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Preface

In pharmaceutical/clinical development of a test drug or treatment, relevant
clinical data are usually collected from subjects with the diseases under
study in order to evaluate the safety and efficacy of the test drug or treatment
under investigation. It is necessary to conduct well-controlled clinical trials
under a valid study design to provide an accurate and reliable assessment.
A clinical trial process is a lengthy and costly process but is nevertheless
necessary to ensure a fair and reliable assessment of the test treatment under
investigation. It consists of protocol development, trial conduct, data collec-
tion, statistical analysis/interpretation, and reporting. In practice, controver-
sial issues inevitably occur regardless of the compliance with good statistical
practice (GSP) and good clinical practice (GCP). Controversial issues are basi-
cally debatable issues that are commonly encountered during the conduct
of clinical trials. In practice, these issues could be raised from, but are not
limited to, (1) compromises between theoretical and real/common practices;
(2) miscommunication and/or misunderstanding in perception/interpreta-
tion among regulatory agencies, clinical scientists, and biostatisticians; and
(3) disagreement, inconsistency, miscommunication/misunderstanding, and
errors in clinical practice.

In clinical trials, commonly seen controversial issues include, but are not
limited to, (1) appropriateness of traditional statistical hypotheses (which
primarily focus on efficacy) for the clinical evaluation of both efficacy and
safety, (2) the instability of classical sample size calculation based on infor-
mation from a small pilot study, (3) the integrity of randomization and blind-
ing, (4) clinical strategies for selecting an appropriate endpoint from some
endpoints that are derived based on data collected from the same patient
population, (5) the impact of major protocol amendments that may have
resulted in a population shift, (6) the feasibility/applicability of the use of
adaptive design methods in clinical trials, (7) issues of multiplicity in clinical
trials, (8) the independence of the independent data monitoring committee
(IDMC), (9) the determination of non-inferiority margin in active control (or
non-inferiority) trials, and (10) the assessment of the probability of success
in clinical development. In this book, we will post these controversial issues
rather than provide resolutions. Other practical and/or controversial issues
are also briefly described. The impact of these issues on the evaluation of
the safety and efficacy of the test treatment under investigation is discussed
with examples whenever applicable. Recommendations regarding possible
resolutions of these issues are also provided whenever possible. It is our goal
that regulatory agencies, clinical scientists, and biostatisticians should (1) pay
attention to these issues, (2) identify the possible causes, (3) resolve/correct
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the issues, and, consequently, (4) enhance good statistical/clinical practices
for achieving the study objectives of the intended clinical trials.

This book is intended to be the first book entirely devoted to the discus-
sion of controversial issues in clinical trials. It covers controversial issues
that are commonly encountered at various stages of clinical research and
development, including bench-to-bedside translational research. It is our
goal to provide a useful desk reference and state-of-the art examination of
controversial issues in clinical trials to (1) scientists who are engaged in clini-
cal research and development, (2) statistical and/or medical reviewers from
regulatory agencies who have to make decisions on the evaluation/approval
of test treatments under investigation, and (3) biostatisticians who provide
statistical support for the design and analysis of clinical trials or related proj-
ects. We hope that this book can serve as a bridge among scientists from
the pharmaceutical industry, medical/statistical reviewers from government
regulatory agencies, and researchers from academia.

The scope of this book is restricted to controversial issues that are com-
monly seen in clinical development including early-phase clinical devel-
opment such as bioavailability/bioequivalence and bench-to-bedside
translational research. This book consists of 27 chapters. Chapter 1 provides
a background on pharmaceutical/clinical research and development and
describes some commonly seen controversial issues in clinical research.
Chapter 2 emphasizes the importance of GSP in clinical research and devel-
opment. In Chapter 3, some controversial issues that are commonly seen in
bench-to-bedside translational research are discussed. Chapter 4 discusses
practical issues encountered during the assessment of bioequivalence.
Chapter 5 introduces composite hypotheses for the clinical evaluation of effi-
cacy and safety simultaneously. Chapter 6 examines the instability of sam-
ple size calculation/justification based on data obtained from a small pilot
study. Chapter 7 discusses tests for the integrity of randomization/blind-
ing while Chapter 8 attempts to provide some insight into clinical strategies
for the selection of an appropriate endpoint for the assessment of treatment
effect. Chapter 9 studies the impact of major protocol amendments that have
caused population shifts during the conducting of clinical trials. Chapter 10
investigates the feasibility/applicability for the use of adaptive design meth-
ods in clinical trials. Chapter 11 discusses the issue of multiplicity in clini-
cal trials. Chapter 12 challenges the independence of an IDMC. Chapter 13
studies the impact of analysis results under an incorrect model (e.g.,, data
collected under a one-way analysis of variance model but analyzed using a
two-way analysis of variance model).

Chapter 14 reviews some performance characteristics for the validation of a
subjective instrument (questionnaire) to assess the clinical benefit of the test
treatment under investigation such as quality-of-life assessment. Chapter 15
provides a summary of statistical methods for missing data imputation in
clinical trials. Chapter 16 compares several approaches for center group-
ing for clinical trials with a number of small centers. Chapter 17 provides a
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summary of statistical methods for determining the non-inferiority margin
in non-inferiority (active-control) trials. In Chapter 18, design and analysis
for QT/QTc studies with recording replicates for the assessment of cardio-
toxicity in terms of QT/QTc prolongation are reviewed. Chapter 19 discusses
some practical issues that are commonly encountered in multiregional (mul-
tinational) clinical trials. Chapter 20 compares commonly considered dose
escalation trial designs in cancer trials such as algorithm-based traditional
escalation rule (TER) and model-based continual reassessment method
(CRM) trial designs. Chapter 21 focuses on the enrichment process in target
clinical trials. Chapter 22 discusses basic concepts and principles for conduct-
ing clinical trial simulation. Chapter 23 provides an outline of fundamental
differences between Western medicine and traditional Chinese medicine.
Chapter 24 discusses practical issues encountered during the assessment of
biosimilarity between follow-on biologics (FOB). Chapter 25 deals with the
calculations of the probabilities of generalizability and reproducibility of a
given clinical trial based on the observed clinical data of the clinical trial.
Chapter 26 provides a review of good regulatory practices, especially the
good review practice (GRP) published by the Center for Drug Evaluation and
Research (CDER) at the United States Food and Drug Administration (FDA).
Chapter 27 evaluates the probability of success for the pharmaceutical and/or
clinical development of a test treatment under investigation. In each chap-
ter, examples and possible recommendations and/or resolutions are pro-
vided whenever possible.

I would like to thank David Grubbs from Taylor & Francis for providing
me the opportunity to work on this book. I would also like to thank my
colleagues from the Department of Biostatistics and Bioinformatics, Duke
Clinical Research Institute (DCRI), Duke Clinical Research Unit (DCRU),
and Center for AIDS Research (CFAR) of Duke University School of Medicine
for their support during the preparation of this book. I wish to express my
gratitude to the following individuals for their encouragement and support:
Robert Califf, MD, Robert Harrington, MD, and Ralph Corey, MD, of DCRI;
John Sundy, MD, PhD of DCRU; Ken Weinhold, MD, of CFAR; John Rush,
MD, of Duke-NUS; and Liz DeLong, PhD, of the Department of Biostatistics
and Bioinformatics, Duke University School of Medicine, as well as many
friends from academia, the pharmaceutical industry, and regulatory agen-
cies such as U.S. FDA and EU EMEA.

Finally, the views expressed are mine and not necessarily those of Duke
University School of Medicine. I am solely responsible for the contents and
errors of this book. Any comments and suggestions will be very much
appreciated.

Shein-Chung Chow, PhD
Duke University School of Medicine
Durham, North Carolina
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Introduction

1.1 Introduction

In the past several decades, it has been recognized that increasing spending
for biomedical research does not reflect an increase in the success rate of phar-
maceutical (clinical) development. Woodcock (2005) indicated that the low
success rate of pharmaceutical development could be due to (1) a diminished
margin for improvement that escalates the level of difficulty in proving drug
benefits, (2) genomics and other new sciences have not yet reached their full
potential, (3) mergers and other business arrangements have decreased can-
didates, (4) easy targets are the focus as chronic diseases are harder to study,
(5) failure rates have not improved, (6) rapidly escalating costs and complex-
ity decrease the willingness/ability to bring many candidates forward into
the clinic. In the early 2000s, the U.S. Food and Drug Administration (FDA)
kicked off a Critical Path Initiative to assist the sponsors in identifying the
scientific challenges underlying the medical product pipeline problems. In
its 2004 Critical Path Report, the FDA presented its diagnosis of the scientific
challenges underlying the medical product pipeline problems.

On March 16, 2006, the FDA released a Critical Path Opportunity List
that outlines six broad topic areas, which include 76 initial projects to
bridge the gap between the quick pace of new biomedical discoveries and
the slower pace at which those discoveries are currently being developed
into therapies. These six broad topic areas include (1) better evaluation
tools, (2) streamlining clinical trials, (3) harnessing bioinformatics, (4) mov-
ing manufacturing into the twenty-first century, (5) developing products
to address urgent public health needs, and (6) specific at-risk populations
such as pediatrics. In this book, we will focus on the second broad topic
area of streamlining clinical trials, which includes (1) design of active con-
trolled trials, (2) enrichment designs, (3) use of prior experience or accu-
mulated information in trial design, (4) development of best practices for
handling missing data, (5) development of trial protocols for specific thera-
peutic areas, and (6) analysis of multiple endpoints. The first topic for the
design of active controlled trials has led the research for design and statis-
tical methodology development for non-inferiority trials. The enrichment
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designs have stimulated research for using biomarkers in the enrichment
process of target clinical trials for achieving the ultimate goal of person-
alized medicine. The recommendation for the use of prior experience or
accumulated information in the trial design has provoked tremendous
discussion for the use of adaptive methods in clinical trials and the use of
the Bayesian approach in drug research and evaluation. The encourage-
ment for the development of best practices for handling missing data has
triggered (1) the study of the validity of the commonly used method of
last observation carry forward (LOCF) and (2) research for the methodology
development of missing data imputation (see, e.g.,, NRC, 2010). The last
topic of analysis of multiple endpoints has attracted much attention on the
issue of multiplicity in clinical trials.

In pharmaceutical/clinical research and development, clinical trials are
necessarily conducted for the evaluation of the efficacy and safety of the test
treatment under investigation. In practice, the clinical trial process involves
(1) protocol development, (2) conduct of clinical trial, analysis, and interpreta-
tion, and (3) regulatory review and approval. For a given clinical trial, good
clinical practice (GCP) and good statistics practice (GSP), which is the founda-
tion of GCP, are key to the success of the intended clinical trial. GSP and GCP
ensure the validity and integrity of the clinical data collected from the clini-
cal trial. In clinical trials, controversial issues inevitably occur regardless of
whether the clinical trial process is in compliance with both GCP and GSP. In
this book, controversial issues in clinical trials are referred to as debatable issues
that are commonly encountered while conducting clinical trials. Controversial
issues could be raised from, but are not limited to, (1) compromises between
theoretical and real/common practices, (2) miscommunication and/or misun-
derstanding in perception/interpretation among regulatory agencies, clinical
scientists, and biostatisticians, and (3) disagreement, inconsistency, miscom-
munication/misunderstanding, and errors in clinical practice.

In Section 1.2, the process of pharmaceutical development including
nonclinical, preclinical, and clinical development is briefly outlined. Some
commonly seen controversial issues are briefly described in Section 1.3. The
aim and structure of the book are given in the last section.

1.2 Pharmaceutical Development

As pointed out by Chow and Shao (2002) and Chow and Liu (2004), pharmaceu-
tical development is a lengthy and costly process to ensure the safety and effi-
cacy of the drug products under investigation before they can be approved by
the regulatory agencies for use in humans. In addition, this lengthy and costly
development process is necessary to assure that the approved drug product
will possess some good drug characteristics such as identity, purity, quality,
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strength, stability, and reproducibility. A typical pharmaceutical develop-
ment process involves drug discovery, formulation, laboratory development,
animal studies for toxicity, clinical development, and regulatory submission/
review and approval. Pharmaceutical development is a continual process that
can be classified into three phases of development, namely, nonclinical devel-
opment (e.g., drug discovery, formulation, laboratory development, scale-up,
manufacturing process validation, stability, and quality control/assurance),
preclinical development (e.g., animal studies for toxicity, bioavailability and
bioequivalence studies, and pharmacokinetic and pharmacodynamic stud-
ies), and clinical development (e.g., phases I-1II clinical trials for the assess-
ment of safety and efficacy). These phases may occur in sequential order or
be overlapped during the development process. To provide a better under-
standing of the pharmaceutical development process, these critical phases of
pharmaceutical development are briefly outlined in the following sections.

1.2.1 Nonclinical Development

Nonclinical development includes drug discovery, formulation, laboratory
development such as analytical method development and validation, (manu-
facturing) process validation, stability, statistical quality control, and quality
assurance (see, e.g.,, Chow and Liu, 1995). Drug discovery usually consists of
the phases of drug screening and drug lead optimization. In the drug screen-
ing phase, the mess compounds are screened to identify those that are active
from those that are not. Lead optimization is a process of finding a compound
with some advantages over related leads based on some physical, chemical,
and/or pharmacological properties. In practice, the success rate for identify-
ing a promising active compound is usually relatively low. As a result, there
may be a few compounds that are identified as promising active compounds.

The purpose of formulation is to develop a dosage form (e.g., tablets or
capsules) such that the drug can be delivered to the site of action efficiently.
For laboratory development, an analytical method is necessarily developed
to quantitate the potency (strength) of the drug product. Analytical method
development and validation play an important role in quality control and
quality assurance of the drug product. To ensure that a drug product will
meet the U.S. Pharmacopeia and National Formulary (USP/NEF, 2000) stan-
dards for the identity, strength, quality, and purity of the drug product, a
number of tests such as potency testing, weight variation testing, content
uniformity testing, dissolution testing, and disintegration testing are usu-
ally performed at various stages of the manufacturing process. These tests
are referred to as USP/NF tests. At the same time, stability studies are usu-
ally conducted to characterize the degradation of the drug product over
time under appropriate storage conditions. Stability data can then be used to
determine drug expiration dating period (or drug shelf life) as it is required
by the regulatory agency to be indicated in the immediate label of the con-
tainer (Chow, 2007b).
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After the drug product has been approved by the regulatory agency for use
in humans, a scale-up program is usually carried out to ensure that a pro-
duction batch can meet USP/NF standards for the identity, strength, quality,
and purity of the drug before a batch of the product is released to the market.
The purpose of a scale-up program is not only to identify, evaluate, and opti-
mize critical formulation and/or (manufacturing) process factors of the drug
product but also to maximize or minimize the excipient range. A successful
scale-up program can result in an improvement in formulation/process or
at least a recommendation on a revised procedure for formulation/process
of the drug product. During nonclinical development, the manufacturing
process is necessarily validated in order to produce drug products with good
drug characteristics such as identity, purity, strength, quality, stability, and
reproducibility (Bergum, 1988). Process validation is important in nonclini-
cal development to ensure that the manufacturing process does what it pur-
ports to do.

1.2.2 Preclinical Development

The primary focus of preclinical development is to evaluate the safety of
the drug product through in vitro assays and animal studies. In general,
in vitro assays or animal toxicity studies are intended to alter the clinical
investigators to the potential toxic effects associated with the investigational
drugs so that those effects may be watched for during the clinical investi-
gation. Preclinical testing involves dose selection, toxicological testing for
toxicity and carcinogenicity, and animal pharmacokinetics. For selection of
an appropriate dose, dose response (dose ranging) studies in animals are
usually conducted to determine the effective dose, such as the median effec-
tive dose (EDs). Preclinical development is critical in the pharmaceutical
development process because it is not ethical to investigate certain toxicities
such as the impairment of fertility, teratology, mutagenicity, and overdose in
humans (Chow and Liu, 1998a). Animal models are then used as a surrogate
for human testing under the assumption that they can be predictive of clini-
cal outcomes in humans.

Following the administration of a drug, it is also important to study the
rate and extent of absorption, the amount of drug in the bloodstream that
hence becomes available, and the elimination of the drug. For this purpose,
a comparative bioavailability study in humans is usually conducted to char-
acterize the profile of the blood or plasma concentration-time curve by
means of several pharmacokinetic parameters such as area under the blood
or plasma concentration-time curve (AUC), maximum concentration (C,,),
and time to achieve maximum concentration (f,,,,) (Chow and Liu, 2000a). It
should be noted that the identified compounds will have to pass the stages
of nonclinical/preclinical development before they can be used in humans.
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1.2.3 Clinical Development

Clinical development in the development of a pharmaceutical entity is to sci-
entifically evaluate benefits (e.g., efficacy) and risks (e.g., safety) of promising
pharmaceutical entities at a minimum cost and within a relatively short time
frame. As indicated by Chow and Liu (2004), approximately 75% of phar-
maceutical development is devoted to clinical development and regulatory
registration. In a set of new regulations promulgated in 1987 and known as
the investigational new drug (IND) Rewrite, the phases of clinical investiga-
tion adopted by the FDA since the late 1970s is generally divided into three
phases (see, e.g., Part 21 Code of Federal Regulations, 312.21). These phases
of clinical investigation are usually conducted sequentially but may overlap.

The primary objective of phase I is not only to determine the metabolism
and pharmacological activities of the drug in humans, the side effects associ-
ated with increasing doses, and the early evidence on effectiveness, but also
to obtain sufficient information about the drug’s pharmacokinetics and phar-
macological effects to permit the design of well-controlled and scientifically
valid phase II studies. The primary objectives of phase II studies are not only
to first evaluate the effectiveness of a drug based on clinical endpoints for a
particular indication or indications in patients with the disease or condition
under study, but also to determine the dosing ranges and doses for phase III
studies and the common short-term side effects and risks associated with
the drug. Note that some pharmaceutical companies further differentiate
phase II into phases Ila and IIb. For example, clinical studies designed to
evaluate dosing are referred to as phase Ila studies, while studies designed
to determine the effectiveness of the drug are called phase IIb. In some cases,
clinical studies based on clinical endpoints are considered phase IIb stud-
ies. The primary objectives of phase III studies are (1) to gather additional
information about the effectiveness and safety needed to evaluate the overall
benefit-risk relationship of the drug and (2) to provide an adequate basis for
physician labeling. Note that studies conducted after regulatory submission
before approval are generally referred to as phase IIIb studies.

In addition to these three phases of clinical development, many pharma-
ceutical companies consider performing studies after a drug is approved for
marketing called phase IV studies. The purpose for conducting phase IV
studies is to elucidate further the incidence of adverse reactions and deter-
mine the effect of a drug on morbidity or mortality. In addition, a phase IV
trial may be conducted to study a patient population not previously studied,
such as children. In practice, phase IV studies are usually considered use-
ful market-oriented comparison studies against competitors such as qual-
ity-of-life studies. As indicated by Chow and Shao (2002), in practice, it is
estimated that about 1 in 8 to 10 x 10° compounds screened may finally reach
the phase of clinical development for human testing. The probability of suc-
cess for those compounds that reach clinical development is relatively low.
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As aresult, a thoughtful clinical development plan is necessary to ensure the
success of the development of a promising pharmaceutical entity.

In practice, phases I and II are considered early-phase clinical development,
while phases IIland IV are viewed as later-phase clinical development. However,
in the pharmaceutical industry, some pharmaceutical companies consider
clinical studies up to phase Ila as early-phase clinical development. Phase I
clinical investigation provides an initial introduction of an IND to humans.
Phase I clinical investigation includes studies of drug metabolism, bioavail-
ability, dose ranging, and multiple doses. Phase I studies usually involve 20-80
normal volunteer subjects or patients. In several therapeutic areas, patients
with the diseases are subjects rather than healthy volunteers. This tradition is
strongest in oncology because many cytotoxic agents cause damage to DNA.
For similar reasons, many anti-AIDS drugs are not tested initially in healthy
subjects. It should be noted that some categories of drugs such as neurophar-
macology may have an acclimatization or tolerance aspect, which makes them
difficult to study in healthy subjects. For phase I clinical investigation, FDA’s
review focuses on the assessment of safety. Therefore, extensive safety infor-
mation such as detailed laboratory evaluations is usually collected at very
extensive schedules. A typical phase I design for tolerability and safety is a
dose escalation trial design in which successive groups (cohorts) of patients are
given successively higher doses of the treatment until some of the patients in a
cohort experience unacceptable side effects. In most phase I trials of this kind,
there are—three to six patients in each cohort. The starting dose at the first
cohort is usually rather low. If unacceptable side effects are not seen in the first
cohort, patients in the next cohort will receive a higher dose. This continues
until a dose is reached at which it is too toxic for some patients (say one out of
three). Then, the previous dose level is considered to be the maximum toler-
ated dose (MTD). It should be noted that MTD usually is the most effective
dose, which is often chosen as the optimal dose for phase II studies in prac-
tice. Also, as indicated by the FDA, phase I studies are usually less detailed
and more flexible than for subsequent phases, and therefore adaptive (flexible)
designs are usually considered.

Phase II studies are the first controlled clinical studies of the drug under
investigation. Phase II studies usually involve not more than several hun-
dred patients. A commonly employed study design for a phase II study is
a randomized, parallel group (either a placebo-control or an active-control)
study. Patients will be randomly assigned to either of the treatment groups to
receive the dose determined in the prior phase I study. Many phase II trials,
however, are conducted in two stages. The idea is to stop the trial as soon as
it can be known that the treatment is ineffective. On the other hand, we wish
to continue the trial if the treatment has shown to be effective. In a two-stage
design, after a predetermined number of patients have been treated, the trial
is paused and the response rate (RR) is evaluated. If the RR is less than a pre-
specified minimum goal (undesirable RR), it is concluded that the treatment
is not worth pursuing and the trial is stopped. Otherwise, the trial continues
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and additional patients are enrolled to permit determination of the RR for
achieving desired accuracy with certain statistical power. It should be noted
that if the trial has reached the second stage, it indicates that at least some of
the patients are responding to the treatment though the RR could still be low
at the first stage.

1.3 Controversial Issues

In clinical development, the success of a well-controlled clinical trial relies
on both clinical operation and statistical operation. Clinical operation is
responsible for (1) the involvement of protocol development, (2) site manage-
ment including selecting qualified study sites, and patient recruitment, (3)
Institutional Review Board review, (4) conducting/monitoring of the trial,
(5) protocol amendments, and (6) data management. On the other hand, sta-
tistical operation is responsible for (1) evaluation of alternative study designs
for achieving the study objectives of the intended trial, (2) setting up appro-
priate (statistical) hypotheses according to study objectives, (3) performing
a pre-study power analysis for sample size calculation based on primary
study endpoint, (4) preparing statistical section for inclusion in the study
protocol including randomization model/method with blinding proce-
dure for preventing potential bias, (5) clinical strategy for endpoint selec-
tion and development of appropriate statistical methods for data analysis,
(6) addressing possible statistical impact on protocol amendments, (7) pro-
viding support to an established independent data safety monitoring com-
mittee (IDMC) (if applicable) to ensure the validity, integrity, and safety of
the intended clinical trials, and (8) interaction with regulatory agencies for
feasibility and applicability of the use of adaptive design methods in clinical
trials (if applicable). During the conduct of a clinical trial, some controversial
issues are commonly encountered regardless of the compliance of GSP and
GCP. These controversial issues will not only have an influence on the valid-
ity of statistical analysis for providing a fair and unbiased assessment of the
treatment under investigation, but also have an impact on the probability of
the success for bringing promising compounds or innovative therapies into
the marketplace. In the subsequent sections, these controversial issues that
are commonly encountered are briefly described.

Drugrecall/withdrawal: A commonly asked question in pharmaceutical/clin-
ical development is “Why did a newly approved drug product get recalled or
withdrawn (usually due to safety concern) after a lengthy and costly process
of pharmaceutical/clinical development?” Subsequent questions include the
following: (1) Is the current drug review/approval process adequate? (2) Is
the observed safety issue which led to the recall/withdrawal of the drug
product by chance alone? (3) Are the trial design, data management, and
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programming and statistical methods employed for data analysis valid? (4)
Are the clinical data interpreted correctly? (5) Did the regulatory submission
contain all of the information regarding efficacy/safety and good drug char-
acteristics of identity, purity, quality, strength, stability, and reproducibility?
In practice, there may exist no definite answers to any of these questions. In
this book, we intend to provide some insights in some chapters, which may
be useful to revisit these questions.

One-fits-all criterion: For approval of generic drug products, most regula-
tory agencies including the FDA require that evidence of average BE in terms
of the extent and rate of drug absorption, which are measured by AUC and
Chax be provided. The FDA requires that the 90% confidence interval for
the ratio of means (e.g,, AUC) be totally within the BE limits (80%, 125%)
for claiming BE. This one-fits-all criterion is applicable to all drug products
across therapeutic areas regardless of narrow/wide therapeutic index and/or
intra-subject variability. One of the controversial issues that is frequently
challenged by clinical scientists is “What if we fail to meet the BE limits by
a relatively small margin?” This is similar to the question “What is the dif-
ference between a p-value of 049 (pass) and a p-value of 0.51 (fail) in clini-
cal trials?” In addition, the following questions are often asked: (1) Can an
approved generic drug product reach a similar therapeutic effect of the inno-
vative drug product—what is the compromise between scientific validity and
regulatory consideration? (2) Can all of the approved generic drug products
be used interchangeably (drug interchangeability in terms of drug prescrib-
ability for new patients and drug switchability for current patients)? (3) What
if a BE study meets the BE criterion based on the raw data but fails to meet
the BE criterion based on log-transformed data (current FDA requirement) or
vice versa? (4) What if AUC meets the BE criterion but C,,, fails? More details
and discussions of the above controversial issues are given in Chapter 4.

Lost-in-translation: One of the major concerns in bench-to-bedside transla-
tional research is probably the appropriateness of the one-way translational
process from basic drug discovery to clinical outcome. The most commonly
asked question is “Is an animal model (or in vitro activity) predictive of the
human model (or in vivo activity)?” or “Does an in vitro—in vivo correlation
exist?” Under the one-way translational process from bench to bedside, what
is the potential lost-in-translation? The possibility that a significant lost-in-
translation from bench to bedside could lead to the failure of the clinical trial
despite the test treatment is in fact promising. As a result, it is suggested
that a two-way translational process between bench (basic drug discovery)
and bedside (clinical application) be considered for the improvement of the
pharmaceutical/clinical development of a test treatment under investigation.
More details can be found in Chapter 3.

Instability of sample size: In practice, sample size calculation/justification is
usually performed based on the information obtained from previous studies or
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a small pilot study. It is, however, of concern whether the selected sample size
can achieve statistical significance with a desired power for correctly detecting
a clinically meaningful difference at a prespecified level of significance. One of
the controversial issues regarding sample size calculation is why the selected
sample size does not guarantee the success of the intended clinical trials? In
addition, Why sample size reestimation is recommended? For a given clinical
trial, can we always start with a small number of subjects and then increase
the sample size later if necessary? Is this approach acceptable to regulatory
agencies? It should be noted that sample size calculation is usually performed
under certain assumptions that are closely related to the uncertainties of the
target patient population. Thus, the formula or procedure for sample size cal-
culation is very sensitive to assumptions of the study parameters. Any devia-
tions to the assumption could lead to instability of the estimated sample size.
The instability of the sample size in clinical trials is examined in Chapter 6.

Integrity of randomization/blinding: The purpose of randomization and
blinding in a double-blind randomized clinical trial is to prevent possible
biases that may be introduced during the conduction of the clinical trial.
However, because of human nature, both patients and investigators may guess
which treatment a patient receives. Thus, “Does the randomization/blinding
work in randomized double-blind studies?” is an interesting question to clini-
cal scientists. Chow and Shao (2004) proposed a method for testing the integ-
rity of blinding. This, however, raises the following controversial issues. First,
should a test for the integrity of blinding be performed at the end of the study?
Second, what action should be taken for those positive trials which fail to pass
the test for the integrity of blinding? Similarly, can the sponsor appeal if a
negative trial fails to pass the test for integrity of blinding? Finally, should the
clinical data that fail to pass the test for integrity of blinding be rejected for
clinical evaluation of the test treatment under investigation? For randomiza-
tion, the integrity of randomization can be tested in terms of the probability
of correctly guessing the treatment codes. For comparative clinical trials, a
blocking size of 2 or 4 is usually employed for the generation of randomization
schedules in order to maintain treatment balance. As a result, which blocking
size will give a higher probability of correctly guessing the treatment codes
right has become an interesting question in clinical trials. More details regard-
ing the integrity of randomization/blinding can be found in Chapter 7.

Clinical strategy for endpoint selection: In clinical trials, the sponsor
always seeks an appropriate study endpoint that can lead to or increase the
probability of success of the intended clinical trial. As a result, two major
controversial issues are raised. As an example, for cancer trials, the following
study endpoints are often considered: RR, time to disease progression (TTP),
and survival. Different study endpoints may exhibit different effect sizes,
which relate to overall clinical evaluation of the efficacy of the test treatment.
Williams et al. (2004) indicate that a cancer drug product could be approved
based either on RR, TTP, and survival alone or combinations of RR, TTP, and
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survival. One of the controversial issues is that there exists no gold standard
for the assessment of cancer drugs. As another example, for a given study
endpoint, when data are collected from clinical trials, the following derived
study endpoints are usually considered: (1) absolute changes from baseline,
(2) relative change from baseline, (3) responder defined based on absolute
change, (4) responder based on relative change, and (5) any combinations of
the above. Different derived study endpoints may lead to different conclu-
sions regarding the treatment effect, which has led to the controversial issue
“Which (derived) endpoint is telling the truth?” and “How these (derived)
endpoints translate one another?” In practice, it should be noted that regula-
tory agencies may prefer one derived endpoint over the other without scien-
tific justification. More discussions are given in Chapter 8.

Protocol amendments: Protocol amendments are commonly issued during the
conduct of the clinical trials for various reasons such as change in eligibility cri-
teria due to slow enrollment or modification of dose/dose regimen due to safety.
For a given clinical trial, it is not uncommon to have—three to five protocol
amendments during the conduct of the clinical trial. It is a concern that frequent
protocol amendments may cause a shift in the target patient population. A clini-
cal trial with frequent protocol amendments (with significant changes) could
result in a totally different trial that is unable to address the scientific/medical
questions the original trial is intended to address. Thus, one of the controver-
sial issues is “How many protocol amendments are allowed for a given clinical
trial?” Since, currently, there are no regulations on the protocol amendment, it
is suggested that regulatory guidelines/guidance on protocol amendment be
developed in order to maintain the integrity of the clinical trial. The impact of
protocol amendments on clinical outcomes is studied in Chapter 9.

Independence of IDMC: In recent years, an IDMC is often established for
clinical trials conducted in the later phases (e.g., phases IIb and III) of clinical
development. The intention of IDMC is good. However, the independence of
IDMC has been challenged. As a result, “Is an established IDMC really inde-
pendent?” has become a controversial issue in clinical trials. In practice, most
IDMCs do not communicate with regulatory agencies directly, while the
sponsor makes every attempt to influence the IDMC. The other controversial
issue is then whether the IDMC should have the authority to communicate
with regulatory agencies regarding serious misconduct or wrongdoing of
the clinical trial. Some observations that are commonly seen in the function/
activity of an IDMC are described in Chapter 12.

Multiplicity: One of the controversial issues in clinical trials that has attracted
much attention is probably the issue of multiplicity in clinical trials. It is not
clear to clinical scientists at to when and how adjustment for multiplicity in
clinical trials should be done for controlling the overall type I error rate at a
prespecified level of significance. It should be noted that the purpose of a clini-
cal trial is to detect a clinically meaningful difference for achieving statistical
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significance (i.e., the observed difference is not by chance alone and is repro-
ducible). Multiplicity refers to simultaneous statistical inference. Thus, one
should always refer to the null hypothesis of interest (i.e., scientific/medical
question) that one wishes to answer since the test statistic should be derived
under the null hypothesis. The derived test statistic is then evaluated under
the alternative hypothesis for achieving the desired power. Thus, the impact
on power after adjustment for multiplicity is also a great concern in practice.
Westfall and Bretz (2010) pointed out that the commonly encountered contro-
versial issues regarding multiplicity in clinical trials include (1) penalizing
for doing more or good job (i.e, performing additional test), (2) adjusting o
for all possible tests conducted in the trial, and (3) the family of hypotheses to
be tested. These controversial issues will be further discussed in Chapter 11.

Feasibility of seamless adaptive design: The use of adaptive design methods
in clinical trials has become very popular in recent years due to their flexibility
and efficiency for identifying any signals of safety and/or efficacy (preferably
optimal clinical benefit) of a test treatment under investigation. As indicated by
Chow and Chang (2006), there are several different types of adaptive designs
depending upon the nature of adaptations applied either before, during, or
after the conduct of a clinical trial. Among these adaptive designs is a two-stage
seamless adaptive design that combines two separate (independent) studies
(e.g., a phase IIb study and a phase III study) into a single study. Although the
application of a seamless adaptive design enjoys the advantages of (1) reducing
lead time between trials, (2) potential saving of the cost and resources, and (3)
increasing the efficiency and consequently the probability of success, there are a
few issues that remain unsolved. First, it is not clear how the overall type I error
can be controlled, especially when the study objectives and study endpoints at
different stages are different. Second, it is not clear whether the classic O’'Brien-
Fleming type of boundary is appropriate. Third, it is not clear how the data col-
lected from both stages can be combined for a final analysis. Even if the above
questions can be addressed, it is still a controversial issue whether the two-stage
seamless adaptive design is feasible, especially when there is a population shift
due to protocol amendments as described above.

Missing values imputation: In the past decade or two, when there were miss-
ing values, subjects with missing values were often excluded from the analy-
sis. In recent years, patients with missing values are included in the analysis
with imputed data in order to (1) fully utilize all information (even it is incom-
plete) collected from the trial and (2) increase power by imputing the missing
values based on some valid statistical methods. In clinical trials, the method of
LOCEF is often considered. The validity of LOCE however, has been challenged
by many researchers. Although the validity of LOCF is questionable, it is still
widely accepted in practice. Alternatively, many other methods for missing
data imputation are available, which include (1) mean imputation, (2) median
imputation, and (3) the method of regression analysis. One of the controversial
issues is “Can missing data imputation be applied if there is a large proportion
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of subjects with missing values?” Another controversial issue is the potential
impact on power when applying missing data imputation in clinical trials.

Non-inferiority margin: For clinical trials with life-threatening diseases
such as cancer, it is unethical to use a placebo-control when approved and
effective therapies are available. In this case, an active-control trial is often
considered. The purpose of such an active-control trial is to show that the
test treatment is at least as effective as the active-control agent or that it is
not worse than the active-control agent within a prespecified margin, which
is usually referred to as a non-inferiority margin. One of the controversial
issues in active-control trials (or non-inferiority trials) is the determination of
the non-inferiority margin. A different choice of non-inferiority margin could
alter the conclusion of the clinical study. As indicated in the International
Conference Harmonization (ICH) guideline, the selection of non-inferiority
margin should be based on both clinical justification and statistical reason-
ing. Since the selection of the non-inferiority margin could be based on either
absolute change or relative change, both of which have a significant impact on
sample size calculation and the probability for achieving study objectives, it
is very controversial as to whether the non-inferiority margin based on abso-
lute change or the non-inferiority margin based on relative change should
be used. More discussions in this regard can be found in Chapters 8 and 17.

Reproducibility/generalizability probability: For marketing approval of a
new drug product, the FDA requires that at least fwo adequate and well-
controlled clinical trials be conducted to provide substantial evidence regard-
ing the effectiveness of the drug product under investigation. The purpose of
conducting the second trial is to study whether the observed clinical result
from the first trial is reproducible on the same target patient population. One
of the controversial issues is “Can a large trial serve as two adequate and
well-controlled clinical trials?” Shao and Chow (2002) studied the reproduc-
ibility probability of a future study based on observed data from a given
clinical trial. The result indicates that a positive trial with a p-value less than
0.001 will have approximately 90% reproducibility probability. Under cer-
tain circumstances, the FDA Modernization Act (FDAMA) of 1997 includes a
provision (Section 115 of FDAMA) to allow data from one adequate and well-
controlled clinical trial investigation and confirmatory evidence to establish
effectiveness for the risk-benefit assessment of drug and biological candi-
dates for approval. More details regarding the application of reproducibility
and generalizability probabilities are given in Chapter 25.

Probability of success: In the past several decades, it has been recognized
that increasing spending of biomedical research does not reflect an increase
in the success rate of pharmaceutical/clinical research and development. The
low success rate of pharmaceutical/clinical development could be because
(1) a diminished margin for improvement that escalates the level of difficulty
in proving drug benefits, (2) genomics and other new sciences have not yet
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reached their full potential, (3) mergers and other business arrangements
have decreased candidates, (4) easy targets are the focus as chronic diseases
are harder to study, (5) failure rates have not improved, (6) rapidly escalat-
ing costs and complexity decrease the willingness/ability to bring many
candidates forward into the clinic (Woodcock, 2005). One of the controver-
sial issues is “How to correctly assess the probability of success based on
available data?” Other controversial issues are “How to identify the possible
causes of failure?” and “What actions should be taken for improving the fail-
ure rate?” More discussions are given in the last chapter of this book.

Other controversial issues: In addition to the controversial issues described
above, there are other controversial issues such as (1) validation of subjec-
tive instruments—do we ask the right questions? (2) center grouping—how
to group small centers into a reasonable size of dummy center? (3) QT/QTc
studies with recording replicates—is a recording replicate a real replicate?
(4) multi-regional trials—how many subjects should be included at a specific
region in order to produce consistent results? (5) dose escalation trials—what
is the probability of correctly identifying the MTD? (6) enrichment process
in target clinical trials—how to estimate the proportion of patients with
positive diagnostic test results? (7) clinical trial simulation—is clinical trial
simulation a solution or the solution? (8) traditional Chinese medicine—how
to calibrate Chinese diagnostic procedures against well-established clinical
endpoints used in Western medicines? (9) follow-on biologics (FOB)—how
similar is similar? (10) good regulatory (review) practices—do gold stan-
dards for drug evaluation exist? These controversial issues have an impact
on the clinical evaluation of the treatment effect under investigation. These
controversial issues will be discussed in subsequent chapters of this book.
In clinical development, randomized clinical trials are usually conducted
to collect data for the evaluation of the efficacy and safety of a test treatment
(e.g., a drug product or a therapy). To provide an accurate and fair assessment
of the test treatment under investigation, well-controlled clinical trials fol-
lowing GCP at different phases of clinical development are necessarily con-
ducted. In practice, a clinical trial process consists of protocol development,
trial conduct, data collection, statistical analysis/interpretation, and report-
ing. A clinical trialis a lengthy but costly process, which is necessary to ensure
the quality, identity, purity, strength, and stability of the test treatment under
investigation. However, some controversial issues evitably occur regardless
of whether the intended clinical trial is well planned. Basically, these con-
troversial issues present conceptual differences in perspectives of clinicians
(investigators/sponsors), biostatisticians, and reviewers for the evaluation of
the test treatment under investigation. The major concern of the clinicians
is whether the observed difference is of clinical significance, while the bio-
statisticians are interested in demonstrating whether the observed difference
is of any statistical significance (i.e., whether the observed difference is not
by chance alone and it is reproducible). The reviewers from the regulatory
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agencies would like to make sure whether the observed clinically meaning-
ful difference (clinical benefits) has a statistical significance before they can
approve the test treatment under investigation. A clinical trial is considered
successful if it can meet the expectations of clinicians, biostatisticians, and
regulatory reviewers.

1.4 Aim and Structure of the Book

In this book, we will post commonly seen controversial issues rather than
provide resolutions. It is our goal that regulatory agencies, clinical scien-
tists, and biostatisticians will pay much attention to these issues, identify
the possible causes, resolve/correct the issues, and consequently enhance
good clinical/statistical practices for achieving the study objectives of the
intended clinical trials. This book is intended to be the first book entirely
devoted to the discussion of controversial issues in clinical research and
development. It covers controversial issues that are commonly encoun-
tered at various stages of clinical research and development including from
bench-to-bedside translational research. It is our goal to provide a useful
desk reference and state-of-the art examination of controversial issues in
clinical trials to scientists engaged in clinical research and development,
those in government regulatory agencies who have to make decisions on
the evaluation/approval of test treatments under investigation, and to bio-
statisticians who provide the statistical support for the design and analy-
sis of clinical trials or related projects. We hope that this book will serve
as a bridge between scientists from the pharmaceutical industry, medical/
statistical reviewers from government regulatory agencies, and researchers
from the academia.

In this chapter, the background of pharmaceutical/clinical research and
development, critical path initiatives, and some commonly seen controversial
issues in clinical research have been discussed. In Chapter 2, GSP, which is the
foundation of GCP for ensuring the success of the conduct of clinical trials,
including some general concepts for statistics such as type L error versus type II
error, one-sided test versus two-sided test, p-value versus confidence interval,
and statistical difference versus clinical difference are described. In Chapter
3, some controversial issues such as one-way translational process versus two-
way translational process, animal model versus human model, and the impact
of lost-in-translation from bench to bedside on the probability of success for
pharmaceutical/clinical development that are commonly encountered in
bench-to-bedside translational research are discussed. Practical issues for the
assessment of BE for generic approval under a standard 2 x 2 crossover design
will be discussed in Chapter 4. Unlike the traditional approach for clinical
evaluation of the effectiveness and safety by first demonstrating efficacy and
then assessing the tolerability of the safety, Chapter 5 describes the possibility
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of evaluating composite hypotheses that include both efficacy and safety at
the same time. Also included in this chapter is a recommended approach of
significant digits for reporting the observed clinical results.

Chapter 6 examines the instability of sample size calculation/justification
based on data obtained from previous studies and/or a small pilot study. The
instability of sample size calculation has led to the justification of sample size
reestimation at interim analysis, which has an impact on the success of the
intended clinical trial. As a result, a more robust method such as a Bayesian-
bootstrap median approach is recommended. As is well known, randomiza-
tion and/or blinding are often employed in clinical trials in order to prevent
potential biases that might be introduced during the conduct of the intended
clinical trial. However, it is not clear whether the randomization and/or blind-
ing will achieve the objective of preventing biases. Chapter 7 discusses the
integrity of randomization/blinding based on post-study patients and/or inves-
tigators” guesses of the treatment codes that the patients receive. In clinical
trials, it is debatable whether the absolute change from baseline to endpoint,
the relative change from baseline to endpoint, or responder that is defined
based on either absolute change or relative change should be used for the
assessment of treatment effect. Chapter 8 attempts to provide some insight
regarding the clinical strategy for the selection of an appropriate endpoint for
the assessment of treatment effect. As it is a common practice to issue protocol
amendments due to various reasons, it is a major concern that frequent proto-
col amendments may lead to a shift of target patient population; consequently,
the original clinical trial may become a totally different trial that is unable to
address the scientific/medical questions the original clinical trial intended to
answer. Chapter 9 studies the impact of protocol amendments in data collec-
tions and consequently statistical inference at the end of the study. Chapter 10
investigates the feasibility/applicability for the use of adaptive design meth-
ods in clinical trials, which has become very popular and widely accepted by
the pharmaceutical/biotechnology industry although the regulatory agencies
still have some reservation in terms of its validity and integrity. The chap-
ter will only focus on the most commonly employed seamless adaptive trial
designs that combine two separate (independent) studies into a single trial.

In clinical trials, the issue of multiplicity often occurs due to multiple
doses, multiple endpoints, multiple testing, and/or multiple comparisons. It
is a concern as to when and how the overall type I error rate should be con-
trolled due to multiplicity. Chapter 11 discusses controversial issues regard-
ing multiplicity in clinical trials. Chapter 12 challenges the independence of
an IDMC, which is often established to maintain the integrity of the trial,
monitor ongoing safety data, and/or perform interim analysis for efficacy. In
clinical research, data collected from a one-way analysis of variance model
with repeated measures is often wrongly analyzed under a two-way analy-
sis of variance model, which may lead to a wrong conclusion of the treatment
effect. Chapter 13 studies the impact of analysis results under an incorrect
model. Chapter 14 reviews some performance characteristics for validation
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of a subjective instrument (questionnaire) for the assessment of the clini-
cal benefit of the test treatment under investigation such as quality-of-life
assessment. Missing values are commonly encountered due to various rea-
sons regardless of missing at random or not. Chapter 15 provides a summary
of statistical methods for missing data imputation in clinical trials.

To expedite patient recruitments in clinical trials, a multicenter trial is often
considered. One of the disadvantages is that we may end up with a few large
sites and a number of small centers. In addition, it is likely to increase the
probability of observing treatment-by-site interaction, which makes the over-
all assessment of the treatment effect almost impossible. Chapter 16 compares
several approaches for center grouping in clinical trials with a number of
small centers. Statistical methods for determining the non-inferiority mar-
gin in non-inferiority (active-control) trials are summarized in Chapter 17.
The design and analysis for QT/QTc studies with recording replicates for
assessment of cardio-toxicity in terms of QT/QTc prolongation are reviewed
in Chapter 18. Chapter 19 discusses some practical issues that are commonly
encountered in multiregional (multinational) clinical trials. Also included in
this chapter is the determination of sample size at specific regions as com-
pared to the entire multiregional trial. Algorithm-based traditional escalation
rule trial design and model-based continual reassessment method trial design
for dose escalation trials in cancer clinical trials are compared in Chapter 20.

Chapter 21 focuses on the enrichment process in target clinical trials,
which will identify patient populations who are most likely to respond to
the test treatment under study and consequently may lead to personalized
medicine. Chapter 22 provides basic concepts and principles for conducting
clinical trial simulation, which are useful for evaluating clinical performance
under an assumed model with certain assumptions. Fundamental differ-
ences in terms of dose/dose regimen, culture, and medical theory/practice
between Western medicine and traditional Chinese medicine are outlined
in Chapter 23. Also included in this chapter are some statistical methods for
testing consistency and stability analysis. Practical issues for assessment of
biosimilarity between FOB are described in Chapter 24. Also included in this
chapter are some statistical considerations regarding the design and analysis
and current regulatory position for assessment of biosimilarity.

Chapter 25 deals with the calculations of the probabilities of generalizabil-
ity and reproducibility of a given clinical trial based on the observed clinical
data of the clinical trial. Good regulatory (or review) practices (GRP), espe-
cially good review practices published by the Center for Drug Evaluation
and Research at the FDA, are reviewed in Chapter 26. Also included in this
chapter are some observations of inconsistencies that are commonly seen
during regulatory submissions. The probability of success for a pharmaceu-
tical and/or clinical development of a test treatment under investigation is
evaluated in the last chapter of this book. In each chapter, examples and pos-
sible recommendations and/or resolutions are provided whenever possible.
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Good Statistical Practices

2.1 Introduction

Good statistical practice (GSP) in pharmaceutical/clinical research and devel-
opment is defined as a set of statistical principles and/or standard operating
procedures for the best biopharmaceutical practices in design, conduct, anal-
ysis, evaluation, reporting, and interpretation of studies at various stages of
pharmaceutical research and development (see, e.g., Spriet and Dupin-Spriet,
1992; Wiles et al., 1994; Chow, 1997). The purpose of GSP is not only to mini-
mize bias but also to minimize variability that may occur before, during, and
after the conduct of the studies. More importantly, GSP provides a valid and
fair assessment of the drug product under study. The concept of GSP in phar-
maceutical/clinical research and development can be seen in many regula-
tory requirements, standards/specifications, and guidelines/guidances set
by most health authorities, such as the U.S. Food and Drug Administration
(FDA) and the Committee for Proprietary Medicinal Products (CPMP)
in the European Community (CPMP, 1990). For example, the U.S. regula-
tory requirements for pharmaceutical/clinical research and development
are codified in the U.S. Code of Federal Regulations (CFR), while the U.S.
Pharmacopeia and National Formulary (USP/NF) and National Committee
for Clinical Laboratory Standards (NCCLS) include standard procedures,
test and sampling plans, and acceptance criteria and specifications of many
pharmaceutical compounds (USP/NF, 2000; NCCLS, 2001). In addition, the
FDA also develops a number of guidelines and guidances to assist the spon-
sors in drug research and development. These guidelines and guidances
are considered gold standards for achieving good laboratory practice (GLP),
good clinical practice (GCP), current good manufacturing practice (cGMP),
and good regulatory (review) practice (GRP). The concept of GSP is well out-
lined in the guideline on Statistical Principles for Clinical Trials issued by the
International Conference on Harmonization (ICH, 1997). As a result, GSP not
only provides accuracy and reliability of the results derived from the studies
but also ensures the validity and integrity of the studies.

In pharmaceutical/clinical research and development, statistics are neces-
sarily applied at various critical stages of development to meet regulatory
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requirements for the effectiveness, safety, identity, strength, quality, purity,
and stability of the drug product under investigation. These critical stages
include pre-IND (investigational new drug application), IND, new drug
application (NDA), and post NDA. At the very early stages of pre-IND, phar-
maceutical scientists may have to screen thousands of potential compounds
in order to identify a few promising compounds. An appropriate use of sta-
tistics with efficient screening and/or optimal designs will assist pharma-
ceutical scientists to identify the promising compounds within a relatively
short time frame and cost effectively.

As indicated by the FDA, an IND should contain information regarding
chemistry, manufacturing, and controls (CMC) of the drug substance and
drug product to ensure the drug identity, strength, quality, and purity of the
investigational drug. In addition, the sponsors are required to provide ade-
quate information about pharmacological studies for absorption, distribution,
metabolism, and excretion (ADME) and acute, subacute, and chronic toxico-
logical studies and reproductive tests in various animal species to show that
the investigational drug is reasonably safe to be evaluated in clinical trials
in humans. At this stage, statistics are usually applied to (1) validate a devel-
oped analytical method, (2) establish a drug expiration dating period through
stability studies, and (3) assess toxicity through animal studies. Statistics are
necessarily applied to meet standards of accuracy and reliability.

Before the drug can be approved, the FDA requires that substantial evi-
dence of the effectiveness and safety of the drug be provided in the Technical
Section of Statistics of an NDA submission. Since the validity of statistical
inference regarding the effectiveness and safety of the drug is always a con-
cern, it is suggested that a careful review be performed to ensure an accurate
and reliable assessment of the drug product. In addition, to have a fair assess-
ment, the FDA also establishes advisory committees, each consisting of clini-
cal, pharmacological, and statistical experts and one advocate (not employed
by the FDA) in designated drug classes and subspecialties, to provide a second
but independent review of the submission. The responsibility of the statisti-
cal expert is not only to ensure that a valid design is used but also to evaluate
whether statistical methods used are appropriate for addressing the scientific
and medical questions regarding the effectiveness and safety of the drug.

After the drug is approved, the FDA also requires that the drug product be
tested for its identity, strength, quality, and purity before it can be released for
use. For this purpose, the cGMP is necessarily implemented to (1) validate the
manufacturing process, (2) monitor the performance of the manufacturing
process, and (3) provide quality assurance of the final product. At each stage
of the manufacturing process, the FDA requires that sampling plans, accep-
tance criteria, and valid statistical analyses be performed for the intended
tests, such as potency, content uniformity, and dissolution. For each test, sam-
pling plan, acceptance criteria, and valid statistical analysis are crucial for
determining whether the drug product passes the test based on the results
from a representative sample.
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In the next section, some key statistical principles for GSP are briefly
described. GSPs that are commonly employed in the European Community
are reviewed in Section 2.3. Some recommendations for the implementation
of GSP are given in Section 2.4. Brief concluding remarks are presented in the
last section of this chapter.

2.2 Statistical Principles

In this section, we discuss some key statistical principles in the design and
analysis of studies that may be encountered at various stages of drug devel-
opment. These key statistical principles include bias/variability, confound-
ing/interaction, hypothesis testing, type I error and power, randomization,
sample size calculation/justification, statistical difference versus clinical
difference, and one-sided test versus two-sided test.

2.2.1 Bias and Variability

For the approval of a drug product, regulatory agencies usually require that
the results of the studies conducted at various stages of drug research and
development be accurate and reliable to provide a valid and fair assessment
of the treatment effect. The accuracy and reliability are usually referred to
as the closeness and the degree of closeness of the results to the true value
(i.e., true treatment effect). Any deviation from the true value is considered
a bias, which may be due to selection, observation, or statistical procedures.
Pharmaceutical scientists would make any attempt to avoid bias, whenever
possible, to ensure that the collected results are accurate.

The reliability of a study is an assessment of the precision of the study,
which measures the degree of the closeness of the results to the true value.
The reliability reflects the ability to repeat or reproduce similar outcomes in
the targeted population. The more precise a study is, the more likely it is that
the results would be reproducible. The precision of a study can be characterized
by the variability incurred during the conduct of the study.

In practice, since studies are usually planned, designed, executed, ana-
lyzed, and reported by a team that consists of pharmaceutical scientists from
different disciplines, bias and variability inevitably occur. It is suggested that
possible sources of bias and variability be identified at the planning stage of
the study, not only to reduce the bias but also to minimize the variability.

2.2.2 Confounding and Interaction

In pharmaceutical/clinical research and development, there are many
sources of variation that have an impact on the evaluation of the treatment.
If these variations are not identified and properly controlled, then they may
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be mixed up with the treatment effects that the studies are intended to
demonstrate. In this case, the treatment is said to be confounded with the
effects due to these variations. To provide a better understanding, consider
the following example. Last winter, Dr. Smith noticed that the temperature
in the emergency room was relatively low, which had caused some dis-
comfort among medical personnel and patients. Dr. Smith suspected that
the heating system might not function properly and decided to improve it.
As a result, the temperature of the emergency room has been raised to a
comfortable level this winter. However, this winter is not as cold as last
winter. Therefore, it is not clear whether the improvement of emergency
room temperature was due to the improvement of the heating system or the
effect of a warmer winter.

The statistical interaction is to investigate whether the joint contribution
of two or more factors is the same as the sum of the contributions from each
factor when considered alone. If an interaction between factors exists, an
overall assessment cannot be made. For example, suppose that a placebo-
controlled clinical trial was conducted at two study centers to assess the
effectiveness and safety of a newly developed drug product. Suppose that
the results turned out that the drug is efficacious (better than placebo) at one
study center and inefficacious (worse than placebo) at the other study cen-
ter. As a result, a significant interaction between treatment and study center
occurred. In this case, an overall assessment of the effectiveness of the drug
product can be made.

In practice, it is suggested that possible confounding factors be identified
and properly controlled at the planning stage of the studies. When signif-
icant interactions among factors are observed, subgroup analyses may be
necessary for a careful evaluation of the treatment effect.

2.2.3 Hypotheses Testing

In clinical trials, a hypothesis is a postulation, assumption, or statement that
is made about the population relative to a test treatment under investiga-
tion. As an example, the statement that there is a difference between the test
treatment and a placebo control is a hypothesis for the treatment effect. A
random sample is usually drawn through a bioavailability study to evaluate
hypotheses about the test treatment. To perform a hypothesis testing, the
following steps are essential:

Step 1: Choose the hypothesis that is to be questioned, denoted by H,, where
H, is usually referred to as the null hypothesis.

Step 2: Choose an alternative hypothesis, denoted by H,, where H, is usually
the hypothesis of particular interest to the investigators.

Step 3: Derive a test statistic under the null hypothesis and define the rejec-
tion region (or a rule) for decision making about when to reject the
null hypothesis and when to fail to reject it.
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Step 4: Draw a random sample by conducting a clinical trial.
Step 5: Calculate test statistic(s).

Step 6: Draw conclusion(s) according to the predetermined rule as specified
in Step 3.

In practice, we would reject the null hypothesis at a prespecified level of sig-
nificance and favor the alternative hypothesis. Basically, two kinds of errors
occur when testing hypotheses. If the null hypothesis is rejected when it is
true, then a type I error has occurred. If the null hypothesis is not rejected
when it is false, then a type Il error has been made. The probabilities of mak-
ing type I and type Il errors are given as

a = P(type I error)
= P(reject, Hy given that H, is true).

p = P(type II error)
= P(fail to reject H, when H, is false).

The probability of makings a type I error o is called the level of significance.
In practice, o is also known as the consumer’s risk, while B is sometimes
referred to as the producer’s risk. Table 2.1 summarizes the relation between
type I and type II errors when testing hypotheses.

The power of the test is defined as the probability of correctly rejecting H,
when H,, is false; that is,

Power =1-f

= P(reject Hy, when H, is false).

Note that o decreases as P increases and o increases as 3 decreases. The
only way to decrease both o and B is to increase the sample size. In practice,
because a type I error is usually considered to be a more important or serious
error, which one would like to avoid, a typical approach in hypothesis test-
ing is to control o at an acceptable level and try to minimize by choosing
an appropriate sample size. In other words, the null hypothesis can be tested

TABLE 2.1
Relationship between Type I and Type II Errors
If H,Is
True False
When  Fail to reject  No error Type II error

Reject Typelerror  No error
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at a predetermined level (or nominal level) of significance with a desired
power. For a fixed o, B increases when H, moves toward H,,. This means that we
will not have sufficient power to detect a small difference between H, and H,.
On the other hand, B decreases when H, moves away from H,, increasing the
test power.

In practice, the null hypothesis H; and the alternative hypothesis H, are
sometimes reversed and evaluated for different interests. However, a test for
H, versus H, is not equivalent to a test for Hy = H, versus H, = H,. Two tests
under different null hypotheses may lead to a totally different conclusion. For
example, a test for H;, versus H, may lead to the rejection of H, in favor of H,.
However, a test for Hy = H, versus H, = H, may reject the alternative hypoth-
esis. Thus, the choice of the null hypothesis and the alternative hypothesis
may have some influence on the parameter to be tested. The following criteria
are commonly used as a rule of thumb for choosing the null hypothesis.

Rule 1: Choose H, based on the importance of a type I error. Under this
rule, we believe that a type I error is more important and serious
than a type II error. We would like to control the chance of making
a type I error at a tolerable limit (i.e., o). Thus, H, is chosen so that
the maximum probability of making a type I error (i.e., P [reject H,
when H, is true]) will not exceed o level.

Rule 2: Choose the hypothesis we wish to reject as H; (Colton, 1974; Ott, 1984;
Ware et al.,, 1986). The purpose of this rule is to establish H, by reject-
ing H,. Note that we will never be able to prove that H, is true even
though the data fail to reject it.

Occasionally, for a given set of hypotheses, it may be easy to determine
whether a type I error is more important or serious than a type II error. If
a type Il error appears to be more important or serious than a type I error,
rule 1 suggests that the null hypothesis and the alternative hypothesis be
reversed. Frequently, however, the relative importance of the type I error
and the type II error is usually very subjective. In this case, rule 2 is useful
in choosing H, and H,. To illustrate the use of these two criteria, consider the
following example given in Chow and Liu (2008).

Example Effectiveness/Ineffectiveness

In practice, the following two errors occur in the assessment of effectiveness
of a test treatment under investigation when comparing the test treatment
with a placebo control:

Hypothesis 1: We conclude that the test treatment is effective when, in fact,
the test treatment is not effective as compared to the placebo
control.

Hypothesis 2: We conclude that the test treatment is ineffective when, in fact,
the test treatment is effective as compared to the placebo control.
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In the interest of controlling the chance of making a type I error, the FDA
may consider hypothesis 1 more important than hypothesis 2 and, conse-
quently, prefer the following hypothesis:

H, : Not effectiveness versus H, : Effectiveness. 2.1

On the other hand, pharmaceutical companies may want to eliminate the
probability of wrongly rejecting the null hypothesis of bioequivalence (BE).
Thus, the following hypotheses are used:

H, : Effectiveness versus H,: Not effectiveness. (2.2)

It is very subjective whether hypothesis 1 is more important than hypoth-
esis 2 or hypothesis 2 is more important than hypothesis 1 when comparing
two drug products for the same indication. In clinical trials, rule 2 is usually
applied to choose H,,. For example, when a test treatment is newly developed,
the sponsor will want to show effectiveness by disproving the hypothesis of
ineffectiveness. In this case, hypothesis (2.1) may be considered.

2.2.4 Type I Error and Power

In statistical analysis, two different kinds of mistakes are commonly encoun-
tered when performing hypotheses testing. For example, suppose that a phy-
sician is to determine whether or not one of his/her patients is still alive. If the
patient is dead, then the physician may remove his/her life-support equip-
ment for other patients who need it. Therefore, the null hypothesis of interest
is that the patient is still alive, while the alternative hypothesis is that the
patient is dead. Under these hypotheses, the physician may make two mis-
takes, which are: (1) he/she concludes that the patient is dead when in fact the
patient is still alive and (2) he/she claims that the patient is still alive when in
fact the patient is dead. The first kind of mistake is usually referred to as a type I
error; the latter is the so-called type II error. Since a type I error is usually
considered more important or serious, we would like to limit the probability
of committing this kind of error to an acceptable level. This acceptable level of
probability of committing a type I error is known as the significance level. As
a result, if the probability of observing a type I error based on the data is less
than the significance level, we conclude that a statistically significant result is
observed. A statistically significant result suggests that the null hypothesis be
rejected in favor of the alternative hypothesis. The probability of observing a
type I error is usually referred to as the p-value of the test. On the other hand,
the probability of committing a type II error subtracted from 1 is called the
power of the test. In our example, the power of the test is the probability of
correctly concluding the death of the patient when the patient is dead.

For the pharmaceutical application, suppose that a pharmaceutical company
is interested in demonstrating that the newly developed drug is efficacious.
The null hypothesis that the drug is inefficacious is often chosen versus the
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alternative hypothesis that the drug is efficacious. The objective is to reject the
null hypothesis in favor of the alternative hypothesis and consequently to con-
clude that the drug is efficacious. Under the null hypothesis, a type I error is
made if we conclude that the drug is efficacious when in fact it is not. This error
is also known as the consumer’s risk. Similarly, a type II error is committed if
we conclude that the drug is inefficacious. This error is sometimes called the
producer’s risk. The power is then considered to be the probability of correctly
concluding that the drug is efficacious, when in fact it is. For the assessment of
drug effectiveness and safety, a sufficient sample size is often selected to have a
desired power with a prespecified significance level. The purpose is to control
both type I (significance level) and type II (power) errors.

2.2.5 Randomization

Statistical inference on a parameter of interest of a population under study
is usually derived under the probability structure of the parameter. The
probability structure depends upon the randomization method employed in
sampling. The failure of the randomization will have a negative impact on
the validity of the probability structure. Consequently, the validity, accuracy,
and reliability of the resulting statistical inference of the parameter are ques-
tionable. Therefore, it is suggested that randomization be performed using
an appropriate randomization method under a valid randomization model
according to the study design to ensure the validity, accuracy, and reliability
of the derived statistical inference.

2.2.6 Sample Size Determination/Justification

One of the major objectives of most studies during drug research and devel-
opment is to determine whether the drug is effective and safe. During the
planning stage of a study, the following questions are of particular interest
to pharmaceutical scientists: (1) How many subjects are needed in order to
have a desired power for detecting a meaningful difference? (2) What is the
trade-off if only a small number of subjects are available for the study due
to a limited budget and/or some scientific considerations? To address these
questions, a statistical evaluation for sample size determination/justification
is often employed. Sample size determination usually involves the calcula-
tion of sample size for some desired statistical properties, such as power or
precision; sample size justification is to provide statistical justification for a
selected sample size, which is often a small number.

For a given study, sample size can be determined/justified based on some
criteria of a type I error (a desired precision) or a type II error (a desired
power). The disadvantage for sample size, determination/justification based
on the criteria of precision is that it may have a small chance of detecting a
true difference. As a result, sample size determination/justification based on
the criteria of power becomes the most commonly used method. Sample size
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is selected to have a desired power for detection of a meaningful difference
at a prespecified level of significance.

In practice, however, it is not uncommon to observe discrepancies among
study objective (hypotheses), study design, statistical analysis (test statistic),
and sample size calculation. These inconsistencies often result in (1) the wrong
test for the right hypotheses, (2) the right test for the wrong hypotheses, (3) the
wrong test for the wrong hypotheses, or (4) the right test for the right
hypotheses with insufficient power. Therefore, before the sample size can be
determined, it is suggested that the following be carefully considered: (1) the
study objective or the hypotheses of interest should be clearly stated, (2) a valid
design with appropriate statistical tests should be used, and (3) sample size
should be determined based on the test for the hypotheses of interest.

2.2.7 Statistical Difference and Scientific Difference

A statistical difference is defined as a difference that is unlikely to occur by
chance alone, while a scientific difference is a difference that is considered to
be of scientific importance. A statistical difference is also referred to as a statis-
tically significant difference. The difference between the concepts of statistical
difference and scientific difference is that statistical difference involves chance
(probability) while scientific difference does not. When we claim that there is
a statistical difference, the difference is reproducible with a high probability.

When conducting a study, there are basically four possible outcomes. The
result may show that (1) the difference is both statistically and scientifically
significant, (2) there is a statistically significant difference yet the difference
is not scientifically significant, (3) the difference is scientifically significant
yet it is not statistically significant, and (4) the difference is neither sta-
tistically significant nor scientifically significant. If the difference is both
statistically and scientifically significant or if it is neither statistically nor sci-
entifically significant, then there is no confusion. However, in many cases,
a statistically significant difference does not agree with the scientifically
significant difference. This inconsistency has created confusion/arguments
among pharmaceutical scientists and biostatisticians. The inconsistency may
be due to large variability and/or insufficient sample size.

2.2.8 One-Sided Test versus Two-Sided Test

For the evaluation of a drug product, the null hypothesis of interest is often that
there is no difference. The alternative hypothesis is usually that there is a dif-
ference. The statistical test for this setting is called a two-sided test. In some
cases, the pharmaceutical scientist may test the null hypothesis of no difference
against the alternative hypothesis that the drug is superior to the placebo. The
statistical test for this setting is known as a one-sided test. For a given study,
if a two-sided test is employed at the significance level of 5%, then the level of
proof required is 1 out of 40. In other words, at the 5% level of significance, there
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is 2.5% chance (or 1 out of 40) that we may reject the null hypothesis of no dif-
ference in the positive direction and conclude that the drug is effective on one
side. On the other hand, if a one-sided test is used, the level of proof required
is 1 out of 20. It turns out that a one-sided test allows more ineffective drugs
to be approved because of chance as compared to the two-sided test. It should
be noted that when testing at the 5% level of significance with 80% power, the
sample size required increases by 27% for a two-sided test as compared to a one-
sided test. As a result, there is a substantial cost saving if a one-sided test is used.
However, agreement is not universal among the regulatory, the academia,
and the pharmaceutical industry as to whether a one-sided test or a two-sided
test should be used. The FDA tends to oppose the use of a one-sided test,
though this position has been challenged by several pharmaceutical companies
on Drug Efficacy Study Implementation (DESI) drugs at the Administrative
Hearing. Dubey (1991) pointed out that several viewpoints that favor the use
of one-sided tests were discussed in an administrative hearing. These points
indicated that a one-sided test is appropriate in the following situations: (1)
where there is truly concern with outcomes in one tail only and (2) where it is
completely inconceivable that the results could go in the opposite direction.

2.3 Good Statistical Practices in Europe

In February 2005, the Statistical Program Committee (SPC) adopted the
European statistics code of good practice and undertook to observe the 15
principles established therein, as well as to periodically review their appli-
cation using the good practice indicators corresponding to each of the 15
principles (see also http://www.ine.es/en/ine/codigobp/codigobp_en.htm).
This code has been embraced by Instituto Natcional de Estadistica (INE) by way
of a resolution by the Board of Directors, which thus undertakes to comply
with the aforementioned when establishing the general principles regulat-
ing the generating of statistics for State purposes. In this way, INE endeav-
ors to guarantee an improvement in the service it provides to society, which
will undoubtedly reinforce its image as an institution. In May 2005, the SPC
agreed a formula for monitoring the implementation of the code, for a dura-
tion of 3 years. During that period, the various countries must carry out qual-
ity self-assessment, taking as a reference the aforementioned good practice
indicators, which in turn must be contrasted and checked via so-called peer
reviews. The end result was submitted to the Board and to the European
Parliament in 2008. The 15 principles are briefly described as follows:

Principle 1: Professional independence—The professional independence of
statistical authorities from other policy, regulatory, or administrative depart-
ments and bodies, as well as from private sector operators, ensures the cred-
ibility of European statistics.
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Principle 2: Mandate for data collection—Statistical authorities must have a
clear legal mandate to collect information for European statistical purposes.
Administrations, enterprises, and households, and the public at large may be
compelled by law to allow access to or deliver data for European statistical
purposes at the request of statistical authorities.

Principle 3: Adequacy of resources—The resources available to statistical
authorities must be sufficient to meet European statistics requirements.

Principle 4: Quality commitment—All European Statistical System (ESS)
members commit themselves to work and cooperate according to the
principles fixed in the “Quality declaration of the European statistical
system.”

Principle 5: Statistical confidentiality—The privacy of data providers (house-
holds, enterprises, administrations, and other respondents), the confidentiality
of the information they provide, and its use only for statistical purposes must
be absolutely guaranteed.

Principle 6: Impartiality and objectivity—Statistical authorities must pro-
duce and disseminate European statistics respecting scientific independence
and in an objective, professional, and transparent manner in which all users
are treated equitably.

Principle 7: Sound methodology—Sound methodology must underpin qual-
ity statistics. This requires adequate tools, procedures, and expertise.

Principle 8: Appropriate statistical procedures—Appropriate statistical
procedures, implemented from data collection to data validation, must
underpin quality statistics.

Principle 9: Non-Excessive burden on respondents—The reporting burden
should be proportionate to the needs of the users and should not be excessive
for respondents. The statistical authority monitors the response burden and
sets targets for its reduction over time.

Principle 10: Cost Effectiveness—Resources must be effectively used.
Principle 11: Relevance—European statistics must meet the needs of users.

Principle 12: Accuracy and Reliability—FEuropean statistics must accurately
and reliably portray reality.

Principle 13: Timeliness and Punctuality—European statistics must be dis-
seminated in a timely and punctual manner.

Principle 14: Coherence and Comparability—European statistics should be
consistent internally, over time and comparable between regions and coun-
tries; it should be possible to combine and make joint use of related data from
different sources.
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Principle 15: Accessibility and clarity—European Statistics should be pre-
sented in a clear and understandable form, disseminated in a suitable and
convenient manner, available and accessible on an impartial basis with sup-
porting metadata and guidance.

2.4 Implementation of GSP

The implementation of GSP in drug research and development is a team
project that requires mutual communication, confidence, respect, and
cooperation among statisticians, pharmaceutical scientists in the related
areas, and regulatory agents. The implementation of GSP involves some
key factors that have an impact on the success of GSP. These factors
include (1) regulatory requirements for statistics, (2) dissemination of the
concept of statistics, (3) appropriate use of statistics, (4) effective com-
munication and flexibility, and (5) statistical training. These factors are
briefly described next.

In the drug development and approval process, regulatory requirements
for statistics are the key to the implementation of GSP. They not only enforce
the use of statistics but also establish standards for statistical evaluation of
the drug products under investigation. An unbiased statistical evaluation
helps pharmaceutical scientists and regulatory agents in determining (1)
whether the drug product has the claimed effectiveness and safety for the
intended disease and (2) whether the drug product possesses good drug
characteristics, such as proper identity, strength, quality, purity, and stability.
A set of guideline standard operating procedures is often developed to fulfill
regulatory requirements for good statistics practice. For example, Spriet and
Dupin-Spriet (1992) proposed a set of procedures to fulfill quality require-
ments set by company policy according to regulatory requirements of GCP.
Wiles et al. (1994) indicated that the Professional Standards Working Party of
the Statisticians in the Pharmaceutical Industry (PSI) in the United Kingdom
has developed a set of guideline standard operating procedures for GSP.
These guideline standard operating procedures cover clinical development
plan, clinical trial protocol, statistical analysis plan, determination of evalu-
ability of subjects for analysis, randomization and blinding procedures, data
management, interim analysis plan, statistical report, archiving and docu-
mentation, data overview, and quality assurance and quality control.

In addition to regulatory requirements, it is always helpful to disseminate
the concept of statistical principles described earlier whenever possible. It is
important for pharmaceutical scientists and regulatory agents to recognize
that (1) a valid statistical inference is necessary to provide a fair assessment
with certain assurance regarding the uncertainty of the drug product under
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investigation, (2) an invalid design and analysis may result in a misleading
or wrong conclusion about the drug product, and (3) a larger sample size is
often required to increase the statistical power and precision of the studies.
The dissemination of the concept of statistics is critical to establish the phar-
maceutical scientists’ and regulatory agents’ brief in statistics for scientific
excellence.

One of the commonly encountered problems in drug research and devel-
opment is the misuse or sometimes abuse of statistics in some studies. The
misuse or abuse of statistics is critical, which may result in either having
the right question with the wrong answer or having the right answer for the
wrong question. For example, for a given study, suppose that a right set of
hypotheses (the right question) is established to reflect the study objective.
A misused statistical test may provide a misleading or wrong answer to the
right question. On the other hand, in many clinical trials, point hypotheses
for equality (the wrong question) are often wrongly used for the establish-
ment of equivalency. In this case, we have the right answer (for equality) for
the wrong question. As a result, it is recommended that appropriate statis-
tical methods be chosen to reflect the design that should be able to address
the scientific or medical questions regarding the intended study objectives
for the implementation of GSP.

Communication and flexibility are important factors for the success of
GSP. Inefficient communication between statisticians and pharmaceu-
tical scientists or regulatory agents may result in a misunderstanding
of the intended study objectives and consequently in an invalid design
and/or inappropriate statistical methods. Thus, effective communication
among statisticians, pharmaceutical scientists, and regulatory agents is
essential for the implementation of GSP. In addition, in many studies,
the assumption of a statistical design or model may not be met due to
the nature of the drug product under investigation, the experimental
environment, and/or other causes related/unrelated to the studies. In
this case, the traditional approach of doing everything by the book does
not help. In practice, since a concern from a pharmaceutical scientist or
the regulatory agent may translate into a constraint for a valid statistical
design and appropriate statistical analysis, it is suggested that a flexible
yet innovative solution be developed under the constraints for the imple-
mentation of GSP.

Since regulatory requirements for the drug development and approval
process vary from drug to drug and from country to country, various
designs and/or statistical methods are often required for a valid assess-
ment of a drug product. Therefore, it is suggested that statistical continued/
advanced education and training programs be routinely held for both stat-
isticians and nonstatisticians, including pharmaceutical scientists and
regulatory agents. The purpose of such a continued/advanced education
and/or training program is threefold. First, it enhances communications
within the statistical community. Statisticians can certainly benefit from
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such a training and/or educational program by acquiring more practical
experience and knowledge. In addition, it provides the opportunity to
share/exchange information, ideas, and/or concepts regarding drug devel-
opment between professional societies. Finally, it identifies critical practi-
cal and/or regulatory issues that are commonly encountered in the drug
development and regulatory approval process. A panel discussion from
different disciplines may result in some consensus to resolve the issues,
which helps in establishing standards of statistical principles for the imple-
mentation of GSP.

2.5 Concluding Remarks

During the development and regulatory approval process, good pharmaceu-
tical practices are necessarily implemented to ensure (1) the effectiveness and
safety of the drug product under investigation before approval and (2) that
the drug product possesses good drug characteristics, such as proper iden-
tity, strength, quality, purity, and stability, in compliance with the standards
as specified in the USP/NF after regulatory approval. These good pharma-
ceutical practices include GLP for animal studies, GCP for clinical devel-
opment, cGMP for CMC, and GRP for the regulatory review and approval
process. In essence, GSP is the foundation of GLP, GCP, cGMP, and GRP. The
implementation of GSP is a team project that involves statisticians, pharma-
ceutical scientists, and regulatory agents. The success of GSP depends upon
mutual communication, confidence, respect, and cooperation among statisti-
cians, pharmaceutical scientists, and regulatory agents.

In recent years, the use of adaptive design methods in clinical trials has
become very popular due to its flexibility and efficiency in identifying any
potential signals of safety and efficacy for the test treatment under inves-
tigation. In practice, however, while enjoying the flexibility of adaptive
design methods, the quality, integrity, and validity of the trial may be at a
greater risk. From a regulatory perspective, it is always a concern whether
the p-value or confidence interval regarding the treatment effect under an
adaptive trial design is reliable or correct. In addition, the misuse or abuse
of statistical methods under a specific adaptive design may be biased and
misleading, and therefore unable to address medical questions that the trial
intends to answer. GSP plays an extremely important role for clinical trials
utilizing adaptive designs, especially for those less-well-understood adap-
tive designs as described in the 2010 FDA draft guidance on adaptive clinical
trial designs (FDA, 2010b).
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Bench-to-Bedside Translational Research

3.1 Introduction

As pointed out in Chapter 2, the United States Food and Drug Administration
(FDA) kicked off the Critical Path Initiative in the early 2000s to assist the
sponsors to identify possible causes of the scientific challenges underlying
the medical product pipeline problems. The Critical Path Opportunities List
released by the FDA on March 16, 2006, identified (1) better evaluation tools
and (2) streamlining clinical trials as the top two topic areas to bridge the gap
between the quick pace of new biomedical discoveries and the slower pace at
which those discoveries are currently developed into therapies. This has led
to the consideration of the use of adaptive design methods in clinical devel-
opment and the focus of translational science/research, which attempt not
only to identify the best clinical benefit of a drug product under investigation
but also to increase the probability of success. Statistical methods for the use
of adaptive trial designs in clinical development can be found in Chow and
Chang (2006), Chang (2007), Pong and Chow (2010). In this chapter, we will
focus on statistical methods that are commonly employed in translational
science/research.

Chow (2007a) and Cosmatos and Chow (2008) classified translational sci-
ence/research into three areas, namely, translation in language, translation
in information, and translation in (medical) technology. Translation in lan-
guage refers to possible lost in the translation of the informed consent form
and/or case report forms in multinational clinical trials. Lost in translation
is commonly encountered due to not only difference in language but also
differences in perception, culture, medical practices, etc. A typical approach
for the assessment of the possible lost in translation is to first translate the
informed consent form and/or the case report forms by an experienced
expert and then translate it back by a different experienced but indepen-
dent expert. The back-translated version is then compared with the origi-
nal version for consistency. If the back-translated version passes the test for
consistency, then the translated version is validated through a small-scale
pilot study before it is applied to the intended multinational clinical trial.
Translation in information is referred to as bench-to-bedside translational

31



32 Controversial Statistical Issues in Clinical Trials

science/research, which is also known as translational medicine. Translation
in technology includes biomarker development and translation in diagnostic
procedures between traditional Chinese medicine and Western medicine. In
this chapter, we focus on statistical methods for translation in information
and translation in technology. Note that, in practice, translational medicine is
often divided into two areas, namely, discovery translational medicine and
clinical translational medicine. Discovery translational medicine refers to
biomarker development, bench-to-bedside, and animal model versus human
model, while clinical translational medicine includes translation among
study endpoints, translation in technology, and generalization from a target
patient population to another.

In the next section, a statistical method for optimal variable screening
in microarray analysis is outlined. Also included in this section is a cross-
validation method for model selection and validation. Sections 3.3 and 3.4
discusses statistical methods for the assessment of one-way/two-way trans-
lation and lost in translation in the bench-to-bedside translational process
in pharmaceutical development, respectively. Whether or not an established
animal model is predictive of a human model is examined in Section 3.5.
Some concluding remarks are provided in the last section of this chapter.

3.2 Biomarker Development

Biomarker is a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention. Biomarkers can be classified
into classifier marker, prognostic marker, and predictive marker. A classi-
fier marker usually does not change over the course of the study and can be
used to identify the patient population who would benefit from the treatment
from those who would not. A typical example is a DNA marker for popula-
tion selection in the enrichment process of clinical trials. A prognostic marker
informs the clinical outcomes, which is independent of the treatment. A pre-
dictive marker informs the treatment effect on the clinical endpoint, which
could be population specific. That is, a predictive marker could be predictive
for population A but not for population B. It should be noted that the cor-
relation between biomarker and true endpoint makes a prognostic marker.
However, the correlation between biomarker and true endpoint does not make
a predictive biomarker.

In clinical development, a biomarker could be used to select the right pop-
ulation, to identify the natural course of the disease, for early detection of
the disease, and to develop personalized medicine. The utilization of a bio-
marker could lead to a better target population, detection of a larger effect
size with a smaller sample size, and timely decision making. As indicated
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in the FDA Critical Path Initiative Opportunity List, better evaluation tools
call for biomarker qualification and standards. Statistical methods for early-
stage biomarker qualification include, but are not limited to, (1) distance-
dependent K-nearest neighbors, (2) K means clustering, (3) single/average/
complete linkage clustering, and (4) distance-dependent Jarvis—Patrick clus-
tering. More information can be found at the following Web site: http://
www.ncifcrf.gov/human_studies.shtml.

In what follows, we will review statistical methods that are commonly
used in biomarker development for optimal variable screening. The selected
variables will then be used to establish a predictive model through a model
selection/validation process.

3.2.1 Optimal Variable Screening

DNA microarrays have been used extensively in medicinal practice.
Microarrays identify a set of candidate genes that are possibly related to a
clinical outcome of a disease (in disease diagnoses) or a medical treatment.
However, there are many more candidate genes than the number of available
samples (the sample size) in almost all studies, which leads to an irregular
statistical problem in disease diagnoses or treatment outcome prediction.
Some available statistical methods deal with a single gene at a time (e.g., Chen
and Chen, 2003), which clearly do not provide the best solution for polygenic
diseases. In practice, meta-analysis and /or combining several similar studies
is often considered to increase sample size. These approaches, however, may
not be appropriate due to the fact that (1) the combined data set may still be
much too small and (2) there may be heteroscedasticity among the data from
different studies. Alternatively, Shao and Chow (2007) proposed an optimal
variable screening approach for dealing with the situation where the number
of variables (genes) is much larger than the sample size.

Let y be a clinical outcome of interest and x be a vector of p candidate genes
that are possibly related to y. Shao and Chow (2007) simply considered infer-
ence on the population of y conditional on x and noted that their proposed
method can be applied to the unconditional analysis (i.e., both y and x are
random). Consider the following model:

y=Pp'x+g, 3.1

where B is a p-dimensional vector and the distribution of € is independent
of x with E(g) = 0 and E(e?) = 6% Under the model (3.1), assume that there is
a positive integer p, (which does not depend on n) such that only p, compo-
nents of B are nonzero. Furthermore, 3 is in the linear space generated by the
rows of X'X for sufficiently large n, where X is the n x p, matrix whose ith
row is x[. In addition, assume that there is a sequence {€,} of positive numbers
such that §, — < and A, = b&,, where A, is the ith nonzero eigenvalue of X'X,

m



34 Controversial Statistical Issues in Clinical Trials

i=1,..,nand {b} is a sequence of bounded positive numbers. Note that in
many problems &, = n. Furthermore, there exists a constant ¢ > 0 such that
pu/E, — 0. For the estimation of B, Shao and Chow (2007) considered the
following ridge regression estimator:

B=(X'X+hl,)" XY, (3.2)
where
Y=y, ...u)

I, is the identity matrix of order p,
h, > 0 is the ridge parameter

The bias and variance of [3 are given by

bias(®) = EB) - p = (1’ X'X +1,,)'p

and
var() = o*(X'X + L, )" X'X(X'X + b1, ).

Let B; and [3,. be the ith component of § and [3, respectively. Under the

assumptions as described earlier, we have E(; - B:)? — 0 (e, [AS,- is consistent
for B; in mean squared error) if 1, is suitably chosen. Thus, we have

-1

2 ’ -1 ’ ’
o (XX Ip,,) XX(XX Ip,,) (3.3)

Var(ﬁ)=h— . + 0 . +

n

Hence, Var(éi) — O for alli as long as &, — «. Note that the analysis of the bias
of ; is more complicated. Let I" be an orthogonal matrix such that

A O
F!X/Xr - ( n nx(pn=n) \ ,
Lo(n—pn)xn O(Pn—”)x(pn—n)

where
A, is a diagonal matrix whose ith diagonal element is A;,
0 is the I x k matrix of 0’s

Then, it follows that

-1

B = -TAI'B, (34

bias(f) = - r(r X'Xr

p +I,,n)I"
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where A is a p, x p, diagonal matrix whose first n diagonal elements are

hy,
hn + )"in

and the last diagonal elements are all equal to 1. Under the above-mentioned
assumptions, combining the results for variance and bias of f,, that is, (3.3)
and (3.4), it can be shown that for all i

E(B~B;)? = var(B,)+[bias(B)]" — 0

if h, is chosen so that /1, — e at a rate slower than &, (e.g., 1, = 2/3). Based on

this result, Shao and Chow (2007) proposed the following optimal variable
screening procedure:

Let {a,} be a sequence of positive numbers satisfying a, — 0. For each fixed n,
we screen out the ith variable if and only if “3, |<a,. A

Note that, after screening, only variables associated with |B,-’ >a, are
retained in the model as predictors. The idea behind this variable screening
procedure is similar to that in the Lasso method (Tibshirani, 1996). Under
certain conditions, Shao and Chow (2007) showed that their proposed opti-
mal variable screening method is consistent in the sense that the probabil-
ity that all variables (genes) unrelated to y, which will be screened out, and
all variables (genes) related to y, which will be retained, are 1 as n tends to
infinity.

3.2.2 Model Selection and Validation

Suppose that n data points are available for selecting a model from a class of
models. Several methods for model selection are available in the literature.
These methods include, but are not limited to, Akaike information criterion
(AIC) (Akaike, 1974; Shibata, 1981), the C, (Mallows, 1973), the jackknife and
the bootstrap (Efron, 1983, 1986). These methods, however, are not asymp-
totically consistent in the sense that the probability of selecting the model
with the best predictive ability does not converge to 1 as the total number of
observations 11 — . Alternatively, Shao (1993) proposed a method for model
selection and validation using the method of cross-validation. The idea of
cross-validation is to split the data set into two parts. The first part contains
n, data points which will be used for fitting a model (model construction),
whereas the second part contains n, = n — n, data points which are reserved
for assessing the predictive ability of the model (model validation). It should
be noted that all of the n = n, + n. data, not just n, are used for model valida-
tion. Shao (1993) showed that all of the methods of AIC, C,, jackknife and
bootstrap are asymptotically equivalent to the cross-validation with n, = 1,
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denoted by CV(1), although they share the same deficiency of inconsistency.
Shao (1993) indicated that the inconsistency of the leave-one-out cross-
validation can be rectified by using leave-n,-out cross-validation with #,
satisfying n,/n — 1 asn — .

In addition to the cross-validation with n1, = 1, denoted by CV(1), Shao (1993)
also considered the other two cross-validation methods, namely, a Monte
Carlo cross-validation with n,(n, # 1), denoted by MCCV(n,), and an analytic
approximate CV(n,), denoted by APCV(n,). MCCV(n,) is a simple and easy
method utilizing the method of Monte Carlo by randomly drawing (with or
without replacement) a collection N of b subsets of {1, 2, ..., n} that have size
n, and select a model by minimizing

fan= L Z
’ nvbs

On the other hand, APCV(n,) selects the optimal model based on the asymp-
totic leading term of balance incomplete CV(1,), which treats each subset as
a block and each i as a treatment. Shao (1993) compared these three cross-
validation methods through a simulation study under the following model
with five variables with n = 40:

2

A

ys—ycx,s(

Vi = Baxai + PoXoi + PaXsi + Paxsi + Psxs; +€;,

where
e; are independent and identically distributed from N(0,1)
x;; is the i th value of the k th prediction variable x,, x;; =1

and the values of x;, k =2,...,,5,i=1,..., 40, are taken from an example in
Gunst and Mason (1980). Note that there are 31 possible models, and each
model was denoted by a subset {1, ..., 5} that contains the indices of the vari-
able x; in the model. Shao (1993) indicated that MCCV(r1,) has the best perfor-
mance among the three methods under study except for the case where the
largest model is the optimal model. APCV(n,) is slightly better than CV(1) in
all cases. CV(1) tends to select unnecessarily large models. The probability
of selecting the optimal model by using CV(1) could be very low (e.g., less
than 0.5).

3.2.3 Remarks

In practice, it is suggested that the optimal variable screening method pro-
posed by Shao and Chow (2007) be applied to select a few relevant vari-
ables, say 5-10 variables. Then, apply the cross-validation method to select
the optimal model based on linear model selection (Shao, 1993) or non-linear
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model selection (Li, Chow, and Smith, 2004). The selected model can then be
validated based on the cross-validation methods as described in the previ-
ous subsection.

3.3 One-Way/Two-Way Translational Process

Pizzo (2006) defines translational medicine as bench-to-bedside research
wherein a basic laboratory discovery becomes applicable to the diagnosis,
treatment, or prevention of a specific disease and is brought forth by either
a physician-scientist who works at the interface between the research labo-
ratory and patient care or by a team of basic and clinical science investiga-
tors. Thus, translational medicine refers to the translation of basic research
discoveries into clinical applications. More specifically, translational medi-
cine is to take the discoveries from basic research to a patient and measures
an endpoint in a patient. Scientists are becoming increasingly aware that
this bench-to-bedside approach to translational research is a two-way street.
Basic scientists provide clinicians with new tools for use in patients and for
assessment of their impact, and clinical researchers make novel observations
about the nature and progression of diseases that often stimulate basic inves-
tigations. As indicated by Pizzo (2006), translational medicine can also have
a much broader definition, referring to the development and application of
new technologies, biomedical devices, and therapies in a patient-driven envi-
ronment such as clinical trials, where the emphasis is on early patient testing
and evaluation. Thus, translational medicine also includes epidemiological
and health-outcomes research and behavioral studies that can be brought to
the bedside or ambulatory setting.

Mankoff et al. (2004) pointed out that there are three major obstacles to
effective translational medicine in practice. The first is the challenge of trans-
lating basic science discoveries into clinical studies. The second hurdle is the
translation of clinical studies into medical practice and health-care policy.
A third obstacle is philosophical. It may be a mistake to think that basic
science (without observations from the clinic and without epidemiological
findings of possible associations between different diseases) will efficiently
produce novel therapies for human testing. Pilot studies such as nonhuman
and nonclinical studies are often used to transition therapies developed
using animal models to a clinical setting. The statistical process plays an
important role in translational medicine. In this chapter, we define a statisti-
cal process of translational medicine as a translational process for (1) deter-
mining the association between some independent parameters observed in
basic research discoveries and a dependent variable observed from clinical
application, (2) establishing a predictive model between the independent
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parameters and the dependent response variable, and (3) validating the
established predictive model. As an example, in animal studies, the indepen-
dent variables may include in vitro assay results, pharmacological activities
such as pharmacokinetics and pharmacodynamics, and dose toxicities, and
the dependent variable could be a clinical outcome (e.g., a safety parameter).

3.3.1 One-Way Translational Process

Let x and y be the observed values from basic research discoveries and clini-
cal application, respectively. In practice, it is important to ensure that the
translational process is accurate and reliable with some statistical assur-
ance. One of the statistical criteria is to examine the closeness between the
observed response y and the predicted response # via a translational pro-
cess. To study this, we will first study the association between x and y and
build up a model. Then, we will validate the model based on some criteria.
For simplicity, we assume that x and y can be described by the following
linear model

y=PBo+Prx+e, (3.5)

where ¢ follows a normal distribution with mean 0 and variance o?.
Suppose that n pairs of observations (x, 1), ...,(x,, y,) are observed in a
translational process. To define notation, let

XT=/1 1 ... 1)
LX] X2 an

and
Yi=(pi ya oY)

Then, under model (3.5), the maximum likelihood estimates (MLE) of the
parameters 3, and 3, are given as

|

o> >

0] - (X"X)'X"Y

with

0

var =(X"X)"o?

0> TR

—
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Thus, we have established the following relationship:

7= PBo +px. (3.6)

Given x, from (3.6), the corresponding fitted value 7, is ¥ =f’>0 +[§1xi.
Furthermore, the corresponding MLE of o7 is give by

63=12<yf—9i>2=”‘2M5E,
n

n

where MSE is the mean squared errors of the fitted model.

For a given x = x,, suppose that the corresponding observed value is given
by y; using (3.6), the corresponding fitted value is i =B, +p1x,. Note that
E@) = o +P1Xo = uo and

var(jj) = Ty 1) 2 2
y)=(1 x)(X X) LxJGe—COe/

where

1
c=(1 xo)(XTX)‘lixo).

Furthermore, 7 is normally distributed with mean p, and variance co?, that
is,  ~ N(u,co?).

We may validate the translation model by considering how close an
observed y and its predicted value jj obtained based on the fitted regression
model given by (3.6) are. To assess the closeness, we propose the following
two measures, which are based either on the absolute difference or the rela-
tive difference between y and §:

Criterion I. p, =P {‘y -7|< 6}

.

In other words, it is desirable to have a high probability that the difference or
the relative difference between y and i}, given by p, and p,, respectively, is less
than a clinically or scientifically meaningful difference d. Then, for either
i=1or 2, itis of interest to test the following hypotheses:

Criterion II: p, = P{H
Y

Hy:pi=py versus H,:p;>po, 3.7)
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where p, is some prespecified constant. If the conclusion is to reject H, in
favor of H,, this would imply that the established model is considered vali-
dated. The technical details of the test of hypothesis corresponding to the
two criteria are outlined in the following sections.

3.3.1.1 Test of Hypothesis for the Measures of Closeness

Case 1: Measure of Closeness Based on Absolute Difference
Since y and 7 are independent, we have

(y-7y)~N(@, 1+c)o?).
It can be verified that

_q)/ N \(D/ -5 )
= L\/(1+c)0§J B L,/(l+c)0§) '

Thus, the MLE of p, is given by

A_q)/ S \q)( -5 )
= L,/(1+c)a§J_ L\/(l+c)6§).

Using the delta rule, for a sufficiently large sample size 7,

N T A S 1
Va”"””ﬂ“’u(uc)aa )" Jazoe: U 2(1+c)no? “’(?)’

where ¢(z) is the probability density function of a standard normal distribu-
tion. Furthermore, var(p,) can be estimated by V;, which is given by

282 § )

i= (1+0)no? q)ZL\/(1+C)6§ )

Using the Sluksty theorem, (P1-po)/ \/V_l can be approximated by a standard
normal distribution. For the testing of the hypotheses H,: p; < p, versus
H,:p, > py, Hyis rejected if

f71 - Po

W > Z1-ay

where z,_, is the 100(1 — a)th percentile of a standard normal distribution.
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Case 2: Measure of Closeness Based on the Absolute Relative Difference
Note that y*/o; and 1*/co? follow a noncentral Xi distribution with noncen-
trality parameter uj/o; and ug/co?, respectively, where y, = B, + B,x,. Hence,
7?/cy? is doubly noncentral F distributed with v; = 1 and v, = 1 degrees of
freedom and noncentrality parameters A, = ug/co?and A, = ud /o2, According
to Johnson and Kotz (1970), a noncentral F distribution with v, and v, degrees
of freedom can be approximated by

1+ }\,11)1_1
1 o

1+ A0;
where F, , is a central F distribution with degrees of freedom

oo WiHh) _ (1+us/cor)’
v +2h 1+2u3/co?

and
v = (V1 +N)° 1+ wy/o2)?
va+2h,  1+2u3/0?
Thus,
y-y
p2=P <d
¥

2 2
_p (1-9) 1+}\2<Fw/<1+7»2(1+6) .
c  1+M ’ 1+N ¢

Thus, p, can be estimated by

2 \ 2 \
ﬁ1=P &14-): <F{,,{,'<(1+6) 1+Z\‘ =P{u1<F{,l{,l<u2},
C 1+)\.1 C 1+}\,1
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where

_ (1+)\'2) (1—62 Uy = (1+)\"\2)

= = 2 (1+8)?
c(1+2) c(1+n)

and (3»1, 712,{), f)’) are the corresponding MLE of (A, A,, v, V).

For a sufficiently large sample size, using the Sluksty theorem, p, can
be approximated by a normal distribution with mean p, and variance V,,
where

sz
n aBo
XTx)! f 0 .
V, = /3172 aPz 3!’2\(( yo 2A4\ apa | .
By op, 007 ( 0 OSJ By |
n-2 «
sz
967
with
6;52 2(C 1)“0 2
f=7 [A+0)" fy o (u 1-98) fy o (u
By (1) (1+8) fo o (12) = (1= 8) f5.5 (1]
47\1(1+7\.) anU(x 47\.2(1+7\.2) vau x)
M0(1+27‘- )? f v M0(1+27¥2) v’
e
351 aﬁo
aﬁz )\‘1
T&=W[(l+5) fo,o(u2)-(1- 5) foo ()]
2R Pfee() g 2030+ R) pifen(x)
oX(1+ 2)»1) v o1+ 27»2)2 o’
afﬁﬁ/(x) 1 a a ( VX ) V'(1-x)
UL o logT’ logT 1
PR Uv(x)[(og (V+0")" - (log (V)" + log Y + e |7
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where,

Yorl®) L1 )| log (6 + )" - logr(e)” +log( ) e |

and (log I'(s))V is the first-order derivative of the natural logarithm of the
gamma function with respect to s. Thus, the hypotheses given in (3.7) for
one-way translation based on the probability of relative difference can be
tested. In particular, H, is rejected if

Z=@—%

\/72 > Z1ar

where z,_, is the 100(1 — o)th percentile of a standard normal distribution.
Note that V, is an estimate of var(f,) which is obtained by simply replacing
the parameters with their corresponding estimates of the parameters.

3.3.1.2 An Example

For the two measures proposed in Section 3.1, p, is based on the absolute
difference between y and §. Given a p, and the selected observation (x,, ),
the hypothesis H,: p, < p, is rejected in favor of H,: p; > p, when

Z=ﬁ—%

\/Vl > Z1_q -

Equivalently, H is rejected when
(f?l = Po _Zl—a\/vl) >0.

Note that the value of p; depends on the value of 6 and it can be shown
that (;31—;70 -zl_m/Vl ) is an increasing function of & over (0, «). Thus,

P1-"Po -zl_a\/Vl >0 if and only if 8 > &, Thus, the hypothesis H, can be
rejected based on §, instead of 7, as long as we can find the value of §, for
the given x;. On the other hand, from a practical point of view, p, is more
intuitive to understand because it is based on the relative difference, which
is equivalent to measuring the percentage difference relative to the observed
y and d can be viewed as the upper bound of the percentage error.

For illustration purpose, suppose that the following data are observed
in a translational study, where x is a given dose level and y is the associated
toxicity measure:

x 09 11 13 15 22 20 31 40 49 56
y 09 08 19 21 23 41 56 65 88 92
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When this set of data is fitted to model (3.5), the estimates of the model
parameters are given by f, = —0.704, p; = 1.851, and 6% = 0.431. Thus, based
on the fitted results, given x = x,, the proposed translational model is given
by § = —0.704 + 1.851x,.

In this study, choose o = 0.05 and p, = 0.8. In particular, two dose levels
X, =1.0and 5.2 are considered. Based on the study, the corresponding toxicity
measures Y, are 1.2 and 9.0, respectively. However, based on the translational
model, the predicted toxicity measures are 1.147 and 8.921, respectively. In
the following, the validity of the translational model is assessed by the two
proposed closeness measures p, and p,, respectively. Without loss of general-
ity, choose o = 0.05 and p, = 0.8.

Case 1: Testing of H: p, < p, versus H,: p, > p,
Using the above results, for x, = 1.0, § is 1.112, since |y, — | = |9.0 - 8921| =
0.079, which is less than 6 = 1.112, therefore H, is rejected.

Case 2: Testing of H,: p, < p, versus H,: p, > p,
Suppose that & = 1, for the given two values of x, estimates of p, and the cor-
responding values of the test statistic Z are given in the following table.

Xo Yo ] P2 z
1.0 12 1147 0870 1183 Do not reject H,
52 9.0 8921 0.809 1.164 Do notreject H,

3.3.2 Two-Way Translational Process
3.3.2.1 Process Validation

The above translational process is usually referred to as a one-way trans-
lation in translational medicine. That is, the information observed in basic
research discoveries is translated to clinic. As indicated by Pizzo (2006), the
translational process should be a two-way translation. In other words, we
can exchange x and y in (3.5)

X=Yo+Yiy +¢€

and come up with another predictive model £ = §;, + .

Following similar ideas, using either one of the measures p;, the valida-
tion of a two-way translational process can be summarized by the following
steps:

Step 1: For a given set of data (x, y), establish a predictive model, say, y = f(x).

Step 2: Select the bound &, for the difference between y and j. Evaluate
pyi = P{ly — §1<3d,}). Assess the one-way closeness between y and j by
testing the hypotheses (3.7). Proceed to the next step if the one-way
translational process is validated.
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Step 3: Consider x as the dependent variable and y as the independent
variable. Set up the regression model. Predict x at the selected obser-
vation y,, denoted by £, based on the established model between x

and y (i.e, x = g(v)), that is, X = g(y) = Yo + V1.

Step 4: Select the bound 3,; for the difference between x and #. Evaluate the
closeness between x and £ based on a test for the following hypotheses:

Ho:pi<po versus H,:p:>po,

p,’=Py_ <6xi .
y

The above test can be referred to as a test for two-way translation. If, in Step 4,
H, is rejected in favor of H,, this would imply that there is a two-way trans-
lation between x and y (i.e,, the established predictive model is validated).
However, the evaluation of p involves the joint distribution of (x — £)/x and
(v — )/y. An exact expression is not readily available. Thus, an alternative
approach is to modify Step 4 of the above procedure and proceed with a con-
ditional approach instead. In particular, Step 4 is modified as follows:

where

-X

<>

x
<9, and

Step 4 (modified): Select the bound 9,; for the difference between x and *.
Evaluate the closeness between x and % based on a test for the following
hypotheses:

Ho:py=spo versus H,:py > po, 3.8
where
Pxi = P{‘x— 5&‘ < 6x,’}.

Note that the evaluation of p,, is much easier and can be computed in a similar
way by interchanging the role of x and y for the results given in Section 3.3.1.1.

3.3.2.2 An Example

Using the data set given in Section 3.3.1.2, we set up the regression model
X =7, + vy + € with y as the independent variable and x as the dependent
variable. The estimates of the model parameters are v, = 0.468, y; = 0.519,
and 6* = 0.121. Based on this model, for the same o and p,, given (x,, y,) =
(1.0,1.2) and (5.2, 9.0), the fitted values are given by £ = 0.468 + 0.519y,,
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Case 1: Testing of Hy: p,, < p, versus H,: p,, > p,

Using the above results, for y, = 1.2, § is 0.587, since |x, - £| = |1.0 - 1.09] =
0.09, which is less than 8, = 0.587, therefore H,, is rejected. Similarly, for y, =
9.0, the corresponding & is 0.624; then |x, - %| = |5.2 —5.139| =0.061, which is
again smaller than & = 0.624, thus H,, is rejected.

Case 2: Testing of H: p,, < p, versus H,: p., > p,
Suppose that 8 = 1, for the given two values of y, estimates of p,, and the cor-
responding values of the test statistic Z are given in the following table.

Xo Yo Xo ﬁxz 4

1.0 12 1.090 0.809 1300 Do notreject H,
52 9.0 5139 0.845 16.53 Do not reject H,

3.4 Lost in Translation

It can be noted that 8, and 3, can be viewed as the maximum bias (or possible
lost in translation) from the one-way translation (e.g., from basic research
discovery to clinic) and from the other way of translation (e.g., from clinic
to basic research discovery), respectively. If 3, and 6, given in Steps 2 and 4
of the previous subsection are close to 0 with a relatively high probability,
then we conclude that the information from the basic research discoveries
(clinic) is fully translated to the clinic (basic research discoveries). Thus,
one may consider the following parameter to measure the degree of lost in

translation:
?; =1- PxyPyxs

where
Pxy is the measure of closeness from x to y
Py: is the measure of closeness from y to x

When ¢ = 0, we consider that there is no lost in translation. Overall lost in
translation could be significant even if lost in translation from the one-way
translation is negligible. For illustration purpose, if there is a 10% lost in
translation in the one-way translation and 20% lost in translation in the
other way, there would be up to 28% loss in overall translation. In practice,
an estimate of ¢ can be obtained for a given set of data (x, y). In particular,
c=1- f’xyf’wv

As an illustration, consider the example discussed in Section 3.3.1.2.
Suppose that the measure of closeness based on relative difference is used,
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given (x,, o) = (1.0, 1.2) and (5.2, 9.0), the corresponding lost in translation for
the two-way translation with 6 = 1 is tabulated in the following table:

%o Yo ] ﬁxy ® Py z

1.0 12 1147 0870 1.090 0.809 0.296
52 9.0 8921 0.809 5139 0.845 0.316

3.5 Animal Model versus Human Model

In translational medicine, a commonly asked question is whether an ani-
mal model is predictive of a human model. To address this question, we
may assess the similarity between an animal model (population) and a
human model (population). For this purpose, we first establish an animal
model to bridge the basic research discovery (x) and clinic (y). For illus-

tration purpose, consider a one-way translation. Let ﬁ=[§0 +[§1x be the
predictive model obtained from the one-way translation based on data
from an animal population. Thus, for a given xy, yo= [30 +[:’>1x0 follows a
distribution with mean p, and o,. Under the predictive model 7 = Bo +Bix,
denote by (u,,0,) the target population. Assume that the predictive model
works for the target population. Thus, for an animal population, W, = W,nimal
and 6, = G,,im,, While for a human population, [, = Wyyman a0d G, = Chyman-
Assummg that the linear predictive model can be applied to both animal
population and human population, we can link the animal and human
model by the following:

Whuman = Wanimal + &,

and
Whuman = Cuam’mal .

In other words, we expect differences in population mean and population
standard deviation under the predictive model due to the possible dif-
ference in response between animals and humans. As a result, the effect
size adjusted for standard deviation under the human population can be
obtained as follows:

‘ Whuman ‘ _ ‘Manimal + S‘ _ ‘A‘ ‘ Wanimal ‘
‘ Coanimal

‘ Ohuman ‘ Oanimal
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where A = (1 + &/l 1ima)/C. Chow et al. (2002a) refer to A as a sensitivity index
when changing from one target population to another. As can be seen, the
effect size under the human population is inflated (or reduced) by the factor
of A. If e = 0 and C = 1, we then claim that there is no difference between the
animal population and the human population. Thus, the animal model is
predictive of the human model. Note that the shift and scale parameters (i.e.,
€ and C) can be estimated by

€ = Whuman — Wanimal

and

~

A
human
C=—7,

Oanimal

respectively, in which (Wanimal, Oanimal) aNA (Whuman, Ohuman) are estimates of
(Kanimalr Oanimal) @Nd (Upumans Ohuman)s Te€Spectively. Thus, the sensitivity index
can be assessed as follows:

A — (1 + g /P'animal) .
C

In practice, there may be a shift in population mean (i.e., €) and/or in popu-
lation standard deviation (i.e., C), Chow et al. (2005) indicated that shifts in
population mean and population standard deviation can be classified into
the following four cases where (1) both € and C are fixed, (2) € is random and
C is fixed, (3) € is fixed and C is random, and (4) both € and C are random.
For the case where both € and C are fixed, (5) can be used for the estimation
of A. Chow et al. (2005) derived statistical inference of A for the case where
€ is random and C is fixed by assuming that y conditional on p follows a
normal distribution N(u, 6?). That is,

y |M=Mhuman ~ N(M/ 0'2)1

where
u is distributed as N (ptu,qﬁ)
O, Wy, and oﬁ are some unknown constants

It can be verified that y follows a mixed normal distribution with mean u,
and variance o + ;. That is, ¥ ~ N(u,,0° +0;). As a result, the sensitivity
index can be assessed based on data collected from both animal and human
populations under the predictive model.

Note that for other cases where C is random, the above method can also be
derived similarly. The assessment of sensitivity index can be used to adjust
the treatment effect to be detected under a human model when applying an
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animal model to a human model, especially when there is a significant or
major shift between an animal population and the human population. In
practice, it is of interest to assess the impact of the sensitivity index on both
lost in translation and the probability of success. This, however, requires fur-
ther research.

3.6 Concluding Remarks

Translational medicine is a multidisciplinary entity that bridges basic sci-
entific research with clinical development. As the expense in developing
therapeutic pharmaceutical compounds continues to increase and the suc-
cess rates for getting such compounds approved for marketing and to the
patients needing these treatments continues to decrease, a focused effort
has emerged in improving the communication and planning between basic
and clinical science. This will likely lead to more therapeutic insights being
derived from new scientific ideas, and more feedback being provided back
to research so that their approaches are better targeted. Translational medi-
cine spans all the disciplines and activities that lead to making key scientific
decisions as a compound traverses across the difficult preclinical-clinical
divide. Many argue that improvement in making correct decisions on what
dose and regimen should be pursued in the clinic, likely human safety risks
of a compound, likely drug interactions, and pharmacologic behavior of the
compound are likely the most important decisions made in the entire devel-
opment process. Many of these decisions and the path for uncovering this
information within later development are defined at this specific time within
the drug development process. Improving these decisions will likely lead to
a substantial increase in the number of safe and effective compounds avail-
able to combat human diseases.

In clinical research and development, before the first-in-human study, one
of the controversial issues is whether the established animal model (e.g., mice)
is predictive of the human model. For the first-in-human study, the start-
ing dose is usually selected as 1/10 of LD, in animals. The selected initial
dose, however, may be too low to be effective or too high to have toxic effect.
The other controversial issue is the potential lost in translation from bench
(basic discoveries) to bedside (first-in-human) translational research. In cur-
rent practice, it is recognized that bench-to-bedside translational research is
a one-way translational process, which is not efficient due to potential lost
in translation. Significant lost in translation will decrease the probability of
success of the pharmaceutical/clinical development. Thus, it is suggested
that a two-way translational process be considered.
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Bioavailability and Bioequivalence

4.1 Introduction

According to Saul (2007), the United States spends about $275 billion annually
on prescription drug products. In addition, Saul (2007) also pointed out that,
in the next 5 years, a series of innovative drug products with a total combined
annual sale of $60 billion are going off patents. This opens the door for a tidal
wave of generic drug products that are 30%—-80% cheaper than the innova-
tive drug products. In 1984, the United States Congress passed the Drug Price
Competition and Patent Term Restoration Act, which allows a regulatory frame-
work for a low-cost pathway for generic drug products to enter the market
(Frank, 2007). As a result, when an innovative (brand-name) drug product is
going off a patent, pharmaceutical or generic companies can file an abbrevi-
ated new drug application (ANDA) for generic approval. For the approval of
a generic drug product, most regulatory agencies require that evidence of
average bioavailability (in terms of drug absorption) be provided through
the conduct of bioequivalence (BE) studies. However, as pointed out by Saul
(2007), a survey conducted in 2002 by the Association of American Retire
People (AARP) indicated that 22% of the responders considered that generic
drug products are less effective or of poor quality than the innovator drug
products. This shows that a sizable portion of the public in the United States
still lacks confidence in generic drug products even if they are approved by
the United States Food and Drug Administration (FDA). Therefore, in May
2007, the FDA added generic drugs in the Critical Path Opportunities to use
latest breakthroughs in technique to assure that the efficacy and safety of the
generic drug products are the same as those of the innovator drug products.
However, the FDA critical path opportunities for generic drugs do not cover
all important emerging challenges for generic drugs.

For the assessment of average bioequivalence (ABE), a standard two-
sequence, two-period (or 2 x 2) crossover design is usually employed. A
BE study is often conducted on healthy volunteers for characterizing drug
absorption in the bloodstream. Qualified subjects are randomly assigned
to receive either a test (generic or new formulation) drug or a reference
(brand-name or innovator) drug first and then be crossed over to receive the

51
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other drug after a sufficient length of washout. A commonly used statistical
method is a confidence interval approach (or equivalently a two one-sided
tests procedure) which is derived under the standard 2 x 2 crossover design.
Note that the FDA requires that log transformation be performed before
data analysis. The test product is then claimed bioequivalent to the reference
product if the obtained 90% confidence interval for the ratio of means of the
primary study endpoint such as area under the blood or plasma concentra-
tion time curve (AUC) or the peak or maximum concentration (C,,,,,) is totally
within the BE limit of (80%, 125%).

In the next section, the design and analysis for the assessment of BE are
briefly outlined. Drug interchangeability in terms of drug prescribability
and drug switchability are discussed in Section 4.3. Section 4.4 presents
some controversial issues that are commonly encountered when conducting
BE studies for the assessment of ABE. These controversial issues include, but
are not limited to, (1) challenge of the Fundamental Bioequivalence Assumption,
(2) adequacy of one-fits-all criterion, and (3) appropriateness of log transfor-
mation. Some frequently asked questions during the ANDA submission for
generic approval are given in Section 4.5. Section 4.6 provides some conclud-
ing remarks to end the chapter.

4.2 Bioequivalence Assessment

For the approval of generic drug products, the FDA requires that the evidence
of ABE in drug absorption in terms of some pharmacokinetic (PK) param-
eters such as AUC and C,,,, be provided through the conduct of BE studies.
We claim that a test drug product is bioequivalent to a reference (innova-
tive) drug product if the 90% confidence interval for the ratio of means of
the primary PK parameter is totally within the BE limit of (80%, 125%). The
confidence interval for the ratio of means of the primary PK parameter is
obtained based on log-transformed data. In what follows, study designs that
are commonly considered in BE studies are briefly introduced.

4.2.1 Study Design

As indicated in the Federal Register [Vol. 42 No. 5 Sec. 320.26(b) and Sec.
320.27(b), 1977], a bioavailability study (single dose or multidose) should be
crossover in design, unless a parallel or other design is more appropriate for
valid scientific reasons. Thus, in practice, a standard 2 x 2 crossover design
is often considered for a bioavailability/BE study. Denote T and R by the test
product and the reference product, respectively. The 2 x 2 crossover design
canbe expressed as (TR, RT), where TR is the first sequence of treatments and
RT denotes the second sequence of treatments. Under the (TR, TR) design,
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qualified subjects who are randomly assigned to sequence 1 (TR) will receive
the test product (T) first and then receive the reference product (R) after a
sufficient length of washout period. Similarly, subjects who are randomly
assigned to sequence 2 (RT) will receive the reference product (R) first and
then receive the test product (T) after a sufficient length of washout period.

Satistically, one of the limitations of the standard 2 x 2 crossover design
is that it does not provide independent estimates of intra-subject variability
(ISV) since each subject only receives the same treatment once. In the interest
of assessing ISV, the following alternative designs for comparing two drug
products are often considered:

1. Balaam’s design: (TT, RR, RT, TR)
2. Two-sequence, three-period dual design: (TRR, RTT)
3. Four-sequence, four-period design: (T'TRR, RRTT, TRT\RT, RTTR)

Note that the above study designs are also referred to as higher-order cross-
over designs. A higher-order crossover design is defined as a design with the
number of sequences or the number of periods greater than the number of
treatments to be compared.

For comparing more than two drug products, a Williams” design is often
considered. For example, for comparing three drug products, a six-sequence,
three-period (6 x 3) Williams” design is usually considered, while a 4 x 4
Williams” design is employed for comparing four drug products. Williams’
design is a variance stabilizing design. More information regarding the con-
struction and good design characteristics of Williams” designs can be found
in Chow and Liu (2008).

In the interest of assessing population bioequivalence (PBE) and/or indi-
vidual bioequivalence (IBE), the FDA recommends that a replicated design
be considered for obtaining independent estimates of ISV and variability
due to subject-by-drug product interaction. A commonly considered repli-
cated crossover design is the replicate of a 2 x 2 crossover design, which is
given by (TRTR, RTRT).

In some cases, an incomplete block design or an extra-reference design
such as (TRR, RTR) may be considered depending upon the study objectives
of the bioavailability/BE studies. Under a given design, sample size calcula-
tion for achieving a desired power at the 5% level of significance can then
be obtained (see, e.g.,, Chow and Wangm 2001; Chow, Shao and Wang, 2008;
Chow and Liu, 2008).

4.2.2 Statistical Methods

As indicated earlier, BE is claimed if the ratio of average bioavailabilities
between a test product and a reference product is within the BE limit of
(80%, 125%) with 90% assurance based on log-transformed data. Along this
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line, commonly employed statistical methods are the confidence interval
approach and the method of interval hypotheses testing.

For the confidence interval approach, a 90% confidence interval for the ratio
of means of the primary PK response such as AUC or C,,,, is obtained under
an analysis of the variance model. We claim BE if the obtained 90% confi-
dence interval is totally within the BE limit of (80%, 125%). For the method of
interval hypotheses testing, the interval hypothesis

H, : Bioinequivalence versus H, :Bioequivalence

was decomposed into two sets of one-sided hypotheses. The first set of
hypotheses is to verify that the average bioavailability of the test product
is not too low (efficacy), whereas the second set of hypotheses is to ver-
ify that average bioavailability of the test product is not too high (safety).
Schuirmann’s two one-sided tests procedure is commonly employed for the
interval hypotheses testing for ABE (Schuirmann, 1987).

In practice, other statistical methods such as Westlake’s symmetric confi-
dence interval approach, exact confidence interval based on Fieller’s theo-
rem, Chow and Shao’s joint confidence region approach, Bayesian methods
(e.g., Rodda and Davis’ method and Mandallaz and Mau’s method), and non-
parametric methods (e.g., Wilcoxon-Mann-Whitney two one-sided tests pro-
cedure, distribution-free confidence interval based on the Hodges-Lehmann
estimator, and bootstrap confidence interval) are sometimes considered.

4.2.3 Remarks

Although the assessment of ABE for generic approval has been in practice
for years, it has the following limitations: (1) it focuses only on population
average; (2) it ignores distribution of the metric; (3) it does not provide inde-
pendent estimates of ISV; and (4) it ignores subject-by-formulation interac-
tion. Many authors criticize that the assessment of ABE does not address the
question of drug interchangeability and it may penalize drug products with
less variability.

4.3 Drug Interchangeability

As indicated by the regulatory agencies, a generic drug can be used as a
substitution of the brand-name drug if it has been shown to be bioequiva-
lent to the brand-name drug. Current regulations do not indicate that two
generic copies of the same brand-name drug can be used interchange-
ably, even though they are bioequivalent to the same brand-name drug. BE
between generic copies of a brand-name drug is not required. Thus, one of
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Safety concern of drug interchangeability.

the controversial issues is that whether these approved generic drug prod-
ucts can be used safely and interchangeably (see Figure 4.1).

4.3.1 Drug Prescribability and Drug Switchability

Basically, drug interchangeability can be classified as drug prescribability or
drug switchability (Liu, 1998; Chow and Liu, 2008). Drug prescribability is
referred to as the physician’s choice for prescribing an appropriate drug prod-
uct for his/her new patients between a brand-name drug product and a num-
ber of generic drug products of the brand-name drug product that have been
shown to be bioequivalent to the brand-name drug product. The underlying
assumption of drug prescribability is that the brand-name drug product and
its generic copies can be used interchangeably in terms of the efficacy and
safety of the drug product. Drug prescribability, therefore, is the interchange-
ability for the new patient.

Drug switchability, on the other hand, is related to the switch from a drug
product (e.g., a brand-name drug product) to an alternative drug product
(e.g., a generic copy of the brand-name drug product) within the same sub-
ject, whose concentration of the drug product has been titrated to a steady,
efficacious, and safe level. As a result, drug switchability is considered more
critical than drug prescribability in the study of drug interchangeability for
patients who have been on medication for a while. Drug switchability, there-
fore, is interchangeability within the same subject.

4.3.2 Population and Individual Bioequivalence

As indicated by Chow and Liu (2008), ABE can guarantee neither drug pre-
scribability nor drug switchability. Therefore, it is suggested that the assess-
ment of BE should take into consideration drug prescribability and drug
switchability for drug interchangeability. To address drug interchange-
ability, it is recommended that PBE and IBE be considered for testing drug
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prescribability and drug switchability, respectively. More specifically, the
FDA recommends that PBE be applied to new formulations, additional
strengths, or new dosage forms in new drug applications (NDAs), while IBE
should be considered for ANDA or abbreviated antibiotic drug application
(AADA) for generic drugs.

To address drug prescribability, the FDA proposed the following
aggregated, scaled, moment-based, one-sided population bioequivalence
criterion (PBC):

PBC = (ur - MR)Z + (O%T - G%R)

= ep
max (07, 07¢) ’

where

Ur and py are the mean of the test drug product and the reference drug
product, respectively

o2 and o7y are the total variance of the test drug product and the refer-
ence drug product, respectively

o7y is a constant that can be adjusted to control the probability of passing
PBE

0, is the BE limit for PBE

The numerator on the left-hand side of the criterion is the sum of the squared
difference of the population averages and the difference in total variance
between the test and reference drug products, which measures the similarity
for the marginal population distribution between the test and reference drug
products. The denominator on the left-hand side of the criterion is a scaled
factor that depends upon the variability of the drug class of the reference
drug product. The FDA guidance suggests that 6, be chosen as

(log1.25)* +&p
6P =
OTo

where ¢, is guided by the consideration of the variability term O3 —O%x
added to the ABE criterion. As suggested by the FDA guidance, it may be
appropriate that €, is chosen to be 0.02. For the determination of o7, the
guidance suggests the use of the so-called population difference ratio (PDR),
which is defined as

1/2

1/2 1/2
pDR < | ET-RY | _ [(ur —ux)’ +0fr + 0t
E(R-R)? 20%

i
2

Therefore, assuming that the maximum allowable PDR is 1.25, substitution
of (log1.25)*/c%, for PBC without adjustment of the variance term approxi-
mately yields 65, = 0.2.
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Similarly, to address drug switchability, the FDA recommended the fol-
lowing aggregated, scaled, moment-based, one-sided individual bioequiva-
lence criterion (IBC):

IBC - (MT - MR)Z + O%) +(0%\/T _OI%VR) < eI
max (G, Oiyo ) '

where
onr and O are within the subject variance of the test drug product and
the reference drug product, respectively
op is the variance due to subject-by-drug interaction
Oivo is a constant that can be adjusted to control the probability of passing
IBE
0, is the BE limit for IBE. The FDA guidance suggests that 6; be chosen as

(log 1.25)% +¢;
O =—""—F——,
Owo
where ¢ is the variance allowance factor, which can be adjusted for sample
size control. As indicated in the FDA guidance, €, may be fixed between 0.04
and 0. For the determination of oy, the guidance suggests the use of indi-
vidual difference ratio (IDR), which is defined as

1/2 1/2

[
2

1/2
IDR = [E(T_R)z} _ [(MT - PLR)2 + 02D +(012/VT + 05\/1{)

E(R-R’} 207

Therefore, assuming that the maximum allowable IDR is 1.25, substitution
of (log1.25)*/07y, for IBC without adjustment of the variance term approxi-
mately yields o, = 0.2.

4.4 Controversial Issues

In this section, we will focus on controversial issues related to Fundamental
Bioequivalence Assumption, one-fits-all criterion, and issues related to log
transformation of PK data prior to analysis. These controversial issues are
briefly described in the following sections.

4.4.1 Fundamental Bioequivalence Assumption

As indicated by Chow and Liu (2008), BE studies are performed under so-called
Fundamental Bioequivalence Assumption, which constitutes the legal basis for
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regulatory approval of generic drug products. Fundamental Bioequivalence
Assumption states:

If two drug products are shown to be bioequivalent, it is assumed that
they will reach the same therapeutic effect or they are therapeutically
equivalent and hence can be used interchangeably.

To protect the exclusivity of a brand-name drug product, the sponsors of
the innovator drug products will make every attempt to prevent generic
drug products from being approved by regulatory agencies such as the
FDA. One of the strategies is to challenge the Fundamental Bioequivalence
Assumption by filing a citizen petition with scientific/clinical justification.
Upon the receipt of a citizen petition, the FDA has legal obligation to respond
within 180 days. It, however, should be noted that the FDA will not suspend
the review/approval process of generic submission of a given brand-name
drug even if a citizen petition is under review within the FDA.

Under the Fundamental Bioequivalence Assumption, one of the contro-
versial issues is that BE may not necessarily imply therapeutic equivalence
and therapeutic equivalence does not guarantee BE either. The assessment
of ABE for generic approval has been criticized that it is based on legal/
political consideration rather than scientific consideration. In the past several
decades, many sponsors/researchers have made an attempt to challenge this
assumption with no success.

In practice, the verification of the Fundamental Bioequivalence Assumption
is often difficult, if not impossible, without the conduct of clinical trials.
For some drug products, the Fundamental Bioequivalence Assumption
may be verified through the study of in vitro—in vivo correlation (IVIVC).
It should be noted that the Fundamental Bioequivalence Assumption is for
drug products with identical active ingredient(s). Whether the Fundamental
Bioequivalence Assumption is applicable to (1) drug products with similar
but different active ingredient(s) and (2) biological products which are made
of living cells then become an interesting but controversial question.

4.4.2 One-Fits-All Criterion

For the assessment of ABE, the FDA adopted a one-fits-all criterion. That is,
a test drug product is said to be bioequivalent to a reference drug product if
the obtained 90% confidence interval for the ratio of means of the primary
study endpoint such as AUC or C,,, is totally within the BE limit of (80%,
125%) based on log-transformed data. The one-fits-all criterion does not take
into consideration of individual therapeutic window (ITW) and ISV, which
have been identified to have nonnegligible impact on the safety and efficacy
of generic drug products as compared to innovative drug products.

In the past several decades, this one-fits-all criterion has been challenged
and criticized by many researchers. It is suggested that flexible criteria in
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TABLE 4.1

Classification of Drugs

Class ITW ISV Example

A Narrow  High Cyclosporine

B Narrow Low Theophylline

C Wide Low to moderate  Most drugs

D Wide High Chlorpromazine or

topical corticosteroids

Source: Patnaik, R.N. et al., Clinical Pharmacokinetics, 33,1, 1997.
With permission.
Note: ITW, individual therapeutic window; ISV, intra-subject
variability.

terms of safety (upper BE limit) and efficacy (lower BE limit) be developed
based on ITW and ISV according to the nature of drug class under study
(Table 4.1). However, the one-fits-all criterion is still considered by most regu-
latory agencies until a recent proposal that based on reference-scaled average
bioequivalence (RSAB) criterion for highly variable drug products proposed
by Haider et al. (2008). This is probably because no (documented) evidence of
safety issues are raised for those generic drug products approved based on
the one-fits-all criterion. More discussions regarding the one-fits-all criterion
can be found in Section 26.4.2 of Chapter 26.

4.4.3 lIssues Related to Log Transformation

In practice, BE is assessed either based on raw data or log-transformed
data depending upon whether the data are normally distributed. This has
raised a controversial issue regarding which model should be used for a
fair assessment of BE. The sponsors often choose the model that can serve
their purposes (e.g., demonstration of BE). In many cases, the raw data model
may reach a different conclusion regarding BE than the log-transformation
model. This controversial issue has been discussed excessively that a guid-
ance on BE published by the FDA recommends that a log transformation
be performed prior to the assessment of BE (FDA, 2001). For the assessment
of BE, in practice, the 2001 FDA guidance provides a rationale for the use
of logarithmic transformation of exposure measures. The guidance empha-
sizes that the limited sample size in a typical BE study precludes a reliable
determination of the distribution of the data. For some unknown reasons,
the guidance does not encourage the sponsors to test for normality of error
distribution after log transformation or to use normality of error distribution
as a reason for carrying out the statistical analysis on the original scale.
With respect to the (PK) rationale, deterministic multiplicative PK models
are used to justify the routine use of logarithmic transformation for AUC(0—- <o)
and C,,,. However, the deterministic PK models are theoretical derivations of
AUC(0-) and C,,,, for a single object. The guidance suggests that AUC(0—) be
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calculated from the observed plasma-blood concentration-time curve using
the trapezoidal rule, and that C,,,, be obtained directly from the curve, with-
out interpolation. It is not known whether the observed AUC(0—-) and C,,,,,
can provide good approximations to those under the theoretical models if the
models are correct.

It should be noted that the AUC(0-«) and C,,,, are calculated from the
observed plasma-blood concentrations. Therefore, the distributions of the
observed AUC(0—) and C,,,, depend on the distributions of plasma-blood con-
centrations. Liu and Weng (1994) showed that the log-transformed AUC(0—<0)
and C,,,, do not generally follow a normal distribution, even when either the
plasma concentrations or log-plasma concentrations are normally distributed.
This argues against the routine use of the logarithmic transformation in the
assessment of BE. Moreover, Patel (1994) also pointed out that performing a rou-
tine log transformation of data and then applying normal, theory-based meth-
ods is not a scientific approach. In addition, the sample size of a typical BE study
is generally too small to allow an adequate large-sample normal approximation.

Because current statistical methods for the evaluation of BE are based on
the normality assumption of the inter-subject and intra-subject variabilities,
the examination of the normal probability plots for the studentized inter-
subject and intra-subject residuals should always be carried out for the scale
intended to be used in the analysis. In addition, formal statistical tests for
normality of the inter-subject and intra-subject variabilities can also be car-
ried out through Shapiro-Wilk’s method. Contrary to the misconception of
many people, Shapiro-Wilk’s method is an appropriate method for small
samples, such as BE studies. It is then scientifically imperative that tests for
normality be routinely performed for the scale used in the analysis, such as
log scale, suggested in the guidance. If normality cannot be satisfied by both
original scale and log scale, nonparametric methods should be employed.

Other issues concerning the routine use of the logarithmic transformation of
exposure responses are the equivalence limits and presentation of the results
on the original scale. The guidance recommends that the BE limits of (80%,
125%) on the original scale for the assessment of ABE be used. On the log scale,
they are [log(0.8), log(1.25)] = (-0.2331, 0.2331), where log denotes the natural
logarithm. This set of limits is symmetrical about zero on the log scale, but
it is not symmetrical on the original scale. It should be noted that the rejec-
tion region of Schuirmann’s two one-sided tests procedure associated with the
new limits of (80%, 125%) is larger than that with the limits of (80%, 120%). As
a result, a 90% confidence interval of (82%, 122%), for the ratio of averages of
AUC(0-) between the test and reference formulations, will pass the BE test
by the new limits, but not by the old limits. The new BE limits are 12.5% wider
and 25% more liberal in the upper limit than the old limits. A new, wider
upper BE limit may have an influence on the safety of the test formulation,
which should be carefully examined if the new BE limits are adopted.

The FDA guidance requires that the results of analyses be presented on the
log scale as well as on the original scale, which can be obtained by taking the
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inverse transformation. Because the logarithmic transformation is not linear,
the inverse transformation of the results to the original scale is not straightfor-
ward (Liu and Weng, 1992). For example, the point estimator of the ratio of
averages on the original scale obtained from the antilog of the estimator of
difference in averages on the log scale is biased and is always overestimated.
Furthermore, the antilog of the standard deviation of the difference in aver-
ages on the log scale is not the standard deviation for the point estimator of
the ratio of the averages on the original scale. Further research is needed for
the presentation of the results on the original scale, especially the estimation
of variability after the analyses are performed on the log scale.

For the limitation of ABE, the consideration of ITWs, and the objective of inter-
changeability, Chen (1995) summarized the merits of individual BE as follows:

. Comparison of both averages and variances
. Considerations of subject-by-formulation interaction

. Assurance of switchability

= W N =

. Provision of flexible BE criteria for different drugs based on their
therapeutic windows

5. Provision of reasonable BE criteria for drugs with highly ISV

6. Encouragement or reward of pharmaceutical companies to manu-
facture a better formulation

To achieve the objective of exchangeability among bioequivalent pharma-
ceutical products, the criteria for assessment of BE must possess certain
important properties. Chen (1995, 1997) outlined the desirable characteris-
tics of BE criteria proposed by the FDA which is provided in Table 4.2. In

TABLE 4.2

Desirable Features of Bioequivalence Criteria

Comparison of both averages and variances
Assurance of switchability

Encouragement or reward of pharmaceutical companies to manufacture
a better formulation

Control of type I error rate (consumer’s risk) at 5%
Allowance for determination of sample size

Admission of the possibility of sequence and period effects as well
as missing values

User-friendly software application for statistical methods
Provision of easy interpretation for scientists and clinicians
Minimization of increased cost for conducting bioequivalence studies

Source: Chen, M.L., Individual bioequivalence. Invited presentation at
International Workshop: Statistical and Regulatory Issues on the
Assessment of Bioequivalence. Dusseldorf, Germany, October
19-20, 1995.
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addition, to address the issues of ISV and subject-by-formulation interaction
and to ensure drug switchability, valid statistical procedures, both estima-
tion and hypothesis testing, should be developed from the criteria to control
the consumer’s risk at the prespecified nominal level (e.g., 5%). In addition,
the statistical methods developed from the criteria should be able to provide
sample size determination; to take into consideration the nuisance design
parameters, such as period or sequence effects; and to develop user-friendly
computer software. The most critical characteristics for any proposed cri-
teria will be their interpretation to scientists and clinicians and the cost of
conducting BE studies to provide inference for the criteria.

4.5 Frequently Asked Questions

Although the concepts of PBE and IBE for addressing drug prescribability
and drug switchability have been discussed vastly since the early 1990s,
FDA’s current position regarding the assessment of BE is:

Average bioequivalence is required and individual/population bio-
equivalence may be considered.

However, the FDA encourages that medical/statistical reviewers be con-
sulted if IBE/PBE is to be used. For the assessment of BE, some questions
are frequently asked during the regulatory submission and review. In what
follows, frequently asked questions in BE assessment are briefly described.

4.5.1 What If We Pass Raw Data Model but Fail
Log-Transformed Data Model?

Most regulatory agencies including FDA, European Medicines Agency
(EMEA), and the World Health Organization (WHO) recommend that a
log transformation of PK parameters of AUC(0-1f), AUC(0-), and C,,,, be
performed before analysis. No assumption checking or verification of the log-
transformed data is encouraged. However, the sponsors often conduct analyses
based on both raw data and log-transformed data and submit the one that
passes BE testing. If the sponsor passes BE testing under the log-transformed
data model, then there is no problem because it meets regulatory require-
ments. In practice, however, the sponsor may fail BE testing under the log-
transformed data model but pass under the raw data model. In this case,
the sponsor often provides scientific/statistical justification for the use of the
raw data model. One of the most commonly seen scientific/statistical justi-
fications is that the raw data model is a more appropriate statistical model
than the log-transformed data model because all of the assumptions for
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the raw data model are met. However, for the raw data model, the BE limit is
often expressed in terms of the ratio of the population means between the
test and reference formulations, and then the equivalence limit is expressed
as a percentage of the population reference average which has to be esti-
mated from the data. Therefore, the variability of the estimated reference
average is not considered in the equivalence limit. Hence, the false positive
rate for claiming ABE for the two one-sided tests procedure can be inflated
to 50%. As a result, one should apply the modified two one-sided tests proce-
dure using the raw data proposed by Liu and Weng (1995) to control the size
at the nominal level.

Many researchers have criticized that the use of log-transformed data is not
scientifically/statistically justifiable. Liu and Weng (1992) studied the distri-
bution of log-transformed PK data assuming that the hourly concentrations
are normally distributed. The results indicated that the log-transformed data
are not normally distributed. Their findings argue against the use of log-
transformed data since the primary normality assumption is not met and
consequently the assurance of the obtained statistical inference is question-
able. In this case, it is suggested that either other transformations such as
the Box-Cox transformation or a nonparametric method be considered.
However, the interpretation of such a transformation is challenging to both
pharmacokineticists and biostatisticians.

4.5.2 What If We Pass AUC but Fail C__ 2

max *

Based on the log-transformed data, the FDA requires that both AUC and
Cax meet the (80%, 125%) BE limit for the establishment of ABE. In practice,
however, it is not uncommon to pass AUC (the extent of absorption) but fail
Cinax (the rate of absorption). In this case, ABE cannot be claimed according to
the FDA guidance on BE. However, for C,,,, the EMEA and WHO guidelines
use a more relaxed equivalence margin of (70%, 143%). Thus, the sponsors
often argue with the FDA based on the EMEA and WHO guidelines.

In the case where we pass AUC but fail C,,, Endrenyi et al. (1991) sug-
gested considering C,.../AUC as an alternative BE measure for the rate of
absorption. However, C,,,/AUC is not currently selected as the required PK
responses for the approval of generic drug products by any of the regulatory
authorities in the world including the FDA, EMEA, and WHO. On the other
hand, it is very likely that we may pass C,,,, but fail AUC. In this case, it is
suggested that we may look at partial AUC as an alternative measure of BE
(see, e.g., Chen et al., 2001) if we fail to pass BE testing based on AUC from 0
to the last time point or AUC from 0 to infinity.

4.5.3 What If We Fail by a Relatively Small Margin?

In practice, it is very possible that we fail BE testing for either AUC or C,,,, by
a relatively small margin. For example, suppose the 90% confidence interval
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for AUC is given by (79.5%, 120%), which is slightly outside the lower limit
of (80%, 125%). In this case, the FDA's position is very clear that Rule is rule
and you fail. With respect to regulatory review and approval, the FDA is very
strict about this rule that the 90% confidence interval has to be totally within
the BE limit of (80%, 125%) as described in the 2003 FDA guidance. However,
the sponsor usually performs either an outlier detection analysis or a sensi-
tivity analysis to resolve the issue. In other words, if a subject is found to be
an outlier statistically, it may be excluded from the analysis with appropriate
clinical justification. Once the identified outlier is excluded from the analy-
sis, a 90% confidence interval is recalculated. If the 90% confidence interval
after excluding the identified outlier is totally within the BE limit of (80%,
125%), the sponsor then argues to claim BE.

4.5.4 Can We Still Assess Bioequivalence If There
Is a Significant Sequence Effect?

As indicated by Chow and Liu (2008), under a standard 2 x 2 crossover
design, significant sequence effect is an indication of possible (1) failure of
randomization, (2) true sequence effect, (3) true carryover effect, and/or (4)
true formulation-by-period effect. Under the standard 2 x 2 crossover design,
the sequence effect is confounded with the carryover effect. Therefore, if a
significant sequence effect is found, the treatment effect and its correspond-
ing 90% confidence interval cannot be estimated in an unbiased way due to
possible unequal carryover effects. However, in the 2001 FDA guidance, the
following list of conditions is provided to rule out the possibility of unequal
carryover effects:

1. It is a single-dose study.
2. The drug is not an endogenous entity.

3. More than an adequate washout period has been allowed between
periods of the study and in the subsequent periods the predose bio-
logical matrix samples do not exhibit a detectable drug level in any
of the subjects.

4. The study meets all scientific criteria (e.g., it is based on an accept-
able study protocol and it contains a validated assay methodology).

The 2001 FDA guidance also recommends that sponsors conduct a BE study
with parallel designs if unequal carryover effects become an issue.

4.5.5 What Should We Do When We Have Almost Identical Means
but Still Fail to Meet the Bioequivalence Criterion?

It is not uncommon to run into the situation that we have almost identical
means but still fail to meet the BE criterion. This may indicate that (1) the
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variation of the reference product is too large to establish BE between the
test product and the reference product, (2) the BE study was poorly con-
ducted, and (3) the analytical assay methodology is inadequate and not fully
validated. The concept of IBE and/or PBE is an attempt to overcome this
problem. As a result, it is suggested that either PBE or IBE be considered to
establish BE. However, in our experience, unless the variability of the test
formulation is much smaller than that of the reference formulation, it is still
unlikely to pass either PBE or IBE. In addition, to avoid masking the effect of
PBE or IBE, the 2001 FDA guidance requires that the geometric test/reference
averages be within 80%-125% too.

4.5.6 Power and Sample Size Calculation Based on Raw Data Model
and Log-Transformed Model Are Different

Power analysis calculation and sample size based on the raw data model are
different from those based on the log-transformed model due to the fact that
they are different models. Under different models, means, standard devia-
tions, and coefficients of variation are different. As mentioned earlier, for
the assessment of BE, all regulatory authorities including the FDA, EMEA,
WHO, and Japan require that log transformation of AUC(0—f), AUC(0—- o),
and C,,, be done before the analysis and evaluation of BE. As a result, one
should use differences in mean and standard deviation or coefficient of vari-
ation for power analysis and sample size calculation based on the method
for the log-transformed model (see, e.g., Chapter 5 of Chow and Liu, 2008).

Note that sponsors should make the decision as to which model (the raw
data model or the log-transformed data model) will be used for BE assess-
ment. Once the model is chosen, appropriate formulas can be used to deter-
mine the sample size. Fishing around for obtaining the smallest sample size
is not a good clinical practice.

4.5.7 Adjustment for Multiplicity

The 2003 FDA guidance for general considerations requires that for AUC(0 - ¢#),
AUC(0-<), and C,,,,, the following information be provided:

max/

1. Geometric means
2. Arithmetic means
3. Ratio of means

4. Ninety percent confidence interval

In addition, the 2003 FDA guidance recommends that logarithmic trans-
formation be provided for measures for BE demonstration using a BE limit
of 80%-125%. Therefore, to pass the ABE, each 90% confidence interval of
AUC(0-t), AUC(0—), and C,,,, must fall within 80% and 125%. It follows that
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according to the intersection—union principle (Berger, 1982), the type I error
rate of ABE is still controlled under the nominal level of 5%. Therefore, there
is no need for adjustment due to multiple PK measures.

4.6 Concluding Remarks

Asindicated in Chapter 1, the FDA kicked off a critical path initiative to assist
the sponsors in identifying the scientific challenges underlying the medical
product pipeline problems. A critical path opportunities list was released
in 2006 to bridge the gap between the quick pace of new biomedical dis-
coveries and the slower pace at which those discoveries are currently devel-
oped into therapies. However, the assessment of BE for generic approval was
not included until a year later. In May 2007, the FDA issued the critical path
opportunities for generic drugs which lay out the opportunities as well as
the challenges that are unique to the generic drug products. Note that the
critical path opportunities for generic drugs were issued by the Office of
Generic Drugs, Center for Drug Evaluation and Research. Consequently, the
critical path opportunities for generic drugs are only confined to the tradi-
tional chemical drug products.

In pharmaceutical development, the concept of equivalence should not
be limited to BE for the approval of generic drug products. The concept of
equivalence can be applied to substantial equivalence for medical devices
and biosimilarity for follow-on biologics (FOB). For medical devices, based
on the risk of medical devices posed to the patient and/or user, the FDA cat-
egorized medical devices into three classes. Regulations for Class I devices
require the general controls while the Class II devices require both general
controls and special controls. On the other hand, because of higher risks, in
addition to the general controls and special controls, the FDA requests that
Class III devices require a premarket approval (PMA) to obtain marketing
clearance. However, for Class I and II devices, the sponsor can make a pre-
market notification through a 510 (k) submission to the FDA. Under 510 (k),
the new device must demonstrate that it is at least safe and effective as a legal
U.S. market device or a predicate device. This concept of equivalence for the
approval of medical devices under 510 (k) is referred to as substantial equiv-
alence. According to the FDA, a device is considered substantially equivalent
if it has either (1) the same intended use as the predicate and (2) the same
technological characteristics as the predicate or (1) the same intended use as
the predicate and (2) different technological characteristics and the informa-
tion submitted to the FDA. Therefore, according to the submissions under
510 (k), as compared to the predicate, a device must demonstrate a two-sided
equivalence in technological characteristics or a one-sided equivalence or
non-inferiority in safety and effectiveness.
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For the approval of biosimilars in the European Union (EU) community,
the EMEA has issued a new guideline describing general principles for the
approval of similar biological medicinal products, or biosimilars. The guide-
line is accompanied by several concept papers that outline areas in which the
agency intends to provide more targeted guidance. Specifically, the concept
papers discuss approval requirements for four classes of human recombinant
products containing erythropoietin, human growth hormone, granulocyte-
colony stimulating factor, and insulin. The guideline consists of a checklist
of documents published to date relevant to data requirements for biological
pharmaceuticals. It is not clear what specific scientific requirements will be
applied to biosimilar applications. In addition, it is not clear how the agency
will treat innovator data contained in the reference product dossiers. The
guideline provides a useful summary of the biosimilar legislation and previ-
ous EU publications, and it also provides a few answers to the issues.

Note that very little literature on statistical methods for the assessment of
(1) substantial equivalence for the approval of medical products and (2)
biosimilarity of FOB can be found. In addition, even the selection of equiv-
alence limits for the evaluation of substantial equivalence and biosimilar-
ity of FOB has not been fully investigated or mentioned in the regulatory
guidelines. More research in these areas is urgently needed. More details
regarding the assessment of follow-on biologics can be found in Chapter 24
of this book.






5

Hypotheses for Clinical Evaluation
and Significant Digits

5.1 Introduction

In clinical trials, a typical approach for clinical evaluation of the safety and
efficacy of a test treatment is to first test for the null hypothesis of no treat-
ment difference in efficacy based on clinical data collected under a valid trial
design. The investigator would reject the null hypothesis of no treatment
difference and then conclude the alternative hypothesis that there is a differ-
ence in favor of the test treatment under investigation. As a result, if there is
a sufficient power for correctly detecting a clinically meaningful difference if
such a difference truly exists, we claim that the test treatment is efficacious.
The test treatment will be reviewed and approved by the regulatory agency
if the recommended dose is well tolerated and there appear no safety con-
cerns. In some cases, the regulatory agencies such as the United States FDA
will issue a letter of approval pending a commitment for conducting large-
scale long-term safety surveillance.

In practice, the intended clinical trial is always powered to achieve the
study objective with a desired power (say 80%) at a prespecified level of sig-
nificance (say 5%). However, the study based on a single primary endpoint
(usually efficacy endpoint) may not be appropriate because one single pri-
mary efficacy endpoint may not be able to fully describe the performance
of the treatment with respect to both the efficacy and safety under study.
Statistically, the traditional approach based on a single primary efficacy
endpoint for the clinical evaluation of both safety and efficacy is a condi-
tional approach (i.e., conditional on safety performance). It should be noted
that under the traditional (conditional) approach, the observed safety pro-
file may not be of any statistical meaning (i.e., the observed safety profile
could be by chance alone and is not reproducible). As a result, the traditional
approach for the clinical evaluation of both efficacy and safety may have
inflated the false positive rate of the test treatment in treating the disease
under investigation.

69
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In the past several decades, the traditional approach has been found
to be inefficient as many drug products have been withdrawn from the
market because of the risks to patients. Table 5.1 (reproduced from http://
enwikipedia.org/wiki/List_of withdrawn_drugs) provides a list of (sig-
nificant) withdrawn drugs between 1950 and 2010. As can be seen from
Table 5.1, most drugs withdrawn from the market are due to safety con-
cerns (risks to the patients). Usually this is prompted by unexpected
adverse effects that were not detected during phase III clinical trials and
were only apparent in the postmarketing surveillance data from the wider
patient population. Note that the list of withdrawn drugs given in Table 5.1
was approved by the regulatory agencies such as the U.S. FDA and EMEA
in European Community. Note that some of the drug products on the list
were approved to be marketed in Europe but had not yet been approved by
the FDA for marketing in the United States.

In addition to drug withdrawals, drug products may be recalled due to
lack of good drug characteristics such as quality and stability. Table 5.2 sum-
marizes the number of prescription and over-the-counter drugs that were
recalled between the fiscal years of 2004 and 2005 for illustration purpose.
Most of the drug recalls are due to or related to safety issues although some
of the causes for recalls are due to failing to pass FDA inspection for stability
testing and/or dissolution testing, which have an impact on the safety of the
drug products currently on the marketplace. Thus, one of the controversial
issues is whether the traditional (conditional) hypotheses testing approach
(based on efficacy alone) for the evaluation of the safety and efficacy of a test
treatment under investigation is appropriate.

In clinical trials, clinical results are often reported by rounding up the num-
ber to certain decimal places. Statistical inference obtained based on data
with different decimal places may lead to different conclusions. Therefore,
the selection of the number of decimal places could be critical if the treatment
effect is of marginal significance. Thus, how many decimal places should be
used for reporting the clinical results has become an interesting question to
the investigators who conduct clinical trials at various phases of the clinical
development. Chow (2000) introduced the concept of signal-noise for deter-
mining the number of decimal places for results obtained from clinical trials.
The idea is to select the minimum number of decimal places in such a way
that there is no statistically significant difference between the data set pre-
sented by using the minimum decimal places and any other data sets with
more decimal places.

In the next section, several composite hypotheses which will take both
efficacy and safety into consideration are proposed. In Section 5.3, for illus-
tration purpose, statistical methods for testing the composite hypothesis
that Hy: not NS versus H,: NS are derived, where N represents testing for
non-inferiority of the efficacy endpoint and S stands for superiority testing
of the safety endpoint. Section 5.4 studies the impact on power and sam-
ple size calculation when switching from testing for a single hypothesis to
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TABLE 5.1

Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks
Thalidomide 1950s-1960s ~ Withdrawn because of risk of

Lysergic acid diethylamide

Diethylstilbestrol
Phenformin and Buformin

Ticrynafen
Zimelidine

Phenacetin

Methaqualone
Nomifensine (Merital)

Triazolam

Temafloxacin

Flosequinan (Manoplax)

Alpidem (Ananxyl)

Fen-phen (popular combination
of fenfluramine and
phentermine)

Tolrestat (Alredase)

Terfenadine (Seldane)

Mibefradil (Posicor)

Etretinate

1950s-1960s

1970s

1978

1982
1983

1983

1984

1986

1991

1992

1993

1996

1997

1997

1998

1998

1990s

teratogenicity; returned to market for use
in leprosy and multiple myeloma under
FDA orphan drug rules

Marketed as a psychiatric cure-all;
withdrawn after it became widely used
recreationally

Withdrawn because of risk of
teratogenicity

Withdrawn because of risk of lactic
acidosis

Withdrawn because of risk of hepatitis

Withdrawn worldwide because of risk of
Guillain-Barré syndrome

An ingredient in “APC” tablet; withdrawn
because of risk of cancer and kidney
disease

Withdrawn because of risk of addiction
and overdose

Withdrawn because of risk of hemolytic
anemia

Withdrawn in the United Kingdom
because of risk of psychiatric adverse
drug reactions. This drug continues to be
available in the United States

Withdrawn in the United States because of
allergic reactions and cases of hemolytic
anemia, leading to three patient deaths

Withdrawn in the United States because
of an increased risk of hospitalization
or death

Withdrawn because of rare but serious
hepatotoxicity

Phentermine remains on the market,
dexfenfluramine and fenfluramine—Ilater
withdrawn as caused heart valve disorder

Withdrawn because of risk of severe
hepatotoxicity

Withdrawn because of risk of cardiac
arrhythmias; superseded by fexofenadine

Withdrawn because of dangerous
interactions with other drugs

Risk of birth defects; narrow therapeutic
index

(continued)
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TABLE 5.1 (continued)

Controversial Statistical Issues in Clinical Trials

Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks
Temazepam (Restoril, 1999 Withdrawn in Sweden and Norway
Euhypnos, Normison, because of diversion, abuse, and a
Remestan, Tenox, Norkotral) relatively high rate of overdose deaths in
comparison to other drugs of its group.
This drug continues to be available in
most of the world including the United
States, but under strict controls
Astemizole (Hismanal) 1999 Arrhythmias because of interactions with
other drugs
Troglitazone (Rezulin) 2000 Withdrawn because of risk of
hepatotoxicity; superseded by
pioglitazone and rosiglitazone
Alosetron (Lotronex) 2000 Withdrawn because of risk of fatal
complications of constipation;
reintroduced in 2002 on a restricted basis
Cisapride (Propulsid) 2000s Withdrawn in many countries because of
risk of cardiac arrhythmias
Amineptine (Survector) 2000 Withdrawn because of hepatotoxicity,
dermatological side effects, and abuse
potential
Phenylpropanolamine 2000 Withdrawn because of risk of stroke in
(Propagest, Dexatrim) women under 50 years of age when taken
at high doses (75mg twice daily) for
weight loss
Trovafloxacin (Trovan) 2001 Withdrawn because of risk of liver failure
Cerivastatin (Baycol, Lipobay) 2001 Withdrawn because of risk of
rhabdomyolysis
Rapacuronium (Raplon) 2001 Withdrawn in many countries because of
risk of fatal bronchospasm
Rofecoxib (Vioxx) 2004 Withdrawn because of risk of myocardial
infarction
Mixed amphetamine salts 2005 Withdrawn in Canada because of risk of
(Adderall XR) stroke. See Health Canada press release.
The ban was later lifted because the death
rate among those taking Adderall XR was
determined to be no greater than those
not taking Adderall
Hydromorphone extended- 2005 Withdrawn because of a high risk of
release (Palladone) accidental overdose when administered
with alcohol
Pemoline (Cylert) 2005 Withdrawn from the U.S. market because
of hepatotoxicity
Natalizumab (Tysabri) 2005-2006 Voluntarily withdrawn from the U.S.

market because of risk of progressive
multifocal leukoencephalopathy (PML).
Returned to market in July 2006
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TABLE 5.1 (continued)
Significant Withdrawals of Drug Products between 1950 and 2010

Drug Name Withdrawn Remarks

Ximelagatran (Exanta) 2006 Withdrawn because of risk of
hepatotoxicity (liver damage)

Pergolide (Permax) 2007 Voluntarily withdrawn in the United States

because of the risk of heart valve damage.
Still available elsewhere

Tegaserod (Zelnorm) 2007 Withdrawn because of imbalance of
cardiovascular ischemic events, including
heart attack and stroke. Was available
through a restricted access program until
April 2008

Aprotinin (Trasylol) 2007 Withdrawn because of increased risk of
complications or death; permanently
withdrawn in 2008 except for research use

Lumiracoxib 2007-2008 Progressively withdrawn around the
world because of serious side effects,
mainly liver damage

Rimonabant (Accomplia) 2008 Withdrawn around the world because of
risk of severe depression and suicide

Efalizumab (Raptiva) 2009 Withdrawn because of increased
risk of PML; to be completely withdrawn
from market by June 2009

Sibutramine (Reductil) 2010 Withdrawn in Europe because of increased

cardiovascular risk

Source: Wikipedia, List of withdrawn drugs, http://en.wikipedia.org/wiki/List_of_withdrawn_

drugs, 2010.
TABLE 5.2
Summary of Drug Recalls between 2004
and 2005
Prescription Over-the-Counter
Fiscal Year Drug Drug
2004 215 71
2005 401 101

Source: Report to the Nation issued by CDER/FDA.

testing for a composite hypothesis. In clinical trials, clinical results are often
reported by rounding up the number to certain decimal places. Statistical
inference obtained based on data with different decimal places may lead to
different conclusions. In Section 5.5, some statistical justification for Chow’s
proposal for determination of appropriate decimal places in observations
obtained from clinical research is provided.
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5.2 Hypotheses for Clinical Evaluation

In clinical trials, for the clinical evaluation of efficacy, commonly considered
approaches include tests for hypotheses of superiority (S), non-inferiority
(N), and (therapeutic) equivalence (E). For safety assessment, the investiga-
tor usually examines the safety profile in terms of adverse events and other
safety parameters to determine whether the test treatment is either better
(superiority), non-inferior (non-inferiority), or similar (equivalence) as com-
pared to the control. As an alternative to the traditional approach, Chow
and Shao (2002) suggest testing composite hypotheses that take both safety
and efficacy into consideration. For illustration purpose, Table 5.3 provides
a summary of all possible scenarios of composite hypotheses for the clinical
evaluation of safety and efficacy of a test treatment under investigation.

Statistically, we would reject the null hypothesis at a prespecified level of
significance and conclude the alternative hypothesis with a desired power.
For example, the investigator may be interested in testing non-inferiority in
efficacy and superiority in safety of a test treatment as compared to a con-
trol. In this case, we can consider testing the null hypothesis that Hj: not
NS, where N denotes non-inferiority in efficacy and S represents superiority
of safety. We would reject the null hypothesis and conclude the alternative
hypothesis that H,: NS, i.e., the test treatment is non-inferior to the active
control agent and its safety is superior to the active control agent. To test
the null hypothesis that H;: not NS, appropriate statistical tests should be
derived under the null hypothesis. The derived test statistics can then be
evaluated for achieving the desired power under the alternative hypothesis.
The selected sample size will ensure that the intended trial will achieve the
study objectives of (1) establishing non-inferiority of the test treatment in
efficacy and (2) showing superiority of the safety profile of the test treatment
at a prespecified level of significance.

Note that the composite hypothesis problem described above is different
from multiple comparisons. Multiple comparisons usually consist of a set of
null hypotheses. The overall hypothesis is that all individual null hypotheses

TABLE 5.3

Composite Hypotheses for Clinical
Evaluation

Safety

Efficacy N S E
N NN NS NE
S SN SS SE
E EN ES EE

Note: N, Non-inferiority; S, Superiority;
E, Equivalence.
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are true, and the alternative hypothesis is that at least one of the null hypoth-
eses is not true. In contrast, when it comes to the composite hypothesis prob-
lem, the alternative hypothesis is that the test drug is non-inferior (N) in
efficacy and superior (S) in safety. Then, the null hypothesis is not NS, i.e.,
the test drug is inferior in efficacy or the test drug is not superior in safety. In
other words, the null hypothesis consists of three subsets of null hypothesis:
first, the test drug is inferior in efficacy and superior in safety; second, the
test drug is non-inferior in efficacy and not superior in safety; third, the test
drug is inferior in efficacy and not superior in safety. It would be complicated
to consider all these three subsets of null hypothesis. If the third subset of
null hypothesis is considered, naturally the alternative hypothesis is that the
test drug is either non-inferior in efficacy or superior in safety, which is dif-
ferent from the hypothesis that the test drug is non-inferior in efficacy and
superior in safety.

It also should be noted that in the interest of controlling the overall type I
error rate at the o level, appropriate o levels (say o, for efficacy and o, for
safety) should be chosen. When switching from a single hypothesis testing
to a composite hypothesis testing, an increase in sample size is expected.

5.3 Statistical Methods for Testing Composite
Hypotheses of NS

For illustration purpose, consider the composite hypotheses that H,: not NS
versus H,: NS in the clinical evaluation of a test treatment under investiga-
tion, where N represents the hypothesis for testing non-inferiority in effi-
cacy and S stands for the hypothesis for testing superiority in safety (Chow
and Lu, 2011). Let X and Y be the efficacy and safety endpoints, respectively.
Assume that (X, Y) follows a bivariate normal distribution with mean (y, L)
and variance—covariance matrix X, i.e., where

E=f o% POxOy
kpGXOY oy J

Suppose that the investigator is interested in testing non-inferiority in effi-
cacy and superiority in safety of a test treatment as compared to a control
(e.g., an active control agent). The corresponding composite hypotheses may
be considered:

Hy :ux1 —Ux2 = =0x OF Uy; — Wy, =8y versus

H;:uxi —ux2 > —0x and py; — Uy, > Oy,
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where
(Wx1, Myp) and (Uy,, Wy,) are the means of (X, Y) for the test treatment and the
control, respectively
Oy and &, are the corresponding non-inferiority margin and superiority
margin

Note that 8y and &, are positive constants. If the null hypothesis is rejected
based on a statistical test, we conclude that the test treatment is non-inferior
to the control in the efficacy endpoint X, and is superior over the control in
the safety endpoint Y.

To test the above composite hypotheses, suppose that a random sample of
(X, Y)is collected from each treatment arm. In particular, (Xy;, Yyy), ..., (Xq,., Y1)
are iid. N((lxy, Wyq), ), which is the random sample from the test treatment,
and (X5, Y5), ..., (X5, Y5,) are ii.d. N((lxy, My), X), which is the random sample
from the control treatment. Let X; and X, be the sample means of X in the
test treatment and the control, respectively. Similarly, Y, and Y, are the sample
means of Y in the test treatment and the control, respectively. It can be verified
that the sample mean vector (X, Y) follows a bivariate normal distribution.
In particular, (X, Y) follows N((u, u,,), n;'E). Since (X;,Y;) and (X,, Y,) are
independent bivariate normal vectors, it follows that (X; — X, Y; - Y,) is also
normally distributed as N((ux1 — Ux2, Wy1 — Wy2), (n' +n3")2). For simplicity,
we assume that ¥ is known, i.e., the values of parameters o%, 6y, and p are
known. To test the composite hypothesis H, for both efficacy and safety, we
may consider the following test statistics:

21_22+6X YI_YZ_éY

K- Xo+0x Y-V -0dy
Vit + 13" ok Jnt + 3oy

Thus, we would reject the null hypothesis H, for large values of Ty and T,.
Let C, and C, be the critical values for Ty and T, respectively. Then, we have

Ty = Ty =

( \

P(Ty>Cy, Ty >Cy)=P ux>cl_w, upcz_m )
(nf1 + nil)ai (n{1 + ngl)ozy

(5.1)

where (U, U,) is the standard bivariate normal random vector, i.e., a bivari-
ate normal random vector with zero means, unit variances, and a correlation
coefficient of p.

Under the null hypothesis H that ply; — py, < — 85 or ty; — Wy, < &y, it can
be shown that the upper limit of P(Ty > C,, Ty > C,) is the maximum of the
two probabilities, i.e, max{l — ®(C,), 1 — ®(C,)}, where ® is the cumulative
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distribution function of the standard normal distribution. A brief proof is
as follows.
For given constants a4, and 4, and a standard bivariate normal vector

Uy, Uy) ™~ N((O, 0), (Fl) Fl))),wehave

+00 400

2 2
P(Uy > a1, Uy > a) = x+y-29xy}dydx

1
2nﬂ.{£e)(p{_ 2(1-p%)

(y - px)° }dydx

Ji_f{ }fm { 21-p?)

. 1 o ay—px) ES
=1-®(aq) m{@LJl_szexp{ Z}dx. 5.2

Since the joint distribution of (Uy, U,) is symmetric, (5.2) is also equal to

1-D(ay) - f L\/l < ) exp{—yzz} dy. (5.3)

Based on (5.1), P(Tx > C,, Ty > C,) can be expressed by (5.2) and (5.3) with a,
and a, replaced by

-C, - Wx1 = Ux2 +0x and D,=C,- Wy1 = Wyz = Oy

ni' +n;' ok n{1+n2‘1)0%

respectively. Under the null hypothesis H, that [y, — [y, < =85 Or Wy; — Hy, <3y,
it is true that either D, > C; or D, > C,. Since the integrals in (5.2) and (5.3) are
positive, it follows that P(Tyx > C;, Ty > C, | Hy) < max(1 — ®(C)), 1 — ®(C)).

To complete the proof, we need to show for any € > 0,8y, and &, (>0), and
given values of other parameters, there exist values of Ly, — [y, and [y, — My,
such that (5.2) is larger than 1 - ®(C,) —eand 1 - ®(C,) — €. Let Ly, — Ly, = —0Oy.
Then (5.2) becomes

1 '~ (D, -px) x?
1—¢(C1)—\/£’!d>(\/1_p2)exp{—z}dx. (54)
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For p > 0, there exists a negative value K such that when D, < K, for any x in
[Cll +°°)r

(Dz —px\

ey

For sufficiently large Wy, — Ly, it can happen that D, < K. Therefore, for suf-
ficiently large Lly; — Ly, (5.4) > 1 — ®(C,) — €. For p <0, express the integral in
(54) as I, + I,, where

Il=j:d>(3%c]exp{—x;}dx and Iz=z¢{3%c)exp{—x;}dx.

€ is chosen such that I, < f exp{-x*/2}dx < 0.5¢. The first inequality holds
E

as the cumulative distribution is always <1. For a chosen value of ¢, the argu-
ment for p > 0 can be applied to prove I; < 0.5¢ for sufficiently large ,; — Ly,.
Hence, P(Tyx > C,, Ty > C,|H,) is greater than 1 — ®(C,) — € for uy; — Uy, = —0x
and sufficiently large [, — Ll,. Similarly, it can be proven that P(Tx > C;, Ty >
C,|H,) is greater than 1 — ®(C,) — € for Wy, — Wy, = &, and sufficiently large
Ux1 — Hxo. This completes the proof.

Therefore, the type I error of the test based on Ty and T, can be controlled
at the level of o by appropriately choosing corresponding critical values of C;
and C,. Denote by z, the upper a-percentile of the standard normal distribu-
tion. Then, the power function of the above test is P(Tx > z,,, Ty > z,,), which
can be calculated from (5.1) and the cumulative distribution function of the
standard bivariate distribution.

5.4 Impact on Power and Sample Size Calculation
5.4.1 Fixed Power Approach

As indicated earlier, when switching from testing a single hypothesis (i.e.,
based on a single study endpoint such as the efficacy endpoint in clinical
trials) to testing a composite hypothesis (i.e., based on two study endpoints
such as both efficacy and safety endpoints in clinical trials), an increase
in sample size is expected. Let X be the efficacy endpoint in clinical trials.
Consider testing the following single non-inferiority hypothesis with a non-
inferiority margin of dy:

Hp tuxs —uxo = —-8x  versus Hip :ux —WUx > —Ox.
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Then, a commonly used test is to reject the null hypothesis Hy, at the o level
of significance if Ty > z,. The total sample size for concluding the test treat-
ment is non-inferior to the control with 1 — § power if the difference of mean

Uy — My > — By is

(14 Y (zq + 25)20§(
r(Ux1 —Uxz +0x )2 ’

Nx

where r = n,/n, is the sample size allocation ratio between the control and test
treatment. Table 5.4 gives total sample size (Ny) for the test of non-inferiority
based on the efficacy endpoint X and total sample size (N) for testing the
composite hypothesis based on both efficacy endpoint X and safety endpoint
Y, for various scenarios. In particular, we calculated sample sizes for o =
0.05, B = 0.20, ty; — Wy, — 8y = 0.3, r = 1, and several values of A = [y, — Uy, + Oy
and other parameters. For a hypothesis of superiority of the test treatment in
safety, i.e,, the component with respect to safety in the composite hypothesis,
the preceding specified values of type I error rate, power, and py; — [y, — Oy
and oy require a total sample size N, = 275.

For many scenarios in Table 5.4, the total sample size N for testing the
composite hypothesis is much larger than the sample size for testing non-
inferiority in efficacy (Ny). However, it happens in some cases that they are
the same or their difference is quite small. Actually N is associated with

TABLE 5.4

Comparison of Sample Size between Tests for Multiple Endpoints
and Single Endpoint

A=02 A=03 A=04

6x P Ny N NNy Ny N NNy Ny N NNy

05 -1.0 155 304 1.96 69 276  4.00 39 275 7.05
-0.5 155 303 1.95 69 276 4.00 39 275 7.05
0.0 155 300 1.94 69 276 4.00 39 275 7.05
0.5 155 289 1.86 69 275 3.99 39 275 7.05
1.0 155 275 1.77 69 275 3.99 39 275 7.05

1.0 -1.0 619 647 1.05 275 381 1.39 155 304 1.96
-0.5 619 646 1.04 275 381 1.39 155 303 1.95
0.0 619 642 1.04 275 373 1.36 155 300 1.94
0.5 619 629 1.02 275 352 1.28 155 289 1.86
1.0 619 619 1.00 275 275 1.00 155 275 1.77

1.5 -1.0 1392 1392 1.00 619 647 1.05 348 433 1.24
-05 1392 1392 1.00 619 646 1.04 348 432 1.24
0.0 1392 1392 1.00 619 642 1.04 348 424 1.22
05 1392 1392 1.00 619 629 1.02 348 402 1.16
1.0 1392 1392 1.00 619 619 1.00 348 348 1.00
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the sample sizes for individual testing of non-inferiority in efficacy (Ny) and
of superiority in safety (Ny), and the correlation coefficient (p) between X
and Y. When a large difference exists between Ny and Ny, N is quite close
to the larger of Ny and N,, and changes little along with changes in p. In
this numerical study, for Ny = 69 and 39 («275), N is mostly equal to 275; for
Ny = 1392 and 619 (>275), the difference between N and Ny is 0 or negligible
compared with the size of N. In the preceding four scenarios, a change in
correlation coefficient between X and Y has little impact on N. On the other
hand, the larger of Ny and Ny is not always close to N, especially when Ny
and Ny are close to each other. For example, in Table 5.4, when both values of
Ny are equal to 275 (=N), N is 352 for p = 0.5, and 373 for p = 0. In addition,
the results in Table 5.4 suggest that the correlation coefficient between X and
Y is unlikely to have great influence on N, especially when the difference
between Ny and Ny is quite substantial. The above findings are consistent
with the following underlying “rule”: when the two sample sizes are sub-
stantially different, taking N as the larger of Ny and N, will ensure that the
powers of two individual tests for efficacy and safety are essentially 1 and
1 - B, “resulting” in a power of 1 — f3 for testing the composite hypotheses;
when Ny and N, are close to each other, taking N as the larger of Ny and N
will power the test of composite hypotheses at about (1 — B)?. Therefore, a
significant increment in N is required for achieving a power of 1 — 3.

5.4.2 Fixed Sample Size Approach

Based on the sample size in Table 5.4, the power of the test of the composite
hypothesis H, was calculated with results presented in Table 5.5, where P is
the power of the test of the composite hypothesis with Ny in Table 5.4. P,, is
the power of the same test with max (N, 275). With the sample size Ny, the
power of the test of the composite hypothesis is always not greater than the
target value 80% as Ny is always not larger than N in Table 5.4. In some cases
where 6 =1.5> 6, =10, Ny = N. Hence the corresponding P = 80%. However,
P is less than 60% for many cases in our numerical study. The worst scenario
is P =4.3% when Ny = 39 for 6y = 0.5, p = -1, and A = 04. Therefore, the test for
the composite hypothesis of both efficacy and safety using a sample size Ny
for achieving a certain power in testing the hypothesis of efficacy only may
not have enough power to reject the null hypothesis. Interestingly, testing
the composite hypothesis with max(Ny, 275), the power P, is close to the tar-
get value 80% in most scenarios. Some exceptions happen when Ny is close
to 275 (corresponding to (A = 0.3,04 = 1.0) and (A = 04, 65 = 1.5), such that a
significant increment in sample size from max(Ny, 275) to N is required. This
suggests taking N as the larger of the two sample sizes Ny and N for testing
the hypothesis of individual endpoints when one of the two is much larger,
say, twofold larger than the other.
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TABLE 5.5
Power (%) of Test of Composite Hypothesis

A=02 A=03 A=04

6, p P P, P P, P P,

05 -10 389 753 147 80.0 43 80.0
-05 419 754 220 800 142 80.0
00 471 762 277 800 192 80.0
05 529 781 323 800 228 800
1.0 588 80.0 345 80.0 239 80.0

1.0 -10 782 782 601 601 389 753
-05 782 782 609 609 419 754
00 786 786 640 640 471 762
05 794 794 688 688 529 781
1.0 800 80.0 800 80.0 588 80.0

1.5 -10 800 800 782 782 676 67.6
-05 80.0 800 782 782 68.0 68.0
00 80.0 800 786 786 70.1 701
05 80.0 800 794 794 737 737
1.0 800 80.0 800 80.0 800 80.0

5.4.3 Remarks

The traditional approach for the clinical evaluation of a test treatment under
investigation is to power the study based on an efficacy endpoint. The test
treatment is considered approvable if its safety and tolerability are acceptable
provided that the efficacy has been established. In practice, in the interest of
controlling the overall type I error rate at a prespecified level of significance,
the type I error rate may be adjusted for multiple comparisons. It, however,
should be noted that the overall type I error rate may be controlled at the risk
of (1) decreasing the power and (2) increasing the sample size when switch-
ing from testing a single hypothesis (for efficacy) to testing a composite
hypothesis (for both efficacy and safety).

In this chapter, for illustration purpose, we assume that the two study end-
points follow a bivariate normal distribution. In practice, both efficacy and
safety endpoints could be either a continuous variable, a binary response, or
time-to-event data. A similar idea can be applied to determine the impact
on power and sample size calculation when switching from testing a single
hypothesis to testing a composite hypothesis. It, however, should be noted
that closed forms for the relationships of powers and formulas for sample
size calculation between the single hypothesis and the composite hypothesis
may not exist. In this case, clinical trial simulation may be useful.
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I
5.5 Significant Digits

In practice statistical inference obtained based on data with different deci-
mal places may lead to different conclusions. As an example, consider a
parallel bioequivalence (BE) study. Suppose that there are 24 subjects in the
group of test drug and 24 subjects in the group of reference drug. The data
are given in Table 5.6. From the BE study results given in Table 5.7, it can be
seen that keeping a different number of decimal digits can lead to differ-
ent conclusions. Thus, the selection of the number of decimal places could
be critical if the treatment effect is of marginal significance. Chow (2000)
introduced the concept of signal-noise for determining the number of deci-
mal places for results obtained from clinical trials. The idea is to select the

TABLE 5.6

Bioequivalence Example Data

X X, X X Y Y, Y, Y
1.169577 1 12 117 1.0722791 1 1.1 1.07
1.251990 1 1.3 125 1.0348811 1 1.0 1.03
1.449081 1 1.4 145 0.9020537 1 09 090
1.205818 1 1.2 121 1.1196368 1 1.1 112
1.355457 1 14 136 0.9736662 1 1.0 097
1.285863 1 1.3 129 1.1360977 1 1.1 114
1.519270 2 1.5 152 0.8531594 1 09 085
1.230438 1 1.2 123 1.1239591 1 1.1 112
1.374791 1 14 137 1.0642288 1 1.1 1.06
1.302860 1 1.3 130  0.9156539 1 09 092
1.396263 1 14 140  0.9044889 1 09 09
1.507581 2 1.5 151 0.9894644 1 1.0 099
1.337749 1 1.3 134 1.0281070 1 1.0 1.03
1.222744 1 1.2 122 0.8584933 1 09 086
1.235640 1 1.2 124 1.0074020 1 1.0 1.01
1302359 1 13 130  0.9131539 1 09 09
1379500 1 14 138  0.9563392 1 1.0 096
1.295147 1 1.3 130 1.2159481 1 1.2 122
1.376740 1 14 138 1.1442079 1 1.1 1.14
1.376414 1 14 138 1.0128952 1 1.0 1.01
1321817 1 1.3 132  0.9561896 1 10 09
1222626 1 1.2 122  0.8718494 1 09 087
1.140910 1 1.1 114 0.9620998 1 1.0 096
1.169492 1 1.2 117 0.9487145 1 09 09

Note: X, the original data from test drug; X, the original data
with i decimal digit; Y, the data from reference drug;
Y;, the data with i decimal digit.
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TABLE 5.7

Bioequivalence Study

Significant Confidence BE Result
Digits Interval BE Limit (Y/IN)

0 (-0.013,0.180)  (-0.2,0.2) Y

1 (0.261, 0.356) (-0.2,0.2) N

2 (0.263, 0.362) (-0.2,0.2) N

minimum number of decimal places in such a way that there is no statisti-
cally significant difference between the data set presented by using the mini-
mum decimal places and any other data sets with more decimal places. In
what follows, Chow’s proposal is briefly described.

5.5.1 Chow’s Proposal

The number of significant decimal digits of a given data set obtained from an
analytical experiment is defined as the minimum number of decimal places
of the data set which satisfies the following two conditions. First, the data
set with the minimum number of decimal places will achieve the desired
accuracy and precision. Second the data set with the minimum number of
decimal places is not statistically distinguishable with those data sets with
more decimal places than the minimum number of decimal places. In other
words, the data set with significant decimal digits is not significantly dif-
ferent from those data sets where the number of decimal places exceeds the
number of significant decimal digits.

Let X be a continuous random variable and X* be its truncated value
with d decimal digits. We would claim that X* is not statistically different
from X if we fail to reject the following null hypothesis at the o level of
significance:

Ho:ux =uy» versus H,:ipx =u,x, (5.5)

where [y and py« are the population means for X and X* respectively.
When X and X* are not statistically distinguishable, the d decimal digits
are considered significant decimal digits. Suppose X is a continuous ran-
dom variable with standard deviation ¢ and X* is its truncated value after
rounding up to the dth decimal place. Then the maximum possible error
due to the truncation would be less than 10'. As an example, if d = 3, the
smallest and largest values for a given number with three decimal places
are a.bc0 and a.bc9, respectively. Hence, the maximum possible error is less
than 0.01, which is 10-2. Here -2 is obtained as -2 =1 — d = 1 — 3 intuitively,
if this worst-case error is small enough, the distortion of the distribution
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TABLE 5.8

Significant Decimal Digits for Various
Selections of § Given ¢

3 (%)
o 1 5 10 15 20
0.01 4 4 3 3 3
0.10 3 3 2 2 2
0.50 3 2 2 2 1
1.00 2 2 1 1 1
2.00 2 1 1 1 1

due to the rounding error would be negligible. But the question is how
small would be considered enough? An idea is to apply the concept of sig-
nal-noise in quality control and assurance to compare this error with X’s
standard deviation . The significant digits can then be chosen by taking
the first d digits such that

10" 107

<d' if and only if <d8'/10 =19,

o

where 8 is a constant, which is to be chosen such that the truncated observa-
tion X* is not statistically different from X at the a level of significance. In
practice, a conventional choice of 8 is & = 10%. To provide a better under-
standing of the proposed procedure, the results for various choices of 8 given
o are summarized in Table 5.8. As can be seen from Table 5.8, a smaller &
would require more decimal places to be used in order to achieve the desired
accuracy and precision. Table 5.8 also indicates that more decimal places are
needed for a smaller ¢ value.

5.5.2 Statistical Justification

Without loss of generality, we assume X follows a normal distribution with
mean [y and variance 62, i.e.,, X ~ N(Uy, 6%). By proper truncation, X* is still
approximately normally distributed with mean py- and variance ¢?, where
Uy may be different from iy due to the rounding error. The following two-
sample t can be used to test the null hypothesis given in (5.5)

_Jn(X-X*
Jsd +s2

T
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where s% and si» are sample standard deviations of X and X* respectively.
Under the null hypothesis that Hy: 1y = Ly the two-sample T statistic fol-
lows a t distribution with 2(n — 1) degrees of freedom. We reject the null
hypothesis if |T| > t,,4,.1, Where t,, 4 is the (1 — a/2)th quantile for a
t distribution with 2(n — 1) degrees of freedom. Under the alternative hypoth-
esis that H,: [y # Ly, the f statistic can be written as

Jn(X - X*) \/”/ [(X - ux)/0 =(X* = ux:) /0] +n/2(ux — ux)/o
\/s§+sx* \/SX/20 + 8% /207

_ N(0,1)+d
Aoy /21 =1)

T =
~ t2(11—1)(6)r

where t,, () denotes a t distribution with the noncentrality parameter of

6=\/§(MX;MX*) ' (5.6)

When |§| is smaller, there is a lower probability that X* will be different from
X under t-test. On the other hand, since X* is rounded at the dth decimal
places, the maximum possible error due to truncation would be less than
104 > |uy — -1/c would guarantee that X* is not
significantly different from X. The above argument can be applied similarly
to a more general situation where a transformation is performed. Let f(x)
be the function of transformation of X. In this case, the hypotheses of
interest become

Ho: f(ux) = f(ux) versus H: f(ux) = f(uxe).

By Taylor’s expansion, we have

Vn(f(X) - f(X*) = f(ux)Vn(X - X¥),

which approximately follows a normal distribution with mean
Jn nf'(ux)(ux — wx+) and variance 2f"?(y)c?. As a result, the above null hypoth-
esis can be tested by the following statistic:

_VnfE)-fX)
Fl(uxWs3 + sk
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Under the null hypothesis, T; approximately follows a t distribution with
2(n - 1) degrees of freedom. Under the alternative hypothesis, T, can be
written as

7 N0 - 0), 212 0x)0%)

¥
f’(ux)\/S§ +55s
(Vn(ux -ug) )
N g
V20 NOD+S
= = ~n-1 ’
\/s§ 5. W /2n=1)
20°  20°

where 8 is still the same noncentrality parameter as defined in (5.6). So if we
choose significant digits properly, we can guarantee 6 will be small and the
probability that X* is statistically different from X will be small as well. This
shows that the proposed procedure works as well for data after transforma-
tion. To illustrate the use of the proposed procedure for transformed data,
consider a log transformation, i.e., f(x) = log(x). Thus, the hypotheses become

Hy :log(ux) = log(u,-) versus H,:log(ux) = log(u,-).
Then f(ly) = 1/uy and the test statistic is given by

_ /n[log(X) - log(X*)]
L 2 2
Sx + Sx=
[25'¢

Tf ~ tz(n_1)(6).

A numerical study is conducted to demonstrate the use of the proposed
procedure. Thirty analytical results were generated from N(r, 0.01), which
are given in Table 5.9. For convenience’s sake, we keep six decimal digits as
the original values. If we choose 8 to be equal to 10%, we have

107 10 _
o 001"

0.1.

It can be seen that the minimum number of d that satisfies the above expres-
sion is d = 3. Therefore, the number of significant decimal digits is chosen to
be 3. Now consider four data sets Xij=1234, which are truncated at the
jth decimal places, respectively. Then a two-sample t-test is performed to test
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TABLE 5.9
Simulation Data Set for Two-Sample t-Test
i Xi Xli X21' XSi X4i
1 3145714 31 315 3.146 3.1457
2 3140959 31 314 3.141 3.1410
3 3141432 31 314 3.141 3.1414
4 3127617 31 313 3.128 3.1276
5 3.142035 3.1 314 3.142 3.1420
6 3.146685 3.1 315 3.147 3.1467
7 3146124 3.1 315 3146 3.1461
8 3138408 3.1 314 3.138 3.1384
9  3.125891 31 313 3126 3.1259
10 313669 3.1 3.14 3.137 3.1367
11 3133587 31 313 3134 3.1336
12 3.158443 32 3.16 3.158 3.1584
13 3140589 3.1 3.14 3.141 3.1406
14 3128415 3.1 313 3128 3.1284
15 3149534 31 315 3150 3.1495
16 3153279 32 3.15 3153 3.1532
17 3.147673 3.1 3.15 3.148 3.1477
18  3.140493 3.1 3.14 3.140 3.1405
19 3150542 32 315 3151 3.1505
20 3.123488 3.1 312 3123 3.1235
21 3.161004 32 316 3.161 3.1610
22 3.140658 3.1 314 3.141 3.1407
23 3.151263 3.1 315 3151 3.1512
24 3124985 3.1 312 3125 3.1250
25  3.140625 3.1 314 3.141 3.1406
26 3.168811 32 317 3169 3.1688
27 3.159006 32 316 3.159 3.1590
28 3.143139 31 314 3.143 3.1431
29  3.123467 31 312 3123 3.1235
30 3.146950 3.1 314 3.147 3.1470
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if Xy, Xy, X5 X,; are significantly different from one another and are signifi-
cantly different from the original X;. The results are summarized in Table
5.10, from which we can see that X;; are significantly different from the rest
of the data sets. This shows that the rounding error can alter the distribu-
tion significantly. The results also indicate that Xj; is not significantly differ-
ent from X,;. It shows that the proposed procedure works well. It, however,
should be noted that X,; is also not significantly different from X, and X,
This indicates that the conventional choice of § = 10% may be conservative

in this case.
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TABLE 5.10

Pair-Wise Comparisons
Comparison t-Statistic ~ p-Value
X, versus X; 4.138 <0.001
X; versus X,; 0.116 0.908
X; versus Xj; 0.008 0.994
X; versus Xy; 0.003 0.997
X,; versus X,; 4.072 <0.001
X,; versus Xy; 4.140 <0.001
X,; versus Xs; 4.137 <0.001
X,; versus Xj; 0.123 0.603
X, versus Xy; 0.112 0.911
X versus Xy; 0.011 0.991

5.6 Concluding Remarks

Statistical justification of the proposed procedure for determining the
number of significant decimal digits in observations obtained from stud-
ies conducted in analytical research was made under the assumption of
normality. In practice, the observed analytical results may be described
better by other distributions such as the Weibull distribution for dissolu-
tion results of the oral solid dosage form of a drug product. In this case, a
similar concept can be carried out to provide a valid statistical justification.
In many cases, log transformation is often considered for a better descrip-
tion or interpretation of the analytical results. For example, area under the
plasma concentration—time curve (AUC) and time to achieve maximum
concentration (C,,,,) in the studies of bioavailability and BE are known to
be skewed to the right. As a result, a log transformation is recommended.
In this case, the proposed procedure is useful for determining the num-
ber of significant decimal digits to maintain a certain degree of accuracy
and precision for the assessment of BE. For the presentation of the analyti-
cal results, descriptive statistics such as mean, standard deviation, mini-
mum, maximum, range, relative standard deviation (RSD) or coefficient of
variation (CV) and statistical inferences such as confidence intervals and
p-values are usually obtained. In practice, it is always a concern as to how
many significant decimal digits should be used for descriptive statistics
and statistical inferences to maintain the desired degree of accuracy and
precision. In the interest of consistency, it is recommended that the same
number of significant decimal digits be used for descriptive statistics and
statistical inferences obtained from the analytical results.

In some cases, the analytical results may be expressed in a scientific form
(e.g., 1.32 x 105 or 9.2 x 107). The proposed procedure can be applied to its
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significant part (i.e., 1.32 for 1.32 x 10° or 9.2 for 9.2 x 107) or its log (base 10)
transformation. When analytical results involve different data sets, it is sug-
gested that each data set keep its own significant decimal digits as deter-
mined by its standard deviation to maintain the same degree of accuracy
and precision. A typical example is a dose proportionality study. The pur-
pose of a dose proportionality study is usually to show that there is a linear
relationship between dose and AUC within a given range. In other words,
with a doubled dose, the AUC value is expected to be doubled. However,
a high dose will generally produce a large variability in AUC values. As
a result, low dose, median dose, and high dose are expected to have a dif-
ferent number of significant decimal digits to achieve the same degree of
accuracy and precision. In the interest of keeping the same number of signifi-
cant decimal digits, we may consider the AUC values adjusted for dose and
then apply the proposed procedure to determining the number of significant
decimal digits.






6

Instability of Sample Size Calculation

6.1 Introduction

In clinical trials, a pre-study power analysis for sample size calculation (esti-
mation or determination) is often performed based on either (1) informa-
tion obtained from small-scale pilot studies with limited number of subjects
or (2) guess based on the best knowledge of the investigator (with or with-
out scientific justification). The observed data and/or the investigator’s best
guess could be far from the truth. The deviation may bias the sample size
calculation for reaching the desired power for achieving the study objec-
tives at a prespecified level of significance. Sample size calculation is a key
to the success of pharmaceutical/clinical research and development. Thus,
how to select the minimum sample size for achieving the desired power at
a prespecified significance level has become an important question for clini-
cal scientists (Chow and Liu, 1998b; Chow et al., 2002b). A study without a
sufficient number of subjects cannot guarantee the desired power (i.e., the
probability of correctly detecting a clinically meaningful difference). On the
other hand, an unnecessarily large sample size could be quite a waste to
the limited resources.

In order to determine the minimum sample size required for achieving a
desired power, one needs to have some information regarding study param-
eters such as variability associated with the observations and the difference
(e.g., treatment effect) that the study is designed to detect. In practice, it is
well recognized that sample size calculation depends upon the assumed
variability associated with the observation, which is often unknown. Thus,
the classical pre-study power analysis for sample size calculation based on
information obtained from a small pilot study (with large variability) could
vary widely and hence be unstable depending upon the sampling variability.
As a result, one of the controversial issues regarding sample size calcula-
tion is the stability (sensitivity or robustness) of the obtained sample size. To
overcome the instability of sample size calculation, alternatively, Lee et al.
(2008) suggested that a bootstrap-median approach be considered to select a
stable (required minimum) sample size. Such an improved stable sample size
can be derived theoretically by the method of an Edgeworth-type expansion.

91
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Lee et al. (2008) showed that the bootstrap-median approach performs quite
well for providing a stable sample size in a clinical trial through an extensive
simulation study.

It should be noted that procedures used for sample size calculation could
be very different from one another according to different study objectives
and hypotheses (e.g, testing for equality, testing for superiority, or test-
ing for non-inferiority/equivalence) and different data types (e.g., continu-
ous, binary, and time-to-event). For example, see Lachin and Foulkes (1986),
Lakatos (1986), Wang and Chow (2002), Wang et al. (2002a), and Chow and Liu
(2008). For a good introduction and summary, one can refer to Chow, Shao,
and Wang (2008b). In this chapter, for simplicity, we will focus on the most
commonly seen situation where the primary response is continuous and the
hypotheses of interest are about the mean under the normality assumption.
Most of our discussions thereafter focus on the one sample problem for the
purpose of simplicity. However, the extension to the two-sample problem is
straightforward.

The remainder of this chapter is organized as follows. In the next section,
the classical sample size calculation is given. The instability of the classi-
cal sample size calculation and a proposed bootstrap-median approach are
described in Section 6.3. Section 6.4 summarizes results from a simulation
study. An example is discussed in Section 6.5. Section 6.6 provides some con-
cluding remarks.

6.2 Sample Size Calculation

For simplicity and illustration purposes, consider the one-sample problem.
Suppose there are a total of n independent and identically distributed
responses from a clinical study. These responses are assumed to follow a
normal distribution with mean p and variance 62 Suppose that one of the
study objectives is to detect a clinically meaningful difference, denoted by
A = -y, where 1, is a prespecified reference point. Without loss of general-
ity, we assume that |, is zero, which implies that A = . Then, the one-sample
t-test or the approximate z-test can be used to test the null hypothesis that
Hy: u = 0. Under the alternative hypothesis that H,: i # 0 and a significance
level of 0, the minimum sample size needed for achieving the desired power
of (1 — B) can be obtained as follows:

0,2
Mideal = (Z(l/z + Z[i )2 |:M2:| 7 (61)

where z,, is the upper o-quantile of a standard normal distribution. For a detailed
discussion about the above formula, one can refer to Chow et al. (2008b).
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Ideally, if the value of u and ¢? are known, then the formula (6.1) can be
used to determine the minimum sample size. In practice, however, the
parameters |1 and 6?2 are often unknown. Thus, a small pilot study is usually
conducted to obtain information about the unknown parameters. Assume
that a researcher conducts a small pilot study and obtains a small number of
responses (say 1,) denoted by x;, i =1, ...,1n,. Based on the pilot study, sample
mean {i = X and sample variance s? can be obtained and used to estimate the
clinical efficacy 1 and the associated variability ¢ It is a common practice
to replace the unknown parameters in (6.1) by its corresponding estimates to
produce the following sample size estimator:

i = (Zas2 + 2) [i} 62)

In practice, formula (6.2) usually performs quite satisfactorily for a suffi-
ciently large pilot sample size. However, if the size of the pilot study is rela-
tively small, then the performance of (6.2) could be relatively instable and
biased.

6.3 Instability and Bootstrap-Median Approach

In this section, the approximated sampling distribution and asymptotic bias of
s?/x% under the normal population are derived to assess instability of classical
sample size calculation. In addition, a bootstrap-median approach suggested
by Lee et al. (2008) for a stable sample size determination is introduced.

6.3.1 Instability of Sample Size Calculation

By (6.2), sample size can be determined by the value of s2/x? at a prespeci-
fied level of significance. Thus, the stability of the traditional sample size
formula depends upon the stability of s?/x2. To provide a better under-
standing, the technique of an Edgeworth-type expansion is applied to
approximate the sampling distribution of s?/x2. From the sampling dis-
tribution of s2/x?, the instability of the obtained sample size in terms of its
bias can be studied when the size of the pilot study is relatively small.
Following the idea of Breunig (2001), we can approximate the finite
sample distribution of 8 =s?/ x> by an Edgeworth-type expansion on the
order of n~/2, Suppose x;, ..., x, are independent samples from the normal
distribution with a population mean & and variance 62 The parameter of
interest is the population squared coefficient of variation (CV? = ¢/ £2). The
sample squared CV is defined as the plug-in estimator such that 8 = s/ x?,
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where s* = ¥,(x; - X)*/n is sample variance and # is sample mean. In prac-
tice, 6> = (n/n-1)s* can be used to construct the sample squared CV. For
convenience’s sake, consider the superscript of the vector x® indicating the
ith element of the real vector x. Note that the distribution of the standard-
ized quantity S, = n'/*(8 —6) can be written as

( 2/ \
P[nl/z(é—(ﬂ)sx]=P n'/? L ;; n—ozéngsx.

Let 8 = (0% + £2)/E2 Thus, the estimator of 6 is given by 6= (i x?/n) / x*. Define
the real-valued function f on R? such that flw) = flw®, w®) = w®/(wV)2. Let
W=(X, X2, W = (Sixi/n, 3 x7/n), and w= EW) = (€, 6% + £2). Then, 6 = (i) and
0= f(W). Also put Z = nV/>(W - w), and now by Taylor expansion we have the
following expansion of S, = n"/ 2(6 -0):

2
n2(6 - 0) = 2 FZD 4712 ; 2 FiZ9ZD +0,(n™),
£

where f; ,..i, = (0%/dw™w™ .. @' )f(w)) |eo=p-
Put

Mil,iz,.../iP =E{(W - M)(il),”_,(w _ M)(iﬂ)}

and define the pth central moment of X as m, = E(X - )’ and the standard-
ized pth central moment of X as vy, = E(X - £)"/c?. Then ; = 0 for each i,

EZ9Z7) =y,
E(z(i)z(j)z(k)) - n_l/ZMijk/

E(ZOZVZOZD) = wijtnig + wiejy + wapne + O(n ™).

Then,

E(S) = ”_mii i fitij +O(n™),
o &
E(S?)=n""? 22 Fifwg+0(n™),
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E(S) = n_m;i i 2ﬂfjfk!*ijk
of &of £
+ 22 g Z Z fifi fiefilwijia + Wity + mapie)} + O(n ™).

The asymptotic expansions of the three cumulants of S, are
K1 = E(S,) =n2A; +O(n™),
K20 = E(S3) = (E(S,)) = v +O(n™),

Ka,n = E(S7) = 3E(SDE(S) + 2(E(S,))* = n™2 A, + O(n™"),

where

2 2
v = 2 Eﬂfjuijr
1= 7=
2. 2
1
A= 22 Eﬁjui]‘,
1= ]=
2. 2 2 2 2 2 2
A, = 2 2 Zﬁfjfkuijk +32 2 Z Zﬁﬁsz“;‘kuﬂa-
=1 "= = 1=1 "= = =

By using arguments in Hall (1992), we now have a one-term Edgeworth
expansion of S, = n"/*(6 -0) such that

{700 _ gy 4 n2px)ox) + O™,
T<X )

where
-1 1 -3 2
pl(x)=—{A1'c b A s -1)}.

In particular, if the population distribution is the normal distribution, we
have

Y3=y5=0, v4=3, and y,=15.
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Therefore, under the normal distribution, after the tedious calculation
involving cumulants we have

w2 =40°+20%, A, =302-0, A,=720°+480"+86°.

Thus, the asymptotic bias of 0 up to the first order can be obtained from the
expansion of E(S,) above and is given by

E(6)-6 = n7'(30> = 0) + O(n7?).

Also, by Fisher—Cornish inversion, the o-quantile x, of S,/ (i.e, P(S,/T<x,) = o)
has the following expansion:

Xo = Zg — n_l/zpl (Za) + O(n_l )/

where z,, is the o-quantile of standard normal distribution.
Based on the above discussion, the asymptotic bias of E(8) is given by

Bias(6) = E(6) - 6 = n7'(36% - 0) = 3n7'0%{1+ 0(1)}, 6.3)

as min {n, 6} — . Note that the primary term of the above bias is a quadratic
function in 6. If both the pilot sample size n and the effective size i/ are
relatively small, then the bjas can be substantial. Table 6.1 summarizes the
potential impact of bias of 6 = s?/A” in the sample size calculation. As can be
seen, the sample size calculation based on estimates from a small pilot study
could be very significant—we may not reach the desired power for claiming
that the treatment under investigation is efficacious. This becomes very criti-
cal especially when the treatment effect is considered marginally significant
(positive).

TABLE 6.1
Instability of Sample Size
Classic Sample Size
Sample Size Bias with Bias
A o 0=0YA? N, 302%/N, N
5 10 4 32 1.53 44
20 16 126 6.12 174
30 36 183 13.76 391
10 10 1 8 0.38 11
20 4 32 1.53 44

30 9 71 3.44 98
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6.3.2 The Bootstrap-Median Approach

Since the bias of E(0) is not negligible in many cases, alternatively, Lee et al.
(2008) suggested considering the median of s?/¥*. Let ny5 be the median
of sample CV squared such that P(0 < ngs) = 0.5. Then, 1,5 has a one-term
expansion in terms of n/2 as

Nos =0+ 1?5 =0+n" (Al - %Azr2) +0(n™)

720° + 486* + 86°
246° + 1262

=0+n" {(392 -0)- }+O(n2).

Thus,

720° + 486* + 86°
246° +126°

Mo 0 = 1 {(362 _)- }+ )

__1[366" +200°
240° +126°

} +0(n?) = -1.5n7'0{1+0(1)}, (6.4)

whose leading term is linear in 6. It is a smaller order as compared with the
bias of the mean (6.3).

As can be seen from (6.4), the bias incurred by the median could be sub-
stantially smaller than that of the mean for a small sample size and/or
small effective size. In practice, however, we do not know the exact value
for the median of s?/x2. As a simple solution, Lee et al. (2008) proposed the
use of bootstrap distribution to approximate the sampling distribution of
s%/x?, from where the median of s?/x? can be estimated by the bootstrap-
median approach. Lee et al. (2008) referred to this approach as the boot-
strap-median method.

6.4 Simulation Study

To evaluate the finite sample performances of the bootstrap-median approach
for sample size determination, an extensive simulation study was conducted
(Lee et al., 2008) based on 5000 simulation runs and 1000 bootstrap sample size.

6.4.1 One-Sample Problem

For the one-sample problem, a total of n, independent and identically
distributed random variables are simulated within each simulation run
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to form the data from a pilot study. In this simulation study, Lee et al.
(2008) considered

1y = 25,50,75, and 100.
Also, eight different effective sizes are considered:

L 0.1,0.15,0.2,0.25,0.3,0.4,0.5, and 0.75.
o

Both the traditional method and the bootstrap-median approach are used to
estimate the minimum sample size (i.e., 71 and i, respectively) required for
achieving a desired power (1 — ) (say B = 0.1, i.e,, 90% power) at a prespeci-
fied level of significance (o = 0.05). At the same time, the ideal sample size
Mi4ear PY Using the true parameters is also computed.

In order to evaluate the performance of the two methods, we will inves-
tigate the quantiles of distribution of /1., and 71gy;/M;g.q- A comparison of
various quantiles of /1y, and 7lgy;/M;4ea Can give us some insights into the
difference in variability (stability) between the two methods. Hence, five
quantiles (10%, 25%, 50%, 75%, 90%) of i/n4.,; and figy/M;4., are obtained by
simulations. For example, the 75% quantile of /14, and gy /1;4.,, which are
obtained from the equations P(/Nigeas < k) = 0.75 and gy / Migeal, respectively,
are compared to investigate the stability of two methods.

Table 6.2 presents the simulated quantiles of 71/1,4.,; and gy /M;gea Under
various combinations of effective size |1/c and the sample size 1, of the pilot
study. If both the values of /6 and the pilot sample size 7, are very small
(i.e, uw/o = 01 and n, = 25), then the performances of both the traditional
method and the bootstrap-median approach are poor because their medians
of the ratios 71/n4., and gy /1,4, are far from 1.0. However, the variability of
the bootstrap-median approach is substantially smaller than the traditional
method. Considering 75% and 90% quantiles of two ratios, it can be seen that
the distribution of the ratio 7i/n,, is extremely skewed to the right, which
indicates that the traditional method could lead to extremely large sample
size estimate with a higher probability than the bootstrap-median method.
As the sample size increases to 1, = 100, the performance of both methods
become much better as the median value of the two ratios comes close to 1.0.
Note that the inter-quantile range of the bootstrap-median method is only
1.69 — 0.34 = 1.35, which is smaller than half the size of that of the traditional
method (3.82 — 0.34 = 3.48).

As the value of [1/c increases, the performance of both methods becomes
similar. However, under situations that require a large ideal sample size
(n > 100) such as u/c = 0.25 or 0.30, the advantage of the bootstrap-median
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approach is clear under small pilot studies in terms of stability. When the
effective size is large such as p/c = 0.5; 0.75, sample sizes by both methods
are almost identical, but the bootstrap-median approach prevents extremely
large estimated sample size by the traditional method even though itis a small
probability. Figure 6.1 shows the distributions of the absolute value of sample
effective size |X/s| and two associated sample size estimates, one obtained
by the traditional method and the other by the bootstrap-median approach
under the sample size for the pilot study, 1, = 50. The distribution of |x/s| is
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FIGURE 6.1

Distribution of absolute values of sample effective size in one-sample problem and associated
sample sizes with log scale. (The solid line is sample size estimated by the bootstrap-median
approach and the dashed line is sample size estimated by the traditional method. The red line
indicates the ideal minimum required sample size. The sample size of the pilot study is 1, = 50.)
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illustrated by rug plot at the x-axis based on 500 simulation samples. Due to
the finite bootstrap sample size (B = 1000), there is a little fluctuation in sample
sizes obtained by the bootstrap-median approach, but it is small enough to
ignore. It clearly shows that the bootstrap-median is much more stable than
the traditional approach in which the bootstrap-median approach prevents the
unreasonable large same size by the traditional method based on extremely
skewed sampling distribution.

6.4.2 Two-Sample Problem

A similar simulation study was also conducted for the two-sample test-
ing problem. Common variance ¢* for two treatment groups is assumed
and sample variance is obtained by pooling two sample variances
% = [(no1 = 1)ST + (ngy = 1)S3]/(npy + npp = 2). If , and p, are population means
for each group and 62 is the common variance under normal distribution, then
the effective sizeis A/~/20 = (ug —up)/ V20 and the estimated sample size from
a pilot study by the traditional method is given by 7 = (z,,, +z;)?s*/A?,
where [1is the difference between two sample means. The bootstrap-median
approach can be easily applied to this two-sample testing problem and the
simulation result is very similar to the one-sample problem. Figure 6.2 pres-
ents the distribution of absolute values of sample effective size (x/ \/25) and
associated sample size estimates by two methods with two different sample
sizes for the pilot study (1, = 25 and n, = 75 per group). As seen in the simula-
tion study for the one-sample problem, Figure 6.1 shows that the bootstrap-
median is much more stable than the traditional approach.

6.5 An Example

For illustration purpose, consider the example given by Lee et al. (2008).
A pharmaceutical company developed a new drug for lowering blood pres-
sure in patients with essential hypertension. A pilot study was conducted
to compare the efficacy of the newly developed drug (denoted by drug A)
with a widely used existing drug (denoted by drug B). The primary efficacy
variable is the change from baseline to Week 8 of systolic blood pressure.
The data collected from the pilot study are summarized in Table 6.3. In this
study, the estimated effective size is A//2s = -0.16. If we applied the two
methods for sample size calculation, the traditional method gives n = 390
per treatment group and the bootstrap-median approach with 3000 boot-
strap simulations gives n = 403 per treatment group so that results from
both methods are similar. If we assume that responses in this study are the
true population, we may think that the required minimum sample size for
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FIGURE 6.2

Distribution of absolute values of sample effective size in two-sample problem and associ-
ated sample sizes with log scale. (The solid line is sample size estimated by bootstrap-median
approach and the dashed line is sample size estimated by the traditional method. The red line
indicates the ideal minimum required sample size. The sample sizes of the pilot study are n, =
25 and n, = 75 per group.)

achieving a 90% power at the 5% level of significance is close to n = 400 per
treatment.

Stability of the proposed bootstrap-median approach is investigated by
considering study subjects in the given study above as the true responses
of the population and then comparing sampling properties of two methods
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TABLE 6.3

Information about Randomized Comparative Clinical Trial to Compare
Two Drugs for Lowering Blood Pressure of Hypertensive Patients

Treatment Sample Difference Change from  Difference
Group Size Baseline Week 8 Baseline of Change
Drug A 139 155.8 (12.4)  144.5(16.2) -11.4 (13.2) -2.9(12.3)

Drug B 131 155.4 (12.4)  146.9 (14.0) -8.5(11.2)

Primary efficacy variable is the mean of sitting systolic blood pressure and the num-
ber in parentheses is standard deviation.

for sample size determination by simulation of repeated small pilot studies.
Here, we will consider two scenarios: (1) equal sample size allocation for
both treatment groups with ny, = 50 and n,; = 50 and (2) unequal sample
size allocation with n,, = 75 and n,; = 50 to collect more information about
the new drug. For each scenario, we consider 1000 independent small pilot
studies whose study subjects are randomly selected from the given study by
simple random sampling without replacement in each treatment group.

Furthermore, for each simulated pilot study, two sample sizes are deter-
mined by the traditional method and the bootstrap-median approach,
respectively, with 1000 bootstrap sample size. Table 6.4 shows the summary
statistics of the distribution of sample sizes from simulated small pilot stud-
ies under the two scenarios considered, and Figure 6.1 presents the sampling
distribution of sample size by two methods. In the case of equal sample size
allocation, as we can see in the simulation studies in the previous section,
the bootstrap-median approach is much more stable than the traditional
method. In the case of unequal sample size allocation, the sample size by the
bootstrap-median approach is a little larger than by the traditional approach,
but its stability is still superior (Figure 6.3).

TABLE 6.4

Summary Statistics for the Distribution of Sample Sizes by Two Methods Based
on Simulated Small Pilot Studies under Two Scenarios

Summary Statistics

Sample First Third
Scenario Size Method Min Quantile Median Mean  Quantile Max
I ny, =50, Tradi- 37 190 342 6,267 861 1,131,000
My = 50 tional
BM 37 182 320 437 657 1,290
I ny, =50, Tradi- 62 220 401 1,223,000 889 588,800,000

ng =75  tional
BM 96 326 548 634 892 1,699
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FIGURE 6.3

Distribution of estimated sample sizes from 1000 simulated small pilot studies based on the
real comparative study. (Scenario I uses equal sample allocation 1, = 113 = 50 and Scenario II
uses unequal sample allocation 1, = 50 and ng; = 75.)

6.6 Concluding Remarks

In this chapter, we have shown that sample size calculation based on data
from a small pilot study by ignoring the sampling error using the traditional
method could lead to unreasonable sample size estimate due to its instability,
especially when the intended study is designed to detect a relatively small
effect size. Alternatively, the proposed bootstrap-median approach could pro-
vide a relatively stable sample size estimates. The proposed bootstrap-median
can be easily implemented to various study designs with different types of
study endpoints. The proposed approach is based on the approximated sam-
pling distribution of sample squared CV under the normal distribution, and
the bootstrap approximation of median of the sample squared CV has its
justification based on Edgeworth and Fisher-Cornish expansions. Based on
extensive simulation studies and theoretical justification, it is suggested that
the proposed bootstrap-median approach to estimate the minimum required
sample size is much more stable than the traditional method; it is therefore
recommended to use the proposed method whenever data from a small pilot
study are available.

Although numerical experience and theory of Lee et al. (2008) are only
limited to the standard one-sample and two-sample testing problems, the
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proposed procedure can be easily extended to other experimental designs
(e.g., crossover design), other data types (e.g., binary endpoint, time-to-event
data), and other hypotheses types (e.g., non-inferiority/equivalence test).
Furthermore, it would be of great interest to see how the proposed method
can be formulated into a Bayesian framework so that some valuable prior
information can be used. All those problems are of great interest for both
theory and practice. Further research along this line is definitely needed.

The above discussion justifies flexible sample size reestimation in standard
group sequential design for clinical trials. For a group sequential design
with some planned interim analyses, sample size adjustment (or reestima-
tion) is usually performed at interim analyses to ensure that the study will
achieve the desired power at a prespecified level of significance at the end
of the study. Commonly considered sample size adjustment based on the
ratio of the initial estimated effect size (E,) to the observed effect size (E) is
where

as follows:
a
N 0 )} 7
N is the sample size after adjustment
N.xand N, are the maximum (due to financial and/or other constraints)
and minimum (the sample size for the interim analysis) sample sizes
a is a constant (which is usually determined based on the review of the
interim analysis results)
sign(x) = 1 for x > 0; otherwise sign(x) = -1

N = min {Nmax,max(Nmin,sign(EoE)io

Note that the above sample size adjustment can be applied to normal, binary,
and survival study endpoints. Note that the above sample size adjustment
reduces to the method proposed by the U.S. FDA statisticians for a normal
study endpoint with a = 2 (see Cui et al., 1999).

Note that other controversial issues may be raised even after we have
overcome the instability of initial sample size calculation (e.g., using a more
robust bootstrap-median approach and applying a sample size reestima-
tion method). First, the number used for sample size reestimation at interim
is still an estimate. Thus, the original issue of instability persists. Second,
how robust (stable) the obtained sample size is if there is a shift in target
population during the conduct of the clinical trial is also a question. Further
research is required in order to address these questions.
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Integrity of Randomization/Blinding

7.1 Introduction

In double-blind clinical trials, randomization and blinding are often
employed to prevent bias from clinical/statistical assessment of a test treat-
ment under investigation. Randomization/blinding plays an important role
in the conduct of clinical trials. Randomization/blinding not only gener-
ates comparable groups of patients who constitute representative samples
from the intended (target) patient population but also enables valid statis-
tical tests for clinical evaluation of the study drug. Randomization/blind-
ing in clinical trials involves random recruitment of the patients from the
targeted population and random assignment of patients to the treatments.
For a valid statistical assessment of the efficacy and safety of a study drug, it
is important that a representative sample of qualified patients be randomly
selected from the target patient population. Randomization avoids subjec-
tive selection bias for the integrity and scientific and/or statistical validity
of the intended clinical trials. Patients participating in the clinical trials are
randomly assigned to one of the treatments under study, which avoids sub-
jective assignment of treatments. On the other hand, blinding is the guard
for preventing subjective evaluation bias and consequently ensures scien-
tific and/or statistical validity of the intended clinical trials. When there is
heterogeneity in demographics and/or patient characteristics, randomiza-
tion with blocking and/or stratification is helpful in removing the potential
bias that might occur due to the differences in demographics and/or patient
characteristics. Under randomization and blinding, statistical inference can
be drawn under some probability distribution assumption of the intended
patient population. The probability distribution assumption depends on
the method of randomization under a randomization (population) model.
A study without randomization/blinding will result in the violation of the
probability distribution assumption and consequently no accurate and reli-
able statistical inference on the study drug can be drawn.

In practice, however, there is no guarantee that subjective judgment in
reporting, evaluation, data processing, and statistical analysis will be free
of bias due to (1) possible mix-up of randomization and (2) the knowledge of
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the identity of the treatment codes. Since this subjective and judgmental bias
is directly or indirectly related to treatment, it can seriously distort statistical
inference on the treatment effect. However, if it is not impossible, it is often
difficult to quantitatively assess such bias and its impact on the assessment
of the treatment effect. For a given double-blind clinical trial, randomization
schedule may be mix-up due to human error. In addition, it is human nature
for both the patient and the investigator to guess what treatment the patient
is receiving. To maintain the integrity of the randomization and to prevent
treatment imbalance, a typical approach is to consider a larger blocking size
in randomization. Thus, the following questions are commonly asked. First,
what is the impact if we mix-up with the randomization schedule? Second,
how do we test for the integrity of randomization and blinding in clinical
trials? Third, what is the difference in the probability of guessing treatment
code right for a blocking size of 2 as compared to that of the blocking size of
4 for a comparative clinical trial? In practice, even with the best intention for
preserving blindness throughout a clinical trial, blindness can sometimes be
breached for various reasons. One method to determine whether the blind-
ness is seriously violated is to ask patients to guess their treatment codes
during the study or at the conclusion of the trial prior to unblinding. In some
cases, investigators may also be asked to guess patients’ treatment codes.
Once the guesses are recorded on the case report forms and entered into the
database, the integrity of blinding can be tested (Chow and Shao, 2004).

In the next section, the effect of mix-up randomization is discussed. In
Section 7.3, we study the probability of correctly guessing treatment assign-
ments with various blocking sizes (e.g., 2 versus 4) for comparative clinical
trials. Statistical tests for the integrity of blinding are described in Section
74. Section 7.5 discusses analysis under breached blindness. An example is
given in the last section of this chapter.

7.2 The Effect of Mix-Up Randomization

A problem that is commonly encountered during the conduct of a clinical
trial is that a proportion of treatment codes are mix-up in randomization
schedules. Mixing up treatment codes can distort the statistical analysis
based on the population or randomization model. In what follows we intro-
duce a method proposed by Chow and Shao (2003) to quantitatively study
the effect of mix-up treatment randomization codes. Consider a two-group
parallel design for comparing a test drug and a control (placebo), where
n, patients are randomly assigned to the treatment group and n, patients
are randomly assigned to the control group. When randomization is prop-
erly applied, the population model holds and responses from patients are
normally distributed. Consider first the simplest case where two patient
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populations (treatment and control) have the same variance 62, where 6?2 is
known. Let y, and , be the population means for the treatment and the con-
trol, respectively. The null hypothesis that y, =y, (i.e., there is no treatment
effect) is rejected at the 5% level of significance if

- %

— > 7,9,
o1/ny+1/n, 07

(72)

where
X, is the sample mean of responses from patients in the treatment group
X, is the sample mean of responses from patients in the control group
Zyo75 1S the 97.5th percentile of the standard normal distribution

Intuitively, a mix-up of treatment codes does not affect the significance level
of the test (7.1). The power of the test defined by (7.1), i.e., the probability of
correctly detecting a treatment difference when , # ,, is

ol m-x

p6) =P Lm > Z0.975) = ®(0 - zp.975) + P(=0 - Zo.975),

where @ is the standard normal distribution function and

e 72)

g izt
0‘\[1/7’11 + 1/7’12

This follows from the fact that under the population model, X, — X, has a nor-
mal distribution with mean y, — W, and variance 6*(1/n, + 1/n,).

Suppose that there are m patients whose treatment codes are randomly
mix-up. A straightforward calculation shows that X, — X, is still normally
distributed with variance ¢*(1/n, + 1/n,), but the mean of X, — X, is equal to

(i

It turns out that the power for the test defined by (7.1) is
p(0,) = (0., — 2o.975) + P(—0,, — Zo975),

where

Ui — Uz 73)

oJl/m +1/n,

0, = [1—m(1+1)
ny Ny
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Note that 6,, = 0 if m = 0, i.e,, there is no mix-up. The effect of mix-up treat-
ment codes can be measured by comparing p(0) with p(6,). Suppose that
n, = n,. Then p(®,) depends on m/n,, the proportion of mix-up treatment
codes. For example, suppose that when there is no mix-up, p(8) = 80%, which
gives |0 = 2.81. When 5% of treatment codes are mix-up, i.e., m/n; = 5%,
p(6,) = 70.2%. When 10% of treatment codes are mix-up, p(6,,) = 61.4%. Hence,
a small proportion of mix-up treatment codes may seriously affect the prob-
ability of detecting treatment effect when such an effect exists. In this simple
case, we may plan ahead to ensure a desired power when the maximum
proportion of mix-up treatment codes is known. Assume that the maximum
proportion of mix-up treatment codes is p and that the original sample size
is n; = n, = n,. Then

O, = (1-2p)0 = sz_*%/a ~2p)no.
O

Thus, a new sample size n,,,,, = 1,/(1 — 2p)*> will maintain the desired power
when the proportion of mix-up treatment codes is no larger than p. For exam-
ple, if p = 5%, then n,,, = 1.23n,, i.e,, a 23% increase of the sample size will
offset a 5% mix-up in randomization schedules.

The effect of mix-up treatment codes is higher when the study design
becomes more complicated. Consider the two-group parallel design with an
unknown 62. The test defined by (7.1) has to be modified by changing z ;s to
to975,m+m -2 and replacing o2 by its unbiased estimator

52 = (m-Dsi+ (2 -1)s)
ny+n, -2

7

where
st is the sample variance based on responses from patients in the treat-
ment group
$; is the sample variance based on responses from patients in the control
group
too75,m+m-2 1S the 97.5th percentile of the t-distribution with n;, + n, — 2
degrees of freedom

The resulting test is known as the two-sample f-test. When randomization
is properly applied without mix-up, the two-sample t-test has a 5% level of
significance and the power is given by

1 - %m +1np -2 (t0.975,n1 +np-2 | e) + %m +1 —2(_t0.975,n1 +np-2 | 6)/

where
0 is defined by (7.2)
Syem-2(40) is the noncentral t-distribution function with n,+n,-2
degrees of freedom and the noncentrality parameter 6
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When there are m patients with mix-up treatment codes and , # 1, the effect
on the distribution of x; — X, is the same as that in the case of known 2. In
addition, the distribution of 6° is also changed. A direct calculation shows
that the expectation of &” is

2
E(62)=02+72(M1_M2) m[Z—m(1+1”.
m+n,-2 n Ny

Hence, the actual power of the two-sample -test is less than

1 - Sn1+nz—2 (t0.975,n1+n2—2 | em) + %m+nz—2(_t0.975,n1+nz—2 | em)/

where 6,, is given by (7.3).

Note that, in some situations, deliberate unequal allocation of patients
between treatment groups may be desirable. For example, it may be of inter-
est to allocate patients to the treatment and a control in a ratio of 2 to 1. Such
situations include that (1) the patient population is small, (2) previous experi-
ence with the study drug is limited, (3) the response profile of the competi-
tor is well known, and (4) there are missing values and the rates of missing
depend on the treatment groups. Randomization is one of key elements for
the success of clinical trials intended to address scientific and/or medical
questions. It, however, should be noted that in many situations, random-
ization may not be feasible in clinical research. For example, nonrandom-
ized observational or case-controlled studies are often conducted to study
the relationship between smoking and cancer. However, if the randomiza-
tion is not used due to some medical considerations, the FDA requires that
statistical justification should be provided with respect to how systematic
selection bias can be avoided. Clinical results may be directly or indirectly
distorted when either the investigators or the patients know which treatment
the patients are receiving, although randomization is applied to assign treat-
ments. Blinding is commonly used to eliminate such a problem by blocking
the identity of treatments.

7.3 Blocking Size in Randomization

In double-blind randomized clinical trials comparing two treatment groups,
in the interest of treatment balance, a blocking size of 2 or 4 is usually
employed in randomization. It is not uncommon that either the patients or
the investigator may guess the treatment codes that patients are receiving.
It is a concern that the use of blocking size of 2 may not prevent patients or
the investigator from correctly guessing the treatment assignment. Correctly
(or wrongly) guessing the treatment assignments will have an impact on
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the assessment of the effect of the treatment under investigation, especially
for study endpoints that are evaluated subjectively. Thus, it is suggested to
increase the blocking size to its maximum to decrease the probability of cor-
rectly guessing treatment assignments. However, increasing the blocking
size may increase the chance of mixing up the randomization schedules. As
a result, it is of interest to keep the blocking size within 4. Note that blocking
size of 2 or 4 is commonly employed in double-blind randomized clinical tri-
als for comparing two treatment groups.

In this section, we will study the probability of correctly guessing the treat-
ment assignments with a blocking size of 2 as compared to that with a blocking
size of 4 for a given sample size. In practice, since the patients normally do not
have any idea what blocking size is used in the randomization, the probability
of correctly guessing the treatment assignment for a given patient is equal to
1/2. However, the probability for the treating physician correctly guessing the
treatment assignment is usually higher than 1/2 due to the knowledge of the
blocking size and/or the observed clinical signs and symptoms of the patients.
In what follows, we will calculate the probability of correctly guessing treat-
ment assignments by the patients followed by the guess of the investigator.

To address the second question regarding the integrity of blinding, for
a given sample size, the probabilities of guessing treatment codes right for
blocking size 2 and blocking size 4 can be directly calculated and compared.
For illustration purpose, probabilities of guessing treatment codes right for a
small clinical trial are as follows.

Blocking Size N=4 N=8 N=16

2 0.2500  0.0625  0.0039
4 0.1667  0.0278  0.0008

In addition to the blocking size used, prior knowledge regarding the true
blocking size may also be a factor which has an impact on the probability of
correctly guessing. Hsieh et al. (2010) investigated six types of the possibilities
of correctly guessing by considering the designs of the true blocking sizes of
4 and 2 as well as three types of prior knowledge on which the guesser bases
his/her guesses. The three types of prior information include guess without
prior knowledge, guess by thinking the true blocking size is 4, and guess by
thinking the true blocking size is 2. The probability model for calculating
the probabilities of correctly guessing is described in the next subsection fol-
lowed by a numerical study to compare the above six types of probabilities
for evaluating the impact of the blocking size and prior knowledge.

7.3.1 Probability of Correctly Guessing

Consider that a two-arm, balanced, randomized, and parallel design of
the study is employed for comparing the test treatment with the reference
treatment. For the purpose of comparing the probabilities of guessing the
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subjects’ treatment right between the blocking randomization methods with
blocking sizes of 4 and 2, the total sample size of N (N/2 subjects for each of
two groups) is assumed to be a multiple of 4. Furthermore, the total numbers
of the blocks corresponding to the blocking size of 4 and 2 are N/4 and N/2,
respectively.

Let U; be the event of guessing the i th subject’s treatment right within the
k th block for the design with the blocking size of 4, wherei=1,2,3,4and k =
1, 2,..., N/4 are the possible events denoted by X, X, ..., X;5 for guessing m,
subjects’ treatment right and the others wrong within the block where m; =
0,1, 2, 3, 4; these data are given in Table 71. On the other hand, if we hypoth-
esize the rth two neighbor blocks for the design with the blocking size of 2 as
a block which consists of four subjects (two from the first block and the other
two from the second block of the two neighbor blocks), wherer=1,2,..., N/4 =
1,2,..., N/4, and treat the two subjects in the first block and the other two sub-
jects in the second block of the two neighbor blocks as the first, second, third,
and fourth subjects in this hypothesized block, respectively, U; and the events
given in Table 71 for the design with the blocking size of 4 can also be used
to describe the behavior and events of correctly guessing for each of the two
neighbor blocks for the design with the blocking size of 2.

TABLE 7.1

Possible Events of Guessing m; Right
within Each Block with k=1, ..., N/4

my X;
0 X, =USNUS NUS NUS
1 X, =U; NUS NUS NUS

X, =Uf NU, NUS NUS
X, =Uf NUS NU; NUS
X, =Uf NUs NUS NU,
2 Xs =U; NU, NUS NUS
Xe =U; NUS NU; NUS
X; =U; NUS NUS NU,
Xs =Uf NU, NU; NUS
Xo=Uf NU, NUS NU,
Xy = Uf NUS NU; N U,
3 Xy =Uy NU, NU; NUS
Xy, =UyNU, NUS NU,
X3 =U; NUS NU; NU,
Xy =Uf NU, NU; NU,
4 Xis =U; NU, NU; MU
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Let T,, and G, be the true treatment received and the treatment guessed
by the guesser of the wth subject within some block for the design with the
blocking size of 4 (or the hypothesized block formed by the two neighbor
blocks for the design with the blocking size of 2), respectively, where w =1,
2, 3, 4. The event of guessing a subject’s treatment right happens when the
true treatment received is exactly what the guesser guessed, ie., T, = G,
Thus, the probability of each event in Table 7.1 is equal to the probability of
the union of some intersection of m,’s events of T,, = G,, and (4 — m,)’s events
of T, # G, wherem,=0,1,2,3,4.

Now we consider the probability of guessing M subjects’ treatment right
among all N study subjects, where M is in fact equal to the sum of num-
bers of guessing right in each of total N/4 blocks for the design with the
blocking size of 4 (or each of N/4 hypothesized blocks formed by each of
the two neighborhood blocks for the design with the blocking size of 2), i.e.,

N/4
M = E m. In addition, the sum of the numbers of each possible event in

15
Table 71 is equal to the total number of blocks, i.e., N/4 = E Vs where y;

is the number of blocks with the event of X;. The probability of guessing M
subjects’ treatment right among all N study subjects can then be given as
([ N )
L 4 J poPY, - PXs (74)
YolY1 .-  Yis

with the restrictions given as

N_ 15
4_2]”

N/4

M= mk=0y0+1(y1+y2+y3+y4)

+2(Ys + Yo + Y7 + Ys + Yo + Y10) + (Y11 + Y12 + Vi3 + Y1) + 4115,

where p,; is the probability corresponding to the event of X; given in Table
71, wherei=0,..., 15.

Different blocking sizes as well as prior knowledge about the blocking size
the guesser had before guess will result in the different combinations of true
treatment assignment, possible guesses by the guesser, and their correspond-
ing probabilities within each block. For instance, if the true blocking size is 4,
there are six possible combinations of treatment assignment for four subjects’
treatment within each block including ABAB, ABBA, BAAB, BABA, AABB,
and BBAA with the probability of 1/6 for each, where A and B denote the test
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treatment and the reference treatment, respectively, On the other hand, there
are only four combinations of treatment assignments within the two neighbor
blocks including ABAB, ABBA, BAAB, and BABA with the probability of 1/4
for each if the blocking size is 2. With respect to the impact of prior knowledge
the guesser had before the guess, there will be six possible guesses including
ABAB, ABBA, BAAB, BABA, AABB, and BBAA with the probability of 1/6 for
each if the guesser thought the true blocking size is 4 before his/her guess. If
the guesser had no prior knowledge about the true blocking size, the possible
guesses are still these six combinations. However, the probability of his/her
guess for each subject’s treatment is 1/2, which results in the probability for
each of the six possible guesses becoming 1/16 (=1/2%). Table 7.2 summarizes
the possible combinations of treatment assignments within each block for
the design with the blocking size of 4 (or each hypothesized block formed by
each two neighbor blocks if the blocking size is 2), the possible guesses by the
guesser and their corresponding probabilities within each block under the dif-
ferent blocking sizes and prior information the guesser had before the guess.

7.3.2 Numerical Study

To evaluate the impact of the different blocking sizes on the probability of
guessing the subject’s treatment right by taking into consideration the prior
information the guesser had, the following six kinds of probabilities denoted
by Py, Pyy Py, Pon, Poy, and Py, are calculated by (7.4):

1. Py P (Guess M subjects’ treatment right with the true blocking size
of 4|guesser has no prior knowledge about the true blocking size).

2. P,,: P (Guess M subjects’ treatment right with the true blocking size
of 4|guesser thinks that the true blocking size is 4).

3. Pyt P (Guess M subjects’ treatment right with the true blocking size
of 4|guesser thinks that the true blocking size is 2).

4. P,y: P (Guess M subjects’ treatment right with the true blocking size
of 2|guesser has no prior knowledge about the true blocking size).

5. P,,: P (Guess M subjects’ treatment right with the true blocking size
of 2|guesser thinks that the true blocking size is 4).

6. P,,: P (Guess M subjects’ treatment right with the true blocking size
of 2|guesser thinks that the true blocking size is 2).

The values of each P; in (7.4) correspond to the above six cases that are pre-
sented in Table 7.3. The detailed derivations for obtaining the value of each P,
can be found in the Appendix.

Table 74 presents the probabilities of guessing M subjects’ treatment cor-
rectly for the total sample size of N =4, 8,12, ..., 100 with M =1, ..., N. Denote
the maximum value of M and (N — M) by M,,; the findings are summarized
as the following:
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TABLE 7.2

Possible Combinations of Treatment Assignment with the Corresponding
Probabilities within Each Block by Considering the Different True
Blocking Sizes and the Prior Knowledge the Guesser Had before the Guess

True Blocking Size = 4 True Blocking Size = 2

Prior Information Category Comb. Prob. Category Comb. Prob.

No True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB
BBAA
Guess ABAB 1/16 Guess ABAB 1/16
ABBA ABBA
BAAB BAAB
BABA BABA
AABB AABB
BBAA BBAA
ABBB
AABB
AAAB
BAAA
BBAA
BBBA
BABB
BBAB
ABAA
AABA
Blocking size =2 True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB
BBAA
Guess ABAB 1/4 Guess ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
Blocking size = 4 True ABAB 1/6 True ABAB 1/4
ABBA ABBA
BAAB BAAB
BABA BABA
AABB

BBAA
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TABLE 7.2 (continued)

Possible Combinations of Treatment Assignment with the Corresponding
Probabilities within Each Block by Considering the Different True
Blocking Sizes and the Prior Knowledge the Guesser Had before the Guess

True Blocking Size = 4 True Blocking Size = 2

Prior Information Category Comb. Prob. Category Comb. Prob.

Guess ABAB 1/6 Guess ABAB 1/6
ABBA ABBA
BAAB BAAB
BABA BABA
AABB AABB
BBAA BBAA

True, true treatment assignment; Guess, treatment assignment the guesser guessed;
Comb., combination of treatment assignment; Prob., probability.

TABLE 7.3

Value of Each P,; by Considering the Different True Blocking Sizes and the Prior
Knowledge the Guesser Had before the Guess

True Blocking Size = 4 True Blocking Size = 2
Prior Prior Prior
Information Information Information Information
No Prior of Blocking of Blocking No Prior of Blocking  of Blocking
P, Information Size =4 Size =2 Information Size =4 Size =2
Py, 1/16 1/6 1/6 1/16 1/6 1/4
Py, 1/16 0 0 1/16 0 0
Py, 1/16 0 0 1/16 0 0
Py, 1/16 0 0 1/16 0
Py, 1/16 0 0 1/16 0 0
Py, 1/16 1/9 1/6 1/16 1/6 1/4
Py, 1/16 1/9 1/12 1/16 1/12 0
Py, 1/16 1/9 1/12 1/16 1/12 0
Py, 1/16 1/9 1/12 1/16 1/12
Py, 1/16 1/9 1/12 1/16 1/12 0
Py, 1/16 1/9 1/6 1/16 1/6 1/4
Px, 1/16 0 0 1/16 0 0
Px, 1/16 0 0 1/16 0 0
Py, 1/16 0 0 1/16 0
Px, 1/16 0 0 1/16 0 0

Py 1/16 1/6 1/6 1/16 1/6 1/4
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TABLE 7.4

Probabilities of Correctly Guessing for Different N and M by Considering
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had
before the Guess

True Blocking Size = 4 True Blocking Size = 2
N My, M N-M Py Pyu(%) Pu(%) Py(%) Py(%) Py(%)

4 2 2 2 37.50 66.67 66.67 37.50 66.67 50.00
3 1 3 25.00 0.00 0.00 25.00 0.00 0.00

4 4 0 6.25 16.67 16.67 6.25 16.67 25.00

8 4 4 4 27.34 50.00 50.00 27.34 50.00 37.50
5 3 5 21.88 0.00 0.00 21.88 0.00 0.00

6 2 6 10.94 2222 2222 10.94 2222 25.00

7 1 7 3.13 0.00 0.00 3.13 0.00 0.00

8 8 0 0.39 2.78 2.78 0.39 2.78 6.25

12 6 6 6 22.56 40.74 40.74 22.56 40.74 31.25
7 5 7 19.34 0.00 0.00 19.34 0.00 0.00

8 4 8 12.09 23.61 23.61 12.09 23.61 23.44

9 3 9 5.37 0.00 0.00 5.37 0.00 0.00

10 2 10 1.61 5.56 5.56 1.61 5.56 9.38

11 1 11 0.29 0.00 0.00 0.29 0.00 0.00

12 12 0.02 0.46 0.46 0.02 0.46 1.56

16 8 8 19.64 35.03 35.03 19.64 35.03 27.34
9 7 9 17.46 0.00 0.00 17.46 0.00 0.00

10 6 10 12.22 23.46 23.46 12.22 23.46 21.88

11 5 11 6.67 0.00 0.00 6.67 0.00 0.00

12 4 12 2.78 7.72 7.72 2.78 7.72 10.94

13 3 13 0.85 0.00 0.00 0.85 0.00 0.00

14 2 14 0.18 1.24 1.24 0.18 1.24 3.13

15 1 15 0.02 0.00 0.00 0.02 0.00 0.00

16 16 0 0.00 0.08 0.08 0.00 0.08 0.39

20 10 10 10 17.62 31.17 31.17 17.62 31.17 24.61
11 9 11 16.02 0.00 0.00 16.02 0.00 0.00

12 8 12 12.01 22.76 22.76 12.01 22.76 20.51

13 7 13 7.39 0.00 0.00 7.39 0.00 0.00

14 6 14 3.70 9.26 9.26 3.70 9.26 11.72

15 5 15 1.48 0.00 0.00 1.48 0.00 0.00

16 4 16 0.46 2.12 2.12 0.46 2.12 4.40

17 3 17 0.11 0.00 0.00 0.11 0.00 0.00

18 2 18 0.02 0.26 0.26 0.02 0.26 0.98

19 1 19 0.00 0.00 0.00 0.00 0.00 0.00

20 20 0 0.00 0.01 0.01 0.00 0.01 0.10

28 15 15 13 13.95 0.00 0.00 13.95 0.00 0.00
16 12 16 11.33 21.06 21.06 11.33 21.06 18.33

18 18 10 4.89 11.03 11.03 4.89 11.03 12.22
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TABLE 7.4 (continued)

119

Probabilities of Correctly Guessing for Different N and M by Considering
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had
before the Guess

True Blocking Size = 4

True Blocking Size = 2

N My, M N-M Py P,(%) P,(%) Py (%) Pu(%) P,(%)
19 9 19 257 0.00 0.00 257 0.00 0.00
20 8 20 1.16 3.81 3.81 1.16 3.81 6.11
21 21 7 0.44 0.00 0.00 0.44 0.00 0.00
2 6 2 0.14 0.86 0.86 0.14 0.86 222
24 4 24 0.01 0.12 0.12 0.01 0.12 0.56
25 3 25 0.00 0.00 0.00 0.00 0.00 0.00
2w 27 1 0.00 0.00 0.00 0.00 0.00 0.00
28 28 0.00 0.00 0.00 0.00 0.00 0.01
3 18 18 18 1321 2308 2308 13.21 2308 1855
20 16 20 1063 1950  19.50 10.63 1950  16.69
20 15 21 8.10 0.00 0.00 8.10 0.00 0.00
24 12 24 1.82 5.14 5.14 1.82 5.14 7.08
27 9 27 0.14 0.00 0.00 0.14 0.00 0.00
28 8 28 0.04 0.36 0.36 0.04 0.36 1.17
30 6 30 0.00 0.06 0.06 0.00 0.06 0.31
32 4 3 0.00 0.01 0.01 0.00 0.01 0.06
33 3 33 0.00 0.00 0.00 0.00 0.00 0.00
36 36 0 0.00 0.00 0.00 0.00 0.00 0.00
44 23 21 23 11.44 0.00 0.00 11.44 0.00 0.00
24 20 24 1001 1818 1818 10.01 1818 1542
26 18 26 585 1206 1206 5.85 1206  11.86
2 2w 17 3.90 0.00 0.00 3.90 0.00 0.00
28 16 28 237 6.10 6.10 237 6.10 7.62
29 15 29 1.31 0.00 0.00 1.31 0.00 0.00
30 30 14 0.65 2.36 236 0.65 236 4.07
2 12 32 0.12 0.69 0.69 0.12 0.69 1.78
33 33 1 0.04 0.00 0.00 0.04 0.00 0.00
35 9 35 0.00 0.00 0.00 0.00 0.00 0.00
36 8 36 0.00 0.03 0.03 0.00 0.03 0.17
38 6 38 0.00 0.00 0.00 0.00 0.00 0.04
39 39 5 0.00 0.00 0.00 0.00 0.00 0.00
40 4 40 0.00 0.00 0.00 0.00 0.00 0.01
41 3 41 0.00 0.00 0.00 0.00 0.00 0.00
Y RY) 2 0.00 0.00 0.00 0.00 0.00 0.00
4 4 0 0.00 0.00 0.00 0.00 0.00 0.00
52 27 27 25 10.60 0.00 0.00 10.60 0.00 0.00
28 24 28 947 1708  17.08 9.47 1708 14.39

(continued)
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had
before the Guess

True Blocking Size = 4 True Blocking Size = 2
N My, M N-M Py Pyu(%) Pu(%) Py(%) Py(%) Py(%)
30 30 22 6.01 12.07 12.07 6.01 12.07 11.51
31 21 31 4.26 0.00 0.00 4.26 0.00 0.00
32 20 32 2.80 6.78 6.78 2.80 6.78 7.92
33 33 19 1.70 0.00 0.00 1.70 0.00 0.00
34 18 34 0.95 3.03 3.03 0.95 3.03 4.66
36 16 36 0.23 1.08 1.08 0.23 1.08 2.33
37 15 37 0.10 0.00 0.00 0.10 0.00 0.00
39 39 13 0.01 0.00 0.00 0.01 0.00 0.00
40 12 40 0.01 0.07 0.07 0.01 0.07 0.34
42 42 10 0.00 0.01 0.01 0.00 0.01 0.10
43 9 43 0.00 0.00 0.00 0.00 0.00 0.00
44 8 44 0.00 0.00 0.00 0.00 0.00 0.02
45 45 7 0.00 0.00 0.00 0.00 0.00 0.00
46 6 46 0.00 0.00 0.00 0.00 0.00 0.00
48 4 48 0.00 0.00 0.00 0.00 0.00 0.00
49 3 49 0.00 0.00 0.00 0.00 0.00 0.00
51 51 1 0.00 0.00 0.00 0.00 0.00 0.00
52 52 0 0.00 0.00 0.00 0.00 0.00 0.00
60 30 30 30 10.26 17.85 17.85 10.26 17.85 14.45
32 28 32 9.00 16.15 16.15 9.00 16.15 13.54
33 27 33 7.63 0.00 0.00 7.63 0.00 0.00
36 24 36 3.13 7.25 7.25 3.13 7.25 8.06
39 21 39 0.69 0.00 0.00 0.69 0.00 0.00
40 20 40 0.36 1.47 1.47 0.36 1.47 2.80
42 18 42 0.08 0.49 0.49 0.08 0.49 1.33
44 16 44 0.01 0.13 0.13 0.01 0.13 0.55
60 45 15 45 0.01 0.00 0.00 0.01 0.00 0.00
48 12 48 0.00 0.01 0.01 0.00 0.01 0.06
51 9 51 0.00 0.00 0.00 0.00 0.00 0.00
52 8 52 0.00 0.00 0.00 0.00 0.00 0.00
54 6 54 0.00 0.00 0.00 0.00 0.00 0.00
56 4 56 0.00 0.00 0.00 0.00 0.00 0.00
57 3 57 0.00 0.00 0.00 0.00 0.00 0.00
60 60 0 0.00 0.00 0.00 0.00 0.00 0.00
68 35 33 35 9.37 0.00 0.00 9.37 0.00 0.00
36 32 36 8.58 15.35 15.35 8.58 15.35 12.83
38 30 38 6.06 11.77 11.77 6.06 11.77 10.80

39 39 29 4.66 0.00 0.00 4.66 0.00 0.00
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TABLE 7.4 (continued)
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Probabilities of Correctly Guessing for Different N and M by Considering
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had
before the Guess

True Blocking Size = 4

True Blocking Size = 2

N My, M N-M Py P,(%) P,(%) Py (%) Pu(%) P,(%)
40 28 40 3.38 7.57 7.57 3.38 7.57 8.10
41 27 41 231 0.00 0.00 231 0.00 0.00
2 42 2 1.48 4.08 4.08 1.48 4.08 5.40
4 24 44 051 1.85 1.85 051 1.85 3.19
45 45 23 0.27 0.00 0.00 0.27 0.00 0.00
47 21 47 0.06 0.00 0.00 0.06 0.00 0.00
48 20 48 0.03 0.22 0.22 0.03 0.22 0.76
5 18 50 0.00 0.06 0.06 0.00 0.06 0.31
51 51 17 0.00 0.00 0.00 0.00 0.00 0.00
52 16 52 0.00 0.01 0.01 0.00 0.01 0.11
53 15 53 0.00 0.00 0.00 0.00 0.00 0.00
54 54 14 0.00 0.00 0.00 0.00 0.00 0.03
56 12 56 0.00 0.00 0.00 0.00 0.00 0.01
57 57 11 0.00 0.00 0.00 0.00 0.00 0.00
59 9 59 0.00 0.00 0.00 0.00 0.00 0.00
60 8 60 0.00 0.00 0.00 0.00 0.00 0.00
62 6 62 0.00 0.00 0.00 0.00 0.00 0.00
63 63 5 0.00 0.00 0.00 0.00 0.00 0.00
64 4 64 0.00 0.00 0.00 0.00 0.00 0.00
65 3 65 0.00 0.00 0.00 0.00 0.00 0.00
66 66 2 0.00 0.00 0.00 0.00 0.00 0.00
68 68 0 0.00 0.00 0.00 0.00 0.00 0.00

76 40 36 40 822 1465 1465 8.22 1465 1222
4 4 R 357 7.79 7.79 357 7.79 8.09
48 28 48 0.66 2.20 2.20 0.66 2.20 352
52 52 24 0.05 0.33 033 0.05 0.33 0.99
56 20 56 0.00 0.03 0.03 0.00 0.03 0.17
60 60 16 0.00 0.00 0.00 0.00 0.00 0.02
64 12 64 0.00 0.00 0.00 0.00 0.00 0.00
68 68 8 0.00 0.00 0.00 0.00 0.00 0.00
72 4 7 0.00 0.00 0.00 0.00 0.00 0.00
76 76 0 0.00 0.00 0.00 0.00 0.00 0.00

84 44 44 40 790 1404 1404 7.90 1404 1168
48 36 48 371 7.93 7.93 371 7.93 8.04
2 52 32 0.81 253 253 0.81 253 3.79
56 28 56 0.08 0.46 0.46 0.08 0.46 1.20
60 60 24 0.00 0.05 0.05 0.00 0.05 0.25

(continued)
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TABLE 7.4 (continued)

Probabilities of Correctly Guessing for Different N and M by Considering
the Different True Blocking Sizes and the Prior Knowledge the Guesser Had
before the Guess

True Blocking Size = 4 True Blocking Size = 2
N My, M N-M Py(%) Pyu(%) Py(%) Py(%) Py(%) Py(%)

64 20 64 0.00 0.00 0.00 0.00 0.00 0.03
68 68 16 0.00 0.00 0.00 0.00 0.00 0.00
72 12 72 0.00 0.00 0.00 0.00 0.00 0.00
76 76 8 0.00 0.00 0.00 0.00 0.00 0.00
80 4 80 0.00 0.00 0.00 0.00 0.00 0.00
84 84 0 0.00 0.00 0.00 0.00 0.00 0.00
92 48 44 48 7.61 13.50 13.50 7.61 13.50 11.21
52 52 40 3.82 8.01 8.01 3.82 8.01 7.97
56 36 56 0.95 2.82 2.82 0.95 2.82 4.01
60 60 32 0.12 0.59 0.59 0.12 0.59 141
64 28 64 0.01 0.07 0.07 0.01 0.07 0.34
68 68 24 0.00 0.01 0.01 0.00 0.01 0.06
72 20 72 0.00 0.00 0.00 0.00 0.00 0.01
76 76 16 0.00 0.00 0.00 0.00 0.00 0.00
80 12 80 0.00 0.00 0.00 0.00 0.00 0.00
84 84 8 0.00 0.00 0.00 0.00 0.00 0.00
88 4 88 0.00 0.00 0.00 0.00 0.00 0.00
92 92 0 0.00 0.00 0.00 0.00 0.00 0.00
100 52 52 48 7.35 13.02 13.02 7.35 13.02 10.80
56 44 56 3.90 8.05 8.05 3.90 8.05 7.88
60 60 40 1.08 3.08 3.08 1.08 3.08 419
64 36 64 0.16 0.73 0.73 0.16 0.73 1.60
68 68 32 0.01 0.11 0.11 0.01 0.11 0.44
72 28 72 0.00 0.01 0.01 0.00 0.01 0.08
76 76 24 0.00 0.00 0.00 0.00 0.00 0.01
80 20 80 0.00 0.00 0.00 0.00 0.00 0.00
84 84 16 0.00 0.00 0.00 0.00 0.00 0.00
88 12 88 0.00 0.00 0.00 0.00 0.00 0.00
92 92 8 0.00 0.00 0.00 0.00 0.00 0.00
96 4 96 0.00 0.00 0.00 0.00 0.00 0.00

100 100 0 0.00 0.00 0.00 0.00 0.00 0.00
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1. Common findings:

a. The probabilities for guessing M subjects’ treatment right are
equal to those for guessing (N — M) subjects’ treatment right.

b. Py, Py, Py, and P, are equal to O for the odd values of M.

2. Comparison of Py, P,, and P,, for the design with the blocking
size of 4:

a. P, isequal to P, which means there is no impact on the proba-
bility of correctly guessing whether the guesser thought the true
blocking size is 2 or 4 before the guess.

b. P,andP,, are always greater than P,y for all N and M,,,, if M is
even. In addition, the difference between P,, and P,, becomes
larger when N increases.

3. Comparison of P,y, P,, and P,, for the design with the blocking
size of 2:

a. Py, is always smaller than P,y for all N and M,,,. In addition,
the difference between P,, and P,y becomes larger when N
increases.

b. P,, is greater than P,, for small M,,, for all N if M is even.
However, it becomes smaller than P,, when M,,, is larger.

c. P, is always greater than P,y for all N and M,,,. In addition,
the difference between P,, and P,y becomes larger when N
increases.

4. Comparison of Py, P,,, and P,, for the design with the blocking size
of 4 with P,, P,,, and P,, for the design with the blocking size of 2:

a. P,y is equal to P,,, which means there is no difference between
correctly guessing the designs with the blocking sizes of 4 and 2
if the guesser guessed without any prior knowledge.

b. Since P,y = P,y, the comparison between P,y and P,, and that
between P,y and P,, are the same as the comparison between P,y
and P,, and that between P,y and P,,, respectively.

c. P, is greater than P,, for a small M,,,, while P,, becomes larger
than P, when M), becomes larger.

d. P, and P, are equal to P,,, which means the probabilities of cor-
rectly guessing are the same when the design with the blocking
size of 4 is chosen or the blocking size the guesser thought of
before the guess was 4.

5. The comparison between P,,and P,, and that between P,, and P,, are
the same as the comparison between P,, and P,y and that between
P,, and P,, since P,, = P,,.
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7.3.3 Remarks

The design with the blocking size of 4 is usually considered to have less selec-
tion bias than the design with the blocking size of 2 because the true treat-
ment is harder to guess. However, prior knowledge about the true blocking
size the guesser had before the guess is also a factor that has an impact on the
probability of correctly guessing. As the results show in the numerical study,
the probabilities of correctly guessing the designs with the true blocking
sizes of 4 and 2 are smallest and equal if there is no prior knowledge about
the true blocking size before the guess. The results are obvious since the
probability of guessing right for the true treatment of each individual sub-
ject without any prior knowledge is 1/2, which is just like tossing a fair coin.
However, the probability of correctly guessing between two types of prob-
abilities with the true blocking size is the same as what the guesser thought
of before the guess, i.e., P, versus P,,, P, is greater than P,, for small M,
while the results are opposite when M, becomes larger. On the other hand,
P,,is even equal to P, and P,,, i.e., the probability of correctly guessing if the
true blocking size is 4 with the prior knowledge the guesser had is the block-
ing size of 2 and the true blocking size is 2 with the prior knowledge the
guesser had is the blocking size of 4, respectively. The results seem different
from what we think usually, i.e., the probabilities of correctly guessing for
the design with the blocking size of 4 is always lower than that for the design
with the blocking size of 2. However, not only does it show what the true
blocking size is, but the prior knowledge the guesser had before the guess
also has great impact on the probabilities of guessing correctly.

The choice of blocking size for randomized trials depends not only on
the number of treatments but also on the sample size for the clinical tri-
als. In practice, the probabilities of correctly guessing will be reduced if the
blocking size becomes larger but it may result in the imbalance of treatment
assignment, especially if patient characteristics change with time. On the
other hand, with respect to the two-arm trial with a small sample size, the
probabilities of correctly guessing are not small for both the designs with
the blocking sizes of 4 and 2, in particular when M,,,, is small. Therefore, the
design with the blocking size of at least 6 or the design with mixed blocking
sizes rather than only the blocking size of 4 may need to be suggested for a
two-arm trial.

7.4 Test for Integrity of Blinding

Consider the following example given in Karlowski et al. (1975). A double-
blind placebo-controlled study was conducted by the National Institutes
of Health to evaluate the difference between the prophylactic and
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therapeutic effects of ascorbic acid for the common cold. At the comple-
tion of the study, a questionnaire was distributed to every subject enrolled
in the study so that they could guess which treatment they received. The
results from the 190 subjects (101 subjects are in the actual treatment
group and 89 subjects are in the placebo group) who completed the study
are summarized as follows. Among the 101 subjects in the actual treat-
ment group, 40 subjects guessed right, 12 subjects guessed wrong, and 49
subjects indicated “Do not know.” For the 89 subjects in the placebo group,
39 subjects guessed right, 11 subjects guessed wrong, and 39 subjects indi-
cated “Do not know.”

To test the integrity of blinding we need to define a null hypothesis H,. If
patients guess their treatment codes randomly, then blindness is considered
to be preserved. Thus, we consider

H,: patients guess their treatment codes randomly.

Let A, be the event that a patient guesses he/she is in the ith group and B; be
the event that a patient is assigned to the jth group. If a patient guesses his/
her treatment code randomly, then the events A; and B; are independent for
any 7 and j, and P(A;) = 1/2. Assume that patients who answered “Do not
know” did not guess their treatment codes throughout the study. Let m; be
the number of patients in group j who guessed their treatment codes, j = 1, 2.
Then, under the null hypothesis H,, we have

P (a patient in group j guesses that he/she is in group i)

mj

- P(A; NB;) = P(A)P(B;) j=12. (75)

- 2(my +my) ’

Let a; be the observed number (frequency) of the patients who are in the
jth group and guessed that they are in the ith group. Then the integrity of
blinding can be tested by analyzing a contingency table (Table 7.5), where the
numbers in parentheses are the expected frequencies under H, computed
according to (7.5).

For example, with the data given in Table 7.5, we obtain a contingency table
(Table 7.6).

Based on Table 7.6, we can use either Fisher’s exact test or Person’s chi-
square test to test for the integrity of blinding. This test for the integrity of
blinding can be generalized to the case where there are a treatment groups,
which leads to an a x a contingency table. Analyses on investigators” guesses
of patients” treatment codes can be performed similarly.

Consider a single-site parallel design comparing a > 2 treatments. Let A; be
the event that a patient in the jth treatment group guesses that he/she is in
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TABLE 7.5
Contingency Table for the Integrity of Blinding

Actual Assignment

Patient’'s Guess Group1l  Group 2 Total
m my +m
Group 1 011 (7]) 012 (%) 011 + 012 ( ! 5 z)
m m my +m,
Group 2 021 (71) 02 (71) 021 + 02 ( ! 2 2)
Total m; m,
TABLE 7.6

Contingency Table for Patients” Guess

Actual Assignment

Patient’s Guess Active Treatment  Placebo Total
Active treatment 40 (26) 11 (25) 51 (25.5)
Placebo 12 (26) 39 (25) 51 (25.5)
Total 52 50

the ith group;i=1,...,4,a + 1, where i = a + 1 defines the event that a patient
does not guess (or answers “do not know”). If the hypothesis

Hop(A,])=P(A1]) for anyiandj

holds, then the blindness is considered to be preserved. We can test
H, using the well-known Pearson chi-square test (with a(a — 1) degrees of
freedom) under the contingency tables constructed based on the observed
counts. A straightforward calculation using data results in the observed
Pearson’s chi-square statistic of 31.3, which results in a p-value smaller
than 0.001. Thus, we conclude with a very high significance level that the
blindness is not preserved. Hence, the integrity of blinding is in doubt.

7.5 Analysis under Breached Blindness

When the test of the integrity of blinding produces a significant result, ana-
lyzing the data by ignoring this result may lead to a biased result (i.e., the
integrity of blinding is doubtful). In what follows we introduce a method
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of testing treatment effects by incorporating the data of patients” guesses of
their treatment codes (Chow and Shao, 2003, 2004). The idea is to include a
patient’s guess as a factor in the analysis of variance (ANOVA) for the treat-
ment effects.

Suppose that the study design is a single-site parallel design comparing
a =z 2 treatments. If the blindness is preserved, then the treatment effects
can be tested using the one-way ANOVA table. If we add patients’ or
investigators’ guessing treatment codes as a factor, then we can test treat-
ment effects by using a two-way ANOVA table. If we add both patients’
and investigators’ guessing treatment codes as factors, then we can test
treatment effects by using a three-way ANOVA table. If the study is a
multicenter trial, then including guessing factors leads to a three-way or
two-way ANOVA. For illustration purpose, consider adding one guessing
factor, ywith b levels, into a single study site (i.e., one-way ANOVA is used
if the guessing factor is ignored). There are different ways for constructing
the variable y. One way is to use the guessing treatmenti,i =1, ..., 4, as the
first a levels of y and not guessing (do not know) as the last level. Hence
b =a + 1. Another way is to use guessing correctly, guessing incorrectly,
and not guessing as three levels for y and thus, b = 3. Even if the original
design is balanced, i.e., each treatment (and center) has the same number
of patients, the two-way ANOVA or three-way ANOVA after including
factor yis not balanced. Hence methods for unbalanced ANOVA are neces-
sarily considered.

Let x;; be the response from the kth patient under the ith treatment
with the jth guessing status, wherei=1,...,4,j=1,...,b k=1,..., 1y and
n; is the number of patients in the (i, j)th cell. Let X;; be the sample mean
of the patients in the (i, j)th cell, X;. be the sample mean of the patients
under treatment i, X ; be the sample mean of patients with guessing status
j, X be the sample mean of all patients, n; be the number of patients under

treatment i, n; be the number of patients with guessing status j, and
n be the total number of patients. Define R(u)=nx?, R(u,t) = C R
i-1

(where 1 denotes treatment effect and p denotes the overall mean),
b a b

R(w,y) = E nx%, R(w,t,txy) = E E n;x;. (where T x y denotes the
j=1 i=1 j=1

interaction between 1 and y), and R(u,,y) = 2: n. X2 +Z'CZ, where Z is

a (b — 1)-vector whose jth component is 7.;x.; - 2; niixi., j=1,...,b-1 and

C isa (b — 1) x (b -1) matrix whose jth diagonal element is 7; - 2 4

and (j, I)th off-diagonal element is —2 ’

2
) nij/ n;.

niiny/n;. . Now let
1

R(TXY | M/TIY) = R(M,T,Y,’CXY)—R(M,‘C,Y),
R(t|w) = R(w,7) - R(w),
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R(y |w) = R(w,v) - R(w),
R(T | w, Y) = R(M,T, Y) - R(M/ Y)r

R(y|w,T) = R(u,T,v) - R(u,7),

nij

a b
SSE = 2 2 2 X - R(w, T, 7, TxY)
=1 j=1 k=

and s be the number of nonzero n;’s. An ANOVA table according to Searle
(1971) can be constructed.

An F-ratio (in the last column of Table 7.7) is said to be significant at level
o if it is larger than the (1 — a)th quantile of the F-distribution with denomi-
nator degrees of freedom n — s and the numerator degrees of freedom given
by the number in the third column of the same row. Note that F(t|p) is the
F-ratio for testing t-effect (treatment effect) adjusted for p and ignoring v,
whereas F(t|J, v) is the F-ratio for testing 1-effect adjusted for both p and ¥.
These two F-ratios are the same in a balanced model but are different in an
unbalanced model. A similar discussion can be made for F(y|u) and F(y|W, T).

Because of the imbalance, the interpretation of the results given by F-ratios
in the ANOVA table is not straightforward. Table 7.8 lists a total of 14 pos-
sible cases according to the significance of F-ratios F(t|w), F(t|w,y), F(y|w),

TABLE 7.7
ANOVA for Treatment Effects under Breached Blindness
Sum of
Source Squares daf F-Ratio
R(x|w/(@@-1)
£t R -1 F =,
Tafter 1 (t|w a (rlw SSE /(1 -s)
Ry |w,1) /(b1
vafterpandt  R(y| 1) b-1 Fy "”F%
R(y [w/(-1)
ft R -1 F TTSSE /(n-s)
vy after (v[w a (rlw) SSE/(n-s)

R(z|w, -1
tafterpandy  R(t|wy) b-1 F(TW'Y):%
Interaction R(xxy|lwty s-—-a-b+1  Flxy|wty)= R(txy |l;/STé\;)(/(s—)a—b+l)

n-s
Error SSE n-s
Total SS(TO) n-1

s, number of nonzero 1;/s.
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TABLE 7.8

Conclusions on the Significance of the Treatment Effect When F(txy |, T, 7)
Is Insignificant

Significance of F-Ratio

Fitting T and Then Fitting v and Then Effects to Be
v After T After v Included in the
Model According Conclusion:
to Chow and Significance of the

F(=|pw)  Fly|m7 Flylp) F&lpy) Shao (2004) Treatment Effect
Yes Yes Yes Yes T,Y Yes

Yes Yes No Yes T,y Yes

Yes No Yes Yes T Yes

Yes No No Yes T Yes

No Yes Yes Yes T,y Yes

No Yes No Yes T, Yes

No No No Yes T, Yes

No Yes Yes No Y No

No No Yes No Y No

Yes Yes Yes No Y No

Yes No Yes No T,y No

Yes No No No T Yes

No Yes No No T,y No

No No No No None No

Source: Chow, S.C. and Shao, J., Statistics in Medicine, 23, 1185, 2004.

and F(y|u, 7). The suggestion from Searle (1971, Chapter 7) regarding which
effects should be included in the model is given in the second last column of
Table 7.5. However, our purpose is slightly different, i.e,, we are interested in
whether the treatment effect 1 is significant regardless of the presence of the
effect . Our recommendations in these 14 cases are given in the last column
of Table 7.8, which is interpreted as follows. When both F(t|w) and F(t|u, v)
are significant (rows 1 through 4 of Table 7.8), regardless of whether the
vy effect is significant or not, the conclusion is easy to make, i.e,, the treatment
effect is significant. In the next three cases (rows 5 through 7 of Table 7.8), F(t|L)
is not significant but F(t|L, y) is significant, indicating that the treatment effect
cannot be clearly detected by ignoring ybut once yis included in the model as
a blocking variable, the treatment effect is significant. In these three cases, we
conclude that the treatment effect is significant. When F(t|, y) is not significant
but F(y|w) is significant, it indicates that once 7y is fitted into the model, the
treatment effect is not significant, i.e., the treatment effect is distorted by the y
effect. In such cases (rows 8 through 11 of Table 7.8), we cannot conclude that
the treatment effect is significant. In the last three cases (rows 12 through 14
of Table 7.6), both F(y|u) and F(t |y, Y) are not significant. If F(t|p) is significant
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but F(y|y, 7) is not (row 12 of Table 7.8), it indicates that y has no effect and the
treatment effect is significant. On the other hand, if F(y|y, 7) is significant but
F(z|p) is not (row 13 of Table 7.8)—a case that should happen somewhat infre-
quently according to Searle (1971)—we cannot conclude that the treatment effect
is significant. Finally, when neither F(t|l) nor F(y|L, T) is significant, we cannot
conclude that the treatment effect is significant (row 14 of Table 7.8).

The analysis is difficult when the interaction F(t x y|u, T, ) is significant.
In general, we cannot conclude that the treatment effect is significant when
F(r x y|y, 7, y) is significant. An analysis conditional on the value of Y may be
carried out to draw some partial conclusions.

Note that we only focus on the analysis of a single response variable for
treatment effects. Although our main idea of adding the guessing treatment
code factors into the analysis can be applied to more complex cases (e.g.,
when there are other response variables or covariates that may be influenced
by guessing treatment codes), further research is needed.

7.6 An Example

Consider a double-blind placebo-controlled trial with a two-group parallel
design for the evaluation of the effectiveness of an appetite suppressant in
weight loss in obese women (see Brownell and Stunkard, 1982). Table 7.9
lists the data on patients” guesses of the treatment codes. Observed mean
weight loss (kg) is summarized in Table 7.10.

In this example, the blindness is not preserved with a high significance.
If patients” guessing is ignored, then a simple two-sample t-test (which is
the same as the one-way ANOVA) results in the observed t-statistic of 2.45
and p-value of 0.009. Hence the treatment effect is significant when patients’
guessing is ignored.

Suppose that one would like to know whether the significant result is a
biased result due to breached blindness. The method described in the previ-
ous section can be applied to reanalyze the data in Table 7.10. First, consider

TABLE 7.9

Results of Patients” Guesses

Actual Treatment Assignment

Patient’s Guess Active Drug Placebo
Active drug 19 3
Placebo 3 16
Do not know 2 6
Total 24 25

Source: Brownell, K.D. and Stunkard, A.J., Am. ].
Psychiatr., 139, 1487, 1982. With permission.
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TABLE 7.10
Sample Mean Weight Loss (kg)

Actual Treatment Assignment

Patient’s Guess  Active Drug Placebo
Active drug 9.6 2.6
Placebo 39 6.1
Do not know 12.2 5.8
Total 9.1 5.6

Source: Brownell, K.D. and Stunkard, AJ., Am. ].
Psychiatry, 139, 1487, 1982. With permission.

the analysis with y = guessing correctly, guessing incorrectly, and not guess-
ing. The sample means (with estimated standard deviation in parentheses)
and sample sizes are given by
X1 =9.6(1.14), n;1 =19, Xy = 6.1(1.25), ny; =16,
X12. =3.9(2.88), 1, =3, Xz =2.6(2.88), 1 =3,
X13. = 12.2(3.53), 13 =2, Xp3. = 5.8(2.04), 155 = 6,
X1 =9.1(1.02), ny. =24, x4 =8.0(0.84), n4 =35,
X,. =5.6(1.00), n,. =25, X, =3.3(2.04), n, =6,
x=73(0.71),n=49, x5 =74(1.76),n;=8.

The resulting ANOVA table is summarized here.

Source R df R/df F-Ratio p-Value
Tafter u R(t|w) 1 160.2 6.43 0.015
vafterpandt  R(Y|W, 7) 2 57.6 2.31 0.111
yafter u R(y|w) 2 66.1 2.65 0.082
tafterpandy R(t|W,7) 1 1432 5.75 0.021
Interaction R(txy|w, t,7) 2 12.6 0.51 0.604
Error SSE 43 249

Source: Chow, S.C. and Shao, J., Stat. Med., 23, 1185, 2004. © 2004 by
John Wiley & Sons Ltd. With permission.

It seems that the interaction F(t x y|u, T, 7) is not significant and both treat-
ment effect F-ratios F(t|n) and F(t|y, y) are significant. Thus, according to
the previous section (see Table 7.8), we can conclude that the treatment
effect is significant, regardless of whether the effect of 7 is significant or not.
However, the conclusion may be different if we consider the levels of v, the
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sample means (with estimated standard deviation in parentheses), and the
sample sizes given by

Y. =9.6(1.14), 1y =19, X1 = 2.6(2.88), 1y = 3,
X1 = 3.9(2.88), 11y = 3, X = 6.1(1.25), 1, = 16,
X1 = 12.2(353), 13 = 2, Xa3 = 5.8(2.04), 1135 = 6,
% =9.1(1.02), m. = 24, %, =8.7(1.06), n, =22,
X5 =5.6(1.00), np. = 25, X, =5.7(1.14), 1, = 19,

Xx=73(0.71),n =49, X =7.4(1.76),n;=8.

Note that X, are unchanged but X, have changed with this new choice of
levels of y. The corresponding ANOVA table is given below. As can be seen
from the ANOVA table, although F(t|n) remains the same, the value of
F(t x y|w, 7, ) is much larger than that in the previous case. The p-value
corresponding to F(t x Y|, T, ) is 0.097, which indicates that the interaction
between the treatment and 7y is marginally significant. If this interaction is
ignored, then we may conclude that the treatment effect is significant, since
the results are the same as those in the previous case except that F(t|y, V) is
less significant. But no conclusion can be made if the interaction effect cannot
be ignored.

Source R df R/df F-Ratio p-Value
Tafter t R(t|w 1 1602 643 0.015
yafterpandt  R(y|wr) 2 89 036 0.700
vafter u R(y|w) 2 54.7 2.20 0.123
tafterpandy  R(t|wpy) 1 686 2.76 0.104
Interaction R(txy|w1y) 2 61.3 2.46 0.097
Error SSE 43 249

Source: Chow, S.C. and Shao, J., Stat. Med., 23, 1185, 2004. © 2004
by John Wiley & Sons Ltd. With permission.

It can be seen from this example that the choice of levels of v is important.
Different ways of constructing the levels of y may lead to different conclu-
sions. In this example, it seems that the first method of constructing the level
of v (guessing correctly, guessing incorrectly, and not guessing) is better,
since the guessing factor has less interaction with the treatment effect.

In the presence of interaction, however, a subgroup analysis (according
to the levels of y) may be useful. Subgroup sample mean comparisons can
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FIGURE 7.1
Subgroup sample mean weight loss (kg).

be made as indicated in Figure 71. Figure 7.1 displays six subgroup sample
means X; i = 1,2,j=1,2,3. The first part of Figure 71 considers the situation
where y = guessing active drug, guessing placebo, and not guessing. The two
sample means (dots) corresponding to the same 7y level are connected by a
straight line segment. In the first part of the figure, although the three line
segments have different slopes, the slopes have the same sign. Furthermore,
every pair of two line segments either does not cross or crosses slightly. This
indicates that in the situation considered in the first part of the figure, there
is no significant interaction and the treatment effect is evident. On the other
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hand, the slopes of the line segments in the second part of the figure have
different signs and two line segments cross considerably, which indicates
that interaction is significant and we cannot draw an overall conclusion on
the treatment effect in the situation considered in the second part of the
figure. A partial conclusion that can be drawn from the second part of the fig-
ure is that the treatment effect is significant when we focus on patients not
guessing their treatment codes.

7.7 Concluding Remarks

When the integrity of blinding is doubtful, adjustments to statistical analy-
sis should be made. One of the controversial issues regarding the blinding
is whether a formal statistical test for the integrity of the blinding should
be performed at the end of the clinical trial (especially when significantly
positive results are observed). In addition, what action should be taken if a
positive clinical trial fails to pass the test for the integrity of the blinding?
Should the positive clinical trial be questioned and/or challenged? On the
other hand, what action should be taken if a negative clinical trial fails to
pass the test for the integrity of the blinding? In this case, should the data
(or subgroup) be reanalyzed for a more accurate and reliable assessment of
the treatment effect?

Regarding the impact of different blocking sizes in the randomization of a
clinical trial, it should be noted that the knowledge of the blocking size may
increase the probability of guessing the treatment codes right for the investiga-
tor. Although the increase of the blocking size may decrease the probability of
guessing the treatment codes right, it will also increase the probability of mix-
ing up the randomization schedule and the possibility of treatment imbalance
at the end of the trial. Note that the discussions given in the previous sections
are based on an unbiased coin design. Analysis based on a biased coin design
can be performed similarly.
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Clinical Strategy for Endpoint Selection

8.1 Introduction

In clinical trials, it is important to determine the primary response variables
for addressing the scientific and/or medical questions of interest. The response
variables, which are also known as the clinical endpoints, are usually chosen to
fulfill the study objectives. Once the response variables are chosen, the possible
outcomes of treatment are defined and the corresponding information would
be used to assess the efficacy and safety of the study drug under investigation.
Typically, to assess the efficacy and safety of a study drug, the study drug is first
shown to be statistically significantly different from a placebo control. If there
is a statistically significant difference, the trial is demonstrated to have a high
probability of correctly detecting a clinically meaningful difference, which is
known as the (statistical) power of the trial. Therefore, in practice, a pre-study
power analysis for sample size estimation is usually performed to ensure
that the trail with the intended sample size has a desired power, say 80%, for
addressing the scientific/medical question of interest. The purpose is to find an
appropriate sample size based on the information (the desired power, variabil-
ity, and clinically meaningful differences, etc.) provided by clinical scientists.
In many clinical studies, it is not uncommon that the sample size of a study
is determined based on expected absolute change from the baseline of a pri-
mary study endpoint but the collected data are analyzed based on relative
change from the baseline (e.g., percent change from baseline) of the primary
study endpoint, or based on the percentage of patients who show some
improvement (i.e., responder analysis). The definition of a responder could
be based on either absolute change from the baseline or relative change from
the baseline of the primary study endpoint. It is very controversial in terms
of the interpretation of the analysis results, especially when a significant
result is observed based on a particular study endpoint (e.g., absolute change
from baseline, relative change from baseline, or responder analysis) but
not on other study endpoints (e.g., absolute change from baseline, relative
change from baseline, or responder analysis). In practice, it is then of interest
to explore how an observed significant difference of a study endpoint (e.g,
absolute change from baseline, relative change from baseline, or responder

135
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TABLE 8.1
Weight Data from 10 Female Subjects
Pretreatment Posttreatment Absolute Change Relative Change
110 106 4 3.6
90 80 10 11.1
105 100 5 4.8
95 93 2 22
170 163 7 41
90 84 8 8.9
150 145 5 33
135 131 4 3.0
160 159 1 0.6
100 91 9 9.0
120.5 (30.5) 115.2 (31.53) 5.3 5.1

Note: Numbers in the parentheses are the corresponding standard deviation.

analysis) can be translated to that of another study endpoint (e.g., absolute
change from baseline, relative change from baseline, or responder analysis).
An immediate impact on the assessment of treatment effect based on dif-
ferent study endpoints is the power analysis for sample size calculation. For
example, sample size required for achieving a desired power based on the
absolute change could be very different from that obtained based on the per-
cent change, or the percentage of patients who show an improvement based
on the absolute change or relative change at o level of significance. As an
example, consider a clinical trial for the evaluation of possible weight reduc-
tion of a test treatment in female patients. Weight data from 10 subjects are
given in Table 8.1.

As can be seen from Table 8.1, mean absolute change and mean percent
change from pretreatment are 5.31b and 5.1%, respectively. If a subject is con-
sidered a responder when there is weight reduction of more than 51b (abso-
lute change) or by more than 5% (relative change), the response rates based on
absolute change and relative change are given by 60% and 30%, respectively.
It should be noted that sample sizes required for achieving a desired power
for detecting a clinically meaningful difference, say, by an absolute change
of 5.01b and a relative change of 5.0%, for the two study endpoints would not
be the same. Similarly, the required sample sizes are also different using the
response rates based on absolute change and relative change. Table 8.2 sum-
marizes sample size calculation based on absolute change, relative change,
and responders (defined based on either absolute change or relative change).

In clinical trials, one of the most controversial issues regarding clinical
endpoint selection is which clinical endpoint is telling the truth. The other con-
troversial issue is how to translate clinical results among the study endpoints. In
practice, the sponsors always choose the clinical endpoints in their best interest.
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TABLE 8.2

Sample Size Calculation

Clinical Meaningful = Sample Size

Study Endpoint Difference Required
Absolute change 51b 262
Relative change 5% 146
Responder (based on absolute change)? >51b 12
Responder (based on relative change)® >5% 19

2 Response rate based on absolute change greater than 5 Ib is 60%.
b Response rate based on relative change greater than 5% is 30%.

The regulatory agencies, however, require the primary clinical endpoint to be
specified in the study protocol. Positive results from other clinical endpoints will
not be considered as the primary analysis results for regulatory approval. This,
however, does not have any scientific or statistical justification for the assess-
ment of the treatment effect of the test drug under investigation.

In this chapter, we attempt to provide some insight to the above issues.
In particular, the focus is to evaluate the effect on the power of the test when
the sample size of the clinical study is determined by an alternative clini-
cal strategy based on different study endpoints and non-inferiority margins.
In the next section, models and assumptions for studying the relationship
among these study endpoints are described. Under the model, translations
among different study endpoints are studied. Section 8.4 provides a compar-
ison of different clinical strategies for endpoint selections in terms of sample
size and the corresponding power. A numerical study is given in Section 8.5
to provide some insight regarding the effect to the different clinical strate-
gies for endpoint selection. A brief concluding remark is presented in the
last section.

8.2 Clinical Strategy for Endpoint Selection

In clinical trials, for a given primary response variable, commonly considered
study endpoints include (1) measure based on absolute change (e.g., endpoint
change from baseline), (2) measure based on relative change, (3) proportion of
responders based on absolute change, and (4) proportion of responders based
on relative change. We will refer to these study endpoints as the derived study
endpoints because they are derived from the original data collected from the
same patient population. In practice, it will be more complicated if the intended
trial is to establish non-inferiority of a test treatment to an active control
(reference) treatment. In this case, sample size calculation will also depend on
the size of the non-inferiority margin, which may be based on either absolute
change or relative change of the derived study endpoint. For example, based
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TABLE 8.3

Clinical Strategy for Endpoint Selection in Non-Inferiority Trials

Non-Inferiority Absolute Margin Relative

Study Endpoint Difference (3,) Difference (5,)

Absolute change (E;) I=E§, II=E3,

Absolute change (E,) II1 = E,8, IV =E,},

Responder based on V=E;9, VI=E;5,
absolute change (E;)

Responder based on VII = E,§, VII=ES,

relative change (E,)

on the responder analysis, we may want to detect a 30% difference in response
rate or to detect a 50% relative improvement in response rate. Thus, in addi-
tion to the four types of derived study endpoints, there are also two different
ways to define a non-inferiority margin. Thus, there are many possible clinical
strategies with different combinations of the derived study endpoint and the
selection of non-inferiority margin for the assessment of the treatment effect.
These clinical strategies are summarized in Table 8.3.

To ensure the success of an intended clinical trial, the sponsor will usually
carefully evaluate all possible clinical strategies for selecting the type of study
endpoint, clinically meaningful difference, and non-inferiority margin during
the stage of protocol development. In practice, some strategies may lead to the
success of the intended clinical trial (i.e., achieve the study objectives with the
desired power), while others may not. A common practice for the sponsor is to
choose a strategy in their best interest. However, regulatory agencies such as the
FDA may challenge the sponsor regarding inconsistent results. This has raised
the following questions. First, which study endpoint is telling the truth regard-
ing the efficacy and safety of the test treatment under study? Second, how to
translate the clinical information among different derived study endpoints
since they are obtained based on the same data collected from the same patient
population? Tse and Chow (2011) made an attempt to address these questions
in the following sections. These questions, however, remain unanswered.

8.3 Translations among Clinical Endpoints

Suppose that there are two test treatments, namely, a test treatment (T) and
a reference treatment (R). Denote the corresponding measurements of the ith
subject in the jth treatment group before and after the treatment by W;; and
W,;;, respectively, where j = T or R corresponds to the test and the reference
treatment, respectively. Assume that the measurement W,; is lognormal
distributed with parameters I8 and ij, ie.,

Wi ~ lognormal (u;, 0%]')-
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Let W,; = Wy,(1 + A), where A;; denotes the percentage change after receiving the
treatment. In add1t1on assume that A; is lognormally distributed with param-
eters w,; and OAI, ie.,

A, ~lognormal (s, 3.

Thus, the difference and the relative difference between the measurements
before and after the treatment are given by W,; — Wy;; and (W,; — Wy;)/ Wy,
respectively. In particular,

Waij = Why = Wy;Aj; ~ lognormal (u; + Wajs 0,2» + Gi]. ),

and

Wai; — Wi

2
W ~lognormal (u,;, 03))-

To simplify the notations, define X;; and Y; as X;; = log(W,; — W), Y,
log((Wy; — Wy;)/Ws;). Then, both X, and Y, are normally distributed with
means W, + Wy and pa, i=1,2,. ] =T, R, respectively.

Thus, possible derived study endpoints based on the responses observed
before and after the treatment as described earlier include X,], the absolute dif-
ference between “before treatment” and “after treatment” responses of the
subjects, Y, the relative difference between “before treatment” and “after treat-
ment” responses of the subjects, 74, = #{x; > ¢1,i =1,...,n;}/n;, the proportion
of responders, which is defined as a subject whose absolute difference between
“before treatment” and “after treatment” responses is larger than a prespeci-
fied value c,, 1R = #yij > c,,i=1,...,n}/n;, the proportion of responders, which
is defined as a subject whose relative difference between “before treatment”
and “after treatment” responses is larger than a prespecified value c,.

To define the notation, for j = T, R, let Pa; = E(rA ) and Pr; = E(rR ). Given
the above possible types of derived study endpomts, we may consider the
following hypotheses for testing non-inferiority with non-inferiority margins

determined based on either absolute difference or relative difference:

1. The absolute difference of the responses

Ho (g =Wap) = (Ur —Uar) 201 versus  H, :(Ug = Wag) = (Ur —Uar) <O
8.1

2. The relative difference of the responses

Hp:(uag —Uag) =0, versus H,:(Wap —Uap) <O 3.2)
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3. The difference of responders’ rates based on the absolute difference
of the responses

Hy:pag —par 2083 versus H, :pa, —pay <03 8.3)

4. The relative difference of responders’ rates based on the absolute
difference of the responses

H,: DA = Par g 4+ versus H,: Pan = Par g 4 (8.4)
pAR pAR

5. The absolute difference of responders’ rates based on the relative
difference of the responses

Hy :pre = Pre 205 versus H, :pry — Pry <95 8.5)

6. The relative difference of responders’ rates based on the relative
difference of the responses

Hy: . PRe = PRe. 8¢ versus H,: . PRe = PRr. (8.6)
Prg Pre

For a given clinical study, the above are the possible clinical strategies for
the assessment of the treatment effect. Practitioners or sponsors of the study
often choose the strategy in their best interest. It should be noted that the
current regulatory position is to require the sponsor to prespecify which
study endpoint will be used for the assessment of the treatment effect in the
study protocol without any scientific justification.

In practice, however, it is of particular interest to study the effect of power
analysis for sample size calculation based on different clinical strategies.
As pointed out earlier, the required sample size for achieving a desired
power based on the absolute difference of a given primary study endpoint
may be quite different from that obtained based on the relative difference of
the given primary study endpoint. Thus, it is of interest to the clinician or
clinical scientist to investigate this issue under various scenarios. In particular,
the following settings are often considered in practice.

Settings
Strategy Used for 1 2 3 4 5 6
Sample size 21 22 23 24 25 26

determination
Testing treatment effect 22 21 24 23 26 25
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There are certainly other possible settings besides those considered above.
For example, hypotheses (8.1) may be used for sample size determination
but hypotheses (8.3) are used for testing treatment effect. However, the com-
parison of these two clinical strategies would be affected by the value of ¢,
which is used to determine the proportion of responders. However, in the
interest of a simple and easier comparison, the number of parameters is kept
as minimal as possible. Details of the comparison of the above six settings
are given in the next section.

8.4 Comparison of Different Clinical Strategies
8.4.1 Test Statistics, Power, and Sample Size Determination

Note that X;; denotes the absolute difference between “before treatment”
and “after treatment” responses of the ith subjects under the jth treat-
ment, and Y,-]- denotes the relative difference between “before treatment”
and “after treatment” responses of the ith subjects under the jth treatment.

Let x;=1/n; = Eni xj and y;=1/n; = z Y y;; be the sample means of X
i=1 i=1

ij
and Y;; for the jth treatment group, j = T, R, respectively.

Based on normal distribution, the null hypothesis in (8.1) is rejected at a
level o of significance if

Xp—Xr+0;

> Z,. 8.7
JWnr +1/n)[(0% +03,) + (0% + 03,)] ’ &

Thus, the power of the corresponding test is given as

O (W +Uar) = (Ug +Uag) + Oy 8.8)

- Z(x Vi
Joi + )03 +03,) + (0% + 03]

where ®() is the cumulative distribution function of the standard normal
distribution. Suppose that the sample sizes allocated to the reference and
test treatments are in the ratio of 7, where r is a known constant. Using these
results, the required total sample size for the test hypotheses (8.1) with a
power level of (1 — B) is N = n; + ng, with

(zo +23)°(07 + 03)(1+1/p)
[(ur +ag) = (ur +1ar) =01

nr = (89)

ng = pnrand z, is 1 — u quantile of the standard normal distribution.
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Note that ;s are normally distributed. The test statistic based on ; would
be similar to the above case. In particular, the null hypothesis in (8.2) is
rejected at a significance level o, if

Yr. = YR, +0,

> Zg- (8.10)
/) + (/ne)(0k, + 0k,
The power of the corresponding test is given as
(I)/ Uar —Uag + 62 _z \ . (811)
L \/(n%l + 15 )(OA, + 04, ) J

Suppose that n; = pry, where R is a known constant. Then the required total
sample size to test hypotheses (8.2) with a power of (1 — f) is (1 + p)n;, where

(2o +25)* (02, +0a)(1+1/p)
nr = >
[t + ta) = (o + 1y ) = 82

(8.12)

For a sufficiently large sample size 1, r,. is asymptotically normal with mean
pa; and variance p A](l Pa; )n,j=T, R Thus, based on the Slutsky theorem, the
null hypothesis in (8.3) is re]ected at an approximate o level of significance if

Tap — Tag + O3

> Zy. 8.13
\/(1/nT )rAT (1 Yar ) + (1/nR )rAR (1 Tag ) ( )
The power of the above test can be approximated by
/ Par ~Pax + 8 —z \ . (8.14)
L \/ 7 par (1= pag) + 1 Tag (1= pag) J

if ny = pny, where r is a known constant. Then, the required sample size to test
hypotheses (8.3) with a power level of (1 - B) is (1 + p)n;, where

(za +2p)" [Par (L= par ) + Pac (1= Pag Yp]
(Pag = Par -8;)

Ny =

(8.15)

Note that, by definition, ps; =1-® ((c1 —(u;+ uAj))/wlo,Z- + oi]. ), wherej=T,R.
Therefore, following similar arguments, the above results also apply
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to test hypotheses (8.5) with Pa; replaced by pr, =1-®((c2 - us,;)/0a;) and
4, replaced by 0.
The hypotheses in (8.4) are equivalent to

Hy:(1-84)pag —par =20 versus H, :(1-084)pag —par <0. (8.16)

Therefore, the null hypothesis in (8.4) is rejected at an approximate level of
significance if
Tar — (1 - 64)”/\;{
/), (L= 1)+ 10 = 02 /mglrag (L= 1a,)

> Zq. (8.17)

Using normal approximation to the test statistic when both n; and n; are
sufficiently large, the power of the above test can be approximated by

- (1 64 )pAR

- Zq (8.18)
\/TZT Par(L=pa, ) + 1R (1= 84) Par (1= Pag)

Suppose that ny = pn;, where r is a known constant. Then the required
total sample size to test hypotheses (8.10), or equivalently (8.16), with a
power level of (1 — B) is (1 + p)ny, where

(Zu"'ZB) ‘-pAT(l pAT)"'(l 64) pAR(l PAR)/p]
[pAT_(l 64)PAR]

nr = (8.19)

Similarly, theresults derived in (8.17) through (8.19) for the hypotheses (8.4) also
apply to the hypotheses in (8.6) with Pa; replaced by pr; = 1-®((c; — ua;)/04))
and 9, replaced by J,.

8.4.2 Determination of the Non-Inferiority Margin

Based on the results derived in the previous section, the non-inferiority mar-
gins corresponding to the tests based on the absolute difference and the relative
difference can be chosen in such a way that the two tests would have the same
power. In particular, hypotheses (8.1) and (8.2) would give the power level if the
power function given in (8.8) is the same as that given in (8.11). Consequently,
the non-inferiority margins 8, and 8, would satisfy the following equation:

(of +ob)+(ok+ok,) _  (ohr+0k) (8.20)
[(wr +1ar) = (e +ag) + 01 ] [(ar —wag) + 8]
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Similarly for hypotheses (8.3) and (8.4), the non-inferiority margins , and 9,
would satisfy the following relationship:

Par(L=pa) + pac(L=pa)/p _ par(1=pa)+(1-84)° pAR(l Pax)/P (8.21)
(Pax =Par =83)° [Par - (- 64)pAT]

For hypotheses (8.5) and (8.6), the non-inferiority margins §; and J, satisfy

Pre (1= pre) + Pre (L= pre)/P _ pro (1= pr,) +(1=86)° pRR(l Pr)/P (8.22)
(Pre = PRy = 85)” [Pre —(1- 66)pRT]

The results given in (8.20), (8.21), and (8.22) provide a way of translating the
non-inferiority margins between the endpoints based on the difference and
the relative difference. In the next section, we present a numerical study
to provide some insight into how the power level of these tests would be
affected by the choices of different study endpoints for various combinations
of parameter values.

8.5 A Numerical Study

In this section, a numerical study was conducted to provide some insight
about the effect on different clinical strategies.

8.5.1 Absolute Difference versus Relative Difference

In Table 8.4, the required sample sizes for the test of non-inferiority are
based on the absolute difference (X;) and relative difference (Y;). In par-
ticular, the nominal power level (1 — B) is chosen to be 0.80 and o is 0.05.
The corresponding sample sizes are calculated using the formulae in (8.9)
and (8.12). It is difficult to conduct any comparison because the corre-
sponding non-inferiority margins are based on different measurement
scales. However, to provide some idea to assess the impact of switching
from a clinical endpoint based on absolute difference to that based on rela-
tive difference, a numerical study on the power of the test was conducted.
In particular, Table 8.5 presents the power of the test for non-inferiority
based on the relative difference (Y) with the sample sizes determined by
the power based on the absolute difference (X). The power was calculated
using the result given in (8.11). The results demonstrate that the effect is,
in general, very significant. In many cases, the power is much smaller
than the nominal level 0.8.
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8.5.2 Responders’ Rate Based on Absolute Difference

Similar computation was conducted for the case when the hypotheses are
defined in terms of the responders’ rate based on the absolute difference,
i.e,, hypotheses defined in (8.3) and (8.4). Table 8.6 gives the required sample
sizes, with the derived results given in (8.15) and (8.19), for the correspond-
ing hypotheses with non-inferiority margins given both in terms of absolute
difference and relative difference of the responders’ rates. Similarly, Table 8.7
presents the power of the test for non-inferiority based on the relative differ-
ence of the responders’ rate with the sample sizes determined by the power
based on the absolute difference of the responders’ rate. The power was cal-
culated using the result given in (8.14). Again, the results demonstrate that
the effect is, in general, very significant. In many cases, the power is much
smaller than the nominal level 0.8.

8.5.3 Responders’ Rate Based on Relative Difference

Similar to the issues considered in the above paragraph with the excep-
tion that the responders’ rate is defined based on the relative differ-
ence, the required sample sizes for the corresponding hypotheses with
non-inferiority margins given both in terms of absolute difference and
relative difference of the responders’ rates are defined based on the rela-
tive difference, i.e., the hypotheses defined in (8.5) and (8.6). The results
are shown in Table 8.8. Following similar steps, Table 8.9 presents the
power of the test for non-inferiority based on the relative difference of the
responders’ rate with the sample sizes determined by the power based on
the absolute difference of the responders’ rate. A similar pattern emerges
and the results demonstrate that the power is usually much smaller than
the nominal level 0.8.

8.6 Concluding Remarks

In clinical trials, it is not uncommon that a study is powered based on
expected absolute change from the baseline of a primary study endpoint but
the collected data are analyzed based on relative change from the baseline
(e.g., percent change from baseline) of the primary study endpoint, or the col-
lected data are analyzed based on the percentage of patients who show some
improvement (i.e., responder analysis). The definition of a responder could
be based on either absolute change from baseline or relative change from
baseline of the primary study endpoint. It is very controversial in terms of
the interpretation of the analysis results, especially when a significant result
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is observed based on a study endpoint (e.g., absolute change from baseline,
relative change from baseline, or responder analysis) but not on another
study endpoint (e.g., absolute change from baseline, relative change from
baseline, or responder analysis). Based on the numerical results of this study;,
it is evident that the power of the test can be decreased drastically when the
study endpoint is changed. However, when switching from a study endpoint
based on absolute difference to the one based on relative difference, one pos-
sible way to maintain the power level is to modify the corresponding non-
inferiority margin, as suggested by the results given in Section 8.2.



9

Protocol Amendments

9.1 Introduction

In clinical trials, it is not uncommon to issue protocol amendments during
the conduct of a clinical trial due to various reasons such as slow enroll-
ment and/or safety concerns. For slow enrollment, the investigator may
modify the entry (inclusion/exclusion) criteria in order to expedite patient
enrollment in a timely fashion. On the other hand, during the conduct of a
clinical trial, it is possible that additional safety information may become
available. This additional safety information may come either from similar
clinical trials conducted simultaneously or from publications newly pub-
lished in leading medical journals. With this additional safety information,
protocol amendment is necessarily issued for patient protection. For good
clinical practice (GCP), before protocol amendments can be issued, descrip-
tion, rationales, and clinical/statistical justification regarding the changes
made should be provided to ensure the validity and integrity of the clinical
trial. As a result of the changes or modifications, the original target patient
population under study could have become a similar but different patient
population. If the changes or modifications are made frequently during the
conduct of the trial, the target patient population is in fact a moving target
patient population. This raises the controversial issue regarding the validity
of the statistical inference drawn based on data collected before and after
protocol amendment.

In practice, there is a risk that major (or significant) modifications made to
the trial and/or statistical procedures could lead to a totally different trial,
which cannot address the scientific/medical questions that the clinical trial
is intended to answer. In clinical trials, most investigators consider proto-
col amendment a God-sent gift which allows the investigator certain degree
of flexibility to make any changes/modifications to the ongoing clinical tri-
als. It, however, should be noted that protocol amendments have potential
risks for introducing additional bias/variation to the ongoing clinical trial.
Thus, it is important to identify, control, and hopefully eliminate/minimize
the sources of bias/variation. Thus, it is of interest to measure the impact
of changes or modifications that are made to the trial procedures and/or
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statistical methods after the protocol amendment. This raises another con-
troversial issue regarding (1) the impact of changes made and (2) the degree
of changes that are allowed in a protocol amendment.

In current practice, standard statistical methods are applied to the data
collected from the actual patient population regardless of the frequency of
changes (protocol amendments) that have been made during the conduct
of the trial assuming that the overall type I error is controlled at the pre-
specified level of significance. This, however, has raised a serious regulatory/
statistical concern as to whether the resultant statistical inference (e.g., inde-
pendent estimates, confidence intervals, and p values) drawn on the origi-
nally planned target patient population based on the clinical data from the
actual patient population (as a result of the modifications made via protocol
amendments) is accurate and reliable? After some modifications are made
to the trial and/or statistical methods, not only may the target patient popu-
lation have become a similar but different patient population, but also the
sample size may not achieve the desired power for detection of a clinically
important effect size of the test treatment at the end of the study. In practice,
we expect to lose power when the modifications have led to a shift in mean
response and/or inflation of variability of the response of the primary study
endpoint. As a result, the originally planned sample size may have to be
adjusted. Thus, it is suggested that the relative efficiency at each protocol
amendment be taken into consideration for derivation of an adjusted factor
for sample size in order to achieve the desired power.

In the next section, the concept of moving the target patient population
as the result of protocol amendments is introduced. Also included in the
section is the derivation of a sensitivity index for measuring the degree of
population shift. Section 9.3 discusses the method with covariate adjustment
proposed by Chow and Shao (2005). Inference based on mixture distribu-
tion is described in Section 9.4. In Section 9.5, sample size adjustment after
protocol amendment is discussed. A brief concluding remark is given in the
last section.

9.2 Moving Target Patient Population

In practice, for a given clinical trial, it is not uncommon to have three to
five protocol amendments after the initiation of the clinical trial. One of the
major impacts of many protocol amendments is that the target patient popu-
lation may have been shifted during the process, which may have resulted in
a totally different target patient population at the end of the trial. A typical
example is the case when significant adaptation (modification) is applied to
inclusion/exclusion criteria of the study. Denote by (u, o) the target patient
population. After a given protocol amendment, the resultant (actual) patient
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population may have been shifted to (i, 6,), where p, = u + € is the popula-
tion mean of the primary study endpoint and ¢, = Co(C > 0) is the population
standard deviation of the primary study endpoint. The shift in target patient
population can be characterized by

W
O1

w+e

E, =
! Co

=[a] = [AlE,

fad
o

where
A=(1+¢/w/C,
E and E, are the effect size before and after population shift, respectively.

Chow et al. (2002a) and Chow and Chang (2006) refer to A as a sensitivity
index measuring the change in effect size between the actual patient popula-
tion and the original target patient population.

Similarly, denote by (u;, 6;) the actual patient population after the ith mod-
ification of trial procedure, where W, = L + ¢;and 6, = C;6,i =0, 1,..., K. Note
that i = 0 reduces to the original target patient population (i, ¢). That is,
when i =0, g, = 0 and C, = 1. After K protocol amendments, the resultant
actual patient population becomes (i, Gy), where

K K
Uk =W+ 2& and ok = ]—’[C,o.

It should be noted that (g, C), i = 1,..., K are in fact random variables. As a
result, the resultant actual patient population is a moving target patient popu-
lation rather than a fixed target patient population. In addition, sample sizes
before and after protocol amendments and the number of protocol amend-
ments issued for a given clinical trial are also random variables. Thus, one
of the controversial issues that commonly encountered in clinical trials with
several protocol amendments during the conduct of the trials is How to assess
the treatment effect while the target patient population is a moving target?

Table 9.1 provides a summary of the impacts of various scenarios of loca-
tion shift (i.e, change in €) and scale shift (change in C, either inflation or
deflation of variability). As can be seen from Table 9.1, there is a masking
effect between location shift and scale shift. In other words, shift in location
could be offset by the inflation or deflation of variability. As a result, the
sensitivity index remains unchanged while the target patient population has
been shifted. One of the controversial issues in this regard is whether the
conclusion drawn (by ignoring the population shift) at the end of the trial is
accurate and reliable.

As indicated by Chow and Chang (2006), the impact of protocol amend-
ments on statistical inference due to shift in target patient population
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TABLE 9.1

Changes in Sensitivity Index

Inflation of Deflation of
Variability Variability

elp(%)  C(%) A C(%) A

=20 120 0.667 80 1.000
-10 120 0.750 80 1.125
-5 120 0.792 80 1.188
0 120 0.833 80 1.250

5 120 0.875 80 1.313
10 120 0.917 80 1.375
20 120 1.000 80 1.500

(moving target patient population) can be studied through a model that
links the moving population means with some covariates (Chow and Shao,
2005). However, in many cases, such covariates may not exist or exist but are
not observed. In this case, it is suggested that inference on A be considered to
measure the degree of shift in location and scale of patient population based
on a mixture distribution by assuming that the location or scale parameter
is random (Chow et al., 2005). These methods will be described in the subse-
quent sections.

9.3 Analysis with Covariate Adjustment

As indicated earlier, statistical methods for analyzing clinical data should
be modified when there are protocol amendments during the trial, since any
protocol deviations and/or violations may introduce bias to the trial. As a
result, conclusion drawn based on the analysis of data ignoring there are
possible shift in target patient population could be biased and hence mis-
leading. To overcome this problem, Chow and Shao (2005) proposed to model
the population deviations due to protocol amendments using some relevant
covariates and developed a valid statistical inference which is described in
the following sections.

9.3.1 Continuous Study Endpoint

Suppose that there are a total of K possible protocol amendments. Let p, be
the mean of the study endpoint after the kth protocol amendment, k=1,...,K.
Suppose that, for each k, clinical data are observed from #, patients so that
the sample mean ¥, is an unbiased estimator of w,, k=0,1, ..., K. Now, let xbe a
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(possibly multivariate) covariate whose values are distinct from different
protocol amendments. To derive statistical inference for , (the population
mean for the original target patient population), Chow and Shao (2005)
assumed the following;:

Wi = 60 + B,.Xk, k= O/]-/ ce K/ (91)

where
By is an unknown parameter,
B is an unknown parameter vector whose dimension is the same as x,
" denotes the transpose of B,
x; is the value of x under the kth amendment (or the original protocol
when k = 0).

If values of x are different within a fixed population (say P,, patient popula-
tion after the kth protocol amendment), then x; is a characteristic of x such as
the average of all values of x within P,.

Under model (9.1), parameters 3, and B can be unbiasedly estimated by

(Bo) o
Lﬁ - (X'WX)' X'Wy, 9.2)

where
Y=o Yu-- 7"
X is a matrix whose kth row is (1,x;), k=0,1, ..., K,
W is a diagonal matrix whose diagonal elements are 1y, n,, ..., ng.

It is assumed that the dimension of x is less or equal to K so that (X'WX)™!
is well defined. To estimate u, we consider the following unbiased esti-
mator g = P +p'xo. Chow and Shao (2005) indicated that [], is distributed
as N(u, 6%c,) with ¢y = (1, x))(X’'WX) (1, x,). Let si be the sample variance
based on the data from population P, k = 0,1, ..., K. Then, (1 - 1)s{/c* has
the chi-square distribution with n, — 1 degrees of freedom and conse-
quently, (N — K)s?/0? has the chi-square distribution with N — K degrees
of freedom, where

2 N\O (1 - 1)s?

5% =
L4 (N-K)

and N = 2 e Confidence intervals for 1, and testing hypotheses related
to |, can be carried out using the f-statistic t = ({Lo— W) / N

Note that when P,’s have different standard deviations and/or data from P,
are not normally distributed, we may consider an approximation by assuming
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that all n,’s are large. Thus, by the central limit theorem, it can be shown that
(o is approximately normally distributed with mean (1, and variance

v = (1, x)(XWX) T XWEX(XWX) (1, x0), 9.3)

where X is the diagonal matrix whose kth diagonal element is the population
variance of P, k = 0,1,..., K. Large sample statistical inference can be made
by using the z-statistic z = ({lo — W) /T (which is approximately distributed as
the standard normal), where 7 is the same as T with the kth diagonal element
of 6 estimated by s;,k=0,1,..., K.

Note that the above statistical inference for L, is a conditional inference. In
their paper, Chow and Shao (2005) also derived unconditional inference for
U, under certain assumptions. In addition, Chow, Chang, and Pong (2009)
considered alternative approach with random coefficients under model (9.1)
and proposed a Bayesian approach for obtaining inference on .

9.3.2 Binary Response

As indicated, the statistical inference for 1, described above is for a continu-
ous endpoint. Following a similar idea, Yang et al. (2011) derived statistical
inference for |, assuming that the study endpoint is a binary response. Their
method is briefly summarized as follows:

Let Yj; be the binary response from the jth subject after the ith amend-
ment; Y; = 1 if subject j after amendment i exhibits the response of interest,
and 0 otherwise, fori=0,1,...,kand j = 1,...,n;. Note that the subscript 0 for i
indicates that the values are related to the original patient population. Let p,
denote the response rate of the patient population after the ith amendment.
Ignoring the possible population deviations results in a pooled estimator

k n
¥
i=0 j=1
k 7
n;
i=0

which may be biased for the original defined response rate p,. In many clinical
trials, the protocol amendments are made with respect to one or a few relevant
covariates. Modifying entry criteria, for example, may involve patient demo-
graphics such as age or body weight and patient characteristics such as disease
status or medical history. This section develops a statistical inference proce-
dure for the original response rate p, based on a covariate-adjusted model.

ﬁ:

9.3.2.1 Estimation of the Single Response Rate

Let X be the corresponding covariate for the jth subject after the ith
amendment (or the original protocol when i = 0). Throughout this section
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we assume that the response rates for different patient populations can be
related by the following model:

_ o epBotbiv) L g
1 ]_+exp([30+[jlyl)’ 77 4 7

where
By and B, are unknown parameters,
v, is the true mean of the random covariate under the ith amendment.

Under the above model, the maximum likelihood estimates for the param-
eters B, and B;,, however, cannot be obtained directly because the v,’s are
unknown. One approach to estimate 3, and B, is to replace v; by X, the sample
mean under the ith amendment (see Chow and Shao, 2005). Consequently,
we specify a logistic model for estimating 3 = (B,,3,)T as

p(y..=1|)’(.=y,)=m ©4)
T Teexp(Bo+ B '

Suppose that X, j = 1,2,...,n, i = 0,1,...,k, are independent random variables
with means v;. Thus, the sample means X, i =0,1, ..., k are independent random
variables with means v;. Let f5 (x;) denote the probability density function of X
In the development that follows, the f(x;) are assumed independent of [3, or [3;.

Since the conditional distribution of Y;; given X; is a Bernoulli distribution
with the parameter defined in (9.4) and fX (x;) is the probab1hty density func-
tion of X;, the likelihood function of observing y;(j = 1,2,...,n) and X; under
the ith amendment is given by

“rl(exp(Bo+BiE) )" ( 1 VL
gi - e — X: i)e
].]:[[L1+exp([30+[31x,-)J k1+exp(ﬁo+[:’>1x,-)) ]f (%)

k
Therefore, the joint likelihood function is ¢ = ~ {; and the log-likelihood
function is given by =0

k
IB) = h(B) + 2 In fy, (%), ©5)

where

1/ expBo+pix) ) ol 1 \
h®)= 22[ Yi 1+eXp(f3o+f)1 ,)J+(1_y1])lnkl+exp(ﬁo+[5@)J '
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Because fx(x) does not depend on 3, or f;, the maximum likelihood esti-
mate § = ([30, [31) which maximizes /,() also maximizes /(). Thus, the data can
be analyzed using a fixed-covariate model. By considering the covariate as a ran-
dom variable, a simple closed-form estimate of the asymptotic covariance matrix
of maximum likelihood estimate of the parameters can be obtained to calcu-
late the sample size required to test the hypotheses about the parameters (see
Demidenko, 2007). On the basis of the estimate 3, we propose to estimate p, by

o = exp(ﬁo + |31X0)
1+ eXP(Bo + ﬁlXO)

For inference on p,, we need to derive the asymptotic distribution of p,. In
this case, the limiting results regarding the maximum likelihood estimators
are obtained as the number of protocol amendments is finite and the num-
bers of observations from the distinct amendments become large. Assuming

that n,/N — r; as n; — o, where N = 2 n;, and k is a finite constant, it can
be shown that

JIN (B -B)—1>N(0, T, ©6)

where

exp(Bo +Pivi) . .U exp(Bo + P17i)
: (1+exp(Bo + B1v:))? < I (1+exp(Bo + B10))?

. v exp(Bo +Broy) N . i exp(Bo+pivr)
Lo (L+exp(Bo +p10))’ &y (L+exp(Bo +PBrvy)’°

Moreover, by the delta method and Slutsky’s theorem, it follows that
VN (po - po) is asymptotically normally distributed with mean 0 and variance

Vo | PGB0 | v gy,
(1+exp(Bo +P1v0))

Let Vbe the maximum likelihood estimator of V with B, B,, v;, and r; replaced
by By, B, X, and n,/N, respectively. It is known that X; ——v; and f——p by
the Weak Law of Large Number and the consistency of a maximum likelihood
estimator. Thus, we have V —— V. Then, it canbe shown that v'N (Po = 1o )/ v
is asymptotically distributed as a standard normal distribution by Slutsky’s
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theorem. Based on this result, an approximate 100(1 — )% confidence
interval of p, is given by (f)o —Za V/N, Do + Zaj2\ V/N ), where z,,, is the
100(1 — a/2)th percentile of a standard normal distribution.

9.3.2.2 Comparison for Two Treatments

In clinical trials, it is often of interest to compare two treatments, that is,
a test treatment versus an active control or placebo. Let Y;; and X,; be the
response and the corresponding relevant covariate for the jth subject after
the ith amendment under the tth treatment (t =1,2,i =0,1,...,k,j=1,2,...,1n,).
For each amendment, patients selected by the same criteria are randomly
allocated to either the test treatment D; = 1 or control treatment D, = 0
groups. In this particular case, the true mean values of the covariate for the
two treatment groups are the same under each amendment. Therefore, the
relationships between the binary response and the covariate for both treat-

ment groups can be described by a single model,

exp(B1 + B2Dy + Pavi + BaDrv;)

, t=12, i=0,1,... k.
1+ exp(B1 + B2D: + Bsvi + PaDrvi)

o=

Hence, the response rates for the test treatment and the control treatment are

exp(Br + P2 + (B3 + Pa)vi)
1+exp(Br + P2+ (B3 +Pa)vi)

exp(P1 +Psvi)
L+ exp(i +Bavi)”

and py =

1 =

respectively.
Similar to the single treatment study described previously, the joint likeli-
hood function of B = (B, ...,B,)" is given by

LI

where fx (X)) is the probability density function of X, E E - X and
Z) _

[ expl D) \ i ( 1 \1‘%‘/‘
1 + exp([:’;Tz(“))J L 1+ exp([STz<”))J

fX.,(x‘i)]/

=(1,D,, x;,Dix;)". The log-likelihood function is then given by

[ exp(p’z") \
1p) = 222 []/n] W)

( 1 \ .
+(1- yﬁj)lnka + 1nfx.,.(x-i)} . ©.7)
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~

Given the resulting maximum likelihood estimate [§ = ([31, .., B4)", we obtain
the estimate of p;; and p,, as follows:

Pro = exp([%lA+ ézj’(ﬁsﬁ Bﬁ)}?g) Doy = exp([?‘)1A+ 63?3) )
T+exp(Br + B2+ (Bs +B4)Xo) ' T+exp(Br +BsX0)

k
Let n,. = 2 » 1n;; be the sample size for the tth treatment group, and let N =

n, + n, be the total sample size. When n,;/n, — r,;and n; /N — c as all n,; tend
to infinity, it is shown by a similar derivation for a single response rate as
shown above that

\/ﬁ((ﬁlo - }320) - (P -pn) a4

Jv,

A 2 ko oa -1
where V,; = ¢’ ( nI/N ) ®,
§ : t-1 § : i-0

[ Po(=pPo)=pa(l-pw) )

N(,1),

i pro(1- o)

Xo(Pro(l = pro) = pro(d - po)) |
Xo(Pro(1 - pro)

and

1 D X;‘ Dt}?j

i D D} DX, DX;
I(tz)=’\i1_'\i 715 i i i t,J )
pl=pdl 5 px, X DX

DX, DiX; DX: DiX;

As indicated by Chow, Shao, and Wang (2008), the problem of testing superi-
ority and non-inferiority can be unified by the following hypotheses:

HO P10 — P2 = 0 versus Ha *P1o — P20 > 6, (98)
where § is the (clinical) superiority or non-inferiority margin. When 6 > 0, the

rejection of the null hypothesis indicates the superiority of the test treatment
over the control. When & < 0, the rejection of the null hypothesis indicates
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the non-inferiority of the test treatment against the control. Under the null
hypothesis, the test statistic

R D)

Jv,

approximately follows a standard normal distribution when all n,; are suffi-
ciently large. Thus, we reject the null hypothesis at the o level of significance
if T > z,,. For testing equivalence, the following hypotheses are considered:

T

99

H, Z‘Pm - pzo‘ =90 versus H, :‘pm —on‘ <9, (9.10)

where § is the equivalence limit. Thus, the null hypothesis is rejected at a
significance level o and the test treatment is concluded to be equivalent to
the control if

IN (o~ -8) _ _

Jv,

\/ﬁ(ﬁlo jﬁzo +9) > 2.

Vv,

z, and

9.4 Assessment of Sensitivity Index

The primary assumption of the above approaches is that there is a relation-
ship between ;s and a covariate vector x. As indicated earlier, such covari-
ates may not exist or may not be observed in practice. In this case, Chow
and Shao (2005) suggested assessing the sensitivity index and consequently
deriving an unconditional inference for the original target patient popula-
tion assuming that the shift parameter (i.e, €) and/or the scale parameter
(i-e, C) is random. Thus, the shift and scale parameters (i.e,, € and C) of the
target population after a protocol amendment is made can be estimated by

~

a ~ A CA)‘actual
€ = Wactual — U and C= s

A

o

respectively, where (1, 6) and (Mactual, Oactual) are some estimates of (u, o)
and (Uaceuals Oactuar), T€SPectively. As a result, the sensitivity index can be esti-
mated by

A 1+A§/gl .
C
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9.4.1 The Case Where € Is Random and C Is Fixed

Estimates for p and ¢ can be obtained based on data collected prior to any
protocol amendments issued. Assume that the response variable x is distrib-
uted as N(, 6?). Let x,i=1,..,n;j=0,..,mbe the response of the ith patient
after the jth protocrsl)l amendment. As a result, the total number of patients

is given by n = E n;. Note that nyis the number of patients in the study
j=0

prior to any protocol amendments. Based onx, i = 1,...,11,, the maximum
likelihood estimates of W and 6?2 can be obtained as follows:

1 1o 1 1no
f=— ) x5 and & =2(x0i—ﬁ)2-
Ny =

1=

To obtain estimates for [, and o,

actuals

Chow and Shao (2005) considered
the case where ., is random and G, is fixed. For convenience’s sake,
we set W,y = W and G, = © for the derivation of € and C. Assume that x is
conditional on , i.e., x| tetiactual follows a normal distribution N(u,c?). That is,

2
X |M=Mactual ~ N(M/O' )/

where
U is distributed as N (Mu,()'ﬁ),
o, 1, and o, are some unknown constants.

Thus, the unconditional distribution of x is a mixed normal distribution
given as

B (x-n)? (u-my )2
Z(Y!ZL

1 1

* 202
N(x;u, 0%)N(u; ., 02 )du = fe du,
f ' V2no® |[2nop J

where x € (-0, ). It can be verified that the above mixed normal distribution
is a normal distribution with mean p, and variance o + ;. In other words,
x is distributed as N (ptu,o2 + oﬁ). See Theorem 9.1.

Theorem 9.1

Suppose that X|, ~ N(i,6? and u ~ N(u,,o}), then we have

X ~ N(u,, 0" +o?). 9.11)
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Proof
Consider the following characteristic function of a normal distribution
N u,0%:

. 1
iwp —Eazwz

1 * iwt—z%(t—u)z
¢0(W)=?f€ o dt=e
2o

-0

For distributions X |, ~ N(u,0%) and u ~ N(u,,0;), the characteristic func-
tion after exchanging the order of the two integrations is given by

iwn-1/20%w?
o(w) = [N W, o))

_ feiwu—(u—uu /20,2‘)—1/202wzdul

-

Note that

. 1
iwn-=c?w?
2

is the characteristic function of the normal distribution. It follows that
q)(ZU) — eiw‘u—l/ZUZw2
which is the characteristic function of N(w, ,0” + o7). This completes the proof.

Based on the above theorem, the maximum likelihood estimates (MLEs) of
c% |, and qﬁ can be obtained as follows:

5 1 . » 1 . .o
= Z i = Z P— , 912
Ho m+1 < M O m+1 < (M’ ) 612)

and

1 m  Nj

~2 ~ \2
0 =— Xji—W;),
”ZZ(’ i)
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where

Based on these maximum likelihood estimates, estimates of the shift param-
eter (ie, €) and the scale parameter (i.e, C) can be obtained as follows:
§=0i-0 and C = &/5, respectively. Consequently, the sensitivity index can
be estimated by simply replacing €, u, and C with their corresponding esti-
mates €, i, and C.

9.4.2 The Case Where ¢ Is Fixed and C Is Random

Similarly, let [, = M and 6, = © and assume that x|,_;  follows a nor-
mal distribution N(u, 6?), that is,

2
x |0=0actual ~ N(M/ o )

where 62 is distributed as an inverse gamma distribution denoted by IG(c,, 1),
where 1, 0, and A are unknown parameters.

Theorem 9.2

Suppose that x|,_, ~N(,6? and 6°~IG(a, A), then

o —((7.+1/2)
B _ T(a+1/2) 1 (x-w)
x~f(x)= Fa) 2o [1 + . } . (9.13)

That is, x is a noncentral t-distribution, where | € R is the location parameter,
A/a.is the scale parameter, and 20 is the degree of freedom.

Proof

f(x,0%) = f(x|0*)f(0?)

_ 1 i“”ex C(x-w?+2h
N r(a)(&) P 20°
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f(x) = f f(x,0%)do?

1 Ae a1\ (x —w)? + 21
= Tﬁ 1"(11)_[(02) exp{—202 }doz

1A e (x - w)? + 2
= —— [t - Tl g
rrwl exp |-
—(a+1/2)
MNa+1/2) 1 (x-w)

) sz[ T ]

Thus, X follows a noncentral t-distribution. Hence, we have E(x) = u and
var(x) = A/(co. — 1). This completes the proof.

Based on the above theorem, the maximum likelihood estimation of the
parameters [, 0, and A can be obtained as follows. Suppose that the observa-
tions satisfy the following conditions:

1 (xj|w,07)~N(w,07), i=0,..,m,j=1,..,n,and given o7, X1, ..., Xn,
are independent and identically distributed (i.i.d.)
2. {le-, j=1,..,n},i=0,.., mare independent

3. o2 ~ IG(a, M)

The likelihood function is given by

3

F(X01, o Xy, ) = -_f f(x;j | o?)f(07)do?
L

-0

TT(TT 1 (g -] A 3
- - AN P
1 .[ H N eXp{ 207 [T(0) " { 0,2} °

=0

ni —(a+1/2)

='ﬂ']—1[ Ma+1/2) 1 [1+<xff-u>2} . 9.14)
]

T(a) ~J2m 2\

=0 =
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Thus, the log-likelihood function is
L=1Inf(xo1, ... Xun,,)

—nlnI‘(a+ ) nlnI‘(a)——ln2nk oc+ 22

(xq

9.15)

Based on (9.15), we can obtain the derivatives of the unknown parameters
1, o, and A, as follows:

ou ]2]2 T+ (x5 - u)2/27»

JL ((x + 1/2) (x,]
o 22 T+ (x; - M)/zx

where ¥(0) = I'"(0)/T(c) is a digamma function.
Define

(9.16)

1+ (w2 ]

Then the maximum likelihood estimation of the parameters L, o, and A can
be decided by

) 9.17)

SNPURARE B\ .
A= ((X +§) nZ 2 w,']‘(x,']‘ - M)z (918)
=0 J=
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The digamma function may be approximated as in Johnson and Kotz (1972)
as y(a) = In(a — 0.5), and employing a Taylor expansion we have

8=05+2 Inw; ™. (9.19)
) ]
=0 J=

The maximum likelihood estimates of L, 0, and A can be obtained by (9.17)
through (9.19). In fact, it is difficult to solve the equation from (9.17) through
(9.19) directly, but there are some published results giving the maximum
likelihood estimation of the location parameter and freedom degree in a cen-
tral t-distribution, and according to (9.17) through (9.19), the estimation of the
scale parameter in a noncentral ¢-distribution could be obtained.

Lu et al. (2010) used the moment estimation to obtain the estimation of the
parameters [, o, and A. The observations

(xij|u'/0'i2)~N(M/0i2)r i=0/-~-/m/ j=1/~--/ni/

and X;i independent, according to Theorem 9.1, x is a noncentral ¢-distribution,
mean = E(x) = @ and variance = var(x) = A/(o.—1), if a>1; even the central
moment

() = ug_2(x)

7

2k-D] ok
(20— k) 2

since the fourth moment does not exist for o0 < 2, moreover the variance of the
estimator of a is infinite if o0 < 4. Under the background of medical research,
we assume that if o > 4 is held, and the obvious choices are sample mean,
variance, and the fourth moment employed, the moment estimation of the
parameters could be obtained:

_13(s2 -251]
[3(s2)-5i1"

>

-5:5,

X=ﬁ'
[3(Sn) _Sn]



170 Controversial Statistical Issues in Clinical Trials

We now examine the large-sample behavior of maximum likelihood esti-
mates. Further differentiability assumption is required, and under the con-
ditions of normal distribution and IG-distribution, that requirement can be
satisfied. Cox and Snell (1968) have derived a general formula for the second-
order bias of the maximum likelihood estimator of the vector

AN {;k +km,}, 9.20)

where the set parameter vector 6 = (8, B,, B) = (4, o, M)T and 7,5,f,u index the
parameter space (U, o, A), and we use the standard notation for the moments
of the derivatives of the log-likelihood function: k,, = E[U,J], k., = E[U,,],
k.., = E[U, U], where U, = 0l/dB, U, = 0*l/dB,dB,, U, = 0°//dB,B,B, Also, k"
denotes the general (7, s) element of the inverse of the information matrix, the
information matrix itself having its general (7, s) element given by k,, = —E[U,].
Let the fisher information matrix be

(20 +1) 0 0
A2 +3)
10)=n| 0 W (o) - W (oc + %) m 2
0 a(h-1)-1 a
Mo +1) (200 +3)

so that ky,, = k. = kopo = —@ou + 3)/Qot + 1)(2oL + 32, ko = V(00 + 1/2) — P (1),

Ko, = Ky = Koy = 4000 + 12/A2Q20 + 3)(20L + 5), Ko = Koy = Ky = =200/
(2oe + 3) when 1, s, t take other values in the parameter space except
those enumerated above such as k,, = 0 and k,,, = 0, where 7, s, t index
the parameter space. The bias of the maximum likelihood estimate of the
parameter o is

A{B,C, - D, + EiF}
nM?

b(6) = 9.22)

where M ={[y'(a) = ¢'(a +1/2)][a/A*(20 + 3) = 1/A*(2a + 1)*]}(a/N) (2o + 1)/
(2o +3) is the determinant of the inverse information matrix I7'(0),
Ay = 0?2020+ 3)°, B; = oo + 1)(1200 + 21)/(20u + 5), C, = (y'(0) — y'(cr + 1/2)),
D, =2(40.+ 3)/a+ 1), E; = 0220 + 12/(at + 3), F; =y (o + 1/2) — y" (o).
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At the same time we have

(Azclz +B,F - E,Cy)

b)) =
*) nM?

, (9.23)

where
Ay = 2020+ 1)* (500 + 8)/A° (20 + 3)* (200 + 5),

B, =020+ 1)/A°(20.+ 3)°,
C, = o(140 + 9)/A>(20 + 3)°.

The maximum likelihood estimator of o has an n! order bias, which is
the same for the estimator A, and we also obtain the bias of parameter p as
b() = 0, which is obviously the unbiased estimate of the parameter .

In the case where U, is fixed and G,,,.; is random we will focus on the

statistical inference on ¢, C, and A to illustrate the impact on the statistical
inference of the actual patient population after m protocol amendment.

9.5 Sample Size Adjustment

In clinical trials, for a given target patient population, sample size calcula-
tion is usually performed based on a test statistic (which is derived under
the null hypothesis) evaluated under an alternative hypothesis. After proto-
col amendments, the target patient population may have been shifted to an
actual patient population. In this case, the original sample size may have to be
adjusted in order to achieve the desired power for the assessment of the treat-
ment effect for the original patient population. For the clinical evaluation of
efficacy and safety, statistical inference such as hypotheses testing is usually
considered. In practice, the commonly considered testing hypotheses include
(1) testing for equality, (2) testing for non-inferiority, (3) testing for superiority,
and (4) testing for equivalence. The hypotheses are summarized as follows:

Equality: Ho:w=u, versus H,:w-u,=0=0, 9.24)
Non-inferiority: Hp:w—u, <9 versus H,:p—uy >9,
Superiority: Hp:w —up, =8 versus H,:u;—-u; >0,
Equivalence: H, :\ul - Mz‘ >0 versus H, :\ul - Mz‘ <9,

where § is a clinically meaningful difference (for testing equality), a non-
inferiority margin (for testing non-inferiority), a superiority margin (for

testing superiority), and an equivalence limit (for testing equivalence),
respectively.
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Let 114,46ic and 71, be the sample sizes based on the original patient popu-
lation and the actual patient population, respectively, as the result of proto-
col amendments. Also, let 11, = Rt . Where R is the adjustment factor.
Following the procedures described by Chow, Shao, and Wang (2008), sample
sizes for both 1, and #,.,.; can be obtained. For example, Table 9.2 provides
formulas for sample size adjustment based on covariate-adjusted model for
binary response endpoint, while Tables 9.3 and 9.4 give sample size adjust-
ments based on random location shift and random scale shift, respectively.

9.6 Concluding Remarks

Asindicated, the investigator has the flexibility to modify or change the study
protocol during the conduct of the clinical trial by issuing protocol amend-
ments. This flexibility gives the investigator (1) the opportunity to correct
(minor changes) the assumptions early and (2) the chance to redesign (major
changes) the study. It is well recognized that the abuse of this flexibility may
result in a moving target patient population, which makes it almost impos-
sible for the intended trial to address the medical or scientific questions that
the study intends to answer. Thus far, regulatory agencies do not have regu-
lations regarding the issue of protocol amendments after the initiation of a
clinical trial. It is suggested that regulatory guideline/guidance regarding
(1) levels of changes and (2) number of protocol amendments that are allowed
be developed in order to maintain the validity and integrity of the intended
study. In addition, it is also suggested that a sensitivity analysis should be
conducted for evaluating the possible impact due to protocol amendments.

As pointed out by Chow and Chang (2006), the impact on statistical infer-
ence due to protocol amendments could be substantial, especially when
there are major modifications which have resulted in a significant shift in
mean response and/or inflation of the variability of response of the study
parameters. It is suggested that a sensitivity analysis with respect to changes
in study parameters be performed to provide a better understanding of the
impact of changes (protocol amendments) in study parameters on statisti-
cal inference. Thus, regulatory guidance on what range of changes in study
parameters is considered acceptable is necessarily developed. As indicated
earlier, adaptive design methods are very attractive to the clinical research-
ers and/or sponsors due to their flexibility, especially in clinical trials of
early clinical development. It, however, should be noted that there is a high
risk that a clinical trial using adaptive design methods may fail in terms of
its scientific validity and/or its limitation of providing useful information
with a desired power, especially when the sizes of the trials are relatively
small and there are a number of protocol amendments.
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As indicated in the previous sections, analysis with covariate adjustment
and the assessment of sensitivity index are the two commonly considered
approaches when there is population shift due to protocol amendment. For
the method of analysis with covariate adjustment, an alternative approach
considering random coefficients in model (9.1) and/or a Bayesian approach
may be useful for obtaining an accurate and reliable estimate of the treat-
ment effect of the compound under study. For the assessment of sensitivity
index, in addition to the cases where (1) € is random and C is fixed, and (2) € is
fixed and C is random, there are other cases such as (1) both € and C are
random, (2) sample sizes before and after protocol amendments are random
variables, and (3) the number of protocol amendments is also a random vari-
able remain unchanged.

In addition, statistically, it is a challenge to clinical researchers when there
are missing values. These could be due to the causes that are related to or
unrelated to the changes or modifications made in the protocol amendments.
In this case, missing values must be handled carefully to provide an unbi-
ased assessment and interpretation of the treatment effect. When there is a
population shift either in location parameter or scale parameter, the standard
methods for the assessment of treatment effect are necessarily modified. For
example, the standard methods such as the O’Brien-Fleming method in typi-
cal group sequential design for controlling the overall type I error rate are not
appropriate when there is a population shift due to protocol amendments.
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Seamless Adaptive Trial Designs

10.1 Introduction

In recent years, the use of adaptive design methods in clinical research
and development based on accrued data and/or external information has
become very popular due to its flexibility and efficiency (Liu and Chi, 2001;
Chow and Chang, 2005, 2006; Krams et al. 2006, EMEA, 2007; FDA, 2010b).
An adaptive design is defined as a clinical trial design that allows adapta-
tions (modifications or changes) to trial and/or statistical procedure of the
trial after its initiation without undermining the validity and integrity of the
trial. In their recent publication, with the emphasis of the feature of design
adaptations only (rather than ad hoc adaptations), the Pharmaceutical
Research Manufacturer Association (PhRMA) Working Group on Adaptive
Design defines an adaptive design as a study design that uses accumulating
data to decide on how to modify aspects of the study as it continues, with-
out undermining the validity and integrity of the trial. On the other hand,
the FDA defines an adaptive design as a study that includes a prospectively
planned opportunity for modification of one or more specified aspects of
the study design and hypotheses based on analysis of data (usually interim
data) from subjects in the study (FDA, 2010b). Based on the adaptations
applied, adaptive designs can be classified into three categories: prospec-
tive, concurrent, and retrospective adaptive designs. Chow and Chang
(2006) indicate that commonly considered adaptive designs in these catego-
ries include, but are not limited to, (1) an adaptive randomization design,
(2) a group sequential design (Jennison and Turnball, 2000; Kelly, 2005a,
2005b), (3) a flexible sample size reestimation design, (4) a drop-the-loser
(or pick-the-winner) design (Sampson and Sill, 2005), (5) an adaptive dose-
finding design (Chang and Chow, 2005), (6) a biomarker-adaptive design
(Chang, 2005a, 2005b), (7) an adaptive treatment-switching design (Branson
and Whitehead, 2002; Shao et al., 2005), (8) a hypothesis-adaptive design,
9) a seamless adaptive trial design (Maca et al., 2006), and (10) a multiple
adaptive design, which is any combinations of the above-mentioned adap-
tive designs. Among these, group sequential design, adaptive dose-finding
design, and (two-stage) seamless adaptive design are probably the most

177
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commonly employed adaptive designs in clinical trials. In this chapter,
however, we will only focus on the two-stage seamless adaptive trial design.

A seamless trial design is referred to as a program that addresses study
objectives within a single trial that are normally achieved through separate
trials in clinical development (Bauer and Kieser, 1999; Maca et al., 2006). An
adaptive seamless design is a seamless trial design that would use data from
patients enrolled before and after the adaptation in the final analysis. Thus, a
two-stage seamless adaptive design consists of two phases (stages), namely a
learning (or exploratory) phase (Stage 1) and a confirmatory phase (Stage 2).
The learning phase provides the opportunity for adaptations such as stop-
ping the trial early due to safety and/or futility/efficacy based on accrued
data at the end of the learning phase. A two-stage seamless adaptive trial
design reduces lead time between the learning (i.e., the first study for the tra-
ditional approach) and confirmatory (i.e., the second study for the traditional
approach) phases. Most importantly, data collected at the learning phase are
combined with those obtained at the confirmatory phase for the final analysis.

In the next section, controversial issues regarding the flexibility, efficiency,
validity, and integrity of clinical trials utilizing adaptive trial designs are
discussed. Also included in the section are regulatory perspectives of the
use of adaptive design methods in clinical trials. Types of two-stage seam-
less adaptive trial designs depending upon whether the study objectives
and/or the study endpoints at different stages are the same are described.
Section 104 summarizes statistical methods for the analysis of the type of
two-stage seamless designs with different study endpoints. Statistical meth-
ods for the analysis of the type of two-stage seamless designs with different
study objectives/endpoints are developed in Section 10.5. Some concluding
remarks are provided in the last section of this chapter.

10.2 Controversial Issues

The use of adaptive design methods for modifying the trial and/or statis-
tical procedures of ongoing clinical trials based on accrued data has been
practiced for years in clinical research. Adaptive design methods in clinical
research are very attractive to clinical scientists due to the following rea-
sons. First, it reflects medical practice in the real world. Second, it is ethical
with respect to both efficacy and safety (toxicity) of the test treatment under
investigation. Third, it is not only flexible, but also efficient in the early phase
of clinical development. However, some concerns regarding the validity
and integrity of the clinical trials utilizing adaptive trial designs have been
raised and discussed tremendously within the pharmaceutical industry and
the regulatory agencies. In what follows, controversial issues regarding the
flexibility, efficiency, validity, and integrity of a clinical trial utilizing adap-
tive trial design are briefly described.
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10.2.1 Flexibility and Efficiency

A two-stage adaptive seamless design is considered a more efficient and flex-
ible study design as compared to the traditional approach of having separate
studies in terms of controlling type I error rate and power. For controlling
the overall type I error rate, as an example, consider a two-stage adaptive
seamless phase II/III design. Let oy; and oy be the type I error rate for phase
II and phase III studies, respectively. Then, the overall o for the traditional
approach of having two separate studies is given by o = o0 In the two-
stage adaptive seamless phase II/III design, on the other hand, the actual o
is given by a = ayy;. Thus, the o for a two-stage adaptive seamless phase I1/111
design is actually 1/oy; times larger than the traditional approach for hav-
ing two separate phase II and phase III studies. Similarly, for the evaluation
of power, let Power;; and Powery; be the power for phase II and phase III stud-
ies, respectively. Then, the overall o for the traditional approach of having
two separate studies is given by Power = Power;; x Powery,. In the two-stage
adaptive seamless phase II/III design, the actual power is given by Power =
Powery,. Thus, the power for a two-stage adaptive seamless phase 1I/1II
design is actually 1/Power; times larger than the traditional approach for
having two separate phase II and phase III studies.

In addition, a two-stage seamless adaptive trial design that combines
two separate (independent) studies can help in reducing lead time between
studies. In practice, the lead time between studies is estimated to be about
6 months to 1 year. As a common clinical practice, the phase III study will not
be initiated until the final report of the phase II trial is reviewed and issued.
After the completion of a phase II study, on average, it will usually take about
4 months to lock database (including data entry/verification and data query/
validation), programming and data analysis, and final integrated statistical/
clinical report. During the preparation of the phase III trial, the development
of a study protocol and Institutional Review Board (IRB) review/approval
will also take some time. As a result, the application of a two-stage phase II/II1
seamless adaptive trial design will not only reduce the lead time between
studies, but also allow the sponsor (investigator) to make a go/no-go decision
at the end of the first stage (phase II study) early. In some case, a two-stage
phase II/1Il seamless adaptive trial design may require a smaller sample size
as compared to the traditional approach of two separate studies for phase II
and phase III since data collected from both stages would be combined for a
final assessment of the test treatment effect under investigation.

10.2.2 Validity and Integrity

In practice, before an adaptive design can be implemented, some practical
issues such as feasibility, validity, and robustness are necessarily addressed.
For feasibility, several questions arise. For example, does the adaptive design
require extra efforts in implementation? Do the level of difficulty and the
associated cost justify the gain from implementing the adaptive design?
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Does the implementation of the adaptive design delay patient recruitment
and prolong study duration? How often are the unblinded analyses prac-
tical and to whom should the data should be unblinded? How should the
impact of the data monitoring committee’s (DMC) decision regarding the
trial (e.g., recommending an early stopping or other adaptations due to safety
concerns) be considered at the design stage?

For the issue of validity, it is reasonable to ask the following questions.
Does the unblinding cause potential bias in treatment assessment? Does
the implementation of an adaptive design destroy the randomness? For
example, response-adaptive randomization is used to assign more patients
to the superior treatment groups by changing the randomization schedule.
However, for ethical reasons, the patients should be informed that the later
they come into the study, the greater is their chance of being assigned to the
superior groups. For this reason, patients may prefer to wait for a late entry
into the study. This could cause bias because sicker patients might enroll ear-
lier just because they cannot wait. When this happens, the treatment effect is
confounded by the patient’s disease background. The bias could occur for a
drop-losers design and other adaptive designs.

Regarding the issue of robustness, without virtually any exception, a trial can-
not be conducted exactly as specified in the protocol. Would protocol deviations
invalidate the adaptive method? For example, if an actual interim analysis were
performed at a different (information) time than the scheduled one, how does it
impact the type I error of the adaptive design? How does an unexpected DMC
action affect the power and validity of the design? Would a protocol amendment
such as endpoint change or inclusion/exclusion change invalidate the design
and analysis? Would delayed responses diminish the advantage of implement-
ing an adaptive design such as continual reassessment method (CRM) in an
adaptive dose-escalation design and trials with a survival endpoint?

Adaptive designs usually involve multiple comparisons and often invoke
a dependent sampling procedure or an adaptive combination of subsamples
from different stages. Therefore, studies with adaptive designs are much
more complicated than those with classic designs. The theoretical challenges
arise from a typical adaptive design include (1) o adjustment to control overall
type I error rate for multiple comparisons, (2) the p-value adjustment due to
the dependent sampling procedure, (3) finding a robust unbiased point esti-
mate, and (4) finding a reliable confidence interval. In practice, it is not always
easy to derive an analytical form for correct adjusted alpha and p-value due to
the flexibility of adaptations. However, they can be addressed through com-
puter simulations regardless of the complexity of the adaptive designs. To do
this, it is necessary to define an appropriate test statistic that can be applied
before and after adaptations. A simulation can then be conducted under the
null hypothesis for obtaining the sampling distribution of the test statistic.
Based on the simulated distribution, the rejection region, adjusted alpha, and
adjusted p-values can be obtained. The simulations can be done during pro-
tocol design to provide justification for choosing an appropriate design.
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10.2.3 Regulatory Concerns

Asitis recognized by the regulatory agencies, there are some possible benefits
when utilizing adaptive design methods in clinical trials. For example, the use
of adaptive design methods in clinical trials allows the investigator to correct
wrong assumptions and select the most promising option early. In addition,
adaptive designs make use of cumulative information of the ongoing trial and
emerging external information to the trial, which allow the investigator to
react earlier to surprises regardless of positive or negative results. As a result,
the use of adaptive design methods may speed up the development process.

Although the investigator may have a second chance to redesign the
trial after seeing the data from the trial itself at interim (or externally), it is
flexible but more problematic operationally due to potential bias that may
have been introduced to the conduct of the trial. For example, it is a major
concern that unblinding during an interim analysis may have introduced
potential bias by a change in clinical practice resulting from feedback from
the analysis. As a result, we may have compromised scientific integrity of
trial conduct due to operational bias. As indicated by the United States Food
and Drug Administration (FDA), operational biases commonly occur when
adaptations in trial and/or statistical procedures are applied. Trial proce-
dures are referred to as eligibility criteria, dose/dose regimen and dura-
tion, assessment of study endpoints, and/or diagnostic/laboratory testing
procedures that are employed during the conduct of the trial. Statistical
procedures include (1) selection and/or modification of study design; (2)
formulation and/or modification of statistical hypotheses (according to
study objectives); (3) selection and/or modification of study endpoints; (4)
sample size calculation, reestimation, and/or adjustment; (5) generation of
randomization schedules; and (6) development of statistical analysis plan
(SAP). As a result, commonly seen operational biases due to adaptations
include (1) sample size reestimation at interim analysis; (2) sample size
allocation to treatments (e.g., change from 1:1 ratio to an unequal ratio); (3)
delete, add, or change treatment arms after the review of interim analysis
results; (4) shift in patient population after the application of adaptations
(e.g., change in inclusion/exclusion criteria and/or subgroups); (5) change
in statistical test strategy (e.g., change log-rank to other tests); (6) change
study endpoints (e.g., change survival to time-to-disease progression and/or
response rate in cancer trials); and (7) change study objectives (e.g., switch
a superiority hypothesis to a non-inferiority hypothesis).

In summary, regulatory agencies do not object to the use of the adaptive
design methods in clinical trials due to its flexibility, efficiency, and poten-
tial benefits as described above. However, the validity and integrity of the
clinical trials after the implementation of various adaptations have raised
critical concerns about the drug evaluation and approval process. These con-
cerns include, but are not limited to, the following: (1) that we may not be
able to control (preserve) the overall type I error rate at a prespecified level
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of significance, (2) that the obtained p-values may not be correct, (3) that the
obtained confidence interval may not be reliable, and (4) that major (signifi-
cant) adaptations may have resulted in a totally different trial that is unable to
address the scientific/medical questions the original study intended to answer.

10.3 Types of Two-Stage Seamless Adaptive Designs

In practice, two-stage seamless adaptive trial designs can be classified into
the following four categories depending upon study objectives and study
endpoints at different stages (Chow and Tu, 2009). See also Table 10.1.

In other words, we have (1) Category I (55)—same study objectives and
same study endpoints, (2) Category II (SD)—same study objectives but dif-
ferent study endpoints, (3) Category III (DS)—different study objectives but
same study endpoints, and (4) Category IV (DD)—different study objectives
and different study endpoints. Note that different study objectives are usu-
ally referred to dose finding (selection) at the first stage and efficacy confir-
mation at the second stage, while different study endpoints are directed to
biomarker versus clinical endpoint or the same clinical endpoint with differ-
ent treatment durations. Category I trial design is often viewed as a similar
design to a group sequential design with one interim analysis despite the fact
that there are differences between a group sequential design and a two-stage
seamless design. In this chapter, our emphasis will be placed on Category
IT designs. The results obtained can be similarly applied to Category III
and Category IV designs with some modification for controlling the overall
type I error rate at a prespecified level. In practice, typical examples for a
two-stage adaptive seamless design include a two-stage adaptive seamless
phase I/1I design and a two-stage adaptive seamless phase II/III design. For
the two-stage adaptive seamless phase I/1I design, the objective in the first
stage is biomarker development and the study objective in the second stage
is to establish early efficacy. For a two-stage adaptive seamless phase II/1II
design, the study objective is for treatment selection (or dose finding) while
the study objective at the second stage is efficacy confirmation.

TABLE 10.1

Types of Two-Stage Seamless Adaptive
Designs

Study Endpoint

Study Objectives  Same (S)  Different (D)

Same (S) 1=S5S II=SD
Different (D) I = DS IV =DD
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Statistical consideration for the first kind of two-stage seamless designs
is similar to that of a group sequential design with one interim analysis.
Sample size calculation and statistical analysis for this kind of study designs
can be found in Chow and Chang (2006). For other kinds of two-stage seam-
less trial designs, standard statistical methods for group sequential design
are not appropriate and hence should not be applied directly. In this chapter,
statistical methods for a two-stage adaptive seamless design with different
study endpoints (e.g., biomarker versus clinical endpoint or the same clinical
endpoint with different treatment durations) but same study endpoint will
be developed. Modification to the derived results is necessary if the study
endpoints and study objectives are different at different stages.

One of the questions that are commonly asked when applying a two-stage
adaptive seamless design in clinical trials is sample size calculation/allocation.
For the first kind of two-stage seamless designs, the methods based on individ-
ual p-values as described by Chow and Chang (2006) can be applied. However,
these methods are not appropriate for Category IV (DD) trial designs with dif-
ferent study objectives and endpoints at different stages. For Category IV (DD)
trial designs, the following issues are challenging to the investigator and the
biostatistician. First, how do we control the overall type I error rate at a pre-
specified level of significance? Second, is the typical O’Brien-Fleming type of
boundaries feasible? Third, how to perform a valid final analysis that combines
data collected from different stages? Cheng and Chow (2010) attempt to address
these questions by proposing a new multiple-stage transitional seamless adap-
tive design accompanied with valid statistical tests to incorporate different
study endpoints for achieving different study objectives at different stages.

10.4 Analysis for Seamless Design with Same Study
Objectives/Endpoints

In practice, since a two-stage seamless design with the same study objectives
and same study endpoints at different stages is similar to a typical group
sequential design with one planned interim analysis, standard statistical
methods for group sequential design are often employed. With various adap-
tations that are applied, many interesting methods have been developed in
the literature. For example, the following is a list of methods that are com-
monly employed: (1) Fisher’s criterion for combination of independent p-values
from subsamples collected between two consecutive adaptations (Bauer and
Kohne, 1994; Bauer and Rohmel, 1995; Posch and Bauer, 2000), (2) weighting
the samples differently before and after each adaptation (Cui et al., 1999),
(3) the conditional error function approach (Proschan and Hunsberger, 1995;
Liu and Chi, 2001), and (4) conditional power approaches (Li et al., 2005). The
method using Fisher’s combination of p-values provides great flexibility in
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the selection of statistical methods for individual hypothesis testing based
on subsamples. However, as pointed out by Muller and Schafer (2001), the
method lacks flexibility in the choice of boundaries. Among other interest-
ing studies, Proschan and Wittes (2000) constructed an unbiased estimate
that uses all of the data from the trial. Adaptive designs featuring response-
adaptive randomization were studied by Rosenberger and Lachin (2003).
The impact of study population changes due to protocol amendments was
studied by Chow et al. (2005). An adaptive design with a survival endpoint
was studied by Li et al. (2005). Hommel et al. (2005) studied a two-stage
adaptive design with correlated data. An adaptive approach for a bivariate-
endpoint was studied by Todd (2003). Tsiatis and Mehta (2003) showed that
for any adaptive design with sample size adjustment, there exists a more
powerful group sequential design.

In what follows, for illustration purpose, we will introduce the method
based on the sum of p-values (MSP) by Chow and Chang (2006) and Chang
(2007). The MSP follows the idea of considering a linear combination of the
p-values calculated using subsamples from the current and previous stages.
Because of the simplicity of this method, it has been widely used in clinical tri-
als. The theoretical framework of the MSP is described in the following section.

10.4.1 Theoretical Framework

Consider a clinical trial with K interim analyses. The final analysis is treated
as the Kth interim analysis. Suppose that at each interim analysis, a hypoth-
esis test is performed followed by some actions that are dependent on
the analysis results. Such actions could result in an early stopping due to
futility/efficacy or safety, sample size reestimation, modification of random-
ization, or other adaptations. In this setting, the objective of the trial can be
formulated using a global hypothesis test, which is an intersection of the
individual hypothesis tests from the interim analyses

HO:HOZ-O ﬂHOK,

where Hy;, i = 1, ..., K is the null hypothesis to be tested at the ith interim
analysis. Note that there are some restrictions on H,, that is, rejection of any
H,,i=1,...,Kwill lead to the same clinical implication (e.g., drug is effica-
cious); hence all H, i =1, ..., K are constructed for testing the same endpoint
within a trial. Otherwise the global hypothesis cannot be interpreted.

In practice, H, is tested based on a subsample from each stage, and without
loss of generality, assume H,, is a test for the efficacy of a test treatment under
investigation, which can be written as

Hyiinazmp versus H,:mp <Mp,

where 1;; and 1, are the responses of the two treatment groups at the ith stage.
It is often the case that when n;; = 1, the p-value p; for the subsample at the
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ith stage is uniformly distributed on [0, 1] under H, (Bauer and Kohne, 1994).
This desirable property can be used to construct a test statistic for multiple-
stage seamless adaptive designs. As an example, Bauer and Kohne (1994) used
Fisher’s combination of the p-values. Similarly, Chang (2007) considered a lin-
ear combination of the p-values as follows:

K

T, = 2 wapi, i=1,..,K, (10.1)

where
w; >0
K is the number of analyses planned in the trial

For simplicity, consider the case where w; = 1. This leads to

K
T, = 2 pi, i=1,..,K (10.2)

The test statistic T} can be viewed as cumulative evidence against H,. The
smaller the T, is, the stronger the evidence is. Equivalently, we can define

K
the test statistic as Ty = p:/K, which can be viewed as an average of the
i=1

evidence against H,. The stopping rules are given by

Stop for efficacy if Ty = ay,
Stop for futility  if Ty = By, (10.3)
Continue otherwise,

where T}, oy, and B, are monotonic increasing functions of k, oy < B
k=1,..,K-1,and oy = Bx. Note that o and B, are referred to as the efficacy
and futility boundaries, respectively. To reach the kth stage, a trial has to
pass 1 to (k — 1)th stages. Therefore, a so-called proceeding probability can
be defined as the following unconditional probability:

Vi) = P(Ti <t, 1 < Ty <Pi,ee.y xoy < Ty <Pir)

Br Br-1 t
- f f f fro, o a(ty . t)dbdb s, . dE, (10.4)
al k-1 =%

where
t>0,t,i=1,..., kis the test statistic at the ith stage
f1i,...7 is the joint probability density function
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The error rate at the kth stage is given by
T = i) (10.5)

When efficacy is claimed at a certain stage, the trial is stopped. Therefore,
the type I error rates at different stages are mutually exclusive. Hence, the
experiment-wise type I error rate can be written as follows:

o= Z . (10.6)

Note that (10.4) through (10.6) are the keys to determine the stopping bound-
aries, which will be illustrated in the next subsection with two-stage seam-
less adaptive designs. The adjusted p-value calculation is the same as the
one in a classic group sequential design (see, e.g., Jennison and Turnbull,
2000). The key idea is that when the test statistic at the kth stage T, =t = o
(ie, just on the efficacy stopping boundary), the p-value is equal to o spent

k
2 m;. This is true regardless of which error spending function is used
i-1

and consistent with the p-value definition of the classic design. The adjusted
p-value corresponding to an observed test statistic T) = f at the kth stage can
be defined as

k-1
p(t; k) = 2 ), k=1,.., K. (10.7)

This adjusted p-value indicates weak evidence against H,, if the H, is rejected
at a late stage because one has spent some o at previous stages. On the other
hand, if the H, was rejected at an early stage, it indicates strong evidence
against H; because there is a large portion of overall alpha that has not been
spent yet. Note that p; in (10.1) is the stage-wise naive (unadjusted) p-value
from a subsample at the ith stage, while p(t; k) are adjusted p-values calculated
from the test statistic, which are based on the cumulative sample up to the
kth stage where the trial stops; Equations 10.6 and 10.7 are valid regardless
of how p; is calculated.

10.4.2 Two-Stage Adaptive Design

In this subsection, we will apply the general framework to the two-stage
designs. Chang (2007) derived the stopping boundaries and p-value formula
for three different types of adaptive designs that allow (1) early efficacy
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stopping, (2) early stopping for both efficacy and futility, and (3) early futil-
ity stopping. The formulation can be applied to both superiority and non-
inferiority trials with or without sample size adjustment.

10.4.2.1 Early Efficacy Stopping

For a two-stage design (K = 2) allowing for early efficacy stopping (B, = 1), the
type I error rates to spend at Stage 1 and Stage 2 are

ag

= s (y) = fdn =y, (10.8)
0
and
a2 o 1
Ty = Pa(an) = f f dtydh =5<a2—a1)2, (10.9)
oy t

respectively. Using (10.8) and (10.9), (10.6) becomes
1 2
o=a+ E(ocz -ay). (10.10)

Solving for a,, we obtain

=420 — o) + . (10.11)

Note that when the test statistic £, = p; > o,,, it is certain that t, = p; + p, > a,,.
Therefore, the trial should stop when p, > o, for futility. The clarity of the
method in this respect is unique, and the futility stopping boundary is often
hidden in other methods. Furthermore, o, is the stopping probability (error
spent) at the first stage under the null hypothesis condition and o — o, is the
error spent at the second stage. Table 10.2 provides some examples of the
stopping boundaries from (10.11).

TABLE 10.2
Stopping Boundaries for Two-Stage Efficacy Designs

One-sided o o, 0.005 0.010 0.015 0.020 0.025 0.030
0.025 o, 02050 0.1832 0.1564 0.1200 0.0250 —
0.05 o, 03050 0.2928 0.2796 0.2649 0.2486  0.2300

Source: Chang, M., Stat. Med., 26, 2772, 2007. With permission.
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The adjusted p-value is given by

t ifk=1,

p(t; k) = (10.12)

o4 +%(t‘—o¢l)2 ifk=2,

where
t = p, if the trial stops at Stage 1
t = p, + p, if the trial stops at Stage 2

10.4.2.2 Early Efficacy or Futility Stopping

It is obvious that if B, = o, the stopping boundary is the same as it is for the
design with early efficacy stopping. However, futility boundary 3, when f, = o,
is expected to affect the power of the hypothesis testing. Therefore,

= f dt =, (10.13)
0

and

1 02
f dtzdtl fOI‘ B] = 0>,
0, = Pedn (10.14)

(o3 %)
dtzdtl for I?)l > g,

2
j:xl t

Carrying out the integrations in (10.13) and substituting the results into (10.6),
we have

1
a1+a2([31—(x1)—5([3%—(1%) for B1 < a,
o= (10.15)

oy +%(oc2 —oy)? for B; = a,.

Various stopping boundaries can be chosen from (10.15). See Table 10.3 for
examples of the stopping boundaries. The adjusted p-value is given by
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TABLE 10.3

Stopping Boundaries for Two-Stage Efficacy and Futility

Designs

One-Sided o B,=0.15

0.025 o, 0.005 0.010 0.015 0.020 0.025
o, 02154 0.1871 0.1566 0.1200  0.0250

B, =02
0.05 o, 0.005 0.010 0.015 0.020 0.025

o, 03333 03155 0.2967 0.2767 0.2554

Source: Chang, M., Stat. Med., 26, 2772, 2007. With permission.

t ifk=1,
p(t; k) = {on + (B - o) —%([3% -a}) ifk=2and B, <a,,  (10.16)

a1+%(t—a1)2 ifk=2pB=a,.

where
t = p, if the trial stops at Stage 1
t = p; + p, if the trial stops at Stage 2

10.4.2.3 Early Futility Stopping

A trial featuring early futility stopping is a special case of the previous
design, where o, = 0 in (10.15). Hence, we have

1
A3y - Eﬁ% for B1 < a,
o= (10.17)

%a% for B; = a,.

Solving for a,, it can be obtained that

a 1
—+ = for B, <20,
o =) B o forb (10.18)

2o for B = a,.
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TABLE 10.4
Stopping Boundaries for Two-Stage Futility Design

One-Sidedae B, 0.1 0.2 0.3 20.4
0.025 o, 0.3000 0.2250 0.2236 0.2236
0.05 o, 05500 0.3500 0.3167 0.3162

Source: Chang, M., Stat. Med., 26, 2772, 2007. With
permission.

Examples of the stopping boundaries generated using (10.18) are pre-
sented in Table 10.4. The adjusted p-value can be obtained from (10.16),
where o, = 0, that is,

¢ ifk=1,
p(t; K) = o + 1Py %B% if k=2 and By < aa, (10.19)
(11+%t2 ifk=2|?)12(12.

10.4.3 Conditional Power

Conditional power is a very useful operating characteristic of adaptive
designs. It can be used for interim decision-making and drawing compari-
sons among different designs and different statistical methods for adaptive
designs. Because the stopping boundaries for the most existing methods are
either based on z-scale or p-scale, for the purpose of comparison, we will use
the transformation p, = 1 — ®(z;) and, inversely, z, = ®(1 — p;), where z, and
py are the normal z-score and the naive p-value from the subsample at the kth
stage, respectively. Note that z, has asymptotically normal distribution with
N(8/se(8,),1) under the alternative hypothesis, where 9, is the estimation of
treatment difference in the second stage and

2 / 262 /202
56(62)= " = 7
2 2

To derive the conditional power, we express the criterion for rejecting H, as

Zy = B(az, pl) (1020)

From (10.20), we can immediately obtain the conditional probability given
the first stage naive p-value, p,, in the second stage as

R@u&=1—®@MMm0—2 ?),(h<msﬁp (10.21)
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For the method based on the product of stage-wise p-values (MPP), the rejec-
tion criterion for the second stage is p;p, < o, i.e., z, 2 P71 — a,/p,). Therefore,
B(ay, py) = @71 - 0,,/p,y). Similarly, for the MSP, the rejection criterion for the
second stage is p; + p, < 0, i.e., z, = B(0y, p;) = P71(1 — max(0, o, — p,)). For the
inverse-normal method (Lehmacher and Wassmer, 1999), the rejection crite-
rion for the second stage is w,z, + w,z, =2 P71 — o), i.e, z, 2 (P71 — o) — w, P!
(1 - py))/w,, where w, and w, are prefixed weights satisfying the condition of
wi + w3 = 1. Note that the group sequential design and the Cui-Hung-Wang
(CHW) method (Cui et al, 1999) are special cases of the inverse-normal
method. For simplicity, we will compare only MPP and MSP analytically
because the third method also depends on two additional parameters, w; and
w,. To compare the conditional power, the same o, should be used for both
methods; otherwise the comparison will be much less informative. From
(10.21), we can see that the comparison of the conditional power is equivalent
to the comparison of function B(oy, p;). Equating the two B(a,, p,), we have

%2 _G,-p, (10.22)
41

where @, and @, are the final rejection boundaries for MPP and MSP, respec-
tively. Solving (10.22) for p;, we obtain the critical point for p,

R o e
M= w (10.23)
such that when p; <m; or p, > 1, MPP has a higher conditional power than
MSP. When n, < p; < M,, MSP has a higher conditional power than MPP. For
example, for overall one-sided o = 0.025, if we choose o; = 0.01 and B, = 0.3,
then &, = 0.0044 and @&, =0.2236, and finally 1, = 0.0218 and m, = 0.2018
from (10.23). The unconditional power P, is the expectation of conditional
power, ie.,

P, = Es[P-(p1,0)]. (10.24)

Therefore, the difference in unconditional power between MSP and MPP is
dependent on the distribution of p; and, consequently, dependent on the true
difference 6 and the stopping boundaries at the first stage (o, By).

Note that in Bauer and Kohne’s (1994) method using Fisher’s combination,

_ 2
which leads to the equation o, +In(B;/a;)e I2%ire _ o it is obvious that the
determination of B, leads to a unique o, and, consequently, a,. This is a non-

flexible approach. However, it can be verified that the method can be gener-

. -(1/2)3
alized to oy + o, In B,/ = o, where o, does not have to be e 2hara,
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Note that Tsiatis and Mehta (2003) indicated that there is an optimal (uni-
formly more powerful) design for any class of sequential design with a speci-
fied error spending function. In other words, for any adaptive design, one
can always construct a classic group sequential test statistic that, for any
parameter value in the space of alternatives, will reject the null hypothesis
earlier with equal or higher probability, and, for any parameter value not in
the space of alternatives, will accept the null hypothesis earlier with equal or
higher probability. However, the efficacy gain by the classic group sequen-
tial design comes with a cost—for example, an increased number of interim
analyses increases (e.g., from 3 to 10), which definitely has an associated cost
practically. Also, the optimal design is under the condition of a prespecified
error-spending function, but adaptive designs do not require in general a
fixed error-spending function.

10.5 Analysis for Seamless Design with Different Endpoints

For illustration purpose, consider a two-stage phase 1I/1lI seamless adaptive
trial design with different (continuous) study endpoints. Let x; be the obser-
vation of one study endpoint (e.g., a biomarker) from the ith subject in phase
I,i=1,...,nand y; be the observation of another study endpoint (the primary
clinical endpoint) from the jth subject in phase IIL, j = 1,..., m. Assume that
x/'s are independently and identically distributed with E(x;) = v and Var(x;) =
7, and y/’s are independently and identically distributed with E(y) = n and
Var(y) = 6> Chow et al. (2007) proposed using the established functional
relationship to obtain predicted values of the clinical endpoint based on data
collected from the biomarker (or surrogate endpoint). Thus, these predicted
values can be combined with the data collected at the confirmatory phase
to develop a valid statistical inference for the treatment effect under study.
Suppose that x and y can be related in a straight-line relationship

y=PBo+Pix+¢, (10.25)

where € is an error term with zero mean and variance ¢2. Furthermore, € is
independent of x. In practice, we assume that this relationship is well-explored
and the parameters B, and B, are known. Based on (10.25), the observations
x; observed in the learning phase would be translated to B, + B,x; (denoted
by #;) and are combined with those observations y; collected in the confirma-
tory phase. Therefore, §/’s and y,’s are combined for the estimation of the treat-
ment mean . Consider the following weighted-mean estimator:

i =op+(1-0)y, (10.26)
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where

i=amy

j= (1/m)E v
0

I/\

It should be noted that ] is the minimum variance unbiased estimator among
all weighted-mean estimators when the weight is given by

__ n/(iv)
ey (10.27)

if B, 72, and 62 are known. In practice, 7 and ¢? are usually unknown and ®
is commonly estimated by

n/s?

w=—""" _
n/s*+m/s?’

(10.28)

where si and s3 are the sample variances of s and y;s, respectively. The cor-
responding estimator of u, which is denoted by

ep = OF +(1-0)7, (10.29)

is called the Graybill-Deal (GD) estimator of u. The GD estimator is often
called the weighted mean in metrology. Khatri and Shah (1974) gave an exact
expression of the variance of this estimator in the form of an infinite series.
An approximate unbiased estimator of the variance of the GD estimator,
which has bias of order O(n2? + m2), was proposed by Meier (1953). In par-
ticular, it is given as

— . 1 1
Var(ico) = e [1+4m(1 m)(n e 1)}

For the comparison of the two treatments, the following hypotheses are
considered:

Ho:w; =u, versus Hi:ug = W;. (10.30)
Let J; be the predicted value B, + B,x;, which is used as the prediction of y

for the jth subject under the ith treatment in phase II. From (10.29), the GD
estimator of 1, is given as
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UGpi = é)i]T/i +(1- )7, (10.31)
where
]7{ = (1/711‘)2 ,l ]}ij
j=1

pi=W/m)Y

o; = n;/S%/(n;/S% + m;/S3) with S% and S3; being the sample variances of
(]}ilr ey ﬁini) and (yn, . ]/im,), respectively

For hypotheses (10.30), consider the following test statistic:

fio Moo (10.32)
\/Var(ucm) + Var(ugpz)

where

—n 1 ~ ~ 1 1

Var(iiai) - 711‘/5121' + mi/ng [1+ 400,(1—0),)( n-1 ¥ m; —1) }
is an estimator of Var([lgp;), i = 1, 2. Using arguments similar to those in
Section 2.1, it can be verified that T, has a limiting standard normal distribu-
tion under the null hypothesis H, if Var(S;) and Var(S3) — 0 as n, and
m; — . Consequently, an approximate 100(1 — o)% confidence interval of
W, — U, is given as

(lAkGDl - lAlGDz = Za/oN V1, llGDl - lALGDz + Zo 2\ V1 ), (10.33)

where V; = \//z;(ﬁcm) + @(@cm)- Therefore, hypothesis H; is rejected if the
confidence interval (9) does not contain 0. Thus, under the local alternative
hypothesis that H; : y; — W, = 8 # 0, the required sample size to achievea 1 - f3
power satisfies

~Zas2 +[9)|
\/ Var(llc]m) + Var(!iGDZ)

= Zg.

Let m; = pn; and n, = yn,. Then, denoted by N the total sample size for two
treatment groups is (1 + p)(1 + y)n, with n, given as
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= %AB(l +41+8(1+p)A’'C ) (10.34)

where
A =2y + 25/

B=oi/(p+r")+03/y(p+1")
C=B?[oi/n(p+r"Y +03/v°n(p+r ') with r = Biti/o?7, i=1,2

For the case of testing for superiority, consider the following local alterna-
tive hypothesis:

H]iMl—M2=61>6.

The required sample size to achieve 1 — § power satisfies

~Zq + (8 - 8)/\[Var(liep) + Var(iam) = .

Using the notations in the above paragraph, the total sample size for two
treatment groups is (1 + p)(1 + y)n, with n; given as

n = %DB(l ++/1+8(1+p)D'C ), (10.35)

where D = (z, + z)*/(8, — 8)* For the case of testing for equivalence with a
significance level o, consider the local alternative hypothesis Hy: w, — u, = 8,
with |;] < 8. The required sample size to achieve 1 — § power satisfies

~Zq + (8- 81)/\/ Var(iiepr) + Var(fapa) = 2.

Thus, the total sample size for two treatment groups is (1 + p)(1 + V), with
n, given

1 = %EB(l ++/1+8(1+p)E"'C ) (10.36)

where E = (z, + 2;,)*/( = |6, ])%

Note that following a similar idea as described above, statistical tests and
formulas for sample size calculation for testing hypotheses of equality, non-
inferiority, superiority, and equivalence for binary response and time-to-
event endpoints can be obtained.
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10.6 Analysis for Seamless Design with Different
Objectives/Endpoints

In this section, we will focus on statistical inference for the scenario where
the study objectives at different stages are different (e.g., dose selection ver-
sus efficacy confirmation) and study endpoints at different stages are dif-
ferent (e.g.,, biomarker or surrogate endpoint versus regular clinical study
endpoint).

As indicated earlier, one of the major concerns when applying adaptive
design methods in clinical trials is probably how to control the overall type I
error rate at a prespecified level of significance. It is also a concern as to how
the data collected from both stages should be combined for the final analysis.
Besides, it is of interest to know how the sample size calculation/allocation
should be done for achieving individual study objectives originally set for
the two stages (separate studies). In this chapter, a multiple-stage transitional
seamless trial design with different study objectives and different study
endpoints and with and without adaptations is proposed. The impact of the
adaptive design methods on the control of the overall type I error rate under
the proposed trial design is examined. Valid statistical tests and the corre-
sponding formulas for sample size calculation/allocation are derived under
the proposed trial design.

As indicated earlier, a two-stage seamless trial design that combines two
independent studies (e.g., a phase Il study and a phase III study) is often con-
sidered in clinical research and development. Under such a trial design, the
investigator may be interested in having one planned interim analysis at each
stage. In this case, the two-stage seamless trial design becomes a four-stage
trial design if we consider the time point at which the planned interim analy-
sis will be conducted as the end of the specific stage. In this chapter, we will
refer to such a trial design as a multiple-stage transitional seamless design to
emphasize the importance of smooth transition from stage to stage. In what
follows, we will focus on the proposed multiple-stage transitional seamless
design with (adaptive version) and without (nonadaptive version) adaptations.

10.6.1 Nonadaptive Version

Consider a clinical trial comparing k treatments groups, E,, ..., E, with a
control group C. One early surrogate endpoint and one subsequent primary
endpoint are potentially available for assessing the treatment effect. Let 6,
and y; i = 1,...,k be the treatment effect comparing E; with C measured by
the surrogate endpoint and the primary endpoint, respectively. The ultimate
hypothesis of interest is

Hoo:py ==y, (10.37)
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which is formulated in terms of the primary endpoint. However, along the
way, the hypothesis

HO/l . 61 =eee= Bk, (1038)

in terms of the short-term surrogate endpoint will also be assessed. Cheng
and Chow (2010) assumed that y; is a monotone increasing function of the
corresponding 6,. The trial is conducted as a group sequential trial with
the accrued data analyzed at three stages (i.e., Stage 1, Stage 2a, Stage 2b,
and Stage 3) with four interim analyses, which are briefly described in
the following. For simplicity, consider the case where the variances of the
surrogate endpoint and the primary outcomes, denoted as ¢? and 72, are
known.

At Stage 1 of the study, (k + 1)n; subjects will be randomized equally to
receive either one of the k treatments or the control. As a result, there are
n, subjects in each group. At the first interim analysis, the most promis-
ing treatment will be selected and used in the subsequent stages based on
the surrogate endpomt Let 6, 1,1= .k be the pair-wise test statistics,
and S = argmaxi.;« 6, 1 then if 65 1=0 for some c;, the trial is stopped and
H,, is accepted. Otherwise, if 65,1 >y, then the treatment Eg is recom-
mended as the most promising treatment and will be used in all the sub-
sequent stages. Note that only the subjects receiving either the promising
treatment or the control will be followed formally for the primary end-
point. The treatment assessment on all other subjects will be terminated
and the subjects will receive standard care and undergo necessary safety
monitoring.

At Stage 2a, 2n, additional subjects will be equally randomized to receive
either the treatment E or the control C. The second interim analysis is sched-
uled when the short-term surrogate measures from these 21, Stage 2 subjects
and the primary endpoint measures from those 21, Stage 1 subjects who
receive either the treatment E or the control C become available. Let T ; = 65 1
and Ty, = ws 1 be the pair-wise test statistics from Stage 1 based on the surro-
gate endpoint and the primary endpoint, respectively, and 65 » be the statistic
from Stage 2 based on the surrogate. If

mn ~ ny ~
T, = Os1 + Os2 =021,
n+np nm+n,

stop the trial and accept H,. If T,; > ¢,; and T, > c1 », stop the trial and reject
both Hy, and H,,. Otherwise, if T,; > ¢,, but T}, < ¢;,, we will move on to
Stage 2b.

At Stage 2b, no additional subjects will be recruited. The third interim anal-
ysis will be performed when the subjects in Stage 2a complete their primary
endpoints. Let
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ny A ny ~
T, = WYs1 4, | ———Ws 2,
ny +np ny +np

where s, is the pair-wise test statistic from Stage 2b. If T,, > ¢,,, stop the
trial and reject H,. Otherwise, move on to Stage 3.

At Stage 3, the final stage, 211, additional subjects will be recruited and fol-
lowed till their primary endpoints. For the fourth interim analysis, define

ny A ny A ny ~
Tom gt [y g,
ny+n,+ns ny+ny;+ns ny+n;+ns

where s 5 is the pair-wise test statistic from Stage 3. If T, > ¢,, stop the trial
and reject H,,; otherwise, accept H,. The parameters in the above designs,
1y, My, M3, C11, C19, Cay, o0, AN C5, are determined such that the procedure will
have a controlled type I error rate of o and a target power of 1 — 3. The deter-
mination of these parameters will be given in the next section.

In the above design, the surrogate data in the first stage are used to esti-
mate the most promising treatment rather than assessing H,,. This means
that upon completion of Stage 1, a dose does not need to be significant in
order to be recommended for the subsequent stages. This feature is impor-
tant since it does not suffer from any lack of power due to limited sample
sizes.

There are two sets of hypotheses to be tested, namely H,, and H,,. To claim
efficacy, H,, has to be rejected, and hence is the hypothesis of primary inter-
est. However, to ensure appropriate control of the type I error rate associated
with the sequential design with change of endpoints, Hj; has to be assessed
along the way according to the closed testing principle. The proposed two-
stage seamless design is attractive due to its efficiency (e.g., reduces the lead
time between a phase Il trial and a phase III study) and flexibility (e.g., allows
to make decision early and take appropriate actions such as stopping the
trial early or deleting/adding dose groups). At the first stage, with a lim-
ited number of subjects, the goal is to detect any signals for safety and/or
evidence for early efficacy. With a limited number of subjects, there will not
be any power for detecting a small clinically meaningful difference. This
justifies the use of precision analysis for achieving statistical significance as
a criterion for dose selection.

10.6.2 Adaptive Version

The proposed design approach in the previous section is a group sequential
procedure with treatment selection. There is no adaptation involved in the
above procedure. Tsiatis and Mehta (2003) and Jennison and Turnbull (2006)
argue that adaptive designs typically suffer from loss of efficiency and hence
are typically not recommended in regular practice. However, as pointed out
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by Proschan et al. (2006), in some scenarios, particularly when there is no
enough primary outcome information available, it is appealing to use an
adaptive procedure as long as it is statistically justified. For the trials we are
considering, since the primary outcome takes much longer time to observe
compared to its surrogate, we feel that an adaptive procedure is useful in
our setting. And the transitional feature of our proposed design make it pos-
sible to modify the design adaptively upon completion of the second interim
analysis (i.e., Stage 2a). One possible adaptation is the correlation between
the surrogate endpoint and the primary outcome. As a nuisance parameter,
it plays an important role in the power calculation of the procedure. This
nuisance parameter can be estimated using the first stage patients who are
followed for their primary outcomes.

Another possible modification is to recalibrate the treatment effect of the
primary out come by exploring the relationship between the surrogate end-
point and the primary outcome. Specifically, assuming there is a local linear
relationship between y and 6, a reasonable assumption when focusing only
on their values at a neighborhood of the most promising treatment Eg, then
at the end of Stage 2a, the treatment effect in term of the primary endpoint
can be reestimated as

Q 11’5,1
65 == TZ,l'
S,1

Then we could reestimate the Stage 3 sample size based on a modified
treatment effect of the primary outcome & = max({d;, 8}, where 9, is a mini-
mally clinically relevant treatment effect agreed upon prior to the trial. The
reason we choose the modified treatment this way is to ensure the clinical
relevance of the test procedure. Let m be the reestimated Stage 3 sample
size based on 6. If m < n;, then there is no modification for the procedure.
If m > n,, then m (instead of the originally planned n;) patients per arm
will be recruited at Stage 3. The justification of the above adaptation can be
found in Cheng and Chow (2010).

10.6.3 An Example

A pharmaceutical company is interested in conducting a clinical trial utilizing
a two-stage seamless adaptive design for evaluation of safety (tolerability)
and efficacy of a test treatment for patients with hepatitis C infection. The
trial will combine two independent studies (one for dose selection and the
other one for efficacy confirmation) into a single study. The study will con-
sist of two stages at which the first stage is for dose selection and the second
stage is for establishment of non-inferiority of the selected dose from the
first stage as compared to the standard of care therapy (control). The primary
objectives of the study then contain study objectives at both stages. For the
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first stage, the primary objective is to select the optimal dose as compared to
the standard of care therapy, while the primary objective of the second stage
is to establish non-inferiority of the selected dose as compared to the stan-
dard of care therapy. The treatment duration is 48 weeks of treatment fol-
lowed by a 24 weeks follow-up. The primary study endpoint is the sustained
virologic response (SVR) at Week 72, which is defined as an undetectable
HCV RNA level (<10IU/mL) at Week 72. The proposed two-stage seamless
adaptive design is briefly outlined, as follows: Stage 1—this stage is a five-
arm randomized evaluation of four active dose levels of the test treatment.
Qualified subjects will be randomly assigned to one of the five treatment
groups at a 1:1:1:1:1 ratio. After all Stage 1 subjects have completed Week 12 of
the study, an interim analysis was performed. Based upon the safety results
of this analysis as well as virologic response at Weeks 12 and 24, Stage 1 sub-
jects who have not yet completed the study protocol will continue with their
assigned therapies for the remainder of the planned 48 weeks, with final
follow-up at Week 72. An optimal dose will be selected based on the interim
analysis results of the 12 week early virologic response (EVR), which is
defined as 2-log10 reduction in HCV RNA level at Week 12, assuming that
the 12 week EVR is predictive of 72 week SVR. The 12 week EVR is con-
sidered as a surrogate endpoint for the primary endpoint of 72 week SVR.
Under this assumption, an optimal dose will be selected using precision
analysis under some pre specified selection criteria. In other words, the
dose group with highest confidence level for achieving statistical signifi-
cance (i.e., the observed difference is not by chance alone) will be selected.
The selected dose will then proceed to testing for non-inferiority compared
to standard of care in Stage 2. Stage 2—this stage will be a non-inferiority
comparison of the selected dose from Stage 1. A separate cohort of sub-
jects will be randomized to receive either the selected dose from Stage 1 or
the standard of care treatment as given in Stage 1 in a 1:1 ratio. A second
interim analysis will be performed when all Stage 2 subjects have com-
pleted Week 12 and 50% of the subjects (Stage 1 and Stage 2 combined) have
completed 48 weeks treatment and follow-up of 24 weeks. Depending on
the results of this analysis, including the virologic response at Weeks 12
and 24, sample size reestimation will be performed to whether additional
subjects are needed in order for achieving the desired power for establish-
ment of non-inferiority for the selected dose.

In both stages, subjects who do not meet the study criteria for virologic
response at Weeks 12 and 24, and those who do meet these criteria but then
relapse at any later time through study Week 72, will discontinue study
treatment and will be offered treatment, off protocol, with standard of care.
For the two planned interim analyses, the incidence of EVR as well as safety
data, will be reviewed by an independent data safety monitoring board
(DSMB). The commonly used O’Brien-Fleming boundaries will be applied
for controlling the overall type I error rate at 5% (O’Brien and Fleming,
1979). Adaptations such as stopping the trial early, discontinuing selected
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treatment arms, and reestimating the sample size may be applied as recom-
mended by the DSMB. Stopping rules for the study will be designated by the
DSMB, based on their ongoing analyses of the data and as per their charter.

10.7 Concluding Remarks

As indicated earlier, in practice, statistical methods for a standard group
sequential trial design with one planned interim analysis is often applied to
the two-stage seamless adaptive design regardless whether the study objec-
tives and/or the study endpoints at different stages are the same. It is then a
concern whether the obtained p-value and confidence interval for assessment
of the treatment effect are correct or reliable. Sample size needed for achiev-
ing a desired power that obtained under a standard group sequential design
may not be sufficient for achieving the study objectives under the two-stage
seamless adaptive trial design especially when the study objectives and/or
study endpoints at different stages are different. More discussions regarding
adaptive design methods in clinical trials can be found in Chapter 26.

In its recent draft guidance on adaptive clinical trial design, the U.S. FDA
classifies adaptive designs as either well understood designs or less well under-
stood designs depending upon the nature of adaptations either blinded or
unblinded (FDA, 2010b). In practice, however, most of the adaptive designs
(including seamless adaptive designs described in this chapter) are considered
less well understood designs. As a result, one of the major challenges is not
only the development of a set of criteria for choosing a good design among
these less well understood designs, but also the development of appropriate
statistical methods under the selected less well understood designs for valid
statistical inference of the test treatment under investigation.
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Multiplicity in Clinical Trials

11.1 General Concept

In clinical trials, one of the ultimate goals is to demonstrate that the observed
difference of a given study endpoint (e.g., the primary efficacy endpoint) is
not only of clinical importance (or a clinically meaningful difference) with
statistical meaning (or of statistically significance). A study endpoint is said
to have statistical meaning when the observed difference is not by chance
alone and is reproducible if we are to conduct a similar study under similar
experimental conditions. In practice, the observed clinically meaningful dif-
ference that has achieved statistical significance is also known as statistical
difference. Thus, a statistical difference means that the difference is not by
chance alone and it is reproducible. In drug research and evaluation, it is of
interest to control the chances of false negative (or making type I error) and
to minimize the chances of false positive (or making type II error) at a pre-
specified level of significance. As a result, based on a given study endpoint,
controlling the overall type I error rate at a prespecified level of significance
for achieving a designed power (i.e., the probability of correctly detecting a
clinically meaningful difference if such a difference truly exists) has been a
common practice for sample size determination.

In practice, the investigator may consider more than one endpoint (say two
study endpoints) as the primary study endpoints. In this case, our goal is to
demonstrate that the observed differences of the two study endpoints are
clinically meaningful differences with statistical meaning. In other words,
the observed differences are not by chance alone and they are reproducible.
In this case, the level of significance is necessarily adjusted for controlling
the overall type I error rate at a prespecified level of significance for mul-
tiple endpoints. This has raised the critical issue of multiplicity in clinical
research and development. In clinical trials, multiplicity is usually referred to
as multiple inferences that are made in simultaneous context (Westfall and
Bretz, 2010). As a result, o adjustment for multiple comparisons is to make
sure that the simultaneously observed differences are not by chance alone. In
clinical trials, commonly seen multiplicity includes comparison of (1) multi-
ple treatments (dose groups), (2) multiple endpoints, (3) multiple time points,

203



204 Controversial Statistical Issues in Clinical Trials

(4) interim analyses, (5) multiple tests of the sample hypothesis, (6) variable/
model selection, and (7) subgroup analyses.

In general, if there are k treatments, there are k(k — 1)/2 possible pair-wise
comparisons. In practice, two types of error rates are commonly considered
(Lakshminarayanan, 2010). The first type is a comparison-wise error rate
(CWE), which is a type I error rate for each comparison. That is, it is the
probability of erroneously rejecting the null hypothesis between treatments
involved in the comparison. The other type of error rate is an experiment-
wise error rate (EWE) or family-wise error rate (FWER), which is the error
rate associated with one or more type I errors for all comparisons included in
the experiment. Thus, for k comparisons, CWE = aoand FWER =1 — (1 — a*.
As a result, the FWER could be much larger than the significance level asso-
ciated with each test if multiple statistical tests are performed using the same
data set. In practice, thus, it is of interest to control the FWER. In the past sev-
eral decades, several procedures for controlling FWER have been suggested
in the literature. These procedures can be classified into either single-step
procedures or stepwise (e.g., step-up and step-down) procedures. Note that
an alternative approach to multiplicity control is to consider the false discov-
ery rate (FDR) (see Benjamini and Hochberg, 1995).

In the next section, regulatory perspectives regarding multiplicity adjust-
ment are discussed. Also included are some commonly seen controversial
issues of multiplicity in clinical trials. Section 11.3 provides a summary of
commonly considered statistical methods for multiplicity adjustment for
controlling the overall type I error rate. An example concerning a dose-finding
study is given in Section 11.4. A brief concluding remark is given in the last
section of this chapter.

11.2 Regulatory Perspective and Controversial Issues
11.2.1 Regulatory Perspectives

Regulatory position regarding adjustment for multiplicity is not clear. In
1998, the International Conference on Harmonization (ICH) E9 published
guidelines regarding Statistical Principles in Clinical Trials. These guide-
lines have several comments reflecting concern over the multiplicity prob-
lem. The ICH E9 guidelines recommend that the analysis of clinical trial
data may necessitate an adjustment to the type I error. In addition, the ICH
E9 suggests details of any adjustment procedure or an explanation of why
adjustment is not thought necessary to be set out in the analysis plan. The
European Agency for the Evaluation of Medicinal Products (EMEA), on the
other hand, in its Committee for Proprietary Medicinal Products (CPMP)
draft guidance “Points to Consider on Multiplicity Issues in Clinical Trials”
indicates that multiplicity can have a substantial influence on the rate of
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false positive conclusions whenever there is an opportunity to choose the
most favorable results from two or more analyses. The EMEA guidance also
echoes the ICH recommendation for stating details of the multiple compari-
sons procedure in the analysis plan.

11.2.2 Controversial Issues

When conducting clinical trials involving multiple comparisons, the follow-
ing questions are always raised (see also Hung and Wang, 2009):

1. Why do we need to adjust for multiplicity?
2. When do we need to adjust for multiplicity?
3. How do we adjust for multiplicity?

4. Is the FWER well controlled?

To address the first question, it is suggested that the null/alternative hypoth-
eses be clarified since the type I error rate and the corresponding power
are evaluated under the null hypothesis and the alternative hypothesis,
respectively.

Regarding the second question, it should be noted that adjustment for mul-
tiplicity is to ensure that the simultaneously observed differences are not
by chance alone. For example, for the evaluation of a test treatment under
investigation, if regulatory approval is based on single endpoint, then no o
adjustment is necessary. However, if regulatory approval is based on multiple
endpoints, then o adjustment is a must in order to make sure that the simulta-
neously observed differences are not by chance alone and they are reproduc-
ible. Conceptually, it is not correct that o needs to be adjusted if more than
one statistical test (e.g., primary hypothesis and secondary hypothesis) is to be
performed. Whether o should be adjusted depends upon the null hypothesis
(e.g., a single hypothesis with one primary endpoint or a composite hypothe-
sis with multiple endpoints) to be tested. The interpretations of the test results
for single null hypothesis and composite null hypothesis are different.

For questions (3) and (4), several useful methods for multiplicity adjustment
are available in the literature (see Hsu, 1996; Chow and Liu, 1998b; Westfall
et al.,, 1999). These methods are either single-step methods (e.g., Bonferroni’s
method), step-down methods (e.g., Holm’s method), or step-up methods (e.g.,
Hochberg’s method). In the next section, some commonly employed meth-
ods for multiplicity adjustment are briefly described.

As pointed out by Westfall and Bretz (2010), the controversial issues of
multiplicity in clinical trials that are commonly encountered include (1)
penalizing for doing more or good job (i.e., performing additional test), (2)
adjusting o for all possible tests conducted in the trial, and (3) the family
of hypotheses to be tested. Penalizing for doing good job is referred to as
adjustment for multiplicity for dose-finding trials that include more dose
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groups. For adjusting o for all possible tests conducted in the trial, although
the o is controlled at the prespecified level, it is over-killed because it is not
in the investigator’s best interest to show that all of the observed differences
simultaneously are not by chance alone. In practice, it is very controversial to
select an appropriate family of hypotheses (e.g., primary endpoints and sec-
ondary endpoints for efficacy or safety or both) for multiplicity adjustment
for clinical evaluation of the test treatment under investigation.

It should be noted that the most worrisome impact of multiplicity on the
inference for clinical trials is not only the control of FWER though that can
be problematic but also the power for correctly detecting a clinically mean-
ingful treatment effect. One of the most controversial issues in multiplicity
is having adequate control of FWER but failing to achieve the desired power
due to multiplicity.

11.3 Statistical Method for Adjustment of Multiplicity

As indicated earlier, commonly considered procedures or methods for con-
trolling the FWER at some prespecified level of significance can be classi-
fied into two categories: (1) single-step methods (e.g., Bonferroni’s correction)
and (2) stepwise procedures, which include step-down methods (e.g., Holm’s
method) and step-up methods (e.g., Hochberg’s method). In practice, com-
monly used procedures for controlling the FWER in clinical trials are classic
multiple comparison procedures (MCPs), which include Bonferroni, Tukey,
and Dunnett procedures. These procedures and a few others are briefly
described in the following.

11.3.1 Bonferroni’s Method

Among the above mentioned procedures, the method of Bonferroni is prob-
ably the most commonly considered procedure for addressing multiplicity in
clinical trials though it is somewhat conservative.

Suppose there are k treatments and we are interested in testing the follow-
ing hypothesis:

Hotwi=po=-=w,

where W, i = 1,..., k is the mean for the ith treatment. Let Yipj=1.,mni=
1,..., k be the jth observation obtained in the ith treatment. Also, let i7; and

s = 2:12;(% - 1)’
E;(”i -1
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be the least square mean for the ith treatment and an estimate of the vari-
ance obtained from an analysis of variance (ANOVA), respectively. 1, is the
sample size of the ith treatment. We then reject the null hypothesis in favor
of the alternative hypothesis that the treatment means ; and 1, are different
for every i #j if

i = ¥ > ta/a(0) [sz(nfl + n;l)]m, (111

where t,/,(v) denotes a critical value for the ¢ distribution with v = Z(n; — 1)
degrees of freedom and an upper tail probability of ¢./2. Bonferroni’s method
simply requires that if there are k inferences in a family, then all inferences
should be performed at the o./k significance level rather than at the o level.

Note that the application of Bonferroni’s correction to ensure that the prob-
ability of declaring one or more false positives is no more than o. However,
this method is not recommended when there are a large number of pair-wise
comparisons. In this case, the following multiple range test procedures are
useful.

11.3.2 Tukey’s Multiple Range Testing Procedure

Similar to (11.1), we can declare that the treatment means y; and y, are differ-
ent for every i # j if

1/2

-1 -1
Vi = Jj| > (e k,0) [SZW] , (11.2)

2

where g(o, k, v) is the studentized range statistic. This method is known as
Tukey’s multiple range test procedure. It should be noted that simultaneous
confidence intervals on all pairs of mean differences y; — W; can be obtained
based on the following:

1/2

P{Mf—w STRIEL >

-1 71
$2 W} foralli = ]} =l-o. (113)

Note that tables of critical values for the studentized range statistic are widely
available. As an alternative to Tukey’s multiple range testing procedure,
Duncan’s multiple range testing procedure is often considered. Duncan’s
multiple testing procedure is to conclude that the largest and smallest of the
treatment means are significantly different if

(11.4)

MSE 1”2
n ] !
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where
p is the number of averages,
g(a,, p, v) is the critical value from the studentized range statistic with an
FWER of o,

11.3.3 Dunnett’s Test

When comparing several treatments with a control, Dunnett’s test is prob-
ably the most popular method. Suppose there are k — 1 treatments and one
control. Denote by L, i =1,..., k — 1 and , the mean of the ith treatment and
the control, respectively. Further, supposes that the treatment groups can be
described by the following balanced one-way ANOVA model:

yij=ui+8ij/ l=1,,k, j=1,...,7’l

It is assumed that ¢; are normally distributed with mean 0 and unknown
variance 6°. Under this assumption, |1;and 62 can be estimated. Consequently,
one-sided and two-sided simultaneous confidence intervals for u; — i, can be
obtained.

For the one-sided simultaneous confidence interval of y; -, i=1,..., k-1,
the lower bound is given by

!:l,l'—!:l,k—Ta\/E fori=1,...,k—1, (115)
n

where T =T, ,{p;}(0) satisfies
k-1
f f z-2 Tu d®(z)y(u)du =1-0a,

where @ is the distribution function of the standard normal. It should be
noted that T = Ty_; ,{p;}(c) are the critical values of the distribution of max T,
where T;, Ty, ..., T, multivariate ¢ distributed with v degrees of freedom and
correlation matrix {p;}.

For the two-sided simultaneous confidence interval w, — ,, i=1,..., k-1,
the lower bound is given by

!:l,'—!:lkiha’\/i fori=1,...,k—l, (116)
n



Multiplicity in Clinical Trials 209

where |h| satisfies

) (0t =1- o

ﬁp(ﬁm|t)_q>(z_ﬁ|h|t)]

Similarly, |h| are the critical values of the distribution of max T, where
T, T,, ..., Ty multivariate ¢ distributed with v degrees of freedom and correla-
tion matrix {p;}.

11.3.4 Closed Testing Procedure

In clinical trials involving multiple comparisons, as an alternative, the use
of the closed testing procedure has become very popular since it was intro-
duced by Marcus et al. (1976). The closed testing procedure can be described
as follows. First, form all intersections of elementary hypothesis H;, then
test all intersections using non-multiplicity adjusted tests. An elementary
hypothesis H, is then declared significant if all intersections which include
the elementary hypothesis as a component of the intersection are signifi-
cant. More specifically, suppose there is a family of hypotheses denoted by
{H, 1<i<k}. Let Hp = np Hywhere P = {1, 2,..., k}. Hp, is rejected if and only
if every H is rejected for all Q c P assuming that an o-level test for each
hypothesis H;, is available. Marcus et al. (1976) showed that this testing pro-
cedure controls the FWER.

In practice, the closed testing procedure is commonly employed in a dose-
finding study with several doses of a test treatment under investigation. As
an example, consider the following family of hypotheses:

Hi:wi-u =<0, 1=si<sk-1

against one-sided alternatives, where the kth treatment group is the placebo
group. Assume that the sample sizes in the treatment groups are equal (say #)
and the sample size for the placebo group is #,. Let

n

p= .
n+ny

Then, the closed testing procedure can be carried out by the following steps:

Step 1: Calculate T, the t-statistics for 1 <i < k — 1. Let the ordered
t-statistics be Ty < T < -+ < Ty with their corresponding hypoth-
eses denoted by H;, Hp,, ..., Hj_y.

Step 2: Reject H ;) if Ty > T, (o) fori=k -1,k -2,...,j. If we fail to reject
H, then conclude that Hi, ..., Hy are also to be retained.
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The closed testing procedures have been shown to be more powerful than
the classic multiple comparisons procedures, such as the classic Bonferroni,
Tukey, and Dunnett procedures. Note that the above step-down testing pro-
cedure is more powerful than that of Dunnett’s testing procedure given in
(11.5). There is considerable flexibility in the choice of tests for the intersec-
tion hypotheses, leading to the wide variety of procedures that fall within
the closed testing umbrella. In practice, a closed testing procedure gener-
ally starts with the global null hypothesis and proceeds sequentially toward
intersection hypotheses involving fewer endpoints. However, it can begin
with the individual hypotheses and move toward the global null hypothesis.

11.3.5 Other Tests

In addition to the testing procedures described above, there are several tests
(p-value based stepwise test procedures) that are also commonly considered in
clinical trials involving multiple comparisons. These methods include, but are
limited to, Simes’ method (see Hochberg and Tamhane, 1987; Hsu, 1996; Sarkar
and Chang, 1997), Holm’s method (Holm, 1979), Hochberg’s method (Hochberg,
1988; Hochberg and Benjamini, 1990), Hommel’s method (Hommel, 1988), and
Rom’s method (Rom, 1990), which are briefly summarized in the following.

Simes’” method is designed to reject the global null hypothesis if p, < io,/m
for at least one i = 1,..., m. The adjusted p-value for the global hypothesis is
given by

p =mmin{pa /1, ..., P/ m}.

Note that Simes” method improves Bonferroni’s method in controlling the
global type I error rate under independence (Sarkar and Chang, 1997). One of
the limitations of Simes” method is that it cannot be used to draw inferences
on individual hypotheses since it only tests the global hypothesis.

Holm’s method is a sequentially rejective procedure, which sequentially
contrasts ordered unadjusted p-values with a set of critical values and rejects
a null hypothesis if the p-value and each of the smaller p-values are less than
their corresponding critical values. Holm’s method not only improves the
sensitivity of Bonferroni’s correction method to detect real differences but
also increases in power and provides a strong control of the FWER.

Hochberg’s method applies exactly the same set of critical values as Holm’s
method but performs the test procedure in a step-up fashion. Hochberg’s
method enables to identify more significant endpoints and hence is more
powerful than Holm’s method. In practice, Hochberg’s method is somewhat
conservative when individual p-values are independent. In the case where the
endpoints are negatively correlated, the FWER control is not guaranteed for all
types of dependence among p-values (i.e., the size could potentially exceed o).

Following the principle of closed testing procedure and Simes’ test,
Hommel’s method is a powerful sequentially rejective method that allows
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for inferences on individual endpoints. It is shown to be marginally more
powerful than Hochberg’s method. However, the Hommel procedure also
suffers from the disadvantage of not preserving the FWER. It does protect
the FWER when the individual tests are independent or positively depen-
dent (Sarkar and Chang, 1997).

Rom’s method is a step-up procedure which is slightly more powerful as
compared to Hochberg’s method. Rom’s procedure controls the FWER at the
o level under the independence of p-values. More details can be found in
Rom (1990).

11.4 Gatekeeping Procedures
11.4.1 Multiple Endpoints

Consider a dose-response study comparing m doses of a test drug to a pla-
cebo or an active control agent. Suppose that the efficacy of the test drug
will be assessed using a primary endpoint and s — 1 ordered secondary end-
points. Suppose that the sponsor is interested in testing null hypotheses of
no treatment effect with respect to each endpoint against one-sided alterna-
tives. Thus, there are a total of ms null hypotheses, which can be grouped
into s families to reflect the ordering of the endpoints. Now, let y;; denote
the measurement of the ith endpoint collected in the jth dose group from
the kth patient, where k=1,...,n,i=1,...,s,and j = 0 (control), 1, ..., m. The
mean of y;; is denoted by ;. Also, let t; be the t-statistic for comparing the
jth dose group to the control with respect to the ith endpoint. It is assumed
that the t-statistics follow a multivariate ¢ distribution. Furthermore, y;;s are
normally distributed. Denote by J; the family of null hypotheses for the ith
endpoint, i = 1,..., s, i.e, S; = {Hy: o = W, - Hipi Mio = W)- The s families of
null hypotheses are tested in a sequential manner.

Family 3, (the primary endpoint) is examined first and testing continues
to family S, (most important secondary endpoint) if at least one null hypoth-
esis has been rejected in the first family. This approach is consistent with a
regulatory view that findings with respect to secondary outcome variables
are meaningful only when the primary analysis is significant. The same
principle can be applied to the analysis of ordered secondary endpoints.
Dmitrienko et al. (2006) suggest focusing on testing procedures that meet
the following condition:

Condition A: Null hypotheses in S;,; can be tested only after at least one
null hypothesis was rejected in J;, i = 1,...,s — 1. Secondly, it is important to
ensure that the outcome of the multiple tests early in the sequence does not
depend on the subsequent analyses.

Condition B: Rejection or acceptance of null hypotheses in J; does not depend
on the test statistics associated with J,,,...,S, i = 1,..., s — 1. Finally, one
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ought to account for the hierarchical structure of this multiple testing prob-
lem and examine secondary dose—control contrasts only if the correspond-
ing primary dose—control contrast was found significant.

Condition C: The null hypothesis H;, i >2 can be rejected only if Hy;is rejected,
j=1,.., m. It is important to point out that the logical restrictions for sec-
ondary analyses in condition C are caused only by the primary endpoint.
This requirement helps clinical researchers streamline drug labeling and
improves the power of secondary tests at the doses for which the primary
endpoint was significant.

Within each of the s families, multiple comparisons can be carried out
using Dunnett’s test as follows. Reject H;; if the corresponding t-statistic (t;)
is greater than a critical value c for which the null probability of max(t,, ...,
t;) > c is a. Note that Dunnett’s test protects the type I error rate only within
each family. Dmitrienko et al. (2006) extended Dunnett’s test for controlling
the FWER for all ms null hypotheses.

11.4.2 Gatekeeping Testing Procedures

Dmitrienko et al. (2006) considered the following example to illustrate the pro-
cess of constructing a gatekeeping testing procedure for dose-response stud-
ies. For simplicity, Dmitrienko et al. (2006) focused on the case where m = 2
and s = 2. In this example, it is assumed that the treatment groups are balanced
with n patients per group. The four (i.e., ms = 4) null hypotheses are grouped
into two (s = 2) families, i.e., §, = {H,;, H},} and S, = {H,,, H,,}. Note that J, con-
sists of hypotheses for comparing low and high doses to placebo with respect
to the primary endpoint, while J, contains hypotheses for comparing low and
high doses to placebo with respect to the secondary endpoint.

Now let ty,, ty,, t,1, and t,, denote the t-statistics for testing H,;, H,,, H,;, and
H,,. We can then apply the principle of the closed testing for constructing
gatekeeping procedures. According to this principle, one first considers all
possible nonempty intersections of the four null hypotheses (this family of
15 intersection hypotheses is known as the closed family) and then sets up
tests for each intersection hypothesis. Each of these tests controls the type I
error rate at the individual hypothesis level and the tests are chosen to meet
conditions A, B, and C described above. To define tests for each of the 15
intersection hypotheses in the closed family, let H denote an arbitrary inter-
section hypothesis and consider the following rules:

1. If H includes both primary hypotheses, the decision rule for H
should not include £, or t,. This is done to ensure that a secondary
hypothesis cannot be rejected unless at least one primary hypoth-
esis is rejected (condition A).

2. The same critical value should be used for testing the two primary
hypotheses. This way, the rejection of primary hypotheses is not
affected by the secondary test statistics (condition B).
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3. If H includes a primary hypothesis and a matching secondary
hypothesis (e.g., H = H;; N Hy), the decision rule for H should not
depend on the test statistic for the secondary hypothesis. This guar-
antees that H,, cannot be rejected unless H; is rejected (condition C).

Note that similar rules used in gatekeeping procedures based on the
Bonferroni’s test can be found in Dmitrienko et al. (2003) and Chen et al.
(2005). To implement these rules, it is convenient to utilize the decision matrix
approach (Dmitrienko et al., 2003). For the sake of compact notation, we will
adopt the following binary representation of the intersection hypotheses. If
an intersection hypothesis equals H;;, it will be denoted by Hiooo- Similarly,
Hrloo =H;N H12,Hf010 = Hy; N Hyy, etc.

Table 11.1 (reproduced from Table I of Dmitrienko et al., 2006) displays
the resulting decision matrix that specifies a rejection rule for each inter-
section hypothesis in the closed family. The three constants (c;, ¢,, and c;)

TABLE 11.1

Decision Matrix for a Clinical Trial with
Two Dose-Placebo Comparisons and
Two Endpoints (m =2, s =2)

Intersection Hypothesis Rejection Rule

H*
111 th>cort,>c
*

Hinp bty >ciort, >0
*

Hio ty>c or by > ¢
*

Hiioo th>cort,>c
*

Hion th>corty>c,
*

Hipio ty >0
*

Hioo th>corty>c,
*

Hiono th>c
*

Hom tp>ciorty >c,
*

Hono tp>corty>c,
*

Hoion tr >0
*

Hoo th >0
*

Hoon tn > 0Tty >0
*

Hooo ty > Cs
*

Hooon t > 03

The test associated with this matrix rejects a
null hypothesis if all intersection hypotheses
containing it are rejected. For example, the
test rejects Hy; if Hi, Hino, Hio,, Hivoo, Hion,
Hfm, Hiyor and Hiyp are rejected.
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TABLE 11.2

Critical Values for Individual Intersection
Hypotheses in a Clinical Trial with Two
Dose-Placebo Comparisons and Two
Endpoints (m =2,s =2)

Correlation between the

Endpoints (p) [H c, c;

0.01 2.249 2.309 1.988
0.1 2.249 2.307 1.988
0.5 2.249 2.291 1.988
0.9 2.249 2.260 1.988
0.99 2.249 2.250 1.988

Source: Dmitrienko, A. et al., Pharm. Stat., 5,19, 2006.
The correlation between the two endpoints (p) ranges
between 0.01 and 0.99, overall one-sided type I error prob-
ability is 0.025 and sample size per treatment group is 30
patients. With permission from John Wiley & Sons, Ltd.

in Table 11.2 (reproduced from Table II of Dmitrienko et al., 2006) represent
critical values for the intersection hypothesis tests. The values are chosen in
such a way that, under the global null hypothesis of no treatment effect, the
probability of rejecting each individual intersection hypothesis is o. Note
that the constants are computed in a sequential manner (¢, is computed first,
followed by c,, etc)) and thus ¢, is the one-sided 100(1 — o)th percentile of
Dunnett’s distribution with 2 and 3(n — 1) degrees of freedom. Secondly,
the other two critical values (c, and c;) depend on the correlation between
the primary and secondary endpoints, which is estimated from the data.
Calculation of these critical values is illustrated later.

The decision matrix in Table 11.1 defines a multiple testing procedure
that rejects a null hypothesis if all intersection hypotheses containing the
selected null hypothesis are rejected. For example, H;, will be rejected if
Hflll/H;(—HO/HflOerfllllHgllergHOnglOl/ and H[Tl()() are all rejected. By the
closed testing principle, the resulting procedure protects the FWER in the
strong sense at the o level. It is easy to verify that the proposed procedure
possesses the following properties and thus meets the criteria that define a
gatekeeping strategy based on Dunnett’s test:

1. The secondary hypotheses, H,, and H,,, cannot be rejected when the
primary test statistics, t;; and t,,, are nonsignificant (condition A).

2. The outcome of the primary analyses (based on H;; and H;,) does
not depend on the significance of the secondary dose—placebo com-
parisons (condition B). In fact, the procedure rejects H;; if and only
if t;; > ¢,. Likewise, H, is rejected if and only if ¢;, > c;. Since ¢, is a
critical value of Dunnett’s test, the primary dose—placebo compari-
sons are carried out using the regular Dunnett test.
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3. The null hypothesis H,, cannot be rejected unless H;, is rejected and
thus the procedure compares the low dose to placebo for the sec-
ondary endpoint only if the corresponding primary comparison is
significant. The same is true for the other secondary dose—placebo
comparison (condition C).

Under the global null hypothesis, the four statistics follow a central multivar-
iate ¢ distribution. The three critical values in Table 11.1 can be found using
the algorithm for computing multivariate ¢ probabilities proposed by Genz
and Bretz (2002). Table 11.2 shows the values of ¢;, ¢,, and ¢, selected values
of p (correlation between the two endpoints). It is assumed in Table 11.2 that
the overall one-sided type I error rate is 0.025 and the sample size per group
is 30 patients.

The information presented in Tables 11.1 and 11.2 helps evaluate the effect
of the described gatekeeping approach on the secondary tests. Suppose, for
example, that the two dose-placebo comparisons for the primary endpoint
are significant after Dunnett’s adjustment for multiplicity (t,; > 2.249 and
t;, > 2.249). A close examination of the decision matrix in Table 11.1 reveals
that the null hypotheses in the second family will be rejected if their t-statistics
are greater than 2.249. In other words, the resulting multiplicity adjustment
ignores the multiple tests in the primary family.

However, if the low dose does not separate from the placebo for the pri-
mary endpoint (t; < 2.249 and t;, > 2.249), it will be more difficult to find
significant outcomes in the secondary analyses. First of all, the low dose-
placebo comparison is automatically declared nonsignificant. Secondly, the
high dose will be significantly different from the placebo for the secondary
endpoint if ¢,, > c,. Note that c¢,, which lies between 2.250 and 2.309 when
0.01 < p £0.99, is greater than Dunnett’s critical value c; = 2.249 (in general,
¢, > ¢ > ¢3). The larger critical value is the price of sequential testing. Note,
however, that the penalty becomes smaller with increasing correlation.

11.5 Concluding Remarks

When conducting a clinical trial involving one or more doses (e.g., dose-
finding study) or one or more study endpoints (e.g., efficacy versus safety
endpoint), the first dilemma at the planning stage of the clinical trial is
the establishment of a family of hypotheses a priori in the study protocol
for achieving the study objective of the intended clinical trial. Based on the
study design and various underlying hypotheses, clinical strategies are usu-
ally explored for testing various hypotheses for achieving the study objec-
tives. One such set of hypotheses (e.g., drug versus placebo, positive control
agent versus placebo, primary endpoint versus secondary primary endpoint)
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would help to conclude whether both the drug and positive control agent are
superior to placebo or the drug is efficacious in terms of the primary end-
point, secondary primary endpoint