical performance 
under an assumed model with certain assumptions. Fundamental differ-
ences in terms of dose/dose regimen, culture, and medical theory/practice 
between Western medicine and traditional Chinese medicine are outlined 
in Chapter 23. Also included in this chapter are some statistical methods for 
testing consistency and stability analysis. Practical issues for assessment of 
biosimilarity between FOB are described in Chapter 24. Also included in this 
chapter are some statistical considerations regarding the design and analysis 
and current regulatory position for assessment of biosimilarity.

Chapter 25 deals with the calculations of the probabilities of generalizabil-
ity and reproducibility of a given clinical trial based on the observed clinical 
data of the clinical trial. Good regulatory (or review) practices (GRP), espe-
cially good review practices published by the Center for Drug Evaluation 
and Research at the FDA, are reviewed in Chapter 26. Also included in this 
chapter are some observations of inconsistencies that are commonly seen 
during regulatory submissions. The probability of success for a pharmaceu-
tical and/or clinical development of a test treatment under investigation is 
evaluated in the last chapter of this book. In each chapter, examples and pos-
sible recommendations and/or resolutions are provided whenever possible.
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2
Good Statistical Practices

2.1â•‡� Introduction

Good statistical practice (GSP) in pharmaceutical/clinical research and devel-
opment is defined as a set of statistical principles and/or standard operating 
procedures for the best biopharmaceutical practices in design, conduct, anal-
ysis, evaluation, reporting, and interpretation of studies at various stages of 
pharmaceutical research and development (see, e.g., Spriet and Dupin-Spriet, 
1992; Wiles et al., 1994; Chow, 1997). The purpose of GSP is not only to mini-
mize bias but also to minimize variability that may occur before, during, and 
after the conduct of the studies. More importantly, GSP provides a valid and 
fair assessment of the drug product under study. The concept of GSP in phar-
maceutical/clinical research and development can be seen in many regula-
tory requirements, standards/specifications, and guidelines/guidances set 
by most health authorities, such as the U.S. Food and Drug Administration 
(FDA) and the Committee for Proprietary Medicinal Products (CPMP) 
in the European Community (CPMP, 1990). For example, the U.S. regula-
tory requirements for pharmaceutical/clinical research and development 
are codified in the U.S. Code of Federal Regulations (CFR), while the U.S. 
Pharmacopeia and National Formulary (USP/NF) and National Committee 
for Clinical Laboratory Standards (NCCLS) include standard procedures, 
test and sampling plans, and acceptance criteria and specifications of many 
pharmaceutical compounds (USP/NF, 2000; NCCLS, 2001). In addition, the 
FDA also develops a number of guidelines and guidances to assist the spon-
sors in drug research and development. These guidelines and guidances 
are considered gold standards for achieving good laboratory practice (GLP), 
good clinical practice (GCP), current good manufacturing practice (cGMP), 
and good regulatory (review) practice (GRP). The concept of GSP is well out-
lined in the guideline on Statistical Principles for Clinical Trials issued by the 
International Conference on Harmonization (ICH, 1997). As a result, GSP not 
only provides accuracy and reliability of the results derived from the studies 
but also ensures the validity and integrity of the studies.

In pharmaceutical/clinical research and development, statistics are neces-
sarily applied at various critical stages of development to meet regulatory 
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requirements for the effectiveness, safety, identity, strength, quality, purity, 
and stability of the drug product under investigation. These critical stages 
include pre-IND (investigational new drug application), IND, new drug 
application (NDA), and post NDA. At the very early stages of pre-IND, phar-
maceutical scientists may have to screen thousands of potential compounds 
in order to identify a few promising compounds. An appropriate use of sta-
tistics with efficient screening and/or optimal designs will assist pharma-
ceutical scientists to identify the promising compounds within a relatively 
short time frame and cost effectively.

As indicated by the FDA, an IND should contain information regarding 
chemistry, manufacturing, and controls (CMC) of the drug substance and 
drug product to ensure the drug identity, strength, quality, and purity of the 
investigational drug. In addition, the sponsors are required to provide ade-
quate information about pharmacological studies for absorption, distribution, 
metabolism, and excretion (ADME) and acute, subacute, and chronic toxico-
logical studies and reproductive tests in various animal species to show that 
the investigational drug is reasonably safe to be evaluated in clinical trials 
in humans. At this stage, statistics are usually applied to (1) validate a devel-
oped analytical method, (2) establish a drug expiration dating period through 
stability studies, and (3) assess toxicity through animal studies. Statistics are 
necessarily applied to meet standards of accuracy and reliability.

Before the drug can be approved, the FDA requires that substantial evi-
dence of the effectiveness and safety of the drug be provided in the Technical 
Section of Statistics of an NDA submission. Since the validity of statistical 
inference regarding the effectiveness and safety of the drug is always a con-
cern, it is suggested that a careful review be performed to ensure an accurate 
and reliable assessment of the drug product. In addition, to have a fair assess-
ment, the FDA also establishes advisory committees, each consisting of clini-
cal, pharmacological, and statistical experts and one advocate (not employed 
by the FDA) in designated drug classes and subspecialties, to provide a second 
but independent review of the submission. The responsibility of the statisti-
cal expert is not only to ensure that a valid design is used but also to evaluate 
whether statistical methods used are appropriate for addressing the scientific 
and medical questions regarding the effectiveness and safety of the drug.

After the drug is approved, the FDA also requires that the drug product be 
tested for its identity, strength, quality, and purity before it can be released for 
use. For this purpose, the cGMP is necessarily implemented to (1) validate the 
manufacturing process, (2) monitor the performance of the manufacturing 
process, and (3) provide quality assurance of the final product. At each stage 
of the manufacturing process, the FDA requires that sampling plans, accep-
tance criteria, and valid statistical analyses be performed for the intended 
tests, such as potency, content uniformity, and dissolution. For each test, sam-
pling plan, acceptance criteria, and valid statistical analysis are crucial for 
determining whether the drug product passes the test based on the results 
from a representative sample.
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In the next section, some key statistical principles for GSP are briefly 
described. GSPs that are commonly employed in the European Community 
are reviewed in Section 2.3. Some recommendations for the implementation 
of GSP are given in Section 2.4. Brief concluding remarks are presented in the 
last section of this chapter.

2.2â•‡� Statistical Principles

In this section, we discuss some key statistical principles in the design and 
analysis of studies that may be encountered at various stages of drug devel-
opment. These key statistical principles include bias/variability, confound-
ing/interaction, hypothesis testing, type I error and power, randomization, 
sample size calculation/justification, statistical difference versus clinical 
difference, and one-sided test versus two-sided test.

2.2.1  �Bias and Variability

For the approval of a drug product, regulatory agencies usually require that 
the results of the studies conducted at various stages of drug research and 
development be accurate and reliable to provide a valid and fair assessment 
of the treatment effect. The accuracy and reliability are usually referred to 
as the closeness and the degree of closeness of the results to the true value 
(i.e., true treatment effect). Any deviation from the true value is considered 
a bias, which may be due to selection, observation, or statistical procedures. 
Pharmaceutical scientists would make any attempt to avoid bias, whenever 
possible, to ensure that the collected results are accurate.

The reliability of a study is an assessment of the precision of the study, 
which measures the degree of the closeness of the results to the true value. 
The reliability reflects the ability to repeat or reproduce similar outcomes in 
the targeted population. The more precise a study is, the more likely it is that 
the results would be reproducible. The precision of a study can be characterized 
by the variability incurred during the conduct of the study.

In practice, since studies are usually planned, designed, executed, ana-
lyzed, and reported by a team that consists of pharmaceutical scientists from 
different disciplines, bias and variability inevitably occur. It is suggested that 
possible sources of bias and variability be identified at the planning stage of 
the study, not only to reduce the bias but also to minimize the variability.

2.2.2  �Confounding and Interaction

In pharmaceutical/clinical research and development, there are many 
sources of variation that have an impact on the evaluation of the treatment. 
If these variations are not identified and properly controlled, then they may 
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be mixed up with the treatment effects that the studies are intended to 
demonstrate. In this case, the treatment is said to be confounded with the 
effects due to these variations. To provide a better understanding, consider 
the following example. Last winter, Dr. Smith noticed that the temperature 
in the emergency room was relatively low, which had caused some dis-
comfort among medical personnel and patients. Dr. Smith suspected that 
the heating system might not function properly and decided to improve it. 
As a result, the temperature of the emergency room has been raised to a 
comfortable level this winter. However, this winter is not as cold as last 
winter. Therefore, it is not clear whether the improvement of emergency 
room temperature was due to the improvement of the heating system or the 
effect of a warmer winter.

The statistical interaction is to investigate whether the joint contribution 
of two or more factors is the same as the sum of the contributions from each 
factor when considered alone. If an interaction between factors exists, an 
overall assessment cannot be made. For example, suppose that a placebo-
controlled clinical trial was conducted at two study centers to assess the 
effectiveness and safety of a newly developed drug product. Suppose that 
the results turned out that the drug is efficacious (better than placebo) at one 
study center and inefficacious (worse than placebo) at the other study cen-
ter. As a result, a significant interaction between treatment and study center 
occurred. In this case, an overall assessment of the effectiveness of the drug 
product can be made.

In practice, it is suggested that possible confounding factors be identified 
and properly controlled at the planning stage of the studies. When signif-
icant interactions among factors are observed, subgroup analyses may be 
necessary for a careful evaluation of the treatment effect.

2.2.3  �Hypotheses Testing

In clinical trials, a hypothesis is a postulation, assumption, or statement that 
is made about the population relative to a test treatment under investiga-
tion. As an example, the statement that there is a difference between the test 
treatment and a placebo control is a hypothesis for the treatment effect. A 
random sample is usually drawn through a bioavailability study to evaluate 
hypotheses about the test treatment. To perform a hypothesis testing, the 
following steps are essential:

Step 1:â•‡� Choose the hypothesis that is to be questioned, denoted by H0, where 
H0 is usually referred to as the null hypothesis.

Step 2:â•‡� Choose an alternative hypothesis, denoted by Ha, where Ha is usually 
the hypothesis of particular interest to the investigators.

Step 3:â•‡� Derive a test statistic under the null hypothesis and define the rejec-
tion region (or a rule) for decision making about when to reject the 
null hypothesis and when to fail to reject it.
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Step 4:â•‡ Draw a random sample by conducting a clinical trial.

Step 5:â•‡ Calculate test statistic(s).

Step 6:â•‡� Draw conclusion(s) according to the predetermined rule as specified 
in Step 3.

In practice, we would reject the null hypothesis at a prespecified level of sig-
nificance and favor the alternative hypothesis. Basically, two kinds of errors 
occur when testing hypotheses. If the null hypothesis is rejected when it is 
true, then a type I error has occurred. If the null hypothesis is not rejected 
when it is false, then a type II error has been made. The probabilities of mak-
ing type I and type II errors are given as
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The probability of makings a type I error α is called the level of significance. 
In practice, α is also known as the consumer’s risk, while β is sometimes 
referred to as the producer’s risk. Table 2.1 summarizes the relation between 
type I and type II errors when testing hypotheses.

The power of the test is defined as the probability of correctly rejecting H0 
when H0 is false; that is,

	

Power 1

P reject  when  is false0

= −

=

β

( ).H H0

Note that α decreases as β increases and α increases as β decreases. The 
only way to decrease both α and β is to increase the sample size. In practice, 
because a type I error is usually considered to be a more important or serious 
error, which one would like to avoid, a typical approach in hypothesis test-
ing is to control α at an acceptable level and try to minimize β by choosing 
an appropriate sample size. In other words, the null hypothesis can be tested 

TABLE 2.1

Relationship between Type I and Type II Errors

If H0 Is

True False

When Fail to reject No error Type II error
Reject Type I error No error
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at a predetermined level (or nominal level) of significance with a desired 
power. For a fixed α, β increases when Ha moves toward H0. This means that we 
will not have sufficient power to detect a small difference between H0 and Ha. 
On the other hand, β decreases when Ha moves away from H0, increasing the 
test power.

In practice, the null hypothesis H0 and the alternative hypothesis Ha are 
sometimes reversed and evaluated for different interests. However, a test for 
H0 versus Ha is not equivalent to a test for ʹ =H Ha0  versus ʹ =H Ha 0. Two tests 
under different null hypotheses may lead to a totally different conclusion. For 
example, a test for H0 versus Ha may lead to the rejection of H0 in favor of Ha. 
However, a test for ʹ =H Ha0  versus ʹ =H Ha 0 may reject the alternative hypoth-
esis. Thus, the choice of the null hypothesis and the alternative hypothesis 
may have some influence on the parameter to be tested. The following criteria 
are commonly used as a rule of thumb for choosing the null hypothesis.

Rule 1:â•‡� Choose H0 based on the importance of a type I error. Under this 
rule, we believe that a type I error is more important and serious 
than a type II error. We would like to control the chance of making 
a type I error at a tolerable limit (i.e., α). Thus, H0 is chosen so that 
the maximum probability of making a type I error (i.e., P [reject H0 
when H0 is true]) will not exceed α level.

Rule 2:â•‡� Choose the hypothesis we wish to reject as H0 (Colton, 1974; Ott, 1984; 
Ware et al., 1986). The purpose of this rule is to establish Ha by reject-
ing H0. Note that we will never be able to prove that H0 is true even 
though the data fail to reject it.

Occasionally, for a given set of hypotheses, it may be easy to determine 
whether a type I error is more important or serious than a type II error. If 
a type II error appears to be more important or serious than a type I error, 
rule 1 suggests that the null hypothesis and the alternative hypothesis be 
reversed. Frequently, however, the relative importance of the type I error 
and the type II error is usually very subjective. In this case, rule 2 is useful 
in choosing H0 and Ha. To illustrate the use of these two criteria, consider the 
following example given in Chow and Liu (2008).

Example Effectiveness/Ineffectiveness

In practice, the following two errors occur in the assessment of effectiveness 
of a test treatment under investigation when comparing the test treatment 
with a placebo control:

Hypothesis 1:â•‡� We conclude that the test treatment is effective when, in fact, 
the test treatment is not effective as compared to the placebo 
control.

Hypothesis 2:â•‡� We conclude that the test treatment is ineffective when, in fact, 
the test treatment is effective as compared to the placebo control.
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In the interest of controlling the chance of making a type I error, the FDA 
may consider hypothesis 1 more important than hypothesis 2 and, conse-
quently, prefer the following hypothesis:

	 H Ha0 : : .Not effectiveness versus Effectiveness 	 (2.1)

On the other hand, pharmaceutical companies may want to eliminate the 
probability of wrongly rejecting the null hypothesis of bioequivalence (BE). 
Thus, the following hypotheses are used:

	 H Ha0 : Effectiveness versus : Not effectiveness. 	 (2.2)

It is very subjective whether hypothesis 1 is more important than hypoth-
esis 2 or hypothesis 2 is more important than hypothesis 1 when comparing 
two drug products for the same indication. In clinical trials, rule 2 is usually 
applied to choose H0. For example, when a test treatment is newly developed, 
the sponsor will want to show effectiveness by disproving the hypothesis of 
ineffectiveness. In this case, hypothesis (2.1) may be considered.

2.2.4  �Type I Error and Power

In statistical analysis, two different kinds of mistakes are commonly encoun-
tered when performing hypotheses testing. For example, suppose that a phy-
sician is to determine whether or not one of his/her patients is still alive. If the 
patient is dead, then the physician may remove his/her life-support equip-
ment for other patients who need it. Therefore, the null hypothesis of interest 
is that the patient is still alive, while the alternative hypothesis is that the 
patient is dead. Under these hypotheses, the physician may make two mis-
takes, which are: (1) he/she concludes that the patient is dead when in fact the 
patient is still alive and (2) he/she claims that the patient is still alive when in 
fact the patient is dead. The first kind of mistake is usually referred to as a type I 
error; the latter is the so-called type II error. Since a type I error is usually 
considered more important or serious, we would like to limit the probability 
of committing this kind of error to an acceptable level. This acceptable level of 
probability of committing a type I error is known as the significance level. As 
a result, if the probability of observing a type I error based on the data is less 
than the significance level, we conclude that a statistically significant result is 
observed. A statistically significant result suggests that the null hypothesis be 
rejected in favor of the alternative hypothesis. The probability of observing a 
type I error is usually referred to as the p-value of the test. On the other hand, 
the probability of committing a type II error subtracted from 1 is called the 
power of the test. In our example, the power of the test is the probability of 
correctly concluding the death of the patient when the patient is dead.

For the pharmaceutical application, suppose that a pharmaceutical company 
is interested in demonstrating that the newly developed drug is efficacious. 
The null hypothesis that the drug is inefficacious is often chosen versus the 
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alternative hypothesis that the drug is efficacious. The objective is to reject the 
null hypothesis in favor of the alternative hypothesis and consequently to con-
clude that the drug is efficacious. Under the null hypothesis, a type I error is 
made if we conclude that the drug is efficacious when in fact it is not. This error 
is also known as the consumer’s risk. Similarly, a type II error is committed if 
we conclude that the drug is inefficacious. This error is sometimes called the 
producer’s risk. The power is then considered to be the probability of correctly 
concluding that the drug is efficacious, when in fact it is. For the assessment of 
drug effectiveness and safety, a sufficient sample size is often selected to have a 
desired power with a prespecified significance level. The purpose is to control 
both type I (significance level) and type II (power) errors.

2.2.5  �Randomization

Statistical inference on a parameter of interest of a population under study 
is usually derived under the probability structure of the parameter. The 
probability structure depends upon the randomization method employed in 
sampling. The failure of the randomization will have a negative impact on 
the validity of the probability structure. Consequently, the validity, accuracy, 
and reliability of the resulting statistical inference of the parameter are ques-
tionable. Therefore, it is suggested that randomization be performed using 
an appropriate randomization method under a valid randomization model 
according to the study design to ensure the validity, accuracy, and reliability 
of the derived statistical inference.

2.2.6  �Sample Size Determination/Justification

One of the major objectives of most studies during drug research and devel-
opment is to determine whether the drug is effective and safe. During the 
planning stage of a study, the following questions are of particular interest 
to pharmaceutical scientists: (1) How many subjects are needed in order to 
have a desired power for detecting a meaningful difference? (2) What is the 
trade-off if only a small number of subjects are available for the study due 
to a limited budget and/or some scientific considerations? To address these 
questions, a statistical evaluation for sample size determination/justification 
is often employed. Sample size determination usually involves the calcula-
tion of sample size for some desired statistical properties, such as power or 
precision; sample size justification is to provide statistical justification for a 
selected sample size, which is often a small number.

For a given study, sample size can be determined/justified based on some 
criteria of a type I error (a desired precision) or a type II error (a desired 
power). The disadvantage for sample size, determination/justification based 
on the criteria of precision is that it may have a small chance of detecting a 
true difference. As a result, sample size determination/justification based on 
the criteria of power becomes the most commonly used method. Sample size 
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is selected to have a desired power for detection of a meaningful difference 
at a prespecified level of significance.

In practice, however, it is not uncommon to observe discrepancies among 
study objective (hypotheses), study design, statistical analysis (test statistic), 
and sample size calculation. These inconsistencies often result in (1) the wrong 
test for the right hypotheses, (2) the right test for the wrong hypotheses, (3) the 
wrong test for the wrong hypotheses, or (4) the right test for the right 
hypotheses with insufficient power. Therefore, before the sample size can be 
determined, it is suggested that the following be carefully considered: (1) the 
study objective or the hypotheses of interest should be clearly stated, (2) a valid 
design with appropriate statistical tests should be used, and (3) sample size 
should be determined based on the test for the hypotheses of interest.

2.2.7  �Statistical Difference and Scientific Difference

A statistical difference is defined as a difference that is unlikely to occur by 
chance alone, while a scientific difference is a difference that is considered to 
be of scientific importance. A statistical difference is also referred to as a statis-
tically significant difference. The difference between the concepts of statistical 
difference and scientific difference is that statistical difference involves chance 
(probability) while scientific difference does not. When we claim that there is 
a statistical difference, the difference is reproducible with a high probability.

When conducting a study, there are basically four possible outcomes. The 
result may show that (1) the difference is both statistically and scientifically 
significant, (2) there is a statistically significant difference yet the difference 
is not scientifically significant, (3) the difference is scientifically significant 
yet it is not statistically significant, and (4) the difference is neither sta-
tistically significant nor scientifically significant. If the difference is both 
statistically and scientifically significant or if it is neither statistically nor sci-
entifically significant, then there is no confusion. However, in many cases, 
a statistically significant difference does not agree with the scientifically 
significant difference. This inconsistency has created confusion/arguments 
among pharmaceutical scientists and biostatisticians. The inconsistency may 
be due to large variability and/or insufficient sample size.

2.2.8  �One-Sided Test versus Two-Sided Test

For the evaluation of a drug product, the null hypothesis of interest is often that 
there is no difference. The alternative hypothesis is usually that there is a dif-
ference. The statistical test for this setting is called a two-sided test. In some 
cases, the pharmaceutical scientist may test the null hypothesis of no difference 
against the alternative hypothesis that the drug is superior to the placebo. The 
statistical test for this setting is known as a one-sided test. For a given study, 
if a two-sided test is employed at the significance level of 5%, then the level of 
proof required is 1 out of 40. In other words, at the 5% level of significance, there 
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is 2.5% chance (or 1 out of 40) that we may reject the null hypothesis of no dif-
ference in the positive direction and conclude that the drug is effective on one 
side. On the other hand, if a one-sided test is used, the level of proof required 
is 1 out of 20. It turns out that a one-sided test allows more ineffective drugs 
to be approved because of chance as compared to the two-sided test. It should 
be noted that when testing at the 5% level of significance with 80% power, the 
sample size required increases by 27% for a two-sided test as compared to a one-
sided test. As a result, there is a substantial cost saving if a one-sided test is used.

However, agreement is not universal among the regulatory, the academia, 
and the pharmaceutical industry as to whether a one-sided test or a two-sided 
test should be used. The FDA tends to oppose the use of a one-sided test, 
though this position has been challenged by several pharmaceutical companies 
on Drug Efficacy Study Implementation (DESI) drugs at the Administrative 
Hearing. Dubey (1991) pointed out that several viewpoints that favor the use 
of one-sided tests were discussed in an administrative hearing. These points 
indicated that a one-sided test is appropriate in the following situations: (1) 
where there is truly concern with outcomes in one tail only and (2) where it is 
completely inconceivable that the results could go in the opposite direction.

2.3â•‡� Good Statistical Practices in Europe

In February 2005, the Statistical Program Committee (SPC) adopted the 
European statistics code of good practice and undertook to observe the 15 
principles established therein, as well as to periodically review their appli-
cation using the good practice indicators corresponding to each of the 15 
principles (see also http://www.ine.es/en/ine/codigobp/codigobp_en.htm). 
This code has been embraced by Instituto Natcional de Estadistica (INE) by way 
of a resolution by the Board of Directors, which thus undertakes to comply 
with the aforementioned when establishing the general principles regulat-
ing the generating of statistics for State purposes. In this way, INE endeav-
ors to guarantee an improvement in the service it provides to society, which 
will undoubtedly reinforce its image as an institution. In May 2005, the SPC 
agreed a formula for monitoring the implementation of the code, for a dura-
tion of 3 years. During that period, the various countries must carry out qual-
ity self-assessment, taking as a reference the aforementioned good practice 
indicators, which in turn must be contrasted and checked via so-called peer 
reviews. The end result was submitted to the Board and to the European 
Parliament in 2008. The 15 principles are briefly described as follows:

Principle 1: Professional independence—The professional independence of 
statistical authorities from other policy, regulatory, or administrative depart-
ments and bodies, as well as from private sector operators, ensures the cred-
ibility of European statistics.
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Principle 2: Mandate for data collection—Statistical authorities must have a 
clear legal mandate to collect information for European statistical purposes. 
Administrations, enterprises, and households, and the public at large may be 
compelled by law to allow access to or deliver data for European statistical 
purposes at the request of statistical authorities.

Principle 3: Adequacy of resources—The resources available to statistical 
authorities must be sufficient to meet European statistics requirements.

Principle 4: Quality commitment—All European Statistical System (ESS) 
members commit themselves to work and cooperate according to the 
principles fixed in the “Quality declaration of the European statistical 
system.”

Principle 5: Statistical confidentiality—The privacy of data providers (house-
holds, enterprises, administrations, and other respondents), the confidentiality 
of the information they provide, and its use only for statistical purposes must 
be absolutely guaranteed.

Principle 6: Impartiality and objectivity—Statistical authorities must pro-
duce and disseminate European statistics respecting scientific independence 
and in an objective, professional, and transparent manner in which all users 
are treated equitably.

Principle 7: Sound methodology—Sound methodology must underpin qual-
ity statistics. This requires adequate tools, procedures, and expertise.

Principle 8: Appropriate statistical procedures—Appropriate statistical 
procedures, implemented from data collection to data validation, must 
underpin quality statistics.

Principle 9: Non-Excessive burden on respondents—The reporting burden 
should be proportionate to the needs of the users and should not be excessive 
for respondents. The statistical authority monitors the response burden and 
sets targets for its reduction over time.

Principle 10: Cost Effectiveness—Resources must be effectively used.

Principle 11: Relevance—European statistics must meet the needs of users.

Principle 12: Accuracy and Reliability—European statistics must accurately 
and reliably portray reality.

Principle 13: Timeliness and Punctuality—European statistics must be dis-
seminated in a timely and punctual manner.

Principle 14: Coherence and Comparability—European statistics should be 
consistent internally, over time and comparable between regions and coun-
tries; it should be possible to combine and make joint use of related data from 
different sources.
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Principle 15: Accessibility and clarity—European Statistics should be pre-
sented in a clear and understandable form, disseminated in a suitable and 
convenient manner, available and accessible on an impartial basis with sup-
porting metadata and guidance.

2.4â•‡� Implementation of GSP

The implementation of GSP in drug research and development is a team 
project that requires mutual communication, confidence, respect, and 
cooperation among statisticians, pharmaceutical scientists in the related 
areas, and regulatory agents. The implementation of GSP involves some 
key factors that have an impact on the success of GSP. These factors 
include (1) regulatory requirements for statistics, (2) dissemination of the 
concept of statistics, (3) appropriate use of statistics, (4) effective com-
munication and flexibility, and (5) statistical training. These factors are 
briefly described next.

In the drug development and approval process, regulatory requirements 
for statistics are the key to the implementation of GSP. They not only enforce 
the use of statistics but also establish standards for statistical evaluation of 
the drug products under investigation. An unbiased statistical evaluation 
helps pharmaceutical scientists and regulatory agents in determining (1) 
whether the drug product has the claimed effectiveness and safety for the 
intended disease and (2) whether the drug product possesses good drug 
characteristics, such as proper identity, strength, quality, purity, and stability. 
A set of guideline standard operating procedures is often developed to fulfill 
regulatory requirements for good statistics practice. For example, Spriet and 
Dupin-Spriet (1992) proposed a set of procedures to fulfill quality require-
ments set by company policy according to regulatory requirements of GCP. 
Wiles et al. (1994) indicated that the Professional Standards Working Party of 
the Statisticians in the Pharmaceutical Industry (PSI) in the United Kingdom 
has developed a set of guideline standard operating procedures for GSP. 
These guideline standard operating procedures cover clinical development 
plan, clinical trial protocol, statistical analysis plan, determination of evalu-
ability of subjects for analysis, randomization and blinding procedures, data 
management, interim analysis plan, statistical report, archiving and docu-
mentation, data overview, and quality assurance and quality control.

In addition to regulatory requirements, it is always helpful to disseminate 
the concept of statistical principles described earlier whenever possible. It is 
important for pharmaceutical scientists and regulatory agents to recognize 
that (1) a valid statistical inference is necessary to provide a fair assessment 
with certain assurance regarding the uncertainty of the drug product under 
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investigation, (2) an invalid design and analysis may result in a misleading 
or wrong conclusion about the drug product, and (3) a larger sample size is 
often required to increase the statistical power and precision of the studies. 
The dissemination of the concept of statistics is critical to establish the phar-
maceutical scientists’ and regulatory agents’ brief in statistics for scientific 
excellence.

One of the commonly encountered problems in drug research and devel-
opment is the misuse or sometimes abuse of statistics in some studies. The 
misuse or abuse of statistics is critical, which may result in either having 
the right question with the wrong answer or having the right answer for the 
wrong question. For example, for a given study, suppose that a right set of 
hypotheses (the right question) is established to reflect the study objective. 
A misused statistical test may provide a misleading or wrong answer to the 
right question. On the other hand, in many clinical trials, point hypotheses 
for equality (the wrong question) are often wrongly used for the establish-
ment of equivalency. In this case, we have the right answer (for equality) for 
the wrong question. As a result, it is recommended that appropriate statis-
tical methods be chosen to reflect the design that should be able to address 
the scientific or medical questions regarding the intended study objectives 
for the implementation of GSP.

Communication and flexibility are important factors for the success of 
GSP. Inefficient communication between statisticians and pharmaceu-
tical scientists or regulatory agents may result in a misunderstanding 
of the intended study objectives and consequently in an invalid design 
and/or inappropriate statistical methods. Thus, effective communication 
among statisticians, pharmaceutical scientists, and regulatory agents is 
essential for the implementation of GSP. In addition, in many studies, 
the assumption of a statistical design or model may not be met due to 
the nature of the drug product under investigation, the experimental 
environment, and/or other causes related/unrelated to the studies. In 
this case, the traditional approach of doing everything by the book does 
not help. In practice, since a concern from a pharmaceutical scientist or 
the regulatory agent may translate into a constraint for a valid statistical 
design and appropriate statistical analysis, it is suggested that a flexible 
yet innovative solution be developed under the constraints for the imple-
mentation of GSP.

Since regulatory requirements for the drug development and approval 
process vary from drug to drug and from country to country, various 
designs and/or statistical methods are often required for a valid assess-
ment of a drug product. Therefore, it is suggested that statistical Â�continued/
advanced education and training programs be routinely held for both stat-
isticians and nonstatisticians, including pharmaceutical scientists and 
Â�regulatory agents. The purpose of such a continued/advanced education 
and/or training program is threefold. First, it enhances communications 
within the statistical community. Statisticians can certainly benefit from 
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such a training and/or educational program by acquiring more practical 
experience and knowledge. In addition, it provides the opportunity to 
share/exchange information, ideas, and/or concepts regarding drug devel-
opment between professional societies. Finally, it identifies critical practi-
cal and/or regulatory issues that are commonly encountered in the drug 
development and regulatory approval process. A panel discussion from 
different disciplines may result in some consensus to resolve the issues, 
which helps in establishing standards of statistical principles for the imple-
mentation of GSP.

2.5â•‡� Concluding Remarks

During the development and regulatory approval process, good pharmaceu-
tical practices are necessarily implemented to ensure (1) the effectiveness and 
safety of the drug product under investigation before approval and (2) that 
the drug product possesses good drug characteristics, such as proper iden-
tity, strength, quality, purity, and stability, in compliance with the standards 
as specified in the USP/NF after regulatory approval. These good pharma-
ceutical practices include GLP for animal studies, GCP for clinical devel-
opment, cGMP for CMC, and GRP for the regulatory review and approval 
process. In essence, GSP is the foundation of GLP, GCP, cGMP, and GRP. The 
implementation of GSP is a team project that involves statisticians, pharma-
ceutical scientists, and regulatory agents. The success of GSP depends upon 
mutual communication, confidence, respect, and cooperation among statisti-
cians, pharmaceutical scientists, and regulatory agents.

In recent years, the use of adaptive design methods in clinical trials has 
become very popular due to its flexibility and efficiency in identifying any 
potential signals of safety and efficacy for the test treatment under inves-
tigation. In practice, however, while enjoying the flexibility of adaptive 
design methods, the quality, integrity, and validity of the trial may be at a 
greater risk. From a regulatory perspective, it is always a concern whether 
the p-value or confidence interval regarding the treatment effect under an 
adaptive trial design is reliable or correct. In addition, the misuse or abuse 
of statistical methods under a specific adaptive design may be biased and 
misleading, and therefore unable to address medical questions that the trial 
intends to answer. GSP plays an extremely important role for clinical trials 
utilizing adaptive designs, especially for those less-well-understood adap-
tive designs as described in the 2010 FDA draft guidance on adaptive clinical 
trial designs (FDA, 2010b).
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3
Bench-to-Bedside Translational Research

3.1â•‡� Introduction

As pointed out in Chapter 2, the United States Food and Drug Administration 
(FDA) kicked off the Critical Path Initiative in the early 2000s to assist the 
sponsors to identify possible causes of the scientific challenges underlying 
the medical product pipeline problems. The Critical Path Opportunities List 
released by the FDA on March 16, 2006, identified (1) better evaluation tools 
and (2) streamlining clinical trials as the top two topic areas to bridge the gap 
between the quick pace of new biomedical discoveries and the slower pace at 
which those discoveries are currently developed into therapies. This has led 
to the consideration of the use of adaptive design methods in clinical devel-
opment and the focus of translational science/research, which attempt not 
only to identify the best clinical benefit of a drug product under investigation 
but also to increase the probability of success. Statistical methods for the use 
of adaptive trial designs in clinical development can be found in Chow and 
Chang (2006), Chang (2007), Pong and Chow (2010). In this chapter, we will 
focus on statistical methods that are commonly employed in translational 
science/research.

Chow (2007a) and Cosmatos and Chow (2008) classified translational sci-
ence/research into three areas, namely, translation in language, translation 
in information, and translation in (medical) technology. Translation in lan-
guage refers to possible lost in the translation of the informed consent form 
and/or case report forms in multinational clinical trials. Lost in translation 
is commonly encountered due to not only difference in language but also 
differences in perception, culture, medical practices, etc. A typical approach 
for the assessment of the possible lost in translation is to first translate the 
informed consent form and/or the case report forms by an experienced 
expert and then translate it back by a different experienced but indepen-
dent expert. The back-translated version is then compared with the origi-
nal version for consistency. If the back-translated version passes the test for 
consistency, then the translated version is validated through a small-scale 
pilot study before it is applied to the intended multinational clinical trial. 
Translation in information is referred to as bench-to-bedside translational 
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science/research, which is also known as translational medicine. Translation 
in technology includes biomarker development and translation in diagnostic 
procedures between traditional Chinese medicine and Western medicine. In 
this chapter, we focus on statistical methods for translation in information 
and translation in technology. Note that, in practice, translational medicine is 
often divided into two areas, namely, discovery translational medicine and 
clinical translational medicine. Discovery translational medicine refers to 
biomarker development, bench-to-bedside, and animal model versus human 
model, while clinical translational medicine includes translation among 
study endpoints, translation in technology, and generalization from a target 
patient population to another.

In the next section, a statistical method for optimal variable screening 
in microarray analysis is outlined. Also included in this section is a cross-
validation method for model selection and validation. Sections 3.3 and 3.4 
discusses statistical methods for the assessment of one-way/two-way trans-
lation and lost in translation in the bench-to-bedside translational process 
in pharmaceutical development, respectively. Whether or not an established 
animal model is predictive of a human model is examined in Section 3.5. 
Some concluding remarks are provided in the last section of this chapter.

3.2â•‡� Biomarker Development

Biomarker is a characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention. Biomarkers can be classified 
into classifier marker, prognostic marker, and predictive marker. A classi-
fier marker usually does not change over the course of the study and can be 
used to identify the patient population who would benefit from the treatment 
from those who would not. A typical example is a DNA marker for popula-
tion selection in the enrichment process of clinical trials. A prognostic marker 
informs the clinical outcomes, which is independent of the treatment. A pre-
dictive marker informs the treatment effect on the clinical endpoint, which 
could be population specific. That is, a predictive marker could be predictive 
for population A but not for population B. It should be noted that the cor-
relation between biomarker and true endpoint makes a prognostic marker. 
However, the correlation between biomarker and true endpoint does not make 
a predictive biomarker.

In clinical development, a biomarker could be used to select the right pop-
ulation, to identify the natural course of the disease, for early detection of 
the disease, and to develop personalized medicine. The utilization of a bio-
marker could lead to a better target population, detection of a larger effect 
size with a smaller sample size, and timely decision making. As indicated 
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in the FDA Critical Path Initiative Opportunity List, better evaluation tools 
call for biomarker qualification and standards. Statistical methods for early-
stage biomarker qualification include, but are not limited to, (1) distance-
dependent K-nearest neighbors, (2) K means clustering, (3) single/average/
complete linkage clustering, and (4) distance-dependent Jarvis–Patrick clus-
tering. More information can be found at the following Web site: http://
www.ncifcrf.gov/human_studies.shtml.

In what follows, we will review statistical methods that are commonly 
used in biomarker development for optimal variable screening. The selected 
variables will then be used to establish a predictive model through a model 
selection/validation process.

3.2.1  �Optimal Variable Screening

DNA microarrays have been used extensively in medicinal practice. 
Microarrays identify a set of candidate genes that are possibly related to a 
clinical outcome of a disease (in disease diagnoses) or a medical treatment. 
However, there are many more candidate genes than the number of available 
samples (the sample size) in almost all studies, which leads to an irregular 
statistical problem in disease diagnoses or treatment outcome prediction. 
Some available statistical methods deal with a single gene at a time (e.g., Chen 
and Chen, 2003), which clearly do not provide the best solution for polygenic 
diseases. In practice, meta-analysis and/or combining several similar studies 
is often considered to increase sample size. These approaches, however, may 
not be appropriate due to the fact that (1) the combined data set may still be 
much too small and (2) there may be heteroscedasticity among the data from 
different studies. Alternatively, Shao and Chow (2007) proposed an optimal 
variable screening approach for dealing with the situation where the number 
of variables (genes) is much larger than the sample size.

Let y be a clinical outcome of interest and x be a vector of p candidate genes 
that are possibly related to y. Shao and Chow (2007) simply considered infer-
ence on the population of y conditional on x and noted that their proposed 
method can be applied to the unconditional analysis (i.e., both y and x are 
random). Consider the following model:

	 y x= ʹ +β ε, 	 (3.1)

where β is a p-dimensional vector and the distribution of ε is independent 
of x with E(ε) = 0 and E(ε2) = σ2. Under the model (3.1), assume that there is 
a positive integer p0 (which does not depend on n) such that only p0 compo-
nents of β are nonzero. Furthermore, β is in the linear space generated by the 
rows of X’X for sufficiently large n, where X is the n × pn matrix whose iâ•›th 
row is �xi. In addition, assume that there is a sequence {ξn} of positive numbers 
such that ξn → ∞ and λin = biξn, where λin is the ith nonzero eigenvalue of X’X, 
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i = 1,â•›…, n and {bi} is a sequence of bounded positive numbers. Note that in 
many problems ξn = n. Furthermore, there exists a constant c > 0 such that 
pn n

c/ξ → 0. For the estimation of β, Shao and Chow (2007) considered the 
following ridge regression estimator:

	
ˆ ( ) ,β = ʹ + ʹ−X X h I X Yn pn

1 	 (3.2)

where
Y = (y1,â•›…, yn)’
Ipn is the identity matrix of order pn

hn > 0 is the ridge parameter

The bias and variance of β̂ are given by

	 bias à à( ) ( ) ( )β β β β= − = − ʹ +− −E h X X In pn
1 1

and

	 var( ) ( ) ( ) .β σˆ = ʹ + ʹ ʹ +− −2 1 1X X h I X X X X h In p n pn n

Let βi and β̂i be the ith component of β and β̂, respectively. Under the 
Â�assumptions as described earlier, we have E i i( )β βˆ − →2 0 (i.e., β̂i is consistent 
for βi in mean squared error) if hn is suitably chosen. Thus, we have
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Hence, var( )β̂ i → 0 for all i as long as hn → ∞. Note that the analysis of the bias 
of β̂i is more complicated. Let Γ be an orthogonal matrix such that
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where
Λn is a diagonal matrix whose iâ•›th diagonal element is λin

0l×k is the l × k matrix of 0’s

Then, it follows that
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where A is a pn × pn diagonal matrix whose first n diagonal elements are

	

h
h

i nn

n in+
=

λ
, , , ,1 …

and the last diagonal elements are all equal to 1. Under the above-mentioned 
assumptions, combining the results for variance and bias of β̂i, that is, (3.3) 
and (3.4), it can be shown that for all i

	 E i i i i( ) var( ) ( )β β β βˆ ˆ ˆ− = + [ ] →2 2 0bias

if hn is chosen so that hn → ∞ at a rate slower than ξn (e.g., hn n= ξ2 3/ ). Based on 
this result, Shao and Chow (2007) proposed the following optimal variable 
screening procedure:

Let {an} be a sequence of positive numbers satisfying an → 0. For each fixed n, 
we screen out the iâ•›th variable if and only if � �ˆ .βi na≤

Note that, after screening, only variables associated with � �β̂i na>  are 
retained in the model as predictors. The idea behind this variable screening 
procedure is similar to that in the Lasso method (Tibshirani, 1996). Under 
certain conditions, Shao and Chow (2007) showed that their proposed opti-
mal variable screening method is consistent in the sense that the probabil-
ity that all variables (genes) unrelated to y, which will be screened out, and 
all variables (genes) related to y, which will be retained, are 1 as n tends to 
infinity.

3.2.2  �Model Selection and Validation

Suppose that n data points are available for selecting a model from a class of 
models. Several methods for model selection are available in the literature. 
These methods include, but are not limited to, Akaike information criterion 
(AIC) (Akaike, 1974; Shibata, 1981), the Cp (Mallows, 1973), the jackknife and 
the bootstrap (Efron, 1983, 1986). These methods, however, are not asymp-
totically consistent in the sense that the probability of selecting the model 
with the best predictive ability does not converge to 1 as the total number of 
observations n → ∞. Alternatively, Shao (1993) proposed a method for model 
selection and validation using the method of cross-validation. The idea of 
cross-validation is to split the data set into two parts. The first part contains 
nc data points which will be used for fitting a model (model construction), 
whereas the second part contains nv = n − nc data points which are reserved 
for assessing the predictive ability of the model (model validation). It should 
be noted that all of the n = nv + nc data, not just nv are used for model valida-
tion. Shao (1993) showed that all of the methods of AIC, Cp, jackknife and 
bootstrap are asymptotically equivalent to the cross-validation with nv = 1, 
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denoted by CV(1), although they share the same deficiency of inconsistency. 
Shao (1993) indicated that the inconsistency of the leave-one-out cross-
validation can be rectified by using leave-nv-out cross-validation with nv 
satisfying nv/n → 1 as n → ∞.

In addition to the cross-validation with nv = 1, denoted by CV(1), Shao (1993) 
also considered the other two cross-validation methods, namely, a Monte 
Carlo cross-validation with nv(nv ≠ 1), denoted by MCCV(nv), and an analytic 
approximate CV(nv), denoted by APCV(nv). MCCV(nv) is a simple and easy 
method utilizing the method of Monte Carlo by randomly drawing (with or 
without replacement) a collection ℜ of b subsets of {1, 2,â•›…, n} that have size 
nv and select a model by minimizing

	

ˆ ˆ ., ,Γα αn
v

s s
s

n b
y y c= −

∈ℜ
∑1 2

On the other hand, APCV(nv) selects the optimal model based on the asymp-
totic leading term of balance incomplete CV(nv), which treats each subset as 
a block and each i as a treatment. Shao (1993) compared these three cross-
validation methods through a simulation study under the following model 
with five variables with n = 40:

	 y x x x x x ei i i i i i i= + + + + +β β β β β1 1 2 2 3 3 4 4 5 5 ,

where
ei are independent and identically distributed from N(0,1)
xki is the i th value of the k th prediction variable xk, x1i = 1

and the values of xki, k = 2,â•›…, 5, i = 1,â•›…, 40, are taken from an example in 
Gunst and Mason (1980). Note that there are 31 possible models, and each 
model was denoted by a subset {1,â•›…, 5} that contains the indices of the vari-
able xk in the model. Shao (1993) indicated that MCCV(nv) has the best perfor-
mance among the three methods under study except for the case where the 
largest model is the optimal model. APCV(nv) is slightly better than CV(1) in 
all cases. CV(1) tends to select unnecessarily large models. The probability 
of selecting the optimal model by using CV(1) could be very low (e.g., less 
than 0.5).

3.2.3  �Remarks

In practice, it is suggested that the optimal variable screening method pro-
posed by Shao and Chow (2007) be applied to select a few relevant vari-
ables, say 5–10 variables. Then, apply the cross-validation method to select 
the optimal model based on linear model selection (Shao, 1993) or non-linear 
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model selection (Li, Chow, and Smith, 2004). The selected model can then be 
validated based on the cross-validation methods as described in the previ-
ous subsection.

3.3â•‡� One-Way/Two-Way Translational Process

Pizzo (2006) defines translational medicine as bench-to-bedside research 
wherein a basic laboratory discovery becomes applicable to the diagnosis, 
treatment, or prevention of a specific disease and is brought forth by either 
a physician-scientist who works at the interface between the research labo-
ratory and patient care or by a team of basic and clinical science investiga-
tors. Thus, translational medicine refers to the translation of basic research 
discoveries into clinical applications. More specifically, translational medi-
cine is to take the discoveries from basic research to a patient and measures 
an endpoint in a patient. Scientists are becoming increasingly aware that 
this bench-to-bedside approach to translational research is a two-way street. 
Basic scientists provide clinicians with new tools for use in patients and for 
assessment of their impact, and clinical researchers make novel observations 
about the nature and progression of diseases that often stimulate basic inves-
tigations. As indicated by Pizzo (2006), translational medicine can also have 
a much broader definition, referring to the development and application of 
new technologies, biomedical devices, and therapies in a patient-driven envi-
ronment such as clinical trials, where the emphasis is on early patient testing 
and evaluation. Thus, translational medicine also includes epidemiological 
and health-outcomes research and behavioral studies that can be brought to 
the bedside or ambulatory setting.

Mankoff et al. (2004) pointed out that there are three major obstacles to 
effective translational medicine in practice. The first is the challenge of trans-
lating basic science discoveries into clinical studies. The second hurdle is the 
translation of clinical studies into medical practice and health-care policy. 
A third obstacle is philosophical. It may be a mistake to think that basic 
science (without observations from the clinic and without epidemiological 
findings of possible associations between different diseases) will efficiently 
produce novel therapies for human testing. Pilot studies such as nonhuman 
and nonclinical studies are often used to transition therapies developed 
using animal models to a clinical setting. The statistical process plays an 
important role in translational medicine. In this chapter, we define a statisti-
cal process of translational medicine as a translational process for (1) deter-
mining the association between some independent parameters observed in 
basic research discoveries and a dependent variable observed from clinical 
application, (2) establishing a predictive model between the independent 
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parameters and the dependent response variable, and (3) validating the 
established predictive model. As an example, in animal studies, the indepen-
dent variables may include in vitro assay results, pharmacological activities 
such as pharmacokinetics and pharmacodynamics, and dose toxicities, and 
the dependent variable could be a clinical outcome (e.g., a safety parameter).

3.3.1  �One-Way Translational Process

Let x and y be the observed values from basic research discoveries and clini-
cal application, respectively. In practice, it is important to ensure that the 
translational process is accurate and reliable with some statistical assur-
ance. One of the statistical criteria is to examine the closeness between the 
observed response y and the predicted response ŷ via a translational pro-
cess. To study this, we will first study the association between x and y and 
build up a model. Then, we will validate the model based on some criteria. 
For simplicity, we assume that x and y can be described by the following 
linear model

	 y x= + +β β ε0 1 , 	 (3.5)

where ε follows a normal distribution with mean 0 and variance σe
2.

Suppose that n pairs of observations (x1, y1),â•›…,â•›(xn, yn) are observed in a 
translational process. To define notation, let

	
X

x x x
T

n
=

⎛

⎝⎜
⎞

⎠⎟
1 1 1

1 2

…

…

and

	 Y y y yT
n= ( ).1 2 …

Then, under model (3.5), the maximum likelihood estimates (MLE) of the 
parameters β0 and β1 are given as
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Thus, we have established the following relationship:

	
ˆ ˆ ˆ .y x= +β β0 1 	 (3.6)

Given xi, from (3.6), the corresponding fitted value ŷi is ˆ ˆ ˆ .y xi i= +β β0 1  
Furthermore, the corresponding MLE of σe

2 is give by
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where MSE is the mean squared errors of the fitted model.
For a given x = x0, suppose that the corresponding observed value is given 

by y; using (3.6), the corresponding fitted value is ˆ ˆ ˆ .y x= +β β0 1 0
 Note that 

E y x( )ˆ = + =β β μ0 1 0 0  and
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Furthermore, ŷ is normally distributed with mean μ0 and variance c eσ
2, that 

is, ˆ ( , )0
2y N c e∼ μ σ .

We may validate the translation model by considering how close an 
observed y and its predicted value ŷ obtained based on the fitted regression 
model given by (3.6) are. To assess the closeness, we propose the following 
two measures, which are based either on the absolute difference or the rela-
tive difference between y and ŷ:

Criterion I:  p P y y1 = − <{ }ˆ δ

Criterion II: p P
y y

y
2 =

−
<

⎧
⎨
⎪
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⎫
⎬
⎪

⎭⎪

ˆ
δ

In other words, it is desirable to have a high probability that the difference or 
the relative difference between y and ŷ, given by p1 and p2, respectively, is less 
than a clinically or scientifically meaningful difference d. Then, for either 
i = 1 or 2, it is of interest to test the following hypotheses:

	 H p p H p pi a i0 0 0: versus :≤ > , 	 (3.7)
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where p0 is some prespecified constant. If the conclusion is to reject H0 in 
favor of Ha, this would imply that the established model is considered vali-
dated. The technical details of the test of hypothesis corresponding to the 
two criteria are outlined in the following sections.

3.3.1.1â•‡� Test of Hypothesis for the Measures of Closeness

Case 1: �Measure of Closeness Based on Absolute Difference
Since y and ŷ are independent, we have

	 ( ) ( , ( ) ).y y N c− +ˆ  ~ 0 1 2σε
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Thus, the MLE of p1 is given by
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Using the delta rule, for a sufficiently large sample size n,
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where ϕ(z) is the probability density function of a standard normal distribu-
tion. Furthermore, var(p̂1) can be estimated by V1, which is given by
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Using the Sluksty theorem, ( )p p Vˆ 1 0 1− /  can be approximated by a standard 
normal distribution. For the testing of the hypotheses H0â•›: p1 ≤ p0 versus 
Haâ•›: p1 > p0, H0 is rejected if
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where z1−α is the 100(1 − α)th percentile of a standard normal distribution.
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Case 2:â•‡� Measure of Closeness Based on the Absolute Relative Difference
Note that y e

2 2/σ  and ŷ c e
2 2/ σ  follow a noncentral χ1

2
 distribution with noncen-

trality parameter μ σ0
2 2/ e  and μ σ0

2 2/c e, respectively, where μ0 = β0 + β1x0. Hence, 
ŷ2/cy2 is doubly noncentral F distributed with υ1 = 1 and υ2 = 1 degrees of 
freedom and noncentrality parameters λ μ σ1 0

2 2= /c e  and λ μ σ2 0
2 2= / e . According 

to Johnson and Kotz (1970), a noncentral F distribution with υ1 and υ2 degrees 
of freedom can be approximated by

	

1
1

1 1
1

2
1

2

+
+

−

− ʹ
λ υ
λ υ

υ υF ,
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where
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For a sufficiently large sample size, using the Sluksty theorem, p̂2 can 

be approximated by a normal distribution with mean p2 and variance V2, 
where
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where,
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and (log Γ(s))(1) is the first-order derivative of the natural logarithm of the 
gamma function with respect to s. Thus, the hypotheses given in (3.7) for 
one-way translation based on the probability of relative difference can be 
tested. In particular, H0 is rejected if

	
Z

p p
V

z=
−

> −

ˆ
,2 0

2
1 α

where z1−α is the 100(1 − α)th percentile of a standard normal distribution. 
Note that V2 is an estimate of var(p̂2) which is obtained by simply replacing 
the parameters with their corresponding estimates of the parameters.

3.3.1.2â•‡� An Example

For the two measures proposed in Section 3.1, p1 is based on the absolute 
difference between y and ŷ. Given a p0 and the selected observation (x0, y0), 
the hypothesis H0â•›: p1 ≤ p0 is rejected in favor of Haâ•›: p1 > p0 when

	
Z

p p
V

z=
−

> −

ˆ
.1 0

1
1 α

Equivalently, H0 is rejected when

	
ˆ .p p z V1 0 1 1 0− −( ) >−α

Note that the value of p̂1 depends on the value of δ and it can be shown 
that p p z Vˆ1 0 1 1− −( )−α  is an increasing function of δ over (0, ∞). Thus, 

p̂ p z V1 0 1 1 0− − >−α  if and only if δ > δ0. Thus, the hypothesis H0 can be 
rejected based on δ0 instead of p̂1 as long as we can find the value of δ0 for 
the given x0. On the other hand, from a practical point of view, p2 is more 
intuitive to understand because it is based on the relative difference, which 
is equivalent to measuring the percentage difference relative to the observed 
y and d can be viewed as the upper bound of the percentage error.

For illustration purpose, suppose that the following data are observed 
in a translational study, where x is a given dose level and y is the associated 
toxicity measure:

x 0.9 1.1 1.3 1.5 2.2 2.0 3.1 4.0 4.9 5.6
y 0.9 0.8 1.9 2.1 2.3 4.1 5.6 6.5 8.8 9.2
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When this set of data is fitted to model (3.5), the estimates of the model 
parameters are given by ˆ . , ˆ .β β0 10 704 1 851= − = , and ˆ . .σ2 0 431=  Thus, based 
on the fitted results, given x = x0, the proposed translational model is given 
by ŷ = −0.704 + 1.851x0.

In this study, choose α = 0.05 and p0 = 0.8. In particular, two dose levels 
x0 = 1.0 and 5.2 are considered. Based on the study, the corresponding toxicity 
measures y0 are 1.2 and 9.0, respectively. However, based on the translational 
model, the predicted toxicity measures are 1.147 and 8.921, respectively. In 
the following, the validity of the translational model is assessed by the two 
proposed closeness measures p1 and p2, respectively. Without loss of general-
ity, choose α = 0.05 and p0 = 0.8.

Case 1: Testing of H0â•›: p1 ≤ p0 versus Haâ•›: p1 > p0

Using the above results, for x0 = 1.0, δ is 1.112, since |y0 − ŷ| = |9.0 − 8.921| = 
0.079, which is less than δ = 1.112, therefore H0 is rejected.

Case 2: Testing of H0â•›: p2 ≤ p0 versus Haâ•›: p2 > p0

Suppose that δ = 1, for the given two values of x, estimates of p2 and the cor-
responding values of the test statistic Z are given in the following table.

x0 y0 ŷ p̂2 Z

1.0 1.2 1.147 0.870 1.183 Do not reject H0

5.2 9.0 8.921 0.809 1.164 Do not reject H0

3.3.2  �Two-Way Translational Process

3.3.2.1â•‡� Process Validation

The above translational process is usually referred to as a one-way trans-
lation in translational medicine. That is, the information observed in basic 
research discoveries is translated to clinic. As indicated by Pizzo (2006), the 
translational process should be a two-way translation. In other words, we 
can exchange x and y in (3.5)

	 x y= + +γ γ ε0 1

and come up with another predictive model x̂ = γ̂0 + γ̂1y.
Following similar ideas, using either one of the measures piâ•›, the valida-

tion of a two-way translational process can be summarized by the following 
steps:

Step 1: For a given set of data (x, y), establish a predictive model, say, y = f(x).

Step 2: �Select the bound δyii
 for the difference between y and ŷ. Evaluate 

p̂yi = P{|y − ŷ|â•›<â•›δyi}. Assess the one-way closeness between y and ŷ by 
testing the hypotheses (3.7). Proceed to the next step if the one-way 
translational process is validated.
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Step 3: �Consider x as the dependent variable and y as the independent 
variable. Set up the regression model. Predict x at the selected obser-
vation y0, denoted by x̂, based on the established model between x 
and y (i.e., x = g(y)), that is, ˆ ( ) ˆ ˆ .x g y y= = +γ γ0 1

Step 4: �Select the bound δxi for the difference between x and x̂. Evaluate the 
closeness between x and x̂ based on a test for the following hypotheses:

	 H p p H p pi a i0 0 0: versus :≤ > ,

where
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y y
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x x
x
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The above test can be referred to as a test for two-way translation. If, in Step 4, 
H0 is rejected in favor of Ha, this would imply that there is a two-way trans-
lation between x and y (i.e., the established predictive model is validated). 
However, the evaluation of p involves the joint distribution of (x − x̂)/x and 
(y − ŷ)/y. An exact expression is not readily available. Thus, an alternative 
approach is to modify Step 4 of the above procedure and proceed with a con-
ditional approach instead. In particular, Step 4 is modified as follows:

Step 4 (modified): Select the bound δxi for the difference between x and x̂. 
Evaluate the closeness between x and x̂ based on a test for the following 
hypotheses:

	 H p p H p pxi a xi0 0 0: versus :≤ > , 	 (3.8)

where

	
p P x xxi xi= − <{ }ˆ .δ

Note that the evaluation of pxi is much easier and can be computed in a similar 
way by interchanging the role of x and y for the results given in Section 3.3.1.1.

3.3.2.2â•‡� An Example

Using the data set given in Section 3.3.1.2, we set up the regression model 
x = γ0 + γ1y + ε with y as the independent variable and x as the dependent 
variable. The estimates of the model parameters are ˆ . , ˆ . ,γ γ0 10 468 0 519= =  
and σ̂2 = 0.121. Based on this model, for the same α and p0, given (x0, y0) = 
(1.0,â•›1.2) and (5.2, 9.0), the fitted values are given by x̂ = 0.468 + 0.519y0.
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Case 1: Testing of H0â•›: px1 ≤ p0 versus Haâ•›: px1 > p0

Using the above results, for y0 = 1.2, δ is 0.587, since |x0 − x̂| = |1.0 − 1.09| = 
0.09, which is less than δx = 0.587, therefore H0 is rejected. Similarly, for y0 = 
9.0, the corresponding δ is 0.624; then |x0 − x̂| = |5.2 − 5.139| = 0.061, which is 
again smaller than δ = 0.624, thus H0 is rejected.

Case 2: Testing of H0â•›: px2 ≤ p0 versus Haâ•›: px2 > p0

Suppose that δ = 1, for the given two values of y, estimates of px2 and the cor-
responding values of the test statistic Z are given in the following table.

x0 y0 x̂0 p̂x2
Z

1.0 1.2 1.090 0.809 1.300 Do not reject H0

5.2 9.0 5.139 0.845 16.53 Do not reject H0

3.4â•‡� Lost in Translation

It can be noted that δy and δx can be viewed as the maximum bias (or possible 
lost in translation) from the one-way translation (e.g., from basic research 
discovery to clinic) and from the other way of translation (e.g., from clinic 
to basic research discovery), respectively. If δy and δx given in Steps 2 and 4 
of the previous subsection are close to 0 with a relatively high probability, 
then we conclude that the information from the basic research discoveries 
(clinic) is fully translated to the clinic (basic research discoveries). Thus, 
one may consider the following parameter to measure the degree of lost in 
translation:

	 ζ = −1 p pxy yx ,

where
pxy is the measure of closeness from x to y
pyx is the measure of closeness from y to x

When ς ≈ 0, we consider that there is no lost in translation. Overall lost in 
translation could be significant even if lost in translation from the one-way 
translation is negligible. For illustration purpose, if there is a 10% lost in 
translation in the one-way translation and 20% lost in translation in the 
other way, there would be up to 28% loss in overall translation. In practice, 
an estimate of ς can be obtained for a given set of data (x, y). In particular, 
ˆ ˆ ˆ .ς = −1 p pxy yx

As an illustration, consider the example discussed in Section 3.3.1.2. 
Suppose that the measure of closeness based on relative difference is used, 
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given (x0, y0) = (1.0, 1.2) and (5.2, 9.0), the corresponding lost in translation for 
the two-way translation with δ = 1 is tabulated in the following table:

x0 y0 ŷ p̂xy x̂ p̂yx ẑ

1.0 1.2 1.147 0.870 1.090 0.809 0.296
5.2 9.0 8.921 0.809 5.139 0.845 0.316

3.5â•‡� Animal Model versus Human Model

In translational medicine, a commonly asked question is whether an ani-
mal model is predictive of a human model. To address this question, we 
may assess the similarity between an animal model (population) and a 
human model (population). For this purpose, we first establish an animal 
model to bridge the basic research discovery (x) and clinic (y). For illus-
tration purpose, consider a one-way translation. Let ˆ ˆ ˆy x= +β β0 1  be the 
predictive model obtained from the one-way translation based on data 
from an animal population. Thus, for a given x y x0 0 0 1 0, ˆ ˆ ˆ= +β β  follows a 
distribution with mean μy and σy

2. Under the predictive model ˆ ˆ ˆy x= +β β0 1 , 
denote by (μy,â•›σy) the target population. Assume that the predictive model 
works for the target population. Thus, for an animal population, μy = μanimal 
and σy = σanimal, while for a human population, μy = μhuman and σy = σhuman. 
Assuming that the linear predictive model can be applied to both animal 
population and human population, we can link the animal and human 
model by the following:

	 μ μ εhuman animal= + ,

and

	 μ μhuman animal= C .

In other words, we expect differences in population mean and population 
standard deviation under the predictive model due to the possible dif-
ference in response between animals and humans. As a result, the effect 
size adjusted for standard deviation under the human population can be 
obtained as follows:

	

μ
σ

μ ε
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where Δ = (1 + ε/μanimal)/C. Chow et al. (2002a) refer to Δ as a sensitivity index 
when changing from one target population to another. As can be seen, the 
effect size under the human population is inflated (or reduced) by the factor 
of Δ. If ε = 0 and C = 1, we then claim that there is no difference between the 
animal population and the human population. Thus, the animal model is 
predictive of the human model. Note that the shift and scale parameters (i.e., 
ε and C) can be estimated by

	
ˆ ˆ ˆε μ μ= −human animal

and

	

ˆ ˆ
ˆ

,C =
σ
σ

human

animal

respectively, in which ( , )μ σˆ ˆanimal animal  and ( , )μ̂ ˆhuman humanσ  are estimates of 
(μanimal, σanimal) and (μhuman, σhuman), respectively. Thus, the sensitivity index 
can be assessed as follows:

	
ˆ ( ˆ / ˆ )

ˆ .Δ =
+1 ε μanimal

C

In practice, there may be a shift in population mean (i.e., ε) and/or in popu-
lation standard deviation (i.e., C), Chow et al. (2005) indicated that shifts in 
population mean and population standard deviation can be classified into 
the following four cases where (1) both ε and C are fixed, (2) ε is random and 
C is fixed, (3) ε is fixed and C is random, and (4) both ε and C are random. 
For the case where both ε and C are fixed, (5) can be used for the estimation 
of Δ. Chow et al. (2005) derived statistical inference of Δ for the case where 
ε is random and C is fixed by assuming that y conditional on μ follows a 
normal distribution N(μ, σ2). That is,

	 y N| ( , ),μ μ μ σ= human ~ 2

where
μ is distributed as N( , )μ σμ μ

2

σ, μμ, and σμ
2  are some unknown constants

It can be verified that y follows a mixed normal distribution with mean μμ 
and variance σ σμ

2 2+ . That is, y N ~ ( , )μ σ σμ μ
2 2+ . As a result, the sensitivity 

index can be assessed based on data collected from both animal and human 
populations under the predictive model.

Note that for other cases where C is random, the above method can also be 
derived similarly. The assessment of sensitivity index can be used to adjust 
the treatment effect to be detected under a human model when applying an 
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animal model to a human model, especially when there is a significant or 
major shift between an animal population and the human population. In 
practice, it is of interest to assess the impact of the sensitivity index on both 
lost in translation and the probability of success. This, however, requires fur-
ther research.

3.6â•‡� Concluding Remarks

Translational medicine is a multidisciplinary entity that bridges basic sci-
entific research with clinical development. As the expense in developing 
therapeutic pharmaceutical compounds continues to increase and the suc-
cess rates for getting such compounds approved for marketing and to the 
patients needing these treatments continues to decrease, a focused effort 
has emerged in improving the communication and planning between basic 
and clinical science. This will likely lead to more therapeutic insights being 
derived from new scientific ideas, and more feedback being provided back 
to research so that their approaches are better targeted. Translational medi-
cine spans all the disciplines and activities that lead to making key scientific 
decisions as a compound traverses across the difficult preclinical–clinical 
divide. Many argue that improvement in making correct decisions on what 
dose and regimen should be pursued in the clinic, likely human safety risks 
of a compound, likely drug interactions, and pharmacologic behavior of the 
compound are likely the most important decisions made in the entire devel-
opment process. Many of these decisions and the path for uncovering this 
information within later development are defined at this specific time within 
the drug development process. Improving these decisions will likely lead to 
a substantial increase in the number of safe and effective compounds avail-
able to combat human diseases.

In clinical research and development, before the first-in-human study, one 
of the controversial issues is whether the established animal model (e.g., mice) 
is predictive of the human model. For the first-in-human study, the start-
ing dose is usually selected as 1/10 of LD10 in animals. The selected initial 
dose, however, may be too low to be effective or too high to have toxic effect. 
The other controversial issue is the potential lost in translation from bench 
(basic discoveries) to bedside (first-in-human) translational research. In cur-
rent practice, it is recognized that bench-to-bedside translational research is 
a one-way translational process, which is not efficient due to potential lost 
in translation. Significant lost in translation will decrease the probability of 
success of the pharmaceutical/clinical development. Thus, it is suggested 
that a two-way translational process be considered.
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4
Bioavailability and Bioequivalence

4.1â•‡� Introduction

According to Saul (2007), the United States spends about $275 billion annually 
on prescription drug products. In addition, Saul (2007) also pointed out that, 
in the next 5 years, a series of innovative drug products with a total combined 
annual sale of $60 billion are going off patents. This opens the door for a tidal 
wave of generic drug products that are 30%–80% cheaper than the innova-
tive drug products. In 1984, the United States Congress passed the Drug Price 
Competition and Patent Term Restoration Act, which allows a regulatory frame-
work for a low-cost pathway for generic drug products to enter the market 
(Frank, 2007). As a result, when an innovative (brand-name) drug product is 
going off a patent, pharmaceutical or generic companies can file an abbrevi-
ated new drug application (ANDA) for generic approval. For the approval of 
a generic drug product, most regulatory agencies require that evidence of 
average bioavailability (in terms of drug absorption) be provided through 
the conduct of bioequivalence (BE) studies. However, as pointed out by Saul 
(2007), a survey conducted in 2002 by the Association of American Retire 
People (AARP) indicated that 22% of the responders considered that generic 
drug products are less effective or of poor quality than the innovator drug 
products. This shows that a sizable portion of the public in the United States 
still lacks confidence in generic drug products even if they are approved by 
the United States Food and Drug Administration (FDA). Therefore, in May 
2007, the FDA added generic drugs in the Critical Path Opportunities to use 
latest breakthroughs in technique to assure that the efficacy and safety of the 
generic drug products are the same as those of the innovator drug products. 
However, the FDA critical path opportunities for generic drugs do not cover 
all important emerging challenges for generic drugs.

For the assessment of average bioequivalence (ABE), a standard two-
sequence, two-period (or 2 × 2) crossover design is usually employed. A 
BE study is often conducted on healthy volunteers for characterizing drug 
absorption in the bloodstream. Qualified subjects are randomly assigned 
to receive either a test (generic or new formulation) drug or a reference 
(brand-name or innovator) drug first and then be crossed over to receive the 
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other drug after a sufficient length of washout. A commonly used statistical 
method is a confidence interval approach (or equivalently a two one-sided 
tests procedure) which is derived under the standard 2 × 2 crossover design. 
Note that the FDA requires that log transformation be performed before 
data analysis. The test product is then claimed bioequivalent to the reference 
product if the obtained 90% confidence interval for the ratio of means of the 
primary study endpoint such as area under the blood or plasma concentra-
tion time curve (AUC) or the peak or maximum concentration (Cmax) is totally 
within the BE limit of (80%, 125%).

In the next section, the design and analysis for the assessment of BE are 
briefly outlined. Drug interchangeability in terms of drug prescribability 
and drug switchability are discussed in Section 4.3. Section 4.4 presents 
some controversial issues that are commonly encountered when conducting 
BE studies for the assessment of ABE. These controversial issues include, but 
are not limited to, (1) challenge of the Fundamental Bioequivalence Assumption, 
(2) adequacy of one-fits-all criterion, and (3) appropriateness of log transfor-
mation. Some frequently asked questions during the ANDA submission for 
generic approval are given in Section 4.5. Section 4.6 provides some conclud-
ing remarks to end the chapter.

4.2â•‡� Bioequivalence Assessment

For the approval of generic drug products, the FDA requires that the evidence 
of ABE in drug absorption in terms of some pharmacokinetic (PK) param-
eters such as AUC and Cmax be provided through the conduct of BE studies. 
We claim that a test drug product is bioequivalent to a reference (innova-
tive) drug product if the 90% confidence interval for the ratio of means of 
the primary PK parameter is totally within the BE limit of (80%, 125%). The 
confidence interval for the ratio of means of the primary PK parameter is 
obtained based on log-transformed data. In what follows, study designs that 
are commonly considered in BE studies are briefly introduced.

4.2.1  �Study Design

As indicated in the Federal Register [Vol. 42 No. 5 Sec. 320.26(b) and Sec. 
320.27(b), 1977], a bioavailability study (single dose or multidose) should be 
crossover in design, unless a parallel or other design is more appropriate for 
valid scientific reasons. Thus, in practice, a standard 2 × 2 crossover design 
is often considered for a bioavailability/BE study. Denote T and R by the test 
product and the reference product, respectively. The 2 × 2 crossover design 
can be expressed as (TR, RT), where TR is the first sequence of treatments and 
RT denotes the second sequence of treatments. Under the (TR, TR) design, 
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qualified subjects who are randomly assigned to sequence 1 (TR) will receive 
the test product (T) first and then receive the reference product (R) after a 
sufficient length of washout period. Similarly, subjects who are randomly 
assigned to sequence 2 (RT) will receive the reference product (R) first and 
then receive the test product (T) after a sufficient length of washout period.

Satistically, one of the limitations of the standard 2 × 2 crossover design 
is that it does not provide independent estimates of intra-subject variability 
(ISV) since each subject only receives the same treatment once. In the interest 
of assessing ISV, the following alternative designs for comparing two drug 
products are often considered:

	 1.	Balaam’s design: (TT, RR, RT, TR)
	 2.	Two-sequence, three-period dual design: (TRR, RTT)
	 3.	Four-sequence, four-period design: (TTRR, RRTT, TRT\RT, RTTR)

Note that the above study designs are also referred to as higher-order cross-
over designs. A higher-order crossover design is defined as a design with the 
number of sequences or the number of periods greater than the number of 
treatments to be compared.

For comparing more than two drug products, a Williams’ design is often 
considered. For example, for comparing three drug products, a six-sequence, 
three-period (6 × 3) Williams’ design is usually considered, while a 4 × 4 
Williams’ design is employed for comparing four drug products. Williams’ 
design is a variance stabilizing design. More information regarding the con-
struction and good design characteristics of Williams’ designs can be found 
in Chow and Liu (2008).

In the interest of assessing population bioequivalence (PBE) and/or indi-
vidual bioequivalence (IBE), the FDA recommends that a replicated design 
be considered for obtaining independent estimates of ISV and variability 
due to subject-by-drug product interaction. A commonly considered repli-
cated crossover design is the replicate of a 2 × 2 crossover design, which is 
given by (TRTR, RTRT).

In some cases, an incomplete block design or an extra-reference design 
such as (TRR, RTR) may be considered depending upon the study objectives 
of the bioavailability/BE studies. Under a given design, sample size calcula-
tion for achieving a desired power at the 5% level of significance can then 
be obtained (see, e.g., Chow and Wangm 2001; Chow, Shao and Wang, 2008; 
Chow and Liu, 2008).

4.2.2  �Statistical Methods

As indicated earlier, BE is claimed if the ratio of average bioavailabilities 
between a test product and a reference product is within the BE limit of 
(80%, 125%) with 90% assurance based on log-transformed data. Along this 
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line, commonly employed statistical methods are the confidence interval 
approach and the method of interval hypotheses testing.

For the confidence interval approach, a 90% confidence interval for the ratio 
of means of the primary PK response such as AUC or Cmax is obtained under 
an analysis of the variance model. We claim BE if the obtained 90% confi-
dence interval is totally within the BE limit of (80%, 125%). For the method of 
interval hypotheses testing, the interval hypothesis

	 H Ha0 : :Bioinequivalence versus Bioequivalence

was decomposed into two sets of one-sided hypotheses. The first set of 
hypotheses is to verify that the average bioavailability of the test product 
is not too low (efficacy), whereas the second set of hypotheses is to ver-
ify that average bioavailability of the test product is not too high (safety). 
Schuirmann’s two one-sided tests procedure is commonly employed for the 
interval hypotheses testing for ABE (Schuirmann, 1987).

In practice, other statistical methods such as Westlake’s symmetric confi-
dence interval approach, exact confidence interval based on Fieller’s theo-
rem, Chow and Shao’s joint confidence region approach, Bayesian methods 
(e.g., Rodda and Davis’ method and Mandallaz and Mau’s method), and non-
parametric methods (e.g., Wilcoxon–Mann–Whitney two one-sided tests pro-
cedure, distribution-free confidence interval based on the Hodges–Lehmann 
estimator, and bootstrap confidence interval) are sometimes considered.

4.2.3  �Remarks

Although the assessment of ABE for generic approval has been in practice 
for years, it has the following limitations: (1) it focuses only on population 
average; (2) it ignores distribution of the metric; (3) it does not provide inde-
pendent estimates of ISV; and (4) it ignores subject-by-formulation interac-
tion. Many authors criticize that the assessment of ABE does not address the 
question of drug interchangeability and it may penalize drug products with 
less variability.

4.3â•‡� Drug Interchangeability

As indicated by the regulatory agencies, a generic drug can be used as a 
substitution of the brand-name drug if it has been shown to be bioequiva-
lent to the brand-name drug. Current regulations do not indicate that two 
generic copies of the same brand-name drug can be used interchange-
ably, even though they are bioequivalent to the same brand-name drug. BE 
between generic copies of a brand-name drug is not required. Thus, one of 
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the controversial issues is that whether these approved generic drug prod-
ucts can be used safely and interchangeably (see Figure 4.1).

4.3.1  �Drug Prescribability and Drug Switchability

Basically, drug interchangeability can be classified as drug prescribability or 
drug switchability (Liu, 1998; Chow and Liu, 2008). Drug prescribability is 
referred to as the physician’s choice for prescribing an appropriate drug prod-
uct for his/her new patients between a brand-name drug product and a num-
ber of generic drug products of the brand-name drug product that have been 
shown to be bioequivalent to the brand-name drug product. The underlying 
assumption of drug prescribability is that the brand-name drug product and 
its generic copies can be used interchangeably in terms of the efficacy and 
safety of the drug product. Drug prescribability, therefore, is the interchange-
ability for the new patient.

Drug switchability, on the other hand, is related to the switch from a drug 
product (e.g., a brand-name drug product) to an alternative drug product 
(e.g., a generic copy of the brand-name drug product) within the same sub-
ject, whose concentration of the drug product has been titrated to a steady, 
efficacious, and safe level. As a result, drug switchability is considered more 
critical than drug prescribability in the study of drug interchangeability for 
patients who have been on medication for a while. Drug switchability, there-
fore, is interchangeability within the same subject.

4.3.2  �Population and Individual Bioequivalence

As indicated by Chow and Liu (2008), ABE can guarantee neither drug pre-
scribability nor drug switchability. Therefore, it is suggested that the assess-
ment of BE should take into consideration drug prescribability and drug 
switchability for drug interchangeability. To address drug interchange-
ability, it is recommended that PBE and IBE be considered for testing drug 
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FIGURE 4.1
Safety concern of drug interchangeability.
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prescribability and drug switchability, respectively. More specifically, the 
FDA recommends that PBE be applied to new formulations, additional 
strengths, or new dosage forms in new drug applications (NDAs), while IBE 
should be considered for ANDA or abbreviated antibiotic drug application 
(AADA) for generic drugs.

To address drug prescribability, the FDA proposed the following 
aggregated, scaled, moment-based, one-sided population bioequivalence 
criterion (PBC):
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θP is the BE limit for PBE

The numerator on the left-hand side of the criterion is the sum of the squared 
difference of the population averages and the difference in total variance 
between the test and reference drug products, which measures the similarity 
for the marginal population distribution between the test and reference drug 
products. The denominator on the left-hand side of the criterion is a scaled 
factor that depends upon the variability of the drug class of the reference 
drug product. The FDA guidance suggests that θP be chosen as
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Therefore, assuming that the maximum allowable PDR is 1.25, substitution 
of (log . ) /1 25 2

0
2σT  for PBC without adjustment of the variance term approxi-

mately yields σT0 = 0.2.
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Similarly, to address drug switchability, the FDA recommended the fol-
lowing aggregated, scaled, moment-based, one-sided individual bioequiva-
lence criterion (IBC):

	
IBC =
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where
σWT

2  and σWR
2  are within the subject variance of the test drug product and 

the reference drug product, respectively
σD

2  is the variance due to subject-by-drug interaction
σW 0

2  is a constant that can be adjusted to control the probability of passing 
IBE

θI is the BE limit for IBE. The FDA guidance suggests that θI be chosen as
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where εI is the variance allowance factor, which can be adjusted for sample 
size control. As indicated in the FDA guidance, εI may be fixed between 0.04 
and 0. For the determination of σW 0

2 , the guidance suggests the use of indi-
vidual difference ratio (IDR), which is defined as
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Therefore, assuming that the maximum allowable IDR is 1.25, substitution 
of (log . ) /1 25 2

0
2σW  for IBC without adjustment of the variance term approxi-

mately yields σW0 = 0.2.

4.4â•‡� Controversial Issues

In this section, we will focus on controversial issues related to Fundamental 
Bioequivalence Assumption, one-fits-all criterion, and issues related to log 
transformation of PK data prior to analysis. These controversial issues are 
briefly described in the following sections.

4.4.1  �Fundamental Bioequivalence Assumption

As indicated by Chow and Liu (2008), BE studies are performed under so-called 
Fundamental Bioequivalence Assumption, which constitutes the legal basis for 
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regulatory approval of generic drug products. Fundamental Bioequivalence 
Assumption states:

If two drug products are shown to be bioequivalent, it is assumed that 
they will reach the same therapeutic effect or they are therapeutically 
equivalent and hence can be used interchangeably.

To protect the exclusivity of a brand-name drug product, the sponsors of 
the innovator drug products will make every attempt to prevent generic 
drug products from being approved by regulatory agencies such as the 
FDA. One of the strategies is to challenge the Fundamental Bioequivalence 
Assumption by filing a citizen petition with scientific/clinical justification. 
Upon the receipt of a citizen petition, the FDA has legal obligation to respond 
within 180 days. It, however, should be noted that the FDA will not suspend 
the review/approval process of generic submission of a given brand-name 
drug even if a citizen petition is under review within the FDA.

Under the Fundamental Bioequivalence Assumption, one of the contro-
versial issues is that BE may not necessarily imply therapeutic equivalence 
and therapeutic equivalence does not guarantee BE either. The assessment 
of ABE for generic approval has been criticized that it is based on legal/
political consideration rather than scientific consideration. In the past several 
decades, many sponsors/researchers have made an attempt to challenge this 
assumption with no success.

In practice, the verification of the Fundamental Bioequivalence Assumption 
is often difficult, if not impossible, without the conduct of clinical trials. 
For  some drug products, the Fundamental Bioequivalence Assumption 
may be verified through the study of in vitro–in vivo correlation (IVIVC). 
It should be noted that the Fundamental Bioequivalence Assumption is for 
drug products with identical active ingredient(s). Whether the Fundamental 
Bioequivalence Assumption is applicable to (1) drug products with similar 
but different active ingredient(s) and (2) biological products which are made 
of living cells then become an interesting but controversial question.

4.4.2  �One-Fits-All Criterion

For the assessment of ABE, the FDA adopted a one-fits-all criterion. That is, 
a test drug product is said to be bioequivalent to a reference drug product if 
the obtained 90% confidence interval for the ratio of means of the primary 
study endpoint such as AUC or Cmax is totally within the BE limit of (80%, 
125%) based on log-transformed data. The one-fits-all criterion does not take 
into consideration of individual therapeutic window (ITW) and ISV, which 
have been identified to have nonnegligible impact on the safety and efficacy 
of generic drug products as compared to innovative drug products.

In the past several decades, this one-fits-all criterion has been challenged 
and criticized by many researchers. It is suggested that flexible criteria in 
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terms of safety (upper BE limit) and efficacy (lower BE limit) be developed 
based on ITW and ISV according to the nature of drug class under study 
(Table 4.1). However, the one-fits-all criterion is still considered by most regu-
latory agencies until a recent proposal that based on reference-scaled average 
bioequivalence (RSAB) criterion for highly variable drug products proposed 
by Haider et al. (2008). This is probably because no (documented) evidence of 
safety issues are raised for those generic drug products approved based on 
the one-fits-all criterion. More discussions regarding the one-fits-all criterion 
can be found in Section 26.4.2 of Chapter 26.

4.4.3  �Issues Related to Log Transformation

In practice, BE is assessed either based on raw data or log-transformed 
data depending upon whether the data are normally distributed. This has 
raised a controversial issue regarding which model should be used for a 
fair assessment of BE. The sponsors often choose the model that can serve 
their purposes (e.g., demonstration of BE). In many cases, the raw data model 
may reach a different conclusion regarding BE than the log-transformation 
model. This controversial issue has been discussed excessively that a guid-
ance on BE published by the FDA recommends that a log transformation 
be performed prior to the assessment of BE (FDA, 2001). For the assessment 
of BE, in practice, the 2001 FDA guidance provides a rationale for the use 
of logarithmic transformation of exposure measures. The guidance empha-
sizes that the limited sample size in a typical BE study precludes a reliable 
determination of the distribution of the data. For some unknown reasons, 
the guidance does not encourage the sponsors to test for normality of error 
distribution after log transformation or to use normality of error distribution 
as a reason for carrying out the statistical analysis on the original scale.

With respect to the (PK) rationale, deterministic multiplicative PK models 
are used to justify the routine use of logarithmic transformation for AUC(0â•›–â•›∞) 
and Cmax. However, the deterministic PK models are theoretical derivations of 
AUC(0â•›–â•›∞) and Cmax for a single object. The guidance suggests that AUC(0â•›–â•›∞) be 

TABLE 4.1

Classification of Drugs

Class ITW ISV Example

A Narrow High Cyclosporine
B Narrow Low Theophylline
C Wide Low to moderate Most drugs
D Wide High Chlorpromazine or 

topical corticosteroids

Source:	 Patnaik, R.N. et al., Clinical Pharmacokinetics, 33, 1, 1997. 
With permission.

Note:	 ITW, individual therapeutic window; ISV, intra-subject 
variability.



60	 Controversial Statistical Issues in Clinical Trials

calculated from the observed plasma–blood concentration–time curve using 
the trapezoidal rule, and that Cmax be obtained directly from the curve, with-
out interpolation. It is not known whether the observed AUC(0â•›–â•›∞) and Cmax 
can provide good approximations to those under the theoretical models if the 
models are correct.

It should be noted that the AUC(0â•›–â•›∞) and Cmax are calculated from the 
observed plasma–blood concentrations. Therefore, the distributions of the 
observed AUC(0â•›–â•›∞) and Cmax depend on the distributions of plasma–blood con-
centrations. Liu and Weng (1994) showed that the log-transformed AUC(0â•›–â•›∞) 
and Cmax do not generally follow a normal distribution, even when either the 
plasma concentrations or log-plasma concentrations are normally distributed. 
This argues against the routine use of the logarithmic transformation in the 
assessment of BE. Moreover, Patel (1994) also pointed out that performing a rou-
tine log transformation of data and then applying normal, theory-based meth-
ods is not a scientific approach. In addition, the sample size of a typical BE study 
is generally too small to allow an adequate large-sample normal approximation.

Because current statistical methods for the evaluation of BE are based on 
the normality assumption of the inter-subject and intra-subject variabilities, 
the examination of the normal probability plots for the studentized inter-
subject and intra-subject residuals should always be carried out for the scale 
intended to be used in the analysis. In addition, formal statistical tests for 
normality of the inter-subject and intra-subject variabilities can also be car-
ried out through Shapiro–Wilk’s method. Contrary to the misconception of 
many people, Shapiro–Wilk’s method is an appropriate method for small 
samples, such as BE studies. It is then scientifically imperative that tests for 
normality be routinely performed for the scale used in the analysis, such as 
log scale, suggested in the guidance. If normality cannot be satisfied by both 
original scale and log scale, nonparametric methods should be employed.

Other issues concerning the routine use of the logarithmic transformation of 
exposure responses are the equivalence limits and presentation of the results 
on the original scale. The guidance recommends that the BE limits of (80%, 
125%) on the original scale for the assessment of ABE be used. On the log scale, 
they are [log(0.8), log(1.25)] = (−0.2331, 0.2331), where log denotes the natural 
logarithm. This set of limits is symmetrical about zero on the log scale, but 
it is not symmetrical on the original scale. It should be noted that the rejec-
tion region of Schuirmann’s two one-sided tests procedure associated with the 
new limits of (80%, 125%) is larger than that with the limits of (80%, 120%). As 
a result, a 90% confidence interval of (82%, 122%), for the ratio of averages of 
AUC(0â•›–â•›∞) between the test and reference formulations, will pass the BE test 
by the new limits, but not by the old limits. The new BE limits are 12.5% wider 
and 25% more liberal in the upper limit than the old limits. A new, wider 
upper BE limit may have an influence on the safety of the test formulation, 
which should be carefully examined if the new BE limits are adopted.

The FDA guidance requires that the results of analyses be presented on the 
log scale as well as on the original scale, which can be obtained by taking the 
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inverse transformation. Because the logarithmic transformation is not linear, 
the inverse transformation of the results to the original scale is not straightfor-
ward (Liu and Weng, 1992). For example, the point estimator of the ratio of 
averages on the original scale obtained from the antilog of the estimator of 
difference in averages on the log scale is biased and is always overestimated. 
Furthermore, the antilog of the standard deviation of the difference in aver-
ages on the log scale is not the standard deviation for the point estimator of 
the ratio of the averages on the original scale. Further research is needed for 
the presentation of the results on the original scale, especially the estimation 
of variability after the analyses are performed on the log scale.

For the limitation of ABE, the consideration of ITWs, and the objective of inter-
changeability, Chen (1995) summarized the merits of individual BE as follows:

	 1.	Comparison of both averages and variances
	 2.	Considerations of subject-by-formulation interaction
	 3.	Assurance of switchability
	 4.	Provision of flexible BE criteria for different drugs based on their 

therapeutic windows
	 5.	Provision of reasonable BE criteria for drugs with highly ISV
	 6.	Encouragement or reward of pharmaceutical companies to manu-

facture a better formulation

To achieve the objective of exchangeability among bioequivalent pharma-
ceutical products, the criteria for assessment of BE must possess certain 
important properties. Chen (1995, 1997) outlined the desirable characteris-
tics of BE criteria proposed by the FDA which is provided in Table 4.2. In 

TABLE 4.2

Desirable Features of Bioequivalence Criteria

Comparison of both averages and variances
Assurance of switchability
Encouragement or reward of pharmaceutical companies to manufacture 
a better formulation

Control of type I error rate (consumer’s risk) at 5%
Allowance for determination of sample size
Admission of the possibility of sequence and period effects as well 
as missing values

User-friendly software application for statistical methods
Provision of easy interpretation for scientists and clinicians
Minimization of increased cost for conducting bioequivalence studies

Source:	 Chen, M.L., Individual bioequivalence. Invited presentation at 
International Workshop: Statistical and Regulatory Issues on the 
Assessment of Bioequivalence. Dusseldorf, Germany, October 
19–20, 1995.
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addition, to address the issues of ISV and subject-by-formulation interaction 
and to ensure drug switchability, valid statistical procedures, both estima-
tion and hypothesis testing, should be developed from the criteria to control 
the consumer’s risk at the prespecified nominal level (e.g., 5%). In addition, 
the statistical methods developed from the criteria should be able to provide 
sample size determination; to take into consideration the nuisance design 
parameters, such as period or sequence effects; and to develop user-friendly 
computer software. The most critical characteristics for any proposed cri-
teria will be their interpretation to scientists and clinicians and the cost of 
conducting BE studies to provide inference for the criteria.

4.5â•‡� Frequently Asked Questions

Although the concepts of PBE and IBE for addressing drug prescribability 
and drug switchability have been discussed vastly since the early 1990s, 
FDA’s current position regarding the assessment of BE is:

Average bioequivalence is required and individual/population bio-
equivalence may be considered.

However, the FDA encourages that medical/statistical reviewers be con-
sulted if IBE/PBE is to be used. For the assessment of BE, some questions 
are frequently asked during the regulatory submission and review. In what 
follows, frequently asked questions in BE assessment are briefly described.

4.5.1  �What If We Pass Raw Data Model but Fail 
Log-Transformed Data Model?

Most regulatory agencies including FDA, European Medicines Agency 
(EMEA), and the World Health Organization (WHO) recommend that a 
log transformation of PK parameters of AUC(0â•›−â•›t), AUC(0â•›−â•›∞), and Cmax be 
Â�performed before analysis. No assumption checking or verification of the log-
transformed data is encouraged. However, the sponsors often conduct analyses 
based on both raw data and log-transformed data and submit the one that 
passes BE testing. If the sponsor passes BE testing under the log-transformed 
data model, then there is no problem because it meets regulatory require-
ments. In practice, however, the sponsor may fail BE testing under the log-
transformed data model but pass under the raw data model. In this case, 
the sponsor often provides scientific/statistical justification for the use of the 
raw data model. One of the most commonly seen scientific/statistical justi-
fications is that the raw data model is a more appropriate statistical model 
than the log-transformed data model because all of the assumptions for 
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the raw data model are met. However, for the raw data model, the BE limit is 
often expressed in terms of the ratio of the population means between the 
test and reference formulations, and then the equivalence limit is expressed 
as a percentage of the population reference average which has to be esti-
mated from the data. Therefore, the variability of the estimated reference 
average is not considered in the equivalence limit. Hence, the false positive 
rate for claiming ABE for the two one-sided tests procedure can be inflated 
to 50%. As a result, one should apply the modified two one-sided tests proce-
dure using the raw data proposed by Liu and Weng (1995) to control the size 
at the nominal level.

Many researchers have criticized that the use of log-transformed data is not 
scientifically/statistically justifiable. Liu and Weng (1992) studied the distri-
bution of log-transformed PK data assuming that the hourly concentrations 
are normally distributed. The results indicated that the log-Â�transformed data 
are not normally distributed. Their findings argue against the use of log-
transformed data since the primary normality assumption is not met and 
consequently the assurance of the obtained statistical inference is question-
able. In this case, it is suggested that either other transformations such as 
the Box–Cox transformation or a nonparametric method be considered. 
However, the interpretation of such a transformation is challenging to both 
pharmacokineticists and biostatisticians.

4.5.2  �What If We Pass AUC but Fail Cmax?

Based on the log-transformed data, the FDA requires that both AUC and 
Cmax meet the (80%, 125%) BE limit for the establishment of ABE. In practice, 
however, it is not uncommon to pass AUC (the extent of absorption) but fail 
Cmax (the rate of absorption). In this case, ABE cannot be claimed according to 
the FDA guidance on BE. However, for Cmax, the EMEA and WHO guidelines 
use a more relaxed equivalence margin of (70%, 143%). Thus, the sponsors 
often argue with the FDA based on the EMEA and WHO guidelines.

In the case where we pass AUC but fail Cmax, Endrenyi et al. (1991) sug-
gested considering Cmax/AUC as an alternative BE measure for the rate of 
absorption. However, Cmax/AUC is not currently selected as the required PK 
responses for the approval of generic drug products by any of the regulatory 
authorities in the world including the FDA, EMEA, and WHO. On the other 
hand, it is very likely that we may pass Cmax but fail AUC. In this case, it is 
suggested that we may look at partial AUC as an alternative measure of BE 
(see, e.g., Chen et al., 2001) if we fail to pass BE testing based on AUC from 0 
to the last time point or AUC from 0 to infinity.

4.5.3  �What If We Fail by a Relatively Small Margin?

In practice, it is very possible that we fail BE testing for either AUC or Cmax by 
a relatively small margin. For example, suppose the 90% confidence interval 
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for AUC is given by (79.5%, 120%), which is slightly outside the lower limit 
of (80%, 125%). In this case, the FDA’s position is very clear that Rule is rule 
and you fail. With respect to regulatory review and approval, the FDA is very 
strict about this rule that the 90% confidence interval has to be totally within 
the BE limit of (80%, 125%) as described in the 2003 FDA guidance. However, 
the sponsor usually performs either an outlier detection analysis or a sensi-
tivity analysis to resolve the issue. In other words, if a subject is found to be 
an outlier statistically, it may be excluded from the analysis with appropriate 
clinical justification. Once the identified outlier is excluded from the analy-
sis, a 90% confidence interval is recalculated. If the 90% confidence interval 
after excluding the identified outlier is totally within the BE limit of (80%, 
125%), the sponsor then argues to claim BE.

4.5.4  �Can We Still Assess Bioequivalence If There 
Is a Significant Sequence Effect?

As indicated by Chow and Liu (2008), under a standard 2 × 2 crossover 
design, significant sequence effect is an indication of possible (1) failure of 
randomization, (2) true sequence effect, (3) true carryover effect, and/or (4) 
true formulation-by-period effect. Under the standard 2 × 2 crossover design, 
the sequence effect is confounded with the carryover effect. Therefore, if a 
significant sequence effect is found, the treatment effect and its correspond-
ing 90% confidence interval cannot be estimated in an unbiased way due to 
possible unequal carryover effects. However, in the 2001 FDA guidance, the 
following list of conditions is provided to rule out the possibility of unequal 
carryover effects:

	 1.	 It is a single-dose study.
	 2.	The drug is not an endogenous entity.
	 3.	More than an adequate washout period has been allowed between 

periods of the study and in the subsequent periods the predose bio-
logical matrix samples do not exhibit a detectable drug level in any 
of the subjects.

	 4.	The study meets all scientific criteria (e.g., it is based on an accept-
able study protocol and it contains a validated assay methodology).

The 2001 FDA guidance also recommends that sponsors conduct a BE study 
with parallel designs if unequal carryover effects become an issue.

4.5.5  �What Should We Do When We Have Almost Identical Means 
but Still Fail to Meet the Bioequivalence Criterion?

It is not uncommon to run into the situation that we have almost identical 
means but still fail to meet the BE criterion. This may indicate that (1) the 
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variation of the reference product is too large to establish BE between the 
test product and the reference product, (2) the BE study was poorly con-
ducted, and (3) the analytical assay methodology is inadequate and not fully 
validated. The concept of IBE and/or PBE is an attempt to overcome this 
problem. As a result, it is suggested that either PBE or IBE be considered to 
establish BE. However, in our experience, unless the variability of the test 
formulation is much smaller than that of the reference formulation, it is still 
unlikely to pass either PBE or IBE. In addition, to avoid masking the effect of 
PBE or IBE, the 2001 FDA guidance requires that the geometric test/reference 
averages be within 80%–125% too.

4.5.6  �Power and Sample Size Calculation Based on Raw Data Model 
and Log-Transformed Model Are Different

Power analysis calculation and sample size based on the raw data model are 
different from those based on the log-transformed model due to the fact that 
they are different models. Under different models, means, standard devia-
tions, and coefficients of variation are different. As mentioned earlier, for 
the assessment of BE, all regulatory authorities including the FDA, EMEA, 
WHO, and Japan require that log transformation of AUC(0â•›−â•›t), AUC(0â•›−â•›∞), 
and Cmax be done before the analysis and evaluation of BE. As a result, one 
should use differences in mean and standard deviation or coefficient of vari-
ation for power analysis and sample size calculation based on the method 
for the log-transformed model (see, e.g., Chapter 5 of Chow and Liu, 2008).

Note that sponsors should make the decision as to which model (the raw 
data model or the log-transformed data model) will be used for BE assess-
ment. Once the model is chosen, appropriate formulas can be used to deter-
mine the sample size. Fishing around for obtaining the smallest sample size 
is not a good clinical practice.

4.5.7  �Adjustment for Multiplicity

The 2003 FDA guidance for general considerations requires that for AUC(0 − t), 
AUC(0−∞), and Cmax, the following information be provided:

	 1.	Geometric means
	 2.	Arithmetic means
	 3.	Ratio of means
	 4.	Ninety percent confidence interval

In addition, the 2003 FDA guidance recommends that logarithmic trans-
formation be provided for measures for BE demonstration using a BE limit 
of 80%–125%. Therefore, to pass the ABE, each 90% confidence interval of 
AUC(0−t), AUC(0−∞), and Cmax must fall within 80% and 125%. It follows that 
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according to the intersection–union principle (Berger, 1982), the type I error 
rate of ABE is still controlled under the nominal level of 5%. Therefore, there 
is no need for adjustment due to multiple PK measures.

4.6â•‡� Concluding Remarks

As indicated in Chapter 1, the FDA kicked off a critical path initiative to assist 
the sponsors in identifying the scientific challenges underlying the medical 
product pipeline problems. A critical path opportunities list was released 
in 2006 to bridge the gap between the quick pace of new biomedical dis-
coveries and the slower pace at which those discoveries are currently devel-
oped into therapies. However, the assessment of BE for generic approval was 
not included until a year later. In May 2007, the FDA issued the critical path 
opportunities for generic drugs which lay out the opportunities as well as 
the challenges that are unique to the generic drug products. Note that the 
critical path opportunities for generic drugs were issued by the Office of 
Generic Drugs, Center for Drug Evaluation and Research. Consequently, the 
critical path opportunities for generic drugs are only confined to the tradi-
tional chemical drug products.

In pharmaceutical development, the concept of equivalence should not 
be limited to BE for the approval of generic drug products. The concept of 
equivalence can be applied to substantial equivalence for medical devices 
and biosimilarity for follow-on biologics (FOB). For medical devices, based 
on the risk of medical devices posed to the patient and/or user, the FDA cat-
egorized medical devices into three classes. Regulations for Class I devices 
require the general controls while the Class II devices require both general 
controls and special controls. On the other hand, because of higher risks, in 
addition to the general controls and special controls, the FDA requests that 
Class III devices require a premarket approval (PMA) to obtain marketing 
clearance. However, for Class I and II devices, the sponsor can make a pre-
market notification through a 510 (k) submission to the FDA. Under 510 (k), 
the new device must demonstrate that it is at least safe and effective as a legal 
U.S. market device or a predicate device. This concept of equivalence for the 
approval of medical devices under 510 (k) is referred to as substantial equiv-
alence. According to the FDA, a device is considered substantially equivalent 
if it has either (1) the same intended use as the predicate and (2) the same 
technological characteristics as the predicate or (1) the same intended use as 
the predicate and (2) different technological characteristics and the informa-
tion submitted to the FDA. Therefore, according to the submissions under 
510 (k), as compared to the predicate, a device must demonstrate a two-sided 
equivalence in technological characteristics or a one-sided equivalence or 
non-inferiority in safety and effectiveness.
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For the approval of biosimilars in the European Union (EU) community, 
the EMEA has issued a new guideline describing general principles for the 
approval of similar biological medicinal products, or biosimilars. The guide-
line is accompanied by several concept papers that outline areas in which the 
agency intends to provide more targeted guidance. Specifically, the concept 
papers discuss approval requirements for four classes of human recombinant 
products containing erythropoietin, human growth hormone, granulocyte-
colony stimulating factor, and insulin. The guideline consists of a checklist 
of documents published to date relevant to data requirements for biological 
pharmaceuticals. It is not clear what specific scientific requirements will be 
applied to biosimilar applications. In addition, it is not clear how the agency 
will treat innovator data contained in the reference product dossiers. The 
guideline provides a useful summary of the biosimilar legislation and previ-
ous EU publications, and it also provides a few answers to the issues.

Note that very little literature on statistical methods for the assessment of 
(1) substantial equivalence for the approval of medical products and (2) 
biosimilarity of FOB can be found. In addition, even the selection of equiv-
alence limits for the evaluation of substantial equivalence and biosimilar-
ity of FOB has not been fully investigated or mentioned in the regulatory 
guidelines. More research in these areas is urgently needed. More details 
regarding the assessment of follow-on biologics can be found in Chapter 24 
of this book.
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5
Hypotheses for Clinical Evaluation 
and Significant Digits

5.1â•‡ Introduction

In clinical trials, a typical approach for clinical evaluation of the safety and 
efficacy of a test treatment is to first test for the null hypothesis of no treat-
ment difference in efficacy based on clinical data collected under a valid trial 
design. The investigator would reject the null hypothesis of no treatment 
difference and then conclude the alternative hypothesis that there is a differ-
ence in favor of the test treatment under investigation. As a result, if there is 
a sufficient power for correctly detecting a clinically meaningful difference if 
such a difference truly exists, we claim that the test treatment is efficacious. 
The test treatment will be reviewed and approved by the regulatory agency 
if the recommended dose is well tolerated and there appear no safety con-
cerns. In some cases, the regulatory agencies such as the United States FDA 
will issue a letter of approval pending a commitment for conducting large-
scale long-term safety surveillance.

In practice, the intended clinical trial is always powered to achieve the 
study objective with a desired power (say 80%) at a prespecified level of sig-
nificance (say 5%). However, the study based on a single primary endpoint 
(usually efficacy endpoint) may not be appropriate because one single pri-
mary efficacy endpoint may not be able to fully describe the performance 
of the treatment with respect to both the efficacy and safety under study. 
Statistically, the traditional approach based on a single primary efficacy 
endpoint for the clinical evaluation of both safety and efficacy is a condi-
tional approach (i.e., conditional on safety performance). It should be noted 
that under the traditional (conditional) approach, the observed safety pro-
file may not be of any statistical meaning (i.e., the observed safety profile 
could be by chance alone and is not reproducible). As a result, the traditional 
approach for the clinical evaluation of both efficacy and safety may have 
inflated the false positive rate of the test treatment in treating the disease 
under investigation.
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In the past several decades, the traditional approach has been found 
to be inefficient as many drug products have been withdrawn from the 
market because of the risks to patients. Table 5.1 (reproduced from http://
en.wikipedia.org/wiki/List_of_withdrawn_drugs) provides a list of (sig-
nificant) withdrawn drugs between 1950 and 2010. As can be seen from 
Table 5.1, most drugs withdrawn from the market are due to safety con-
cerns (risks to the patients). Usually this is prompted by unexpected 
adverse effects that were not detected during phase III clinical trials and 
were only apparent in the postmarketing surveillance data from the wider 
patient population. Note that the list of withdrawn drugs given in Table 5.1 
was approved by the regulatory agencies such as the U.S. FDA and EMEA 
in European Community. Note that some of the drug products on the list 
were approved to be marketed in Europe but had not yet been approved by 
the FDA for marketing in the United States.

In addition to drug withdrawals, drug products may be recalled due to 
lack of good drug characteristics such as quality and stability. Table 5.2 sum-
marizes the number of prescription and over-the-counter drugs that were 
recalled between the fiscal years of 2004 and 2005 for illustration purpose. 
Most of the drug recalls are due to or related to safety issues although some 
of the causes for recalls are due to failing to pass FDA inspection for stability 
testing and/or dissolution testing, which have an impact on the safety of the 
drug products currently on the marketplace. Thus, one of the controversial 
issues is whether the traditional (conditional) hypotheses testing approach 
(based on efficacy alone) for the evaluation of the safety and efficacy of a test 
treatment under investigation is appropriate.

In clinical trials, clinical results are often reported by rounding up the num-
ber to certain decimal places. Statistical inference obtained based on data 
with different decimal places may lead to different conclusions. Therefore, 
the selection of the number of decimal places could be critical if the treatment 
effect is of marginal significance. Thus, how many decimal places should be 
used for reporting the clinical results has become an interesting question to 
the investigators who conduct clinical trials at various phases of the clinical 
development. Chow (2000) introduced the concept of signal-noise for deter-
mining the number of decimal places for results obtained from clinical trials. 
The idea is to select the minimum number of decimal places in such a way 
that there is no statistically significant difference between the data set pre-
sented by using the minimum decimal places and any other data sets with 
more decimal places.

In the next section, several composite hypotheses which will take both 
efficacy and safety into consideration are proposed. In Section 5.3, for illus-
tration purpose, statistical methods for testing the composite hypothesis 
that H0â•›: not NS versus Haâ•›: NS are derived, where N represents testing for 
non-inferiority of the efficacy endpoint and S stands for superiority testing 
of the safety endpoint. Section 5.4 studies the impact on power and sam-
ple size calculation when switching from testing for a single hypothesis to 
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TABLE 5.1

Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks

Thalidomide 1950s–1960s Withdrawn because of risk of 
teratogenicity; returned to market for use 
in leprosy and multiple myeloma under 
FDA orphan drug rules

Lysergic acid diethylamide 1950s–1960s Marketed as a psychiatric cure-all; 
withdrawn after it became widely used 
recreationally

Diethylstilbestrol 1970s Withdrawn because of risk of 
teratogenicity

Phenformin and Buformin 1978 Withdrawn because of risk of lactic 
acidosis

Ticrynafen 1982 Withdrawn because of risk of hepatitis
Zimelidine 1983 Withdrawn worldwide because of risk of 

Guillain–Barré syndrome
Phenacetin 1983 An ingredient in “APC” tablet; withdrawn 

because of risk of cancer and kidney 
disease

Methaqualone 1984 Withdrawn because of risk of addiction 
and overdose

Nomifensine (Merital) 1986 Withdrawn because of risk of hemolytic 
anemia

Triazolam 1991 Withdrawn in the United Kingdom 
because of risk of psychiatric adverse 
drug reactions. This drug continues to be 
available in the United States

Temafloxacin 1992 Withdrawn in the United States because of 
allergic reactions and cases of hemolytic 
anemia, leading to three patient deaths

Flosequinan (Manoplax) 1993 Withdrawn in the United States because 
of an increased risk of hospitalization 
or death

Alpidem (Ananxyl) 1996 Withdrawn because of rare but serious 
hepatotoxicity

Fen-phen (popular combination 
of fenfluramine and 
phentermine)

1997 Phentermine remains on the market, 
dexfenfluramine and fenfluramine—later 
withdrawn as caused heart valve disorder

Tolrestat (Alredase) 1997 Withdrawn because of risk of severe 
hepatotoxicity

Terfenadine (Seldane) 1998 Withdrawn because of risk of cardiac 
arrhythmias; superseded by fexofenadine

Mibefradil (Posicor) 1998 Withdrawn because of dangerous 
interactions with other drugs

Etretinate 1990s Risk of birth defects; narrow therapeutic 
index

(continued)
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TABLE 5.1 (continued)

Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks

Temazepam (Restoril, 
Euhypnos, Normison, 
Remestan, Tenox, Norkotral)

1999 Withdrawn in Sweden and Norway 
because of diversion, abuse, and a 
relatively high rate of overdose deaths in 
comparison to other drugs of its group. 
This drug continues to be available in 
most of the world including the United 
States, but under strict controls

Astemizole (Hismanal) 1999 Arrhythmias because of interactions with 
other drugs

Troglitazone (Rezulin) 2000 Withdrawn because of risk of 
hepatotoxicity; superseded by 
pioglitazone and rosiglitazone

Alosetron (Lotronex) 2000 Withdrawn because of risk of fatal 
complications of constipation; 
reintroduced in 2002 on a restricted basis

Cisapride (Propulsid) 2000s Withdrawn in many countries because of 
risk of cardiac arrhythmias

Amineptine (Survector) 2000 Withdrawn because of hepatotoxicity, 
dermatological side effects, and abuse 
potential

Phenylpropanolamine 
(Propagest, Dexatrim)

2000 Withdrawn because of risk of stroke in 
women under 50 years of age when taken 
at high doses (75â•›mg twice daily) for 
weight loss

Trovafloxacin (Trovan) 2001 Withdrawn because of risk of liver failure
Cerivastatin (Baycol, Lipobay) 2001 Withdrawn because of risk of 

rhabdomyolysis
Rapacuronium (Raplon) 2001 Withdrawn in many countries because of 

risk of fatal bronchospasm
Rofecoxib (Vioxx) 2004 Withdrawn because of risk of myocardial 

infarction
Mixed amphetamine salts 
(Adderall XR)

2005 Withdrawn in Canada because of risk of 
stroke. See Health Canada press release. 
The ban was later lifted because the death 
rate among those taking Adderall XR was 
determined to be no greater than those 
not taking Adderall

Hydromorphone extended-
release (Palladone)

2005 Withdrawn because of a high risk of 
accidental overdose when administered 
with alcohol

Pemoline (Cylert) 2005 Withdrawn from the U.S. market because 
of hepatotoxicity

Natalizumab (Tysabri) 2005–2006 Voluntarily withdrawn from the U.S. 
market because of risk of progressive 
multifocal leukoencephalopathy (PML). 
Returned to market in July 2006
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testing for a composite hypothesis. In clinical trials, clinical results are often 
reported by rounding up the number to certain decimal places. Statistical 
inference obtained based on data with different decimal places may lead to 
different conclusions. In Section 5.5, some statistical justification for Chow’s 
proposal for determination of appropriate decimal places in observations 
obtained from clinical research is provided.

TABLE 5.1 (continued)

Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks

Ximelagatran (Exanta) 2006 Withdrawn because of risk of 
hepatotoxicity (liver damage)

Pergolide (Permax) 2007 Voluntarily withdrawn in the United States 
because of the risk of heart valve damage. 
Still available elsewhere

Tegaserod (Zelnorm) 2007 Withdrawn because of imbalance of 
cardiovascular ischemic events, including 
heart attack and stroke. Was available 
through a restricted access program until 
April 2008

Aprotinin (Trasylol) 2007 Withdrawn because of increased risk of 
complications or death; permanently 
withdrawn in 2008 except for research use

Lumiracoxib 2007–2008 Progressively withdrawn around the 
world because of serious side effects, 
mainly liver damage

Rimonabant (Accomplia) 2008 Withdrawn around the world because of 
risk of severe depression and suicide

Efalizumab (Raptiva) 2009 Withdrawn because of increased 
risk of PML; to be completely withdrawn 
from market by June 2009

Sibutramine (Reductil) 2010 Withdrawn in Europe because of increased 
cardiovascular risk

Source:	 Wikipedia, List of withdrawn drugs, http://en.wikipedia.org/wiki/List_of_withdrawn_
drugs, 2010.

TABLE 5.2

Summary of Drug Recalls between 2004 
and 2005

Fiscal Year
Prescription 

Drug
Over-the-Counter 

Drug

2004 215 71
2005 401 101

Source:	 Report to the Nation issued by CDER/FDA.
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5.2â•‡ Hypotheses for Clinical Evaluation

In clinical trials, for the clinical evaluation of efficacy, commonly considered 
approaches include tests for hypotheses of superiority (S), non-inferiority 
(N), and (therapeutic) equivalence (E). For safety assessment, the investiga-
tor usually examines the safety profile in terms of adverse events and other 
safety parameters to determine whether the test treatment is either better 
(superiority), non-inferior (non-inferiority), or similar (equivalence) as com-
pared to the control. As an alternative to the traditional approach, Chow 
and Shao (2002) suggest testing composite hypotheses that take both safety 
and efficacy into consideration. For illustration purpose, Table 5.3 provides 
a summary of all possible scenarios of composite hypotheses for the clinical 
evaluation of safety and efficacy of a test treatment under investigation.

Statistically, we would reject the null hypothesis at a prespecified level of 
significance and conclude the alternative hypothesis with a desired power. 
For example, the investigator may be interested in testing non-inferiority in 
efficacy and superiority in safety of a test treatment as compared to a con-
trol. In this case, we can consider testing the null hypothesis that H0â•›: not 
NS, where N denotes non-inferiority in efficacy and S represents superiority 
of safety. We would reject the null hypothesis and conclude the alternative 
hypothesis that Haâ•›: NS, i.e., the test treatment is non-inferior to the active 
control agent and its safety is superior to the active control agent. To test 
the null hypothesis that H0â•›: not NS, appropriate statistical tests should be 
derived under the null hypothesis. The derived test statistics can then be 
evaluated for achieving the desired power under the alternative hypothesis. 
The selected sample size will ensure that the intended trial will achieve the 
study objectives of (1) establishing non-inferiority of the test treatment in 
efficacy and (2) showing superiority of the safety profile of the test treatment 
at a prespecified level of significance.

Note that the composite hypothesis problem described above is different 
from multiple comparisons. Multiple comparisons usually consist of a set of 
null hypotheses. The overall hypothesis is that all individual null hypotheses 

TABLE 5.3

Composite Hypotheses for Clinical 
Evaluation

Efficacy

Safety

N S E

N NN NS NE
S SN SS SE
E EN ES EE

Note:	 N, Non-inferiority; S, Superiority; 
E,  Equivalence.
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are true, and the alternative hypothesis is that at least one of the null hypoth-
eses is not true. In contrast, when it comes to the composite hypothesis prob-
lem, the alternative hypothesis is that the test drug is non-inferior (N) in 
efficacy and superior (S) in safety. Then, the null hypothesis is not NS, i.e., 
the test drug is inferior in efficacy or the test drug is not superior in safety. In 
other words, the null hypothesis consists of three subsets of null hypothesis: 
first, the test drug is inferior in efficacy and superior in safety; second, the 
test drug is non-inferior in efficacy and not superior in safety; third, the test 
drug is inferior in efficacy and not superior in safety. It would be complicated 
to consider all these three subsets of null hypothesis. If the third subset of 
null hypothesis is considered, naturally the alternative hypothesis is that the 
test drug is either non-inferior in efficacy or superior in safety, which is dif-
ferent from the hypothesis that the test drug is non-inferior in efficacy and 
superior in safety.

It also should be noted that in the interest of controlling the overall type I 
error rate at the α level, appropriate α levels (say α1 for efficacy and α2 for 
safety) should be chosen. When switching from a single hypothesis testing 
to a composite hypothesis testing, an increase in sample size is expected.

5.3â•‡� Statistical Methods for Testing Composite 
Hypotheses of NS

For illustration purpose, consider the composite hypotheses that H0â•›: not NS 
versus Haâ•›: NS in the clinical evaluation of a test treatment under investiga-
tion, where N represents the hypothesis for testing non-inferiority in effi-
cacy and S stands for the hypothesis for testing superiority in safety (Chow 
and Lu, 2011). Let X and Y be the efficacy and safety endpoints, respectively. 
Assume that (X,â•›Y) follows a bivariate normal distribution with mean (μX, μY) 
and variance–covariance matrix Σ, i.e., where
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where
(μX1, μY1) and (μX2, μY2) are the means of (X,â•›Y) for the test treatment and the 

control, respectively
δX and δY are the corresponding non-inferiority margin and superiority 

margin

Note that δX and δY are positive constants. If the null hypothesis is rejected 
based on a statistical test, we conclude that the test treatment is non-inferior 
to the control in the efficacy endpoint X, and is superior over the control in 
the safety endpoint Y.

To test the above composite hypotheses, suppose that a random sample of 
(X,â•›Y) is collected from each treatment arm. In particular, (X11,â•›Y11),â•›…,â•›(X1n1

, Y1n1
) 

are i.i.d. N((μX1, μY1),â•›Σ), which is the random sample from the test treatment, 
and (X21,â•›Y21),â•›…,â•›(X2n2

, Y2n2
) are i.i.d. N((μX2,â•›μY2),â•›Σ), which is the random sample 

from the control treatment. Let X−1 and X−2 be the sample means of X in the 
test treatment and the control, respectively. Similarly, Y−1 and Y−2 are the sample 
means of Y in the test treatment and the control, respectively. It can be verified 
that the sample mean vector (X−i,â•›Y

−
i) follows a bivariate normal distribution. 

In particular, (X−i,â•›Y
−

i) follows N nXi Yi i(( , ), )μ μ  −1Σ . Since (X−1,â•›Y
−

1) and (X−2,â•›Y
−

2) are 
independent bivariate normal vectors, it follows that (X−1 − X−2,â•›Y

−
1 − Y−2) is also 

normally distributed as N n nX X Y Y(( , ), ).μ μ μ μ1 2 1 2 1
1

2
1− − +− − ( )Σ  For simplicity, 

we assume that Σ is known, i.e., the values of parameters σ σX Y
2 2, , and ρ are 

known. To test the composite hypothesis H0 for both efficacy and safety, we 
may consider the following test statistics:
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Thus, we would reject the null hypothesis H0 for large values of TX and TY. 
Let C1 and C2 be the critical values for TX and TY, respectively. Then, we have
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(5.1)

where (UX, UY) is the standard bivariate normal random vector, i.e., a bivari-
ate normal random vector with zero means, unit variances, and a correlation 
coefficient of ρ.

Under the null hypothesis H0 that μX1 − μX2 ≤ − δX or μY1 − μY2 ≤ δY, it can 
be shown that the upper limit of P(TX > C1, TY > C2) is the maximum of the 
two probabilities, i.e., max{1 − Φ(C1), 1 − Φ(C2)}, where Φ is the cumulative 
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distribution function of the standard normal distribution. A brief proof is 
as follows.

For given constants a1 and a2 and a standard bivariate normal vector 
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Since the joint distribution of (UX,â•›UY) is symmetric, (5.2) is also equal to
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Based on (5.1), P(TX > C1, TY > C2) can be expressed by (5.2) and (5.3) with a1 
and a2 replaced by
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respectively. Under the null hypothesis H0 that μX1 − μX2 ≤ −δX or μY1 − μY2 ≤ δY, 
it is true that either D1 ≥ C1 or D2 ≥ C2. Since the integrals in (5.2) and (5.3) are 
positive, it follows that P(TX > C1, TY > C2 | H0) < max(1 − Φ(C1), 1 − Φ(C2)).

To complete the proof, we need to show for any ε > 0,â•›δX, and δY (>0), and 
given values of other parameters, there exist values of μX1 − μX2 and μY1 − μY2 
such that (5.2) is larger than 1 − Φ(C1) − ε and 1 − Φ(C2) − ε. Let μX1 − μX2 = −δX. 
Then (5.2) becomes
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For ρ > 0, there exists a negative value K such that when D2 < K, for any x in 
[C1, +∞),
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For sufficiently large μY1 − μY2, it can happen that D2 < K. Therefore, for suf-
ficiently large μY1 − μY2, (5.4) > 1 − Φ(C1) − ε. For ρ ≤ 0, express the integral in 
(5.4) as I1 + I2, where
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ε is chosen such that I x dx
E

2
2exp{ /2} 0.5 .≤ − <
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∫ ε  The first inequality holds 

as the cumulative distribution is always ≤1. For a chosen value of ε, the argu-
ment for ρ > 0 can be applied to prove I1 < 0.5ε for sufficiently large μY1 − μY2. 
Hence, P(TX > C1, TY > C2|H0) is greater than 1 − Φ(C1) − ε for μX1 − μX2 = −δX 
and sufficiently large μY1 − μY2. Similarly, it can be proven that P(TX > C1, TY > 
C2|H0) is greater than 1 − Φ(C2) − ε for μY1 − μY2 = δY and sufficiently large 
μX1 − μX2. This completes the proof.

Therefore, the type I error of the test based on TX and TY can be controlled 
at the level of α by appropriately choosing corresponding critical values of C1 
and C2. Denote by zα the upper α-percentile of the standard normal distribu-
tion. Then, the power function of the above test is P T z T zX Y( , ),> >α α1 2

 which 
can be calculated from (5.1) and the cumulative distribution function of the 
standard bivariate distribution.

5.4â•‡ Impact on Power and Sample Size Calculation

5.4.1  Fixed Power Approach

As indicated earlier, when switching from testing a single hypothesis (i.e., 
based on a single study endpoint such as the efficacy endpoint in clinical 
trials) to testing a composite hypothesis (i.e., based on two study endpoints 
such as both efficacy and safety endpoints in clinical trials), an increase 
in sample size is expected. Let X be the efficacy endpoint in clinical trials. 
Consider testing the following single non-inferiority hypothesis with a non-
inferiority margin of δX:

	 H HX X X X X X01 1 2 11 1 2: : .μ μ δ μ μ δ− ≤ − − > −versus 	
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Then, a commonly used test is to reject the null hypothesis H01 at the α level 
of significance if TX > zα. The total sample size for concluding the test treat-
ment is non-inferior to the control with 1 − β power if the difference of mean 
μX1 − μX2 > − δX is

	
N

r z z
r

X
X

X X X
=

+ +
− +

( ) ( )
( )

,
1 2 2 2

1 2
2

α β σ
μ μ δ 	

where r = n2/n1 is the sample size allocation ratio between the control and test 
treatment. Table 5.4 gives total sample size (NXâ•›) for the test of non-inferiority 
based on the efficacy endpoint X and total sample size (Nâ•›) for testing the 
composite hypothesis based on both efficacy endpoint X and safety endpoint 
Y, for various scenarios. In particular, we calculated sample sizes for α = 
0.05, β = 0.20, μY1 − μY2 − δY = 0.3, r = 1, and several values of Δ = μX1 − μX2 + δX 
and other parameters. For a hypothesis of superiority of the test treatment in 
safety, i.e., the component with respect to safety in the composite hypothesis, 
the preceding specified values of type I error rate, power, and μY1 − μY2 − δY 
and σY require a total sample size NY = 275.

For many scenarios in Table 5.4, the total sample size N for testing the 
composite hypothesis is much larger than the sample size for testing non-
inferiority in efficacy (NXâ•›). However, it happens in some cases that they are 
the same or their difference is quite small. Actually N is associated with 

TABLE 5.4

Comparison of Sample Size between Tests for Multiple Endpoints 
andâ•›Single Endpoint

σX ρ

Δ = 0.2 Δ = 0.3 Δ = 0.4

NX N N/NX NX N N/NX NX N N/NX

0.5 −1.0 155 304 1.96 69 276 4.00 39 275 7.05
−0.5 155 303 1.95 69 276 4.00 39 275 7.05

0.0 155 300 1.94 69 276 4.00 39 275 7.05
0.5 155 289 1.86 69 275 3.99 39 275 7.05
1.0 155 275 1.77 69 275 3.99 39 275 7.05

1.0 −1.0 619 647 1.05 275 381 1.39 155 304 1.96
−0.5 619 646 1.04 275 381 1.39 155 303 1.95

0.0 619 642 1.04 275 373 1.36 155 300 1.94
0.5 619 629 1.02 275 352 1.28 155 289 1.86
1.0 619 619 1.00 275 275 1.00 155 275 1.77

1.5 −1.0 1392 1392 1.00 619 647 1.05 348 433 1.24
−0.5 1392 1392 1.00 619 646 1.04 348 432 1.24

0.0 1392 1392 1.00 619 642 1.04 348 424 1.22
0.5 1392 1392 1.00 619 629 1.02 348 402 1.16
1.0 1392 1392 1.00 619 619 1.00 348 348 1.00
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the sample sizes for individual testing of non-inferiority in efficacy (NXâ•›) and 
of superiority in safety (NY), and the correlation coefficient (â•›ρ) between X 
and Y. When a large difference exists between NX and NY, N is quite close 
to the larger of NX and NY, and changes little along with changes in ρ. In 
this numerical study, for NX = 69 and 39 (<<275), N is mostly equal to 275; for 
NX = 1392 and 619 (>>275), the difference between N and NX is 0 or negligible 
compared with the size of N. In the preceding four scenarios, a change in 
correlation coefficient between X and Y has little impact on N. On the other 
hand, the larger of NX and NY is not always close to N, especially when NX 
and NY are close to each other. For example, in Table 5.4, when both values of 
NX are equal to 275 (=NY), N is 352 for ρ = 0.5, and 373 for ρ = 0. In addition, 
the results in Table 5.4 suggest that the correlation coefficient between X and 
Y is unlikely to have great influence on N, especially when the difference 
between NX and NY is quite substantial. The above findings are consistent 
with the following underlying “rule”: when the two sample sizes are sub-
stantially different, taking N as the larger of NX and NY will ensure that the 
powers of two individual tests for efficacy and safety are essentially 1 and 
1 − β, “resulting” in a power of 1 − β for testing the composite hypotheses; 
when NX and NY are close to each other, taking N as the larger of NX and NY 
will power the test of composite hypotheses at about (1 − β)2. Therefore, a 
significant increment in N is required for achieving a power of 1 − β.

5.4.2  Fixed Sample Size Approach

Based on the sample size in Table 5.4, the power of the test of the composite 
hypothesis H0 was calculated with results presented in Table 5.5, where P is 
the power of the test of the composite hypothesis with NX in Table 5.4. PM is 
the power of the same test with max (NX, 275). With the sample size NX, the 
power of the test of the composite hypothesis is always not greater than the 
target value 80% as NX is always not larger than N in Table 5.4. In some cases 
where σX = 1.5 > σY = 1.0, NX = N. Hence the corresponding P = 80%. However, 
P is less than 60% for many cases in our numerical study. The worst scenario 
is P = 4.3% when NX = 39 for σX = 0.5, ρ = −1, and Δ = 0.4. Therefore, the test for 
the composite hypothesis of both efficacy and safety using a sample size NX 
for achieving a certain power in testing the hypothesis of efficacy only may 
not have enough power to reject the null hypothesis. Interestingly, testing 
the composite hypothesis with max(NX, 275), the power PM is close to the tar-
get value 80% in most scenarios. Some exceptions happen when NX is close 
to 275 (corresponding to (Δ = 0.3,â•›σX = 1.0) and (Δ = 0.4, σX = 1.5), such that a 
significant increment in sample size from max(NX, 275) to N is required. This 
suggests taking N as the larger of the two sample sizes NX and NY for testing 
the hypothesis of individual endpoints when one of the two is much larger, 
say, twofold larger than the other.
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5.4.3  Remarks

The traditional approach for the clinical evaluation of a test treatment under 
investigation is to power the study based on an efficacy endpoint. The test 
treatment is considered approvable if its safety and tolerability are acceptable 
provided that the efficacy has been established. In practice, in the interest of 
controlling the overall type I error rate at a prespecified level of significance, 
the type I error rate may be adjusted for multiple comparisons. It, however, 
should be noted that the overall type I error rate may be controlled at the risk 
of (1) decreasing the power and (2) increasing the sample size when switch-
ing from testing a single hypothesis (for efficacy) to testing a composite 
hypothesis (for both efficacy and safety).

In this chapter, for illustration purpose, we assume that the two study end-
points follow a bivariate normal distribution. In practice, both efficacy and 
safety endpoints could be either a continuous variable, a binary response, or 
time-to-event data. A similar idea can be applied to determine the impact 
on power and sample size calculation when switching from testing a single 
hypothesis to testing a composite hypothesis. It, however, should be noted 
that closed forms for the relationships of powers and formulas for sample 
size calculation between the single hypothesis and the composite hypothesis 
may not exist. In this case, clinical trial simulation may be useful.

TABLE 5.5

Power (%) of Test of Composite Hypothesis

𝛔X 𝛒

𝚫 = 0.2 𝚫 = 0.3 𝚫 = 0.4

P PM P PM P PM

0.5 −1.0 38.9 75.3 14.7 80.0 4.3 80.0
−0.5 41.9 75.4 22.0 80.0 14.2 80.0

0.0 47.1 76.2 27.7 80.0 19.2 80.0
0.5 52.9 78.1 32.3 80.0 22.8 80.0
1.0 58.8 80.0 34.5 80.0 23.9 80.0

1.0 −1.0 78.2 78.2 60.1 60.1 38.9 75.3
−0.5 78.2 78.2 60.9 60.9 41.9 75.4

0.0 78.6 78.6 64.0 64.0 47.1 76.2
0.5 79.4 79.4 68.8 68.8 52.9 78.1
1.0 80.0 80.0 80.0 80.0 58.8 80.0

1.5 −1.0 80.0 80.0 78.2 78.2 67.6 67.6
−0.5 80.0 80.0 78.2 78.2 68.0 68.0

0.0 80.0 80.0 78.6 78.6 70.1 70.1
0.5 80.0 80.0 79.4 79.4 73.7 73.7
1.0 80.0 80.0 80.0 80.0 80.0 80.0
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5.5â•‡ Significant Digits

In practice statistical inference obtained based on data with different deciÂ�
mal  places may lead to different conclusions. As an example, consider a 
parallel bioequivalence (BE) study. Suppose that there are 24 subjects in the 
group of test drug and 24 subjects in the group of reference drug. The data 
are given in Table 5.6. From the BE study results given in Table 5.7, it can be 
seen that keeping a different number of decimal digits can lead to differ-
ent conclusions. Thus, the selection of the number of decimal places could 
be critical if the treatment effect is of marginal significance. Chow (2000) 
introduced the concept of signal-noise for determining the number of deci-
mal places for results obtained from clinical trials. The idea is to select the 

TABLE 5.6

Bioequivalence Example Data

X X0 X1 X2 Y Y0 Y1 Y2

1.169577 1 1.2 1.17 1.0722791 1 1.1 1.07
1.251990 1 1.3 1.25 1.0348811 1 1.0 1.03
1.449081 1 1.4 1.45 0.9020537 1 0.9 0.90
1.205818 1 1.2 1.21 1.1196368 1 1.1 1.12
1.355457 1 1.4 1.36 0.9736662 1 1.0 0.97
1.285863 1 1.3 1.29 1.1360977 1 1.1 1.14
1.519270 2 1.5 1.52 0.8531594 1 0.9 0.85
1.230438 1 1.2 1.23 1.1239591 1 1.1 1.12
1.374791 1 1.4 1.37 1.0642288 1 1.1 1.06
1.302860 1 1.3 1.30 0.9156539 1 0.9 0.92
1.396263 1 1.4 1.40 0.9044889 1 0.9 0.90
1.507581 2 1.5 1.51 0.9894644 1 1.0 0.99
1.337749 1 1.3 1.34 1.0281070 1 1.0 1.03
1.222744 1 1.2 1.22 0.8584933 1 0.9 0.86
1.235640 1 1.2 1.24 1.0074020 1 1.0 1.01
1.302359 1 1.3 1.30 0.9131539 1 0.9 0.91
1.379500 1 1.4 1.38 0.9563392 1 1.0 0.96
1.295147 1 1.3 1.30 1.2159481 1 1.2 1.22
1.376740 1 1.4 1.38 1.1442079 1 1.1 1.14
1.376414 1 1.4 1.38 1.0128952 1 1.0 1.01
1.321817 1 1.3 1.32 0.9561896 1 1.0 0.96
1.222626 1 1.2 1.22 0.8718494 1 0.9 0.87
1.140910 1 1.1 1.14 0.9620998 1 1.0 0.96
1.169492 1 1.2 1.17 0.9487145 1 0.9 0.95

Note:	 X, the original data from test drug; Xi, the original data 
with i decimal digit; Y, the data from reference drug; 
Yi, the data with i decimal digit.
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minimum number of decimal places in such a way that there is no statisti-
cally significant difference between the data set presented by using the mini-
mum decimal places and any other data sets with more decimal places. In 
what follows, Chow’s proposal is briefly described.

5.5.1  Chow’s Proposal

The number of significant decimal digits of a given data set obtained from an 
analytical experiment is defined as the minimum number of decimal places 
of the data set which satisfies the following two conditions. First, the data 
set with the minimum number of decimal places will achieve the desired 
accuracy and precision. Second the data set with the minimum number of 
decimal places is not statistically distinguishable with those data sets with 
more decimal places than the minimum number of decimal places. In other 
words, the data set with significant decimal digits is not significantly dif-
ferent from those data sets where the number of decimal places exceeds the 
number of significant decimal digits.

Let X be a continuous random variable and X* be its truncated value 
with d decimal digits. We would claim that X* is not statistically different 
from X if we fail to reject the following null hypothesis at the α level of 
significance:

	 H HX X a X X0 : * : * ,μ μ μ μ= ≠versus 	 (5.5)

where μX and μX* are the population means for X and X*, respectively. 
When X and X* are not statistically distinguishable, the d decimal digits 
are considered significant decimal digits. Suppose X is a continuous ran-
dom variable with standard deviation σ and X* is its truncated value after 
rounding up to the dth decimal place. Then the maximum possible error 
due to the truncation would be less than 101−d. As an example, if d = 3, the 
smallest and largest values for a given number with three decimal places 
are a.bc0 and a.bc9, respectively. Hence, the maximum possible error is less 
than 0.01, which is 10−2. Here −2 is obtained as −2 = 1 − d = 1 − 3 intuitively, 
if this worst-case error is small enough, the distortion of the distribution 

TABLE 5.7

Bioequivalence Study

Significant 
Digits

Confidence 
Interval BE Limit

BE Result 
(Y/N)

0 (−0.013, 0.180) (−0.2, 0.2) Y
1 (0.261, 0.356) (−0.2, 0.2) N
2 (0.263, 0.362) (−0.2, 0.2) N
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due to the rounding error would be negligible. But the question is how 
small would be considered enough? An idea is to apply the concept of sig-
nal-noise in quality control and assurance to compare this error with X’s 
standard deviation σ. The significant digits can then be chosen by taking 
the first d digits such that

	

10
10

1− −

< ʹ < ʹ =
d d

σ
δ

σ
δ δif and only if

10
/ ,

	

where δ is a constant, which is to be chosen such that the truncated observa-
tion X* is not statistically different from X at the α level of significance. In 
practice, a conventional choice of δ is δ = 10%. To provide a better under-
standing of the proposed procedure, the results for various choices of δ given 
σ are summarized in Table 5.8. As can be seen from Table 5.8, a smaller δ 
would require more decimal places to be used in order to achieve the desired 
accuracy and precision. Table 5.8 also indicates that more decimal places are 
needed for a smaller σ value.

5.5.2  Statistical Justification

Without loss of generality, we assume X follows a normal distribution with 
mean μX and variance σ2, i.e., X ∼ N(μX, σ2). By proper truncation, X* is still 
approximately normally distributed with mean μX* and variance σ2, where 
μX* may be different from μX due to the rounding error. The following two-
sample t can be used to test the null hypothesis given in (5.5)

	
T

n X X
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+
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TABLE 5.8

Significant Decimal Digits for Various 
Selections of δ Given σ

𝛂

𝛅 (%)

1 5 10 15 20

0.01 4 4 3 3 3
0.10 3 3 2 2 2
0.50 3 2 2 2 1
1.00 2 2 1 1 1
2.00 2 1 1 1 1
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where sX
2  and sX*

2  are sample standard deviations of X and X*, respectively. 
Under the null hypothesis that H0â•›: μX = μX*, the two-sample T statistic fol-
lows  a t distribution with 2(n − 1) degrees of freedom. We reject the null 
hypothesis if |T| > tα/2,2(n−1), where tα/2,2(n−1) is the (1 − α/2)th quantile for a 
t distribution with 2(n − 1) degrees of freedom. Under the alternative hypoth-
esis that Haâ•›: μX ≠ μX*, the t statistic can be written as
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where t2(n−1)(δ) denotes a t distribution with the noncentrality parameter of
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(5.6)

When |δ| is smaller, there is a lower probability that X* will be different from 
X under t-test. On the other hand, since X* is rounded at the dth decimal 
places, the maximum possible error due to truncation would be less than 
101−d ≥â•›|μX − μX*|. So a small value of 10−d/σ would guarantee that X* is not 
significantly different from X. The above argument can be applied similarly 
to a more general situation where a transformation is performed. Let f(x) 
be the function of transformation of X. In this case, the hypotheses of 
interest become

	 H f f H f fX X a X X0 : ( ) ( ) : ( ) ( ).* *μ μ μ μ= ≠versus 	

By Taylor’s expansion, we have

	 n f X f X f n X XX( ( ) ( *)) ( ) ( *),− ≈ ʹ −μ 	

which approximately follows a normal distribution with mean 
n f X X Xʹ −( )( )*μ μ μ  and variance 2fâ•›′2(μX)σ2. As a result, the above null hypoth-

esis can be tested by the following statistic:
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Under the null hypothesis, Tf approximately follows a t distribution with 
2(n − 1) degrees of freedom. Under the alternative hypothesis, Tf can be 
written as
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where δ is still the same noncentrality parameter as defined in (5.6). So if we 
choose significant digits properly, we can guarantee δ will be small and the 
probability that X* is statistically different from X will be small as well. This 
shows that the proposed procedure works as well for data after transforma-
tion. To illustrate the use of the proposed procedure for transformed data, 
consider a log transformation, i.e., f(x) = log(x). Thus, the hypotheses become

	 H HX X a X X0 : log( ) log( ) : log( ) log( ).* *μ μ μ μ= ≠versus 	

Then f′(μX) = 1/μX and the test statistic is given by
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A numerical study is conducted to demonstrate the use of the proposed 
procedure. Thirty analytical results were generated from N(π, 0.01), which 
are given in Table 5.9. For convenience’s sake, we keep six decimal digits as 
the original values. If we choose δ to be equal to 10%, we have
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It can be seen that the minimum number of d that satisfies the above expres-
sion is d = 3. Therefore, the number of significant decimal digits is chosen to 
be 3. Now consider four data sets Xji,â•›j = 1,â•›2,â•›3,â•›4, which are truncated at the 
jth decimal places, respectively. Then a two-sample t-test is performed to test 
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if X1i,â•›X2i,â•›X3i,â•›X4i are significantly different from one another and are signifi-
cantly different from the original Xi. The results are summarized in Table 
5.10, from which we can see that X1i are significantly different from the rest 
of the data sets. This shows that the rounding error can alter the distribu-
tion significantly. The results also indicate that X3i is not significantly differ-
ent from X4i. It shows that the proposed procedure works well. It, however, 
should be noted that X2i is also not significantly different from X3i and X4i. 
This indicates that the conventional choice of δ = 10% may be conservative 
in this case.

TABLE 5.9

Simulation Data Set for Two-Sample t-Test

i Xi X1i X2i X3i X4i

1 3.145714 3.1 3.15 3.146 3.1457
2 3.140959 3.1 3.14 3.141 3.1410
3 3.141432 3.1 3.14 3.141 3.1414
4 3.127617 3.1 3.13 3.128 3.1276
5 3.142035 3.1 3.14 3.142 3.1420
6 3.146685 3.1 3.15 3.147 3.1467
7 3.146124 3.1 3.15 3.146 3.1461
8 3.138408 3.1 3.14 3.138 3.1384
9 3.125891 3.1 3.13 3.126 3.1259

10 3.136696 3.1 3.14 3.137 3.1367
11 3.133587 3.1 3.13 3.134 3.1336
12 3.158443 3.2 3.16 3.158 3.1584
13 3.140589 3.1 3.14 3.141 3.1406
14 3.128415 3.1 3.13 3.128 3.1284
15 3.149534 3.1 3.15 3.150 3.1495
16 3.153279 3.2 3.15 3.153 3.1532
17 3.147673 3.1 3.15 3.148 3.1477
18 3.140493 3.1 3.14 3.140 3.1405
19 3.150542 3.2 3.15 3.151 3.1505
20 3.123488 3.1 3.12 3.123 3.1235
21 3.161004 3.2 3.16 3.161 3.1610
22 3.140658 3.1 3.14 3.141 3.1407
23 3.151263 3.1 3.15 3.151 3.1512
24 3.124985 3.1 3.12 3.125 3.1250
25 3.140625 3.1 3.14 3.141 3.1406
26 3.168811 3.2 3.17 3.169 3.1688
27 3.159006 3.2 3.16 3.159 3.1590
28 3.143139 3.1 3.14 3.143 3.1431
29 3.123467 3.1 3.12 3.123 3.1235
30 3.146950 3.1 3.14 3.147 3.1470
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5.6â•‡ Concluding Remarks

Statistical justification of the proposed procedure for determining the 
number of significant decimal digits in observations obtained from stud-
ies conducted in analytical research was made under the assumption of 
normality. In practice, the observed analytical results may be described 
better by other distributions such as the Weibull distribution for dissolu-
tion results of the oral solid dosage form of a drug product. In this case, a 
similar concept can be carried out to provide a valid statistical justification. 
In many cases, log transformation is often considered for a better descrip-
tion or interpretation of the analytical results. For example, area under the 
plasma concentration–time curve (AUC) and time to achieve maximum 
concentration (Cmax) in the studies of bioavailability and BE are known to 
be skewed to the right. As a result, a log transformation is recommended. 
In this case, the proposed procedure is useful for determining the num-
ber of significant decimal digits to maintain a certain degree of accuracy 
and precision for the assessment of BE. For the presentation of the analyti-
cal results, descriptive statistics such as mean, standard deviation, mini-
mum, maximum, range, relative standard deviation (RSD) or coefficient of 
variation (CV) and statistical inferences such as confidence intervals and 
p-values are usually obtained. In practice, it is always a concern as to how 
many significant decimal digits should be used for descriptive statistics 
and statistical inferences to maintain the desired degree of accuracy and 
precision. In the interest of consistency, it is recommended that the same 
number of significant decimal digits be used for descriptive statistics and 
statistical inferences obtained from the analytical results.

In some cases, the analytical results may be expressed in a scientific form 
(e.g., 1.32 × 105 or 9.2 × 10−7). The proposed procedure can be applied to its 

TABLE 5.10

Pair-Wise Comparisons

Comparison t-Statistic p-Value

Xi versus X1i 4.138 <0.001
Xi versus X2i 0.116 0.908
Xi versus X3i 0.008 0.994
Xi versus X4i 0.003 0.997
X1i versus X2i 4.072 <0.001
X1i versus X2i 4.140 <0.001
X1i versus X3i 4.137 <0.001
X2i versus X3i 0.123 0.603
X2i versus X4i 0.112 0.911
X3i versus X4i 0.011 0.991
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significant part (i.e., 1.32 for 1.32 × 105 or 9.2 for 9.2 × 10−7) or its log (base 10) 
transformation. When analytical results involve different data sets, it is sug-
gested that each data set keep its own significant decimal digits as deter-
mined by its standard deviation to maintain the same degree of accuracy 
and precision. A typical example is a dose proportionality study. The pur-
pose of a dose proportionality study is usually to show that there is a linear 
relationship between dose and AUC within a given range. In other words, 
with a doubled dose, the AUC value is expected to be doubled. However, 
a high dose will generally produce a large variability in AUC values. As 
a result, low dose, median dose, and high dose are expected to have a dif-
ferent number of significant decimal digits to achieve the same degree of 
accuracy and precision. In the interest of keeping the same number of signifi-
cant decimal digits, we may consider the AUC values adjusted for dose and 
then apply the proposed procedure to determining the number of significant 
decimal digits.
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6
Instability of Sample Size Calculation

6.1â•‡ Introduction

In clinical trials, a pre-study power analysis for sample size calculation (esti-
mation or determination) is often performed based on either (1) informa-
tion obtained from small-scale pilot studies with limited number of subjects 
or (2) guess based on the best knowledge of the investigator (with or with-
out scientific justification). The observed data and/or the investigator’s best 
guess could be far from the truth. The deviation may bias the sample size 
calculation for reaching the desired power for achieving the study objec-
tives at a prespecified level of significance. Sample size calculation is a key 
to the success of pharmaceutical/clinical research and development. Thus, 
how to select the minimum sample size for achieving the desired power at 
a prespecified significance level has become an important question for clini-
cal scientists (Chow and Liu, 1998b; Chow et al., 2002b). A study without a 
sufficient number of subjects cannot guarantee the desired power (i.e., the 
probability of correctly detecting a clinically meaningful difference). On the 
other hand, an unnecessarily large sample size could be quite a waste to 
the limited resources.

In order to determine the minimum sample size required for achieving a 
desired power, one needs to have some information regarding study param-
eters such as variability associated with the observations and the difference 
(e.g., treatment effect) that the study is designed to detect. In practice, it is 
well recognized that sample size calculation depends upon the assumed 
variability associated with the observation, which is often unknown. Thus, 
the classical pre-study power analysis for sample size calculation based on 
information obtained from a small pilot study (with large variability) could 
vary widely and hence be unstable depending upon the sampling variability. 
As a result, one of the controversial issues regarding sample size calcula-
tion is the stability (sensitivity or robustness) of the obtained sample size. To 
overcome the instability of sample size calculation, alternatively, Lee et al. 
(2008) suggested that a bootstrap-median approach be considered to select a 
stable (required minimum) sample size. Such an improved stable sample size 
can be derived theoretically by the method of an Edgeworth-type expansion. 
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Lee et al. (2008) showed that the bootstrap-median approach performs quite 
well for providing a stable sample size in a clinical trial through an extensive 
simulation study.

It should be noted that procedures used for sample size calculation could 
be very different from one another according to different study objectives 
and hypotheses (e.g., testing for equality, testing for superiority, or test-
ing for non-inferiority/equivalence) and different data types (e.g., continu-
ous, binary, and time-to-event). For example, see Lachin and Foulkes (1986), 
Lakatos (1986), Wang and Chow (2002), Wang et al. (2002a), and Chow and Liu 
(2008). For a good introduction and summary, one can refer to Chow, Shao, 
and Wang (2008b). In this chapter, for simplicity, we will focus on the most 
commonly seen situation where the primary response is continuous and the 
hypotheses of interest are about the mean under the normality assumption. 
Most of our discussions thereafter focus on the one sample problem for the 
purpose of simplicity. However, the extension to the two-sample problem is 
straightforward.

The remainder of this chapter is organized as follows. In the next section, 
the classical sample size calculation is given. The instability of the classi-
cal sample size calculation and a proposed bootstrap-median approach are 
described in Section 6.3. Section 6.4 summarizes results from a simulation 
study. An example is discussed in Section 6.5. Section 6.6 provides some con-
cluding remarks.

6.2â•‡ Sample Size Calculation

For simplicity and illustration purposes, consider the one-sample Â�problem. 
Suppose there are a total of n independent and identically distributed 
responses from a clinical study. These responses are assumed to follow a 
normal distribution with mean μ and variance σ2. Suppose that one of the 
study objectives is to detect a clinically meaningful difference, denoted by 
Δ = μ − μ0, where μ0 is a prespecified reference point. Without loss of general-
ity, we assume that μ0 is zero, which implies that Δ = μ. Then, the one-sample 
t-test or the approximate z-test can be used to test the null hypothesis that 
H0â•›: μ = 0. Under the alternative hypothesis that Haâ•›: μ ≠ 0 and a significance 
level of α, the minimum sample size needed for achieving the desired power 
of (1 − β) can be obtained as follows:

	
n z zideal = +

⎡

⎣
⎢

⎤

⎦
⎥( ) ,/α β

σ
μ

2
2

2

2

	
(6.1)

where zα is the upper α-quantile of a standard normal distribution. For a detailed 
discussion about the above formula, one can refer to Chow et al. (2008b).
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Ideally, if the value of μ and σ2 are known, then the formula (6.1) can be 
used to determine the minimum sample size. In practice, however, the 
parameters μ and σ2 are often unknown. Thus, a small pilot study is usually 
conducted to obtain information about the unknown parameters. Assume 
that a researcher conducts a small pilot study and obtains a small number of 
responses (say n0) denoted by xi, i = 1,â•›…,â•›n0. Based on the pilot study, sample 
mean μ̂ = x and sample variance s2 can be obtained and used to estimate the 
clinical efficacy μ and the associated variability σ2. It is a common practice 
to replace the unknown parameters in (6.1) by its corresponding estimates to 
produce the following sample size estimator:

	

ˆ ( ) ./n z z
s
x

= +
⎡

⎣
⎢

⎤

⎦
⎥α β2

2
2

2

	
(6.2)

In practice, formula (6.2) usually performs quite satisfactorily for a suffi-
ciently large pilot sample size. However, if the size of the pilot study is rela-
tively small, then the performance of (6.2) could be relatively instable and 
biased.

6.3â•‡ Instability and Bootstrap-Median Approach

In this section, the approximated sampling distribution and asymptotic bias of 
s2/x−2 under the normal population are derived to assess instability of classical 
sample size calculation. In addition, a bootstrap-median approach suggested 
by Lee et al. (2008) for a stable sample size determination is introduced.

6.3.1  Instability of Sample Size Calculation

By (6.2), sample size can be determined by the value of s2/x−2 at a prespeci-
fied level of significance. Thus, the stability of the traditional sample size 
formula depends upon the stability of s2/x−2. To provide a better under-
standing, the technique of an Edgeworth-type expansion is applied to 
approximate the sampling distribution of s2/x−2. From the sampling dis-
tribution of s2/x−2, the instability of the obtained sample size in terms of its 
bias can be studied when the size of the pilot study is relatively small.

Following the idea of Breunig (2001), we can approximate the finite 
sample distribution of θ̂ =â•›s x2 2/  by an Edgeworth-type expansion on the 
order of n−1/2. Suppose x1,â•›…,â•›xn are independent samples from the normal 
distribution with a population mean ξ and variance σ2. The parameter of 
interest is the population squared coefficient of variation (CV2 = σ2/ξ2). The 
sample squared CV is defined as the plug-in estimator such that ˆ / ,θ = s x2 2  
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where s x x ni i
2 2= −∑ ( ) /  is sample variance and x− is sample mean. In prac-

tice, ˆ ( / )σ2 21= −n n s  can be used to construct the sample squared CV. For 
convenience’s sake, consider the superscript of the vector x(i) indicating the 
ith element of the real vector x. Note that the distribution of the standard-
ized quantity S nn = −1 2/ ( )θ θˆ  can be written as

	

P n x P n
x n

x
x

i
i1 2 1 2

2

2

2 2

2
/ /( )

/
θ θ
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Let θ = (σ2 + ξ2)/ξ2. Thus, the estimator of θ is given by
 ˆ ( / )/ .θ = ∑i ix n x2 2  Define 

the real-valued function f on R2 such that f(w) = f(w(1), w(2)) = w(2)/(w(1))2. Let 
W = (X, X2), W x n x ni i i i= ∑ ∑( / , / ),2  and μ = E(W) = (ξ, σ2 + ξ2). Then, θ = f(μ) and 
ˆ ( ).θ = f W  Also put Z = n1/2(W− − μ), and now by Taylor expansion we have the 
following expansion of S nn = −1 2/ ( )θ θˆ :
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1
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and define the pth central moment of X as mp = E(X − ξ)p and the standard-
ized pth central moment of X as γp = E(X − ξ)p/σp. Then μi = 0 for each i,
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The asymptotic expansions of the three cumulants of Sn are
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By using arguments in Hall (1992), we now have a one-term Edgeworth 
expansion of S nn = −1 2/ ( )θ θˆ  such that
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In particular, if the population distribution is the normal distribution, we 
have

	 γ γ γ γ3 5 4 60 3 15= = = =, , .and 	
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Therefore, under the normal distribution, after the tedious calculation 
involving cumulants we have

	 τ θ θ θ θ θ θ θ2 3 2
1

2
2

5 4 34 2 3 72 48 8= + = − = + +, , .A A 	

Thus, the asymptotic bias of θ̂ up to the first order can be obtained from the 
expansion of E(Sn) above and is given by

	 E n O n( ) ( ) ( ).θ θ θ θˆ − = − +− −1 2 23 	

Also, by Fisher–Cornish inversion, the α-quantile xα of Sn/τ (i.e., P(Sn/τ ≤ xα) = α) 
has the following expansion:

	 x z n p z O nα α α= − +− −1 2
1

1/ ( ) ( ), 	

where zα is the α-quantile of standard normal distribution.
Based on the above discussion, the asymptotic bias of E( )θ̂  is given by

	 Bias( ) ( ) ( ) { ( )},θ θ θ θ θ θˆ ˆ= − = − = +− −E n n o1 2 1 23 3 1 1 	 (6.3)

as min {n, θ} → ∞. Note that the primary term of the above bias is a quadratic 
function in θ. If both the pilot sample size n and the effective size μ/σ are 
relatively small, then the bias can be substantial. Table 6.1 summarizes the 
potential impact of bias of θ̂ = s2 2/Δ  in the sample size calculation. As can be 
seen, the sample size calculation based on estimates from a small pilot study 
could be very significant—we may not reach the desired power for claiming 
that the treatment under investigation is efficacious. This becomes very criti-
cal especially when the treatment effect is considered marginally significant 
(positive).

TABLE 6.1

Instability of Sample Size

𝚫 𝛔 𝛉 = 𝛔2/𝚫2

Classic 
Sample Size

N0

Bias
3𝛉2/N0

Sample Size 
with Bias

N

5 10 4 32 1.53 44
20 16 126 6.12 174
30 36 183 13.76 391

10 10 1 8 0.38 11
20 4 32 1.53 44
30 9 71 3.44 98
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6.3.2  The Bootstrap-Median Approach

Since the bias of E( )θ̂  is not negligible in many cases, alternatively, Lee et al. 
(2008) suggested considering the median of s2/x−2. Let η0.5 be the median 
of sample CV squared such that P( ) . ..θ ηˆ ≤ =0 5 0 5  Then, η0.5 has a one-term 
expansion in terms of n−1/2 as
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(6.4)

whose leading term is linear in θ. It is a smaller order as compared with the 
bias of the mean (6.3).

As can be seen from (6.4), the bias incurred by the median could be sub-
stantially smaller than that of the mean for a small sample size and/or 
small effective size. In practice, however, we do not know the exact value 
for the median of s2/x−2. As a simple solution, Lee et al. (2008) proposed the 
use of bootstrap distribution to approximate the sampling distribution of 
s2/x−2, from where the median of s2/x−2 can be estimated by the bootstrap-
median approach. Lee et al. (2008) referred to this approach as the boot-
strap-median method.

6.4â•‡ Simulation Study

To evaluate the finite sample performances of the bootstrap-median approach 
for sample size determination, an extensive simulation study was conducted 
(Lee et al., 2008) based on 5000 simulation runs and 1000 bootstrap sample size.

6.4.1  One-Sample Problem

For the one-sample problem, a total of n0 independent and identically 
distributed random variables are simulated within each simulation run 
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to form the data from a pilot study. In this simulation study, Lee et al. 
(2008) considered

	 n0 0 00= 25 5 75, and 1, , . 	

Also, eight different effective sizes are considered:

	

μ
σ

= 0 0 0 0 0 0 0 0. , . , . , . , . , . , . , .1 15 2 25 3 4 5 and 75.
	

Both the traditional method and the bootstrap-median approach are used to 
estimate the minimum sample size (i.e., n̂ and n̂BM, respectively) required for 
achieving a desired power (1 − β) (say β = 0.1, i.e., 90% power) at a prespeci-
fied level of significance (α = 0.05). At the same time, the ideal sample size 
nideal by using the true parameters is also computed.

In order to evaluate the performance of the two methods, we will inves-
tigate the quantiles of distribution of n̂/nideal and n̂BM/nideal. A comparison of 
various quantiles of n̂/nideal and n̂BM/nideal can give us some insights into the 
difference in variability (stability) between the two methods. Hence, five 
quantiles (10%, 25%, 50%, 75%, 90%) of n̂/nideal and n̂BM/nideal are obtained by 
simulations. For example, the 75% quantile of n̂/nideal and n̂BM/nideal, which are 
obtained from the equations P n n k( ) .ˆ/ ideal ≤ = 0 75 and n̂ nBM ideal/ , respectively, 
are compared to investigate the stability of two methods.

Table 6.2 presents the simulated quantiles of n̂/nideal and n̂BM/nideal under 
various combinations of effective size μ/σ and the sample size n0 of the pilot 
study. If both the values of μ/σ and the pilot sample size n0 are very small 
(i.e., μ/σ = 0.1 and n0 = 25), then the performances of both the traditional 
method and the bootstrap-median approach are poor because their medians 
of the ratios n̂/nideal and n̂BM/nideal are far from 1.0. However, the variability of 
the bootstrap-median approach is substantially smaller than the traditional 
method. Considering 75% and 90% quantiles of two ratios, it can be seen that 
the distribution of the ratio n̂/nideal is extremely skewed to the right, which 
indicates that the traditional method could lead to extremely large sample 
size estimate with a higher probability than the bootstrap-median method. 
As the sample size increases to n0 = 100, the performance of both methods 
become much better as the median value of the two ratios comes close to 1.0. 
Note that the inter-quantile range of the bootstrap-median method is only 
1.69 − 0.34 = 1.35, which is smaller than half the size of that of the traditional 
method (3.82 − 0.34 = 3.48).

As the value of μ/σ increases, the performance of both methods becomes 
similar. However, under situations that require a large ideal sample size 
(n > 100) such as μ/σ = 0.25 or 0.30, the advantage of the bootstrap-median 
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approach is clear under small pilot studies in terms of stability. When the 
effective size is large such as μ/σ = 0.5; 0.75, sample sizes by both methods 
are almost identical, but the bootstrap-median approach prevents extremely 
large estimated sample size by the traditional method even though it is a small 
probability. Figure 6.1 shows the distributions of the absolute value of sample 
effective size |x−/s| and two associated sample size estimates, one obtained 
by the traditional method and the other by the bootstrap-median approach 
under the sample size for the pilot study, n0 = 50. The distribution of |x−/s| is 
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FIGURE 6.1
Distribution of absolute values of sample effective size in one-sample problem and associated 
sample sizes with log scale. (The solid line is sample size estimated by the bootstrap-median 
approach and the dashed line is sample size estimated by the traditional method. The red line 
indicates the ideal minimum required sample size. The sample size of the pilot study is n0 = 50.)
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illustrated by rug plot at the x-axis based on 500 simulation samples. Due to 
the finite bootstrap sample size (B = 1000), there is a little fluctuation in sample 
sizes obtained by the bootstrap-median approach, but it is small enough to 
ignore. It clearly shows that the bootstrap-median is much more stable than 
the traditional approach in which the bootstrap-median approach prevents the 
unreasonable large same size by the traditional method based on extremely 
skewed sampling distribution.

6.4.2  Two-Sample Problem

A similar simulation study was also conducted for the two-sample test-
ing problem. Common variance σ2 for two treatment groups is assumed 
and sample variance is obtained by pooling two sample variances 
s n S n S n n2

01 1
2

02 2
2

01 021 1 2= − + − + −[( ) ( ) ]/( ). If μ1 and μ2 are population means 
for each group and σ2 is the common variance under normal distribution, then 
the effective size is Δ/ /2 21 2σ μ μ σ= −( )  and the estimated sample size from 
a pilot study by the traditional method is given by ˆ ( ) /ˆ ,/n z z s= +α β2

2 2 2Δ  
where �̂ is the difference between two sample means. The bootstrap-median 
approach can be easily applied to this two-sample testing problem and the 
simulation result is very similar to the one-sample problem. Figure 6.2 pres-
ents the distribution of absolute values of sample effective size ( )x s/ 2  and 
associated sample size estimates by two methods with two different sample 
sizes for the pilot study (n0 = 25 and n0 = 75 per group). As seen in the simula-
tion study for the one-sample problem, Figure 6.1 shows that the bootstrap-
median is much more stable than the traditional approach.

6.5â•‡ An Example

For illustration purpose, consider the example given by Lee et al. (2008). 
A pharmaceutical company developed a new drug for lowering blood pres-
sure in patients with essential hypertension. A pilot study was conducted 
to compare the efficacy of the newly developed drug (denoted by drug A) 
with a widely used existing drug (denoted by drug B). The primary efficacy 
variable is the change from baseline to Week 8 of systolic blood pressure. 
The data collected from the pilot study are summarized in Table 6.3. In this 
study, the estimated effective size is ˆ . .Δ/ 2 0 16s = −  If we applied the two 
methods for sample size calculation, the traditional method gives n = 390 
per treatment group and the bootstrap-median approach with 3000 boot-
strap simulations gives n = 403 per treatment group so that results from 
both methods are similar. If we assume that responses in this study are the 
true population, we may think that the required minimum sample size for 
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achieving a 90% power at the 5% level of significance is close to n = 400 per 
treatment.

Stability of the proposed bootstrap-median approach is investigated by 
considering study subjects in the given study above as the true responses 
of the population and then comparing sampling properties of two methods 
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Distribution of absolute values of sample effective size in two-sample problem and associ-
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approach and the dashed line is sample size estimated by the traditional method. The red line 
indicates the ideal minimum required sample size. The sample sizes of the pilot study are n0 = 
25 and n0 = 75 per group.)
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for sample size determination by simulation of repeated small pilot studies. 
Here, we will consider two scenarios: (1) equal sample size allocation for 
both treatment groups with n0A = 50 and n0B = 50 and (2) unequal sample 
size allocation with n0A = 75 and n0B = 50 to collect more information about 
the new drug. For each scenario, we consider 1000 independent small pilot 
studies whose study subjects are randomly selected from the given study by 
simple random sampling without replacement in each treatment group.

Furthermore, for each simulated pilot study, two sample sizes are deter-
mined by the traditional method and the bootstrap-median approach, 
respectively, with 1000 bootstrap sample size. Table 6.4 shows the summary 
statistics of the distribution of sample sizes from simulated small pilot stud-
ies under the two scenarios considered, and Figure 6.1 presents the sampling 
distribution of sample size by two methods. In the case of equal sample size 
allocation, as we can see in the simulation studies in the previous section, 
the bootstrap-median approach is much more stable than the traditional 
method. In the case of unequal sample size allocation, the sample size by the 
bootstrap-median approach is a little larger than by the traditional approach, 
but its stability is still superior (Figure 6.3).

TABLE 6.4

Summary Statistics for the Distribution of Sample Sizes by Two Methods Based 
on Simulated Small Pilot Studies under Two Scenarios

Scenario
Sample 

Size Method

Summary Statistics

Min
First 

Quantile Median Mean
Third 

Quantile Max

I n0A = 50,
n0B = 50

Tradi-
tional

37 190 342 6,267 861 1,131,000

BM 37 182 320 437 657 1,290
II n0A = 50,

n0B = 75
Tradi-
tional

62 220 401 1,223,000 889 588,800,000

BM 96 326 548 634 892 1,699

TABLE 6.3

Information about Randomized Comparative Clinical Trial to Compare 
Two Drugs for Lowering Blood Pressure of Hypertensive Patients

Treatment 
Group

Sample 
Size

Difference 
Baseline Week 8

Change from 
Baseline

Difference 
of Change

Drug A 139 155.8 (12.4) 144.5 (16.2) −11.4 (13.2) −2.9 (12.3)
Drug B 131 155.4 (12.4) 146.9 (14.0) −8.5 (11.2)

Primary efficacy variable is the mean of sitting systolic blood pressure and the num-
ber in parentheses is standard deviation.
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6.6â•‡ Concluding Remarks

In this chapter, we have shown that sample size calculation based on data 
from a small pilot study by ignoring the sampling error using the traditional 
method could lead to unreasonable sample size estimate due to its instability, 
especially when the intended study is designed to detect a relatively small 
effect size. Alternatively, the proposed bootstrap-median approach could pro-
vide a relatively stable sample size estimates. The proposed bootstrap-median 
can be easily implemented to various study designs with different types of 
study endpoints. The proposed approach is based on the approximated sam-
pling distribution of sample squared CV under the normal distribution, and 
the bootstrap approximation of median of the sample squared CV has its 
justification based on Edgeworth and Fisher–Cornish expansions. Based on 
extensive simulation studies and theoretical justification, it is suggested that 
the proposed bootstrap-median approach to estimate the minimum required 
sample size is much more stable than the traditional method; it is therefore 
recommended to use the proposed method whenever data from a small pilot 
study are available.

Although numerical experience and theory of Lee et al. (2008) are only 
limited to the standard one-sample and two-sample testing problems, the 
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proposed procedure can be easily extended to other experimental designs 
(e.g., crossover design), other data types (e.g., binary endpoint, time-to-event 
data), and other hypotheses types (e.g., non-inferiority/equivalence test). 
Furthermore, it would be of great interest to see how the proposed method 
can be formulated into a Bayesian framework so that some valuable prior 
information can be used. All those problems are of great interest for both 
theory and practice. Further research along this line is definitely needed.

The above discussion justifies flexible sample size reestimation in standard 
group sequential design for clinical trials. For a group sequential design 
with some planned interim analyses, sample size adjustment (or reestima-
tion) is usually performed at interim analyses to ensure that the study will 
achieve the desired power at a prespecified level of significance at the end 
of the study. Commonly considered sample size adjustment based on the 
ratio of the initial estimated effect size (E0) to the observed effect size (E) is 
as follows:

	

N N N sign E E
E
E

N
a

= ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
min ,max , ,max min 0

0
0

	

where
N is the sample size after adjustment
Nmax and Nmin are the maximum (due to financial and/or other constraints) 

and minimum (the sample size for the interim analysis) sample sizes
a is a constant (which is usually determined based on the review of the 

interim analysis results)
sign(x) = 1 for x > 0; otherwise sign(x) = −1

Note that the above sample size adjustment can be applied to normal, binary, 
and survival study endpoints. Note that the above sample size adjustment 
reduces to the method proposed by the U.S. FDA statisticians for a normal 
study endpoint with a = 2 (see Cui et al., 1999).

Note that other controversial issues may be raised even after we have 
overcome the instability of initial sample size calculation (e.g., using a more 
robust bootstrap-median approach and applying a sample size reestima-
tion method). First, the number used for sample size reestimation at interim 
is still an estimate. Thus, the original issue of instability persists. Second, 
how robust (stable) the obtained sample size is if there is a shift in target 
population during the conduct of the clinical trial is also a question. Further 
research is required in order to address these questions.
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7
Integrity of Randomization/Blinding

7.1â•‡� Introduction

In double-blind clinical trials, randomization and blinding are often 
employed to prevent bias from clinical/statistical assessment of a test treat-
ment under investigation. Randomization/blinding plays an important role 
in the conduct of clinical trials. Randomization/blinding not only gener-
ates comparable groups of patients who constitute representative samples 
from the intended (target) patient population but also enables valid statis-
tical tests for clinical evaluation of the study drug. Randomization/blind-
ing in clinical trials involves random recruitment of the patients from the 
targeted population and random assignment of patients to the treatments. 
For a valid statistical assessment of the efficacy and safety of a study drug, it 
is important that a representative sample of qualified patients be randomly 
selected from the target patient population. Randomization avoids subjec-
tive selection bias for the integrity and scientific and/or statistical validity 
of the intended clinical trials. Patients participating in the clinical trials are 
randomly assigned to one of the treatments under study, which avoids sub-
jective assignment of treatments. On the other hand, blinding is the guard 
for preventing subjective evaluation bias and consequently ensures scien-
tific and/or statistical validity of the intended clinical trials. When there is 
heterogeneity in demographics and/or patient characteristics, randomiza-
tion with blocking and/or stratification is helpful in removing the potential 
bias that might occur due to the differences in demographics and/or patient 
characteristics. Under randomization and blinding, statistical inference can 
be drawn under some probability distribution assumption of the intended 
patient population. The probability distribution assumption depends on 
the method of  randomization under a randomization (population) model. 
A study without randomization/blinding will result in the violation of the 
probability distribution assumption and consequently no accurate and reli-
able statistical inference on the study drug can be drawn.

In practice, however, there is no guarantee that subjective judgment in 
reporting, evaluation, data processing, and statistical analysis will be free 
of bias due to (1) possible mix-up of randomization and (2) the knowledge of 
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the identity of the treatment codes. Since this subjective and judgmental bias 
is directly or indirectly related to treatment, it can seriously distort statistical 
inference on the treatment effect. However, if it is not impossible, it is often 
difficult to quantitatively assess such bias and its impact on the assessment 
of the treatment effect. For a given double-blind clinical trial, randomization 
schedule may be mix-up due to human error. In addition, it is human nature 
for both the patient and the investigator to guess what treatment the patient 
is receiving. To maintain the integrity of the randomization and to prevent 
treatment imbalance, a typical approach is to consider a larger blocking size 
in randomization. Thus, the following questions are commonly asked. First, 
what is the impact if we mix-up with the randomization schedule? Second, 
how do we test for the integrity of randomization and blinding in clinical 
trials? Third, what is the difference in the probability of guessing treatment 
code right for a blocking size of 2 as compared to that of the blocking size of 
4 for a comparative clinical trial? In practice, even with the best intention for 
preserving blindness throughout a clinical trial, blindness can sometimes be 
breached for various reasons. One method to determine whether the blind-
ness is seriously violated is to ask patients to guess their treatment codes 
during the study or at the conclusion of the trial prior to unblinding. In some 
cases, investigators may also be asked to guess patients’ treatment codes. 
Once the guesses are recorded on the case report forms and entered into the 
database, the integrity of blinding can be tested (Chow and Shao, 2004).

In the next section, the effect of mix-up randomization is discussed. In 
Section 7.3, we study the probability of correctly guessing treatment assign-
ments with various blocking sizes (e.g., 2 versus 4) for comparative clinical 
trials. Statistical tests for the integrity of blinding are described in Section 
7.4. Section 7.5 discusses analysis under breached blindness. An example is 
given in the last section of this chapter.

7.2â•‡� The Effect of Mix-Up Randomization

A problem that is commonly encountered during the conduct of a clinical 
trial is that a proportion of treatment codes are mix-up in randomization 
schedules. Mixing up treatment codes can distort the statistical analysis 
based on the population or randomization model. In what follows we intro-
duce a method proposed by Chow and Shao (2003) to quantitatively study 
the effect of mix-up treatment randomization codes. Consider a two-group 
parallel design for comparing a test drug and a control (placebo), where 
n1 patients are randomly assigned to the treatment group and n2 patients 
are randomly assigned to the control group. When randomization is prop-
erly applied, the population model holds and responses from patients are 
normally distributed. Consider first the simplest case where two patient 
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populations (treatment and control) have the same variance σ2, where σ2 is 
known. Let μ1 and μ2 be the population means for the treatment and the con-
trol, respectively. The null hypothesis that μ1 = μ2 (i.e., there is no treatment 
effect) is rejected at the 5% level of significance if

	

x x
n n

z1 2

1 2
0 975

1 1
−

+
>

σ / /
. , 	 (7.1)

where
x–1 is the sample mean of responses from patients in the treatment group
x–2 is the sample mean of responses from patients in the control group
z0.975 is the 97.5th percentile of the standard normal distribution

Intuitively, a mix-up of treatment codes does not affect the significance level 
of the test (7.1). The power of the test defined by (7.1), i.e., the probability of 
correctly detecting a treatment difference when μ1 ≠ μ2, is
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where Φ is the standard normal distribution function and
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This follows from the fact that under the population model, x–1 − x–2 has a nor-
mal distribution with mean μ1 − μ2 and variance σ2(1/n1 + 1/n2).

Suppose that there are m patients whose treatment codes are randomly 
mix-up. A straightforward calculation shows that x–1 − x–2 is still normally 
distributed with variance σ2(1/n1 + 1/n2), but the mean of x–1 − x–2 is equal to

	
1

1 1

1 2
1 2− +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ −( )m

n n
μ μ .

It turns out that the power for the test defined by (7.1) is
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Note that θm = θ if m = 0, i.e., there is no mix-up. The effect of mix-up treat-
ment codes can be measured by comparing p(θ) with p(θm). Suppose that 
n1  =  n2. Then p(θm) depends on m/n1, the proportion of mix-up treatment 
codes. For example, suppose that when there is no mix-up, p(θ) = 80%, which 
gives |θ| = 2.81. When 5% of treatment codes are mix-up, i.e., m/ n1 = 5%, 
p(θm) = 70.2%. When 10% of treatment codes are mix-up, p(θm) = 61.4%. Hence, 
a small proportion of mix-up treatment codes may seriously affect the prob-
ability of detecting treatment effect when such an effect exists. In this simple 
case, we may plan ahead to ensure a desired power when the maximum 
proportion of mix-up treatment codes is known. Assume that the maximum 
proportion of mix-up treatment codes is p and that the original sample size 
is n1 = n2 = n0. Then

	
θ θ

μ μ

σ
m p p n= − =

−
−( ) ( ) .1 2

2
1 21 2 2

0

Thus, a new sample size nnew = n0/(1 − 2p)2 will maintain the desired power 
when the proportion of mix-up treatment codes is no larger than p. For exam-
ple, if p = 5%, then nnew = 1.23n0, i.e., a 23% increase of the sample size will 
offset a 5% mix-up in randomization schedules.

The effect of mix-up treatment codes is higher when the study design 
becomes more complicated. Consider the two-group parallel design with an 
unknown σ2. The test defined by (7.1) has to be modified by changing z0.975 to 
t n n0 975 21 2. , + −  and replacing σ2 by its unbiased estimator
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where
s1

2 is the sample variance based on responses from patients in the treat-
ment group

s2
2 is the sample variance based on responses from patients in the control 

group
t n n0 975 21 2. , + −  is the 97.5th percentile of the t-distribution with n1 + n2 − 2 

degrees of freedom

The resulting test is known as the two-sample t-test. When randomization 
is properly applied without mix-up, the two-sample t-test has a 5% level of 
significance and the power is given by

	 1 1 2 1 2 1 2 1 22 0 975 2 2 0 975 2− ℑ + ℑ −+ − + − + − + −n n n n n n n nt t( | ) ( | ),. , . ,θ θ

where
θ is defined by (7.2)
ℑ + −n n1 2 2(| ) θ  is the noncentral t-distribution function with n1â•›+â•›n2â•›−â•›2 

degrees of freedom and the noncentrality parameter θ
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When there are m patients with mix-up treatment codes and μ1 ≠ μ2, the effect 
on the distribution of x–1 − x–2 is the same as that in the case of known σ2. In 
addition, the distribution of σ̂2 is also changed. A direct calculation shows 
that the expectation of σ̂2 is
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Hence, the actual power of the two-sample t-test is less than
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where θm is given by (7.3).
Note that, in some situations, deliberate unequal allocation of patients 

between treatment groups may be desirable. For example, it may be of inter-
est to allocate patients to the treatment and a control in a ratio of 2 to 1. Such 
situations include that (1) the patient population is small, (2) previous experi-
ence with the study drug is limited, (3) the response profile of the competi-
tor is well known, and (4) there are missing values and the rates of missing 
depend on the treatment groups. Randomization is one of key elements for 
the success of clinical trials intended to address scientific and/or medical 
questions. It, however, should be noted that in many situations, random-
ization may not be feasible in clinical research. For example, nonrandom-
ized observational or case-controlled studies are often conducted to study 
the relationship between smoking and cancer. However, if the randomiza-
tion is not used due to some medical considerations, the FDA requires that 
statistical justification should be provided with respect to how systematic 
selection bias can be avoided. Clinical results may be directly or indirectly 
distorted when either the investigators or the patients know which treatment 
the patients are receiving, although randomization is applied to assign treat-
ments. Blinding is commonly used to eliminate such a problem by blocking 
the identity of treatments.

7.3â•‡� Blocking Size in Randomization

In double-blind randomized clinical trials comparing two treatment groups, 
in the interest of treatment balance, a blocking size of 2 or 4 is usually 
employed in randomization. It is not uncommon that either the patients or 
the investigator may guess the treatment codes that patients are receiving. 
It is a concern that the use of blocking size of 2 may not prevent patients or 
the investigator from correctly guessing the treatment assignment. Correctly 
(or wrongly) guessing the treatment assignments will have an impact on 
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the assessment of the effect of the treatment under investigation, especially 
for study endpoints that are evaluated subjectively. Thus, it is suggested to 
increase the blocking size to its maximum to decrease the probability of cor-
rectly guessing treatment assignments. However, increasing the blocking 
size may increase the chance of mixing up the randomization schedules. As 
a result, it is of interest to keep the blocking size within 4. Note that blocking 
size of 2 or 4 is commonly employed in double-blind randomized clinical tri-
als for comparing two treatment groups.

In this section, we will study the probability of correctly guessing the treat-
ment assignments with a blocking size of 2 as compared to that with a blocking 
size of 4 for a given sample size. In practice, since the patients normally do not 
have any idea what blocking size is used in the randomization, the probability 
of correctly guessing the treatment assignment for a given patient is equal to 
1/2. However, the probability for the treating physician correctly guessing the 
treatment assignment is usually higher than 1/2 due to the knowledge of the 
blocking size and/or the observed clinical signs and symptoms of the patients. 
In what follows, we will calculate the probability of correctly guessing treat-
ment assignments by the patients followed by the guess of the investigator.

To address the second question regarding the integrity of blinding, for 
a given sample size, the probabilities of guessing treatment codes right for 
blocking size 2 and blocking size 4 can be directly calculated and compared. 
For illustration purpose, probabilities of guessing treatment codes right for a 
small clinical trial are as follows.

Blocking Size N = 4 N = 8 N = 16

2 0.2500 0.0625 0.0039
4 0.1667 0.0278 0.0008

In addition to the blocking size used, prior knowledge regarding the true 
blocking size may also be a factor which has an impact on the probability of 
correctly guessing. Hsieh et al. (2010) investigated six types of the possibilities 
of correctly guessing by considering the designs of the true blocking sizes of 
4 and 2 as well as three types of prior knowledge on which the guesser bases 
his/her guesses. The three types of prior information include guess without 
prior knowledge, guess by thinking the true blocking size is 4, and guess by 
thinking the true blocking size is 2. The probability model for calculating 
the probabilities of correctly guessing is described in the next subsection fol-
lowed by a numerical study to compare the above six types of probabilities 
for evaluating the impact of the blocking size and prior knowledge.

7.3.1  �Probability of Correctly Guessing

Consider that a two-arm, balanced, randomized, and parallel design of 
the study is employed for comparing the test treatment with the reference 
treatment. For the purpose of comparing the probabilities of guessing the 
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subjects’ treatment right between the blocking randomization methods with 
blocking sizes of 4 and 2, the total sample size of N (N/2 subjects for each of 
two groups) is assumed to be a multiple of 4. Furthermore, the total numbers 
of the blocks corresponding to the blocking size of 4 and 2 are N/4 and N/2, 
respectively.

Let Ui be the event of guessing the i th subject’s treatment right within the 
k th block for the design with the blocking size of 4, where i = 1, 2, 3, 4 and k = 
1, 2,â•›…, N/4 are the possible events denoted by X0, X1,â•›…, X15 for guessing mk 
subjects’ treatment right and the others wrong within the block where mk = 
0, 1, 2, 3, 4; these data are given in Table 7.1. On the other hand, if we hypoth-
esize the rth two neighbor blocks for the design with the blocking size of 2 as 
a block which consists of four subjects (two from the first block and the other 
two from the second block of the two neighbor blocks), where r = 1, 2,â•›…, N/4 = 
1, 2,â•›…, N/4, and treat the two subjects in the first block and the other two sub-
jects in the second block of the two neighbor blocks as the first, second, third, 
and fourth subjects in this hypothesized block, respectively, Ui and the events 
given in Table 7.1 for the design with the blocking size of 4 can also be used 
to describe the behavior and events of correctly guessing for each of the two 
neighbor blocks for the design with the blocking size of 2.

TABLE 7.1

Possible Events of Guessing mj Right 
within Each Block with k = 1,â•›…, N/4

mk Xi

0 X U U U UC C C C
0 1 2 3 4= ∩ ∩ ∩

1 X U U U UC C C
1 1 2 3 4= ∩ ∩ ∩

X U U U UC C C
2 1 2 3 4= ∩ ∩ ∩

X U U U UC C C
3 1 2 3 4= ∩ ∩ ∩

X U U U UC C C
4 1 2 3 4= ∩ ∩ ∩

2 X U U U UC C
5 1 2 3 4= ∩ ∩ ∩

X U U U UC C
6 1 2 3 4= ∩ ∩ ∩

X U U U UC C
7 1 2 3 4= ∩ ∩ ∩

X U U U UC C
8 1 2 3 4= ∩ ∩ ∩

X U U U UC C
9 1 2 3 4= ∩ ∩ ∩

X U U U UC C
10 1 2 3 4= ∩ ∩ ∩

3 X U U U UC
11 1 2 3 4= ∩ ∩ ∩

X U U U UC
12 1 2 3 4= ∩ ∩ ∩

X U U U UC
13 1 2 3 4= ∩ ∩ ∩

X U U U UC
14 1 2 3 4= ∩ ∩ ∩

4 X U U U U15 1 2 3 4= ∩ ∩ ∩
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Let Tw and Gw be the true treatment received and the treatment guessed 
by the guesser of the wth subject within some block for the design with the 
blocking size of 4 (or the hypothesized block formed by the two neighbor 
blocks for the design with the blocking size of 2), respectively, where w = 1, 
2, 3, 4. The event of guessing a subject’s treatment right happens when the 
true treatment received is exactly what the guesser guessed, i.e., Tw = Gw. 
Thus, the probability of each event in Table 7.1 is equal to the probability of 
the union of some intersection of mk’s events of Tw = Gw and (4 − mk)’s events 
of Tw ≠ Gw, where mk = 0, 1, 2, 3, 4.

Now we consider the probability of guessing M subjects’ treatment right 
among all N study subjects, where M is in fact equal to the sum of num-
bers of guessing right in each of total N/4 blocks for the design with the 
blocking size of 4 (or each of N/4 hypothesized blocks formed by each of 
the two neighborhood blocks for the design with the blocking size of 2), i.e., 

M mk
k

N
=

=∑ 1

4/
. In addition, the sum of the numbers of each possible event in 

Table 7.1 is equal to the total number of blocks, i.e., N yi
i

/4
0

15
=

=∑ , where yi 

is the number of blocks with the event of Xi. The probability of guessing M 
subjects’ treatment right among all N study subjects can then be given as
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with the restrictions given as
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where pxi is the probability corresponding to the event of Xi given in Table 
7.1, where i = 0,â•›…, 15.

Different blocking sizes as well as prior knowledge about the blocking size 
the guesser had before guess will result in the different combinations of true 
treatment assignment, possible guesses by the guesser, and their correspond-
ing probabilities within each block. For instance, if the true blocking size is 4, 
there are six possible combinations of treatment assignment for four subjects’ 
treatment within each block including ABAB, ABBA, BAAB, BABA, AABB, 
and BBAA with the probability of 1/6 for each, where A and B denote the test 
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treatment and the reference treatment, respectively, On the other hand, there 
are only four combinations of treatment assignments within the two neighbor 
blocks including ABAB, ABBA, BAAB, and BABA with the probability of 1/4 
for each if the blocking size is 2. With respect to the impact of prior knowledge 
the guesser had before the guess, there will be six possible guesses including 
ABAB, ABBA, BAAB, BABA, AABB, and BBAA with the probability of 1/6 for 
each if the guesser thought the true blocking size is 4 before his/her guess. If 
the guesser had no prior knowledge about the true blocking size, the possible 
guesses are still these six combinations. However, the probability of his/her 
guess for each subject’s treatment is 1/2, which results in the probability for 
each of the six possible guesses becoming 1/16 (=1/24). Table 7.2 summarizes 
the possible combinations of treatment assignments within each block for 
the design with the blocking size of 4 (or each hypothesized block formed by 
each two neighbor blocks if the blocking size is 2), the possible guesses by the 
guesser and their corresponding probabilities within each block under the dif-
ferent blocking sizes and prior information the guesser had before the guess.

7.3.2  �Numerical Study

To evaluate the impact of the different blocking sizes on the probability of 
guessing the subject’s treatment right by taking into consideration the prior 
information the guesser had, the following six kinds of probabilities denoted 
by P4N, P44, P42, P2N, P24, and P22 are calculated by (7.4):

	 1.	P4Nâ•›: P (Guess M subjects’ treatment right with the true blocking size 
of 4|guesser has no prior knowledge about the true blocking size).

	 2.	P44â•›: P (Guess M subjects’ treatment right with the true blocking size 
of 4|guesser thinks that the true blocking size is 4).

	 3.	P42â•›: P (Guess M subjects’ treatment right with the true blocking size 
of 4|guesser thinks that the true blocking size is 2).

	 4.	P2Nâ•›: P (Guess M subjects’ treatment right with the true blocking size 
of 2|guesser has no prior knowledge about the true blocking size).

	 5.	P24â•›: P (Guess M subjects’ treatment right with the true blocking size 
of 2|guesser thinks that the true blocking size is 4).

	 6.	P22â•›: P (Guess M subjects’ treatment right with the true blocking size 
of 2|guesser thinks that the true blocking size is 2).

The values of each Pi in (7.4) correspond to the above six cases that are pre-
sented in Table 7.3. The detailed derivations for obtaining the value of each Pi 
can be found in the Appendix.

Table 7.4 presents the probabilities of guessing M subjects’ treatment cor-
rectly for the total sample size of N = 4, 8, 12,â•›…, 100 with M = 1,â•›…, N. Denote 
the maximum value of M and (N − M) by MMax; the findings are summarized 
as the following:
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TABLE 7.2

Possible Combinations of Treatment Assignment with the Corresponding 
Probabilities within Each Block by Considering the Different True 
Blocking Sizes and the Prior Knowledge the Guesser Had before the Guess

Prior Information

True Blocking Size = 4 True Blocking Size = 2

Category Comb. Prob. Category Comb. Prob.

No True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB
BBAA

Guess ABAB 1/16 Guess ABAB 1/16
ABBA ABBA
BAAB BAAB
BABA BABA
AABB AABB
BBAA BBAA
ABBB
AABB
AAAB
BAAA
BBAA
BBBA
BABB
BBAB
ABAA
AABA

Blocking size = 2 True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB
BBAA

Guess ABAB 1/4 Guess ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA

Blocking size = 4 True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB
BBAA
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TABLE 7.2 (continued)

Possible Combinations of Treatment Assignment with the Corresponding 
Probabilities within Each Block by Considering the Different True 
Blocking Sizes and the Prior Knowledge the Guesser Had before the Guess

Prior Information

True Blocking Size = 4 True Blocking Size = 2

Category Comb. Prob. Category Comb. Prob.

Guess ABAB 1/6 Guess ABAB 1/6
ABBA ABBA
BAAB BAAB
BABA BABA
AABB AABB
BBAA BBAA

True, true treatment assignment; Guess, treatment assignment the guesser guessed; 
Comb., combination of treatment assignment; Prob., probability.

TABLE 7.3

Value of Each Pxi by Considering the Different True Blocking Sizes and the Prior 
Knowledge the Guesser Had before the Guess

Pxi

True Blocking Size = 4 True Blocking Size = 2

No Prior 
Information

Prior 
Information 
of Blocking 

Size = 4

Information 
of Blocking 

Size = 2
No Prior 

Information

Prior 
Information 
of Blocking 

Size = 4

Prior 
Information 
of Blocking 

Size = 2

PX0
1/16 1/6 1/6 1/16 1/6 1/4

PX1
1/16 0 0 1/16 0 0

PX2
1/16 0 0 1/16 0 0

PX3
1/16 0 0 1/16 0 0

PX4
1/16 0 0 1/16 0 0

PX5
1/16 1/9 1/6 1/16 1/6 1/4

PX6
1/16 1/9 1/12 1/16 1/12 0

PX7
1/16 1/9 1/12 1/16 1/12 0

PX8
1/16 1/9 1/12 1/16 1/12 0

PX9
1/16 1/9 1/12 1/16 1/12 0

PX10
1/16 1/9 1/6 1/16 1/6 1/4

PX11
1/16 0 0 1/16 0 0

PX12
1/16 0 0 1/16 0 0

PX13
1/16 0 0 1/16 0 0

PX14
1/16 0 0 1/16 0 0

PX15
1/16 1/6 1/6 1/16 1/6 1/4
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TABLE 7.4

Probabilities of Correctly Guessing for Different N and M by Considering 
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had 
before the Guess

N MMax M N − M

True Blocking Size = 4 True Blocking Size = 2

P4N (%) P44 (%) P42 (%) P2N (%) P24 (%) P22 (%)

4 2 2 2 37.50 66.67 66.67 37.50 66.67 50.00
3 1 3 25.00 0.00 0.00 25.00 0.00 0.00
4 4 0 6.25 16.67 16.67 6.25 16.67 25.00

8 4 4 4 27.34 50.00 50.00 27.34 50.00 37.50
5 3 5 21.88 0.00 0.00 21.88 0.00 0.00
6 2 6 10.94 22.22 22.22 10.94 22.22 25.00
7 1 7 3.13 0.00 0.00 3.13 0.00 0.00
8 8 0 0.39 2.78 2.78 0.39 2.78 6.25

12 6 6 6 22.56 40.74 40.74 22.56 40.74 31.25
7 5 7 19.34 0.00 0.00 19.34 0.00 0.00
8 4 8 12.09 23.61 23.61 12.09 23.61 23.44
9 3 9 5.37 0.00 0.00 5.37 0.00 0.00

10 2 10 1.61 5.56 5.56 1.61 5.56 9.38
11 1 11 0.29 0.00 0.00 0.29 0.00 0.00
12 12 0 0.02 0.46 0.46 0.02 0.46 1.56

16 8 8 8 19.64 35.03 35.03 19.64 35.03 27.34
9 7 9 17.46 0.00 0.00 17.46 0.00 0.00

10 6 10 12.22 23.46 23.46 12.22 23.46 21.88
11 5 11 6.67 0.00 0.00 6.67 0.00 0.00
12 4 12 2.78 7.72 7.72 2.78 7.72 10.94
13 3 13 0.85 0.00 0.00 0.85 0.00 0.00
14 2 14 0.18 1.24 1.24 0.18 1.24 3.13
15 1 15 0.02 0.00 0.00 0.02 0.00 0.00
16 16 0 0.00 0.08 0.08 0.00 0.08 0.39

20 10 10 10 17.62 31.17 31.17 17.62 31.17 24.61
11 9 11 16.02 0.00 0.00 16.02 0.00 0.00
12 8 12 12.01 22.76 22.76 12.01 22.76 20.51
13 7 13 7.39 0.00 0.00 7.39 0.00 0.00
14 6 14 3.70 9.26 9.26 3.70 9.26 11.72
15 5 15 1.48 0.00 0.00 1.48 0.00 0.00
16 4 16 0.46 2.12 2.12 0.46 2.12 4.40
17 3 17 0.11 0.00 0.00 0.11 0.00 0.00
18 2 18 0.02 0.26 0.26 0.02 0.26 0.98
19 1 19 0.00 0.00 0.00 0.00 0.00 0.00
20 20 0 0.00 0.01 0.01 0.00 0.01 0.10

28 15 15 13 13.95 0.00 0.00 13.95 0.00 0.00
16 12 16 11.33 21.06 21.06 11.33 21.06 18.33
18 18 10 4.89 11.03 11.03 4.89 11.03 12.22
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering 
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had 
before the Guess

N MMax M N − M

True Blocking Size = 4 True Blocking Size = 2

P4N (%) P44 (%) P42 (%) P2N (%) P24 (%) P22 (%)

19 9 19 2.57 0.00 0.00 2.57 0.00 0.00
20 8 20 1.16 3.81 3.81 1.16 3.81 6.11
21 21 7 0.44 0.00 0.00 0.44 0.00 0.00
22 6 22 0.14 0.86 0.86 0.14 0.86 2.22
24 4 24 0.01 0.12 0.12 0.01 0.12 0.56
25 3 25 0.00 0.00 0.00 0.00 0.00 0.00
27 27 1 0.00 0.00 0.00 0.00 0.00 0.00
28 28 0 0.00 0.00 0.00 0.00 0.00 0.01

36 18 18 18 13.21 23.08 23.08 13.21 23.08 18.55
20 16 20 10.63 19.50 19.50 10.63 19.50 16.69
21 15 21 8.10 0.00 0.00 8.10 0.00 0.00
24 12 24 1.82 5.14 5.14 1.82 5.14 7.08
27 9 27 0.14 0.00 0.00 0.14 0.00 0.00
28 8 28 0.04 0.36 0.36 0.04 0.36 1.17
30 6 30 0.00 0.06 0.06 0.00 0.06 0.31
32 4 32 0.00 0.01 0.01 0.00 0.01 0.06
33 3 33 0.00 0.00 0.00 0.00 0.00 0.00
36 36 0 0.00 0.00 0.00 0.00 0.00 0.00

44 23 21 23 11.44 0.00 0.00 11.44 0.00 0.00
24 20 24 10.01 18.18 18.18 10.01 18.18 15.42
26 18 26 5.85 12.06 12.06 5.85 12.06 11.86
27 27 17 3.90 0.00 0.00 3.90 0.00 0.00
28 16 28 2.37 6.10 6.10 2.37 6.10 7.62
29 15 29 1.31 0.00 0.00 1.31 0.00 0.00
30 30 14 0.65 2.36 2.36 0.65 2.36 4.07
32 12 32 0.12 0.69 0.69 0.12 0.69 1.78
33 33 11 0.04 0.00 0.00 0.04 0.00 0.00
35 9 35 0.00 0.00 0.00 0.00 0.00 0.00
36 8 36 0.00 0.03 0.03 0.00 0.03 0.17
38 6 38 0.00 0.00 0.00 0.00 0.00 0.04
39 39 5 0.00 0.00 0.00 0.00 0.00 0.00
40 4 40 0.00 0.00 0.00 0.00 0.00 0.01
41 3 41 0.00 0.00 0.00 0.00 0.00 0.00
42 42 2 0.00 0.00 0.00 0.00 0.00 0.00
44 44 0 0.00 0.00 0.00 0.00 0.00 0.00

52 27 27 25 10.60 0.00 0.00 10.60 0.00 0.00
28 24 28 9.47 17.08 17.08 9.47 17.08 14.39

(continued)
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering 
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had 
before the Guess

N MMax M N − M

True Blocking Size = 4 True Blocking Size = 2

P4N (%) P44 (%) P42 (%) P2N (%) P24 (%) P22 (%)

30 30 22 6.01 12.07 12.07 6.01 12.07 11.51
31 21 31 4.26 0.00 0.00 4.26 0.00 0.00
32 20 32 2.80 6.78 6.78 2.80 6.78 7.92
33 33 19 1.70 0.00 0.00 1.70 0.00 0.00
34 18 34 0.95 3.03 3.03 0.95 3.03 4.66
36 16 36 0.23 1.08 1.08 0.23 1.08 2.33
37 15 37 0.10 0.00 0.00 0.10 0.00 0.00
39 39 13 0.01 0.00 0.00 0.01 0.00 0.00
40 12 40 0.01 0.07 0.07 0.01 0.07 0.34
42 42 10 0.00 0.01 0.01 0.00 0.01 0.10
43 9 43 0.00 0.00 0.00 0.00 0.00 0.00
44 8 44 0.00 0.00 0.00 0.00 0.00 0.02
45 45 7 0.00 0.00 0.00 0.00 0.00 0.00
46 6 46 0.00 0.00 0.00 0.00 0.00 0.00
48 4 48 0.00 0.00 0.00 0.00 0.00 0.00
49 3 49 0.00 0.00 0.00 0.00 0.00 0.00
51 51 1 0.00 0.00 0.00 0.00 0.00 0.00
52 52 0 0.00 0.00 0.00 0.00 0.00 0.00

60 30 30 30 10.26 17.85 17.85 10.26 17.85 14.45
32 28 32 9.00 16.15 16.15 9.00 16.15 13.54
33 27 33 7.63 0.00 0.00 7.63 0.00 0.00
36 24 36 3.13 7.25 7.25 3.13 7.25 8.06
39 21 39 0.69 0.00 0.00 0.69 0.00 0.00
40 20 40 0.36 1.47 1.47 0.36 1.47 2.80
42 18 42 0.08 0.49 0.49 0.08 0.49 1.33
44 16 44 0.01 0.13 0.13 0.01 0.13 0.55

60 45 15 45 0.01 0.00 0.00 0.01 0.00 0.00
48 12 48 0.00 0.01 0.01 0.00 0.01 0.06
51 9 51 0.00 0.00 0.00 0.00 0.00 0.00
52 8 52 0.00 0.00 0.00 0.00 0.00 0.00
54 6 54 0.00 0.00 0.00 0.00 0.00 0.00
56 4 56 0.00 0.00 0.00 0.00 0.00 0.00
57 3 57 0.00 0.00 0.00 0.00 0.00 0.00
60 60 0 0.00 0.00 0.00 0.00 0.00 0.00

68 35 33 35 9.37 0.00 0.00 9.37 0.00 0.00
36 32 36 8.58 15.35 15.35 8.58 15.35 12.83
38 30 38 6.06 11.77 11.77 6.06 11.77 10.80
39 39 29 4.66 0.00 0.00 4.66 0.00 0.00
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering 
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had 
before the Guess

N MMax M N − M

True Blocking Size = 4 True Blocking Size = 2

P4N (%) P44 (%) P42 (%) P2N (%) P24 (%) P22 (%)

40 28 40 3.38 7.57 7.57 3.38 7.57 8.10
41 27 41 2.31 0.00 0.00 2.31 0.00 0.00
42 42 26 1.48 4.08 4.08 1.48 4.08 5.40
44 24 44 0.51 1.85 1.85 0.51 1.85 3.19
45 45 23 0.27 0.00 0.00 0.27 0.00 0.00
47 21 47 0.06 0.00 0.00 0.06 0.00 0.00
48 20 48 0.03 0.22 0.22 0.03 0.22 0.76
50 18 50 0.00 0.06 0.06 0.00 0.06 0.31
51 51 17 0.00 0.00 0.00 0.00 0.00 0.00
52 16 52 0.00 0.01 0.01 0.00 0.01 0.11
53 15 53 0.00 0.00 0.00 0.00 0.00 0.00
54 54 14 0.00 0.00 0.00 0.00 0.00 0.03
56 12 56 0.00 0.00 0.00 0.00 0.00 0.01
57 57 11 0.00 0.00 0.00 0.00 0.00 0.00
59 9 59 0.00 0.00 0.00 0.00 0.00 0.00
60 8 60 0.00 0.00 0.00 0.00 0.00 0.00
62 6 62 0.00 0.00 0.00 0.00 0.00 0.00
63 63 5 0.00 0.00 0.00 0.00 0.00 0.00
64 4 64 0.00 0.00 0.00 0.00 0.00 0.00
65 3 65 0.00 0.00 0.00 0.00 0.00 0.00
66 66 2 0.00 0.00 0.00 0.00 0.00 0.00
68 68 0 0.00 0.00 0.00 0.00 0.00 0.00

76 40 36 40 8.22 14.65 14.65 8.22 14.65 12.22
44 44 32 3.57 7.79 7.79 3.57 7.79 8.09
48 28 48 0.66 2.20 2.20 0.66 2.20 3.52
52 52 24 0.05 0.33 0.33 0.05 0.33 0.99
56 20 56 0.00 0.03 0.03 0.00 0.03 0.17
60 60 16 0.00 0.00 0.00 0.00 0.00 0.02
64 12 64 0.00 0.00 0.00 0.00 0.00 0.00
68 68 8 0.00 0.00 0.00 0.00 0.00 0.00
72 4 72 0.00 0.00 0.00 0.00 0.00 0.00
76 76 0 0.00 0.00 0.00 0.00 0.00 0.00

84 44 44 40 7.90 14.04 14.04 7.90 14.04 11.68
48 36 48 3.71 7.93 7.93 3.71 7.93 8.04
52 52 32 0.81 2.53 2.53 0.81 2.53 3.79
56 28 56 0.08 0.46 0.46 0.08 0.46 1.20
60 60 24 0.00 0.05 0.05 0.00 0.05 0.25

(continued)
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering 
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had 
before the Guess

N MMax M N − M

True Blocking Size = 4 True Blocking Size = 2

P4N (%) P44 (%) P42 (%) P2N (%) P24 (%) P22 (%)

64 20 64 0.00 0.00 0.00 0.00 0.00 0.03
68 68 16 0.00 0.00 0.00 0.00 0.00 0.00

72 12 72 0.00 0.00 0.00 0.00 0.00 0.00

76 76 8 0.00 0.00 0.00 0.00 0.00 0.00

80 4 80 0.00 0.00 0.00 0.00 0.00 0.00

84 84 0 0.00 0.00 0.00 0.00 0.00 0.00

92 48 44 48 7.61 13.50 13.50 7.61 13.50 11.21

52 52 40 3.82 8.01 8.01 3.82 8.01 7.97

56 36 56 0.95 2.82 2.82 0.95 2.82 4.01

60 60 32 0.12 0.59 0.59 0.12 0.59 1.41

64 28 64 0.01 0.07 0.07 0.01 0.07 0.34

68 68 24 0.00 0.01 0.01 0.00 0.01 0.06

72 20 72 0.00 0.00 0.00 0.00 0.00 0.01

76 76 16 0.00 0.00 0.00 0.00 0.00 0.00

80 12 80 0.00 0.00 0.00 0.00 0.00 0.00

84 84 8 0.00 0.00 0.00 0.00 0.00 0.00

88 4 88 0.00 0.00 0.00 0.00 0.00 0.00

92 92 0 0.00 0.00 0.00 0.00 0.00 0.00

100 52 52 48 7.35 13.02 13.02 7.35 13.02 10.80

56 44 56 3.90 8.05 8.05 3.90 8.05 7.88

60 60 40 1.08 3.08 3.08 1.08 3.08 4.19

64 36 64 0.16 0.73 0.73 0.16 0.73 1.60

68 68 32 0.01 0.11 0.11 0.01 0.11 0.44

72 28 72 0.00 0.01 0.01 0.00 0.01 0.08

76 76 24 0.00 0.00 0.00 0.00 0.00 0.01

80 20 80 0.00 0.00 0.00 0.00 0.00 0.00

84 84 16 0.00 0.00 0.00 0.00 0.00 0.00

88 12 88 0.00 0.00 0.00 0.00 0.00 0.00

92 92 8 0.00 0.00 0.00 0.00 0.00 0.00

96 4 96 0.00 0.00 0.00 0.00 0.00 0.00
100 100 0 0.00 0.00 0.00 0.00 0.00 0.00
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	 1.	Common findings:
	 a.	 The probabilities for guessing M subjects’ treatment right are 

equal to those for guessing (N − M) subjects’ treatment right.
	 b.	 P44, P42, P24, and P22 are equal to 0 for the odd values of M.
	 2.	Comparison of P4N, P44, and P42 for the design with the blocking 

size of 4:
	 a.	 P44 is equal to P42, which means there is no impact on the proba-

bility of correctly guessing whether the guesser thought the true 
blocking size is 2 or 4 before the guess.

	 b.	 P44 and P42 are always greater than P4N for all N and MMax if M is 
even. In addition, the difference between P44 and P4N becomes 
larger when N increases.

	 3.	Comparison of P2N, P22, and P24 for the design with the blocking 
size of 2:

	 a.	 P22 is always smaller than P2N for all N and MMax. In addition, 
the difference between P22 and P2N becomes larger when N 
increases.

	 b.	 P24 is greater than P22 for small MMax for all N if M is even. 
However, it becomes smaller than P22 when MMax is larger.

	 c.	 P24 is always greater than P2N for all N and MMax. In addition, 
the difference between P24 and P2N becomes larger when N 
increases.

	 4.	Comparison of P4N, P44, and P42 for the design with the blocking size 
of 4 with P2N, P22, and P24 for the design with the blocking size of 2:

	 a.	 P4N is equal to P2N, which means there is no difference between 
correctly guessing the designs with the blocking sizes of 4 and 2 
if the guesser guessed without any prior knowledge.

	 b.	 Since P4N = P2N, the comparison between P4N and P22 and that 
between P4N and P24 are the same as the comparison between P2N 
and P22 and that between P2N and P24, respectively.

	 c.	 P44 is greater than P22 for a small MMax, while P22 becomes larger 
than P44 when MMax becomes larger.

	 d.	 P44 and P42 are equal to P24, which means the probabilities of cor-
rectly guessing are the same when the design with the blocking 
size of 4 is chosen or the blocking size the guesser thought of 
before the guess was 4.

	 5.	The comparison between P42 and P2N and that between P42 and P22 are 
the same as the comparison between P24 and P2N and that between 
P24 and P22 since P42 = P24.
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7.3.3  �Remarks

The design with the blocking size of 4 is usually considered to have less selec-
tion bias than the design with the blocking size of 2 because the true treat-
ment is harder to guess. However, prior knowledge about the true blocking 
size the guesser had before the guess is also a factor that has an impact on the 
probability of correctly guessing. As the results show in the numerical study, 
the probabilities of correctly guessing the designs with the true blocking 
sizes of 4 and 2 are smallest and equal if there is no prior knowledge about 
the true blocking size before the guess. The results are obvious since the 
probability of guessing right for the true treatment of each individual sub-
ject without any prior knowledge is 1/2, which is just like tossing a fair coin. 
However, the probability of correctly guessing between two types of prob-
abilities with the true blocking size is the same as what the guesser thought 
of before the guess, i.e., P44 versus P22, P44 is greater than P22 for small MMax 
while the results are opposite when MMax becomes larger. On the other hand, 
P44 is even equal to P42 and P24, i.e., the probability of correctly guessing if the 
true blocking size is 4 with the prior knowledge the guesser had is the block-
ing size of 2 and the true blocking size is 2 with the prior knowledge the 
guesser had is the blocking size of 4, respectively. The results seem different 
from what we think usually, i.e., the probabilities of correctly guessing for 
the design with the blocking size of 4 is always lower than that for the design 
with the blocking size of 2. However, not only does it show what the true 
blocking size is, but the prior knowledge the guesser had before the guess 
also has great impact on the probabilities of guessing correctly.

The choice of blocking size for randomized trials depends not only on 
the number of treatments but also on the sample size for the clinical tri-
als. In practice, the probabilities of correctly guessing will be reduced if the 
blocking size becomes larger but it may result in the imbalance of treatment 
assignment, especially if patient characteristics change with time. On the 
other hand, with respect to the two-arm trial with a small sample size, the 
probabilities of correctly guessing are not small for both the designs with 
the blocking sizes of 4 and 2, in particular when MMax is small. Therefore, the 
design with the blocking size of at least 6 or the design with mixed blocking 
sizes rather than only the blocking size of 4 may need to be suggested for a 
two-arm trial.

7.4â•‡� Test for Integrity of Blinding

Consider the following example given in Karlowski et al. (1975). A double-
blind placebo-controlled study was conducted by the National Institutes 
of Health to evaluate the difference between the prophylactic and 
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therapeutic effects of ascorbic acid for the common cold. At the comple-
tion of the study, a questionnaire was distributed to every subject enrolled 
in the study so that they could guess which treatment they received. The 
results from the 190 subjects (101 subjects are in the actual treatment 
group and 89 subjects are in the placebo group) who completed the study 
are summarized as follows. Among the 101 subjects in the actual treat-
ment group, 40 subjects guessed right, 12 subjects guessed wrong, and 49 
subjects indicated “Do not know.” For the 89 subjects in the placebo group, 
39 subjects guessed right, 11 subjects guessed wrong, and 39 subjects indi-
cated “Do not know.”

To test the integrity of blinding we need to define a null hypothesis H0. If 
patients guess their treatment codes randomly, then blindness is considered 
to be preserved. Thus, we consider

	 H0 : patients guess their treatment codes randomly.

Let Ai be the event that a patient guesses he/she is in the ith group and Bj be 
the event that a patient is assigned to the jth group. If a patient guesses his/
her treatment code randomly, then the events Ai and Bj are independent for 
any i and j, and P(Ai) = 1/2. Assume that patients who answered “Do not 
know” did not guess their treatment codes throughout the study. Let mj be 
the number of patients in group j who guessed their treatment codes, j = 1, 2. 
Then, under the null hypothesis H0, we have

	 P j i (a patient in group  guesses that he/she is in group )

	
= ∩ = =

+
=P A B P A P B

m
m m

ji j i j
j( ) ( ) ( )

( )
, , .

2
1 2

1 2
	 (7.5)

Let aij be the observed number (frequency) of the patients who are in the 
jth group and guessed that they are in the ith group. Then the integrity of 
blinding can be tested by analyzing a contingency table (Table 7.5), where the 
numbers in parentheses are the expected frequencies under H0 computed 
according to (7.5).

For example, with the data given in Table 7.5, we obtain a contingency table 
(Table 7.6).

Based on Table 7.6, we can use either Fisher’s exact test or Person’s chi-
square test to test for the integrity of blinding. This test for the integrity of 
blinding can be generalized to the case where there are a treatment groups, 
which leads to an a × a contingency table. Analyses on investigators’ guesses 
of patients’ treatment codes can be performed similarly.

Consider a single-site parallel design comparing a ≥ 2 treatments. Let Aij be 
the event that a patient in the jth treatment group guesses that he/she is in 
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the ith group; i = 1,â•›…, a, a + 1, where i = a + 1 defines the event that a patient 
does not guess (or answers “do not know”). If the hypothesis

	 H P A P A i jij j0 1: for any and( ) ( )=

holds, then the blindness is considered to be preserved. We can test 
H0 using the well-known Pearson chi-square test (with a(a − 1) degrees of 
freedom) under the contingency tables constructed based on the observed 
counts. A straightforward calculation using data results in the observed 
Pearson’s chi-square statistic of 31.3, which results in a p-value smaller 
than 0.001. Thus, we conclude with a very high significance level that the 
blindness is not preserved. Hence, the integrity of blinding is in doubt.

7.5â•‡� Analysis under Breached Blindness

When the test of the integrity of blinding produces a significant result, ana-
lyzing the data by ignoring this result may lead to a biased result (i.e., the 
integrity of blinding is doubtful). In what follows we introduce a method 

TABLE 7.5

Contingency Table for the Integrity of Blinding

Patient’s Guess

Actual Assignment

TotalGroup 1 Group 2
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2
⎛
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o
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1 2

2
+

+⎛
⎝⎜

⎞
⎠⎟

Total m1 m2

TABLE 7.6

Contingency Table for Patients’ Guess

Patient’s Guess

Actual Assignment

TotalActive Treatment Placebo

Active treatment 40 (26) 11 (25) 51 (25.5)
Placebo 12 (26) 39 (25) 51 (25.5)
Total 52 50
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of testing treatment effects by incorporating the data of patients’ guesses of 
their treatment codes (Chow and Shao, 2003, 2004). The idea is to include a 
patient’s guess as a factor in the analysis of variance (ANOVA) for the treat-
ment effects.

Suppose that the study design is a single-site parallel design comparing 
a ≥ 2 treatments. If the blindness is preserved, then the treatment effects 
can be tested using the one-way ANOVA table. If we add patients’ or 
investigators’ guessing treatment codes as a factor, then we can test treat-
ment effects by using a two-way ANOVA table. If we add both patients’ 
and investigators’ guessing treatment codes as factors, then we can test 
treatment effects by using a three-way ANOVA table. If the study is a 
multicenter trial, then including guessing factors leads to a three-way or 
two-way ANOVA. For illustration purpose, consider adding one guessing 
factor, γ with b levels, into a single study site (i.e., one-way ANOVA is used 
if the guessing factor is ignored). There are different ways for constructing 
the variable γ. One way is to use the guessing treatment i, i = 1,â•›…, a, as the 
first a levels of γ and not guessing (do not know) as the last level. Hence 
b = a + 1. Another way is to use guessing correctly, guessing incorrectly, 
and not guessing as three levels for γ and thus, b = 3. Even if the original 
design is balanced, i.e., each treatment (and center) has the same number 
of patients, the two-way ANOVA or three-way ANOVA after including 
factor γ is not balanced. Hence methods for unbalanced ANOVA are neces-
sarily considered.

Let xijk be the response from the kth patient under the ith treatment 
with the jth guessing status, where i = 1,â•›…, a, j = 1,â•›…, b, k = 1,â•›…, nij, and 
nij is the number of patients in the (i, j)th cell. Let x–ij. be the sample mean 
of the patients in the (i, j)th cell, x–i.. be the sample mean of the patients 
under treatment i, x–.j. be the sample mean of patients with guessing status 
j, x– be the sample mean of all patients, ni. be the number of patients under 
treatment i, n.j be the number of patients with guessing status j, and 
n  be the total number of patients. Define R nx R n xi i

i

a
( ) , ( , ) ..μ μ τ= = ⋅

=∑2 2

1  
(where τ denotes treatment effect and μ denotes the overall mean), 

R n x R n xj j
j

b

ij ij
j

b
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 (where τ × γ denotes the 

interaction between τ and γ), and R n x Z C Zi i
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a
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−
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1
 where Z is 

a (b − 1)-vector whose jâ•›th component is n x n x j bj j ij i
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C  is a (b − 1) × (b −1) matrix whose jth diagonal element is n n nj ij i
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. Now let

	 R R R( | , , ) ( , , , ) ( , , ),τ γ μ τ γ μ τ γ τ γ μ τ γ× = × −

	 R R R( | ) ( , ) ( ),τ μ μ τ μ= −
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	 R R R( | ) ( , ) ( ),γ μ μ γ μ= −

	 R R R( | , ) ( , , ) ( , ),τ μ γ μ τ γ μ γ= −

	 R R R( | , ) ( , , ) ( , ),γ μ τ μ τ γ μ τ= −
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and s be the number of nonzero nij’s. An ANOVA table according to Searle 
(1971) can be constructed.

An F-ratio (in the last column of Table 7.7) is said to be significant at level 
α if it is larger than the (1 − α)th quantile of the F-distribution with denomi-
nator degrees of freedom n − s and the numerator degrees of freedom given 
by the number in the third column of the same row. Note that F(τ|μ) is the 
F-ratio for testing τ-effect (treatment effect) adjusted for μ and ignoring γ, 
whereas F(τ|μ, γ) is the F-ratio for testing τ-effect adjusted for both μ and γ. 
These two F-ratios are the same in a balanced model but are different in an 
unbalanced model. A similar discussion can be made for F(γ|μ) and F(γ|μ, τ).

Because of the imbalance, the interpretation of the results given by F-ratios 
in the ANOVA table is not straightforward. Table 7.8 lists a total of 14 pos-
sible cases according to the significance of F-ratios F(τ|μ), F(τ|μ,â•›γ), F(γ|μ), 

TABLE 7.7

ANOVA for Treatment Effects under Breached Blindness

Source
Sum of 
Squares df F-Ratio

τ after μ R(τ|μ) a − 1 F
R a

n s
( | )

( | )/( )
/( )

τ μ
τ μ

=
−

−
1

SSE

γ after μ and τ R(γ|μ,τ) b − 1 F
R b

n s
( | , )

( | , )/( )
/( )

γ μ τ
γ μ τ

=
−

−
1

SSE

γ after μ R(γ|μ) a − 1 F
R b

n s
( | )

( | )/( )
/( )

γ μ
γ μ

=
−

−
1

SSE

τ after μ and γ R(τ|μ,γ) b − 1 F
R a

n s
( | , )

( | , )/( )
/( )

τ μ γ
τ μ γ

=
−

−
1

SSE

Interaction R(τ ×â•›γ|μ,τ,γ) s − a − b + 1 F
R s a b

n s
( | , , )

( | , , )/( )
/( )

τ γ μ τ γ
τ γ μ τ γ

× =
× − − +

−
1

SSE

Error SSE n − s
Total SS(TO) n − 1

s, number of nonzero nij’s.
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and F(γ|μ,â•›τ). The suggestion from Searle (1971, Chapter 7) regarding which 
effects should be included in the model is given in the second last column of 
Table 7.5. However, our purpose is slightly different, i.e., we are interested in 
whether the treatment effect τ is significant regardless of the presence of the 
effect γ. Our recommendations in these 14 cases are given in the last column 
of Table 7.8, which is interpreted as follows. When both F(τ|μ) and F(τ|μ, γ) 
are significant (rows 1 through 4 of Table 7.8), regardless of whether the 
γ effect is significant or not, the conclusion is easy to make, i.e., the treatment 
effect is significant. In the next three cases (rows 5 through 7 of Table 7.8), F(τ|μ) 
is not significant but F(τ|μ, γ) is significant, indicating that the treatment effect 
cannot be clearly detected by ignoring γ but once γ is included in the model as 
a blocking variable, the treatment effect is significant. In these three cases, we 
conclude that the treatment effect is significant. When F(τ|μ, γ) is not significant 
but F(γ|μ) is significant, it indicates that once γ is fitted into the model, the 
treatment effect is not significant, i.e., the treatment effect is distorted by the γ 
effect. In such cases (rows 8 through 11 of Table 7.8), we cannot conclude that 
the treatment effect is significant. In the last three cases (rows 12 through 14 
of Table 7.6), both F(γ|μ) and F(τ|μ, γ) are not significant. If F(τ|μ) is significant 

TABLE 7.8

Conclusions on the Significance of the Treatment Effect When F(τ ×â•›γ |μ, τ, γ) 
Is Insignificant

Significance of F-Ratio

Fitting 𝛕 and Then 
𝛄 After 𝛕

Fitting 𝛄 and Then 
𝛕 After 𝛄

Effects to Be 
Included in the 

Model According 
to Chow and 
Shao (2004)

Conclusion: 
Significance of the 
Treatment EffectF(𝛕|𝛍) F(𝛄|𝛍,â•›𝛕) F(𝛄|𝛍) F(𝛕|𝛍,â•›𝛄)

Yes Yes Yes Yes τ, γ Yes
Yes Yes No Yes τ, γ Yes
Yes No Yes Yes τ Yes
Yes No No Yes τ Yes
No Yes Yes Yes τ, γ Yes
No Yes No Yes τ, γ Yes
No No No Yes τ, γ Yes
No Yes Yes No γ No
No No Yes No γ No
Yes Yes Yes No γ No
Yes No Yes No τ, γ No
Yes No No No τ Yes
No Yes No No τ, γ No
No No No No None No

Source:	 Chow, S.C. and Shao, J., Statistics in Medicine, 23, 1185, 2004.
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but F(γ|μ, τ) is not (row 12 of Table 7.8), it indicates that γ has no effect and the 
treatment effect is significant. On the other hand, if F(γ|μ, τ) is significant but 
F(τ|μ) is not (row 13 of Table 7.8)—a case that should happen somewhat infre-
quently according to Searle (1971)—we cannot conclude that the treatment effect 
is significant. Finally, when neither F(τ|μ) nor F(γ|μ, τ) is significant, we cannot 
conclude that the treatment effect is significant (row 14 of Table 7.8).

The analysis is difficult when the interaction F(τ × γ|μ, τ, γ) is significant. 
In general, we cannot conclude that the treatment effect is significant when 
F(τ × γ|μ, τ, γ) is significant. An analysis conditional on the value of γ may be 
carried out to draw some partial conclusions.

Note that we only focus on the analysis of a single response variable for 
treatment effects. Although our main idea of adding the guessing treatment 
code factors into the analysis can be applied to more complex cases (e.g., 
when there are other response variables or covariates that may be influenced 
by guessing treatment codes), further research is needed.

7.6â•‡� An Example

Consider a double-blind placebo-controlled trial with a two-group Â�parallel 
design for the evaluation of the effectiveness of an appetite suppressant in 
weight loss in obese women (see Brownell and Stunkard, 1982). Table 7.9 
lists  the data on patients’ guesses of the treatment codes. Observed mean 
weight loss (kg) is summarized in Table 7.10.

In this example, the blindness is not preserved with a high significance. 
If patients’ guessing is ignored, then a simple two-sample t-test (which is 
the same as the one-way ANOVA) results in the observed t-statistic of 2.45 
and p-value of 0.009. Hence the treatment effect is significant when patients’ 
guessing is ignored.

Suppose that one would like to know whether the significant result is a 
biased result due to breached blindness. The method described in the previ-
ous section can be applied to reanalyze the data in Table 7.10. First, consider 

TABLE 7.9

Results of Patients’ Guesses

Patient’s Guess

Actual Treatment Assignment

Active Drug Placebo

Active drug 19 3
Placebo 3 16
Do not know 2 6
Total 24 25

Source:	 Brownell, K.D. and Stunkard, A.J., Am. J. 
Psychiatr., 139, 1487, 1982. With permission.
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the analysis with γ = guessing correctly, guessing incorrectly, and not guess-
ing. The sample means (with estimated standard deviation in parentheses) 
and sample sizes are given by

	 x n x n11 11 21 219 6 1 14 19 6 1 1 25 16⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n12 12 22 223 9 2 88 3 2 6 2 88 3⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n13 13 23 2312 2 3 53 2 5 8 2 04 6⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n1 1 1 19 1 1 02 24 8 0 0 84 35⋅⋅ ⋅ ⋅ ⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n2 2 2 25 6 1 00 25 3 3 2 04 6⋅⋅ ⋅ ⋅ ⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n= = = =⋅ ⋅ ⋅7 3 0 71 49 7 4 1 76 83 3. ( . ), , . ( . ), .

The resulting ANOVA table is summarized here.

Source R df R/df F-Ratio p-Value

τ after μ R(τ|μ) 1 160.2 6.43 0.015

γ after μ and τ R(γ|μ, τ) 2 57.6 2.31 0.111

γ after μ R(γ|μ) 2 66.1 2.65 0.082

τ after μ and γ R(τ|μ, γ) 1 143.2 5.75 0.021
Interaction R(τ ×â•›γ|μ, τ, γ) 2 12.6 0.51 0.604
Error SSE 43 24.9

Source:	 Chow, S.C. and Shao, J., Stat. Med., 23, 1185, 2004. © 2004 by 
John Wiley & Sons Ltd. With permission.

It seems that the interaction F(τ × γ|μ, τ, γ) is not significant and both treat-
ment effect F-ratios F(τ|μ) and F(τ|μ, γ) are significant. Thus, according to 
the previous section (see Table 7.8), we can conclude that the treatment 
effect is significant, regardless of whether the effect of γ is significant or not. 
However, the conclusion may be different if we consider the levels of γ, the 

TABLE 7.10

Sample Mean Weight Loss (kg)

Patient’s Guess

Actual Treatment Assignment

Active Drug Placebo

Active drug 9.6 2.6
Placebo 3.9 6.1
Do not know 12.2 5.8
Total 9.1 5.6

Source:	 Brownell, K.D. and Stunkard, A.J., Am. J. 
Psychiatry, 139, 1487, 1982. With permission.
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sample means (with estimated standard deviation in parentheses), and the 
sample sizes given by

	 x n x n11 11 21 219 6 1 14 19 2 6 2 88 3⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n12 12 22 223 9 2 88 3 6 1 1 25 16⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n13 13 23 2312 2 3 53 2 5 8 2 04 6⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n1 1 1 19 1 1 02 24 8 7 1 06 22⋅⋅ ⋅ ⋅ ⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n2 2 2 25 6 1 00 25 5 7 1 14 19⋅⋅ ⋅ ⋅ ⋅ ⋅= = = =. ( . ), , . ( . ), ,

	 x n x n= = = =⋅ ⋅ ⋅7 3 0 71 49 7 4 1 76 83 3. ( . ), , . ( . ), .

Note that x–li. are unchanged but x–2j. have changed with this new choice of 
Â�levels of γ. The corresponding ANOVA table is given below. As can be seen 
from the ANOVA table, although F(τ|μ) remains the same, the value of 
F(τ × γ|μ, τ, γ) is much larger than that in the previous case. The p-value 
corresponding to F(τ × γ|μ, τ, γ) is 0.097, which indicates that the interaction 
between the treatment and γ is marginally significant. If this interaction is 
ignored, then we may conclude that the treatment effect is significant, since 
the results are the same as those in the previous case except that F(τ|μ, γ) is 
less significant. But no conclusion can be made if the interaction effect cannot 
be ignored.

Source R df R/df F-Ratio p-Value

τ after μ R(τ|μ) 1 160.2 6.43 0.015

γ after μ and τ R(γ|μ,τ) 2 8.9 0.36 0.700

γ after μ R(γ|μ) 2 54.7 2.20 0.123

τ after μ and γ R(τ|μ,γ) 1 68.6 2.76 0.104
Interaction R(τ ×â•›γ|μ,τ,γ) 2 61.3 2.46 0.097
Error SSE 43 24.9

Source:	 Chow, S.C. and Shao, J., Stat. Med., 23, 1185, 2004. © 2004 
by John Wiley & Sons Ltd. With permission.

It can be seen from this example that the choice of levels of γ is important. 
Different ways of constructing the levels of γ may lead to different conclu-
sions. In this example, it seems that the first method of constructing the level 
of γ (guessing correctly, guessing incorrectly, and not guessing) is better, 
since the guessing factor has less interaction with the treatment effect.

In the presence of interaction, however, a subgroup analysis (according 
to the levels of γ) may be useful. Subgroup sample mean comparisons can 
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be made as indicated in Figure 7.1. Figure 7.1 displays six subgroup sample 
means x–ij, i = 1, 2, j = 1, 2, 3. The first part of Figure 7.1 considers the situation 
where γ = guessing active drug, guessing placebo, and not guessing. The two 
sample means (dots) corresponding to the same γ level are connected by a 
straight line segment. In the first part of the figure, although the three line 
segments have different slopes, the slopes have the same sign. Furthermore, 
every pair of two line segments either does not cross or crosses slightly. This 
indicates that in the situation considered in the first part of the figure, there 
is no significant interaction and the treatment effect is evident. On the other 
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hand, the slopes of the line segments in the second part of the figure have 
different signs and two line segments cross considerably, which indicates 
that interaction is significant and we cannot draw an overall conclusion on 
the treatment effect in the situation considered in the second part of the 
figure. A partial conclusion that can be drawn from the second part of the fig-
ure is that the treatment effect is significant when we focus on patients not 
guessing their treatment codes.

7.7â•‡� Concluding Remarks

When the integrity of blinding is doubtful, adjustments to statistical analy-
sis should be made. One of the controversial issues regarding the blinding 
is whether a formal statistical test for the integrity of the blinding should 
be performed at the end of the clinical trial (especially when significantly 
positive results are observed). In addition, what action should be taken if a 
positive clinical trial fails to pass the test for the integrity of the blinding? 
Should the positive clinical trial be questioned and/or challenged? On the 
other hand, what action should be taken if a negative clinical trial fails to 
pass the test for the integrity of the blinding? In this case, should the data 
(or subgroup) be reanalyzed for a more accurate and reliable assessment of 
the treatment effect?

Regarding the impact of different blocking sizes in the randomization of a 
clinical trial, it should be noted that the knowledge of the blocking size may 
increase the probability of guessing the treatment codes right for the investiga-
tor. Although the increase of the blocking size may decrease the probability of 
guessing the treatment codes right, it will also increase the probability of mix-
ing up the randomization schedule and the possibility of treatment imbalance 
at the end of the trial. Note that the discussions given in the previous sections 
are based on an unbiased coin design. Analysis based on a biased coin design 
can be performed similarly.
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8
Clinical Strategy for Endpoint Selection

8.1â•‡� Introduction

In clinical trials, it is important to determine the primary response variables 
for addressing the scientific and/or medical questions of interest. The response 
variables, which are also known as the clinical endpoints, are usually chosen to 
fulfill the study objectives. Once the response variables are chosen, the possible 
outcomes of treatment are defined and the corresponding information would 
be used to assess the efficacy and safety of the study drug under investigation. 
Typically, to assess the efficacy and safety of a study drug, the study drug is first 
shown to be statistically significantly different from a placebo control. If there 
is a statistically significant difference, the trial is demonstrated to have a high 
probability of correctly detecting a clinically meaningful difference, which is 
known as the (statistical) power of the trial. Therefore, in practice, a pre-study 
power analysis for sample size estimation is usually performed to ensure 
that the trail with the intended sample size has a desired power, say 80%, for 
addressing the scientific/medical question of interest. The purpose is to find an 
appropriate sample size based on the information (the desired power, variabil-
ity, and clinically meaningful differences, etc.) provided by clinical scientists.

In many clinical studies, it is not uncommon that the sample size of a study 
is determined based on expected absolute change from the baseline of a pri-
mary study endpoint but the collected data are analyzed based on relative 
change from the baseline (e.g., percent change from baseline) of the primary 
study endpoint, or based on the percentage of patients who show some 
improvement (i.e., responder analysis). The definition of a responder could 
be based on either absolute change from the baseline or relative change from 
the baseline of the primary study endpoint. It is very controversial in terms 
of the interpretation of the analysis results, especially when a significant 
result is observed based on a particular study endpoint (e.g., absolute change 
from baseline, relative change from baseline, or responder analysis) but 
not on other study endpoints (e.g., absolute change from baseline, relative 
change from baseline, or responder analysis). In practice, it is then of interest 
to explore how an observed significant difference of a study endpoint (e.g., 
absolute change from baseline, relative change from baseline, or responder 
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analysis) can be translated to that of another study endpoint (e.g., absolute 
change from baseline, relative change from baseline, or responder analysis). 
An immediate impact on the assessment of treatment effect based on dif-
ferent study endpoints is the power analysis for sample size calculation. For 
example, sample size required for achieving a desired power based on the 
absolute change could be very different from that obtained based on the per-
cent change, or the percentage of patients who show an improvement based 
on the absolute change or relative change at α level of significance. As an 
example, consider a clinical trial for the evaluation of possible weight reduc-
tion of a test treatment in female patients. Weight data from 10 subjects are 
given in Table 8.1.

As can be seen from Table 8.1, mean absolute change and mean percent 
change from pretreatment are 5.3â•›lb and 5.1%, respectively. If a subject is con-
sidered a responder when there is weight reduction of more than 5â•›lb (abso-
lute change) or by more than 5% (relative change), the response rates based on 
absolute change and relative change are given by 60% and 30%, respectively. 
It should be noted that sample sizes required for achieving a desired power 
for detecting a clinically meaningful difference, say, by an absolute change 
of 5.0â•›lb and a relative change of 5.0%, for the two study endpoints would not 
be the same. Similarly, the required sample sizes are also different using the 
response rates based on absolute change and relative change. Table 8.2 sum-
marizes sample size calculation based on absolute change, relative change, 
and responders (defined based on either absolute change or relative change).

In clinical trials, one of the most controversial issues regarding clinical 
Â�endpoint selection is which clinical endpoint is telling the truth. The other con-
troversial issue is how to translate clinical results among the study endpoints. In 
practice, the sponsors always choose the clinical endpoints in their best interest. 

TABLE 8.1

Weight Data from 10 Female Subjects

Pretreatment Posttreatment Absolute Change Relative Change

110 106 4 3.6
90 80 10 11.1

105 100 5 4.8
95 93 2 2.2

170 163 7 4.1
90 84 8 8.9

150 145 5 3.3
135 131 4 3.0
160 159 1 0.6
100 91 9 9.0

120.5 (30.5) 115.2 (31.53) 5.3 5.1

Note:	 Numbers in the parentheses are the corresponding standard deviation.
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The regulatory agencies, however, require the primary clinical endpoint to be 
specified in the study protocol. Positive results from other clinical endpoints will 
not be considered as the primary analysis results for regulatory approval. This, 
however, does not have any scientific or statistical justification for the assess-
ment of the treatment effect of the test drug under investigation.

In this chapter, we attempt to provide some insight to the above issues. 
In particular, the focus is to evaluate the effect on the power of the test when 
the sample size of the clinical study is determined by an alternative clini-
cal strategy based on different study endpoints and non-inferiority margins. 
In the next section, models and assumptions for studying the relationship 
among these study endpoints are described. Under the model, translations 
among different study endpoints are studied. Section 8.4 provides a compar-
ison of different clinical strategies for endpoint selections in terms of sample 
size and the corresponding power. A numerical study is given in Section 8.5 
to provide some insight regarding the effect to the different clinical strate-
gies for endpoint selection. A brief concluding remark is presented in the 
last section.

8.2â•‡� Clinical Strategy for Endpoint Selection

In clinical trials, for a given primary response variable, commonly considered 
study endpoints include (1) measure based on absolute change (e.g., endpoint 
change from baseline), (2) measure based on relative change, (3) proportion of 
responders based on absolute change, and (4) proportion of responders based 
on relative change. We will refer to these study endpoints as the derived study 
endpoints because they are derived from the original data collected from the 
same patient population. In practice, it will be more complicated if the intended 
trial is to establish non-inferiority of a test treatment to an active control 
(reference) treatment. In this case, sample size calculation will also depend on 
the size of the non-inferiority margin, which may be based on either absolute 
change or relative change of the derived study endpoint. For example, based 

TABLE 8.2

Sample Size Calculation

Study Endpoint
Clinical Meaningful 

Difference
Sample Size 

Required

Absolute change 5 lb 262
Relative change 5% 146
Responder (based on absolute change)a >5 lb 12
Responder (based on relative change)b >5% 19

a	 Response rate based on absolute change greater than 5 lb is 60%.
b	 Response rate based on relative change greater than 5% is 30%.



138	 Controversial Statistical Issues in Clinical Trials

on the responder analysis, we may want to detect a 30% difference in response 
rate or to detect a 50% relative improvement in response rate. Thus, in addi-
tion to the four types of derived study endpoints, there are also two different 
ways to define a non-inferiority margin. Thus, there are many possible clinical 
strategies with different combinations of the derived study endpoint and the 
selection of non-inferiority margin for the assessment of the treatment effect. 
These clinical strategies are summarized in Table 8.3.

To ensure the success of an intended clinical trial, the sponsor will usually 
carefully evaluate all possible clinical strategies for selecting the type of study 
endpoint, clinically meaningful difference, and non-inferiority margin during 
the stage of protocol development. In practice, some strategies may lead to the 
success of the intended clinical trial (i.e., achieve the study objectives with the 
desired power), while others may not. A common practice for the sponsor is to 
choose a strategy in their best interest. However, regulatory agencies such as the 
FDA may challenge the sponsor regarding inconsistent results. This has raised 
the following questions. First, which study endpoint is telling the truth regard-
ing the efficacy and safety of the test treatment under study? Second, how to 
translate the clinical information among different derived study endpoints 
since they are obtained based on the same data collected from the same patient 
population? Tse and Chow (2011) made an attempt to address these questions 
in the following sections. These questions, however, remain unanswered.

8.3â•‡� Translations among Clinical Endpoints

Suppose that there are two test treatments, namely, a test treatment (T) and 
a reference treatment (R). Denote the corresponding measurements of the ith 
subject in the jth treatment group before and after the treatment by W1ij and 
W2ij, respectively, where j = T or R corresponds to the test and the reference 
treatment, respectively. Assume that the measurement W1ij is lognormal 
distributed with parameters μj and σ1

2
j, i.e.,

	 W ij j j1 1
2~ ( , ). lognormal μ σ

TABLE 8.3

Clinical Strategy for Endpoint Selection in Non-Inferiority Trials

Study Endpoint
Non-Inferiority Absolute 

Difference (𝛅1)
Margin Relative 
Difference (𝛅2)

Absolute change (E1) I = E1δ1 II = E1δ2

Absolute change (E2) III = E2δ1 IV = E2δ2

Responder based on 
absolute change (E3)

V = E3δ1 VI = E3δ2

Responder based on 
relative change (E4)

VII = E4δ1 VII = E4δ2
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Let W2ij = W1ij(1 + Δij), where Δij denotes the percentage change after receiving the 
treatment. In addition, assume that Δij is lognormally distributed with param-
eters μΔ j and σΔ j

2 , i.e.,

	 Δ Δ Δij j~ , ) .lognormal (μ σj
2

Thus, the difference and the relative difference between the measurements 
before and after the treatment are given by W2ij − W1ij and (W2ij − W1ij)/W1ij, 
respectively. In particular,

	 W W Wij ij ij ij j jj j2 1 1
2 2− = + +Δ Δ Δ~ , ,lognormal ( )μ μ σ σ

and

	

W W
W
ij ij

ij
j j

2 1

1

2−
~ , .lognormal ( )μ σΔ Δ

To simplify the notations, define Xij and Yij as Xij = log(W2ij − W1ij), Yij = 
log((W2ij − W1ij)/W1ij). Then, both Xij and Yij are normally distributed with 
means μj + μΔ j and μΔ j, i = 1,â•›2,â•›…,â•›nj, j = T, R, respectively.

Thus, possible derived study endpoints based on the responses observed 
before and after the treatment as described earlier include Xij, the absolute dif-
ference between “before treatment” and “after treatment” responses of the 
subjects, Yij, the relative difference between “before treatment” and “after treat-
ment” responses of the subjects, r x c i n nA ij j jj = > =#{ , , , }/1 1 … , the proportion 
of responders, which is defined as a subject whose absolute difference between 
“before treatment” and “after treatment” responses is larger than a prespeci-
fied value c1, r y c i n nR ij j jj = > =#{ , , , }/2 1 … , the proportion of responders, which 
is defined as a subject whose relative difference between “before treatment” 
and “after treatment” responses is larger than a prespecified value c2.

To define the notation, for j = T, R, let pAj = E(rAjâ•›) and pRj = E(rRjâ•›). Given 
the above possible types of derived study endpoints, we may consider the 
following hypotheses for testing non-inferiority with non-inferiority margins 
determined based on either absolute difference or relative difference:

	 1.	The absolute difference of the responses

	 H HR T R TR T R T0 1 1: ( ) ( ) versus : ( ) ( )μ μ μ μ δ μ μ μ μ δ− − − ≥ − − − <Δ Δ Δ Δa 	
		  (8.1)

	 2.	The relative difference of the responses

H HR T R T0 : ( ) : ( )μ μ δ μ μ δΔ Δ Δ Δ− ≥ − <2 2versus a 	 (8.2)
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	 3.	The difference of responders’ rates based on the absolute difference 
of the responses

H p p H p pA A A AR T R T0 3 3: :− ≥ − <δ δversus a 	 (8.3)

	 4.	The relative difference of responders’ rates based on the absolute 
difference of the responses

H
p p

p
H

p p
p

A A

A

A A

A

R T

R

R T

R

0 4 4: :
−

≥
−

<δ δversus a

	
(8.4)

	 5.	The absolute difference of responders’ rates based on the relative 
difference of the responses

H p p H p pR R R RR T R T0 5 5: :− ≥ − <δ δversus a 	 (8.5)

	 6.	The relative difference of responders’ rates based on the relative 
difference of the responses

H
p p

p
H

p p
p

R R

R

R R

R

R T

R

R T

R

0 6 6: :
−

≥
−

<δ δversus a

	
(8.6)

For a given clinical study, the above are the possible clinical strategies for 
the assessment of the treatment effect. Practitioners or sponsors of the study 
often choose the strategy in their best interest. It should be noted that the 
current regulatory position is to require the sponsor to prespecify which 
study endpoint will be used for the assessment of the treatment effect in the 
study protocol without any scientific justification.

In practice, however, it is of particular interest to study the effect of power 
analysis for sample size calculation based on different clinical strategies. 
As pointed out earlier, the required sample size for achieving a desired 
power based on the absolute difference of a given primary study endpoint 
may be quite different from that obtained based on the relative difference of 
the given primary study endpoint. Thus, it is of interest to the clinician or 
clinical scientist to investigate this issue under various scenarios. In particular, 
the following settings are often considered in practice.

Settings

Strategy Used for 1 2 3 4 5 6

Sample size 
determination

2.1 2.2 2.3 2.4 2.5 2.6

Testing treatment effect 2.2 2.1 2.4 2.3 2.6 2.5
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There are certainly other possible settings besides those considered above. 
For example, hypotheses (8.1) may be used for sample size determination 
but hypotheses (8.3) are used for testing treatment effect. However, the com-
parison of these two clinical strategies would be affected by the value of c1, 
which is used to determine the proportion of responders. However, in the 
interest of a simple and easier comparison, the number of parameters is kept 
as minimal as possible. Details of the comparison of the above six settings 
are given in the next section.

8.4â•‡� Comparison of Different Clinical Strategies

8.4.1  �Test Statistics, Power, and Sample Size Determination

Note that Xij denotes the absolute difference between “before treatment” 
and “after treatment” responses of the ith subjects under the jth treatÂ�
ment,  and Yij denotes the relative difference between “before treatment” 
and “after treatment” responses of the ith subjects under the jth treatment. 

Let  x n xj j ij
i

nj

. /= =
=∑1

1
 and y n yj j ij

i

nj

. /= =
=∑1

1
 be the sample means of Xij 

and
 
Yij for the jth treatment group, j = T, R, respectively.

Based on normal distribution, the null hypothesis in (8.1) is rejected at a 
level α of significance if

	

x x

n n
zR T

T R T RT R

. .

( / / )[( ) ( )]
.

− +
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σ σ σ σ
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(8.7)

Thus, the power of the corresponding test is given as
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(8.8)

where Φ(·) is the cumulative distribution function of the standard normal 
distribution. Suppose that the sample sizes allocated to the reference and 
test treatments are in the ratio of r, where r is a known constant. Using these 
results, the required total sample size for the test hypotheses (8.1) with a 
power level of (1 − β) is N = nT + nR, with

	
n

z z
T

R TR T

=
+ + +

+ − + −[ ]
( ) ( )( / )

( ) ( )
,α β σ σ ρ

μ μ μ μ δ

2
1
2

2
2

1
2

1 1

Δ Δ 	
(8.9)

nR = ρnT and zu is 1 − u quantile of the standard normal distribution.
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Note that yij’s are normally distributed. The test statistic based on –y.j would 
be similar to the above case. In particular, the null hypothesis in (8.2) is 
rejected at a significance level α if

	

y y
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(8.10)

The power of the corresponding test is given as
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(8.11)

Suppose that nR = ρnT, where R is a known constant. Then the required total 
sample size to test hypotheses (8.2) with a power of (1 − β) is (1 + ρ)nT, where
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For a sufficiently large sample size nj, rAj is asymptotically normal with mean 
pAj and variance pAj(1 − pAjâ•›)/nj, j = T, R. Thus, based on the Slutsky theorem, the 
null hypothesis in (8.3) is rejected at an approximate α level of significance if
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The power of the above test can be approximated by
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(8.14)

if nR = ρnT, where r is a known constant. Then, the required sample size to test 
hypotheses (8.3) with a power level of (1 − β) is (1 + ρ)nT, where
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Note that, by definition, p cA j jj j j= − − + +( )1 1
2 2Φ Δ Δ( ( ))/μ μ σ σ , where j = T, R. 

Therefore, following similar arguments, the above results also apply 
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to  test  hypotheses (8.5) with pAj replaced by p cRj j j= − −1 2Φ Δ Δ(( )/ )μ σ  and 
δ3 replaced by δ5.

The hypotheses in (8.4) are equivalent to

	 H p p H p pA A A AR T R T0 4 41 0 1 0: ( ) : ( ) .− − ≥ − − <δ δversus a 	 (8.16)

Therefore, the null hypothesis in (8.4) is rejected at an approximate level of 
significance if
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Using normal approximation to the test statistic when both nT and nR are 
sufficiently large, the power of the above test can be approximated by
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Suppose that nR = ρnT, where r is a known constant. Then the required 
total sample size to test hypotheses (8.10), or equivalently (8.16), with a 
power level of (1 − β) is (1 + ρ)nT, where
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Similarly, the results derived in (8.17) through (8.19) for the hypotheses (8.4) also 
apply to the hypotheses in (8.6) with pAj replaced by p cRj j j= − −1 2Φ Δ Δ(( )/ )μ σ  
and δ4 replaced by δ6.

8.4.2  �Determination of the Non-Inferiority Margin

Based on the results derived in the previous section, the non-inferiority mar-
gins corresponding to the tests based on the absolute difference and the relative 
difference can be chosen in such a way that the two tests would have the same 
power. In particular, hypotheses (8.1) and (8.2) would give the power level if the 
power function given in (8.8) is the same as that given in (8.11). Consequently, 
the non-inferiority margins δ1 and δ2 would satisfy the following equation:
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(8.20)
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Similarly for hypotheses (8.3) and (8.4), the non-inferiority margins δ3 and δ4 
would satisfy the following relationship:
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For hypotheses (8.5) and (8.6), the non-inferiority margins δ5 and δ6 satisfy
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The results given in (8.20), (8.21), and (8.22) provide a way of translating the 
non-inferiority margins between the endpoints based on the difference and 
the relative difference. In the next section, we present a numerical study 
to provide some insight into how the power level of these tests would be 
affected by the choices of different study endpoints for various combinations 
of parameter values.

8.5â•‡� A Numerical Study

In this section, a numerical study was conducted to provide some insight 
about the effect on different clinical strategies.

8.5.1  �Absolute Difference versus Relative Difference

In Table 8.4, the required sample sizes for the test of non-inferiority are 
based on the absolute difference (Xij) and relative difference (Yij). In par-
ticular, the nominal power level (1 − β) is chosen to be 0.80 and α is 0.05. 
The corresponding sample sizes are calculated using the formulae in (8.9) 
and (8.12). It is difficult to conduct any comparison because the corre-
sponding non-inferiority margins are based on different measurement 
scales. However, to provide some idea to assess the impact of switching 
from a clinical endpoint based on absolute difference to that based on rela-
tive difference, a numerical study on the power of the test was conducted. 
In particular, Table 8.5 presents the power of the test for non-inferiority 
based on the relative difference (Y) with the sample sizes determined by 
the power based on the absolute difference (X). The power was calculated 
using the result given in (8.11). The results demonstrate that the effect is, 
in general, very significant. In many cases, the power is much smaller 
than the nominal level 0.8.
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8.5.2  �Responders’ Rate Based on Absolute Difference

Similar computation was conducted for the case when the hypotheses are 
defined in terms of the responders’ rate based on the absolute difference, 
i.e., hypotheses defined in (8.3) and (8.4). Table 8.6 gives the required sample 
sizes, with the derived results given in (8.15) and (8.19), for the correspond-
ing hypotheses with non-inferiority margins given both in terms of absolute 
difference and relative difference of the responders’ rates. Similarly, Table 8.7 
presents the power of the test for non-inferiority based on the relative differ-
ence of the responders’ rate with the sample sizes determined by the power 
based on the absolute difference of the responders’ rate. The power was cal-
culated using the result given in (8.14). Again, the results demonstrate that 
the effect is, in general, very significant. In many cases, the power is much 
smaller than the nominal level 0.8.

8.5.3  �Responders’ Rate Based on Relative Difference

Similar to the issues considered in the above paragraph with the excep-
tion that the responders’ rate is defined based on the relative differ-
ence, the required sample sizes for the corresponding hypotheses with 
non-inferiority margins given both in terms of absolute difference and 
relative difference of the responders’ rates are defined based on the rela-
tive difference, i.e., the hypotheses defined in (8.5) and (8.6). The results 
are shown in Table 8.8. Following similar steps, Table 8.9 presents the 
power of the test for non-inferiority based on the relative difference of the 
responders’ rate with the sample sizes determined by the power based on 
the absolute difference of the responders’ rate. A similar pattern emerges 
and the results demonstrate that the power is usually much smaller than 
the nominal level 0.8.

8.6â•‡� Concluding Remarks

In clinical trials, it is not uncommon that a study is powered based on 
expected absolute change from the baseline of a primary study endpoint but 
the collected data are analyzed based on relative change from the baseline 
(e.g., percent change from baseline) of the primary study endpoint, or the col-
lected data are analyzed based on the percentage of patients who show some 
improvement (i.e., responder analysis). The definition of a responder could 
be based on either absolute change from baseline or relative change from 
baseline of the primary study endpoint. It is very controversial in terms of 
the interpretation of the analysis results, especially when a significant result 
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is observed based on a study endpoint (e.g., absolute change from baseline, 
relative change from baseline, or responder analysis) but not on another 
study endpoint (e.g., absolute change from baseline, relative change from 
baseline, or responder analysis). Based on the numerical results of this study, 
it is evident that the power of the test can be decreased drastically when the 
study endpoint is changed. However, when switching from a study endpoint 
based on absolute difference to the one based on relative difference, one pos-
sible way to maintain the power level is to modify the corresponding non-
inferiority margin, as suggested by the results given in Section 8.2.
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9
Protocol Amendments

9.1â•‡ Introduction

In clinical trials, it is not uncommon to issue protocol amendments during 
the conduct of a clinical trial due to various reasons such as slow enroll-
ment and/or safety concerns. For slow enrollment, the investigator may 
modify the entry (inclusion/exclusion) criteria in order to expedite patient 
enrollment in a timely fashion. On the other hand, during the conduct of a 
clinical trial, it is possible that additional safety information may become 
available. This additional safety information may come either from similar 
clinical trials conducted simultaneously or from publications newly pub-
lished in leading medical journals. With this additional safety information, 
protocol amendment is necessarily issued for patient protection. For good 
clinical practice (GCP), before protocol amendments can be issued, descrip-
tion, rationales, and clinical/statistical justification regarding the changes 
made should be provided to ensure the validity and integrity of the clinical 
trial. As a result of the changes or modifications, the original target patient 
population under study could have become a similar but different patient 
Â�population. If the changes or modifications are made frequently during the 
conduct of the trial, the target patient population is in fact a moving target 
patient population. This raises the controversial issue regarding the validity 
of the statistical inference drawn based on data collected before and after 
protocol amendment.

In practice, there is a risk that major (or significant) modifications made to 
the trial and/or statistical procedures could lead to a totally different trial, 
which cannot address the scientific/medical questions that the clinical trial 
is intended to answer. In clinical trials, most investigators consider proto-
col amendment a God-sent gift which allows the investigator certain degree 
of flexibility to make any changes/modifications to the ongoing clinical tri-
als. It, however, should be noted that protocol amendments have potential 
risks for introducing additional bias/variation to the ongoing clinical trial. 
Thus, it is important to identify, control, and hopefully eliminate/minimize 
the sources of bias/variation. Thus, it is of interest to measure the impact 
of changes or modifications that are made to the trial procedures and/or 
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statistical methods after the protocol amendment. This raises another con-
troversial issue regarding (1) the impact of changes made and (2) the degree 
of changes that are allowed in a protocol amendment.

In current practice, standard statistical methods are applied to the data 
collected from the actual patient population regardless of the frequency of 
changes (protocol amendments) that have been made during the conduct 
of the trial assuming that the overall type I error is controlled at the pre-
specified level of significance. This, however, has raised a serious regulatory/
statistical concern as to whether the resultant statistical inference (e.g., inde-
pendent estimates, confidence intervals, and p values) drawn on the origi-
nally planned target patient population based on the clinical data from the 
actual patient population (as a result of the modifications made via protocol 
amendments) is accurate and reliable? After some modifications are made 
to the trial and/or statistical methods, not only may the target patient popu-
lation have become a similar but different patient population, but also the 
sample size may not achieve the desired power for detection of a clinically 
important effect size of the test treatment at the end of the study. In practice, 
we expect to lose power when the modifications have led to a shift in mean 
response and/or inflation of variability of the response of the primary study 
endpoint. As a result, the originally planned sample size may have to be 
adjusted. Thus, it is suggested that the relative efficiency at each protocol 
amendment be taken into consideration for derivation of an adjusted factor 
for sample size in order to achieve the desired power.

In the next section, the concept of moving the target patient population 
as the result of protocol amendments is introduced. Also included in the 
section is the derivation of a sensitivity index for measuring the degree of 
population shift. Section 9.3 discusses the method with covariate adjustment 
proposed by Chow and Shao (2005). Inference based on mixture distribu-
tion is described in Section 9.4. In Section 9.5, sample size adjustment after 
protocol amendment is discussed. A brief concluding remark is given in the 
last section.

9.2â•‡ Moving Target Patient Population

In practice, for a given clinical trial, it is not uncommon to have three to 
five protocol amendments after the initiation of the clinical trial. One of the 
major impacts of many protocol amendments is that the target patient popu-
lation may have been shifted during the process, which may have resulted in 
a totally different target patient population at the end of the trial. A typical 
example is the case when significant adaptation (modification) is applied to 
inclusion/exclusion criteria of the study. Denote by (μ, σ) the target patient 
population. After a given protocol amendment, the resultant (actual) patient 
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population may have been shifted to (μ1, σ1), where μ1 = μ + ε is the popula-
tion mean of the primary study endpoint and σ1 = Cσ(C > 0) is the population 
standard deviation of the primary study endpoint. The shift in target patient 
population can be characterized by

	
E

C
E1

1

1
= =

+
= Δ = Δ

μ
σ

μ ε
σ

μ
σ

,
	

where
Δ = (1 + ε/μ)/C,
E and E1 are the effect size before and after population shift, respectively.

Chow et al. (2002a) and Chow and Chang (2006) refer to Δ as a sensitivity 
index measuring the change in effect size between the actual patient popula-
tion and the original target patient population.

Similarly, denote by (μi, σi) the actual patient population after the ith mod-
ification of trial procedure, where μi = μ + εi and σi = Ciσ, i = 0,â•›1,â•›…,â•›K. Note 
that i = 0 reduces to the original target patient population (μ, σ). That is, 
when i = 0, ε0 = 0 and C0 = 1. After K protocol amendments, the resultant 
actual patient population becomes (μK, σK), where

	
μ μ ε σ σK i K i

i

K

i

K

C= + =
==

∏∑ and .
11 	

It should be noted that (εi, Ci), i = 1,â•›…,â•›K are in fact random variables. As a 
result, the resultant actual patient population is a moving target patient popu-
lation rather than a fixed target patient population. In addition, sample sizes 
before and after protocol amendments and the number of protocol amend-
ments issued for a given clinical trial are also random variables. Thus, one 
of the controversial issues that commonly encountered in clinical trials with 
several protocol amendments during the conduct of the trials is How to assess 
the treatment effect while the target patient population is a moving target?

Table 9.1 provides a summary of the impacts of various scenarios of loca-
tion shift (i.e., change in ε) and scale shift (change in C, either inflation or 
deflation of variability). As can be seen from Table 9.1, there is a masking 
effect between location shift and scale shift. In other words, shift in location 
could be offset by the inflation or deflation of variability. As a result, the 
sensitivity index remains unchanged while the target patient population has 
been shifted. One of the controversial issues in this regard is whether the 
conclusion drawn (by ignoring the population shift) at the end of the trial is 
accurate and reliable.

As indicated by Chow and Chang (2006), the impact of protocol amend-
ments on statistical inference due to shift in target patient population 
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(moving target patient population) can be studied through a model that 
links the moving population means with some covariates (Chow and Shao, 
2005). However, in many cases, such covariates may not exist or exist but are 
not observed. In this case, it is suggested that inference on Δ be considered to 
measure the degree of shift in location and scale of patient population based 
on a mixture distribution by assuming that the location or scale parameter 
is random (Chow et al., 2005). These methods will be described in the subse-
quent sections.

9.3â•‡ Analysis with Covariate Adjustment

As indicated earlier, statistical methods for analyzing clinical data should 
be modified when there are protocol amendments during the trial, since any 
protocol deviations and/or violations may introduce bias to the trial. As a 
result, conclusion drawn based on the analysis of data ignoring there are 
possible shift in target patient population could be biased and hence mis-
leading. To overcome this problem, Chow and Shao (2005) proposed to model 
the population deviations due to protocol amendments using some relevant 
covariates and developed a valid statistical inference which is described in 
the following sections.

9.3.1  Continuous Study Endpoint

Suppose that there are a total of K possible protocol amendments. Let μk be 
the mean of the study endpoint after the kth protocol amendment, k = 1,â•›…,â•›K. 
Suppose that, for each k, clinical data are observed from nk patients so that 
the sample mean y–k is an unbiased estimator of μk, k = 0,â•›1,â•›…,â•›K. Now, let x be a 

TABLE 9.1

Changes in Sensitivity Index

𝛆/𝛍(%)

Inflation of 
Variability

Deflation of 
Variability

C(%) 𝚫 C(%) 𝚫

−20 120 0.667 80 1.000
−10 120 0.750 80 1.125
−5 120 0.792 80 1.188

0 120 0.833 80 1.250
5 120 0.875 80 1.313

10 120 0.917 80 1.375
20 120 1.000 80 1.500
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(possibly multivariate) covariate whose values are distinct from different 
protocol amendments. To derive statistical inference for μ0 (the population 
mean for the original target patient population), Chow and Shao (2005) 
assumed the following:

	 μ β βk kx k K= + ʹ =0 0 1, , , , ,… 	 (9.1)

where
β0 is an unknown parameter,
β is an unknown parameter vector whose dimension is the same as x,
β′ denotes the transpose of β,
xk is the value of x under the kth amendment (or the original protocol 

when k = 0).

If values of x are different within a fixed population (say Pk, patient popula-
tion after the kth protocol amendment), then xk is a characteristic of x such as 
the average of all values of x within Pk.

Under model (9.1), parameters β0 and β can be unbiasedly estimated by

	
ˆ

ˆ
( ) ,

β

β
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⎜

⎞

⎠
⎟
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= ʹ ʹ−X WX X Wy 	 (9.2)

where
y– = (y–0, y–1,â•›…, y–K)′,
X is a matrix whose kth row is ( , ), , , ,1 0 1ʹ =x k Kk … ,
W is a diagonal matrix whose diagonal elements are n0,â•›n1,â•›…,â•›nK.

It is assumed that the dimension of x is less or equal to K so that (X′WX)−1 
is well defined. To estimate μ0, we consider the following unbiased esti-
mator ˆ ˆ ˆ .μ β β0 0 0= + ʹx  Chow and Shao (2005) indicated that �̂0 is distributed 
as N(μ0,â•›σ2c0) with c0 = (1,â•›x0)(X′WX)−1(1,â•›x0)′. Let sk

2  be the sample variance 
based on the data from population Pk, k = 0,â•›1,â•›…,â•›K. Then, ( ) /n sk k− 1 2 2σ  has 
the chi-square distribution with nk − 1 degrees of freedom and conse-
quently, (N − K)s2/σ2 has the chi-square distribution with N − K degrees 
of freedom, where

	
s

n s
N K
k k
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2
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=

−
−

=
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( )

and N nk
k

= ∑ . Confidence intervals for μ0 and testing hypotheses related 
to μ0 can be carried out using the t-statistic t c s= −( )μ̂ μ0 0 0

2 .
Note that when Pk’s have different standard deviations and/or data from Pk 

are not normally distributed, we may consider an approximation by assuming 
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that all nk’s are large. Thus, by the central limit theorem, it can be shown that 
�̂0 is approximately normally distributed with mean μ0 and variance

	 τ2
0

1 1
01 1= ʹ ʹ ʹ ʹ− −( , )( ) ( ) ( , ) ,x X WX X W X X WX xΣ 	 (9.3)

where Σ is the diagonal matrix whose kth diagonal element is the population 
variance of Pk, k = 0,â•›1,â•›…,â•›K. Large sample statistical inference can be made 
by using the z-statistic z = −( )/ˆ ˆμ μ0 0 τ  (which is approximately distributed as 
the standard normal), where τ̂  is the same as τ with the kth diagonal element 
of σ estimated by s k Kk

2 0 1, , , ,= … .
Note that the above statistical inference for μ0 is a conditional inference. In 

their paper, Chow and Shao (2005) also derived unconditional inference for 
μ0 under certain assumptions. In addition, Chow, Chang, and Pong (2009) 
considered alternative approach with random coefficients under model (9.1) 
and proposed a Bayesian approach for obtaining inference on μ0.

9.3.2  Binary Response

As indicated, the statistical inference for μ0 described above is for a continu-
ous endpoint. Following a similar idea, Yang et al. (2011) derived statistical 
inference for μ0 assuming that the study endpoint is a binary response. Their 
method is briefly summarized as follows:

Let Yij be the binary response from the jth subject after the ith amend-
ment; Yij = 1 if subject j after amendment i exhibits the response of interest, 
and 0 otherwise, for i = 0,â•›1,â•›…,â•›k and j = 1,â•›…,â•›ni. Note that the subscript 0 for i 
indicates that the values are related to the original patient population. Let pi 
denote the response rate of the patient population after the ith amendment. 
Ignoring the possible population deviations results in a pooled estimator
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,

which may be biased for the original defined response rate p0. In many clinical 
trials, the protocol amendments are made with respect to one or a few relevant 
covariates. Modifying entry criteria, for example, may involve patient demo-
graphics such as age or body weight and patient characteristics such as disease 
status or medical history. This section develops a statistical inference proce-
dure for the original response rate p0 based on a covariate-adjusted model.

9.3.2.1â•‡ Estimation of the Single Response Rate

Let Xij be the corresponding covariate for the jth subject after the ith 
amendment (or the original protocol when i = 0). Throughout this section 
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we assume that the response rates for different patient populations can be 
related by the following model:

	
p

v
v

i ki
i

i
=

+
+ +

=
exp( )

exp( )
, , , , ,

β β
β β
0 1

0 11
0 1 …

where
β0 and β1 are unknown parameters,
vi is the true mean of the random covariate under the ith amendment.

Under the above model, the maximum likelihood estimates for the param-
eters β0 and β1, however, cannot be obtained directly because the vi’s are 
unknown. One approach to estimate β0 and β1 is to replace vi by X

–
i, the sample 

mean under the ith amendment (see Chow and Shao, 2005). Consequently, 
we specify a logistic model for estimating β = (β0,â•›β1)T as
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Suppose that Xij, j = 1,â•›2,â•›…,â•›ni, i = 0,â•›1,â•›…,â•›k, are independent random variables 
with means vi. Thus, the sample means X

–
i, i = 0,â•›1,â•›…,â•›k are independent random 

variables with means vi. Let fX
–

i
(x–i) denote the probability density function of X

–
i. 

In the development that follows, the fX
–

i
(x–i) are assumed independent of β0 or β1.

Since the conditional distribution of Yij given x–i is a Bernoulli distribution 
with the parameter defined in (9.4) and fX

–
i
(x–i) is the probability density func-

tion of X
–

i, the likelihood function of observing yij(â•›j = 1,â•›2,â•›…,â•›ni) and x–i under 
the ith amendment is given by
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Therefore, the joint likelihood function is � �=
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 and the log-likelihood 

function is given by
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Because fX
–

i
(x–i) does not depend on β0 or β1, the maximum likelihood esti-

mate β = (β0,â•›β1)T, which maximizes l1(β) also maximizes l(β). Thus, the data can 
be Â�analyzed using a fixed-covariate model. By considering the covariate as a ran-
dom variable, a simple closed-form estimate of the asymptotic covariance matrix 
of maximum likelihood estimate of the parameters can be obtained to calcu-
late the sample size required to test the hypotheses about the parameters (see 
Demidenko, 2007). On the basis of the estimate β̂, we propose to estimate p0 by
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For inference on p0, we need to derive the asymptotic distribution of p̂0. In 
this case, the limiting results regarding the maximum likelihood estimators 
are obtained as the number of protocol amendments is finite and the num-
bers of observations from the distinct amendments become large. Assuming 

that ni/N → ri as ni → ∞, where N ni
i

k
=

=∑ 0
, and k is a finite constant, it can 

be shown that
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Moreover, by the delta method and Slutsky’s theorem, it follows that 
N p p( )ˆ0 0−  is asymptotically normally distributed with mean 0 and variance
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Let V̂  be the maximum likelihood estimator of V with β0, β1, vi, and ri replaced 
by β̂0, β̂1, X

–
i, and ni/N, respectively. It is known that X vi

p
i

p⎯ →⎯ ⎯ →⎯ and β̂ β by 
the Weak Law of Large Number and the consistency of a maximum likelihood 
estimator. Thus, we have V̂ Vp⎯ →⎯ . Then, it can be shown that N p p V( )/ˆ ˆ

0 0−  
is asymptotically distributed as a standard normal distribution by Slutsky’s 
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theorem. Based on this result, an approximate 100(1 − α)% confidence 

Â�interval of p0 is given by ˆ /̂ , ˆ /̂/ /p z V N p z V N0 2 0 2− +( )α α , where zα/2 is the 

100(1 − α/2)th percentile of a standard normal distribution.

9.3.2.2â•‡ Comparison for Two Treatments

In clinical trials, it is often of interest to compare two treatments, that is, 
a test treatment versus an active control or placebo. Let Ytij and Xtij be the 
response and the corresponding relevant covariate for the jth subject after 
the ith amendment under the tth treatment (t = 1,â•›2,â•›i = 0,â•›1,â•›…,â•›k, j = 1,â•›2,â•›…,â•›nti). 
For each amendment, patients selected by the same criteria are randomly 
allocated to either the test treatment D1 = 1 or control treatment D2 = 0 
groups. In this particular case, the true mean values of the covariate for the 
two treatment groups are the same under each amendment. Therefore, the 
relationships between the binary response and the covariate for both treat-
ment groups can be described by a single model,
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Hence, the response rates for the test treatment and the control treatment are
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respectively.
Similar to the single treatment study described previously, the joint likeli-

hood function of β = (β1,â•›…,â•›β4)T is given by
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Given the resulting maximum likelihood estimate β β βˆ = (ˆ , , ˆ )1 4… T , we obtain 
the estimate of p10 and p20 as follows:
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Let n nt ti
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k

⋅
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= ∑ 0
 be the sample size for the tth treatment group, and let N = 

n1 + n2 be the total sample size. When nti/nt. → rti and ni./N → c as all nti tend 
to infinity, it is shown by a similar derivation for a single response rate as 
shown above that
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As indicated by Chow, Shao, and Wang (2008), the problem of testing superi-
ority and non-inferiority can be unified by the following hypotheses:

	 H p p H p pa0 10 20 10 20: : ,− ≤ − >δ δversus 	 (9.8)

where δ is the (clinical) superiority or non-inferiority margin. When δ > 0, the 
rejection of the null hypothesis indicates the superiority of the test treatment 
over the control. When δ < 0, the rejection of the null hypothesis indicates 
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the non-inferiority of the test treatment against the control. Under the null 
hypothesis, the test statistic

	 T
N p p

Vd

=
− −( )ˆ ˆ
ˆ

10 20 δ
	 (9.9)

approximately follows a standard normal distribution when all nti are suffi-
ciently large. Thus, we reject the null hypothesis at the α level of significance 
if T > zα. For testing equivalence, the following hypotheses are considered:

	 H p p H p pa0 10 20 10 20: : ,− ≥ − <δ δversus 	 (9.10)

where δ is the equivalence limit. Thus, the null hypothesis is rejected at a 
significance level α and the test treatment is concluded to be equivalent to 
the control if
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9.4â•‡ Assessment of Sensitivity Index

The primary assumption of the above approaches is that there is a relation-
ship between μik’s and a covariate vector x. As indicated earlier, such covari-
ates may not exist or may not be observed in practice. In this case, Chow 
and Shao (2005) suggested assessing the sensitivity index and consequently 
deriving an unconditional inference for the original target patient popula-
tion assuming that the shift parameter (i.e., ε) and/or the scale parameter 
(i.e., C) is random. Thus, the shift and scale parameters (i.e., ε and C) of the 
target population after a protocol amendment is made can be estimated by

	
ˆ ˆ ˆ ˆ ˆ

ˆ
,ε μ μ

σ
σ

= − =actual
actualand C

respectively, where ( , )μ σˆ ˆ  and ( , )μ σˆ ˆactual actual  are some estimates of (μ,â•›σ) 
and (μactual,â•›σactual), respectively. As a result, the sensitivity index can be esti-
mated by

	
ˆ ˆ/ˆ

ˆ .Δ =
+1 ε μ

C
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9.4.1  The Case Where 𝛆 Is Random and C Is Fixed

Estimates for μ and σ can be obtained based on data collected prior to any 
protocol amendments issued. Assume that the response variable x is distrib-
uted as N(μ,â•›σ2). Let xji, i = 1,â•›…,â•›nj; j = 0,â•›…,â•›m be the response of the ith patient 
after the jth protocol amendment. As a result, the total number of patients 
is given by n nj

j

m
=

=∑ 0
. Note that n0 is the number of patients in the study 

prior to any protocol amendments. Based on x0i, i = 1,â•›…,â•›n0, the maximum 
likelihood estimates of μ and σ2 can be obtained as follows:
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To obtain estimates for μactual and σactual, Chow and Shao (2005) considered 
the case where μactual is random and σactual is fixed. For convenience’s sake, 
we set μactual = μ and σactual = σ for the derivation of ε and C. Assume that x is 
conditional on μ, i.e., x|μ=μactual follows a normal distribution N(μ,â•›σ2). That is,

	 x N| ~ ( , ),μ μ μ σ= actual
2

where
μ is distributed as N( , )μ σμ μ

2 ,
σ, μμ, and σμ are some unknown constants.

Thus, the unconditional distribution of x is a mixed normal distribution 
given as
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where x ∈ (−∞,â•›∞). It can be verified that the above mixed normal distribution 
is a normal distribution with mean μμ and variance σ σμ

2 2+ . In other words, 
x is distributed as N( , )μ σ σμ μ

2 2+ . See Theorem 9.1.

Theorem 9.1

Suppose that X|μ ∼ N(μ,â•›σ2) and μ μ σμ μ~ ( , ),N 2  then we have

	 X N~ ( , ).μ σ σμ μ
2 2+ 	 (9.11)
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Proof
Consider the following characteristic function of a normal distribution 
N(t;â•›μ,â•›σ2):
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is the characteristic function of the normal distribution. It follows that

	 φ μ σ( ) ,/w eiw w= −1 2 2 2

which is the characteristic function of N( , )μ σ σμ μ
2 2+ . This completes the proof.

Based on the above theorem, the maximum likelihood estimates (MLEs) of 
σ2, μμ, and σμ

2  can be obtained as follows:
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where
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Based on these maximum likelihood estimates, estimates of the shift param-
eter (i.e., ε) and the scale parameter (i.e., C) can be obtained as follows: 
� � � �ε μ μ σ σ= − =ˆ /ˆ and  C , respectively. Consequently, the sensitivity index can 
be estimated by simply replacing ε, μ, and C with their corresponding esti-
mates � � �ε μ, , and C.

9.4.2  The Case Where 𝛆 Is Fixed and C Is Random

Similarly, let μactual = μ and σactual = σ and assume that x|σ=σactual
 follows a nor-

mal distribution N(μ,â•›σ2), that is,

	 x N| ~ ( , )σ σ μ σ= actual
2

where σ2 is distributed as an inverse gamma distribution denoted by IG(α, λ), 
where μ, α, and λ are unknown parameters.

Theorem 9.2

Suppose that x|σ=σactual
∼N(μ,â•›σ2) and σ2â•›∼ IG(α, λ), then
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	 (9.13)

That is, x is a noncentral t-distribution, where μ ∈ R is the location parameter, 
λ/α is the scale parameter, and 2α is the degree of freedom.

Proof
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Thus, X follows a noncentral t-distribution. Hence, we have E(x) = μ and 
var(x) = λ/(α − 1). This completes the proof.

Based on the above theorem, the maximum likelihood estimation of the 
parameters μ,â•›α, and λ can be obtained as follows. Suppose that the observa-
tions satisfy the following conditions:
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	 3.	 σ α λi IG2 ~ ( , )

The likelihood function is given by
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Thus, the log-likelihood function is
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Based on (9.15), we can obtain the derivatives of the unknown parameters 
μ, α, and λ, as follows:
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where Ψ(α) = Γ′(α)/Γ(α) is a digamma function.
Define
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Then the maximum likelihood estimation of the parameters μ, α, and λ can 
be decided by
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The digamma function may be approximated as in Johnson and Kotz (1972) 
as ψ(α) = ln(α − 0.5), and employing a Taylor expansion we have
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n
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	 (9.19)

The maximum likelihood estimates of μ, α, and λ can be obtained by (9.17) 
through (9.19). In fact, it is difficult to solve the equation from (9.17) through 
(9.19) directly, but there are some published results giving the maximum 
likelihood estimation of the location parameter and freedom degree in a cen-
tral t-distribution, and according to (9.17) through (9.19), the estimation of the 
scale parameter in a noncentral t-distribution could be obtained.

Lu et al. (2010) used the moment estimation to obtain the estimation of the 
parameters μ, α, and λ. The observations
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and xij independent, according to Theorem 9.1, x is a noncentral t-Â�distribution, 
mean = E(x) = μ and variance = var(x) = λ/(α −â•›1), if α >â•›1; even the central 
moment
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since the fourth moment does not exist for α ≤ 2, moreover the variance of the 
estimator of α is infinite if α ≤ 4. Under the background of medical research, 
we assume that if α > 4 is held, and the obvious choices are sample mean, 
variance, and the fourth moment employed, the moment estimation of the 
parameters could be obtained:
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We now examine the large-sample behavior of maximum likelihood esti-
mates. Further differentiability assumption is required, and under the con-
ditions of normal distribution and IG-distribution, that requirement can be 
satisfied. Cox and Snell (1968) have derived a general formula for the second-
order bias of the maximum likelihood estimator of the vector

	 b k k k ks
s r t u

rtu rt u

r t u

( ) ,, ,
,

, ,

β̂ = +⎧
⎨
⎩

⎫
⎬
⎭∑ 1

2
	 (9.20)

where the set parameter vector θ = (βr, βs, βt) = (μ, α, λ)T and r,â•›s,â•›t,â•›u index the 
parameter space (μ, α, λ), and we use the standard notation for the moments 
of the derivatives of the log-likelihood function: krs = E[Urs], krst = E[Urst], 
krs,t = E[UrsUt], where Ur = ∂l/ ∂βr, Urs = ∂2l/ ∂βr∂βs, Urst = ∂3l/ ∂βrβsβt. Also, kr,s 
denotes the general (r, s) element of the inverse of the information matrix, the 
information matrix itself having its general (r, s) element given by krs = −E[Urs]. 
Let the fisher information matrix be
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(9.21)

so that kλλα = kλαλ = kαλλ = −(4α + 3)/(2α + 1)(2α + 3)λ2, kααα = Ψ″(α + 1/2) − Ψ″(α),
kμμλ = kμλμ = kλμμ = 4α(α + 1)2/λ2(2α + 3)(2α + 5), kμμα = kμαμ = kαμμ = −2α/λ 

(2α + 3) when r, s, t take other values in the parameter space except 
those  enumerated above such as krst = 0 and krs,t = 0, where r, s, t index 
the parameter space. The bias of the maximum likelihood estimate of the 
parameter α is
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where M = − + + − + +{[ ( ) ( / )][ / ( ) / ( ) ]}( / )( )/ψʹ ψʹα α α λ α λ α α λ α1 2 2 3 1 2 1 2 12 2 2  
( )2 3α +  is the determinant of the inverse information matrix I −1( ),θ  
A1

2 6 32 2 3= +α λ α/ ( ) , B1 = α(2α + 1)(12α + 21)/(2α + 5), C1 = (ψ′(α) − ψ′(α + 1/2)), 
D1 = 2(4α + 3)/(2α + 1), E1 = α2(2α + 1)2/(2α + 3), F1 = ψ″(α + 1/2) − ψ″(α).
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At the same time we have

	 b
A C B F E C

n
( )

( )
,λ̂ =

+ −2 1
2

2 1 2 1
2M

	 (9.23)

where
A2

3 2 5 32 2 1 5 8 2 3 2 5= + + + +α α α λ α α( ) ( )/ ( ) ( ),

B2
3 5 32 1 2 3= + +α α λ α( )/ ( ) ,

C2 = α2(14α + 9)/λ5(2α + 3)3.

The maximum likelihood estimator of α has an n−1 order bias, which is 
the same for the estimator λ, and we also obtain the bias of parameter μ as 
b( )μ̂ = 0, which is obviously the unbiased estimate of the parameter μ.

In the case where μactual is fixed and σactual is random we will focus on the 
statistical inference on ε, C, and Δ to illustrate the impact on the statistical 
inference of the actual patient population after m protocol amendment.

9.5â•‡ Sample Size Adjustment

In clinical trials, for a given target patient population, sample size calcula-
tion is usually performed based on a test statistic (which is derived under 
the null hypothesis) evaluated under an alternative hypothesis. After proto-
col amendments, the target patient population may have been shifted to an 
actual patient population. In this case, the original sample size may have to be 
adjusted in order to achieve the desired power for the assessment of the treat-
ment effect for the original patient population. For the clinical evaluation of 
efficacy and safety, statistical inference such as hypotheses testing is usually 
considered. In practice, the commonly considered testing hypotheses include 
(1) testing for equality, (2) testing for non-inferiority, (3) testing for superiority, 
and (4) testing for equivalence. The hypotheses are summarized as follows:

	 Equality:   versusH Ha0 1 2 1 2 0: : ,μ μ μ μ δ= − = ≠ 	 (9.24)

	 Non-inferiority:   versusH Ha0 1 2 1 2: : ,μ μ δ μ μ δ− ≤ − >

	 Superiority:   versusH Ha0 1 2 1 2: : ,μ μ δ μ μ δ− ≤ − >

	 Equivalence:   versusH Ha0 1 2 1 2: : ,μ μ δ μ μ δ− > − ≤

where δ is a clinically meaningful difference (for testing equality), a non-Â�
inferiority margin (for testing non-inferiority), a superiority margin (for 
testing superiority), and an equivalence limit (for testing equivalence), 
respectively.
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Let nclassic and nactual be the sample sizes based on the original patient popu-
lation and the actual patient population, respectively, as the result of proto-
col amendments. Also, let nactual = Rnclassic, where R is the adjustment factor. 
Following the procedures described by Chow, Shao, and Wang (2008), sample 
sizes for both nclassic and nactual can be obtained. For example, Table 9.2 provides 
formulas for sample size adjustment based on covariate-adjusted model for 
binary response endpoint, while Tables 9.3 and 9.4 give sample size adjust-
ments based on random location shift and random scale shift, respectively.

9.6â•‡ Concluding Remarks

As indicated, the investigator has the flexibility to modify or change the study 
protocol during the conduct of the clinical trial by issuing protocol amend-
ments. This flexibility gives the investigator (1) the opportunity to correct 
(minor changes) the assumptions early and (2) the chance to redesign (major 
changes) the study. It is well recognized that the abuse of this flexibility may 
result in a moving target patient population, which makes it almost impos-
sible for the intended trial to address the medical or scientific questions that 
the study intends to answer. Thus far, regulatory agencies do not have regu-
lations regarding the issue of protocol amendments after the initiation of a 
clinical trial. It is suggested that regulatory guideline/guidance regarding 
(1) levels of changes and (2) number of protocol amendments that are allowed 
be developed in order to maintain the validity and integrity of the intended 
study. In addition, it is also suggested that a sensitivity analysis should be 
conducted for evaluating the possible impact due to protocol amendments.

As pointed out by Chow and Chang (2006), the impact on statistical infer-
ence due to protocol amendments could be substantial, especially when 
there are major modifications which have resulted in a significant shift in 
mean response and/or inflation of the variability of response of the study 
parameters. It is suggested that a sensitivity analysis with respect to changes 
in study parameters be performed to provide a better understanding of the 
impact of changes (protocol amendments) in study parameters on statisti-
cal inference. Thus, regulatory guidance on what range of changes in study 
parameters is considered acceptable is necessarily developed. As indicated 
earlier, adaptive design methods are very attractive to the clinical research-
ers and/or sponsors due to their flexibility, especially in clinical trials of 
early clinical development. It, however, should be noted that there is a high 
risk that a clinical trial using adaptive design methods may fail in terms of 
its scientific validity and/or its limitation of providing useful information 
with a desired power, especially when the sizes of the trials are relatively 
small and there are a number of protocol amendments.



Protocol Amendments	 173

TA
B

LE
 9

.2

Sa
m

pl
e 

Si
ze

 A
dj

u
st

m
en

t B
as

ed
 o

n 
C

ov
ar

ia
te

-A
dj

u
st

ed
 M

od
el

Te
st

H
yp

ot
h

es
is

N
on

-A
d

ju
st

m
en

t
A

d
ju

st
m

en
t

Su
pe

ri
or

it
y

H
0 :

 p
10

 −
 p

20
 ≤

 δ
H

1 :
 p

10
 −

 p
20

 >
 δ

N
z

z
p

p
p

p
w

p
p w

cl
as

si
c

=
+

−
−

−
+

− −
⎡ ⎣⎢

⎤
(

)
(

)
(

)
(

)
α

γ

δ2

10
20

2
10

10
20

20
1

1 1
⎦⎦⎥

N
z

z
V

p
p

d
ac

tu
al

=
+ −

−

(
)

(
)

α
γ

δ

2

10
20

2

�

N
on

-i
nf

er
io

ri
ty

H
0 :

 p
10

 −
 p

20
 ≤

 −
δ

H
1 :

 p
10

 −
 p

20
 >

 −
δ

N
z

z
p

p
p

p
w

p
p w

cl
as

si
c

=
+

−
+

−
+

− −
⎡ ⎣⎢

⎤
(

)
(

)
(

)
(

)
α

γ

δ2

10
20

2
10

10
20

20
1

1 1
⎦⎦⎥

N
z

z
V

p
p

d
ac

tu
al

=
+ −

+

(
)

(
)

α
γ

δ

2

10
20

2

�

E
qu

iv
al

en
ce

H
0 :

 |
p 1

0 −
 p

20
|

 ≥
 δ

H
1 :

 |
p 1

0 −
 p

20
|

 <
 δ

N
z

z
p

p
p

p
w

p
p w

cl
as

si
c

=
+

−
−

−
+

− −
⎡ ⎣⎢

⎤
(

)
(

)
(

)
(

)
α

γ

δ

2

10
20

2
10

10
20

20
1

1 1
⎦⎦⎥

N
z

z
V

p
p

d
ac

tu
al

=
+

−
−

(
)

(
)

/
α

γ

δ

2
2

10
20

2

�

w
 is

 th
e 

pr
op

or
ti

on
 o

f p
at

ie
nt

s 
fo

r 
th

e 
fir

st
 tr

ea
tm

en
t

� V
g

w
w

g
d

T
i

ik
i

i
ik

i
=

ʹ
+

−
⎛ ⎝⎜

⎞ ⎠⎟
ʹ

=
=

−

∑
∑

[
(

)]
(

)
(

)
(

)
(

)
b

b
ρ

ρ
1

0

1
2

0

2
1

1
I

I

w
he

re
 w

 =
 n

1·
/N

, ρ
ti
 =

 n
ti
/n

t· 
an

d

ʹ
=

−
−

−

−

−
−

−
g

p
p

p
p

p
p

p
p

p
p

(
)b

10
10

20
20

10
10

0
10

10
20

2

1
1

1

1
1

(
)

(
)

(
)

(
)

(
ν

00

0
10

10
1

)

(
)

.
(

)
−

(
)

⎛ ⎝⎜ ⎜ ⎜ ⎜ ⎜

⎞ ⎠⎟ ⎟ ⎟ ⎟ ⎟
ν

p
p



174	 Controversial Statistical Issues in Clinical Trials

TA
B

LE
 9

.3

Sa
m

pl
e 

Si
ze

 A
dj

u
st

m
en

t B
as

ed
 o

n 
R

an
do

m
 L

oc
at

io
n 

Sh
if

t

Te
st

H
yp

ot
h

es
is

N
on

-A
d

ju
st

m
en

t
A

d
ju

st
m

en
t

E
qu

al
it

y
H

0 :
 μ

1 −
 μ

2 =
 0

H
a :

 μ
1 −

 μ
2 ≠

 0

N
z

z
cl

as
si

c
=

+ −

2
2

2
2

1
2

2

(
)

(
)

/
α

β
σ

μ
μ

�
N

m
z

z
m

z
z

ac
tu

al
=

+
+

+
−

−
+

2
1

1
2

2
2

2

1
2

2
2

2
2

(
)(

)
(

)(
)

(
)

/

/

α
β α

β
μ

σ

μ
μ

σ

�
�

N
on

-i
nf

er
io

ri
ty

/
su

pe
ri

or
it

y
H

0 :
 μ

1 −
 μ

2 ≤
 δ

H
a :

 μ
1 −

 μ
2 >

 δ
N

z
z

cl
as

si
c

=
+ −

−

2
2

2

1
2

2

(
)

(
)

α
β

σ

μ
μ

δ�
N

m
z

z
m

z
z

ac
tu

al
=

+
+

+
−

−
−

+

2
1

1

2
2

1
2

2
2

2

(
)(

)
(

)(
)

(
)

α
β

α
β

μ

σ

μ
μ

δ
σ

�
�

E
qu

iv
al

en
ce

H
0 :

 |
μ 1

 −
 μ

2|
 ≥

 δ

H
a :

 |
μ 1

 −
 μ

2|
 <

 δ
N

z
z

cl
as

si
c

=
+ −

−
(

)
2

2
2

2

1
2

2

(
)

/
α

β
σ

μ
μ

δ�
N

m
z

z

m
z

z
ac

tu
al

=
+

+

+
−

−
(

)
−

+

2
1

1

2
2

2

1
2

2
2

2

(
)(

)

(
)|

|
(

)

/

/

α
β

α
β

μ

σ

μ
μ

δ
σ

�

�
22



Protocol Amendments	 175

TA
B

LE
 9

.4

Sa
m

pl
e 

Si
ze

 A
dj

u
st

m
en

t B
as

ed
 o

n 
R

an
do

m
 S

ca
le

 S
h

if
t

Te
st

H
yp

ot
h

es
is

N
on

-A
d

ju
st

m
en

t
A

d
ju

st
m

en
t

E
qu

al
it

y
H

0 :
 μ

1 −
 μ

2 =
 0

H
a :

 μ
1 −

 μ
2 ≠

 0

N
z

z
cl

as
si

c
=

+ −

2
2

2
2

1
2

2

(
)

(
)

/
α

β
σ

μ
μ

�
N

z
z

m
v

V

v

jt

jm

ac
tu

al
=

+
+

−

−
−

=
∑

2
1

1
2

1
2

2
1

2

0

1
2

2

(
)

(
)

(
)

(
)

(

/
(

)
α

β
σ

μ
μ

��

�
−−

⎛ ⎝⎜
⎞ ⎠⎟

=
∑

2
1

0

2

)
(

)
V

jt

jm

N
on

-i
nf

er
io

ri
ty

/
su

pe
ri

or
it

y
H

0 :
 μ

1 −
 μ

2 ≤
 δ

H
a :

 μ
1 −

 μ
2 >

 δ
N

z
z

cl
as

si
c

=
+ −

−
(

)
2

2
2

1
2

2

(
)

α
β

σ

μ
μ

δ�
N

z
z

m
v

V

v
V

jt

jm

ac
tu

al
=

+
+

−
−

(
)

−

=
∑

2
1

2

2
2

1
2

0

1
2

2

(
)

(
)

(
)

(
)

(
)

α
β

σ

μ
μ

δ

��

�
11

0

2

jt

jm
(

)

=
∑⎛ ⎝⎜

⎞ ⎠⎟

E
qu

iv
al

en
ce

H
0 :

 |
μ 1

 −
 μ

2|
 ≥

 δ
H

a :
 |

μ 1
 −

 μ
2|

 <
 δ

N
z

z
cl

as
si

c
=

+ −
−

(
)

2
2

2
2

1
2

2

(
)

/
α

β
σ

μ
μ

δ�
N

z
z

m
v

V

v

jt

jm

ac
tu

al
=

+
+

−
−

(
)

−

=
∑

2
1

2

2
2

2
1

2

0

1
2

2

(
)

(
)

(
)

(

/
(

)
α

β
σ

μ
μ

δ

��

�
))

(
)

V
jt

jm

1
0

2

=
∑⎛ ⎝⎜

⎞ ⎠⎟

V
n

x
j

t
t

t
j

t

t
t

ji
t

in j
1

2
2

2
2

1

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

=
+

+
−

=
∑

ν
σ

σ

ν
σ

μ
 w

he
re

 {μ
(t

) , 
σ(t

) , 
ν(t

) } 
is

 th
e 

tt
h 

st
ep

 e
st

im
at

e 
in

 th
e 

E
M

 a
lg

or
it

hm
.



176	 Controversial Statistical Issues in Clinical Trials

As indicated in the previous sections, analysis with covariate adjustment 
and the assessment of sensitivity index are the two commonly considered 
approaches when there is population shift due to protocol amendment. For 
the method of analysis with covariate adjustment, an alternative approach 
considering random coefficients in model (9.1) and/or a Bayesian approach 
may be useful for obtaining an accurate and reliable estimate of the treat-
ment effect of the compound under study. For the assessment of sensitivity 
index, in addition to the cases where (1) ε is random and C is fixed, and (2) ε is 
fixed and C is random, there are other cases such as (1) both ε and C are 
random, (2) sample sizes before and after protocol amendments are random 
variables, and (3) the number of protocol amendments is also a random vari-
able remain unchanged.

In addition, statistically, it is a challenge to clinical researchers when there 
are missing values. These could be due to the causes that are related to or 
unrelated to the changes or modifications made in the protocol amendments. 
In this case, missing values must be handled carefully to provide an unbi-
ased assessment and interpretation of the treatment effect. When there is a 
population shift either in location parameter or scale parameter, the standard 
methods for the assessment of treatment effect are necessarily modified. For 
example, the standard methods such as the O’Brien–Fleming method in typi-
cal group sequential design for controlling the overall type I error rate are not 
appropriate when there is a population shift due to protocol amendments.
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10
Seamless Adaptive Trial Designs

10.1â•‡� Introduction

In recent years, the use of adaptive design methods in clinical research 
and development based on accrued data and/or external information has 
become very popular due to its flexibility and efficiency (Liu and Chi, 2001; 
Chow and Chang, 2005, 2006; Krams et al. 2006; EMEA, 2007; FDA, 2010b). 
An adaptive design is defined as a clinical trial design that allows adapta-
tions (modifications or changes) to trial and/or statistical procedure of the 
trial after its initiation without undermining the validity and integrity of the 
trial. In their recent publication, with the emphasis of the feature of design 
adaptations only (rather than ad hoc adaptations), the Pharmaceutical 
Research Manufacturer Association (PhRMA) Working Group on Adaptive 
Design defines an adaptive design as a study design that uses accumulating 
data to decide on how to modify aspects of the study as it continues, with-
out undermining the validity and integrity of the trial. On the other hand, 
the FDA defines an adaptive design as a study that includes a prospectively 
planned opportunity for modification of one or more specified aspects of 
the study design and hypotheses based on analysis of data (usually interim 
data) from subjects in the study (FDA, 2010b). Based on the adaptations 
applied, adaptive designs can be classified into three categories: prospec-
tive, concurrent, and retrospective adaptive designs. Chow and Chang 
(2006) indicate that commonly considered adaptive designs in these catego-
ries include, but are not limited to, (1) an adaptive randomization design, 
(2) a group sequential design (Jennison and Turnball, 2000; Kelly, 2005a, 
2005b), (3) a flexible sample size reestimation design, (4) a drop-the-loser 
(or pick-the-winner) design (Sampson and Sill, 2005), (5) an adaptive dose-
finding design (Chang and Chow, 2005), (6) a biomarker-adaptive design 
(Chang, 2005a, 2005b), (7) an adaptive treatment-switching design (Branson 
and Whitehead, 2002; Shao et al., 2005), (8) a hypothesis-adaptive design, 
(9) a seamless adaptive trial design (Maca et al., 2006), and (10) a multiple 
adaptive design, which is any combinations of the above-mentioned adap-
tive designs. Among these, group sequential design, adaptive dose-finding 
design, and (two-stage) seamless adaptive design are probably the most 
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commonly employed adaptive designs in clinical trials. In this chapter, 
however, we will only focus on the two-stage seamless adaptive trial design.

A seamless trial design is referred to as a program that addresses study 
objectives within a single trial that are normally achieved through separate 
trials in clinical development (Bauer and Kieser, 1999; Maca et al., 2006). An 
adaptive seamless design is a seamless trial design that would use data from 
patients enrolled before and after the adaptation in the final analysis. Thus, a 
two-stage seamless adaptive design consists of two phases (stages), namely a 
learning (or exploratory) phase (Stage 1) and a confirmatory phase (Stage 2). 
The learning phase provides the opportunity for adaptations such as stop-
ping the trial early due to safety and/or futility/efficacy based on accrued 
data at the end of the learning phase. A two-stage seamless adaptive trial 
design reduces lead time between the learning (i.e., the first study for the tra-
ditional approach) and confirmatory (i.e., the second study for the traditional 
approach) phases. Most importantly, data collected at the learning phase are 
combined with those obtained at the confirmatory phase for the final analysis.

In the next section, controversial issues regarding the flexibility, efficiency, 
validity, and integrity of clinical trials utilizing adaptive trial designs are 
discussed. Also included in the section are regulatory perspectives of the 
use of adaptive design methods in clinical trials. Types of two-stage seam-
less adaptive trial designs depending upon whether the study objectives 
and/or the study endpoints at different stages are the same are described. 
Section 10.4 summarizes statistical methods for the analysis of the type of 
two-stage seamless designs with different study endpoints. Statistical meth-
ods for the analysis of the type of two-stage seamless designs with different 
study objectives/endpoints are developed in Section 10.5. Some concluding 
remarks are provided in the last section of this chapter.

10.2â•‡� Controversial Issues

The use of adaptive design methods for modifying the trial and/or statis-
tical procedures of ongoing clinical trials based on accrued data has been 
practiced for years in clinical research. Adaptive design methods in clinical 
research are very attractive to clinical scientists due to the following rea-
sons. First, it reflects medical practice in the real world. Second, it is ethical 
with respect to both efficacy and safety (toxicity) of the test treatment under 
investigation. Third, it is not only flexible, but also efficient in the early phase 
of clinical development. However, some concerns regarding the validity 
and integrity of the clinical trials utilizing adaptive trial designs have been 
raised and discussed tremendously within the pharmaceutical industry and 
the regulatory agencies. In what follows, controversial issues regarding the 
flexibility, efficiency, validity, and integrity of a clinical trial utilizing adap-
tive trial design are briefly described.
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10.2.1  �Flexibility and Efficiency

A two-stage adaptive seamless design is considered a more efficient and flex-
ible study design as compared to the traditional approach of having separate 
studies in terms of controlling type I error rate and power. For controlling 
the overall type I error rate, as an example, consider a two-stage adaptive 
seamless phase II/III design. Let αII and αIII be the type I error rate for phase 
II and phase III studies, respectively. Then, the overall α for the traditional 
approach of having two separate studies is given by α = αIIαIII. In the two-
stage adaptive seamless phase II/III design, on the other hand, the actual α 
is given by α = αIII. Thus, the α for a two-stage adaptive seamless phase II/ III 
design is actually 1/αII times larger than the traditional approach for hav-
ing two separate phase II and phase III studies. Similarly, for the evaluation 
of power, let PowerII and PowerIII be the power for phase II and phase III stud-
ies, respectively. Then, the overall α for the traditional approach of having 
two separate studies is given by Power = PowerII × PowerIII. In the two-stage 
adaptive seamless phase II/III design, the actual power is given by Power = 
PowerIII. Thus, the power for a two-stage adaptive seamless phase II/III 
design is actually 1/PowerII times larger than the traditional approach for 
having two separate phase II and phase III studies.

In addition, a two-stage seamless adaptive trial design that combines 
two separate (independent) studies can help in reducing lead time between 
studies. In practice, the lead time between studies is estimated to be about 
6 months to 1 year. As a common clinical practice, the phase III study will not 
be initiated until the final report of the phase II trial is reviewed and issued. 
After the completion of a phase II study, on average, it will usually take about 
4 months to lock database (including data entry/verification and data query/
validation), programming and data analysis, and final integrated statistical/
clinical report. During the preparation of the phase III trial, the development 
of a study protocol and Institutional Review Board (IRB) review/approval 
will also take some time. As a result, the application of a two-stage phase II/III 
seamless adaptive trial design will not only reduce the lead time between 
studies, but also allow the sponsor (investigator) to make a go/no-go decision 
at the end of the first stage (phase II study) early. In some case, a two-stage 
phase II/III seamless adaptive trial design may require a smaller sample size 
as compared to the traditional approach of two separate studies for phase II 
and phase III since data collected from both stages would be combined for a 
final assessment of the test treatment effect under investigation.

10.2.2  �Validity and Integrity

In practice, before an adaptive design can be implemented, some practical 
issues such as feasibility, validity, and robustness are necessarily addressed. 
For feasibility, several questions arise. For example, does the adaptive design 
require extra efforts in implementation? Do the level of difficulty and the 
associated cost justify the gain from implementing the adaptive design? 
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Does the implementation of the adaptive design delay patient recruitment 
and prolong study duration? How often are the unblinded analyses prac-
tical and to whom should the data should be unblinded? How should the 
impact of the data monitoring committee’s (DMC) decision regarding the 
trial (e.g., recommending an early stopping or other adaptations due to safety 
concerns) be considered at the design stage?

For the issue of validity, it is reasonable to ask the following questions. 
Does the unblinding cause potential bias in treatment assessment? Does 
the implementation of an adaptive design destroy the randomness? For 
example, response-adaptive randomization is used to assign more patients 
to the superior treatment groups by changing the randomization schedule. 
However, for ethical reasons, the patients should be informed that the later 
they come into the study, the greater is their chance of being assigned to the 
superior groups. For this reason, patients may prefer to wait for a late entry 
into the study. This could cause bias because sicker patients might enroll ear-
lier just because they cannot wait. When this happens, the treatment effect is 
confounded by the patient’s disease background. The bias could occur for a 
drop-losers design and other adaptive designs.

Regarding the issue of robustness, without virtually any exception, a trial can-
not be conducted exactly as specified in the protocol. Would protocol deviations 
invalidate the adaptive method? For example, if an actual interim analysis were 
performed at a different (information) time than the scheduled one, how does it 
impact the type I error of the adaptive design? How does an unexpected DMC 
action affect the power and validity of the design? Would a protocol amendment 
such as endpoint change or inclusion/exclusion change invalidate the design 
and analysis? Would delayed responses diminish the advantage of implement-
ing an adaptive design such as continual reassessment method (CRM) in an 
adaptive dose-escalation design and trials with a survival endpoint?

Adaptive designs usually involve multiple comparisons and often invoke 
a dependent sampling procedure or an adaptive combination of subsamples 
from different stages. Therefore, studies with adaptive designs are much 
more complicated than those with classic designs. The theoretical challenges 
arise from a typical adaptive design include (1) α adjustment to control overall 
type I error rate for multiple comparisons, (2) the p-value adjustment due to 
the dependent sampling procedure, (3) finding a robust unbiased point esti-
mate, and (4) finding a reliable confidence interval. In practice, it is not always 
easy to derive an analytical form for correct adjusted alpha and p-value due to 
the flexibility of adaptations. However, they can be addressed through com-
puter simulations regardless of the complexity of the adaptive designs. To do 
this, it is necessary to define an appropriate test statistic that can be applied 
before and after adaptations. A simulation can then be conducted under the 
null hypothesis for obtaining the sampling distribution of the test statistic. 
Based on the simulated distribution, the rejection region, adjusted alpha, and 
adjusted p-values can be obtained. The simulations can be done during pro-
tocol design to provide justification for choosing an appropriate design.
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10.2.3  �Regulatory Concerns

As it is recognized by the regulatory agencies, there are some possible benefits 
when utilizing adaptive design methods in clinical trials. For example, the use 
of adaptive design methods in clinical trials allows the investigator to correct 
wrong assumptions and select the most promising option early. In addition, 
adaptive designs make use of cumulative information of the ongoing trial and 
emerging external information to the trial, which allow the investigator to 
react earlier to surprises regardless of positive or negative results. As a result, 
the use of adaptive design methods may speed up the development process.

Although the investigator may have a second chance to redesign the 
trial after seeing the data from the trial itself at interim (or externally), it is 
flexible but more problematic operationally due to potential bias that may 
have been introduced to the conduct of the trial. For example, it is a major 
concern that unblinding during an interim analysis may have introduced 
potential bias by a change in clinical practice resulting from feedback from 
the analysis. As a result, we may have compromised scientific integrity of 
trial conduct due to operational bias. As indicated by the United States Food 
and Drug Administration (FDA), operational biases commonly occur when 
adaptations in trial and/or statistical procedures are applied. Trial proce-
dures are referred to as eligibility criteria, dose/dose regimen and dura-
tion, assessment of study endpoints, and/or diagnostic/laboratory testing 
procedures that are employed during the conduct of the trial. Statistical 
procedures include (1) selection and/or modification of study design; (2) 
formulation and/or modification of statistical hypotheses (according to 
study objectives); (3) selection and/or modification of study endpoints; (4) 
sample size calculation, reestimation, and/or adjustment; (5) generation of 
randomization schedules; and (6) development of statistical analysis plan 
(SAP). As a result, commonly seen operational biases due to adaptations 
include (1) sample size reestimation at interim analysis; (2) sample size 
allocation to treatments (e.g., change from 1:1 ratio to an unequal ratio); (3) 
delete, add, or change treatment arms after the review of interim analysis 
results; (4) shift in patient population after the application of adaptations 
(e.g., change in inclusion/exclusion criteria and/or subgroups); (5) change 
in statistical test strategy (e.g., change log-rank to other tests); (6) change 
study endpoints (e.g., change survival to time-to-disease progression and/or 
response rate in cancer trials); and (7) change study objectives (e.g., switch 
a superiority hypothesis to a non-inferiority hypothesis).

In summary, regulatory agencies do not object to the use of the adaptive 
design methods in clinical trials due to its flexibility, efficiency, and poten-
tial benefits as described above. However, the validity and integrity of the 
clinical trials after the implementation of various adaptations have raised 
critical concerns about the drug evaluation and approval process. These con-
cerns include, but are not limited to, the following: (1) that we may not be 
able to control (preserve) the overall type I error rate at a prespecified level 
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of significance, (2) that the obtained p-values may not be correct, (3) that the 
obtained confidence interval may not be reliable, and (4) that major (signifi-
cant) adaptations may have resulted in a totally different trial that is unable to 
address the scientific/medical questions the original study intended to answer.

10.3â•‡� Types of Two-Stage Seamless Adaptive Designs

In practice, two-stage seamless adaptive trial designs can be classified into 
the following four categories depending upon study objectives and study 
endpoints at different stages (Chow and Tu, 2009). See also Table 10.1.

In other words, we have (1) Category I (SS)—same study objectives and 
same study endpoints, (2) Category II (SD)—same study objectives but dif-
ferent study endpoints, (3) Category III (DS)—different study objectives but 
same study endpoints, and (4) Category IV (DD)—different study objectives 
and different study endpoints. Note that different study objectives are usu-
ally referred to dose finding (selection) at the first stage and efficacy confir-
mation at the second stage, while different study endpoints are directed to 
biomarker versus clinical endpoint or the same clinical endpoint with differ-
ent treatment durations. Category I trial design is often viewed as a similar 
design to a group sequential design with one interim analysis despite the fact 
that there are differences between a group sequential design and a two-stage 
seamless design. In this chapter, our emphasis will be placed on Category 
II designs. The results obtained can be similarly applied to Category III 
and Category IV designs with some modification for controlling the overall 
type I error rate at a prespecified level. In practice, typical examples for a 
two-stage adaptive seamless design include a two-stage adaptive seamless 
phase I/II design and a two-stage adaptive seamless phase II/III design. For 
the two-stage adaptive seamless phase I/II design, the objective in the first 
stage is biomarker development and the study objective in the second stage 
is to establish early efficacy. For a two-stage adaptive seamless phase II/III 
design, the study objective is for treatment selection (or dose finding) while 
the study objective at the second stage is efficacy confirmation.

TABLE 10.1

Types of Two-Stage Seamless Adaptive 
Designs

Study Objectives

Study Endpoint

Same (S) Different (D)

Same (S) I = SS II = SD
Different (D) III = DS IV = DD
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Statistical consideration for the first kind of two-stage seamless designs 
is similar to that of a group sequential design with one interim analysis. 
Sample size calculation and statistical analysis for this kind of study designs 
can be found in Chow and Chang (2006). For other kinds of two-stage seam-
less trial designs, standard statistical methods for group sequential design 
are not appropriate and hence should not be applied directly. In this chapter, 
statistical methods for a two-stage adaptive seamless design with different 
study endpoints (e.g., biomarker versus clinical endpoint or the same clinical 
endpoint with different treatment durations) but same study endpoint will 
be developed. Modification to the derived results is necessary if the study 
endpoints and study objectives are different at different stages.

One of the questions that are commonly asked when applying a two-stage 
adaptive seamless design in clinical trials is sample size calculation/allocation. 
For the first kind of two-stage seamless designs, the methods based on individ-
ual p-values as described by Chow and Chang (2006) can be applied. However, 
these methods are not appropriate for Category IV (DD) trial designs with dif-
ferent study objectives and endpoints at different stages. For Category IV (DD) 
trial designs, the following issues are challenging to the investigator and the 
biostatistician. First, how do we control the overall type I error rate at a pre-
specified level of significance? Second, is the typical O’Brien–Fleming type of 
boundaries feasible? Third, how to perform a valid final analysis that combines 
data collected from different stages? Cheng and Chow (2010) attempt to address 
these questions by proposing a new multiple-stage transitional seamless adap-
tive design accompanied with valid statistical tests to incorporate different 
study endpoints for achieving different study objectives at different stages.

10.4â•‡� Analysis for Seamless Design with Same Study 
Objectives/Endpoints

In practice, since a two-stage seamless design with the same study objectives 
and same study endpoints at different stages is similar to a typical group 
sequential design with one planned interim analysis, standard statistical 
methods for group sequential design are often employed. With various adap-
tations that are applied, many interesting methods have been developed in 
the literature. For example, the following is a list of methods that are com-
monly employed: (1) Fisher’s criterion for combination of independent p-values 
from subsamples collected between two consecutive adaptations (Bauer and 
Kohne, 1994; Bauer and Rohmel, 1995; Posch and Bauer, 2000), (2) weighting 
the samples differently before and after each adaptation (Cui et al., 1999), 
(3) the conditional error function approach (Proschan and Hunsberger, 1995; 
Liu and Chi, 2001), and (4) conditional power approaches (Li et al., 2005). The 
method using Fisher’s combination of p-values provides great flexibility in 
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the selection of statistical methods for individual hypothesis testing based 
on subsamples. However, as pointed out by Muller and Schafer (2001), the 
method lacks flexibility in the choice of boundaries. Among other interest-
ing studies, Proschan and Wittes (2000) constructed an unbiased estimate 
that uses all of the data from the trial. Adaptive designs featuring response-
adaptive randomization were studied by Rosenberger and Lachin (2003). 
The impact of study population changes due to protocol amendments was 
studied by Chow et al. (2005). An adaptive design with a survival endpoint 
was studied by Li et al. (2005). Hommel et al. (2005) studied a two-stage 
adaptive design with correlated data. An adaptive approach for a bivariate-
endpoint was studied by Todd (2003). Tsiatis and Mehta (2003) showed that 
for any adaptive design with sample size adjustment, there exists a more 
powerful group sequential design.

In what follows, for illustration purpose, we will introduce the method 
based on the sum of p-values (MSP) by Chow and Chang (2006) and Chang 
(2007). The MSP follows the idea of considering a linear combination of the 
p-values calculated using subsamples from the current and previous stages. 
Because of the simplicity of this method, it has been widely used in clinical tri-
als. The theoretical framework of the MSP is described in the following section.

10.4.1  �Theoretical Framework

Consider a clinical trial with K interim analyses. The final analysis is treated 
as the Kth interim analysis. Suppose that at each interim analysis, a hypoth-
esis test is performed followed by some actions that are dependent on 
the analysis results. Such actions could result in an early stopping due to 
futility/efficacy or safety, sample size reestimation, modification of random-
ization, or other adaptations. In this setting, the objective of the trial can be 
formulated using a global hypothesis test, which is an intersection of the 
individual hypothesis tests from the interim analyses

	 H H Hi K0 0 0: ∩ ∩� ,

where H0i, i = 1,â•›…,â•›K is the null hypothesis to be tested at the ith interim 
analysis. Note that there are some restrictions on H0i, that is, rejection of any 
H0i, i = 1,â•›…,â•›K will lead to the same clinical implication (e.g., drug is effica-
cious); hence all H0i, i = 1,â•›…,â•›K are constructed for testing the same endpoint 
within a trial. Otherwise the global hypothesis cannot be interpreted.

In practice, H0i is tested based on a subsample from each stage, and without 
loss of generality, assume H0i is a test for the efficacy of a test treatment under 
investigation, which can be written as

	 H Hi i i ai i i0 1 2 1 2:    versus   :η η η η≥ < ,

where ηi1 and ηi2 are the responses of the two treatment groups at the ith stage. 
It is often the case that when ηi1 = ηi2, the p-value pi for the subsample at the 
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ith stage is uniformly distributed on [0, 1] under H0 (Bauer and Kohne, 1994). 
This desirable property can be used to construct a test statistic for multiple-
stage seamless adaptive designs. As an example, Bauer and Kohne (1994) used 
Fisher’s combination of the p-values. Similarly, Chang (2007) considered a lin-
ear combination of the p-values as follows:

	
T w p i Kk ki i
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K

= =
=
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1

… 	 (10.1)

where
wki > 0
K is the number of analyses planned in the trial

For simplicity, consider the case where wki = 1. This leads to
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The test statistic Tk can be viewed as cumulative evidence against H0. The 
smaller the Tk is, the stronger the evidence is. Equivalently, we can define 

the test statistic as T p Kk i
i
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evidence against H0. The stopping rules are given by
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where Tk, αk, and βk are monotonic increasing functions of k, αk < βk, 
k = 1,â•›…, K − 1, and αK = βK. Note that αk and βk are referred to as the efficacy 
and futility boundaries, respectively. To reach the kth stage, a trial has to 
pass 1 to (k − 1)th stages. Therefore, a so-called proceeding probability can 
be defined as the following unconditional probability:
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where
t ≥ 0, ti, i = 1,â•›…, k is the test statistic at the ith stage
fT Tk1, ,…  is the joint probability density function
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The error rate at the kth stage is given by

	 π ψ αk k k= ( ). 	 (10.5)

When efficacy is claimed at a certain stage, the trial is stopped. Therefore, 
the type I error rates at different stages are mutually exclusive. Hence, the 
experiment-wise type I error rate can be written as follows:

	
α π=

=
∑ k

k

K

.
1

	 (10.6)

Note that (10.4) through (10.6) are the keys to determine the stopping bound-
aries, which will be illustrated in the next subsection with two-stage seam-
less adaptive designs. The adjusted p-value calculation is the same as the 
one in a classic group sequential design (see, e.g., Jennison and Turnbull, 
2000). The key idea is that when the test statistic at the kth stage Tk = t = αk 
(i.e., just on the efficacy stopping boundary), the p-value is equal to α spent 

πi
i

k

=∑ 1
. This is true regardless of which error spending function is used 

and consistent with the p-value definition of the classic design. The adjusted 
p-value corresponding to an observed test statistic Tk = t at the kth stage can 
be defined as
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This adjusted p-value indicates weak evidence against H0, if the H0 is rejected 
at a late stage because one has spent some α at previous stages. On the other 
hand, if the H0 was rejected at an early stage, it indicates strong evidence 
against H0 because there is a large portion of overall alpha that has not been 
spent yet. Note that pi in (10.1) is the stage-wise naive (unadjusted) p-value 
from a subsample at the ith stage, while p(t;â•›k) are adjusted p-values calculated 
from the test statistic, which are based on the cumulative sample up to the 
kth stage where the trial stops; Equations 10.6 and 10.7 are valid Â�regardless 
of how pi is calculated.

10.4.2  �Two-Stage Adaptive Design

In this subsection, we will apply the general framework to the two-stage 
designs. Chang (2007) derived the stopping boundaries and p-value formula 
for three different types of adaptive designs that allow (1) early efficacy 
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stopping, (2) early stopping for both efficacy and futility, and (3) early futil-
ity stopping. The formulation can be applied to both superiority and non-
inferiority trials with or without sample size adjustment.

10.4.2.1â•‡� Early Efficacy Stopping

For a two-stage design (K = 2) allowing for early efficacy stopping (β1 = 1), the 
type I error rates to spend at Stage 1 and Stage 2 are
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respectively. Using (10.8) and (10.9), (10.6) becomes
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Solving for α2, we obtain

	 α α α α2 1 12= − +( ) . 	 (10.11)

Note that when the test statistic t1 = p1 > α2, it is certain that t2 = p1 + p2 > α2. 
Therefore, the trial should stop when p1 > α2 for futility. The clarity of the 
method in this respect is unique, and the futility stopping boundary is often 
hidden in other methods. Furthermore, α1 is the stopping probability (error 
spent) at the first stage under the null hypothesis condition and α − α1 is the 
error spent at the second stage. Table 10.2 provides some examples of the 
stopping boundaries from (10.11).

TABLE 10.2

Stopping Boundaries for Two-Stage Efficacy Designs

One-sided α α1 0.005 0.010 0.015 0.020 0.025 0.030
0.025 α2 0.2050 0.1832 0.1564 0.1200 0.0250 —
0.05 α2 0.3050 0.2928 0.2796 0.2649 0.2486 0.2300

Source:	 Chang, M., Stat. Med., 26, 2772, 2007. With permission.
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The adjusted p-value is given by
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where
t = p1 if the trial stops at Stage 1
t = p1 + p2 if the trial stops at Stage 2

10.4.2.2â•‡� Early Efficacy or Futility Stopping

It is obvious that if β1 ≥ α2, the stopping boundary is the same as it is for the 
design with early efficacy stopping. However, futility boundary β1 when β1 ≥ α2 
is expected to affect the power of the hypothesis testing. Therefore,
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Carrying out the integrations in (10.13) and substituting the results into (10.6), 
we have
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Various stopping boundaries can be chosen from (10.15). See Table 10.3 for 
examples of the stopping boundaries. The adjusted p-value is given by



Seamless Adaptive Trial Designs	 189

	

p t k

t k

t( ; )

,

( ) (=

=

+ − −

                           if 1
1
21 1 1α β α β11

2
1
2

1 2

1
2

2

1
2

− = <

+ −

α β α

α α

) ,

( )

   if  and 

                  1

k

t iif  k = ≥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ 2 1 2β α .

	 (10.16)

where
t = p1 if the trial stops at Stage 1
t = p1 + p2 if the trial stops at Stage 2

10.4.2.3â•‡� Early Futility Stopping

A trial featuring early futility stopping is a special case of the previous 
design, where α1 = 0 in (10.15). Hence, we have
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Solving for α2, it can be obtained that
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	 (10.18)

TABLE 10.3

Stopping Boundaries for Two-Stage Efficacy and Futility 
Designs

One-Sided 𝛂 𝛃1 = 0.15

0.025 α1 0.005 0.010 0.015 0.020 0.025

α2 0.2154 0.1871 0.1566 0.1200 0.0250

𝛃1 = 0.2

0.05 α1 0.005 0.010 0.015 0.020 0.025

α2 0.3333 0.3155 0.2967 0.2767 0.2554

Source:	 Chang, M., Stat. Med., 26, 2772, 2007. With permission.
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Examples of the stopping boundaries generated using (10.18) are pre-
sented in Table 10.4. The adjusted p-value can be obtained from (10.16), 
where α1 = 0, that is,

	

p t k

t k

( ; )

,

=

=                            if                1       

      if  and 

          1

α β β β α

α

1 1 1
2

1 2

2

1
2

2

1
2

+ − = <

+

t k

t

,

      if  .      k = ≥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ 2 1 2β α

	 (10.19)

10.4.3  �Conditional Power

Conditional power is a very useful operating characteristic of adaptive 
designs. It can be used for interim decision-making and drawing compari-
sons among different designs and different statistical methods for adaptive 
designs. Because the stopping boundaries for the most existing methods are 
either based on z-scale or p-scale, for the purpose of comparison, we will use 
the transformation pk = 1 − Φ(zkâ•›) and, inversely, zk = Φ−1(1 − pkâ•›), where zk and 
pk are the normal z-score and the naive p-value from the subsample at the kth 
stage, respectively. Note that z2 has asymptotically normal distribution with 
N se( ( ), )δ δ/ ˆ

2 1  under the alternative hypothesis, where δ̂2 is the estimation of 
treatment difference in the second stage and
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To derive the conditional power, we express the criterion for rejecting H0 as

	 z B p2 2 1≥ ( , ).α 	 (10.20)

From (10.20), we can immediately obtain the conditional probability given 
the first stage naive p-value, p1, in the second stage as
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< ≤Φ 	 (10.21)

TABLE 10.4

Stopping Boundaries for Two-Stage Futility Design

One-Sided 𝛂 𝛃1 0.1 0.2 0.3 ≥0.4

0.025 α2 0.3000 0.2250 0.2236 0.2236
0.05 α2 0.5500 0.3500 0.3167 0.3162

Source:	 Chang, M., Stat. Med., 26, 2772, 2007. With 
permission.
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For the method based on the product of stage-wise p-values (MPP), the rejec-
tion criterion for the second stage is p1p2 ≤ α2, i.e., z2 ≥ Φ−1(1 − α2/p1). Therefore, 
B(α2, p1) = Φ−1(1 − α2/p1). Similarly, for the MSP, the rejection Â�criterion for the 
second stage is p1 + p2 ≤ α2, i.e., z2 = B(α2, p1) = Φ−1(1 − max(0, α2 − p1)). For the 
inverse-normal method (Lehmacher and Wassmer, 1999), the rejection crite-
rion for the second stage is w1z1 + w2z2 ≥ Φ−1(1 − α2), i.e., z2 ≥ (Φ−1(1 − α2) − w1Φ−1 

(1 − p1))/w2, where w1 and w2 are prefixed weights satisfying the condition of 
w w1

2
2
2 1+ = . Note that the group sequential design and the Cui–Hung–Wang 

(CHW) method (Cui et al., 1999) are special cases of the inverse-normal 
method. For simplicity, we will compare only MPP and MSP analytically 
because the third method also depends on two additional parameters, w1 and 
w2. To compare the conditional power, the same α1 should be used for both 
methods; otherwise the comparison will be much less informative. From 
(10.21), we can see that the comparison of the conditional power is equivalent 
to the comparison of function B(α2, p1). Equating the two B(α2, p1), we have
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2 1

p
p= −� 	 (10.22)

where α̂2 and �α2 are the final rejection boundaries for MPP and MSP, respec-
tively. Solving (10.22) for p1, we obtain the critical point for p1
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such that when p1 < η1 or p2 > η2 MPP has a higher conditional power than 
MSP. When η1 < p1 < η2, MSP has a higher conditional power than MPP. For 
example, for overall one-sided α = 0.025, if we choose α1 = 0.01 and β1 = 0.3, 
then ˆ .α2 0 0044=  and �α2 0 2236= . , and finally η1 = 0.0218 and η2 = 0.2018 
from (10.23). The unconditional power Pw is the expectation of conditional 
power, i.e.,

	 P E P pw C= δ δ[ ( , )].1 	 (10.24)

Therefore, the difference in unconditional power between MSP and MPP is 
dependent on the distribution of p1 and, consequently, dependent on the true 
difference δ and the stopping boundaries at the first stage (α1, β1).

Note that in Bauer and Kohne’s (1994) method using Fisher’s combination, 

which leads to the equation α β α α
χ α

1 1 1
1 2 4 1

2

+ =
− −ln( ) ( / ) ,/ e , it is obvious that the 

determination of β1 leads to a unique α1 and, consequently, α2. This is a non-
flexible approach. However, it can be verified that the method can be gener-
alized to α1 + α2 ln β1/α1 = α, where α2 does not have to be e

− −( / ) ,1 2 4 1
2χ α.
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Note that Tsiatis and Mehta (2003) indicated that there is an optimal (uni-
formly more powerful) design for any class of sequential design with a speci-
fied error spending function. In other words, for any adaptive design, one 
can always construct a classic group sequential test statistic that, for any 
parameter value in the space of alternatives, will reject the null hypothesis 
earlier with equal or higher probability, and, for any parameter value not in 
the space of alternatives, will accept the null hypothesis earlier with equal or 
higher probability. However, the efficacy gain by the classic group sequen-
tial design comes with a cost—for example, an increased number of interim 
analyses increases (e.g., from 3 to 10), which definitely has an associated cost 
practically. Also, the optimal design is under the condition of a prespecified 
error-spending function, but adaptive designs do not require in general a 
fixed error-spending function.

10.5â•‡� Analysis for Seamless Design with Different Endpoints

For illustration purpose, consider a two-stage phase II/III seamless adaptive 
trial design with different (continuous) study endpoints. Let xi be the obser-
vation of one study endpoint (e.g., a biomarker) from the ith subject in phase 
II, i = 1,â•›…, n and yj be the observation of another study endpoint (the primary 
clinical endpoint) from the jth subject in phase III, j = 1,â•›…, m. Assume that 
xi’s are independently and identically distributed with E(xi) = ν and Var(xi) = 
τ2, and yj’s are independently and identically distributed with E(yj) = μ and 
Var(yj) = σ2. Chow et al. (2007) proposed using the established functional 
relationship to obtain predicted values of the clinical endpoint based on data 
collected from the biomarker (or surrogate endpoint). Thus, these predicted 
values can be combined with the data collected at the confirmatory phase 
to develop a valid statistical inference for the treatment effect under study. 
Suppose that x and y can be related in a straight-line relationship

	 y x= + +β β ε0 1 ,	 (10.25)

where ε is an error term with zero mean and variance ς2. Furthermore, ε is 
independent of x. In practice, we assume that this relationship is well-explored 
and the parameters β0 and β1 are known. Based on (10.25), the observations 
xi observed in the learning phase would be translated to β0 + β1xi (denoted 
by ŷi) and are combined with those observations yi collected in the confirma-
tory phase. Therefore, ŷi’s and yi’s are combined for the estimation of the treat-
ment mean μ. Consider the following weighted-mean estimator:

	
ˆ ˆ ( ) ,μ ω ω= + −y y1 	 (10.26)
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where
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It should be noted that �̂ is the minimum variance unbiased estimator among 
all weighted-mean estimators when the weight is given by
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if β1, τ2, and σ2 are known. In practice, τ2 and σ2 are usually unknown and ω 
is commonly estimated by
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where s1
2 and s2

2 are the sample variances of ŷi’s and yj’s, respectively. The cor-
responding estimator of μ, which is denoted by

	
ˆ ˆ ˆ ( ˆ ) ,μ ω ωGD = + −y y1 	 (10.29)

is called the Graybill–Deal (GD) estimator of μ. The GD estimator is often 
called the weighted mean in metrology. Khatri and Shah (1974) gave an exact 
expression of the variance of this estimator in the form of an infinite series. 
An approximate unbiased estimator of the variance of the GD estimator, 
which has bias of order O(n−2 + m−2), was proposed by Meier (1953). In par-
ticular, it is given as
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For the comparison of the two treatments, the following hypotheses are 
considered:

	 H H0 1 2 1 1 2: versus : .μ μ μ μ= ≠ 	 (10.30)

Let ŷij be the predicted value β0 + β1xij, which is used as the prediction of y 
for the jth subject under the ith treatment in phase II. From (10.29), the GD 
estimator of μi is given as
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For hypotheses (10.30), consider the following test statistic:
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is an estimator of Var GD( )�̂ i , i = 1, 2. Using arguments similar to those in 
Section 2.1, it can be verified that T̃1 has a limiting standard normal distribu-
tion under the null hypothesis H0 if Var( )S i1

2  and Var(S i2
2 0) →  as ni and 

mi  → ∞. Consequently, an approximate 100(1 − α)% confidence interval of 
μ1 − μ2 is given as

	
ˆ ˆ , ˆ ˆ ,/ /μ μ μ μα αGD GD GD GD1 2 2 1 2 2− − − +( )z V z VT T 	 (10.33)

where VT = +Var VarGD GD
� �( ) ( )μ μˆ ˆ1 2 . Therefore, hypothesis H0 is rejected if the 

confidence interval (9) does not contain 0. Thus, under the local alternative 
hypothesis that H1â•›: μ1 − μ2 = δ ≠ 0, the required sample size to achieve a 1 − β 
power satisfies
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Let mi = ρni and n2 = γn1. Then, denoted by NT the total sample size for two 
treatment groups is (1 + ρ)(1 + γ)n1 with n1 given as
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n AB A C1
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2

1 1 8 1= + + +( )−( ) ,ρ 	 (10.34)

where
A = (zα/2 + zβ )2/δ2
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For the case of testing for superiority, consider the following local alterna-
tive hypothesis:

	 H1 1 2 1: μ μ δ δ− = > .

The required sample size to achieve 1 − β power satisfies

	 − + − + =z zα βδ δ μ μ( ) ( ) ( ) .1 Var Var  GD1 GD2ˆ ˆ

Using the notations in the above paragraph, the total sample size for two 
treatment groups is (1 + ρ)(1 + γ)n1 with n1 given as

	
n DB D C1

11
2

1 1 8 1= + + +( )−( ) ,ρ 	 (10.35)

where D = (zα + zβ)2/(δ1 − δ)2. For the case of testing for equivalence with a 
significance level α, consider the local alternative hypothesis H1â•›: μ1 − μ2 = δ1 
withâ•›|δ1|â•›< δ. The required sample size to achieve 1 − β power satisfies

	 − + − + =z zα βδ δ μ μ( ) ( ) ( ) .1 1 2Var VarGD GDˆ ˆ

Thus, the total sample size for two treatment groups is (1 + ρ)(1 + γ)n1 with 
n1 given

	
n EB E C1

11
2

1 1 8 1= + + +( )−( ) ,ρ 	 (10.36)

where E = (zα + zβ/2â•›)2/(δ − |δ1|)2.
Note that following a similar idea as described above, statistical tests and 

formulas for sample size calculation for testing hypotheses of equality, non-
inferiority, superiority, and equivalence for binary response and time-to-
event endpoints can be obtained.
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10.6â•‡� Analysis for Seamless Design with Different 
Objectives/Endpoints

In this section, we will focus on statistical inference for the scenario where 
the study objectives at different stages are different (e.g., dose selection ver-
sus efficacy confirmation) and study endpoints at different stages are dif-
ferent (e.g., biomarker or surrogate endpoint versus regular clinical study 
endpoint).

As indicated earlier, one of the major concerns when applying adaptive 
design methods in clinical trials is probably how to control the overall type I 
error rate at a prespecified level of significance. It is also a concern as to how 
the data collected from both stages should be combined for the final analysis. 
Besides, it is of interest to know how the sample size calculation/Â�allocation 
should be done for achieving individual study objectives originally set for 
the two stages (separate studies). In this chapter, a multiple-stage transitional 
seamless trial design with different study objectives and different study 
endpoints and with and without adaptations is proposed. The impact of the 
adaptive design methods on the control of the overall type I error rate under 
the proposed trial design is examined. Valid statistical tests and the corre-
sponding formulas for sample size calculation/allocation are derived under 
the proposed trial design.

As indicated earlier, a two-stage seamless trial design that combines two 
independent studies (e.g., a phase II study and a phase III study) is often con-
sidered in clinical research and development. Under such a trial design, the 
investigator may be interested in having one planned interim analysis at each 
stage. In this case, the two-stage seamless trial design becomes a four-stage 
trial design if we consider the time point at which the planned interim analy-
sis will be conducted as the end of the specific stage. In this chapter, we will 
refer to such a trial design as a multiple-stage transitional seamless design to 
emphasize the importance of smooth transition from stage to stage. In what 
follows, we will focus on the proposed multiple-stage transitional seamless 
design with (adaptive version) and without (nonadaptive version) adaptations.

10.6.1  �Nonadaptive Version

Consider a clinical trial comparing k treatments groups, E1,â•›…,â•›Ek, with a 
control group C. One early surrogate endpoint and one subsequent primary 
endpoint are potentially available for assessing the treatment effect. Let θi 
and ψi, i = 1,â•›…,â•›k be the treatment effect comparing Ei with C measured by 
the surrogate endpoint and the primary endpoint, respectively. The ultimate 
hypothesis of interest is

	 H k0 2 1, ,: ψ ψ= =� 	 (10.37)
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which is formulated in terms of the primary endpoint. However, along the 
way, the hypothesis

	 H k0 1 1, ,: θ θ= =� 	 (10.38)

in terms of the short-term surrogate endpoint will also be assessed. Cheng 
and Chow (2010) assumed that ψi is a monotone increasing function of the 
corresponding θi. The trial is conducted as a group sequential trial with 
the accrued data analyzed at three stages (i.e., Stage 1, Stage 2a, Stage 2b, 
and Stage 3) with four interim analyses, which are briefly described in 
the following. For simplicity, consider the case where the variances of the 
surrogate endpoint and the primary outcomes, denoted as σ2 and τ2, are 
known.

At Stage 1 of the study, (k + 1)n1 subjects will be randomized equally to 
receive either one of the k treatments or the control. As a result, there are 
n1 subjects in each group. At the first interim analysis, the most promis-
ing treatment will be selected and used in the subsequent stages based on 
the surrogate endpoint. Let ˆ , , ,,θi i k1 1= …  be the pair-wise test statistics, 
and S i k i= ≤ ≤arg max ,1 1θ̂  then if ˆ ,θS c1 1≤  for some c1, the trial is stopped and 
H0,1 is accepted. Otherwise, if ˆ ,, ,θS c1 1 1>  then the treatment ES is recom-
mended as the most promising treatment and will be used in all the sub-
sequent stages. Note that only the subjects receiving either the promising 
treatment or the control will be followed formally for the primary end-
point. The treatment assessment on all other subjects will be terminated 
and the subjects will receive standard care and undergo necessary safety 
monitoring.

At Stage 2a, 2n2 additional subjects will be equally randomized to receive 
either the treatment ES or the control C. The second interim analysis is sched-
uled when the short-term surrogate measures from these 2n2 Stage 2 subjects 
and the primary endpoint measures from those 2n1 Stage 1 subjects who 
receive either the treatment ES or the control C become available. Let T S1 1 1, ,= θ̂  
and T S1 2 1, ,= ψ̂  be the pair-wise test statistics from Stage 1 based on the surro-
gate endpoint and the primary endpoint, respectively, and ˆ ,θS 2  be the statistic 
from Stage 2 based on the surrogate. If
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stop the trial and accept H0,1. If T2,1 > c2,1 and T1,2 > c1,2, stop the trial and reject 
both H0,1 and H0,2. Otherwise, if T2,1 > c2,1 but T1,2 ≤ c1,2, we will move on to 
Stage 2b.

At Stage 2b, no additional subjects will be recruited. The third interim anal-
ysis will be performed when the subjects in Stage 2a complete their primary 
endpoints. Let
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where ψ̂S,2  is the pair-wise test statistic from Stage 2b. If T2,2 > c2,2, stop the 
trial and reject H0,2. Otherwise, move on to Stage 3.

At Stage 3, the final stage, 2n3 additional subjects will be recruited and fol-
lowed till their primary endpoints. For the fourth interim analysis, define
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where ˆ ,ψS 3  is the pair-wise test statistic from Stage 3. If T3 > c3, stop the trial 
and reject H0,2; otherwise, accept H0,2. The parameters in the above designs, 
n1, n2, n3, c1,1, c1,2, c2,1, c2,2, and c3, are determined such that the procedure will 
have a controlled type I error rate of α and a target power of 1 − β. The deter-
mination of these parameters will be given in the next section.

In the above design, the surrogate data in the first stage are used to esti-
mate the most promising treatment rather than assessing H0,1. This means 
that upon completion of Stage 1, a dose does not need to be significant in 
order to be recommended for the subsequent stages. This feature is impor-
tant since it does not suffer from any lack of power due to limited sample 
sizes.

There are two sets of hypotheses to be tested, namely H0,1 and H0,2. To claim 
efficacy, H0,2 has to be rejected, and hence is the hypothesis of primary inter-
est. However, to ensure appropriate control of the type I error rate associated 
with the sequential design with change of endpoints, H0,1 has to be assessed 
along the way according to the closed testing principle. The proposed two-
stage seamless design is attractive due to its efficiency (e.g., reduces the lead 
time between a phase II trial and a phase III study) and flexibility (e.g., allows 
to make decision early and take appropriate actions such as stopping the 
trial early or deleting/adding dose groups). At the first stage, with a lim-
ited number of subjects, the goal is to detect any signals for safety and/or 
evidence for early efficacy. With a limited number of subjects, there will not 
be any power for detecting a small clinically meaningful difference. This 
justifies the use of precision analysis for achieving statistical significance as 
a criterion for dose selection.

10.6.2  �Adaptive Version

The proposed design approach in the previous section is a group sequential 
procedure with treatment selection. There is no adaptation involved in the 
above procedure. Tsiatis and Mehta (2003) and Jennison and Turnbull (2006) 
argue that adaptive designs typically suffer from loss of efficiency and hence 
are typically not recommended in regular practice. However, as pointed out 
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by Proschan et al. (2006), in some scenarios, particularly when there is no 
enough primary outcome information available, it is appealing to use an 
adaptive procedure as long as it is statistically justified. For the trials we are 
considering, since the primary outcome takes much longer time to observe 
compared to its surrogate, we feel that an adaptive procedure is useful in 
our setting. And the transitional feature of our proposed design make it pos-
sible to modify the design adaptively upon completion of the second interim 
analysis (i.e., Stage 2a). One possible adaptation is the correlation between 
the surrogate endpoint and the primary outcome. As a nuisance parameter, 
it plays an important role in the power calculation of the procedure. This 
nuisance parameter can be estimated using the first stage patients who are 
followed for their primary outcomes.

Another possible modification is to recalibrate the treatment effect of the 
primary out come by exploring the relationship between the surrogate end-
point and the primary outcome. Specifically, assuming there is a local linear 
relationship between ψ and θ, a reasonable assumption when focusing only 
on their values at a neighborhood of the most promising treatment ES, then 
at the end of Stage 2a, the treatment effect in term of the primary endpoint 
can be reestimated as
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Then we could reestimate the Stage 3 sample size based on a modified 
treatment effect of the primary outcome δ = max{δS, δ0}, where δ0 is a mini-
mally clinically relevant treatment effect agreed upon prior to the trial. The 
reason we choose the modified treatment this way is to ensure the clinical 
relevance of the test procedure. Let m be the reestimated Stage 3 sample 
size based on δ. If m ≤ n3, then there is no modification for the procedure. 
If m > n3, then m (instead of the originally planned n3) patients per arm 
will be recruited at Stage 3. The justification of the above adaptation can be 
found in Cheng and Chow (2010).

10.6.3  �An Example

A pharmaceutical company is interested in conducting a clinical trial utilizing 
a two-stage seamless adaptive design for evaluation of safety (tolerability) 
and efficacy of a test treatment for patients with hepatitis C infection. The 
trial will combine two independent studies (one for dose selection and the 
other one for efficacy confirmation) into a single study. The study will con-
sist of two stages at which the first stage is for dose selection and the second 
stage is for establishment of non-inferiority of the selected dose from the 
first stage as compared to the standard of care therapy (control). The primary 
objectives of the study then contain study objectives at both stages. For the 
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first stage, the primary objective is to select the optimal dose as compared to 
the standard of care therapy, while the primary objective of the second stage 
is to establish non-inferiority of the selected dose as compared to the stan-
dard of care therapy. The treatment duration is 48 weeks of treatment fol-
lowed by a 24 weeks follow-up. The primary study endpoint is the sustained 
virologic response (SVR) at Week 72, which is defined as an undetectable 
HCV RNA level (<10â•›IU/mL) at Week 72. The proposed two-stage seamless 
adaptive design is briefly outlined, as follows: Stage 1—this stage is a five-
arm randomized evaluation of four active dose levels of the test treatment. 
Qualified subjects will be randomly assigned to one of the five treatment 
groups at a 1:1:1:1:1 ratio. After all Stage 1 subjects have completed Week 12 of 
the study, an interim analysis was performed. Based upon the safety results 
of this analysis as well as virologic response at Weeks 12 and 24, Stage 1 sub-
jects who have not yet completed the study protocol will continue with their 
assigned therapies for the remainder of the planned 48 weeks, with final 
follow-up at Week 72. An optimal dose will be selected based on the interim 
analysis results of the 12 week early virologic response (EVR), which is 
defined as 2-log10 reduction in HCV RNA level at Week 12, assuming that 
the 12 week EVR is predictive of 72 week SVR. The 12 week EVR is con-
sidered as a surrogate endpoint for the primary endpoint of 72 week SVR. 
Under this assumption, an optimal dose will be selected using precision 
analysis under some pre specified selection criteria. In other words, the 
dose group with highest confidence level for achieving statistical signifi-
cance (i.e., the observed difference is not by chance alone) will be selected. 
The selected dose will then proceed to testing for non-inferiority compared 
to standard of care in Stage 2. Stage 2—this stage will be a non-inferiority 
comparison of the selected dose from Stage 1. A separate cohort of sub-
jects will be randomized to receive either the selected dose from Stage 1 or 
the standard of care treatment as given in Stage 1 in a 1:1 ratio. A second 
interim analysis will be performed when all Stage 2 subjects have com-
pleted Week 12 and 50% of the subjects (Stage 1 and Stage 2 combined) have 
completed 48 weeks treatment and follow-up of 24 weeks. Depending on 
the results of this analysis, including the virologic response at Weeks 12 
and 24, sample size reestimation will be performed to whether additional 
subjects are needed in order for achieving the desired power for establish-
ment of non-inferiority for the selected dose.

In both stages, subjects who do not meet the study criteria for virologic 
response at Weeks 12 and 24, and those who do meet these criteria but then 
relapse at any later time through study Week 72, will discontinue study 
treatment and will be offered treatment, off protocol, with standard of care. 
For the two planned interim analyses, the incidence of EVR as well as safety 
data, will be reviewed by an independent data safety monitoring board 
(DSMB). The commonly used O’Brien–Fleming boundaries will be applied 
for controlling the overall type I error rate at 5% (O’Brien and Fleming, 
1979). Adaptations such as stopping the trial early, discontinuing selected 
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treatment arms, and reestimating the sample size may be applied as recom-
mended by the DSMB. Stopping rules for the study will be designated by the 
DSMB, based on their ongoing analyses of the data and as per their charter.

10.7â•‡� Concluding Remarks

As indicated earlier, in practice, statistical methods for a standard group 
sequential trial design with one planned interim analysis is often applied to 
the two-stage seamless adaptive design regardless whether the study objec-
tives and/or the study endpoints at different stages are the same. It is then a 
concern whether the obtained p-value and confidence interval for assessment 
of the treatment effect are correct or reliable. Sample size needed for achiev-
ing a desired power that obtained under a standard group sequential design 
may not be sufficient for achieving the study objectives under the two-stage 
seamless adaptive trial design especially when the study objectives and/or 
study endpoints at different stages are different. More discussions regarding 
adaptive design methods in clinical trials can be found in Chapter 26.

In its recent draft guidance on adaptive clinical trial design, the U.S. FDA 
classifies adaptive designs as either well understood designs or less well under-
stood designs depending upon the nature of adaptations either blinded or 
unblinded (FDA, 2010b). In practice, however, most of the adaptive designs 
(including seamless adaptive designs described in this chapter) are Â�considered 
less well understood designs. As a result, one of the major challenges is not 
only the development of a set of criteria for choosing a good design among 
these less well understood designs, but also the development of appropriate 
statistical methods under the selected less well understood designs for valid 
statistical inference of the test treatment under investigation.





203

11
Multiplicity in Clinical Trials

11.1â•‡ General Concept

In clinical trials, one of the ultimate goals is to demonstrate that the observed 
difference of a given study endpoint (e.g., the primary efficacy endpoint) is 
not only of clinical importance (or a clinically meaningful difference) with 
statistical meaning (or of statistically significance). A study endpoint is said 
to have statistical meaning when the observed difference is not by chance 
alone and is reproducible if we are to conduct a similar study under similar 
experimental conditions. In practice, the observed clinically meaningful dif-
ference that has achieved statistical significance is also known as statistical 
difference. Thus, a statistical difference means that the difference is not by 
chance alone and it is reproducible. In drug research and evaluation, it is of 
interest to control the chances of false negative (or making type I error) and 
to minimize the chances of false positive (or making type II error) at a pre-
specified level of significance. As a result, based on a given study endpoint, 
controlling the overall type I error rate at a prespecified level of significance 
for achieving a designed power (i.e., the probability of correctly detecting a 
clinically meaningful difference if such a difference truly exists) has been a 
common practice for sample size determination.

In practice, the investigator may consider more than one endpoint (say two 
study endpoints) as the primary study endpoints. In this case, our goal is to 
demonstrate that the observed differences of the two study endpoints are 
clinically meaningful differences with statistical meaning. In other words, 
the observed differences are not by chance alone and they are reproducible. 
In this case, the level of significance is necessarily adjusted for controlling 
the overall type I error rate at a prespecified level of significance for mul-
tiple endpoints. This has raised the critical issue of multiplicity in clinical 
research and development. In clinical trials, multiplicity is usually referred to 
as multiple inferences that are made in simultaneous context (Westfall and 
Bretz, 2010). As a result, α adjustment for multiple comparisons is to make 
sure that the simultaneously observed differences are not by chance alone. In 
clinical trials, commonly seen multiplicity includes comparison of (1) multi-
ple treatments (dose groups), (2) multiple endpoints, (3) multiple time points, 
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(4) interim analyses, (5) multiple tests of the sample hypothesis, (6) variable/
model selection, and (7) subgroup analyses.

In general, if there are k treatments, there are k(k − 1)/2 possible pair-wise 
comparisons. In practice, two types of error rates are commonly considered 
(Lakshminarayanan, 2010). The first type is a comparison-wise error rate 
(CWE), which is a type I error rate for each comparison. That is, it is the 
probability of erroneously rejecting the null hypothesis between treatments 
involved in the comparison. The other type of error rate is an experiment-
wise error rate (EWE) or family-wise error rate (FWER), which is the error 
rate associated with one or more type I errors for all comparisons included in 
the experiment. Thus, for k comparisons, CWE = α and FWER = 1 − (1 − α)k. 
As a result, the FWER could be much larger than the significance level asso-
ciated with each test if multiple statistical tests are performed using the same 
data set. In practice, thus, it is of interest to control the FWER. In the past sev-
eral decades, several procedures for controlling FWER have been suggested 
in the literature. These procedures can be classified into either single-step 
procedures or stepwise (e.g., step-up and step-down) procedures. Note that 
an alternative approach to multiplicity control is to consider the false discov-
ery rate (FDR) (see Benjamini and Hochberg, 1995).

In the next section, regulatory perspectives regarding multiplicity adjust-
ment are discussed. Also included are some commonly seen controversial 
issues of multiplicity in clinical trials. Section 11.3 provides a summary of 
commonly considered statistical methods for multiplicity adjustment for 
controlling the overall type I error rate. An example concerning a dose-finding 
study is given in Section 11.4. A brief concluding remark is given in the last 
section of this chapter.

11.2â•‡ Regulatory Perspective and Controversial Issues

11.2.1  Regulatory Perspectives

Regulatory position regarding adjustment for multiplicity is not clear. In 
1998, the International Conference on Harmonization (ICH) E9 published 
guidelines regarding Statistical Principles in Clinical Trials. These guide-
lines have several comments reflecting concern over the multiplicity prob-
lem. The ICH E9 guidelines recommend that the analysis of clinical trial 
data may necessitate an adjustment to the type I error. In addition, the ICH 
E9 suggests details of any adjustment procedure or an explanation of why 
adjustment is not thought necessary to be set out in the analysis plan. The 
European Agency for the Evaluation of Medicinal Products (EMEA), on the 
other hand, in its Committee for Proprietary Medicinal Products (CPMP) 
draft guidance “Points to Consider on Multiplicity Issues in Clinical Trials” 
indicates that multiplicity can have a substantial influence on the rate of 
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false positive conclusions whenever there is an opportunity to choose the 
most favorable results from two or more analyses. The EMEA guidance also 
echoes the ICH recommendation for stating details of the multiple compari-
sons procedure in the analysis plan.

11.2.2  Controversial Issues

When conducting clinical trials involving multiple comparisons, the follow-
ing questions are always raised (see also Hung and Wang, 2009):

	 1.	Why do we need to adjust for multiplicity?
	 2.	When do we need to adjust for multiplicity?
	 3.	How do we adjust for multiplicity?
	 4.	 Is the FWER well controlled?

To address the first question, it is suggested that the null/alternative hypoth-
eses be clarified since the type I error rate and the corresponding power 
are evaluated under the null hypothesis and the alternative hypothesis, 
respectively.

Regarding the second question, it should be noted that adjustment for mul-
tiplicity is to ensure that the simultaneously observed differences are not 
by chance alone. For example, for the evaluation of a test treatment under 
investigation, if regulatory approval is based on single endpoint, then no α 
adjustment is necessary. However, if regulatory approval is based on multiple 
endpoints, then α adjustment is a must in order to make sure that the simulta-
neously observed differences are not by chance alone and they are reproduc-
ible. Conceptually, it is not correct that α needs to be adjusted if more than 
one statistical test (e.g., primary hypothesis and secondary hypothesis) is to be 
performed. Whether α should be adjusted depends upon the null hypothesis 
(e.g., a single hypothesis with one primary endpoint or a composite hypothe-
sis with multiple endpoints) to be tested. The interpretations of the test results 
for single null hypothesis and composite null hypothesis are different.

For questions (3) and (4), several useful methods for multiplicity adjustment 
are available in the literature (see Hsu, 1996; Chow and Liu, 1998b; Westfall 
et al., 1999). These methods are either single-step methods (e.g., Bonferroni’s 
method), step-down methods (e.g., Holm’s method), or step-up methods (e.g., 
Hochberg’s method). In the next section, some commonly employed meth-
ods for multiplicity adjustment are briefly described.

As pointed out by Westfall and Bretz (2010), the controversial issues of 
multiplicity in clinical trials that are commonly encountered include (1) 
penalizing for doing more or good job (i.e., performing additional test), (2) 
adjusting α for all possible tests conducted in the trial, and (3) the family 
of hypotheses to be tested. Penalizing for doing good job is referred to as 
adjustment for multiplicity for dose-finding trials that include more dose 



206	 Controversial Statistical Issues in Clinical Trials

groups. For adjusting α for all possible tests conducted in the trial, although 
the α is controlled at the prespecified level, it is over-killed because it is not 
in the investigator’s best interest to show that all of the observed differences 
simultaneously are not by chance alone. In practice, it is very controversial to 
select an appropriate family of hypotheses (e.g., primary endpoints and sec-
ondary endpoints for efficacy or safety or both) for multiplicity adjustment 
for clinical evaluation of the test treatment under investigation.

It should be noted that the most worrisome impact of multiplicity on the 
inference for clinical trials is not only the control of FWER though that can 
be problematic but also the power for correctly detecting a clinically mean-
ingful treatment effect. One of the most controversial issues in multiplicity 
is having adequate control of FWER but failing to achieve the desired power 
due to multiplicity.

11.3â•‡ Statistical Method for Adjustment of Multiplicity

As indicated earlier, commonly considered procedures or methods for con-
trolling the FWER at some prespecified level of significance can be classi-
fied into two categories: (1) single-step methods (e.g., Bonferroni’s correction) 
and (2) stepwise procedures, which include step-down methods (e.g., Holm’s 
method) and step-up methods (e.g., Hochberg’s method). In practice, com-
monly used procedures for controlling the FWER in clinical trials are classic 
multiple comparison procedures (MCPs), which include Bonferroni, Tukey, 
and Dunnett procedures. These procedures and a few others are briefly 
described in the following.

11.3.1  Bonferroni’s Method

Among the above mentioned procedures, the method of Bonferroni is prob-
ably the most commonly considered procedure for addressing multiplicity in 
clinical trials though it is somewhat conservative.

Suppose there are k treatments and we are interested in testing the follow-
ing hypothesis:

	 H k0 1 2: ,μ μ μ= = =� 	

where μi, i = 1,â•›…, k is the mean for the ith treatment. Let yij, j = 1,â•›…, ni, i = 
1,â•›…, k be the jth observation obtained in the ith treatment. Also, let y−i and
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be the least square mean for the ith treatment and an estimate of the vari-
ance obtained from an analysis of variance (ANOVA), respectively. ni is the 
sample size of the ith treatment. We then reject the null hypothesis in favor 
of the alternative hypothesis that the treatment means μi and μj are different 
for every i ≠ j if

	
y y t v s n ni j i j− > +⎡⎣ ⎤⎦

− −
α/

/
( ) ( ) ,2

2 1 1 1 2

	
(11.1)

where tα/2(v) denotes a critical value for the t distribution with v = Σ(ni − 1) 
degrees of freedom and an upper tail probability of α/2. Bonferroni’s method 
simply requires that if there are k inferences in a family, then all inferences 
should be performed at the α/k significance level rather than at the α level.

Note that the application of Bonferroni’s correction to ensure that the prob-
ability of declaring one or more false positives is no more than α. However, 
this method is not recommended when there are a large number of pair-wise 
comparisons. In this case, the following multiple range test procedures are 
useful.

11.3.2  Tukey’s Multiple Range Testing Procedure

Similar to (11.1), we can declare that the treatment means μi and μj are differ-
ent for every i ≠ j if
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where q(α, k, v) is the studentized range statistic. This method is known as 
Tukey’s multiple range test procedure. It should be noted that simultaneous 
confidence intervals on all pairs of mean differences μi − μj can be obtained 
based on the following:
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(11.3)

Note that tables of critical values for the studentized range statistic are widely 
available. As an alternative to Tukey’s multiple range testing procedure, 
Duncan’s multiple range testing procedure is often considered. Duncan’s 
multiple testing procedure is to conclude that the largest and smallest of the 
treatment means are significantly different if
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where
p is the number of averages,
q(αp, p, v) is the critical value from the studentized range statistic with an 

FWER of αp.

11.3.3  Dunnett’s Test

When comparing several treatments with a control, Dunnett’s test is prob-
ably the most popular method. Suppose there are k − 1 treatments and one 
control. Denote by μi, i = 1,â•›…, k − 1 and μk the mean of the ith treatment and 
the control, respectively. Further, supposes that the treatment groups can be 
described by the following balanced one-way ANOVA model:

	 y i k j nij i ij= + = =μ ε , , , ; , , .1 1… … 	

It is assumed that εij are normally distributed with mean 0 and unknown 
variance σ2. Under this assumption, μi and σ2 can be estimated. Consequently, 
one-sided and two-sided simultaneous confidence intervals for μi − μk can be 
obtained.

For the one-sided simultaneous confidence interval of μi − μk, i = 1,â•›…, k − 1, 
the lower bound is given by
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where T = Tk−1, v{ρij}(α) satisfies
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where Φ is the distribution function of the standard normal. It should be 
noted that T = Tk−1, v{ρij}(α) are the critical values of the distribution of max Ti, 
where T1, T2,â•›…,â•›Tk multivariate t distributed with v degrees of freedom and 
correlation matrix {ρij}.

For the two-sided simultaneous confidence interval μi − μk, i = 1,â•›…, k − 1, 
the lower bound is given by
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where |h| satisfies
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Similarly, |h| are the critical values of the distribution of max Ti, where 
T1, T2,â•›…, Tk multivariate t distributed with v degrees of freedom and correla-
tion matrix {ρij}.

11.3.4  Closed Testing Procedure

In clinical trials involving multiple comparisons, as an alternative, the use 
of the closed testing procedure has become very popular since it was intro-
duced by Marcus et al. (1976). The closed testing procedure can be described 
as follows. First, form all intersections of elementary hypothesis Hiâ•›, then 
test all intersections using non-multiplicity adjusted tests. An elementary 
hypothesis Hi is then declared significant if all intersections which include 
the elementary hypothesis as a component of the intersection are signifi-
cant. More specifically, suppose there is a family of hypotheses denoted by 
{Hi, 1 ≤ i ≤ k}. Let HP = ∩j∈P Hj where P = {1, 2,â•›…, k}. HP is rejected if and only 
if every HQ is rejected for all Q ⊂ P assuming that an α-level test for each 
hypothesis HP is available. Marcus et al. (1976) showed that this testing pro-
cedure controls the FWER.

In practice, the closed testing procedure is commonly employed in a dose-
finding study with several doses of a test treatment under investigation. As 
an example, consider the following family of hypotheses:

	 H i ki i k: ,μ μ− ≤ ≤ ≤ −0 1 1 	

against one-sided alternatives, where the kth treatment group is the placebo 
group. Assume that the sample sizes in the treatment groups are equal (say n) 
and the sample size for the placebo group is nk. Let

	
ρ =

+
n

n nk
.
	

Then, the closed testing procedure can be carried out by the following steps:

Step 1: Calculate Ti, the t-statistics for 1 ≤ i ≤ k − 1. Let the ordered 
t-statistics be T(1) ≤ T(2) ≤ … ≤ T(k−1) with their corresponding hypoth-
eses denoted by H(1), H(2),â•›…,â•›H(k−1).

Step 2: Reject H(j) if T(i) > Ti,v, ρ(α) for i = k − 1, k − 2,â•›…, j. If we fail to reject 
H(j), then conclude that H(j−1),â•›…, H(1) are also to be retained.
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The closed testing procedures have been shown to be more powerful than 
the classic multiple comparisons procedures, such as the classic Bonferroni, 
Tukey, and Dunnett procedures. Note that the above step-down testing pro-
cedure is more powerful than that of Dunnett’s testing procedure given in 
(11.5). There is considerable flexibility in the choice of tests for the intersec-
tion hypotheses, leading to the wide variety of procedures that fall within 
the closed testing umbrella. In practice, a closed testing procedure gener-
ally starts with the global null hypothesis and proceeds sequentially toward 
intersection hypotheses involving fewer endpoints. However, it can begin 
with the individual hypotheses and move toward the global null hypothesis.

11.3.5  Other Tests

In addition to the testing procedures described above, there are several tests 
(p-value based stepwise test procedures) that are also commonly considered in 
clinical trials involving multiple comparisons. These methods include, but are 
limited to, Simes’ method (see Hochberg and Tamhane, 1987; Hsu, 1996; Sarkar 
and Chang, 1997), Holm’s method (Holm, 1979), Hochberg’s method (Hochberg, 
1988; Hochberg and Benjamini, 1990), Hommel’s method (Hommel, 1988), and 
Rom’s method (Rom, 1990), which are briefly summarized in the following.

Simes’ method is designed to reject the global null hypothesis if p(i) ≤ iα/m 
for at least one i = 1,â•›…, m. The adjusted p-value for the global hypothesis is 
given by

	 p m p p mm= min{ , , }.( ) ( )1 1/ /… 	

Note that Simes’ method improves Bonferroni’s method in controlling the 
global type I error rate under independence (Sarkar and Chang, 1997). One of 
the limitations of Simes’ method is that it cannot be used to draw inferences 
on individual hypotheses since it only tests the global hypothesis.

Holm’s method is a sequentially rejective procedure, which sequentially 
contrasts ordered unadjusted p-values with a set of critical values and rejects 
a null hypothesis if the p-value and each of the smaller p-values are less than 
their corresponding critical values. Holm’s method not only improves the 
sensitivity of Bonferroni’s correction method to detect real differences but 
also increases in power and provides a strong control of the FWER.

Hochberg’s method applies exactly the same set of critical values as Holm’s 
method but performs the test procedure in a step-up fashion. Hochberg’s 
method enables to identify more significant endpoints and hence is more 
powerful than Holm’s method. In practice, Hochberg’s method is somewhat 
conservative when individual p-values are independent. In the case where the 
endpoints are negatively correlated, the FWER control is not guaranteed for all 
types of dependence among p-values (i.e., the size could potentially exceed α).

Following the principle of closed testing procedure and Simes’ test, 
Hommel’s method is a powerful sequentially rejective method that allows 
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for inferences on individual endpoints. It is shown to be marginally more 
powerful than Hochberg’s method. However, the Hommel procedure also 
suffers from the disadvantage of not preserving the FWER. It does protect 
the FWER when the individual tests are independent or positively depen-
dent (Sarkar and Chang, 1997).

Rom’s method is a step-up procedure which is slightly more powerful as 
compared to Hochberg’s method. Rom’s procedure controls the FWER at the 
α level under the independence of p-values. More details can be found in 
Rom (1990).

11.4â•‡ Gatekeeping Procedures

11.4.1  Multiple Endpoints

Consider a dose–response study comparing m doses of a test drug to a pla-
cebo or an active control agent. Suppose that the efficacy of the test drug 
will be assessed using a primary endpoint and s − 1 ordered secondary end-
points. Suppose that the sponsor is interested in testing null hypotheses of 
no treatment effect with respect to each endpoint against one-sided alterna-
tives. Thus, there are a total of ms null hypotheses, which can be grouped 
into s families to reflect the ordering of the endpoints. Now, let yijk denote 
the measurement of the ith endpoint collected in the jth dose group from 
the kth patient, where k = 1,â•›…, n, i = 1,â•›…, s, and j = 0 (control), 1,â•›…, m. The 
mean of yijk is denoted by μij. Also, let tij be the t-statistic for comparing the 
jth dose group to the control with respect to the ith endpoint. It is assumed 
that the t-statistics follow a multivariate t distribution. Furthermore, yijk’s are 
normally distributed. Denote by ℑi the family of null hypotheses for the ith 
endpoint, i = 1,â•›…, s, i.e., ℑi = {Hi1â•›:â•›μi0 = μi1,â•›…, Himâ•›:â•›μi0 = μim}. The s families of 
null hypotheses are tested in a sequential manner.

Family ℑ1 (the primary endpoint) is examined first and testing continues 
to family ℑ2 (most important secondary endpoint) if at least one null hypoth-
esis has been rejected in the first family. This approach is consistent with a 
regulatory view that findings with respect to secondary outcome variables 
are meaningful only when the primary analysis is significant. The same 
principle can be applied to the analysis of ordered secondary endpoints. 
Dmitrienko et al. (2006) suggest focusing on testing procedures that meet 
the following condition:
Condition A: Null hypotheses in ℑi+1 can be tested only after at least one 
null hypothesis was rejected in ℑi, i = 1,â•›…,â•›s − 1. Secondly, it is important to 
ensure that the outcome of the multiple tests early in the sequence does not 
depend on the subsequent analyses.
Condition B: Rejection or acceptance of null hypotheses in ℑi does not depend 
on the test statistics associated with ℑi+1,â•›…,â•›ℑs, i = 1,â•›…, s − 1. Finally, one 
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ought to account for the hierarchical structure of this multiple testing prob-
lem and examine secondary dose–control contrasts only if the correspond-
ing primary dose–control contrast was found significant.
Condition C: The null hypothesis Hij, i ≥ 2 can be rejected only if H1j is rejected, 
j = 1,â•›…, m. It is important to point out that the logical restrictions for sec-
ondary analyses in condition C are caused only by the primary endpoint. 
This requirement helps clinical researchers streamline drug labeling and 
improves the power of secondary tests at the doses for which the primary 
endpoint was significant.

Within each of the s families, multiple comparisons can be carried out 
using Dunnett’s test as follows. Reject Hij if the corresponding t-statistic (tij) 
is greater than a critical value c for which the null probability of max(ti1,â•›…, 
tim) > c is α. Note that Dunnett’s test protects the type I error rate only within 
each family. Dmitrienko et al. (2006) extended Dunnett’s test for controlling 
the FWER for all ms null hypotheses.

11.4.2  Gatekeeping Testing Procedures

Dmitrienko et al. (2006) considered the following example to illustrate the pro-
cess of constructing a gatekeeping testing procedure for dose–response stud-
ies. For simplicity, Dmitrienko et al. (2006) focused on the case where m = 2 
and s = 2. In this example, it is assumed that the treatment groups are balanced 
with n patients per group. The four (i.e., ms = 4) null hypotheses are grouped 
into two (s = 2) families, i.e., ℑ1 = {H11, H12} and ℑ2 = {H21, H22}. Note that ℑ1 con-
sists of hypotheses for comparing low and high doses to placebo with respect 
to the primary endpoint, while ℑ2 contains hypotheses for comparing low and 
high doses to placebo with respect to the secondary endpoint.

Now let t11, t12, t21, and t22 denote the t-statistics for testing H11, H12, H21, and 
H22. We can then apply the principle of the closed testing for constructing 
gatekeeping procedures. According to this principle, one first considers all 
possible nonempty intersections of the four null hypotheses (this family of 
15 intersection hypotheses is known as the closed family) and then sets up 
tests for each intersection hypothesis. Each of these tests controls the type I 
error rate at the individual hypothesis level and the tests are chosen to meet 
conditions A, B, and C described above. To define tests for each of the 15 
intersection hypotheses in the closed family, let H denote an arbitrary inter-
section hypothesis and consider the following rules:

	 1.	 If H includes both primary hypotheses, the decision rule for H 
should not include t21 or t22. This is done to ensure that a secondary 
hypothesis cannot be rejected unless at least one primary hypoth-
esis is rejected (condition A).

	 2.	The same critical value should be used for testing the two primary 
hypotheses. This way, the rejection of primary hypotheses is not 
affected by the secondary test statistics (condition B).
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	 3.	 If H includes a primary hypothesis and a matching secondary 
hypothesis (e.g., H = H11 ∩ H21), the decision rule for H should not 
depend on the test statistic for the secondary hypothesis. This guar-
antees that H21 cannot be rejected unless H11 is rejected (condition C).

Note that similar rules used in gatekeeping procedures based on the 
Bonferroni’s test can be found in Dmitrienko et al. (2003) and Chen et al. 
(2005). To implement these rules, it is convenient to utilize the decision matrix 
approach (Dmitrienko et al., 2003). For the sake of compact notation, we will 
adopt the following binary representation of the intersection hypotheses. If 
an intersection hypothesis equals H11, it will be denoted by H1000* . Similarly, 
H H H H H H1100 11 12 1010 11 21* , *= ∩ = ∩ , etc.

Table 11.1 (reproduced from Table I of Dmitrienko et al., 2006) displays 
the resulting decision matrix that specifies a rejection rule for each inter-
section hypothesis in the closed family. The three constants (c1, c2, and c3) 

TABLE 11.1

Decision Matrix for a Clinical Trial with 
Two Dose–Placebo Comparisons and 
Two Endpoints (m = 2, s = 2)

Intersection Hypothesis Rejection Rule

H1111* t11 > c1 or t12 > c1

H1110* t11 > c1 or t12 > c1

H1101* t11 > c1 or t12 > c1

H1100* t11 > c1 or t12 > c1

H1011* t11 > c1 or t22 > c2

H1010* t11 > c1

H1001* t11 > c1 or t22 > c2

H1000* t11 > c1

H0111* t12 > c1 or t21 > c2

H0110* t12 > c1 or t21 > c2

H0101* t12 > c1

H0100* t12 > c1

H0011* t21 > c1 or t22 > c1

H0010* t21 > c3

H0001* t22 > c3

The test associated with this matrix rejects a 
null hypothesis if all intersection hypotheses 
containing it are rejected. For example, the 
test  rejects H11 if H1111* , H1110* , H1101* , H1100* , H1011* , 
H1010* , H1001*  and H1000*  are rejected.
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in Table 11.2 (reproduced from Table II of Dmitrienko et al., 2006) represent 
critical values for the intersection hypothesis tests. The values are chosen in 
such a way that, under the global null hypothesis of no treatment effect, the 
probability of rejecting each individual intersection hypothesis is α. Note 
that the constants are computed in a sequential manner (c1 is computed first, 
followed by c2, etc.) and thus c1 is the one-sided 100(1 − α)th percentile of 
Dunnett’s distribution with 2 and 3(n − 1) degrees of freedom. Secondly, 
the other two critical values (c2 and c3) depend on the correlation between 
the primary and secondary endpoints, which is estimated from the data. 
Calculation of these critical values is illustrated later.

The decision matrix in Table 11.1 defines a multiple testing procedure 
that rejects a null hypothesis if all intersection hypotheses containing the 
selected null hypothesis are rejected. For example, H12 will be rejected if 
H H H H H H H1111 1110 1101 1111 0111 0110 0101* , * , * , * , * , * , * , and H0100*  are all rejected. By the 
closed testing principle, the resulting procedure protects the FWER in the 
strong sense at the α level. It is easy to verify that the proposed procedure 
possesses the following properties and thus meets the criteria that define a 
gatekeeping strategy based on Dunnett’s test:

	 1.	The secondary hypotheses, H21 and H22, cannot be rejected when the 
primary test statistics, t11 and t12, are nonsignificant (condition A).

	 2.	The outcome of the primary analyses (based on H11 and H12) does 
not depend on the significance of the secondary dose–placebo com-
parisons (condition B). In fact, the procedure rejects H11 if and only 
if t11 > c1. Likewise, H12 is rejected if and only if t12 > c1. Since c1 is a 
critical value of Dunnett’s test, the primary dose–placebo compari-
sons are carried out using the regular Dunnett test.

TABLE 11.2

Critical Values for Individual Intersection 
Hypotheses in a Clinical Trial with Two 
Dose–Placebo Comparisons and Two 
Endpoints (m = 2, s = 2)

Correlation between the 
Endpoints (𝛒) c1 c2 c3

0.01 2.249 2.309 1.988
0.1 2.249 2.307 1.988
0.5 2.249 2.291 1.988
0.9 2.249 2.260 1.988
0.99 2.249 2.250 1.988

Source:	 Dmitrienko, A. et al., Pharm. Stat., 5, 19, 2006.
The correlation between the two endpoints (ρ)  ranges 
between 0.01 and 0.99, overall one-sided type I error prob-
ability is 0.025 and sample size per treatment group is 30 
patients. With permission from John Wiley & Sons, Ltd. 
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	 3.	The null hypothesis H21 cannot be rejected unless H11 is rejected and 
thus the procedure compares the low dose to placebo for the sec-
ondary endpoint only if the corresponding primary comparison is 
significant. The same is true for the other secondary dose–placebo 
comparison (condition C).

Under the global null hypothesis, the four statistics follow a central multivar-
iate t distribution. The three critical values in Table 11.1 can be found using 
the algorithm for computing multivariate t probabilities proposed by Genz 
and Bretz (2002). Table 11.2 shows the values of c1, c2, and c3 selected values 
of ρ (correlation between the two endpoints). It is assumed in Table 11.2 that 
the overall one-sided type I error rate is 0.025 and the sample size per group 
is 30 patients.

The information presented in Tables 11.1 and 11.2 helps evaluate the effect 
of the described gatekeeping approach on the secondary tests. Suppose, for 
example, that the two dose–placebo comparisons for the primary endpoint 
are significant after Dunnett’s adjustment for multiplicity (t11 > 2.249 and 
t12 > 2.249). A close examination of the decision matrix in Table 11.1 reveals 
that the null hypotheses in the second family will be rejected if their t-statistics 
are greater than 2.249. In other words, the resulting multiplicity adjustment 
ignores the multiple tests in the primary family.

However, if the low dose does not separate from the placebo for the pri-
mary endpoint (t11 ≤ 2.249 and t12 > 2.249), it will be more difficult to find 
significant outcomes in the secondary analyses. First of all, the low dose–
placebo comparison is automatically declared nonsignificant. Secondly, the 
high dose will be significantly different from the placebo for the secondary 
endpoint if t22 > c2. Note that c2, which lies between 2.250 and 2.309 when 
0.01 ≤ ρ ≤ 0.99, is greater than Dunnett’s critical value c1 = 2.249 (in general, 
c2 > c1 > c3). The larger critical value is the price of sequential testing. Note, 
however, that the penalty becomes smaller with increasing correlation.

11.5â•‡ Concluding Remarks

When conducting a clinical trial involving one or more doses (e.g., dose-
finding study) or one or more study endpoints (e.g., efficacy versus safety 
endpoint), the first dilemma at the planning stage of the clinical trial is 
the establishment of a family of hypotheses a priori in the study protocol 
for achieving the study objective of the intended clinical trial. Based on the 
study design and various underlying hypotheses, clinical strategies are usu-
ally explored for testing various hypotheses for achieving the study objec-
tives. One such set of hypotheses (e.g., drug versus placebo, positive control 
agent versus placebo, primary endpoint versus secondary primary endpoint) 
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would help to conclude whether both the drug and positive control agent are 
superior to placebo or the drug is efficacious in terms of the primary end-
point, secondary primary endpoint, or both. Under the family of hypotheses, 
valid MCPs for controlling the overall type I error rate should be proposed 
in the study protocol.

The other dilemma at the planning stage of the clinical trial is sample size 
calculation. A typical procedure is to obtain required sample size under 
either an ANOVA method or an analysis of covariance (ANCOVA) model 
based on an overall F test. This approach may not be appropriate if the pri-
mary objective involves multiple comparisons. In practice, when multiple 
comparisons are involved, the method of Bonferroni is usually performed to 
adjust the type I error rate. Again, the Bonferroni’s method is conservative 
and may require more patients than are actually needed. Alternatively, Hsu 
(1996) suggested a confidence interval approach as follows. Given a confi-
dence interval approach with level of 1 − α, perform sample size calculations 
so that with a prespecified power 1 − β(<1 − α), the confidence intervals will 
cover the true parameter value and be sufficiently narrow (Hsu, 1996).

As indicated, multiple comparisons are commonly encountered in clini-
cal trials. Multiple comparisons may involve comparisons of multiple treat-
ments (dose groups), multiple endpoints, multiple time points, interim 
analyses, multiple tests of the sample hypothesis, variable/model selection, 
and subgroup analyses in a study. In this case, statistical methods for con-
trolling error rates such as CWE, FWER, or FDR are necessary for multiple 
comparisons. The closed testing procedure is useful for addressing mul-
tiplicity issues in dose-finding studies. In the case where there are a large 
number of tests involved such as tests for safety data, it is suggested that the 
method using FDR for controlling the overall type I error rate be considered.
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12
Independence of Data Monitoring 
Committee

12.1â•‡� Introduction

In clinical trials, an independent data monitoring committee (DMC) is often 
established to serve as a guard for validity and integrity of an intended 
clinical trial (see NIH 1998, 2000; Ellenberg et al., 2002). The DMC is inde-
pendent of any activities related to the clinical operation of the study, 
which is comprised of experienced physicians and statisticians. Depending 
on the study objectives and needs of the sponsor, the primary responsibility 
of the independent DMC include, but are not limited to, (1) ensuring the 
validity and integrity of the intended clinical trial, (2) performing ongo-
ing safety monitoring, and (3) performing interim analysis for efficacy. 
An established independent DMC will perform its function and activity 
according to a written charter, which is usually developed and approved 
by the sponsor, the investigator, and the DMC. In practice, there is separate 
staff supporting the functions and activities of DMC. This separate staff is 
usually referred to as DMC support staff. The DMC support staff is respon-
sible for performing unblinded interim analysis and presenting the results 
to the DMC.

The use of DMC in clinical trials can be traced back to the early 1960s 
(FDA, 2006b). However, the DMC did not appear in pharmaceutical trials 
until early the 1990s (Herson, 2009). As more and more clinical trials spon-
sored by the pharmaceutical/device industry utilizing DMC for study moni-
toring, in 2001, the United States Food and Drug Administration (FDA) 
published a draft guidance on DMC to assist the sponsor in (1) determin-
ing the need for DMC, (2) establishing a DMC, and (3) setting up standard 
operation procedures for DMC’s function and activity. The FDA draft guid-
ance, however, was not finalized until 2006. Although the intention of the 
independent DMC is good, some controversial issues inevitably occur. These 
controversial issues include, but are not limited to, (1) the challenge of the 
independence of an independent DMC, (2) the issue regarding the direct 
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communication between DMC and FDA, and (3) the use of DMC for clini-
cal trials utilizing adaptive design methods. In this chapter, some insight 
regarding these controversial issues will be provided.

The remainder of this chapter is organized as follows. In the next section, 
regulatory requirements regarding the establishment, role/responsibility, 
function/activity of an independent DMC are described. Section 12.3 dis-
cusses the composition of a DMC and the development of the charter. DMC 
functional activities are outlined in Section 12.4. Some observations regard-
ing the independence of an independent DMC are summarized in Section 
12.5. Brief concluding remarks are given in the last section of this chapter.

12.2â•‡� Regulatory Requirements

The FDA published a draft guidance on DMC to assist clinical trial spon-
sors in determining when a DMC may be useful for clinical trial monitor-
ing and how such a committee should operate in 2001. This draft guidance, 
which covers studies required for evaluating new drugs, biologics, and 
devices, was not finalized until 2006 (FDA, 2006b; Dixon et al., 2006). As 
indicated in the FDA guidance on DMC, a clinical trial DMC is defined as 
a group of individuals with pertinent expertise that reviews on a regular 
basis accumulating data from one or more ongoing clinical trials. The DMC 
advises the sponsor regarding the continuing safety of trial subjects and 
those yet to be recruited for the trial, as well as the continuing validity and 
scientific merit of the trial.

As indicated in the FDA guidance on DMC, the use of DMC can be 
traced back to the early 1960s. In 1967, a National Institutes of Health 
(NIH) external advisory group first introduced the concept of a formal 
committee charged with reviewing the accumulating data as the trial pro-
gressed to monitor safety, effectiveness, and trial conduct issues in a set 
of recommendations to the then NHI. However, few trials sponsored by 
the pharmaceutical/medical device industry incorporated DMC oversight 
until relatively recently. Although government agencies such as the NIH 
that sponsor clinical research have required the use of DMCs in certain 
trials, current FDA regulations, however, impose no requirements for the 
use of DMCs in trials except under 21 CFR 50.24(a)(7)(iv) for research stud-
ies in emergency settings in which the informed consent requirement is 
excepted. The DMC was also mentioned in several ICH guidelines such as 
(1) the ICH E3 guideline on clinical study reports (ICH, 1995), (2) the ICH E6 
guideline on good clinical practices (ICH, 1996a), and (3) the ICH E9 guide-
line on statistical principles (ICH, 1998) since then. In the past decade, the 
role/responsibility and function/activity of an independent DMC have 
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been discussed in the literature. For example, Hemmings and Day (2004) 
provided a good discussion of regulatory issues related to DMCs. The 
books by Ellenberg et al. (2002) and DeMets et al. (2006) gave a compre-
hensive overview of composition, role/responsibility, function/activity, and 
impact of an independent DMC in clinical trials from both regulatory and 
academic perspectives. Most recently, as indicated by Herson (2009), some 
leading medical journals have adopted a policy not to publish results of 
industry-sponsored trials unless an independent DMC was involved (see 
also Fontanarosa et al., 2005).

12.2.1  �Determining Need for a DMC

As indicated in the FDA guidance, DMCs are generally established for 
large, randomized multisite studies that evaluate treatments intended to 
prolong life or reduce risk of a major adverse health outcome such as a car-
diovascular event or recurrence of cancer. DMCs are recommended for any 
controlled trial of any size that will compare rates of mortality or major mor-
bidity, but a DMC is not required or recommended for most clinical studies. 
DMCs are generally not needed, for example, for trials at early stages of 
product development. They are also generally not needed for trials address-
ing lesser outcomes, such as relief of symptoms, unless the trial population 
is at elevated risk of more severe outcomes. Although the value of a DMC 
is well recognized, the FDA suggested the following factors be assessed 
when determining whether to establish a DMC for a particular trial. These 
factors include the following: (1) What is the risk to trial participants? (2) Is 
a DMC review practical? (3) Will a DMC help assure the scientific validity 
of the trial? These factors are related primarily to safety, practicality, and 
scientific validity.

12.2.2  �Confidentiality of Interim Data and Analysis

In clinical trials, knowledge of treatment codes will introduce bias to the 
clinical data collected from the study. As described in 21CFR314.126(b)(5) 
(for drug products) and 21CFR860.7(f)(1) (for devices), sponsors should make 
every attempt to minimize bias. Thus, it is suggested that unblinded interim 
data and the results of comparative interim analyses should not be assessed 
by anyone other than DMC members or the statistician performing the anal-
ysis and presenting the results to the DMC. As a result, the FDA guidance 
strongly recommends that procedures be established to safeguard confiden-
tial interim data from the project team, investigators, sponsor representa-
tives, or anyone else outside the DMC and the statistician performing the 
interim analyses.

The FDA also recommends that any part of the interim report to the DMC 
that includes comparative effectiveness and safety data presented by the 
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study group, whether coded or completely unblinded, be available only 
to DMC members during the course of the trial, including any follow-up 
period—that is, until the trial is completed and the blind is broken for the 
sponsor and investigators. The FDA emphasizes that if interim reports are 
shared with the sponsor, it may become impossible for the sponsor to make 
potentially warranted changes in the trial design or analysis plan in an 
unbiased manner.

12.2.3  �Desirability of an Independent DMC

The FDA guidance on DMC emphasizes the importance of the indepen-
dence of the DMC. Independence could be defined as DMC members (1) 
have no involvement in the design and conduct of the trial except through 
their role on the DMC and (2) have no financial or other important con-
nections with the sponsor or other trial organizers that could influence 
their objectivity in evaluating trial data. The FDA also pointed out that 
the independence of an independent DMC has the following advantages. 
First, independence from the sponsor helps ensure that sponsor interests 
do not unduly influence the DMC, promoting objectivity that benefits the 
subjects and the trial. Second, through enhancement of objectivity and 
reduction of the possibilities for bias, independence of the DMC increases 
the credibility of the trial’s conclusion. Third, independence of the DMC 
and complete blinding of the sponsor to interim outcome data preserve 
the ability of the sponsor to make certain modifications to a trial in 
response to new external information without introducing bias. Finally, 
in a commercially sponsored trial, independence of the DMC may shield 
the sponsor from security issues by maintaining the sponsor in a fully 
blinded situation.

It, however, should be noted that as pointed out by the FDA, DMCs are 
rarely, if ever, entirely independent of the sponsor, as the sponsor gener-
ally selects the DMC members and pays the committee members for their 
expenses and services.

12.3â•‡� DMC Composition and Charter

As indicated earlier, when conducting a clinical trial, an independent DMC 
is established not only to ensure the validity and integrity of the clinical 
trial but also to monitor ongoing safety data and perform interim analysis 
for efficacy. Thus, the selection of DMC members is extremely important as 
DMC responsibilities relate to the safety of trial participants. DMCs typically 
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operate under a written charter that includes well-defined standard operating 
procedures. The DMC composition and charter are briefly described in the 
following sections.

12.3.1  �DMC Composition and Support Staff

As indicated in the FDA guidance on DMC, most DMCs are composed of 
clinicians with expertise in relevant clinical specialties and at least one bio-
statistician who is knowledgeable about statistical methods for clinical trials 
and sequential analysis of trial data. For trials with unusually high risks or 
with broad public health implications, the DMC may include a medical ethicist 
knowledgeable about the design, conduct, and interpretation of clinical trials.

Since DMC members are usually from different organizations with no 
administrative/statistical support, the sponsor may provide administrative/ 
statistical support to the DMC. This administrative/statistical support is 
usually referred to as DMC support staff. The DMC support staff may con-
sist of a statistician/programmer and/or a data manager. In practice, the 
responsibilities of the DMC support staff may include, but are not limited 
to, (1) assisting in DMC charter development, (2) coordinating with DMC 
statistician for development of DMC statistical analysis plan (SAP), (3) per-
forming unblinded safety data reviews and interim analyses, (4) organizing 
DMC meetings, (5) preparing open and closed reports for DMC meetings, 
(6)  preparing minutes of DMC meeting, (7) alerting DMC for any safety 
issues and/or unusual patterns of the data, (8) performing additional analy-
ses as requested by the DMC, and (9) documenting all DMC activities, cor-
respondences, and recommendations.

12.3.2  �DMC Charter

When an independent DMC is established, a charter that describes the 
role, responsibility, function, and activity of the DMC is necessarily 
developed. The DMC support staff is responsible for providing any assis-
tance that may be needed for the development of the charter. However, 
the DMC may dedicate the responsibility to the DMC support staff. In 
practice, a DMC charter is often developed according to the following 
principles.

During the development of the charter, the DMC support staff will interact 
with DMC members for any requirements, inputs, and comments that they 
may have. The DMC charter is usually developed according to the operat-
ing guideline or manual provided by the sponsor (if available). The draft 
charter will also be reviewed by the sponsor before it is submitted to the 
DMC for review and final approval. In practice, the draft DMC charter will 
be reviewed at the DMC organizational meeting for approval. Table 12.1 lists 
a table of contents for a typical DMC charter.
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12.4â•‡� DMC’s Functions and Activities

The DMC’s functions and activities include administrative look, safety data 
monitoring, and interim analysis for efficacy. These functions and activities 
are necessary to ensure quality, validity, and integrity of the clinical trial. 
Some of these functions and activities are briefly described in the following 
sections.

12.4.1  �Randomization

The study statistician from the sponsor is responsible for providing specifica-
tions for randomization schedule generation according to the final approved 
protocol. The DMC statistician or support statistician/programmer is 
responsible for overseeing the generation of patient and study drug random-
ization schedules based on the specifications. The DMC support statistician 
is responsible for the review of the generated randomization schedules. The 
DMC support statistician/programmer is responsible for the transfer and 
implementation of the generated randomization codes to the designated area 
for drug packaging, shipment, and distribution.

TABLE 12.1

Table of Contents for a DMC

1.	 Introduction
2.	 Role of the committee
3.	 Organizational flow
4.	 Committee membership
	 4.1	 Members
	 4.2	 Financial disclosure
	 4.3	 Duration of DMC membership
5.	 Committee meetings
	 5.1	 Organizational meeting
	 5.2	 Scheduled interim analysis meeting
	 5.3	 Unscheduled meetings
6.	 Communication
	 6.1	 Open reports
	 6.2	 Closed reports
	 6.3	 Committee minutes
	 6.4	 Committee recommendations
	 6.5	 Sponsor decision
	 6.6	 DMC additional data request
7.	 Timetable
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12.4.2  �Critical Data Flow

In order to perform safety data reviews and interim analyses in a blinded or 
unblinded fashion, the following data are usually provided to the DMC for 
review (see Table 12.2). These safety data are critical for DMC safety review.

Serious adverse event (SAE) data are instant data and considered as real-
time data, which is provided by the SAE reporting system within 24â•›h. Others 
are considered case report form (CRF) data. There are lag times between 
CRF and CRF in a database. The safety data review will be based on real-
time data while interim analyses for efficacy will be based on CRF data. 
Before performing safety data reviews and interim analyses, the DMC sup-
port statistician will examine critical data flows according to the following 
principles.

The DMC support staff are responsible for conducting test data transfers 
for critical data described above. The DMC support statistician and program-
mer are responsible for the validation of the data transfer procedure prior to 
the conduct of safety data reviews and interim analyses.

12.4.3  �DMC Report and Analysis Plan

The DMC SAP is usually prepared by the study statistician (sponsor) or a 
statistician from contract research organization (CRO) if a CRO is used for 
the trial. The DMC support statistician is responsible for the development 
of DMC SAP. The DMC SAP will go through an internal review process. 
The DMC SAP will be reviewed by the study statistician before it is submit-
ted to the DMC (statistician) for review and comments. The DMC SAP will be 
reviewed at the DMC organizational meeting for approval.

In practice, DMC SAP is usually developed based on the report and analy-
sis plan (RAP) by focusing on SAP with mock-up tables, listings, and graphs 
for critical safety data and efficacy data. The DMC support staff will conduct 
safety data reviews and perform interim analyses according to the following 
principles: (1) review and/or analyses based on pooled data in which the treat-
ment groups are combined; (2) review and/or analyses based on unblinded 
data in which the treatment groups are separated and identified as treatment 
A, treatment B, etc.; (3) review and/or analyses based on partially unblinded 

TABLE 12.2

Data for DMC Review

CRF data
Adverse event and SAE data
Central laboratory data
Any data from other sources
Protocol deviation/violation
Endpoints adjudication
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data for which the reviewers are aware of the treatment codes for A, B, etc.; and 
(4) safety data reviews and interim analyses will be performed as specified in 
the protocol and/or DMC charter or as requested by the DMC.

In case of interim analysis for efficacy, rules and/or boundaries for stop-
ping early due to safety and efficacy/futility should be specified in the DMC 
SAP. In addition, procedures for sample size reestimation based on either 
(1) variability, (2) conditional power, or (3) reproducibility probability in a 
blinded fashion should be described in detail in the DMC SAP.

12.4.4  �Sensitivity Analysis

In addition to safety monitoring, the DMC may be asked to review interim 
analysis results for efficacy. The DMC may recommend stopping the trial 
early due to safety and/or futility/efficacy based on the review of interim 
analysis results. In practice, a two-stage optimal design is often used in 
cancer trials to fulfill this purpose (Simon, 1989). The concept of a two-stage 
optimal design is to stop a trial early if the test treatment is not effective and 
not to stop the trial early if the test treatment is promising. A typical two-
stage design, which is often expressed as (r1/n1, r2/n), is to test

	 H p p H p pa0 : versus : ,0 1< ≥ 	

where p0 and p1 are undesirable and desirable response rates, respectively. 
Thus, at the first stage, n1 subjects are tested. If there are less than r1 responses, 
the trial stops; otherwise, proceed to the second stage and additional n2 = 
n − n1 subjects are recruited. At the end of the second stage, data collected from 
both stages are combined for a final analysis. We claim the test treatment has 
reached the desired response rate if there are more than r2 responses.

In practice, at the end of the first stage, if less than r1 responses are observed, 
before a recommendation to stop the trial is made, a sensitivity analysis is 
often requested by the DMC. In other words, it is of interest to evaluate the 
probability of observing k(<r1) given a sample size of n1 assuming that the 
true response rate p(≥0). If the true response rate p is indeed greater than 
the undesirable response rate p0, then the probability of observing kâ•›(<r1) 
responses is expected to be small. At the same time, the DMC will also evalu-
ate the probability of achieving the desirable response rate p1 as the sample 
size approaches to n. This sensitivity analysis will provide the DMC with a 
better understanding/picture of the possible true response.

12.4.5  �Executive Summary/Report

The DMC support staff is responsible for preparing an executive summary 
and reports usually at least 1 week prior to the DMC meeting. The executive 
summary and reports will be prepared according to the following principles.
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An executive summary/report on safety and efficacy is necessarily 
submitted to the DMC for review at each DMC meeting except for the DMC 
organizational meeting. Key findings with some tables and listings will be 
included in the executive summary/report. The executive summary/report 
will go through an internal review process before it is submitted to the DMC 
for review. During the preparation of the safety reports, the DMC support 
statistician will alert the DMC regarding any safety issues and/or unusual 
patterns that may occur in order to maintain the integrity of the clinical trial 
of safety profiles.

Note that the dissemination of the executive summary and reports is 
subjective to the approval of the chairman of the DMC.

12.4.6  �DMC Meetings

Normally the DMC will have an organizational meeting and subsequent 
meetings depending upon the nature of the intended clinical trial. The DMC 
organizational meeting is not only to review the final protocol but also to 
approve the DMC charter, which describes the role, responsibility, function, 
and activity of the DMC in the intended clinical trial.

Subsequent DMC meetings are to review results of safety data reviews 
and interim analyses in an unblinded fashion. The DMC may make recom-
mendations to the sponsor regarding process improvement of the clinical 
trial or an early stop of the clinical trial. The DMC chairman is respon-
sible for initiating DMC meetings. The DMC support staff are respon-
sible for providing assistance for organizing the meeting and preparing 
the meeting agenda and material which should be sent to all attendees 
usually 2 weeks prior to the DMC meetings. Note that the DMC support 
staff will attend DMC meetings as nonvoting members. Representatives 
from the sponsor may be invited to DMC open sessions as specified in the 
DMC charter.

The minutes of the DMC meetings summarize the discussions that took 
place at DMC meetings. Hence, these meeting minutes are considered official 
documents for DMC activities of the intended clinical trial. The DMC minutes 
will be handled according to the following principles.

The chairman of DMC is responsible for assigning an individual to 
take minutes of the meeting at the beginning of the meeting. The DMC 
support statistician is usually delegated for this responsibility by the 
chairman of the DMC. If the DMC support staff are delegated with this 
responsibility, the support physician and statistician will summarize 
any medical and statistical issues discussed at the meeting. The draft 
meeting minutes will be submitted to the DMC for review and approval. 
The DMC support staff will distribute the approved meeting minutes to 
DMC members and other attendees as deemed appropriate by the DMC 
chairman.
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12.4.7  �DMC Documents and Information Dissemination

The DMC support staff will maintain a master file containing all documents 
related to DMC activities according to the following principles. The DMC 
master file includes study protocol, CRF, report analysis plan (RAP), DMC 
charter, any correspondences including fax, e-mail, meeting minutes, execu-
tive summaries and interim reports, as well as DMC decisions and recom-
mendations. The DMC support staff are responsible for updating the master 
file. At the end of the study, a copy of the complete DMC master file will be 
submitted to the chairman of the DMC and the sponsor.

All information related to DMC activities may be disseminated according 
to the following principles.

The DMC support staff are prohibited to disseminate any information 
regarding DMC activities without approval from the chairman of the DMC. 
Open session reports may be distributed as deemed appropriate by the DMC.

12.4.8  �DMC Recommendations

To maintain the integrity of the clinical trial, the DMC may make recom-
mendations during the conduct of the trial based on safety data reviews 
and/or interim analyses according to the following principles. The DMC 
may alert the sponsor on any safety related issues and make recommenda-
tions regarding the improvement of the clinical trial. The DMC may make a 
recommendation to stop the trial early based on stopping rules as specified 
in the DMC charter. The DMC chairman is responsible for communicating 
with the sponsor regarding the DMC recommendations. All recommenda-
tions must be documented.

Note that the DMC may request the DMC support staff to perform addi-
tional analyses which are not preplanned in the DMC charter or SAP accord-
ing to the following principles. Requests for additional analyses should be 
made by the chairman of the DMC or his/her designates. Upon the receipt 
of the requests, the DMC support statistician will prepare mock-up tables 
for the DMC statistician’s review and approval before proceeding with the 
analyses. The results of additional analyses will go through the same review 
process as those of safety data reviews and interim analyses.

12.4.9  �DMC Organizational Flow

The relationship between the sponsor (and CRO) and DMC (and DMC support 
staff) is summarized in the DMC organizational flowchart in Figure 12.1.

In practice, it is not uncommon that the sponsor uses a CRO to assist in 
the conduct of a clinical trial. In this case, there may be four statisticians 
involved: (1) study or lead statistician from the sponsor, (2) project statistician 
from the CRO, (3) DMC support statistician either from the CRO or affiliated 
with the DMC statistician, and (4) DMC statistician. If the DMC support staff 
is from the CRO, the CRO should build up a firewall to make sure that the 
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DMC support staff is truly independent of any personnel who are involved 
in the conduct and project management of the clinical trial. The DMC sup-
port staff will only be answerable to the DMC and should not communicate 
with the project teams either from the sponsor or the CRO.

12.5â•‡� Independence of DMC

One of the major concerns in clinical trials when utilizing a DMC is prob-
ably the independence of the DMC. As indicated earlier, the DMC’s primary 
responsibilities include data safety monitoring and possibly interim analysis 
for efficacy. The DMC has the authority to stop the trial early due to safety, 
efficacy/futility, or both after the review of the accumulated data at interim. 
Most DMCs prefer a blinded review regardless of safety and efficacy data 
with an option to unblind the treatment codes if significant findings regard-
ing safety and/or efficacy are observed at the closed session of the DMC 
meeting. The DMC will make recommendations to the sponsor although the 
sponsor may or may not accept the DMC’s recommendation. The good inten-
tion of the DMC will ensure the quality, validity, and integrity of the clinical 
trial. In practice, however, some sponsors will make every attempt to direct 
(or influence) the function and activity of the DMC. In some cases, they are 
successful and in many cases they have failed. The following is a summary 
of the issues that are commonly seen in clinical trials utilizing DMCs across 
therapeutic areas.

Sponsor
Regulatory

agencies

Interim data

Additional data
requests

?

Analysis plan
Open report

CRO* DMCClosed report

Analysis plan
Open report

Recommendations

Protocol

CharterProtocol

FIGURE 12.1
Organizational flowchart for DMC. *Not otherwise involved with study.
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12.5.1  �Some Observations

DMC member selection: DMC members are appointed by the sponsor. The 
sponsor will usually select opinion leaders in the subject area who are in 
favor of their products. In many cases, DMC members are closely related 
to the principal investigator or sponsor. For convenience’s sake, the sponsor 
may ask the identified DMC member (e.g., medical expert) to identify a statis-
tician from his/her organization. In this case, it is most likely that the identi-
fied DMC statistician may administratively report to the DMC member. This 
has raised the controversial issue of independence of the DMC. Thus, it is 
suggested that the selection procedure and the qualification of the selected 
DMC members be documented.
Replacement of DMC members: In the case where the DMC members have 
strong opinions regarding the design and analysis of the study protocol 
and/or charter, the sponsor should communicate with these DMC members 
rather than replace them. For creditability and to avoid selection bias it is 
suggested that the reasons for replacing DMC members be documented and 
submitted to the regulatory agency for review. However, none of the spon-
sors is in compliance to this suggestion, especially when the DMC members 
are replaced before the DMC is officially established.
Development of DMC charter: Once the DMC is established, it is a common 
practice for the sponsor to take the lead to assist the DMC to develop a char-
ter, which will outline the role/responsibility and function/activity of the 
DMC without consulting with the DMC members. DMC members usually 
will not have the chance to review it until a few days before or at the first 
DMC organizational meeting. In many cases, the initial DMC is a teleconfer-
ence call rather than a face-to-face meeting in order to save cost. Since DMC 
members are usually key opinion leaders in the subject area, they may not 
have the chance to thoroughly review the charter prior to the meeting. As a 
result, the charter is usually approved in a hurry. Consequently, the DMC 
charter developed by the sponsor may have influenced the procedures and/or 
direction of safety monitoring and interim analysis for efficacy.
Communication with DMC: In practice, it is not common that the sponsor will 
seek advice from individual DMC members without the knowledge of the 
chairman of the DMC. This has caused an issue among the DMC members 
within the DMC. Thus, it is suggested that the chairman of the DMC be the 
primary contact person between the sponsor and the DMC. In some cases, 
when communicating with the DMC, the sponsor may argue with the DMC 
based on informal communication with medical/statistical reviewers from reg-
ulatory agencies. This has a negative impact on the function and activity of the 
DMC. Thus, it is suggested that a written communication with the regulatory 
agencies be provided to the DMC when a debatable issue is encountered.
Operations without the knowledge of DMC: In some cases, the sponsor may have 
begun to enroll patients prior to the initial DMC meeting. In this case, the 
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DMC is asked to endorse the study protocol without reviewing the study 
protocol. This is definitely not a good clinical practice. However, it does hap-
pen. This has seriously affected the function and activity of the DMC. Thus, 
it is suggested that the clinical trial be suspended until the initial DMC meet-
ing has taken place for maintaining the integrity of the clinical trial.
Protocol amendments: In many cases, the sponsor may have issued protocol 
amendments or modified randomization schedules without consulting with 
DMC members. This has made it very difficult for the DMC to perform their 
job responsibilities. Thus, it is suggested that detailed information regard-
ing the description, rationales, and impact of the changes made to the study 
protocol be provided to the DMC prior to the issue of protocol amendments.
Integrity of blinding: In some cases, it was found that the project statistician 
and the unblinding statistician (i.e., DMC support statistician) are the same 
person. In this case, the double-blind study is considered unblinded. This is 
a serious violation of good clinical practice. The integrity of blinding is seri-
ously in doubt. Thus, it is suggested that the data collected after the unblind-
ing should not be used for clinical evaluation of the test treatment under 
investigation.
Operational bias: For a clinical trial with planned interim analyses, the DMC 
will usually make recommendations after the review of the interim analy-
sis results. The chairman of the DMC will communicate with the sponsor 
regarding the recommendations. In the case where the sponsor disagrees 
with the DMC’s recommendation, the sponsor may request a second opinion 
from an independent medical/statistical expert. This is fine if it is agreed 
by the DMC. However, in some cases, the sponsor may seek a second opin-
ion (with a different data set by including data after the interim analysis) to 
overrule the DMC’s recommendation without consulting with the DMC. The 
second opinion may not be aware of the interim analysis results conducted 
by the DMC (which was conducted based on a different data set). It should 
be noted that data collected after the interim analysis has been contaminated 
by the operational bias.

12.5.2  �Controversial Issues

As discussed in the previous section, one of most controversial issues 
regarding the DMC is probably: “Is an independent DMC really indepen-
dent?” To ensure the integrity/success of the clinical trial, the DMC plays an 
important role. The DMC means to be independent of the project team for 
providing a fair and unbiased safety data monitoring and/or interim analy-
sis for efficacy. In practice, the sponsor will make every attempt to influence 
the DMC’s functions and activities. In clinical trials, the independence of 
the established DMC has been challenged by clinical researchers. The loss 
of independence could have a negative impact on the quality, validity, and 
integrity of the clinical trial.
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One of the other controversial issues is whether it is appropriate to allow 
the DMC to communicate with the regulatory agency directly. From the 
sponsor’s point of view, it is not desirable to reveal the information (which 
might be against regulatory review/approval) to the regulatory agency, espe-
cially if the observation could be limited and/or has not yet been verified. 
From the DMC’s point of view, it is important to bring it to the regulatory 
agency’s attention if a critical concern regarding the safety and/or integrity 
of the trial has occurred. In addition, the regulatory agency may not have the 
resources to take care of the issues reported by individual DMCs.

Another controversial issue that has been discussed tremendously is: 
“What if the sponsor decides not to accept the DMC’s recommendation?” 
As an example, the DMC may recommend stopping the trial early due to 
futility after the review of the interim analysis results. However, the spon-
sor may argue that the DMC’s recommendation is drawn based on limited 
information observed at interim. The sponsor may take the following actions 
to argue against the DMC’s recommendation. First, the sponsor may perform 
a sensitivity analysis with respect to various study parameter specifications. 
In addition, the sponsor may request a second opinion from an independent 
medical or statistical expert to justify the DMC’s recommendation.

In recent years, the use of adaptive design methods in clinical trials has 
become very popular due to its flexibility and efficiency for identifying clini-
cal benefits in a timely fashion. However, one of the major concerns is that 
the use of adaptive design methods may introduce so-called operational bias 
and/or variation. To ensure the success of the adaptive design methods, it 
is suggested that the established DMC should take more responsibilities 
(beyond that described in the DMC charter) for preventing operational bias 
when implementing the adaptive design methods in clinical trials. It is very 
controversial whether we should put additional burden on the already over-
loaded DMC.

12.6â•‡� Concluding Remarks

As discussed above, controversial issues regarding the IDMC have been 
raised. These controversial issues, which are briefly summarized in the fol-
lowing, have an impact on the quality, integrity, and success of clinical trials 
conducted at various phases of clinical development.

First, is an IDMC really independent? As pointed out by the FDA, DMCs 
are rarely entirely independent of the sponsor due to the fact that (1) the 
sponsor selects the DMC members, (2) the sponsor gives the DMC its charge, 
and, most importantly, (3) the sponsor pays for the DMC’s expenses and ser-
vices. The true independence may result in eliminating from consideration 
the most knowledgeable clinical researchers/scientists who are likely to have 
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had some past interaction with others sponsoring or performing research in 
their area of expertise.

Second, should the IDMC be encouraged to communicate with regulatory 
agencies for any wrongdoing in the conduct of the intended clinical trial? 
As indicated in the FDA guidance, for trials that may be terminated due 
to safety concerns, timely communication with the FDA is required. In this 
case, the FDA strongly recommends that sponsors initiate discussion with 
the FDA prior to early termination of any trial implemented specifically to 
investigate a potential safety concern. As the FDA pointed out, in rare cases, 
the FDA wishes to interact with a DMC of an ongoing trial to ensure that 
specific issues of urgent concern to the FDA are fully considered by the DMC 
or to address questions to the DMC regarding the consistency of the safety 
data in the ongoing trial to that in the earlier trials, to optimize regulatory 
decision making.

Finally, should we put additional burden on the DMC if adaptive design 
methods are used? As more and more clinical trials are utilizing adaptive 
design methods, there is a discussion regarding whether we should put addi-
tional burden on the existing DMC or establish a separate DMC in order to 
monitor scientific validity and integrity of the clinical trials utilizing adap-
tive design methods. There is no universal agreement on this issue.
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13
Two-Way ANOVA versus One-Way 
ANOVA with Repeated Measures

13.1â•‡� Introduction

In clinical research, a parallel-group design with multiple assessments at a 
number of prespecified time points post treatment is usually employed to 
compare treatment difference between a test compound and a control (e.g., 
a placebo control, a standard therapy, or an active control). Under such a 
study design, a one-way (treatment) analysis of variance (ANOVA) with 
repeated measures is a valid statistical method for assessment of treatment 
difference. In practice, however, it is not uncommon that a two-way ANOVA 
is wrongly used to assess treatment difference by treating the prespecified 
time points as a class variable rather than a covariate from the same sub-
ject. It, however, should be noted that one of the primary assumptions for a 
two-way (treatment by time) ANOVA is independence among observations 
observed at different time points. As a result, the use of a two-way ANOVA 
is inappropriate since observations observed at different time points from 
the same subject are correlated. Thus, it is of interest to evaluate the valid-
ity of statistical inference obtained from the two-way ANOVA under the 
one-way ANOVA model with repeated measures.

The remainder of this chapter is organized as follows. In Section 13.2, 
the one-way ANOVA with repeated measures will be briefly outlined. Also 
included in this section is the correct statistical procedure for assessment of 
treatment difference. In Section 13.3, the standard two-way ANOVA model 
will be introduced. Also included in this section is the standard statistical 
procedure under such a model. In Section 13.4, the statistical property of 
statistical inference obtained from the two-way ANOVA will be evaluated 
under the correct one-way ANOVA with repeated measures model in terms 
of type I error. In Section 13.5, a simulation study is performed to confirm 
the results obtained in Section 13.4. In Section 13.6, a real example concern-
ing a clinical study is given for illustration purpose. Finally, the chapter is 
concluded with a discussion in Section 13.7.
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13.2â•‡� One-Way ANOVA with Repeated Measures

For the purpose of simplicity, we will only consider two treatment groups. 
The following statistical model is usually considered for data from a one-
way ANOVA with repeated measures:

	 y S b t eijk i ij ij k ijk= + + + +μ α , 	 (13.1)

where
yijk is the kth observation from the jth subject in the ith treatment group,

αi is the fixed effect for the ith treatment α i
i
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Sij is the random effect due to the jth subject in the ith treatment group,
bij is the coefficient of the jth subject in the ith treatment group,
eijk is the random error in observing yijk.
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Then, intuitive estimators for μi and bi can be obtained as
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Since the objective is to compare the treatment effect, it is of interest to test 
the following hypotheses:

	 H Ha0 1 2 1 2: : .α α α α= ≠versus

A significant difference between α1 and α2 usually indicates a significant 
baseline difference between treatment groups. The above hypotheses can be 
tested by using the statistic
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Under the null hypotheses of no treatment difference between two treatment 
groups, T1 follows a t distribution with 2n − 2 degrees of freedom. Hence, we 
reject the null hypothesis at the α level of significance if

	 T t n1 2 2 2> /α , .−
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Furthermore, it is also of interest to test the following null hypothesis of 
equal slopes (i.e., rate of change in study endpoint over the time period):

	 H b b H b ba0 1 2 1 2: : .= ≠versus

The above hypotheses can be tested using the following statistic:
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Under the null hypotheses, T2 follows a t distribution with 2n − 2 degrees of 
freedom. Hence, we would reject the null hypotheses of no difference in rate 
of change in the study endpoint between treatment groups at the α level of 
significance if

	 T t n2 2 2 2> /α , .−

13.3â•… Two-Way ANOVA

In practice, time is often wrongly treated as another factor by ignoring the 
correlation structure of the observations from the same subject. As a result, 
the following two-way ANOVA model is used to describe the data:

	 y eijk i k ij ijk= + + + +μ α γ η , 	 (13.2)

where yijk is the observation from the jth subject in the ith treatment in the 

kth visit. It is also assumed that α i
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independent and identically distributed as N(0, σ2). In order to test for the 
treatment effect, the following quantities are defined:
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The test statistic is given by
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Under the null hypothesis that α1 = α2, T is distributed as an F-random vari-
able with 1 and 2m(n − 1) degrees of freedom. Hence, the null hypothesis of 
no treatment effect is rejected at the α level of significance if T > F1 − α, 2m(n−1), 
where F1−α,2m(n−1) is the αth percentile of a standard F distribution with 1 and 
2m(n − 1) degrees of freedom.

13.4â•‡� Statistical Evaluation

Compare model (13.1) and model (13.2), it can be seen that one important dif-
ference between these two models is that model (13.2) ignores the correlation 
structure of the observations from the same subject. Thus, it is of interest 
to evaluate statistical properties of the statistical inferences obtained from 
model (13.2) under model (13.1).

Under model (13.2), SSE and SSA are independent. Under model (13.1), it is 
of interest to determine whether they are still independent. It can be noted 
that SSA is actually a function of {y−i··} and SSE is a function of {yijk − y−i·k}. 
Hence, if we can establish independence between { }yi0⋅⋅  and {yijk − y−i·k} for all 
i0, i, j, k, then we can conclude that SSE and SSA are independent for each other. 
To see this, it should be noted that, under model (13.1),
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Note that if i0 ≠ i, then { }yi0 ⋅⋅  and {yijk − y−i·k} are independent of each other 
because of the fact that they are statistics based on observations from dif-
ferent treatment groups. On the other hand, if i0 = i, it can be noted that {Sij}, 
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j = 1,â•›…, n are independent and identically distributed as a normal random 
variable. In this case, Sij − S−i· and S−i· are independent of each other. On the 
other hand, according to model (13.1) S−i· is independent of bij and eijk. Hence, 
S
−

i· is independent of yijk − y−i·k. A similar argument can also be applied to b
−

i· 
and e−i·k. Hence, y−i·· and yijk − y−i·k are independent of each other. This leads to 
the conclusion that SSE and SSA are independent of each other.

The next question of interest is to find out the distributions of SSE and SSA 
under model (13.1). Under model (13.1), for a fixed i and k, yijk are independent 
and identically distributed as a normal random variable with mean μ + αi + 
bitk and variance σ σ σ σk S b kt2 2 2 2 2= + + . As a result,
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is distributed as σ χk n2 2 2 2( )− , where χ2(2n − 2) denotes a chi-square random 
variable with (2n − 2) degrees of freedom. However, it should be noted for 
different k, the quantity
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usually are dependent of each other because of the fact that they have the 
observations from the same subject. As indicated by Chow et al. (2002b) and 
Lee et al. (2002a), SSE is distributed as a weighted chi-square random vari-
able. More specifically,

	
SSE ~ λ χk
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where the exact formula for λk can be derived using the methodology devel-
oped in Lee et al. (2002a). Although the exact formula for λk is not provided 
here, by matching the first-order moment, we know that the following condi-
tion should be satisfied:

	
λ σk k

k

m

k

m

=
==

∑∑ 2

11

.
	

(13.6)

On the other hand, under model (13.1), it can be obtained that
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where
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Under the null hypothesis that α1 = α2 = 0, {y−i··} are independent and identi-
cally distributed as normal random variables with mean μ + bt− and variance 
σ σ σS bn t n nm2 2 2 2/ / /+ + . As a result, SSA defined in (13.4) is distributed as a 
scaled chi-square random variable. More specifically,

	 SSA ( ) (1).2 2 2 2 2∼ + +m mtS bσ σ σ χ

As a result, T is not distributed as a standard F distribution. Instead,

	

T
m mt

n
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k
k

m ~ 
( ) ( )

( )
.
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2 2 2 2 2

2
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2 2

+ +
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=∑

As it can be seen, due to the fact that SSE is distributed as a weighted chi-
square random variable, T is not distributed as any standard distribution 
commonly encountered in practice. Its statistical property can be studied 
by exploring its exact distribution by either simulation or numerical meth-
ods. However, those methods have the disadvantage not only of being com-
plicated but also of having lack of insight. Here we provide an alternative. 
The idea is to find a scaled chi-square distribution, which is “similar” to 
the exact distribution of SSE, and then approximate SSE’s true distribu-
tion by this approximate distribution. More specifically, compare SSE with 
σ χ2 2 2 2* ( )mn m− , where

	
σ σ σ σ σ σ

σ

σ
2 2

1

2 2 2 2

1

2

2 2
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1 1
* ( ) .= = + + = +
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m m
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S b k

k
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S

b k

Note that these two random variables share the following two common char-
acteristics: (1) both of their distributions belong to the family of weighted 
chi-square distribution and (2) they have the same first-order moment. As a 
result, one may expect that σ χ2 2 2 1* ( ( ))m n −  can provide a good approxima-
tion to the true distribution of SSE. This idea was first proposed by Rao and 
Scott (1981) and subsequently studied by Wang (2001). Consequently, the 
distribution of T can also be approximated by
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In what follows, we prove that κ is a positive coefficient, which is always 
larger than 1 except for some extreme cases. In order to show κ > 1, consider 
the following quantity:
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Note that

	
m t t t tk k k

2 2 2
2

2 0− = ( ) − ≥∑ ∑ ∑ ,

unless tk ≡ t for some t. As a result, Δ will always be positive except for 
some extreme cases, which implies that κ will be larger than 1 except for some 
extreme cases. For example, m = 1 or σS = σb = 0. As a result, we can con-
clude that by applying a standard two-way ANOVA to a one-way ANOVA 
with repeated measures model, the type I error tends to be inflated.

Recall that the null hypothesis of no treatment effect should be rejected if 
T > F1−α,1,2m(n−1) under model (13.2).

13.5â•‡� Simulation Study

A simulation study was conducted to confirm the conclusions drawn in the 
previous section. More specifically, the simulation was carried out by using 
SAS. The number of iterations was chosen to be 1000. The sample size per 
treatment group is set to be 15. It is assumed that tk = t; k = 1,â•›…, m for different 



Two-Way ANOVA versus One-Way ANOVA with Repeated Measures	 241

m = 2, 4, or 8. For simplicity, we considered αi = bk = 0 for ∀i. For different 
σS and σb values, data are generated according to model (13.1) and are ana-
lyzed by using a standard two-way ANOVA model. The significance level is 
chosen to be 5%. The empirical type I error rate is estimated by the propor-
tion of the 1000 iterations, which mistakenly rejected the null hypothesis of 
no treatment difference (Figures 13.1 through 13.3). The results are sum-
marized in Tables 13.1 through 13.3. The p-values were also plotted in 
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Empirical type I error (m = 2).
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Tables 13.1 through 13.3. Based on the results, the following conclusions can 
be made:

	 1.	When σS = σb = 0, then the empirical type I error rate is very close to the 
nominal level 5%. This is because under such a situation, the observa-
tions from the same subject but at different time points are independent 
with each other, which makes the two-way ANOVA a valid analysis.

	 2.	When σS or σb increases, the type I error rate increases. This can be 
explained by noting that the variance of these two random variables 
implies how much dependence there is among the responses from 
the same subject. When σS and σb are small, then those responses 
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Empirical type I error (m = 4).
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from the same subject may seem more like “independent,” which 
makes the naive two-way ANOVA analysis approximately valid. On 
the other hand, the larger those variances are, the more dependen-
cies there are among the responses from the same subject, which 
makes the empirical results more far away from the expected.

	 3.	When σe increases, the type I error rate decreases toward the nominal 
level. This can be explained by noting the fact that if σe is very large, 
then σS and σb become relatively smaller, which implies that the obser-
vation from the same subject “looks” more independent. As a result, 
the empirical type I error rate becomes closer to the nominal level.
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Empirical type I error (m = 8).
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13.6â•‡� An Example

A two-arm parallel design with 10 repeated measures at equally spaced 
time points was conducted to compare two compounds (a test treatment and 
an active control) in terms of a clinical endpoint—illness score. A total of 
30 patients (15 patients in each treatment group) were enrolled and completed 
the study. The data are given in Table 13.4. The illness scores are plotted against 
time by each patient in Figure 13.4. As it can be seen, for each patient, the 
score follows approximately a straight line. As a result, model (13.1) becomes 
a model of choice for this data set. Both tests for comparing intercepts and 
slopes are carried out with no significant difference found (see Table 13.5). 
However, if we ignore the fact that the observations from the same subject are 
actually correlated and naively apply a standard two-way ANOVA analysis, 
we can see a highly significant difference with p-value <0.001 (see Table 13.6).

TABLE 13.1

Type I Error Rate with m = 2

𝛔S 𝛔e p-Value 𝛔S 𝛔b 𝛔e p-Value

0.0 0.0 0.1 0.048 0.2 0.0 0.1 0.151
0.0 0.0 0.2 0.047 0.2 0.0 0.2 0.123
0.0 0.0 0.3 0.049 0.2 0.0 0.3 0.092
0.0 0.0 0.4 0.056 0.2 0.0 0.4 0.057
0.0 0.1 0.1 0.121 0.2 0.1 0.1 0.147
0.0 0.1 0.2 0.092 0.2 0.1 0.2 0.119
0.0 0.1 0.3 0.064 0.2 0.1 0.3 0.110
0.0 0.1 0.4 0.082 0.2 0.1 0.4 0.072
0.0 0.2 0.1 0.141 0.2 0.2 0.1 0.145
0.0 0.2 0.2 0.102 0.2 0.2 0.2 0.146
0.0 0.2 0.3 0.091 0.2 0.2 0.3 0.102
0.0 0.2 0.4 0.096 0.2 0.2 0.4 0.108
0.1 0.0 0.1 0.103 0.3 0.0 0.1 0.170
0.1 0.0 0.2 0.072 0.3 0.0 0.2 0.123
0.1 0.0 0.3 0.065 0.3 0.0 0.3 0.107
0.1 0.0 0.4 0.052 0.3 0.0 0.4 0.100
0.1 0.1 0.1 0.127 0.3 0.1 0.1 0.146
0.1 0.1 0.2 0.106 0.3 0.1 0.2 0.147
0.1 0.1 0.3 0.088 0.3 0.1 0.3 0.123
0.1 0.1 0.4 0.074 0.3 0.1 0.4 0.106
0.1 0.2 0.1 0.155 0.3 0.2 0.1 0.139
0.1 0.2 0.2 0.131 0.3 0.2 0.2 0.135
0.1 0.2 0.3 0.102 0.3 0.2 0.3 0.125
0.1 0.2 0.4 0.081 0.3 0.2 0.4 0.126
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13.7â•‡� Discussion

In this chapter, we evaluated the consequences of the wrong use of a two-way 
ANOVA model when in fact the true model is a one-way ANOVA model with 
repeated measures in terms of type I error probability. It is found that the 
wrongly use of the two-way ANOVA model when the true model is a one-
way ANOVA with repeated measures will inflate the type I error rate. The 
magnitude of the inflation depends not only on the variability of the subject-
specific random effects and the random error but also on the number of the 
prespecified time points. In practice, it is strongly recommended that a cor-
rect statistical model be used for assessment of treatment difference under the 
valid study design.

TABLE 13.2

Type I Error Rate with m = 4

𝛔S 𝛔b 𝛔e p-Value 𝛔S 𝛔b 𝛔e p-Value

0.0 0.0 0.1 0.052 0.2 0.0 0.1 0.303
0.0 0.0 0.2 0.047 0.2 0.0 0.2 0.208
0.0 0.0 0.3 0.041 0.2 0.0 0.3 0.145
0.0 0.0 0.4 0.049 0.2 0.0 0.4 0.115
0.0 0.1 0.1 0.249 0.2 0.1 0.1 0.276
0.0 0.1 0.2 0.229 0.2 0.1 0.2 0.271
0.0 0.1 0.3 0.155 0.2 0.1 0.3 0.199
0.0 0.1 0.4 0.145 0.2 0.1 0.4 0.179
0.0 0.2 0.1 0.313 0.2 0.2 0.1 0.302
0.0 0.2 0.2 0.261 0.2 0.2 0.2 0.304
0.0 0.2 0.3 0.231 0.2 0.2 0.3 0.274
0.0 0.2 0.4 0.221 0.2 0.2 0.4 0.244
0.1 0.0 0.1 0.216 0.3 0.0 0.1 0.331
0.1 0.0 0.2 0.128 0.3 0.0 0.2 0.265
0.1 0.0 0.3 0.082 0.3 0.0 0.3 0.205
0.1 0.0 0.4 0.066 0.3 0.0 0.4 0.173
0.1 0.1 0.1 0.308 0.3 0.1 0.1 0.300
0.1 0.1 0.2 0.202 0.3 0.1 0.2 0.284
0.1 0.1 0.3 0.187 0.3 0.1 0.3 0.246
0.1 0.1 0.4 0.144 0.3 0.1 0.4 0.205
0.1 0.2 0.1 0.265 0.3 0.2 0.1 0.301
0.1 0.2 0.2 0.267 0.3 0.2 0.2 0.300
0.1 0.2 0.3 0.236 0.3 0.2 0.3 0.281
0.1 0.2 0.4 0.208 0.3 0.2 0.4 0.250
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TABLE 13.4

One-Way ANOVA with Repeated Measures

Parameter Treatment N Estimate SD p-Value

Intercept Test 15 −0.1900 0.35087 0.3785
Control 15 −0.0611 0.43365

Slope Test 15 −0.1638 0.60637 0.4707
Control 15 0.0053 0.65840

TABLE 13.3

Type I Error Rate with m = 8

𝛔S 𝛔b 𝛔e p-Value 𝛔S 𝛔b 𝛔e p-Value

0.0 0.0 0.1 0.053 0.2 0.0 0.1 0.471
0.0 0.0 0.2 0.043 0.2 0.0 0.2 0.360
0.0 0.0 0.3 0.054 0.2 0.0 0.3 0.278
0.0 0.0 0.4 0.047 0.2 0.0 0.4 0.208
0.0 0.1 0.1 0.442 0.2 0.1 0.1 0.466
0.0 0.1 0.2 0.417 0.2 0.1 0.2 0.410
0.0 0.1 0.3 0.358 0.2 0.1 0.3 0.397
0.0 0.1 0.4 0.360 0.2 0.1 0.4 0.361
0.0 0.2 0.1 0.440 0.2 0.2 0.1 0.432
0.0 0.2 0.2 0.438 0.2 0.2 0.2 0.423
0.0 0.2 0.3 0.401 0.2 0.2 0.3 0.435
0.0 0.2 0.4 0.422 0.2 0.2 0.4 0.432
0.1 0.0 0.1 0.363 0.3 0.0 0.1 0.472
0.1 0.0 0.2 0.210 0.3 0.0 0.2 0.406
0.1 0.0 0.3 0.136 0.3 0.0 0.3 0.365
0.1 0.0 0.4 0.113 0.3 0.0 0.4 0.302
0.1 0.1 0.1 0.443 0.3 0.1 0.1 0.465
0.1 0.1 0.2 0.432 0.3 0.1 0.2 0.456
0.1 0.1 0.3 0.399 0.3 0.1 0.3 0.408
0.1 0.1 0.4 0.338 0.3 0.1 0.4 0.359
0.1 0.2 0.1 0.467 0.3 0.2 0.1 0.421
0.1 0.2 0.2 0.445 0.3 0.2 0.2 0.441
0.1 0.2 0.3 0.417 0.3 0.2 0.3 0.439
0.1 0.2 0.4 0.429 0.3 0.2 0.4 0.408
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Illness score by time point.

TABLE 13.5

Naive Two-Way ANOVA

Source DF SS p-Value

Treatment 1 84.02 0.0233
Time 9 15.63 0.9994
Treatment * time 9 17.76 0.9991
Error 280 4520.87
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14
Validation of QOL Instruments

14.1â•‡� Introduction

In clinical research, an instrument (or questionnaire) is often used to provide 
a standardized and objective means of collecting data on subjective states 
or events across various therapeutic areas. In practice, although there exist 
many instruments such as Hamilton-D (Hamilton scale for depression) and 
Hamilton-A (Hamilton scale for anxiety) for central nervous system (CNS) 
and quality of life (QOL) assessment in cancer trials, the investigators fre-
quently face the need to develop new ones. This need arises because a proper 
development and validation of the existing instruments was achieved for a 
specific purpose and relative to a specific target patient population. While 
the existing pool of instruments may contain one that has been developed 
for the target patient population and the desired purpose, new research 
questions often require new instruments for measurement. Validation of the 
developed instrument is important to ensure a proper sampling and a valid 
measurement of the content of the subjective state, behavior, or disease to be 
measured (Testa, 1987). For illustration purpose, in this chapter we will focus 
on the validation of QOL instruments. The performance characteristics for 
the validation of QOL instruments can be applied to other instruments for 
other purposes across therapeutic areas.

In cancer clinical trials, it has been a concern that the treatment of disease 
or survival may not be as important as the improvement of QOL, especially 
for patients with chronic disease. Enhancement of life beyond absence of 
illness to enjoyment of life is considered more important than the exten-
sion of life. In general, there exists no universal definition for QOL. It may 
vary from one patient population to another and from one therapeutic area 
to another. For example, Williams (1987) defined QOL as a collective term 
that encompasses multiple components of a person’s social and medical sta-
tus. However, Smith (1992) interpreted QOL as the way a person feels and 
how he or she functions in day-to-day activities. The concept of QOL can 
be traced back to the mid-1920s. Peabody (1927) pointed out that the clinical 
picture of a patient is an impressionistic painting of the patient surrounded 
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by his or her home, work, friends, joys, sorrows, hopes, and fears. In 1947, the 
World Health Organization stated that health is a state of complete physical, 
medical, and social well-being and not merely the absence of disease or infir-
mity. In 1948, Karnofsky published his performance status index to assess 
the usefulness of chemotherapy for cancer patients. The New York Heart 
Association proposed a refined version of its functional classification to 
assess the effects of cardiovascular symptoms on the performance of physi-
cal activities in 1964. In the past several decades, QOL has attracted much 
attention. Since 1970, several research groups have been actively working 
on the assessment of QOL in clinical trials. For example, Kaplan et al. (1976) 
developed the Index of Well-Being to provide a comprehensive measure of 
QOL. Torrance (1976) and Torrance and Feeny (1989) introduced the con-
cept of utility theory to measure the health state preferences of individuals 
and quality-adjusted life year to summarize both QOL and quantity of life. 
Bergner et al. (1981) developed the Sickness Impact Profile to study perceived 
health and sickness-related QOL. Ware (1987) proposed a set of widely used 
scales for the Rand Health Insurance Experiment and Williams (1987) stud-
ied the effects of QOL on hypertensive patients.

QOL not only can provide information as to how patients feel about drug 
therapies but it also appeals to the physician’s desire for the best clinical prac-
tice. It can be used as a predictor of compliance of the patient. In addition, 
it may be used to distinguish between therapies that appear to be equally 
efficacious and equally safe at the stage of marketing strategy planning. The 
information can be potentially used in advertising for the promotion of the 
drug therapy. However, unlike the analytic instrument, there exist no known 
standards that can be used as reference. In addition, the QOL instrument is 
a very subjective tool, which is expected to have a large variation. It is then a 
concern as to whether the adopted QOL instrument can accurately and reli-
ably quantify patients’ QOL. To ensure the accuracy and reliability of QOL 
assessment in clinical trials, the adopted QOL instrument is necessarily 
validated in terms of some performance characteristics. In practice, a QOL 
instrument is usually validated based on some classic validation parameters 
such as validity, reliability, test–retest reproducibility, responsiveness, and 
sensitivity. However, it is not clear whether the classic validation can actu-
ally verify the instrument. In other words, can the classic validation address 
whether the questions are the right ones for the assessment of QOL?

In the next section, we briefly review statistical methods for QOL assess-
ment. In Section 14.3, we provide statistical evaluation for the validation of 
a QOL instrument in terms of performance characteristics of validity, reli-
ability, and test–retest reproducibility. Responsiveness and sensitivity are 
discussed in Section 14.4. The validation of utility analysis and calibration 
is discussed in Section 14.5. The controversial issue concerning the use of a 
parallel questionnaire for the assessment of QOL is discussed in Section 14.6. 
A brief discussion concerning some statistical tests that may occur in QOL 
assessment is given in the last section.
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14.2â•‡� QOL Assessment

In clinical trials, QOL is usually assessed by means of a global physician’s 
assessment or a QOL instrument that consists of a number of questions. 
The global physician’s assessment, such as an analog scale ranging from 
0 to 10, is easy to apply by simply asking the question “How is your QOL?” 
However, it cannot capture the whole spectrum of QOL. In addition, if the 
drug therapy does improve QOL, no information as to which domain of 
QOL has improved is provided. The global physician’s assessment generally 
produces large variability and low reproducibility. For a QOL instrument, 
the questionnaire may be assessed by patients, their spouses/significant 
others, reviewers (e.g., nurses or social workers), and/or physicians through 
direct observation or face-to-face or teleconference interview. It can be self-
administered or supervised self-administered. Based on the collected data, 
the health-related QOL can be quantified. Generally, health-related QOL 
may be described by a number of major domains (or dimensions). The most 
commonly considered QOL domains include physical functioning and mor-
bidity, emotional or psychological status and well-being, disease-specific 
symptoms and somatic discomfort, and cognitive function. Other domains, 
such as intimacy and sexual functioning, economic status and personal pro-
ductivity, employment, and laboratory test values, are less often used.

In the QOL instrument, each patient score associated with each question 
is usually referred to as an item. In practice, there may be a larger number 
of items and it is not practical to analyze the data by item. Thus, items are 
usually grouped to form subscales, which are often used to evaluate dif-
ferent components of QOL. However, analysis of individual subscales often 
produces inconsistent results across subscales; consequently, no overall con-
clusion can be made. As an alternative, these subscales may be combined 
to form the so-called composite scores, which can be used to assess major 
domains of QOL.

As a result, QOL may be assessed by analyzing items, subscales, composite 
scores, and/or the total score. Tandon (1990) applied global statistics to com-
bine the results of a univariate analysis of each subscale. His approach is use-
ful, yet it does not reveal the underlying correlation structure of subscales. 
As an alternative approach, Olschewski and Schumacher (1990) proposed 
the use of aggregated measures to reduce the dimension of the measure-
ments. Their method uses the standardized scoring coefficients from factor 
analysis as data-oriented weights for combining subscales, which neglects 
small coefficients. The disadvantage of their method is that the selected coef-
ficients are neither unique nor have optimal properties. To overcome these 
problems, Ki and Chow (1995) suggest the use of factor analysis in conjunc-
tion with the analysis of principal components for combining subscales. The 
proposed method provides statistical justification for the use of composite 
scores.
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14.3â•‡� Performance Characteristics

In practice, commonly considered performance characteristics for the vali-
dation of an instrument include, but are not limited to, accuracy (or valid-
ity), precision (or reliability), and reproducibility (see, USP/NF, 2000; NCCLS, 
2001), which are briefly described below.

14.3.1  �Validity

The validity of a QOL instrument is defined as the extent to which the QOL 
instrument measures what it is designed to measure. In other words, it is a 
measure of biasedness of the instrument. The biasedness of an instrument 
can reflect the accuracy of the instrument.

In clinical trials, as indicated earlier, the QOL of a patient is usually 
quantified based on responses to a number of questions related to sev-
eral components or dimensions of QOL. It is a concern that the questions 
may not be the right questions to assess the components or domains of 
QOL of interest. To address this concern, consider a specific component (or 
domain) of QOL that consists of K items (or subscales), i.e., Xi, i = 1,â•›…, K. 
Also, let Y be the QOL component (or domain) of interest that is unobserv-
able. Suppose that Y follows a normal distribution with mean θ and vari-
ance τ2 and can be quantified by Xi, i = 1,â•›…, K. In other words, there exists 
a function f such that

	 f X f X X X YK( ) ( , , , ) ,= =1 2 …

where X = (X1, X2,â•›…, XK)′. Suppose X follows a distribution with mean 
μ = (μ1,â•›…, μK) and variance Σ. Thus, θ can be estimated by

	
ˆ ˆ( , , , ),θ = f X X XK1 2 …

and the bias is given by

	 Bias E E f X X XK( ) ( ) ( ( , , , )) .θ θˆ ˆ ˆ= − = −θ θ1 2 …

In practice, for convenience, the unknown function f is usually assumed to 
be the mean of Xi, i.e.,

	
f X f X X X

K
X YK i

i

K

( ) ( , , , ) .= = =
=
∑1 2

1

1
…
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Thus, it is desired to have the mean of Xi, i = 1,â•›…,â•›K close to θ and 

μ μ θ= =
=∑1

1
/K i

i

K
. As a result, we may claim that the instrument is 

Â�validated in terms of its validity if

	 μ μ δi i K− < ∀ = 1, , .…

To verify this, we may consider a simultaneous confidence interval for 
μ μi − , i = 1,â•›…, K. Let μ μ μi ia− = ʹ , where ʹ = − − −− −a K K Ki i K i( ( ) , ( ), ( ) )1 1 1 1 1 11/ / / . 
Suppose the QOL questionnaire is administered to N patients, let

	

ˆ .μ = =
=

∑1

1
N

X Xj

j

N

Then, the (1 − α)100% simultaneous confidence intervals for μ μi − , i = 1,â•›…, K 
are given by

ʹ − ʹ − ≤ ʹ ≤ ʹ + ʹ − =a
N

a Sa T K N K a a
N

a Sa T K N K ii i i i i i iˆ ( , , ) ˆ ( , , ),μ α μ μ α
1 1

1,, , ,… K

where

	

S
N

X X X Xj j

j

N

=
−

− − ʹ
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∑1
1

1

( )( ) ,

	
T K N K

N K
N K

F K N K2 1
( , , )

( )
( , , ),α α− =

−
−

−

	 P T K N K T K N K( ( , ) ( , , )) .2 2 1− ≤ − = −α α

We may also consider a Bonferroni adjustment of an overall α level as follows:

	
ʹ − ʹ −⎛
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⎞
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2
1

1
2

1⎜⎜
⎞
⎠⎟

.

We then compare the confidence interval with (−δ, δ) and reject the null 
hypothesis that

	 H i Ki0 1: μ μ δ− < ∀ = , ,…

if any confidence interval falls completely outside (−δ, δ).
Note that it is also important to establish concurrent validity in practice. 

Concurrent validity is established for a new instrument by demonstrating 
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a good correlation with an already existing tool that is widely accepted as 
measuring the same construct(s). For example, a clinical evaluation by a phy-
sician might be considered the gold standard diagnosis. Or a well-recognized 
and accepted diagnostic criterion that is widely used by practitioners in the 
area may exist. In the case that the existing tool is continuous, a Pearson or 
Spearman’s correlation coefficient can be computed. In the case of a dichoto-
mous diagnostic tool, the area under the receiver operating characteristics 
curve can be used to establish a good relationship. If no such gold standard 
exists, one option is to compare the new instrument to existing instruments 
that measure similar or related constructs. This is referred to as convergent 
validity (discussed later). For example, all instruments in the same general area 
of general well-being should show some degree of relationship. Furthermore, 
all instruments or domains designed to measure general well-being should 
show a somewhat closer relationship to one another than they do to other 
domains, even if they have been developed on varying populations.

14.3.2  �Reliability

The reliability of a QOL instrument reflects the other part of measurements 
and refers to the freedom from random error. The reliability of an instru-
ment measures the variability of the instrument, which directly relates to 
the precision of the instrument. Therefore, the items are considered reliable 
if the variance of Y is small. To verify the reliability of estimating θ by Y, we 
consider the following hypothesis:

	 H Y0 : Var for some fixed ( ) .< Δ Δ

The variance of Y is given below:

	

Var Var( ) .Y
K

X
K

i

i

K

=
⎛

⎝
⎜

⎞

⎠
⎟ = ʹ ∑

=
∑1 1

1 1
1

2

The sample distribution of
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( )

Y Y
Y

j

j

N
−

=
∑ Var

1

has a chi-square distribution with N − 1 degrees of freedom. Thus, a 
(1 − α)100% one-sided confidence interval for Var(Y) is as follows:
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If ξ(Y) > Δ, then we reject the null hypothesis and conclude that the items are 
not reliable in estimating θ. As indicated earlier, patients’ response to a QOL 
instrument may vary from one patient population to another and from one 
therapy to another. Therefore, it is recommended that the variability of QOL 
scores be studied before and after medication intervention.

Since the items X1, X2,â•›…, XK are relevant to a QOL component, they are 
expected to be correlated. In classical validation, a group of items with high 
intercorrelation between items are considered to be internal-consistent. 
Cronbach’s α defined below is often used to measure the intercorrelations 
between items:

	

α
σ

σ σ
C

i
i

K

i
i

K

il

i l

K
K

=
−

−
+

⎛

⎝
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,

where
σi iX2 = Var( )
σil = Cov(Xi, Xl)

When the covariance between items is high compared to the variance of each 
item, αC is large. To ensure that the items are measuring the same component 
of QOL, the items under the component should be positively correlated, i.e., 
αC ≥ 50%. However, if the intercorrelations between items are too high, i.e., 
αC is close to 1, it suggests that some of the items are redundant. Note that the 
variance of Y given below:

	
Var Var( )

( )
( )Y

K K K
X

C
i

i

K

=
− −

⎛

⎝⎜
⎞

⎠⎟
=
∑1

1
1

1
α

increases with αC for fixed K and Var(Xi), i = 1,â•›…, K. By including redun-
dant items we cannot improve the precision of the result. It is desired to 
have independent items reflect the QOL component at different perspectives. 
However, in that case, it is hard to validate whether the items are measuring 
the same targeted component of QOL. Therefore, we suggest using items 
with moderate αC, i.e., αC is somewhere between 50% and 80%.

14.3.3  �Reproducibility

Reproducibility is defined as the extent to which repeat administrations of the 
same QOL measure yield the same result, assuming no underlying changes 
have occurred. The assessment of reproducibility involves expected and/or 
unexpected variabilities that might occur in the assessment of QOL. It includes 
inter-time (between time) point and inter-rater (between rater) reproducibility.
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For the assessment of reproducibility, the technique of test–retest is often 
employed. The same QOL instrument is administered to patients who have 
reached stable conditions at two different time points. These two time points 
are generally separated by a sufficient length of time that is long enough to 
wear off the memory of the previous evaluation but not long enough to allow 
any change in environment. Pearson’s product moment correlation coeffi-
cient, ρ, of the two repeated results is then studied. In practice, a test–retest 
correlation of 80% or higher is considered acceptable. To verify this, the sam-
ple correlation between test–retest, denoted by r, is calculated from a sample 
of N patients. The following hypotheses are then tested:

	 H Ha0 0 0: versus :ρ ρ ρ ρ≥ < .

When N is large,

	
Z r

r
r

( ) ln=
+
−

⎛
⎝⎜

⎞
⎠⎟

1
2

1
1

is approximately normally distributed with mean Z(ρ) and variance 1/(N − 3). 
The null hypothesis is rejected if

	 N Z r Z z− − < −3 10( ( ) ( )) ( ),ρ α

where z(1 − α) is the αth quantile of the standard normal distribution. Note 
that a shift in mean of the score at test–retest may be detected by using a simple 
paired t-test. The inter-rater reproducibility can be verified by the same method.

14.4â•‡� Responsiveness and Sensitivity

The responsiveness of a QOL instrument is usually referred to as the ability 
of the instrument to detect a difference of clinical significance within a treat-
ment. The sensitivity is a measure of the ability of the instrument to detect 
a clinically significant difference between treatments. A validated instru-
ment should be able to detect a difference if there is indeed a difference and 
should not wrongly detect a difference if there is no difference. Chow and 
Ki (1994) proposed precision and power indices to assess the responsiveness 
and sensitivity of a QOL instrument when comparing the effect of a drug on 
QOL between treatments. The precision index measures the probability of 
not detecting a false difference and the power index reflects the probability 
of detecting a meaningful difference. The precision and power indices for 
measuring responsiveness and sensitivity under a time series model proposed 
by Chow and Ki (1994) are described below.
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14.4.1  �Statistical Model

For a given QOL index, let Xijt be the response of the ith subject to the jth 
question (item) at time t, where i = 1,â•›…, N, j = 1,â•›…, J, and t = 1,â•›…, T. Consider 
the average score over J questions:

	

y X
J

Xit it ijt

j

J

= =
=

∑1

1

.

Since the average scores yi1,â•›…, yiT are correlated, the following autoregressive 
time series model is an appropriate statistical model for yit.

	 y y e i N t Tit i t it= + − + = =−μ ψ μ( ) , , ..., , , , ,, 1 1 1 … 	 (14.1)

where
μ is the overall mean
|ψ| < 1 is the autoregressive parameter
eit are independent identically distributed random errors with mean 0 

and variance σe
2

It can be verified that E e eit jt( , )ʹ = 0 for all i, j and t ≠ t′, and E e yit it( , )ʹ = 0 for 
all t′ < t. The autoregressive parameter ψ can be used to assess the correla-
tion of consecutive responses yit and yi,t+1. From the above model, it can be 
shown that the autocorrelation of response with k lag times is ψk, which is 
negligible when k is large. Based on the observed average scores on the ith 
subject, i.e., yi1, yi2,â•›…, yiT, we can estimate the overall mean μ and the autore-
gressive parameter ψ. The ordinary least squares estimators of μ and ψ can 
be approximated by
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which are the sample mean and sample autocorrelation of consecutive obser-
vations. Under model (14.1), it can be verified that the variance of �̂i  is
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where γi0 = Var(yit). The standard error of �̂i is then given by
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Suppose that the N subjects are from the same population with the same 
variability and autocorrelation. The QOL measurements of these subjects 
can be used to estimate the mean average scores μ. An intuitive estimator of 
μ is the sample mean

	

ˆ .μ = =⋅⋅ ⋅

=
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Under model (14.1), the variance and standard error of �̂ are given by, 
respectively,
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As a result, an approximate (1 − α)100% confidence interval for μ in (14.1) can 
then be constructed as follows:

	 y z s y⋅⋅ − ⋅⋅± 1 1 2/ ( ),α 	 (14.3)

where z1−1/2α is the 100(1 − α/2)th percentile of a standard normal distribution 
and s(y–··) is given in (14.2). As a matter of fact, the assumption that all the QOL 
measurements over time are independent is a special case of model (14.1) 
with ψ = 0. In practice, it is suggested that model (14.1) be used to account 
for the possible positive correlation between measurements over a test time 
period. Under model (14.1), it can be seen that the confidence interval given 
in (14.3) with r1 > 0 is wider than when ψ = 0.

Note that, for the statistical validation of an instrument, at a fixed confidence 
level, the width of the confidence interval in (14.3) is inversely proportional to 
the prevision of the estimator y–·· and may be used as an indicator of the valid-
ity of the instrument. For example, if the width of a confidence interval is too 
wide, the instrument may not be sensitive due to low power for detecting 
a positive difference or an equivalence. In what follows, the precision and 
power indices of QOL instruments will be evaluated under model (14.1).

14.4.2  �Precision Index

Suppose that a homogeneous group is divided into two independent groups 
A and B that are known to have the same QOL. A good QOL instrument should 
have a small chance of wrongly detecting a difference. Let yi = (yi1, yi2,â•›…, yit,â•›…, 
yiT)′ be the average scores observed on the ith subject in group A at different 
time points over a fixed time period. Similarly, denote the average scores for 
the jth subject in group B over a time period by wj = (wj1, wj2,â•›…, wjt,â•›…, wjT)′. The 
objective is to compare mean average scores between groups to see whether 
the instrument reflects the expected result statistically. Based on yi, i = 1,â•›…, N 
and wj, j = 1,â•›…, M, the difference in mean average scores between groups 
A and B can be assessed by testing the following hypotheses that H0 : μy = μw 
versus Ha : μy ≠ μw, where μy and μw are the mean average scores for groups 
A and B, respectively. Under the null hypothesis, the following test statistic
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is approximately distributed as a standard normal distribution when N and 
M are both large. Therefore, we would reject the null hypothesis if |Z| > z1−α/2.

Note that the above test is a uniform most powerful test. The level of sig-
nificance of the test is α. The confidence interval for μy − μw and the rejection 
region are given, respectively, by

	 ( , ) ,L U y w d y w d= − ± − >⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅α αand
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where
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In general, an interval estimator of μy − μw given by

	 ( )y w d⋅⋅ ⋅⋅− ± 	 (14.4)

is used for detecting a difference in means. A difference is detected if zero 
lies outside the interval, i.e.,

	 y w d⋅⋅ ⋅⋅− > .

The precision index, denoted by Pd, of an instrument is defined as the prob-
ability of the interval (14.4) not detecting a difference when there is no differ-
ence between groups, i.e.,
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is the standardized random variable that is approximately distributed as a 
standard normal when N and M are large. It can be seen that the precision 
index of an instrument is (1 − α) at d = dα. Note that Pd is the confidence level 
of the interval estimator given in (14.4), which increases as d increases. When d 
is too big, although the interval has a very high probability to capture the true 
difference, it may not have a sufficient power for detecting a positive difference.

14.4.3  �Power Index

On the other hand, if the QOL instrument is administered to two groups of 
subjects who are known to have different QOL, then the QOL instrument 
should be able to correctly detect such a difference with a high probability. 
The power index of an instrument for detecting a meaningful difference, 
denoted by δd(ε), is defined as the probability of detecting a meaningful dif-
ference ε. That is,
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For d = dα, δd(ε) is the power, which can be calculated as follows:
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Note that for a fixed ε, δd(ε) decreases as d increases. We consider an instru-
ment to be responsive in detecting a difference if both Pd and δd(ε) are above 
some reasonable limits for a given ε.

In practice, two groups are considered to have equivalent QOL if their mean 
QOL measurements only differ by less than a meaningful difference η. In this 
case, it is of interest to detect equivalence rather than a difference. Denote 
the acceptable limits for the difference between two group means by (−Δ, Δ). 
When the confidence interval of μy − μw given in (14.4) is within the acceptable 
limits, we conclude that the two groups have equivalent effect on QOL. We 
will refer to the probability of detecting an equivalence as the power index of 
an instrument for detecting an equivalence when the true group means differ 
by less than a meaningful difference η. The power index is then defined as
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where (L, U) is a confidence interval of μy − μw as given in (14.4). Note that 
ϕΔ(η) can be obtained as follows:
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which can be approximated by
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where Φ is the cumulative distribution function of a standard normal 
distribution.

14.4.4  �Sample Size Determination

Since the QOL response may vary widely from patient to patient, a large 
sample size is usually required to attain a reasonable precision and power. 
Under model (14.1) and the setting as described above, some useful formulae 
for determination of sample size can be derived based on normal approxi-
mation. The formulae can also be applied to many clinical research studies 
with time-correlated outcome measurements, for example, 24â•›h monitoring 
of blood pressure, heart rates, hormone levels, and body temperature.

For a fixed precision index (e.g., 1 − α), to ensure a reasonably high power 
index δ for detecting a meaningful difference ε, the sample size per treat-
ment group should not be less than
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For a fixed precision index (e.g., 1 − α), if the acceptable limit for detecting an 
equivalence between two treatment means is (−Δ, Δ), to ensure a reasonably 
high power ϕ for detecting an equivalence when the true difference in treat-
ment means is less than a small constant η, the sample size for each treat-
ment group should be at least
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If both treatment groups are assumed to have some variability and autocor-
relation coefficient, the constant c in (14.9) and (14.10) can be simplified as
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When N = max(Nϕ, Nδ), it ensures that the QOL instrument will have a preci-
sion index 1 − α and power of no less than δ and ϕ in detecting a difference 
and an equivalence, respectively. It should be noted that the required sample 
size is proportional to the variability of the average scores considered. The 
higher the variability, the larger is the sample size that would be required.

As an example, suppose that there are two independent groups A and B. 
A QOL index containing 11 questions is administered to subjects at Weeks 
4, 8, 12, and 16. The mean scores are analyzed to assess group difference. 
Denote the mean of QOL score of the subjects in group A and B by Yit and Wjt, 
respectively, where i, j = 1,â•›…, N and t = 1,â•›2,â•›3,â•›4. We assume that Yit and 
Wjt have distributions that follow the time series model described in model 
(14.1) with common variance γ = 0.5 square units and have moderate autocor-
relation between scores at consecutive time points, say ψ = 0.5. For a fixed 
95% precision index, by formula (14.9), 87 subjects per group will provide a 
90% power for detection of a difference of 0.25 units in means. If the chosen 
acceptable limits are (−0.35, 0.35), by (14.10), 108 subjects per group will have 
a power of 90% that the 95% confidence interval of difference in group means 
will correctly detect an equivalence with η = 0.1 units. If the sample size is 
chosen to be 108 per group, it ensures that the power indices for detecting a 
difference of 0.25 units or equivalence are not less than 90%.

14.5â•‡� Utility Analysis and Calibration

14.5.1  �Utility Analysis

Gains in quantity of life can be measured in terms of life years gained, while 
gains in QOL should be measured by an instrument that incorporates a broad 
spectrum of health status, including physical/mobility function, psycholog-
ical function, cognitive function, social function, and so forth. Feeny and 
Torrance (1989) used a utility approach to measure the health-related QOL. 
Utility is a single summary score, which ranges from zero (for dead) to one 
(for perfect health). Torrance and Feeny (1989) used QOL utility as quantity-
adjustment weights for quality-adjusted life years, which are highly used in 
cost-effectiveness analysis.

The utility of hypothetical or actual health states may be evaluated by an 
individual. Utility is the preference of an individual for a health state. The 
preference of health state can be measured by some standard technique, such 
as rating scale, standard gamble, and time tradeoff. However, the utility mea-
surements are not very precise. The within-subject variability is around 0.13 
and the intersubject variability is approximately 0.3 for the general public 
and 0.2 for patients experiencing the health state (Feeny and Torrance, 1989). 
An individual either is experiencing the disease state or understands the 
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hypothetical description of the disease state. A rating scale consists of a line 
with the least preferred state (e.g., death) on one end and the most preferred 
state (perfect health) on the other end. An individual will rate the disease 
state on the line between these two extreme states. Usually, the utility value 
obtained by this technique has high variability. A utility value of a disease 
state can be assigned by the standard gamble technique. An individual is 
given the choice of remaining at the disease state for an additional t years or 
the alternative, which consists of perfect health for an additional t years with 
probability p and immediate death with probability (1 − p). The probability 
p is varied until the individual is indifferent between the two alternatives. 
Then the preference/utility of that disease state is p. The preference value of 
a disease state can also be assigned by using a time tradeoff technique. An 
individual is offered two alternatives: (1) a disease state with a life expec-
tancy of t years or (2) perfect health for x years. Then x is varied until the 
individual is indifferent regarding the two alternatives. Then, the preference 
value of the disease state is x/t. The time tradeoff technique is easier for an 
individual to understand; however, the preference value is the true utility 
provided that the individual’s utility function for additional healthy years 
is linear in time. If the utility function for additional healthy years is con-
cave, the preference value by the time tradeoff method will underestimate 
the true utility value of the disease state. For more details regarding the per-
formance of the above utility measuring techniques, the readers should refer 
to Torrance (1987).

The utility values should be validated for test–retest reproducibility before 
they are used to measure any change in health state. For the interpretation of 
improvement in utility, Torrance and Feeny (1989) related the utility values 
of some marker states. If there are utility values for some marker states, A, 
B, and C at 0.8, 0.7, and 0.4, respectively, an average improvement of 0.1 in 
utility of outcome health state from a trial may be described as equivalent to 
improving from outcome B to A average over all patients in the trial.

Although aggregation of utilities across individuals is commonly used in 
the analysis of data, it should be done with caution. The utility function may 
not be the same across subjects. The anchor states, perfect health and death, 
should be well defined for the same understanding across all subjects. To 
evaluate the effect of a therapy, the life years gained should be adjusted by 
the QOL. The quality-adjusted life years is the area under the profile of qual-
ity of like utility over time. The quality-adjusted life years gained is usually 
used in the evaluation of the effectiveness of therapy.

14.5.2  �Calibration

Besides the validation of a QOL instrument, another issue of particular inter-
est is the interpretation of an identified significant change in the QOL score. 
For this purpose, Testa et al. (1993) considered the calibration of change in 
QOL against the change in life events. A linear calibration curve was used to 
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predict the relationship between the change in QOL index and the change in 
life events index. Only negative life events were considered. The study was 
not designed for calibration purposes and the changes in life events were 
collected as auxiliary information. The effect of change of life events was 
confounded with the effect of medication. If we want to use calibration to 
interpret the impact of change in QOL score, further research in the design 
and analysis method is necessary. Since the impact of life events is subjective 
and varies from person to person, it is difficult to assign numerical scores/
indices to life events. The relationship between QOL score and life events 
may not be linear. More complicated calibration functions or transforma-
tions may be required. We expect that the QOL score has positive correla-
tion with the life events score; however, the correlation may not be strong 
enough to give a precise calibration curve. Besides the calibration of the QOL 
score with the life events score, changes in the QOL score may be related to 
changes in disease status.

14.6â•‡� Analysis of Parallel Questionnaire

Jachuck et al. (1982) indicated that QOL may be assessed in parallel by 
patients, their relatives, and physicians. The variability of the patient’s rating 
is expected to be larger than those of the relatives’ ratings and physicians’ 
ratings. Although QOL scores can be analyzed separately based on individ-
ual ratings, they may lead to different conclusions. In this case, determin-
ing which rating should be used to assess the treatment effect on QOL has 
become a controversial issue. On the one hand, it is suggested that patients’ 
ratings should be considered as the primary analysis because only patients’ rat-
ings can reflect exactly how patients feel. On the other hand, it is suggested 
that ratings of patients’ relatives (e.g., spouses or significant others) should be 
considered because patients’ ratings may not be accurate and reliable due to 
their illness. This is probably true especially for sensitive QOL components 
such as sexual function.

In practice, a typical approach is to analyze each rating separately. This 
approach, however, may cause the loss of some important information from 
the responses provided by the different perspectives. Jachuck et al. (1982) 
pointed out that QOL assessment based on each rating alone may lead to a 
totally different conclusion. To fully use the information contained in the 
two ratings, as an alternative, it is suggested that a composite index that 
combines both patients’ ratings and parallel ratings (by their spouses or sig-
nificant others) be considered. In this case, “Should the individual ratings 
carry the same weights as the parallel ratings?” has become an interesting 
question. If the patient’s rating is considered to be more reliable than others, 
it should carry more weight in the assessment of QOL; otherwise, it should 
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carry less weight in the analysis. Ki and Chow (1994) considered the follow-
ing weighted score function:

	 Z aX bY= + ,

where
X and Y denote the ratings of a patient and his or her spouse, respectively
a and b are the corresponding weights assigned to X and Y

Note that if a = 1 and b = 0, then the score function reduces to the patient’s 
rating. On the other hand, when a = 0 and b = 1, the score function represents 
the spouse’s rating. When a = b = 1/2, the score function is the average of 
the two ratings, that is, the patient’s rating and his or her spouse’s rating are 
considered equally important.

If one believes that one rating is more reliable than the other, then the 
more reliable one should carry more weight for the assessment of QOL. 
The choice of a and b in the above score function determines the relative 
importance of the ratings in the assessment of QOL. Ki and Chow (1994) 
proposed using the technique of principal components to determine 
a and b based on the observed data. The idea is to derive a one-dimensional 
function of both ratings, which can retain as much information as pos-
sible compared to the two-dimensional vector W = (X, Y)′. Assume that W 
follows a bivariate joint distribution with mean μ = (μX, μY)′ and covariance 
matrix:
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where
σX and σY are the standard deviation of X and Y, respectively
ρ is the linear correlation coefficient between X and Y

Suppose that N patients and their spouses (or significant others) from the 
same population are administered the QOL questionnaire simultaneously. 
Then, the mean and covariance matrix of W can be estimated based on 
observed ratings Wi = (Xi, Yi)′, i = 1,â•›…, N, as follows:
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and
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The above sample covariance matrix contains not only the information about 
the variations of the patients’ and spouses’ ratings but also the correlation 
between the two ratings. For the determination of a and b, one approach is 
to employ the technique of principal components based on both ratings. The 
first principal component of the observed data {Wi, i = 1,â•›…, N} possesses the 
maximum sample variance, that is,

	 ʹ = + +A SA a S b S abrS SX Y X Y
2 2 2 2 2

among all coefficient vectors satisfying

	 ʹ = + =A A a b2 2 1.

It can be shown that the numbers in the characteristic vector A associated 
with the largest characteristic root of S are the coefficients of the first princi-
pal component. The characteristic roots of S can be obtained from the char-
acteristic equation

	 S I− =λ 0.

This leads to
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The first principal component can be obtained by solving the following 
equations:
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The sample covariance of the first principal component y = A′W is the largest 
characteristic root λ1 = A′SA and the percentage of variation expressed by 
this component is

	

λ1

tr S( )
,

where tr(S) is the trace of S which is given by

	 tr S S SX Y( ) .= +2 2

Note that if the sample covariance matrix S is singular, then there is only 
one nonzero characteristic root. The first principal component explains 
all the variation in the observations. The percentage of sample variation 
presented by the first principal component reflects how much information 
from the observations is retained by the first principal component and the 
usefulness of the component in representing the observations in a one-
dimensional setting. If a large proportion of the variation of the observa-
tions can be accounted for by a single principal component, then most of 
the variation generated by the observations in a two-dimensional space 
can be expressed along a one-dimensional vector. This appeals to dimen-
sional reduction and the coefficients (a, b) indicate the direction and relative 
importance of each rating toward QOL assessment.
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14.7â•‡� An Example

Suppose that the sample covariance matrix of X and Y is
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where r > 0. The largest characteristic root of S is 1 + r and its corresponding 
characteristic vector is A = ( )2 2 2 2/ , / . The score function is then given by
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which gives equal weight to both ratings. The percentage of variation 
retained by Z is 100(1 + r)/2. The amount of variation expressed by Z for 
different values of the linear correlation coefficient r is summarized in 
Table 14.1. When the two ratings X and Y are highly correlated, the score 
function retains a very high percentage of variation. When the correlation 
is moderate, say 0.7, the score function can still retain 85% of the variation 
of the data. As can be seen from Table 14.1, the score function proposed in 
this section is simple and easy to use. It reduces a two-dimensional prob-
lem to a univariate problem. It duly uses the information from both ratings 
and gives a better power for statistical tests.

Suppose QOL assessment is administered before drug therapy (at baseline) 
and at the end of the therapy (endpoint) to patients and their spouses. The 
hypothesis of interest is one of no drug effect on QOL. Denote the endpoint 
change from baseline in the patient’s rating by X and that of the spouse’s 
rating by Y. When X and Y are analyzed separately, the probabilities of all 
possible conclusions are summarized in Table 14.2.

TABLE 14.1

Percentage of Variation 
Expressed by Z for Various r

r
Percentage of Variation 

Expressed by Z

0.9 95
0.7 85
0.5 75
0.0 50
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As can be seen from Table 14.2, the probability of observing an inconsis-
tent conclusion is given by P = PAR + PRA. For a particular case, when X and 
Y are bivariate normal with linear correlation coefficient ρ, the probabilities 
of observing inconsistent conclusions can be calculated and are presented in 
Table 14.3. The analysis of treatment effect can be done on the score function 
Z to avoid the potential problem of inconsistent results which may occur 
when the ratings are analyzed separately.

TABLE 14.2

Probabilities of All Possible 
Conclusions

Y

Accept H0 Reject H0

X Accept H0 PAA PAR

Reject H0 PRA PRR

TABLE 14.3

Probability of Inconsistent Conclusions

𝛒 P = PAR + PRA

−0.9 0.0407
−0.8 0.0561
−0.7 0.0669
−0.6 0.0751
−0.5 0.0815
−0.4 0.0865
−0.3 0.0902
−0.2 0.0929
−0.1 0.0945
−0.0 0.0950

0.1 0.0945
0.2 0.0929
0.3 0.0902
0.4 0.0865
0.5 0.0815
0.6 0.0751
0.7 0.0669
0.8 0.0561
0.9 0.0407

Note:	 X and Y are bivariate normal with 
correlation ρ.
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14.8â•‡� Concluding Remarks

As discussed above, a QOL instrument needs to be validated in terms of its 
validity, reliability, reproducibility, responsiveness, and sensitivity before it 
can be applied to assess QOL in clinical trials. However, in current practice 
an instrument is usually validated either concurrently or retrospectively. 
If an instrument is to be validated prospectively, an appropriate validation 
study should be carefully designed. Chow and Ki (1994) discussed statistical 
characteristics of QOL under a time series model, which may be useful for 
prospective validation. Appropriate statistical tests for validity, reliability, 
and test–retest reproducibility should be derived under such a model.

For the assessment of QOL in clinical trials, subscales or composite scores 
are often analyzed in order to describe different domains of QOL. One of 
the controversial issues is whether the developed instrument (questionnaire) 
asks the right questions for the assessment of each individual domain of the 
QOL. Chow and Ki (1994) provided statistical justification for the use of a 
composite score in QOL assessment using factor analysis to group relevant 
questions to form individual domains as suggested by the data. Another 
controversial issue regarding the use of subscales or composite scores is α 
adjustment for multiple comparisons. “How to adjust for α?” and “how to 
interpret the results?” have become important issues in QOL assessment.

In practice, missing data are commonly encountered in QOL assessment. 
Thus, statistical procedures for handling missing values play an important 
role for the validity of QOL assessment. A typical approach is to exclude 
subjects whose missing values have exceeded a prespecified percentage. For 
those subjects included in the analysis, their missing values will be imputed. 
Commonly considered procedures for missing value imputation include (1) 
mean imputation, (2) median imputation, and (3) regression analysis. These 
methods may not be useful when there is a significant proportion of subjects 
with missing values.

The interpretation of improvement in the QOL score is always a challenge 
for the investigator. For example, suppose QOL can be assessed by a mean 
overall QOL score with the categories presented in Table 14.4.

TABLE 14.4

QOL Categories

Status QOL Score

Very poor 0 ≤ QOL < 1
Poor 1 ≤ QOL < 2
Fair 2 ≤ QOL < 3
Good 3 ≤ QOL < 4
Excellent 4 ≤ QOL < 5
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Suppose the mean QOL score at baseline is 1.2, which is considered to be 
in the Poor category. After the treatment, the mean QOL score has improved 
from 1.2 to 1.9 (an improvement of 0.7), which still falls in the category of 
Poor. In this case, we may conclude that there is no improvement in QOL. 
However, if we take a close look, some patients with baseline QOL scores 
close to the boundary may have significant improvement (i.e., jump from one 
category to the next category) even with a small improvement in QOL score. 
Thus, the analysis of improvement in mean QOL score may not be appropri-
ate. Alternatively, we may consider the so-called shift analysis to capture 
the information regarding how many subjects are improving and how many 
subjects are worsening in terms of their QOL status change from category 
to category. This analysis may provide a good statistical interpretation of the 
collected data. However, it does not provide any insight of the QOL clini-
cally. Thus, it is suggested that calibration with life events (e.g., promotion, 
salary raise, losing job, and losing love ones) or health care status (outpatient, 
emergency, hospitalization, and intensive care) be considered. The approach 
of calibration against life events and/or health care status could be a solution; 
however, the validation of the calibration has raised another controversial 
issue in QOL assessment.

Finally, another controversial issue is that whether QOL should be treated 
as a safety endpoint, an efficacy endpoint, both safety and efficacy, or nei-
ther. Unlike the hard clinical endpoint such as survival, different individuals 
have different perceptions regarding QOL. QOL may not serve as a clinical 
endpoint for the evaluation of clinical efficacy and/or safety. But it does pro-
vide clinical benefit to the patient with the disease under study.
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15
Missing Data Imputation

15.1â•‡� Introduction

Missing values or incomplete data are commonly encountered in clinical 
trials. One of the primary causes of missing data is the dropout. Reasons 
for dropout include, but are limited to, refusal to continue in the study 
(e.g., withdrawal of informed consent), perceived lack of efficacy, reloca-
tion, adverse events, unpleasant study procedures, worsening of disease, 
unrelated disease, noncompliance with the study, need to use prohibited 
medication, and death (DeSouza et al., 2009). Following the idea of Little 
and Rubin (1987, 2002), DeSouza et al. (2009) provided an overview of 
three types of missingness mechanisms for dropouts. These three types 
of missingness mechanisms include (1) missing completely at random 
(MCAR), (2)  missing at random (MAR), and (3) missing not at random 
(MNAR). MCAR refers to the dropout process that is independent of the 
observed data and the missing data. MAR indicates that the dropout pro-
cess is dependent on the observed data but is independent of the missing 
data. For MNAR, the dropout process is dependent on the missing data 
and possibly the observed data. Depending upon the missingness mecha-
nisms, appropriate missing data analysis strategies can then be considered 
based on existing analysis methods in the literature. For example, com-
monly considered methods under MAR include (1) discard incomplete 
cases and analyze complete cases only, (2) impute or fill in missing val-
ues and then analyze the filled-in data, (3)  analyze the incomplete data 
by a method such as likelihood-based method (e.g., maximum likelihood, 
restricted maximum likelihood, and Bayesian approach), moment-based 
method (e.g., generalized estimating equations [GEEs] and their variants), 
and survival analysis method (e.g., Cox proportional hazards model) that 
does not require a complete data set. On the other hand, under MNAR, 
commonly considered methods are derived under pattern mixture models 
(Little, 1994) which can be divided into two types: parametric (see Diggle and 
Kenward, 1994) and semi-parametric (Rotnitzky et al., 1998).

In practice, the possible causes of missing values in a study can generally 
be classified into two categories. The first category includes the reasons that 
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are not directly related to the study. For example, a patient may be lost to 
follow-up because relocation out of the area. This category of missing val-
ues can be considered as MCAR. The second category includes the reasons 
that are related to the study. For example, a patient may withdraw from the 
study due to treatment-emergent adverse events. In clinical research, it is not 
uncommon to have multiple assessments from each subject. Subjects with all 
observations missing are called unit nonrespondents. Because unit nonre-
spondents do not provide any useful information, these subjects are usually 
excluded from the analysis. On the other hand, the subjects with some, but 
not all, observations missing are referred to as item nonrespondents. In prac-
tice, excluding item nonrespondents from the analysis is considered against 
the intent-to-treat (ITT) principle and, hence, is not acceptable. In clinical 
trials, the primary analysis is usually conducted based on ITT population, 
which includes all randomized subjects with at least posttreatment evalu-
ation. As a result, most item nonrespondents may be included in the ITT 
population. Excluding item nonrespondents may seriously decrease power/
efficiency of the study. Statistical methods for missing values imputation 
have been studied by many authors (see Kalton and Kasprzyk, 1986; Little 
and Rubin, 1987; Schafer, 1997).

To account for item nonrespondents, two methods are commonly con-
sidered. The first method is the so-called likelihood-based method. Under 
a parametric model, the marginal likelihood function for the observed 
responses is obtained by integrating the missing responses. The parameter of 
interest can then be estimated by the maximum likelihood estimator (MLE). 
Consequently, a corresponding test (e.g., likelihood ratio test) can be con-
structed. The merit of this method is that the resulting statistical procedures 
are usually efficient. The drawback is that the calculation of the marginal 
likelihood could be difficult. As a result, some special statistical or numerical 
algorithms are commonly applied for obtaining the MLE. For example, the 
expectation–maximization (EM) algorithm is one of the most popular meth-
ods for obtaining the MLE when there are missing data. The other method 
for item nonrespondents is imputation. Compared with the likelihood-based 
method, the method of imputation is relatively simple and easy to apply. The 
idea of imputation is to treat the imputed values as the observed values and 
then apply the standard statistical software for obtaining consistent estima-
tors. However, it should be noted that the variability of the estimator obtained 
by imputation is usually different from the estimator obtained from the com-
plete data. In this case, the formulas designed to estimate the variance of the 
complete data set cannot be used to estimate the variance of estimator pro-
duced by the imputed data. As an alternative, two methods are considered 
for the estimation of its variability. One is based on Taylor’s expansion. This 
method is referred to as the linearization method. The merit of the lineariza-
tion method is that it requires less computation. However, the drawback is 
that its formula could be very complicated and/or not trackable. The other 
approach is based on the resampling method (e.g., bootstrap and jackknife). 
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The drawback of the resampling method is that it requires an intensive 
computation. The merit is that it is very easy to apply. With the help of 
a fast-speed computer, the resampling method has become much more 
attractive in practice.

Note that imputation is very popular in clinical research. The simple 
imputation method of last observation carry forward (LOCF) at endpoint 
is probably the most commonly used imputation method in clinical trials. 
Although the LOCF is simple and easy for implementation in clinical tri-
als, its validity has been challenged by many researchers. As a result, the 
search for alternative valid statistical methods for missing values imputation 
has received much attention in the past decade. In practice, the imputation 
methods in clinical trials are more diversified due to the complexity of the 
study design relative to the sample survey. As a result, statistical proper-
ties of many commonly used imputation methods in clinical trials are still 
unknown, while most imputation methods used in the sample survey are 
well studied. Hence, the imputation methods in clinical trials provide a 
unique challenge and also an opportunity for the statisticians in the area of 
clinical research.

In the next section, statistical properties and the validity of the commonly 
used LOCF method are studied. Some commonly considered statistical 
methods for missing values imputation are described in the subsequent 
sections of this chapter. Some recent development and a brief concluding 
remark are given in the last two sections of this chapter.

15.2â•‡� Last Observation Carry Forward

As indicated earlier, LOCF analysis at endpoint is probably the most com-
monly used imputation method in clinical trials. For illustration purpose, one 
example is described in the following. Consider a randomized, parallel-group 
clinical trial comparing r treatments. Each patient is randomly assigned to one 
of the treatments. According to the protocol, each patient should undergo s 
consecutive visits. Let yijk be the observation from the kth subject in the ith 
treatment group at visit j. The following statistical model is usually considered.

	 y Nijk ij ijk ijk= + ∼ μ ε ε σ, ( , ),0 2

	
(15.1)

where μij represents the fixed effect of the ith treatment at visit j. If there 
are no missing values, the primary comparison between treatments will 
be based on the observations from the last visit (j = s) because this reflects 
the treatment difference at the end of the treatment period. However, it is 
not necessary that every subject completes the study. Suppose that the last 
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evaluable visit is j* < s for the kth subject in the ith treatment group. Then the 
value of yij*k can be used to impute yisk. After imputation, the data at end-
point are analyzed by the usual analysis of variance (ANOVA) model. We 
will refer to the procedure described above as LOCF. Note that the method of 
LOCF is usually applied according to the ITT principle. The ITT population 
includes all randomized subjects. In clinical research, although the LOCF 
is commonly employed, it lacks statistical justification. In what follows, its 
statistical properties and justification are studied.

15.2.1  �Bias–Variance Trade-Off

The objective of a clinical study is usually to assess the safety and efficacy of 
a test treatment under investigation. Statistical inferences on the efficacy 
parameters are usually obtained. In practice, a sufficiently large number of 
sample size is required to obtain a reliable estimate and to achieve a desired 
power for the establishment of the efficacy of treatment. The reliability of an 
estimator can be evaluated by bias and by variability. A reliable estimator 
should have a small or zero bias with small variability. Hence, the estima-
tor based on LOCF and the estimator based on completers are compared in 
terms of their bias and variability. For illustration purpose, we focus on only 
one treatment group with two visits. Assume that there are a total of n = 
n1 + n2 randomized subjects, where n1 subjects complete the trial, while the 
remaining n2 subjects only have observations at visit 1. Let yik be the response 
from the kth subject at the ith visit and μi = E(yik). The parameter of interest is 
μ2. The estimator based on completers is given by
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On the other hand, the estimator based on LOCF can be obtained as
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It can be verified that the bias of y–c is 0 with variance σ2/n1, while the bias of 
y–LOCF is n2(μ1 − μ2)/n with variance σ2/(n1 + n2). As noted, although LOCF may 
introduce some bias, it decreases the variability. In a clinical trial with mul-
tiple visits, usually, μj ≈ μs if j ≈ s. This implies that the LOCF is recommended 
if the patients withdraw from the study at the end of the study. However, if 
a patient drops out of the study at the very beginning, the bias of the LOCF 
could be substantial. As a result, it is recommended that the results from the 
analysis based on LOCF be interpreted with caution.
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15.2.2  �Hypothesis Testing

In practice, the LOCF is viewed as a pure imputation method for testing the 
null hypothesis of

	 H s rs0 1: ,μ μ= =�

where μij are as defined in (15.1). Shao and Zhong (2003) provided another 
look of statistical properties of the LOCF under the above null hypothesis. 
More specifically, they partitioned the total patient population into s sub-
populations according to the time when the number of patients drop out 
from the study. Note that in their definition, the patients who complete the 
study are considered a special case of “dropout” at the end of the study. Then 
μij represents the population mean of the jth subpopulation under treatment i. 
Assume that the jth subpopulation under the ith treatment accounts for 
pi × 100% of the overall population under the ith treatment. They argued that 
the objective of the ITT analysis is to test the following hypothesis:

	 H r0 1: ,μ μ= =� 	 (15.2)

where
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Based on the above hypothesis, Shao and Zhong (2003) indicated that the 
LOCF bears the following properties:

	 1.	 In the special case of r = 2, the asymptotic (ni → ∞) size of the LOCF 
under H0 is ≤ α if and only if
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The LOCF is robust in the sense that its asymptotic size is α if 
lim(n1/n) = n2/n or τ τ1

2
2
2= . Note that, in reality, τ τ1

2
2
2=  is impractical 

unless μij = μi for all j. However, n1 = n2 (as a result lim(n1/n) = n2/n is 
very typical, in practice). The above observation indicates in such a 
situation n1 = n2 that LOCF is still valid.
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	 2.	When r = 2, τ τ1
2

2
2≠ , and n1 ≠ n2, the LOCF has an asymptotic size 

smaller than α if

	 ( ) < ( )2 1 1
2

2 1 2
2n n n n− −τ τ 	 (15.3)

or larger than α if the inequality sign in (15.3) is reversed.
	 3.	When r ≥ 3, the asymptotic size of the LOCF is generally not α except 

for some special case (e.g., τ τ τ1
2

2
2 2= = = = 0� r ).

Because the LOCF usually does not produce a test with asymptotic signifi-
cance level α when r ≥ 3, Zhong and Shao (2002) proposed the following test-
ing procedure based on the idea of post-stratification. The null hypothesis 
H0 should be rejected if T r> 1 , 1

2χ α− − , where χ α1 , 1
2
− −r  is a chi-square random 

variable with r − 1 degrees of freedom and
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Under model (15.1) and the null hypothesis of (15.3), this procedure has the 
exact type I error α.

15.3â•‡� Mean/Median Imputation

Missing ordinal responses are also commonly encountered in clinical research. 
For those types of missing data, mean or median imputation is commonly con-
sidered. Let xi be the ordinal response from the ith subject, where i = 1,â•›…, n. The 
parameter of interest is μ = E(xi). Assume that xi for i = 1,â•›…, n1 < n are observed 
and the rest are missing. Median imputation will impute the missing response 
by the median of the observed response (i.e., xi, i = 1,â•›…, n1). The merit of median 
imputation is that it can keep the imputed response within the sample space as 
the original response by appropriately defining the median. The sample mean 
of the imputed data set will be used as an estimator for the population mean. 
However, as the parameter of interest is population mean, the median imputa-
tion may lead to biased estimates.
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As an alternative, mean imputation will impute the missing value by the 

sample mean of the observed units, i.e., (1/ )1

1

n xi
i

n

=∑ 1
. The disadvantage of the 

mean imputation is that the imputed value may be out of the original response 
sample space. However, it can be shown that the sample mean of the imputed 
data set is a consistent estimator of population mean. Its variability can be 
assessed by the jackknife method proposed by Rao and Shao (1992).

In practice, usually, each subject will provide more than one ordinal response. 
The summation of those ordinal responses (total score) is usually considered 
as the primary efficacy parameter. The parameter of interest is the population 
mean of the total score. In such a situation, mean/median imputation can be 
carried out for each ordinal response within each treatment group.

15.4â•‡� Regression Imputation

The method of regression imputation is usually considered when covariates are 
available. Regression imputation assumes a linear model between the response 
and the covariates. The method of regression imputation has been studied 
by various authors (see Srivastava and Carter, 1986; Shao and Wang, 2002).

Let yijk be the response from the kth subject in the ith treatment group at 
the jth visit. The following regression model is considered:

	 y xijk i i ij ijk= +μ β ε+ , 	 (15.4)

where xij is the covariate of the kth subject in the ith treatment group. In 
practice, the covariates xij could be demographic variables (e.g., age, sex, and 
race) or the patient’s baseline characteristics (e.g., medical history or disease 
severity). Model (15.4) suggests a regression imputation method. Let �̂i 
and β̂ i denote the estimators of μi and βi based on the complete data set, 
respectively. If yijk is missing, its predicted mean value y xijk i i ij* = +μ βˆ ˆ  is used 
for imputation. The imputed values are treated as true responses and the 
usual ANOVA is used to perform the analysis.

15.5â•‡� Marginal/Conditional Imputation for Contingency

In an observational study, two-way contingency tables can be used to 
summarize two-dimensional categorical data. Each cell (category) in a two-way 
contingency table is defined by a two-dimensional categorical variable (A, B), 
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where A and B take values in {1,â•›…, a} and {1,â•›…, b}, respectively. Sample cell 
frequencies can be computed based on the observed responses of (A, B) 
from a sample of units (subjects). Statistical interest includes the estimation 
of cell probabilities and testing hypotheses of goodness of fit or the inde-
pendence of the two components A and B. In an observational study, there 
can be more than one stratum. It is assumed that within a stratum, sampled 
units independently have the same probability πA to have missing B and 
observed A, πB to have missing A and observed B, and πC to have observed 
A and B. (The probabilities πA, πB, and πC may be different in different impu-
tation classes.) As units with both A and B missing are considered as unit 
nonrespondent, they are excluded in the analysis. As a result, without loss 
of generality, it is assumed that πA + πB + πC = 1. For a two-way contingency 
table, it is very important for an appropriate imputation method to keep 
imputed values in the appropriate sample space. Whether in calculating 
the cell probability or in testing hypotheses (e.g., testing independence or 
goodness of fit), the corresponding statistical procedures are all based on 
the frequency counts of a contingency table. If the imputed value is out 
of the sample space, additional categories will be produced, which is of 
no practical meaning. As a result, two hot deck imputation methods are 
thoroughly studied by Shao and Wang (2002).

15.5.1  �Simple Random Sampling

Consider a sampled unit with observed A = i and missing B. Two imputation 
methods were studied by Shao and Wang (2002). The marginal (or uncon-
ditional) random hot deck imputation method imputes B by the value of B 
of a unit randomly selected from all units with observed B. The conditional 
hot deck imputation method imputes B by the value of B of a unit randomly 
selected from all units with observed B and A = i. All nonrespondents are 
imputed independently.

After imputation, the cell probabilities pij can be estimated using the stan-
dard formulas in the analysis of data from a two-way contingency table by 
treating imputed values as observed data. Denote these estimators by p̂ijI , 
where i = 1,â•›…, a and j = 1,â•›…, b. Let
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where pij = P(A = i, B = j). Intuitively, marginal random hot deck imputation 
leads to consistent estimators of pi· = P(A = i) and p·j = P(B = j), but not pij. Shao 
and Wang (2002) showed that p̂I under conditional hot deck imputation are 
consistent, asymptotically unbiased, and asymptotically normal.



Missing Data Imputation	 283

Theorem 15.1

Assume that pC > 0. Under conditional hot deck imputation,
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where
Ia denotes an a-dimensional identity matrix,
Ub denotes a b-dimensional square matrix with all components being 1,
⊗ is the Kronecker product.

15.5.2  �Goodness-of-Fit Test

A direct application of Theorem 15.1 is to obtain a Wald-type test for 
goodness of fit. Consider the null hypothesis of the form H0 : p = p0, where 
p0 is a known vector. Under H0,

	 X n p p p pW d ab
2

0
1

0 1
2= ( * *)’ * ( * *) ,ˆ ˆ ˆ− − →−

−∑ χ

where
χv

2
 denotes a random variable having the chi-square distribution with v 
degrees of freedom,

ˆ*( *)0p p  is obtained by dropping the last component of p̂I (p0),
ˆ *Σ  is the estimated asymptotic covariance matrix of p̂*, which can be 

obtained by dropping the last row and column of Σ̂, the estimated 
asymptotic covariance matrix of p̂I.



284	 Controversial Statistical Issues in Clinical Trials

Note that the computation of ˆ * 1Σ −  is complicated. Shao and Wang (2002) 
proposed a simple correction of the standard Pearson chi-square statistic by 
matching the first-order moment, an approach developed by Rao and Scott 
(1987). Let
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It is noted that under conditional imputation the asymptotic expectation of 
XG

2 is given by
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Let λ = D/(ab − 1). Then the asymptotic expectation of XG
2/λ is ab − 1, which is 

the first-order moment of a standard chi-square variable with ab − 1 degrees 
of freedom. Thus, XG

2/λ can be used just like a normal chi-square statistic 
to test the goodness of fit. However, it should be noted that this is just an 
approximated test procedure which is not asymptotically correct. According 
to Shao and Wang’s simulation study, this test performs reasonably well with 
moderate sample sizes.

15.6â•‡� Testing for Independence

Testing for the independence between A and B can be performed by the 
following chi-square statistic when there is no missing data:
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It is of interest to know what the asymptotic behavior of the above chi-square 
statistic is under both marginal and conditional imputation. It is found that 
under the null hypothesis of A and B is the independent and conditional hot 
deck imputation
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and under the marginal hot deck imputation

	 X d a b
2

( 1)( 1)
2 .→ − −χ

15.6.1  �Results under Stratified Simple Random Sampling

When the number of strata is small, stratified samplings are also commonly 
used in medical study. For example, a large epidemiology study is usually 
conducted by several large centers. Those centers are usually considered as 
strata. For those types of study, the number of strata is not very large; however, 
the sample size within each stratum is very large. As a result, imputation is 
usually carried out within each stratum. Within the hth stratum, we assume 
that a simple random sample of size nh is obtained and samples across strata 

are obtained independently. The total sample size is n nh
h

H
=

1=∑ , where
 

H is the number of strata and nh is the sample size in stratum h. The param-

eter of interest is the overall cell probability vector p w ph h
h

H
=

=∑ 1
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is the hth stratum weight. The estimator of p based on conditional imputa-

tion is given by ˆ ˆ
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Then a direct application of Theorem 15.1 leads to
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and Σh is the Σ in Theorem 15.1 but restricted to the hth stratum.

15.6.2  �When Number of Strata Is Large

In a medical survey, it is also possible to have the number of strata (H) very 
large, while the sample size within each stratum is small. A typical example 
is if a medical survey is conducted by the family, then the family can be con-
sidered as a stratum and all the members within the family become the sam-
ples from this stratum. In such a situation, the method of imputation within 
the stratum is impractical because it is possible that within a stratum, there 
are no completers. As an alternative, Shao and Wang (2002) proposed the 
method of imputation across strata under the assumption that (πh,A, πh,B, πh,C), 
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where h = 1,â•›…, H, is constant. More specifically, let nh,ij
C  denote the number 

of completers in the hth stratum such that A = i and B = j. For a sampled unit 
in the kth imputation class with observed B = j and missing A, the missing 
value is imputed by i according to the conditional probability
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Similarly, the missing value of a sampled unit in the kth imputation class 
with observed A = i and missing B can be imputed by j according to the 
conditional probability
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Note that p̂I can be computed by ignoring the imputation classes and treat-
ing the imputed values as observed data. The following result establishes 
the asymptotic normality of p̂I based on the method of conditional hot deck 
imputation across strata.

Theorem 15.2

Let (πh,A, πh,B, πh,Câ•›) = (πA, πB, πCâ•›) for all h. Assume further that H → ∞ and that 
there are constants cj, for j = 1,â•›…, 4, such that nh ≤ c1, c2 ≤ Hwh ≤ c3, and ph,ij ≥ c4 
for all h. Then

	 n p p NI
d( ) (0, ),ˆ − → Σ

where Σ is the limit of
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15.7â•‡� Controversial Issues

One of the most controversial issues in missing data imputation is the pos-
sible decrease in power. In practice, it is often considered that the most worri-
some impact of missing values on the inference for clinical trials is biased on 
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the estimation of the treatment effect. As a result, little attention was paid to 
the possible loss of power. In clinical trials, it is recognized that missing data 
imputation may inflate variability and consequently decrease the power. If 
there is a significant decrease in power, the intended clinical trial will not be 
able to achieve the study objectives as planned. This would be a major con-
cern during the regulatory review and approval process.

In addition to the issue of the possible loss of power, the following is a 
summary of controversial issues that present a challenge to clinical scientists 
when applying missing data imputation in clinical trials:

	 1.	When the data are missing, the data are missing. How can we make 
up data for the missing data?

	 2.	The validity of the method of LOCF for missing data imputation in 
clinical trials.

	 3.	When there is a high percentage of missing values, missing data 
imputation could be biased and misleading.

For the first question, from a clinical scientist’s point of view, if the data are 
missing, they are missing. One should not impute (or make up) data in any 
way whenever possible—it is always difficult, if not impossible, to verify 
the assumptions behind the method/model for missing data imputation. 
However, from a statistician’s point of view, we may be able to estimate the 
missing data based on the information surrounding the missing data under 
certain statistical assumptions/models. Dropping subjects with incomplete 
data may not be a good statistics practice (GSP).

For the second question, the method of LOCF for missing values has been 
widely used in clinical trials for years in practice although its validity has 
been challenged by many researchers and the regulatory agency such as the 
United States Food and Drug Administration (FDA). It is suggested that the 
method of LOCF for missing values should not be considered as the primary 
analysis for missing data imputation.

For the third question, in practice, if the percentage of missing values 
exceeds a prespecified number, it is suggested that missing data imputation 
should not be applied. This raises a controversial issue for the selection of the 
criterion of the cutoff value for the percentage of the missing value, which 
will preserve good statistical properties of the statistical inference derived 
based on the incomplete data set and imputed data.

15.8â•‡� Recent Development

As indicated earlier, depending upon the mechanisms of missing data, dif-
ferent approaches may be selected in order to address the medical questions 
asked. In addition to the methods described in the previous sections of this 
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chapter, the methods that are commonly considered include the mixed effects 
model for repeated measures (MMRMs), weighted and unweighted GEEs, 
multiple-imputation–based generalized estimating equations (MI-GEE), and 
complete-case (CC) analysis of covariance (ANCOVA). For recent develop-
ments in missing data imputation, the Journal of Biopharmaceutical Statistics 
(JBS) has published a special issue on Missing Data—Prevention and 
Analysis (Soon, 2009). These recent developments in missing data imputation 
are briefly summarized in the following.

For a time-saturated treatment effect model and an informative dropout 
scheme that depends on the unobserved outcomes only through the ran-
dom coefficients, Kong et al. (2009) proposed a grouping method to correct 
the biases in the estimation of the treatment effect. Their proposed method 
could improve the current methods (e.g., the LOCF and the MMRM) and 
give more stable results in the treatment efficacy inferences. Zhang and 
Paik (2009) proposed a class of unbiased estimating equations using a pair-
wise conditional technique to deal with the generalized linear mixed model 
under benign non-ignorable missingness where specification of the missing 
model is not needed. The proposed estimator was shown to be consistent 
and asymptotically normal under certain conditions.

Moore and van der Laan (2009) applied targeted maximum likelihood 
methodology to provide a test that makes use of the covariate data that are 
commonly collected in randomized trials. The proposed methodology does 
not require assumptions beyond those of the log-rank test when censoring 
is uninformative. Two approaches based on this methodology are provided: 
(1)  a substitution-based approach that targets treatment and time-specific 
survival from which the log-rank parameter is estimated, and (2) directly tar-
geting the log-rank parameter. Shardell and El-Kamary (2009), on the other 
hand, used the framework of coarsened data to motivate performing sen-
sitivity analysis in the presence of incomplete data. The proposed method 
(under pattern-mixture models) allows departures from the assumption of 
coarsening at random, a generalization of MAR, and independent censoring.

Alosh (2009) studied the missing data problem for count data by investi-
gating the impact of missing data on a transition model, i.e., the generalized 
autoregressive model of order 1 for longitudinal count data. Rothmann et al. 
(2009) evaluated the loss to follow-up with respect to the ITT principle on the 
most important efficacy endpoints for clinical trials of anticancer biologic 
products submitted to the U.S. FDA from August 2005 to October 2008 and 
provided recommendations in light of the results.

DeSouza et al. (2009) studied the relative performances of these methods 
for the analysis of clinical trial data with dropouts via an extensive Monte 
Carlo study. The results indicate that the MMRM analysis method provides 
the best solution for minimizing the bias arising from missing longitudi-
nal normal continuous data for small to moderate sample sizes under MAR 
dropout. For the nonnormal data, the MI-GEE may be a good candidate as it 
outperforms the weighted GEE method.
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Yan et al. (2009) discussed methods used to handle missing data in medi-
cal device clinical trials, focusing on the tipping-point analysis as a general 
approach for the assessment of missing data impact. Wang et al. (2009) stud-
ied the performance of a biomarker predicting clinical outcome in a large 
prospective study under the framework of outcome- and auxiliary-dependent 
subsampling and proposed a semi-parametric empirical likelihood method 
to estimate the association between biomarker and clinical outcome. Nie 
et al. (2009) dealt with censored laboratory data due to assay limits by com-
paring a marginal approach and a variance-component mixed effects 
model approach.

15.9â•‡� Concluding Remarks

In summary, missing values or incomplete data are commonly encountered 
in clinical research. How to handle the incomplete data is always a challenge 
to the statisticians in practice. Imputation as one very popular methodol-
ogy to compensate for the missing data is widely used in biopharmaceutical 
research. Compared to its popularity, however, its theoretical properties are 
far from well understood.

As indicated by Soon (2009), addressing missing data in clinical tri-
als involves missing data prevention and missing data analysis (see also, 
NRC, 2010). Missing data prevention is usually done through the enforce-
ment of good clinical practices during protocol development and clinical 
operations personnel training for data collection. This will lead to reduced 
biases, increased efficiency, less reliance on modeling assumption, and less 
need for sensitivity analysis. However, in practice, missing data cannot be 
totally avoided. Missing data often occur due to factors beyond the control of 
patients, investigators, and the clinical project team.

Note that the Panel on Handling Missing Data in Clinical Trials, Committee 
on National Statistics at the Division of Behavioral and Social Sciences and 
Education of National Research Council of the National Academies pub-
lished a monograph on the Prevention and Treatment of Missing Data in 
Clinical Trials to assist the FDA in development of regulatory guidance on 
the issue of missing value in clinical trials (NRC, 2010).
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16
Center Grouping

16.1â•‡ Introduction

For the approval of a new drug, the United States Food and Drug 
Administration (FDA) requires that substantial evidence of the effective-
ness of the drug be provided through the conduct of adequate and well-
controlled clinical trials. In clinical development, multicenter trials are 
usually considered adequate and well-controlled clinical trials. A multi-
center trial is a single study that is conducted simultaneously at more than 
one study center according to a common protocol. A multicenter trial is 
often conducted to expedite the patient recruitment process to accrue suf-
ficient number of patients in order to achieve a desired power within a 
predetermined time frame. The purpose of a multicenter clinical trial is not 
only to show that the clinical results are reproducible from center to center, 
but also to establish generalizability of the clinical results from one patient 
population to another patient population in different geographic locations 
(Ho and Chow, 1998). As indicated by Chow and Liu (1998b), a multicenter 
trial is not equivalent to separate single-site trials. The data collected from 
different centers are intended to be analyzed as a whole. To pool the data 
for an overall assessment of the effectiveness and safety of the study drug, 
however, both the FDA and the International Conference on Harmonization 
(ICH) guidelines require statistical tests for homogeneity across centers 
in order to detect possible quantitative or qualitative treatment-by-center 
interaction. A quantitative interaction indicates that the treatment differ-
ences are in the same direction across centers, but the magnitude differs 
from center to center, while a qualitative interaction reveals that substan-
tial treatment differences occur in different directions in different centers 
(Gail and Simon, 1985). As pointed out by Gail and Simon (1985), no overall 
statistical inference regarding the treatment effect can be made if there is 
a significant qualitative interaction between treatment and center. In this 
case, it is suggested that treatment effect be assessed by the study center.
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Lewis (1995) posted some commonly asked questions regarding issues 
related to design and analysis of multicenter trials (see also, Ho and Chow, 
1998). These questions, which are helpful in planning stages of a multicenter 
trial, include the following:

	 1.	Are some of the centers too small for reliable separate interpretation 
of the results?

	 2.	Are some of the centers so big that they dominate the results?
	 3.	Do the results at one or more centers look out of line with the others 

even if not significantly so?
	 4.	Do any of the centers show a trend in the wrong direction?
	 5.	 If a treatment-by-center interaction is detected, is the trial valid?

One of the controversial issues in multicenter trials is whether the observed 
treatment-by-center interaction at the end of the study has any statistical 
meaning if the study ends up with a number of small centers. Should these 
small centers be grouped into a larger “dummy” center? What criteria should 
be considered for grouping? In practice, it is not a good idea to group all 
small centers into a single large dummy center. Thus, it is of interest to the 
investigator as to how many dummy centers should be created based on the 
number of small centers. In this chapter, we will examine the above issues 
and provide recommendations whenever possible.

In the next section, a rule of thumb for selection of the number of centers 
proposed by Shao and Chow (1993) is briefly outlined. Section 16.3 discusses 
the impact of treatment imbalance on statistical power for testing treatment 
effect. In Section 16.4, some methods for center grouping are introduced. 
Also included in this section is a proposed treatment for small centers with 
only patients in one treatment group. In Section 16.5, a valid randomization 
procedure is discussed. An example concerning a multicenter trial is pre-
sented to illustrate the use of the center grouping methodology proposed by 
Lin et al. (2010) in the last section.

16.2â•‡ Selection of the Number of Centers

One purpose of multicenter trials is to expedite the patient recruitment pro-
cess to accrue sufficient number of patients within a relatively short period 
of time. The more centers used, the sooner the study would be completed. 
However, more centers would result in fewer patients in each center. For com-
parative clinical trials, the comparison between treatments is usually made 
between patients within centers. Statistically it is undesirable to have too few 
patients in each center for a valid and unbiased assessment of the treatment 
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effect. As indicated in both the FDA and ICH guidelines, statistical tests for 
homogeneity across centers should be performed to detect a potential inter-
action between treatment and center. If a significant qualitative treatment-by-
center interaction is observed, regulatory agencies require that the treatment 
effect be examined by study center. In this case, an overall assessment of 
the treatment effect by pooling data across centers is not statistically valid. 
In practice, more centers may increase the chance of observing a significant 
qualitative treatment-by-center interaction. The significance may be due to 
(1) heterogeneity across centers or some centers do not constitute a represen-
tative sample of the target patient population and (2) heterogeneity among 
centers or some centers exhibit relatively large variabilities. As a result, how 
to select an appropriate number of centers from a pool of representative cen-
ters is of great concern to the investigator. In multicenter trials, however, the 
centers are usually selected based on convenience and availability.

Shao and Chow (1993) proposed a rule of thumb suggesting that the number 
of patients in each center should not be less than the number of centers. For 
example, if the intended clinical trial calls for 100 patients, the sponsor may 
choose upto 10 study centers with 10 patients in each. Statistical justification 
of this rule of thumb will be provided and further discussed in Chapter 19.

16.3â•‡ Impact of Treatment Imbalance on Power

For a multicenter clinical trial comparing two treatments, sample size is usually 
selected to achieve a desired power for detection of a clinically meaning-
ful difference at a prespecified significance level. Under the assumption of 
normality, the sample size calculation for a balance trial (i.e., each treatment 
group has the same number of patients) is usually given by
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where
σ is the standard deviation of the random error
zα is the α th quantile of a standard normal distribution
Δ is the difference of clinical importance
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Note that the above formula is derived by ignoring the center effect and the 
effect due to treatment-by-center interaction. In practice, a clinical trial may 
experience treatment imbalance (i.e., each treatment group has a different 
number of patients) despite plans to have an equal number of patients in 
each treatment group. Consequently, it may result in differences among 
centers. In this case, the power becomes
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The power given in (16.2) is clearly less than the power given in (16.1). In 
order to achieve the same power as planned in (16.1), we set (16.2) to be equal 
to (16.1), which leads to
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For a fixed sample size N, a practical issue of (16.3) is that ni, i = 1, 2, are not 
fixed. Before the conduct of the clinical trial, we cannot predict how many 
patients will be in each center after the completion of the trial. As a result, 
the only choice to achieve the sample power as planned in (16.1) is to increase 
the sample size N if we assume that the variance remains the same. It should 
be noted that when the number of patients are equal across centers the 
variance of the test statistic will be equal to the variance of the test statistic 
derived from the single center trial. Hence, the test statistic has the minimum 
variance.

16.4â•‡ Center Grouping

Without loss of generality, consider the following two-way classification ran-
dom effects model:

	 Y A B i I j J k Kijk i j ijk= + + + = = =μ ε , , , , , , , , , ,1 1 1… … … 	

where
Ai is the fixed effect due to the ith treatment (factor A)
Bj is the random effect due to the jth center (factor B)
(AB)ij is the random effect due to the interaction between the ith treatment 

and the jth center
εijk is the random error in observing Yijk
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It is assumed that Ai = μ + αi, i = 1,â•›…,â•›I, where αi j
i

B j J= =∑ 0 1, , , ,…  are 

independent and identically distributed (i.i.d.) as a normal random variable 
with mean 0 and variance σB

2, and εijk are i.i.d. normal with mean 0 and 
variance σ2. In addition, {Bj} and {εijk} are mutually independent. Then, as 
indicated in Scheffé (1959),
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If centers (factor B) are combined, then the new SSE becomes

	 New SSE SSB SSAB SSE= + + . 	

Therefore,
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From the above expression, we conclude the following observations. First, 
δ > 0 if σB

2 is not 0. Second, δ is an increasing function in J, the number of 
centers being combined. Thus, δ is smaller if fewer centers are combined. 
Finally, δ depends upon the similarity of centers being combined and the 
number of centers combined. The increases of δ for various I, J, and K and σB

2 
and σAB

2  are given in Table 16.1.
Before combining the centers, the treatment effect is tested by
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which follows a noncentral χ2 distribution with (I − 1)(J − 1) + IJ(K − 1) degrees 
of freedom, and the noncentrality parameter of Δ = =∑( / )JK JKi

i
σ α2 2 .

After the grouping, the treatment effect can be tested by
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The power before and after grouping is obtained by simulation based on 
10,000 iterations. The results are summarized in Tables 16.2 through 16.4 for

 

various choices of σ σB
2 2/ , α σi

i

2 2/∑ , and I, J, K. In these tables, p1 is used 
to denote the power after grouping J centers into a dummy center, and p2 to 
denote the power before grouping. The relative improvement by grouping 
is indicated by Δ × 100% = (p1 − p2)/p2 × 100%. For a proper interpretation, 
it should be pointed out that all the power listed in the table is the power 
within each dummy center. Thus, the overall power for all dummy centers 
combined would be significantly higher than the power within each dummy 
center. The relative improvement in power within a given dummy center, 
however, could serve as a sensible criterion for the evaluation of the effect of 
center grouping. It is suggested that small centers should be combined in such 

TABLE 16.1

δ Under Various Combinations of K, J, and σ σB
2 2/

s sB
2 2/

K = 2 K = 4

J = 2 J = 3 J = 4 J = 2 J = 3 J = 4

0.1 0.10 0.10 0.10 0.07 0.08 0.09
0.2 0.20 0.20 0.20 0.13 0.16 0.17
0.3 0.30 0.30 0.30 0.20 0.24 0.26
0.4 0.40 0.40 0.40 0.27 0.32 0.34
0.5 0.50 0.50 0.50 0.33 0.40 0.43
0.6 0.60 0.60 0.60 0.40 0.48 0.51
0.7 0.70 0.70 0.70 0.47 0.56 0.60
0.8 0.80 0.80 0.80 0.53 0.64 0.69
0.9 0.90 0.90 0.90 0.60 0.72 0.77
1.0 1.00 1.00 1.00 0.67 0.80 0.86

Source:	 Chow, S.C. and Shao, J., Stat. Med., 25, 1101, 2006. 
© 2006 by John Wiley & Sons, Ltd. With 
permission.
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a way that the maximum of Δ is reached. As can be seen from Tables 16.2 
through 16.4, we conclude the following statements:

	 1.	By properly grouping small centers into a larger dummy center, 
power can be increased significantly.

	 2.	Under certain conditions, however, center grouping can also decrease 
power significantly. According to the simulation results by Lin et al. 
(2010), it is mainly determined by the relative ratio of between-center 
(or center-to-center) variability versus between-subject (or subject-
to-subject) variability, σ σB

2 2/ . When σ σB
2 2 0 01/ .≈ , center grouping will 

generally increase power. However, when σ σB
2 2 1/ ≈ , center grouping 

may not help in increasing power in most cases.
	 3.	For a fixed K sample size per arm with a small center, the maximum 

Δ can be reached by a proper choice J, the number of centers within 
each dummy center.

TABLE 16.2

Power Comparison for σ σB
2 2 0 01/ .= , I = 2

1
2

2

s
a i•

J = 2 J = 3 J = 4

p1 p2 𝚫 p1 p2 𝚫 p1 p2 𝚫

k = 1 0.00 0.050 0.050 0.00 0.050 0.050 0.00 0.047 0.050 −0.058
0.1 0.057 0.054 0.05 0.069 0.064 0.08 0.069 0.064 0.08
0.2 0.072 0.060 0.21 0.099 0.077 0.28 0.099 0.077 0.28
0.3 0.080 0.064 0.26 0.118 0.091 0.30 0.118 0.091 0.30
0.4 0.090 0.069 0.31 0.131 0.104 0.26 0.131 0.104 0.26
0.5 0.094 0.073 0.29 0.156 0.117 0.34 0.157 0.117 0.33
0.6 0.101 0.077 0.31 0.182 0.130 0.40 0.182 0.130 0.40
0.7 0.114 0.081 0.40 0.207 0.142 0.46 0.207 0.142 0.46
0.8 0.118 0.085 0.38 0.217 0.155 0.40 0.217 0.155 0.40
0.9 0.128 0.089 0.43 0.237 0.167 042 0.237 0.167 0.42
1.0 0.132 0.009 0.42 0.273 0.179 0.52 0.272 0.178 0.52

k = 2 0.0 0.053 0.050 0.05 0.049 0.050 −0.03 0.051 0.050 0.02
0.1 0.069 0.064 0.08 0.109 0.105 0.04 0.128 0.130 −0.01
0.2 0.099 0.077 0.28 0.168 0.162 0.03 0.216 0.212 0.02
0.3 0.118 0.091 0.30 0.229 0.220 0.04 0.299 0.293 0.02
0.4 0.131 0.104 0.26 0.282 0.277 0.02 0.380 0.372 0.02
0.5 0.157 0.117 0.34 0.345 0.333 0.04 0.461 0.446 0.03
0.6 0.182 0.130 0.40 0.403 0.386 0.04 0.522 0.515 0.01
0.7 0.207 0.142 0.45 0.458 0.438 0.05 0.592 0.578 0.02
0.8 0.217 0.155 0.40 0.505 0.487 0.04 0.656 0.635 0.03
0.9 0.237 0.167 0.42 0.555 0.533 0.04 0.701 0.686 0.02
1.0 0.272 0.179 0.52 0.593 0.576 0.03 0.745 0.731 0.02
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16.5â•‡ Procedure for Center Grouping

As discussed above, a dummy center could have a higher power if the smaller 
centers within the dummy center have smaller between-center variability. In 
practice, it is then suggested that these smaller centers be grouped into a 
dummy center for the purpose of increasing power. However, the results 
may not be valid if the grouping is not done at random. Hence, it is recom-
mended that small centers should be grouped randomly if they are to be 
grouped into dummy centers. Since the between-center variability is gener-
ally assessed by considering
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TABLE 16.3

Power Comparison for σ σB
2 2 0 1/ .= , I = 2

1
2

2

s
a i•

J = 2 J = 3 J = 4

p1 p2 𝚫 p1 p2 𝚫 p1 p2 𝚫

k = 1 0.0 0.043 0.050 −0.15 0.046 0.050 −0.08 0.042 0.050 −0.05
0.1 0.056 0.055 0.03 0.070 0.064 0.10 0.086 0.074 0.15
0.2 0.061 0.059 0.03 0.084 0.077 0.08 0.103 0.099 0.04
0.3 0.076 0.064 0.18 0.110 0.091 0.21 0.143 0.124 0.16
0.4 0.083 0.069 0.20 0.128 0.104 0.23 0.179 0.148 0.21
0.5 0.090 0.073 0.23 0.149 0.117 0.28 0.212 0.172 0.23
0.6 0.105 0.077 0.36 0.173 0.130 0.33 0.239 0.196 0.22
0.7 0.109 0.081 0.34 0.190 0.142 0.33 0.285 0.220 0.30
0.8 0.121 0.085 0.41 0.211 0.155 0.36 0.300 0.243 0.23
0.9 0.125 0.089 0.40 0.235 0.167 0.40 0.342 0.266 0.28
1.0 0.133 0.093 0.43 0.255 0.179 0.42 0.371 0.288 0.28

k = 2 0.0 0.046 0.050 −0.08 0.050 0.050 0.00 0.048 0.050 −0.05
0.1 0.083 0.082 0.01 0.103 0.105 −0.02 0.131 0.130 0.01
0.2 0.115 0.114 0.01 0.162 0.162 0.00 0.206 0.212 −0.02
0.3 0.153 0.146 0.04 0.225 0.220 0.02 0.297 0.293 0.01
0.4 0.184 0.179 0.03 0.281 0.277 0.01 0.370 0.372 −0.01
0.5 0.217 0.211 0.02 0.344 0.333 0.03 0.444 0.446 −0.01
0.6 0.254 0.244 0.04 0.393 0.386 0.02 0.523 0.515 0.01
0.7 0.291 0.276 0.05 0.459 0.438 0.05 0.594 0.578 0.03
0.8 0.319 0.307 0.04 0.506 0.487 0.04 0.644 0.635 0.01
0.9 0.354 0.338 0.05 0.551 0.533 0.03 0.696 0.686 0.02
1.0 0.382 0.368 0.04 0.594 0.576 0.03 0.744 0.731 0.02
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we argue that a valid randomization is to achieve an unbiased estimate for 
σ σ2 2+ IK B. Suppose there are J small centers, which are to be grouped into 
some dummy centers with n small centers in each. Suppose i1, i2,â•›…, iJ is a 
random permutation of index i = 1,â•›…, J. A valid randomization rule is to 
assign the centers with the same index as the first n indices in the sequence 
i1, i2,â•›…, iJ to the first dummy center. The centers with the same index as 
the second n indices in the sequence i1, i2,â•›…, iJ to the second dummy center, 
and so on.

For any given dummy center, it can be shown that the centers grouped 
into this dummy center are in fact chosen by the simple random sampling 
without replacement (SRSWR) from a population of J small centers. Hence, 
Y t nit⋅ =, , ,1 … , the overall mean of each center in this dummy center, can be 
considered as a SRSWR from a population of J small centers with overall 
mean Y

–
.i·, i = 1,â•›…, J. Then the new sum of squares within this dummy center 

is given by

TABLE 16.4

Power Comparison for σ σB
2 2 1/ = , I = 2

1
2

2

s
a i•

J = 2 J = 3 J = 4

p1 p2 𝚫 p1 p2 𝚫 p1 p2 𝚫

k = 1 0.0 0.043 0.050 −0.14 0.029 0.050 −0.41 0.025 0.050 −0.50
0.1 0.068 0.082 −0.17 0.044 0.064 −0.31 0.049 0.074 −0.34
0.2 0.099 0.114 −0.13 0.057 0.077 −0.26 0.068 0.099 −0.31
0.3 0.124 0.146 −0.15 0.073 0.091 −0.20 0.094 0.124 −0.24
0.4 0.162 0.179 −0.10 0.080 0.104 −0.23 0.117 0.148 −0.21
0.5 0.200 0.211 −0.06 0.101 0.117 −0.13 0.141 0.172 −0.18
0.6 0.217 0.244 −0.11 0.117 0.130 −0.10 0.161 0.196 −0.18
0.7 0.250 0.276 −0.09 0.131 0.142 −0.08 0.181 0.220 −0.18
0.8 0.291 0.307 −0.05 0.150 0.155 −0.03 0.210 0.243 −0.14
0.9 0.308 0.338 −0.09 0.164 0.167 −0.02 0.240 0.266 −0.10
1.0 0.347 0.368 −0.06 0.182 0.179 −0.01 0.256 0.289 −0.11

k = 2 0.0 0.04 0.050 −0.20 0.037 0.050 −0.25 0.048 0.050 −0.05
0.1 0.068 0.082 −0.17 0.080 0.105 −0.24 0.100 0.130 −0.23
0.2 0.097 0.114 −0.15 0.133 0.162 −0.18 0.170 0.212 −0.20
0.3 0.124 0.146 −0.15 0.191 0.220 −0.13 0.251 0.293 −0.14
0.4 0.155 0.179 −0.13 0.238 0.277 −0.14 0.310 0.372 −0.17
0.5 0.189 0.211 −0.11 0.287 0.333 −0.14 0.392 0.446 −0.12
0.6 0.223 0.244 −0.09 0.338 0.386 −0.12 0.469 0.515 −0.09
0.7 0.250 0.276 −0.09 0.397 0.438 −0.09 0.511 0.578 −0.12
0.8 0.280 0.307 −0.09 0.440 0.487 −0.10 0.574 0.635 −0.10
0.9 0.308 0.338 −0.09 0.486 0.533 −0.09 0.630 0.686 −0.08
1.0 0.343 0.368 −0.07 0.523 0.576 −0.09 0.682 0.731 −0.07
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So, an estimate for σ σ2 2+ IK B can be obtained by SSB*/(n − 1). Lohr (1999) 
showed that given Y

–
.·j·, j = 1,â•›…, J, SSB*/(n − 1) is an unbiased estimate for
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Hence, the proposed randomization procedure for center grouping is valid.

16.6â•‡ An Example

To illustrate the proposed concept for center grouping in multicenter trials 
with a large number of small centers, consider a clinical trial for comparing 
a test compound with a standard therapy in treating patients with metastatic 
breast cancer. This study was a comparative, parallel-group, randomized, 
and double-blind multicenter clinical trial. The study protocol called for 288 
patients in approximately 43 centers to achieve a desired statistical power for 
the evaluation of therapeutic equivalence. It was expected that each center 
would enroll 6–7 patients. As discussed earlier, the selection of 43 centers did 
expedite the patient recruitment to achieve the desired number of patients. 
However, due to a significant variation among centers, seven centers enrolled 
more than 10 patients in each. The other 36 centers had less than 10 patients 
in each. As a result, these small centers are necessarily grouped into compa-
rable dummy centers not only to address Lewis’ questions (Lewis, 1995) but 
also to provide an unbiased and fair assessment of the efficacy and safety 
of the study drug. Firstly, a center with more than 10 patients will stand 
alone as a single center. Secondly, since there are 36 centers with less than 
10 patients in each, grouping these small centers into comparable dummy 
centers must be considered. Among these 36 small centers, 24 centers have 
patients in both treatment groups. Twelve centers have patients in only one 
treatment group.
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Suppose σ σB
2 2 0 01/ .=  and α σi

i

2 2 0 5/ .=∑ . As can be seen from Table 16.2, 
if the size of the dummy center is selected to be J = 2, the relative improve-
ment in power will be Δ = 0.29. On the other hand, if we choose J = 3 and 
J = 4, Δ = 0.34 and Δ = 0.33, respectively. In order to achieve the maximum 
improvement in power, the size of the dummy center should be chosen as 3. 
It is suggested to group these 24 centers into 8 dummy centers at random. In 
this case, each dummy center consists of 3 randomly selected centers from 
the 24 small centers. Applying the above proposed procedure would result 
in a total of 15 centers. Finally, for the 12 centers with patient(s) in only one 
treatment group, randomly assign the patient(s) to the 15 centers. The sum-
mary of this example is given in Table 16.5.

TABLE 16.5

An Example of Center Grouping

Center Characteristic After the Trial
After Center 

Grouping

Number of centers 43 15
Number of centers with more than 10 patients in each 7 7
Number of centers with less than 10 patients in each 36 0
Number of dummy centers 0 8
Number of centers with patients in one group 12 0
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17
Non-Inferiority Margin

17.1â•‡ Introduction

In cancer trials, it is unethical to use a placebo control when approved and 
effective therapies are available. A response to this problem in the investiga-
tion of a new test therapy is to replace the placebo control by an established 
therapy (which is referred to as active control agent or standard therapy) and 
to demonstrate that the test therapy is not inferior to the active control agent 
in the sense that the effect of the test therapy, when compared with the effi-
cacy of the active control agent, is not below some non-inferiority margin. In 
practice, there may be a need to develop a new therapy that is non-inferior 
(but not necessarily superior) to an established efficacious therapy; for exam-
ple, the new therapy is less toxic, easier to administer, and/or less expensive. 
As a result, a clinical trial for the establishment of non-inferiority of a test 
therapy as compared to an active control agent has become very popular in 
drug research and development. Clinical trials of this kind are referred to as 
active-controlled trials and statistical tests for establishing non-inferiority 
are called non-inferiority tests. An overview of design concepts and impor-
tant issues in these trials is provided by D’Agostino et al. (2003).

One of the major considerations in a non-inferiority test is the selection 
of the non-inferiority margin. A different choice of non-inferiority margin 
may affect sample size calculation and consequently alter the conclusion 
of the clinical study. As pointed out in the guideline by the International 
Conference on Harmonization (ICH), the determination of non-inferiority 
margins should be based on both statistical reasoning and clinical judgment 
(ICH, 2000). The focus of this chapter is on the statistical considerations for 
the determination of non-inferiority margins. Despite the existence of some 
studies (Tsong et al., 1999; Hung et al., 2003; Laster and Johnson, 2003; Phillips, 
2003; Chow and Shao, 2006), there is no established rule or gold standard for 
the determination of non-inferiority margins in active-controlled trials until 
a recent draft guidance distributed by the FDA for comments (FDA, 2010a).

According to the ICH E10 guidance on Choice of Control Group and Related 
Issues in Clinical Trials (ICH, 2000), a non-inferiority margin may be selected 
based on past experience in placebo-controlled trials with valid design 
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under conditions similar to those planned for the new trial, and the deter-
mination of a non-inferiority margin should not only reflect uncertainties 
in the evidence on which the choice is based but also be suitably conser-
vative. Furthermore, as a basic frequentist statistical principle, the hypoth-
esis of non-inferiority should be formulated with population parameters, 
not estimates from historical trials (Hung et al., 2003). Along these lines, we 
propose in this chapter a method by Chow and Shao (2006) for selecting 
non-inferiority margins with some statistical justification. Chow and Shao 
(2006) proposed non-inferiority margin depends on population parameters 
including parameters related to the placebo control if it were not replaced 
by the active control. Unless a fixed (constant) non-inferiority margin can 
be chosen based on clinical judgment, a fixed non-inferiority margin not 
depending on population parameters is rarely suitable. Intuitively, the non-
inferiority margin should be small when the effect of the active control agent 
relative to placebo is small or the variation in the population under investiga-
tion is large. Chow and Shao’s approach ensures that the efficacy of the test 
therapy is superior to placebo when non-inferiority is concluded. When it is 
necessary/desired, Chow and Shao’s approach can produce a non-inferiority 
margin that ensures that the efficacy of the test therapy relative to placebo 
can be established with great confidence.

Because Chow and Shao’s proposed non-inferiority margin depends on 
population parameters, the non-inferiority test designed for the situation 
where the non-inferiority margin is fixed has to be modified in order to apply 
it to the case where the non-inferiority margin is a parameter. This is studied 
in Section 17.3. Sample size calculation, an important issue in the planning 
stage of a clinical trial, is also discussed. An example concerning a cancer trial 
for testing non-inferiority of a test therapy for treating patients with a specific 
cancer is presented in Section 17.4 to illustrate Chow and Shao’s proposed 
method. The determination of non-inferiority margin based on the concept of 
mixed null hypothesis (Tsou et al., 2007) is discussed on Section 17.5. Recent 
development such as the 2010 FDA draft guidance on non-inferiority trials 
and some concluding remarks are given in Sections 17.6 and 17.7, respectively.

17.2â•‡ Non-Inferiority Margin

Let θT, θA, and θP be the unknown population efficacy parameters associated 
with the test therapy, the active control agent, and the placebo, respectively. 
Also, let Δ ≥ 0 be a non-inferiority margin. Without loss of generality, we 
assume that a large value of population efficacy parameter is desired. The 
hypotheses for non-inferiority can be formulated as

	 H HT A a T A0 : : .θ θ θ θ− ≤ − − > −Δ Δversus 	 (17.1)
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If Δ is a fixed prespecified value, then standard statistical methods can be 
applied to testing hypotheses (17.1). In practice, however, Δ is often unknown. 
There exists an approach that constructs the value of Δ based on a placebo-
controlled historical trial. For example, Δ = a fraction of the lower limit of the 
95% confidence interval for θA − θP based on some historical trial data (see 
CBER/FDA, 1999). Although this approach is intuitively conservative, it is 
not statistically valid because (1) if the lower confidence limit is treated as 
a fixed value, then the variability in historical data is ignored, and (2) if the 
lower confidence limit is treated as a statistic, then this approach violates the 
basic frequentist statistical principle, i.e., the hypotheses being tested should 
not involve any estimates from current or past trials (Hung et al., 2003).

From a statistical point of view, the ICH E10 guideline suggests that the 
non-inferiority margin Δ should be chosen to satisfy at least the following 
two criteria:

Criterion 1: The test therapy is non-inferior to the active control agent and 
is superior to the placebo (even though the placebo is not considered in the 
active-controlled trial).

Criterion 2: The non-inferiority margin should be suitably conservative, i.e., 
variability should be taken into account.

A fixed Δ (i.e., it does not depend on any parameter) is rarely suitable under 
criterion 1. Let δ > 0 be a superiority margin if a placebo-controlled trial is con-
ducted to establish the superiority of the test therapy over a placebo control. 
Since the active control is an established therapy, we may assume that θA − 
θP > δ. However, when θT − θA > −Δ (i.e., the test therapy is non-inferior to the 
active control) for a fixed Δ, we cannot ensure that θT − θP > δ (i.e., the test ther-
apy is superior to the placebo) unless Δ = 0. Thus, it is reasonable to consider 
non-inferiority margins depending on unknown parameters. Hung et al. (2003) 
summarized the approach of using the non-inferiority margin of the form:

	 Δ = −γ θ θ( ),A P 	 (17.2)

where γ is a fixed constant between 0 and 1. This is based on the idea of 
preserving a certain fraction of the active control effect θA − θP. The smaller 
θA − θP is, the smaller Δ is. How to select the proportion of γ, however, was 
not discussed.

Chow and Shao (2006) derived a non-inferiority margin satisfying crite-
rion 1. Let δ > 0 be a superiority margin if a placebo control is added to the 
trial. Suppose that the non-inferiority margin Δ is proportional to δ, i.e., 
Δ = rδ, where r is a known value chosen in the beginning of the trial. To be 
conservative, r should be ≤1. If the test therapy is not inferior to the active 
control agent but is superior to the placebo, then both

	 θ θ θ θ δT A T P− > − − >Δ and 	 (17.3)
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should hold. Under the worst scenario, i.e., θT − θA achieves its lower bound −Δ, 
the largest possible Δ satisfying (17.3) is given by

	 Δ = − −θ θ δA P , 	

which leads to

	
Δ =

+
−

r
r

A P1
( ).θ θ 	 (17.4)

From (17.2) and (17.4), γ = r/(r + 1). If 0 < r ≤ 1, then 0 < γ ≤ 1/2.
The above argument in determining Δ takes criterion 1 into account, but is 

not conservative enough, since it does not take the variability into consider-
ation. Let θ̂T and θ̂P be sample estimators of θT and θP, respectively, based on 
data from a placebo-controlled trial. Assume that ˆ ˆθ θT P−  is normally distrib-
uted with mean θT − θP and standard error SET−P (which is true under certain 
conditions or approximately true under the central limit theorem for large 
sample sizes). When θT = θA − Δ,

	
P T P

A P

T P
( )

( )
,θ θˆ ˆ− < =

+ − −⎛
⎝⎜

⎞
⎠⎟−

δ
δ θ θ

Φ
Δ

SE
	 (17.5)

where Φ denotes the standard normal distribution function. If Δ is chosen 
according to (17.4) and θT = θA − Δ, then the probability that ˆ ˆθ θT P−  is less than 
δ is equal to 1/2. In view of criterion 2, a value much smaller than 1/2 for this 
probability is desired, because it is the probability that the estimated test therapy 
effect is not superior to that of the placebo. Since the probability in (17.5) is an 
increasing function of Δ, the smaller Δ (the more conservative choice of the non-
inferiority margin) is, the smaller the chance that ˆ ˆθ θT P−  is less than δ. Setting 
the probability on the left-hand side of (17.5) to ε with 0 < ε ≤ 1/2, we obtain

	 Δ = − − − − −θ θ δ εA P T Pz1 SE , 	

where za = Φ−1(a). Since δ = Δ/r, we obtain

	
Δ =

+
− − − −

r
r

zA P T P1 1( ).θ θ εSE 	 (17.6)

Figure 17.1 provides an illustration for the selection of the non-inferiority 
margin according to this idea.

Comparing (17.2) and (17.6), we obtain

	
γ

θ θ
ε=

+
−

−
⎛
⎝⎜

⎞
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− −r
r

z T P

A P1
1 1 SE

,
	

i.e., the proportion γ in (17.2) is a decreasing function of a type of noise-to-
signal ratio (or coefficient of variation).
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The proposed non-inferiority margin (17.6) can also be derived from a 
slightly different point of view. Suppose that we actually conduct a placebo-
controlled trial with a superiority margin δ to establish the superiority of the 
test therapy over the placebo. Then the power of the large sample t-test for 
hypotheses θT − θP ≤ δ versus θT − θP > δ is approximately equal to

	
Φ

θ θ δ
α

T P

T P
z

− −
−

⎛
⎝⎜

⎞
⎠⎟−

−SE 1 ,
	

where α is the level of significance. Assume the worst scenario ˆ ˆθ θT A= − Δ 
and that β is a given desired level of power. Then, setting the power to β 
leads to

	

θ θ δ
α β

A P

T P
z z

− − −
− =

−
−

Δ
SE 1 ,

	

Area = ε
z1–εSET–P

0 δ θT– θP θA– θP

Δ

FIGURE 17.1
Selection of non-inferiority margin Δ (the solid curve is the probability density of ˆ ˆθ θT P− ).
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i.e.,

	
Δ =

+
− − +− −

r
r

z zA P T P1 1[ ( ) ].θ θ α β SE 	 (17.7)

Comparing (17.6) with (17.7), we have z1−β = z1−α + zβ. For α = 0.05, the following 
table gives some examples of values of β, ε, and z1−ε.

β ε z1−ε

0.36 0.1000 1.282
0.50 0.0500 1.645
0.60 0.0290 1.897
0.70 0.0150 2.170
0.75 0.0101 2.320
0.80 0.0064 2.486

We now summarize the above discussions as follows:

	 1.	The non-inferiority margin proposed by Chow and Shao (2006) given 
in (17.6) takes variability into consideration, i.e., Δ is a decreasing func-
tion of the standard error of ˆ ˆθ θT P− . It is an increasing function of the 
sample sizes, since SET−P decreases as sample sizes increase. Choosing 
a non-inferiority margin depending on the sample sizes does not 
violate the basic frequentist statistical principle. In fact, it cannot be 
avoided when the variability of sample estimators is considered. 
Statistical analysis, including sample size calculation at the trial plan-
ning stage, can still be performed. In the limiting case (SET−P → 0), the 
non-inferiority margin in (17.6) is the same as that in (17.4).

	 2.	The ε value in (17.6) represents a degree of conservativeness. An arbi-
trarily chosen ε may lead to highly conservative tests. When sample 
sizes are large (SET−P is small), one can afford a small ε. A reasonable 
value of ε and sample sizes can be determined in the planning stage 
of the trial.

	 3.	The non-inferiority margin in (17.6) is non-negative if and only if 
θA − θP ≥ z1−ε SET−P, i.e., the active control effect is substantial or the 
sample sizes are large. We might take our non-inferiority margin to 
be the larger of the quantities in (17.6) and 0 to force the non-inferiority 
margin to be non-negative. However, it may be wise not to do so. Note 
that if θA is not substantially larger than θP, then non-inferiority test-
ing is not justifiable since, even if Δ = 0 in (17.1), concluding Ha in (17.1) 
does not imply the test therapy is superior over the placebo. Using Δ 
in (17.6), testing hypotheses (17.1) converts to testing the superiority of 
the test therapy over the active control agent when Δ is actually nega-
tive. In other words, when θA − θP is smaller than a certain margin, 
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our test automatically becomes a superiority test and the property 
P T P( )θ θˆ ˆ− < =δ ε  (with δâ•›=â•›|Δ|/r still holds).

	 4.	 In many applications, there are no historical data. In such cases 
parameters related to placebo are not estimable and, hence, a non-
inferiority margin not depending on these parameters is desired. 
Since the active control agent is a well-established therapy, let us 
assume that the power of the level α test showing that the active 
control agent is superior to placebo by the margin δ is at the level η. 
This means that approximately

	 θ θ δ α ηA P A Pz z− ≥ + +− −( ) .1 SE 	

Replacing θA − θP − δ in (17.6) by its lower bound given in the previous expres-
sion we obtain the non-inferiority margin:

	 Δ = + −− − − −( ) .z z zA P T P1 1α η εSE SE 	

To use this non-inferiority margin, we need some information about the 
population variance of the placebo group. As an example, consider the paral-
lel design with two treatments, the test therapy and the active control agent. 
Assume that the same two-group parallel design would have been used if a 
placebo-controlled trial had been conducted. Then SEA P A A P Pn n− = +σ σ2 2/ /  
and SET P T T P Pn n− = +σ σ2 2/ / , where σk

2 is the asymptotic variance for 
nk k k( )θ̂ − θ  and nk is the sample size under treatment k. If we assume 

σP Pn c/ = , then

	
Δ = + + − +− −( ) .z z
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α η ε
σ σ

	 (17.8)

Formula (17.8) can be used in two ways. One way is to replace c in (17.8) by 
an estimate. When no information from the placebo control is available, a 
suggested estimate of c is the smaller of the estimates of σT Tn/  and σA An/ .
The other way is to carry out a sensitivity analysis by using Δ in (17.8) for a 
number of c values.

17.3â•‡ Statistical Test Based on Treatment Difference

When the non-inferiority margin depends on unknown population param-
eters, statistical tests designed for the case of constant non-inferiority mar-
gin may not be appropriate. Valid statistical tests for hypotheses (17.1) with 
Δ given by (17.2) can be found in Hung et al. (2003), Holmgren (1999), and 
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Wang et al. (2002b), assuming that (1) γ is known and (2) historical data from 
a placebo-controlled trial are available and the so-called constancy condition 
holds, i.e., the active control effects are equal in the current and historical 
patient populations.

Chow and Shao (2006) derived valid statistical tests for the non-inferiority 
margin given in (17.6) or (17.8), which are summarized below.

17.3.1  Tests Based on Historical Data under Constancy Condition

We first consider tests involving the non-inferiority margin (17.6) in the case 
where historical data for a placebo-controlled trial assessing the effect of the 
active control agent are available and the constancy condition holds, i.e., the 
effect θA0 − θP0 in the historical trial is the same as θA − θP in the current 
active-controlled trial, if a placebo control is added to the current trial. It 
should be emphasized that the constancy condition is a crucial assumption 
for the validity of the results in this subsection. A discussion of how to check 
the constancy condition is given in the next subsection.

Assume that the two-group parallel design is adopted in both the histori-
cal and current trials and that the sample sizes are, respectively, nA0 and nP0 
for the active control and placebo in the historical trial and nT and nA for the 
test therapy and active control in the current trial. Without the normality 
assumption on the data, we adopt the large sample inference approach. Let 
k = T, A, A0, and P0 be the indexes, respectively, for the test and active control 
in the current trial and the active control and placebo in the historical trial. 
Assume that nk = lkn for some fixed lk and that, under appropriate conditions, 
estimators θ̂k for parameters θk satisfy

	 n Nk k k d k( ) ( , )θ̂ − →θ σ0 2 	 (17.9)

as n → ∞, where →d denotes convergence in distribution. Also, assume that 
consistent estimators σ̂k

2 for σk
2 are obtained. From (17.9), the independence of 

data from different groups, and the constancy condition,
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From the consistency of σ̂k
2 and the fact that n T CSE −  is a fixed constant, we 

have
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and
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where op(1) denotes a quantity converging to 0 in probability. Then
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By Slutsky’s theorem, we have
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ˆ

θ θ θ θ θ θεT A A P T P T A

T C
d

r r z
N

− + + − − − − +
→− −

−

1 0 0 1 Δ

SE
(( , ),0 1 	 (17.11)

where

SÊ ˆ / ˆ /T P T T P Pn n− = +σ σ2
0

2
0  is an estimator of SE / /T P T T P Pn n− = +σ σ2

0
2

0

SÊT−C is an estimate of SET−C, the standard deviation of ˆ ˆθ θT A− + 
[ /( )]( ),r r A P1 0 0+ −θ θˆ ˆ  which is given by
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Then, when the non-inferiority margin in (17.6) is adopted, the null hypoth-
esis H0 in (17.1) is rejected at approximately level α if
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Using result (17.11), we can approximate the power of this test by
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Using this formula, we can select the sample sizes nT and nA to achieve a 
desired power, say β, assuming that nA0 and nP0 are given (in the historical trial). 
Assume that nT/nA = λ is chosen. Then nT should be selected as a solution of
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Although (17.12) does not have an explicit solution in terms of nT, its solu-
tion can be numerically obtained once initial values for all parameters 
are given.

17.3.2  Constancy Condition

Using the historical data usually increases the power of the test for hypoth-
eses with a non-inferiority margin depending on the parameters in the his-
torical trial. On the other hand, using historical data without the constancy 
condition may lead to invalid conclusions. As indicated by Hung et al. (2003), 
checking the constancy condition is difficult. In this subsection, we discuss 
a method of checking the constancy condition under an assumption much 
weaker than the constancy condition.

Note that the key is to check whether the active control effect θA − θP in 
the current trial is the same as θA0 − θP0 in the historical trial. If we assume 
that the placebo effects θP and θP0 are the same (which is much weaker than 
the constancy condition), then we can check whether θA = θA0 using the data 
under the active control in the current and historical trials.

17.3.3  Tests without Historical Data

We now consider tests where the non-inferiority margin (17.8) is chosen. 
Following (17.10) and (17.11), we can establish that
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where SÊ ˆ / ˆ /k l k k l ln n− = +σ σ2 2 . Hence, when the non-inferiority margin in 
(17.8) is adopted, the null hypothesis H0 in (17.1) is rejected at approximately 
level α if
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The power of this test is approximately
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If nT/nA = λ, then we can select the sample sizes nT and nA to achieve a desired 
power, say β, by solving
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17.3.4  An Example

A clinical trial was conducted to compare the efficacy of a test therapy for 
treating patients with a specific cancer who had relapsed following first-
line therapy and were refractory to their most recent therapy. A total of 103 
patients were included in this study and were randomly assigned into two 
groups, 51 in the test therapy group and 52 in the active control group. All 
patients received treatments as a rapid intravenous bolus twice per week for 
2 weeks followed by a 10 day rest period. Then, all patients received a maxi-
mum of 16 three weeks of treatment cycles. Therefore, the maximum dura-
tion of treatment in this study was 48 weeks. The actual number of cycles 
administered for each patient was based on the response to therapy. One of 
the primary study endpoints is time-to-disease progression (TTP). Observed 
TTP data are time-to-event data with right random censoring.

Applying the Kaplan–Meier estimation method to each treatment group, 
we obtain the estimated probability of TTP. The results are plotted in Figure 
17.2. The parameter of interest in this example is θk = the median TTP. The 
sample median under the test therapy is θ̂T = 243 days with estimated stan-
dard error ˆ /σT Tn = 13.5 days. The standard error estimate is calculated 
according to the results in Brookmeyer and Crowley (1982) and Emerson 
(1982). Similarly, the sample median under the active control is θ̂A = 235 days 
with estimated standard error ˆ / .σA An = 14 5 days. The estimate SÊT−A = 19.81 
days. For α = 0.05, z T A1 32 59− − =αSÊ . . Although ˆ ˆθ θT A− = >8 0, the hypothesis 
θT − θA ≤ 0 cannot be rejected at the 5% level, possibly due to the large vari-
ability in the data set.
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Since we do not have historical data, we apply the test procedure as 
described in Section 17.3.3. For any c > 0, define the statistic
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If c is an estimate of σP Pn/ , then the test procedure described in Section 
17.3.3 rejects the null hypothesis θT − θA + Δ ≤ 0 if and only if W > 0. As dis-
cussed in Section 17.2, the test can be carried out in two ways. In the first 
method, we estimate σP Pn/  by min( / , / )σ σˆ ˆT T A An n . Values of the statis-
tic W and estimates of the non-inferiority margin Δ (denoted by �̂) for α = 
0.05, η = 0.8, and some ε values are given in Table 17.1. It can be seen that if ε is 
chosen to be 0.05, then an estimate of Δ is 19.37 days and we cannot reject the 
null hypothesis that θT − θA + Δ ≤ 0; if ε is chosen to be 0.1, then an estimate of 
Δ is 26.52 days and we reject the null hypothesis at the level α = 0.05.

In the second method we compute the statistic W and �̂ for a set of c values. 
Results for α = 0.05, η = 0.8, and ε = 0.1 and 0.2 are given in Table 17.2. The 
results indicate that if ε = 0.2, then the null hypothesis can be rejected for all 
values of c; if ε = 0.1, then the null hypothesis can be rejected when c > 13.
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FIGURE 17.2
Kaplan–Meier plot of TTP.
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17.4â•‡ Statistical Tests Based on Relative Risk

As discussed in the previous section, the method proposed by Chow and 
Shao (2006) is a method for selecting non-inferiority margins based on treat-
ment difference. On the other hand, Hung et al. (2003) proposed a margin 

TABLE 17.1

Values of Statistic W and �̂ When 
c n nA A T T= min( / , / )σ σˆ ˆ , α = 0.05, η = 0.80

ε 0.50 0.30 0.25 0.20 0.15 0.10 0.05
W 26.40 16.39 13.52 10.33 6.61 1.93 −5:22

�̂ 50.99 40.98 38.11 34.92 31.20 26.52 19.37

Source:	 Chow, S.C. and Shao, J., Stat. Med., 25, 1101, 2006. © 
2006 by John Wiley & Sons, Ltd. With permission.

TABLE 17.2

Values of Statistic W and �̂ When ε = 0.1 
and 0.2, α = 0.05, η = 0.80

c

𝛆 = 0.1 𝛆 = 0.2

W D̂ W D̂

1 −5:80 18.79 0.16 24.75
2 −5:68 18.91 0.32 24.91
3 −5:49 19.09 0.59 25.18
4 −5:23 19.36 0.96 25.55
5 −4:90 19.69 1.43 26.02
6 −4:50 20.09 2.00 26.59
7 −4:04 20.55 2.65 27.24
8 −3:52 21.07 3.38 27.97
9 −2:95 21.64 4.19 28.78

10 −2:32 22.27 5.07 29.66
11 −1:65 23.65 6.01 30.60
12 −0:94 24.40 7.01 31.60
13 −0:18 25.19 8.06 32.65
14 0.60 26.01 9.16 33.75
15 1.42 26.86 10.30 34.89
16 2.27 26.86 11.48 36.07
17 3.15 27.74 12.70 37.29
18 4.05 28.64 13.95 38.54
19 4.97 29.56 15.22 39.81
20 5.91 30.50 16.53 41.12

Source:	 Chow, S.C. and Shao, J., Stat. Med., 25, 
1101, 2006. © 2006 by John Wiley & 
Sons, Ltd. With permission.
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selection based on relative risk. However, with relative risk, it is difficult to 
adjust for covariates. In this section, we will outline a statistical method for 
selecting a non-inferiority margin based on relative risk.

17.4.1  Hypotheses for Non-Inferiority Margin

If the treatment effect is expressed in terms of relative risk, the hypotheses 
for non-inferiority testing can be formulated as follows:

	
H

p
p
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p
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C
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C
0 2 1 2: : ,≥ <Δ Δversus 	 (17.13)

where Δ2 is the non-inferiority margin. The effect retention can be consid-
ered on log relative risk scale because the statistics on this scale are better 
approximately by a normal distribution. The hypotheses in (17.13) can be 
reexpressed as

	 H p p H p pC T C T0 2 1: log( ) log( ) log( ) : log( ) log( ) log(− ≤ − − > −Δ Δversus 22) 	
(17.14)

Here log(Δ2) is the new non-inferiority margin. Again, the non-inferiority 
margin satisfying the two criteria from ICH E10 is given by
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In many applications, there are no historical data. In such cases, we can 
assume that the power of the level α test showing that the active control 
agent is more effective than a placebo by the margin log(ζ) is at the level η, 
since the active control agent is a well-established therapy. Consider the 
parallel design with two treatments, the test product and the active control 
agent, and assume that the same two-group parallel design would have been 
used if a placebo-controlled trial had been conducted. Consequently, follow-
ing a similar idea as described by Chow and Shao (2006), the non-inferiority 
margin can be obtained by

	 log( ) ( ) ,log( / ) log( / )Δ2 1 1= + −− −z z zP C P Tα η εSE SE 	 (17.16)
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The approximation is established as follows.
Let pT and pC denote the incidence rates of a clinical event associated with 

the experimental treatment and the control treatment, respectively, in the 
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patient population targeted by the active control study. Then, the observed 
incidence rate ˆ /p O nk k k=  is the number of events observed in the group 
k divided by nk, for k = T, C. The notations OT and OC denote the number 
of events observed in the treatment group and the active control group, 
respectively. Thus, Ok has a binomial distribution with parameters nk and pk, 
for k = T, C. Hence, the variance of the observed incidence rate p̂k is
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By the delta method, var(g(X)) ≈ (∂g/∂X)2 var(X). Thus, the variance of the log 
incidence rate ratio is
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and the standard error SElog( / ) ( )/ ( )/C T T T T C C Cp n p p n p≈ − + −1 1 .
Here, (1â•›−â•›pk)/pknk is the asymptotic variance for n p pk k k(log( ) log( ))ˆ −  and 

nk is the sample size under treatment k, for k = P,â•›C,â•›T. If we assume that 
var(log(pP)) = a2, then we have
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Formula (17.17) can be used if a in (17.17) is replaced by an estimate. Again, 
when no information from the placebo control is available, a suggested esti-
mate of a is the smaller of the estimates of ( )1− p p nC C C/  and ( )1− p p nT T T/ .

17.4.2  Tests Based on Historical Data under Constancy Condition

Again we first consider tests involving the non-inferiority margin in the case 
where historical data for a placebo-controlled trial assessing the effect of the 
active control agent are available and the constancy condition holds. The 
definition of constancy condition is similar to that described earlier. It should 
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be emphasized that the constancy condition is a crucial assumption for the 
validity of the result in this subsection. A discussion on how to check the 
constancy condition is given in Chow and Shao (2006).

Assume that the two-group parallel design is adopted in both the histori-
cal and current trials and that the sample sizes are, respectively, nC0 and nP0 
for the active control and the placebo in the historical trial, and nT and nC for 
the test product and active control in the current trial. Let k = T,â•›C,â•›C0, and P0 
be the indexes, respectively, for the test and active control in the current trial, 
and the active control and placebo in the historical trial. Assume that nk = 
lkn for some fixed lk, and, under appropriate conditions, estimators log(p̂k) for 
parameters log(pk) satisfy
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as n → ∞. Also, assume that consistent estimators var(log( ))
∧

pk  for var(log(pk)) 
are obtained. As in Chow and Shao (2005), we can derive that
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Then, when the non-inferiority margin in (17.15) is adopted, the null hypoth-
esis H0 in (17.13) is rejected at approximately level α if
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Thus we can approximate the power of this test by
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Using this formula, we can select the sample size nT and nC to achieve a 
desired power level (say 1â•›− β), assuming that nC0 and nP0 are given in the 
historical trial. Suppose that nT/nC = λ is chosen. Then nT should be selected 
as a solution of
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Although (17.19) does not have an explicit solution in terms of nT, its solu-
tion can be numerically obtained once initial values for all parameters 
are given.

17.4.3  Tests without Historical Data

We now consider tests in which a non-inferiority margin (17.14) is chosen. 
Following the same argument as of Chow and Shao (2006), we can establish 
that
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Hence, when the non-inferiority margin in (17.14) is adopted, the null hypoth-
esis H0 is rejected at approximately level α if
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If nT/nC = λ, then we can select the sample size nT and nC to achieve a desired 
power level (say 1â•›− β) by solving
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Again, since we do not have historical data, for any a > 0, we can define the 
statistic
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where b is an estimate of ( )/1− p p nP P P . Consequently, the test procedure 
rejects the null hypothesis (17.13) if and only if Wratio > 0.

17.4.4  An Example

Suppose that a clinical trial was conducted to compare the efficacy of a test 
treatment to an active control on a clinical adverse event in a target patient 
population with cardiovascular disease. Suppose that the estimated 5 year 
event rates in the active control and the treatment group are p̂C = 21.2% and 
p̂T = 19.4%, respectively, based on a total of 500 patients per group. Consider 
the scenario where historical data for a placebo-controlled trial assessing the 
effect of the active control agent are available and the constancy condition 
holds, i.e., the effect pP0 − pC0 (pP0/pC0) in the historical trial is the same as 
pP − pC (pP/pC) in the current active-controlled trial, if a placebo control is 
added to the current trial. For the following work, the selections of η and ε 
are based on Chow and Shao (2006).

For the same data set, the estimated relative risk of the test product rela-
tive to the active control is p̂Tâ•›/p̂C = 0.9151. We can also derive that the esti-
mated standard errors in the active control and the treatment group are 

( )/1 − =p p nC C Cˆ ˆ 0.0862 and ( )/1− p p nT T Tˆ ˆ = 0.0912 , respectively. Also 

the estimate SE 0.0157
∧

=log( / )C T . For α = 0.05, z C T1−

∧

α SE = 0.0258log( / ) . The esti-
mated relative risk ˆ /ˆp pT C = 0.9151 < 1 , i.e., log( ) log( ) .p pC Tˆ ˆ− = >0 0887 0 , and 
thus the hypothesis pT/pC ≥ 1 can be rejected at the 5% level. This shows the 
superiority of the test therapy to the active control agent.
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Applying the test procedure described above, the statistic Wratio is defined as
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where b is an estimate of ( )/1− p p nP P P . Then the test procedure rejects the 
null hypothesis (17.13) if and only if Wratio > 0. If ε is chosen to be 0.1 and b = 
0.0747, the value of the statistic Wratio = 0.0149 > 0 and the estimated non-
inferiority margin �̂2 = 1.1418 for α = 0.05, η = 0.80, then the null hypothesis 
pT/pC ≥ Δ2 can be rejected at the level α = 0.05.

17.5â•‡ Mixed Non-Inferiority Margin

In practice, the determination of a non-inferiority margin based on either a 
test for treatment difference or a test for relative risk would be critical. In this 
section, a statistical method for selecting a non-inferiority margin with the 
use of a mixed null hypothesis is described (Tsou et al., 2007). The mixed null 
hypothesis consists of a margin based on treatment difference and a margin 
based on relative risk. Both non-inferiority margins will simultaneously sat-
isfy the principles as described in the ICH E10 guideline. Statistical tests for 
mixed non-inferiority margin are also derived.

17.5.1  Hypotheses for Mixed Non-Inferiority Margin

If the treatment effect is expressed in terms of the mixture of a rate difference 
and a rate ratio, the mixed null hypothesis is
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(17.20)

where Δ1 and Δ2 are the margins and both satisfy the two criteria stated in 
Section 17.2. Here, π* = Δ1/(Δ2 − 1) is the bent point. Thus, the mixed null 
hypothesis in (17.20) will be the same as a null hypothesis based on relative 
risk in (17.13) when pC ≤ π*, and will be the same as a null hypothesis based 
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on treatment difference when pC > π*. Assume that n = nC = nT. Following the 
approach developed by Wei and Chappel (2005), the mixed hypotheses in 
(17.20) can be transformed as follows:
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where
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The parameters μx and μy and the angles θ and ϕ are shown in Figure 17.1. 
The matrix B, called the rotation matrix, rotates the original bent line by a 
clockwise angle ϕ. Figures 17.3 and 17.4 provide an illustration for the origi-
nal hypothesis and the rotated hypothesis.

17.5.2  Non-Inferiority Tests

When the non-inferiority margin depends on unknown population parame-
ters, statistical tests designed for the case of the constant non-inferiority mar-
gin may not be appropriate. Chow and Shao (2006) developed valid statistical 

0

θ

φ

θ

π*
PC

0

PT

HD

μy

μx

FIGURE 17.3
The original hypothesis: the area above and on the bent line shows the null hypothesis and the 
area under the bent line shows the alternative hypothesis.
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tests for non-inferiority tests with non-constant non-inferiority margin. Tsou 
et al. (2007) extended and developed statistical tests for the mixed hypoth-
eses in (17.21). Their method is briefly outlined below.

Let (xn, yn) be the estimators of (μx, μy) such that
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where the matrix B is defined in (17.22), and p̂C and p̂T are the estimated inci-
dence rates in the active control group and treatment group, respectively. 
Consequently, we can have
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Consider the following test statistics under H0:
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where v̂(Yn + tan(θ)|Xn|) is the estimator of the variance of Yn + tan(θ)|Xn|. Let 
vboot denote the bootstrap variance estimator of the statistic Yn + tan(θ)|Xn|.

Let σn
2 denote the sampling variance of the parameter μy + tan(θ)|μx|. Since
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FIGURE 17.4
The rotated null hypothesis.
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if we can prove that the bootstrap estimate of variance vboot is a consistent 
estimator of the sampling variance σn

2, then the above result is established. 
To show that v n a sboot/ . .σ2 1→ , we verify the conditions in Theorem 3.8 in Shao 
and Tu (1995) as follows.

Let C1,â•›…, Cn be the independent and identically distributed (i.i.d.) random 
variables with distribution Bernoulli(pC). Then

Ci =
1 if the event is observed in the active control group wiith probability   

otherwise .                        
p  C ,

0                                                                              
⎧
⎨
⎩

Similarly, let T1,â•›T2,â•›…,â•›Tn be the i.i.d. random variables with distribu-
tion Bernoulli(pT). Then C1â•›+â•›…â•›+â•›Cn is the random variable with distribu-
tion Binomial(nC, pC) and p̂C = C

–
n; T1â•›+â•›…â•›+â•›Tn is the random variable with 

distribution Binomial(nT, pT) and p̂T = T
–

n. Denote Ui ≡ (Ci, Ti)′ and the 
population mean μ = (pC, pT)′, then U1,â•›…,â•›Un are i.i.d. random vectors. 
Define a function f to be
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Then a composite function f ∘ B is defined by
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Let Wn = f ∘ B(U
−

n). The conditions to be verified in Theorem 3.8 are

	 1.	E∙U1∙2 < ∞.
	 2.	A sufficient condition max| ( , , ) |/

, ,
. .

i i
n i i n n a s

n
nW U U W

1
1 0

…
… − →τ , where the 

maximum is taken over all integers i1,â•›…, in satisfying 1 ≤ i1 ≤ … ≤ in ≤ n, 
the notation W U Un i in( , , )1 …  is the statistic Wn based on the data sets 
{ , , , }, , ,U i n j nij = =1 1… … , which are randomly selected from the 
original data set, and {τn} is a sequence of positive numbers satisfy-
ing lim infn τn > 0 and τn

nO e
q

= ( ) with a q ∞ (0,1/2).
	 3.	 f ∘ B is continuously differentiable in a neighborhood of the popula-

tion mean with ∇(â•›â•›f ∘ B) ≠ 0.
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We now verify the three conditions as follows.
First, condition (1) is verified since we simply have E∙C1∙2 < ∞ and E∙T1∙2 < ∞. 

We now verify condition (2). When 0 < ϕ, θ < π/4, we have 0 < sin(ϕ), cos(ϕ), 
tan(θ) < 1. Therefore,
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Since the values of p̂C and p̂T are both between 0 and 1, the clinical meaning-
ful values of π* and π*Δ2 are also between 0 and 1. Thus, the values of yn + 
tan(θ)|xn| ≤ 4. Similarly, the values of W U Un i in( , , )1 4… ʺ  for all integers i1,â•›…, in 
satisfying 1 ≤ i1 ≤ … ≤ in ≤ n. Consequently, we have
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as n → 0 when we simply choose τn
ne

q
=  with q = 1/3. Thus, condition (2) is 

also verified.
Finally, we verify condition (3). The function f ∘ B is continuously differ-

entiable except at the bent point (π*, π*Δ2). Thus, if the population mean 
μ = (pC, pT)′ is not equal to the bent point (π*, π*Δ2)′, then f ∘ B is continuously 
differentiable in a neighborhood of the population mean with ∇( f ∘ B) ≠ 0. 
Although the equation (π*, π*Δ2) = (pC, pT) with Δ1 ≥ 0, Δ2 ≥ 1, 0 ≤ pC, pT ≤ 1. Since 
there is no solution that satisfies all the constraints, we claim that the popula-
tion mean μ is not equal to the bent point (π*, π*Δ2). Thus, f ∘ B is continuously 
differentiable in a neighborhood of the population mean. The values of the 
gradient ∇( f ∘ B)(μ) are
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Since 0 < sin(ϕ), cos(ϕ), tan(θ) < 1 for 0 < ϕ, θ < π/4, we have ∇( f ∘ B)(μ) ≠ 0. 
Consequently, condition (3) is verified. This proved (17.23). Then when the 
non-inferiority margins Δ1 and Δ2 in (17.20) are adopted, the null hypothesis 
H0 is rejected at approximately level α if

	 Y X z vn n+ + <−tan( )| | .θ α1 0boot 	
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17.5.3  An Example

Consider the same data set in the test procedure for non-inferiority with a 
mixed null hypothesis. From the data, the estimated value of μy + tan(θ) · |μx| is

	 y xn n+ = − <tan( )| | . ,θ 0 0325 0 	

and the estimated standard error is vboot = 0 0188.  based on 10,000 replica-
tions. For α = 0.05, z v1−α boot = 0.0309. The estimated value of μy + tan(θ)|μx| 
is −0.0325 < 0, and thus the hypothesis μy + tan(θ)|μx| ≥ 0 can be rejected at 
the 5% level of significance. Using the test procedure described in this sec-
tion, the statistic Wmix is defined as

	 W y x z vn nmix boot= − − − −tan( )| | .θ α1 	

Then the test procedure rejects the null hypothesis (17.20) if and only if 
Wmix > 0. If ε is chosen to be 0.1, the value of the statistic Wmix = 0.0834 > 0 and 
the estimated non-inferiority margins �̂1 = 0.0329 and �̂2 = 1.1418  for α = 0.05, 
η = 0.80, then the null hypothesis (17.20) can be rejected at the level of α = 0.05.

17.6â•‡ Recent Developments

17.6.1  A Special Issue of the Journal of Biopharmaceutical Statistics

To reflect and explosive growth of research on non-inferiority trials, the 
Journal of Biopharmaceutical Statistics (JBS) published a special issue on 
Active Controlled Clinical Trials (JBS, Vol. 17, No. 2, pp. 197–365, 2007). In 
this special issue, Hung et al. (2007) discussed the issues of controlling type 
I error rate of the non-inferiority test using two approaches by defining two 
types of type I error rates: the within non-inferiority trial type I error rate 
and the cross-trial type I error rate. Hung et al. (2007) suggested consider-
ing both type I error rates when determining the inferiority margin. Koti 
(2007a,b) focused on the estimation methods of the non-inferiority measure-
ment in the forms of the ratio of parameters.

Following the discussion of simultaneously testing superiority and non-infe-
riority hypotheses in active controlled clinical trials by Tsong and Zhang (2005, 
2007), further compared the type I error rate of superiority test using only the 
test and active control, historical active control and historical placebo arms. On 
the other hand, Ng (2007) raised his concerns regarding the increased discov-
ery rate when using simultaneous test routinely in general practices.

As there is a concern regarding the consistency and independency of the 
non-inferiority from multiple clinical trials, Yan et al. (2007) proposed a 
method to test for the consistency of non-inferiority from multiple clinical 
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trials, while Tsong et al. (2007) examined the relationship between the choice 
of non-inferiority margin and the dependency of the non-inferiority test in 
multiple clinical trials.

Liao et al. (2007) and Tsong and Shen (2007) dealt with nonconventional 
non-inferiority application. Liao et al. (2007) proposed to use concordance 
correlation coefficient and the concept of non-inferiority testing for the 
assessment of agreement on microarray experiments. Tsong and Shen (2007), 
on the other hand, proposed to use tolerance interval and the two one-sided 
non-inferiority tests concept for the assessment of exchangeability of test and 
reference active control treatments.

17.6.2  FDA Draft Guidance

After a series of internal discussions, a draft guidance on non-inferiority 
clinical trials is currently being distributed by the U.S. Food and Drug 
Administration (FDA) for comments (FDA, 2010a). Basically, this draft guid-
ance consists of four parts, which are (1) a general discussion of regulatory, 
study design, scientific, and statistical issues associated with the use of non-
inferiority studies when these are used to establish the effectiveness of a new 
drug; (2) details of some of the issues such as the quantitative analytical and 
statistical approaches used to determine the non-inferiority margin for use 
in non-inferiority studies; (3) Q&A of some commonly asked questions; and 
(4) five examples of successful and unsuccessful efforts for determining non-
inferiority margins and the conduct of non-inferiority studies.

In principle, the 2010 FDA draft guidance is very similar to the ICH E10 
guideline. However, the 2010 FDA draft guidance provides more details 
regarding study design and statistical issues. For example, the 2010 FDA 
draft guidance defines two non-inferiority margins, namely M1 and M2, 
where M1 is defined as the entire effect of the active control assumed to be 
present in the non-inferiority study and M2 is referred to as the largest clini-
cally acceptable difference (degree of inferiority) of the test drug compared 
to the active control. As indicated in the 2010 FDA draft guidance, M1 is 
based on (1) the treatment effect estimated from the historical experience 
with the active control drug, (2) the assessment of the likelihood that the 
current effect of the active control is similar to the past effect (the constancy 
assumption), and (3) the assessment of the quality of the non-inferiority trial, 
particularly looking for defects that could reduce a difference between the 
active control and the new drug. On the other hand, M2 is a clinical judgment 
which is never greater than M1, even if for active control drugs with small 
effects, a clinical judgment might argue that a larger difference is not clini-
cally important. Ruling out a difference between the active control and the 
test drug that is larger than M1 is a critical finding that supports the conclu-
sion of effectiveness.

As indicated in the draft guidance, there are essentially two different 
approaches to the analysis of the non-inferiority study: one is the fixed 
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margin method (or the two confidence intervals method) and the other one 
is the synthesis method. In the fixed margin method, the margin M1 is based 
on estimates of the effect of the active comparator in previously conducted 
studies, making any needed adjustment for changes in trial circumstances. 
The non-inferiority margin is then prespecified and it is usually chosen as 
a margin smaller than M1 (i.e., M2). The synthesis method combines (or syn-
thesizes) the estimate of treatment effect relative to the control from the non-
inferiority trial with the estimate of the control effect from a meta-analysis of 
historical trials. This method treats both sources of data as if they came from 
the same randomized trial to project what the placebo effect would have 
been had the placebo been present in the non-inferiority trial.

17.7â•‡ Concluding Remarks

To assess the type I error rate and the power, a number of simulation studies 
were performed. The true event rates associated with the active control and 
the new treatment were given in Tables 17.3 through 17.5. The results were 
based on 10,000 replications for each simulation run under the assumption 
that the constancy condition holds. As seen in Table 17.3, the type I error rate 
is close to 0.05 when the sample size is greater than 100. We may expect that 
the type I error rate can be preserved when the sample size is large enough. 
Tables 17.4 and 17.5 display the actual power and simulated powers for dif-
ferent testing hypotheses for different combinations of parameters. The sim-
ulation study shows that the mixed test gives a similar result as that in the 
ratio test when pC ≤ π* and that in the difference test when pC > π*.

Although the ICH E10 guideline and the 2010 FDA draft guidance provide 
a general framework for the selection of appropriate non-inferiority margins, 
there is so far no established rule or gold standard for the selection of non-
inferiority margins in active-controlled trials. Hung et al. (2003) proposed 
a margin selection based on relative risk. However, with relative risk, it is 
difficult to do covariate adjustments. On the other hand, Chow and Shao 
(2006) proposed a method for selecting non-inferiority margins based on 
treatment difference. From the example in Section 17.4, the difference test 
shows the non-inferiority of the new therapy to the active control agent, 
but does not have the evidence of the superiority of the new therapy to the 
active control agent. On the other hand, the ratio test concludes the non-
inferiority of the new therapy to the active control agent and provides the 
evidence of the superiority of the new therapy to the active control agent. 
Consequently, the determination of choosing the difference test or ratio test 
would be critical. Tsou et al. (2007) proposed a non-inferiority test statistic 
for testing the mixed hypothesis based on treatment difference and relative 
risk for active-controlled trials. One benefit of the mixed test is that we do 
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TABLE 17.3

Empirical Significance Level for Mixed Testing Hypotheses 
(10,000 Replicates), n = nC = nT, α = 0.05, η = 0.8, ε = 0.1

pC pT 𝚫1 𝚫2 n

Mixed

Simulated

0.2 0.2927 0.0927 1.6701 50 0.0717
0.2738 0.0738 1.4938 80 0.0715
0.2662 0.0662 1.4296 100 0.0556
0.2543 0.0543 1.3360 150 0.0526
0.2423 0.0423 1.2494 250 0.0583

0.3 0.4082 0.1082 1.4778 50 0.0653
0.3858 0.0858 1.3574 80 0.0656
0.3768 0.0768 1.3127 100 0.0539
0.3629 0.0629 1.2468 150 0.0437
0.3488 0.0488 1.1848 250 0.0551

0.4 0.5174 0.1174 1.3677 50 0.0636
0.4928 0.0928 1.2774 80 0.0625
0.4830 0.0830 1.2436 100 0.0519
0.4678 0.0678 1.1933 150 0.0441
0.4526 0.0526 1.1455 250 0.0580

0.5 0.6215 0.1215 1.2920 50 0.0638
0.5958 0.0958 1.2216 80 0.0601
0.5856 0.0856 1.1950 100 0.0594
0.5698 0.0698 1.1553 150 0.0597
0.5540 0.0540 1.1173 250 0.0560

0.6 0.7209 0.1209 1.2340 50 0.0600
0.6949 0.0949 1.1782 80 0.0560
0.6847 0.0847 1.1570 100 0.0633
0.6689 0.0689 1.1253 150 0.0604
0.6532 0.0532 1.0949 250 0.0520

0.7 0.8153 0.1153 1.1856 50 0.0611
0.7901 0.0901 1.1415 80 0.0597
0.7802 0.0802 1.1248 100 0.0600
0.7651 0.0651 1.0998 150 0.0580
0.7502 0.0502 1.0757 250 0.0518

0.8 0.9037 0.1037 1.1419 50 0.0602
0.8803 0.0803 1.1079 80 0.0604
0.8713 0.0713 1.0951 100 0.0575
0.8577 0.0577 1.0760 150 0.0593
0.8443 0.0443 1.0577 250 0.0536

0.9 0.9848 0.0848 1.0996 50 0.0665
0.9634 0.0634 1.0738 80 0.0645
0.9558 0.0558 1.0647 100 0.0582
0.9446 0.0446 1.0513 150 0.0562
0.9339 0.0339 1.0387 250 0.0475
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TABLE 17.4

Actual Powers and Simulated Powers for Different Testing 
Hypotheses (10,000 Replicates), n = nC = nT, α = 0.05, η = 0.8, ε = 0.1

pC pT 𝚫1 𝚫2 n

Difference Mixed

Simulated Actual Simulated

0.20 0.15 0.0993 1.5789 50 0.6064 0.6273 0.5582
0.0785 1.4348 80 0.6710 0.6912 0.6487
0.0702 1.3812 100 0.7058 0.7250 0.6909
0.0574 1.3017 150 0.8198 0.7903 0.8146
0.0444 1.2266 250 0.8578 0.8728 0.8555

0.30 0.25 0.1122 1.4254 50 0.5802 0.5690 0.5775
0.0887 1.3234 80 0.6072 0.6264 0.6156
0.0793 1.2848 100 0.6587 0.6577 0.6570
0.0648 1.2271 150 0.7011 0.7205 0.7081
0.0502 1.1718 250 0.7953 0.8070 0.7974

0.40 0.35 0.1189 1.3309 50 0.5419 0.5407 0.5656
0.0940 1.2536 80 0.5937 0.5945 0.6041
0.0841 1.2240 100 0.6186 0.6242 0.6250
0.0687 1.1795 150 0.6793 0.6847 0.6884
0.0532 1.1364 250 0.7685 0.7708 0.7730

0.50 0.45 0.1207 1.2635 50 0.4892 0.5263 0.5768
0.0954 1.2031 80 0.5483 0.5788 0.6114
0.0853 1.1799 100 0.5855 0.6078 0.6380
0.0697 1.1446 150 0.6408 0.6675 0.6851
0.0540 1.1103 250 0.7291 0.7535 0.7618

0.60 0.55 0.1175 1.2103 50 0.4982 0.5207 0.5769
0.0929 1.1629 80 0.5954 0.5738 0.6261
0.0831 1.1445 100 0.5935 0.6032 0.6513
0.0679 1.1165 150 0.6841 0.6637 0.7019
0.0526 1.0891 250 0.7595 0.7511 0.7729

0.70 0.65 0.1092 1.1647 50 0.5070 0.5226 0.6076
0.0863 1.1281 80 0.5987 0.5786 0.6467
0.0772 1.1138 100 0.6050 0.6095 0.6712
0.0630 1.0920 150 0.6919 0.6729 0.7246
0.0488 1.0706 250 0.7712 0.7634 0.7938

0.80 0.75 0.0942 1.1222 50 0.5334 0.5337 0.6543
0.0745 1.0955 80 0.6134 0.5962 0.5962
0.0666 1.0850 100 0.6495 0.6304 0.7170
0.0544 1.0689 150 0.7172 0.6997 0.7712
0.0421 1.0529 250 0.8040 0.7956 0.8358

0.90 0.85 0.0685 1.0775 50 0.5859 0.5604 0.7692
0.0542 1.0608 80 0.6612 0.6379 0.7907
0.0484 1.0542 100 0.7142 0.6794 0.8089
0.0396 1.0440 150 0.7899 0.7602 0.8559
0.0306 1.0339 250 0.8860 0.8619 0.9197
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not need to choose between difference test and ratio test in advance. In par-
ticular, this mixed null hypothesis consists of a margin based on treatment 
difference and a margin based on relative risk. From Tables 17.3 through 17.5, 
the proposed mixed non-inferiority test not only preserves the type I error 
rate at the desired level but also gives a similar power as that from the differ-
ence test or as that from the ratio test.

TABLE 17.5

Actual Powers and Simulated Powers for Different Testing 
Hypotheses (10,000 Replicates), n = nC = nT, α = 0.05, η = 0.8, ε = 0.1

pC pT 𝚫1 𝚫2 n

Mixed Ratio

Simulated Simulated Actual

0.20 0.05 0.1092 1.4092 50 0.9196 0.9517 0.8172
0.0863 1.3115 80 0.9921 0.9927 0.9260
0.0772 1.2745 100 0.9976 0.9976 0.9601
0.0630 1.2190 150 0.9999 0.9999 0.9918

0.30 0.15 0.1175 1.3689 50 0.9091 0.8908 0.8087
0.0929 1.2817 80 0.9693 0.9633 0.9086
0.0831 1.2486 100 0.9859 0.9816 0.9442
0.0678 1.1987 150 0.9965 0.9957 0.9839

0.40 0.25 0.1220 1.3000 50 0.8863 0.8521 0.7871
0.0964 1.2305 80 0.9516 0.9383 0.8871
0.0862 1.2038 100 0.9677 0.9601 0.9258
0.0704 1.1636 150 0.9897 0.9879 0.9740

0.50 0.35 0.1221 1.2428 50 0.8712 0.8313 0.7754
0.0965 1.1875 80 0.9354 0.9143 0.8753
0.0863 1.1662 100 0.9617 0.9505 0.9154
0.0705 1.1337 150 0.9874 0.9829 0.9678

0.60 0.45 0.1175 1.1948 50 0.8850 0.8402 0.7736
0.0929 1.1511 80 0.9441 0.9213 0.8735
0.0831 1.1341 100 0.9596 0.9450 0.9137
0.0679 1.1082 150 0.9880 0.9835 0.9667

0.70 0.55 0.1078 1.1521 50 0.8959 0.8451 0.7819
0.0852 1.1184 80 0.9499 0.9261 0.8817
0.0762 1.1053 100 0.9691 0.9571 0.9209
0.0622 1.0852 150 0.9914 0.9866 0.9711

0.80 0.65 0.0913 1.1112 50 0.9238 0.8706 0.8020
0.0722 1.0870 80 0.9681 0.9477 0.9009
0.0645 1.0774 100 0.9814 0.9705 0.9374
0.0527 1.0628 150 0.9953 0.9922 0.9803

0.90 0.75 0.0637 1.0673 50 0.9742 0.9286 0.8365
0.0504 1.0529 80 0.9901 0.9797 0.9322
0.0451 1.0472 100 0.9966 0.9922 0.9626
0.0368 1.0383 150 0.9994 0.9993 0.9917
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For regulatory recommendations, the ICH E10 guideline recommends 
that the non-inferiority margin should be chosen to satisfy at least two cri-
teria summarized in Section 17.2. In other words, the non-inferiority mar-
gin should be chosen in such a way that if the non-inferiority of the test 
product to the active control therapy is claimed, the test product is not only 
non-inferior to the active control therapy but also superior to the placebo. In 
addition, the variability should be taken into account. On the other hand, the 
2010 FDA draft guidance recommends two non-inferiority margins, namely 
M1 and M2, where M1 is the entire effect of the active control assumed to be 
present in the non-inferiority study and M2 is the largest clinically accept-
able difference of the test drug compared to the active control. As indicated 
by the FDA, M2 is a clinical judgment which is never greater than M1, even if 
for active control drugs with small effects, a clinical judgment might argue 
that a larger difference is not clinically important. Ruling out a difference 
between the active control and the test drug that is larger than M1 is a critical 
finding that supports the conclusion of effectiveness.
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18
QT Studies with Recording Replicates

18.1â•‡� Introduction

As indicated by Tsong and Zhang (2008), delay in cardiac repolarization cre-
ates an electrophysiological environment that may set off cardiac arrhyth-
mias, particularly a polymorphic ventricular tachycardia. This condition 
can degenerate into ventricular fibrillation, leading to sudden cardiac 
death. The QT interval represents the duration of ventricular depolariza-
tion and subsequent repolarization and is typically measured on a 12-lead 
surface electrocardiogram (ECG) from the beginning of the QRS complex 
to the end of the T wave (see Figure 18.1). The RR interval, which is the 
distance between two consecutive R waves, is the inverse of the heart rate. 
In pharmaceutical research and development, drug-induced prolongation 
of the QT interval has been used as an indicator of possible cardiac safety 
problems. The QT interval is often used to indirectly assess the delay in 
cardiac repolarization, which can predispose to the development of life-
threatening cardiac arrhythmias such as torsade depointes (Moss, 1993). 
The QTc interval is referred to as the QT interval corrected by heart rate. 
In clinical practice, it is recognized that the prolongation of the QT/QTc 
interval is related to the increased risk of cardiotoxicity, such as a life-
threatening arrhythmia (Temple, 2003). Thus, it is suggested that a care-
ful evaluation of potential QT/QTc prolongation be assessed for potential 
drug-induced cardiotoxicity.

For the development of a new pharmaceutical entity, most regulatory agen-
cies such as the U.S. FDA require the evaluation of pro-arrhythmic potential (see 
CPMP, 1997; FDA/TPD, 2003). In recent years, after several drugs were removed 
from the market because of deaths due to ventricular tachycardia resulting from 
drug-induced QT prolongation (Pratt et al., 1994; Khongphatthanayothin et al., 
1998; Wysowski et al., 2001; Lasser et al., 2002), the International Conference on 
Harmonization (ICH) issued a guideline on the evaluation of QT/QTc inter-
val prolongation and pro-arrhythmic potential for non-antiarrhythmic drugs 
(ICH, 2005a) and requested all sponsors submitting new drug applications to 
conduct at least one thorough QT (TQT) study, normally early in the clinical 
development with some information about the pharmacokinetics of the drug. 
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The ICH E14 guideline also provides the basic recommendations on the regula-
tory requirements on the assessment of drug-induced prolongation of the QT 
interval. The ICH E14 guideline calls for a placebo-controlled study in normal 
healthy volunteers with a positive control to assess cardiotoxicity by examin-
ing QT/QTc prolongation. Under a valid study design (e.g., a parallel-group 
design or a crossover design), ECGs will be collected at baseline and at several 
time points posttreatment for each subject. Malik and Camm (2001) recom-
mend that it would be worthwhile to consider 3–5 replicate ECGs at each time 
point within 2–5â•›min periods. Replicate ECGs are then defined as single ECGs 
recorded within several minutes of a nominal time (PhRMA QT Statistics 
Expert Working Team, 2003). Along this line, Strieter et al. (2003) studied the 
effect of replicate ECGs on QT variability in health subjects. In practice, it is 
then of interest to investigate the impact of recording replicates on power and 
sample size calculation in routine QT studies.

In clinical trials, a pre-study power analysis for sample size calculation is 
usually performed to ensure that the study will achieve a desired power (or 
the probability of correctly detecting a clinically meaningful difference if such 
a difference truly exists). For QT studies, the following information is neces-
sarily obtained prior to the conduct of the pre-study power analysis for sample 
size calculation. The information includes (1) the variability associated with the 
primary study endpoint such as the QT intervals (or the QT interval endpoint 
change from baseline), (2) the maximal difference in QT interval between treat-
ment groups, and (3) the number of time points where QT measurements are 
taken. Under the above assumptions, the procedures as described by Longford 
(1993) and Chow et al. (2003) can then be applied for sample size calculation 
under the study design (e.g., a parallel-group design or a crossover design). 
Although QT/QTc studies involve multiple time points, we will consider in 
this chapter the simplified case with only one time point. And we argue that 
considering one time point, though conservative, is reasonable for sample size 
determination purpose. This is particularly true if we focus on the time point 
where the maximal QT difference between treatments is expected.

FIGURE 18.1
QT and RR intervals of the surface 
ECG.

RR interval

T wave

Isoelectric

QRS

QT interval
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The ICH E14 guidance recommends a thorough QT/QTc study to decide 
whether the drug induces QT/QTc prolongation as is evidenced if the 
upper bound of the 95% confidence interval of the mean drug effect on QTc 
exceeds 10â•›ms. Statistical Methods for TQT/QTc study have been proposed 
by Patterson et al. (2005b) under a linear mixed model and by Eaton et al. 
(2006) using a confidence interval approach. Hosmane and Locke (2005) 
examined the power in TQT/QTc studies via a simulation study, while 
Wang, Pan, and Balch (2008) investigated bias and variance evaluation of 
QT interval correlation methods. For a review of the statistical design and 
analysis in QT/QTc studies, see Patterson et al. (2005). The testing method 
proposed in Patterson et al. (2005b) was essentially an intersection-union 
method which is typically conservative. To address this issue, Eaton et al. 
(2006) constructed a confidence interval, via delta-method, for a parameter 
which sufficiently approximates the parameter of interest. However, this 
method technically assumes that mean QT/QTc differences between drug 
and placebo are positive at all time intervals, which is too restrictive and 
unverifiable in reality. Furthermore, when applying to a function (although 
smooth) which is presumably close to a non-smooth function (i.e., maximum 
function), the delta-method may yield a confidence interval whose actual 
coverage considerably differs from the nominal one, particularly when the 
sample size is moderate in size. To address these restrictions, Cheng et al. 
(2008) proposed a new testing method based on the maximum of correlated 
normal random variables.

The remainder of this chapter is organized as follows. In the next section, 
commonly used study designs such as a parallel-group design or a cross-
over design for routine QT studies with recording replicates are briefly 
described. Power analyses and the corresponding sample size calculations 
under a parallel-group design and a crossover design are derived in Section 
18.3. Extensions to the designs with covariates such as pharmacokinetic (PK) 
responses are considered in Section 18.4. The sample size allocation opti-
mization is discussed in Section 18.5. Some tests for QT/QTc prolongation 
are discussed in Section 18.6. Recent developments are given in Section 18.7. 
Section 18.8 provides some concluding remarks.

18.2â•‡� Study Designs and Models

As indicated by Zhang and Machado (2008), for a typical TQT, a random-
ized four-treatment group design is usually considered. The four treatment 
arms are (1) drug with therapeutic dose, (2) drug with supratherapeutic dose, 
(3) positive control, and (4) placebo. A typical study design for TQT studies 
could be either a parallel-group design or a crossover design. In this sec-
tion, simple statistical models under a parallel-group design and a crossover 
design are briefly outlined.
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Under a parallel-group design, qualified subjects will be randomly 
assigned to receive either treatment A or treatment B. ECGs will be collected 
at baseline and at several time points post treatment. Subjects will fast at 
least 3â•›h and rest at least 10â•›min prior to the scheduled ECG measurements. 
Identical lead placement and the same ECG machine will be used for all 
measurements. As recommended by Malik and Camm (2001), 3–5 recording 
replicate ECGs at each time point will be obtained within 2–5â•›min periods.

Let yijk be the QT interval observed from the kth recording replicate of the 
jth subject who receives treatment i, where i = 1,â•›2, j = 1,â•›…, n, and k = 1,â•›…, m. 
Consider the following model:

	 y eijk i ij ijk= + +μ ε , 	
(18.1)

where
eij are independent and identically distributed as normal random variables 

with mean 0 and variance σS
2 (between subject or intersubject variability)

εijk are independent and identically distributed as normal random variables 
with mean 0 and variance σe

2 (within subject or intra-subject variability or 
measurement error variance)

Thus, we have Var( ) .yijk S e= +σ σ2 2

Under a crossover design, qualified subjects will be randomly assigned 
to receive one of the two sequences of test treatments under study. In other 
words, subjects who are randomly assigned to sequence 1 will receive treat-
ment 1 first and then be crossed over to receive treatment 2 after a suffi-
cient period of washout. Let yijkl be the QT interval observed from the kth 
recording replicate of the jth subject in the lth sequence who receives the ith 
treatment, where i = 1,â•›2, j = 1,â•›…, n, k = 1,â•›…, m, and l = 1,â•›2. We consider the 
following model:

	 y eijkl i il ijl ijkl= + + +μ β ε , 	 (18.2)

where
βil are independent and identically distributed normal random period 

effects (period uniquely determined by sequence l and treatment i) with 
mean 0 and variance σp

2

eijl are independent and identically distributed normal subject random 
effects with mean 0 and variance σS

2

εijkl are independent and identically distributed normal random errors 
with mean 0 and variance σe

2

Thus, Var( ) .yijkl p S e= + +σ σ σ2 2 2
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To ensure a valid comparison between the parallel design and the cross-
over design, we assume that μi, σS

2, and σe
2 are the same as those given in (18.1) 

and (18.2) and consider an extra variability σp
2 , which is due to the random 

period effect for the crossover design.

18.3â•‡� Power and Sample Size Calculation

Under models (18.1) and (18.2), Chow et al. (2006) derived formulas for sample 
size calculation and examined the relationship between a crossover design 
and a parallel-group design for QT studies with recording replicates. The 
power analysis for sample size calculations under a parallel-group design 
and a crossover design are described in the subsequent subsections.

18.3.1  �Parallel-Group Design

Under the parallel-group design as described in the previous section, to 
evaluate the impact of recording replicates on power and sample size cal-
culation, for simplicity, we will only consider one time point post treatment. 
The results for recording replicates at several posttreatment intervals can be 
similarly obtained. Under model (18.1), consider sample mean of QT intervals 
of the jth subject who receives the ith treatment, then Var( ) /y mij S e⋅ = +σ σ2 2 . 
The hypotheses of interest regarding treatment difference in QT interval are 
given by

	 H Ha0 1 2 1 210 10: : .μ μ μ μ− ≥ − <versus 	 (18.3)

Under the null hypothesis of no treatment difference, the following statistic 
can be derived:
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Under the null hypothesis in (18.3), T has a central t-distribution with 2n − 2 
degrees of freedom.

Let σ σ σ2 2 2= = +Var( )yijk S e  and ρ σ σ σ= +S S e
2 2 2/( ), then under a given 

alternative that Haâ•›:â•›μ1 − μ2 = d < 10 in (18.3), the power of the test can be 
Â�approximated as follows:
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(18.4)

where
δ = (10 − d)/σ is the relative effect size
Φ is the cumulative distribution of a standard normal

To achieve the desired power of 1 − β at the α level of significance, the sample 
size needed per treatment is
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18.3.2  �Crossover Design

Under a crossover model (18.2), it can be verified that yiâ•›... is an unbiased 
estimator of μi with variance σ σ σp S en nm2 2 22 2 2/ / /+ + . Thus, we used the 
following test statistic to test the hypotheses in (18.3):
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Under the null hypothesis in (18.3), T has a central t-distribution with 2n − 4 
degrees of freedom. Let σ2 and ρ be defined as in the previous section, and 
γ σ σ= p

2 2/ , then Var(yijkl) = σ2/(1 + γ).
Under a given alternative that μ1 − μ2 = d < 10 in (18.3), the power of the test 

can be approximated as follows:
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(18.6)

where δ = (10 − d)/σ. To achieve the desired power of 1 − β at the α level of 
significance, the sample size needed per treatment group is given by
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18.3.3  �Remarks

Let nold be the sample size with m = 1 (i.e., there is a single measure for each 
subject). Then, we have n = ρnold + (1 − ρ)nold/m. Thus, sample size (with 
recording replicates) required for achieving the desired power is a weighted 
average of nold and nold/m. Note that this relationship holds under both a 
parallel and a crossover design. Table 18.1 provides sample sizes required 

TABLE 18.1

Sample Size for Achieving the Same Power 
with m Recording Replicates

𝛒

m

1 3 5

1.0 n 1.00n 1.00n
0.9 n 0.93n 0.92n
0.8 n 0.86n 0.84n
0.7 n 0.80n 0.76n
0.6 n 0.73n 0.68n
0.5 n 0.66n 0.60n
0.4 n 0.60n 0.52n
0.3 n 0.53n 0.44n
0.2 n 0.46n 0.36n
0.1 n 0.40n 0.28n
0.0 n 0.33n 0.20n

Source:	 Chow, S.C. et al., Sample Size Calculation in 
Clinical Research, Chapman and Hall/CRC 
Press, Taylor & Francis, New York, 2008. 
With permission.
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under a chosen design (either parallel or crossover) for achieving the same 
power with a single recording (m = 1), three recording replicates (m = 3), and 
five recording replicates (m = 5).

Note that if ρ closes to 0, then these repeated measures can be treated as 
independent replicates. As can be seen from the above, if ρ ≈ 0, then n ≈ nold/m. 
In other words, sample size is indeed reduced when the correlation coefficient 
between recording replicates is close to 0 (in this case, the recording replicates 
are almost independent). Table 18.2 shows the sample size reduction for differ-
ent values of ρ under the parallel design. However, in practice, ρ is expected 
to be close to 1. In this case, we have n ≈ nold. In other words, there is not much 
gain for considering recording replicates in the study.

In practice, it is of interest to know whether the use of a crossover design 
can further reduce the sample size when other parameters such as d, σ2, and ρ 
remain the same. Comparing formulas (18.5) and (18.7), we conclude that 
the  sample size reduction by using a crossover design depends upon the 
parameter γ σ σ= p

2 2/ , which is a measure of the relative magnitude of period 
variability with respect to the within-period subject marginal variability. 
Let θ = γ/(zα + zβ)2, then by (18.5) and (18.7) the sample size ncross under the 
crossover design and the sample size nparallel under the parallel group design 
satisfy ncross = nparallel/2(1 − θ). When the random period effect is negligible, 
that is, γ ≈ 0 and hence θ ≈ 0, we have ncross = nparallel/2. This indicates that 
the use of a crossover design could further reduce the sample size by half 
as compared to a parallel-group design when the random period effect is 
negligible (based on the comparison of the above formula and the formula 
given in (18.5). However, when the random period effect is not small, the 
use of a crossover design may not result in sample size reduction. Table 18.3 
shows the sample size under different values of γ. It is seen that the possibil-
ity of sample size reduction under a crossover design depends upon whether 

TABLE 18.2

Sample Sizes Required under a Parallel-Group Design

Power = 80% Power = 90%

𝛒 𝛒

(m, 𝛅) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(3, 0.3) 81 105 128 151 174 109 140 171 202 233
(3, 0.4) 46 59 72 85 98 61 79 96 114 131
(3, 0.5) 29 38 46 54 63 39 50 64 73 84
(5, 0.3) 63 91 119 147 174 84 121 159 196 233
(5, 0.4) 35 51 67 82 98 47 68 89 110 131
(5, 0.5) 23 33 43 53 63 30 44 57 71 84

Source:	 Chow, S.C. et al., Sample Size Calculation in Clinical Research, 
Chapman and Hall/CRC Press, Taylor & Francis, New York, 2008. 
With permission.
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the carryover effect of the QT intervals could be avoided. As a result, it 
is suggested that a sufficient length of washout period be applied between 
dosing periods to wear off the residual (or carryover) effect from one dosing 
period to another. For a fixed sample size, the possibility of power increase 
by crossover design also depends on parameter γ. Figure 18.2 shows that the 
crossover design results in power increase when γ is close to 0 but may result 
in considerable power loss when γ is not close to 0.

TABLE 18.3

Sample Sizes Required under a Crossover Design with ρ = 0.8

Power = 80% Power = 90%

𝛄 𝛄

(m, 𝛅) 0.000 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.003 0.004

(3, 0.3) 76 83 92 102 116 101 115 132 156 190
(3, 0.4) 43 45 47 50 53 57 61 66 71 77
(3, 0.5) 27 28 29 30 31 36 38 40 42 44
(5, 0.3) 73 80 89 99 113 98 111 128 151 184
(5, 0.4) 41 43 46 48 51 55 59 64 69 75
(5, 0.5) 26 27 28 29 30 35 37 39 40 42

Source:	 Chow, S.C. et al., Sample Size Calculation in Clinical Research, Chapman and Hall/CRC 
Press, Taylor & Francis, New York, 2008. With permission.
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FIGURE 18.2
Power comparison under parallel-group and crossover designs.
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18.4â•‡� Adjustment for Covariates

In the previous section, we considered models without covariates. In prac-
tice, additional information such as some PK responses, for example, area 
under the blood or plasma concentration time curve and the maximum 
concentration (Cmax), which are known to be correlated to the QT inter-
vals, may be available, for example, in an active-controlled QT study. In 
this case, models (18.1) and (18.2) are necessarily modified to include the 
PK responses as covariates for a more accurate and reliable assessment of 
power and sample size calculation (Cheng and Shao, 2007).

18.4.1  �Parallel-Group Design

After the inclusion of some relevant covariates such as demographics and/or 
patient characteristics, model (18.1) becomes

	 y x eijk i ij ij ijk= + + +μ η ε ,

where xij is some relevant covariate such as PK response for subject j. The 
least square estimate of η is given by
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Similarly, to achieve the desired power of 1 − β at the α level of significance, 
the sample size needed per treatment group is given by
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(18.8)

In practice, νi and τi
2 are estimated by the corresponding sample mean and 

sample variance from the pilot data. Note that if there are no covariates or 
the PK responses are balanced across treatments (i.e., ν1 = ν2), then formula 
(18.8) reduces to (18.5).

18.4.2  �Crossover Design

After taking the PK response into consideration as a covariate, model (18.2) 
becomes

	 y x eijkl i ijl il ijl ijkl= + + + +μ η β ε .
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Similarly, to achieve the desired power of 1 − β at the α level of significance, 
the sample size needed per treatment group is given by
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(18.9)

When there are no covariates or the PK responses satisfy ν1 = ν2, then for-
mula (18.9) reduces to (18.7). Formulas (18.8) and (18.9) indicate that under 
either a parallel-group or a crossover design, a larger sample size is required 
to achieve the same power if the covariate information is to be incorporated.
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18.5â•‡� Optimization for Sample Size Allocation

For optimization of the allocation of n (the number of subjects) and m (the num-
ber of recording replicates) in routine QT studies with recording replicates, we 
may consider two approaches, namely, the fixed power approach and the fixed 
budget approach. The fixed power approach is to find optimal allocation of n 
and m for achieving a desired (fixed) power in the way that the total budget is 
minimized. For the fixed budget approach, the purpose is to find optimal alloca-
tion of n and m for achieving maximum power.

In this section, for simplicity, we will only describe the solution under a 
parallel-group design. The results under a crossover design can be similarly 
obtained. Let C1 be the cost for recruiting a subject and C2 be the associated 
cost for each QT recording replicate. To find n and K for achieving a desired 
(fixed) power of 1 − β under the minimal budget is equivalent to minimiz-
ing C = nC1 + nmC2 under the constraint of 2(zα + zβ)2(ρm + 1 − ρ) − nmδ2 = 0. 
Under the given constraint, the total cost can be expressed as a function of m:
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where function [t] denotes the integer part of t. In practice, we may consider 
choosing the m value among m = 1,â•›3, and 5 that will result in the smallest C.

When the total budget is fixed, say, nC1 + nmC2 = C0, where C0 is a known 
constant, the power function (18.4) becomes a function of m only:
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Note that for any fixed ρ, both the fixed power approach (for achieving 
a desired power but minimizing the total budget) and the fixed budget 
approach (for achieving the minimal power under a fixed total budget) result 
in the same optimal choice of K (the number of replicates), which is given by 
m C C= −⎡

⎣
⎤
⎦ +1 21 1( )/ .ρ ρ
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18.6â•‡� Test for QT/QTc Prolongation

In the previous sections, we focused on statistical tests for mean QT/QTc 
difference between treatment groups for a given time interval under a 
parallel-group design and a crossover design. As an alternative, Cheng et al. 
(2008) proposed to test the maximum of QT/QTc differences between treat-
ment groups across all time intervals for the detection of potential QT/QTc 
prolongation. Their proposed method under a parallel-group design and a 
crossover design are described in the following.

18.6.1  �Parallel-Group Design

Under model (18.1), define δk = μ1k − μ2k and θ = max1≤k≤m δk, then a QT/QTc 
study is equivalent to testing the following hypotheses:

	 H Ha0 10 10: : .θ θ≥ <versus 	 (18.10)

Suppose the non-inferiority in QTc prolongation can be claimed via a 95% 
confidence upper bound based on a statistic U, then according to the 
ICH E14 guidance this means that U + z0.05SE(U) < 10, or equivalently, 
(U − 10)/SE(U) < −z0.05, which rejects H0 (18.10) at the 5% level of significance. 
Here SE(U) denotes the estimated standard error of U. Define Wk = y–1·k − y–2·k, 
where y–i·k is the Â�sample mean for the ith treatment at the kth time interval, and 
W = (W1,â•›…, Wm)′. Cheng et al. (2008) proved the following asymptotic result.

Theorem 18.1

Let T = max1≤k≤m Wk, and θ is defined in (18.10), then

	 n T Nd( ) ( , ( )),− → +θ σ σ0 2 1
2 2

where →d means convergence in distribution.

Proof

The random vector W is normally distributed with mean δ = (δ1,â•›…, δm)′ and 
variance Σ = = +( ) ( / ) ( / ) ,τ σ σkl m mn U n I2 21

2 2  where U is the m × m matrix of 
ones and Im is the m × m identity matrix. By Afonja (1972), the moment 
generating function of T is
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where
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and Φm−1(dk; R−kâ•›) is the survival function of an m − 1 dimensional mean 0 
normal random vector whose variance is the correlation matrix of W−k, 
the random vector formed by removing the kth component of W. Then the 
moment generating function of n T( )− θ  is
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which implies the claim.
By Theorem 18.1, an asymptotic α level test rejects H0 in (18.10) if and only if
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When the number of patients n for each treatment is small, the normal approx-
imation of distribution of T as suggested in Theorem 18.1 may not work well. 
Thus, Cheng et al. (2008) proposed a small sample correction of the distribu-
tion of T. Let ak = {akl}, where a nkl l k= −( )/δ δ σ2  for k ≠ l and akk = −∞. Let k0 
be such that δ δ θk k m k0 1= =≤ ≤max , then according to Afonja (1972),
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Similarly since
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Now by replacing in (18.12) and (18.13) k ak0 1
2

0, , ,σ  and σ2 with their obvious 
estimators, we get ρ̂ and γ̂ . Then a small sample corrected level α test rejects 
H0 in (18.10) if and only if
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18.6.2  �Crossover Design

Let yijkl be the average QTc responses (possibly adjusted for baseline) over 
the recording replicates at the lth time interval of the kth treating period 
for the jth subjects in the ith sequence, i = 1,â•›2, j = 1,â•›…, n, k = 1,â•›2, and l = 
1,â•›…, m. Under a crossover design, treatment index u is a function of (i, k), 
hence denoted as u = d(i, k). Consider the following model:

	 y a bijkl k ul ij ijk ijkl= + + + + +μ α β ε , 	 (18.15)

where
μ is the overall mean
αk is the period effect
βul is the treatment effect at lth time interval
aij is the subject random effect
bijk is the period random effect nested in the jth subject in the ith sequence
εijkl is the random error
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We assume that a Nij  ~ ( , )0 2
2σ , b Nijk  ~ ( , )0 1

2σ , εijkl ∼ N(0, σ2), aij, bijk, and εijkl’s are 
independent. Under model (18.15), the treatment effect at the lth time inter-
val is δl = β1l − β2l. Let θ = max1≤l≤m δl, then the hypotheses of QTc prolonga-
tion in a TQT/QTc study under the crossover design is the same as (18.10). 
Define Wl = (y–1·1l − y–1·2l + y–2·2l − y–2·1l)/2, l = 1,â•›…, m, then it is straightforward 
to show that W = (W1,â•›…, Wm)′ has the same distribution as described earlier. 
A test similar to the one derived in the previous section can therefore be 
constructed.

18.6.3  �Numerical Study

A simulation was conducted to evaluate the performance of the asymptotic 
test described in Section 18.6.1 (Cheng et al., 2008). For ease of comparison, 
Cheng et al. (2008) considered a similar setup as that given in Eaton et al. 
(2006). In other words, six time intervals (i.e., m = 6) and σ σ1

2 2+  was chosen 
to be 100. In addition, ρ σ σ σ= + =1

2
1
2 2 0 2 0 4 0 6 0 8/( ) . , . , . , . , and n = 40, 60, 80, 

100. The estimated size for (δ1, δ2, δ3, δ4, δ5, δ6) = (1,â•›1,â•›10,â•›1,â•›1,â•›1) is given in 
Table 18.4. The estimated power for (δ1, δ2, δ3, δ4, δ5, δ6) = (1,â•›2,â•›5,â•›1,â•›4,â•›1) is given 
in Table 18.5. All estimations were obtained based on 5000 simulation runs.

To illustrate the proposed test procedure, consider an example concerning 
a TQTc study with time-dependent recording replicates. Under the parallel-
group design, 380 qualified subjects were randomly assigned to either a test 
treatment or an active control agent (n = 190). Subjects were at rest prior to 
the scheduled ECG. QT measurements were taken in recordings of five repli-
cates within 2â•›min of one another. Five time intervals (m = 5) were considered 
2â•›h apart. The vector W was calculated as

	 W T= =( . , . , . , . , . ) , . .8 98 8 47 7 96 8 78 10 05 10 05’

TABLE 18.4

Estimated Size under (δ1, δ2, δ3, δ4, δ5, δ6) = 
(1,â•›1,â•›10,â•›1,â•›1,â•›1)

n 𝛒 = 0.2 𝛒 = 0.4 𝛒 = 0.6 𝛒 = 0.8

40 0.0452 0.0494 0.0482 0.0516
60 0.0524 0.0548 0.0520 0.0528
80 0.0486 0.0502 0.0496 0.0594

100 0.0478 0.0524 0.0514 0.0484

Source:	 Chow, S.C. et al., Sample Size Calculation 
in Clinical Research, Chapman and 
Hall/CRC Press, Taylor & Francis, 
New York, 2008. With permission.
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Hence we do not reject H0, implying that there was no statistical evidence to 
claim the test drug’s non-inferiority to placebo in QTc prolongation.

18.7â•‡� Recent Developments

To discuss some statistical issues that are commonly encountered in TQT 
studies, Tsong and Zhang (2008) put together a special issue on Statistical 
Issues in Design and Analysis of Thorough QTc Clinical Trials in the Journal 
of Biopharmaceutical Statistics. These recent developments are briefly summa-
rized in the following.

In an ongoing effort to try to understand the variability of QT/QTc data 
and determine how that variability would affect the design, analysis, and 
conclusions drawn from data collected in TQT/QTc studies, five PhRMA 
companies performed a retrospective analysis of placebo and nondrug 
resting ECG data (Agin et al., 2008). Based on the variability observed in 
the placebo and nondrug data, and on the power simulations, the PhRMA 
QT Statistics Expert Team suggested raising the upper confidence bound to 
define a negative QT/QTc study from 7.5â•›ms to at least 10â•›ms in the final ver-
sion of the ICH E14 guideline. On the other hand, Ma et al. (2008) examined 
the performances of several approaches (including individual QT correc-
tions and model-based QT analysis methods) to the analysis of QT changes 
based on QTc data obtained from a pharmaceutical company. Their simu-
lation results suggested that the mixed effects modeling approach is more 
powerful than other methods which are commonly used in QT studies.

TABLE 18.5

Estimated Power under (δ1, δ2, δ3, δ4, δ5, δ6) = 
(1,â•›2,â•›5,â•›1,â•›4,â•›1)

N 𝛒 = 0.2 𝛒 = 0.4 𝛒 = 0.6 𝛒 = 0.8

40 0.6022 0.6410 0.6684 0.6962
60 0.8234 0.8252 0.8408 0.8514
80 0.9190 0.9206 0.9246 0.9326

100 0.9628 0.9686 0.9664 0.9708

Source:	 Chow, S.C. et al., Sample Size Calculation in 
Clinical Research, Chapman and Hall/CRC 
Press, Taylor & Francis, New York, 2008. 
With permission.
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In their chapter, Zhang and Machado (2008) attempt to address some sta-
tistical issues including study design, primary statistical analysis, assay sen-
sitivity analysis, and sample size calculation for a TQT study from regulatory 
perspectives. Chow et al. (2008a) discussed the strategy of using replicate 
ECG recordings at each time point to improve the power in the assessment 
of the drug-induced QT/QTc prolongation. Zhang et al. (2008), on the other 
hand, discussed the design strategy of assessing the maximum QTc changes 
using the bootstrap approach. Along this line, Cheng et al. (2008) proposed 
an asymptotic test based on the maximum differences under both parallel-
group and crossover designs.

Wang et al. (2009) investigated the statistical properties of QTc intervals 
using individual-based correction (IBC), population-based correction (PBC), 
and fixed correction (FC) methods under both linear and log-linear regression 
models for the QT–RR relationship where RR is the time elapsing between 
two consecutive heartbeats. Based on a simulation study, Wang et al. (2009) 
suggested that in the analysis of QT intervals using PBC or FC methods, the 
RR interval may be included as a covariate in the model to adjust for the 
remaining correlation of QTc interval with RR interval. This approach will 
not only reduce the within-subject variability but also increase the statistical 
power for the assessment of QT/QTc prolongation.

For the assessment of QT/QTc prolongation, Zhang (2008) proposed 
two approaches, namely, a multiple local tests approach and a global 
average test. Zhang (2008) indicated that the type I error rate needs to 
be adjusted for the multiple local tests procedure, while no type I error 
rate adjustment is needed for the global average test. Tsong et al. (2008) 
indicated that the approaches proposed by Zhang are testing seemingly 
different hypotheses (the two sets of hypotheses are nested). Because of 
the property of the nested hypotheses, Tsong et al. (2008) suggested that 
Zhang’s proposed methods may be applied to the same study data for 
assay validation tests.

Tian and Natarajan (2008) raised concerns on the impact of baseline mea-
surement on the change from baseline to QTc intervals. In their chapter, they 
evaluated the effect of baseline on the change from baseline using the pla-
cebo data from several TQT studies. Tsong et al. (2008) pointed out that cur-
rent QT concentration methods might result in a biased underestimate of the 
maximum prolongation of the QTc interval.

18.8â•‡� Concluding Remarks

Although the ICH E14 guideline provides the basic recommendations on the 
regulatory requirements on the assessment of drug-induced prolongations 
of the QT interval, details in measurements and statistics under various 



QT Studies with Recording Replicates	 351

study designs (e.g., time-matched design with recording replicates) are yet 
to be fully developed. For the TQT studies using replicate ECG recordings, 
one of the controversial issues is whether a recording replicate is truly a rep-
licate. Another controversial issue relates to the validity of the matched time 
points approach. In other words, is it clinically/statistically justifiable? In 
addition, the control of inter- and intra-subject variabilities in the assessment 
of QT/QTc prolongation is another issue of practical interest to the clinical 
scientists and biostatistician.

Under a parallel-group design, the possibility that the sample size can 
be reduced depends upon the parameter ρ, the correlation between the 
QT recording replicates. As indicated earlier, when ρ closes to 0, these 
recording repeats can be viewed as (almost) independent replicates. As a 
result, n ≈ nold/m. When ρ is close to 1, we have n ≈ nold. Thus, there is 
not much gain for considering recording replicates in the study. On the 
other hand, assuming that all other parameters remain the same, the pos-
sibility of further reducing the sample size by a crossover design depends 
upon the parameter γ, which is a measure of the magnitude of the relative 
period effect. When analyzing QT intervals with recording replicates, we 
may consider change from baseline. It is, however, not clear which baseline 
should be used when there are also recording replicates at the baseline. 
Strieter et al. (2003) proposed the use of the so-called time-matched change 
from the baseline, which is defined as the measurement at a time point on 
the post-baseline day minus the measurement at the same time point on the 
baseline. The statistical properties of this approach, however, are not clear. 
In practice, it may be of interest to investigate relative merits and disadvan-
tages among the approaches using (1) the most recent recording replicates, 
(2) the mean recording replicates, or (3) the time-matched recording replicates 
as the baseline. This requires further research.

In the previous section, the test procedure based on maximum of cor-
related normal random variables proposed by Cheng et al. (2008) was dis-
cussed. Although the tests were derived under a balanced design without 
covariates, they can be easily generalized to allow for unbalance between 
the two treatment groups and adjustment of important covariates such 
as baseline QTc measures and/or heart rates. Note that in justifying our 
method, we did not assume any specific form for the variance structure 
of the model. This implies that our proposed method will still be valid 
when covariance structures other than compound symmetric, for exam-
ple, an AR(1) structure, is more appropriate, or when heteroscedasticity 
is suspected. It should be noted that our formulation of hypotheses in (2) 
represents only one of the possible interpretations of QTc prolongation 
evidence. Other definitions are worth considering. For example, under a 
parallel-group design, define

	 ϑ μ μ= −≤ ≤ ≤ ≤max max ,1 1 1 2k m k k m k
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then we could propose testing the following hypotheses:

	 H Ha0 10 10: : .ϑ ϑ≥ <versus

The above hypotheses are relevant in an active-controlled QT/QTc study 
where the maximal prolongation of the two drugs occurs at different time 
intervals where a globe comparison rather than a time-matched comparison 
is desired. It is seen that our proposed method can be easily modified to test 
the above hypotheses.
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19
Multiregional Clinical Trials

19.1â•‡� Introduction

For the approval of a drug product, the United States Food and Drug 
Administration (FDA) requires that at least two adequate and well-controlled 
clinical trials be conducted in order to provide substantial evidence of the effec-
tiveness and safety of the drug product. The characteristics of an adequate and 
well-controlled clinical trial include a valid design and appropriate statistical 
tests for data analysis. A valid statistical design can not only minimize bias 
and variability that may be associated with the trial but also help to address 
the scientific/medical questions and/or hypotheses of the trial. An appropri-
ate statistical test can provide a fair and unbiased assessment of the effective-
ness and safety of the study drug with certain assurance. When conducting a 
clinical trial, it may be desirable to have the study done at a single study site 
if (1) the study site can provide an adequate number of relatively homogeneous 
patients that represent the targeted patient population under study and (2) the 
study site has sufficient capacity, resources, and supporting staff to sponsor the 
study. The advantage of a single-site study is that it provides consistent assess-
ment for the efficacy and safety in a similar medical environment. However, a 
single-site study has some limitations and hence may not be feasible in many 
clinical trials, especially when the intended clinical trials are for relatively rare 
chronic diseases and the clinical endpoints for the intended clinical trials are 
relatively rare (Goldberg and Kury, 1990). As an alternative, a multicenter trial 
is usually considered. A multicenter study is a study conducted at more than 
one distinct center where the data collected from these centers are intended to 
be analyzed as a whole. Unlike a single-site study, a multicenter trial is much 
more complicated. Although, in practice, multicenter trials do expedite the 
patient recruitment process, some practical issues in design and analysis need 
to be carefully considered. These design and analysis issues include the selec-
tion of centers, the randomization of treatments, the use of a central laboratory 
for laboratory evaluation, and the existence of treatment-by-center interaction 
(Chow and Liu, 1998b). Note that the FDA indicates that an a priori division of 
a single multicenter trial into two studies is acceptable to the FDA for estab-
lishing the reproducibility of drug efficacy to new drug application approval. 
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However, a multicenter trial does not address the question whether the clini-
cal results can be generalized to different patient populations (e.g., different 
race or same race with different culture) with similar patient characteristics. 
For this purpose, a multiregional (multinational) multicenter trial is usually 
considered. A multiregional (multinational) trial is a trial conducted at more 
than one distinct region (country) where the data collected from these regions 
(countries) are intended to be analyzed as a whole.

In recent years, multiregional (multinational or global) trials have become 
increasingly common in clinical development. In addition to the interest of 
generalizability, the purpose of multiregional (multinational) trials is multi-
fold. First, a multiregional (multinational) trial makes the study drug avail-
able to patients from different regions (countries), which will be beneficial to 
the region (country), especially when no other alternative therapies are avail-
able in that region (country). Second, a multiregional (multinational) trial 
provides physicians from different regions (countries) the opportunity to 
obtain experience on medical practice of the study drug through the trial. In 
addition, a multiregional (multinational) trial may be used as a pivotal trial 
to fulfill the regulatory requirement of drug registration in some regions 
(countries). Finally, a multiregional (multinational) trial provides an overall 
assessment of the performance of the study drug across regions (countries) 
under study (Ho and Chow, 1998).

In the next section, some commonly seen practical issues in the design and 
analysis of multicenter trials are outlined. Also included are some practical 
issues and/or difficulties that are commonly encountered in multiregional 
(multinational) trials. Section 19.3 provides statistical justification for selecting 
the number of sites in a multicenter trial. Sample size calculation and alloca-
tion for a multiregional (multinational) study are discussed in Section 19.4. 
In Section 19.5, some statistical methods for bridging studies are described. 
Some concluding remarks are given in the last section.

19.2â•‡� Multiregional (Multinational), Multicenter Trials

19.2.1  �Multicenter Trials

In a multicenter trial, an identical study protocol is used at each center. A mul-
ticenter trial is a trial with a center or site as a natural blocking or stratified 
variable that provides replications of clinical results. As a result, a multicenter 
trial should permit an overall estimation of the treatment effect for the targeted 
patient population across various centers. As was indicated earlier, a multicenter 
trial with a number of centers is often conducted to expedite the patient recruit-
ment process. Although these centers follow the same study protocol, some 
design and analysis issues need to be carefully considered when planning a 
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multicenter trial (Suwelack and Weihrauch, 1992; Philipp and Weihrauch, 1993; 
Ho and Chow, 1998). These design and analysis issues include the selection of 
centers, the randomization of treatment, the use of a central laboratory for labo-
ratory evaluation, and the evaluation of treatment-by-center interaction. These 
issues are briefly outlined in the following sections.

19.2.1.1â•‡� Site Selection

In multicenter trials, the selection of centers is important to constitute a rep-
resentative sample for the targeted patient population. In practice, the centers 
are usually selected based on convenience and availability. When planning 
a multicenter trial with a fixed sample size, it is important to determine the 
allocation of the centers and the number of patients in each center. For com-
parative clinical trials, it is not desirable to have too few patients in each center 
because the comparison between treatments is usually made between patients 
within centers. A rule of thumb is that the number of patients in each center 
should not be less than the number of centers for a reliable evaluation of the 
effectiveness and safety of the study drug (Shao and Chow, 1993). For example, 
if the intended clinical trial calls for 100 patients, the selection of not more 
than 10 sites is preferable. Some statistical justification is provided in the next 
section. Although a multicenter trial has its advantages, it also suffers from 
some difficulties in site selection. For example, if the enrollment is too slow, 
the sponsor may wish to (1) terminate the inefficient study sites, (2) increase 
the enrollments for the most aggressive sites, or (3) open new sites during the 
course of the trial. Each action may introduce potential biases to the study. In 
addition, the sponsor may ship unused portions of the study drugs from the 
terminated sites to the newly opened sites for cost-effectiveness consideration. 
This can certainly increase the chance of mixing up the randomization sched-
ules and consequently decrease the reliability of the study.

19.2.1.2â•‡� Randomization of Treatments

In multicenter trials, we usually select investigators first and then select patients 
at each selected investigator’s site. At each selected investigator’s site, the inves-
tigator will usually enroll qualified patients sequentially. A qualified patient 
is referred to as a patient who meets the inclusion and exclusion criteria and 
has signed the informed consent form. The primary concern is that neither the 
selection of investigators nor the recruitment of patients is random. In practice, 
although the selection of investigators and patients at the selected sites is not 
random, patients are assigned to treatment groups at random. The collected 
clinical data are then analyzed as if they were obtained under the assumption 
that the sample is randomly selected from a homogeneous patient population. 
This process is referred to as the invoked population model and is currently 
widely accepted in clinical research. As a result, randomization is usually per-
formed by study sites in multicenter trials. Note that Lachin (1988) provides a 
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comprehensive summary of the randomization basis for statistical tests under 
various models. To provide a valid statistical evaluation of the effectiveness and 
safety of the study drug, randomization is important to ensure that patients 
selected from the intended patient population constitute a representative sam-
ple of the intended patient population. Statistical inference can then be drawn 
based on some probability distribution assumption of the intended patient 
population. The probability distribution assumption depends on the method of 
randomization under a randomization model. A study without randomization 
will result in the violation of the probability distribution assumption, and con-
sequently no accurate and reliable statistical inference on the study drug can be 
drawn. It should be noted that in multicenter trials, a large number of study sites 
may increase the chance of making errors in randomization schedules.

19.2.1.3â•‡� Central Laboratory

As indicated earlier, a multicenter trial is usually conducted to enroll enough 
patients within a desired time frame. In this case, a concern may be whether 
the laboratory tests should be performed by local laboratories or by a central 
laboratory. The relative advantages and drawbacks between the use of a cen-
tral laboratory and local laboratories include (1) the combinability of data, 
(2) timely access to laboratory data, (3) laboratory data management, and 
(4) cost. A central laboratory provides combinable data with unique normal 
ranges, while local laboratories may produce uncombinable data due to dif-
ferent equipment, analysts, and normal ranges. As a result, laboratory data 
obtained from a central laboratory are more accurate and reliable compared 
with those obtained from local laboratories. In multicenter trials, it is not 
uncommon that laboratory tests are performed by local laboratories. In this 
case, it is suggested that laboratory test results be standardized according to 
the investigator’s normal ranges or local laboratories’ normal ranges before 
analysis (see, e.g., Chung-Stein, 1996). Note that before the data from different 
laboratories can be combined for analysis, it may be of interest to evaluate the 
repeatability (within-laboratory variability) and reproducibility (between-site 
variability) of the results, which can be done by sending to each laboratory 
identical samples that represent a wide range of possible values, and analyze 
using the method of analysis of variance.

19.2.1.4â•‡� Treatment-by-Center Interaction

For a multicenter trial, the FDA guideline suggests that individual center 
results should be presented. In addition, the FDA suggests that tests for 
homogeneity across centers (i.e., for detecting treatment-by-center inter-
action) be done. The significant level used to declare the significance of 
a given test for a treatment-by-center interaction should be considered in 
light of the sample size involved. Any extreme or opposite results among 
centers should be noted and discussed. For the presentation of the data, 
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demographic, baseline, and post-baseline data as well as efficacy data 
should be presented by center, even though the combined analysis may be 
the primary one. Gail and Simon (1985) classify the nature of interaction as 
either quantitative or qualitative. A quantitative interaction between treat-
ment and center indicates that the treatment differences are in the same 
direction across centers but the magnitude differs from center to center, 
while a qualitative interaction reveals that substantial treatment differences 
occur in different directions in different centers. If there is no evidence of 
treatment-by-center interaction, the data can be pooled for analysis across 
centers. The analysis with combined data provides an overall estimate of 
the treatment effect across centers. In practice, however, if there are a large 
number of centers, we may observe significant treatment-by-center interac-
tion, either quantitative or qualitative. In addition, a multicenter trial with 
too many centers may end up with a major imbalance among centers, in 
that some centers may have a few patients and others a large number of 
patients. If there are too many small centers with a few patients in each 
center, we may consider the following two approaches. The first approach 
is to combine these small centers to form a new center based on their geo-
graphical locations or some criteria prespecified in the protocol. The data 
can then be analyzed by treating the created center as a regular center. 
Another approach is to randomly assign the patients in these small centers 
to those larger centers and reanalyze the data. This approach is valid under 
the assumption that each patient in a small center has an equal chance of 
being treated at a large center.

19.2.2  �Multiregional (Multinational), Multicenter Trials

As indicated earlier, a multiregional (multinational) trial is a trial conducted 
at more than one distinct region (country) where the data collected from these 
regions (countries) are intended to be analyzed as a whole. Within each region 
(country), the trial in fact is a multicenter trial. As a result, a multiregional 
(multinational) trial can be viewed as a trial consisting of a number of multi-
center trials conducted at different regions (countries) under the same study 
protocol. In practice, it is a concern whether a multiregional (multinational) trial 
can maintain the integrity of the trial due to the complexity which includes 
difficulties that are already common in multicenter trials within each region 
(country) as described in the previous section. To maintain the integrity of the 
trial and to achieve the desired accuracy and reliability for an overall assess-
ment of the effectiveness and safety of the study drug, it is important to 
identify all possible causes of bias and variability. These possible causes of 
bias and variability could be classified into four categories of (1) expected and 
controllable, (2) expected but uncontrollable, (3) unexpected but controllable, 
and (4) unexpected and uncontrollable. In general, these biases and variabilities 
are mostly due to confounding and differences in culture, medical culture/
practice, standards, and regulatory, which will be discussed below.
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19.2.2.1â•‡� Confounding

In a multicenter trial, qualified patients within a particular country (e.g., China 
or Japan) tend to be of the same race, which may be different than those patients 
who are from other countries (e.g., the United States and Germany). An 
immediate concern is what if there is a potential confounding effect between 
treatment and race. If the confounding effect between treatment and race does 
exist, it is difficult to evaluate whether the observed treatment difference is 
due to treatment or race. In addition, the use of concomitant medication is also 
a concern, especially when the multiregional (multinational) trial involves the 
third countries. This is because the quality, efficacy, and safety of the concomi-
tant medications may be a concern. Most of these concomitant medications 
may or may not be approved by regulatory agencies from other countries. The 
potential drug-to-drug interaction may contaminate the true treatment effect 
of the study drug. This is very common for those patients from Chinese coun-
tries in the Asian Pacific region who are likely to take traditional Chinese 
medicines (or herbal medicines) during the conduct of the trial even if they 
are told not to. These confounding effects present great challenges to clinical 
researchers and biostatisticians as well.

19.2.2.2â•‡� Culture

When planning a multiregional (multinational) trial, it is very important 
to understand and appreciate culture differences from different countries. 
These culture differences may have an impact on the conduct of the trial. 
For example, before a multiregional (multinational) trial can be conducted, 
most regulatory agencies require that the study protocol be submitted to 
an institutional review board (IRB) for review and approval. The purpose 
of an IRB review is not only to assess the potential risk of the intended 
trial for patient protection but also to ensure the validity and integrity of 
the intended trial. Different countries, however, may assess the potential 
risk differently due to the difference in culture. In addition, patients are 
required to sign an informed consent form before they can be enrolled 
into the study. It is the investigator’s responsibility to explain the potential 
risk/benefit of the study drug to the patients before they sign the informed 
consent form. However, in some countries such as China, most patients 
are unlikely and unwilling to sign an informed consent form if they were 
told that the study medication is a test drug rather than a new drug under 
investigation. It is a traditional Chinese culture not to take a test drug. 
Patients are likely to try a new drug. As a result, we may have a problem 
obtaining signed informed consent forms from patients. For good clinical 
practice (GCP), it is unethical to tell patients that they will be taking a new 
drug rather than a test drug under investigation. Therefore, it is suggested 
that a well-designed educational program be implemented by the health 
authority to eliminate the difficulties caused by the difference in culture.
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19.2.2.3â•‡� Medical Culture/Practice

In multiregional (multinational) trials, one of the primary concerns is whether 
the collected clinical data can be combined for the assessment of the effective-
ness and safety of the study drug. Although critical information can be captured 
by a set of standard case report forms (CRFs), it is very likely that we may cap-
ture different information due to differences in (1) the translation of the CRF in 
different languages, (2) the understanding of medical personnel, and (3) medical 
culture/practice. In different countries, there is certainly a need to translate the 
CRF to their respective languages so that patients, clinical monitors, and inves-
tigators have same knowledge regarding what information the trial is intended 
to capture. This is important especially for those countries in which English is 
not a popular language. A poorly translated CRF may mislead patients to pro-
vide inaccurate or even wrong information of little value to the intended trial. 
In many cases, differences in medical culture and/or practice may result in a 
very different diagnosis of a similar symptom; consequently, the interpretation 
or assessment of the efficacy and safety parameters may be different. This is 
always true for reporting adverse events (AEs). For example, an observed rare 
but severe AE in one country may be coded differently in a different country if 
the observed AE is commonly seen in the medical community of the particular 
country. As a result, AE coding may be different from one country to another, 
which provides a challenge for having a fair and unbiased assessment of safety 
across different countries. As described earlier in the previous section, it is likely 
that a local laboratory will be used for laboratory tests in multinational trials. It 
is expected that different laboratories in different countries will have different 
laboratory normal ranges due to differences in medical culture and/or practice. 
In the interest of combining laboratory data for an overall assessment of safety, 
it is suggested that the laboratory data be standardized according to respective 
laboratory normal ranges before pooling for analysis.

19.2.2.4â•‡� Regulatory Requirement

For drug research and development, most regulatory agencies have similar but 
slightly different regulations to ensure the drug product has the claimed efficacy 
and safety. In addition, many regulations and guidelines/guidances were also 
imposed to ensure that the approved drug product meets standards for iden-
tity, strength, quality, purity, and stability as specified in the pharmacopedia in 
the respective countries such as the United States Pharmacopedia (USP) in the 
United States and the Chinese Pharmacopedia (CP) in the People’s Republic of 
China. It should be noted that the standards for assay development/validation 
and test procedures, sampling plans, and acceptance criteria for potency, con-
tent uniformity, dissolution, and disintegration may differ from one country to 
another. These differences may result in a potential treatment-by-country inter-
action. Consequently, it is difficult to combine the collected clinical data for an 
overall assessment of the efficacy and safety of the study drug.
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19.2.2.5â•‡� Drug Management

Drug management is a great challenge in multinational trials. Randomization 
schedules are usually generalized by country with a stratification factor (if 
desirable) and an appropriate block size for treatment balance. The general-
ized randomization schedules will then be forwarded to drug management 
for packaging and shipment. The complication is not the randomization or 
drug packaging but the shipment to the study sites. In many cases, the study 
drug may not be available in some countries and need to be imported from 
other countries. Different countries have different regulations for importing 
investigational drugs. It may take weeks or months for the processing. If the 
duration of the intended trial is over a few years, the sponsor may have to 
take the drug expiration dating period into account to make sure that the 
study drug will not be expired prior to the end of the study. Another con-
sideration for drug management is to make sure that sufficient drugs will 
be supplied during the conduct of the study. Any unused drugs need to be 
returned or disposed depending on specific regulations of individual coun-
tries. One solution, which is probably the most cost effective, is to consider 
the so-called interactive voice randomization system (IVRS) for randomiza-
tion and drug management. The IVRS is used to ship sufficient drugs to 
specific sites on time in a more cost-effective way.

19.3â•‡� Selection of the Number of Sites

In clinical trials, multiple sites are necessarily considered because one single 
study site may not have enough resources and/or capacity to handle all the sub-
jects that enter the study. In addition, multiple sites will expedite patient enroll-
ment. In practice, it is not desirable to have too few subjects in each study site. 
On the other hand, too many study sites may increase the chance of observing 
so-called treatment-by-center interaction, which makes an overall inference on 
the treatment effect impossible. Thus, at the planning stage of a clinical trial, 
how many study sites should be used in order for achieving optimal statistical 
properties for a given sample size is a commonly asked question.

The question regarding how many study sites should be used is, in fact, a 
two-stage sampling problem. One first selects a number of study sites and, 
for each sampled study site, one then selects a number of patients. Shao 
and Chow (1993) proposed statistical testing procedures in a two-stage 
sampling problem with large within-class sample sizes. In addition, they 
derived a two-stage sampling plan by minimizing the expected squared 
volume (ESV) (or the generalized variance) of the confidence region related 
to the test. Some results for a two-stage sampling plan are described in the 
subsequent subsections.
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19.3.1  �Two-Stage Sampling

For a given clinical trial comparing K treatment groups, we first draw a ran-
dom sample of n study sites. For each sampled study site, we then recruit 
Mk subjects, k = 1,â•›…, K. Denote by Xijk the random variable for the jth subject 
from the kth treatment group in the ith study site, i(site) = 1,â•›…, n, j(subject) = 
1,â•›…, Mk, and k(treatment) = 1,â•›…, K and

	 X X j M k Ki ijk k= = =( , , ..., , , ..., ).1 1

Then, Xi is a random Mk
k∑( )  vector and X1,â•›…, Xn are independent and iden-

tically distributed. For each i, the components of Xi have the same distribution 
if they are from the treatment group. Thus, the means and the variances of Xijk, 
denoted by μk and σk

2 respectively, are unknown but depend on k only. In the 
second-stage sampling, for each selected study site, we recruit a simple ran-
dom sample of mk subjects without replacement who will receive the kth treat-
ment, where 1 ≤ mk ≤ Mk and k = 1,â•›…, K. The total number of subjects recruited 

from each selected study site is mk
k•  and the total number of subjects in the 

clinical trial is m nk
k∑( ) . Now, the question is how to select n and mk.

Let xijk denote clinical response observed from the j th subject in the ith 
study site who receives the k th treatment group, where i = 1,â•›…, n, j = 1,â•›…, mk, 
and k = 1,â•›…, K. Also, let x–k and σ̂k

2 be the sample mean and sample variance 
from the kth treatment group, respectively, where
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Using the techniques described by Cochran (1977), we have E(x–k) = μk and
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where ρk is the correlation coefficient between xijk and xij′, k with j ≠ j′. In many 
pharmaceutical problems, ρk = 0 and hence
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is an unbiased estimator of Var(x–k). In the case where ρk ≠ 0, the variance 
estimator in (19.2) is not valid. For each fixed k,
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An unbiased estimator of Var(x–k) is the sample variance of {x–ik, i = 1,â•›…, n}:
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which we can use to replace the estimator in (19.2) when ρ ≠ 0. Note that the 
estimator in (19.2) is more efficient than that in (19.3) when ρk = 0, and (19.2) 
and (19.3) are equivalent when mk = 1.

Assume that nmk is large so that approximately 100(1â•›−â•›α)% lower and 
upper confidence bounds for μk are given by

	 L x z s U x z sk k k k k k= − = +α αand , 	 (19.4)

respectively, where zα is the (1â•›−â•›α)th quantile of the standard normal distri-
bution. An approximately 100(1â•›−â•›α)% joint confidence region for the vector 
μ = (μ1,â•›…, μK) is

	

μ
μ

χα:
( )

( ) ,
x

s
Kk k

kk

−⎡

⎣
⎢

⎤

⎦
⎥ ≤

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∑

2
2

	

(19.5)

where χα
2 ( )K  is the (1â•›−â•›α)th quantile of the chi-square distribution with K 

degrees of freedom.
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19.3.2  �Testing Procedure

Shao and Chow (1993) proposed a testing procedure in a two-stage sam-
pling problem with large within-class (i.e., within treatment in our case) 
sample sizes and derived a two-stage sampling plan by minimizing the ESV 
(or the generalized variance) of the confidence region related to the test 
assuming that there is an increasing order of mean across treatment 
groups, that is,

	 μ μ μ1 2< < <� K , 	 (19.6)

where μk’s satisfy

	 a b k Kk k k< < =μ , , ..., ,1 	 (19.7)

in which (ak,â•›bk) are in-house acceptance limits or release targets used for 
quality assurance of the manufactured products. The basis for construction 
of ak’s and bk’s is information obtained from previous studies. Note that if 
we choose the ak’s and bk’s so that bk ≤ ak+1, k = 1,â•›…, K − 1, then (19.7) implies 
(19.6). Since the μk’s are unknown, we need to make a decision based on 
xijk’s. Let H0 denote the null hypothesis that (19.6) (or (19.7)) does not hold 
and Ha  the alternative hypothesis that (19.6) (or (19.7)) is true. Then our 
problem becomes a statistical testing problem of H0 versus Ha. The form 
of the null hypothesis, however, is so complicated that there is no simple 
testing procedure available in the literature. When we test (19.7), we can 
express H0 as

	 H a b kk k k k0 : or for at least one .μ μ< > 	 (19.8)

In the special case of K = 1, we may adopt the two one-sided α level tests 
approach in the assessment of bioequivalence (see, e.g., Westlake, 1976; 
Hauck and Anderson, 1984; Schuirmann, 1987). That is, we reject H0â•›:â•›μ1 < a1 
or μ1 > b1 if and only if

	 a L U b1 1 1 1< <or ,

where L1 and U1 are given in (19.4). Generalizing this idea to the case of K ≥ 3, 
Shao and Chow (1993) proposed the following testing procedure for (19.7): 
H0 in (19.8) is rejected if and only if

	 a L U b k Kk k k k< < =and , , ..., ,1 	 (19.9)
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where Lk and Uk are given in (19.4). A geometric interpretation of this test 
procedure is that we reject H0 whenever

	 C R� , 	 (19.10)

where
C = (L1, U1) × … × (LK, UK),
R = (a1, b1) × … × (aK,â•›bK).

Since the (Lk, Uk)’s are independent, C is actually a confidence region for μ 
with an approximate level (1 − α)K. It can be shown that

	
sup lim | .

, , ...,H nm k Kk
P C R H

0
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(19.11)

For example, when K = 1, the left-hand side of (19.11) is greater than or equal to
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since s1 → 0. Hence (19.11) holds. We now turn to the test of H0 that (19.6) does 
not hold. Let δk = μk+1 − μk, k = 1,â•›…, K − 1. Then we can express H0 as

	 H kk0 0: .δ < for at least one 	 (19.12)

Note that (19.12) is a special case of (19.8) with ak = 0 and bk = ∞. Hence we can test 
(19.12) based on a procedure similar to (19.9): we reject H0 in (19.12) if and only if

	 0 1 11 1
2 2 1 2< − − + = −+ +x x z s s k Kk k k kα[ ] , , ..., ./

	 (19.13)

19.3.3  �Optimal Selection

As indicated above, although we are able to control the type I error rate, we 
are unable to control the other type of error rate, that is,

	 P H H P C R Ha a( ) ( | ),0 is not rejected| = ⊄

where C and R are given in (19.10). One way to reduce this statistical error is 
to minimize the size of the region C. The K-dimensional volume of C is

	 υ α= − − =( ) ( ) ( ) ( ).U L U L z s sK K
K

K1 1 12� �
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Since we cannot minimize υ by selecting sample sizes before the samples are 
drawn, we propose to select n and mk by minimizing the ESV

	
ESV = =E z

n m m m
K

K K
K

( ) ( ) ( )
( )

,υ σ σ σα
2 2

1
2

2
2 2

1 2
2

1
�

� 	
(19.14)

under the constraint that a study site can handle only a limited number of 
subjects. Motivation for this approach is also the fact that the ESV in (19.14) 
is proportional to the generalized variance, which is the K-dimensional 
volume of the confidence region defined by (19.5) and is a measure of the 
asymptotic relative efficiency (see, e.g., Serfling, 1980); hence, minimizing the 
ESV is equivalent to minimizing the generalized variance.

From (19.14), minimizing ESV is equivalent to minimizing the function

	
J n m m

n m m m
K K

K
( , , ..., )

( )
.1
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1
=

�

Note that although the σk’s affect the ESV, they do not affect the selection of 
sample sizes according to the criterion of minimizing the ESV.

Let c0 denote the cost of each subject. The total cost is then c n mk
k

0 ∑( )  
and the cost constraint is
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where c is a given upper limit for the total cost. Suppose that a given study 
site can handle only N subjects owing to limited availability of resources. 
The resources constraint is then
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When there is no cost constraint (e.g., resources constraint), we simply take C = ∞ 
(N = ∞). Let L be the integer part of min(N, c/c0). We then minimize J(n,â•›m1,â•›…, mKâ•›) 

subject to n m Lk
k∑( ) ≤ , 1 ≤ mk ≤ Mk, and n,â•›mk’s are integers, k = 1,â•›…, K. 

Consider the problem of minimizing the function J(n,â•›m1,â•›…, mK) over the region
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Clearly, the derivative of the function J does not vanish on the set
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Hence, the minimum of J is on the set
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On the set A1, n L mk
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= ( )∑�  and
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we obtain

	
m

m
K

k Kk = =, , ..., ,1

that is, J has a minimum on A1 as long as m1 = m2 = .â•›.â•›. = mK. If there is an 
integer m* such that 1 ≤ m* ≤ Mk for all k and L/Km* is an integer, then J 
has a minimum at m1 = .â•›.â•›. = mk = m* and n = L/Km*. If L/Km* is not an inte-
ger for all possible m*, then we should select m* in the set {1,â•›2,â•›…, min(M1, 
M2,â•›.â•›.â•›., MK)} such that Km*[L/Km*] is as large as possible. Thus, a solution 
is given by

	 m m m mK1 2= = = =� *, 	 (19.15)
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n

L
Km

= ⎡

⎣⎢
⎤

⎦⎥*
,
	

(19.16)

where [L/Km*] is the integer part of L/Km* and we choose m* from the set of 
integers {1,â•›2,â•›…, min(M1,â•›M2,â•›…, MK)} such that
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is as large as possible.

	
(19.17)

In particular, if there is an integer m* ≤ min(M1,â•›…, MKâ•›) such that L/Km* is 
an integer, then m1 = .â•›.â•›. = mK = m* and n = L/Km* is a solution. There may be 
several sampling plans that satisfy (19.15) through (19.17).

A sampling plan that satisfies (19.15) through (19.17) is optimal in terms of 
the ESV only. We would have to use other criteria to choose a sampling plan 
when there are several plans that satisfy. As an example, consider the situation 
where K = 4, M1 = 2, M2 = 4, M3 = 6, M4 = 8, and L = 100. Since min(M1, M2, M3, 
M4â•›) = 2, possible values of m* are 1 and 2. For m* = 2, Km* = 4â•›×â•›2 = 8, the larg-
est n we can take is 12, which gives the total sample size 96 < L. Similarly, for 
m* = 1, Km* = 4, the largest n we can use is 25, which gives the total sample 
size 100 = L. Hence m* = 1 and n = 25 is the unique plan that satisfies (19.15) 
through (19.17). To compare this plan with other sampling plans, consider 
the single-stage sampling plan with mk = Mk for all k and n = 5 (which also 
gives the total sample size 100). A simple calculation shows that the ESV of 
the single-stage sampling plan over the ESV of the plan that satisfies (19.15) 
through (19.17) is 162.8%. Therefore, the single-stage sampling plan is not 
efficient. Note that the sampling plan that takes {mk} in proportion to {Mk} 
produces the same ESV as the single-stage sampling.

In case of ρk ≠ 0, although the testing procedures described above are 
valid regardless of whether ρk = 0 (assuming we use the variance estimator 
(19.3)â•›), the sampling plan given by (19.15) through (19.17) is not necessarily 
good when ρk ≠ 0. In fact, when ρk ≠ 0 the optimal sampling plan, if it exists, 
depends on the ρk’s and, therefore, the problem may be unsolvable since 
the ρk’s are unknown. This difficulty is not a serious concern for many 
problems in the pharmaceutical industry, since ρk = 0 for all k is a reason-
able assumption. Furthermore, in many cases ρk ≠ 0 but is relatively small. 
We then expect that the sampling plan given by (19.15) through (19.17) is 
nearly optimal.

19.3.4  �An Example

A study protocol for a clinical trial usually includes a statement regarding 
sample size determination to justify the selected sample size based on 
a pre-study power analysis. Suppose a placebo-controlled clinical trial 
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entails the selection of a sample size of 200 patients to achieve the desired 
power for the detection of a clinically meaningful difference. The question 
then is: “How many study sites should one use?” Suppose that each study 
site can handle only a maximum of 40 patients. The study director needs 
to decide the number of study sites (n) and the number of patients at each 
study site (m1 for the control group and m2 for the treatment group) under 
the following constraints:

	 m m m m n m m1 2 1 2 1 240 40 40 200≤ ≤ + ≤ + ≤, , , ( ) .

If we use the ESV criterion described earlier, we obtain the following plans:

Plan m1 = m2 m1 + m2 n

1 1 2 100
2 2 4 50
3 4 8 25
4 5 10 20
5 10 20 10
6 20 40 5

Note that the plans 1–6 produce the same ESV and are all optimal in terms 
of the ESV. Hence we need to use some other criterion to choose a plan from 
plans 1 to 6. Note that, for a multicenter study, the FDA requires that one 
examines the treatment-by-study-site interaction before one pools the data for 
analysis. An increase in the number of study sites may increase the chance of 
a treatment-by-study-site interaction. As a rule of thumb, it is preferred that 
the number of study sites be less than the number of patients in each study 
site, that is, n < m1 + m2. Only plans 5 and 6 satisfy n < m1 + m2. If one expects a 
treatment-by-study-site interaction, then sampling plan 6 is preferred because 
the comparison between treatments occurs within each study site.

19.4â•‡� Sample Size Calculation and Allocation

19.4.1  �Some Background

As indicated by Uesaka (2009), the primary objective of a multiregional 
bridging trial is to show the efficacy of a drug in all participating regions 
while also evaluating the possibility of applying the overall trial results to 
each region. To apply the overall results to a specific region, the results in 
that region should be consistent with either the overall results or the results 
from other regions. A typical approach is to show consistency among 
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regions by demonstrating that there exists no treatment-by-region interaction. 
Recently, the Ministry of Health, Labor and Welfare (MHLW) of Japan pub-
lished a guidance on Basic Principles on Global Clinical Trials that outlines 
the basic concepts for planning and implementing multiregional trials in 
a Q&A format (MHLW, 2007). In this guidance, special consideration was 
placed on the determination of the number of Japanese subjects required 
in a multiregional trial. As indicated, the selected sample size should be 
able to establish the consistency of treatment effects between the Japanese 
group and the entire group.

To establish the consistency of the treatment effects between the Japanese 
group and the entire group, it is suggested that the selected size should satisfy
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where DJ and DAll are the treatment effects for the Japanese group and the 
entire group, respectively. Along this line, Quan et al. (2010) derived closed 
form formulas for the sample size calculation/allocation for normal, binary, 
and survival endpoints. As an example, the formula for continuous endpoint 
assuming that DJ = DNJ = DAll = D, where DNJ is the treatment effect for the 
non-Japanese subjects, is as follows:
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where N and NJ are the sample size for the entire group and the Japanese group, 
respectively. Note that the MHLW of Japan recommends that ρ should be cho-
sen to be either 0.5 or greater and γ should be chosen to be either 0.8 or greater 
in (19.18). As an example, if we choose ρ = 0.5, γ = 0.8, α = 0.05, and β = 0.9, then 
NJ/N = 0.224. In other words, the sample size for the Japanese group has to be 
at least 22.4% of the overall sample size for the multiregional trial.

In practice, 1â•›−â•›ρ is often considered a non-inferiority margin. If ρ is 
chosen to be greater than 0.5, the Japanese sample size will increase sub-
stantially. It should be noted that the sample size formulas given by Quan 
et al. (2010) are derived under the assumption that there are no differences 
in treatment effects for the Japanese group and non-Japanese group. In 
practice, it is expected that there will be a difference in treatment effect 
due to ethnic differences. Thus, the formulas for sample size calculation/
allocation derived by Quan et al. (2010) are necessarily modified in order 
to take into consideration the effect due to ethnic differences.

As an alternative, Kawai et al. (2008) proposed an approach to rationalize 
partitioning the total sample size among the regions so that a high probabil-
ity of observing a consistent trend under the assumed treatment effect across 
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regions can be derived, if the treatment effect is positive and uniform across 
regions in a multiregional trial. Uesaka (2009) proposed new statistical crite-
ria for testing consistency between regional and overall results which do not 
require impractical sample sizes, and discussed several methods of sample 
size allocation to regions. Basically, three rules of sample size allocation in 
multiregional clinical trials are discussed. These rules include (1) allocating 
equal size to all regions, (2) minimizing total sample size, and (3) minimiz-
ing the sample size of a specific region. It should be noted that the sample 
size of a multiregional trial may become very large when one wishes to 
ensure consistent results between region of interest and the other regions or 
between the regional results and the overall results regardless of which rules 
of sample size allocation are used.

19.4.2  �Proposals of Statistical Guidance—Asian Perspective

As indicated earlier, based on the MHLW guidance, several methods for the 
determination of sample size in a specific region have been proposed (see, 
e.g., Quan et al., 2010; Uesaka, 2009). In addition, Ko et al. (2010) focus on a 
specific region and establish four statistical criteria for consistency between 
the region of interest and overall results. More specifically, two criteria are to 
assess whether the treatment effect in the region of interest is as large as that 
of the other regions or of the regions overall, while the other two criteria are 
to assess the consistency of the treatment effect of the specific region with 
other regions or the regions overall.

The global drug development plays an important role in a scientific man-
ner to pharmaceutical research. However, the statistical work to draw a sta-
tistical inference with regard to translational medicine research is still in 
a preliminary stage. To provide a comprehensive understanding of statisti-
cal design and methodology that are commonly employed in global drug 
development, under the support of the Bureau of Pharmaceutical Affairs, 
Department of Health, Taiwan, the National Health Research Institutes 
and Formosa Cancer Foundation organized one symposium on “Current 
Advanced Statistical Issues in Clinical Trials—Flexibility and Globalization” 
held on November 21, 2008, and a closed-door meeting on “Designs of 
Clinical Trials in New Drug Developments” held on November 22, 2008 in 
Taipei, Taiwan. As a result, a proposal of statistical guidance to multiregional 
trials was developed. This proposal is briefly described in the following sec-
tion. We first give a definition of the so-called Asian region.

19.4.2.1â•‡� Definition of the Asian Region

When planning a multiregional trial, the definition of the Asian region is 
very critical, since there are many regional countries in Asia. According to the 
International Conference on Harmonization (ICH) E5 guideline, the ethnic 
factors are classified into the following two categories: intrinsic and extrinsic 
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factors. Intrinsic ethnic factors are factors that define and identify the popu-
lation in the new region and may influence the ability to extrapolate clinical 
data between regions. They are more genetic and physiologic in nature, e.g., 
genetic polymorphism, age, and gender. On the other hand, extrinsic ethnic 
factors are factors associated with the environment and culture. Extrinsic 
ethnic factors are more social and cultural in nature, e.g., medical practice, 
diet, and practices in clinical trials and conduct.

For example, the increasing evidence that genetic determinants may 
mediate variability among persons in response to a drug implies that 
the patients’ responses to therapeutics may vary among racial and ethnic 
groups. In other words, after the intake of identical doses of a given agent, 
some ethnic groups may have clinically significant side effects, whereas 
others may show no therapeutic response. An example of such a situation 
can be seen in the study by Caraco (2004). Caraco pointed out that some of 
this diversity in rates of response can be ascribed to differences in the rate 
of drug metabolism, particularly by the cytochrome P-450 superfamily of 
enzymes. While 10 isoforms of cytochrome P-450 are responsible for the 
oxidative metabolism of most drugs, the effect of genetic polymorphisms 
on catalytic activity is most prominent for 3 isoforms—CYP2C9, CYP2C19, 
and CYP2D6. Among these three, CYP2D6 has been most extensively 
studied and is involved in the metabolism of about 100 drugs, including 
β-blockers, and antiarrhythmic, antidepressant, neuroleptic, and opioid 
agents. Several studies revealed that some patients are classified as having 
“poor metabolism” of certain drugs owing to the lack of CYP2D6 activity. 
On the other hand, patients having some enzyme activity are classified into 
three subgroups: those with “normal” activity (or extensive metabolism), 
those with reduced activity (intermediate metabolism), and those with 
markedly enhanced activity (ultrarapid metabolism). Most importantly, 
the distribution of CYP2D6 phenotypes varies with race. However, the fre-
quency of the phenotype associated with poor metabolism is 1% in both 
the Chinese and Japanese populations. Another study also showed that 
there exist no ethnic differences in CYP2C19 among Chinese, Japanese, and 
Korean populations (Myrand et al., 2008). Considering genetic polymor-
phism, the International HapMap Project also shows that the Chinese and 
Japanese genome look alike. All these data may reasonably support that the 
countries of China, Hong Kong, Japan, Korea, and Taiwan can be regarded 
as the Asian region.

On the other hand, the frequency of HLA alleles is associated with Stevens–
Johnson syndrome (Chung et al., 2004). However, the prevalence rates of 
HLA-B*1502 for Chinese, Japanese, and Korean populations are, respectively, 
1.9%–7.1%, <0.3%, and 0.2% (see, e.g., Ueta et al., 2007). That is, there exist differ-
ences within Asian populations in this regard. Consequently, the definition of 
a region may possibly vary from disease to disease. In fact, all differences and 
similarities in both intrinsic and extrinsic ethnical factors should be consid-
ered for the definition of the Asian region.
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Within the Asian region, each country may consider accepting all the data 
derived from other countries in the “Asian region.” For example, Taiwan 
accepts all Asian data. A study by Lin et al. (2001) found that the so-called 
Taiwanese, accounting for 91% of the total population in Taiwan, are com-
prised of Minnan and Hakka people who are closely related to the south-
ern Han, and are clustered with other southern Asian populations such as 
Thai and Malaysian in terms of HLA typing. Those who are the descendants 
of northern Han are separated from the southern Asian cluster, and form 
a cluster with the other northern Asian populations such as Korean and 
Japanese. The Taiwanese regulatory authority, therefore, accepts data from 
trials conducted in Taiwan as well as in other Asian countries, if those trials 
meet Taiwanese regulatory standards and are conducted in compliance with 
GCP requirements.

19.4.2.2â•‡� Bridging the Results to the Asian Region

The aim of a multiregional trial is to show the efficacy of a drug in vari-
ous global regions, and concurrently to evaluate the possibility of apply-
ing the overall trial results to each region. Therefore, how to bridge the 
results of the multiregional trial to the “Asian region” is another impor-
tant issue.

Let DAsia be the observed treatment effect for the Asian region and DAll the 
observed treatment effect from all regions. Given that the overall result is 
significant at α level, we will judge whether the treatment is effective in the 
Asian region by the following criterion:

	 D DAsia All .≥ < <ρ ρfor some 0 1 	 (19.20)

Other consistency criteria can be found in Uesaka (2009) and Ko et al. (2010). 
Selection of the magnitude, ρ, of the consistency trend may be critical. All 
differences in ethnic factors between the Asian region and other regions 
should be taken into account. The Japanese MHLW suggests that ρ be 0.5 
or greater. However, the determination of ρ will be and should be different 
from product to product and from therapeutic area to therapeutic area. For 
example, in a multiregional liver cancer trial, the Asian region can defi-
nitely require a larger value of ρ, since it will contribute more subjects than 
other regions.

In addition to the consistency criterion in (19.20), the following criteria 
suggested by Uesaka (2009) and Ko et al. (2010) can also be used:

	 D DCAsia ,≥ < <ρ ρfor some 0 1
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where DC denotes the observed treatment effect from regions other than the 
Asian region. The first criterion is to assess whether the treatment effect in 
the Asian region is as large as that of the other regions, while the last two cri-
teria are to assess the consistency of the treatment effect of the Asian region 
with overall regions or other regions.

19.4.2.3â•‡� Sample Size for Multiregional Trials

When planning a multiregional trial, it is suggested that the study 
objectives should be clearly stated in the study protocol. Once the 
study Â�objectives are confirmed, a valid study design can be chosen and 
the primary clinical endpoints can be determined accordingly. Based on 
the primary clinical endpoint, the sample size required for achieving a 
desired power can then be calculated. Recent approaches for sample size 
determination in multiregional trials developed by Kawai et al. (2008), 
Quan et al. (2010), and Ko et al. (2010) are all based on the assumption 
that the effect size is uniform across regions. For example, assume that 
we focus on the multiregional trial for comparing a test product and a 
placebo control based on a continuous efficacy endpoint. Let X and Y be 
some efficacy responses for patients receiving the test product and the 
placebo control, respectively. For convention, both X and Y are normally 
distributed with variance σ2. We assume that σ2 is known, although it 
can generally be estimated. Let μT and μP be the population means of the 
test and placebo, respectively, and let Δ = μT − μP. Assume that effect size 
(Δ/σ) is uniform across regions. The hypothesis of testing for the overall 
treatment effect is given as

	 H Ha0 0 0: : .Δ Δ≤ >versus

Let N denote the total sample size for each group planned for detecting an 
expected treatment difference Δ = δ at the desired significance level α and 
with power 1 − β. Thus,

	
N

z z
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where z1−α is the (1 − α)th percentile of the standard normal distribution. Once 
N is determined, special consideration should be placed on the determina-
tion of the number of subjects from the Asian region in the multiregional 
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trial. The selected sample size should be able to establish the consistency of 
treatment effects between the Asian region and the regions overall. To estab-
lish the consistency of treatment effects between the Asian region and the 
entire group, it is suggested that the selected sample size should satisfy that 
the assurance probability of the consistency criterion in (19.20), given that 
Δ = δ and the overall result is significant at α level, is maintained at a desired 
level, say 80%. That is,

	 P D D zδ αρ γ( |Z > ) 1Asia All 1≥ > −− 	 (19.21)

for some prespecified 0 < γ ≤ 0.2. Here Z represents the overall test statistic.
Ko et al. (2010) calculated the sample size required for the Asian region 

based on (19.21). For β = 0.1, α = 0.025, and ρ = 0.5, the sample size for the 
Asian region has to be around 30% of the overall sample size to maintain 
the assurance probability of (19.21) at 80% level. On the other hand, by con-
sidering a two-sided test, Quan et al. (2010) derived closed form formulas 
for the sample size calculation for normal, binary, and survival endpoints 
based on the consistency criterion (19.20). For example, if we choose ρ = 0.5, 
γ = 0.2, α = 0.025, and β = 0.9, then the Asian sample size has to be at least 
22.4% of the overall sample size for the multiregional trial.

It should be noted that the sample size determination given in Kawai et al. 
(2008), Quan et al. (2010), and Ko et al. (2010) are all derived under the assump-
tion that the effect size is uniform across regions. In practice, it might be 
expected that there is a difference in treatment effect due to ethnic difference. 
Thus, the sample size calculation derived by Kawai et al. (2008), Quan et al. 
(2010), and Ko et al. (2010) may not be of practical use. More specifically, some 
other assumptions addressing the ethnic difference should be explored. For 
example, we may consider the following assumptions:

	 1.	Δ is the same but σ2 is different across regions.
	 2.	Δ is different but σ2 is the same across regions.
	 3.	Δ and σ2 are both different across regions.

Statistical methods for the sample size determination in multiregional trials 
should be developed based on the above assumptions.

19.4.2.4â•‡� Remarks

A multiregional trial may incorporate subjects from many countries 
around the world under the same protocol. After showing the overall effi-
cacy of a drug in all global regions, we can simultaneously evaluate the 
possibility of applying the overall trial results to each region and conse-
quently support registration in each region. In the previous subsections, 
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we described some proposals given by Tsou et al. (2011) regarding statis-
tical guidance to multiregional trials. In Tsou et al.’s proposal, both the 
MHLW guidance and the 11th Q&A for the ICH E5 guideline can serve as 
a framework on how to demonstrate the efficacy of a drug in all partici-
pating regions while also evaluating the possibility of applying the over-
all trial results to each region by conducting a multiregional trial. Most 
importantly, the consistency criterion presented in the Japanese guideline 
can be used to apply the overall results from the multiregional trial to 
the Asian region.

In Zhou et al.’s proposal, the sample size calculation for multiregional 
trials should take the possibility of ethnic differences into account. When 
planning a multiregional trial, the regions involved are expected to par-
ticipate in the global development as early as possible. Therefore, the eth-
nic differences might be detected at any stage of early drug development. 
On the other hand, the analyses on the Asian data in the multiregional 
trial may not have enough statistical power. Thus, the number of subjects 
required for the Asian region in the multiregional trial should be large 
enough to establish the consistency of treatment effects between the Asian 
region and the regions overall. Also note that the sample size required 
in (19.21) is for the entire Asian region with similar ethnicity. Each country 
in the Asian region may contribute a different size of subjects to the mul-
tiregional trial. However, for the evaluation of consistency, each country 
may consider accepting all the data derived from other countries in the 
Asian region.

Multiregional trials might have benefits on decreasing Asian patients’ 
exposures on unapproved drugs, reducing drug lag, and increasing avail-
able treatment options. From the beginning of the twenty-first century, the 
trend for clinical development in Asian countries being undertaken simul-
taneously with clinical trials conducted in Europe and the United States has 
been speedily rising. In particular, Taiwan, Korea, Hong Kong, and Singapore 
have already had much experience in planning and conducting the multire-
gional trials. It should be noted that conducting multiregional Â� trials may 
require more management skills due to various cultures, languages, reli-
gions, and medical practices. This kind of cross-cultural management may 
be challenging.

19.5â•‡� Statistical Methods for Bridging Studies

In recent years, the influence of ethnic factors on clinical outcomes for the 
evaluation of efficacy and safety of study medications under investigation 
has attracted much attention from regulatory authorities, especially when 
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the sponsor is interested in bringing an approved drug product from the 
original region (e.g., the United States or European Union) to a new region 
(e.g., Asian Pacific region). To determine if clinical data generated from the 
original region are acceptable in the new region, the ICH issued a guideline 
on Ethnic Factors in the Acceptability of Foreign Clinical Data. The purpose of 
this guideline is not only to permit adequate evaluation of the influence of 
ethnic factors, but also to minimize duplication of clinical studies in the new 
region (ICH, 1998). This guideline is known as ICH E5 guideline.

As indicated in the ICH E5 guideline, a bridging study is defined as a study 
performed in the new region to provide pharmacokinetic (PK), pharmacody-
namic (PD), or clinical data on efficacy, safety, dosage, and dose regimen in 
the new region that will allow extrapolation of the foreign clinical data to the 
population in the new region. The ICH E5 guideline suggests that the regula-
tory authority of the new region assess the ability to extrapolate foreign data 
based on the bridging data package, which consists of (i) information includ-
ing PK data and any preliminary PD and dose-response data from the com-
plete clinical data package (CCDP) that is relevant to the population of the new 
region and, if needed, (ii) a bridging study to extrapolate the foreign efficacy 
data and/or safety data to the new region. The ICH E5 guideline indicates that 
bridging studies may not be necessary if the study medicines are insensitive 
to ethnic factors. For medicines characterized as insensitive to ethnic factors, 
the type of bridging studies (if needed) will depend upon experience with the 
drug class and upon the likelihood that extrinsic ethnic factors could affect 
the medicine’s safety, efficacy, and dose response. On the other hand, for medi-
cines that are ethnically sensitive, a bridging study is usually needed since the 
populations in two regions are different. In the ICH E5 guideline, however, 
no criteria for assessment of the sensitivity to ethnic factors for determining 
whether a bridging study is needed are provided. Moreover, when a bridging 
study is conducted, the ICH guideline indicates that the study is readily inter-
preted as capable of bridging the foreign data if it shows that dose response, 
safety, and efficacy in the new region are similar to those in the original region. 
However, the ICH does not clearly define the similarity.

Shih (2001) interpreted it as consistency among study centers by treating 
the new region as a new center of multicenter clinical trials. Under this 
definition, Shih (2001) proposed a method for assessment of consistency to 
determine whether the study is capable of bridging the foreign data to the 
new region. Alternatively, Shao and Chow (2002) proposed the concepts of 
reproducibility and generalizability probabilities for assessment of bridg-
ing studies. If the influence of the ethnic factors is negligible, then we may 
consider the reproducibility probability to determine whether the clinical 
results observed in the original region are reproducible in the new region. 
If there is a notable ethnic difference, the generalizability probability can 
be assessed to determine whether the clinical results in the original region 
can be generalized in a similar but slightly different patient population due 
to the difference in ethnic factors. In addition, Chow et al. (2002) proposed 
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to assess bridging studies based on the concept of population (or individ-
ual) bioequivalence. Along this line, Hung (2003) and Hung et al. (2003) 
considered the assessment of similarity based on testing for non-inferiority 
between a bridging study conducted in the new region and the previous 
one conducted in the original region. This leads to the argument regarding 
the selection of non-inferiority margin (Chow and Shao, 2006). Note that 
other methods such as the use of the Bayesian approach have also been 
proposed in the literature (see, e.g., Liu et al., 2002a).

19.5.1  �Test for Consistency

For the assessment of similarity between a bridging study conducted in a 
new region and studies conducted in the original region, Shih (2001) consid-
ered all of the studies conducted in the original region as a multicenter trial 
and proposed to test the consistency among study centers by treating the 
new region as a new center of a multicenter trial.

Suppose there are K reference studies in the CCDP. Let Ti denotes the stan-
dardized treatment group difference, i.e.,
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19.5.2  �Test for Reproducibility and Generalizability

On the other hand, when the ethnic difference is negligible, Shao and Chow 
(2002) suggested assessing reproducibility probability for similarity between 
clinical results from a bridging study and studies conducted in the CCPD. 
Let x be a clinical response of interest in the original region. Let y be similar 
to x but a response in a clinical bridging study conducted in the new region. 
Suppose the hypotheses of interest are

	 H Ha0 1 0 1 0: : .μ μ μ μ= ≠versus
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We reject H0 at the 5% level of significance if and only if |T|â•›>â•›tn−2, where 
tn−2 is the (1 − α/2)th percentile of the t distribution with n − 2 degrees of 
freedom, n = n1 + n2
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and x–, y–, s0
2, and s1

2 are sample means and variances for the original region 
and the new region, respectively. Thus, the power of T is given by

	 p P T t t tn n n n n( ) (| | ) ( | ) ( | ),θ θ θ= > = − ℑ + ℑ −− − − − −2 2 2 2 21

where

	
θ

μ μ

σ
=

−

+

1 0

1 01 1/ /n n
,

and ℑn−2(·|θ) denotes the cumulative distribution function of the noncentral t 
distribution with n − 2 degrees of freedom and the noncentrality parameter θ. 
Replacing θ in the power function with its estimate T(x), the estimated power

	
ˆ ( ( )) ( | ( )) ( | ( ))p P T x t T x t T xn n n n= = − ℑ + ℑ −− − − −1 2 2 2 2 	 (19.23)

is defined as a reproducibility probability for a future clinical trial with the 
same patient population. Note that when the ethnic difference is notable, 
Shao and Chow (2002) recommended assessing the so-called generalizability 
probability for similarity between clinical results from a bridging study and 
studies conducted in the CCPD.

19.5.3  �Test for Similarity

Using the criterion for assessment of population (individual) bioequivalence, 
Chow, Shao, and Hu (2002) proposed the following measure of similarity 
between x and y:
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where
x′ is an independent replicate of x,
y, x, and x′ are assumed to be independent.
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Since a small value of θ indicates that the difference between x and y is small 
(relative to the difference between x and x′), similarity between the new 
region and the original region can be claimed if and only if θ < θU, where 
θU is a similarity limit. Thus, the problem of assessing similarity becomes a 
problem of testing the following hypotheses:

	 H HU a U0 : versus : .θ θ θ θ= ≠

Let k = 0 indicate the original region and k = 1 indicate the new region. 
Suppose that there are mk study centers and nk responses in each center for a 
given variable of interest. For simplicity, we only consider the balanced case 
where centers in a given region have the same number of observations. Let zijk 
be the ith observation from the jth center of region k, bjk be the between-center 
random effect, and eijk be the within-center measurement error. Assume that

	 z b e i n j m kijk k jk ijk k k= + + = = =μ , , ..., , , ..., , , ,1 1 0 1

where
μk is the population mean in region k,
b Njk Bk~ ( , )0 2σ ,
e Nijk Wk~ ( , )0 2σ ,
{bjk} and {eijk} are independent.

Under the above model, the criterion for similarity becomes
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where σ σ σTk Bk Wk
2 2 2= +  is the total variance (between-center variance plus 

within-center variance) in region k. The above hypotheses are equivalent to

	 H Ha0 0 0: versus : ,ς ς≥ <
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19.6â•‡� Concluding Remarks

In multiregional (multinational) multicenter trials, it is important to 
Â�maintain the integrity of the trial by minimizing or controlling all pos-
sible sources (both expected and unexpected) of bias, variability, and/or 
confounding effects that may occur during the conduct of the trial. For 
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this purpose, it is strongly recommended that a steering committee which 
consists of key individuals across countries be established. The purpose 
of this committee is multifold. It monitors the performance of the trial to 
maintain the integrity of the trial. It provides scientific/medical advice to 
the medical community from different countries for consistent assessment 
of the study drug. In addition, it helps to resolve any issues/problems that 
may be encountered during the conduct of the study. The function of the 
committee should be independent of the sponsor to maintain the integ-
rity of the trial. Note that the analysis of a multiregional (multinational) 
trial is different from that of a meta-analysis of independent clinical trials 
in different countries. The analysis of multiregional (multinational) trials 
combines data observed from each country; the data are generated based 
on the methods prospectively specified in the same study protocol with the 
same method of randomization and probably at the same time. In contrast, 
a meta-analysis combines data retrospectively observed from a number of 
independent clinical trials involving different regions (countries), which 
may be conducted under different study protocols with different random-
ization schemes at different times. In either case, the treatment-by-region 
(treatment-by-country) interaction for multiregional (multinational) trials 
or treatment-by-region (treatment-by-country) for meta-analysis must be 
carefully evaluated before pooling the data for analysis.

In addition to the controversial issues regarding (1) the selection of the opti-
mal number of study sites, (2) sample size calculation and allocation of spe-
cific region, and (3) statistical methods for bridging studies described above, 
another controversial issue which has a direct impact on the quality and valid-
ity of the conduct of multiregional (multinational) clinical trials is the pos-
sible lost-in-translation due to ethnic differences among regions. Translation 
in language refers to possible lost-in-translation of the informed consent form 
and/or CRFs in multiregional (multinational or global) clinical trials. Lost-in-
translation is commonly encountered due to differences not only in language 
but also in perception, culture, and medical practice. A typical approach for the 
assessment of the possible lost-in-translation is to first translate the informed 
consent form and/or the CRFs by an experienced expert in the subject area 
and then perform a back-translation by a different experienced but indepen-
dent expert in the subject area. The back-translated version is then compared 
with the original version for consistency. This can be done through the con-
duct of a small-scale pilot study. Qualified subjects from the target patient 
population will be randomly assigned to receive either the original version or 
the back-translated version. The responses will be collected and analyzed for 
comparison. If the back-translated version passes the test for consistency as 
compared to the original version, we then conclude that there is no evidence of 
lost-in-translation in the translated version and hence the translated version is 
considered validated. The translated version can then be used in the intended 
multiregional (multinational) clinical trial.
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20
Dose Escalation Trials

20.1â•‡� Introduction

As therapeutic agents for cancer treatment can induce severe safety concern 
even at lower dose levels, phase I trials for new anticancer agents are often 
conducted on terminal cancer patients for whom the test cytotoxic drugs may 
be the last hope. The primary scientific objective of the evaluation of new che-
motherapeutic agents in cancer patients during phase I clinical development 
is to employ an efficient, reliable, and yet practical dose-finding design to 
search the maximum dose with an acceptable and manageable safety profile 
for use in subsequent phase II trials (Koyfman et al., 2007). The dose with an 
acceptable and manageable safety profile is usually referred to as the maxi-
mum tolerable dose (MTD). The unacceptable or unmanageable safety profile 
is generally called the dose-limiting toxicity (DLT), which is predefined by 
some criteria such as grade 3 or greater hematological toxicity according to 
the United Sates National Cancer Institute’s Common Toxicity Criteria. Thus, 
MTD is the highest possible but still tolerable dose with respect to some pre-
specified DLT (see, e.g., Storer, 1993; Babb et al., 1998; Korn et al., 1999). Hence, 
an identified MTD is often considered as the optimal dose for subsequent 
clinical trials conducted at a later phase of clinical development.

The main purpose of phase I cancer trials is to establish the MTD with 
an adequate precision. The following considerations are important for 
the selection of an appropriate design in phase I trials for estimation of 
the MTD:

	 1.	The patients are critically ill. Some of them are even in the terminal 
stage of the disease and the test anticancer agent may be the last 
hope for the patients.

	 2.	The number of patients available for phase I cancer trials is relatively 
small.

	 3.	The patient population is usually rather heterogeneous because 
phase I cancer trials might enroll terminal cancer patients with dif-
ferent types of malignant tumors at various disease stages.
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	 4.	Phase I cancer trials can be viewed as a screening process where 
anticancer cytotoxic agents with a tolerable safety profile are selected 
and their MTDs are determined with a minimal number of patients 
in a minimal amount of time.

	 5.	Most anticancer agents generally can introduce serious, irreversible, 
life-threatening or even fatal toxicity. Thus, phase I cancer trials are 
usually conducted to establish the MTD. In fact, regulatory agencies 
sometimes dictate the dose from the first patient.

For early-phase cancer trials for dose finding, many useful designs includ-
ing Bayesian dose-finding designs have been proposed in the literature (see, 
e.g., Storer, 1989, 1993, 2001; Piantadosi and Liu, 1996; Thall and Russel, 
1998; Whitehead and Williamson, 1998; O’Quigley et al., 2001; Chang and 
Chow, 2005; Loke et al., 2006; Zhou et al., 2006). In practice, however, only 
two types are commonly used (Dent and Eisenhauer, 1996; Eisenhauer 
et  al., 2000; Le Tourneau et al., 2009). These are the algorithm-based 
designs which follow a traditional escalation rule (TER), e.g., the “3 + 3” 
design as well as the model-based designs using the continual reassess-
ment method (CRM) (see, e.g., O’Quigley et al., 1990; O’Quigley and Shen, 
1996; Heyd and Carlin, 1999; O’Quigley, 2001; Babb and Rogatko, 2004; 
Kamp et al., 2007; Paoletti and Kramer, 2009).

The TER has been criticized for resulting in the underestimation of the 
MTD and for including too many patients at a suboptimal level, among other 
concerns (see, e.g., Heyd and Carlin, 1999; Chow and Chang, 2006). As  a 
result, the CRM has become very popular. However, it remains unclear as 
to the relative merits and disadvantages of the CRM compared to the TER 
design, especially the general “a + b” TER design with and without dose 
de-escalation. Hence clinical trial investigators and statisticians continue to 
(often quite arbitrarily) choose between the two types of designs, usually 
without providing any justification for their choice or the planned sample 
size. Moreover, there are no clear criteria guidelines as to how such designs 
should be chosen and justified in study protocols for statistical validity. Thus 
many protocols for phase I dose-finding studies continue to be approved 
without such justification, resulting in potentially severe consequences as it 
could mean that the design and sample size eventually used may actually not 
be sufficient/suitable to adequately answer the research question of interest.

In the next section, standard TER trial design with and without dose de-
escalation is briefly described. Also included in this section is the descrip-
tion of the general “a + b” TER design without dose de-escalation. In Section 
20.3, the model-based CRM trial design is introduced. Also included in this 
section is the use of the CRM trial design in conjunction with the Bayesian 
approach for dose finding in cancer trails. Criteria for design selection and 
statistical justification for sample size calculation are given in Section 20.4. 
Section 20.5 provides a brief concluding remark.
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20.2â•‡� Traditional Escalation Rule

In early-phase cancer trial, the TER, which are known as the “3 + 3” rules, are 
commonly used. The “3 + 3” rule is to enter three patients at a new dose level 
and then enter another three patients when DLT is observed. The assessment 
of the six patients is then performed to determine whether the trial should be 
stopped at that level or to escalate to the next dose level. Basically there are 
two types of “3 + 3” rules, namely, the TER and strict traditional escalation 
rule (STER). TER does not allow dose de-escalation but STER does when two 
of three patients have DLTs.

Note that the “3 + 3” rules can be generalized to the “a + b” TER (without 
dose de-escalation) and STER (with dose de-escalation), which are described 
in the following section.

For the general “a + b” TER design without dose de-escalation, suppose that 
there are a patients at dose level i. If less than c/a patients have DLTs, then the 
dose is escalated to the next dose level i + 1. If more than d/a (d ≥ c) patients 
have DLTs, then the previous dose i − 1 will be considered the MTD. If no less 
than c/a but no more than d/a patients have DLTs, b more patients are treated 
at this dose level i. If no more than e (e ≥ d) of the total of a + b patients have 
DLTs, then the dose is escalated. If more than e of the total of a + b patients 
have DLT, then the previous dose i − 1 will be considered the MTD. It can be 
seen that the traditional “3 + 3” TER without dose de-escalation is a special 
case of the general “a + b” design with a = b = 3 and c = d = e = 1.

Basically, the general “a + b” TER design with dose de-escalation is simi-
lar to the design without dose de-escalation. However, it permits more 
patients to be treated at a lower dose (i.e., dose de-escalation) when exces-
sive DLT incidences occur at the current dose level. The dose de-escalation 
occurs when more than d/a (d ≥ c) or more than e/(a + b) patients have DLTs 
at dose level i. In this case, b more patients will be treated at dose level i − 1 
provided that only a patients have been previously treated at this prior 
dose. If more than a patients have already been treated previously, then 
dose i − 1 is the MTD. The de-escalation may continue to the next dose 
level i − 2 if necessary.

20.3â•‡� Continual Reassessment Method

The concept of CRM was first applied in phase I oncology trials by O’Quigley 
et al. (1990). The primary goal is not only to assess the dose–toxicity relation-
ship, but also to determine MTD. Due to the potential high toxicity of the 
study drug, in practice usually only a small number of patients (e.g., three to 
six) are treated at each ascending dose level. The most common approach is 
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the “3 + 3” TER with a prespecified sequence for dose escalation. However, 
this ad hoc approach is found to be inefficient and often underestimates the 
MTD, especially when the starting dose is too low. The CRM is developed 
to overcome these limitations. The estimation or prediction from CRM is 
weighted by a number of data points. Therefore, if the data points are mostly 
around the estimated value, then the estimation is more accurate. CRM 
assigns more patients near MTD; consequently, the estimated MTD is much 
more precise and reliable. In practice, this is the most desirable operating 
characteristic of the Bayesian CRM.

20.3.1  �Implementation of CRM

For the implementation of the model-based CRM design, the following 
information is required:

	 1.	Starting dose: e.g., the initial dose is usually selected as 1/10 of LD10 in 
mice.

	 2.	Dose range and number of dose levels: Typically, 5–10 dose levels 
are selected for dose finding. Modified Fibonacci dose escalation 
factor (sequence) is usually considered within the selected dose 
range.

	 3.	Prior information on the MTD: Any prior knowledge regarding MTD 
would be helpful. For example, DLT rate at MTD.

	 4.	Dose–toxicity model: The following dose–toxicity model is often 
considered:

	 p x b ax( ) [ exp( )] ,= + − −1 1

where p(x) is the probability of toxicity with dose x. The above can be 
solved for (predicted) MTD as follows:
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where θ is the probability of DLT (DLT rate) at MTD. Note that for an 
aggressive tumor and a transient and non-life-threatening DLT, θ could 
be as high as 0.5. For persistent DLT and less aggressive tumors, θ 
could be as low as 0.1–0.25. A commonly used value for θ is somewhere 
between 0 and 1/3 = 0.33 (see, e.g., Crowley, 2001).

	 5.	Escalation rule: e.g., minimum number of patients per dose level 
before escalation is n.

	 6.	Stopping rule: e.g., maximum number of patients at a dose level is 6.
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Note that the assignment of patients to the most updated MTD leads to the 
majority of the patients assigned to the dose levels near MTD, which allows a 
more precise estimate of MTD with a minimum number of patients. In prac-
tice, potential dose jump and delayed response are commonly seen when 
utilizing CRM in dose escalation trials.

20.3.2  �CRM in Conjunction with Bayesian Approach

Chang and Chow (2005) proposed a hybrid frequentist–Bayesian CRM in 
conjunction with utility-adaptive randomization for clinical trial designs 
with multiple endpoints. They proposed a hyper-logistic function fam-
ily with multiple parameters gives users flexibility for probability modeling. 
Under their proposed method, CRM reassesses a dose–response relation-
ship based on an accrued data of the ongoing trial, which allows inves-
tigators to make decisions based on a constantly updated dose–response 
model. In addition, their proposed utility-adaptive randomization for mul-
tiple endpoint trials allows more patients to be assigned to superior treat-
ment groups.

The utility-based CRM adaptive approach proposed by Chang and Chow 
(2005) can be summarized by the following steps:

Step 1: Construct utility function based on trial objectives.

Step 2: Propose a probability model for dose–response relationship.

Step 3: �Construct prior probability distributions of the parameters in the 
response model.

Step 4: �Form the likelihood function based on incremental information on 
treatment response during the trial.

Step 5: �Reassess model parameters or calculate the posterior probability of 
the model parameters.

Step 6: Update the expected utility function based on dose–response model.

Step 7: �Determine next action or make adaptations such as changing the ran-
domization or drop inferior treatment arms.

Step 8: �Further collect trial data and repeat Steps 5–7 until stopping criteria 
are met.

At Step 1, a utility function can be constructed as follows. Let X = {x1,â•›x2,â•›…,â•›xk} 
be the action space where xi is a coded value for an action of anything that 
would affect the outcomes or decision making such as a treatment, a with-
drawal of a treatment arm, a protocol amendment, stopping the trial, an 
investment of advertising for the prospective drug, or any combination of the 
above. xi can be either a fixed dose or a variable of a dose given to a patient. 
If action xi is not taken, then xi = 0. Let y = {y1,â•›y2,â•›…,â•›ym} be the outcomes of 
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interest, which can be efficacy or toxicity of a test drug, the cost of trial, etc. 
Each of these outcomes yi is a function of action yi(x), x ∈ X. The utility is then 
defined as
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where
U is normalized such that 0 ≤ U ≤ 1
wj are some prespecified weights

For Step 2, each of the outcomes can be modeled by the following general-
ized probability model:
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where p = (p1,â•›…,â•›pm), pj = P(yj ≥ τj), and τj is a threshold for the jth outcome. 
The link function, Γj(•), is a generalized function of all the probabilities of 
the outcomes. For a univariate case, a logistic model is commonly used for 
monotonic response. Note that for utility, however, we usually do not know 
whether it is monotonic or not. As a result, Chang and Chow (2005) sug-
gested the use of a hyper-logistic function in modeling utility index.

At Step 3, the Bayesian approach requires the specification of prior prob-
ability distribution of the unknown parameter tensor aji. The assessment of 
the parameters in the model can be carried out in different ways: Bayesian, 
frequentist, or hybrid approach. Bayesian and hybrid approaches are to 
assess the probability distribution of the parameter, while the frequentist 
approach is to provide a point estimate of the parameter. We can then form 
the likelihood function based on incremental information on treatment 
response during the trial (Step 4) and reassess model parameters or cal-
culate the posterior probability of the model parameters (Step 5). Then, 
update the expected utility function based on the dose–response model 
(Step 6).

At Step 7, we can determine the next action. As mentioned earlier, the 
actions or adaptations taken should be based on trial objectives or utility 
function. A typical action is a change of the randomization schedule. From 
the dose–response model, since each dose is associated with a probabil-
ity of response, two approaches, namely, deterministic and probabilistic 
approaches, can be taken. The former refers to the optimal approach where 
actions can be taken to maximize the expected utility, while the latter refers 
to adaptive randomization where the treatment assignment to the next 
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patient is not fully determined by the algorithm. The dose level assigned 
to the next patient based on optimization of the expected utility is given by
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arg max .

It, however, should be noted that the above optimal approach may not be 
feasible due to its difficulties in practice. As indicated in Chang and Chow 
(2005), many of the response-adaptive randomizations can be used to increase 
the expected response. However, these adaptive randomizations are difficult 
to apply directly in the case of multiple endpoints. As an alternative, Chang 
and Chow (2005) suggested the use of so-called utility-adaptive randomiza-
tion algorithm. This utility-adaptive randomization combines the idea from 
randomized-play-winner (Rosenberger and Lachin, 2003) and Lachin’s urn 
models. More details can be found in Chang and Chow (2005).

20.3.3  �Extended CRM Trial Design

The typical CRM can be extended to CRM(ni), where ni is the number of 
patients in each dose level i in conjunction with a Bayesian approach with var-
ious prior distributions, and possible dose jump and dose delays in CRM trial 
designs. In practice, it is of interest to compare the extended CRM trial design 
(with possible dose jump and dose delays) with the extended “a + b” TER trial 
design (with and without dose escalation) in terms of some performance char-
acteristics such as the probability of correctly identifying the MTD.

20.4â•‡� Design Selection and Sample Size

In most protocols of dose escalation trials, little details regarding design selec-
tion and/or sample size calculation/justification are provided. Although many 
simulations have been performed to empirically compare the TER design and 
the CRM design and its various modifications, little or no empirical evidence 
is available regarding the relative performance between the TER trial design 
and the CRM design. In this section, some criteria for design selection and 
performance characteristics for sample size determination are proposed.

20.4.1  �Criteria for Design Selection

For selecting an appropriate study design, two criteria based on a fixed 
sample size approach and a fixed power approach (i.e., fixed the probability 
of correctly identifying the MTD) are commonly considered.
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For a fixed sample size, the optimal design can be chosen based on one or 
more of the following:

	 1.	Number of DLT expected
	 2.	Bias and variability of the estimated MTD
	 3.	Probability of observing DLT prior to MTD
	 4.	Probability of correctly identifying the MTD
	 5.	Probability of overdosing

In other words, we may choose the design with the highest probability of 
correctly identifying the MTD. If it is undesirable to have patients experi-
ence the DLT, we may choose the design with the smallest number of DLT 
expected. In practice, we may compromise the above criteria for choosing the 
most appropriate design to meet our need.

On the other hand, for a fixed power approach (i.e., fixed the probability of 
correctly identifying the MTD), the optimal design can be similarly chosen 
based on one or more of the following:

	 1.	Number of patients expected
	 2.	Number of DLT expected
	 3.	Bias and variability of the estimated MTD
	 4.	Probability of observing DLT prior to MTD
	 5.	Probability of overdosing

Thus, we may choose the design with the smallest number of patients expected. 
If it is desirable to minimize the exposure of patients prior to MTD, we may 
choose the design with the smallest probability of observing DLT prior to 
MTD. Similarly, we may compromise the above criteria for choosing the most 
appropriate design to meet our need. In some cases, the investigator may want 
to control potential overdose. In this case, we may choose a design with the 
minimum number of patients expected to be exposed to the dose beyond MTD.

20.4.2  �Sample Size Justification

As indicated above, for most protocols of the dose escalation trials, little or 
no details regarding sample size justification is provided. When conduct-
ing a clinical trial, good statistics practices are necessarily followed for good 
clinical practice in order to ensure the success of the intended clinical trial. 
Thus, it is suggested that statistical justification for the selected sample size 
be provided, which will give statistical assurance for achieving the study 
objectives of the intended trial. Unlike most clinical trials, the traditional 
pre-study power analysis for sample size calculation is not applicable for 
dose escalation trials. For sample size justification of dose escalation trials, 
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the following performance characteristics are useful: (1) the number of DLTs 
expected prior to MTD, (2) the bias and variability of the estimated MTD, 
(3) the probability of observing DLT prior to MTD, (4) the probability of cor-
rectly identifying the MTD, and (5) the probability of overdosing. In what 
follows, as an example, sample size calculations for the general “a + b” TER 
without and with dose de-escalation are described in the following section.

20.4.2.1â•‡� General TER without Dose De-Escalation

For simplicity, we consider sample size calculation based on the performance 
characteristic of the probability of correctly identifying the MTD. Under the 
general “a + b” design without dose de-escalation, the probability of conclud-
ing that the MTD has been reached at dose i is given by
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The expected number of patients at dose j is then given by
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Note that, without consideration of undershoots (an attempt to de-escalate 
to a dose level at a lower dose than the starting dose level) and overshoots 
(an  attempt to escalate to a dose level at the highest level planned), the 
expected number of DLTs at dose i can be obtained as nipi. As a result, 

the total number of DLTs for the trial is given by n pi i
i

K
.

=∑ 1

Under the general “a + b” design with dose de-escalation, the probability of 
concluding that the MTD has been reached at dose i is given by
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The expected number of patients at dose j is then given by
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Consequently, the total number of DLTs for the trial is given by n pi i
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For the CRM trial design, there exists no closed form for sample size calcu-
lation. Thus, a clinical trial simulation is often conducted in order to evaluate 
the performance characteristics described above for sample size calculation. 
As an example, consider a dose escalation trial for identifying the MTD of a 
compound for the treatment of a certain cancer. A simulation with 5000 runs 
is planned for the evaluation of the above performance characteristics. The 
simulation was conducted under the following parameter specifications:

	 1.	The initial dose was chosen to be 0.3â•›mg/kg (e.g., one–tenth of LD10 in 
mice).

	 2.	The dose range considered is from 0.3 to 2.8â•›mg/kg.
	 3.	The modified Fibonacci sequence is considered. That is, there are six 

dose levels, which are 0.3, 0.6, 1, 1.5, 2.1, and 2.8â•›mg/kg.
	 4.	The DLT rate at MTD is assumed to be 1/3 = 33%.

For the algorithm-based trial design, the “3 + 3” TER design and the “3 + 3” 
STER design with maximum dose de-escalation allowed as 1 are consid-
ered. For the CRM method, CRM(n), where n is the number of patients per 
dose level, n = 1, 2, and 3. A logistic toxicity model is assumed. The Bayesian 
approach with a uniform prior is considered for the estimation of the param-
eters of the toxicity model. For CRM(n), the dose escalation and stopping 
rules include the following:

	 1.	The number of doses allowed to skip is 0, i.e., dose jump is not allowed.
	 2.	The minimum number of patients per dose level before escalation is n.
	 3.	The maximum number of patients at a dose level is 6.
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Simulation results are summarized in Table 20.1.
As can be seen from Table 20.1, the “3 + 3” TER without dose de-escalation 

and CRM(2) have the smallest number of DLTs expected before reaching the 
MTD. As expected, the “3 + 3” TER design and the “3 + 3” STER design 
underestimate the MTD with larger standard deviations as compared to 
the CRM(n) trial design. In terms of the probability of correctly identifying the 
MTD, CRM(n) with n = 1 and n = 2 are preferred. Sample sizes required for 
the trial designs under study range from 11 to 18. Based on the overall com-
parison in terms of the performance characteristics, CRM(n) with n = 2 is 
recommended for the proposed study.

20.5â•‡� Concluding Remarks

Over the past two decades, many simulations have been performed to empir-
ically compare the standard dose escalation design, up-and-down designs, 
the original CRM, and its various modifications. The results can be found 
in O’Quigley and Cheveret (1991), Korn et al. (1994, 1999), Goodman et al. 
(1995), O’Quigley (1999), and Storer (2001). Some of the results are summarized 
as follows:

	 1.	The standard dose escalation design treats more patients at the 
subtherapeutic dose levels.

	 2.	The standard dose escalation design underestimates the MTD.
	 3.	The original CRM requires fewer patients than the standard dose 

escalation design does.
	 4.	The average number of cohorts in the original CRM with a patient 

per cohort is larger than that of the standard dose escalation design. 

TABLE 20.1

Summary of Simulation Results

Design

Number of 
Patients 

Expected (N)

Number 
of DLT 

Expected
Mean 

MTD (SD)

Probability 
of Selecting 

Correct MTD

“3 + 3” TER 15.96 2.8 1.26 (0.33) 0.526
“3 + 3” STERa 17.56 3.2 1.02 (0.30) 0.204
CRM(1)b 10.60 3.4 1.51 (0.08) 0.984
CRM(2)b 13.57 2.8 1.57 (0.20) 0.884
CRM(3)b 16.37 2.7 1.63 (0.26) 0.784

a	 Allows dose de-escalation.
b	 CRM(n) = CRM with n patients per dose level; uniform prior dose was 

used.
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Hence, the duration of the trials using the original CRM may be longer 
than other phase I designs.

	 5.	The average number of cohorts reduces dramatically for the modified 
CRM with three patients per cohort and is similar to that of the stan-
dard dose escalation design.

	 6.	The two-stage (modified) CRM does not provide better performance 
than the one-stage modified CRM.

	 7.	The CRM is independent of the targeted percentile of some toler-
ance distribution that is pre-specified for other designs. In addition, 
it has, theoretically, convergence properties.

	 8.	No design performs uniformly well in all possible dose–response 
settings.

	 9.	The estimates of MTD generated from the CRM generally have 
smaller bias although the bias is relatively small.

For the CRM, the toxicity model will be reassessed after the response of the 
previous patient is observed. The next patient will then be assigned based on 
the estimated MTD (the patient will be assigned to the closest dose level). It is 
not efficient to have an independent statistician to reassess the toxicity model 
and then assign the patient for each level. Alternatively, a clinical trial simu-
lation can be run with respect to all possible scenarios for randomization. 
Thus, once the response of the previous patient is observed, we can simply 
check the pregenerated table and assign the next patient to the appropriate 
dose level.

Note that some SAS codes are available in Chang (2008).
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21
Enrichment Process in Target Clinical Trials

21.1â•‡ Introduction

As indicated by many researchers (e.g., Simon and Maitournam, 2004; 
Maitournam and Simon, 2005; Casciano and Woodcock, 2006; Dalton and 
Friend, 2006; Varmus, 2006), the disease targets at the molecular level can be 
identified after completion of the Human Genome Project (HGP). As a result, 
the importance of diagnostic tests for the identification of molecular targets 
increases as more targeted clinical trials will be conducted for the individu-
alized treatment of patients (personalized medicine). For example, based on 
the risk of distant recurrence determined by a 21-gene Oncotype DX® breast 
cancer assay, patients with a recurrence score of 11–25 in the TAILORx (Trial 
Assigning Individualized Options for Treatment) trial sponsored by the United 
States National Cancer Institute (NCI) are randomly assigned to receive either 
adjuvant chemotherapy and hormonal therapy or adjuvant hormonal therapy 
alone (Sprarano et al., 2006). On the other hand, based on a 70-gene molecular 
signature, the MINDACT (Microarray in Node-negative Disease may Avoid 
ChemoTherapy) trial randomizes patients with a low-risk molecular prognosis 
and a high-risk clinical prognosis to the use of clinicopathologic criteria or 
gene signature in treatment decisions for the possible avoidance of chemo-
therapy (MINDACT, 2006). These two trials have an important implication 
for future individualized treatments for thousands of breast cancer patients 
(Swain, 2006). The Oncotype DX used in the TAILORx trial is a reverse tran-
scriptase–polymerase chain reaction (RT-PCR) assay based on 21 genes, while 
the MINDACT trial employs a 70-gene molecular signature derived from the 
microarray (Van de Vijver et al., 2002; van’t Veer, 2002; Paik et al., 2004, 2006).

Despite different technical platforms employed in the diagnostic devices for 
molecular targets used in the two trials, both assays belong to a group of the 
in vitro diagnostic multivariate index assay (IVDMIA) based on the selected dif-
ferentially expressed genes for detection of the patients with molecular targets 
(FDA, 2006a). In addition, to reduce the variation, the IVDMIAs do not usually 
use all genes during the development stage. Therefore, identification of the 
differentially expressed genes between different groups of patients is the key 
to the accuracy and reliability of the devices for molecular targets. Once the 
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differentially expressed genes are identified, the next task is to search an opti-
mal representation or algorithm which provides the best discrimination abil-
ity between the patients with molecular targets and those without. The current 
validation procedure for diagnostic device is for the assay based on one analyte. 
However, the IVDMIAs are in fact parallel assays based on the intensities of 
multiple analytes. As a result, the current approach to assay validation for one 
analyte may not be appropriate and is inadequate for validation of IVDMIAs.

With respect to the enrichment design for the targeted clinical trials, patients 
with positive diagnosis for molecular targets are randomized to receive the 
test drug or the control. However, because no IVDMIA can provide a perfectly 
correct diagnosis, some patients with positive diagnosis may not actually 
have molecular targets. Consequently, the treatment effect of the test drug for 
the patients with targets is underestimated. On the other hand, estimation of 
the treatment effect based on the data from the targeted clinical trials needs to 
take into consideration the variability associated with the estimates of accu-
racy of the IVDMIA such as positive predictive value (PPV) and false positive 
(FP) rate obtained from the clinical effectiveness trials of the IVDMIA.

In the next section, commonly used approaches for identification of dif-
ferentially expressed genes are reviewed. Also included in this section is the 
discussion of the relative merit and disadvantages of current methods. A set 
of interval hypotheses, which takes into consideration the minimal biological 
meaningful expression level, is proposed. Based on the interval hypotheses, 
Liu et al. (2007) suggested a two one-sided tests procedure. A discussion of the 
optimal representation or an algorithm of the IVDMIA based on the expres-
sion levels of the selected differentially expressed genes for the best diagnosis 
of molecular targets is provided in Section 21.3. Also included in this section is 
a recommendation for determining the number of genes to be included in the 
IVDMIA. In Section 21.4, the deficiency of the current validation for one ana-
lyte used for the IVDMIA is discussed. In addition, the issues and challenges 
for validation of the IVDMIA are also addressed in this section. Bias in estima-
tion of the treatment effect of the test drug in the targeted clinical trials is dis-
cussed in Section 21.5. Approaches for obtaining the unbiased estimator of the 
treatment effect for patients with molecular targets and their variance are also 
given in this section. Design and analysis for target clinical trials are given 
in Sections 21.6 and 21.7, respectively. A discussion is provide in the last section.

21.2â•‡ Identification of Differentially Expressed Genes

For a given gene, the fold change is defined as the ratio of average expres-
sion level of the gene, which is measured by the intensity under one condi-
tion (e.g., tested or patients with a certain disease) to that under another 
condition (e.g., controlled or normal subjects without the disease). A gene 
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is declared to be differentially expressed if the observed fold change either 
exceeds a prespecified threshold or is below a predetermined lower thresh-
old. We refer to this procedure as the fixed fold–change rule. The fixed fold–
change rule does not take into consideration the variation in estimation of 
the average intensity. In addition, it is not in the framework of hypothesis 
testing and therefore the probability associated with errors for decision mak-
ing cannot be quantified and/or assessed. On the other hand, most current 
available statistical methods for identification of differentially expressed 
genes such as the t-test, permutation t-test, or significance analysis of micro-
array are in fact based on the following traditional hypotheses testing for 
equality (see, e.g., Tusher et al., 2001; Dudoit et al., 2002; Simon et al., 2003; 
Wang and Ethier, 2004):

	 H HDi Ni a Di Ni0 0 0: versus :μ μ μ μ− = − ≠ , 	 (21.1)

where
i = 1,â•›…, G,
μTi and μCi are the true average expression levels on the log-scale (base 2) 

of gene i of the patients with molecular targets and the normal subjects 
without molecular targets, respectively.

As pointed out by Liu et al. (2007), the traditional hypotheses testing for 
equality is only to detect whether the difference in the average expression 
levels is 0 between the tested and controlled conditions. It fails to take into 
account the magnitudes of the biologically meaningful fold changes. In 
addition, due to simultaneously testing thousands of genes at the same time, 
with a small number of replicated samples, the FP rate for identifying dif-
ferentially expressed genes is extremely high. Therefore, various methods 
are proposed to resolve this issue. Basically, they are applications of mul-
tiple comparison procedures to use some arbitrarily selected stringent cut-
off of p-values to control false discovery rate (Hochberg and Tamhane, 1987; 
Benjamini and Hochberg, 1995) or to apply a combination of less stringent 
p-values for traditional hypotheses testing and the fixed fold–change rule 
(MAQC Consortium, 2006). However, all of these methods fail to take into 
account both magnitudes of biologically meaningful fold change and statis-
tical significance simultaneously.

Since the objective is to identify the differentially expressed genes, the 
hypothesis for identifying differentially expressed genes should be formulated 
as the alternative hypothesis. On the other hand, gene i is said to be differen-
tially expressed if the difference in average expression levels between the tested 
and controlled samples is either greater than a minimal biologically Â�meaningful 
limit Ci (over-expressed) or smaller than a maximal biological meaning-
ful limit − ʹCi  (under-expressed). As a result, the hypotheses for identifying 
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differential expressed genes between the tested and controlled samples can be 
formulated as follows (Liu et al., 2007):
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The parameter space for H0 is [− ʹCi iC, ], which represents the interval of no 
differential expression. On the other hand, the parameter space of the alter-
native hypothesis is the union of the intervals of over-expression (Ci, ∞) and 
under-expression ( ,−∞ − ʹCi ). In general, each gene should have its own dif-
ferential expression limits and the differential expression limits do not have 
to be symmetric about 0. However, for the sake of illustration, without loss of 
generality, in what follows, we assume that the differential expression limits 
are the same and are symmetric about 0. The interval hypotheses for differ-
entially expressed genes can be then formulated as

	 H C H C i GiD iN iD iN0 1: versus : > , = 1 , ,μ μ μ μ− ≤ − ,… 	 (21.3)

where C is some biologically meaningful differential expression limit. 
Furthermore, the interval hypotheses can be decomposed into two sets of 
one-sided hypotheses:
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The first set of hypotheses is to verify whether the difference in average 
expression level between the tested and controlled samples for gene i is 
higher than the prespecified upper differential expression limit for over-
expression. The second set of hypotheses is to evaluate whether the differ-
ence in average expression levels between the tested and controlled samples 
for gene i is lower than the predetermined lower differential expression limit 
for under-expression.

Since the parameter space of the alternative hypothesis in (21.3) is the 
union of the parameter spaces of the two one-sided hypotheses given in 
(21.4), H0 in (21.3) is rejected at the α level of significance if and only if 
either H0U or H0L is rejected at the α/2 level of significance. In other words, 
under normal assumption, the two one-sided tests procedure proposed 
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by Liu et al. (2007) rejects the null hypothesis of (21.3) and we conclude 
that gene i is differentially expressed between the tested and controlled 
samples at the α level of significance if
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where
Yik and nik are the sample mean expression and sample size of gene i under 

treatment k, respectively,
spi

2  is the pooled sample variance for gene i, where i = 1,â•›…, G and k = T, C.

Figure 21.1 gives the rejection region of the two one-sided tests procedure 
at the α level of significance for C = 1, and niD = niN = 5 together with the 
rejection region of the conventional two-sample t-test for the hypothesis 
of equality. From Figure 21.1, an interval of no differential expression is 
formulated in the acceptance region for the interval hypothesis while the 
acceptance region for the two-sample t-test contains a single point of 0. In 
addition, the rejection region of the two one-sided tests procedure is a subset 
of that of the two-sample t-test. Consequently, the two-sided tests procedure 
will reduce the probability of falsely identifying unexpressed genes differ-
entially expressed. It is straightforward to verify that under the normality 
assumption, the power function of the two one-sided tests is symmetric at 
the average of Ci and Ci� and it is an α-level test.
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Rejection regions of the two one-sided tests procedure and the unpaired two-sample t-test 
(dashed line) for C = 1, niT = niC = 5, and the α = 0.05 nominal level.
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21.3â•‡� Optimal Representation of in Vitro Diagnostic 
Multivariate Index Assays

For an IVDMIA to be clinically meaningful and its validation to be practi-
cally feasible, it must be parsimonious with a clinically meaningful threshold 
that can provide the best diagnostic accuracy for the molecular targets under 
investigation. In addition, the IVDMIA is in fact some form of parallel assays 
with many analytes, and hence these analytes can be treated as multiple diag-
nostic markers with expression levels being the measurements in the same 
unit. As a result, a linear representation of expression levels of the selected 
differentially expressed genes presents a reasonable approach to the diagno-
sis of molecular targets. It follows that the result of any IVDMIA with a linear 
representation is a continuous variable with a predetermined cut-off for the 
diagnosis of a molecular target. Therefore, first, we need to determine the 
coefficients in the linear combination of the multiple markers not only to have 
the best discrimination ability for the classification of patients with a mini-
mal classification error but also to provide the best diagnostic accuracy. There 
are many indices for evaluation of diagnostic accuracy such as Â� sensitivity, 
specificity, FP rate, PPV, and negative predictive value (NPV). However, these 
indices change when a different threshold is used. On the other hand, the 
area under the receiver operating characteristic (ROC) curve is a quantitative 
criterion for the evaluation of the overall performance of diagnostic accuracy. 
As a result, we recommend using the generalized area under the ROC curve 
based on multiple diagnostic markers for the evaluation of the diagnostic 
accuracy of the IVDMIA (Su and Liu, 1993). Then, based on the area under 
the generalized ROC curve of the IVDMIA, a threshold can be determined to 
balance between the sensitivity and specificity for clinical application.

Suppose that a total of g differentially expressed genes has been selected 
for the IVDMIA. Let YDk(YNk) be a g-vector of the expression levels of gene 
i for patient k with (without) molecular targets, k = 1,â•›…,â•›nD(nN). Assume that 
YDk ∼ N(𝛍D, 𝚺D) and YNk ∼ N(𝛍N, 𝚺N), a linear representation of the IVDMIA 
has the form of a’YDk (a’YNk) that has the best diagnostic accuracy if it can 
provide the maximal area under the ROC curve. In other words, one needs to 
determine the coefficients in a such that P(a’YDk > a’YNk) is maximized. Su and 
Liu (1993) showed that the Fisher linear discrimination function provides the 
coefficients of the best linear combination:

	 a0 = ∑ + ∑ −−( ) ( ).D N D N
1 μ μ 	 (21.6)

These coefficients can not only minimize the classification error but also pro-
vide the largest area under the generalized ROC curve, which is given by

	
A D N D N D N= ( (  Φ m m S S m m− + −( )−)’( ) ) ,1 	 (21.7)
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where Φ(·) is the distribution function of the standard normal random vari-
able. A consistent estimate of A can be obtained by replacing the parameters 
with their unbiased estimators, i.e., sample mean vectors YD and YN and 
sample covariance matrices SD and SN (Su and Liu, 1993). Reiser and Faraggi 
(1997) provided a confidence interval for A. However, in the case of the 
IVDMIA derived from microarray experiments, the number of genes usu-
ally exceeds tens of thousands and the number of patients is rarely in hun-
dreds. Consequently, unstable estimation of the covariance matrices because 
of small sample sizes results in very poor prediction for the patient’s status of 
molecular targets (see, e.g., Simon et al., 2003). As a result, from the result of 
their cross-validation experiments, Simon et al. (2003) recommended the use 
of diagonal linear discriminate function (DLDF) or the compound covariate 
predictor (CCP) for their superior performance of correct classification over 
other methods. For the DLDF, not only the covariances among genes are set 
to be zero but also the homogeneity is assumed for the variances between 
the patients and normal subjects.

From (21.6), it can be seen that the estimators of the coefficients in a0 are 
proportional to the traditional t-statistic, which are also the coefficients 
used in the CCP. Therefore, the more differentially expressed the genes 
are, the more weights of the genes are for the DLDF. In this regard, one 
could include all genes in the DLDF or CCP for the IVDMIA. However, 
if a gene is not differentially expressed between the patients with and 
without molecular targets, it will have a small t-statistic and hence does 
not contribute to the prediction ability of the resulting DLDF or CCP. 
Therefore, during the early development stage of the IVDMIA, all possi-
ble genes should be included for identification of differentially expressed 
genes. However, for the construction of the linear representation of the 
IVDMIA, those genes with no differential expressions should be dropped. 
Unfortunately, how many and which genes should be included in the lin-
ear representation still remain a great challenge to the researchers. One 
rule of thumb is that the number of genes and the genes to be included in 
the classifier should reach a balance between the practicality and amount 
of information required for an accurate diagnosis of molecular targets. If 
there is unequivocal evidence that a certain biological pathway is involved 
in the pathogenesis of a disease, then from a viewpoint of biology, all 
genes affecting this pathway should be included in the classifier. Suppose 
that the sample sizes are equal for the patients with and without molec-
ular targets. One measure that can be used for possible determination 
of the number of genes included in the classifier is the partial between-
group distance (PBGD) defined as
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The range of PBGD is from 0 to 1. Because most of genes tested during the 
early development stage of the IVDMIA are not differentially expressed, and 
if we put ( ) /Y Y siD iN pi− 2 2  into the numerator of PBGD in (21.8) according to its 
magnitude sequentially, then PBGD is an increasing function of the number 
of genes. In order to be clinically practical and to be validated feasible, one 
desirable characteristic of any IVDMIA is to provide a high diagnostic accu-
racy with a set of a small number of genes. Under this ideal situation, PBGD 
is very steep and reaches the plateau of 1 very quickly as shown in Figure 
21.2. On the other hand, there might be several candidates for the classifier 
with similar diagnostic accuracy. Due to the principle of parsimony, treat-
ing the coefficients in the classifiers as fixed constants, based on the paired 
areas under the generalized ROC curves, one can apply the non-inferiority 
test to choose a classifier with the smallest number of genes but with an 
equivalent diagnostic accuracy (Li et al., 2008; Liu et al., 2006). However, the 
non-inferiority test based on the difference in paired areas of the generalized 
ROC curves derived from multiple markers requires further research.

21.4â•‡� Validation of in Vitro Diagnostic Multivariate 
Index Assays

As described above, Oncotype DX used in the TAILORx trial is a RT-PCR 
assay based on 21 genes, while a 70-gene molecular signature derived from 
the microarray is used in the MINDACT trial. Therefore, IVDMIAs are paral-
lel assays with multiple biomarkers and multiple medical decision points. It 
follows that validation of IVDMIA should address the performance and assay 
validation for each component as well as the overall quality performance of 
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Number of genes

PBGD
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1

FIGURE 21.2
Number of genes and PBGD.
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the whole IVDMIA (Frueh, 2006; Patterson et al., 2006). The Food and Drug 
Administration (FDA) draft guidance suggests that for each target or expres-
sion pattern, the performance characteristics include assay sensitivity, repro-
ducibility, validation of cut-off, reference range or medical decision point, 
assay range and specificity (FDA, 2003a). The FDA draft guidance also sug-
gests consulting the guidelines on protocols for assay validation in clinical 
laboratory published by the Clinical Laboratory Standard Institutes (CLSI). 
However, these protocols are for a single analyte and are not suitable for 
complicated assays with multiple markers and a statistical algorithm for 
diagnosis. As a result, the assay validation of IVDMIA should employ differ-
ent approaches although the principle of accuracy and precision remains the 
same (Canales et al., 2006; Ji and Davis, 2006). However, because the overall 
analytical performance of the IVDMIA is determined by the performance 
of the individual component markers, at the minimum, the performance of 
each single gene should be evaluated by the approved guidelines on valida-
tion protocols issued by the CLSI.

Traditionally, one key issue for assay validation of the IVDMIA is the ref-
erence standards with known concentrations for the establishment of the 
calibration curve, assessment of accuracy from recovery experiment, and 
evaluation of linearity and linear range of the IVDMIA. Recently, Shippy 
et al. (2006) investigated the relationship of the expression measurement of 
a transcript in a titration sample and the relationship between the signals 
of a given transcript in the two titration samples and that of each individual 
sample in the Microarray Quality Control (MAQC) study. They found that 
differences in normalization, platforms, and laboratory practices can lead to 
deviations from the mixing ratio expected in traditional assay validation and 
they proposed empirical measurements to estimate the true mRNA fraction 
in the titration samples. On the other hand, Tong et al. (2006) also exam-
ined the use of external RNA controls for the assessment of the accuracy of 
the expression ratios between samples with known expression levels in the 
same MAQC study. They recommended a comprehensive study for model-
ing concentration response to determine the tolerance ranges for linear fit, 
slope and y-intercept for assay assessment, specificity in the context of FPs 
and false negatives. These findings by the investigators of the MAQC study 
indicate difficulty in obtaining the known concentration reference standards 
and assay validation for the IVDMIA based on the microarray platforms, and 
hence more research is needed for the challenges of validation of analytical 
aspects of the IVDMIA.

On the other hand, for a linear representation, the optimal algorithm to 
provide the best discrimination ability and diagnosis of a molecular tar-
get for the IVDMIA is the diagonal linear discriminant function. Recall 
that the selected genes in DLDF are differentially expressed between the 
patients with and without molecular targets and weights are propor-
tional to the t-statistics. Therefore, the DLDF is an aggregate measure of 
expression levels with weights reflecting their relative contributions to the 
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algorithm. But masking effects may occur while the relative unimportant 
genes with small weights are differentially expressed more than those with 
large weights. Once the weights are determined in the development stage, 
to avoid possible masking effect, the expression levels of each individual 
gene must exceed a prespecified lower limit for the overall assay results to 
reach the threshold for a positive diagnosis of the molecular target. Theses 
prespecified limits should be determined from the biological and clinical 
knowledge of relative roles of selected genes in the pathway of pathogenesis 
of the underlying disease.

Agreement and reproducibility are very important performance charac-
teristics of IVDMIA and have recently drawn a lot of attention in the data 
generated from microarray experiments. For example, Dobbin et al. (2005), 
Irizarry et al. (2005), Larkin et al. (2005), and Members on Toxicogenomics 
Research Consortium (2005) examined the agreement on measurements 
of gene expressions between laboratories and across different platforms. 
Testing the hypothesis of zero Pearson correlation coefficient (PCC) is one of 
the most common statistical methods to assess comparability of gene expres-
sion levels between technical replicates within and across laboratories. 
However, to evaluate comparability on gene expressions within and between 
laboratories is to assess the agreement of the measurements of the technical 
replicates for the same genes of the same samples. Hence the objective for 
the evaluation of comparability is to investigate the closeness or equivalence 
of gene expression levels between technical replicates of the same samples. 
Although PCC is an excellent statistic for the evaluation of linear association, 
it is location- and scale-invariant. Hence it cannot detect changes in accuracy 
and precision and cannot be used for the assessment of agreement of gene 
expression levels between technical replicates which requires evaluation of 
equivalence in both accuracy and precision. Therefore, hypothesis of zero 
linear correlation by PCC is not appropriate for the evaluation of agreement 
of gene expression levels between technical replicates of the same samples.

On the other hand, the concordance correlation coefficient, proposed by 
Lin (1989, 1992) and Lin et al. (2002) is a product of PCC and a factor con-
sisting of location and scale shifts. Therefore, it can be employed to evalu-
ate the agreement of gene expression levels between the technical replicates of 
the same samples. In order to meet the minimal requirement of agreement, 
the hypothesis for the assessment of the agreement of gene expression lev-
els between technical replicates should be formulated as the non-inferiority 
hypothesis, where not only does the linear association exceed a prespeci-
fied threshold, but the means and variability between technical replicates 
are also equivalent within some predetermined limits. Both the asymptotic 
method and the exact procedure based on generalized pivotal quantities are 
available for an interval estimation of the concordance correlation coefficient 
for the evaluation of the agreement of gene expression levels between two 
technical replicates, which exceeds some minimal requirement of agreement 
(Lin, 1989; Liao et al., 2007).
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21.5â•‡ Enrichment Process

In clinical research, it is always of particular interest to clinicians to identify 
patients with disease targets under study who are most likely to respond 
to the treatment under study. In practice, an enrichment process is often 
employed to identify such a target patient population. Clinical trials utiliz-
ing an enrichment design are referred to as target clinical trials. After com-
pletion of an HGP, the disease targets at a certain molecular level can be 
identified and should be utilized for the treatment of diseases (Maitournam 
and Simon, 2005; Casciano and Woodcock, 2006). As a result, diagnostic 
devices for the detection of diseases using biotechnology such microar-
ray, polymerase chain reaction, mRNA transcript profiling, and others 
become possible in practice (FDA, 2005, 2007). The treatments specific for 
the molecular targets could then be developed for those patients who are 
most likely to benefit. Consequently, personalized medicine could become 
a reality. The clinical development of Herceptin® (trastuzumab), which is 
targeted at patients with metastatic breast cancer with an over-expression 
of HER2 (human epidermal growth factor receptor) protein, is a typical 
example. We will refer to these treatments as the targeted treatments or 
drugs. Development of targeted treatments involves translation from the 
accuracy and precision of diagnostic devices for molecular targets to the 
effectiveness and safety of the treatment modality for the patient popu-
lation with the targets. Therefore, the evaluation of targeted treatments 
is much more complicated than that of traditional drugs. To address the 
issues of development of the targeted drugs, in April 2005, the FDA issued 
the Drug-Diagnostic Co-Development Concept Paper.

In clinical trials, subjects with and without disease targets may respond to 
the treatment differently with different effect sizes. In other words, patients 
with disease targets may show a much larger effect size, while patients with-
out disease targets may exhibit a relatively small effect size. In practice, fewer 
subjects are required for detecting a bigger effect size. Thus, the traditional 
clinical trials may conclude that the test treatment is ineffective based on the 
detection of a combined effect size, while the test treatment is in fact effective 
for those patients with positive disease targets. Thus, personalized medicine 
is possible if we can identify those subjects with positive disease targets. 
As indicated in the FDA Drug-Diagnostic Co-development Concept Paper, 
one of the useful designs for the evaluation of the targeted treatments is 
the enrichment design (see also Chow and Liu, 2004). Under the enrichment 
design, the targeted clinical trials consist of two phases. The first phase is the 
enrichment phase in which each patient is tested by a diagnostic device for 
detection of the predefined molecular targets. Then, patients with a positive 
result by the diagnostic device are randomized to receive either the targeted 
treatment or a concurrent control. However, in practice, no diagnostic test is 
perfect with 100% PPV. As a result, some of the patients enrolled in targeted 
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clinical trials under the enrichment design might not have the specific tar-
gets and hence the treatment effects of the drug for the molecular targets 
could be underestimated due to misclassification (Liu and Chow, 2008).

Under the enrichment design, following the idea described in Liu and 
Chow (2008), Liu et al. (2009) proposed using the expectation-maximization 
(EM) algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997) in 
conjunction with the bootstrap technique (Efron and Tibshirani, 1993) for 
obtaining the inference of the treatment effects. Their method, however, 
depends upon the accuracy and reliability of the diagnostic device. A poor 
(i.e., less accurate and reliable) diagnostic device may result in a large pro-
portion of misclassification which has an impact on the assessment of the 
true treatment effect. To overcome (correct) the problem of an inaccurate 
diagnostic device, we propose using the Bayesian approach in conjunction 
with the EM algorithm and bootstrap technique for obtaining a more accu-
rate and reliable estimate of treatment effect under various study designs 
recommended by the FDA.

To illustrate the potential impact and significance of the enrichment 
process, consider the example of Herceptin for treating patients with meta-
static breast cancer with and without over-expression of HER2 protein using 
the gene amplification by fluorescence in situ hybridization or clinical trial 
assay (CTA) which is an investigational immunohistochemical (IHC) assay 
consisting of four-point ordinal score system (0, 1+, 2+, 3+). Table 21.1 gives 
the treatment effects of Herceptin plus chemotherapy as a function of HER2 
over-expression. As can be seen from Table 21.1, Herceptin plus chemother-
apy provides statistically significantly additional clinical benefit in terms 
of overall survival over chemotherapy alone for patients with a staining 
score of 3+, while Herceptin plus chemotherapy fails to provide additional 

TABLE 21.1

Treatment Effects as a Function of HER2 
Over- Expression or Amplification

HER2 Assay Result
Number of 

Patients
Relative Risk for 
Mortality (95%)

CTA 2+ or 3+ 469 0.80 (0.64, 1.00)
FISH (+) 325 0.70 (0.53, 0.91)
FISH (−) 126 1.06 (0.70, 1.63)

CTA 2+ 120 1.26 (0.82, 1.94)
FISH (+) 32 1.31 (0.53, 3.27)
FISH (−) 83 1.11 (0.68, 1.82)

CTA 3+ 349 0.70 (0.51, 0.89)
FISH (+) 293 0.67 (0.51, 0.89)
FISH (−) 43 0.88 (0.39, 1.98)

Source:	 From U.S. FDA Annotated Redlined Draft 
Package Insert for Herceptin, Rockville, MD, 2006.

FISH, fluorescence in situ hybridization.
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survival benefit for patients with a CTA score of 2+. However, as indicated 
in the Decision Summary of HercepTest® (a commercial IHC assay for over-
expression of HER2 protein), about 10% of samples have discrepant results 
between 2+ and 3+ staining intensity. In other words, some patients tested 
with a score of 3+ may actually have a score of 2+ and vice versa.

The proposed methodology will allow the clinician to identify optimal 
clinical benefit to patients who are most likely to respond to the treat-
ment under investigation through an enrichment process. Targeted clini-
cal trials under an enrichment design will make personalized medicine 
a reality. The proposed methodology can be applied not only to different 
types of study endpoints such as continuous variables, binary responses, 
and time-to-event data for testing hypotheses of equality, superiority/non-
inferiority, and equivalence, but also to various critical diseases across 
therapeutic areas such as cardiovascular, infectious diseases, and oncology 
in public health.

21.6â•‡ Study Designs of Target Clinical Trials

Under an enrichment design, one of the objectives of targeted clinical trials 
is to evaluate the treatment effects of the molecular targeted test treatment 
in the patient population with a molecular target. The diagram in the FDA 
Concept Paper (FDA, 2005) for demonstration of this design is reproduced in 
Figure 21.3.

Under the above enrichment design, Liu et al. (2009) considered a two-
group parallel design in which patients with a positive result by the diag-
nostic device are randomized in a 1:1 ratio to receive the molecular targeted 
test treatment (T) or a control treatment (C) (see Figure 21.4). In other words, 
only patients with positive diagnosed results are included in the study. For 
simplicity, Liu et al. (2009) assumed that the primary efficacy endpoint is 
a continuous variable. Let Yij be the responses of the jth subject in the ith 
group, where j = 1,â•›…, ni; i = T, C. Yij are assumed to be approximately nor-
mally distributed with homogeneous variances between the test and control 

All subjects

All subjects
diagnosed but

results not
used for

randomization

Test

Control

R

FIGURE 21.3
Targeted clinical trials under an enrichment design.
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treatments. Table 21.2 gives the expected values of Yij by treatment and diag-
nostic result of the molecular target. In Table 21.1, μT+â•›, μC+ (μT−â•›, μC−) are the 
means of test and control groups for the patients with (or without) a molecu-
lar target. The inference for the treatment effects could be obtained through 
either estimation or hypothesis testing. For estimation, the parameter of 
interest is the treatment effects for the patients truly having the molecular 
target θ = μT+ − μC+. However, this effect may be contaminated due to misclas-
sification, i.e., for those subjects who do not have a molecular target but have 
positive diagnosed results and those subjects who have a molecular target 
and negative diagnosed results.

The hypothesis for detection of treatment difference in the patient popula-
tion truly with a molecular target is the hypothesis of interest:

	 H HT C a T C0 0 0: versus : .μ μ μ μ− −+ + + += ≠  	 (21.9)

As indicated above, Liu et al. (2009) proposed statistical methods for assess-
ment of the treatment effect for patients with positive diagnosed results 
under the enrichment design described in Figure 21.4. Their methods suf-
fer from the lack of information regarding the proportion of subjects who 
truly have molecule targets in the patient population and the unknown PPV. 
Consequently, the conclusion drawn from the collected data may be biased 
and misleading. In addition to the study designs as given in Figures 21.3 
and 21.4, the 2005 FDA Concept Paper also recommended the following two 
study designs for different study objectives (see Figures 21.5 and 21.6).

TABLE 21.2

Population Means by Treatment and Diagnosis

Positive 
Diagnosis

True Target 
Condition

Indicator of 
Diagnostic

Test 
Group

Control 
Group Difference

+ + γ μT+ μC+ μT+ − μC+

− 1 − γ μT− μC− μT− − μC−

Note:	 γ is the positive predictive value (PPV).

All subjects All diagnosed at randomization

Diagnosis is –

Diagnosis is +

Test

Control
R

FIGURE 21.4
Enrichment design for patients with positive results.
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This study design allows the evaluation of the treatment effect within 
subpopulations, i.e., the subpopulation of patients with positive or negative 
results. Similar to Table 21.1 for the study design given in Figure 21.3, the 
expected values of Yij by treatment and diagnostic result of the molecular 
targets are summarized in Table 21.2. As a result, it may be of interest to esti-
mate the following treatment effects:

	 θ γ μ μ γ μ μ1 1 11= − + − −++ ++ +− +−( ) ( )( ),T C T C 	

	 θ γ μ μ γ μ μ2 2 21= − + − −−+ −+ −− −−( ) ( )( ),T C T C 	

	 θ δγ μ μ δ γ μ μ3 1 21= − + − −++ ++ −+ −+( ) ( ) ( ),T C T C 	

	 θ δγ μ μ δ γ μ μ4 1 11= − + − −+− +− −− −−( ) ( ) ( ),T C T C 	

	

θ δ γ μ μ γ μ μ

δ γ μ μ
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1

1
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+ − − +

+− +− +− +−

−+ −+

[ ( ) ( )( )]

( )[ ( )
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where δ is the proportion of subjects with positive molecule targets. 
Following a similar idea as described in the previous section, estimates 
of θ1 − θ5 can be obtained. In other words, estimates of θ1 and θ2 can be 
obtained based on data collected from the subpopulations of subjects with 
and without positive diagnoses who truly have a molecular target of inter-
est. Similarly, the combined treatment effect θ5 can be assessed. These 
estimates, however, depend upon both γi, i = 1,â•›2 and δ. To obtain some 
information regarding γi, i = 1,â•›2 and δ, the FDA recommends the following 
alternative enrichment design which includes a group of subjects without 
any diagnoses and a subset of subjects who will be diagnosed at the screen-
ing stage (Table 21.3, Figure 21.6).

All subjects

Diagnosis is –

All diagnosed at randomization

Diagnosis is +
Test

Control

Test

Control

R

R

FIGURE 21.5
Enrichment design for patients with and without molecular targets.
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Simon and Maitournam (2004) and Maitournam and Simon (2005) provide 
sample size determination for the targeted clinical trials for both continu-
ous and binary endpoints. However, variability associated with estimates 
of PPV, NPV, FP rate, and false negative rate is not considered in the sample 
size calculation and relative efficiency of the targeted clinical trials to the 
untargeted ones. On the other hand, for example, getfitnib is the specific 
inhibitor of the tyrosine kinase of epidermal growth factor receptor (EGFR) 
that is involved in the pathway of the pathogenesis of non-small cell lung 
cancer (NSCLC). However, the response rate of getfitnib in patients with 
NSCLC is only about 10%. In addition, for another EGFR inhibitor, erlo-
tinib, the survival of patients with NSCLC is correlated significantly with 
the expression, polysomy, amplification, and mutation of EGFR. Therefore, 
multiple pathways with multiple targets may be involved in most diseases. 
Consequently, in the foreseeable future, it is very likely that a cocktail of 
molecularly targeted agents will be employed to treat diseases with multiple 
targets. Therefore, research on the innovative and novel designs and analy-
ses for targeted clinical trials in evaluation of multiple drugs for multiple 
molecular targets is urgently needed.

TABLE 21.3

Population Means by Treatment and Diagnosis

Positive 
Diagnosis

True Target 
Condition

Indicator of 
Diagnostic

Test 
Group

Control 
Group Difference

+ + γ1 μT++ μC++ μT++ − μC++

− 1 − γ1 μT+− μC+− μT+− − μC+−

− + γ2 μT−+ μC−+ μT−+ − μC−+

− 1 − γ2 μT−− μC−− μT−− − μC−−

Note:	 γi is the PPV, i = 1 (positive diagnosis) and i = 2 (negative diagnosis); μijk 
is the mean for subjects in the ith group with the kth true target status 
but with jth diagnosed result.

All subjects No diagnosed

Diagnosis –

Diagnosis

Subset diagnosed

Control

Test
R

Control

Test
R

FIGURE 21.6
Alternative enrichment design for targeted clinical trials.
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21.7â•‡ Analysis of Target Clinical Trials

Liu et al. (2009) considered the situation where a particular molecular target 
involved with the pathway in the pathogenesis of the disease has been identi-
fied and there is a validated diagnostic device available for detection of the 
identified molecular target. It is assumed that the device is only for detection of 
the molecular target and is not for prognosis of clinical outcomes of patients. In 
addition, it is also assumed that the device has been evaluated in the diagnostic 
effectiveness trial and met the regulatory requirements for diagnostic accuracy.

Let y–T and y–C be the sample means of test and control treatments, respec-
tively. Since no diagnostic test is perfect for diagnosis of the molecular target 
of interest without error, some patients with a positive diagnostic result may 
in fact not have a molecular target. It follows that

	 E y yT C T C T C( ) ( ) ( )( ),− = − + − −+ + − −γ μ μ γ μ μ1 	 (21.10)

where γ is the PPV. Liu and Chow (2008) indicated that the expected value 
of the difference in sample means consists of two parts. The first part is the 
treatment effects of the molecularly targeted drug in patients with a positive 
diagnosis who truly have a molecular target of interest. The second part is 
the treatment effects of patients with a positive diagnosis but who in fact do 
not have a molecular target. The reason for developing the targeted treat-
ment is based on the assumption that the efficacy of the targeted treatment 
is greater in patients truly with a molecular target than in those without a 
target. In addition, the targeted treatment is also expected to be more effica-
cious than the untargeted control in the patient population truly with molec-
ular targets. It follows that μT+ − μC+ > μT− − μC−. As a result, the difference in 
sample means obtained under the enrichment design for targeted clinical 
trials actually underestimated the true treatment effects of the molecularly 
targeted test drug in the patient population truly with a molecular target 
of interest. As can be seen from (21.10), the bias of the difference in sample 
means decreases as the PPV increases. On the other hand, the PPV of a diag-
nostic test increases as the prevalence of the disease increases (Fleiss et al., 
2003). For a disease which is highly prevalent, say greater than 10%, even 
with a high diagnostic accuracy of 95% sensitivity and specificity for the 
diagnostic device, the PPV is only about 67.86%. It follows that the down-
ward bias of the traditional difference in sample means could be substantial 
for the estimation of treatment effects of the molecularly targeted drug in 
patients truly with the target of interest.

The traditional unpaired two-sample t-test approach is to reject the null 
hypothesis in (21.9) at the α level of significance if
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where
sp

2 is the pooled sample variance,
t n nT Cα , + −2 is the αth upper Â�percentile of a central t-distribution with nT + nC − 2 

degrees of freedom.

Since y–T − y–C underestimates μT+ − μC+, the planned sample size may not be 
sufficient for achieving the desired power for detecting the true treatment 
effects in patients truly with a molecular target of interest. Based on the 
above t-statistic, the corresponding (1 − α)100% confidence interval can be 
obtained as follows:
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Although all patients randomized under the enrichment design have a posi-
tive diagnosis, the true status of the molecular target for individual patients 
in the targeted clinical trials is in fact unknown. It follows that under the 
assumption of homogeneity of variance, Yij are independently distributed 
as a mixture of two normal distributions with mean μi+ and μi− respectively, 
and common variance σ2 (McLachlan and Peel, 2000):

	 ϕ μ σ ϕ μ σγ γ( | , ) ( | , ) , , ; ,y y i T C j nij i ij i i+ −
− = =2 2 1 1,…, 	 (21.11)

where φ(·|·) denotes the density of a normal variable.
However, γ is an unknown PPV, which is usually estimated from the data. 

Therefore, the data obtained from the targeted clinical trials are incomplete 
because the true status of the molecular target of the patients is missing. 
The EM algorithm is one of the methods for obtaining the maximum like-
lihood estimators of the parameters for an underlying distribution from a 
given data set when the data are incomplete or have missing values. On the 
other hand, the diagnostic device for the detection of molecular targets has 
been validated in diagnostic effectiveness trials for its diagnostic accuracy. 
Therefore, the estimates of the PPV for the diagnostic device can be obtained 
from the previously conducted diagnostic effectiveness trials. As a result, we 
can apply the EM algorithm to estimate the treatment effect for the patients 
truly with a molecular target by incorporating the estimates of the PPV of the 
device obtained from the diagnostic effectiveness trials as the initial values.

For each patient, we have a pair of variables (Yij, Xij), where Yij is the 
observed primary efficacy endpoint of patient j in treatment i and Xij is 
the latent variable indicating the true status of the molecular target of 
patient j in treatment i; j = 1,â•›…, ni, i = T, C. In other words, Xij is an indica-
tor variable with value of 1 for patients truly with a molecular target and 
with a value of 0 for patients truly without a target. In addition, Xij are 



Enrichment Process in Target Clinical Trials	 413

assumed to be independent and identically distributed (i.i.d.) Bernoulli 
random variables with probability γ for the molecular target. Let Ψ = (γ, μT+, 
μT−, μC+, μC−, σ2)′ be the vector containing all unknown parameters and 
yobs 1 1= , ,( , )’y y y yT Tn C CnT C, ,… …  be the vector of the observed primary efficacy 
endpoints from the targeted clinical trials. It follows that the complete-data 
log-likelihood function is given by
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Furthermore, from the previous diagnostic effectiveness trials, an estimate 
of the PPV of the device is known. Therefore, at the initial step of the EM 
algorithm for estimating the treatment effects in patients truly with a molec-
ular target, the observed latent variables Xij are generated as i.i.d. Bernoulli 
random variables with the PPV γ estimated by that obtained from the diag-
nostic effectiveness trial. The procedures for implementation of the EM algo-
rithm in conjunction with the bootstrap procedure for inference of θ in the 
patient population truly with a molecular target are briefly described in the 
following.

At the (kâ•›+â•›1)st iteration, the E-step requires the calculation of the con-
ditional expectation of the complete-data log-likelihood Lc(Ψ), given the 
observed data yobs, using currently fitting Ψ̂( )k  for Ψ.
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Since log Lc(Ψ) is a linear function of the unobservable component labeled 
variables xij, the E-step is calculated by replacing xij by its conditional expec-
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which is the estimate of the posterior probability of the observation yij with 
molecular target after the kth iteration. The M-step requires the computa-

tion of γ�i

k( )+1
, ˆ ( )μi

k
+

+1 , ˆ ( )μi
k
−

+1 , and ( )( )σ̂ i
k2 1+ ; i = T, C, by maximizing log Lc(Ψ). 

It is equivalent to computing the sample proportion, the weighted sample 
mean, and sample variance with the weight xij. Since log Lc(Ψ) is linear in 
the xij, it follows that xij are replaced by their conditional expectations ˆ ( )xij

k . 
On the (k + 1)th iteration, the intent is to choose the value of Ψ, say Ψ̂ ( )k+1 , 
that maximizes Q k( ; )( )Ψ Ψ̂ . It follows that on the M-step of the (k + 1)st itera-
tion, the current fit for the PPV of the test drug group and control group is 
given by
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Under the assumption that nT = nC, it follows that the overall PPV is esti-
mated by
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The means of the molecularly targeted test drug and control can then be 
estimated, respectively, as
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with unbiased estimators for the variances of the molecularly targeted drug 
and control given respectively by
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and
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It follows that an unbiased estimate for the pooled variance is given as
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Therefore, the estimator for the treatment effects in patients with a molecular 
target θ obtained from the EM algorithm is given as ˆ ˆ ˆθ μ μ= −+ +T C .

Liu et al. (2009) proposed to apply the parametric bootstrap method to esti-
mate the standard error of θ̂.

Step 1: �Choose a large bootstrap sample size, say B = 1000. For 1 ≤ b ≤ B, 
generate the bootstrap sample yobs

b  according to the probability model 
in (21.11). The parameters in (21.11) for generating bootstrap samples 
yobs
b  are substituted by the estimators obtained from the EM algorithm 

based on the original observations of primary efficacy endpoints from 
the targeted clinical trials.

Step 2: �The EM algorithm is applied to the bootstrap sample yobs
b  to obtain 

estimates θ̂b
*, b = 1,â•›…, B.

Step 3: �An estimator for the variance of θ̂ by the parametric bootstrap proce-
dure is given as
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Let θ̂ be the estimator for the treatment effects in patients truly with 
a molecular target obtained from the EM algorithm. Nityasuddhi and 
Böhning (2003) show that the estimator obtained under the EM algorithm 
is asymptotically unbiased. Let SB

2 denote the estimator of the variance of θ̂ 
obtained by the bootstrap procedure. It follows that the null hypothesis is 
rejected and the efficacy of the molecularly targeted test drug is different 
from that of the control in the patient population truly with a molecular 
target at the α level if
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where zα/2 is the α/2 upper percentile of a standard normal Â�distribution. 
Thus, the corresponding (1 − α)100% asymptotic confidence interval 
for θ = μT+ − μC+ can be constructed as ˆ

/θ α± −z SB1 2
2  (see, e.g., Basford 

et al., 1997). It should be noted that although the assumption that μT+ − μC+ > 
μT− − μC− is one of the reasons for developing the targeted treatment, this 
assumption is not used in the EM algorithm for the estimation of θ. Hence, 
the inference for θ by the proposed procedure is not biased in favor of the 
targeted treatment.

As indicated earlier, the method proposed by Liu et al. (2009) suffers from 
the lack of information regarding the uncertainty in accuracy of the diagnos-
tic device. As an alternative, we propose considering a Bayesian approach 
to incorporate the uncertainty in accuracy and reliability of the diagnostic 
device for the molecular target into the inference of treatment effects of the 
targeted drug. For each patient, we have a pair of variables (yij, xij), where 
yij is the observed primary efficacy endpoint of patient j in treatment I and 
xij is the latent variable indicating the true status of the molecular target of 
patient j in treatment I; j = 1,â•›…, ni, i = T, C. In other words, xij is an indicator 
variable with value of 1 for patients with a molecular target and with a value 
of 0 for patients without a target. xij are assumed to be i.i.d. Bernoulli random 
variables with the probability of the molecular target being γ. Thus, xij = 1 if 
yij ∼ N(μi+, σ2) and xij = 0 if yij ∼ N(μi−, σ2), i = T, C; j = 1,â•›…, ni. The likelihood 
function is given by
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where i = T, C; j = 1,â•›…, ni and φ(·|·) denotes the density of a normal variable.
For the Bayesian approach, a beta distribution can be employed as the 

prior distribution for γ, while normal prior distributions can be used for 
μi+ and μi−. In addition, a gamma distribution can be used as a prior dis-
tribution for σ−2. Under the assumptions of these prior distributions, the 
Â�conditional Â�posterior distributions of γ, μi+, μi−, σ−2 can be derived. In other 
words, Â�assuming that f(γ) ∼ Beta(αγ, βγ), f Ni i( ) ~ ( , )μ λ σ+ + 0

2 , f Ni i( ) ~ ( , )μ λ σ− − 0
2 , 

and f(σ−2) ∼ Gamma(αg, βg), where μi+, μi−, and γ are assumed to be independent 
and α γ , β γ , αg, βg, λi+, λi− and σ0

2 are assumed to be known. Thus, the condi-
tional posterior Â�distribution of xij is given by

	
f x Y Bernoulli

y
y

ij i i
ij i

ij i
( | , , , ) ~

( | , )
( | ,

γ μ μ
γϕ μ σ

γϕ μ σ
+ −

+

+
obs

0
2

00
2

0
21) ( ) ( | , )

,
+ −

⎛

⎝⎜
⎞

⎠⎟−γ ϕ μ σyij i 	



Enrichment Process in Target Clinical Trials	 417

where EΨ[xij|γ, μi+, μi−, Yobs] = γφ(yij|μi+, σ2)/(γφ(yij|μi+, σ2) + (1 − γ)φ(yij|μi−, σ2)), 
i = T, C; j = 1,â•›…, ni in the EM algorithm. The joint distribution of γ, μi+, μi−, and 
σ2 is given by

	

f Y x

y y

i i ij

Tj T

j x

Tj T

Tj

( , , , | , )

( | , ) ( | ,
,

γ μ μ σ

ϕ μ σ ϕ μ σ

+ −

+

=

−= ×∏

2

2

1

obs

22

0

2

1

2

0

)

( | , ) ( | , ) (

,

, ,

j x

Cj C

j x

Cj C

j x

Tj

Cj Cj

y y

=

+

=

−

=

∏

∏ ∏× × ×ϕ μ σ ϕ μ σ ϕ μμ λ σ

ϕ μ λ σ ϕ μ λ σ ϕ μ λ σ

T T

T T C C C C

+ +

− − + + − −× × ×

| , )

( | , ) ( | , ) ( | , )

0
2

0
2

0
2

0
2

××
+ ∑ ∑

−= =

+ + − −Γ
Γ Γ

( )
( ) ( )

( ) ( )
(α β

α β
γ γγ γ

γ γ

αγx x xTj
j

nT
Cj

j

nC
Tj

1 1

1 1

1
)) ( )

.
+ − + −

= =
∑ ∑
j

nT
Cj

j

nC
x

1 1

1 1βγ

	

Thus, the conditional posterior distribution of γ, μi+, μi−, and σ−2 and can be 
obtained as follows:
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respectively. Consequently, the conditional posterior distribution of θ = μT+ − μC+ 
can be obtained as follows:
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As a result, statistical inference for θ = μT+ − μC+ can be obtained. Following 
similar ideas, statistical inferences for the treatment effects (θ1 through θ5 as 
described earlier) can be derived. Note that different prior assumptions for γ, 
μi+, μi−, and σ−2 may be applied depending upon disease targets across different 
therapeutic areas. However, different prior assumptions will result in differ-
ent statistical inference for the assessment of the treatment effect under study.

21.8â•‡ Discussion

Currently, the inclusion and exclusion criteria for clinical trials are based 
on some clinical signs and symptoms or their corresponding measure-
ments. However, as more molecular targets of the diseases are identified, 
the expression profiles of the molecular targets more frequently become 
inclusion and exclusion criteria, e.g., HercepTest for the diagnosis of the 
HER2 neu gene for the treatment of Herceptin in patients with invasive 
breast cancer. Microarray platform is the breakthrough technology that can 
simultaneously measure the genome-wide expression profiles of the path-
ways involved with the pathogenesis of the disease. But the translation of 
microarray technology to the diagnostic devices for molecular targets in 
the treatment of the disease by the molecularly targeted agents still faces 
many challenges (Simon, 2006, 2008). Because the goal of genomic compos-
ite biomarker classifiers or IVDMIA is to treat patients with a molecular 
target with the molecularly targeted drugs and not to treat patients without 
a target with ineffective and unnecessary treatments, clinical validation is 
as equally important as analytical validation of IVDMIA.

One of the critical issues for clinical validation is the definition and avail-
ability of the gold standard for the diagnosis of the molecular targets used for 
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the evaluation of sensitivity, specificity, PPV, FP rate, and ROC curve. Some 
investigators use the classifiers derived from other quantitative gene expres-
sion platforms, e.g., RT-PCR, as the gold standard. However, in essence, these 
platforms are not the gold standard and classification error may also occur 
using these technology platforms for the diagnosis of the same molecular 
target. As a result, almost none of the parameters concerning the diagnostic 
accuracy can be estimated without the gold standard. Under the situation 
without a gold standard, one can only assess the agreement or equivalence in 
the diagnosis of the molecular target (Liu et al., 2002b). However, equivalence 
in diagnosis between the test IVDMIA and the reference classifier based on 
other technological platforms implies that both are accurate or both are inac-
curate in the diagnosis of the molecular target.

For the clinical effectiveness trial of the IVDMIA of the diagnostic accu-
racy of the molecular target, the inclusion and exclusion criteria for patients 
should be exactly the same as those for the targeted clinical trials for the 
evaluation of the efficacy and safety of the molecularly targeted agents. In 
addition, all procedures of the test IVDMIA evaluated in the clinical effec-
tiveness trials and used for diagnosis in the target clinical (utility) trials 
should be prespecified in the protocols and should be the same methods 
derived from the development stage of the classifier such as sample collec-
tion, RNA extraction, cDNA/cRNA synthesis, dye labeling, hybridization, 
scanning, normalization procedures, and thresholds. In addition, repro-
ducibility for the correct diagnosis such as within- and between-laboratory 
agreement should be also evaluated in the clinical effectiveness trial of the 
IVDMIA.

For the development of any classifier, the prevalence rate must be taken 
into consideration. For example, since the misclassification rate of the DLDF 
is a function of the prevalence rate, determination of thresholds also depends 
upon the prevalence rate. On the other hand, because the molecularly tar-
geted agents are specific inhibitors of their target and may induce a large 
treatment effect in patients with a molecular target, targeted clinical trials 
are in general more efficient than untargeted trials (Maitournam and Simon, 
2005; Simon and Maitournam, 2004). Moreover, if the prevalence rate of the 
target in the patient population is low, the recruitment period of the targeted 
clinical trials will be much longer than the untargeted ones. In addition, the 
PPV is proportional to the prevalence rate. Therefore, if the prevalence rate 
of the target is below 0.01, then the PPV will be below 0.5. From (21.9), the 
treatment effect of the molecular target will be seriously underestimated. 
However, when the prevalence rate is 0.1 and above, the FP rate will decrease 
to below 10%. In this case, bias still exists but with a moderate magnitude. 
Furthermore, similar to gender or age, the genomic composite biomarker clas-
sifier is also another variable with the expression profiles to stratify patients 
into subgroups with and without molecular targets. If the prevalence rate 
of a certain target is low, the number of patients in this subgroup will be 
very low. It follows that it might take a very long time to recruit patients and 
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the trial might not have sufficient power to prove the effectiveness of the 
molecularly targeted agent even if the targeted clinical trial is more efficient. 
As a result, prevalence rate is a determining factor for the development of 
molecularly targeted treatments. But how low is the prevalence rate? Is the 
personalized medicine for a subgroup of one patient with his or her distinct 
signature attainable? Does a cocktail of molecularly targeted agents for mul-
tiple targets represent a feasible approach to targeted therapy? These are just 
a few challenges that one must ponder about for the development of diagnostic 
multivariate assays and molecularly targeted therapy.
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22
Clinical Trial Simulation

22.1â•‡� Introduction

Clinical trial simulation (CTS) is defined as a process that uses computers to 
mimic the conduct of a clinical trial by creating virtual patients and extrapolat-
ing clinical outcomes for each virtual patient based on prespecified assump-
tions/models. CTS is a powerful tool for designing, monitoring, analyzing, 
and planning clinical trials. It has been used for several decades (Maxwell and 
Domenet, 1971; Kimko and Duffull, 2003; Chang, 2011). CTS plays an impor-
tant role in pharmaceutical/clinical research and development. However, it 
did not receive much attention and become increasingly popular in the phar-
maceutical industry until recently (Parmigiani, 2002; Chang, 2011).

In clinical trials, a complicated trial design may be necessarily employed for 
achieving study objectives. Under a complicated trial design and/or statisti-
cal model, there may exist no closed form for statistical inference (e.g., point 
estimate or confidence interval) for the study endpoints (e.g., safety or efficacy 
parameters) of interest. In this case, CTS is often employed to evaluate the per-
formance of the derived statistical inference. A typical approach is to gener-
ate virtual clinical data under an assumed model, which is treated as a true 
model. Based on the generated data, statistical inference can then be obtained. 
A simulation usually involves a large number of runs. In other words, a simu-
lation will generate virtual clinical data under the same model a large number 
of times. In each run (sample), statistical inference such as point estimate or 
confidence interval can then be obtained. Based on the point estimates and 
confidence intervals, one can evaluate the performance of the statistical infer-
ence in terms of (1) bias, (2) standard error, (3) coverage probability, and (4) 
power of the point estimates and/or confidence intervals.

In clinical research, CTS is a useful tool not only for monitoring the con-
duct of the trial and its outcomes but also for identifying potential problems 
and providing recommendations early. In addition, it is helpful in studying 
the validity and sensitivity of the trial if the study should deviate from the 
study protocol. Under the prespecified model, CTS can also provide useful 
information regarding the (predicted) clinical outcomes beyond the scope of 
the study. CTS can help depicting the relationships between the inputs such as 



422	 Controversial Statistical Issues in Clinical Trials

dose, dosing time, patient characteristics, and disease severity and the clinical 
outcomes such as changes in efficacy and safety parameters (e.g., treatment 
effects, signs and symptoms, laboratory tests, and adverse events). In practice, a 
CTS is often conducted to evaluate the performance of clinical outcomes under 
different assumptions and various design scenarios at the planning stage of 
the intended clinical trial.

One of the most controversial issues in CTS is the validity of the assumed 
model and its assumptions. If the assumed model and its assumptions are 
incorrect and/or (seriously) deviate from the true model and assumptions, 
the simulation results could be biased and hence misleading. Another contro-
versial issue is that if we can verify the assumed model and its assumptions, 
then there is no need to conduct clinical trials. Many clinicians are against the 
concept of drawing conclusions based on simulation results, especially when 
the assumed model is seriously in doubt. In practice, if it is not impossible, the 
validity of the assumed model and its assumptions are often difficult to verify, 
which is the primary reason and motivation for conducting a clinical trial.

In the next section, the process for conducting a CTS including a valid statisti-
cal model and its assumptions required for conducting a CTS are briefly out-
lined. Some commonly considered algorithms and/or procedures in CTS such 
as the expectation–maximization (EM) algorithm and bootstrap are described 
in Sections 22.3 and 22.4, respectively. In Section 22.5, some applications such as 
target clinical trials with enrichment design and dose escalation trials in cancer 
research are given. Some concluding remarks are discussed in the last section.

22.2â•‡� Process for Clinical Trial Simulation

In clinical research, the purpose of CTS is to simulate the behavior of a test 
treatment in patients with the disease under study. Thus, CTS requires (1) a 
statistical model with certain assumptions in order to simulate the behavior 
of the drug in the body of a living organism and (2) a study protocol that pro-
vides the dosage and data-collecting schedules for the trial. The dosage sched-
ule indicates when drug treatments are to be given to the individual subjects 
and how much of the drug is to be administered. The data-collecting schedule 
describes what observations or measurements of the study endpoints are to be 
taken of the subject and at what times. Note that there can be multiple dosage 
schedules and multiple observation schedules even for a single clinical trial.

22.2.1  �Model and Assumptions

In CTS, a linear model under a valid study design with certain assumptions 
is often considered to evaluate the effectiveness and safety of a test treatment 
under investigation. As an example, consider a randomized, parallel-group, 
double-blind clinical trial comparing T treatments. Let yij be the response 



Clinical Trial Simulation	 423

of the ith subject who receives the jth treatment, i = 1,â•›…, nj; j = 1,â•›…, T. The 
Â�following linear model is usually employed:

	 y S e i n j Tij j i ij j= + + + = =μ μ , , ,1 1, ,… …, , 	 (22.1)

where
μ is the overall mean
μj is the effect of the jth treatment
Si is the random effect due to the ith subject
eij are random errors in observing yij

In practice, Si are independent and identically distributed with mean 0 and 
Â�variance σS

2
, eij are independent and identically distributed with mean 0 and vari-

ance σe
2, and Si and eij are mutually independent. Note that σS

2 and σe
2 are usually 

referred to as between-subject (or inter-subject) and within-subject (or intra-sub-
ject) variability, respectively. In most cases, the maximum likelihood estimates 
(MLEs) or consistent estimates of the study parameters are obtained based on 
asymptotic results of large samples. Under model (22.1) and its corresponding 
assumptions, a clinical simulation can be carried out using the following steps:

Stepâ•›1:â•‡� Generate random observations (Gentle, 1998) under model (22.1) and 
assumptions.

Step 2:â•‡� Calculate the MLEs or consistent estimates of the parameters of inter-
est, such as treatment effects.

Step 3:â•‡� Repeat the above two steps a large number of times, say 10,000 times, 
and obtain statistical inferences such as point estimates and/or confi-
dence intervals of the study parameters of interest.

Step 4:â•‡� Based on the 10,000 point estimates and/or confidence intervals, eval-
uate the performance of the statistical inference in terms of some per-
formance characteristics such as bias, standard error, mean squared 
error (MSE), and/or coverage probability.

In practice, the above steps can be repeated for different combinations of 
study parameters specifications and distribution assumptions for sensitivity 
or robustness analysis.

22.2.2  �Performance Characteristics

As indicated earlier, CTS is often conducted when there exists no closed form 
for statistical inference under a complicated trial design. In this case, statisti-
cal inference is usually obtained based on asymptotic results. Thus, it is of 
interest to evaluate the finite sample performance of the obtained statistical 
inference through a CTS in terms of some performance characteristics.

In practice, commonly considered performance characteristics include, but 
are not limited to, (1) bias for evaluation of accuracy, (2) variability or MSE for 
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assessment of reliability, (3) coverage probability for controlling type I error 
rate, and (4) sensitivity for deviations from assumptions. For a given study 
endpoint, bias and MSE can be obtained. The coverage probability is defined 
as the number of times the obtained confidence intervals cover the true value 
divided by the total number of simulation runs.

In some simulations, if the study objective is to detect a clinically meaning-
ful difference, the performance characteristic of power is usually considered. 
Power is defined as the probability of correctly detecting a clinically mean-
ingful difference if such a difference truly exists.

22.2.3  �An Example

For illustration purpose, consider the following analysis of covariance 
(ANCOVA) model:

	 y f x S e i n j Tij ij j i ij j= + + + + = =μ μ( ) , , ,1 1, ,… …, , 	 (22.2)

where
yij, μ, μj, Si, and eij are as defined in (22.1)
xij = (x1ij, x2ij,â•›…, xKij) is the corresponding vector of covariates that are rel-

evant to the response yij

f is a function that links yij and xij

Under model (22.2), a Monte Carlo simulation can be performed to evaluate 
the bias, variability, MSE, and coverage probabilities of the parameter esti-
mates using the following steps:

Step 1:â•‡� Using S/R programming, we generated two sets of correlated val-
ues to indicate the measures of response and covariates—yij (indi-
cates measures of response) and xij (measures of the corresponding 
covariates)—with the assumed model above. The data were gener-
ated by setting the number of treatment t, number of subjects for 
each treatment n, value of overall mean mu, corresponding values of 
f(x) (denoted by f.x), treatment effects (denoted by mu.trt), standard 
deviations of random effect (denoted by sd.S) and of random error 
(denoted by sd.e). Sample programs are given in Table 22.1.

Step 2:â•‡� Using these two sets of variables (yij and xij), we can calculate the esti-
mates of the study parameters of interest. Note that if there exist no 
closed forms for these estimates, the method of EM algorithm can be 
used, which is given in the next section.

Step 3:â•‡� We then repeat Steps 1 and 2 a large number of times in order to 
calculate the bias, variability, mean absolute error (MAE), MSE, and 
coverage probability (rate) based on asymptotic normality assump-
tion. Sample programs are given in Table 22.2.
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22.2.4  �Remarks

As can be seen, the success of CTS depends upon the validity of the assumed 
model. If the model is incorrect, the results which are obtained under the 
wrong model would be biased and hence misleading. As a result, one of the 
controversial issues regarding the use of CTS in clinical trials for address-
ing some scientific/medical questions under a complicated study design 
and model is the validity of the assumed model. However, if one can show 
that the assumed model is correct and almost 100% accurate and reliable, 
there is no need to conduct a clinical trial because the model is predictive of 
the clinical outcomes of patients who receive the test treatment. In practice, 

TABLE 22.1

Sample Program for Generating Random Numbers

data.gen.f=function(t, n, mu, f.x, mu.trt, sd.S, sd.e){
     mu.j=rep(mu.trt,n) 
## process of generating a (n1+n2+...nT) vector of random effect
s.random=rnorm(max(n),mean=0, sd=sd.S)     
   S.1=s.random[1:n[1]]
   for (j in 2:T){
       S.2=s.random[1:n[j]]
       S.1=c(S.1,S.2)
   }
   S=S.1
## generate a (n1+n2+...nT) vector of independent normals
   e=rnorm(length(f.x), mean=0, sd=sd.e)  
   y=mu+f.x+mu.j+S+e
}

TABLE 22.2

Sample Programs for Calculation of Bias, Variability, MAE, MSE, 
and Coverage Rate

performance.est.f=function(theta, theta.est){
Bias=mean(theta.est-theta)
MAE=mean(abs(theta.est-theta))
MSE=mean((theta.est-theta)^2)
se=sd(theta.est)/sqrt(length(theta.est))
lower=theta.est-qnorm(0.975)*se
upper=theta.est+qnorm(0.975)*se
cover.rate=mean(as.numeric((theta<=upper)&(theta>=lower)))
stat=c(Bias,MAE,MSE,cover.rate)
names(stat)=c(“Bias”, “MAE”, “MSE”, “coverage rate”)
print(stat)
}
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unfortunately, it is impossible to test the validity of the assumed model 
until we have conducted the clinical trial. Thus, a sensitivity or robust-
ness study is usually conducted to assess the impact of possible deviations 
from the unknown true model with respect to study parameters and model 
assumptions.

22.3â•‡� EM Algorithm

As indicated in the previous section, it is important to obtain MLEs or 
consistent estimates of the parameters of interest such as treatment effects 
in CTS. In many cases, closed forms for MLEs may not exist. In this case, 
the method of EM algorithm is a very useful tool for finding the MLEs of 
parameters of interest under an appropriate statistical model, where the 
model depends on some unobserved latent variables. The EM algorithm 
has become very popular in clinical research and development since it 
was introduced by Dempster et al. (1977). The method of EM algorithm is 
an iterative method which involves two steps, namely, an expectation (E) 
step that computes the expectation of the log-likelihood evaluated using 
the current estimate for the latent variables and a maximization (M) step 
that computes parameters maximizing the expected log-likelihood found 
on the E step. These parameter estimates are then used to determine the 
distribution of the latent variables in the next E step. It, however, should 
be noted that the convergence analysis of the EM algorithm given by 
Dempster et al. (1977) was flawed. A correct convergence analysis can be 
found in Wu (1983).

22.3.1  �General Description

Given a likelihood function L(θ, x, z), where θ is the parameter vector, x is the 
observed data, and z represents the unobserved latent data or missing val-
ues, the MLE can be determined by the marginal likelihood of the observed 
data L(θ, x, z). However, this quantity is often intractable in practice. In gen-
eral, the EM algorithm seeks to find the MLE of the marginal likelihood by 
iteratively applying the following two steps:

E step: Calculate the expected value of the log-likelihood function, with 
respect to the conditional distribution of z given x under the current estimate 
of the parameters θ(t):

	
Q E L x Zt

Z x t( | ) [log ( ; , )].( )
| , ( )θ θ θθ=
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M step: Find the parameter that maximizes this quantity:

	
θ θ θ

θ

( ) ( )arg max ( | ).t tQ+ =1

Note that the EM algorithm is particularly useful when the likelihood 
is an exponential family. In such a case, the E step becomes the sum of 
expectations of sufficient statistics, and the M step involves maximiz-
ing a linear function. Thus, it is possible to derive closed-form updates 
for each step. In addition, the EM method can be modified to compute 
maximum a posteriori estimates for Bayesian inference. It should also 
be noted that there are other methods for finding MLEs. These iterative 
methods include gradient descent, conjugate gradient, or variations of the 
Gauss–Newton method. Unlike the method of EM algorithm, such meth-
ods typically require the evaluation of first and/or second derivatives of 
the likelihood function.

22.3.2  �An Example

As an example, consider the following simple regression model. Let yij be the 
ith subject who receives the jth treatment, where i = 1,â•›…,â•›nj, j = 1,â•›…,â•›T, and 

n nj
j

T
=

=∑ 1
. Let xij = (x1ij, x2ij,â•›…, xKij) be the corresponding vector of Â�covariates 

that are relevant to the response yij. The simple regression model can be 
expressed as

	 Y X= +β ε,

where
Y is the n × 1 vector 
X is an n × K fixed matrix
β = (β1, β2,â•›…, βK)T is a K × 1 matrix of unknown parameters
the error term ε = ( , ) ,e e e en Tn

T
T11 1 211, ,… …, ,  ε ∼ N(0, Σ) 

where Σ has dimensions n × n and for Cov(eij, ekl) = 0, ∀i ≠ k or j ≠  l else 
Var(eij) = σ2 and σ2 is unknown parameters, actually Σ = σ2In, In being the 
identity matrix.

Note that, if we were to observe eij, we could easily find simple closed-form 
MLEs of the parameters σ2 we would use:
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The sufficient statistics for σ2, because eij cannot be observed, aid the EM 
algorithm to calculate estimates of the missing sufficient statistics by setting 
it equal to its expectation, conditional on the observed data vector Y and the 
fixed matrix X. It is an iterative algorithm.

E step: Let τ = 0,â•›1,â•›… index the iterations number, ˆ ( )β τ  and ˆ
( )

σ
τ2  denote the vec-

tor β, σ2 value at the end of the τth iteration respectively, then we have

	
ˆ ( ( ˆ ) ) ( ˆ ) ,( ) ( ) ( )β τ τ τ= − − −X X X YT TΣ Σ1 1 1
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where the two terms are
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respectively.

M step: Let Eij be replaced by the appropriate sufficient statistics, then for 
MLE the iterative equations are
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∑ =τ σ

τˆ 2 In
As the iterative original value we can use the identity matrix for Σ(0). 

Theoretically the convergence can be obtained by the EM algorithm at local 
maximum at least. For illustration purpose, some sample programs for the 
EM algorithm are given in Table 22.3.
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TABLE 22.3

Sample Programs for EM Algorithm

n=10
K=3
alpha=0.05
tao<-0
X<-matrix(data,n,K)
y<-matrix(data,n,1)
bslash<-function(X,y)
{
  X<-qr(X)
  qr.coef(X,y)
}
B_hat<-matrix(,K,10000)
E_hat<-matrix(,n,10000)
B1<-matrix(,K,1)
B2<-matrix(,K,1)
z<-matrix(,K,1)
norm<-function(B1,B2)
{
  i=1:K
  z[i]<-B1[i]-B2[i]
  no<-sqrt(sum(z[i]^2))
}
sigma_hat<-c()
Q<-matrix(0,K,n)
P<-matrix(0,n,1)
sigma_hat[0]<-diag(n)
B_hat[,0]<-bslash(X,y)
E_hat[,0]<-y-X%*%B_hat[,0]
sigma_hat[0]<-crossprod(E_hat[,0],E_hat[,0])/n
SIGMA_hat<-diag(sigma_hat[0])
Q<-crosspros(X,sqrt(solve(SIGMA_hat)))
P<-crossprod(sqrt(solve(SIGMA_hat)),Y)
B_hat[,1]<-bslash(Q,P)
while (norm(B_hat[,tao],B_hat[,tao+1])>alpha) 
{
  tao<-tao+1
  SIMGMA<-matrix(0,n,n)
  Q<-matrix(0,K,n)
  P<-matrix(0,n,1)
  E_hat[,tao]<-y-X%*%B_hat[,tao]
  sigma_hat[tao]<-crossprod(E_hat[tao],E_hat[tao])/n
  SIGMA_hat<-diag(sigma_hat[tao],n)
  Q<-crosspros(X,sqrt(solve(SIGMA_hat)))
  P<-crossprod(sqrt(solve(SIGMA_hat)),Y)
  B_hat[tao+1]<-bslash(Q,P)
}
print(B_hat[,tao])
print(SIGMA_hat)



430	 Controversial Statistical Issues in Clinical Trials

22.4â•‡� Resampling Method: Bootstrapping

In CTS, it is necessary to obtain estimates of summary statistics in order 
to calculate confidence intervals of the parameters of interest under an 
assumed statistical model. For this purpose, some resampling methods such 
as Jackknifing or bootstrapping are commonly considered. In this section, 
we will introduce the use of bootstrapping in CTS.

22.4.1  �General Description

Bootstrapping is a resampling technique used to obtain estimates of sum-
mary statistics (such as its variance) by sampling from an empirical distri-
bution of the observed data. In the case where a set of observations can be 
assumed to be from an independent and identically distributed population, 
this can be done by randomly drawing a number of samples with equal 
size from the observed data set. In practice, a simple random sampling with 
replacement from the original data set is often employed.

Although bootstrapping provides asymptotically consistent estimates 
under some regularity conditions, it does not guarantee that the resultant 
estimates will have good finite sample performance. It has a tendency to 
be overly optimistic. In practice, bootstrapping is often used as an alterna-
tive to inference based on parametric assumptions when those assumptions 
are in doubt or where parametric inference is impossible or requires very 
complicated formulas for the calculation of standard errors. Bootstrapping 
is simple, straightforward, and easy to implement for obtaining estimates of 
standard errors and confidence intervals for complex estimators of complex 
parameters of the distribution, such as percentile points, proportions, odds 
ratio, and correlation coefficients.

22.4.2  �Types of Bootstrap Scheme

In practice, there are several types of bootstrapping schemes that may be 
applied depending upon the purpose and/or the need of the study objec-
tives. For example, for univariate problems, the approach of resampling the 
individual observations with replacement is usually considered. On the 
other hand, in small samples, a parametric bootstrap approach might be pre-
ferred. For other problems, a smooth bootstrap may be considered. These 
bootstrapping schemes are briefly described below.

Case resampling: Case resampling is an approach of resampling the individ-
ual observations (case) with replacement. It can be performed as follows. 
We first resample the data with replacement. Then the statistic of interest 
is computed from the resample. We repeat this routine a large number of 
times in order to obtain a more precise estimate of the bootstrap distribu-
tion of the statistic.
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Smooth bootstrap: Under this scheme, a small amount of random noise is 
added on to each resampled observation. This is equivalent to sampling 
from a kernel density estimate of the data.

Parametric bootstrap: For parametric bootstrap, a parametric model is fit-
ted. Samples of random numbers are then drawn from this fitted model. 
For each sample, the estimate of interest is calculated. This sampling process 
is repeated many times as for other bootstrap methods.

Resampling residuals: The method of resampling residuals is often applied 
in regression problems. The method proceeds as follows. Fit the model and 
retain the fitted values ŷi and the residuals ˆ ˆεi i iy y= − , i = 1,â•›…,â•›n. for each pair 
(xi, yi), where xi is the explanatory variable. Then, add a randomly resampled 
residual ε̂ j to the response variable yi, i.e., y yi i j* = + ε̂ , where j is selected ran-
domly from the list (1,â•›…,â•›n) for every i. Refit the model based on yi* and retain 
the quantities of interest. Repeat the process a large number of times.

22.4.3  �Methods for Bootstrap Confidence Intervals

Methods for constructing bootstrap confidence intervals include, but are 
not limited to, (1) percentile bootstrap, (2) studentized bootstrap, and (3) bias-
corrected bootstrap. The percentile bootstrap is probably the simplest method 
for obtaining confidence intervals. The confidence interval is derived by 
using the 2.5th and the 97.5th percentiles of the bootstrap distribution as 
the limits of the 95% confidence interval. This method can be applied to any 
statistics. It will work well in cases where the bootstrap distribution is sym-
metrical and centered on the observed statistic (Efron, 1982).

22.5â•‡� Clinical Applications

22.5.1  �Target Clinical Trials with Enrichment Designs

One of the immediate clinical applications of using the EM algorithm in con-
junction with bootstrapping in CTS is the example concerning a target clinical 
trial with enrichment process as described in Section 21.7. Liu et al. (2009) con-
ducted a simulation study to evaluate finite sample performance of the proposed 
method of the EM algorithm. In the simulation, μT−â•›, μC+â•›, and μC− are assumed to 
be equal and set to be a generic value of 100. To investigate the impact of the posi-
tive predictive value, sample size, difference in means, and variability, Liu et al. 
(2009) considered the following specifications of parameters: (1) the positive pre-
dicted value is set to be 0.5, 0.7, 0.8, and 0.9, which reflect a range of low, median, 
and high positive predicted values and (2) the range of the standard deviation σ 
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is set as 20, 40, or 60. To investigate the finite sample properties, the sample sizes 
are set as 50, 100, and 200 per group. The mean differences are chosen as a frac-
tion of the standard deviation, from 10% to 60% by 10%; and 75% and 100%. In 
addition, the size of the proposed testing procedure was investigate at μT+ = 100.

For each of 288 combinations, 5000 random samples were generated and the 
number of the bootstrap samples was set to be 1000. The simulation results indi-
cate that the absolute relative bias of the estimator for θ by the current method 
ranges from 10% to more than 50% and increases as the positive predictive 
value decreases. On the other hand, most of the absolute relative biases of the 
estimator for θ obtained by the EM algorithm are smaller than 0.05% although 
it can be as high as 10% for few combinations when the difference in means is 2. 
The variability has little impact on the bias of both methods. However, for the 
EM procedure, the relative bias tends to decrease as the sample size increases. 
The bias of the current method with consideration of the true status of molec-
ular target can be as high as 50% when the positive predictive value is low. 
Consequently, the empirical coverage probabilities of the corresponding 95% 
confidence interval can be as low as only 0.28% when the positive predictive 
value is 50%, mean difference is 20, standard deviation is 20, and n is 200. The 
coverage probability of the 95% confidence interval by the current method is an 
increasing function of the positive predictive value. On the other hand, only 36 
of the 288 coverage probabilities (12.5%) of the 95% confidence intervals by the 
current method exceed 0.9449 and 24 of them occur when the positive predic-
tive value is 0.9. On the contrary, only 14.6% of the 288 coverage probabilities of 
the 95% confidence intervals by the EM method are below 0.9449. However, 277 
of the 288 coverage probabilities of the 95% confidence interval constructed by 
the EM algorithm are above 0.94. No coverage probability of the EM method is 
below 0.91. Therefore, the proposed procedures for the estimation of the treat-
ment effects in patient populations with a molecular target by the EM algo-
rithm are not only unbiased but also provide sufficient coverage probability.

22.5.2  �Dose Escalation Trials

As indicated in Section 20.3, dose escalation trials are usually conducted to 
identify the maximum tolerable dose (MTD) in cancer research. The identified 
MTD is often considered as the optimal dose for subsequent clinical trials in the 
later phase of clinical development. The most commonly employed trial design 
is the algorithm-based “3 + 3” traditional escalation rule (TER) trial design with 
a prespecified sequence of dose levels. This approach, however, is found to be 
inefficient and often underestimates the MTD, especially when the starting 
dose is too low. Alternatively, the continual reassessment method (CRM) trial 
design has become very popular since it was introduced by O’Quigley et al. 
(1990). The CRM trial design is developed to overcome the limitations of the 
“3 + 3” TER trial design. The CRM trial design assigns more patients near the 
MTD; consequently, the estimated MTD is more accurate and reliable. Chang 
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and Chow (2005) considered a hybrid Bayesian approach for dose escalation 
trials. Their approach can be summarized in the following steps:

Step 1:â•‡ Construct a utility function based on trial objectives.

Step 2:â•‡ Propose a probability model for dose–response relationship.

Step 3:â•‡� Construct prior probability distribution of the parameters in the 
response model.

Step 4:â•‡� Form the likelihood function based on incremental information on 
treatment response during the trial.

Step 5:â•‡� Reassess model parameters or calculate the posterior probability of 
the model parameters.

Step 6:â•‡� Update the expected utility function based on the dose–response 
model.

Step 7:â•‡� Determine the next action or make adaptations such as changing the 
randomization or dropping inferior treatment arms.

Step 8:â•‡� Further collect trial data and repeat Steps 5–7 until stopping criteria 
are met.

Note that a commonly considered dose–response relationship in cancer 
trials is the dose-toxicity model of p(x) = [1 + b exp(−ax)]−1, where p(x) is the 
probability of toxicity with dose x. Under this dose-toxicity model, the (esti-
mated) MTD can be obtained as follows:

	
MTD =

−
⎛
⎝⎜

⎞
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1
1a
b

ln ,
θ
θ

where θ is the probability of dose-limiting toxicity (DLT) (DLT rate) at MTD. 
It also should be noted that the assignment of patients to the most updated 
(predicted) MTD leads to the majority of patients being assigned to dose 
levels near MTD, which allows a more precise estimate of the MTD with a 
minimum number of patients. In practice, potential dose jump and delayed 
response are commonly seen when utilizing CRM in dose escalation trials.

Step-by-step SAS codes for identifying MTD are available in Chang (2008) 
(see also, TriSaft Intl., 2002). However, many readers have indicated that they 
were unable to reproduce the numbers as indicated in the book. Thus, we 
also developed SAS codes following the steps given in Chang’s book. We 
found that the major inconsistency is due to the fact that Chang’s program 
does not initialize the posterior distribution of parameter a at the beginning 
of each simulation run. Different iterations should be independent. In other 
words, the 500th iteration should not use the posterior distribution of param-
eter a obtained from the 499th or previous iteration. Revised SAS codes are 
provided in Table 22.4. Table 22.5 provides a summary of simulation results 
obtained using Chang’s programs and the revised programs.



434	 Controversial Statistical Issues in Clinical Trials

TABLE 22.4

Sample SAS Programs for CRM

* Simulating the trial using Continual Reassessment Method and 
Traditional Escalation Rules;
* This SAS code is developed based on the one given in the book 
“Adaptive Design Theory and Implementation Using SAS and R” by 
Dr. Mark Chang;
/*Notations:
aMin and aMax = the lower and upper limits for prior on the 
parameter a;
AveN = average number of patient treated;
   b = parameter in the dose-response probability model which 

is given as
                  p(x) = 1/(1+b*exp(-a*x))
CorPro = proportion of correctly identifying the MTD;
CohS = cohort size;
doses{i} = dose amount at dose level i;
       dx = the interval width for numerical integration;
       DoseJp = 1/0 means no limited dose jump, and no dose jump;
       g{i} = the prior distribution of the model parameter a;
       MTRate = the maximum tolerated rate defined for MTD;
       nIntPts = number of intervals for numerical integration 

in calculating the posterior;
       nLevels = number of dose levels;
       nLmax = the maximum number of subjects allowed at the 

same dose level;
       nPts = total number of patients;
       nSims = number of simulations;      
       RRo{i} = true response rates for dose level i;
         
       Key output variables:
           AveMTD = average MTD from nSims times of simulation;
           SdMTD = standard deviation of MTDs;
           DLTs = average dose limiting toxicity;
*/
Title “Adaptive Dose Finding Design using CRM”;

%Macro CRM(nSims=100, nPts=30,CohS= 1,  nLevels=10, b=100, 
aMin=0.1,

           aMax=0.3,nIntPts=100, MTRate=0.30,nLMax=4, DoseJp=0);
             Data CRM;
                Set D input;
                Keep nPts CohS nLevels AveMTD SdMTD DLTs 

CorPro AveN nLMax;
                Array nPtsAt{&nLevels};
                Array nRsps{&nLevels};
                Array pog{&nIntPts}; *Posterior distribution of a;
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TABLE 22.4 (continued)

Sample SAS Programs for CRM

             Array g{&nIntPts};
                Array Doses{&nLevels};
                Array RRo{&nLevels};
                Array RR{&nLevels};
                seed=2736; 
                nLevels=&nLevels;
             nPts=&nPts;
                CohS=&CohS;
                nLMax = &nLMax;
                dx = (&aMax-&aMin)/&nIntPts;
             DLTs=0;
                AveMTD=0;
                varMTD=0;
             TrueMTD =0;
                CorPro = 0;
             AveN = 0;

/* determine the maximum tolerated dose(MTD)which is the 
maximum dose with 
dose-limiting toxicity rate not greater than the maximum 
tolerated toxicity rate
	 */ 
             DTRdif = 1;
                Do i = 1 to nLevels;
                  if 0 <= &MTRate- RRo{i} < DTRdif   then 
                     Do;
             TrueMTD = Doses{i};
               DTRdif = &MTRate- RRo{i};
                     End;
             End; 
                putlog TrueMTD =  ;
     *Simulation begins;
                Do iSim=1 to &nSims;   *number of simulation; 

*begin of the do-loop for simulation;	
                Do tt=1 to &nIntPts;
                    pog{tt} = g{tt};   /*Initialize the 

posterior distribution of a using 
                                 its prior distribution; the 

program in the 
                                 book does not do any 

initialization of the
                                 posterior distribution at 

the beginning of 
(continued)
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TABLE 22.4 (continued)

Sample SAS Programs for CRM

                                 each iteration of simulation. 
without 

                                 re-initialization of the 
posterior distribution, 

                                 the estimated MTD will 
quickly jump to a 

                                 level close to the true MTD
					                         */
                      End;

                     Do i=1 to nLevels;
                           nPtsAt{i}=0; * number of patients 

at dose level i;
                           nRsps{i}=0;  * number of responses 

at dose level i;
                      End;

                  iLevel=1;  *the current MTD level;
                      iLevel0=1;
                      TnPts = 0; *the total number of patients 

who have been treated so far;
                      r = 0;

                      Do iCoh=1 to nPts;       *begin of the 
do-loop for dose finding using CRM;

                           iLevel=min(iLevel, nLevels); 
                            If TnPts + CohS <= nPts then TnPts 

= TnPts + CohS;
                              Else go to Finisher ; *the study 

ends if all patients have been 
treated;

                             if nPtsAt{iLevel} >= nLMax then go 
to Finisher;  /*the study ends if 
the number of subjects attains 

                                           the maximum allowed 
number for a dose 
level */

                            Rate=RRo{iLevel};
                             nPtsAt{iLevel}=nPtsAt{iLevel}+CohS; 

*number of patients at dose 
level{ilevel};			 

                            r=Ranbin(seed,CohS, Rate);   
                            nRsps{iLevel}=nRsps{iLevel}+r; 

*number of responses at dose 
level{iLevel};
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TABLE 22.4 (continued)

Sample SAS Programs for CRM

                            ** Posterior distribution of a;
                               c=0;
                               Do k=1 to &nIntPts;                  

* numerical integral of the 
posterior distribution of a;

                               ak=&aMin+(k-0.5)*dx;
                               Rate=1/(1+&b*Exp(-

ak*Doses{iLevel}));
                                L = Rate**r*(1-

Rate)**(CohS-r); *likelihood 
function for the current 
cohort;

                                pog{k}=L*pog{k};
                                c=c+pog{k}*dx;
                            End;

                            Do k=1 to &nIntPts;
                                pog{k}=pog{k}/c;
                            End;

                         ** Predict response rate and current 
MTD;

                            MTD=Doses{iLevel};
                            MinDR=1;
                            iLevel0 =iLevel;
                       Do i=1 to nLevels;             * begin 

of the do-loop for i;
                               RR{i}=0;
                                Do k=1 to &nIntPts;          

*calculate the estimated 
response rate at each dose 
level using numerical 
integral;

                                   ak=&aMin+k*dx;
                                   RR{i}=RR{i}+1/(1+&b*Exp(-

ak*Doses{i}))*pog{k}*dx;
                                End;
                                DR=Abs(&MTRate-RR{i});  
                                if 0<= DR < MinDR  Then      
                                   Do;                         

*find the current MTD 
which is closest to the 
maximum tolerated rate;

(continued)
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TABLE 22.4 (continued)

Sample SAS Programs for CRM

                                      MinDR=DR;
                                       iLevel=i;
                                       MTD=Doses{i};
                                    End;
                              End;                            

* end of the do-loop for i;  
                      If iSim =1 then putlog RR1-RR8 ;
                           If iLevel > iLevel0 and &DoseJp = 0 

Then 
                              Do;
                            iLevel = iLevel0+1;  *No dose jump 

is allowed if DoseJp=0;
                                  MTD=Doses{iLevel};
                              End;
                            if 0<iSim <=10 then
                       putlog iSim= iLevel= ; *output the 

current MTD level for the ith 
iteration;

                                  End;  *end of the do-loop 	
	 for dose finding using 
	 CRM;

                    *accumulate number of toxicity events and 
number of patients treated when the 
study is done;

                 Finisher:
                     Do i=1 to nLevels;
                         DLTs=DLTs+nRsps{i};
                       AveN = AveN+nPtsAt{i};
                     End;

                    If TrueMTD - 0.1 < MTD <=TrueMTD then
                CorPro = CorPro +1;
                   AveMTD=AveMTD+MTD;  *sum of MTD;
                   VarMTD=VarMTD+MTD**2;
            End;  *end of do-loop for simulation; 

               CorPro = CorPro/&nSims;
            AveMTD = AveMTD/&nSims;
               SdMTD=(VarMTD/&nSims-AveMTD**2)**0.5;
               AveN = AveN/&nSims;     * average MTD;
               DLTs = DLTs/&nSims;     * average DLTs;
               Output;
               Run;
               Proc print Data=CRM;
               Run;
 %Mend CRM;
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TABLE 22.4 (continued)

Sample SAS Programs for CRM

Data Dinput;
     Array g{100};
     Array RRo{8} (.01,.02,.03,.05,.12,.17,.22,.4);
      Array Doses{8};
      Do i = 1 to 8;
          Doses(i)=i;
      end;
      Do k=1 to 100;  *uniform distribution as the prior 
	 distribution;
         g{k}=1;
      End;

Run;

Proc Print Data= Dinput;
        Var Doses1-Doses8 RRo1-RRo8;
Run;

%CRM (nSims=1000, nPts=8,CohS=1, nLevels=8, b=150, aMin=0, 
aMax=3, 

      nIntPts=100, MTRate=0.17, nLMax=8, DoseJp=1); 
%CRM (nSims=1000, nPts=16,CohS=1, nLevels=8, b=150, aMin=0, 
aMax=3,

      nIntPts=100, MTRate=0.17,nLMax=16, DoseJp=1); 
*the macro with the above input has the same function as in 
the example on page 303;

* probability of correctly identifying the true MTD is 
relatively high (0.72)for nPts=8;

* but it is simply an exception—when the sample size changes 
to 7 or 9, the probability 

  is quite low; 
* it is helpful to have a look at the log for the sequence of 
estimated MTD;

%CRM (nSims=1000, nPts=7,CohS=1, nLevels=8, b=150, aMin=0, aMax=3, 
      nIntPts=100, MTRate=0.17, nLMax=7, DoseJp=1); 
%CRM (nSims=1000, nPts=9,CohS=1, nLevels=8, b=150, aMin=0, aMax=3, 
      nIntPts=100, MTRate=0.17, nLMax=9, DoseJp=1); 
%CRM (nSims=1000, nPts=20,CohS=1, nLevels=8, b=150, aMin=0, aMax=3, 
      nIntPts=100, MTRate=0.17, nLMax=20, DoseJp=1); 
%CRM (nSims=1000, nPts=40,CohS=1, nLevels=8, b=150, aMin=0, aMax=3, 
      nIntPts=100, MTRate=0.17, nLMax=40, DoseJp=1); 
Run;
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As can be seen from Table 22.5, the relatively high probability for the sample 
size N = 8 is a particular case. The relatively high probability is just by chance. 
If other levels are the true MTD rather than level 6 as specified in the simula-
tion, the probability will not be so high for N = 8. It should also be noted that 
the prior distribution of parameter a is far from accurate. In fact, the estimated 
toxicity rate at each dose level is normally greater than its true value. The log 
of SAS shows that the increment of the estimated MTD is not greater than one 
level at each step.

22.6â•‡� Concluding Remarks

In recent years, the use of adaptive design methods in clinical trials has 
become very popular due to its flexibility for identifying any possible signal 
(preferably optimal) of safety and efficacy of test treatment under investiga-
tion. However, appropriate statistical methods may not be available due to 
the complexity of adaptive design used. In this case, CTS plays an impor-
tant role due to the following reasons: (1) the statistical theory of adaptive 
design is complicated with very limited analytical solutions available under 
some strong assumptions; (2) the concept of CTS is very intuitive and easy to 
implement; (3) CTS can be used to model very complicated situations with 
minimum assumptions and type I error can be strongly controlled; (4) using 
CTS, we can not only calculate the power of an adaptive design but also 
generate many other important operating characteristics such as expected 
sample size, conditional power, and repeated confidence interval, which 
ultimately leads to the selection of an optimal trial design or clinical devel-
opment plan; (5) CTS can be used to study the validity and robustness of 

TABLE 22.5

Simulation Results for CRM

Program N Mean DLTs Mean MTD Sd MTD Correct Pra

By Dr. Changb 8 1.24 6.01 0.07 NA
By Dr. Chang 16 2.65 6.00 0.06 NA
Revised versionc 7 0.18 4.43 1.25 0.0
Revised version 8 0.28 4.97 1.70 0.72
Revised version 9 0.43 5.27 2.12 0.0
Revised version 16 1.51 4.94 1.73 0.16
Revised version 20 2.11 5.08 1.52 0.23
Revised version 40 4.88 5.40 1.14 0.30

a	 Correct Pr is the probability of correctly identifying the true MTD.
b	 The results are from Chang (2008, Table 15.2, p. 303).
c	 The simulation results using the revised programs given in Table 22.4.
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an adaptive design in different hypothetical clinical settings, or protocol 
deviations; (6) CTS can be used to monitor trials, project outcomes, anticipate 
problems, and suggest remedies before it is too late; (7) CTS can also be used 
to visualize the dynamic trial process from patient recruitment, drug distri-
bution, treatment administration, pharmacokinetic processes, to biomarker 
and clinical responses; and, finally, (8) CTS has minimal cost and can be 
done in a short time.

In summary, the use of CTS in adaptive designs has the following advan-
tages: (1) the type I error rate is controlled, (2) sensitivity analysis is easy to carry 
out for risk assessment, (3) it allows for the identification of an optimal design 
with various criteria especially when the candidate adaptive designs are less 
well understood than those described in the Food and Drug Administration 
(FDA) guidance on adaptive clinical trial designs, and (4) CTS can be used to 
achieve a better planning, better design, better monitoring, and better execu-
tion. However, it should be noted that CTS provides “a” solution but not “the” 
solution to the most difficult question in pharmaceutical/clinical research and 
development. Any misuse or abuse of CTS could be biased in decision making 
and hence misleading.





443

23
Traditional Chinese Medicine

23.1â•‡� Introduction

In recent years, as more and more innovative drug products are going off 
patent, the search for new medicines that treat critical and/or life-threat-
ening diseases has become the center of attention of many pharmaceuti-
cal companies. As indicated by Chow and Liu (2000b), pharmaceutical 
research and development is a lengthy and costly process. On average, it 
may take more than 12 years to bring a promising compound to the market. 
The probability of success, however, is usually very low. In the past several 
decades, tremendous effort was put on drug research and development, 
and yet only a handful of new drug products were approved by the regu-
latory agencies. As a result, an alternative approach for drug discovery is 
necessary. This leads to the study of the potential use of promising tradi-
tional Chinese medicines (TCMs), especially those intended for treating 
critical and/or life-threatening diseases. A TCM is defined as a Chinese 
herbal medicine developed for treating patients with certain diseases as 
diagnosed by the four major Chinese diagnostic techniques of inspection, 
auscultation and olfaction, interrogation, and pulse taking and palpation, 
based on traditional Chinese medical theory of global dynamic balance 
among the functions/activities of all the organs of the body.

Unlike evidence-based clinical research and development of a Western 
medicine (WM), clinical research and development of a TCM is usually 
experience-based with anticipated variability due to a subjective evaluation 
of the disease under study. The use of TCM in humans for treating various dis-
eases has a history of more than 5000 years and yet no scientific documentation 
is available regarding clinical evidence of safety and efficacy of these TCMs.

In the past several decades, regulatory agencies of both China and Taiwan 
have debated which direction the TCM should take—Westernization or 
modernization. The Westernization of TCM refers to the adoption of the 
typical (Western) process of pharmaceutical research and development for 
the scientific evaluation of the safety and effectiveness of the TCM products 
under investigation, while the modernization of TCM is to evaluate the safety 
and effectiveness of TCM the Chinese way (i.e., different sets of regulatory 
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requirements and evaluation criteria) scientifically. Although both China 
and Taiwan do attempt to build up an environment for the modernization 
of TCM, they seem to adopt the Westernization approach. As a result, in this 
chapter, we will place our emphasis on the Westernization of TCM.

In practice, it is a concern whether a TCM can be scientifically evaluated the 
Western way due to some fundamental differences between a WM and a TCM. 
These fundamental differences include differences in formulation, medical 
practice, drug administration, diagnostic procedure and criteria for evaluation, 
and flexibility. Under these differences, it is then of interest to the investigators 
regarding how to conduct a scientifically valid (i.e., an adequate and well-con-
trolled) clinical trial for the evaluation of the clinical safety and efficacy of the 
TCM under investigation. In addition, it is also of particular interest to the inves-
tigators as to how to translate an observed significant difference detected by the 
Chinese diagnostic procedure (CDP) to a clinically meaningful difference based 
on some well-established clinical study endpoint. The purpose of this chapter 
is to provide some basic considerations regarding practical issues that are com-
monly encountered when conducting a TCM clinical trial the Western way.

In the next section, some fundamental differences between a WM and a 
TCM which have an impact on the Westernization of TCM are described. 
These fundamental differences include the concept of global dynamic 
balance/harmony among the organs of the body (TCM) versus local site 
action (WM); subjective diagnostic techniques of inspection, auscultation 
and olfaction, interrogation, pulse taking and palpation (TCM) versus 
objectively clinical evaluation (WM); and personalized flexible dose with 
multiple components (TCM) versus fixed dose of single active ingredi-
ent (WM). Section 23.3 provides some basic considerations of TCM clini-
cal trials. These basic considerations include study design, validation of 
a quantitative instrument developed for the four major TCM diagnostic 
techniques, the use/preparation of matching placebo, and sample size 
calculation. Some practical issues that are commonly encountered when 
conducting a TCM clinical trail are given in Section 23.4. Section 23.5 pro-
vides some recent developments for the assessment of TCM such as test 
for consistency in statistical quality control (QC) of raw material and/or 
final product, stability analysis, and calibration of CDPs against well-
established study endpoints used for the assessment of WM. Some con-
cluding remarks, including future strategy and recommendations in TCM 
research and development, are given in the last section of this chapter.

23.2â•‡� Fundamental Differences

As indicated earlier, the process for pharmaceutical research and devel-
opment of WMs is well established, and yet it is lengthy and costly. This 
lengthy and costly process is necessary to ensure the efficacy, safety, quality, 
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stability, and reproducibility of the drug product under investigation. For 
pharmaceutical research and development of a TCM, one may consider 
directly applying this well-established process to the TCM under investiga-
tion. However, this process may not be feasible due to some fundamental dif-
ferences between a TCM and a WM. Some fundamental differences between 
a WM and a TCM are summarized in Table 23.1. These fundamental differ-
ences are briefly described in the following sections.

23.2.1  �Medical Theory/Mechanism and Practice

TCM is more than a 3000-year-old holistic medical system encircling the 
entire scope of human experience. It combines the use of Chinese herbal 
medicines, acupuncture, massage, and therapeutic exercise such as Qigong 
(the practice of internal air) and Taigie for both treatment and prevention of 
disease. With its unique theories of etiology, diagnostic systems, and abun-
dant historical literature, TCM itself consists of Chinese culture and philosophy, 
clinical practice experience, and the use of many medical herbs.

Chinese doctors believe that how a TCM functions in the body is based on 
the eight principles, five-element theory, five Zang and six Fu, and informa-
tion regarding channels and collaterals. Eight principles consist of Yin and 
Yang (i.e., negative and positive), cold and hot, external and internal, and Shi 
and Xu (i.e., weak and strong). The eight principles help Chinese doctors to 
differentiate syndrome patterns. For instance, people with Yin will develop 
disease in a negative, passive, and cool way (e.g., diarrhea and back pain), 
while people with Yang will develop disease in an aggressive, active, pro-
gressive, and warm way (e.g., dry eyes, tinnitus, and night sweats). The five 
elements (earth, metal, water, wood, and fire) correspond to particular organs 
in the human body. Each element operates in harmony with the others.

The five Zang (or Yin organs) include the heart (including the pericardium), 
lung, spleen, liver, and kidney, while the six Fu (or Yang organs) include the 
gall bladder, stomach, large intestine, small intestine, urinary bladder, and 

TABLE 23.1

Fundamental Differences between a WM and a TCM

Description WM TCM

Active ingredient Single Multiple
Dose Fixed Flexible
Diagnostic procedure Objective; validated Subjective; not validated
Therapeutic index Well-established Not well-established
Medical mechanism Specific organs Global dynamic 

balance/harmony 
among organs

Medical perception Evidence-based Experience-based
Statistics Population Individual
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three cavities (i.e., chest, epigastrium, and hypogastrium). Zang organs can 
manufacture and store fundamental substances. These substances are then 
transformed and transported by Fu organs. TCM treatments involve a thor-
ough understanding of the clinical manifestations of Zang–Fu organ imbal-
ance, and knowledge of appropriate acupuncture points and herbal therapy 
to rebalance or maintain the balance of the organs. The channels and collat-
erals are the representation of the organs of the body. They are responsible 
for conducting the flow of energy and blood through the entire body.

The elements of TCM can also help to describe the etiology of disease 
including six exogenous factors (i.e., wind, cold, summer, dampness, dry-
ness, and fire), seven emotional factors (i.e., anger, joy, worry, grief, anxiety, 
fear, and fright), and other pathogenic factors. Once all the information is 
collected and processed into a logical and workable diagnosis, the traditional 
Chinese medical doctor can determine the treatment approach.

Under the medical theory and mechanism described above, Chinese doc-
tors believe that all of the organs within a healthy subject should reach the 
so-called global dynamic balance or harmony among organs. Once the global 
balance is broken at certain sites such as heart, liver, or kidney, some signs and 
symptoms then appear to reflect the imbalance at these sites. An experienced 
Chinese doctor usually assesses the causes of global imbalance before a TCM 
with flexible doses is prescribed to fix the problem. This approach is some-
times referred to as a personalized (or individualized) medicine approach.

23.2.2  Medical Practice

Different medical perceptions regarding signs and symptoms of certain 
diseases could lead to a different diagnosis and treatment for the diseases 
under study. For example, the signs and symptoms of type 2 diabetic sub-
jects could be classified as the disease of thirst reduction by Chinese doctors. 
The disease of type 2 diabetes is not recognized by Chinese medical litera-
ture although they have the same signs and symptoms as the well-known 
disease of thirst reduction. This difference in medical perception and prac-
tice has an impact on the diagnosis and treatment of the disease.

In addition, we tend to see the therapeutic effect of WMs sooner than that of 
TCMs. TCMs are often considered for patients who have chronic diseases or non-
life-threatening diseases. For critical and/or life-threatening diseases such as 
cancer or stroke, TCMs are often used as the second-line or third-line treatment 
with no other alternative treatments. In many cases, such as in patients with a 
later phase of cancer, TCMs are often used in conjunction with WMs without 
the knowledge of the primary care physicians, which might have contaminated 
(e.g., due to drug-to-drug interaction) the treatment effect under investigation.

23.2.3  �Techniques of Diagnosis

The CDP for patients with certain diseases consists of four major techniques, 
namely, inspection, auscultation and olfaction, interrogation, and pulse taking 
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and palpation. All these diagnostic techniques aim mainly at providing an 
objective basis for differentiation of syndromes by collecting symptoms and 
signs from the patient. Inspection involves observing the patient’s general 
appearance (strong or weak, fat or thin), mind, complexion (skin color), five 
sense organs (eye, ear, nose, lip, and tongue), secretions, and excretions. 
Auscultation involves listening to the voice, expression, respiration, vomit, and 
cough. Olfaction involves smelling the breath and body odor. Interrogation 
involves asking questions about specific symptoms and the general condition 
including history of the present disease, past history, personal life history, and 
family history. Pulse taking and palpation can help to judge the location and 
nature of a disease according to the changes of the pulse.

The CDP of inspection, auscultation and olfaction, interrogation, and pulse 
taking and palpation is subjective, with large between-rater variability (i.e., vari-
ability from one Chinese doctor to another). This subjectivity and variability 
will have an impact not only on the patient’s evaluability but also on the pre-
scribability of TCM, which will be further discussed in the subsequent sections.

23.2.3.1â•‡� Objective versus Subjective Criteria for Evaluability

For the evaluation of a WM, objective criteria based on some well-established 
clinical study endpoints are usually considered. For example, response rate 
(i.e., complete response plus partial response based on tumor size) is con-
sidered a valid clinical endpoint for evaluating clinical efficacy of oncology 
drug products. Unlike WMs, CDP for the evaluation of a TCM is very subjec-
tive. The use of a subjective CDP has raised the following issues. First, it is a 
Â�concern whether the subjective CDP can accurately and reliably evaluate clini-
cal efficacy and safety of the TCM under investigation. Thus, it is suggested 
that the subjective CDP should be validated in terms of its accuracy, precision, 
and ruggedness before it can be used in TCM clinical trials. A validated CDP 
should be able to detect a clinically significant difference if the difference truly 
exists. On the other hand, it is not desirable to wrongly detect a difference 
when there is no difference.

In clinical trials, evaluation is usually based on some validated tools 
(instruments) such as laboratory tests. Test results are then evaluated against 
some normal ranges for abnormality. Thus, it is suggested that the CDP must 
be validated in terms of validity and reliability, and its false-positive and 
false-negative rates, before it can be used for the evaluation of clinical efficacy 
and safety of the TCM under investigation.

23.2.4  �Treatment

TCM prescriptions typically consist of a combination of several components. 
The combination is usually determined based on the medical theory of global 
dynamic balance (or harmony) among organs, and the observations from the 
CDP. The use of CDP is to find out what caused the imbalance among these 
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organs. The treatment is to reinstall the balance among these organs. Thus, 
the dose and treatment duration are flexible in order to achieve the balance. 
This concept leads to the concept of so-called personalized (or individual-
ized) medicine, which minimizes intra-subject variability.

23.2.4.1â•‡� Single Active Ingredient versus Multiple Components

Most WMs contain a single active ingredient. After drug discovery, an 
appropriate formulation (or dosage form) is necessarily developed so that 
the drug can be delivered to the site of action in an efficient way. At the same 
time, an assay is necessarily developed to quantitate the potency of the drug. 
The drug is then tested on animals for toxicity and on humans (healthy vol-
unteers) for pharmacological activity. Unlike the WMs, TCMs usually consist 
of multiple components with certain relative proportions among the compo-
nents. As a result, the typical approach for the evaluation of a single active 
ingredient for WM is not applicable to TCMs with multiple components.

In practice, one may suggest evaluating the TCM component by component. 
However, this is not feasible due to the following difficulties. First, analytical 
methods for quantitation of individual components may not be available or 
often not tractable. Thus, the pharmacological activities of these components are 
often not known. It should be noted that in many cases the component which 
comprises the major proportion of the TCM may not be the most active com-
ponent. On the other hand, the component that has the least proportion of the 
TCM may be the most active component of the TCM. In practice, it is not known 
which relative proportions among these components can lead to the optimal 
therapeutic effect of the TCM. In addition, the relative component-to-compo-
nent and/or component-by-food interactions are usually unknown, which may 
have an impact on the evaluation of clinical efficacy and safety of the TCM.

23.2.4.2â•‡� Fixed Dose versus Flexible Dose

Most WMs are usually administered in a fixed dose (say 10â•›mg tablets or 
capsules). On the other hand, since a TCM consists of multiple components 
with possible varied relative proportions among the components, a Chinese 
doctor usually prescribes the TCM with different relative proportions of 
the multiple components based on the signs and symptoms of the patient 
according to his/her best judgment following a subjective evaluation based 
on the CDP. Thus, unlike a WM which is prescribed as a fixed dose, a TCM 
is often prescribed as an individualized flexible dose.

The approach of WM with a fixed dose is a population approach to mini-
mize the between-subject (or inter-subject) variability, while the approach 
to TCM with an individualized flexible dose is to minimize the variabil-
ity within each individual. In practice, it is a concern whether an individ-
ual flexible dose is compatible with a Western evaluation of the TCM. An 
individualized flexible dose depends heavily upon the Chinese doctor’s 
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subjective judgment, which may vary from one Chinese doctor to another. 
As a result, although an individualized flexible dose does minimize intra-
subject variability, the variability from one Chinese doctor to another (i.e., 
the doctor-to-doctor or rater-to-rater variability) could be huge, and hence 
nonnegligible.

23.2.5  �Remarks

For the research and development of a TCM, before a TCM clinical trial is 
conducted, the following controversial questions are often asked:

	 1.	Will the TCM clinical trial be conducted by Chinese doctors alone, 
Western clinicians alone, Western clinicians who have some back-
ground of Chinese herbal medicine alone, or both Chinese doctors 
and Western clinicians?

	 2.	Will traditional Chinese diagnostic and/or trial procedures be used 
throughout the TCM clinical trial?

	 3.	Upon approval, is the TCM intended for use by Chinese doctors or 
Western clinicians?

With respect to the first two questions, if the TCM clinical trial is to be 
conducted by Chinese doctors alone, the following questions arise. First, 
should the CDP be validated in order to provide an accurate and reliable 
assessment of the TCM? In addition, it is of interest to determine how an 
observed difference obtained from the CDP can be translated to the clinical 
endpoint commonly used in similar WM clinical trials with the same indica-
tion. These two questions can be addressed statistically by the calibration 
and validation of the CDP with respect to some well-established clinical end-
points for the evaluation of WMs. If the TCM clinical trial is to be conducted 
by Western clinicians or Western clinicians who have some background of 
Chinese herbal medicine, the standards and consistency of clinical results 
as compared to those WM clinical trials are ensured. However, the good 
characteristics of TCM may be lost during the process of the conduct of 
the TCM clinical trials. On the other hand, if the TCM clinical trial is to 
be conducted by both Chinese doctors and Western clinicians, differences 
in medical practice and/or possible disagreement regarding the diagnosis, 
treatment, and evaluation are major concerns.

For the third question, if the TCM is intended for use by Chinese doctors 
but it is conducted by Western clinicians, differences in perception regarding 
how to prescribe the TCM are of great concern. The preparation of a package 
insert based on the clinical data could be a major issue, not only to the spon-
sor but also to regulatory authorities. Similar comments apply to the situa-
tion where the TCM is intended for use by Western clinicians, but the trial is 
conducted by Chinese doctors.
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As a result, it is suggested that the intention of use (i.e., labeling for the 
indication) be clearly evaluated when planning a TCM clinical trial. In other 
words, the sponsor needs to determine whether the TCM is intended for use 
by Western clinicians only, Chinese doctors only, or both Western clinicians 
and Chinese doctors at the planning stage of a TCM clinical trial, for an 
adequate package insert of the target diseases under study.

23.3â•‡� Basic Considerations

In this section, we describe some basic considerations that are necessary in 
order to ensure the success of a TCM clinical trial.

23.3.1  �Study Design

To demonstrate clinical efficacy and safety of a TCM under investiga-
tion, like WMs, it is suggested that a randomized parallel-group, placebo-
controlled clinical trial be conducted. However, it may not be ethical if 
the disease under study is critical and/or life-threatening provided that 
a WM is available. Alternatively, a randomized placebo-control crossover 
clinical trial or a parallel-group design consisting of three arms (i.e., the 
TCM under study, a WM as an active control, and a placebo) is recom-
mended. The three-arm, parallel-group design allows the establishment 
of non-inferiority/equivalence of the TCM as compared to the active 
control (WM) and the demonstration of the superiority of the TCM with 
respect to the placebo. One of the advantages of a crossover clinical trial 
is that a comparison within each individual can be made, although it will 
take a longer time to complete the study. Although a crossover design 
requires a smaller sample size as compared to a parallel-group design, 
there are some limitations for the use of crossover design. First, baselines 
prior to dosing may not be the same. Second, when a significant sequence 
effect is observed, we would not be able to isolate the effects of period 
effect, carryover effect, and subject-by-treatment effect, which are con-
founded to one another.

In many cases, factorial designs are used to evaluate the impact of spe-
cific components (with respect to the therapeutic effect) by fixing some of 
the components. For example, we may consider a parallel-group design 
comparing two treatment groups (one group is treated with the TCM with 
a specific component, and the other group is treated with the TCM without 
the specific component). The design of this kind may be useful to identify 
the most active component of the TCM with respect to the diseases under 
study. However, it does not address the possible drug-to-drug interactions 
among the components.
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23.3.2  �Validation of Quantitative Instrument

In TCM medical practice, a Chinese doctor usually collects information from 
the patient with a certain disease through the four subjective approaches as 
described in the previous section. The purpose of these subjective approaches 
is to collect information on various aspects of the disease under study such 
as signs, symptoms, patient’s performance, and functional activities, so a 
quantitative instrument with a large number of questions/items is necessary 
and helpful. For a simple analysis and an easy interpretation, these questions 
are usually grouped to form subscales, composite scores (domains), or an 
overall score. The items (or subscales) in each subscale (or composite score) 
are correlated. As a result, the structure of responses to a quantitative instru-
ment is multidimensional, complex, and correlated. As mentioned above, a 
standardized quantitative tool (instrument) is necessary to reduce variability 
from one Chinese doctor to another (prior to the conduct of a clinical trial).

Guilford (1954) discussed several methods such as Cronbach’s α for measur-
ing the reliability of internal consistency of a quantitative instrument. Guyatt 
et al. (1989) indicated that a quantitative instrument should be validated in 
terms of its validity, reproducibility, and responsiveness. Hollenberg et al. 
(1991) discussed several methods for validation of a quantitative instrument, 
such as consensual validation, construct validation, and criterion-related vali-
dation. There is, however, no gold standard as to how a quantitative instru-
ment should be validated. In this paper, we will focus on the validation of a 
quantitative instrument in terms of validity, reliability (or reproducibility), and 
responsiveness (see, e.g., Chow and Ki, 1994, 1996). As indicated in Chow and 
Shao (2002), the validity of a quantitative instrument is the extent to which the 
instrument measures what it is designed to measure. It is a measure of biased-
ness of the instrument. The biasedness of a quantitative instrument reflects 
the accuracy of the instrument. The reliability of a quantitative instrument 
measures the variability of the instrument, which directly relates to the preci-
sion of the instrument. On the other hand, the responsiveness of a quantitative 
instrument is usually referred to as the ability of the instrument to detect a 
difference of clinical significance within a treatment.

Hsiao et al. (2009) considered a specific design for calibration/validation 
of the CDP. In the proposed study design, qualified subjects are randomly 
assigned to receive either a TCM or a WM. Each patient will be evaluated 
by a Chinese doctor and a Western clinician independently, regardless 
of which treatment group he/she is in. As a result, there are four groups of 
data, namely, (1) patients who receive TCM and are evaluated by a Chinese 
doctor, (2) patients who receive TCM but are evaluated by a Western clini-
cian, (3) patients who receive WM but are evaluated by a Chinese doctor, 
and (4) patients who receive WM and are evaluated by a Western clinician. 
Groups (3) and (4) are used to establish a standard curve for calibration 
between the TCM and the WM. Groups (1) and (2) are then used to validate 
the CDP based on the established standard curve.
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23.3.3  �Clinical Endpoint

Unlike WMs, the primary study endpoints for the assessment of safety 
and effectiveness of a TCM are usually assessed subjectively by a quanti-
tative instrument by experienced Chinese doctors. Although the quantita-
tive instrument is developed by the community of Chinese doctors and is 
considered a gold standard for the assessment of safety and effectiveness 
of the TCM under investigation, it may not be accepted by the Western cli-
nicians due to fundamental differences in medical theory, perception, and 
practice. In practice, it is very difficult for a Western clinician to conceptually 
understand the clinical meaning of the difference detected by the subjec-
tive Chinese quantitative instrument. Consequently, whether the subjective 
quantitative instrument can accurately and reliably assess the safety and 
effectiveness of the TCM is always a concern to Western clinicians.

As an example, for the assessment of safety and efficacy of a drug product 
for the treatment of ischemic stroke, a commonly considered primary clini-
cal endpoint is the functional status assessed by the so-called Barthel index. 
The Barthel index is a weighted functional assessment scoring technique 
composed of 10 items with a minimum score of 0 (functional incompetence) 
and a maximum score of 100 (functional competence). The Barthel index is 
a weighted scale measuring performance in self-care and mobility, which is 
widely accepted in ischemic stroke clinical trials. A patient may be consid-
ered a responder if his/her Barthel index is greater than or equal to 60. On 
the other hand, Chinese doctors usually consider a quantitative instrument 
developed by the Chinese medical community as the standard diagnostic 
procedure for the assessment of ischemic stroke. The standard quantitative 
instrument is composed of six domains, which capture different informa-
tion regarding a patient’s performance, functional activities, and signs and 
symptoms and status of the disease.

In practice, it is of interest to both Western clinicians and Chinese doctors 
how an observed clinically meaningful difference by the Chinese quanti-
tative instrument can be translated to that of the primary study endpoint 
assessed by the Barthel index. To reduce the fundamental differences in 
medical theory/perception and practice, it is suggested that the subjective 
Chinese quantitative instrument be calibrated and validated with respect 
to that of the clinical endpoint assessed by the Barthel index before it can be 
used in TCM ischemic stroke clinical trials.

23.3.4  �Matching Placebo

In clinical development, double-blind, placebo-controlled randomized 
clinical trials are often conducted for the evaluation of the safety and effec-
tiveness of a test treatment under investigation. To maintain blindness, 
a matching placebo should be identical to the active drug in all aspects of, 
size, color, coating, taste, texture, shape, and order except that it contains 
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no active ingredient. In clinical trials, as an advanced technique available 
for formulation, a matching placebo is not difficult to make because most 
WMs contain a single active ingredient. Unlike WMs, TCMs usually consist 
of a number of components, which often have different taste. In TCM clini-
cal trials, the TCM under investigation is often encapsulated. However, the 
test treatment will be easily unblinded if either the patient or the Chinese 
doctor breaks the capsule. As a result, the preparation of matching placebo 
in TCM clinical trials not only plays an important role for the success of the 
TCM clinical trials, but also posts a major-challenging to clinical scientists.

23.3.5  �Sample Size Calculation

In clinical trials, sample size is usually selected to achieve a desired power 
for detecting a clinically meaningful difference in one of the primary study 
endpoints for the intended indication of the treatment under investigation 
(see, e.g., Chow et al., 2002b). As a result, sample size calculation depends 
upon the primary study endpoint and the clinically meaningful difference 
that one would like to detect. Different primary study endpoints may result 
in very different sample sizes.

For illustration purpose, consider the example concerning a TCM for 
the treatment of ischemic stroke, which was developed with more than 
30 years of clinical experience with humans. Suppose a sponsor would 
like to conduct a clinical trial to scientifically evaluate the safety and 
efficacy of the TCM the Western way as compared to an active control 
(e.g., aspirin). Thus, the intended clinical trial is a double-blind, parallel-
group, placebo-controlled, randomized trial. The primary clinical end-
point is the response rate (a patient is considered a responder if his/her 
Barthel index is greater than or equal to 60) based on the functional status 
assessed by the Barthel index. Sample size calculation is performed based 
on the response rate after 4 weeks of treatment under the hypotheses of 
testing for superiority. As a result, a sample size of 150 patients per treat-
ment group is required for achieving an 80% power for the establishment 
of superiority of the TCM over the active control agent. Alternatively, 
we may consider the quantitative instrument developed by experienced 
Chinese doctors as the primary study endpoint for sample size calcula-
tion. Based on a pilot study, about 80% (79 out of 122) of ischemic stroke 
patients were diagnosed by one domain of the quantitative instrument. 
A  patient is considered a responder if his/her domain score is greater 
than or equal to 7. Based on this primary study endpoint, a sample size 
of 90 per treatment group is required to achieve an 80% power for the 
establishment of superiority.

The difference in sample size leads to the question of whether the use of 
the primary endpoint of response rate based on one domain of the Chinese 
quantitative instrument could provide substantial evidence of safety and 
effectiveness of the TCM under investigation.
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23.4â•‡� Controversial Issues

Although TCM has a long history of being used in humans, no scientifically 
valid documentations are available. As indicated by the United States Food 
and Drug Administration (FDA), substantial evidence regarding safety and 
effectiveness of the test treatment under investigation can only be obtained 
by conducting adequate and well-controlled clinical trials. However, before 
the test treatment under investigation can be used in humans, sufficient 
information regarding chemistry, manufacturing, and control (CMC), clini-
cal pharmacology, and toxicology are necessary (see, e.g., Chow and Liu, 
1995). Since most TCMs consist of multiple components with unknown 
pharmacological activities, valid information regarding CMC, clinical phar-
macology, and toxicology are difficult to obtain. In what follows, these dif-
ficulties are briefly described.

23.4.1  �Test for Consistency

As mentioned earlier, unlike most WMs, TCMs usually consist of a number 
of components. The pharmacological activities, interactions, and relative pro-
portions of these components are usually unknown. In practice, TCM is usu-
ally prescribed subjectively by an experienced Chinese doctor. As a result, 
the actual dose received by each individual varies depending upon the signs 
and symptoms as perceived by the Chinese doctor. Although the purpose of 
this medical practice is to reduce the within-subject (or intra-subject) vari-
ability, it could also introduce nonnegligible variability such as variations 
from component to component and from rater to rater (a Chinese doctor to 
another). Consequently, reproducibility or consistency of clinical results is 
questionable. Thus, how to ensure the reproducibility or consistency of the 
observed clinical results has become a great concern to regulatory agencies 
in the review and approval process. It is also a great concern to the sponsor 
of the manufacturing process. To address the question of reproducibility or 
consistency, a valid statistical quality control (QC) process on the raw materi-
als and final product is suggested.

Tse et al. (2006) proposed a statistical QC method to assess a proposed con-
sistency index of raw materials obtained from different resources and/or final 
product, which may be manufactured at different sites. The consistency index 
is defined as the probability that the ratio of the characteristics (e.g., extract) of 
the most active component among the multiple components of a TCM from 
two different sites (locations) is within a limit of consistency. A consistency 
index close to 1 indicates that the components from the two sites or locations 
are almost identical. The idea for testing consistency is to construct a 95% con-
fidence interval for the proposed consistency index under a sampling plan. If 
the constructed 95% confidence lower limit is greater than a prespecified QC 
lower limit, then we claim that the raw materials or final product has passed 
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the QC and hence can be released for further process or use. Otherwise, 
the raw materials and/or final product should be rejected. More details 
regarding the statistical methods proposed by Tse et al. (2006) are given in the 
next section.

23.4.2  �Animal Studies

The purpose of animal studies is not only to study possible toxicity in ani-
mals but also to suggest an appropriate dose for use in humans, assuming 
that the established animal model is predictive of the human model. For a 
newly developed drug product, animal studies are necessary. However, for 
some well-known TCMs, which have been used in humans for years and 
have a very mild toxicity profile, it is questionable whether animal studies 
are necessary. It is suggested that all components of TCMs as described in 
Chinese Pharmacopedia (CP) be classified into several categories depending 
upon their potential toxicities and/or safety profiles as a basis for regula-
tory requirements for animal studies. In other words, for some well-known 
TCM components such as Ginseng, animal studies for testing toxicity may 
be waived depending upon past experiences of human use, although health 
risks or side effects following the proper administration of designated thera-
peutic dosages were not recorded in human use. Note that the German regu-
latory authority’s herbal watchdog agency, commonly called Commission E, 
has conducted an intensive assessment of the peer-reviewed literature on 
some 300 common botanicals with respect to the quality of the clinical evi-
dence and the uses for which the herb can be reasonably considered effective 
(PDR, 1998).

23.4.3  �Stability Analysis

Most regulatory agencies require that the expiration dating period (or shelf 
life) of a drug product must be indicated in the immediate container label 
before it can be released for use. To fulfill this requirement, stability studies 
are usually conducted in order to characterize the degradation of the drug 
product. For drug products with a single active ingredient, statistical meth-
ods for determination of drug shelf life are well established (e.g., FDA, 1987; 
ICH, 1993). However, regulatory requirements for estimation of drug shelf 
life for drug products with multiple components are not available.

Following the concept of estimating shelf life for drug products with a 
single active ingredient, two approaches are worth considering. First, we 
may (conservatively) consider the minimum of the shelf-lives obtained from 
each component of the drug product. This approach is conservative, and yet 
may not be feasible due to the fact that (1) not all of the components of a TCM 
can be accurately and reliably quantitated and (2) the resultant shelf life may 
be too short to be useful (see, e.g., Pong and Raghavarao, 2002).
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Alternatively, we may consider a two-stage approach for determining drug 
shelf life. In the first stage, an attempt should be made to identify the most 
active component(s) whenever possible. A shelf life can then be obtained 
based on the method suggested in the FDA and International Conference on 
Harmonization (ICH) guidelines. In the second stage, the obtained shelf life 
is adjusted based on the relationship and/or interactions of the most active 
ingredient(s) and other components. As an alternative, Chow and Shao (2005) 
proposed a statistical method for determining the shelf life of a TCM follow-
ing a similar idea suggested by the FDA, assuming that the components are 
linear combinations of some factors.

23.4.4  �Regulatory Requirements

Although the use of TCMs in humans has a long history, there have been no 
regulatory requirements regarding the assessment of safety and effective-
ness of the TCMs until recently. For example, both regulatory authorities 
of China and Taiwan have published guidelines/guidances for the clinical 
development of TCMs (see, e.g., MOPH, 2002; DOH, 2004a,b). In addition, 
the FDA has also published a guidance for botanical drug products (FDA, 
2004). These regulatory requirements for TCM research and development, 
especially for clinical development, are very similar to well-established 
guidelines/guidances for pharmaceutical research and development for 
WMs. It is a concern whether these regulatory requirements and the cor-
responding statistical methods are feasible for research and development 
of TCM, based on the fact that there are so many fundamental differences 
in medical practice, drug administration, and diagnostic procedure. As a 
result, it is suggested that current regulatory requirements and the corre-
sponding statistical methods should be modified in order to reflect these 
fundamental differences.

It is strongly recommended that regulatory requirements for the devel-
opment, review, and approval process for Premarin (conjugated estro-
gens tablets, United States Pharmacopedia [USP]) be consulted because 
Premarin is a WM consisting of multiple components which are similar 
to a TCM (FDA, 1991; Liu and Chow, 1996). Premarin, which contains mul-
tiple components of estrone, equilin, 17α-dihydroequilin, 17α-estradiol, and 
17β-dihydroequilin, is intended for treatment of moderate to severe vasomo-
tor symptoms associated with menopause. The experience with Premarin 
is helpful in developing appropriate guidelines/guidances for TCM drug 
products with multiple components.

23.4.5  �Indication and Label

As indicated earlier, it is very important to clarify the intention for the 
use of a TCM (by Chinese doctors alone, Western clinicians alone, or 
both Chinese doctors and Western clinicians) once it is approved by the 
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regulatory agencies. If a TCM is intended for use by Chinese doctors alone, 
the clinical trials conducted for obtaining substantial evidence should 
reflect the medical theory of TCM and the medical practice of Chinese doc-
tors. The label should provide sufficient information as to how to prescribe 
the TCM the Chinese way. On the other hand, if the TCM under inves-
tigation is intended for use by Western clinicians alone, patients under 
study should be evaluated based on clinical study endpoints for safety 
and efficacy the Western way. Consequently, the label should provide suf-
ficient information for prescribing the TCM the Western way. If the TCM 
is intended for both Western clinicians and Chinese doctors, patients are 
necessarily evaluated by both Western clinical study endpoints and CDPs 
(e.g., some standardized quantitative instrument) provided that the CDP 
has been calibrated and validated against the well-established Western 
clinical endpoint. In this case, there is a clear understanding of how an 
observed difference by CDP can be translated to a clinical effect which is 
familiar to Western clinicians, and vice versa.

23.5â•‡� Recent Development

23.5.1  �Statistical Quality Control Method for Assessing Consistency

Tse et al. (2006) proposed a statistical QC method to assess a proposed 
consistency index of raw materials obtained from different resources 
and/or final product, which may be manufactured at different sites. The 
idea is to construct a 95% confidence interval for a proposed consistency 
index under a sampling plan. If the constructed 95% confidence lower 
limit is greater than a prespecified QC lower limit, then we claim that the 
raw materials and/or final product have passed the QC and hence can be 
released for further process or use. Otherwise, the raw materials and/or 
final product should be rejected. For a given component (the most active 
component if possible), a sampling plan is derived to ensure that there is a 
desired probability for establishing consistency between sites when truly 
there is no difference in raw materials or final products between sites. The 
statistical QC method for the assessment of consistency proposed by Tse et al. 
(2006) is described below.

Let U and W be the characteristics of the most active component among 
the multiple components of a TCM from two different sites, where X = log U 
and Y = log W follows normal distributions with means μX, μY and variances 
VX, VY, respectively. Similar to the idea of using P(X < Y) to assess reliability 
in statistical QC (Church and Harris, 1970; Enis and Geisser, 1971), Tse et al. 
(2006) propose the following probability as an index to assess the consistency 
of raw materials and/or final product from two different sites
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where 0 < δ < 1 and is defined as a limit that allows for consistency. Tse et al. 
(2006) refer p as the consistency index. Thus, p tends to 1 as δ tends to 1. For 
a given δ, if p is close to 1, materials U and W are considered to be identical. 
It should be noted that a small δ implies the requirement of a high degree 
of consistency between material U and material W. In practice, it may be 
difficult to meet this narrow specification for consistency. Under the normality 
assumption of X = log U and Y = log W, (23.1) can be rewritten as
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where Φ(z0) = P(Z < z0) with Z being a standard normal random variable. 
Therefore, the consistency index p is a function of the parameters θ = (μX, μY, 
VX, VY), i.e., p = h(θ). Suppose that observations Xi = log Ui, i = 1,â•›…, nX and Yi = 
log Wi, i = 1,â•›…, nY are collected in an assay study. Then, using the invariance 
principle, the maximum likelihood estimator (MLE) of p can be obtained as
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Furthermore, it can be easily verified that the following asymptotic result 
holds.

Theorem 23.1

p̂ as given in (23.2) is asymptotically normal with mean E(p̂â•›) and variance 
Var(p̂â•›). In other words,
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where
E(p̂) = p + B(p) + o(1/n),
Var(p̂) = C(p) + o(1/n).

The detailed expressions of B(p) and C(p) are given in the proof below.

Proof
Based on the definitions of X

–
 and V̂X, it is easy to show that
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The other second-order partial derivatives are not considered because they 
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Therefore,
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For the sake of simplicity, denote
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Then after some algebra, the partial derivatives are given as
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This completes the proof.
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Based on the result of Theorem 23.1, an approximate (1 − α)100% confidence 
interval for p, i.e., (LL(p̂â•›), UL(p̂â•›)), can be obtained. In particular,

LL p p B p z C p UL p p B p z C p( ) ( ) ( ) and ( ) ( ) ( ),/ /ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= − − = − +α α2 2 	 (23.4)

where zα is the upper α percentile of a standard normal distribution.
For a valid statistical QC process, a testing procedure is necessarily per-

formed according to some prespecified acceptance criteria under a sampling 
plan. In this section, we propose a statistical QC method for assessing the 
consistency of raw materials and/or final product of TCM. The idea is to con-
struct a 95% confidence interval for a proposed consistency index described 
above under a sampling plan. If the constructed 95% confidence lower limit 
is greater than a prespecified QC lower limit, then we claim that the raw 
material or final product has passed the QC and hence can be released for 
further processing or use. Otherwise, the raw materials and/or final prod-
uct should be rejected. For a given component (the most active component if 
possible), a sampling plan is derived to ensure that there is a desired prob-
ability for establishing consistency between sites when truly there is no dif-
ference in raw materials or final products between sites. In what follows, 
details regarding the choice of acceptance criteria, sampling plan and the 
corresponding testing procedure are briefly outlined.

23.5.1.1â•‡� Acceptance Criteria

In terms of consistency, we propose the following QC criterion. If the 
probability that the lower limit LL(p̂â•›) of the constructed (1 − α)100% confi-
dence interval of p is greater than or equal to a prespecified QC lower limit, 
say, QCL, and exceeds a prespecified number β (say β = 80%), then we claim 
that U and W are consistent or similar. In other words, U and W are consis-
tent or similar if P(QCL ≤ LL(p̂â•›)) ≥ β, where β is a prespecified constant.

23.5.1.2â•‡� Sampling Plan

In practice, it is necessary to select a sample size to ensure that there is a high 
probability, say β, of consistency between U and W when in fact U and W 
are consistent. It is suggested that the sample size is chosen such that there 
is more than 80% chance that the lower confidence limit of p is greater than 
or equal to the QC lower limit, i.e., β = 0.8. In other words, the sample size is 
determined such that

	 P QC LL pL{ ( )} .≤ ≥ˆ β 	 (23.5)

Using (23.5), this leads to

	
P QC p B p z pL ≤ − −{ } ≥ˆ ˆ ˆ( ) Var( ) ./α β2
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Thus,

	
P QC z p p p p B pL + − ≤ − −{ } ≥α β/ Var( ) ( ) .2 ˆ ˆ

This gives

	
P

QC p

p
z

p p B p

p
L −

+ ≤
− −⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≥

Var( )

( )

Var( )
./2

ˆ

ˆ

ˆ
α β

Therefore, the sample size required for achieving a probability higher than β 
can be obtained by solving the following equation:
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Assuming that nX = nY = n, the common sample size is given by

	

n
z z
p QC

p
V

p
V

p

L X
X

Y
Y≥

+
−

∂
∂

⎛

⎝⎜
⎞

⎠⎟
+

∂
∂

⎛

⎝⎜
⎞

⎠⎟
+

∂
∂

−( )
( )

/1 2
2

2

2 2
β α

μ μ

ˆ ˆ ˆ
VV

V
p
V

V
X

X
Y

Y
⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2
2

2
22 2( ) ( ) .

ˆ

	
(23.7)

The above result suggests that the required sample size will depend on the 
choices of α, β, VX, VY, μX − μY, and p − QCL. It is clear from the expression 
in (23.7) that a larger sample size is required for smaller α and larger β, 
i.e., the interval is expected to have high confidence level (1 − α) and high 
chance that the lower confidence limit is larger than QCL. Furthermore, 
if we require the QCL to be close to p, i.e., p − QCL is small, a relatively 
large sample size is required. The dependence of the sample size n on the 
other parameters VX, VY, and μX − μY is relatively unclear because these 
parameters are linked to the corresponding partial derivatives. A numeri-
cal study is conducted to explore the pattern. Given the large number of 
parameters involved in equation (23.7), it is impractical to list the value of 
n for all the parameter combinations. However, for illustration purpose, 
we only consider a certain combination of parameter values in an attempt 
to explore the pattern of dependence of n on the parameters. For the sake 
of simplicity, define
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Then, for given choices of α and β, the required sample size n is equal to 
(z1−β + zα/2)2S. In particular, in our study, δ = 0.10,â•›0.15, and 0.20; μX − μY = 0.5, 
1.0, and 1.5; p − QCL =â•›0.02,â•›0.05, and 0.08. VX is chosen to be 1 and VY = 0.2, 
0.5, 1.0, 2.0, and 5.0. For each combination of these parameter values, the 
corresponding value of S is listed in Table 23.2. Given the number of param-
eters involved and the complexity of the mathematical expression of S, it is not 
easy to detect a general pattern. However, in general, the results suggest 
that S increases as μX − μY decreases, and as the variances VX and VY differ 
more from each other. In other words, a smaller sample size is required if 
the difference between the population means is large or the variability of the 
two sites are of similar magnitude.

As an illustration, if for a study with δ = 0.2, VX = 1, VY = 0.5, μX − μY = 1.0, 
an experiment p − QCL is expected to be not larger than 0.05, then the results 
in Table 23.2 suggest that S = 3.024. Suppose a probability higher than β = 0.8 
at the α = 0.05 level of significance is required, the corresponding required 
sample size is given by

	 n z z S≥ + = + =−( ) ( . . ) ( . ) . ,. . /1 0 8 0 05 2
2 20 842 1 96 3 024 23 74

i.e., a sample of size of at least 24 is required.

23.5.1.3â•‡� Testing Procedure

Hypotheses testing of the consistency index p can also be conducted 
based on the asymptotic normality of p̂. Consider the following hypotheses:

	 H p p H p pa0 0 0: versus : .≤ >

We would reject the null hypothesis in favor of the alternative hypothesis of 
consistency. Under H0, we have

	

ˆ ( ˆ)

var( ˆ)
~ ( ).

p p B p

p
N

− −0 0,1
	

(23.8)

Thus, we reject the null hypothesis H0 at the α level of significance if

	

ˆ ( ˆ)

var( ˆ)
.

p p B p

p
Z

− −
>0

α

This is equivalent to rejecting the null hypothesis H0 when

	
ˆ ( ˆ) var( ˆ).p p B p Z p> + +0 α

Again, for illustration purpose, Table 23.3 provides critical values of the 
Â�proposed test for consistency index for various combinations of parameters. 
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In particular, α = 0.1, p0 = 0.75, 0.85, and 0.9, δ = 0.10 and 0.20; μX − μY = 0.5, 1.0, 
and 1.5. VX is chosen to be 1 and VY = 0.2, 0.5, 1.0, 2.0, and 5.0. Note that 
the critical value is closer to the corresponding p0 either for larger sample 
size n, smaller δ, or smaller μX − μY.

23.5.1.4â•‡� Strategy for Statistical Quality Control

In practice, raw materials, in-process materials, and/or final products at dif-
ferent sites are manufactured sequentially in batches or lots. As a result, it 
is important to perform statistical QC on batches. A typical approach is to 
randomly select samples from several (consecutive) batches for testing. In this 
case, observations from the study would be subject to batch-to-batch variabil-
ity. For the sake of administrative convenience, it is common to have an equal 
number of observations from the batches. Consider the following model:

	 X A i m j nij X i
X

ij
X

X X= + + = =μ ε , ; ,1 1, ,… …, ,

where
Ai

X accounts for the batch-to-batch variability for the observations col-
lected in site 1 and is normally distributed with mean 0 and variance σb1

2 ,
mX is the number of batches collected in the study at site 1,
εij

X are normal random variables with mean 0 and variance σ1
2.

Similarly,

	 Y A i m j nij Y i
Y

ij
Y

Y Y= + + = =μ ε , ; ,1 1, ,… …, ,

where
Ai

Y accounts for the batch-to-batch variability of the observations collected 
in site 2 and is normally distributed with mean 0 and variance σb2

2 ,
mY is the number of batches collected in the study at site 2,
εij

Y are normal random variables with mean 0 and variance σ2
2 .

Therefore, the total variability of the most active component at the two sites 
are given by var X VX b= = +σ σ1

2
1
2 and varY VY b= = +σ σ2

2
2
2 , respectively. 

Furthermore, let
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and

	 SST SSA SSE1 1 1= + .

Following the results in Chow and Tse (1991), the MLE of σb1
2  and σ1

2 are
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and

	

ˆ
( ) ( )

σ1
2

1

1

1 1
1

1

1

1 1
1

=

−
≥

−m n

n m

m m nX X

X X

X X X
SSE

SST

     if   

SSA SSE

11 1
1

1
m m nX X X

SSA SSE1 <
−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ ( )

.

	

(23.10)

Furthermore, the MLE of the total variability VX is given by V̂X = 1/(nXmXâ•›)
SST1. The MLE of σb2

2 , σ2
2, and VY, denoted by σ̂b2

2 , σ̂2
2, and V̂Y, respectively, can 

be obtained in a similar way by using observations Yij. Comparison of the 
estimates σ̂b2

2  and σ̂b1
2  would give an idea of the magnitude of the batch-to-batch 

variability at the two sites.

23.5.1.5â•‡� Remarks

Note that the method proposed by Tse et al. (2006) only focuses on a single 
(i.e., the most active) component assuming that the most active component can 
be quantitatively identified among multiple active components. Following a 
similar idea, Lu et al. (2007) extended their results to the case of two correlative 
components by considering p1 and p2, the consistency indices of the two most 
active components of a TCM from two different sites. Lu et al. (2007) proposed 
to define the consistency index of a TCM with two correlative components by 
min(p1, p2) and denote it by p; where
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and δi is a limit that allows for consistency. Therefore, the consistency index p is 
a function of the parameter θ μ μ μ μ= ( , , , , , , , )X X Y Y X X Y YV V V V1 2 1 2 1 2 1 2 , i.e., p = h(θ). 
By invariance principle, the MLE of p1 and p2 are given by
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(23.11)

where Φ(z0) = P(Z < z0) with Z being a standard normal random variable,
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Thus, the MLE of the proposed consistency index p is given by p̂ = min(p̂1, p̂2). 
Furthermore, it can be verified that the following asymptotic result holds 
(see also Lu et al., 2007).

Theorem 23.2

log p̂ as given in (23.1) with mean E(log p̂â•›) and variance Var(log p̂â•›), where 
E(log p̂â•›) = log p + B(p) + o(n−1) and Var(log p̂) = C(p) + o(n−1). The detailed expres-
sions of B(p) and C(p) are given in the Appendix. Furthermore,
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where B(p̂â•›) and C(p̂â•›) are estimates of B(p) and C(p) with the unknown pop-
ulation parameter θ μ μ μ μ= ( , , , , , , , )X X Y Y X X Y YV V V V1 2 1 2 1 2 1 2  estimated by their 
corresponding MLEs ˆ ( , , , , ˆ , ˆ , ˆ , ˆ ).θ = X X Y Y V V V VX X Y Y1 2 1 2 1 2 1 2

Proof
The details of the derivation of B(p) and C(p) can be found in Tse et al. (2006). 
In particular,
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and
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where the subscript k is defined by k = j if p̂ = p̂j, j = 1 or 2. Note that B(p) 
converges to 0 as n tends to infinity. Thus, p̂ is asymptotically unbiased. 
Since ˆ ( , , , , ˆ , ˆ , ˆ , ˆ )θ = X X Y Y V V V VX X Y Y1 2 1 2 1 2 1 2  is asymptotically multivariate nor-
mally distributed and p̂ is a function of θ̂, it follows from Serfling (1980) that 
log (log )/ var(log ) ( , )p E p p Nˆ ˆ ˆ− → 0 1 . Using Slutsky’s theorem, it can be 
shown that log log ( )/ ( )p p B p C pˆ ˆ ˆ− −  is asymptotically normal since B(p̂â•›) 
and C(p̂â•›) are consistent estimates of B(p) and C(p), respectively.

Based on the results given in Theorem 23.2, for a given level 0 < α < 1, an 
approximate ( )1 100%− α  confidence interval for log p, denoted by (LL(log p̂â•›), 
UL(log p̂â•›)), can be obtained based on (23.4). In particular,

	 LL p p B p z C p(log ) log ( ) ( ),/ˆ ˆ ˆ ˆ= − − α 2 	 (23.12)

and

	 UL p p B p z C p(log ) log ( ) ( ) ,/ˆ ˆ ˆ ˆ= − + α 2 	
(23.13)

where zα/2 is the upper α/2-percentile of the standard normal distribution. 
Consequently, an approximate ( )1 − α 100% confidence interval for p, denoted 
by (LL(p̂â•›), UL(p̂â•›)), is given as

	 ( ).(log ) (log )e eLL p UL pˆ ˆ, 	 (23.14)

23.5.2  �Stability Analysis for TCM

In the pharmaceutical industry, stability analysis refers to a study conducted 
for determining the expiration dating period (shelf life) of a drug product 
under appropriate storage conditions. The shelf life of a drug is defined 
as the time interval in which the potency of the drug remains within the 
approved specification limit, e.g., the specification limit given in the United 
States Pharmacopedia (USP) and National Formulary (NF) (USP/NF, 2000). 
The FDA requires that the shelf life be indicated on the immediate container 
label for every drug product in the marketplace. While many drug products 
consist of a single active ingredient, there are drug products containing mul-
tiple active ingredients (see, e.g., Pong and Raghavarao, 2002). For example, 
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as indicated by Chow and Shao (2007), Premarin (conjugated estrogens, USP) 
contains at least five active ingredients, estrone, equilin, 17α-dihydroequilin, 
17α-estradiol, and 17β-dihydroequilin. Other examples include combina-
tional drug products, such as the TCMs, which are known to contain mul-
tiple active components. For a drug product with multiple active ingredients, 
an ingredient-by-ingredient stability analysis may not be appropriate, since 
these active ingredients may have some unknown interactions. Chow and 
Shao (2007) proposed a statistical method for determining the shelf life of 
a drug product with multiple active components or ingredients following 
a similar idea as suggested by the FDA and assuming that these active com-
ponents or ingredients are linear combinations of some factors. The method 
proposed by Chow and Shao (2007) is described below.

Let y(t, k) be the potency of the kth component or ingredient at time t after 
the manufacture of a given drug product, k = 1,â•›…, p. For ingredient k, its shelf 
life is the time interval in which E[y(t, k)] (the expectation of y(t, k)) remains 
within a specified limit, whereas the shelf life for the drug product may be 
the time interval at which E[f(y(t, 1),â•›…, y(t, p))] remains within the specified 
limits, where f is a function (such as a linear combination of y(t, 1),â•›…, y(t, p)) 
that characterizes the impact of all active components or ingredients. In general, 
f is a vector-valued function with dimension q ≤ p.

If data are observed from y(t, 1),â•›…, y(t, p) and the function f is a known 
function, then the stability analysis can be made by using the transformed 
data z(t) = f(y(t, 1),â•›…, y(t, p)). If the dimension of f is 1, then z(t) can be treated 
as a single component or ingredient. If the dimension of f is q > 1, then one 
may define the shelf life to be the minimum of the shelf-lives τ1,â•›…, τq, where 
τh is the shelf life when the hth component or ingredient of z(t) is treated as 
a single component or ingredient. One special case is where f is the identity 
function, so that the shelf life is the minimum of all shelf-lives correspond-
ing to different components or ingredients y(t, k), k = 1,â•›…, p.

In practice, however, f is typically unknown. Although the best way to 
estimate f is to fit a model between the y and z variables, it requires data 
observed from both y and z, which is not a common practice in pharma-
ceutical industry, because the variable z in many problems, such as the 
TCMs, is not clearly defined. In this chapter, we assume that the compo-
nents of z are linear combinations of the components of y and propose 
a method to establish the shelf life. Note that the approach proposed by 
Chow and Shao (2007) is basically an application of the factor model in 
multivariate analysis.

23.5.2.1â•‡� Models and Assumptions

Let y(t) denote the p-dimensional vector whose kth component is the potency 
of the kth component or ingredient at time t after the manufacture of a given 
drug product, k = 1,â•›…, p. We assume that the drug potency is expected to 
decrease with time t. If p = 1, i.e., y(t) is univariate, the current established 
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procedure for determination of a shelf life is to use the time at which a 95% 
lower confidence bound for the mean degradation curve E[y(t)] intersects the 
acceptable lower product specification limit as specified in USP/NF (2000) 
(see, also, FDA, 1987; ICH, 1993). Let η be the vector whose kth component or 
ingredient is the lower product specification limit as specified in the USP/NF 
for the kth component or ingredient of y(t). Assume that for any t

	 y t E y t LFt t( ) [ ( )] ,− = + ε 	 (23.15)

where
L is a p × q nonrandom unknown matrix of full rank,
Ft and εt are unobserved independent random vectors of dimensions q and p, 

respectively.

E(Ftâ•›) = 0, Var(Ft) = Iq (the identity matrix of order q), E(εt) = 0, Var(εt) = Ψ, and 
Ψ is an unknown diagonal matrix of order p. Note that model (23.15) with 
the assumptions on Ft and εt is the so-called orthogonal factor model. If εt 
is treated as a random error, then model (23.15) assumes that the p-dimen-
sional component or ingredient vector y(t) is governed by a q-dimensional 
unobserved vector Ft. Normally q is much smaller than p. Let z(t) = (L′L)−1 
L′[y(t) − η]. It follows from (23.15) that

	 z t E z t F L L Lt t( ) [ ( )] ( ) .− = + ʹ ʹ−1 ε 	 (23.16)

If L is known, then (23.16) suggests performing a stability analysis based on 
the transformed data observed from z(t). In practice, since L is unknown, if 
we can estimate L based on model (23.15) and the observed data from y(t), 
then we can carry out a stability analysis using the transformed z(t) with L 
replaced by its estimate.

Let x(t) be an s-dimensional covariate vector associated with y(t) at time t. 
For example, x(t) = (1, t)′ (s = 2) or x(t) = (1, t, t2)′ (s = 3). We assume the following 
model at any time t:

	 E y t Bx t y t i m j n[ ( ) ] ( ), [ ( )] , , ..., , , ..., ,− = = = =η Var Σ 1 1 	 (23.17)

where
B is a p × s matrix of unknown parameters,
Σ > 0 is an unknown p × p positive definite covariance matrix.

Since z(t) = (L′L)−1 L′[y(t) − η], it follows from (23.17) that

	 E z t x t i m j n[ ( )] ( ), , ,= ʹ = =γ 1 1, ,… …, , 	 (23.18)

where γ = B′L(L′L)−1.
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23.5.2.2â•‡� Shelf-Life Determination

Suppose that we independently observe data yij, i = 1,â•›…, m, j = 1,â•›…, n, where 
yij is the jth replicate of y(ti) and t1,â•›…, tm are designed time points for the 
stability analysis. Define

	 x x t z L L L y i m j ni i ij ij= = ʹ ʹ − = =−( ), ( ) ( ), , ..., , , ..., .1 1 1η 	 (23.19)

Consider first the case of q = 1, i.e., zij in (23.19) is univariate. If zij’s are observed, 
then an approximate 95% lower confidence bound for E[z(t)] = γ ′x(t) is

	 l t x t t D tmn s( ) ( ) ( ) ,. ,= − −γ σˆ ˆ0 95 	
(23.20)

where
γ̂  is the least squares estimator of γ in model (23.20) based on data zij’s and 

xi’s
σ̂2 is the usual sum of squared residuals divided by its degrees of freedom 

mn − s
t0.95,mn−s is the 95th percentile of the t distribution with degrees of freedom 

mn − s
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Hence, if zij’s are observed, a shelf life according to the 1987 FDA guideline 
for stability (FDA, 1987) is

	 τ = ≤inf{ : ( ) }.t l t 0 	 (23.21)

For TCM, yij’s, not zij’s are observed. Hence, the lower confidence bound 
l(t) in (23.20) needs to be modified. Since γ′ = (L′L)−1 L′B, we can obtain an 
estimator of γ in two steps. In the first step, we use model (23.17), observed 
data yij’s and xi’s, and the multivariate linear regression to obtain a least 
squares estimator B̂ of B. In the second step, we consider the orthogonal 
factor model (23.15) and apply the method of principal components. To 
obtain an estimator L̂ of L, using data yij − η − B̂xi, i = 1,â•›…, m, j = 1,â•›…, n. 
More precisely, L̂ is the normalized eigenvector corresponding to the largest 
eigenvalue of the sample covariance matrix based on data yij − B̂xi, i = 1,â•›…, m, 
j = 1,â•›…, n. Let ˆ ˆ ˆ( ˆ ˆ)γ = ʹ ʹ −B L L L 1 .

The lower confidence bound in (23.20) is modified to

	 l t x t t x t Vx tmn s( ) ( ) ( ) ( ) ,. ,= − ʹ−γ ʹˆ 0 95 	
(23.22)
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where V is the jackknife variance estimator of γ̂ (see, e.g., Shao and Tu, 1995), i.e.,

	

V
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j

n

i, j

i

m

=
−

− − ʹ
==
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11

( )( ) ,ˆ ˆ ˆ ˆγ γ γ γ

where ˆ ,γ i j  is the estimator of γ calculated using the same method as in the 
calculation of γ̂  but with the (i, j)th data point deleted. The result for q = 1 is 
sufficient for applications with a small or moderate p. When p is large, Chow 
and Shao (2007) proposed the following procedure with 1â•›<â•›q <â•›p. Let B̂ be 
defined as before, λk be the kth largest eigenvalue of the sample covariance 
matrix based on yij − η − B̂xi, i = 1,â•›…, m, j = 1,â•›…, n, and ek be the normalized 
eigenvector corresponding to λk. Then, the estimator L̂ of L is the p × q matrix 
whose kth column is λkek, k = 1,â•›…, q. The estimator of γ is still ˆ ˆ ˆ( ˆ ˆ)γ = ʹ ʹ −B L L L 1, 
which is an s × q matrix. Let γ̂ k  be the kth column of ˆ , , ...,γ k q= 1

	 l t x t t x t V x tk k q mn s k( ) ( ) ( ) ( ). / ,= − ʹ− −γ̂ ʹ 1 0 05 	
(23.23)
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where ˆ , ,γ k i j is the same as γ̂ k  but calculated with the (i, j)th data point deleted. 
Then, lk(t), k = 1,â•›…, q, are approximate 95% simultaneous lower confidence 
bounds for ζk(t), k = 1,â•›…, q, where ζk(t) is the kth component of E[z(t)] = γ ′x(t). 
An approximate level 95% shelf life for the drug product (when the sample 
size mn is large) is

	
τ τ=

=
min ,

, ...,k q
k

1

where each τk is defined by the right-hand side of (23.21) with l(t) replaced by 
lk(t) and is in fact a shelf life for the kth component of z with confidence level 
(1 − 0.05/q)%.

23.5.2.3â•‡� An Example

To illustrate the proposed method for determining the shelf life of a drug 
product with multiple active ingredients, consider a stability study conducted 
for a traditional Chinese herbal medicine, which is newly developed for the 
treatment of patients with rheumatoid arthritis. This medicine contains 
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three active botanical components, namely, Herba Epimedii, B extract, and 
C extract. Each of the three components has been used as herbal remedies 
since ancient China and is well documented in the CP. The proportions of 
each component are summarized in Table 23.4.

To establish a shelf life for this product, a stability study was conducted for 
a period of 18 months under a testing condition of 25°C/60% relative humid-
ity. The lower product specification limit for each component is 90%. Stability 
data (percent of label claim) at each sampling time point for the three compo-
nents are given in Table 23.5.

Since p = 3, we consider q = 1. Using the proposed procedure described 
in the previous sections, l(t) in (23.22) for various t (month) as given in 
Table 23.6.

Hence, the estimated shelf life for this product is 27 months.

TABLE 23.4

Components of a TCM

Component Formulation (mg)

Herba Epimedii 60
B 25
C 25
Excipient 90

Total 200

TABLE 23.6

l(t) Values with Various t

t 19 20 21 22 23 24 25 26 27 28
l(t) 4.97 4.36 3.75 3.14 2.52 1.90 1.28 0.66 0.03 −0.60

TABLE 23.5

Stability Data of a TCM

Component

Sampling Time Point (Months)

0 3 6 9 12 18

Herba Epimedii 99.6 97.5 96.8 96.2 94.8 95.3
99.7 98.3 97.0 96.0 95.1 94.8

100.2 99.0 98.2 97.1 95.3 94.6

B 99.5 98.4 96.3 95.4 93.2 91.0
100.5 98.5 97.4 94.9 94.5 92.1
99.3 99.0 97.3 95.0 93.1 91.5

C 100.0 99.5 98.9 98.2 97.9 97.5
99.8 99.4 99.0 98.5 98.0 97.9

101.2 99.9 100.3 99.5 98.9 98.0
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23.5.2.4â•‡� Discussion

The statistical method for determining the shelf life of a drug product 
with p active ingredients proposed by Chow and Shao (2007) assumed 
that these active ingredients are linear combinations of q factors. Since we 
propose to choose these factors using principal components, the first fac-
tor can be viewed as the primary active factor and the second factor can 
be viewed as the secondary active factor. We assume that active ingredi-
ents decrease with time. If one or more ingredients increase with time, 
then a transformation such as g(y) = −y or g(y) = 1/y may be applied. If p is 
small or moderate, then q = 1 is recommended. If p is large, then adding 
a few more factors may be considered. Since the principal components 
are orthogonal, adding more factors will not affect the previous selected fac-
tors (except that t0.95,mn−s changed to t1−0.05/q,mn−sâ•›) so that one can compare 
the results in a sensitivity analysis. Finally, adding more factors always 
results in a more conservative procedure.

Note that in our proposed approach, we assume that there is no significant 
toxic degradant in the test drug product with multiple components. This is a 
reasonable assumption for most TCM since multiple ingredients are used to 
reduce toxicities when used in conjunction with primary therapy. However, 
in the case where toxic degradation products are detected, special attention 
should be paid to (1) identity (chemical structure), (2) cross reference to infor-
mation about biological effects and significance of concentration likely to be 
encountered, and (3) indications of pharmacological action or inaction as 
indicated in the FDA guideline for stability analysis. (FDA, 1987).

The approach proposed by Chow and Shao (2007) is useful when different 
ingredients degrade not independently of each other, which is the case for 
most TCM. If multiple ingredients degrade independently, then an ingredient-
by-ingredient analysis may be appropriate. If our approach is applied, then 
we will select q = 1 or q = 2 factors that are ingredients having the most 
variability.

23.5.3  �Calibration of Study Endpoints

When planning a clinical trial, it is suggested that the study objectives 
should be clearly stated in the study protocol. Once the study objectives are 
confirmed, a valid study design can be chosen and the primary clinical 
endpoints can be determined accordingly. For the evaluation of treatment 
effect of a TCM, however, the commonly used clinical endpoint is usually 
not applicable due to the nature of the CDPs as described earlier. The CDP is 
in fact an instrument (or questionnaire) which consists of a number of ques-
tions to capture the information regarding the patient’s activity, function, 
disease status and severity. As required by most regulatory agencies, such a 
subjective instrument must be validated before it can be used for assessment 
of treatment effect in clinical trials. However, without a reference marker, 
not only can the CDP not be validated but we also do not know whether the 
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TCM has achieved clinically significant effect at the end of the clinical trial. 
In this section, we will study the calibration and validation of the CDP for 
the evaluation of a TCM with respect to a well-established clinical endpoint 
for the evaluation of a WM.

To address these issues described above, Hsiao et al. (2009) proposed 
a study design, which allows calibration and validation of a CDP with 
respect to a well-established clinical endpoint for WM (as a reference 
marker). Subjects will be screened based on criteria for Western indica-
tion. Qualified subjects will be diagnosed by the CDP to establish a base-
line. Qualified subjects will then be randomized to receive either the test 
TCM or an active control (a well-established WM). Participating physicians 
including Chinese doctors and Western clinicians will also be randomly 
assigned to either the TCM arm or the WM arm. As a result, this study 
design will be divided into three groups:

Group 1: Subjects who receive WM but are evaluated by both a Chinese 
doctor and a Western clinician.

Group 2: �Subjects who receive TCM and are evaluated by a Chinese doctor A.

Group 3: �Subjects who receive TCM and are evaluated by a Chinese doctor B.

Group 1 can be used to calibrate the CDP against the well-established clinical 
endpoint, while groups 2 and 3 can be used to validate the CDP based on the 
established standard curve for calibration.

23.5.3.1â•‡� Chinese Diagnostic Procedure

As indicated earlier, the diagnostic procedure for TCM consists of four major 
techniques, namely, inspection, auscultation and olfaction, interrogation, 
and pulse taking and palpation. All these diagnostic techniques aim mainly 
at providing an objective basis for the differentiation of syndromes by col-
lecting symptoms and signs from the patient. Inspection involves observing 
the patient’s general appearance (strong or week, fat or thin), mind, complex-
ion (skin color), five sense organs (eye, ear, nose, lip, and tongue), secretions, 
and excretions. Auscultation involves listening to the voice, expression, res-
piration, vomit, and cough. Olfaction involves smelling the breath and body 
odor. Interrogation involves asking questions about specific symptoms and 
the general condition including history of the present disease, past history, 
personal life history, and family history. Pulse taking and palpation can help 
to judge the location and nature of a disease according to the changes in the 
pulse. The smallest detail can have a strong impact on the treatment scheme 
as well as on the prognosis. While the pulse diagnosis and examination of 
the tongue receive much attention due to their frequent mention, the other 
aspects of diagnosis cannot be ignored.

As indicated earlier, after these four diagnostic techniques have been per-
formed, the TCM doctor has to configure a syndrome diagnosis describing 
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the fundamental substances of the body and how they function in the body 
based on the eight principles, five-element theory, five Zang and six Fu, and 
information regarding channels and collaterals.

In addition to providing diagnostic information, these elements of TCM 
can also help to describe the etiology of disease including the six exogenous 
factors (i.e., wind, cold, summer, dampness, dryness, and fire), seven emo-
tional factors (i.e., anger, joy, worry, grief, anxiety, fear, and fright), and other 
pathogenic factors. Once all this information is collected and processed into 
a logical and workable diagnosis, the traditional Chinese medical doctor can 
determine the treatment approach.

23.5.3.2â•‡� Calibration

Let N be the number of patients collected in group 1. For the data from 
group 1, let xj be the measurement of the well-established clinical endpoint 
of the jth patient. For simplicity, we assume that the measurement of well-
established clinical endpoints is continuous. Suppose that the TCM diagnostic 
procedure consists of K items. Let zij denote the TCM diagnostic score of jth 
patient from the ith item, i = 1,â•›…, K, j = 1,â•›…, N. Let yj represent the scale 
(or score) of the jth patient summarized from the K TCM diagnostic items. For 
simplicity, we assume that

	

y zj ij

j

N

i

K

= ∑∑
=1

.

Similar to calibration of an analytical method (cf. Chow and Liu, 1995), we 
will consider the following five candidate models:

Model 1: yj = α + βxj + ej,

Model 2: yj = βxj + ej,

Model 3: y x x ej j j j= + + +α β β1 2
2 ,

Model 4: y x ej j j= α β ,

Model 5: y e ej
x

j
j= α

β
,

where α, β, β1, and β2 are unknown parameters and e’s are independent 
random errors with E(ejâ•›) = 0 and finite Var(ejâ•›) in models 1–3 and E(log(ej)) = 0 
and finite Var(log(ejâ•›)) in models 4 and 5.

Model 1 is a simple linear regression model which is probably the most 
commonly used statistical model for the establishment of standard curves 
for calibration. When the standard curve passes through the origin, model 1 
reduces to model 2. Model 3 indicates that the relationship between y and x is 
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quadratic. When there is a nonlinear relationship between y and x, models 4 
and 5 are useful. Note that both models 4 and 5 are equivalent to a simple lin-
ear regression model after logarithm transformation. If all the above models 
cannot fit the data, generalized linear models can be used.

By fitting an appropriate statistical model between these standards (well-
established clinical endpoints) and their corresponding responses (TCM scores), 
an estimated calibration curve can be obtained. The estimated calibration curve 
is also known as the standard curve. For a given patient, his/her unknown mea-
surement of well-established clinical endpoint can be determined based on the 
standard curve by replacing the dependent variable with its TCM score.

23.5.3.3â•‡� Validity

The validity itself is a measure of biasedness of the TCM instrument. Since a 
TCM instrument usually contains four categories or domains, which in turn 
consist of a number of questions agreed by the community of the Chinese 
doctors, it is a great concern that the questions may not be the right ones 
to capture the information regarding the patient’s activity/function, dis-
ease status, and disease severity. We will use group 2 to validate the CDP 
based on the previously established standard curve for calibration. Let X 
be the unobservable measurement of the well-established clinical endpoint 
which can be quantified by the TCM items, Zi, i = 1,â•›…, K based on the esti-
mated standard curve discussed in the previous section. For convention, we 
assume that

	
X

Y
=

( ) − α
β

,

where Y Zi
i

K
=

=∑ 1
. That is, model 1 was used for calibration. Suppose that X 

is distributed as a normal distribution with mean θ and variance τ2. Let Z = 
(Z1,â•›…, ZK)’. Again suppose Z follows a distribution with mean μ = (μ1,â•›…, μK)’ 
and variance Σ. To assess the validity, it is desired to see whether the mean 

of Zi, i = 1,â•›…, K is close to (α + βθ)/K. Let μ μ=
=∑1

1
/K i

i

K
. Then θ μ α β= −( )/ .

 
Consequently, we can claim that the instrument is validated in terms of its 
validity if

	 | | , ,μ μ δi i K− < ∀ = 1,…, 	 (23.24)

for some small prespecified δ. To verify (23.24), we can consider constructing a 
simultaneous confidence interval for μ μi − . Assume that the TCM instrument
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is administered to N patients from group 2. Let m̂ = =
=∑1

1
/N j

j

N
Z Z. Then the 

(1 − α)100% simultaneous confidence interval for μ μi −  are given by
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The Bonferroni adjustment of an overall α level might be conducted as 
follows:
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We can reject the null hypothesis that

	 H i , ......,Ki0 :| | , ,μ μ δ− ≥ ∀ = 1 	 (23.25)

if any confidence interval falls completely within (−δ, δ).
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23.5.3.4â•‡� Reliability

The calibrated well-established clinical endpoints derived from the estimated 
standard curve are considered reliable if the variance of X is small. In this 
regard, we can test the hypothesis

	 H0
2: τ >= Δ Δfor some fixed 	 (23.26)

to verify the reliability of estimating θ by X. We will use group 2 to verify the 
reliability based on the previously established standard curve for calibration. 
Based on the estimated standard curve, we can derive that
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Note that the sample distribution of
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has a chi-square distribution with N − 1 degrees of freedom. Thus, we can 
construct a (1 − α)100% one-sided confidence interval for τ2 as follows:
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We can reject the null hypothesis of (23.26) and conclude that the items are 
not reliable in estimation of θ if ξ > Δ.

23.5.3.5â•‡� Ruggedness

In addition to validity and reliability, an acceptable TCM diagnostic instru-
ment should produce similar results on different raters. In other words, it is 
desirable to quantify the variation due to rater and the proportion of rater-to-
rater variation to the total variation. We will use the one-way nested random 
model to evaluate instrument ruggedness (Chow and Liu, 1995). The one-
way nested random model can be expressed as

	 X A e i j Nij i j i= + + = =μ ( ) , ,1 1(group 2), 2 (group 3); ,,…
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where
Xij is the calibrated scale of the jth patient obtained from the ith rater
μ is the overall mean
Ai is the random effect due to the ith rater
ej(i) is the random error of the jth patient’s scale nested within the ith rater.

For the one-way nested random model, we need the following assumptions: 
Ai are independent and identically distributed (i.i.d.) normal with mean 0 
and variance σA

2 ; ej(i) are i.i.d. normal with mean 0 and variance σ2; Ai and ej(i) 
are mutually independent for all i and j.

Let X J Xi ij
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Also, let SSA and SSE denote the sum of squares of factor A and the sum of 
squares of errors, respectively. In other words,
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Also let MSA and MSE denote mean squares for factor A and mean square 
error. Then MSA = SSA and MSE = SSE/[2(N − 1)]. As a result, the analysis of 
variance estimators of σA

2 and σ2 can be obtained as follows:

	 σ̂2 = MSE

and

	
σ̂A

N
2 =

−MSA MSE
.

Note that σ̂A
2  is obtained from the difference between MSA and MSE, and 

thus it is possible to obtain a negative estimate for σA
2 .

Three criteria can be used to evaluate instrument ruggedness. The first 
criterion is to compute the probability for obtaining a negative estimate of 
σA

2  given by

	 P P F N F( 0) ( [1, 2( 1)] ( ) ),2 1σ̂A < = − < −
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where F[1, 2(N − 1)] is a central F distribution with 1 and 2(N − 1) degrees of 
freedom and

	
F

N A=
+σ σ
σ

2 2

2 .

If P( )σ̂A
2 0<  is large, it may suggest that σA

2 =0. The second criterion is to test 
whether the variation due to factor A is significantly larger than zero:

	 H HA A0 1
20 versus 0.: = :σ σ2 > 	 (23.27)

The null hypothesis (23.27) is rejected at the α level of significance if

	 F F F NA > = −C ( , , ( )),α 1 2 1

where FA = MSA/MSE. The third criterion is to evaluate the proportion of the 
variation due to factor A, which is defined as follows:
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According to Searle et al. (1992), the estimator and the (1 − α)100% confidence 
interval for σA

2  are given by
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where FL = F(1 − 0.5α, 1,2(N − 1)) and FU = F(0.5α, 1,2(N − 1)).
It may also be desired to test whether or not the rater-to-rater variability is 

within an acceptable limit ω. In this case, Hsiao et al. (2007) have considered 
testing the following hypothesis:

	 H HA A0
2

1
2versus .: :σ σ ω< 	 (23.28)
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Since there exists no exact (1 − α)100% confidence interval for σA
2 , we can derive 

the Williams–Tukey interval with a confidence level between (1 − 2α)100% and 
(1 − α)100% which is given by (LA, UA), where
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where FL = F(1 − 0.5α,1,2(N − 1)) and FU = F(0.5α,1,2(N − 1)) represent the 
(1 − 0.5α)th and (0.5α)th upper quantiles of a central F distribution with 1 and 
2(N − 1) degrees of freedom, χ χ αLA

2  1)= −2 1 0 5( . ,  and χ χ αUA
2 1)= 2 0 5( . ,  are the 

(1 − 0.5α)th and (0.5α)th upper quantiles of a central chi-square distribu-
tion with 1 degree of freedom, and FA = MSA/MSE. The null hypothesis (23.28) 
is rejected at α level of significance if UA < ω.

23.6â•‡� Concluding Remarks

As indicated earlier, a TCM is defined as a Chinese herbal medicine devel-
oped for treating patients with certain diseases as diagnosed by the four 
major techniques of inspection, auscultation and olfaction, interrogation, 
and pulse taking and palpation based on the traditional Chinese medical 
theory of global balance among the functions/activities of all the organs of 
the body. When conducting a TCM clinical trial, it is suggested that the fun-
damental differences between a WM and a TCM, as described in Section 
23.2, should be evaluated carefully for a valid and unbiased assessment of 
the safety and effectiveness of the TCM under investigation.

One of the key issues in TCM research and development is to clarify the 
difference between Westernization of TCM and modernization of TCM. 
For Westernization of TCM, we follow regulatory requirements at critical 
stages of the process for pharmaceutical development including drug dis-
covery, formulation, laboratory development, animal studies, clinical devel-
opment, manufacturing process validation and QC, regulatory submission, 
review, and process, despite the fundamental differences between WM and 
TCM. For modernization of TCM, it is suggested that regulatory require-
ments should be modified in order to account for the fundamental differ-
ences between WM and TCM. In other words, we still ought to be able to 
see if TCM is really working with modified regulatory requirements using 
Western clinical trials as a standard for comparison.

In practice, it is recognized that WMs tend to achieve the therapeutic effect 
sooner than TCMs for critical and/or life-threatening diseases. TCMs are 
found to be useful for patients with chronic diseases or non-life-threatening 
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diseases. In many cases, TCMs have shown to be effective in reducing tox-
icities or improving the safety profile for patients with critical and/or life-
threatening diseases. As a strategy for TCM research and development, it is 
suggested that (1) TCM be used in conjunction with a well-established WM 
as a supplement to improve its safety profile and/or enhance therapeutic 
effect whenever possible and (2) TCM should be considered as the second-
line or third-line treatment for patients who fail to respond to the available 
treatments. However, some sponsors are interested in focusing on the devel-
opment of TCM as a dietary supplement due to (1) the lack or ambiguity of 
regulatory requirements, (2) the lack of understanding of the medical theory/
mechanism of TCM, (3) the confidentiality of nondisclosure of the multiple 
components, and (4) the lack of understanding of pharmacological activities 
of the multiple components of TCM.

Since TCM consists of multiple components which may be manufactured 
from different sites or locations, the post-approval consistency in the qual-
ity of the final product is both a challenge to the sponsor and a concern to 
the regulatory authority. As a result, some post-approval tests, such as tests 
for content uniformity, weight variation, and/or dissolution and (manufac-
turing) process validation, must be performed for quality assurance before 
the approved TCM can be released for use.
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24
The Assessment of Follow-On 
Biologic Products

24.1â•‡� Introduction

When an innovative (brand-name) drug product is going off patent, phar-
maceutical and generic companies may file an abbreviated new drug 
application (ANDA) for approval of generic copies of the innovative drug 
product. In 1984, the United States Food and Drug Administration (FDA) 
was authorized to approve generic drug products under the Drug Price 
Competition and Patent Term Restoration Act (which is also known as 
the Hatch and Waxman Act). For the approval of generic drug products, 
the FDA requires that evidence in average bioavailability (in terms of rate 
and extent of drug absorption) be provided through the conduct of bio-
availability and bioequivalence studies. As indicated by Chow and Liu 
(2008), the assessment of bioequivalence as a surrogate for the evaluation 
of drug safety and efficacy is based on the Fundamental Bioequivalence 
Assumption that if two drug products are shown to be bioequivalent 
in average bioavailability, it is assumed that they will reach the same 
therapeutic effect or they are therapeutically equivalent and can be used 
interchangeably. Under the Fundamental Bioequivalence Assumption, 
regulatory requirements, study design (e.g., a two-sequence, two-period 
crossover design or a replicated crossover design), criteria (e.g., 80/125 rule 
based on log-transformed data), and statistical methods (e.g., Shuirmann’s 
two one-sided tests or confidence interval approach) for assessment of 
bioequivalence have been well established (see, e.g., Schuirmann, 1987; 
FDA 2001, 2003b; Chow and Liu, 2008).

Unlike drug products, the concept for development of “generic” versions of 
biologic products, which are usually referred to as follow-on biologics (FOB) 
by the U.S. FDA or biosimilars by the European Medicines Agency (EMEA) of 
the European Union (EU), or subsequent entered biologics (SEB) by Health 
Canada, is different. Webber (2007) defines follow-on (protein) biologics as 
products that are intended to be sufficiently similar to an approved product 
to permit the applicant to rely on certain existing scientific knowledge about 
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safety and efficacy of an approved reference product. Under this definition, 
follow-on biologic products are not only intended to be similar to the reference 
product, but also intended to be interchangeable with the reference product. 
As a number of biologic products are due to expire in the next few years, the 
subsequent follow-on biologic products have generated considerable interest 
within the pharmaceutical/biotechnological industry as biosimilar manufac-
turers strive to obtain part of an already large and rapidly growing market. 
The potential opportunity for price reductions versus the originator biologic 
products remains to be determined, as the advantage of a cheaper price may be 
outweighed by the hypothetical increased risk of side effects from biosimilar 
molecules that are not exact copies of their originators. In this chapter, we will 
focus on the issues surrounding biosimilars, including manufacturing, quality 
control (QC), clinical efficacy, side effects (safety), and immunogenicity. In addi-
tion, we will also attempt to address the challenges regarding how regulatory 
agencies and industry regulations are evolved in dealing with these issues.

Biosimilars are fundamentally different from generic chemical drugs. 
Important differences include the size and complexity of the active sub-
stance and the nature of the manufacturing process. Because biosimilars 
are not the exact copy of their originator products, different criteria for 
regulatory approval may be required although the principles of evaluating 
bioequivalence are the same. This is partly a reflection of the complexi-
ties of manufacturing and safety and efficacy controls of biosimilars when 
compared to their small-molecule generic counterparts (see, e.g., Chirino 
and Mire-Sluis, 2004; Schellekens, 2004; Crommelin et al., 2005; Roger, 2006; 
Roger and Mikhail, 2007; Keith, 2007; Webber, 2007). Since biologic prod-
ucts are usually recombinant protein molecules manufactured in living 
cells (Kuhlmann and Covic, 2006), manufacturing processes for biologic 
products are highly complex and require hundreds of specific isolation 
and purification steps. In practice, it is impossible to produce an identical 
copy of a biologic product, as changes to the structure of the molecule can 
occur with changes in the production process. Since a protein can be modi-
fied (e.g., side chain may be added and structure may have changed due to 
protein misfolding) during the process, different manufacturing processes 
may invariably lead to structural differences in the final product, which 
may result in differences in efficacy and may have a negative impact on 
patient immune responses. It should be noted that the above issues also 
occur for the post-approval changes for the innovator biological products.

In the next section, regulatory requirements for approval of biosimilars by 
the EMEA of EU are briefly outlined. Also included in the section is the cur-
rent position of the FDA. Section 24.3 reviews various criteria for the assess-
ment of bioequivalence, similarity, and consistency of chemical generics that 
appeared in either regulatory guidances and/or literature. Some scientific 
issues for the assessment of biosimilars are discussed in Section 24.4. In 
Section 24.5, an approach to assessment of similarity using genomic data is 
proposed. Some concluding remarks are given in the last section.
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24.2â•‡� Regulatory Requirements

For the approval of biosimilars in the EU community, the EMEA has issued a 
new guideline describing general principles for the approval of similar biolog-
ical medicinal products, or biosimilars. The guideline is accompanied by six 
concept papers that outline areas in which the agency intends to provide more 
targeted guidance (EMEA 2003a,b, 2005a–g). Specifically, the concept papers 
discuss approval requirements for several classes of human recombinant 
products containing erythropoietin, human growth hormone, granulocyte 
colony-stimulating factor, and insulin. The guideline consists of a checklist 
of documents published to date relevant to data requirements for biological 
pharmaceuticals. It is not clear what specific scientific requirements will be 
applied to biosimilar applications. In addition, it is not clear how the agency 
will treat innovator data contained in the reference product dossiers. The 
guideline provides a useful summary of the biosimilar legislation and previ-
ous EU publications, and it also provides a few answers to the issues.

On the other hand, for the approval of follow-on biologics in the United 
States, it depends on whether the biologic product is approved under the 
U.S. Food, Drug, and Cosmetic Act (FD&C) or whether it is licensed under 
the U.S. Public Health Service Act (PHS) (Kozlowski, 2007; Liang, 2007). As 
indicated, some proteins are licensed under the PHS Act, while some are 
approved under the FD&C Act. For products approved under an NDA (FD&C 
Act), a generic version of the products can be approved under an ANDA, 
e.g., under Section 505(b)(2) of the FD&C Act. For products that are licensed 
under a Biologics License Application (BLA) (PHS Act), there exists no abbre-
viated BLA. As pointed out by Woodcock et al. (2007), for the assessment of 
similarity of follow-on biologics, the FDA would consider the following fac-
tors regarding (1) the robustness of the manufacturing process, (2) the degree 
to which structural similarity could be assessed, (3) the extent to which the 
mechanism of action was understood, (4) the existence of valid, mechanisti-
cally related pharmacodynamic (PD) assays, (5) the comparative pharmaco-
kinetics (PK), (6) the comparative immunogenicity, (7) the amount of clinical 
data available, and (7) the extent of experience with the original product (ICH, 
1996c, 1999, 2005b) A typical example would be a recent regulatory approval of 
Omnitrope® (Somatropin), which was approved in 2006 under Section 505(b)(2) 
of the FD&C Act. Omnitrope was approved based on the following evalua-
tions: (1) physicochemical testing that established highly similar structure to 
Genotropin, (2) new nonclinical pharmacology and toxicology data specific to 
Omnitrope, (3) PK, PD, and comparative bioavailability data, (4) clinical effi-
cacy and safety data from comparative controlled trials and from long-term 
trials with Omnitrope, (5) vast clinical experience and a wealth of published 
literature concerning the clinical effects (safety and effectiveness) of human 
growth hormone. The approval of Omnitrope is based on an ad hoc case-by-
case review of individual biosimilar application. In practice, there is a stronger 
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industrial interest and desire for the regulatory agencies to develop review 
standards and an approval process for biosimilars than an ad hoc case-by-case 
review of individual biosimilar applications. As more biologic products are 
going off patents in the next few years, the FDA hosted a Public Hearing on 
Approval Pathway for Biosimilar and Interchangeable Biological Products between 
November 2 and 3, 2010, at Silver Spring, Maryland, to address some scientific 
factors regarding the assessment of biosimilarity (e.g., criteria, design, and 
statistical methods), drug interchangeability (e.g., the issues of alternating and 
switching), and quality (e.g., test for comparability in manufacturing pro-
cess) of follow-on biologics. As a result, the FDA indicated that the following 
guidances are currently under development: (1) a guidance for the indus-
try on scientific considerations demonstrating the safety and effectiveness 
of follow-on protein products and (2) a guidance for the industry on CMC 
issues for follow-on protein products.

24.3â•‡� Criteria for Biosimilarity

For comparison between drug products, some criteria for the assessment of 
bioequivalence, similarity (e.g., dissolution profiles comparison), and con-
sistency (e.g., comparison between manufacturing processes) are available 
in either regulatory guidelines/guidances or the literature. These criteria, 
however, can be classified into (1) absolute change versus relative change, 
(2) aggregated versus disaggregated, or (3) moment based versus probability 
based. In this section, different categories of criteria are briefly reviewed.

24.3.1  �Absolute Change versus Relative Change

In clinical research and development, for a given study endpoint, posttreatment 
absolute change from baseline or posttreatment relative change from baseline is 
usually considered for comparison between treatment groups. A typical exam-
ple would be the study of weight reduction in an obese patient population. 
In practice, it is not clear whether a clinically meaningful difference in terms of 
absolute change from baseline can be translated to a clinically meaningful dif-
ference in terms of relative change from baseline. Sample size calculation based 
on power analysis in terms of absolute change from baseline or relative change 
from baseline could lead to a very different result.

Current regulations for the assessment of bioequivalence between drug 
products in terms of average bioavailability are based on relative change. In 
other words, we conclude bioequivalence between a test product and a refer-
ence product if the 90% confidence interval for the ratio of means of the pri-
mary PK response such as area under the blood or plasma-concentration time 
curve (AUC) between the two drug products is totally within 80% and 125%. 
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Note that regulatory agencies suggest that a log-transformation be performed 
before data analysis for the assessment of bioequivalence.

24.3.2  �Aggregated versus Disaggregated

As indicated by Chow and Liu (2008), bioequivalence can be assessed by 
evaluating differences in averages, intra-subject variabilities, and variance 
due to subject-by-formulation interaction between drug products separately. 
Individual criteria for the assessment of differences in averages, intra-subject 
variabilities, and variance due to subject-by-formulation interaction between 
drug products are referred to as disaggregated criteria. If the criterion is a 
single summary measure composed of these individual criteria, it is called 
an aggregated criterion.

For the assessment of average bioequivalence (ABE), most regulatory agen-
cies including the FDA recommend the use of a disaggregate criterion based 
on average bioavailability. In other words, bioequivalence is concluded if 
the average bioavailability of the test formulation is within (80%, 125%) that 
of the reference formulation, with a certain assurance. Note that the EMEA 
(2001) and the World Health Organization (WHO) (2005) use the same equiv-
alence criterion of 80%–125% for the log-transformed PK responses such as 
AUC. However, for Cmax, in certain cases, the EMEA and WHO allow a wider 
interval of 75%–133% for the ratio of average bioavailability to address any 
safety and efficacy concerns for patients switched between formulations. If 
a wider interval is used, it must be prespecified in the protocol. More details 
can be found in Chow and Liu (2008).

On the other hand, for the assessment of population bioequivalence (PBE) 
and individual bioequivalence (IBE), the following aggregated criteria are 
often considered. For the assessment of IBE, a criterion proposed in the FDA 
guidance (FDA, 2001) can be expressed as
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Similarly, the criterion for the assessment of PBE suggested in the FDA guid-
ance (FDA, 2001) is given by
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where
σTT

2  and σTR
2  are the total variances for the test product and the reference 

product, respectively
σT0

2  is the scale parameter specified by the user

A typical approach is to construct a one-sided 95% confidence interval for 
θI(θP) for the assessment of individual (population) bioequivalence. If the 
one-sided 95% upper confidence limit is less than the bioequivalence limit 
of θI(θP), we then conclude that the test product is bioequivalent to that of the 
reference product in terms of individual (population) bioequivalence. More 
details regarding IBE and PBE can be found in Chow and Liu (2008).

24.3.3  �Moment-Based Criteria versus Probability-Based Criteria

Schall and Luus (1993) proposed the moment-based and probability-based 
measures for the expected discrepancy in PK responses between drug prod-
ucts. The moment-based measure suggested by Schall and Luus (1993) is 
based on the following expected mean-squared differences:
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For some prespecified positive number r, one of the probability-based 
measures for the expected discrepancy is given as (Schall and Luus, 1993)
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where
d(YT;â•›YR) measures the expected discrepancy for some PK metric between 

test and reference formulations
d Y YR R( ; )’  provides the expected discrepancy between the repeated admin-

istrations of the reference formulation

The role of d Y YR R( ; ’) in the formulation of bioequivalence criteria is to serve 
as a control. The rationale is that the reference formulation should be bio-
equivalent to itself. Therefore, for the moment-based measures, if the test for-
mulation is indeed bioequivalent to the reference formulation, then d(YT;â•›YR) 
should be very close to d Y YR R( ; ’). It follows that if the criteria are functions 
of the difference (or ratio) between d(YT;â•›YR) and d Y YR R( ; ’), bioequivalence is 
concluded if they are smaller than some prespecified limit. On the other hand, 
for probability-based measures, if the test formulation is indeed bioequivalent 
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to the reference formulation, as compared with d Y YR R( ; ’ ), d(YT;â•›YR) should be 
relatively large. As a result, bioequivalence is concluded if the criteria based on 
the probability-based measure is greater than some prespecified limit.

24.3.4  �Similarity Factor for Dissolution Profile Comparison

In vivo bioequivalence studies are surrogate trials for assessing equivalence 
between test and reference formulations based on the rate and extent of drug 
absorption in humans to establish similar effectiveness and safety under 
the fundamental bioequivalence assumption. However, drug absorption 
depends on the dissolved state of drug product and dissolution testing pro-
vides a rapid in vitro assessment of the rate and extent of drug release. Leeson 
(1995), therefore, suggested that in vitro dissolution testing be used as a sur-
rogate for in vivo bioequivalence studies to assess equivalence between the 
test and reference formulations for post-approval changes. For comparison 
of dissolution profiles, the FDA guidance suggests considering the assess-
ment of (1) the overall profile similarity and (2) similarity at each sampling 
time point (FDA, 1997). In order to achieve these two objectives, based on 
Moore and Flanner (1996), both the FDA SUPAC guidance (SUPAC-IR, 1995) 
and guidance on dissolution testing (FDA, 1997) suggest the similarity and 
difference factor for the assessment of similarity. The similarity factor is then 
defined as the logarithmic reciprocal square root transformation of 1 plus the 
mean-squared (the average sum of squares) difference in mean cumulative 
percentage dissolved between the test and reference formulations over all 
sampling time points. That is,
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On the other hand, the difference factor is the sum of the absolute differ-

ence in mean cumulative percentage dissolved between the test and refer-
ence formulations divided by the sum of the mean cumulative dissolved of 
the reference formulation.
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It should be noted that it is not clear whether the definitions of f1 and f2 provided 
by Moore and Flanner (1996) and in the SUPAC and guidance on dissolution test-
ing are defined based on the population means or the sample averages. However, 
following the traditional statistical inference with ability for the evaluation of 
error probability, we define both f1 and f2 based on the population mean dissolu-
tion rates. It follows that f1 and f2 are population parameters for the assessment 
of similarity of dissolution profiles between the test and reference formulations.

24.3.5  �Consistency in Manufacturing Process/Quality Control

Tse et al. (2006) proposed a statistical QC method to assess a proposed index 
to test consistency between raw materials (which are from different resources) 
and/or between final products manufactured by different manufacturing pro-
cesses. The consistency index is defined as the probability that the ratio of the 
characteristics (e.g., potency) of the drug products produced by two different 
manufacturing processes is within a prespecified limit of consistency. A 
consistency index close to 1 indicates that the characteristics of the drug prod-
ucts from the two manufacturing processes are almost identical. The idea for 
testing consistency is to construct a 95% confidence interval for the proposed 
consistency index under a sampling plan. If the constructed 95% confidence 
lower limit is greater than a prespecified QC lower limit, then we claim that 
the final products produced by the two manufacturing processes are consistent.

Let U and W be the characteristics of the drug products from two different 
manufacturing processes, where X = log U and Y = log W follows normal 
distributions with means μX, μY and variances VX, VY, respectively. Similar to 
the idea of using P(X < Y) to assess reliability in statistical QC (Church and 
Harris, 1970; Enis and Geisser, 1971), Tse et al. (2006) proposed the following 
probability as an index to assess the consistency between the two different 
manufacturing processes:
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where 0 < δ < 1 and is defined as a limit that allows for consistency. Tse 
et al. (2006) refer to p as the consistency index. Thus p tends to 1 as δ tends to 1. 
For a given δ, if p is close to 1, the materials U and W are considered to be 
identical. It should be noted that a small δ implies the requirement of a high 
degree of consistency between material U and material W. In practice, it may 
be difficult to meet this narrow specification for consistency. Tse et al. (2006) 
proposed the following QC criterion. If the probability that the lower limit 
LL(p̂) of the constructed (1 − α)100% confidence interval of p is greater than or 
equal to a prespecified QC lower limit, say, QCL, and exceeds a prespecified 
number β (say β = 80%), then we claim that U and W are consistent or similar. 
In other words, U and W are consistent or similar if P(QCL ≤ LL(p̂)) ≥ β, where 
β is a prespecified constant.
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24.4â•‡� Scientific Issues

24.4.1  �Biosimilarity in Biological Activity

Pharmacological or biological activity is an expression describing the benefi-
cial or adverse effects of a drug on living matter. When the drug is a complex 
chemical mixture, this activity is exerted by the substance’s active ingredi-
ent or pharmacophore but can be modified by other constituents. A crucial 
component of biological activity is a substance’s toxicity. Activity is gener-
ally dosage-dependent and it is not uncommon to have effects ranging from 
beneficial to adverse for one substance when going from low to high doses. 
Activity depends critically on fulfillment of the ADME criteria.

Note that the new EU Pharmaceutical Review legislation published on 
April 30, 2004 amended the EU community code on medicinal products 
to provide for the approval of biosimilars based on fewer preclinical and 
clinical data than had been required for the original reference product. 
The complexity of the protein and the knowledge of its structure–func-
tion relationships determine the types of information needed to establish 
similarity.

24.4.2  �Similarity in Size and Structure

In practice, various in vitro tests such as the assessments of the primary 
amino acid sequence, charge, and hydrophobic properties are performed 
to compare the structural aspects of biosimilars with their originator mole-
cules. However, it is of concern whether in vitro tests can be predictive of bio-
logical activity in vivo due to the fact that there are significant differences in 
biological activity despite similarities in size and structure. Besides, it is dif-
ficult to assess biological activity adequately as few animal models are able 
to provide data that can be extrapolated for an accurate and reliable predic-
tion of biological activity in humans. Thus, controlled clinical trials remain 
the most reliable means of demonstrating similarity between a biosimilar 
molecule and the originator product in the clinic.

24.4.3  �The Problem of Immunogenicity

Since all biologic products are biologically active molecules derived from liv-
ing cells and have the potential to evoke an immune response, the immu-
nogenicity is probably the most critical safety concern for the assessment 
of biosimilarity of follow-on biologics. The commonly seen possible causes 
of immunogenicity include, but are not limited to, (1) sequence differ-
ences between therapeutic protein and endogenous protein, (2) nonhuman 
sequences or epitopes, (3) structural alterations, (4) storage conditions, 
(5) purification during the manufacturing process, (6) formulation, (7) route, 
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dose, and frequency of administration, and (8) patient status such as genetic 
background. Thus, the following questions are necessarily asked when 
assessing biosimilarity between biological products: (1) What is the immu-
nogenic potential of the therapeutic protein? (2) What is the impact of the 
generating antibodies to the self-protein? (3) What is the impact of immuno-
genicity in preclinical toxicity (e.g., PK levels and dose-limiting toxicity)? (4) 
What is the impact of immunogenicity of the therapeutic protein on safety? 
(5) What are the risk evaluation and mitigation strategy processes required 
by the regulatory agency such as the FDA?

The immune responses to biologic products can lead to (1) anaphylaxis, 
(2) injection site reactions, (3) flu-like syndromes, and (4) allergic responses. 
Note that one of the most serious adverse events occurs when neutraliz-
ing antibodies to product cross-react with endogenous proteins that have 
a unique physiological role. The risk of immunogenicity can be reduced 
through stringent testing of the products during its development. It, how-
ever, should be noted that not only immunogenicity in animal does not pre-
dict immunogenicity in clinical trials, but analytical techniques also may not 
detect changes that may impact immunogenicity. Therefore, the immunoge-
nicity of a biological product depends heavily upon the product quality attri-
butes such as the physical, structural, and functional properties of the active 
pharmaceutical ingredients; and excipients, container closure, and deliver 
system. It turns out that similarity of the acceptable ranges of these quality 
attributes is crucial to the evaluation of equivalence between biosimilar and 
innovator products.

24.4.4  �Manufacturing Process

Unlike small-molecule drug products, biological products are made of liv-
ing cells. Thus, manufacturing of biologic products is a very complicated 
process, which involves the steps of (1) cell expansion, (2) cell production 
(in bioreactors), (3) recovery (through filtration or centrifugation), (4) puri-
fication (through chromatography), and (5) formulation. A small discrep-
ancy at each step (e.g., purification) could lead to a significant difference in 
the final product, which might cause drastic changes in clinical outcomes. 
Thus, process control and validation play an important role for the success 
of the manufacturing of biological products. In addition, since at each step 
(e.g., purification), different methods may be used for different biological 
manufacturing processes (within the same company or at different biotech 
companies), a test for consistency is necessarily performed. Note that at 
the step of purification, the following chromatography media or resins are 
commonly considered: (1) gel filtration, (2) ion exchange, (3) hydrophobic 
interaction, (4) reversed-phase normal phase, and (5) affinity. Thus, at each 
step of the manufacturing process, primary performance characteristics 
should be identified, controlled, and tested for consistency for process con-
trol and validation.
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24.4.5  �Statistical Considerations

24.4.5.1â•‡� Fundamental Biosimilarity Assumption

Because of the complexity of biosimilar products, unlike chemical generics, 
although EMEA approved Omnitrope and Valtropin• in 2006 and the FDA 
approved Omnitrope also in 2006, both regulatory agencies required clini-
cal equivalence trials. For example, the application documents of Valtropin 
submitted to the EMEA include the following clinical evaluations:

One pivotal bioequivalence study in healthy volunteers (n = 24)
One phase III pivotal clinical equivalence trial for efficacy and safety 

in children with growth hormone deficiency (GHD) (n = 147)
One phase III trial for efficacy and safety in children with Turner’s syn-

drome (TS) (n = 30)
One phase III trial for efficacy and safety in children with TS conducted 

in Korea (n = 60)
One phase III trial for efficacy and safety in adults with GHD (n = 92)

Therefore, substantial clinical information was required by both regu-
latory agencies for the approval of Valtropin as compared to one pivotal 
bioequivalence study and possibly one food interaction study required by 
chemical generics. In fact, the amount of clinical information requested by 
the regulatory agencies is almost equivalent to an NDA or BLA of the inno-
vator biological products. Consequently, reduction of the price of biosimilar 
products is severely limited and affordability and accessibility of the bio-
logical products including biosimilar products to the patients in need is seri-
ously hampered.

However, similar to the chemical generic drug products, approval for 
biosimilar drug products can be treated as the evaluation of post-approval 
changes (ICH, 2005b) and this post-approval change is the change of drug 
manufacturers. Therefore, biosimilar drug products and the corresponding 
innovative biological products appear highly similar. In addition, based on 
the accumulated experience of relevant information and data, minute dif-
ferences observed in the product characteristics are expected to have no 
clinically meaningful adverse effect of safety and efficacy profiles. Under 
this circumstance, biosimilar drug products and innovator products can be 
considered similar. Therefore, except for the traditional pivotal bioequiva-
lence study, no further data from pivotal phase III trials should be requested. 
However, the above statement is based on a crucial assumption that at least 
one of the product characteristics are validated and reliable predictors of 
the safety and efficacy profiles of the biological products. As a result, the 
Fundamental Biosimilarity Assumption is met when a biosimilar product is 
claimed to be biosimilar to an innovator product based on some well-defined 
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product characteristics and is therapeutically equivalent provided that the 
well-defined product characteristics are validated and reliable predictors of 
safety and efficacy of the products.

For the chemical generic products, the well-defined product character-
istics are the exposure measures for early, peak, and total portions of the 
concentration–time curve. The fundamental bioequivalence assumption 
assumes that the equivalence in the exposure measures implies that they 
are therapeutically equivalent. However, due to the complexity of biosimilar 
drug products, one has to verify that some validated product characteristics 
are indeed reliable predictors of the safety and efficacy. It follows that the 
design and analysis for the evaluation of equivalence between a biosimilar 
drug product and innovator products are substantially different from those 
of chemical generic products.

24.4.5.2â•‡� Study Design

Since some of the biological products such as therapeutic antibody or 
pegylated proteins have a long half-life and equivalence in terms of 
absorption/bioavailability may not be sufficient. Demonstration of equiva-
lence on clearance and half-life may be required to assess the risk of differ-
ence in elimination rate. As a result, the traditional crossover designs may not 
be optimal for the evaluation of equivalence between follow-on or biosimilar 
and innovator biological products. On the other hand, if the well-defined and 
validated product characteristics are PK/PD responses, it is then very impor-
tant to investigate the extrapolation ability of equivalence in PK responses 
to equivalence in PD and to equivalence in efficacy responses. In order to 
ensure the internal validity of treatment comparisons, PK, PD, and efficacy 
responses should be evaluated simultaneously in the same trial. We consider 
a design (a) proposed in Figure 24.1.

Design (a) is a two-group parallel design in patients for the PK/PD/
efficacy bridging study with the disease which the innovator biological 
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FIGURE 24.1
Diagram of the PK/PD/efficacy bridging study.
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product indicates. After meeting the inclusion and exclusion criteria, patients 
are randomly divided into two groups. PD/efficacy/safety will be evaluated 
for the first group of patients (validation set). Additional PK responses will 
be assessed for the second group of patients (training set). A randomization 
in a 1:1 ratio will be performed separately for each group. The sample size 
of the second group will be large enough to provide sufficient power for the 
evaluation of bioequivalence based on PK responses. Calibration models will 
be built based on the PK/PD/efficacy response obtained from the patients in 
the training set. The PD/efficacy data from the validation set will be used to 
provide independent assessment of extrapolation ability of equivalence in 
PK responses to equivalence in PD/efficacy responses.

Design (a) may require quite a large sample size because of simultaneous 
evaluation of extrapolation ability of equivalence in PK to equivalence in 
PD and to equivalence in efficacy. One way to resolve this issue is to adopt 
the design for dose–response trials for evaluation of extrapolation ability of 
equivalence in some well-defined product characteristics to equivalence in 
efficacy. This design is referred to as design (b). Design (b) in fact consists 
of two dose–response trials: one for the biosimilar product and one for the 
innovator biological product, each with at least three dose levels with a pla-
cebo group. Eligible patients are first randomized into biosimilar or innova-
tor groups. Within each group, patients are randomized again to receive one 
of the doses for the respective products. Well-defined product characteristics 
and primary efficacy endpoints are evaluated for all patients at their respec-
tive doses. Suppose that a statistically significant relationship represented 
by a simple linear regression equation can be established between the well-
defined product characteristics and the primary efficacy endpoint through 
dose levels for the innovator product, after a suitable transformation. If a 
similar linear relationship can be also obtained for the biosimilar product 
and its corresponding linear regression equation is very close to the one for 
the innovator product, then equivalence in efficacy based on the primary 
efficacy endpoint may be claimed. Because the innovator product has been 
approved by the regulatory agencies due to its confirmed efficacy, the objec-
tive of design (b) is not to establish the efficacy of either biological products 
but to establish the similar patterns of the relationship between the well-
defined product characteristics and primary efficacy endpoint for the two 
products. As a result, the sample size of design (b) can be reduced signifi-
cantly (Figure 24.2).

24.4.5.3â•‡� Alternative Criteria for Biosimilarity

Due to the complexity, heterogeneity, and complication mechanisms of bio-
logical drug products, the difference in variability between biosimilar and 
innovator biological products in PK, PD, and clinical responses will be much 
larger than the difference observed between the conventional generic and 
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innovator chemical drug product. Therefore ABE alone may not be sufficient 
to establish equivalence between the follow-on and innovator biological 
products. On the other hand, because of the masking effect, the aggregate 
metrics for population and IBE fail to address the closeness of the distribu-
tions of the responses between the follow-on and innovator biological prod-
ucts (Liu, 1998; Carrasco and Jover, 2003). Disaggregate metrics can address 
the masking effect suffered by the aggregate metrics and find the sources of 
in-equivalence. However, determination of individual equivalence margins 
with different interpretations is not an easy task. In addition, because of the 
involvement of multiparameters, any procedures based on a disaggregate 
metric for the evaluation of equivalence between follow-on and innovator 
biological products will tend to be conservative, especially in small sam-
ples. Furthermore, all current methods derived from the probability-based, 
moment-based, aggregate or disaggregate criteria are based on the normality 
assumption which is either extremely difficult to verify or simply not true. 
To resolve the above-mentioned dilemmas for evaluation of equivalence, the 
following concept of stochastic equivalence or stochastic non-inferiority is 
proposed.

Let F(x) and G(y) be the cumulative distribution functions of the responses 
for biosimilar and innovator biological products, respectively. Assuming 
that a large response value indicates a better efficacy, the follow-on and inno-
vator biological products are said to be stochastically equivalent (two-sided) 
if the absolute difference between F(x) and G(x) is within some prespecified 
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FIGURE 24.2
Design (b) for the evaluation of extrapolation ability.



The Assessment of Follow-On Biologic Products	 501

margins for all x. In other words, metric θ = sup|F(x) − G(x)| and hypothesis 
for equivalence becomes

	

H F x G x x

H F x G xa

0 : sup ( ) ( )

: sup ( ) ( )

− ≥

− <

η

η

for some 

versus

for all xx. 	

(24.7)

Similarly, the biosimilar product is said to be stochastically non-inferior to 
the innovator counterpart if the difference between F(x) and G(x) is greater 
than −η. The corresponding hypothesis is given as

	

H F x G x x

H F x G xa

0 : sup ( ) ( )

: sup ( ) ( )

− ≤ −

− > −

η

η

for some 

versus

for alll x. 	

(24.8)

However, the hypotheses in (24.7) and (24.8) can only be used for the eval-
uation of equivalence with respect to one study endpoint such as AUC or 
some primary efficacy endpoint. They cannot be utilized to assess whether 
the equivalence in product characteristic such as AUC can be extrapolated 
to the equivalence in primary efficacy endpoint. Both well-defined product 
characteristics and primary efficacy endpoint are measured for each patient. 
Therefore, group means of a well-defined product characteristic can be com-
puted for each dose level for biosimilar and innovator product. Using the 
group means of the well-defined characteristic as the independent variable, 
a simple linear regression equation can be fit to the primary efficacy end-
point (dependent variable) for biosimilar and innovator biological products. 
It follows that the concept of the relative potency in the parallel-line bioassay 
can be then employed to investigate the extrapolation ability of equivalence 
in product characteristic to equivalence in efficacy (Finney, 1979). In other 
words, if the relative potency between the biosimilar and innovator biologi-
cal products is within some predefined margins, then it can be concluded 
that equivalence in the product characteristic can be extrapolated to equiva-
lence in efficacy. Figure 24.3 provides a graphical depiction of the applica-
tion of the parallel-line assay to the evaluation of the extrapolation ability of 
equivalence in product characteristic to equivalence in efficacy. Let ρ be the 
relative potency of the biosimilar product to the innovator biological prod-
uct. The hypothesis of extrapolation ability is given below:

	 H HL U a L U0 : : ,ρ ρ ρ ρ ρ ρ ρ≤ ≥ < < or versus 	 (24.9)

where 0 < ρL < 1 < ρU.
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24.4.5.4â•‡� Statistical Methods

Although the methods based on the Kolmogorov–Simirnov type of statistics 
have been extensively investigated (Serfling, 1980), relatively few literature 
exists on the statistical tests for stochastic equivalence or non-inferiority. 
One method is to employ the naive asymptotic confidence band for θ = 
sup|F(x) − G(x)| as the test statistics for hypotheses (24.7) and (24.8). If the 
(1 − 2α)100% confidence band is totally contained with the band formed by 
the equivalence margins (−η, η), then equivalence between the biosimilar and 
biological products can be concluded at the α significance level. Similarly, 
if the (1 − α)100% lower confidence band is above the lower band formed by 
the lower margin −η, then the non-inferiority of the biosimilar product to the 
innovator biological product can be established at the α significance level. 
Derivation of the test statistics for hypotheses (24.7) and (24.8) at the boundary 
margins of the null hypothesis and the corresponding distribution and 
confidence interval requires further research. However, permutation and 
bootstrap technique can also be used to find the distribution of the test 
statistics and the corresponding confidence intervals empirically.

Because of the nature of design (a) proposed above, it is in fact an active 
control trial without a placebo-controlled arm where the follow-on bio-
logical product is the test treatment and its innovator counterpart is the 
active control treatment. Assuming that the innovator biological product 
was approved due to its superior efficacy over placebo, the equivalence in 
PD/efficacy is in fact the equivalence in relative efficacy as compared to 
the (putative) placebo of the follow-on biological product with the innova-
tor counterpart. On the other hand, the prior information of the compari-
son of the innovator biological product to the placebo can be incorporated 
into the determination of equivalence margins and the evaluation of 
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FIGURE 24.3
Parallel-line assays for the evaluation of extrapolation ability.
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equivalence between the follow-on and innovator biological products. 
The Bayesian design proposed by Simon (1999) may be applied to derive 
the procedures for the assessment of equivalence based on PD/efficacy 
endpoints.

Calibration models have been used to correlate the surrogate responses 
with the true endpoints (Sargent, 2005). Because PK, PD, and efficacy 
responses are random variables, a mixed-models approach was suggested 
to assess surrogates as trial endpoints (Korn et al., 2005). The measurement 
error models can be used to establish calibration models (Cheng and Van 
Ness, 1999). With the established calibration model obtained from the data of 
the training set of design (a),

P Pefpk = (equivalence in efficacy responses|equivalence in PKK responses),

and

P Ppdpk = (equivalence in PD responses|equivalence in PK respoonses)

can be estimated for the evaluation of the extrapolation ability of the PK 
responses using the data from the validation set of design (a). If Pefpk is suf-
ficiently high, then the equivalence in PK responses can be extrapolated to the 
equivalence in efficacy, and no further phase III clinical evaluation of biosimi-
lar product based on efficacy responses may be required. On the other hand, if 
Pefpk is low, then equivalence in PK responses cannot predict the equivalence in 
efficacy responses, and phase III clinical trials for the evaluation of follow-on 
biological products are required. Under design (a), the sample size required 
for the bioequivalence evaluation based on PK responses of the training set 
may be different from the validation set for the assessment of extrapolation. It 
is of interest to compare the sample size required by design (a) with the total 
sample size required for the full clinical evaluation of the biosimilar product.

For design (b), the standard statistical method for the analysis of parallel-
line assays can be used to construct the (1 − 2α)100% confidence interval for 
the relative potency in the following steps:

Step 1: �Fit a linear regression equation to the primary efficacy endpoint with 
the group mean of the product characteristic at each dose level as the 
independent variable separately for the biosimilar and innovator bio-
logical products. This may be done after a suitable transformation.

Step 2: �If the estimate of the slope of any one product is not significant at the 
predefined level, then conclude that no simple relationship can be estab-
lished between the product characteristic and primary endpoint, and 
hence, a full clinical evaluation of the biosimilar product is required. 
Otherwise, go to step 3.
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Step 3: �Test whether the two estimated simple linear regressions are parallel 
at the predefined significance level. If the two estimated linear regres-
sions are not parallel, then further clinical evaluation of the biosimilar 
product is warranted. Otherwise, proceed to step 4.

Step 4: �Compute the estimated relative potency and its corresponding (1 − 2α) 
100% confidence interval. If the (1 − 2α)100% confidence interval for the 
relative potency is within the predefined margins (ρL, ρU), then equiva-
lence in the product characteristic can be extrapolated to equivalence in 
the primary efficacy endpoint at the α significance level.

Otherwise, further clinical investigation of the biosimilar product is needed.
The objective of application of design (b) is not to establish the efficacy 

of the biosimilar product but rather to test whether the relative potency is 
within some predefined limits. Therefore, the required sample size for design 
(b) is determined upon the test for positive slope and equivalence margins. 
Therefore, the sample size required by design (b) may be smaller than that for 
design (a) or for the full clinical evaluation of a biosimilar product. However, 
further theoretical work or simulation studies are needed to address this issue.

24.5â•‡� Assessing Similarity Using Genomic Data

Although factors such as age, gender, education or social-economic status, 
smoking habit, weight, sexual orientation, and underlying disease charac-
teristics at the baseline may contribute to the variation among patients, one 
of the most important reasons is the genetic or genomic variations among 
trial participants. As a result, due to genetic variations and genetic-by-envi-
ronmental interaction, patients respond differently to the same treatment or 
therapeutic regimen. After the completion of the Human Genome Project, 
the disease targets at the molecular level can be identified and hence bio-
chip products based on heritable DNA markers, mutations, and expression 
patterns for the detection of diseases using microarrays technology are pos-
sible. Genomic technologies such as DNA sequencing, mRNA transcript 
profiling, and comparative genomic hybridization have increased the pos-
sibility of identifying those patients who are most likely to benefit from a 
molecularly targeted drug, and this also indicates an increasing importance 
of diagnostic tests for the identification of molecular targets, and an increas-
ing demand of targeted clinical trials conducted for the individualized treat-
ment of patients (Liu and Chow, 2008; Liu and Lin, 2008; Liu, et al., 2009). 
A new generation of molecularly targeted agents has been developed and 
approved by the regulatory agencies such as the FDA and EMEA. Many of 
these drugs benefit only a subset of treated patients and may be overlooked 
by the traditional, broad-eligibility approach to randomized clinical trials. 
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A major portion of targeted drugs are biological products. It follows that the 
evaluation of biosimilar products should take into account genomic infor-
mation. Chow, Shao, and Li (2004) proposed methods for the evaluation of 
bioequivalence using genomic data. Although their methods were derived 
for chemical generics, the same principles can be applied to the evaluation of 
biosimilar products. Similarly, the genomic information can be incorporated 
into the linear regression equations as possible covariates to reduce the vari-
ability for estimation and inference about the relative potency.

Because biological products are peptides or protein products with pri-
mary, secondary, tertiary, and quaternary structures, immunogenicity is 
an extremely important safety issue. On the other hand, unlike chemical 
generic products, no two biological products are exactly the same, even for 
the different batches of any innovator product. It follows that the evaluation 
of immunogenicity of biosimilar products is more important and difficult 
than that of chemical generic products and usually requires large clinical 
trials. However, identification of potential immunodominant positions and 
prediction of antigenic variants may provide a way to evaluate the immuno-
genicity of biosimilar products without extensive clinical immunogenicity 
trials (Lee et al., 2007; Liao et al., 2008). Because the linear sequence of the 
primary structure usually determines the tertiary structure, one can conduct 
pairwise comparisons between the amino acid sequences of the biosimilar 
product with those of the innovator biological product and use the antigenic 
distance as a measure for the evaluation of the similarity of the amino acid 
sequences between the biosimilar and innovator products. If the potential 
antigenic sites of the amino acid sequences are known predictors of antigenic 
variants, this information along with other data can be used for equivalence 
evaluation of the amino acid sequences between the biosimilar and innova-
tor biological products. The cut-off margin based on the antigenic distance 
is 4 as recommended by Lee and Chen (2004). However, a more stringent 
margin could be applied if the potential antigenic sites are known to induce 
serious immunogenicity reactions.

24.6â•‡� Concluding Remarks

Because of the size and complexity of the active ingredients and the nature of 
the manufacturing process, biological products are different from traditional 
chemical drugs with small molecular weights. Many pointed out that no two 
biological products are the same (Schellekens, 2004; Roger and Mikhail, 2007). 
It is also important to know that traditional chemical generics are not exactly 
the same as their corresponding innovator product either. They are differ-
ent in the excipients and their compositions and manufacturing methods 
and processes. In addition, no two batches of the same innovator biological 
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products are the same. This is the reason why ICH issued Q5E Guideline on 
Comparability of Biotechnological/Biological Products Subject to Changes in 
Their Manufacturing Process in 2005 to address the issues of post-approval 
changes. The same principles to evaluate post-approval changes for the inno-
vator biological products can be and should be also applied to assess the 
similarity between the biosimilar and innovator biological products because 
the change is in the manufacture.

Under the authorization of the Drug Price Competition and Patent 
Restoration Act (Hatch-Waxman Act), the FDA started in 1984 to approve 
traditional chemical generic drug products through the ANDA process. 
Although at the beginning of the implementation of the Hatch-Waxman Act 
there were also serious concerns about whether the chemical generic prod-
ucts can deliver equivalent efficacy and safety, experience accumulated over 
the past 25 years indicates that the fundamental bioequivalence assumption 
is a sound basis for the approval of chemical generic products without con-
ducting costly and time-consuming clinical trials. However, for the biologi-
cal products which are much more expensive than the traditional chemical 
drug products, there are no similar legislatures passed by the U.S. Congress.

One of the key scientific issues is to search product characteristics which 
are strongly correlated with efficacy, immunogenicity, and safety so that the 
fundamental biosimilar assumption can be verified. The crucial statistical 
methodology that should be rapidly developed is to evaluate the extrapo-
lation ability from equivalence in product characteristics to equivalence in 
efficacy or immunogenicity. Until the above issues are satisfactorily and ade-
quately addressed, biosimilar products will be still approved on individual 
basis with requirement of clinical data without any possibility of reducing 
price and increasing patient accessibility.

Note that as more innovative biologic products are going off patents, 
there is a need for the establishment of a pathway for regulatory approval 
of follow-on biologics. As a result, the U.S. FDA hosted a Public Hearing 
on Approval Pathway for Biosimilar and Interchangeable Biological Products 
between November 2 and 3, 2010, at Silver Spring, Maryland. At the public 
hearing, some scientific factors regarding the assessment of biosimilarity 
(e.g., criteria, design, and statistical methods), drug interchangeability (e.g., 
the issues of alternating and switching), and quality (e.g., test for compa-
rability in manufacturing process) of follow-on biologics were discussed. 
However, these scientific issues remain unanswered and require further 
research and investigation.
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25
Generalizability/Reproducibility Probability

25.1â•‡ Introduction

For marketing approval of a new drug product, the United States Food and 
Drug Administration (FDA) requires that at least two adequate and well-con-
trolled clinical trials be conducted to provide substantial evidence regard-
ing the effectiveness of the drug product under investigation (FDA, 1988). 
The purpose of conducting the second trial is to study whether the observed 
clinical result from the first trial is reproducible on the same target patient 
population. Let H0 be the null hypothesis that the mean response of the drug 
product is the same as the mean response of a control (e.g., placebo) and Ha 
be the alternative hypothesis. An observed result from a clinical trial is said 
to be significant if it leads to the rejection of H0. It is often of interest to deter-
mine whether clinical trials that produced significant clinical results provide 
substantial evidence to assure that the results will be reproducible in a future 
clinical trial with the same study protocol. Under certain circumstance, the 
FDA Modernization Act (FDAMA) of 1997 includes a provision (Section 115 
of FDAMA) to allow data from one adequate and well-controlled clinical trial 
investigation and confirmatory evidence to establish the effectiveness for 
the risk–benefit assessment of drug and biological candidates for approval. 
Suppose that the null hypothesis H0 is rejected if and only if |T| > c, where 
c is a positive known constant and T is a test statistic. This is usually related 
to a two-sided alternative hypothesis. The discussion for one-sided alterna-
tive hypotheses is similar. In statistical theory, the probability of observing a 
significant clinical result when Ha is indeed true is referred to as the power 
of the test procedure. If the statistical model under Ha is a parametric model, 
then the power is

	 P T c H P T ca( | ) ( | ),> = > θ 	 (25.1)

where θ is an unknown parameter or vector of parameters. Suppose now that 
one clinical trial has been conducted and the result is significant. What is the 
probability that the second trial will produce a significant result, that is, the 
significant result from the first trial is reproducible? Mathematically, if the two 
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trials are independent, the probability of observing a significant result from 
the second trial when Ha is true is still given by (25.1), regardless of whether the 
result from the first trial is significant or not. However, information from 
the first clinical trial should be useful in the evaluation of the probability of 
observing a significant result in the second trial. This leads to the concept of 
reproducibility probability, which is different from the power defined by (25.1).

In general, the reproducibility probability is a person’s subjective probabil-
ity of observing a significant clinical result from a future trial, when he/she 
observes significant results from one or several previous trials. For example, 
Goodman (1992) considered the reproducibility probability as the probability 
in (25.1) with θ replaced by its estimate based on the data from the previous 
trial(s). In other words, the reproducibility probability can be defined as an 
estimated power of the future trial using the data from the previous trial(s). 
In Section 25.2, we will study how to evaluate the reproducibility probability 
using this approach, under several study designs. When the reproducibility 
probability is used to provide an evidence of the effectiveness of a drug prod-
uct, the estimated power approach may produce a rather optimistic result. A 
more conservative approach is to define the reproducibility probability as a 
lower confidence bound of the power of the second trial. This will be studied 
in Section 25.3. Perhaps a more sensible definition of reproducibility prob-
ability can be obtained by using the Bayesian approach. Under the Bayesian 
approach, the unknown parameter θ is a random vector with a prior distri-
bution π(θ) assumed to be known. Thus, the reproducibility probability can 
be defined as the conditional probability of |T|â•›> c in the future trial, given 
the data set x observed from the previous trial(s), that is,

	
P T c x P T c x d( | ) ( | ) ( | ) ,> = >∫ θ π θ θ 	 (25.2)

where
T = T(y) is based on the data set y from the future trial,
π(θ|x) is the posterior density of θ, given x.

More discussion about this Bayesian approach will be given in Section 25.4. 
In applications, the reproducibility probability is useful when the clinical tri-
als are conducted sequentially. It provides important information for regula-
tory agencies in deciding whether it is necessary to require a second clinical 
trial when the result from the first clinical trial is strongly significant (Section 
25.5). On the other hand, if the second trial is necessary, the reproducibility 
probability can be used for sample size adjustment of the second trial.

In the pharmaceutical industry, the sponsors are often interested in eval-
uating their drug products from one patient population (e.g., adult patient 
population) to another patient population (e.g., elderly patient population) to 
increase the exclusivity of the drug products in the marketplace. However, 
it is a concern whether the clinical results can be generalized from the tar-
get patient population to a similar but different patient population due to 
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differences in demographic or ethnic factors. In Section 25.5 we show how to 
use the reproducibility probability to study the generalizability of the clinical 
results from one patient population to a similar but different patient popula-
tion. Some concluding remarks are given in the last section.

25.2â•‡ The Estimated Power Approach

To study the reproducibility probability, we need to specify the test proce-
dure, that is, the form of the test statistic T. We will consider several different 
study designs.

25.2.1  Two Samples with Equal Variances

Suppose that a total of n = n1 + n2 patients are randomly assigned to two 
groups, a treatment group and a control group. In the treatment group, 
n1 patients receive the treatment (or a test drug) and produce responses 
x x n11 1 1

,…, . In the control group, n2 patients receive the placebo (or a refer-
ence drug) and produce responses x x n21 2 2,…, . This design is a typical two-
group parallel design in clinical trials. We assume that xij’s are independent 
and normally distributed with means μi, i = 1,â•›2, and a common variance σ2. 
Suppose that the hypotheses of interest are

	 H Ha0 1 2 1 20 0: : .μ μ μ μ− = − ≠versus 	 (25.3)

The discussion for a one-sided Ha is similar.
Consider the commonly used two-sample t-test which rejects H0 if and 

only if |T| > t0.975,n−2, where t0.975,n−2 is the 97.5th percentile of the t distribution 
with nâ•›−â•›2 degrees of freedom

	

T
x x

n s n s n n n
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− + − −( ) +

1 2
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2

2 2
2

1 21 1 2 1 1(( ) ( ) ) ( ) ( )/ / /
	 (25.4)

and x−i and si
2 are, respectively, the sample mean and variance based on the 

data from the ith treatment group. The power of T for the second trial is then 
given by

	 p P T y t t tn n n n( ) ( ( ) ) ( | ) (. , . , . ,θ θ= > = − ℑ + ℑ −− − − −0 975 2 2 0 975 2 2 0 9751 nn−2| )θ 	 (25.5)

where

	
θ

μ μ

σ
=

−

+
1 2

1 21 1( )/ /n n
	 (25.6)

and ℑn−2(•|θ) denotes the distribution function of the noncentral t distribu-
tion with n − 2 degrees of freedom and the noncentrality parameter θ. Note 
that p(θ) = p(|θ|).
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Values of p(θ) as a function of |θ| are provided in Table 25.1. Using the idea 
of replacing θ by its estimate T(x) (Goodman, 1992), where T is defined by 
(25.4), we obtain the following reproducibility probability:

	
ˆ ( | ( )) ( | ( )),. , . ,P t T x t T xn n n n= − ℑ + ℑ −− − − −1 2 0 975 2 2 0 975 2 	 (25.7)

TABLE 25.1

Values of the Power Function p(θ) in (25.5)

|𝛉|

Total Sample Size

10 20 30 40 50 60 100 ∞

1.96 0.407 0.458 0.473 0.480 0.484 0.487 0.492 0.500
2.02 0.429 0.481 0.496 0.504 0.508 0.511 0.516 0.524
2.08 0.448 0.503 0.519 0.527 0.531 0.534 0.540 0.548
2.14 0.469 0.526 0.542 0.550 0.555 0.557 0.563 0.571
2.20 0.490 0.549 0.565 0.573 0.578 0.581 0.586 0.594
2.26 0.511 0.571 0.588 0.596 0.601 0.604 0.609 0.618
2.32 0.532 0.593 0.610 0.618 0.623 0.626 0.632 0.640
2.38 0.552 0.615 0.632 0.640 0.645 0.648 0.654 0.662
2.44 0.573 0.636 0.654 0.662 0.667 0.670 0.676 0.684
2.50 0.593 0.657 0.675 0.683 0.688 0.691 0.697 0.705
2.56 0.613 0.678 0.695 0.704 0.708 0.711 0.717 0.725
2.62 0.632 0.698 0.715 0.724 0.728 0.731 0.737 0.745
2.68 0.652 0.717 0.735 0.743 0.747 0.750 0.756 0.764
2.74 0.671 0.736 0.753 0.761 0.766 0.769 0.774 0.782
2.80 0.690 0.754 0.771 0.779 0.783 0.786 0.792 0.799
2.86 0.708 0.772 0.788 0.796 0.800 0.803 0.808 0.815
2.92 0.725 0.789 0.805 0.812 0.816 0.819 0.824 0.830
2.98 0.742 0.805 0.820 0.827 0.831 0.834 0.839 0.845
3.04 0.759 0.820 0.835 0.842 0.846 0.848 0.853 0.860
3.10 0.775 0.834 0.849 0.856 0.859 0.862 0.866 0.872
3.16 0.790 0.848 0.862 0.868 0.872 0.874 0.879 0.884
3.22 0.805 0.861 0.874 0.881 0.884 0.886 0.890 0.895
3.28 0.819 0.873 0.886 0.892 0.895 0.897 0.901 0.906
3.34 0.832 0.884 0.897 0.902 0.905 0.907 0.911 0.916
3.40 0.844 0.895 0.907 0.912 0.915 0.917 0.920 0.925
3.46 0.856 0.905 0.916 0.921 0.924 0.925 0.929 0.932
3.52 0.868 0.914 0.925 0.929 0.932 0.933 0.936 0.940
3.58 0.879 0.923 0.933 0.937 0.939 0.941 0.943 0.947
3.64 0.889 0.931 0.940 0.944 0.946 0.947 0.950 0.953
3.70 0.898 0.938 0.946 0.950 0.952 0.953 0.956 0.959
3.76 0.907 0.944 0.952 0.956 0.958 0.959 0.961 0.965
3.82 0.915 0.950 0.958 0.961 0.963 0.964 0.966 0.969
3.88 0.923 0.956 0.963 0.966 0.967 0.968 0.970 0.973
3.94 0.930 0.961 0.967 0.970 0.971 0.972 0.974 0.977

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 1727, 2002. With permission.
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which is a function of |T(x)|. When |T(x)|â•›> t0.975,n−2,
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If ℑn−2 is replaced by the normal distribution and t0.975,n−2 is replaced by the 
normal percentile, then formula (25.8) is the same as that given by Goodman 
(1992), who studied the case where the variance σ2 is known. Table 25.1 can 
be used to find the reproducibility probability P̂ in (25.7) with a fixed sample 
size n. For example, if T(x) = 2.9 was observed in a clinical trial with n = n1 + 
n2 = 40, then the reproducibility probability is 0.807. If T(x) = 2.9 was observed 
in a clinical trial with n = 36, then an extrapolation of the results in Table 25.1 
(for n = 30 and 40) leads to a reproducibility probability of 0.803.

25.2.2  Two Samples with Unequal Variances

Consider the problem of testing hypotheses (25.3) under the two-group 
parallel design without the assumption of equal variances. That is, xij’s are 
independently distributed as N ii i( , ), ,μ σ2 1 2= . When σ σ1

2
2
2≠ , there exists no 

exact testing procedure for the hypotheses in (25.3). When both n1 and n2 are 
large, an approximate 5% level test rejects H0 when |T| > z0.975, where
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x x

s n s n
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1 2
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1 2
2
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Since T is approximately distributed as N(θ,â•›1) with

	
θ

μ μ

σ σ
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+
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	 (25.10)

the reproducibility probability obtained by using the estimated power 
approach is given by

	
ˆ ( ( ) ) ( ( ) ).. .P T x z T x z= − + − −Φ Φ0 975 0 975 	 (25.11)

When the variances under different treatments are different and the Â�sample 
sizes are not large, a different study design, such as a matched-pair Â�parallel 
design or a 2 × 2 crossover design, is recommended. A Â� matched-pair 
Â�parallel design involves m pairs of matched patients. One patient in each 
pair is assigned to the treatment group and the other is assigned to the con-
trol group. Let xij be the observation from the jth pair and the ith group. 
It is assumed that the differences x1j − x2j, j = 1,â•›…,â•›m, are independent and 
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identically distributed as N D( , )μ μ σ1 2
2− . Then the null hypothesis H0 is 

rejected at the 5% level of significance if |T| > t0.975,m−1, where

	
T

m x x

D
=

−( )1 2
2σ̂

	 (25.12)

and σ̂D
2  is the sample variance based on the differences x1j − x2j, j = 1,â•›…,â•›m. 

Note that T has the noncentral t distribution with m − 1 degrees of freedom 
and the noncentrality parameter

	
θ

μ μ
σ

=
−m

D

( )
.1 2

2 	 (25.13)

Consequently, the reproducibility probability obtained by using the esti-
mated power approach is given by (25.7) with T defined by (25.12) and n − 2 
replaced by m − 1.

Suppose that the study design is a 2 × 2 crossover design in which n1 
patients receive the treatment in the first period and the placebo in the sec-
ond period and n2 patients receive the placebo in the first period and the 
treatment in the second period. Let xlij be the normally distributed observa-
tion from the jth patient at the ith period and lth sequence. Then the treat-
ment effect μD can be unbiasedly estimated by

	

ˆ , ,μ μ
σ

D D
Dx x x x
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n n
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where x−li is the sample mean based on xlij, j = 1,â•›…,â•›nl and σD l j l jx x2
1 2= −var( ). 

An unbiased estimator of σD
2  is
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which is independent of �̂D and distributed as σD n n2
1 2 2/( )+ −  times the 

chi-square distribution with n1 + n2 − 2 degrees of freedom. Thus, the null 
hypothesis H0 : μD = 0 is rejected at the 5% level of significance if |T| > t0.975,n−2, 
where n = n1 + n2 and

	
T

n n
D

D

=
+
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σ / / /2 1 11 2
	 (25.14)
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Note that T has the noncentral t distribution with n − 2 degrees of freedom 
and the noncentrality parameter

	
θ

μ

σ
=

+
D

D n n( ) ( )
.

/ / /2 1 11 2
	 (25.15)

Consequently, the reproducibility probability obtained by using the esti-
mated power approach is given by (25.7) with T defined by (25.14).

25.2.3  Parallel-Group Designs

Parallel-group designs are often adopted in clinical trials to compare more 
than one treatment with a placebo control or to compare one treatment, one 
placebo control, and one active control. Let a ≥ 3 be the number of groups 
and xij be the observation from the jth patient in the ith group, j = 1,â•›…,â•›ni, 
i = 1,â•›…,â•›a. Assume that xij’s are independently distributed as N(μi,â•›σ2). The null 
hypothesis H0 is then H0 : μ1 = μ2 = … = μa, which is rejected at the 5% level 
of significance if T > F0.95;a−1,n−a, where F0.95;a−1,n−a is the 95th percentile of the 
F distribution with a − 1 and n − a degrees of freedom, n = n1 + n2 + … + na:
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a
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and
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where
x−i is the sample mean based on the data in the ith group,
x− is the overall sample mean.

Note that T has the noncentral F distribution with a − 1 and n − a degrees 
of freedom and the noncentrality parameter

	
θ

μ μ
σ

=
−

=
∑ ni i

i

a
( )

,
2

2
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where μ μ=
=∑ n ni i

i

a
/

1
. Let ℑα−1,v−α(•|θ) be the distribution function of T. 

Then, the power of the second clinical trial is

	 P T y F Fa n a a n a a n a( ( ) ) ( | ).. ; , , . ; ,> = − ℑ− − − − − −0 95 1 1 0 95 11 θ 	
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Thus, the reproducibility probability obtained by using the estimated power 
approach is

	
ˆ ( | ( )),, . ; ,P F T xa n a a n a= − ℑ − − − −1 1 0 95 1 	 (25.17)

where T(x) is the observed T based on the data x from the first clinical trial.

25.3â•‡ The Confidence Bound Approach

Since P̂ in (25.7) or (25.11) is an estimated power, it provides a rather opti-
mistic result. Alternatively, we may consider a more conservative approach, 
which considers a 95% lower confidence bound of the power as the reproduc-
ibility probability. Consider first the case of the two-group parallel design 
with a common unknown variance σ2. Note that T(x) defined by (25.4) has the 
noncentral t distribution with n − 2 degrees of freedom and the noncentrality 
parameter θ given by (25.6). Let ℑn−2(•|θ) be the distribution function of T(x) 
for any given θ. It can be shown that ℑn−2(t|θ) is a strictly decreasing function 
of θ for any fixed t. Consequently, a 95% confidence interval for θ is given by
( , ),θ θˆ ˆ

− +  where θ̂− is the unique solution of ℑn−2(T(x)|θ) = 0.975 and θ̂+ is the 
unique solution of ℑn−2(T(x)|θ) = 0.025 (see, e.g., Theorem 7.1 in Shao, 1999). 
Then, a 95% lower confidence bound for |θ| is
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	 (25.18)

and a 95% lower confidence bound for the power p(θ) in (25.5) is

	
ˆ ( ||ˆ| ) ( ||ˆ| ). , . ,P t tn n n n− − − − − − −= − ℑ + ℑ −1 2 0 975 2 2 0 975 2θ θ 	 (25.19)

if | |θ̂ − > 0 and P̂− = 0 if | |θ̂ − = 0. The lower confidence bound in (25.19) is useful 
when the clinical result from the first trial is highly significant.

Table 25.2 contains values of the lower confidence bound | |θ̂ − correspond-
ing to |T(x)| values ranging from 4.5 to 6.5. If 4.5 ≤ |T(x)|≤ 6.5 and the value 
of | |θ̂ − is found from Table 25.2, the reproducibility probability P̂− in (25.19) 
can be obtained from Table 25.1. For example, suppose thatâ•›|T(x)|â•›= 5 was 
observed from a clinical trial with n = 30. From Table 25.2, | | .θ̂ − = 2 6. Then, 
by Table 25.1, P̂− = 0.709.
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Consider next the two-group parallel design with unequal variances σ1
2 

and σ2
2. When both n1 and n2 are large, T given by (25.9) is approximately 

distributed as N(θ,â•›1) with θ given by (25.10). Hence, the reproducibility prob-
ability obtained by using the lower confidence bound approach is given by

	
ˆ ( ( ) ).P T x z− = −Φ 2 0 975 	

with T defined by (25.9).
For the matched-pair parallel design described in Section 25.2, T given by 

(25.12) has the noncentral t distribution with m − 1 degrees of freedom and 
the noncentrality parameter θ given by (25.13). Hence, the reproducibility 
probability obtained by using the lower confidence bound approach is given 
by (25.19) with T defined by (25.12) and n − 2 replaced by m − 1. Suppose 
now that the study design is the 2 × 2 crossover design described in Section 
25.2. Since T defined by (25.14) has the noncentral t distribution with n − 2 
degrees of freedom and the noncentrality parameter θ given by (25.15), the 

TABLE 25.2

95% Lower Confidence Bound | |θ̂ −

|T(x)|

Total Sample Size

10 20 30 40 50 60 100 ∞

4.5 1.51 2.01 2.18 2.26 2.32 2.35 2.42 2.54
4.6 1.57 2.09 2.26 2.35 2.41 2.44 2.52 2.64
4.7 1.64 2.17 2.35 2.44 2.50 2.54 2.61 2.74
4.8 1.70 2.25 2.43 2.53 2.59 2.63 2.71 2.84
4.9 1.76 2.33 2.52 2.62 2.68 2.72 2.80 2.94
5.0 1.83 2.41 2.60 2.71 2.77 2.81 2.90 3.04
5.1 1.89 2.48 2.69 2.80 2.86 2.91 2.99 3.14
5.2 1.95 2.56 2.77 2.88 2.95 3.00 3.09 3.24
5.3 2.02 2.64 2.86 2.97 3.04 3.09 3.18 3.34
5.4 2.08 2.72 2.95 3.06 3.13 3.18 3.28 3.44
5.5 2.14 2.80 3.03 3.15 3.22 3.27 3.37 3.54
5.6 2.20 2.88 3.11 3.24 3.31 3.36 3.47 3.64
5.7 2.26 2.95 3.20 3.32 3.40 3.45 3.56 3.74
5.8 2.32 3.03 3.28 3.41 3.49 3.55 3.66 3.84
5.9 2.39 3.11 3.37 3.50 3.58 3.64 3.75 3.94
6.0 2.45 3.19 3.45 3.59 3.67 3.73 3.85 4.04
6.1 2.51 3.26 3.53 3.67 3.76 3.82 3.94 4.14
6.2 2.57 3.34 3.62 3.76 3.85 3.91 4.03 4.24
6.3 2.63 3.42 3.70 3.85 3.94 4.00 4.13 4.34
6.4 2.69 3.49 3.78 3.93 4.03 4.09 4.22 4.44
6.5 2.75 3.57 3.86 4.02 4.12 4.18 4.32 4.54

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 1727, 2002. With 
permission.
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reproducibility probability obtained by using the lower confidence bound 
approach is given by (25.19) with T defined by (25.14).

Finally, consider the parallel-group design described in Section 25.2.3. 
Since T in (25.16) has the noncentral F distribution with a − 1 and n − a degrees 
of freedom and the noncentrality parameter θ given by (25.17) and ℑa−1,n−a(t|θ) 
is a strictly decreasing function of θ, the reproducibility probability obtained 
by using the lower confidence bound approach is

	
ˆ ( |ˆ ),, . ; ,P Fa n a a n a− − − − − −= − ℑ1 1 0 95 1 θ 	

where θ̂− is the solution of ℑa−1,n−a(T(x)|θ) = 0.95.

25.4â•‡ The Bayesian Approach

As discussed in Section 25.1, the reproducibility probability can be viewed 
as  the posterior mean (see, e.g., Berger, 1985) of the power function p(θ) = 
P(|T|â•›> c|θ) for the future trial. Thus, under the Bayesian approach, it is 
essential to construct the posterior density π(θ|x) in formula (25.2), given the 
data set x observed from the previous trial(s).

Consider first the two-group parallel design described in Section 25.2.1 
with equal variances, that is, xij’s are independent and normally distrib-
uted with means μ1 and μ2 and a common variance σ2. If σ2 is known, then 
the power for testing the hypotheses in (25.3) is Φ(θ − z0.975) + Φ(−θ − z0.975) 
with θ defined by (25.6). A commonly used prior for (μ1,â•›μ2) is the non-
informative prior π(μ1,â•›μ2) ≡ 1. Consequently, the posterior density for θ is 
N(T(x),â•›1), where
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+
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and the posterior mean given by (25.2) is
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When T(x) > z0.975, this probability is nearly the same as
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which is exactly the same as that in formula (1) in Goodman (1992).
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For the more realistic situation where σ2 is unknown, we need a prior for 
σ2. A commonly used non-informative prior for σ2 is the Lebesgue (improper) 
density π(σ2) = σ−2. Assume that the priors for μ1, μ2, and σ2 are independent. 
The posterior density for (δ,â•›u2) is π(δ|u2,â•›x)π(u2|x), where
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where
ϕ is the density function of the standard normal distribution
T is given by (25.4), and π(u2|x) = f(u) with
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Since θ in (25.6) is equal to δ/u, the posterior mean of p(θ) in (25.5) is
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which is the reproducibility probability under the Bayesian approach. It is 
clear that P̂ depends on the data x through the function T(x).

The probability P̂ in (25.20) can be evaluated numerically. A Monte Carlo 
method can be applied as follows. First, generate a random variate γj from the 
gamma distribution with the shape parameter (n − 2)/2 and the scale parame-
ter 2/(n − 2), and generate a random variate δj from N T x uj( ( ), )2 , where uj j

2 1= −γ . 
Repeat this process independently N times to obtain ( , ), .δ j ju j N2 1= ,…,  
Then P̂ in (25.20) can be approximated by
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Values of P̂N for N = 10,000 and some selected values of T(x) and n are given 
by Table 25.3. It can be seen that in assessing reproducibility, the Bayesian 



518	 Controversial Statistical Issues in Clinical Trials

TABLE 25.3

Reproducibility Probability under the Bayesian Approach 
Approximated by Monte Carlo with Size 10,000

|T(x)|

Total Sample Size

10 20 30 40 50 60 100 ∞

2.02 0.435 0.482 0.495 0.501 0.504 0.508 0.517 0.519
2.08 0.447 0.496 0.512 0.515 0.519 0.523 0.532 0.536
2.14 0.466 0.509 0.528 0.530 0.535 0.543 0.549 0.553
2.20 0.478 0.529 0.540 0.547 0.553 0.556 0.565 0.569
2.26 0.487 0.547 0.560 0.564 0.567 0.571 0.577 0.585
2.32 0.505 0.558 0.577 0.580 0.581 0.587 0.590 0.602
2.38 0.519 0.576 0.590 0.597 0.603 0.604 0.610 0.618
2.44 0.530 0.585 0.610 0.611 0.613 0.617 0.627 0.634
2.50 0.546 0.609 0.624 0.631 0.634 0.636 0.640 0.650
2.56 0.556 0.618 0.638 0.647 0.648 0.650 0.658 0.665
2.62 0.575 0.632 0.654 0.655 0.657 0.664 0.675 0.680
2.68 0.591 0.647 0.665 0.674 0.675 0.677 0.687 0.695
2.74 0.600 0.660 0.679 0.685 0.686 0.694 0.703 0.710
2.80 0.608 0.675 0.690 0.702 0.705 0.712 0.714 0.724
2.86 0.629 0.691 0.706 0.716 0.722 0.723 0.729 0.738
2.92 0.636 0.702 0.718 0.730 0.733 0.738 0.742 0.752
2.98 0.649 0.716 0.735 0.742 0.744 0.748 0.756 0.765
3.04 0.663 0.726 0.745 0.753 0.756 0.759 0.765 0.778
3.10 0.679 0.738 0.754 0.766 0.771 0.776 0.779 0.790
3.16 0.690 0.754 0.767 0.776 0.781 0.786 0.792 0.802
3.22 0.701 0.762 0.777 0.790 0.792 0.794 0.804 0.814
3.28 0.708 0.773 0.793 0.804 0.806 0.809 0.820 0.825
3.34 0.715 0.784 0.803 0.809 0.812 0.818 0.828 0.836
3.40 0.729 0.793 0.815 0.819 0.829 0.830 0.838 0.846
3.46 0.736 0.806 0.826 0.832 0.837 0.839 0.847 0.856
3.52 0.745 0.816 0.834 0.843 0.845 0.846 0.855 0.865
3.58 0.755 0.828 0.841 0.849 0.857 0.859 0.867 0.874
3.64 0.771 0.833 0.854 0.859 0.863 0.865 0.872 0.883
3.70 0.778 0.839 0.861 0.867 0.870 0.874 0.884 0.891
3.76 0.785 0.847 0.867 0.874 0.882 0.883 0.890 0.898
3.82 0.795 0.857 0.878 0.883 0.889 0.891 0.898 0.906
3.88 0.800 0.869 0.881 0.891 0.896 0.899 0.904 0.913
3.94 0.806 0.873 0.890 0.897 0.904 0.907 0.910 0.919

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 1727, 2002. With permission.
Note:	 Prior for (μ1, μ2, σ2) = σ−2 with respect to the Lebesgue measure.
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approach is more conservative than the estimated power approach, but less 
conservative than the confidence bound approach.

Consider next the two-group parallel design with unequal variance and 
large ni’s. The approximate power for the second trial is

	 p z z( ) ( ) ( ),. .θ θ θ= − + − −Φ Φ0 975 0 975 	
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ter (niâ•›−â•›1)/2 and the scale parameter 2 1 1 22/[( ) ], ,n s ii i− = . Consequently, 
the reproducibility probability is the posterior mean of p(θ) given by
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where π(ς|x) is the posterior density of ς constructed using π τ( | ), , .i x i2 1 2=  
The Monte Carlo method previously discussed can be applied to approxi-
mate P̂. Reproducibility probabilities under the Bayesian approach can be 
similarly obtained for the matched-pairs parallel design and the 2 × 2 cross-
over design described in Section 25.2.

Finally, consider the parallel-group design with a groups, where the power 
is given by

	 p Fa n a a n a( ) ( | ), . ; ,θ θ= − ℑ − − − −1 1 0 95 1 	

with θ given by (25.17). Under the non-informative prior

	 π μ μ σ σ σ( , ) ,1
2 2 2 0,…, a = >−

	

the posterior density π(θ|τ2,â•›x), where τ2 = SSE/[(n − a)σ2], is the density 
of the noncentral chi-square distribution with a − 1 degrees of freedom 
and the noncentrality parameter τ2(a − 1)T(x). The posterior density π(τ2|x) 
is the gamma distribution with the shape parameter (n − a)/2 and the scale 
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parameter 2/(n − a). Consequently, the reproducibility probability under the 
Bayesian approach is
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The reproducibility probability based on the Bayesian approach depends 
on the choice of the prior distributions. The non-informative prior we chose 
produces a more conservative reproducibility probability than that obtained 
using the estimated power approach, but is less conservative than that under 
the confidence bound approach. If a different prior such as an informative 
prior is used, a sensitivity analysis may be performed to evaluate the effects 
of different priors on the reproducibility probability.

25.5â•‡ Applications

In this section we discuss some applications of the results obtained in 
Sections 25.2 through 25.4.

25.5.1  Substantial Evidence with a Single Trial

An important application of the results derived in the previous sections is 
to address the following question: is it necessary to conduct a second clini-
cal trial when the first trial produces a relatively strong significant clini-
cal result (e.g., a relatively small p-value is observed), assuming that other 
factors (such as consistent results between centers, discrepancies related to 
gender, race, and other factors, and safety issues) have been carefully con-
sidered? As mentioned earlier, the FDA Modernization Act of 1997 includes 
a provision (Section 115 of FDAMA) to allow data from one adequate and 
well-controlled clinical trial investigation and confirmatory evidence to 
establish effectiveness for risk–benefit assessment of drug and biological 
candidates for approval. This provision essentially codified an FDA policy 
that had existed for several years but whose application had been limited 
to some biological products approved by the Center for Biologic Evaluation 
and Research of the FDA and a few pharmaceuticals, especially orphan 
drugs such as zidovudine and lamotrigine. A relatively strong significant 
result observed from a single clinical trial (say, p-value is less than 0.001) 
would have about 90% chance of reproducing the result in future clinical 
trials. Consequently, a single clinical trial is sufficient to provide substantial 
evidence for demonstration of efficacy and safety of the medication under 
study. In 1998, the FDA published a guidance which shed the light on this 
approach despite the fact that the FDA has recognized that advances in sci-
ences and practice of drug development may permit an expanded role for 
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the single controlled trial in contemporary clinical development (FDA, 1988). 
Suppose it is agreed that the second trial is not needed if the probability 
for reproducing a significant clinical result in the second trial is equal to or 
higher than 90%. If a significant clinical result is observed in the first trial 
and the confidence bound P̂− derived in Section 25.3 is equal to or higher 
than 90%, then we have 95% statistical assurance that, with a probability 
of at least 90%, the significant result is reproducible in the second trial. For 
example, under the two-group parallel design with a common unknown 
variance and n = 40, the 95% lower confidence bound P̂− given by (25.19) is 
equal to or higher than 90% if and only if |T(x)|≥ 5.7, that is, the clinical result 
in the first trial is highly significant. Alternatively, if the Bayesian approach 
is applied to the same situation, the reproducibility probability in (25.20) is 
equal to or higher than 90% if and only if |T(x)|≥ 3.96.

25.5.2  Sample Size Adjustments

When the reproducibility probability based on the result from the first trial 
is not higher than a desired level, the second trial must be conducted. The 
results on the reproducibility probability derived in Sections 25.2 through 
25.4 can be used to adjust the sample size for the second trial. If the sample 
size for the first trial was determined based on a power analysis with some 
initial guessing values of the unknown parameters, then it is reasonable 
to make a sample size adjustment for the second trial based on the results 
from the first trial. If the reproducibility probability is lower than a desired 
power level of the second trial, then the sample size should be increased. On 
the other hand, if the reproducibility probability is higher than the desired 
power level of the second trial, then the sample size may be decreased to 
reduce costs. In the following we illustrate the idea using the two-group par-
allel design with a common unknown variance.

Suppose that P̂ in (25.7) is used as the reproducibility prob-
ability when T(x) given by (25.4) is observed from the first trial. Let 
ˆ [( ) ( ) ]/( )σ2

1 1
2

2 2
21 1 2= − + − −n s n s n . For simplicity, consider the case where the 

same sample size n*/2 is used for two treatment groups in the second trial, 
where n* is the total sample size in the second trial. With fixed x−i and σ̂2 but 
a new sample size n*, the T-statistic becomes
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and the reproducibility probability is P̂ with T replaced by T*. By letting T* 
be the value to achieve a desired power, the new sample size n* should be
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For example, if the desired reproducibility probability is 80%, then T* needs 
to be 2.91 (Table 25.1). If T = 2.58 is observed in the first trial with n = 30 (n1 = 
n2  = 15), then n* ≈ 1.27n ≈ 38 according to (25.22), that is, the sample size 
should be increased by about 27%. On the other hand, if T = 3.30 is observed 
in the first trial with n = 30 (n1 = n2 = 15), then n* ≈ 0.78n ≈ 24, that is, the 
sample size can be reduced by about 22%.

25.5.3  Generalizability between Patient Populations

In clinical development, after the investigational drug product has been 
shown to be effective and safe with respect to a target patient population 
(e.g., adults), it is often of interest to study a similar but different patient 
population (e.g., elderly patients with the same disease under study or a 
patient population with different ethnic factors) to see how likely the clinical 
result is reproducible in the different population. This information is useful 
in regulatory submission for supplement new drug application (e.g., when 
generalizing the clinical results from adults to elderly patients) and regula-
tory evaluation for bridging studies (e.g., when generalizing clinical results 
from Gaussian to Asian patient population). Detailed information regarding 
bridging studies can be found in ICH (1997). For this purpose, we propose to 
consider the generalizability probability, which is the reproducibility prob-
ability with the population of a future trial slightly deviated from the popu-
lation of the previous trial(s).

We consider a parallel-group design for two treatments with population 
means μ1 and μ2 and an equal variance σ2. Other designs can be similarly 
treated. Suppose that in the future trial, the population mean difference is 
changed to μ1 − μ2 + ε and the population variance is changed to C2σ2, where 
C > 0. The signal-to-noise ratio for the population difference in the previous 
trial is |μ1 − μ2|/σ, whereas the signal-to-noise ratio for the population dif-
ference in the future trial is

	

μ μ ε

σ

μ μ

σ
1 2 1 2− +

=
−

C
Δ( )

,
	

where

	
Δ =

+ −1 1 2ε μ μ/( )
C

	 (25.23)

is a measure of change in the signal-to-noise ratio for the population differ-
ence. For most practical problems, |ε| < |μ1 − μ2| and, thus, Δ > 0. Table 25.4 
gives an example on the effects of changes of ε and C on Δ.
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If the power for the previous trial is p(θ), then the power for the future 
trial is p(Δθ). Suppose that Δ is known. Under the frequentist approach, the 
Â�generalizability probability is P̂Δ, which is P̂ given by (25.7) with T(x) replaced 
by ΔT(x), or P̂Δ−, which is P̂− given by (25.19) with |θ|− replaced by Δ|θ|−. Under 
the Bayesian approach, the generalizability probability is P̂Δ, which is P̂ given 
by (25.20) with p(δ|u) replaced by p(Δδ|u). When the value of Δ is unknown, 
we may consider a set of Δ-values to carry out a sensitivity analysis. An 
example is given as follows.

A double-blind randomized trial was conducted in patients with schizo-
phrenia for comparing the efficacy of a test drug with a standard therapy. 
A  total of 104 chronic schizophrenic patients participated in this study. 
Patients were randomly assigned to receive the treatment of the test drug 

TABLE 25.4

Effects of Changes in Mean and Standard 
Deviation (ε and C) on Δ in (25.23)

e m -m/( )1 2 C Range of 𝚫

<5% 0.8 1.188–1.313
0.9 1.056–1.167
1.0 0.950–1.050
1.1 0.864–0.955
1.2 0.792–0.875
1.3 0.731–0.808
1.4 0.679–0.750
1.5 0.633–0.700

≥5% but <10% 0.8 1.125–1.375
0.9 1.000–1.222
1.0 0.900–1.100
1.1 0.818–1.000
1.2 0.750–0.917
1.3 0.692–0.846
1.4 0.643–0.786
1.5 0.600–0.733

≥10% but <20% 0.8 1.000–1.500
0.9 0.889–1.333
1.0 0.800–1.200
1.1 0.727–1.091
1.2 0.667–1.000
1.3 0.615–0.923
1.4 0.571–0.857
1.5 0.533–0.800

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 
1727, 2002. With permission.
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or the standard therapy for at least 1 year, where the test drug group has 
56 patients and the standard therapy group has 48 patients. The primary 
clinical endpoint of this trial was the total score of Positive and Negative 
Symptom Scales (PANSS). No significant differences in demographics and 
baseline characteristics were observed for baseline comparability. Mean 
changes from baseline in total PANSS for the test drug and the standard 
therapy are x−1 = −3.51 and x−2 = 1.41, respectively, with s1

2 76 1= .  and s1
2 74 86= . . 

The difference μ1 − μ2 is estimated by x−1 − x−2 = −4.92 and is considered to be 
statistically significant with T = −2.88, a p-value of 0.004, and a reproducibil-
ity probability of 0.814 under the estimated power approach or 0.742 under 
the Bayesian approach.

The sponsor of this trial would like to evaluate the probability for repro-
ducing the clinical result for an elderly patient population where Δ, the 
change in the signal-to-noise ratio, ranges from 0.75 to 1.2. The generalizabil-
ity probabilities are given in Table 25.5 (since |T|â•›< 4, the confidence bound 
approach is not considered). In this example, |T| is not very large and, thus, 
a clinical trial is necessary. The generalizability probability can be used to 
determine the sample size n* for such a clinical trial. The results are given 
in Table 25.5. For example, if Δ = 0.9 and the desired power (reproducibility 
probability) is 80%, then n* = 118 under the estimated power approach and 
140 under the Bayesian approach; if the desired power (reproducibility prob-
ability) is 70%, then n* = 92 under the estimated power approach and 104 
under the Bayesian approach. A sample size smaller than that of the original 
trial is allowed if Δ ≥ 1, that is, the new population is less variable.

TABLE 25.5

Generalizability Probabilities and Sample Sizes Required for Bridging 
Studies (under a Two-Group Parallel Design with n1 = 56, n2 = 48, 
and T = −2.88)

𝚫

Estimated Power Approach Bayesian Approach

New 
Sample Size n*

New 
Sample Size n*

P̂𝚫 70% Power 80% Power P̂𝚫 70% Power 80% Power

1.20 0.929 52 66 0.821 64 90
1.10 0.879 62 80 0.792 74 102
1.00 0.814 74 96 0.742 86 118
0.95 0.774 84 106 0.711 98 128
0.90 0.728 92 118 0.680 104 140
0.85 0.680 104 132 0.645 114 154
0.80 0.625 116 150 0.610 128 170
0.75 0.571 132 170 0.562 144 190

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 1727, 2002. With permission.
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The sample sizes n* in Table 25.5 are obtained as follows. Under the esti-
mated power approach

	
n

T T
n n

* ( */ )
( / / )

,=
+
Δ 2

1 21 4 1 4 	

where T* is the value obtained from Table 25.1 for which the reproducibil-
ity probability has the desired level (e.g., 70% or 80%). Under the Bayesian 
approach, for each given Δ we first compute the value T�* at which the repro-
ducibility probability has the desired level and then use it.

25.6â•‡ Concluding Remarks

In pharmaceutical/clinical development, as indicated earlier in this chapter, 
the U.S. FDA requires at least two adequate and well-controlled clinical tri-
als be conducted to provide substantial evidence regarding the effectiveness 
of the test treatment under investigation. Thus, one of the most commonly 
asked controversial issues is that whether one large single trial (by combin-
ing the two trials) can fulfill with the FDA’s requirement for at least two 
adequate and well-controlled clinical trials. This chapter provides scientific/
statistical justification to address this issue in terms of the evaluation of 
reproducibility probability. The other controversial issue of particular inter-
est to the investigator is that whether the observed clinical results can be 
generalized to a similar but different (e.g., due to differences in demograph-
ics or ethnic factors) target patient population. This chapter also provides 
some answers to the question by studying the impact of the signal-to-noise 
ratio in generalizability probability.
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26
Good Review Practices

26.1â•‡� Introduction

The research, development, and approval of a drug product is a lengthy pro-
cess involving drug discovery, laboratory development, animal studies, clin-
ical trials, and regulatory registration. This lengthy process is necessary to 
assure the efficacy and safety of the drug product. In the United States, how-
ever, no regulations were put forth until the Pure Food and Drug Act was 
passed by the Congress in 1906. The purpose of this Act is to prevent mis-
branding and adulteration of food and drugs, yet it does not give the govern-
ment any authority to inspect food and drugs. The Act was amended in 1912 
(the Sherley Amendment) to prohibit labeling medicines with false and fraud-
ulent claims. In 1931, the United States Food and Drug Administration (FDA) 
was formed. The provisions of the FDA are intended to ensure that (1) food is 
safe and wholesome, (2) drugs, biological products, and medical devices are 
safe and effective, (3) cosmetics are unadulterated, (4) the use of radiological 
products does not result in unnecessary exposure to radiation, and (5) all of 
these products are honestly and informatively labeled (Fairweather, 1994). 
The concept of testing marketed drugs in human subjects did not become 
a public issue until the late 1930s when the Elixir Sulfanilamide disaster 
occurred. The disaster was a safety concern of a liquid formulation of a sulfa 
drug which caused more than 100 deaths. This drug had never been tested 
in humans before its marketing. This safety concern led to the pass of the 
Federal Food, Drug, and Cosmetic Act (FD&C Act) in 1938. The FD&C Act 
extended its coverage to cosmetics and therapeutic devices. More impor-
tantly, the FD&C Act requires the pharmaceutical companies to submit full 
reports of investigations regarding the safety of new drugs. In 1962, a sig-
nificant Kefauver-Harris Drug Amendments to the FD&C Act was passed, 
which not only strengthened the safety requirements for new drugs but also 
established an efficacy requirement for new drugs for the first time. In 1984, 
the Congress passed the Price Competition and Patent Term Restoration Act 
to provide for increased patent protection to compensate for patent life lost 
during the approval process. Based on this Act, the FDA was authorized to 
approve generic drugs through the evaluation of bioequivalency on healthy 
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male subjects. In addition, the FDA also has the authority for designation of 
prescription drugs or over-the-counter (OTC) drugs.

Good regulatory (or review) practices can be defined as a quality sys-
tem to ensure that the users of medicinal products, the applicants, and the 
regulators are satisfied with the scientific advice, opinions, establishment 
of maximum residue levels, inspection and assessment reports and related 
documents, taking into consideration legal requirements and guidance in 
order to protect and promote human and animal health (Korteweg, 2002). 
Thus, good regulatory (or review) practices consist of good laboratory prac-
tice (GLP), good manufacturing practice (GMP), good clinical practice (GCP), 
good statistics practice (GSP) which include good programming practice 
(GPP) and good data management practice (GDMP), and good review (regu-
latory) practice (GRP). In this chapter, our attention will be directed to GRP 
related to GSP and GCP in regulatory review and approval process for a 
pharmaceutical compound under investigation. Brief concluding remarks 
are given in the last section.

In the next section, regulatory process and requirement for pharmaceu-
tical compounds in the United States are briefly described. GRPs devel-
oped by the Center for Drug Evaluation and Research (CDER) of the FDA 
are given and discussed in Section 26.3. Section 26.4 discusses some com-
monly seen controversial issues regarding obstacles and challenges in 
regulatory process. Brief concluding remarks are given in the last section.

26.2â•‡� Regulatory Process and Requirements

For approval of drug products, each country and/or region such as the European 
Community (EC), Japan, and the United States has similar but slightly dif-
ferent regulatory process and requirements for the conduct of clinical trials 
and the submission, review, and approval of clinical results. In this section, 
for illustration purposes, we will focus on the regulatory process and require-
ments adopted in the United States. For evaluation and approval of drug prod-
ucts, the sponsors are required to submit substantial evidence of effectiveness 
and safety accumulated from adequate and well-controlled clinical trials to 
the FDA. The current regulations for conducting clinical trials and the submis-
sion, review, and approval of clinical results for pharmaceutical compounds 
in the United States can be found in the Code of Federal Regulations (CFR) 
(see, e.g., 21 CFR Parts 50, 56, 312, and 314). These regulations are developed 
based on the FD&C Act. These regulations cover not only pharmaceutical enti-
ties such as drugs, biological products, and medical devices under investiga-
tion but also the welfare of participating subjects, labeling, and advertising of 
pharmaceutical products. The FDA has jurisdiction of administration of regu-
lation and approval of drug products. These regulations include Investigational 
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New Drug Application (IND) and New Drug Application (NDA) for new drugs, 
orphan drugs, and OTC human drugs, Abbreviated New Drug Application 
(ANDA) for generic drugs, Establishment License Application (ELA) or 
Product License Application (PLA) for biological products, Investigational 
Device Exemptions (IDE), and Premarket Approval of Medical Devices (PMA) 
for medical devices and other means.

A treatment consisting of a combination of drugs, biological products, 
and/or medical devices is usually referred to as a combined therapy. If 
a treatment consists of a combination of drugs, biologics, and/or devices 
such as drug with device, biologic with device, drug with biologic, drug 
with biologic in conjunction with device, then it is defined as a combined 
product. For a combined product consisting of different pharmaceutical 
entities, the FDA requires that each of the entities should be reviewed 
separately by appropriate centers at the FDA. In order to avoid confusion 
of jurisdiction over a combination product and to improve efficiency of 
approval process, the principle of primary mode of action of a combination 
product was established in the Safe Medical Devices Act (SMDA) in 1990 
(21 U.S.C. 353). In 1992, based on this principle, three inter-center agree-
ments were signed between CDER and the Center for Biologics Evaluation 
and Research (CBER), between CDER and the Center for Devices and 
Radiological Health (CDRH), and between CBER and CDRH to establish 
the ground rules for assignment of a combined product and inter-center 
consultation (Margolies, 1994). Different regulations exist for different 
products, e.g., IND and NDA for drug products; ELA and PLA for biologi-
cal products; IDE and PMA for medical devices. However, the spirit and 
principles for the conduct, submission, review, and approval of clinical trials 
are the same. Therefore, for the purpose of illustration, we will only give a 
detailed discussion on IND and NDA for drug products.

26.2.1  �Investigational New Drug Application

Before a drug can be studied in humans, its sponsor must submit an IND to 
the FDA. Unless noticed otherwise, the sponsor may begin to investigate the 
drug 30 days after the FDA has received the application. The IND require-
ments extend throughout the period during which a drug is under study. As 
mentioned in Sections 312.1 and 312.3 of 21 CFR, an IND is synonymous with 
the Notice of Claimed Investigational Exemption for a New Drug. Therefore, 
an IND is, legally speaking, an exemption to the law that prevents the ship-
ment of a new drug for interstate commerce. Consequently, the drug compa-
nies which file an IND have flexibility of conducting clinical investigations 
of products across the United States. Kessler (1989) indicated that there are 
two types of INDs, namely, the commercial IND and the noncommercial 
IND. A commercial IND permits the sponsor to gather the data on clinical 
safety and effectiveness that are needed for an NDA. If the drug is approved 
by the FDA, the sponsor is allowed to market the drug for specific uses.
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On the other hand, a noncommercial IND allows the sponsor to use the drug 
in research or early clinical investigation to obtain advanced scientific knowl-
edge of the drug. Note that the FDA itself does not investigate new drugs or 
conduct clinical trials. Pharmaceutical manufacturers, physicians, and other 
research organizations such as the NIH may sponsor INDs. If a commercial IND 
proves successful, the sponsor ordinarily submits an NDA. During this period, 
the sponsor and the FDA usually negotiate over the adequacy of the clinical data 
and the wording proposed for the label accompanying the drug which sets out 
description, clinical pharmacology, indications, and usage, contraindications, 
warnings, precautions, adverse reactions, and dosage and administration.

By the time an IND is filed, the sponsor should have enough information 
about chemistry, manufacturing, and controls (CMCs) of the drug substance 
and drug product to assure the identity, strength, quality, and purity of the 
investigational drug covered by the IND. In addition, the sponsor should pro-
vide adequate information about pharmacological studies for the absorption, 
distribution, metabolism, and excretion (ADME), and acute, subacute, and 
chronic toxicological studies and reproductive tests in various animal species to 
support the fact that the investigational drug is reasonably safe to be evaluated 
in clinical trials of various durations in human. The central focus of the initial 
IND submission should be on the general investigational plan and protocols 
for specific human studies. Therefore, a copy of protocol(s) which include study 
objectives, investigators, criteria for inclusion and exclusion, study design, 
dosing schedule, endpoint measurements, and clinical procedure should be 
submitted along with the investigational plan and other information such as 
CMCs, pharmacology and toxicology, previous human experiences with the 
investigational drug, and any additional and relevant information related to 
the investigational drug. Note that the FDA requires that all sponsors should 
submit an original and two copies of all submissions to the IND, i.e., including 
the original submission and all amendments and reports.

26.2.2  �New Drug Application

For approval of a new drug, the FDA requires at least two adequate well-
controlled clinical studies be conducted in humans to demonstrate substantial 
evidence of the effectiveness and safety of the drug. The substantial evidence 
as required in the Kefaurer-Harris amendments to the FD&C Act in 1962 is 
defined as the evidence consisting of adequate and well-controlled investiga-
tions, including clinical investigations, by experts qualified by scientific train-
ing and experience to evaluate the effectiveness of the drug involved, on the 
basis of which it could fairly and responsibly be concluded by such experts 
that the drug will have the effect it purports to is represented to have under 
the conditions of use prescribed, recommended, or suggested, in the labeling 
or proposed labeling thereof. Based on this amendment, the FDA requests that 
reports of adequate and well-controlled investigations provide the primary 
basis for determining whether there is substantial evidence to support the 
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claims of new drugs and antibiotics. Section 314.122 of 21 CFR provides 
the definition of an adequate and well-controlled study.

An adequate and well-controlled study is judged by eight criteria specified 
in the CFR. These criteria are objectives, method of analysis, design of stud-
ies, selection of subjects, assignment of subjects, participants of studies, 
assessment of responses and effect. First, each study should have a very clear 
statement of objectives for clinical investigation which can be reformulated 
into statistical hypotheses and estimation procedures. In addition, proposed 
methods of analyses should be described in the protocol and actual statisti-
cal methods used for analyses of data should be described in detail in the 
report. Second, each clinical study should employ a design which allows a 
valid comparison with a control for an unbiased assessment of drug effect. 
Therefore, selection of a suitable control is one of the keys to integrity and 
quality of an adequate and well-controlled study. The CFR recognizes the 
following controls: placebo concurrent control, dose-comparison concurrent 
control, no treatment control, active concurrent control, and historical con-
trol. Next, the subjects in the study should have the disease or condition 
under study. Furthermore, subjects should be randomly assigned to differ-
ent groups in the study to minimize potential bias and assure comparability 
of the groups with respect to pertinent variables such as age, gender, race, 
and other important prognostic factors. All statistical inferences are based 
on such randomization and possibly stratification to achieve these goals. 
However, bias will still occur if no adequate measures are taken on the part 
of subjects, investigator, and analysts of the study. Therefore, blinding is 
extremely crucial to eliminate the potential bias from this source. Usually, 
an adequate and well-controlled study should be at least double-blinded 
for which investigators and subjects are blinded to the treatments during 
the study. Currently, a triple-blinded study in which the sponsor (i.e., clini-
cal monitor) of the study is also blinded to the treatment is not uncommon. 
Another critical criterion is the validity and reliability of assessment of 
responses. For example, the methods for measurements of response such as 
symptom scores for benign prostate hyperplasia should be validated before 
their usage in the study (Barry et al., 1992). Finally, appropriate statistical 
methods should be used for the assessment of comparability among treat-
ment groups with respect to pertinent variables mentioned above and for 
unbiased evaluation of drug effects.

Section 314.50 of 21 CFR specifies the format and content of an NDA. The 
FDA requests that the applicant should submit a complete copy of the NDA 
form (A) to (F) with a cover letter. In addition, the sponsor needs to submit 
a review copy for each of the six technical sections with the cover letter and 
application form (356H). The reviewing disciplines include chemistry review-
ers for the CMCs; pharmacology reviewers for nonclinical pharmacology and 
toxicology; medical reviewers for clinical data section; and statisticians for 
statistical technical section. The outline of review copies for clinical review-
ing divisions include (1) cover letter, (2) application form (356H), (3)  index, 
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(4) summary, and (5) clinical section. The outline of review copies for statisti-
cal reviewing division consists of (1) cover letter, (2) application form (356H), 
(3) index, (4) summary, and (5) statistical section. The information required 
by the FDA and ECC for marketing approval of a drug is essentially the 
same. However, no statistical technical section is required in ECC registra-
tion. In October 1988, to assist an applicant in presenting the clinical and 
statistical data required as part of an NDA submission, the CDER of the FDA 
issued the Guideline for the Format and Content of the Clinical and Statistical 
Sections of an Application under 21 CFR 314.50. The guideline indicates the 
preference of having an integrated clinical and statistical report rather than 
two separate reports. A complete submission should include clinical section 
[21 CFR 314.50(d)(5)], statistical section [21 CFR 314.50(d)(6)], and case report 
forms and tabulations [21 CFR 314.50(f)]. The same guideline also provides 
the content and format of the fully integrated clinical and statistical report of 
a controlled clinical study in an NDA. Based on the content and format of the 
fully integrated and statistical report of a controlled study required by the 
FDA, the Structure and Content of Clinical Study Reports was also issued 
by the EC in May 1993. In addition, EC also published a guideline entitled 
“Biostatistical Methodology in Clinical Trials in Applications for Marketing 
Authorizations for Medicinal Products” in March 1993. Detailed discussion 
for the preparation of clinical and statistical reports and an integrated sum-
mary of effectiveness and safety data for registration of a new drug can be 
found in Chow and Liu (1998b).

26.3â•‡� Good Review Practices

As indicated by the FDA, a GRP is a documented best practice within the 
CDER that discusses any aspect related to the process, format, content, 
and/or management of a product review. GRPs are developed over time 
as superior practices based on the CDER’s collective experience to provide 
consistency to the overall review process of new products. GRPs are devel-
oped to improve the quality of reviews and review management. GRPs 
improve efficiency, clarity, and transparency of the review process and 
review management. GRPs are expected to be adopted by review staff as 
standard processes through supervisor mentoring, implementation teams, 
and formal training when necessary.

26.3.1  �Fundamental Values

As described in the CDER/FDA GRPs, fundamental values for all GRPs 
include quality, efficiency, clarity, transparency, and consistency, which are 
briefly summarized below.
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For quality, it is believed that consistent implementation of GRPs by review 
staff will enhance the quality of reviews, the review process, and the resul-
tant regulatory action. GRPs will improve the efficiency of the review process 
through standardization. For clarity, GRPs support clarity throughout the 
review process, including critical review and decision activities that must be 
completed before a regulatory decision is made. Developing and document-
ing GRPs ensures that our review processes are readily available in one loca-
tion via the Internet (through CDER’s Web site) to sponsors and the public. 
For consistency, by offering a consistent approach and only deviating from 
it when appropriate (after supervisory concurrence), GRPs help reviewers 
achieve consistency with their reviews and provide standard review pro-
cesses across divisions and offices.

26.3.2  �Implementation of GRP

For the implementation of GRP within the FDA, review staff is expected 
to become thoroughly familiar with pertinent GRPs and to adhere to these 
GRPs when conducting their reviews unless a particular part of a GRP is 
not applicable to a particular review or the review staff receives supervi-
sory instruction to do otherwise. The approving supervisor should sepa-
rately document his or her reason for such a deviation in the electronic 
or paper document archive associated with that application. In addition, 
team leaders and supervisors are responsible for ensuring that GRPs are 
followed, and will provide specific instructions to deviate from the GRPs 
only when appropriate. Team leaders and supervisors will also mentor 
reviewers and provide appropriate instruction to review staff regarding 
content and policy within GRPs.

Most importantly, CDER/FDA will provide appropriate training courses 
and implementation teams when needed to inform review staff, team leaders, 
and supervisors of the content and policies contained in GRPs. Furthermore, 
similar to GSP and GCP, GRPs will be updated regularly with input from the 
appropriate CDER staff as needed. The updated GRPs will be posted to the GRP 
Web site after clearance.

26.3.3  �Remarks

As indicated in the CDER/FDA GRP, although guidance documents do not 
legally bind the FDA, review staff may depart from guidance documents 
only with appropriate justification and supervisory concurrence. However, 
team leaders and supervisors will ensure that review staff follow GRPs. 
Documents that contain both GRPs and guidance for industry will continue 
to be issued as guidances for review staff and industry, but will be subtitled 
GRP. Note that the CDER/FDA GRP is available at http://www.fda.gov/
cder/other/GRP.htm.
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26.4â•‡� Obstacles and Challenges

In the past several decades, the current regulatory process for review and 
approval of a pharmaceutical compound under investigation has been criti-
cized. The most commonly seen criticisms (or controversial issues) include, 
but are not limited to, the following: (1) there exist no gold standards for 
the evaluation of clinical data, (2) one-fits-all criterion for bioequivalence 
trials, and (3) the use of Bayesian statistics in drug evaluation. These criti-
cisms have led to obstacles (or controversial issues) in the regulatory review/
approval process. In addition, most recently the FDA has been criticized to 
respond slowly to new concepts for clinical evaluation of efficacy and safety 
in pharmaceutical research and development. These new concepts refer to 
those listed in the Opportunity List of the Critical Path Initiatives such as the 
use of adaptive design methods in clinical trials, which has posted a great 
challenge to the review staff in the regulatory review/approval process. 
These obstacles (controversial issues) and challenges, which are related to 
quality, consistency, and validity of the review process, are described in the 
subsequent sections.

26.4.1  �No Gold Standards for Evaluation of Clinical Data

One of the major criticisms in the regulatory review and approval process is 
probably the concern of a “gold standard” for the evaluation of the efficacy 
and safety of a test treatment under investigation although a number of drug-
specific guidelines/guidances have been published by the regulatory agencies 
such as the FDA and EU EMEA. For a given regulatory submission, the FDA 
may accept the submission while the EU EMEA may not. Within a given regu-
latory agency, the review results may vary depending upon (1) the changing 
environment due to internal turnover and/or reorganization, (2) the interpre-
tation of the related guidelines/guidances, and (3) the assigned review staff.

For the change in environment, e.g., a new review staff is assigned to an old 
submission, it will not only take some time for the newly assigned reviewer 
to get familiar with the submission and the history of the review (including 
all correspondences between the sponsor and the previous reviewer), but the 
newly assigned reviewer may have a different opinion and/or preference on 
certain aspects of the submission, which may result in an inconsistency of 
the review with the previous reviewer. In the case where this inconsistency 
occurs, the sponsor will make an attempt to convince the reviewer with 
documented correspondences with the previous reviewer. However, the suc-
cess rate is low. In some cases, the sponsor receives a frustrating response 
from the reviewer that “That was then, this is now.” This inconsistency has 
caused a waste of resources and time for the development of the test treat-
ment under investigation and it is definitely not a GRP.
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Regarding guidelines/guidances, although, as indicated in the CDER 
GRP, (1) team leaders and supervisors will ensure that review staff follows 
GRPs and (2) guidance documents do not legally bind FDA—the review 
staff may depart from guidance documents only with appropriate justifica-
tion and supervisory concurrence. Based on the fact that different review-
ers may interpret the guidelines/guidances differently, different reviewers 
may have set up his/her own rule or requirement for the evaluation of the 
test treatment under investigation and consequently provide different rec-
ommendations for the sponsors to follow. Thus, similar submissions may 
be accepted one over the other depending upon the assigned reviewer and 
his/her interpretation of the guidelines/guidances. This has resulted in the 
obstacle that “Guideline/guidance may not be the guide” in the regulatory 
review/approval process, which is very destructive to the trust and confi-
dence of future regulatory submissions. As a result, in addition to follow-
ing the guidelines and/or guidances issued by the regulatory agency, the 
sponsor always makes additional effort seeking for advice from the medical/
statistical reviewers.

The quality of the review of a regulatory submission depends upon the 
knowledge and experience of the assigned review staff. If the assigned 
review staff is fresh out of school, the review may be performed by book 
without taking into consideration the practical experience of clinical 
research and development. One of the controversial issues regarding the 
review of clinical results submitted from the sponsors is how the regula-
tory agency can be the judge of the clinical results based on the fact that the 
regulatory agent does not conduct clinical studies. As a result, the quality 
of the review from a review staff that has little experience in clinical trials 
could be a concern.

As an example of no gold standards in regulatory review, consider end-
points supporting cancer drug approvals. As indicated by Williams et al. 
(2004), the FDA summarized the endpoints supporting 71 new cancer drug 
approvals over a 13-year period from 1990 to 2002 (Johnson et al., 2003). 
Fourteen of these applications received accelerated approval, while 54 appli-
cations were given regular approval based on the evidence of effects on clini-
cal benefit endpoints or effects on accepted surrogate for clinical benefit. Table 
26.1 provides a summary of endpoints used to support cancer drug approv-
als in 57 applications from January 1, 1990 to November 1, 2002. As can be 
seen from Table 26.1, the commonly used endpoint for regulatory approval 
is survival (18 out of 57) and response rate and/or time-to-disease progres-
sion (TTP) alone (18 out of 57). One of the controversial issues is whether the 
sponsor can switch from one endpoint (e.g., survival which is the primary 
endpoint as specified in the study protocol) to another (e.g., response rate 
and/or TTP which is considered a secondary endpoint in the study protocol) 
if the primary endpoint fails to demonstrate expected clinical benefit but 
other endpoints show promising clinical benefit to the patients.
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26.4.2  �One-Fits-All Criterion for Bioequivalence Trials

As discussed above, those commonly encountered obstacles in regulatory 
review and approval process described above may be due to the fact that 
there exist no gold standards for the evaluation of clinical results obtained 
from clinical trials. For review and approval of generic drug products, how-
ever, the FDA does employ “one-fits-all” criterion, which has been criticized 
as well.

For the approval of generic drug products, the FDA requires that evidence 
on bioequivalence in average bioavailability (in terms of the rate and extent of 
drug absorption in the bloodstream) must be provided through the conduct 
of bioequivalence studies. Two drug products are considered bioequivalent if 
their rate and extent of drug absorption are similar. Average bioequivalence 
can be demonstrated if the 90% confidence interval of the ratio of means 
of a given study endpoint such as area under the blood concentration-time 
curve (AUC) or maximum concentration (Cmax) between a test treatment (e.g., 
a generic copy of the brand name drug) and the reference treatment (e.g., the 
brand name drug) totally falls within the bioequivalence limits of 80% and 
125%. The bioequivalence limits range of 80%–125% is a one-fits-all criterion 
which is applicable to all drug products across all therapeutic areas even if 
different drug products from different therapeutic areas may have different 
therapeutic indices.

In the early 1990s, it was suggested that a more flexible criterion be 
considered depending upon the therapeutic index and intra-subject vari-
ability of the drug product. Some drug products may be robust to efficacy, 
while some drug products may be sensitive to safety. It is then suggested 
that the lower limit and/or the upper limit of the bioequivalence limits be 
adjusted in order to reflect the nature of the drug products. However, the 

TABLE 26.1

Endpoints Supporting Regulatory Approval of Oncology Drug 
Marketing Applications, January 1, 1990 to November 1, 2002

Total 57
Survival 18
Response rate and/or TTP alone (predominantly hormone 
treatment of breast cancer or hematologic malignancies

18

Tumor-related signs and symptoms 13
Response rate + tumor-related signs and symptoms (9)
Tumor-related signs and symptoms alone (4)

Disease-free survival (adjuvant setting) 2
Recurrence of malignant pleural effusion 2
Decreased incidence of new breast cancer occurrence 2
Decreased impairment creatinine clearance 1
Decreased xerostomia 1
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one-fits-all criterion is still a requirement for the approval of generic drug 
products in the United States.

Unlike clinical trials, the United States enforces the one-fits-all criterion for 
the evaluation of bioequivalence studies. In the past decade, many submis-
sions were rejected by the FDA because either the lower limit or the upper 
limit of the constructed 90% confidence of the ratio of means is slightly off 
the lower bioequivalence limit of 80% or the upper bioequivalence limit of 
125%. The sponsors may make an attempt to perform a test for outlier and 
reanalyze the data by excluding the identified outliers. However, there is 
little success. The FDA’s response that “Rule is rule” has led to another con-
troversial issue in clinical trials. That is, why the one-fits-all criterion for 
bioequivalence trials cannot be applied to clinical trials.

26.4.3  �Bayesian Statistics in Drug Evaluation

For the evaluation of clinical efficacy and safety of a pharmaceutical 
entity (e.g., drug product, biological product, and medical device), unless 
it is specified in the regulatory guidelines/guidances, the assigned review 
staff’s preference on statistical methods to be used will have an impact 
on policy and/or procedure of the review process. For example, for bio-
equivalence trials, the use of nonparametric methods for the assessment 
of bioequivalence in AUC and/or Cmax is not encouraged (and may not be 
accepted by the FDA) in the United States without any scientific/statisti-
cal justification. On the other hand, the use of nonparametric methods is 
accepted by the EU EMEA.

For another example, there is tremendous debate regarding whether the 
Bayesian approach should be used in drug evaluation. Pros and cons have 
been discussed in the literature and major statistical conferences in the past 
decade. However, no universal agreement is reached. At this time, the use 
of the Bayesian approach for the evaluation of clinical efficacy and safety of 
medical devices is accepted by the CDRH of the FDA. However, it is not well 
accepted by CDER and CBER of the FDA. One of the fundamental differences 
between medical devices and drug/biologic products is that a medical device 
is less variable and the variation is controllable. These characteristics justify the 
use of the Bayesian approach. On the other hand, since the Bayesian approach 
is sensitive to the selection of prior distribution of the study parameters, it is 
not widely accepted by the CDER and CBER of the FDA for the evaluation of 
drug/biologic products.

26.4.4  �Adaptive Design Methods in Clinical Trials

In recent years, the use of adaptive design methods in clinical trials has 
received much attention from both the pharmaceutical/biotechnology 
industry and the regulatory agencies due to its flexibility and efficiency for 
identifying the best clinical benefit of a test treatment under investigation. 
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An adaptive design is referred to as a clinical trial design that uses accu-
mulating data to decide on how to modify aspects of the study as it contin-
ues, without undermining the validity and integrity of the trial (Gallo et 
al., 2006). Based on the natural adaptation, Chow and Chang (2006) identi-
fied several commonly considered adaptive designs in clinical research and 
development.

26.4.4.1  �Adaptive Randomization Design

A design that allows modification of randomization schedules (e.g., unequal 
probabilities of treatment assignment) for increasing the probability of success. 
Basically, there are three types of adaptive randomization, namely, treatment 
adaptive, covariate adaptive, and response adaptive. Note that for an adaptive 
randomization design, the randomization schedule may not be available prior 
to the conduct of the study. Thus, it may not be feasible for a large trial or a trial 
with relatively long treatment duration. Furthermore, a statistical inference on 
the treatment effect is often difficult to obtain if not impossible.

26.4.4.2  �Adaptive Group Sequential Design

An adaptive group sequential design refers to a group sequential design that 
allows for prematurely stopping a trial due to safety, efficacy/futility, or both 
based on interim analysis results. At interim analysis, blinded sample size rees-
timation may be performed. In addition, some adaptations such as adaptive ran-
domization or dropping the losers may be applied. One of the major concerns in 
practice is that the overall type I error rate may not be preserved when (1) there 
are additional adaptations (e.g., changes in hypotheses and/or study endpoints) 
and (2) there is a shift in target patient population after adaptations are made.

26.4.4.3  �Flexible Sample Size Reestimation Trial Design

An adaptive design that allows for sample size adjustment or reestimation 
based on the observed data at interim either with blinding or unblinding. 
Sample size adjustment or reestimation is usually performed based on the cri-
teria of (1) variability, (2) conditional power, or (3) reproducibility probability. 
It should be noted that sample size reestimation is performed based on esti-
mates from the interim analysis. Note that a flexible sample size reestimation 
design is also known as an N-adjustable design. In clinical trials using flexible 
sample size reestimation trial design, a commonly asked question is that Can 
we always start with a small number and perform sample size reestimation at interim?

26.4.4.4  �Drop-the-Loser Design

Drop-the-loser design or pick-the-winner design is a multiple-stage adaptive 
design that allows dropping the inferior treatment groups. There are several 
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general principles to follow when applying drop-the-loser design. These 
principles include (1) drop the inferior arms, (2) retain the control arm, and 
(3) may modify or add additional arms. The drop-the-loser design is useful 
when there are uncertainties regarding the dose levels. The selection criteria 
and decision rules play important roles for drop-the-loser designs. Note that 
dose groups that are dropped may contain valuable information regarding 
dose response of the treatment under study.

26.4.4.5  �Adaptive Dose Escalation Design

Dose escalation design is often used in early-phase clinical development to 
identify the maximum tolerable dose, which is usually considered the optimal 
dose for the later phase clinical trials. In practice, two types of designs are com-
monly employed. They are the traditional “3 + 3” dose escalation rule, which 
is an algorithm-based trial design, and the continual reassessment method in 
conjunction with the Bayesian approach, which is a model-based trial design. 
When applying the adaptive dose escalation trial design, the following ques-
tions are necessarily asked: How to select the initial dose? How to select the 
dose range under study? How to achieve statistical significance with a desired 
power with a limited number of subjects? What are the selection criteria and 
decision rules? What is the probability of achieving the optimal dose?

26.4.4.6  �Biomarker-Adaptive Design

A design that allows for adaptation based on the responses of biomarkers such 
as genomic markers for the assessment of treatment effect. It involves quali-
fication and standard, optimal screening design, establishment of predictive 
model, and validation of the established predictive model. A classifier marker 
usually does not change over the course of study and can be used to identify 
the patient population who would benefit from the treatment from those who 
will not (e.g., DNA marker and other baseline marker for population selection). 
A prognostic marker informs the clinical outcomes, which is independent of 
treatment. A predictive marker informs the treatment effect on the clinical 
endpoint. A predictive marker can be population-specific. That is, a marker 
can be predictive for a population A but not population B. It should be noted 
that the correlation between a biomarker and true endpoint makes a prog-
nostic marker. In addition, the correlation between a biomarker and true end-
point does not make a predictive biomarker. In practice, there is a gap between 
identifying genes that are associated with clinical outcomes and establishing a 
predictive model between relevant genes and clinical outcomes.

26.4.4.7  �Adaptive Treatment-Switching Design

A design that allows the investigator to switch a patient’s treatment from 
an initial assignment to an alternative treatment if there is evidence of lack 
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of efficacy or safety of the initial treatment. Adaptive treatment-switching 
design is commonly employed in cancer trials. In practice, a high percent-
age of patients may switch due to disease progression. Thus, estimation of 
survival is a challenge to the biostatistician. A high percentage of subjects 
who switched could lead to a change in hypotheses to be tested. Sample size 
adjustment for achieving a desired power is critical to the success of the study.

26.4.4.8  �Adaptive-Hypotheses Design

A design that allows change in hypotheses based on interim analysis results 
often considered before database lock and/or prior to data unblinding. Some 
examples include (1) switch from a superiority hypothesis to a non-inferiority 
hypothesis change in study endpoints (e.g., switch primary and secondary end-
points) and (2) switch between non-inferiority and superiority. When switching 
from a superiority hypothesis to a non-inferiority hypothesis, the selection of 
the non-inferiority margin is very critical. Note that for switching between the 
primary endpoint and the secondary endpoints, it is suggested that the switch 
from the primary endpoint to a co-primary endpoint or a composite endpoint 
be considered.

26.4.4.9  �Adaptive Seamless Phase II/III Trial Design

An adaptive seamless phase II/III trial design is a trial design that combines 
two separate trials (i.e., a phase IIb and a phase III trial) into one trial and 
uses data from patients enrolled before and after the adaptation in the final 
analysis. An adaptive seamless phase II/III trial design is a two-stage design 
which consists of a learning phase (phase IIb) at the first stage and a confir-
matory phase (phase III) at the second stage. In practice, an adaptive seam-
less trial design may combine two separate studies which may have similar 
but different study objectives and may use different study endpoints (e.g., a 
biomarker or a surrogate endpoint versus a clinical endpoint). In this case, 
it is a concern how the overall type I error rate can be controlled.

26.4.4.10  �Multiple Adaptive Design

A design that is any combination of the above adaptive designs. A multiple 
adaptive design is very flexible and yet complicated. In practice, if it is not 
impossible, statistical inference is often difficult to obtain.

Adaptive design is attractive due to its flexibility. However, it is a concern 
that so-called operational bias and variation may be introduced after the appli-
cation of adaptations. Thus, the regulatory agency requires that a strategy for 
preventing operational bias and variation be provided when utilizing adap-
tive design methods in clinical trials. In addition, it is a great concern whether 
the overall type I error rate is preserved after the adaptations are made dur-
ing the conduct of the clinical trials. The FDA does not discourage the use of 
adaptive design methods in clinical trials. However, their slow response to 
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the rapid development has been criticized. Regulatory guideline/guidance on 
adaptive design methods in clinical trials should be necessarily developed 
in order to assist the sponsor to adopt this new concept of adaptive design in 
clinical research and development.

26.5â•‡� Concluding Remarks

For evaluation of clinical efficacy and safety of a test treatment under investi-
gation, it is always an obstacle and challenge to review staff, especially when 
there exist no gold standards although regulatory drug-specific guidelines/
guidances are available. GRP is necessary to ensure quality, scientific valid-
ity, and consistency for drug evaluation. GSP is a key to the success of GRP. 
If one fails to follow GSP, GRP could lead to some controversial issues with 
no resolutions.

Although it should not be so, statistical/clinical research is driven by regu-
latory requirement or preference. A typical example is the development of 
criteria and statistical methods for the assessment of population and indi-
vidual bioequivalence in bioequivalence trials in the 1990s. The developed 
criteria and statistical methods lacked input from scientists from clinical 
pharmacology and biostatisticians from the pharmaceutical/generic indus-
try and consequently were dropped by the FDA in early 2000. For another 
example, missing data imputation was not accepted by the FDA in the 1980s. 
In recent years, however, the FDA requires that statistical methods for 
missing value imputation be provided for handling missing data.

In recent years, the FDA has led advances in statistical research and 
development for drug evaluation since the Opportunity List as the result 
of the Critical Path Initiative published in 2006. For example, the FDA has 
established working groups on critical topics such as adaptive design, 
non-inferiority trials, and QT/QTc studies with recording replicates. These 
research works will not only enhance GRP but also improve the quality, 
validity, and consistency of GRP.
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27
Probability of Success

27.1â•‡� Introduction

In the past several decades, it has been recognized that increasing spending 
of biomedical research does not reflect an increase in the success rate of 
pharmaceutical/clinical research and development. Woodcock (2005) indi-
cated that the low success rate of pharmaceutical/clinical development could 
be because (1) there is a diminished margin for improvement that escalates 
the level of difficulty in proving drug benefits, (2) genomics and other new 
sciences have not yet reached their full potential, (3) mergers and other busi-
ness arrangements have decreased candidates, (4) easy targets are the focus 
as chronic diseases are harder to study, (5) failure rates have not improved, 
and (6) rapidly escalating costs and complexity decreases willingness/ability 
to bring many candidates forward into the clinic.

As indicated in Chapters 1 and 3, the United States Food and Drug 
Administration (FDA) kicked off the Critical Path Initiative to assist the spon-
sors in (1) identifying possible causes, (2) providing resolutions, and (3) increas-
ing the efficiency and the probability of success (POS) in clinical development. 
The POS in clinical development is usually referred to as (1) the POS of a given 
clinical trial, (2) the POS of a given phase of clinical development (e.g., phase II 
or phase III clinical development), and (3) the POS of the overall clinical devel-
opment process. For a given clinical trial, the POS can be assessed using the 
idea/concept of generalizability and reproducibility probabilities described 
in Chapter 25. A similar idea/concept can be applied to assess the POS for a 
given phase of clinical development. Thus, in this chapter, we will focus on the 
assessment of the POS of the entire clinical development process.

As indicated in Chapter 1, clinical development is an important stage of 
pharmaceutical development. The success of clinical development is the key 
to the success of pharmaceutical development of a promising compound 
which consists of multiple stages of development such as translational 
research from preclinical studies to first-in-man clinical trials, phases I–III of 
clinical development, and phase IV of post-approval safety surveillance. The 
development process of a promising compound is a lengthy and costly pro-
cess. At the screening stage, many candidate compounds may be dropped 
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due to intolerable toxicity/safety or lack of efficacy based on preclinical data. 
In practice, it is most likely that only a handful of promising compounds 
can make it to the stage of clinical development. As a result, how to select 
the most promising compound among this handful of compounds for con-
tinued clinical development has become a challenge to the clinical develop-
ment team under possible resources/budget constraints. A wrong decision 
could lead to a total disaster to the sponsor (all of the efforts and investments 
would be wasted).

In the next section, traditional approaches for the assessment of POS 
that are commonly adopted by the pharmaceutical industry are described. 
Section 27.3 studies the POS assuming that the pharmaceutical development 
process is a multiple-stage process. A brief concluding remark is given in the 
last section of the chapter.

27.2â•‡� Go/No-Go Decision in Development Process

As indicated in Chapter 1, the pharmaceutical/clinical development pro-
cess of a promising compound is a sequential process which consists of a 
preclinical development phase and phases I–III of the clinical development 
phase. The sponsor of the promising compound usually will not move from 
one phase to the next unless significantly positive results are observed at the 
current phase of development. At the early phase of pharmaceutical/clinical 
development of a promising compound, it is crucial for the sponsor to make 
a go/no-go decision because the budget and/or resources available may be 
very limited. This is critical especially when there are several promising 
compounds under development. The go/no-go decision at a given phase of 
development is usually made based on the evaluation of the POS at the phase 
of development. The objective for assessment of the POS is multifold. First, 
it is to obtain accurate and reliable individual estimates of the POS at each 
stage and an overall estimate of the overall POS. Second, it is to obtain a 
lower confidence bound of the overall POS. Third, it is to perform a sensitiv-
ity analysis of the POS with respect to relative changes at the early phase of 
clinical development versus the later phase of clinical development assum-
ing a fixed total resources/budget.

27.2.1  �Simple Approach for Decision Making

At the early phase of pharmaceutical/clinical development of a promising 
compound, a go/no-go decision is usually made based on limited informa-
tion available from preclinical animal studies, first-in-man proof-of-concept, 
and/or early efficacy studies. For example, at the preclinical phase of develop-
ment, the sponsor may conduct a number of small-scale animal studies for 
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the evaluation of toxicity, tolerability, and/or efficacy of the test compound in 
animals. A simple approach for making a go/no-go decision is to consider the 
proportion of studies with positive results. If the percentage is greater than a 
prespecified threshold, we then make a “go” decision. For a promising com-
pound, suppose that five studies are conducted and four show positive results. 
In this case, the simple approach gives an 80% (four out of five) success rate. If the 
sponsor considers 75% being the threshold of the promising compound, a “go” 
decision is made because 80% is greater than the threshold value of 75%.

The approach for making a go/no-go decision based on the proportion of 
positive studies described above is simple and easy to implement. However, 
this simple approach ignores (1) differences in study objectives and/or 
hypotheses, (2) heterogeneity in variability associated with the study end-
point across studies, and (3) sample sizes across studies. As a result, this 
simple approach for making a go/no-go decision has the following limita-
tions. First, it is not applicable when there is only a study or a couple of stud-
ies available. In this case, a commonly considered alternative approach is 
to make a go/no-go decision based on subjective evaluation, which is usu-
ally made by the researchers or scientists according to their best knowledge 
and experience of the compound under investigation. Second, the simple 
approach assumes that all studies are equally important. In practice, it is 
very likely that (1) different studies may be evaluated by different study end-
points and (2) different studies may exhibit different variabilities in observ-
ing the responses of the study endpoints. Third, the sizes of different studies 
may vary from study to study. It is a concern that all of the smaller studies 
show positive results while the largest study fails.

One of the controversial issues regarding making a go/no-go decision 
based on either the simple approach using the proportion of positive stud-
ies or the subjective evaluation from the perspectives of the researchers or 
scientists in the subject area is that the accuracy and reliability of the deci-
sion is questionable. Consider the same example described above. A small-
scale study does not provide satisfactory inference regarding the treatment 
of the test compound under study. In other words, the false positive of the 
small-scale study could be high; consequently, the decision made based on 
the proportion of positive results may not be reliable. As a result, the deci-
sion regarding go/no-go may be biased and hence misleading. A wrong 
decision may kill a promising (an effective) compound and hence lead 
the sponsor to a disastrous situation. The method of subjective evaluation 
based on the perspectives of the researchers and scientists suffers from the 
same difficulty and dilemma.

27.2.2  �Decision-Tree Approach

Another commonly considered approach for making a go/no-go decision 
in the pharmaceutical/clinical development process is the use of a simple 
decision tree. A simple decision tree is a classifier (go or no-go) in the form 
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of a tree structure (see Figure 27.1), where each node is either a leaf node 
(squares) or a decision node (circles). A leaf node indicates the tests or stud-
ies to be conducted at a specific phase of development, while a decision node 
specifies whether the test results meet prespecified thresholds. For example, 
as can be seen from Figure 27.1, suppose the first node (node A) is to make 
a decision whether the sponsor will take the compound through the devel-
opment process based on some studies conducted prior to node A. If the 
decision is “go,” then we move to leaf node A1, which identifies the studies 
to be conducted prior to moving to node B. If the decision is “no-go with cur-
rent information,” then we move to leaf node A2, which outlines additional 
studies required for further evaluation of the compound prior to moving to 
node B or node S (stop). If the decision is “no-go,” we move to node S and 
stop the development of the compound.

More specifically, let Sijk denote the kth study to be conducted under the 
jth decision made at the ith decision node, i = A,â•›B,â•›…; j = 1,â•›2,â•›3 (stop); k = 
1,â•›…,â•›nij. Note that at decision node A, there are K studies that have been 
conducted, denoted by S0k, k = 1,â•›…,â•›K. Based on the results of S0k, k = 1,â•›…,â•›K, 
the sponsor will then make a decision at decision node A by checking the 
results with some prespecified thresholds at the leaf nodes. Let Tijk and Cijk 
be the test statistic and the corresponding threshold for the kth study under 
the jth decision made at the ith decision node, i = A,â•›B,â•›…; j = 1,â•›2,â•›3 (stop); 
k = 1,â•›…,â•›nij, respectively. A study is considered to have a positive result if 
P{T > C} < 0.05, where T and C are the test statistic and the corresponding 
critical value. As indicated in the previous subsection, a simple approach 
is to consider the criterion based on the proportion of positive results. 

A

Go

Additional studies
required

Go

BB Stop

Stop

No-go

No-go

Studies conducted

Study SA11, SA12, ..., SA1nA1

Study SA21, SA22, ..., SA2nA2

Study S01, S02, ..., S0k

A1 A2

Decision of the compound

FIGURE 27.1
An example of decision tree.
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For example, if the proportion of studies with positive results is greater than 
75%, we then proceed to the next phase of clinical development. On the other 
hand, if the proportion of positive studies is between 50% and 75%, we may 
conduct additional studies for further evaluation before proceeding to the 
next phase of development. If the proportion of studies with positive results 
is less than 50%, the sponsor may consider stopping the development of the 
test treatment under investigation. Thus, if the test results from the K stud-
ies, i.e., S0k, k = 1,â•›…,â•›K, meet the criterion for proceeding, we will move to leaf 
node A1, which outlines the studies (i.e., SA1k, k = 1,â•›…,â•›nA1â•›) to be conducted 
before proceeding to the next decision node. If the test results from the K 
studies, i.e., S0k, k = 1,â•›…,â•›K, do not meet the criterion for proceeding but meet 
the criterion for further evaluation, we will move to leaf node A2, which out-
lines additional studies (i.e., SA2k, k = 1,â•›…,â•›nA2â•›) required to be conducted for 
further evaluation. In the case where the test results of the K studies, i.e., S0k, 
k = 1,â•›…,â•›K, fail to meet both the criteria for proceeding and opportunity for 
further evaluation, the development of the test treatment will stop.

As can be seen, the decision-tree approach for making a go/no-go decision 
is simple and easy to understand. However, there are relative advantages and 
limitations of the decision-tree method. The advantages of the decision-tree 
method include the following: (1) it is able to generate understandable rules, 
(2) it allows the sponsor to make decisions without requiring much compu-
tation, (3) it is able to handle both continuous and categorical variables, and 
(4) it provides a clear indication of which nodes (decision points) are most 
important for assuring the success of the development process. On the other 
hand, the limitations of the decision-tree method include the following: (1) it 
is less appropriate for estimation tasks where the goal is to predict the value 
of a continuous attribute, (2) it is prone to errors in decision making with 
many classes and relatively small number of studies to be conducted at spe-
cific phases of development, and (3) the process of growing a decision tree 
can be computationally expensive.

It should be noted that a more complicated decision-tree approach with 
different rules and criteria may be applied at the leaf nodes and the decision 
nodes. Statistical properties of the decisions made in the decision tree should 
be carefully evaluated for providing accurate and reliable decisions when 
making go/no-go decisions.

27.2.3  �An Example

A pharmaceutical company would like to assess the POS of one of their 
promising compounds under development. The company first determines 
the target product profile of the compound, which will be based on the 
POS assessment. The promising compound is intended for the treatment 
of choice for the reduction of psychotic symptoms in dementia (e.g., Lewy 
body, Alzheimer’s, Parkinson’s, and other dementias). For this promising 
compound, it is expected that (1) the efficacy of the compound is at least 
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equal to that of competitors for the treatment of psychotic symptoms, (2) the 
compound is superior to that of competitors for treating the constellation of 
associated symptoms such as depression, and (3) the compound is superior 
to that of competitors in safety and tolerability such as rapid titration and 
risk of tardive dyskinesia. The ultimate goal is not only to restore functional-
ity and delay progression to associated living (e.g., nursing home) but also to 
reduce caregiver burden and overall health-care cost.

Under the prespecified target product profile and ultimate goal of the promis-
ing compound, the company then identifies the critical phases of clinical devel-
opment as phase Ia, phase Ib, phase IIa, phase IIb, and phase III. Under each 
identified critical phase of clinical development, the POS is assessed using the 
methods described above. As an example, consider the POS assessment of phase 
IIa. The company first identifies the sub-hurdles for the assessment of the overall 
POS of phase IIa. For example, the sub-hurdles at phase IIa of clinical develop-
ment may involve the conduct of clinical studies for the assessment of (1) clinical 
efficacy and (2) safety and tolerability. Thus, in order to assess the overall POS, 
the company would assess the POS of the sub-hurdles based on some prespeci-
fied minimum success and target outcome. The minimum success is usually 
defined as the minimum criteria necessary to continue to the next phase of clini-
cal development. For example, for the sub-hurdle of clinical efficacy (or dem-
onstration of proof of concept), the minimum success could be the statistically 
significant efficacy in the control of delusions and hallucinations as compared 
to the placebo. The target outcomes could be the same as the minimum, with 
superior efficacy in the control of sleep, depression, and cognitive symptoms.

Now based on the predefined minimum of success and target outcome, 
the sub-hurdles POS can be assessed. Suppose that the sub-hurdles for 
(1) clinical efficacy and (2) safety and tolerability are determined to be 80% 
and 90%, respectively. Then the overall POS for phase IIa can be deter-
mined as 72% (see Figure 27.2).

Safety and tolerability
success

90%

90%

10%
72%

20%

80%

Stop = 0; P= 0.2

Stop = 0; P= 0.08

Go = 1; P= 0 .72

Safety and tolerability
failure

Demonstration POC
failure

Demonstration POC
success

FIGURE 27.2
The assessment of overall POS at phase IIa. Note that Goâ•›=â•›1 means proceed to the next phase, 
while Stopâ•›=â•›1 indicates stop the development.
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27.3â•‡� POS Assessment

As indicated earlier, the pharmaceutical/clinical development process of a 
compound is a sequential process that consists of several phases of develop-
ment such as preclinical phase and phases I–III of clinical development. At each 
phase of development, a go/no-go decision is necessarily made. As discussed 
in the previous section, the go/no-go decision is usually made at each phase of 
development either based on a subjective evaluation, the simple approach, or a 
decision-tree approach. In this section, we attempt to study the assessment of 
the POS of the development process.

Let S1, S2,â•›…, and SK denote Stage 1, 2,â•›…, and K of the development process 
of a pharmaceutical compound, respectively. Also, let p1, p2,â•›…, and pK be the 
POS at Stage 1, 2,â•›…, and K, respectively. Thus, the POS can be obtained as

	 P P S P S S P S SK K( ) ( ) ( | ) ( | ),Success = −1 2 1 1�

where P(Si) is defined as the probability of observing a positive result at the 
ith stage. That is,

	 P S P T ni i i( ) ( , ),= positive |

where a positive result is referred to as the rejection of the null hypothesis of 
no treatment difference at the α level of significance and there is an 80% power 
for correctly detecting a clinically important difference δ, in which ni and Ti 
are the corresponding sample size and test statistic of the study conducted at 
the ith stage, where i = 1,â•›2,â•›…,â•›K. It should be noted that in practice, there may 
be more than one study conducted at the same stage. In other words, ni = nij 
and Ti = Tij, where j = 1,â•›2,â•›…,â•›Ji. In this chapter, for simplicity, we will consider 
the case where Ji = 1 for all i. For illustration purpose, Table 27.1 summarizes the 
POS of pharmaceutical development of a promising compound with various 
scenarios of success at the early stage of pharmaceutical development.

TABLE 27.1

POS for Pharmaceutical Development

P(S1) P(S2|S1) P(S3|S2) P(S4|S3) P(Success)

0.5 0.9 0.9 0.9 0.365
0.6 0.9 0.9 0.9 0.437
0.7 0.9 0.9 0.9 0.510
0.8 0.9 0.9 0.9 0.583
0.9 0.9 0.9 0.9 0.656
0.95 0.9 0.9 0.9 0.693

Note:	 Si indicates the ith stage of pharmaceutical 
development.
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As can be seen from Table 27.1, the POS at the early stage of clinical 
development is critical. If the POS at the early stage is less than 70%, we may 
have an overall POS less than 50% even if the POS at subsequent stages of 
clinical development are as high as 90%.

In practice, it is of interest to perform a cost-effective analysis under the 
constraints of a fixed budget

	 C C C CK= + + +1 2 � ,

where C1,â•›C2,â•›…, and CK are the associated cost at S1, S2,â•›…, and SK, respec-
tively. It is of interest to know what is the impact on the POS if we increase 
the sample size n1 (i.e., put more investment in the early stage). It is also of 
interest to study the impact of an inaccurate assessment of pi at the ith stage. 
Note that we may kill the project if the POS falls below a prespecified 
confidence level (say 70%) at any stage.

Suppose that at each Stage i, hypothesis testing is relevant with the signifi-
cance level fixed as α, i = 1,â•›…,â•›K. Let pi be the observed conditional p-value 
at Stage i. Let ni be the sample size needed at Stage i to detect a preselected 
known relative effective size di at Stage i with a conditional power of γi 
(conditional on rejecting the null hypotheses at all the previous stages, that 
is, pk ≤ α for all k = 1,â•›…,â•›i − 1). Write γ = (γ1, γ2,â•›…, γK)′, then ni is a function of 
γ, denoted by ni = ξ i(γ). The POS (when the compound is indeed effective with 
the prespecified effective size di), as a function of γ, is

	
P H i

i

K

(Success) = =
=

∏( ) .γ γ
1

Let Ci be the cost for each experiment unit at Stage i, then the total cost is

	
C C n Ci i

i

K

i i

i

K

( ) ( ).γ ξ γ= =
= =
∑ ∑

1 1

The problem of maximizing the chance of success under a fixed total budget 
C is mathematically equivalent to maximizing H(γ) in the above equation 
under the constraints of C(γ) = C. This can be done by applying, for example, 
the Lagrange multiplier method.

27.4â•‡� Concluding Remarks

In the pharmaceutical industry, it is common practice to conduct an exercise 
to prospectively assess the POS of promising compounds under investiga-
tion. Although the assessment of the POS does provide a guide as to which 
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promising compound should be developed first, it may lead to a compound 
which is shown to be ineffective at a later phase of clinical development. 
Consequently, all of the efforts and investments are wasted. To improve 
accuracy and reliability of the assessment of the POS, it is suggested that 
more information or studies (i.e., more investment) should be conducted to 
obtain a more accurate and reliable estimate of the POS at the early stages 
of development. In practice, since the investment at the early phase of clinical 
development is usually very limited as compared to that of the later phase 
of clinical development, it is of interest to study the impact of an increasing 
investment (i.e., conduct more studies or increase sample size for obtaining 
more information) on the assessment of the POS.

In the pharmaceutical industry, the sponsor always puts less emphasis on 
the early phase of clinical development of a promising compound. However, a 
go/no-go decision is usually made at the early phase of clinical development. 
As a result, the establishment of criteria for making a go/no-go decision early 
and the assessment of POS have become common practice in the pharmaceuti-
cal industry. The studies conducted at the early phase of clinical development 
are usually small. Thus, one of the controversial issues regarding making a 
go/no-go decision at the early phase of development concerns the accuracy and 
reliability of the go/no-go decision based on the limited information available. 
In the pharmaceutical/clinical development, although it is desirable to shorten 
the development process by making a go/no-go decision as early as possible, it 
is not desirable to either wrongly bring an ineffective compound through the 
development process or kill a promising compound early. In practice, it is very 
likely that we may kill a promising compound before it shows positive results 
if we make a go/no-go decision early. There is always a risk to make a decision 
early based on the limited information available.

Another controversial issue is related to the false-positive rate and/or 
false-negative rate of the go/no-go decision. What is the chance that the 
observed positive result is by chance alone and hence is not reproducible? 
Note that false-positive rate and false-negative rate represent patient’s 
risk and sponsor’s risk, respectively. In addition, it is of particular inter-
est to the sponsor as to “how the go/no-go decision relates to the POS 
of the development process?” In practice, only a handful of promis-
ing compounds will make it to the early phase of clinical development. 
Among these promising compounds, only one or two will gain regulatory 
approval and reach the marketplace. It is of interest to the investigator as 
to what the POS of a promising compound with a “go” decision at the early 
phase of development is.

As can be seen from Table 27.1, the POS at the early phase of development 
has a significant impact on the POS of the development process. Thus, it is 
suggested that more resources be put at the early phase of development in 
order to (1) increase the accuracy and reliability when making a go/no-go 
decision, (2) decrease both the false-positive rate and the false-negative rate, 
and (3) increase the POS of the development process.
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